Phase II Environmental Investigation Report

2424 Hamburg Turnpike Site Lackawanna, New York

January 2014

0298-014-001

Prepared For:

Franklin Asset Management, LLC

Prepared By:

2558 Hamburg Turnpike, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

2424 Hamburg Turnpike Site Lackawanna, New York

January 2014 0298-014-001

Prepared for

Franklin Asset Management, LLC

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

2424 Hamburg Turnpike Site Lackawanna, New York

Table of Contents

1.0	BAC	CKGROUND AND SITE DESCRIPTION	1
	1.1	Historical Information and Previous Investigations	1
		1.1.1 NYSDEC Spill File - 9407600	
		1.1.2 NYSDEC Ŝpill File – 1204435	2
		1.1.3 2013 Geophysical Survey Results	2
2.0	ME	THODS OF INVESTIGATION	3
	2.1	Subsurface Soil and Groundwater Investigation	3
		2.1.1 Soil Borings	3
		2.1.2 Soil Sample Collection and Analysis	
		2.1.3 Temporary Monitoring Wells	
3.0	Inv	ESTIGATION FINDINGS	5
	3.1	Qualitative Soil Screening	5
	3.2	Site Geology	
	3.3	Soil Analytical Results	
	3.4	Groundwater Analytical Results	5
4.0	SUM	MARY AND RECOMMENDATIONS	7
5.0	Lim	IITATIONS	8

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

2424 Hamburg Turnpike Site Lackawanna, New York

Table of Contents

LIST OF TABLES

Table 1	Summary of Soil Analytical Results
Table 2	Summary of Groundwater Analytical Results

LIST OF FIGURES

Figure 1	Site Location and	Vicinity Map

Figure 2 Site Plan

ATTACHMENT

Attachment 1 NYSDEC Records and Previous Investigation

Attachment 2 Soil Boring Logs

Attachment 3 Laboratory Analytical Data Summary Package

1.0 BACKGROUND AND SITE DESCRIPTION

TurnKey Environmental Restoration, LLC (TurnKey) performed a Phase II Environmental Site Investigation on behalf of Franklin Asset Management, LLC at 2424 Hamburg Turnpike, Lackawanna, New York (Site; see Figure 1). This investigation was performed to assess potential contamination discovered during utility upgrade activities along Hamburg Turnpike and the associated New York State Department of Environmental Conservation (NYSDEC) Spill file 1204435.

The Site is located in a historically heavy industrial, commercial and residential area of the City of Lackawanna, New York. The approximate 1.0 acre property was formerly utilized as an automobile filling and service station (Stop-N-Gas) since at least 1957. The Site is improved with a municipally-condemned former automobile service building, including four-bay repair area with eight (8) in-ground hydraulic lifts, and one (1) shed building of unknown contents. Two (2) concrete pads were also noted on the northern and southern portions of the Site (see Figure 2). The northern concrete pad may be related to former car wash.

1.1 Historical Information and Previous Investigations

NYSDEC Petroleum Bulk Storage records for the Site (Site ID No. 9-386383) indicate that three (3) 10,000 gallon underground storage tanks (USTs) were installed on-Site in 1957. PBS records indicate the USTs were closed/removed in 1994.

NYSDEC Spill Incident database indicates five (5) recorded spills associated with the Site, including:

- 9102471 (dated 6/1/1991) Tank Failure (Diesel) which impacted groundwater. Spill was closed on 8/14/1992
- 9102643 (dated 6/5/1991) Tank Failure (Gasoline) which impacted groundwater. Spill file was closed on 6/11/1991.
- 9204849 (dated 7/24/1992) Waste Oil/Used oil spill of approximately 5 gallons. Spill fiel was closed on 7/30/1992.
- 9407600 (dated 9/2/1994) Contaminated soil discovered during tank removal and free product noted in excavation. Detailed review of spill records provided below. Spill file was made inactive on 9/29/1995.

• 1204435 (dated 7/10/2012) – petroleum contamination discovered during roadside utility upgrades. Spill file is currently open.

1.1.1 NYSDEC Spill File - 9407600

The 9407600 spill record indicates that three (3) 10,000 gallon USTs were removed in 1994. During USTs excavation, petroleum-impacted soil and groundwater was discovered. The approximate location of the former USTs and excavation area is presented on Figure 2. Approximately 500 cubic yards of contaminated soil was excavated and stockpiled on-Site on both the south and north side of the existing building. The spill record indicates that confirmatory soil samples from the excavation exceeded the soil cleanup guidelines and that the contamination extended under the building.

The soil was bio-remediated on Site by the excavation contractor and returned to the excavation. Groundwater from the excavation was pumped into a temporary holding tank, treated through activated carbon and discharged to ground on-Site.

1.1.2 NYSDEC Spill File – 1204435

The 1204435 spill record indicates that petroleum contamination was discovered during utility upgrades being completed along Hamburg Turnpike. Specifically, petroleum odors were apparent in the telecommunications manhole located along the property boundary of the Site. Location of the manhole is presented on Figure 2. The spill record indicates that a geophysical survey was completed.

1.1.3 2013 Geophysical Survey Results

AMEC Environment and Infrastructure, Inc. (AMEC) completed a geophysical survey of the site on July 23, 2013. The AMEC report identifies four underground anomalies that suggest of potential fueling operation equipment, including appurtenant piping to the dispenser islands and/or USTs.

Copies of the NYSDEC PBS and Spill database records, the 9407600 and 1204435 spill records, and geophysical survey are provided electronically in Attachment 1.

2.0 METHODS OF INVESTIGATION

2.1 Subsurface Soil and Groundwater Investigation

On January 14, 2014, TurnKey personnel conducted a subsurface soil and groundwater investigation at the Site. The subsurface investigation included advancing ten (10) soil borings and the installation of three (3) temporary monitoring wells. Sample locations are presented on Figure 2.

2.1.1 Soil Borings

Ten (10) soil borings, identified as SB-1 through SB-10, were advanced across the Site to further assess the findings of the spill records and geophysical survey. Soil borings were advanced with a track-mounted direct-push drill rig equipped with an approximate 1.5-inch diameter, 48-inch long macro-core sampler. Soil samples were generally collected within each borehole continuously from the ground surface until approximately 14-16 feet below the ground surface (fbgs) (i.e., the target depth), or until equipment refusal was encountered. Any down-hole equipment was decontaminated between boreholes. Seven soil borings, SB-1 through SB-7 were advanced across the exterior portion of the Site, and three (3) soil borings, SB-8, SB-9, and SB-10 were advanced within the building adjacent to the in-ground hydraulic lifts.

The physical characteristics of all soil boring samples were classified using the Unified Soil Classification System (USCS). TurnKey personnel noted any visual and/or olfactory observations, and scanned soils for total volatile organic vapors with a field photoionization detector (PID) equipped with a 10.6 eV lamp. Boring logs are presented in Attachment 2.

2.1.2 Soil Sample Collection and Analysis

Six (6) soil samples, SB-4 though SB-9, were collected from the boring macro-cores using dedicated stainless steel sampling tools. Representative soil samples were placed in pre-cleaned sample bottles and submitted under chain-of-custody to Alpha Analytical, Inc. for analysis for Target Compound List (TCL) plus NYSDEC CP-51 volatile organic compounds (VOCs) and NYSDEC CP-51 semi-volatile organic compounds (SVOCs), via

Method 8260 and 8270, respectively. Soil analytical results are summarized on Table 1. Laboratory analytical data packages are provided electronically in Attachment 3.

2.1.3 Temporary Monitoring Wells

Following borehole advancement as described above, one-inch diameter temporary monitoring wells were installed within SB-4/TMW-1, SB-5/TMW-2, and SB-7/TMW-3. Well details are provided on the associated boring logs presented in Attachment 2. It should be noted that TWM-1 was not sampled due to the presence of approximately one-inch of floating product in the well

Groundwater samples were collected from TWM-2 and TWM-3 using dedicated disposable polyethylene bailers. The samples were transferred into laboratory-provided prepreserved sample vials, cooled to 4 °C in the field, and transported to Alpha Analytical, Inc. under chain-of-custody for analysis of TCL plus NYSDEC CP-51 VOCs via USEPA Method 8260.

3.0 INVESTIGATION FINDINGS

A summary of the soil sample results from the soil boring are presented in Table 1. For comparison purposes, Table 1 soil analytical results are compared against NYSDEC CP-51 Soil Cleanup Levels (SCLs) for gasoline and fuel oil contaminated soils. Table 2 groundwater analytical results are compared to NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (GWQS), Technical and Operational Guidance Series (TOGS) 1.1.1. Laboratory analytical data packages are included in Attachment 3.

3.1 Qualitative Soil Screening

Soil samples were screened via headspace for VOCs using a handheld PID. Elevated PID readings above background (i.e., 0.0 ppm) and petroleum odors were observed in seven (7) of the ten (10) boring, including SB-4 though SB-10, with the highest PID reading of 1,098 ppm being detected in SB-6. Approximately one-inch of floating product was noted in TMW-1, which is located north of the former UST excavation area (see Figure 2).

3.2 Site Geology

The subsurface soil/fill was typically characterized as non-native fill material varying in depth from 0-8 fbgs, overlying clay, peat and sand at varying depths to 16 fbgs. Groundwater was typically encountered at approximately 6 fbgs. Boring logs are included in Attachment 2.

3.3 Soil Analytical Results

Six (6) soil samples, SB-4 through SB-9, were analyzed for VOCs and SVOCs. As indicated in Table 1, elevated VOCs above CP-51 SCLs were detected in SB-4, SB-5, SB-6, SB-8 and SB-9. Elevated SVOCs above SCLs were detected in SB-4, SB-5, SB-6, and SB-8.

3.4 Groundwater Analytical Results

As noted above, approximately one-inch of floating product was noted in TMW-1, and therefore was not analyzed. TMW-2 and TMW-3 were analyzed for TCL plus CP-51 list VOCs. Analytical results are presented on Table 2. Elevated VOCs above GWQS were

PHASE II ENVIRONMENTAL INVESTIGATION REPORT 2424 HAMBURG TURNPIKE SITE

detected on both TMW-2 and TMW-3, with total VOCs highest in TMW-2 at a concentration of 16,333 ug/L.

4.0 SUMMARY AND RECOMMENDATIONS

Based on the results of this soil and groundwater investigation, TurnKey offers the following conclusions and recommendations:

Summary

- Municipal records and previous investigations indicate the presence of former fuel system equipment and residual contamination present on-Site.
- Apparent petroleum contamination, including elevated PID readings and petroleum odors, was observed in SB-4 though SB-10 during fieldwork.
- Elevated concentrations of VOCs were detected above NYSDEC CP-51 in six of the seven soil sample locations.
- Elevated concentrations of SVOCs were detected above NYSDEC CP-51 in five of the seven soil boring locations.
- Floating product was detected in TMW-1, adjacent to the former excavation area.
- Elevated concentration of VOCs were detected above GWQS (i.e., up to 16,333 ug/L total VOCs) in both groundwater samples.

Recommendations

- Based on the findings of this report, additional investigation to delineate the
 extent of soil and groundwater impacts and Site remediation appears warranted.
 The existing in-ground hydraulic lifts should be removed in accordance with
 NYSDEC protocols and impacted soil should be properly handled. The
 disposition of the former fueling dispenser islands and appurtenant piping should
 be properly handled.
- The findings of this report should be provided to the NYSDEC for review and comment.
- TurnKey understands that the Site may be redeveloped with a new commercial facility. Consideration should be given to applying to the New York Brownfield Cleanup Program (BCP) prior to Site redevelopment.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of Franklin Asset Management, LLC. The contents of this report are limited to information available at the time of the site investigation activities and to data referenced herein, and assume all referenced information sources to be true and accurate. The findings herein may be relied upon only at the discretion of Franklin Asset Management, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

TABLES

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

2424 HAMBURG TURNPIKE SITE

LACKAWANNA, NEW YORK

	CP-51	Residential Use		Sample Location (Depth)					
PARAMETER ¹			Commercial	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9
PARAMETER	Soils SCLs ²		Use SCOs 3	(6-8')	(6-8')	(2-4')	(2-4')	(6-8')	(6-8')
	Soils SCLS	SCOS		, ,	, ,	` '	/2014	. ,	, ,
Volatile Organic Compounds (VOCs) - mg	g/Kg ⁴					0.7.1	,20		
1,2,4-Trimethylbenzene	3.6	52	190	180	74	14	3.1	110	49
1,3,5-Trimethylbenzene	8.4	52	190	21	21	3.3	0.96	35	10
Benzene	0.06	4.8	44	1 J	0.8	1.5	0.083	11	1.6
Ethylbenzene	1	41	390	14	14	5.7	0.25	39	8
Isopropylbenzene (Cumene)	2.3	-	-	9.9	2.1	0.46	0.046 J	3.2	1.6
Methylcyclohexane		-	-	43	16	1.8	0.39	49	12
n-Butylbenzene	12	100	500	26	4.4	0.6	0.23	5.2	3.2
n-Propylbenzene	3.9	100	500	48	11	2.5	0.23	18	8.2
p-Isopropyltoluene	10	-	-	4.6	0.9	0.14	0.056 J	0.81	0.62
sec-Butylbenzene	11	100	500	8.2	1.3	0.22	0.06	1.5	0.98
Toluene	0.7	100	500	2.3 J	8.3	16	0.26	2.2	1
Total Xylenes	0.26	100	500	12.6 J	79	29.3	1.88	16.36	16.87
Semi-Volatile Organic Compounds (SVO	Cs) - mg/Kg ⁴								
Acenaphthene	20	100	500	0.49	3.3	ND	ND	ND	0.083 J
Acenaphthylene	100	100	500	0.34	21	ND	0.1 J	ND	0.2
Anthracene	100	100	500	0.86	39	0.76 J	0.075 J	0.074 J	0.36
Benzo(a)anthracene	1	1	5.6	1.1	71	1.6 J	0.19	0.11 J	0.47
Benzo(a)pyrene	1	1	1	0.76	63	1.6 J	0.19	0.071 J	0.39
Benzo(b)fluoranthene	1	1	5.6	1.2	79	2.3 J	0.26	0.12 J	0.48
Benzo(ghi)perylene	100	100	500	0.47	38	1.6 J	0.13 J	0.06 J	0.25
Benzo(k)fluoranthene	0.8	3.9	56	0.38	33	1 J	0.096 J	0.051 J	0.21
Chrysene	1	3.9	56	1.2	71	1.6 J	0.18	0.16	0.46
Dibenzo(a,h)anthracene	0.33	0.33	0.56	0.12 J	10	ND	ND	ND	0.051 J
Fluoranthene	100	100	500	3.2	140	3.4	0.27	0.3	1
Fluorene	30	100	500	1.3	24	1.4 J	0.056 J	0.13 J	0.35
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	0.54	41	1.8 J	0.14 J	0.06 J	0.25
Naphthalene	12	100	500	8	50	48	0.6	10	3.3
Phenanthrene	100	100	500	3.8	130	3.2	0.18	0.42	1.3
Pyrene	100	100	500	2.3	110	2.7	0.22	0.23	0.76

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC CP-51 Soil Cleanup Levels (SCLs).
- 3. Values per NYSDEC Part 375 Soil Cleanup Objectives (SCOs) (December 2006).
- 4. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- "--" = No value available for the parameter. Or parameter not analysed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

Bold	= Exceeds CP-51 Table 2 & 3 SCLs			
Bold	= Exceeds Restricted Residential Use SCOs			
Bold	= Exceeds Commercial Use SCOs			

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

2424 HAMBURG TURNPIKE SITE

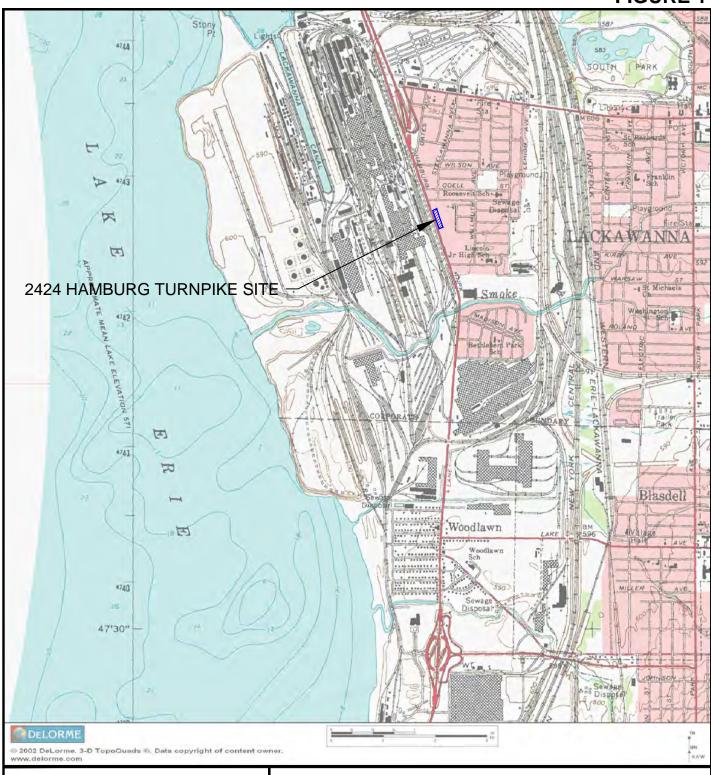
LACKAWANNA, NEW YORK

		SAMPLE LOCATION				
PARAMETER ¹	NYS GWQS ²	TMW-2	TMW-3			
		01/14	/2014			
Volatile Organic Compounds (VOCs) - ug/L						
1,2,4-Trimethylbenzene	5	2000	85			
1,2-Dichloroethane (EDC)	0.6	ND	0.34 J			
1,3,5-Trimethylbenzene	5	490	22			
Acetone	50	140 J	15			
Benzene	1	520	6.3			
Carbon disulfide		ND	1.1 J			
Cyclohexane		180 J	5.4 J			
Ethylbenzene	5	1500	8.6			
Isopropylbenzene (Cumene)	5	56 J	1.8 J			
Methylcyclohexane		97 J	8.8 J			
Naphthalene	10	340	9.2			
n-Butylbenzene	5	ND	2 J			
n-Propylbenzene	5	210	6.7			
sec-Butylbenzene	5	ND	0.79 J			
Toluene	5	3000	12			
Total Xylenes	5	7800	70			
Total VOCs		16333	255			

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. SB-4/TMW-1 was not sampled due to visible floating product.

Definitions:


ND = Parameter not detected above laboratory detection limit.

- "--" = No value available for the parameter. Or parameter not analysed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

Bold = Exceeds NYS GWQS

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0298-014-001

DATE: JANUARY 2014

DRAFTED BY: BLR

SITE LOCATION & VICINITY MAP

PHASE II ENVIRONMENTAL INVESTIGATION REPORT 2424 HAMBURG TURNPIKE SITE

LACKAWANNA, NEW YORK
PREPARED FOR

FRANKLIN ASSET MANAGEMENT, LLC

DISCLAIMER:

PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

SITE PLAN

PHASE II ENVIRONMENTAL INVESTIGATION REPORT 2424 HAMBURG TURNPIKE SITE

LACKAWANNA, NEW YORK
PREPARED FOR

PREPARED FOR FRANKLIN ASSET MANAGEMENT, LLC

JOB NO.: 0298-014-001

FIGURE 2

DISCLAIMER: PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

ATTACHMENT 1

NYSDEC RECORDS AND PREVIOUS INVESTIGATIONS

Bulk Storage Database Search Details

First Site

Previous Site

Next Site

Last Site

Facility Information

Site No.: 9-386383 Status: Unregulated

Expiration Date: 08/17/1992

Site Type: PBS

Site Name: STOP N GAS

Address: 2424 HAMBURG TURNPIKE

Locality: LACKAWANNA

State: NY

Zipcode: 14218 County: ERIE

Owner(s) Information

Facility Owner: SAM SIEGEL-LEASED TO SADO GAS 47 FAIRWAYS BLVD. WILLIAMSVILLE, NY. 14221 Mail Contact: SAM SIEGEL-LEASED TO SADO GAS 47 FAIRWAYS BLVD. WILLIAMSVILLE, NY. 14221

Tank Information

3 Tanks Found

Tank No	Tank Location	Status	Capacity (Gal.)
1	Underground	Closed - Removed	10000
2	Underground	Closed - Removed	10000
3	Underground	Closed - Removed	10000

Back to Search Results

Refine Current Search

Bulk Storage Database Search Details

Tank Information

Next Tank

Last Tank

Site No: 9-386383

Site Name: STOP N GAS

Tank No: 1

Tank Location: Underground Tank Status: Closed - Removed Tank Install Date: 01/01/1957 Tank Closed Date: 09/01/1994 Tank Capacity: 10000 gal. Product Stored: Gasoline

Percentage: 100%

Tank Type: 01 - Steel/Carbon Steel/Iron

Tank Internal Protection: None

Tank External Protection: Painted/Asphalt Coating

Tank Secondary Containment: None Tank Leak Detection: Groundwater Well

Overfill: None

Spill Prevention: None

Dispenser: Pressurized Dispenser

Pipe Location: Underground/On-ground

Pipe Type: Fiberglass Reinforced Plastic (FRP)

Pipe External Protection: Fiberglass Piping Secondary Containment: None

Piping Leak Detection: None

Tank Next Test Due:

Tank Last Test: 11/01/1987

Tank Test Method: Horner EZ Check I or II

Refine Current Search

Back to Facility Info

Bulk Storage Database Search Details

Tank Information

First Tank

Previous Tank

Next Tank

Last Tank

Site No: 9-386383

Site Name: STOP N GAS

Tank No: 2

Tank Location: Underground
Tank Status: Closed - Removed
Tank Install Date: 01/01/1957
Tank Closed Date: 09/01/1994
Tank Capacity: 10000 gal.
Product Stored: Gasoline

Percentage: 100%

Tank Type: 01 - Steel/Carbon Steel/Iron

Tank Internal Protection: None

Tank External Protection: Painted/Asphalt Coating

Tank Secondary Containment: None Tank Leak Detection: Groundwater Well

Overfill: None

Spill Prevention: None

Dispenser: Pressurized Dispenser

Pipe Location: Underground/On-ground

Pipe Type: Fiberglass Reinforced Plastic (FRP)

Pipe External Protection: Fiberglass

Pipe External Protection: Retrofitted Impressed Current

Piping Secondary Containment: None

Piping Leak Detection: None

Tank Next Test Due:

Tank Last Test: 11/01/1987

Tank Test Method: Horner EZ Check I or II

Refine Current Search

Back to Facility Info

Bulk Storage Database Search Details Tank Information

First Tank

Previous Tank

Site No: 9-386383

Site Name: STOP N GAS

Tank No: 3

Tank Location: Underground Tank Status: Closed - Removed Tank Install Date: 01/01/1957 Tank Closed Date: 09/01/1994 Tank Capacity: 10000 gal. Product Stored: Diesel

Percentage: 100%

Tank Type: 01 - Steel/Carbon Steel/Iron

Tank Internal Protection: None

Tank External Protection: Painted/Asphalt Coating

Tank Secondary Containment: None

Tank Leak Detection: None

Overfill: None

Spill Prevention: None

Dispenser: Suction Dispenser

Pipe Location: Underground/On-ground

Pipe Type: Fiberglass Reinforced Plastic (FRP)

Pipe External Protection: Fiberglass Piping Secondary Containment: None

Piping Leak Detection: None

Tank Next Test Due:

Tank Last Test: 11/01/1987

Tank Test Method: Horner EZ Check I or II

Refine Current Search

Back to Facility Info

Spill Incidents Database Search Results

Record Count: 5 Rows: 1 to 5

Export XLS	Export CSV				
Spill Number	Date Spill Reported	Spill Name	County	City/Town	Address
1.9102471	06/01/1991	SAMUEL SIEGEL	ERIE	LACKAWANNA	2424 HAMBURG TURNPIKE
2.9102643	06/05/1991	ODOR AT 2424 HAMBURG	ERIE	LACKAWANNA	2424 HAMBURG TURNPIKE
3.9204849	07/24/1992	TURNPIKE AUTO REPAIR	ERIE	LACKAWANNA	2424 HAMBURG TURNPIKE - 5
4.9407600	09/02/1994	STOP & GAS - SEIGEL	ERIE	LACKAWANNA	2424 HAMBURG TURNPIKE
5.1204435	07/17/2012	NYSDOT ROAD WORK			2424 HAMBURG TURNPIKE

Refine Current Search

NYSDEC SPILL REPORT FORM

DEC REGION:	9			_ SPILL NU	JMBER:	120443	35	
SPILL NAME:	NYSDOT F	ROAD WORK		_ DEC LEA	.D:	FXGAL	LEG	
CALLER NAME CLR'S AGENC CALLER'S PHO	Y: NYSDOT			NOTIFIER	R'S NAME: R'S AGENCY: R'S PHONE:			
SPILL DATE: CALL RECEIV	'ED DATE:	07/10/2012 07/17/2012	SPILL RECEI	TIME: VED TIME:	10:00 am 11:00 am		DISPATCH	ER:
PLACE: STREET: CONTACT:	NYSDOT RO 2424 HAMBU		PILL LO			Erie Lackawa LACKAW		
CONT. FACTO	PE: Gaso	r oline Station		_	REPORTED B	SY: Other		
CALLER REI While NYS		alling the fiber optic line	in front of	2424 Hambı	urg Turnpike, d	discovered	l petroleum	contamination.
MATERIAL Gasoline		CLASS Petroleur	n	SPILLED 0.00 G	REC 0.00	OVERED G	RESOUR(Soil,	CES AFFECTED
		<u>PO1</u>	ENTIAL	SPILLER	<u>es</u>			
COMPANY		ADDRESS				CON	NTACT	
Гапk No. Tank	Size Materia	al Cause	S	ource	Test Meth	od I	Leak Rate	Gross Failure

DEC REMARKS:

8/3/12 ACCORDING TO THE CITY OF LACKAWANNA REAL PROPERTY OFFICE, THE CURRENT OWNER OF THE PROPERTY IS SAMUEL SIEGEL, ATTN: DAVID SIEGEL, 300 MAIN ST, BUFFALO NY 14202. FG SENT A ROE LETTER REQUESTING A RESPONSE BY 8/27/12.

8/6/12 DAVID SIEGEL CALLED IN RESPONSE TO THE LETTER. HE SAID WORK WAS DONE IN 1994 AND HE BELIEVED THE CLEANUP WAS COMPLETE. FG TOLD MR. SIEGEL THAT THERE MAY BE ANOTHER SOURCE ON THE PROPERTY AND IT NEEDS TO BE INVESTIGATED. MR. SIEGEL SAID THAT THE ESTATE HAS NO MONEY. FG TOLD HIM THAT THE STATE COULD DO THE WORK BUT THERE WOULD BE A CHARGE BACK TO THE RESPONSIBLE PARTY. HE WILL GET BACK TO THE DEPARTMENT WITH A DECISION ON HOW HE WISHES TO PROCEED.

2/14/13 FG SPOKE TO DAVID SIEGEL. HE WILL PROVIDE A RESPONSE TO THE DEPARTMENT WITHIN THE NEXT WEEK IF HE WILL COMPLETE THE WORK OR ALLOW NYSDEC TO COMPLETE T HE WORK ON SITE.

Created On: 08/03/2012

Date Printed: 12/4/2013 Last Updated: 11/15/2013

NYSDEC SPILL REPORT FORM

2

DEC REGION:	9	SPILL NUMBER:	1204435
SPILL NAME:	NYSDOT ROAD WORK	DEC LEAD:	FXGALLEG

2/26/13 FG SPOKE TO DAVID SIEGEL. HE SAID HE SPOKE TO A CONTRACTOR WHO TOLD HIM TO CALL BACK WHEN THERE IS NO SNOW. MR. SIEGEL SAID HE WOULD CALL THE CONTRACTOR TODAY OR TOMORROW AND GET BACK TO ME.

4/17/13 DAVID SIEGEL SENT A LETTER STATING THAT HE SENT NATURES WAY ALL OF THE INFORMATION AND IS WAITING TO HEAR BACK FROM THEM.

5/14/13 FG LEFT A MESSAGE FOR DAVID SIEGEL FOR A STATUS UPDATE, 854-1300

8/23/13 FG LEFT A MESSAGE FOR DAVID SIEGEL FOR A STATUS UPDATE. 854-1300

FG SPOKE TO NICOLE SAVAGE WITH NATURES WAY WHO SAID THAT THE GEOPHYSICAL WAS COMPLETED AND THERE APPEARS TO BE SOME PIPING REMAINING AND POSSIBLE USTS. SHE WILL SPEAK TO DAVID SIEGEL AND GET ME THE RESULTS AND A WORKPLAN.

11/7/13 DAVID SIEGEL CALLED WITH AN UPDATE. HE SAID THAT THE BUIDLING IS TO BE DEMOLISHED. HE WILL BE IN COURT NEXT WEEK ON THE MATTER. HE SAID THAT HE WILL NOTIFY NATURES WAY THAT THEY CAN GIVE US A COPY OF THE GEOPHYSICAL SURVEY THAT WAS COMPLETED ON THE SITE.

PIN T & A COST CENTER

CLASS: C3 CLOSE DATE: MEETS STANDARDS: False

Created On: 08/03/2012 Date Printed: 12/4/2013

Last Updated: 11/15/2013

NYSDEC INITIAL S	PALL RESPONSE FORM
REGION INCOMING LINES 318 / 800	SPILL NUMBER 9707600
SPILL NAME 2424 Has burg Turnpike	RESPONDER
CALLER'S NAME:	NOTIFIER'S NAME: JOHN 0778
CALLER'S AGENCY:	NOTIFIER'S AGENCY; DEC
CALLER'S PHONE: ()	NOTIFIER'S PHONE: ()
SPILL DATE: 9, 2,94 TIME: 1/30 hrs.	ANS SVC DATE:/ TIME:hrs.
CENT OFF DATE: 91194 TIME: 308 No.	FIRST CALL: A, A) C ANS SVC OPER
REG OFF DATE: 912194 TIME: //30 hrs.	SARA Title III/CERCLA Notification Y / N
PETROLEUM SPILLED	MATERIAL CLASS
Gasoline 4 - 88 Fuel 7 - Waste Oil 10 - Kerosene 2 - 82 Fuel 8 - Diesel 8 - Non-PCB Oil 11 - Unknown	2 - Non-Petro/Non-Haz 4 - Raw Sewage 5 - Unknown
3 - #4 Fuel 8 - Jet Fuel 9 - PCS OI	2 - Non-Petro/Non-Haz 4 - Raw Sewage
QUANTITY:	Amount Recovered
Other Material Spilled	
OBUL / OBATION	
PLACE: STOP-N-GAS	SPILLER (III Different) NAME: HERB SIEGEC
TEACE.	STREET: 300 MAIN ST.
STREET: 2424 HAMBARG TURNAKE	CITY/ST/ZIP: D.F./o.
	CONTACT:
CONTACT:	PHONE: ()
PHONE: (OTHER INFO:
SPRI CAUSE	SPHL SOURCE
1 - Human Error 5 - Tank Yest Failure Tank Failure 2 - Traffic Accident 6 - Housekeeping 10 - Tank Overfill	1 - Comm/Indust 5 - Gas Station 9 - Private Dwelling 2 - Non-Comm/Inst 8 - Passenger Vehicle 10 - Vessel
3 - Equipment Fallure 7 - Deliberate 11 - Other	3 - Major Fazility 400,000 gal 7 - Comm Vehicle 11 - Ratiroad Car
4 - Vandalism 8 - Abandoned Drums 12 - Unknown	4 • Non-Maj Facility 1,100 gal 8 • Tank Truck 12 • Unknown
1 • On Land 3 Choundwater 5 • Air 1 • Responsi	DEC NOTIFIED BY: ble Party 5 - Tank Tester 9 - Local Agency b. Tank Contractor
2 - In Sower 4 - SUrface Winter 2 - Affected	Persons 6-050 10 - Federal Gov't e. Clean-up Contractor
Waterbody 3 - Police De	
Drainage Basin/Sub-Basin REMARKS	REMOVING TANKS DISCOVERED
CANTAMINATES SOIL + FREE	PROMITING EXCAUATION.
CONTRACTOR - NATULE'S WAT	
ONTAKTIK - NATURES WA	
PIN # T&A	Cost Center
Status: Active / Closed Env. Complete /	/ ISB to Central Office / / Penelty Y / N Inspector FQ,
	/ IPENETY / PL INTROCTO/ PIA. B
Tank Test Failure Y / N Tank Size Gal.	Test MethodSystem/Teniffune
	Test MethodSystem/Tenifitine
Tank Test Fallure Y / N Tank Size Gel.	Test MethodSystem/Teniffune
Tank Test Fallure Y / N Tank Size Gal. Leak Rate GPH PBS # Tank 1,0.6'e	Test Method System/Tani/nane Manifold Y / N
Tank Test Fallure Y / N Tank Size Gel. Leak Rate GPH PBS # Tank t.D.Fe Cleaner: 1 - State 2 - Spiller 3 - Local 4 - No Action	System/Tenifrane
Tank Test Failure Y / N Tank Size Gel. Leek Rate GPH PBS # Tenk I.D. F'e Cleaner: 1 - State 2 - Spiller 3 - Local 4 - No Action UST Trust Eligible Y / N Site: A B C D E Resp. Party 1 2	Test MethodSystem/Teni/ransMenifold Y / N

Logo 94 9-16-94 353 Centrel Duty Old

	NYSDEC INITIAL S	PILL RESPONSE F	ORM		
REGION INCOMING LINE:	5 00	SPILL NUMBER			
SPILL NAME		RESPONDER			
CALLER'S NAME:		NOTIFIER'S NAM	AE: JOHN	0773	
CALLER'S AGENCY:		NOTIFIER'S AGE	NCY: DEC		
CALLER'S PHONE: ()		NOTIFIER'S PHO	NE: ()		
SPILL DATE: 9,2,94 T	TIME: 1/30 hrs.		DATE:/_////		
	IME: //30 hrs.		III/CERCLA Notifica	_	
PETROLEUM SPILLED			MATERIA	L CLASS	
Gasoline 4 & S Fuel 7 · Waste Oil 2 · #2 Fuel 5 · Diesel 8 · Non-PCB (3 · #4 Fuel 6 · Jet Fuel 9 · PCB Oil	10 - Kerosene Dil 11 - Unknown	0 - Petroleun 2 - Non-Petro		ious Materiai ewage	5 - Unknown
QUANTITY:		Amount Recov	Bred		
Other Material Spilled					
SPILL LOCATION PLACE: STOP-N.6	A5	NAME: /	SPILLER (If Different SIECO MAIN S	iec	26Frank
STREET: 2424 HAMBUR		CITY/ST/ZIP:	SFID. NLY	Below	NY 14202
CONTACT:		PHONE: (1_881-580	00	
PHONE: ()		OTHER INFO:			
SPILL_CAUSE 1 - Human Error 5 - Tank Test Failure 2 - Traffic Accident 6 - Housekeeping 3 - Equipment Failure 7 - Deliberate 4 - Vandalism 8 - Abandoned Drum	10 - Tank Overfill 11 - Other	2 - Non-Comm/Ine 3 - Major Facility 4	8PILL SOUI 5 - Gas Sta 6 - Passeng 10,000 gai 7 - Comm 1 1,100 gai 8 - Tank Tr	sion 9 - per Vehicle 10 /ehicle 11	Private Owelling - Vessel - Railroad Car - Unknown
RESOURCE AFFECTED		DEC	NOTIFIED BY:		
1 - On Land 3 Groundwater 5 - Air 2 - In Sewer 4 - Surface Water	1 - Respons 2 - Affected 3 - Police De	Persons 5 DEC	10 - Federal G	ovi a Clear	Contractorup Contractor Consultant
Waterbody	4 - Fire Dep	artment 8 - Healt	Dept. z. Fuel Su	opiler e	
Can TAMINA TES So	REMARKS			SOTIO	500 VEKEL
CHAIR TO BE BOSE				· · · · · · · · · · · · · · · · · · ·	
CONTRACTOR - NATU	ILE'S WA-	/			
PIN #	T&A		et Center		
FIN •	En Canalisa	, ,	Ren Contact Office	, ,	

PIN # T&A Cost Center

Status: Active / Closed Env. Complete / ISR to Central Office / INOn-PIN Closed / / Last Inspection / Penalty Y / N Inspector

Tank Test Failure Y / N Tank Size Gal. Test Method System/Tank/Inse

Lask Rate GPH PBS # Tank I.D.#'e Manifold Y / N

Cleaner: 1 - State 2 - Spiller 3 - Local 4 - No Action History / . / .:

UST Trust Eligible Y / N Site: A B C D E Resp. Perty 1 2 3 4 5 6

Regional Contact Central Duty Ofcr EDO: Y/N DATA INPUT []

Revised 08/14/92

NYS DEC Region 9

History Records For Spill Number 9407600

DATE HISTORY

ტტტტტტტტტტტტენენების განტების გ

- 08/28/95 SOIL PILE RESULTS SHOW LEVELS BELOW STARS. UST EXCAV RESULTS SHOW LEVELS EXCEED STARS ONLY SLIGHTLY. SITE CAN BE MADE INACTIVE.
- 07/26/95 FG SITE VISIT 7/26/95. MET NATURE'S WAY REP ON SITE. CHECKED SOIL FOR PETRO ODOR-NONE FOUND IN 4 LOCATIONS. NATURE'S WAY COLLECTED SAMPLE ON 7/25/95.
- 05/03/95 FG SITE VISIT 5/3/95. NATURE'S WAY SPRAYING NUTRIENTS ON SOIL.
- 04/11/95 SITE SCHEDULE SUBMITTED. NATURE'S WAY TO CALL THIS OFFICE WHENEVER THEY WORK ON SITE.
- 03/16/95 LTR SENT REQUESTING SCHEDULE OF ACTIVITIES FOR SITE. RESPONSE DUE BY 3/31/95.
- 12/22/94 FG SITE VISIT 12/15/94. MET R. SAVAGE ON SITE. BERMS HAD BEEN SET UP ADEQUATELY. 4 DRUMS OF SLUDGE FROM UST'S HAVE
 TO BE DISPOSED OF. TOLD MR. SAVAGE COVER ON SOILS NECESSARY. HEAGREED.
- 12/08/94 FG RESPONDED TO LTR FROM R. SAVAGE12/7/94. MUST COVER SOILS & COLLECT & TREAT RUNOFF WATERS. DEC WAS NOT NOTIFIED O
 F EXCAV BEHIND BLDGS.
- 12/07/94 J. BALCARCZYK W/LACKA COMPLAINED-CONTRACTOR NEVER APPLIED FOR PERMIT TO REMOVE TANKS. CITIZENS HAVE BEEN COMPLAININ
 G ABOUT SOIL AT SITE. WANTS TO HAVE SOIL REMOVED FROM SITE.
- 11/17/94 FG SITE VISIT 11/16/94. SOIL PILES REMAIN UNTOUCHED. COVER IS OFF.
- 69/08/94 FG SPOKE TO R. SAVAGE W/NATURE'S WAY 9/8/94. TOLD HIM TO SAMPLE & ANALYZE WATER IN TEST PIT. HE SAID OWNER DECIDING ON REMEDIATION OPTIONS.
- 09/08/94 FG MF SITE VISIT 9/7/94. 2ND TANK REMOVED 3RD TANK UNCOVERED. TEST PITS WERE DUG. WATER IN ONE HAD A PETROLEUM ODOR & A SHEEN.
- 09/07/94 9/6/94 TREATMENT LTR SENT TO RP H. SIEGEL. REQUIRE RESPONSE BY 9/21/94.
- 09/07/94 FG SITE VISIT 9/7/94. MET NATURE'S WAY & REP OF THE OWNER ON SITE. CONTAM EXTENDS UNDER BLDG, TOWARD ST & FOSSIBLY BEHIND BLDG. REMED OPTIONS TO BE CONSIDERED AFTER UST'S REMOVED.
- 09/06/94 FG SPOKE TO R. SAVAGE-NATURE'S WAY 9/2/94. GROUNDWATER COLLECTED TO BE SAMPLED PRIOR TO DISCHARGE. WATERS HELD IN TANK ON SITE. WATERS TO BE TREATED THROUGH CARBON.
- 09/06/94 FG SITE VISIT 9/2/94. CONTAMINATED SOIL REMOVED & STOCKPILED ON SITE. PRODUCT FOUND IN THE EXCAVATION. CONTACTED H. SIEGEL, OWNER, TOLD HIM NYSDEC REQUIREMENTS. ONE TANK REMOVED-NO HOLES.

APPLICATION FOR CCESS TO RECORDS (See Instruction on Reverse Side)

	Spill File	#9407600
	After inspection, should I desire copies of all or part of to be copied and hereby offer to promptly pay the est to be copied and hereby offer to be c	<u> </u>
1	to be copied and hereby offer to promptly pay the page as applicable). Contact me it cost will exceed to page as applicable). Contact me it cost will exceed to page as applicable).	Telephone No. 800-352 0050
	Attention of:	South port CT
	Mailing Address 33	Date 10-26-88
1	Signature / Line	
	TO THE APPLICANT: —Records Provided The reproduction costs for the records provided.	ided are \$
	The reproduction costs for the records prov Records have been (partially, fully) provided expected to be fully provided:	• /••
	 Records Not Available Records cannot be found after diligent sear The Department is not the custodian for records 	
२ <u>इ</u>	—Records Denied	art of the records—circled above has been denied
	to the applicant for the reason(s) checked below: Specifically exempt by other statute	Tiwould endanger the life or safety of any person
R O S	Unwarranted invasion of personal privacy	Are compiled for law enforcement purposes and which, if disclosed would: • interfere with law enforcement investi-
C	awards or collective dargatimity hogeton	gations or judicial proceedings deprive a person of the right to a fair trial or impartial adjudication
U S T	Are inter-agency or intra-agency materials that	 identify a confidential source or disclose confidential information relating to a
.00142	 statistical or factual factuations of data instructions to staff that affect the public final agency policy or determinations; or external audits, including but not limited to audits performed by the comptroller and 	criminal investigation, or reveal criminal investigative techniques or procedures, except routine techniques and procedures Are computer access codes
	the fe deral government Are trade secrets Identification of records withheld (attach listing	if additional space is required) and/or explanation
	if appropriate:	

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(1)

October 08, 1995

Mr. Robert Leary, P.E. NYSDEC, Region 9 270 Michigan Ave.

Rm /

Buffalo, New York 14203-2999

Re: RELOCATION/REUSE AS CLEAN FILL OF REMEDIATED (BIOTREATED) SOILS FROM SIEGEL PROPERTY, 2424 HAMBURG TURNPIKE (RT 5), LACKAWANNA, N.Y. TO PETRO USA PROPERTY, 19TH & WALNUT ST., NIAGARA FALLS, N.Y.

9407600

Dear Bob,

As per our conversation, this letter is to document the above described reuse of remediated soils as clean fill, as agreed in our telecon. These soils, as you are aware, have been fully tested according to NYSDEC Stars Memo #1 guidelines, and have been demonstrated to meet all applicable cleanliness standards, and all data has been submitted to and reviewed and approved by your Department. We appreciate your cooperation in helping us to efficiently reuse the subject soils. Please call if you should have any questions or comments.

(07g)

Sincerely,
Russel J. Savage, Oper. Mgr.
NWEC&C Inc.

RECEIVED

OCT1 0 1995

N.Y.S. DEPT. OF ENVIRONMENTAL CONSERVATION REGION 9

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

September 29, 1995

Mr. Herbe**rt** Siegel, Esq. Siegel, Kel**le**her and Kahn 426 Frankl**in** Buffalo, N**ew** York 14202

Dear Mr. Siegel:

Spill Number 9407600 2424 Hamburg Turnpike Lackawanna, Erie County

We have reviewed the analytical results for the excavation. The results exceed our soil guidance values. However, since the results were low levels, we will not require any further work at this time. The site will have a status of "inactive".

Your cooperation is appreciated. If you have any questions, please contact me at (716)851-7220.

Sincerely,

Francine Gallego

Environmental Engineer I

FG:ma

cc: Mr. David Siegel, Esq.

9/7/94 2424 Hamburg TPHE contamination under bidg.

Number	

SPILL CONTINUATION SHEET

Comments

2424 Hanburg Tphe

22.0	
9/7/94	17 met R. Laway (Nature Way) and Hank (pepressile
	of Hub Liegel-Owner) on sile Contamin extends
	under bldg; outo back property and further
	towards street. All tasks to be removed
	today- I more gas and I diesel. Contaminated
	soil to be stockpiled. Test pits to be dua
	to determine aftent of conton. Decision
	or further remed to be made after tanks
	renoved.
	

Spill Number	
--------------	--

2424 Hamburg Toke.

Da	+	ρ

Comments

SPILL CONTINUATION SHEET

9/11/91	FR MF site wisit. On adolitional tack
	was removed and the other are was
	uncovered. Water from the exercation
	were being stored in one tank.
	The water are to be treated using
	earbox and then sampled prior
	to discharging. Test pits on the
	other side of the feace were dug.
:	Bre test pit lad ar vily water in it.
	He other two had no water.
	testpits - 28-10' deep.
	The water contain Ferre
	l'excavation Diday
	soil piles
9/8/94	Fa spoke to Rus Surass. Told him
	For spoke to Russ Swag. Told him to sample water, He said owners deciding or remediation aptions for the peoplety.
	or remediation aptions for the peoplety.

nber 9407600

2424 Hamburg Tphe

Date

9/7/94

Spill Number ____

2424 Hamburg Toke

Date ____

SPILL CONTINUATION SHEET

Date

Comments

9/2/94	Fly site visit. Contamination is sort which
· ' '	penoved from excavation. Product in
	spearation. Gaststank uncovered
	Other eys 45T partially uncovered.
	Diesel to be removed also.
9/2/94	Fg called Hert Siegel 881-5800.
	Told Lin NYSDEC requiements.
	Told him NYSDBC to seval tts.
9/2/94	Eg spoke to Rus Savage. He is to
	Sample collected sw's prior to desolvere. Excavation not
	to occur before 9/6. Told him
	Le most contact NUSDEC before
	Le mist contact NYSDEC before sumples taken in expan.
······································	
	4- <u>-</u>

For hale lypersto 884-7000 MoTureovered Quant 871-3480 water in exercation stockpiled soil w/petroleum odor Roite 5 soilsamplehere 9/2/94 12:45 A-Bethlehen 9/2/94

NYSDEC INITIAL SPILL RESPONSE FORM

REGION 9 INCOM	ING CINE: 518 / 800		
SPILL NAME		SPILL NUMBER:	
CALLER'S NAME:		NOTIFIER'S NAME: FRANCINE C	Ballean
CALLER'S AGENCY:		NOTIFIER'S AGENCY: NUSTER	. 1
CALLER'S PHONE: (NOTIFIER'S PHONE: (7/6) 851-7	
CALLER 5 FRONE: 1	1	Hornier Thore. The best Trans	
SPILL DATE: 912	94 TIME: \$:08 hrs.	. ANS SVC DATE: / / TIME	: hrs.
CENT OFF DATE://			
REG OFF DATE: 9 2	 .		
PETROLEUM SPILL	<u>ED</u>	MATERIAL CLASS	<u>.</u>
	- Waste Oli 10 - Kerosene	Petroleum 3 - Hazardous Mate	etial 5 - Unknown
	- Non-PCB Oil T Unknown - PCB Oil	2 - Non-Petro/Non-Haz 4 - Raw Sewage	
QUANTITY:		Amount Recovered	
Other Material Spilled			
SPILL LOCATION	! /	SPILLER (If Different)	
PLACE: 2424 Har	nburg Turphe	NAME:	
		STREET:	
STREET:	· · · · · · · · · · · · · · · · · · ·	CITY/ST/ZIP:	
TION Lackawan	00: [3RIE]	CONTACT:	
CONTACT:	· · · · · · · · · · · · · · · · · · ·	PHONE: ()	
PHONE: (~	OTHER INFO:	
SPILL CAUGE	m . m	SFILL SOURCE	0 DI 4 D W
	Test Fallure 9 Tank Fallure ekeeping 10 - Yank Overfill	1 - Comm/Indust 5Cas Station 2 - Non-Comm/Inst 5 - Passanger Vehicl	9 - Privato Dwellin 10 - Vessel
3 - Equipment Falture 7 - Delib 4 - Vandalism 8 - Aban	doned Drums 12 - Unknown	3 - Major Facility 400,000 gal 7 - Comm Vehicle 4 - Non-Maj Facility 1,100 gal 8 - Yank Truck	11 • Raifroad Car 12 • Unknown
RESOURCE AFFECTED	adiled Gruins 12 · Olikilowii	DEC NOTIFIED BY:	12 - Olikilawii
Don Land 3 Groundwater	5 - Alc f - Parapons		b. Tank Contractor
2-In Sewer 4-Surface Water	2 - Affected	Persons 6 DEC 10 - Federal Gov's	e, Clean-up Contractor d, Envir. Consultant
Waterbody	3 - Police D 4 - Fire Dep	partment 8 - Health Dept. a. Fuel Supplier	•
Drainage Basin/Sub-Basin	REMARKE	: NUSDEC world unders	round
maration	while dutyns	past site bayed	antary
Whit starpi			partialle
File (State)	with later	center - 884-1000. NOK	
0			some (r)
PIN #	T&A Env. Complete	Cost Center	
Status: Active / Closed Non-PIN Closed / /	Last inspection	/ / ISR to Central Office / / / / Penalty Y / N Inspector	,
غيرف ميندور ويوندين دان دروي برديد بدين زادا مشاكف الدراز 100 م			
		Test Method\$yn	etem/Tank/Line
LESK NATE UPH PB	S #Tank 1.0.0's	M Y Y DIOTINGWA	
Cleanar: 1 - State 2 - Spill	ler 3 - Locat 4 - No Action	History//	
UST Trust Eligible Y/N	Site: A B C D E Resp. Perty 1 2	23456	
Serious C	A 15 6:	500 1111	DATA MINUTE
negional Contact	Central Duty Ofcr	€D0: Y/N	DATA INPUT [] Revised 08/14/92

Spill	Number	

Date

9/2/94 Lackawanna 2424 Hamburg Turopike

9/2/94 Lachawawa 2424 Hamburg Turupike

9/2/94 Lachawawwa 2424 Hamburg Turupike

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(1)

August 08, 1995

Ms. Francine Gallego NYSDEC, Region 9 270 Michigan Ave. Buffalo, New York 14203-2999

RECEIVED

AUG 1 6 1995

9407600

NYSDEC-REG. 9 REL __UNREL

ESTATE OF SIEGEL PROPERTY

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.

Submission of Sampling/Testing Results for Excavated Soils

Undergoing Biological Treatment;

Request for Site Closure;

This letter is to inform your department that Nature's Way Inc. has successfully completed bioremediation (decontamination) operations on the approx. 500 cubic yards of diesel contaminated soil at the above location. As you are aware, we have been biotreating the subject soil by Standard Biotreatment Operating Procedures over the past three months. We have submitted soil samples as required (STARS Memo #1 - grabs and/or composites derived from a total of 4 - 8 soil cores at random locations and depths each) as required for the following analyses:

> METHOD 8021 DIRECT ON SAMPLES METHOD 8270 PNA'S ONLY ON TCLP EXTRACT

The analyses were performed by Expresslabs, and results may be found in Attachment #1.

Since soil analyses show no evidence of contamination above allowable limits, we request a letter from the DEC (copy NWI) stating that the soil has been successfully decontaminated, that no further work will be required, and that the soil may be reused as clean fill On-Site. Also, based on this and previously submitted Site data and inspections, please state in the letter that the Site has been assigned a formal designation of "Inactive", and that no further work will be required with respect to this spill, at this As always, your attention to this matter is greatly appreciated. Please call if you should have any questions or comments.

Sincerely,

Russel J. Savage, Pres. Nature's Way

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #1
ANALYTICAL RESULTS AT JOB COMPLETION

EXPRESSLAB

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-**65**27

FAX

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt.5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* = *See Individual Limit Soil=ug/kg ppb

Water=ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PID

Sample ID (LAB)

Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Received

Date Analyzed

Date Reported

Date Sampled

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Isopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylbenzene & 1,3-Dichlorobenzene

Isopropyltoluene

n-Butylbenzene

Naphthalene

6789 Soil Under Treatment Grab #1 Soil Brian O'Donnell 07/25/95 01:50 09:00 07/27/95

> 07/27/95 07/28/95

Results Det Limit* < DL 0.9 < DL 0.9 < DL 0.9 < DL 0.9 < DL 1.8 < DL 0.9 < DL 1.8 < DL 0.9

< DL

< DL

Page 1

0.9

^{*} DL = Detection Limit

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937**-6527**

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* = *See Individual Limit Soil-ug/kg ppb

Water-ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PID

Sample ID (LAB) Sample ID#1(CUST) Sample ID#2(CUST)

Matrix

Sampled By Date Sampled

Date Received

Date Analyzed

Date Reported

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Liopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzenc

1,2,4-Trimethylbenzene

sec-Butylbenzene&1,3-Dichlorobenzene

Isopropyltoluene n-Butylbenzene

Naphthalene

6849 Soil under treatment Grab # 2 Soil Brian J. O'Donnell 07/25/95 01:48 07/26/95 03:15 08/02/95 08/03/95

	Results	Det Limit*
<)	DL "	1.0
	1.0	1.0
< 1	DL	1.0
< 1	DL	1.0
< ∶	DL	2.0
< ∶	DL	1,0
<	DL	1.0
<	DL	1.0
≺ .	DL	1.0
≺ .	DL	1.0
<	DL	2.0
<	DL	1.0
<	DL	1.0
<	DL	1.0

Page 1

DL = Detection Limit

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits = =

Soil-ug/kg ppb

*See Individual Limit

Water=ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PID

Sample ID (LAB) Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

6850 Sail under treatment Grab # 3

Soil

Brian J. O'Donnell 07/25/95 01:45

> 07/26/95 03:15

08/02/95 08/03/95

Results Dat Limit*

< DL < DL 1.0 < DL 1.0

< DL

1.0 < DL 2.0

< DL

< DL < DL

< DL

< DL

< DL

≺ DL < DL

1.0 < DL 1.0

MTBE Велгепе Toluene Ethylbenzene m&p-Xylene

o-Xylene

Isopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylbenzene&1,3-Dichlorobenzene

Isopropyltoluene n-Butylbenzene Naphthalene

DL = Detection Limit

Page 1

1.0

1.0

1.0

1.0

1,0

2.0

1.0

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* =

Soil-ug/kg ppb

*See Individual Limit

Water-ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PLD

Sample ID (LAB) Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

Soil under treatment		
Soil		
Brian J. O'Donnell		
07/25/95	01:43	
07/26/95	03:15	
08/03/95		

Results

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Isopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylbenzene&1,3-Dichlorobenzene

Liopropyltoluene

n-Butylbenzene

Naphthalene

6851		
Soil under treatment		
Grab # 4		
Soil		
Brian J. O'	Donnell	
07/25/95	01:43	
07/26/95	03:15	
08/03/95		
08/03/95		

Det Linut*

ALIW		200 2014
< DL		1.0
	1.6	1.0
	1,0	1.0
< DL		0,1
	2,2	2.0
	1.0	1.0
≺ DL		1.0
	1.5	1.0
< DL		1.0
< DL	-	1.0
<u> </u>	2.0	2.0
< DL		1.0
	1.1	1.0
< DL		1.0

Page 1

DL = Detection Limit

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* =

Soil=ug/kg ppb

*See Individual Limit

Water=ug/L ppb

Results shown are:

Volatile Organica

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PID

Sample TD (LAB)

Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Isopropylbeuzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylhenzene &1,3-Dichlorobenzene

Isopropyltoluene

n-Butylbenzene

Naphthalene

6852		
Soil under treatment		
Grab # 5		
Soil		
Brian J. O'Donnell		
07/25/95	01:42	
07/26/95	03:15	
08/02/95		
08/03/95		

Dot Limits

Results	Det Limit"
< DL	1.0
< DL	1.0
≺ DL	1.0
< DL	1.0
< DL	2.0
< DL	1.0
< DL	2.0
< DL	1.0
< DL	1.0
< DL	1.0

DL = Detection Limit

EXPRESSLAB

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

PO Number:

Project Cust: Project Site:

Date FAXED:

Lab Director

Project Number:

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6**5**27

FAX

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* = *See Individual Limit Soil=ug/kg ppb

Water=ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Turnpike Auto / Rt.5

Analysis Method:

EPA 8021 GC PID

Sample ID (LAB)

Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Isopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylbenzene&1,3-Dichlorobenzene

Isopropyltoluene

n-Butylbenzene

Naphthalene

6790 Soil Under Treatment Composite #1 Soil Brian O'Donnell 07/25/95 02:02 09:00 07/27/95 07/27/95 07/28/95

Results	Det Limit*
< DL	1.0
< DL	2.0
< DL	1.0
< DL	2.0
< DL	1.0
< DL	1.0
< DL	1.0

^{*} DL = Detection Limit Page 1

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* =

Soil=ug/kg ppb

*See Individual Limit

Water-ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PLD

Sample ID (LAB) Sample ID#1(CUST)

Sample ID#2(CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

MTBE

Benzene

Toluene

Ethylbenzene

m&p-Xylene

o-Xylene

Isopropylbenzene

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

sec-Butylbenzene&1,3-Dichlorobenzene

Isopropyltoluene

n-Butylhenzene

Naphthalene

• •				
68	6853			
Soil under treatment				
Composite # 2				
Soil				
Brian J. O'	Donnell			
07/25/95	01:55			
07/26/95	03:15			
Ö8/02/95				
08/03/95				

Danille

Results	Det Linut-
< DL	1.0
< DL	2.0
< DL	1.0
≺ DL	2.0
< DL	1.0
< DL	1.0
< DL	1.0

Page 1

^{*} DL = Detection Limit

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt.5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits* =

Soil=mg/kg=ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB)

Sample ID #1 (CUST)

Sample ID #2 (CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

*<DL = Below Detection Limit

Results

Det Limit

Naphthalene

Accnaphthylene

Acenapthene

Fluorene

Phenanthrene Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzo(k)fluoranthene

Benzo(a)pyrene Indeno(123-ed)pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Chrysene

Benzo(b)fluoranthene

07/31/95

6790

Composite #1 Soil/Extract

Brian O'Donnell

07/25/95

07/27/95

07/30/95

Soil Under Treatment

20:57

02:02

09:00

06:51

<DL 0.011 <DL 0.011

<DL 0.011 <DL 0.011

<DL 0.011

<DL 0.011 <DL 0.011

<DL 0.011

<DL 0.011 <DL

0.011

0.011

<DL 0.011 <DL 0.011

<DL 0.011

<DL | 0.011 <DL 0.011

<DL

RESULTS WHEN YOU WANT THEM

R8270PAH

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

Project Cust:

PO Number:

Project Number:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits* =

Extract: mg/l= ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB)

Sample ID #1 (CUST)

Sample ID #2 (CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

*<DL = Below Detection Limit

Naphthalene

Accnaphthylene

Acenapthene

Fluorene

Phonanthrene Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzo(k)fluorunthene

Benzo(n)pyrene

Indeno(123-cd)pyrene

Dibenzo(a,h)anthrucene

Benzo(ghi)perylene

Chrysene

Benzo(b) fluorantheme

6853 Soil under treatment Composite # 2

Soil

Brian J. O'Donnell

07/25/95 01:55

07/26/95 03:15 08/06/95 01:51

08/07/95 11:28

Results Det Limit

< DL 0.010 < DL 0.010 < DL 0.010 < DL 0.010 < DL 0.010

> < DL 0.010

< DL 0.010

< DL 0.010 < DL 0.010

< DL 0.010

< DL 0.010 < DL 0.010

<DL: 0.010

<DL 0.010 < DL 0.010

< DL 0.010

ans

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN . N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits =

Extract: mg/l= ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB) Sample ID #1 (CUST) Sample ID #2 (CUST)

Matrix Sampled By

Date Sampled

Date Received Date Analyzed

Date Reported

6854	
Soll under to	entment
Composite#	3
Soil/Extract	
Brian J. O'D	onnell
07/25/95	02:15
07/26/95	03:15
08/13/95	00:46

*<DL = Below Detection Limit

Naphthalene Acenaphthylene Acenupthene

Fluorene

Phonenthrenc

Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzu(k) fluoranthene

Benzo(a)pyrene

Indeno(123-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Chrysene

Benzo(b) fluorantheme

eatment
3
onnell
02:15
03:15
00:46
15:22

Results Det Limit

<dl< th=""><th>0.010</th></dl<>	0.010
≺DL_	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl_< th=""><th>0.010</th></dl_<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
√ DL	0.010

Teli (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Altn:

RUSS SAVAGE

Phone FAX

716-937-6527

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits* =

Extract: mg/l= ppm*

Results shown are:

PAH Compounds

• See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB) Sample ID #1 (CUST)

Sample ID #2 (CUST)

Mutrix

Sampled By Date Sampled

Date Received

Date Analyzed

Date Reported

6855	
Soil under to	catment
Composite #	4
SolVExtract	
Brian J. O'I	onnell
07/25/95	02:20

*<DL = Below Detection Limit

Naphthalene Accnaphthylene

Acenapthene

Fluorenc

Phenanthrene

Authracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzu(k)fluoranthone

Benzo(a)pyrene

Indeno(123-cd)pyrene

Dibenzo(a,h)anthracene

Benzu(ghi)perylene

Chrysone

Benzo(b) Suoranthene

0033		
Soil under treatment Composite # 4		
Brian J. O'Donnell		
07/25/95	02:20	
07/26/95	03:15	
08/12/95	22:50	
08/14/95	15:28	

Results Det Limit

40L	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<0L	0.010
<⊅L	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
≺DL	0.010
<dl_< th=""><th>0.010</th></dl_<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN.N.Y. 14004

Attn:

RUSS SAVAGE

Phone FAX

716-937-6527 716-937-6527 PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detcotion Limits* =

Extract: mg/l=ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB) Sample ID #1 (CUST) Sample ID #2 (CUST)

Matrix Sampled By Date Sampled Date Received Date Analyzed

Date Reported

6856 Soil under treatment Composite#5 Soll/Extract Brian J. O'Donnell 02:27 07/25/95 07/26/95 03:15 08/12/95 23:48

*<DL = Below Detection Limit

Naphthalene Accnaphthylene Acenupthene Fluorene Phenanthrene

Anthracene Fluoranthene

Pyrene

Benzo(a)anthruccno Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(123-cd)pyrene Dibenzo(n,h)unthracens

Benzo(ghi)perylenc

Chrysene

Benzo(b)fluoranthene

Results Det Limit

08/14/95

15:34

<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0,010</th></dl<>	0,010
< DL	0.010
<⊅L	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010
<dl< th=""><th>0.010</th></dl<>	0.010

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone FAX

716-937-6527

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt.5

Date FAXED:

Lab Director

Bill Sun

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits =

Soil=mg/kg= ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB) Sample ID #1 (CUST)

Sample ID #2 (CUST)

Matrix

Sampled By

Date Sampled Date Received

Date Analyzed

Date Reported

*<DL = Below Detection Limit

Naphthalene

Aeenaphthylene Acenapthene

Fluorene

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(123-cd)pyrcne

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Chrysene

Benzo(b)fluoranthene

6789 Soil Under Treatment Grab #1 Soil/Extract Brian O'Donnell 07/25/95 01:50 09:00 07/27/95 07/30/95 05:54 07/31/95 20:52

Results

Det Limit

ivesums	Detimin
<dl< th=""><th>0.016</th></dl<>	0.016
·	

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT -TCLP- PAH

Cust

NATURE'S WAY, INC.

Address: 11796 GENESEE STREET

ALDEN, N.Y. 14004

Attn:

RUSS SAVAGE

Phone

716-937-6527

716-937-6527 **FAX**

PO Number:

Project Number:

Project Cust:

Project Site:

Turnpike Auto / Rt. 5

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits* =

Soil=mg/kg= ppm*

Results shown are:

PAH Compounds

*See Individual Limits

Extraction Method:

EPA 3510 Solvent Extraction

Analysis Method:

EPA 8270 GC MS

Sample ID (LAB) Sample ID #1 (CUST) Sample ID #2 (CUST)

Mutrix Sampled By Date Sampled **Date Received**

Date Analyzed Date Reported

*<DL - Below Detection Limit

Naphthalene Acenuphthylene Accnapthone Fluorene Phonenthrene

Anthracene Fluoranthene

Pyrene

Benzo(a)unthracene

Benzo(k)fluoranthene

Benzo(a)pyreno

Indenu(123-cd)pyrene

Dilienzo(a,h)anthracens

Bunzo(ghi)perylene

Chrysene

Benzo(h)fluoranthene

6849 Soil under treatment Grab#2 Soil/Extract Brian J. O'Donnell 07/25/95 01:48 07/26/95 03:15 08/03/95 02:51 08/03/95 12:21

Det Limit Results

<DL 0.010 <DL 0.010 <DL 0.010 <DL 0.010 0.010 <DL <DL 0.010 <DL 0.010 <DL 0.010 0.010 <DL <DL 0.010 0.010 <DL <DL 0.010 <DL 0.010 <DL 0.010 <DL 0.010 <DL 0.010

EXPRESSLAB

PO Box 40 5611 Water Street

Middlesex NY 14507

Tel: 1-716-55**4-5**347

Tel: 1-800-THE LABS

*Tel: 1-800-843-5227 FAX 1-716-554-4114

WORKORDER NYS

SPECIALIZING IN ENVIRONMENTAL SOILS TESTS NY STATE CERTIFIED LAB #11369

CUSTOMER:	NATURE'S WAY
ADDRESS:	11796 GENESEE ST.
CITY:	ALDEN
STATE/ZIP:	NY 14004
PHONE:	(716) 937-6527
FAX:	, s 10
CONTACT:	RUSS SAVAGE GREG WEBER

PO,NUMBER: PROJECT NO.:			
PROJECT CUST.:			
PROJECT SITE: TURNPIKE AUTO RT. 5			
SEND RESULTS: FAX EXPR MAIL PHONE RESULTS: YES NO			

SAMPLE DEMOGRAPHICS AND TESTS REQUIRED

8020 BTEX + MTDE 8021 + MTBE	•	FULL TCLP TCLP LESS HERRS & PUSTS		8270 (Stars) FULL TCLP 625 TCLP LESS HERBS & PESTS		LIST	r analy	YSIS REC	QUIRED
503.1 TPH GASOLINE TPH DIESEL 8240 8260 (Stars) 8260 8 RCRA METALS (I	PCB's 602 624 TOX LEAD ONLY	TCLP LESS HERI TCLP VOLATILE TCLP SEMI-VOL. 8 RCRA METALS HERBICIDES PESTICIDES REACTIVITY COROSIVITY FLASH POINT	S ATILES	27° PAL	tmT3E direct				
SPECIAL INST DATE TIME	RUCTIONS: SAMPLE DESCRI			30,000	_///				
7-25.95 1:50	SOIL UNDER T		GRAB #1	XX					
7-25-95 1:45	SOIL UNDER	PEATMENT	Gas #3	X					
7-25-95 1:43	SOIL UNDER	······································	Grab #4 Grab #5	X					

CHAIN OF CUSTODY RECORD

# of SAMPLES _ 5 # of CONTAINERS _ 5 SAMPLED BY: GRIAN G'OONNELL SIGNATURE: Brand Domite	SAMPLES RECEIVED BY: LOB STAJA
NAME:	NAME:
DATED: / / TIME::	DATE: 7 /26/95 TIMES /3/1/m
HOW SENT: □ EXP MAIL □ HAND CARRY	HOW REC'D.: DEXP MAIL DEAND CARRY
SIGNATURE 2:	FREIGHT IN: \$
NAME 2:	LOGGED IN: 7/27/95 TIME: 9:00 SAMPLE COND.: SAMPLE TEMP.: 40
DATED 2: / / TIME::	SAMPLE COND.: SAMPLE TEMP.:
HOW SENT 2: EXP MAIL HAND CARRY	LAB NOTES:

White-Lab, Yellow-Customer, Hard-Lab RESULTS WHEN YOU WANT THEM

PO Box 40 5611 Water Street

Middlesex NY 14507

Tel: 1-716-554-5347

Tel: 1-800-THE LABS

= Tel: 1-800-843-5227 FAX 1-716-554-4114

WORKORDER NYS

SPECIALIZING IN ENVIRONMENTAL SOILS TESTS
NY STATE CERTIFIED LAB #11369

CUSTOMER:	NATURE'S MAY
ADDRESS:	1700 GENESUE ST.
CITY:	ALONN'
STATE/ZIP:	AL HOOK
PHONE:	(१६०) १५१ - ६५८७
FAX:	(716) 955-6537
CONTACT:	Russ envase / Greg meder

PO NUMBER: PROJECT NO.: PROJECT CUST.: PROJECT SITE: SUBNIME AUTO 1877.5°
SEND RESULTS: ☐ FAX ☐ EXPR MAIL PHONE RESULTS: ☐ YES ☐ NO

SAMPLE DEMOGRAPHICS AND TESTS REQUIRED

	8270 (Stars) 625 PCB's TCLP LESS HERBS & PESTS PCB's TCLP VOLATILES 602 8 RCRA METALS (TCLP) FOX HERBICIDES LEADIONLY PESTICIDES REACTIVITY TO COROSIVITY COROSIVITY FLASH POINT GAS OR OIL) SUSPECT: TO SUSPECT: COROSI PORTOR OF COROSIVITY COROSI POINT SUSPECT: COROSI PORTOR OF COROSIVITY COROSI POINT SUSPECT: COROSI PORTOR OF COROSIVITY COROSI POINT COROSI POINT SUSPECT: COROSI POINT COROS	_/\$/3/////
DATE TIME SA	MPLE: DESCRIPTION / LOCATION / MATRIX	
7-25-95 2:07 m 50	al Gaber Trepriment Composite (b)	7 8
	- WHOLE TREATMENT COMPOSITE WE	3 1
	WNDSR TREMEMENT COMPOSITE W3	X
	AL MADER TREPRESENT COMPOSITE OF 4	X
	IL UNDER TREFFRAMM COMPOSITERS	X

CHAIN OF CUSTODY RECORD

	SAMPLES RECEIVED BY: SAME CASE
SIGNATURE: NAME:	SIGNATURE: NAME:
DATED: / TIME:: HOW SENT: DEXP MAIL DHAND CARRY SIGNATURE 2:	DATE: I SOLO TIME: HAND CARRY FREIGHT IN: S LOGGED IN: 7 57 195 TIME: SAMPLE COND.: SAMPLE TEMP.: SAMPLE TEMP.:

White-Lab, Yellow-Customer, Hard-Lab

RESULTS WHEN YOU WANT THEM

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 **(716)** 851-72**20**

July 27, 1995

Herbert Siegel, Esq. Siegel, Kelleher and Kahn 426 Franklin Street Buffalo, New York 14202

Dear Mr. Siegel:

SPILL NUMBER 9407600 2424 HAMBURG TURNPIKE LACKAWANNA ERIE COUNTY

Please provide an update on the status of the remediation at this site. Please include the schedule that the soil has been treated, tilled and sampled. Also, include all measures taken to date and to be taken to control runoff from the soil piles to Route 5.

Please provide the requested information by August 11, 1995. If you have any questions, please contact me at 716/851-7220.

Sincerely,

Francis Galley Francine Gallego Environmental Engineer 1

FG:lej

David Siegel, Esq. cc:

Mr. Russel Savage, Nature's Way

Spill Number 9	40760
----------------	-------

SPILL CONTINUATION SHEET

2424 Hamburg
The

Date	Comments
7/26/95	Fg site visit. That Nature's Wanty
1 - 1	en site to cleck soils for
	petroleur odos Checked 4 por
	to bottom of sile - found no
	to bottom of pile - found no contomin present Nature's
	Wan had collected samples
· \	way had collected samples or 7/25/95 for analysis.

			Spill Number 9	407600
			Date	
	SPILL C	ONTINUATION SHEET	2424 1	Imby Tpke
Date		Comments		
5/3/95	Fa site visit.	Soil bee	he spran	~ D
, , , , ,	Fag site viset. Dy Nature's 4	au with -	Autiento	<u></u>
			*	· · · · · · · · · · · · · · · · · · ·
				

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(1)

April 02, 1995

Ms. Francine Gallego NYSDEC, Region 9 270 Michigan Ave. Buffalo, New York 14203-2999 RECEIVED

APR 1 0 1995

NYSDEC-REG. 9 FOIL _REL ___UNREL

ESTATE OF SIEGEL PROPERTY

Spill No. 9407600

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.

Submission of Schedule for Biotreatment of Soil (Work

Activities)

Dear Francine,

In response to your March 16, 1995 letter, please find attached a revised copy of the biotreatment schedule, which was previously submitted within the Site Specific Biotreatment Work Plan, but which had to be modified slightly due to extended inclement (too cold) weather. As is shown by the attached schedule, we will be starting treatment work very soon. This should cover all work activities planned at the Subject Site:

- 1. Soil Treatment: 04/24/95 10/30/95(or completion, whichever is first) Bimonthly Treatment of Soil
- 2. Tilling: 05/15/95 10/30/95 (or completion, whichever is first) Bimonthly as necessary
- 3. Interim Sampling for Contaminant Conc.: 04/24/95 10/30/95 (or completion, whichever is first) First Interim Soil Samples to be Taken approx. 06/24/94 Every two months if/as necessary thereafter.

Please note that we will try to notify you by telephone a day or two in advance of specific treatment applications, but that due to the nature of our work, the weather, and the need to schedule efficiently, we can't be more specific than the general intervals or timing shown above, at this time.

Sincerely,

Russel J. Savage, President Nature's Way Ind

cc:H. Siegel

fue

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

March 16, 1995

Mr. Herbert **S**iegel Siegel, Kelle**he**r and Kahn 426 Franklin **S**treet Buffalo, New York 14202

Dear Mr. Siegel:

Spill Number 9407600 2424 Hamburg Turnpike Hamburg Erie County

Please provide your schedule of work activities at this site. As stated in your most recent correspondence, field work is to begin in April.

Please respond by March 31, 1995. If you have any questions, please call me at 851-7220.

Sincerely,

Francine Gallego

Environmental Engineer I

FG:vm

cc: David Siegel, Esquire - 300 Main Street, Buffalo

Mr. Russel J. Savage - Nature's Way, Inc.

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(1)

December 30, 1994

RECEIVED

Ms. Francine Gallego

JAN - 5 1995

NYSDEC, Region 9

NYSDEC-REG. 9 FOIL AREL __UNREL

270 Michigan Ave.

Buffalo, New York 14203-2999

ESTATE OF SIEGEL PROPERTY Spill No. 9407600)

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.
Submission of Initial Sample Analysis for Soil To be

Bi**o**treated

Dear Francine,

Please find attached, copies of analytical test results for initial sample analysis for soil to be biotreated. The soil to be remediated was sampled on Dec. 12, 1994, upon completion of setup work.

Sincerely,

Russel **J.** Sa∜ Nature's Way

cc:H. Siegel

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 654-6350 FAX (716) 654-6354

CLIENT : NATURE'S WAY

11796 GENESEE STREET

ALDEN, N.Y. 14004

ATTN : RUSS SAVAGE

DATE REC'D. : 12/14/94

LABORATORY NO.: 94126589

REPORT DATE

: 12/23/94

RE: 2424 HAMBURG TURNPIKE

SAMPLE INFORMATION .

SAMPLE DATE

: 12/12/94

LOCATION

:SOIL PILE

SAMPLE TIME

: 11:40 AM

TYPE OF SAMPLE: SOIL COMPOSITE

NUMBER OF SAMPLES : 1

SAMPLER

: CLIENT

S.T.A.R.S. 8021

PARAMETER	SOIL UNDER TREATMENT COMP OF 16 GRABS	UNITS
METHYL t-BUTYL ETHER (MTBE) BENZENE ETHYLBENZENE TOLUENE m+p-XYLENES o-XYLENE ISOPROPYLBENZENE n-PROPYLBENZENE p-ISOPROPYLTOLUENE 1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE n-BUTYLBENZENE sec-BUTYLBENZENE NAPHTHALENE	15 1.6 1.2 1.7 4.9 1.7 <1.0 1.1 <1.0 12 3.4 3.8 <1.0 2.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
a,a,a-TFT SURROGATE RECOVERIES:	. 122	%

Acceptable Range 60-132%

Performed by EPA Method 8021 Volatiles per NYSDEC S.T.A.R.S. Program Analyte List on a TCLP (Zero Headspace Extraction ZHE) 12/15/94.

LABORATORY DIRECTOR

NEW YORK STATE

APPROVED

ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 654-6350 FAX (716) 654-6354

NATURE'S WAY / LAB #94126589

PAGE 2 OF 2

POLYNUCLEAR AROMATIC HYDROCARBONS

PARAMETER	SOIL UNDER TREATMENT	METHOD BLANK	UNITS
NAPHTHALENE	<1,700	< 330	ug/kg
ACENAPHTHYLENE	<1,700	< 330	ug/kg
ACENAPHTHENE	<1,700	<330	ug/kg
FLUORENE	<1,700	< 330	ug/kg
PHENANTHRENE	<1,700	<330	ug/kg
ANTHRACEN E	<1,700	< 330	ug/kg
FLUORANTHENE	2,800	<330	ug/kg
PYRENE	2,100	<330	ug/kg
CHRYSENE	<1,700	<330	ug/kg
BENZO(b) FLUORANTHENE	<1,700	<330	ug/kg
BENZO(k) FLUORANTHENE	<1,700	<330	ug/kg
BENZO(a)PYRENE	<1,700	<330	ug/kg
DIBENZO(a,h) ANTHRACENE	<1,700	<330	ug/kg
INDENO(1,2,3-cd) PYRENE	<1,700	< 330	ug/kg
BENZO(g,h,i) PERYLENE	<1,700	<330	ug/kg
BENZO(a) ANTHRACENE	<1,700	< 330	ug/kg
SURROGATE RECOVERIES :			
NITROBENZENE-d5	52	48	8
2FLUOROBIPHENYL	102	49	8
TERPHENYL-d14	98	71	%

Analysis performed by EPA Method 8270 Base-Neutrals (PNA'S) per NYSDEC S.T.A.R.S. program memo #1 listing direct on sample on 12/16/94.

PARAMETER	SOIL UNDER TREATMENT	UNITS	METHOD NUMBER	DATE ANALYZED
IGNITABIL I TY	>140	°F	EPA SW 846 1010	12/14

ALAN J. LAFFIN LABORATORY DIRECTOR

NYSDOH LAB ID # 10390 acq

LOZIER LABORATORIES

CHAIN OF CUSTODY RECORD

· Client Name; Naturer Way Inc

Mailing Address: 11796 Genesee St

Alden, N/14004

LABORATORY NO:	6589						L.KY.	<u> </u>	Pro	ject	Name: 2	424 Has	nburg TpK
SAMPLE IDENTIFICATION			ME LOCAT		MPLE PE		100 /2°/		7	ANAL	YSIS NL O CONTAIN		REMARK
Composit of 16 Grabs	12/2/94	11:40 Am	Soil Pile	Soil Comp	× /	< x					3		
COMPOSITED 16 GIANS					╂╌┼╴	╅	┢	\vdash		-	<u> </u>	-	
									-			-	-
		·											
		<u> </u>		 	 -	-	-		- -			<u> </u>	
					-	-		\vdash	- -	╂═┨		 -	
					-	-			- -	_		-	
	SAMPLED BY: Welliam Kull SIGN												
RELINQUISHED 1 Well BY: SIGN 12/19 DATE	ian Zuk 1/4 TIME		2 Blan N SIGN 12/14/44 DATE	endered 2:30pm	3	SIGN DATE		Ti	ME		.	IGN ATE	TIME
RECEIVED 1 Brigar BY: SIGN 12/14/44 DATE	2 Jend 1 12:30 TIME	and	SIGN DATE	TIME	3	SIGN DATE	-	Ť	ME		. 11	IGN DATE	ŤIME
METHOD OF SHIPMENT: Nard Deliver	e)		Bina Non	Jul	li -	CEIVI	- ,		ABO	RAT	ORY BY:	July	210 TIME

Spill	Number	9407600
Date		

SPILL CONTINUATION SHEET

Date	Comments

Date	caments
12/15/94	For site visit. Met R. Savacy or site.
	Berns had been set up adequately to
	control Rusoff. H drums sludge
	from UST's hate to be disposed.
	Ital Mr. Lawag Hata cover must
	be placed on the biocello to prevent
	ise i show rusoff for the street.
	He agreed Hat he would place
	The plantie.
* 	

NATURE'S WAY INC. BNVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

FAX LEAD SHEET

DATE: 12/13/94

	SENT TO: Ms. Francine Gallego NYS DEC
	AT FAX NO.: 85/-725.2
	NO. OF PAGES (INCLUDE LEAD SHEET) 25
	FROM (SENT BY):
MESSAGE	
·	
•	

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

December 13, 1994

(1)

Ms. Francine Gallego NYSDEC, Region 9 270 Michigan Ave.

Buffalo, New York 14203-2999

Re: ESTATE OF SIEGEL PROPERTY

Spill No. 9407600

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.

Response to Your December 05, 1994 Letter

Dear Francine,

This letter is in response to your December 05, 1994 letter to Mr Herbert Siegel regarding ongoing remediation work at the subject Site. We would like to respond to the issues/items you raised in your letter as follows:

Item #1 - Analytical Test Results

As you are aware from your telcon with the Laboratory Coordinator/Supervisor of the NYSDOH ELAP accredited Environmental Testing Laboratory (Lozier Laboratories Inc.) who performed the subject testing on this project, all samples were submitted by NWI to the lab in a timely manner and initial analysis was performed by the lab within the applicable holding time allowance (14 days). Because the lab found that surrogate (QA/QC) recoveries (for sample #2 - tank pit bottom sides composite ONLY) were outside the normally acceptable range in the initial analysis, they reran the samples on 10/03/94, with QA/QC being acceptable and results being nearly identical to the first analysis, in this reanalysis. Please note that results obtained for the other two samples reported (Stained area west side, and test pit) were technically valid and acceptable on the first analysis date with regard to both QA/QC and holding time. The Laboratory, upon obtaining confirmation of the accuracy of their initial results for the one sample analysis in question, issued the report provided to you.

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St.

December 13, 1994

101

(716) 937-6527

Please note that there was a typographical error on the original report issued by the Lab, stating the reanalysis date as 10/23/94 instead of 10/03/94. This has been corrected in the attached reissued report by the Lab. The laboratory has also provided a written explanation of the sequence of events as outlined above, reissued the corrected (typo) lab report, and stated that it is their Professional opinion that the analysis in question is accurate, reliable, and useable for its' intended purpose. Please also note that the technical issue here (holding time on the one sample) is over an exceedance of only 2 - 3 days beyond the normal technical holding time allowance, and relates to a secondary confirmatory analysis on the sample because of an effort to demonstrate QA/QC data within limits, and that results from that second analysis did not differ significantly from the original analysis. In addition, we did not request "clean closure" of this Site, nor contend that all areas are completely within DEC guidance values, as is shown by the results for the stained west side sample.

Based on this information and explanation, we feel that the data is accurate and that re-excavation or borings to obtain another sample would represent an unnecessary expense and hardship for all involved, and are respectfully requesting that the Department accept the analytical data and explanation submitted for this sample at this Site, and that no resampling be required.

Item #2 - Soil Removal from Test Pit

Soil was excavated to a depth of five to seven feet deep in this location.

Item #3 - Additional Test Pit Excavation

As per our November 14, 1994 letter to you, we planned and did notify you that we would reexcavate and sample two test pits in the locations you originally had requested, and which had been excavated and sampled previously during initial site work, but for which the samples were not turned in to the lab. We are assuming that this is what your item is referring to.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

December 13, 1994

(3)

Item #3 - Additional Test Pit Excavation (continued)

As is shown in that letter, we originally planned to perform this task on the 22nd of November, but were delayed to the 30th of November. Apparently, this is just a case of miscommunication or our data/letters crossing in the mail, since you did not mention anything to our office or to the NWI employees performing work on-site regarding your desire to be present during the excavation of these test pits when you made a site visit the week of the 21 - 25 of November. In any event, and as you are aware from our 12/08/94 submission, these test pits were re-excavated, as intended, on the 30th of Nov. and results showing no contamination present in these areas were submitted on 12/08/94.

Item #4 - Bioremediation Proposal

As your Department is aware, NWI has been performing bioremediation of petroleum contaminated soils for over six years at Sites throughout Western and Central NY State. We have been using the same methodology that was originally approved by the Department six years ago on each of these more than 70 soil remediation Sites, all of them successful. Never before has a more specific proposal than the one submitted to you on November 14 with regard to this Site, been requested by any DEC representative, on any Site, in any Region in which we have worked. In response to your request, please find attachment #2 Site Specific Bioremediation Proposal for this Site. Please inform us whether it is a new Department position that a Site specific proposal be submitted for each Site, so that we can avoid the need for resubmissions in the future.

Item #5 - Bio Soil Pile Berming

Berming to prevent runoff apparently was not complete at the time of your visit and has since been completed.

Item #6 - Bio Pile Analysis

The soil to be remediated was sampled on Dac. 12, 1994, upon completion of setup work, for initial analysis as requested, and as planned (Nov. 14, 1994 letter), and results will be forwarded as soon as available.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

December 13, 1994

(4)

Item #6 - Bio Pile Analysis (continued)

With regard to interim (every two months) analysis during treatment, this has always been performed since required only during periods of active treatment (i.e. not during the winter Dec. - Apr., when treatment is suspended), and we assume that the requirements for this Site are the same as all others, and have planned to perform this interim sampling when active treatment begins in April. Please indicate whether this is acceptable.

Item #7 - Bacterial Product Information/MSDS's

This information is considered by us to be Company Confidential/Proprietary (trade secret), and so we request that you treat the information supplied (attachment #3) as such as Confidential, as required by Law.

Item #8 - Final Samples

We will notify NYSDEC when we are ready for final sampling.

Item #9 - Soil Conditioning Agents/pH Adjustments

No adjustments have been made as yet, since active treatment wont begin until April. If any adjustments are deemed necessary based on field testing of the soil by NWI for pH and moisture content and retention, they will consist of agricultural lime and/or Basic-H (MSDS for Basic-H also enclosed in attachment #3). Please note that this information is also considered by us to be confidential.

Item #10 - Tank Scrap Disposal Reciept

We do many tank removals (> 100 per year). We have never before been asked to provide a scap disposal reciept for the cleaned former U.S.T.'s at any Site. Therefore, we do not routinely keep them on record. Please note that these tanks were cleaned so thoroughly before disposal that we were able to use them to hold water that had been carbon filtered prior to release and which water tested clean enough to meet groundwater standards prior to release. We have asked our normal scrap recycling facility to check their records for us, but that will take some time. We will submit any reciepts, if

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

December 13, 1994

(5)

Item #10 - Tank Scrap Disposal Reciept (continued)

We will submit any reciepts, if found, as soon as we find them. Please inform us as to whether the described accounting for of the tanks for the Site is acceptable if reciepts cant be found.

In closing, please review the above responses to your 12/05/94 letter, and provide written response to our submissions. Please copy NWI (as per Mr. Siegel's request) on all correspondence to expedite the handling of any issues that may arise in the future with regard to this Site. Also, please call if you should have any questions or comments.

Sincerely

Russel J. Savage, President Nature's Way Inc.

Dec 14,94 16:45 P.07

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #1
LETTER FROM LOZIER LABORATORIES INC. RE ANALYTICAL TEST RESULTS

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 854-8350

Dec 14,94 16:46 P.08 NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

December 13, 1994

Russell Savage Nature's Way Inc. 11796 Genesee Street Alden, MY 14004

2424 Hamburg Turnpike Losier Laboratory report: 94094867

Dear Mr. Savage:

Please find enclosed a revised laboratory report concerning three (3) soil samples submitted to Lozier Laboratories September 22, 1994 for NYSDEC S.T.A.R.S. program 8021 Volatiles-Direct, and TCLP-EPA 8270 Base Neutrals (PAH's) for the 2424 Hamburg Turnpike site.

Ms. Francine Gallego of the NYS Department of Environmental Conservation, Region 9, called to inform me that Louier Laboratories was non-compliant with regard to the analysis performed on your sample identified "T. Pit Bottom/Sides" because EPA 8021 volatiles-direct analysis was performed outside of the proper 14-day holding time.

In my conversation with Ms. Gallego, I mentioned that this same sample was, in fact, analysed on September 23, 1994 (well within the proper 14-day holding time but that the surrogate & recovery value for this sample was 24%.

An attempt was made to re-analyze this sample on September 27, 1994 but due to a GC-system contamination problem the data and chromatogram were un-usable. A third attempt was made to analyse the sample on October 3, 1994 (3 days outside of holding time). This time the surrogate & recovery was acceptable (45%). It was the data from this analysis run that was reported in your first laboratory report.

only analyte of doncern with this same isopropylbenzene. The first analysis (9/23/94) had a positive hit of 3.8 ug/kg. The value reported outside of holding time was 2.9 ug/kg.

909 CULVER ROAD ROCHESTER, NEW YORK 14800 TEL. (716) 654-8350 FAX (716) 054-8354

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORIS

Our GC: Analyst has summarized the two (2) analysis runs concerning QA/QC ie. blanks, external QC shook runs, etc. for each of the two analysis dates (9/23 & 10/03/94).

Even though the analysis for "T. Pit Bottom/Sides" could be considered non-compliant it is my opinion that the data should be regarded usuable.

Compensating for surrogate recoveries on this sample would account for the following theoretical conclusion:

3.8 ug/kg / 0.24 = 15.8 ug/kg2.9 ug/kg / 0.45 = 6.4 ug/kgAvg, 11.1 ug/kg

At the very most this sample would possibly have had a value of 11.1 ug/kg; well below the TCLP alternative guidance value of 100 ug/kg listed for isopropylbensene in the MYSDEC STARS memo #1 document.

Please call if you have any questions or require additional information.

Sincerely,

Dennis Ciehomski

Laboratory Coordinator

DC/ds attachment

1809 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 854-8360 FAX (718) 854-6354 NEW YORK STATE
APPROVED
ENVIRONMENTAL LABORATORY

12/13/94

Re: Laboratory Report 94094867 Soils

9/23/94

- 1. Surrogate Recoveries for laboratory 94094867-1 = 55% (acceptance range for soils = 37-120%) 94094867-3 = 52%
- 2. D.I. H²O Instrument Blk: 102%
- 3. 8021 Cal Check: Within +/- 20% of established curve for all 8021 cpds.
- 4. 9021 QC: Between 82 to 117% Recovery for all 8021 cpds.
- 5. Isopropylbenzene QC: 84% Rec. (reference check sample).
- 6. 8021 MB/MBD (Ext QC) within established parameters for all

10/03/94

- 1. Surrogate recovery for 4867-2 = 45% (ecceptance range for soils = 37-120%)
- 2. D.I. H_iO Instrument Blk: 102.
- 3. 6021 Cal Check: Within +/- 20% of established curve for all 8021 cpds.
- 4. 8021 QC: Between 70-118% for all 8021 cpds except Napthalene (46%).
- 5. Isopropylbenzane QC: 95% Recovery.
- 6. MS/MSD (EXT QC) done on a soil (#4989) within established parameters for all 8021 cpds. (Isoprophensume = 100%, 67%)

William Stork GC Analyst

at \8W

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (718) 654-8360 FAX (716) 654-6354

NEW YORK STATE **APPROVED**

ENVIRONMENTAL LABORATURY

CLIENT : NATURE'S WAY

11796 GENESEE STREET

ALDEN, N.Y. 14004

LABORATORY NO. : 94094867

DATE REC'D.

: 09/22/94

REPORT DATE

: 10/06/94

ATTN : RUSS EAVAGE

RE : 2424 HAMBURG TURNPIKE

SAMPLE INFORMATION

SAMPLE DATE

: 09/16-09/20

LOCATION

:SZE REFERENCE

NUMBER OF SAMPLES : 3

: 3:15-4:00 PM

TYPE OF SAMPLE:SOILS

SAMPLER

CLIENT

S.T.A.R.S. 8021 VOLATILES - DIRECT

Parameter	STAINED AREA W. SIDE (1)	T. PIT BOTTOM /SIDES {2}	TEST PIT (1)	UNITS
BENZENE	17	<1.0	<1.0	144 / le er
ethylbenzene	51	<1.0		ug/kg
Tolurne	21	<1.0	<1.0	па/ka
n+p-XYLENES	180		<1.0	ug/kg
O-XYLENE	8,0	<2.0	<2.0	ug/kg
ISOPROPYLBENZENE	5,2	<1.0	<1.0	ug/kg
n-PROPYLBENZENE	10	3.8	<1.0	ug/kg
9-180PROFYL TOLUENE		<1.0	<1.0	ug/kg
l,2,4-trimethyl	<1.0	<1.0	<1.0	ug/kg
9 8 nze n e	160	<1.0	27	11 ex / lu =
L,3,5-TRIMETHYL		12.0	- 1	ug/kg
enzene	64	<1.0	43 A	
L-BUTŸLBENZENE	55	<1.0	<1.0	ug/kg
ec-BUTYLBENZENE	4.2		4.3	ug/kg
IAPATHALENE	56	<1.0	<1.0	ug/kg
THE RESIDENCE OF THE PROPERTY	30	<1.0	20	u g/k g
ETHYL t-BUTYL				
THER (MTBE)	<5.0	<5.0	<5.0	
		73.0	\5. 0	u g/kg
URROGATE RECOVERIE				
.,a,a-TFT 1011s Acceptance Cr.	56	24	52	•

.(1) Applysis performed by BPA Method 8021 Volstiles per NYSDEC S.T.A.R.S. Program Analyte List Direct on samples on 09/23/94.

(2) Analysis performed on 09/23/94. Low surrogate recovery due to matrix interference.

NYSDON LAB ID # 10390 acq

LABORATORY DIRECTOR

NEW YORK STATE
APPROVED
ENVIRONMENTAL LABORATORY

NATURE'S WAY / LAB #940948667

PAGE 2 OF 3

POLYNUCLEAR ARONATIC HYDROCARBONS

PARAMETER (N. SIDE	T. PIT BOTTOM /SIDES	Tee t Pit	method Blank
napht h alene	<10	<10	<10	<10
acenaphthylene	<10	<10	<10	<10
ACENAP HTHENE	<10	<10	<10	< 10
fluor e ne	<10	<10	<10	<10
PRENANTHRENE	<10	<10	<10	<10
ANTHRACENE	<10	<10	<10	<70
FLUORANTHENE	CIO	<10	<10	<10
PYRENE	<10	<10	<10	<10
Chry sene	<10	<10	<10	<10
BENEO(b) FLUORANTH	ene <10	<10	<10	< 3, 0
BENZO(k) PLUCKANTH	ene <10	<10	<1.0	<10
BENZO(14) PYRENE	<10	<10	<10	<10
DIBENZO(a,h) ANTHRACENE	<10	<10	<10	<10
INDENO(1,2,3-cd) PYRENE	<10	<10	<10	<10
BENZO(g,h,i) PERYL	ENE <13	<10	<10	<10
BENZO(a) ANTHRACEN	E <10	<70	< 7 0	<10
SURROGATE RECOVER I NITROBENZENE ~ d5 2 PLUOROBIPHENYL TERPHENYL	es : 51 55 75	51 46 54	556	7 4 53 68

Analyzis performed by EPA Method 8270 Base-Neutrals (PNA'S) per NYSDEC S.T.A.R.S. program memo \$1 listing on TCLP Extractions on 09/23/94.

Results expressed in us/1.

NYSDOH LAB ID # 10390

ALAN J. LAFF LABORATORY DIRECTOR

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (718) 664-8360 FAX (718) 664-6364 NEW YORK STATE
APPROVED
ENVIRONMENTAL LABORATOR (

NATURE'S WAY / LAB \$940948687 PAGE 3 OF 3

S.T.A.R.S, 802	1 VOLATILES - DIRECT	
PARAMETER	T. PIT BOTTOM	UBITS
BENZENE TOLUENE TOLUEN	00000000000000000000000000000000000000	STATE FREE STATES OF THE PRESENCE OF THE PRESE
WETHYL t-BUTYL ETHER (MTBE)	<5.0	ug/kg
BURROGATE RECOVERIES: i,a,a-TFT Boils Acceptance Criteria : 37	45 7-120 8	¥

Analysis performed on 10/03/94, outside of holding time.

NYSDOM LAB ID # 10390

ALAN J. LASTIN LABORATORY DIRECTOR

CHAIN OF CUSTODY RECORD

Plane: Natures Way Inc

Alden, NY 14004

LABORATORY NO:	4867		 .				Affe	ONE	/ !rojec	t Fame: ,	2424 HA	mrurg Tek
SARPLE IDENTIFICATION	DE DAT	E / 194	LOCATION	SA TT	4					CONTA	INTERNATION OF CITERS	MEMARK
Storical Area Under Bildy	9/16/99		wort side	942	X	X				1 .5		
T. Pit Botton Silo Corp.	9/16/99	35 m	5 Raylon	Comp	X	<u> </u>				1 -5	X	
Test pit a topmate	9/19/14	4:00 p	SF7 BGS Composite	como	x	×				¥ +5	3	
			Conspict									
						-}-	-		} - } -	 -		
· · · · · · · · · · · · · · · · · · ·					-	+-			 			
•										1		
SAMPLED BY:	e //		the,									
RELINQUASHED BY:	24 12:0	tras	SIGN 9-37-54 TIM	8:10 ·	3	SIGN		The		_ 4	STÂN .	West
BY: PATE	1 20 TIME	N	2 SIGN SIGN STATE TIME		3	S IGN		TEM	Ē	_ 4	SIĞN DATE	TOPPE
METHOD OF SHIPMENT:	· .		final ;	ly-	Rt	1	L	MI		TORYEY	(: { bx/r	9 3/0 1841

Dec 14,94 16:49 P.15

1

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #2
BIOREMEDIATION - SITE SPECIFIC PROPOSAL W/SITE MAP

11796 Genesee St. Alden, N.Y. 14004

 $(x,y,y) = x^{-1} + x^{-1}$

(716) 937-6527 (716) 937-6140

SITE SPECIFIC BIOREMEDIATION PLAN AND SCHEDULE FOR:

2424 HAMBURG TURNPIKE SITE LACKAWANNA, N.Y.

General Overview Of Bioremediation Process Used By NWI

Bioremediation can be considered for practical purposes to be greatly enhanced natural biodegradation. Biodegradation is the metabolic breakdown of hydrocarbons by numerous types of organisms resulting in end products such as carbon dioxide, water, and organic matter (cell protoplasm,etc.). These metabolic processes are often referred to as mineralization. The bioremediation processes employed by NWI use commercial formulations of specially selected and adapted naturally occurring bacteria, and create an environment which is favorable for growth, reproduction, and hydrocarbon utilization. This is accomplished through supplementation and management of various factors including bacterial population, moisture content, oxygen availability, nutrient loading, and ph. A bacterial suspension is applied to supplement indigenous soil bacteria. Soil to be remediated must be aerated (oxygenated) by one of several means to support degradation. Essential nutrients, in the form of commercial agricultural type fertilizers, must be supplied in the correct ratios to support degradation. Soil conditioning agents such as biodegradable surfactants are also applied as needed to maintain contaminant substrate availability and to act as a cosubstrate and volatilization inhibitor.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

Description Of Above Ground Bioremediation Methodology

The following is a summary and schedule of events and actions to take place during the decontamination procedure.

I. Soil Preparation For Treatment: 11/14 - 12/01/94

The contaminated soil will be placed on a plastic liner having it's perimeter supported by hay bales or clean soil to form a burm, to prevent runoff. The contaminated soil is generally spread over a large enough area to provide a maximum depth of 2 feet.

II. Soil Treatment: 03/15/95 - 09/30/95
 (or completion, whichever is first)

Bimonthly Treatment of Soil:

Soil conditioning agents and nutrient supplements, in the form of dilute commercial agricultural type fertilizers (Peters 20-20-20 w/soluble trace elements), necessary pH adjustments (agricultural lime), and biodegradable surfactants (Basic-H), will be applied when active soil treatment is begun in March or April 1995, and as a part of bi-monthly bacterial suspension applications.

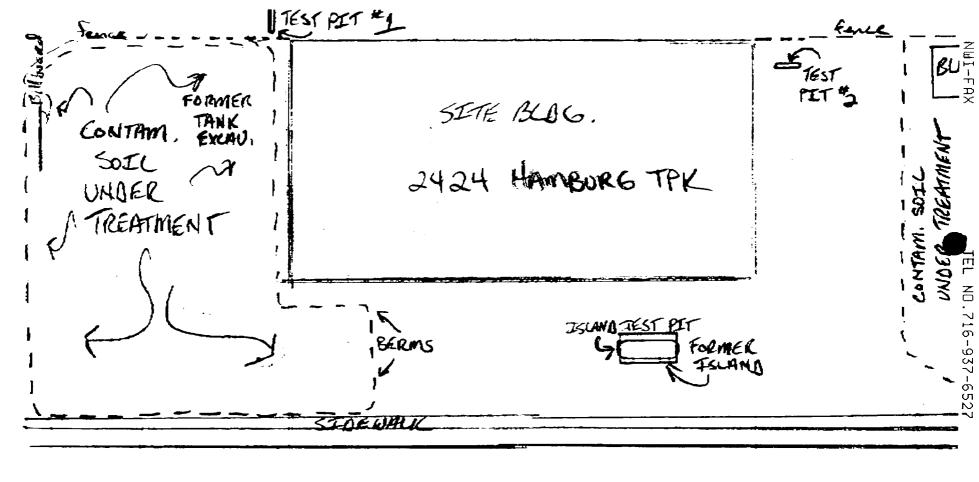
Large quantities (approx. 9000 gal/application) of an ubiquitous hydrocarbon utilizing bacteria, <u>Bacillus subtilus</u>, will be produced and applied in a liquid suspension on a Bimonthly basis to the soil on site, within the manufacturer's recommended quidelines. The bacteria used are a proven, safe, commercial formulation similar to that used in wastewater treatment for over 20 years. Product information and MSDS sheets on these bacterial formulations is attached and is considered confidential. The bacteria will be applied to the soil using a high volume, medium pressure pumping system.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

Description Of Above Ground Bioremediation Nethodology (cont.)

III. Tilling: 03/15/95 - 09/30/95 (or completion, whichever is first)


Oxygenation (tilling) of the soil under treatment to support degradation will be performed bimonthly with construction equipment (backhoe).

IV. Interim Sampling for Contaminant Concentration:
 03/15/95 - 09/30/95
 (or completion, whichever is first)

In addition, we will monitor contamination levels through soil sample analysis every two months during periods of active treatment throughout the treatment period to monitor performance. All data will be made available to the NYSDEC as it becomes available.

v. Final Sampling: Est. 06/01/95 - 09/30/95

When NWI has determined by field observsations/instrumentation that cleanliness criteria probably have been achieved, we will notify NYSDEC that we are ready to perform final sampling/analysis, and will submit required analytical results to confirm completion of decontamination. Upon confirmation of attainment of cleanup criteria, we will consider site operations complete and provide a written report, analytical data, and request for closure of the project to the NYSDEC within 30 days of completion.

RT 5 (HAMBURG TPK)

SITE MAP - 2424 HAMBURG 15: NOT TO SCALE: INFORMATIONAND PURPOSES BAILY

Dec 14,94 16:52 P.20

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #3
TREATMENT AGENT INFO & MSDS'S

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(1)

December 7, 1994

Ms. Francine Gallego NYSDEC, Region 9 270 Michigan Ave. Buffalo, New York 14203-2999 DECT 3 1994

DECT 3 1994

DECT 3 1994

Re: ESTATE OF SIEGEL PROPERTY

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.

Submission of Test Pit Groundwater Analytical Testing Results;

9407600

Dear Francine,

As you know, we recently (November 30, 1994) excavated two test pits as follows:

Test Pit #1 - just beyond the fence at the rear (south side) of the tank excavation area; and

Test Pit #2 - at the far (southwest corner) end of the Site building;

to demonstrate that the residual contamination known to be present beneath the Site building did not extend in other directions beyond the building, and was not of significant impact to soils/groundwater outside the building footprint. We obtained a water sample (shallow groundwater-probable trapped surficial drainage water was encountered in both test pits at approx.7.0′ - 8.0′ BGS) from each test pit to confirm whether contamination above DEC guidelines existed in these areas.

Field observations (appearance, odor, sheen) gave no indication of the presence of contamination. Analytical results (Attachment #1) for the groundwater samples obtained from these two test pits confirm that no petroleum contamination is detectable in these test pit areas, and also confirming that any residual contamination at the Site appears is a swolated to the inaccessible area beneath the building.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

(2)

December 7, 1994

As stated in our previous letter/report (Nov. 14, 1994), while contaminant levels slightly above NYSDEC guidlines were found to remain in an area of soils beneath the Site Building, it is our opinion based on the available data that it is unlikely that the contaminated soils present in that area are impacting soils/groundwater areas outside the building footprint, and constitute no significant present or potential impact to the Environment.

Also as previously reported, it was determined that <u>no</u> utilities or likely sensitive receptors are present in/around the residually affected area (beneath building) of the Site, and that groundwater is not being used as a source of potable water in the area in general. This would make the presence of residual soils contamination in this area unlikely to pose a significant threat of impact to any sensitive receptors, or the Environment in general.

Based on these findings, and since analytical results from the two test pits confirm that these areas meet DEC guidelines, it is our opinion and conclusion that:

The small area of isolated low level residual soils contamination present beneath the Site building poses no significant threat of adverse impact to the overall quality of the environment or potential receptors.

Based on the above data and conclusions, and upon submission of the above-referenced confirmatory test pit analyses, please respond with a letter (address above - copy NWI) assigning a formal designation of "Inactive" to this spill Site, and stating that no further work (other than completion of soil decontamination) will be required at this time. Please call if you should have any questions or comments.

Sincerely,

Russel J. Savage, Nature's Way Inc.

President

11796 G**e**nesee St. Alden, **N**.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #1
TEST PIT ANALYTICAL RESULTS

EXPRESSLAB

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

Nature's Way Inc.

Address: 11796 Genesee Street

Alden, NY 14004

Attn:

Russ Savage

Phone

716-937-6527

FAX

716-937-6527

PO Number:

2424 Hamburg Tok.

Project Number:

Project Cust:

Project Site:

Turnpike Auto

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* = *See Individual Limit Soil=ug/kg ppb

Water=ug/L ppb

Results shown are:

Volatile Organics

Extraction Method:

EPA 5030 Purge & Trap

Analysis Method:

EPA 8021 GC PTD

Sample ID (LAB) Sample ID#1(CUST)

Sample ID#2CUST) Matrix

Sampled By Date Sampled

Date Received Date Analyzed

Date Reported

MTBE < DL Benzene < DL Toluene

Ethylbenzene m&p-Xylene o-Xylene Isopropylbenzene

n-Propylbenzene 1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene sec-Butylbenzene Isopropyltoluene n-Butylbenzene

Naphthalene

5476 Test pit #1 rear of building Water Charlie Sav 11/30/94 11:30

12/03/94 10:00 12/07/94

12/07/94

Results Det Limit* 1.0 1.0 < DL 1.0 < DL 1.0 < DL 2.0 < DL 1.0 < DL 1.0

1.0

1.0

< DL

< DL

* DL = Detection Limit

Page 1

EXPRESSLAB

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - 8270 Water

Cust

Nature's Way Inc.

Address: 11796 Genesee Street

Alden, NY 14004

Attn:

Russ Savage

Phone

716-937-6527

FAX

716-937-6527

PO Number:

2424 Hamburg Tpk.

Project Number:

Project Cust:

Project Site:

Turnpike Auto

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits * =

Water=ug/L= pph*

*See Individual Limits

Sample ID (LAB)

Sample ID #1 (CUST) Sample ID #2 (CUST)

Matrix

Sampled By

Date Sampled

Date Received

Date Analyzed

Date Reported

* ND - Below Detection Limit

Naphthalene

Aconaphthylene

Acenapthene

Fluorene

Phenanthrene Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(123-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(ghl)perylene Benzo(b) fluoranthene

Chrysene

5476

Test pit#1

rear of huilding

Water

Charile Say

11/30/94 11:30

12/03/94: 10:00

12/06/94 (09:42 12/06/94 17:53

Results Det Limit

<DL 5.0 <DL 5.0 <DL 5.0

> <DL 5.0

5.0 <DL 5.0

<DI. 5.0

<DL 5.0

<DL <DL

Results shown are:

EPA 8270 Water

Extraction Method: Analysis Method:

EPA 3550 Solvent Extraction

EPA 8270 GC MS Ion Trap

<DL 5.0 <DL 5.0 <DL 5.0 <DL 5.0 <DL 5.0 <DL 5.0

<DL

5.0

6.0

EXPRESSLAB

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LARS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - METHOD 8021

Cust

Nature's Way Inc.

Address: 11796 Genesee Street

Alden, NY 14004

Attn:

Russ Savage

Phone

716-937-6527

FAX

716-937-6527

PO Number:

2424 Hamburg Tpk.

Project Number:

Project Cust:

Project Site:

Turnpike Auto

Volatile Organics

EPA 8021 GC PID

EPA 5030 Purge & Trap

Date FAXED

Lab Director

Results shown are:

Extraction Method:

Analysis Method:

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Results in bold type; Detection Limits in small print

Detection Limits* =

Soil=ug/kg ppb

*See Individual Limit

Water=ug/L ppb

Sample ID (LAB)

Sample ID#1(CUST)

Sample ID#2CUST)

Matrix Sampled By

Date Sampled Date Received

Date Analyzed

Date Reported

5477

Test pit #2

West end of building Water

Charlie Say 11/30/94

01:10 12/03/94 10:00

1.0

12/07/94 12/07/94

Results Det Linuit*

MTBE < DL Benzene < DL

Toluene < DL 1.0 Ethylbenzene

I DL 1.0 m&p-Xylene < DL 2.0

o-Xylene < DL 1.0 Isopropylbenzene < DL 1.0

n-Propylbenzene < DL 1.0

1,3,5-Trimethylhenzene < DL 1.0

1,2,4-Trimethylbenzene < DL 1.0

sec-Butylbenzene < DL 1.0

Isopropyltoluene < DL 1.0

n-Butylbenzene < DL 1.0 1.0

Naphthalene < DL

* DL # Detection Limit

Page 1

RESULTS WHEN YOU WANT THEM

RPT8021B

EXPRESSLA

PO Box 40 5611 Water Street Middlesex NY 14507

Tel: (716) 554-5347

Tel: (800) THE LABS

Tel: (800) 843-5227

FAX: (716) 554-4114

SPECIALIZING IN ENVIRONMENTAL SOIL TESTS

NEW YORK STATE LABORATORY #11369

LABORATORY REPORT - 8270 Water

Cust

Nature's Way Inc.

Address: 11796 Genesee Street

Alden, NY 14004

Attn:

Russ Savage

Phone FAX

716-937-6527 716-937-6527 PO Number:

2424 Hamburg Tpk.

Project Number:

Project Cust:

Project Site:

Turnpike Auto

Date FAXED:

Lab Director

SAMPLE DEMOGRAPHICS AND TEST RESULTS

Detection Limits ==

Sample ID (LAB)

Watermug/L= prb*

*See Individual Limits

Sample ID #1 (CUST)

Sample ID #2 (CUST)

Matrix

Sampled By

Date Sampled Date Received

Date Analyzed

Date Reported

* ND = Balow Detection Limit

Naphthalene

Accnaphthylene

Acenapthene

Fluorene

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo(a)anthracene

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(123-ed)pyrene

Dihenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(b)fluoranthene

Chrysene

5477

Test pit #2

West end of building

Water

Charlie Say

11/30/94 01:10

12/03/94 10:00 12/06/94 10:37

12/06/94 18:11

Results Det Limit

<DL 5.0

<DL i 5.0

<DL 5.0

<DL 6.0

<DL 5.0

<DL \$.0

5.0

<DL

Results shown are:

EPA 8270 Water

Extraction Method:

EPA 3550 Solvent Extraction

Analysis Method;

EPA 8270 GC MS Ion Trap

2*

5611 Water Street

Middlesex NY 14507

Tel: 1-800-843-5227 FAX 1-716-554-4114

SPECIALIZING IN ENVIRONMENTAL SOILS TES

NY STATE CERTIFIED LAB #113

WORKORDER

CUSTOMER: Natures Way Inc ADDRESS: 11796 Genesee St. CITY: Alden, NY 14004 STATE/ZIP: NY 14004 STATE/ZIP: NY 14009 PHONE: (716) 937-6527 Sane - Savage CONTACT:___

PO NUMBER: PROJECT NO.:	2424 Hamburg Tok
PROJECT CUST.: PROJECT SITE:	Turnpike Auto
SEND RESULTS:	FAX DEXPRIMAIL

PHONE RESULTS: D YES D NO

SAMPLE DEMOGRAPHICS AND TESTS REQUIRED

8020 BTEX + MTD E 8021 + MTBE	8270 (Stors) 625	PULL TOLP TOLP LESS HERBS & PESTS	LIST ANALYSIS REQUIRED
503.1 TPH GASOLINE TPH DIESEL 8240 8260 (Suns) 8260 6 RCRA METALS (DIR SPECIAL INSTRU	ections: 7/	TCLP VOLATHES TCLP SEMI-VOLATILES 8 RCRA METALS (TCLP) HERBICIDES PESTICIDES REACTIVITY COROSIVITY (DIESEL) FLASH POINT (GAS OR OH SUSPECT:	8021 + MTRE
4 4 —	est Pit #1	PTION/LOCATION/MATRIX , Rear of Bldg. (Water) X X
11/30/94 1:10 7	est fit #2	West End of Bldg W	de () X X

CHAIN OF CUSTODY RECORD		
# of SAMPLES # of CONTAINERS SAMPLED BY: SIGNATURE: Charles Say NAME: Charles Say DATED: /2/ / 51 TIME: 12 : 15 PM HOW SENT: EXP MAIL EI HAND CARRY SIGNATURE 2: Charles Say NAME 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 2: Charles Say TIME: 12 : 15 PM HOW SENT 3: Charles Say TIME: 12	SAMPLES RECEIVED BY: L DOLO SAMPLES RECEIVED BY: L DOLO SAMPLE TO: WHOW REC'D.: ME EXP MAIL DHAND CARRY FREIGHT IN: LOGGED IN: 13/5/97 TIME: 155. SAMPLE COND.: SAMPLE TEMP: 50. 9	

White-Lab, Yellow-Customer, Hard-Lab RESULTS WHEN YOU WANT THEM

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

December 8, 1994

Mr. Herbert M. Siegel Siegel, Kelleher and Kahn 426 Franklin Street Buffalo, New York 14202

Dear Mr. Siegel:

Spill Number 9407600 2424 Hamburg Turnpike Lackawanna Erie County

I am in receipt of a letter dated December 7, 1994 submitted by Mr. Russel Savage of Nature's Way, Inc., regarding the above-noted site. Mr. Savage states that I was aware of the excavation of two test pits on November 30, 1994 on site. I was not notified that work was to occur on the site. I specifically requested that I be made aware of the date and time of this activity. Please provide a site map with locations of the test pits on it.

You must cover the soil to prevent rain and snow build up in the contaminated soil pile. This will limit contaminated water runoff from the soil pile. In addition, you must design a collection and treatment system for the runoff water.

As I stated in my recent letter, NYSDEC cannot change the status of a site until all remediation has been completed. Please respond to this letter by December 21, 1994. If you have any questions, please call me at 851-7220.

Sincerely,

Francise Gallego
Francise Gallego

Environmental Engineer I

FG:vm

cc: David A. Siegel, Esquire

pill	Number	9407600
Date _		

SPILL CONTINUATION SHEET

Date		

Comments

12/7/94	John Balcarcych with the City of Lachawa
	called to complain a bout 2424 Henby Th
	site. Le said contracter never got
	requied permits for UST Removal.
	from tity. He said citizes have
	beer complaining about storage
	of soils at site. He wants Myssell
	to require nemoval of soils
	1 827-6425.

New York State Department of Environmental Conservation Spill Response Unit

Region 9

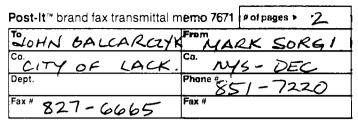
DATE: 12/4	,/94
NU M BER OF PAG	GES BEING SENT <u> </u>
SENT TO:	JOHN BALCARCZYK
	CITY OF LACKAWANNA
FAX NUMBER:	827-6425 6665
FROM:	MARK SORGI NYS-DEC
	•

MESSAGE: LAST LETTER RE: 2424 HAMBURG

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the individual or entity to which it is addressed. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or taking any action in reliance on the contents of this information is strictly prohibited. If you have received this facsimile in error, please immediately notify us by telephone to arrange for return of the original document to us.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 270 MICHIGAN AVENUE, BUFFALO, NEW YORK 14203-2999 (716)851-7220, TELECOPY(716)851-7252 JOHN B. 827-6425



New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999

(716) 851-7220

Mr. Herbert M. Siegel Siegel, Kelleher and Kahn 426 Franklin Street Buffalo, New York 14202

Dear Mr. Siegel:

Spill Number 9407600 2424 Hamburg Turnpike Lackawanna Erie County

On November 25, 1994, I received your bioremediation proposal for the contaminated soils from the above-referenced site from Mr. Russel Savage of Nature's Way, Inc. The following lists items which must be addressed before NYSDEC can approve this system:

- 1. Analytical The holding times for EPA Method 8021 analysis on the stained west side, tank pit bottom and sides and test pit have been exceeded. You must collect another sample in these areas and have them analyzed for EPA Method 8021. Please contact me prior to collection so that I can be present.
- 2. A test pit was dug five to seven feet deep at the former island on site. Was soil excavated to this depth? If not, further remediation may be necessary.
- 3. Another test pit will be dug behind the property. Please provide the date this will occur so that NYSDEC can be present. Please provide a site map to show buildings where excavations occurred and where soil is to be treated.
- 4. The bioremediation proposal submitted is not specific to this site. There is also no schedule for work completion, i.e. when will bioremediation begin for nutrient/bacteria addition, tilling and sampling schedule. Please provide a site-specific proposal along with a schedule.
- 5. The bioremediation soil pile on site has no berming to prevent runoff. An adequate berm must be placed as currently, there is runoff being generated from the contaminated soils discharging to the street and adjacent properties.

Mr. Herbe**rt** M. Siegel December **5**, 1994 Page 2

- 6. Per my September 6, 1994 letter, you must analyze the soil every two months for EPA Methods 8021 and 8270. You must also analyze the soil for TCLP benzene, ignitability, 8021 and 8270 before treatment begins. All analytical data must be submitted to this office.
- 7. Please submit product information and MSDS on these bacterial formulations.
- 8. Please notify NYSDEC when you plan on collecting final samples so that we can be present.
- 9. What soil conditioning agents and pH adjustments were added to this soil and how was this determined?
- 10. You must submit a scrap disposal receipt for the underground storage tanks removed from the site.

NYSDEC is unable to submit a letter changing the status of this site as the remediation has not been completed. Please submit the above-requested information by December 19, 1994. If you should have any questions, please call me at 851-7220.

Sincerely,

Francise Gallego
Francise Gallego

Environmental Engineer I

FG:vm

cc: David Siegel, Esquire

300 main St. Bylo-, Ny 14202

FAX

New York State Department of Environmental Conservation Spill Response Unit

Region 9

DATE: 12/2/	1
NUMBER OF PAG	GES BEING SENT (INCLUDING THIS ONE)
SENT TO:	Margaret Prevost
	ELAP approval Program
FAX NUMBER:	(318) (3.565
FROM:	Francise Galleso - NYSOEC
Att	tacked is a laboratory report.
,	i a come
1a	ISDA METROS OUT. TOUR
me	with any questions
	UU

CONFIDENTIALITY NOTICE

This facelimite transmission is intended only for the use of the individual or entity to which it is addressed. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or taking any action in reliance on the contents of this information is strictly prohibited. If you have received this facelimite in error, please immediately notify us by telephone to arrange for return of the original document to us.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 270 MICHIGAN AVENUE, BUFFALO, NEW YORK 14203-2999 (716)851-7220, TELECOPY(716)851-7252

-	Spill	Number	9407600
			7- 4- 7-3

Date

SPILL CONTINUATION SHEET

Date

Comments

11/22/94	Fly site visit. Part of the contaminated soil
, , ,	placed in him hedi Maint of sail set
	placed in bio beds. Majority of soil not
	berning to prevent ruroff.
	to thing to present rungy.

9407600 11/22/94 Contamin soil

9407600 11/22/94 Biopile

9407600 11/22/94 Biopile

9407600 11/22/94 Biopile

Spill Number <u>9407600</u> Date ____

SPILL CONTINUATION SHEET

Date	Comments
11/21/94	Fg reviewed submitted package for
	2424 Hamburg Turnpine. The dates of
	analysis were not written on the
	data report. according to Densis.
	Cichomobi, with Logies, the Lolsling
	times many have been exceeded.
	He is to cleck on this specifically
	and get back to me.
 	A test pit was dug 5'-7' at the former
 	sumpisland - It is not clear of
	The execution was that deep.
	- Will be excavating another text pit
	for sampling behind property on 11/22/94.
	- Generic Scores proposal submitted
	not specific, so schedule for site

Siegel, Kelleher & Kahn

Attorneys and Counselors at Law

426 Franklin Street · Buffalo, New York 14202 (716) 881-5800 + FAX: (716) 885-3369

Toll Free: 1-(800)-888-5288

HERRIST M. SINGEL J. MICHAEL KELLEHER MARK G. HIRSCHORN DENNIS ALAN KARN BRIAN R WEISR STEVEN G. WISEMAN TIMOTHY G. O'CONNILL KENNETH I. FEINMAN ROSS T. RUNFOLA

ROBERT D. STEINHAUS

November 17, 1994

RECEIVED

STEPHEN R. SILVERSTEIN Angelo J. Morinello Russel J. Savage JOAN WARREN

President KENNETH A. OLENA

NATURE'S WAY INC. BOYD L. EARL JIJFREY S. KRAJEWSKI 11796 Genesee Street Alden, NY 14004 PHISSA M. HANAS

NOV2 1 1994 N.Y.S. DEPT. OF ENVIRONMENTAL CONSERVATION REGION 9

1. KEVIN LAUMER THOMAS CALANDRA

JAMES D. BILLE DAVID PAUL LOSE

WILLIAM N. NAPLES

Dear Russ: LEROI C. JOHNSON EMIL J. CAPULLI.

R. THOMAS BURGASSER, P.C. RICHARD F. DALY " Nin W Sugar ROBERT RIORDAN STEPHEN GASSMAN BARRY Proper

*** FLORENCE M. FASS Or Counsil.

ALSO ADMITTED IN PA. telixes. workplan and schedule.

ADMITTED IN OHIO " ALSO ADMITTED IN VII.

Spill Number 9407600 Re: 2424 Hamburg Turnpike

After speaking to you this morning in regard to your removal of the soil, I had a telephone call from Ms. Francine Gallego of the NYS Department of Environmental Conservation wherein she informed me she had not received the analytical data from the site, the bioremedial proposal or

She informed me she had spoken to you two days ago and that the soil was going to be removed that day. occurred.

I would appreciate your immediate cooperation with Ms. Gallego in this matter. We want an expedient resolution to this situation.

Very truly yours,

SIEGEL, KELLEHER & KAHN

Herbert M. Siegel

HMS/jag

Francine Gallego, NYS DEC David A. Siegel, Esq.

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

November 17, 1994

Mr. Herbert Siegel 426 Franklin Street Buffalo, New York 14202

Dear Mr. Siegel:

Spill Number 9407600 2424 Hamburg Turnpike Lackawanna Erie County

You have exceeded the 60-day limit for on-site storage of petroleum-contaminated soils at this site. Soils were generated on September 2, 1994. Therefore, you must dispose of the soils.

Please arrange for disposal as soon as possible. You must submit all analytical data generated to date as further remediation may be necessary. Please submit your disposal receipt for the soil by December 2, 1994.

If you have any questions, please contact me at 851-7220.

Sincerely,

Francine Gallego

Environmental Engineer I

FG:vm

11796 Genesee St. Alden, N.Y. 14004 (716) 937-6527 (716) 937-6140

November 14, 1994

PG _

1107 2 5 1994

Ms. Francine Gallego NYSDEC, Region 9 270 Michigan Ave. Buffalo, New York 14203-2999

9407600

MYSDFC-REG. 0

Re: ESTATE OF SIEGEL PROPERTY

2424 HAMBURG TURNPIKE (RT 5)

LACKAWANNA, N.Y.

Submission of Excavation and Contaminated Soil Analytical

Testing Results;

Submission of Associated Site Risk Assessment;

Request for Inactive Site Designation;

Dear Francine,

As you know, we recently (September 6 - 22, 1994) removed three 10K U.S.T.'s and associated piping, island, and contaminated soils at the above Site. Enclosed please find analytical test results for the bottom/sides of the tank excavation at the above Site after the removal of all accessible contaminated soils. As is shown by the attached analytical data, and based on all presently available data and observations, the Site meets current NYSDEC cleanliness quidelines with some minor exceptions as detailed below. The following is a description of Work Performed, Site characteristics, Conclusions, and Risk Assessment, based on these conclusions for the subject Site:

As is shown by the attached analytical (Attachment #1), with the exception of a stained area of soil beneath the building located On-Site, contaminant levels in the tank excavation are present NYSDEC quidelines, indicating that accessible soils in the tank excavation area of concern were removed (approx. 475 cubic yards total).

Also, as you are aware, and as per your request, we removed the former dispensing island at the Site, and excavated a test pit directly beneath this area, and obtained a soil sample to confirm whether contamination above DEC guidelines existed in this potential area of concern. Although field observations (dark soil/slag appearance and very slight odor) indicated that this area might be contaminated, analytical results (Attachment #1) show that contaminant levels in these soils were below DEC quideline values.

11796 **Ge**nesee St. Alden, **N**.Y. 14004

(716) 937-6527 (716) 937-6140

(2)

November 14, 1994

In addition, as per your request since not all contaminated soils were accessible for removal (a stained area remained beneath the Site building), we excavated two other test pits:

one just beyond the fence at the rear (south side) of the tank excavation area; and

one at the far (southwest corner) end of the Site building;

to demonstrate that the residual contamination known to be present beneath the Site building did not extend in other directions beyond the building, and was not of significant impact to soils/groundwater outside the building footprint. We obtained a water sample (shallow groundwater-probable trapped surficial drainage water was encountered in both test pits at approx. 8.0' BGS) from each test pit to confirm whether contamination above DEC quidelines existed in these areas. observations (appearance, odor, sheen) indication of the presence of contamination. Unfortunately, it was only recently discovered that analytical results for these two samples were not available, due to miscommunication regarding sample identification, resulting in the holding times (1 week) for these samples to be exceeded. In order to complete analytical confirmation of Site conditions at these two locations, we will re-excavate and resample these two test pits on Nov. 22, 1994, and we will forward results of analysis as soon as they become available (1 week - Expresslabs).

Nature's Way Inc. has been contracted to bioremediate the contaminated soil, and setup for treatment will begin the week of Nov. 14 - 18, 1994. The soil will undergo active above-ground biological treatment as per standard operating procedure for bioremedaition of petroleum contaminated soils (copy of SOP attached - Attachment #2), weather permitting, until such time that NYSDEC criteria for permanent retention/reuse of the soil as fill on-site are met, with interim sampling during treatment if/as required.

11796 **Ge**nesee St. Alden, **N**.Y. 14004

(716) 937-6527 (716) 937-6140

(3)

November 14, 1994

We will sample the soil under treatment as per standard operating procedures for TCLP Benzene, ignitability, 8021, and 8270, and results will be forwarded as soon as they are available.

Also enclosed for your records are analytical results for post-carbon filtration/aeration treated contaminated water previously contained in the tank excavation and placed in above ground holding tanks until treatment and analysis for discharge was completed (Attachment #3 - please note that these results were submitted previously prior to surface discharge of the subject treated water - copy of letter attached). These results show that NYSDEC groundwater limits were met prior to surface discharge of the treated water.

While contaminant levels slightly above NYSDEC guidlines were found to remain in an area of soils beneath the Site Building, it is our opinion that it is unlikely that the contaminated soils present in that area are impacting soils/groundwater areas outside the building footprint, and constitute no significant present or potential impact to the Environment.

It was determined that <u>no</u> utilities or likely sensitive receptors are present in/around the residually affected area (beneath building) of the Site, and that groundwater is not being used as a source of potable water in the area in general. This would make the presence of residual soils contamination in this area unlikely to pose a significant threat of impact to any sensitive receptors, or the Environment in general.

Based on these findings, and assuming that analytical results from the two test pits confirm that these areas meet DEC guidelines, it is our opinion and conclusion that:

The small area of isolated low level residual soils contamination present beneath the Site building poses no significant threat of adverse impact to the overall quality of the environment or potential receptors.

11796 **Ge**nesee St. Alden, **N.**Y. 14004

(716) 937-6527 (716) 937-6140

(4)

November 14, 1994

Based on the above data and conclusions, and upon submission of the above-referenced confirmatory test pit analyses, please respond with a letter (address above - copy NWI) assigning a formal designation of "Inactive" to this spill Site, and stating that no further work (other than completion of soil decontamination) will be required at this time. Please call if you should have any questions or comments.

Sincere1y

Russel J. Savage I

Nature's Way Inc

President

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #1
EXCAVATION AND DISPENSING ISLAND TEST PIT ANALYTICAL RESULTS

NEW YORK STATE APPROVED **ENVIRONMENTAL LABORATORY**

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 654-6350 FAX (716) 654-6354

CLIENT : NATURE'S WAY

11796 GENESEE STREET

ALDEN, N.Y. 14004

DATE REC'D.

: 09/22/94

LABORATORY NO.: 94094867

REPORT DATE

: 10/06/94

ATTN : RUSS SAVAGE

RE: 2424 HAMBURG TURNPIKE

SAMPLE INFORMATION

SAMPLE DATE

: 09/16-09/20

LOCATION

:SEE REFERENCE

SAMPLE TIME NUMBER OF SAMPLES: 3

: 3:15-4:00 PM

TYPE OF SAMPLE: SOILS SAMPLER

:CLIENT

S.T.A.R.S. 8021 - DIRECT

PARAMETER	STAINED AREA W. SIDE	T. PIT BOTTOM /SIDES	TEST PIT	UNITS
BENZENE	17	<1.0	<1.0	ug/kg
ETHYLBEN ZE NE	51	<1.0	<1.0	ug/kg
TOLUENE	21	<1.0	<1.0	ug/kg
m+p-XYLENES	180	<2.0	<2.0	u g/kg
o-XYLENE	8.0	<1.0	<1.0	u g/kg
I SOPROPY LBENZENE	6.2	2.9	<1.0	ug/kg
n-PROPYLBENZENE	10	<1.0	<1.0	u g/kg
p-ISOPROPYL TOLUEN	E <1.0	<1.0	<1.0	ug/kg
1,2,4-TRIMETHYL BENZENE	160	<1.0	27	u g/kg
1,3,5-TRIMETHYL BENZENE	64	<1.0	<1.0	ug/kg
n-BUTYLB EN ZENE	55	<1.0	4.3	u g/kg
sec-BUTYLBENZENE	4.2	<1.0	<1.0	u g/kg
NAPHTHAL EN E	56	<1.0	20	ug/kg
METHYL t-BUTYL ETHER (MTBE)	<5.0	<5.0	<5.0	u g/kg

Performed by EPA Method 8021 Volatiles per NYSDEC S.T.A.R.S. Program Analyte List Direct on samples on 09/23 and 10/23/94.

> LAFFIN LABORATORY DIRECTOR

NYSDOH LAB ID # 10390

acq

TEL. **(**716) 65**4-6350** FAX **(**716) 654-6**354**

NEW YORK STATE

APPROVED

ENVIRONMENTAL LABORATORY

PAGE 2 OF 2

POLYNUCLEAR AROMATIC HYDROCARBONS

NATURE'S WAY / LAB #940948667

	AINED AREA W. SIDE	T. PIT BOTTOM /SIDES	TEST PIT	METHOD BLANK
NAPHTHAL EN E	<10	<10	<10	<10
ACENAPHT HY LENE	<10	<10	<10	<10
ACENAPHT HE NE	<10	<10	<10	<10
FLUORENE	<10	<10	<10	<10
PHENANTHRENE	<10	<10	<10	<10
ANTHRACENE	<10	<10	<10	<10
FLUORANT HE NE	<10	<10	<10	<10
PYRENE	<10	<10	<10	<10
CHRYSENE	<10	<10	<10	<10
BENZO(b) FLUORANTHEN	E <10	<10	<10	<10
BENZO(k) FLUORANTHEN	E <10	<10	<10	<10
BENZO(a) PYRENE	<10	<10	<10	<10
DIBENZO(a,h) ANTHRACE NÉ	<10	<10	<10	<10
INDENO(1,2,3-cd) PYRENE	<10	<10	<10	<10
BENZO(g,h,i) PERYLEN	E <10	<10	<10	<10
BENZO(a) ANTHRACENE	<10	<10	<10	<10
SURROGATE RECOVERIES NITROBENZENE-d5 2FLUOROBIPHENYL TERPHENYL	61 56 75	51 46 54	61 51 69	7 4 6 3 6 8

Analysis performed by EPA Method 8270 Base-Neutrals (PNA'S) per NYSDEC S.T.A.R.S. program memo #1 listing on TCLP Extractions on 09/28/94.

Results expressed in ug/l.

NYSDOH LAB ID # 10390 acq

LABORATORY DIRECTOR

CHAIN OF CUSTODY RECORD

Name: Natures Way Inc.
Maixing Address: 11796 Genesee St.
Alden, NY 14004

ARE PROJECT Name: 2424 HAMBURG TPK LABORATORY NO: 4867 LOCATION SAMPLE IDENTIFICATION REMARK CONTAINERS Stained Area Under Bldg 9/16/84 3:15 pr west side gest T. Pit Bottom Sides Corp. 9/16/94 05l SAMPLED BY: SIGN RELINQUISHED (BY: SIGN SIGN DATE TIME DATE TIME RECEIVED SIGN SIGN BY: SIGN DATE TIME DATE TIME METHOD OF SHIPMENT: RECEIVED FOR LABORATORY BY:

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #2
BIOREMEDIATION - DESCRIPTION
STANDARD OPERATING PROCEDURE

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

General Overview Of Bioremediation Process Used By NWI

Bioremediation can be considered for practical purposes to be greatly enhanced natural biodegradation. Biodegradation is the metabolic breakdown of hydrocarbons by numerous types of organisms resulting in end products such as carbon dioxide, water, and organic matter (cell protoplasm, etc.). These metabolic processes are often referred to as mineralization. The bioremediation processes employed by NWI use commercial formulations of specially selected and adapted naturally occurring bacteria, and create an environment which is favorable for growth, reproduction, and utilization. This is accomplished hydrocarbon through supplementation and management of various factors including bacterial population, moisture content, oxygen availability, nutrient loading, and pH. A bacterial suspension is applied to supplement indigenous soil bacteria. Soil to be remediated must be aerated (oxygenated) by one of several means to support degradation. Essential nutrients, in the form of commercial agricultural type fertilizers, must be supplied in the correct ratios to support degradation. Soil conditioning agents such as (oxygenated) by one of several biodegradable surfactants are also applied as needed to maintain contaminant substrate availability and to act as a cosubstrate and volatilization inhibitor.

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

General Description Of Above Ground Bioremediation Methodology

The following is a brief summary of events and actions to take place during the decontamination procedure.

Soil Preparation For Treatment

The contaminated soil is placed on a plastic liner having it's perimeter supported by hay bales or clean soil to form a burm, to prevent runoff. The contaminated soil is generally spread over a large enough area to provide a maximum depth of 2 feet. Soil conditioning agents and nutrient supplements, in the form of commercial agricultural type fertilizers, necessary pH adjustments, and biodegradable surfactants, will be applied as the soil is placed in the treatment area, or shortly thereafter.

Soil Treatment

Large quantities of an ubiquitous hydrocarbon utilizing bacteria, Bacillus subtilus, will be produced and applied in a liquid suspension to the conditioned soil within on site, manufacturer's recommended guidelines. The bacteria used are a proven, safe, commercial formulation similar to that used in wastewater treatment for over 20 years. Product information and MSDS sheets on these bacterial formulations is available upon request and confidentiality agreement completion. The bacteria will be applied to the soil using a high volume, high pressure pumping system. Bacterial/nutrient application frequency will initially be at least weekly and then as dictated by the results of soil NWI. Proper and necessary oxygenation of contaminated soil to support degradation will be performed as required, usually one to two times per month with standard agricultural type tilling equipment or construction equipment. In addition, we will monitor soil conditions, bacterial populations and contamination levels through soil sample analysis throughout the treatment period to monitor performance. All data will be made available to the NYSDEC for a particular site upon request.

11796 **Ge**nesee St. Alden, **N.**Y. 14004

(716) 937-6527 (716) 937-6140

When NWI has determined by field observsations/instrumentation that cleanliness criteria probably have been achieved, we will perform final sampling/analysis, and notify the appropriate NYSDEC representative of results, and will submit required analytical results to confirm completion of decontamination. Upon confirmation of attainment of cleanup criteria, we will consider site operations complete and provide a written report, analytical data, and request for closure of the project to the NYSDEC within 30 days of completion. If necessary, provisions can be made for a written interim report(s) to be issued.

11796 **Ge**nesee St. Alden, **N**.Y. 14004

(716) 937-6527 (716) 937-6140

ATTACHMENT #3
TREATED WATER PRE-DISCHARGE ANALYTICAL

11796 **Ge**nesee St. Alden, **N.**Y. 14004

(716) 937-6527 (716) 937-6140

September 21, 1994

Ms. Francine Gallego/Mr. Sal Calandra NYSDEC Region 9 270 Michigan Ave. Buffalo, New York 14203-2999

Re: Herb Siegel Property

2424 Hamburg Tpk. Lackawanna, N.Y.

Carbon Filtered H2O in 6000 gal Holding Tank - Request for

Permission to Release/Discharge

Dear Francine/Sal,

I am forwarding analyses of carbon filtered water contained in the 6000 gal. cap. Holding Tank at the above site, which show the water to be clean/free of petroleum components. We would like to discharge this filtered water to surface immediately, so that we can continue with Site work, so I am faxing this information, and will call to confirm your agreement with the proposed discharge.

Sincerely,

Russel J. Savage, President

Nature's Way Inc.

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. **(**716) 65**4-6350** FAX **(**716) 654-6**354**

NEW YORK STATE APPROVED **ENVIRONMENTAL LABORATORY**

CLIENT : NATURE'S WAY, INC

11796 GENESEE STREET

ALDEN, N.Y. 14004

DATE REC'D. : 09/16/94

LABORATORY NO.: 94094705

REPORT DATE : 09/20/94

ATTN : RUSS SAVAGE

RE: 2424 HAMBURG TPK

SAMPLE INFORMATION

SAMPLE DATE

: 09/14/94

LOCATION

:HOLDING TANK

SAMPLE TIME

: 4:15 PM

TYPE OF SAMPLE:WASTEWATER

NUMBER OF SAMPLES : 1

SAMPLER

:CLIENT

PURGEABLE AROMATICS

PARAMETER	FILTERED WATER IN TANK	UNITS	
BENZENE	<1.0	ug/l	,
TOLUENE	<1.0	ug/l	
CHLOROBENZENE	<1.0	ug/l	
ETHYLBENZ EN E	<1.0	ug/l	
m+p-XYLEN ES	<2.0	ug/l	
o-XYLENE	<1.0	ug/l	
o-DICHLOR OB ENZENE	<1.0	ug/l	
m-DICHLOROBENZENE	<1.0	ug/l	
p-DICHLOROBENZENE	<1.0	ug/l	
METHYL t-BUTYL ETHER (MT	BE) <5.0	ug/l	
a,a,a-TRIFLUOROTOLUENE:			

INTERNAL STANDARD

% RECOVERY

100

Performed by EPA Method 602 Purgeable Aromatics on 09/16/94.

NYSDOH LAB ID # 10390

acq

LABORATORY DIRECTOR

TEL. **(**716) 65**4-6350** FAX **(**716) 654-6**354**

NEW YORK STATE

APPROVED

ENVIRONMENTAL LABORATORY

NATURE'S WAY / LAB #94094705

PAGE 2 OF 2

POLYNUCLEAR AROMATIC HYDROCARBONS

PARAMETER	FILTERED WATER IN TANK	UNITS
NAPHTHALE NE	<10	ug/l
ACENAPHTHYLENE	<10	ug/l
ACENAPHTH EN E	<10	ug/l
FLUORENE	<10	ug/l
PHENANTHRENE	<10	ug/l
ANTHRACEN E	<10	ug/l
FLUORANTHENE	<10	ug/l
PYRENE	<10	ug/l
CHRYSENE	<10	ug/l
BENZO(b) FLUORANTHENE	<10	ug/l
BENZO(k) FLUORANTHENE	<10	ug/l
BENZO(a)P YR ENE	<10	ug/l
DIBENZO(a,h) ANTHRACENE	<10	ug/l
INDENO(1,2,3-cd) PYRENE	<10	ug/1
BENZO(g,h,i) PERYLENE	<10	ug/l
BENZO(a) ANTHRACENE	<10	ug/l
SURROGATE RECOVERIES :		
NITROBE NZ ENE-d5	7 2	%
2FLUOROBIPHENYL	62	%
TERPHENYL	58	Ą

Analysis performed by EPA Method 8270 Base-Neutrals (PNA'S) on 09/16/94.

NYSDOH LAB ID # 10390 acq

ALAN J. LAFFIN LABORATORY DIRECTOR

LOZ!ER LABORATORIES

CHAIN OF CUSTODY RECORD

Client Name: Nature's Way in.

Mailing Address: 11796 Generel St

Alden, NY 14004

LABORATORY NO: 4705 Project Name: 2424 Hamburg TpK SAMPLE IDENTIFICATION ANALYSIS DATE LOCATION TIME NUMBER REMARK CONTAINERS 9/14/94 4:15 PM HoldingTan 2-VUA 124 HR 1-1.0 litte **SAMPLED BY:** RELINQUISHED BY: SIGN SIGN SIGN DATE TIME DATE TIME DATE TIME **RECEIVED** 3 SIGN SIGN BY: SIGN SIGN DATE TIME DATE TIME DATE TIME DATE TIME **METHOD OF SHIPMENT:** RECEIVED FOR LABORATORY BY:

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 TEL. (716) 65**4-6350** FAX (716) 654-6354

CLIENT : NATURE'S WAY, INC

11796 GENESEE STREET

ALDEN, N.Y. 14004

DATE REC'D. : 09/12/94

LABORATORY NO.: 94094607

REPORT DATE

: 09/15/94

ATTN : RUSS SAVAGE

RE: 2424 HAMBURG TPK

SAMPLE INFORMATION

SAMPLE DA**TE**

: 09/09/94

LOCATION

:10K HOLDING TANK

SAMPLE TIME : 3:00 PM

NUMBER OF SAMPLES : 1

TYPE OF SAMPLE:WASTEWATER

SAMPLER

:CLIENT

PURGEABLE AROMATICS

PARAMETER	FILTERED WATER IN TANK	UNITS	
BENZENE	<1.0	ug/l	
TOLUENE	<1.0	ug/l	
CHLOROBEN ZE NE	<1.0	ug/l	
ETHYLBENZ EN E	<1.0	ug/l	
m+p-XYLEN ES	<2.0	ug/l	
o-XYLENE	<1.0	ug/l	
o-DICHLOR OB ENZENE	<1.0	ug/l	
m-DICHLOR OB ENZENE	<1.0	ug/l	
p-DICHLOR OB ENZENE	<1.0	ug/l	
METHYL t-BUTYL ETHER (MT	BE) <5.0	ug/l	
a,a,a-TRI FL UOROTOL UENE: INTERNAL ST ANDARD			

Performed by EPA Method 602 Purgeable Aromatics on 09/13/94.

90

NYSDOH LAB ID # 10390 acq

% RECOVERY

LABORATORY DIRECTOR

શ્ર

FAX (716) 654-6354

NEW YORK STATE

APPROVED

ENVIRONMENTAL LABORATORY

NATURE'S WAY / LAB #94094607

PAGE 2 OF 2

POLYNUCLEAR AROMATIC HYDROCARBONS

PARAMETER	FILTERED WATER IN TANK	METHOD BLANK	
NAPHTHALE NE	<10	<10	
ACENAPHTH YL ENE	<10	<10	
ACENAPHTH EN E	<10	<10	
FLUORENE	<10	<10	
PHENANTHRENE	<10	<10	
ANTHRACEN E	<10	<10	
FLUORANTH EN E	<10	<10	
PYRENE	<10	<10	
CHRYSENE	<10	<10	
BENZO(b) FLUORANTHENE	<10	<10	
BENZO(k) FLUORANTHENE	<10	<10	
BENZO(a)PYRENE	<10	<10	
DIBENZO(a,h) ANTHRACENE	<10	<10	
INDENO(1,2,3-cd) PYRENE	<10	<10	
BENZO(g,h,i) PERYLENE	<10	<10	
BENZO(a) ANTHRACENE	<10	<10	
SURROGATE RECOVERIES :			
NITROBENZENE-d5	46 %	57 %	
2FLUOROBIPHENYL	46 %	5 7 %	
TERPHEN YL	47 %	7 0 %	

Analysis performed by EPA Method 8270 Base-Neutrals (PNA'S) on 09/13/94.

Results expressed in ug/1 unless otherwise indicated.

NYSDOH LAB ID # 10390 acq

ALAN Ø. KAFFIN LABORATORY DIRECTOR

LOZIER LABORATORIES

CHAIN OF CUSTODY RECORD

Client Name: MATONA	<u> </u>	WA	(/ L.
failing Address:			

LABORATORY NO:	4607			.	A Proj	ect Name: 2	2424 HAMBURGTH
SAMPLE IDENTI		TIME LOCATION	SAMP TYPE			ANALYSIS NL O CONTAIN	REMINIA
Filtened HID in	OK Holding MAPA 32	Opm LOK Holding TANK	9 Res 2	X X		200A 11.0l	1/D
SAMPLED BY:		The !		<u> </u>			
RECEIVED 1 BY:	SIGN TIME	2 SIGN DATE TIME 2 SIGN DATE TIME	-	3 SIGN DATE 3 SIGN DATE	TIME	4 \$i	GN TIME
METHOD OF SHIPME	NT:	SIGN		RECEIVED	FOR LABOR	ATORY BY:	1/2/24 300 m

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

October 3, 1994

Mr. Herbe**rt** M. Siegel Siegel, Ke**lle**her & Kahn 426 Frankl**in** Street Buffalo, N**ew** York 14202

Dear Mr. Siegel:

Spill #9407600 2424 Hamburg Turnpike Lackawanna Erie County

Per our recent telephone conversation, you have been considering bioremediating the contaminated soils from the 2424 Hamburg Turnpike Lackawanna site. Please review my September 6, 1994 letter to you requesting sampling, a contract and a workplan if bioremediation is chosen. In addition, you must provide a copy of your lease agreement with the adjacent property owner regarding treatment of contaminated soils to this Office.

Per 6NYCRR Part 360-1.7(b)(4), on-site storage of excavated petroleum contaminated soils is limited to 60 days. The work plan submitted must include the items noted on the attached corrective action plan checklist. If the workplan is not submitted and treatment does not begin within 60 days, then you must dispose of the soil.

Please respond to this letter by October 14, 1994 with your workplan and schedule. If you have any questions, please contact me at 716/851-7220.

Sincerely,

Francine Gallego
Francine Gallego

Environmental Engineer I

FG:vam

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

FAX LEAD SHEET

DATE: 9/21/94

	SENT TO: Francine Gallego / Sal Calandra	
	AT FAX NO.: 851-7262	
	NO. OF PAGES (INCLUDE LEAD SHEET)	
	FROM (SENT BY): Greg Webec	
(ess a ge		

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

September 21, 1994

Ms. Francine Gallego/Mr. Sal Calandra NYBDEC Region 9 270 Michigan Ave. Buffalo, New York 14203-2999

Herb Siegel Property 2424 Hamburg Tpk. Lackawanna, N.Y.

Carbon Filtered H2O in 6000 gal Holding Tank - Request for

Permission to Release/Discharge

Dear Francine/Sal,

I am forwarding analyses of carbon filtered water contained in the 6000 gal. cap. Holding Tank at the above site, which show the water to be clean/free of petroleum components. We would like to discharge this filtered water to surface immediately, so that we can continue with Site work, so I am faxing this information, and will call to confirm your agreement with the proposed discharge.

Sincerely,

Russel J.)Savage, President

Nature's Way Inc.

BEP 21 '94 28119 LOZIER LABS

P. 1

LOZIER LABORATORIES, INC.

ROCHESTER, NEW YORK 14609 TEL. (718) 654-8360 FAX (716) 054 6364

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATOR

CLIENT . NATURE'S WAY

11796 GENESEE STREET

ALDEN, N.Y. 14004

ATTN : RUSS SAVAGE

DATE REC'D. : 9/10/94 LABORATORY NO. : 9/69 4765 REPORT DATE : 9/2-/44

RE: 2424 Handung TPK

SAMPLE INFORMATION

SAMPLE DATE

SAMPLE TIME

NUMBER OF SAMPLES

9/14/04 415/1

LOCATION TYPE OF SAMPLE :

SAMPLER

LABORATORY REPORT

STRICTLY ORGANICS

OHA.

MYSDOH LAB ID # 10390

ALAN J. LAPFIN LABORATORY DIRECTOR 602

CLIENT:

Nature's Way, Inc. 11790 Geneses St. Alden, New York 14004

Laboratory No.:	94094705
Data Reputypeli	9/16/84
Banare Bees	9-20-00

	Sample Information											
Sample Date: Sample Time: No. of Samples: Location:			Type of Sample Sampler Date Analysed: Analyse:	9/16/9/9W								
Parameter .	Unita	Filtered wester in Halding Tonk			!							
Senzene	9/1	<1.0										
Toluene					:							
Chlorobenzana					· · · · · · · · · · · · · · · · · · ·							
Ethylhenians		-			,							
Togal Tylenes	m+p	<2.0 <1.0			New 10 1 20 20 1							
o-Dishlorobanzane												
m-Dishlerobennene												
p-Dishlorobenzena		V			· · · · · · · · · · · · · · · · · · ·							
MTBE	-	<5.0										
a,e,a -												
Internal Standard I		100										
,			Marka ta Din	GABLE ARAMATICS	,							

Date

			OTAGE THE		A.		t .	matrix.	Extracted	Analyzed
LIENT:			STARS TO	D-OCIALIA		Sample Ide	endfication			
	Nature's	Way		44 11 2	rob	5:44	for inthis	، دو، دن	9/10	9/16
~			Ke 292	y Hants	1100	Th area		1		<u> </u>
poistory !	Vo. 9409470	5								<u> </u>
ate Receiv	et. 9/14/99						1			
eport Date				<u> </u>						1
ass Semple					ļ	-				
ime Sampl										
Sempler:	chest			ļ	Cancento	cion ug/L				
				ļ	8	ic	D	E	<	
CAS NO.	COMPOUND		DL	A _ 10	 			1		
1-20-3	Naphthalene		*10*		 					
206-96-8	Acenophthylene	1	*10*	210			-			
93-32-8	Acenephthene	<u> </u>	*10*	210						_
36-73-7	Fluorene	<u> </u>	*10*	410	+					
85-01-8	Phonerchrom		*10*	4.10						-
120-12-7	Anthrocone		*10*	10	┥───	-				
208-44-0	Fluorenthese	<u> </u>	*10*	110	· 	-				
129-00-0	Ругало		*10*	210		- 	-			_
218-01-09	Chrysene		*10*	210	+					
205-99-2	Benzo(b) Supranti		•10•	1-216		-				
207-08-09		19/10	*10*	1/6	- 					
50-32-8	Benzo(sipyrene		-10-	1/6	 -					
53-70-3	Uibenzola, hlantif		•10•	210	- 	_				
193-39-5	ladenoi1,2,3-cd		•10•	1 LIO				1		
191-24-2	Benzolg, h. Beary		*10*	1/8						
56.55.3	Serzolal anthrac		•10•	171	4					
	Volume Extractor				1			I		
	Final Volume (m)	4)		100		1				
	Dilution Factor:		- 		-					
SUFIR. RE			OC .	1 75				E		
	Mitrobenzene d5		(38-114	62		-				
	2Risocobiphenyl		(43-116)	1-44	+	_				
	Terphenyl	<u> </u>	133-141)	58		,L	. 1		1	1

analysis PENFOLMED BY EPA 8576 BRICHWINDS (PNAS)

LOZIER · LABORATORIES

CHAIN OF CUSTODY RECORD

Client Name: Notures Way In In Mailing Address: 1176 Genérel 5 % X

LABORATORY HO: 4705					. L .	Project Names 2424 Hambur To						
SAMPLE IDENTIFICA	TTION BAT	Z / Tank	LOCATION	SM	S.				, , , , , , , , , , , , , , , , , , ,	RAMBER OF MERS	//,	HARK
Fiftered H ₂ O in Holding Tonk	9/14/94	4:15 Am	Halding For	E Gal					2-V91		eust	
		R	15.11									
SAMPLED BY:	die Dony		2		3	5 01	1		4			
BY: BATE RECEIVED 1 BY: DATE			SIGN TIME 2 SIGN DATE TIME		3	DATE DATE		TALE	4	DATE SIGN DATE	TIME	
METHOD OF SHIPMENT			ladder		REC		FOR		ATORYBY	9/11/9	19 915 18ME	

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

FAX LEAD SHEET # 9467660

ATE: 9/15/94 F 6

	10 101 00 11
	SENT TO: SAL CALANDRA Anyone left in SPILLS
	AT FAX NO.: 851-7252
	NO. OF PAGES (INCLUDE LEAD SHEET)
	FROM (SENT BY): Sura
mess age	Deale Call to confirm OK
	AS SOON AS POSSIBLE They have
	- Guss

NATURE'S WAY INC. ENVIRONMENTAL REMEDIATION

11796 Genesee St. Alden, N.Y. 14004

(716) 937-6527 (716) 937-6140

September 15, 1994

Ms. Francine Gallego/Mr. Sai Calandra NYSDEC Region 9 270 Michigan Ave. Buffalo, New York 14203-2999

Re: Herb Siegel Property

2424 Hamburg Tpk. Lackawanna, N.Y.

Carbon Filtered H2O in 10000 gal UST - Request for Permission

to Release/Discharge

Dear Francine/Sal,

I am forwarding analyses of carbon filtered water contained in the 10000 gal. cap. UST at the above site, which show the water to be clean/free of petroleum components. We would like to discharge this filtered water to surface immediately, so that we can continue with Site work, so I am faxing this information, and will call to confirm your agreement with the proposed discharge.

Sincerely,

Russel J. Savage, President

Nature's Way Ind.

Sep 16,94 8:57 P.03

> NEW YORK STATE APPROVED.

ENVIRONMENTAL LABORANCE

55% (718) 884-8354

CLIENT: NATURE 8 WAY 11796 GENESEE STREET

ALDEN, N.Y. 14004

REPORT DAY

ATTH : RUSS SAVAGE

SAMPLE INFORMATION

SAMPLE DATE SAMPLE TIME

NUMBER OF BAMPLES

LOCATION TYPE OF SAMPLE BAHPLER

10 H. Halding Tank W.W.

aliant

LABORATORY REPORT

8274 - PNA'0

Russi. Pu 9/13/84

to ha

STRICTLY ORGANICS

NYSDOH LAB ID # 10390 pos

ALAN J. LAFFIN LABORATORY DIRECTOR

8:58 P.04

Nature's Way, Inc. 11765 Gendese St. Alden, New York 14004

TEL NO.716-937-6527 Sep 16,94 8: Rapore Dave : . λ

· · · · · · · · · · · · · · · · · · ·		Sample I	nforwation			
Sample Dage: Sample Time: No. of Samples: Location: 10 K	3 os p Holof	n Tank	Type of Sampler Data Act	Backing	Lista Curt Listar	
Parameter	<i>HOMburg</i> Untea	Fifteered wester in Tank		14 (14 (14 (14 (14 (14 (14 (14 (14 (14 (V	
Benzena	29 //	11.0				
Toluene			1			
Chlorobenzene						
Ithylbensens				B	23.7	
g- Total Xylenes	mep	<2.0 <1.0	·			
o-Dichlorobenzene						
m-Dichlerobanzane				Ait		
p-Dichlorobenzena		V		3). 1268		
MIBE	1	<5.0				
	RU	SM-	24 MA	TAT		
		SM- Dus	9/13/44			
Internal Standard	luane X Recovery	90				
eceptance Range: 60	->132		.,	# 15 miles	•	

CLENT:	Nations way Inc	- STARS	· · · · · · · · · · · · · · · · · · ·				7	Date	Date
					Sample id	entification	matrix	Extracted	Analyzed
Laborasor	100 200 200					water is	with	9/13/90	7/13/9
Date Rece			Ì		tels	å		10/11	113/11
Report De						+		+ 8	 * _
Date Sam							1		
Time Sam							 	-	
					1		1	+	
Sampler:	Blat					1			
CAS NO.				Concentra	tion no/L	-	-	-	
	COMPOUND	DL.	A	8	c	D ;	Ε	F	
91-20-3	Naphthalene	*10*	< 10.	<10		 		∜ ~	
208-96-8	Acenaphthylene	*10*	1		1			· 	!
332-9	Acenaphthene	*10*		1 1	+			 	
36-73-7	Fluorene	*10*		1 1	-	 		 	<u> </u>
15-01-8	Phonanthrone	.*10*		1 1	1	 	 	ļ	
20-12-7	Anthracese	*10*					 		
206-44-0	Fluoranthese	*10*			- }	 	·	-	
29-00-0	Pyrane	*10*		1 -		 	 		
18-01-09	Сагузепе	*10*	1	† †		 			
05-99-2	Seazofb) Suoranthone	*10*	1	 		[<u> </u>	ļ	
07-08-09	Benzolitifkorandene	*10*	†-· - }-	 -			ļ		
0-32-8	Beazolalpyrena	*10*		 				ļ	
3-70-3	Dibertzota, kjantrhaceno	*10*	 				-	 	
93-35-5	Indeno(1,2,3-ed)pytene	*10*	f	 	 	ediye yi Ar Takar	FRANCE SE		A CONTRACTOR
91-24-2	BB620(g.h.i)perylens	*10*	1	 	·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.:::	
16 55-3	Benzolal anthracene	*10*	 	 	 		-		
	Volume Extracted (1.):		1000	4				* ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
	Final Volume (mis)			1000					
	Dilution Factor:		-	,				2	
URR. REC	OV.	QC					en gran i	Ş	
	Nitrobenzene d5	(38-114)	46		· ·		gay last of the second	- 1	
	2 morobiphery((43-116)		53				Č Č.	·
\$.	Terphonyl	(33-141)	46	57				2	
		1717	47	70	1	,	·	ਦ :	

analysis Performed By EPA Method EDTO Base NEUTROLS-PNALO

JI-FA

8:59 P.06

LOZIER LABORATORIES

CHAIN OF CUSTODY RECORD Catego Bone: KINTURE'S WAY.

Hailing Address:

LABORATORY MC:	4607				4	B	Proje	ect Pene: @	1424 Ham	BURG 11
SAMPLE IDENTIFICAT	TION DAI		MISCARON	/ "				Konsu		-
Fileped Hud in lox H	24 91H	360 pm	lok Holding	gas	XX			200A		UCH 20 UK
TANK			TANK					140		1/6
				ļ			╌╁╌┨╌┨		+	17.83
	-			·		11				
			-			士				
					┠╾╂╼┨	+				·
	1 1 1									
SAMPLED BY:	7		l/e L							
RELINQUISHED 1		Bul	2		3 5	SN	27.7	4		
BY:	94 10	:30 pm	DATE THE		11	ASE	TIME	- 11	DATE TENE	
RECEIVED 1			2 508		3	दुध	· · · · · · · · · · · · · · · · · · ·	_ 4		:
DAYE DAYE	TIME		DATE TIM	E	0	ATE	TIME		DATE TIME	
METHOD OF SHIPMENT:				<u>-</u> -	Ł			ATORY BY:		
			SIGN	······································	SICH	1/1		EA1	1/2/94	T CO

Advance Divison

28382 INBOUND

Office & Yard: 776 Ohio St., Buffalo, NY 14203 Mailing Address: P.O. Box 1131, Buffalo, NY 14240-1131

Office (716) 847-6200 • Scale (716) 847-6204 • Fax (716) 847-6210

CASH PURCHASE		
ADDRESS		
DATE SHIPPED YOUR ORDER NO. MATERIAL OVERSIZE	REPERENCE NO.	CARRIER NATURES WA

GROSS 35840 LB

TARE 31500 LB

NET 4340 LB PAM

IN 11:16 TIME

> our11:29 09/28/94

MAN ON OFF

PRICE AMOUNT ACCOUNT

SCALE OPERATOR

DRIVER

Recycling Today for a Better Tomorrow ◆ A Division of Co-Steel Inc.

CO.STEEL RECYCLING

Advance Divison

27301 INBOUND

Office & Yard: 776 Ohio St., Buffalo, NY 14203 Mailing Address: P.O. Box 1131, Buffalo, NY 14240-1191 Office (716) 847-6200 • Scale (716) 847-6204 • Fex (716) 847-5210

NAME	CASH	PURCHASE	<u> </u>	
ADDRESS	,			
ATE PAPER	/94	YOUR ORDER NO.	REFERENCE NO.	CARRIER

GROSS 40720 LB TARE 31420 LB

NET 9300 LB

14:51

TIME

14,58

09/08/94

OUT

MAN

ON

OFF

AMOUNT PRICE

SCALE OPERATOR

Recycling Today for a Better Tomorrow

• A Division of Co-Steel Inc.

CO-STEEL RECYCLING

Advance Divison

27681 INBOUND

Office & Yard: 776 Ohio St., Buffalo, NY 14203

Mailing Address: P.O. Box 1131, Buffalo, NY 14240-1131

Office (716) 847-5200 • Scale (716) 847-6204 • Fax (716) 847-6210

NAME	~ ~ ~ ~					
	CASH	Purchase				
ADDRESS						
	•					
DATE SHIPPED	/94	YOUR ORDER NO.	REFERENCE NO.	CARRIER		
					NAT	WAY
MATERIAL				CODE		

GROSS 39740 LB

TARE 31500 LB

NET 8240 LB

IN 14:14 TIME

> OUT 4 1 28 09/15/94

PAID

MAN

ON

OFF

ACCOUNT

PRICE

AMOUN

SCALE OPERATOR

DAIVER

Recycling Today for a Better Tomorrow

* A Division of Co-Steel Inc.

Siegel, Kelleher & Kahn

Attorneys and Counselors at Law

426 Franklin Street • Buffalo, New York 14202 (716) 881-5800 • FAX: (716) 885-3369

9407600

HERBERT M. SIEGEL I. MICHAEL KELLEHER MARK G. HIRSCHORN DENNIS ALAN KAHN BRIAN R. WELSH STEVEN G. WISEMAN TIMOTHY G. O'CONNELL Kenneth I. Feinman ROSS T. RUNFOLA ROBERT D. STEINHAUS STEPHEN R. SILVERSTEIN Angelo J. Morinello JOAN WARREN KENNETH A. OLENA BOYD L. EARL JEPPREY S. KRAJEWSKI

MICHELLE G. CHAAS

J. KEVIN LAUMER

THOMAS CALANDRA JAMES D. BELL DAVID PAUL LOSI

William N. Naples
* Leroi C. Johnson
Emil J. Cappelli

RICHARD F. DALY
NEIL W. SIEGEL

ROBERT RIORDAN STEPHEN GASSMAN

BARRY FISHER

*** FLORENCE M. FASS
OF COUNSEL

R. THOMAS BURGASSER, P.C.

' ALSO ADMITTED IN PA & D C

.. ALSO ADMITTED IN OHIO

... ALSO ADMITTED IN VT.

September 8, 1994

RECEIVED

'SEP 1 4 1994

Mr. James Stack
Environmental Chemist I
New York State Department of
Environmental Conservation
270 Michigan Avenue
Buffalo, NY 14203-2999

NYSDEC-REG. 9 FOIL REL __UNREL

RM.

ブンジ

Re: 2424 Hamburg Turnpike

Petroleum Bulk Storage Number 9-386383

- FG 1

Dear Mr. Stack:

Please be advised that we have begun the removal of the tanks at the above mentioned site, and the work commenced on September 1, 1994.

The job is being done by:

Russ Savage Nature's Way, Inc. Environmental Remediation 11796 Genesee Street Alden, New York 14004

If there is any additional information which you desire, please do not hesitate to contact me.

Thank you for your kind courtesies and cooperation.

Very truly yours,

HERBERT M. SIEGEL

HMS/dvs

cc: David A. Siegel, Esq.

New York State, Department of Environmental Conservation 270 Michigan Avenue, Buffalo, New York 14203-2999 (716) 851-7220

September 6, 1994

Mr. Herb**er**t Siegel 426 Fran**kli**n Buffalo, **Ne**w York 14202

Dear Mr. Siegel:

9407600

Spill Number - Not Assigned Yet 2424 Hamburg Turnpike Lackawanna Erie County

On September 2, 1994, I discussed remediation requirements and options with you for the above-mentioned spill site. This site involves removal of three underground storage tanks (UST's) and associated soil and water contamination. We require the following for all remediation options:

- 1. All contaminated material must be removed and stored on site on plastic and covered with plastic.
- 2. The contaminated material must be sampled for ignitability, TCLP Benzene, and TCLP Lead. The sample results will determine if the material is a non-hazardous waste or a hazardous waste. If the material is non-hazardous, you may proceed with your selected option. If the material is hazardous, please contact us for further information.
- 3. You must notify us to arrange an inspection of the spill area before backfilling any excavation.
- 4. You must properly clean the UST's before removing them from the site.
- 5. You must properly characterize and dispose of all product and bottoms from the tanks.
- 6. You must properly store and characterize waters from the excavations prior to disposal.

7. You must sample and analyze the excavations. One sample must be collected beneath and on the sides of each UST for EPA Methods 8021 and 8270. If the results are above NYSDEC STARS guidance, further remediation may be necessary.

The following remediation option(s) require additional work as noted:

OPTION 1 - Disposal of Contaminated Material at a Landfill.

- 1. Your selected sanitary landfill may require additional testing before disposal. You must contact them before moving the waste material.
- 2. You must use a licensed hauler to transport the contaminated material to your selected landfill.
- 3. Copies of the landfill disposal receipt and the sample results are to be sent to this Department.

OPTION 2 - Bioremediation of Contaminated Material.

- 1. Before treatment starts and every two months until treatment is completed, the material must be sampled for EPA Methods 8021 and 8270. The results of this sampling will determine if further treatment is necessary.
- 2. The treated material must remain on site.
- 3. A copy of your signed contract with your bioremediation contractor and the workplan must be submitted to this office by September 27, 1994.
- 4. Bioremediation must start when weather permits. This Department must be notified when you plan to start work.

Your treatment option selection and a work schedule are requested by September 21, 1994. If you have any questions, please contact me at 851-7220.

Sincerely,

Francine Gallego Francine Gallego

Environmental Engineer I

90 B John Muir Drive Amherst, New York 14228 (716) 565-0624 • Fax (716) 565-0625

August 10, 2013

Nicole Savage President Nature's Way Environmental 3553 Crittenden Road Alden, NY 14004

Transmitted via email to: Nicole Savage [NSavage@natureswayenv.com]

Subject: Geophysical Survey Results, 2424 Hamburg Turnpike, Lackawanna, NY

Dear Ms. Savage:

1.0 INTRODUCTION

This letter report presents the results of the geophysical investigation performed for Nature's Way Environmental, Inc. in support of their environmental investigation a property located at 2424 Hamburg Turnpike in Lackawanna, NY (the Site).

The geophysical investigation was designed to geophysically characterize the subsurface and focus a follow-up intrusive investigation, if warranted. The information provided herein is intended to assist Nature's Way Environmental with their assessment of potential environmental concerns at the Site. The objective for the geophysical survey was to explore for subsurface anomalies that may relate to a source or pathway of petroleum constituents that were reportedly observed during the installation of a Fiber Optic line adjacent to the Site. AMEC Environment and Infrastructure, Inc. (Amec) performed data acquisition on July 23, 2013 using time domain electromagnetic techniques.

The Site is currently vacant however we understand it previously operated as a retail automotive fuel facility. The survey was limited to the paved portion of the site in the area between Hamburg Turnpike and the Site building.

Nicole Savage Nature's Way Environmental August 10, 2013 Page 2

2.0 METHODOLOGY

A reference grid was installed at the site to facilitate data acquisition along lines spaced three feet apart. The grid was marked with orange and white spray paint with select coordinates labeled to allow subsequent work if necessary. Grid coordinate 100N,100E was established at the south west corner of the Site building. Grid north was taken as the direction parallel the west wall of the building.

The Site was geophysically surveyed using the Geonics EM61. The EM61 unit is a high sensitivity, high resolution time domain electromagnetic (TDEM) metal detector that can detect both ferrous and nonferrous metallic objects. It has an approximate investigation depth of 10 feet. The processing console is contained in a backpack worn by the operator which is interfaced to a digital data logger. The transmitter and two receiver coils are located on a two-wheeled cart that is pulled by the operator.

The device's transmitter coil generates a pulsed primary EM field at a rate of 150 pulses per second, inducing eddy currents into the subsurface. The decay rates of these eddy currents are measured by two, 3.28 foot by 1.64 foot (1 meter by ½ meter) rectangular receiver coils. By taking the measurements at a relatively long time frame after termination of the primary pulse, the response is practically independent of the survey area's terrain conductivity. Specifically, the decay rates of the eddy currents are much longer for metals than for normal soils allowing the discrimination of the two.

EM61 in use (photo not from this site)

Data are collected from the EM61's two receiver coils. One of the receiver coils is located coincident to the transmitter coil. The other receiver coil is located 1.31 feet (0.4 meters) above the transmitter coil. Data from the top receiver coil are stored on Channel 1 of a digital data logger. Data from the bottom receiver coil are stored on Channel 2 of the data logger. Channel 1 and Channel 2 data are simultaneously recorded at each station location. The

instrument responses are recorded in units of milliVolts

Nicole Savage Nature's Way Environmental August 10, 2013 Page 3

(mV). Data were recorded digitally by a data logger at a rate of approximately 2 measurements per foot along the survey lines which were spaced 3 feet apart.

3.0 RESULTS

The EM61 data for the site is shown in Figure 1. The color bar to the right of the map indicates the colors associated with the respective measured values. Areas suspected to be free of buried metals are shown as color shades of light blue. All areas exhibiting a response greater than background (0 to 35 mVolts) likely contain buried metals. These areas are depicted in shades of dark blue through yellow on the figure.

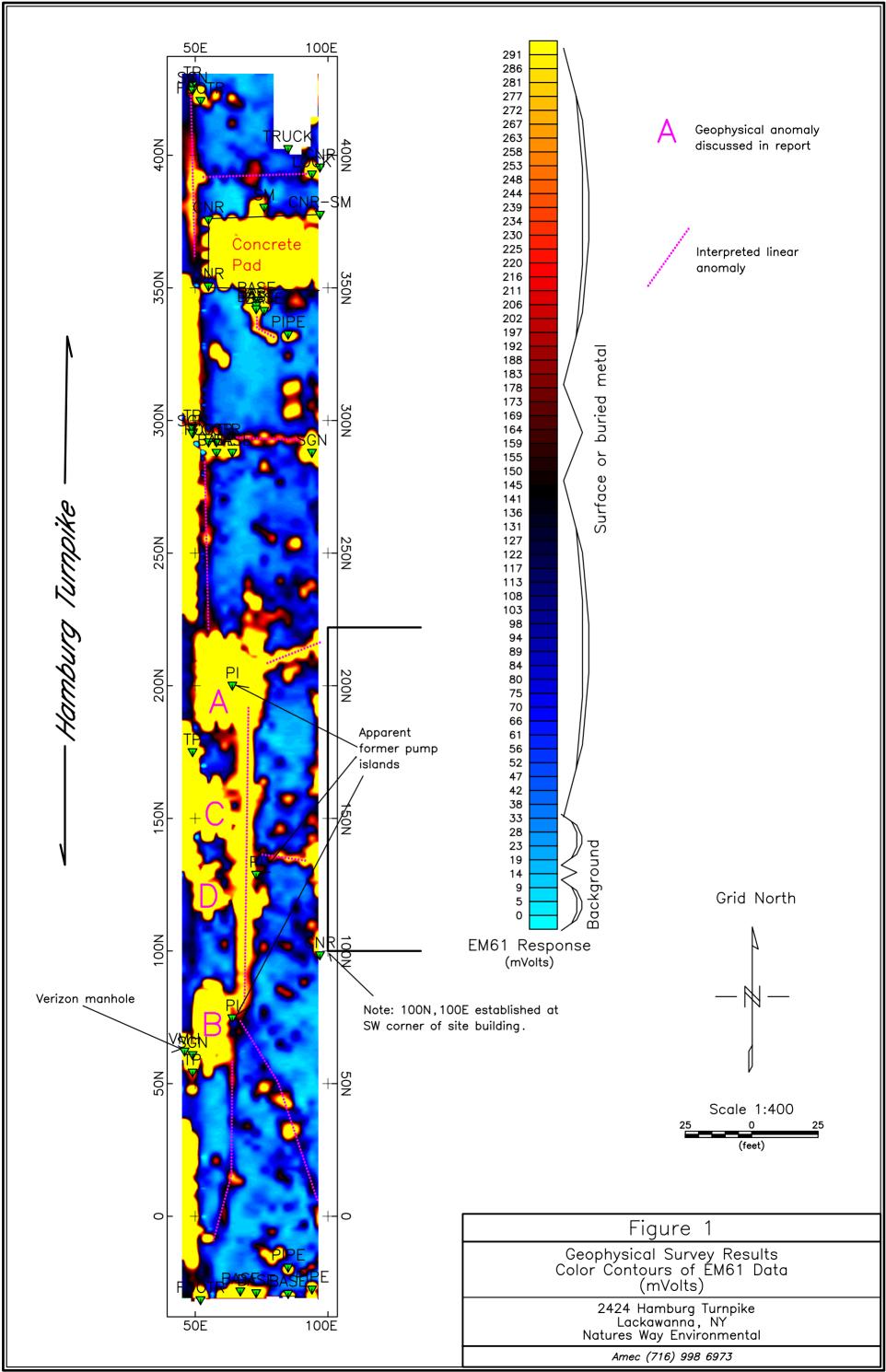
Four anomalies are identified that may be related to the reported observation of petroleum impact in the fiber optic manhole (designated as "Verizon manhole on Figure 1). These anomalies are labeled **A** through **D** on the figure. Visual observations during the survey suggested the locations of three former pump islands. Anomalies A through D may be related to remnants of the pump islands (subsurface reinforced concrete pads) or they may be related to UST's, associated appurtenances and/or miscellaneous buried metals. It is possible that any of the additional unlabelled anomalies may be of environmental significance.

Numerous linear anomalies are observed in the geophysical data and are denoted with dashed red lines on Figure 1. These linear anomalies likely are related to buried utility lines. The geophysical survey was conducted over the entire length of the property (approx 460 ft). Additional metal anomalies are observed in the data, many related to observed surface features (ie., fence posts cut at grade, entrance drives, foundations, etc.).

4.0 LIMITATIONS

The geophysical methods used during this survey are established, indirect techniques for non-destructive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. Metallic surface features (electrical wires, scrap metal, etc.) preclude reliable non-invasive data/results beneath, and in the immediate vicinity of, the surface features. Targets such as buried drums, buried tanks, conduits, etc. are detectable only if they produce recognizable anomalies or patterns against the background geophysical data collected. As with any remote sensing technique, the anomalies identified during a geophysical survey should be further investigated by other techniques such as historical aerial photography, test pit excavation and/or test boring, if warranted.

Nicole Savage Nature's Way Environmental August 10, 2013 Page 4


Please do not hesitate to contact us if you have any questions or require additional information.

Sincerely yours,

AMEC Environment and Infrastructure, Inc.

John Luttinger

Senior Geophysicist

ATTACHMENT 2

BORING LOGS AND WELL COMPLETION DETAILS

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
-	-2.0 2.0	Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive	- S-1	NA	1.3		0.0		
5.0 —	-4.0 4.0	As above, moist to wet (6')	S-2	NA	1.2		0.0		
10.0 —	-9.0 9.0 -10.0 10.0 -12.0 12.0	Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm Poorly Graded Sand Grey, wet, mostly fine sand, medium dense	S-3	NA	3.1		0.0		
15.0	-16.0	Organic Soil (Peat) Same as (9-10') interval	S-4	NA	1.1		0.0		
-	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE		SAM	PLE	•			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
-		Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive	S-1	NA	1.6		0.0		
-	-4.0 4.0	As above, moist to wet (7')							
5.0 —	-8.0 8.0		S-2	NA	2.9		0.0		
_	8.0	Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm					0.0		
10.0	-10.0 10.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm	S-3	NA	2.2		0.0		
-	-12.0 12.0	Poorly Graded Sand							
15.0	-16.0	Grey, wet, mostly fine sand, medium dense	S-4	NA	3.0		0.0		
_	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	8	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0—	-4.0 4.0	Ground Surface Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive As above, moist to wet (6')	S-1	NA	2.4		0.0 0.0 0.0		
-	-8.0 8.0	Organia Sail (Paat)	S-2	NA	2.1		0.0		
10.0 —	-9.0 9.0 -11.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm Poorly Graded Sand Grey, wet, mostly fine sand, medium dense	S-3	NA	4.0		0.0 0.0		
15.0	-16.0		S-4	NA	4.0		0.0		
_	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

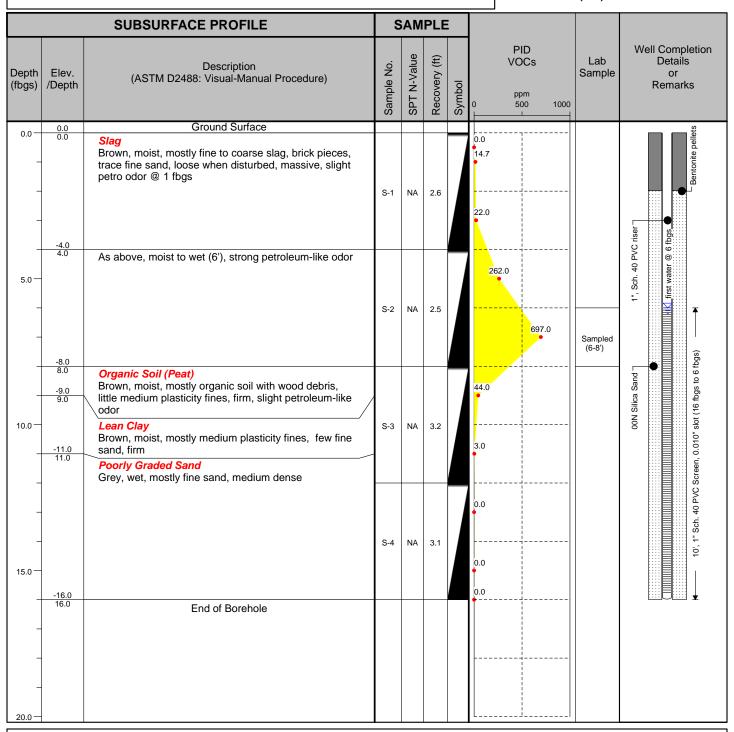
Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level


Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

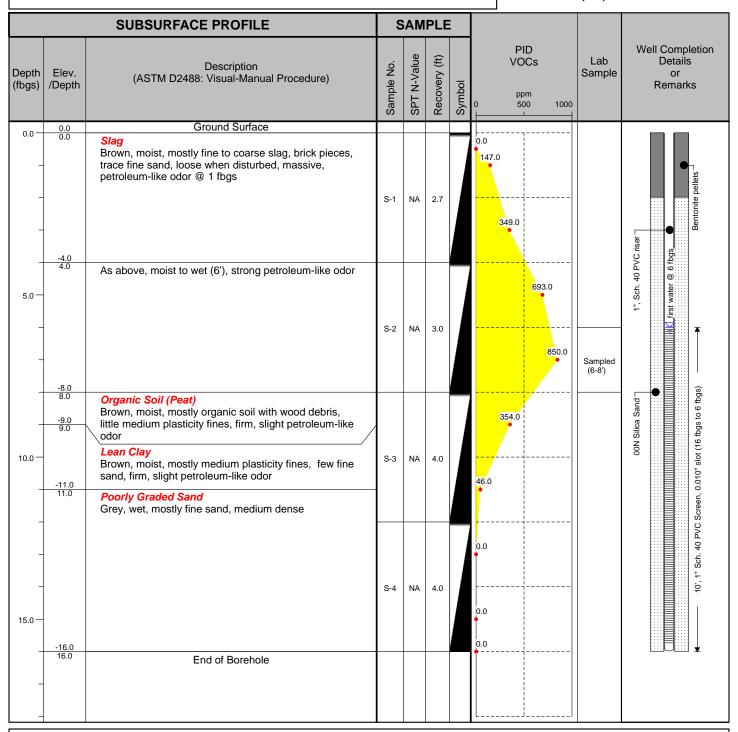
Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level


Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	5	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 1000 2000	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
-	-4.0 4.0	Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive, petroleum-like odors starting @ 2 fbgs	S-1	NA	2.1		1098.0	Sampled (2-4')	
5.0 —	-8.0	As above, moist to wet (6')	S-2	NA	2.4		348.0		
10.0 —	-9.0 9.0 11.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm Poorly Graded Sand Grey, wet, mostly fine sand, medium dense	S-3	NA	4.0		5.3		
15.0	-16.0		S-4	NA	3.6		0.0		
_	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level


Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	5	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 250 500	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
	-0.8	Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive, slight petroleum-like odors starting @ 2 fbgs	S-1	NA	1.7		0.0 10.9 4.2		
5.0 —	-4.0 4.0	As above, moist to wet (6'), petroleum-like odors	S-2	NA	2.4		21.0	Sampled (6-8')	
10.0 —	-8.0 8.0 -9.0 9.0 -11.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm, petroleum-like odors Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm Poorly Graded Sand Grey, wet, mostly fine sand, medium dense	S-3	NA	3.4		4.1		
15.0	-16.0 16.0		S-4	NA	3.0		0.0		
_	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 500 1000	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
		Concrete					0.0		
_	-0.8 0.8	Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive, slight petroleum-like odors starting @ 2 fbgs	S-1	NA	2.0		149.0		
5.0 —	4.0	As above, moist to wet (6'), petroleum-like odors	S-2	NA	2.6		900.0	Sampled (6-8')	
10.0 —	-8.0 8.0 -9.0 9.0 -11.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm, petroleum-like odors Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm, petroleum-like odors Poorly Graded Sand Grey, wet, mostly fine sand, medium dense, slight petroleum-like odors	S-3	NA	3.0		239.0		
15.0	-16.0	petroleuri riine ouots	S-4	NA	3.6		4.3		
_	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

Project: Phase II Environmental Investigation A.K.A.:

Client: Franklin Asset Management Logged By: PWW

Site Location: 2424 Hamburg Turnpike Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	SAMPLE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 250 500	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
0.0		Concrete					0.0		
	-0.8 0.8	Slag Brown, moist, mostly fine to coarse slag, brick pieces, trace fine sand, loose when disturbed, massive, slight petroleum-like odors starting @ 2 fbgs	S-1	NA	1.2		21.2		
5.0 —	4.0	As above, moist to wet (6'), petroleum-like odors	S-2	NA	2.6		299.0		
10.0 —	-8.0 8.0 -9.0 9.0 -11.0	Organic Soil (Peat) Brown, moist, mostly organic soil with wood debris, little medium plasticity fines, firm, petroleum-like odors Lean Clay Brown, moist, mostly medium plasticity fines, few fine sand, firm Poorly Graded Sand Grey, wet, mostly fine sand, medium dense	S-3	NA	3.1		96.0		
15.0	-16.0		S-4	NA	4.0		0.0		
-	16.0	End of Borehole							

Drilled By: DDS Companies

Drill Rig Type: Geoprobe 66DT Track Mounted Rig

Drill Method: Direct Push w/ 4' macro-core

Comments:

Drill Date(s): 1-14-14

Hole Size: 2" Stick-up: NA

Datum: Mean Sea Level

ATTACHMENT 3

LABORATORY ANALYTICAL DATA SUMMARY PACKAGE

ANALYTICAL REPORT

Lab Number: L1401509

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Report Date: 01/22/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1401509

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001 **Report Date:** 01/22/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1401509-01	SB-4 (6-8)	2424 HAMBURG TURNPIKE	01/14/14 11:45
L1401509-02	SB-5 (6-8)	2424 HAMBURG TURNPIKE	01/14/14 12:30
L1401509-03	SB-6 (2-4)	2424 HAMBURG TURNPIKE	01/14/14 14:15
L1401509-04	SB-7 (2-4)	2424 HAMBURG TURNPIKE	01/14/14 13:45
L1401509-05	SB-8 (6-8)	2424 HAMBURG TURNPIKE	01/14/14 16:00
L1401509-06	SB-9 (6-8)	2424 HAMBURG TURNPIKE	01/14/14 16:30

L1401509

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Serial_No:01221415:47

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1401509-04 has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The surrogate recoveries for L1401509-02 and -03 are below the acceptance criteria for nitrobenzene-d5, 2-fluorobiphenyl and 4-terphenyl-d14 (all 0%) due to the dilutions required to quantitate the samples. Reextraction was not required; therefore, the results of the original analyses are reported.

L1401509-03 has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Show Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 01/22/14

ORGANICS

VOLATILES

Serial_No:01221415:47

Date Received:

L1401509

01/15/14

Project Name: Lab Number: 2424 HAMBURG TURNPIKE

Project Number: Report Date:

0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-01 D Date Collected: 01/14/14 11:45

Client ID: SB-4 (6-8)

2424 HAMBURG TURNPIKE Field Prep: Sample Location: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/19/14 16:15

Analyst: ΒN 76% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	16000	3300	1250		
1,1-Dichloroethane	ND		ug/kg	2500	290	1250		
Chloroform	ND		ug/kg	2500	610	1250		
Carbon tetrachloride	ND		ug/kg	1600	340	1250		
1,2-Dichloropropane	ND		ug/kg	5700	370	1250		
Dibromochloromethane	ND		ug/kg	1600	500	1250		
1,1,2-Trichloroethane	ND		ug/kg	2500	500	1250		
Tetrachloroethene	ND		ug/kg	1600	230	1250		
Chlorobenzene	ND		ug/kg	1600	570	1250		
Trichlorofluoromethane	ND		ug/kg	8200	200	1250		
1,2-Dichloroethane	ND		ug/kg	1600	240	1250		
1,1,1-Trichloroethane	ND		ug/kg	1600	180	1250		
Bromodichloromethane	ND		ug/kg	1600	380	1250		
trans-1,3-Dichloropropene	ND		ug/kg	1600	200	1250		
cis-1,3-Dichloropropene	ND		ug/kg	1600	210	1250		
Bromoform	ND		ug/kg	6600	680	1250		
1,1,2,2-Tetrachloroethane	ND		ug/kg	1600	280	1250		
Benzene	1000	J	ug/kg	1600	190	1250		
Toluene	2300	J	ug/kg	2500	180	1250		
Ethylbenzene	14000		ug/kg	1600	240	1250		
Chloromethane	ND		ug/kg	8200	1300	1250		
Bromomethane	ND		ug/kg	3300	550	1250		
Vinyl chloride	ND		ug/kg	3300	230	1250		
Chloroethane	ND		ug/kg	3300	520	1250		
1,1-Dichloroethene	ND		ug/kg	1600	340	1250		
trans-1,2-Dichloroethene	ND		ug/kg	2500	350	1250		
Trichloroethene	ND		ug/kg	1600	250	1250		
1,2-Dichlorobenzene	ND		ug/kg	8200	300	1250		
1,3-Dichlorobenzene	ND		ug/kg	8200	300	1250		
1,4-Dichlorobenzene	ND		ug/kg	8200	400	1250		
Methyl tert butyl ether	ND		ug/kg	3300	170	1250		

Serial_No:01221415:47

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-01 D

Date Collected: 01/14/14 11:45

Client ID: Date Received: SB-4 (6-8) 01/15/14

2424 HAMBURG TURNPIKE Not Specified Sample Location: Field Prep: **Dilution Factor** RL Parameter Result Qualifier Units MDL

i didilictei	Moduli	- audinioi	O.I.I.O			Dilation ractor	
Volatile Organics by GC/MS - Wes	stborough Lab						
p/m-Xylene	12000		ug/kg	3300	530	1250	
o-Xylene	600	J	ug/kg	3300	440	1250	
cis-1,2-Dichloroethene	ND		ug/kg	1600	240	1250	
Styrene	ND		ug/kg	3300	510	1250	
Dichlorodifluoromethane	ND		ug/kg	16000	360	1250	
Acetone	ND		ug/kg	16000	5100	1250	
Carbon disulfide	ND		ug/kg	16000	3300	1250	
2-Butanone	ND		ug/kg	16000	580	1250	
4-Methyl-2-pentanone	ND		ug/kg	16000	400	1250	
2-Hexanone	ND		ug/kg	16000	310	1250	
Bromochloromethane	ND		ug/kg	8200	320	1250	
1,2-Dibromoethane	ND		ug/kg	6600	290	1250	
n-Butylbenzene	26000		ug/kg	1600	320	1250	
sec-Butylbenzene	8200		ug/kg	1600	340	1250	
1,2-Dibromo-3-chloropropane	ND		ug/kg	8200	1300	1250	
Isopropylbenzene	9900		ug/kg	1600	270	1250	
p-Isopropyltoluene	4600		ug/kg	1600	310	1250	
n-Propylbenzene	48000		ug/kg	1600	210	1250	
1,2,3-Trichlorobenzene	ND		ug/kg	8200	280	1250	
1,2,4-Trichlorobenzene	ND		ug/kg	8200	1300	1250	
1,3,5-Trimethylbenzene	21000		ug/kg	8200	240	1250	
1,2,4-Trimethylbenzene	180000		ug/kg	8200	940	1250	
Methyl Acetate	ND		ug/kg	33000	1200	1250	
Cyclohexane	ND		ug/kg	33000	1800	1250	
1,4-Dioxane	ND		ug/kg	160000	28000	1250	
Freon-113	ND		ug/kg	33000	450	1250	
Methyl cyclohexane	43000		ug/kg	6600	2100	1250	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	93		70-130	

L1401509

01/22/14

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Project Number: 0298-014-001

SAMPLE RESULTS

Date Collected: 01/14/14 12:30

Report Date:

Lab ID: L1401509-02 D

Client ID: SB-5 (6-8)

Sample Location: 2424 HAMBURG TURNPIKE

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/19/14 16:43

Analyst: BN Percent Solids: 82%

Date Collected:	01/14/14 12:30
Date Received:	01/15/14
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	6100	1200	500
1,1-Dichloroethane	ND		ug/kg	920	110	500
Chloroform	ND		ug/kg	920	230	500
Carbon tetrachloride	ND		ug/kg	610	130	500
1,2-Dichloropropane	ND		ug/kg	2100	140	500
Dibromochloromethane	ND		ug/kg	610	190	500
1,1,2-Trichloroethane	ND		ug/kg	920	190	500
Tetrachloroethene	ND		ug/kg	610	86.	500
Chlorobenzene	ND		ug/kg	610	210	500
Trichlorofluoromethane	ND		ug/kg	3000	74.	500
1,2-Dichloroethane	ND		ug/kg	610	89.	500
1,1,1-Trichloroethane	ND		ug/kg	610	68.	500
Bromodichloromethane	ND		ug/kg	610	140	500
trans-1,3-Dichloropropene	ND		ug/kg	610	74.	500
cis-1,3-Dichloropropene	ND		ug/kg	610	78.	500
Bromoform	ND		ug/kg	2400	250	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	610	100	500
Benzene	800		ug/kg	610	72.	500
Toluene	8300		ug/kg	920	68.	500
Ethylbenzene	14000		ug/kg	610	90.	500
Chloromethane	ND		ug/kg	3000	480	500
Bromomethane	ND		ug/kg	1200	210	500
Vinyl chloride	ND		ug/kg	1200	86.	500
Chloroethane	ND		ug/kg	1200	190	500
1,1-Dichloroethene	ND		ug/kg	610	120	500
trans-1,2-Dichloroethene	ND		ug/kg	920	130	500
Trichloroethene	ND		ug/kg	610	93.	500
1,2-Dichlorobenzene	ND		ug/kg	3000	110	500
1,3-Dichlorobenzene	ND		ug/kg	3000	110	500
1,4-Dichlorobenzene	ND		ug/kg	3000	150	500
Methyl tert butyl ether	ND		ug/kg	1200	64.	500

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-02 D Date Collected: 01/14/14 12:30

Client ID: SB-5 (6-8) Date Received: 01/15/14

Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier Office	S NL	MIDL	Dilution Factor	
Volatile Organics by GC/MS	- Westborough Lab					
p/m-Xylene	60000	ug/kg	1200	200	500	
o-Xylene	19000	ug/kg	1200	160	500	
cis-1,2-Dichloroethene	ND	ug/kg	610	91.	500	
Styrene	ND	ug/kg	1200	190	500	
Dichlorodifluoromethane	ND	ug/kg	6100	130	500	
Acetone	ND	ug/kg	6100	1900	500	
Carbon disulfide	ND	ug/kg	6100	1200	500	
2-Butanone	ND	ug/kg	6100	220	500	
4-Methyl-2-pentanone	ND	ug/kg	6100	150	500	
2-Hexanone	ND	ug/kg	6100	120	500	
Bromochloromethane	ND	ug/kg	3000	120	500	
1,2-Dibromoethane	ND	ug/kg	2400	110	500	
n-Butylbenzene	4400	ug/kg	610	120	500	
sec-Butylbenzene	1300	ug/kg	610	120	500	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3000	480	500	
Isopropylbenzene	2100	ug/kg	610	100	500	
p-Isopropyltoluene	900	ug/kg	610	120	500	
n-Propylbenzene	11000	ug/kg	610	77.	500	
1,2,3-Trichlorobenzene	ND	ug/kg	3000	100	500	
1,2,4-Trichlorobenzene	ND	ug/kg	3000	480	500	
1,3,5-Trimethylbenzene	21000	ug/kg	3000	88.	500	
1,2,4-Trimethylbenzene	74000	ug/kg	3000	350	500	
Methyl Acetate	ND	ug/kg	12000	470	500	
Cyclohexane	ND	ug/kg	12000	660	500	
1,4-Dioxane	ND	ug/kg	61000	11000	500	
Freon-113	ND	ug/kg	12000	170	500	
Methyl cyclohexane	16000	ug/kg	2400	770	500	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	94	70-130

01/15/14

Not Specified

Date Received:

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-03 D Date Collected: 01/14/14 14:15

Client ID: SB-6 (2-4)

Sample Location: 2424 HAMBURG TURNPIKE Field Prep:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 01/19/14 17:11

Analyst: BN Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	1200	240	1000
1,1-Dichloroethane	ND		ug/kg	180	21.	1000
Chloroform	ND		ug/kg	180	45.	1000
Carbon tetrachloride	ND		ug/kg	120	25.	1000
1,2-Dichloropropane	ND		ug/kg	420	28.	1000
Dibromochloromethane	ND		ug/kg	120	37.	1000
1,1,2-Trichloroethane	ND		ug/kg	180	37.	1000
Tetrachloroethene	ND		ug/kg	120	17.	1000
Chlorobenzene	ND		ug/kg	120	42.	1000
Trichlorofluoromethane	ND		ug/kg	600	15.	1000
1,2-Dichloroethane	ND		ug/kg	120	18.	1000
1,1,1-Trichloroethane	ND		ug/kg	120	13.	1000
Bromodichloromethane	ND		ug/kg	120	28.	1000
trans-1,3-Dichloropropene	ND		ug/kg	120	14.	1000
cis-1,3-Dichloropropene	ND		ug/kg	120	15.	1000
Bromoform	ND		ug/kg	480	50.	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	120	21.	1000
Benzene	1500		ug/kg	120	14.	1000
Toluene	16000		ug/kg	180	14.	1000
Ethylbenzene	5700		ug/kg	120	18.	1000
Chloromethane	ND		ug/kg	600	94.	1000
Bromomethane	ND		ug/kg	240	41.	1000
Vinyl chloride	ND		ug/kg	240	17.	1000
Chloroethane	ND		ug/kg	240	38.	1000
1,1-Dichloroethene	ND		ug/kg	120	25.	1000
rans-1,2-Dichloroethene	ND		ug/kg	180	26.	1000
Trichloroethene	ND		ug/kg	120	18.	1000
1,2-Dichlorobenzene	ND		ug/kg	600	22.	1000
1,3-Dichlorobenzene	ND		ug/kg	600	22.	1000
1,4-Dichlorobenzene	ND		ug/kg	600	29.	1000
	NE		4	0.40	10	1000

ug/kg

240

12.

ND

1000

Methyl tert butyl ether

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-03 D

Date Collected: 01/14/14 14:15

Client ID: SB-6 (2-4) Date Received: 01/15/14

2424 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified RL **Dilution Factor** Parameter Result Qualifier Units MDL

Volatile Organics by GC/MS - West	tborough Lab					
p/m-Xylene	21000	ug/kg	240	39.	1000	
o-Xylene	8300	ug/kg	240	33.	1000	
cis-1,2-Dichloroethene	ND	ug/kg	120	18.	1000	
Styrene	ND	ug/kg	240	37.	1000	
Dichlorodifluoromethane	ND	ug/kg	1200	26.	1000	
Acetone	ND	ug/kg	1200	370	1000	
Carbon disulfide	ND	ug/kg	1200	240	1000	
2-Butanone	ND	ug/kg	1200	43.	1000	
4-Methyl-2-pentanone	ND	ug/kg	1200	30.	1000	
2-Hexanone	ND	ug/kg	1200	23.	1000	
Bromochloromethane	ND	ug/kg	600	24.	1000	
1,2-Dibromoethane	ND	ug/kg	480	21.	1000	
n-Butylbenzene	600	ug/kg	120	24.	1000	
sec-Butylbenzene	220	ug/kg	120	25.	1000	
1,2-Dibromo-3-chloropropane	ND	ug/kg	600	95.	1000	
Isopropylbenzene	460	ug/kg	120	20.	1000	
p-Isopropyltoluene	140	ug/kg	120	23.	1000	
n-Propylbenzene	2500	ug/kg	120	15.	1000	
1,2,3-Trichlorobenzene	ND	ug/kg	600	20.	1000	
1,2,4-Trichlorobenzene	ND	ug/kg	600	95.	1000	
1,3,5-Trimethylbenzene	3300	ug/kg	600	17.	1000	
1,2,4-Trimethylbenzene	14000	ug/kg	600	69.	1000	
Methyl Acetate	ND	ug/kg	2400	92.	1000	
Cyclohexane	ND	ug/kg	2400	130	1000	
1,4-Dioxane	ND	ug/kg	12000	2100	1000	
Freon-113	ND	ug/kg	2400	33.	1000	
Methyl cyclohexane	1800	ug/kg	480	150	1000	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	90		70-130	

01/15/14

Date Received:

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-04 D Date Collected: 01/14/14 13:45

Client ID: SB-7 (2-4)

Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/19/14 17:39

Analyst: BN Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/kg	580	120	50	
1,1-Dichloroethane	ND		ug/kg	87	10.	50	
Chloroform	ND		ug/kg	87	22.	50	
Carbon tetrachloride	ND		ug/kg	58	12.	50	
1,2-Dichloropropane	ND		ug/kg	200	13.	50	
Dibromochloromethane	ND		ug/kg	58	18.	50	
1,1,2-Trichloroethane	ND		ug/kg	87	18.	50	
Tetrachloroethene	ND		ug/kg	58	8.2	50	
Chlorobenzene	ND		ug/kg	58	20.	50	
Trichlorofluoromethane	ND		ug/kg	290	7.0	50	
1,2-Dichloroethane	ND		ug/kg	58	8.5	50	
1,1,1-Trichloroethane	ND		ug/kg	58	6.4	50	
Bromodichloromethane	ND		ug/kg	58	13.	50	
trans-1,3-Dichloropropene	ND		ug/kg	58	7.0	50	
cis-1,3-Dichloropropene	ND		ug/kg	58	7.4	50	
Bromoform	ND		ug/kg	230	24.	50	
1,1,2,2-Tetrachloroethane	ND		ug/kg	58	9.9	50	
Benzene	83		ug/kg	58	6.9	50	
Toluene	260		ug/kg	87	6.5	50	
Ethylbenzene	250		ug/kg	58	8.6	50	
Chloromethane	ND		ug/kg	290	46.	50	
Bromomethane	ND		ug/kg	120	20.	50	
Vinyl chloride	ND		ug/kg	120	8.2	50	
Chloroethane	ND		ug/kg	120	18.	50	
1,1-Dichloroethene	ND		ug/kg	58	12.	50	
trans-1,2-Dichloroethene	ND		ug/kg	87	12.	50	
Trichloroethene	ND		ug/kg	58	8.8	50	
1,2-Dichlorobenzene	ND		ug/kg	290	11.	50	
1,3-Dichlorobenzene	ND		ug/kg	290	11.	50	
1,4-Dichlorobenzene	ND		ug/kg	290	14.	50	
Methyl tert butyl ether	ND		ug/kg	120	6.0	50	

01/14/14 13:45

Date Collected:

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-04 D

Client ID: SB-7 (2-4)

Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
p/m-Xylene	1400		ug/kg	120	19.	50
o-Xylene	480		ug/kg	120	16.	50
cis-1,2-Dichloroethene	ND		ug/kg	58	8.7	50
Styrene	ND		ug/kg	120	18.	50
Dichlorodifluoromethane	ND		ug/kg	580	13.	50
Acetone	ND		ug/kg	580	180	50
Carbon disulfide	ND		ug/kg	580	120	50
2-Butanone	ND		ug/kg	580	21.	50
4-Methyl-2-pentanone	ND		ug/kg	580	14.	50
2-Hexanone	ND		ug/kg	580	11.	50
Bromochloromethane	ND		ug/kg	290	11.	50
1,2-Dibromoethane	ND		ug/kg	230	10.	50
n-Butylbenzene	230		ug/kg	58	11.	50
sec-Butylbenzene	60		ug/kg	58	12.	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	290	46.	50
Isopropylbenzene	46	J	ug/kg	58	9.7	50
p-Isopropyltoluene	56	J	ug/kg	58	11.	50
n-Propylbenzene	230		ug/kg	58	7.3	50
1,2,3-Trichlorobenzene	ND		ug/kg	290	9.8	50
1,2,4-Trichlorobenzene	ND		ug/kg	290	46.	50
1,3,5-Trimethylbenzene	960		ug/kg	290	8.3	50
1,2,4-Trimethylbenzene	3100		ug/kg	290	33.	50
Methyl Acetate	ND		ug/kg	1200	44.	50
Cyclohexane	ND		ug/kg	1200	62.	50
1,4-Dioxane	ND		ug/kg	5800	1000	50
Freon-113	ND		ug/kg	1200	16.	50
Methyl cyclohexane	390		ug/kg	230	73.	50

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	95	70-130	

L1401509

01/22/14

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

SAMPLE RESULTS

Date Collected: 01/14/14 16:00

Lab Number:

Report Date:

Lab ID: L1401509-05 D

Client ID: SB-8 (6-8)

Sample Location: 2424 HAMBURG TURNPIKE

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/19/14 18:06

Analyst: BN Percent Solids: 64%

Date Collected:	01/14/14 16:00
Date Received:	01/15/14
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	7800	1600	500
1,1-Dichloroethane	ND		ug/kg	1200	140	500
Chloroform	ND		ug/kg	1200	290	500
Carbon tetrachloride	ND		ug/kg	780	160	500
1,2-Dichloropropane	ND		ug/kg	2700	180	500
Dibromochloromethane	ND		ug/kg	780	240	500
1,1,2-Trichloroethane	ND		ug/kg	1200	240	500
Tetrachloroethene	ND		ug/kg	780	110	500
Chlorobenzene	ND		ug/kg	780	270	500
Trichlorofluoromethane	ND		ug/kg	3900	95.	500
1,2-Dichloroethane	ND		ug/kg	780	110	500
1,1,1-Trichloroethane	ND		ug/kg	780	86.	500
Bromodichloromethane	ND		ug/kg	780	180	500
trans-1,3-Dichloropropene	ND		ug/kg	780	94.	500
cis-1,3-Dichloropropene	ND		ug/kg	780	99.	500
Bromoform	ND		ug/kg	3100	320	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	780	130	500
Benzene	11000		ug/kg	780	92.	500
Toluene	2200		ug/kg	1200	87.	500
Ethylbenzene	39000		ug/kg	780	110	500
Chloromethane	ND		ug/kg	3900	610	500
Bromomethane	ND		ug/kg	1600	260	500
Vinyl chloride	ND		ug/kg	1600	110	500
Chloroethane	ND		ug/kg	1600	250	500
1,1-Dichloroethene	ND		ug/kg	780	160	500
trans-1,2-Dichloroethene	ND		ug/kg	1200	160	500
Trichloroethene	ND		ug/kg	780	120	500
1,2-Dichlorobenzene	ND		ug/kg	3900	140	500
1,3-Dichlorobenzene	ND		ug/kg	3900	140	500
1,4-Dichlorobenzene	ND		ug/kg	3900	190	500
Methyl tert butyl ether	ND		ug/kg	1600	81.	500

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-05 D

Date Collected: 01/14/14 16:00

Client ID: SB-8 (6-8) Date Received: 01/15/14

2424 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified RL **Dilution Factor** Parameter Result Qualifier Units MDL

i didilictei	- TOOUIT	addinioi onito			Diracion i actor	
Volatile Organics by GC/MS - Wes	stborough Lab					
p/m-Xylene	160000	ug/kg	1600	250	500	
o-Xylene	3600	ug/kg	1600	210	500	
cis-1,2-Dichloroethene	ND	ug/kg	780	120	500	
Styrene	ND	ug/kg	1600	240	500	
Dichlorodifluoromethane	ND	ug/kg	7800	170	500	
Acetone	ND	ug/kg	7800	2400	500	
Carbon disulfide	ND	ug/kg	7800	1600	500	
2-Butanone	ND	ug/kg	7800	280	500	
4-Methyl-2-pentanone	ND	ug/kg	7800	190	500	
2-Hexanone	ND	ug/kg	7800	150	500	
Bromochloromethane	ND	ug/kg	3900	150	500	
1,2-Dibromoethane	ND	ug/kg	3100	140	500	
n-Butylbenzene	5200	ug/kg	780	150	500	
sec-Butylbenzene	1500	ug/kg	780	160	500	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3900	620	500	
Isopropylbenzene	3200	ug/kg	780	130	500	
p-Isopropyltoluene	810	ug/kg	780	150	500	
n-Propylbenzene	18000	ug/kg	780	98.	500	
1,2,3-Trichlorobenzene	ND	ug/kg	3900	130	500	
1,2,4-Trichlorobenzene	ND	ug/kg	3900	620	500	
1,3,5-Trimethylbenzene	35000	ug/kg	3900	110	500	
1,2,4-Trimethylbenzene	110000	ug/kg	3900	450	500	
Methyl Acetate	ND	ug/kg	16000	600	500	
Cyclohexane	ND	ug/kg	16000	840	500	
1,4-Dioxane	ND	ug/kg	78000	14000	500	
Freon-113	ND	ug/kg	16000	210	500	
Methyl cyclohexane	49000	ug/kg	3100	980	500	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	92	70-130

01/15/14

Not Specified

Date Received:

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-06 D Date Collected: 01/14/14 16:30

Client ID: SB-9 (6-8)

Sample Location: 2424 HAMBURG TURNPIKE Field Prep:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/19/14 18:34

Analyst: BN Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/kg	2900	590	250
1,1-Dichloroethane	ND		ug/kg	440	52.	250
Chloroform	ND		ug/kg	440	110	250
Carbon tetrachloride	ND		ug/kg	290	62.	250
1,2-Dichloropropane	ND		ug/kg	1000	67.	250
Dibromochloromethane	ND		ug/kg	290	91.	250
1,1,2-Trichloroethane	ND		ug/kg	440	90.	250
Tetrachloroethene	ND		ug/kg	290	41.	250
Chlorobenzene	ND		ug/kg	290	100	250
Trichlorofluoromethane	ND		ug/kg	1500	36.	250
1,2-Dichloroethane	ND		ug/kg	290	43.	250
1,1,1-Trichloroethane	ND		ug/kg	290	33.	250
Bromodichloromethane	ND		ug/kg	290	67.	250
trans-1,3-Dichloropropene	ND		ug/kg	290	36.	250
cis-1,3-Dichloropropene	ND		ug/kg	290	37.	250
Bromoform	ND		ug/kg	1200	120	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	290	50.	250
Benzene	1600		ug/kg	290	35.	250
Toluene	1000		ug/kg	440	33.	250
Ethylbenzene	8000		ug/kg	290	43.	250
Chloromethane	ND		ug/kg	1500	230	250
Bromomethane	ND		ug/kg	590	100	250
Vinyl chloride	ND		ug/kg	590	42.	250
Chloroethane	ND		ug/kg	590	93.	250
1,1-Dichloroethene	ND		ug/kg	290	61.	250
trans-1,2-Dichloroethene	ND		ug/kg	440	62.	250
Trichloroethene	ND		ug/kg	290	45.	250
1,2-Dichlorobenzene	ND		ug/kg	1500	54.	250
1,3-Dichlorobenzene	ND		ug/kg	1500	54.	250
1,4-Dichlorobenzene	ND		ug/kg	1500	71.	250
Methyl tert butyl ether	ND		ug/kg	590	31.	250

01/14/14 16:30

Date Collected:

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-06 D

Client ID: SB-9 (6-8)

Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified RL **Dilution Factor** Parameter Result Qualifier Units MDL

Parameter	Result	Qualitier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
p/m-Xylene	16000		ug/kg	590	95.	250	
o-Xylene	870		ug/kg	590	80.	250	
cis-1,2-Dichloroethene	ND		ug/kg	290	44.	250	
Styrene	ND		ug/kg	590	91.	250	
Dichlorodifluoromethane	ND		ug/kg	2900	64.	250	
Acetone	ND		ug/kg	2900	910	250	
Carbon disulfide	ND		ug/kg	2900	590	250	
2-Butanone	ND		ug/kg	2900	100	250	
4-Methyl-2-pentanone	ND		ug/kg	2900	72.	250	
2-Hexanone	ND		ug/kg	2900	55.	250	
Bromochloromethane	ND		ug/kg	1500	58.	250	
1,2-Dibromoethane	ND		ug/kg	1200	52.	250	
n-Butylbenzene	3200		ug/kg	290	58.	250	
sec-Butylbenzene	980		ug/kg	290	61.	250	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1500	230	250	
Isopropylbenzene	1600		ug/kg	290	49.	250	
p-Isopropyltoluene	620		ug/kg	290	56.	250	
n-Propylbenzene	8200		ug/kg	290	37.	250	
1,2,3-Trichlorobenzene	ND		ug/kg	1500	49.	250	
1,2,4-Trichlorobenzene	ND		ug/kg	1500	230	250	
1,3,5-Trimethylbenzene	10000		ug/kg	1500	42.	250	
1,2,4-Trimethylbenzene	49000		ug/kg	1500	170	250	
Methyl Acetate	ND		ug/kg	5900	220	250	
Cyclohexane	ND		ug/kg	5900	320	250	
1,4-Dioxane	ND		ug/kg	29000	5100	250	
Freon-113	ND		ug/kg	5900	80.	250	
Methyl cyclohexane	12000		ug/kg	1200	370	250	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	93	70-130

L1401509

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/14 09:18

Analyst: BN

Parameter	Result	Qualifier Units	S	RL	MDL	
/olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01-06	Batch:	WG665659-3	
Methylene chloride	ND	ug/kg	9	10	2.0	
1,1-Dichloroethane	ND	ug/ko)	1.5	0.18	
Chloroform	ND	ug/k)	1.5	0.37	
Carbon tetrachloride	ND	ug/k)	1.0	0.21	
1,2-Dichloropropane	ND	ug/k)	3.5	0.23	
Dibromochloromethane	ND	ug/ko)	1.0	0.31	
1,1,2-Trichloroethane	ND	ug/k)	1.5	0.30	
Tetrachloroethene	ND	ug/ko)	1.0	0.14	
Chlorobenzene	ND	ug/ko)	1.0	0.35	
Trichlorofluoromethane	ND	ug/ko)	5.0	0.12	
1,2-Dichloroethane	ND	ug/kç)	1.0	0.15	
1,1,1-Trichloroethane	ND	ug/kç)	1.0	0.11	
Bromodichloromethane	ND	ug/k)	1.0	0.23	
trans-1,3-Dichloropropene	ND	ug/k)	1.0	0.12	
cis-1,3-Dichloropropene	ND	ug/kç	9	1.0	0.13	
Bromoform	ND	ug/kç)	4.0	0.41	
1,1,2,2-Tetrachloroethane	ND	ug/kç	9	1.0	0.17	
Benzene	ND	ug/kç	9	1.0	0.12	
Toluene	ND	ug/kç	9	1.5	0.11	
Ethylbenzene	ND	ug/kç	9	1.0	0.15	
Chloromethane	ND	ug/kç	9	5.0	0.78	
Bromomethane	ND	ug/kç	9	2.0	0.34	
Vinyl chloride	ND	ug/kç	9	2.0	0.14	
Chloroethane	ND	ug/kç	9	2.0	0.32	
1,1-Dichloroethene	ND	ug/kç	9	1.0	0.20	
trans-1,2-Dichloroethene	ND	ug/kç	9	1.5	0.21	
Trichloroethene	ND	ug/ko	9	1.0	0.15	
1,2-Dichlorobenzene	ND	ug/k	9	5.0	0.18	
1,3-Dichlorobenzene	ND	ug/k	9	5.0	0.18	
1,4-Dichlorobenzene	ND	ug/kç	9	5.0	0.24	
Methyl tert butyl ether	ND	ug/kṣ	9	2.0	0.10	

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/14 09:18

Analyst: BN

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s):	01-06 Batch	: WG665659-3
p/m-Xylene	ND	ug/k	g 2.0	0.32
o-Xylene	ND	ug/k	g 2.0	0.27
cis-1,2-Dichloroethene	ND	ug/k	g 1.0	0.15
Styrene	ND	ug/k	g 2.0	0.31
Dichlorodifluoromethane	ND	ug/k	g 10	0.22
Acetone	ND	ug/k	g 10	3.1
Carbon disulfide	ND	ug/k	g 10	2.0
2-Butanone	ND	ug/k	g 10	0.36
4-Methyl-2-pentanone	ND	ug/k	g 10	0.24
2-Hexanone	ND	ug/k	g 10	0.19
Bromochloromethane	ND	ug/k	g 5.0	0.20
1,2-Dibromoethane	ND	ug/k	g 4.0	0.18
n-Butylbenzene	ND	ug/k	g 1.0	0.20
sec-Butylbenzene	ND	ug/k	g 1.0	0.20
1,2-Dibromo-3-chloropropane	ND	ug/k	g 5.0	0.79
Isopropylbenzene	ND	ug/k	g 1.0	0.17
p-Isopropyltoluene	ND	ug/k	g 1.0	0.19
n-Propylbenzene	ND	ug/k	g 1.0	0.12
1,2,3-Trichlorobenzene	ND	ug/k	g 5.0	0.17
1,2,4-Trichlorobenzene	ND	ug/k	g 5.0	0.79
1,3,5-Trimethylbenzene	ND	ug/k	g 5.0	0.14
1,2,4-Trimethylbenzene	ND	ug/k	g 5.0	0.57
Methyl Acetate	ND	ug/k	g 20	0.76
Cyclohexane	ND	ug/k	g 20	1.1
1,4-Dioxane	ND	ug/k	g 100	17.
Freon-113	ND	ug/k	g 20	0.27
Methyl cyclohexane	ND	ug/k	g 4.0	1.3

L1401509

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/14 09:18

Analyst: BN

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG665659-3

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Acceptance **Surrogate** %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 98 70-130 Toluene-d8 93 70-130 4-Bromofluorobenzene 95 70-130 Dibromofluoromethane 101 70-130

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG665659-1	WG665659-2			
Methylene chloride	111		106		70-130	5	30	
1,1-Dichloroethane	109		101		70-130	8	30	
Chloroform	110		104		70-130	6	30	
Carbon tetrachloride	108		96		70-130	12	30	
1,2-Dichloropropane	111		105		70-130	6	30	
Dibromochloromethane	102		100		70-130	2	30	
1,1,2-Trichloroethane	102		100		70-130	2	30	
Tetrachloroethene	101		91		70-130	10	30	
Chlorobenzene	103		98		70-130	5	30	
Trichlorofluoromethane	132		115		70-139	14	30	
1,2-Dichloroethane	110		107		70-130	3	30	
1,1,1-Trichloroethane	110		98		70-130	12	30	
Bromodichloromethane	111		106		70-130	5	30	
trans-1,3-Dichloropropene	101		97		70-130	4	30	
cis-1,3-Dichloropropene	110		105		70-130	5	30	
1,1-Dichloropropene	112		100		70-130	11	30	
Bromoform	95		94		70-130	1	30	
1,1,2,2-Tetrachloroethane	96		94		70-130	2	30	
Benzene	110		102		70-130	8	30	
Toluene	99		93		70-130	6	30	
Ethylbenzene	101		94		70-130	7	30	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-06 Batch:	WG665659-1	WG665659-2			
Chloromethane	97		88		52-130	10		30
Bromomethane	120		111		57-147	8		30
Vinyl chloride	116		101		67-130	14		30
Chloroethane	113		105		50-151	7		30
1,1-Dichloroethene	112		98		65-135	13		30
trans-1,2-Dichloroethene	109		100		70-130	9		30
Trichloroethene	111		102		70-130	8		30
1,2-Dichlorobenzene	98		95		70-130	3		30
1,3-Dichlorobenzene	98		93		70-130	5		30
1,4-Dichlorobenzene	98		94		70-130	4		30
Methyl tert butyl ether	107		103		66-130	4		30
p/m-Xylene	103		96		70-130	7		30
o-Xylene	103		96		70-130	7		30
cis-1,2-Dichloroethene	112		104		70-130	7		30
Dibromomethane	114		108		70-130	5		30
Styrene	104		98		70-130	6		30
Dichlorodifluoromethane	102		89		30-146	14		30
Acetone	138		114		54-140	19		30
Carbon disulfide	104		92		59-130	12		30
2-Butanone	126		111		70-130	13		30
Vinyl acetate	107		104		70-130	3		30

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: \	WG665659-1	WG665659-2			
4-Methyl-2-pentanone	104		101		70-130	3	30	
1,2,3-Trichloropropane	95		93		68-130	2	30	
2-Hexanone	100		92		70-130	8	30	
Bromochloromethane	116		112		70-130	4	30	
2,2-Dichloropropane	109		98		70-130	11	30	
1,2-Dibromoethane	100		98		70-130	2	30	
1,3-Dichloropropane	100		98		69-130	2	30	
1,1,1,2-Tetrachloroethane	102		98		70-130	4	30	
Bromobenzene	95		91		70-130	4	30	
n-Butylbenzene	100		91		70-130	9	30	
sec-Butylbenzene	98		90		70-130	9	30	
tert-Butylbenzene	96		89		70-130	8	30	
o-Chlorotoluene	97		90		70-130	7	30	
p-Chlorotoluene	96		91		70-130	5	30	
1,2-Dibromo-3-chloropropane	88		91		68-130	3	30	
Hexachlorobutadiene	93		86		67-130	8	30	
Isopropylbenzene	96		88		70-130	9	30	
p-Isopropyltoluene	97		90		70-130	7	30	
Naphthalene	94		93		70-130	1	30	
Acrylonitrile	105		105		70-130	0	30	
Isopropyl Ether	105		101		66-130	4	30	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG665659-1	WG665659-2			
tert-Butyl Alcohol	96		97		70-130	1		30
n-Propylbenzene	98		90		70-130	9		30
1,2,3-Trichlorobenzene	97		97		70-130	0		30
1,2,4-Trichlorobenzene	98		96		70-130	2		30
1,3,5-Trimethylbenzene	97		90		70-130	7		30
1,2,4-Trimethylbenzene	96		91		70-130	5		30
Methyl Acetate	98		96		51-146	2		30
Ethyl Acetate	104		103		70-130	1		30
Acrolein	93		91		70-130	2		30
Cyclohexane	112		98		59-142	13		30
1,4-Dioxane	111		109		65-136	2		30
Freon-113	117		102		50-139	14		30
1,4-Diethylbenzene	98		90		70-130	9		30
4-Ethyltoluene	97		90		70-130	7		30
1,2,4,5-Tetramethylbenzene	98		93		70-130	5		30
Tetrahydrofuran	101		94		66-130	7		30
Ethyl ether	116		111		67-130	4		30
trans-1,4-Dichloro-2-butene	92		90		70-130	2		30
Methyl cyclohexane	117		102		70-130	14		30
Ethyl-Tert-Butyl-Ether	106		102		70-130	4		30
Tertiary-Amyl Methyl Ether	108		103		70-130	5		30

Project Name: 2424 HAMBURG TURNPIKE

L1401509

Project Number: 0298-014-001 Report Date:

Lab Number:

01/22/14

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-06 Batch: WG665659-1 WG665659-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		98		70-130	
Toluene-d8	93		94		70-130	
4-Bromofluorobenzene	95		95		70-130	
Dibromofluoromethane	100		101		70-130	

SEMIVOLATILES

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-01 Date Collected: 01/14/14 11:45

Client ID: SB-4 (6-8) Date Received: 01/15/14

2424 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 1,8270D **Extraction Date:** 01/17/14 03:10

Analytical Date: 01/18/14 22:59

Analyst: RC 76% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	490		ug/kg	170	44.	1
Fluoranthene	3200		ug/kg	130	40.	1
Naphthalene	8000		ug/kg	220	72.	1
Benzo(a)anthracene	1100		ug/kg	130	42.	1
Benzo(a)pyrene	760		ug/kg	170	53.	1
Benzo(b)fluoranthene	1200		ug/kg	130	44.	1
Benzo(k)fluoranthene	380		ug/kg	130	41.	1
Chrysene	1200		ug/kg	130	42.	1
Acenaphthylene	340		ug/kg	170	40.	1
Anthracene	860		ug/kg	130	36.	1
Benzo(ghi)perylene	470		ug/kg	170	45.	1
Fluorene	1300		ug/kg	220	62.	1
Phenanthrene	3800		ug/kg	130	42.	1
Dibenzo(a,h)anthracene	120	J	ug/kg	130	42.	1
Indeno(1,2,3-cd)pyrene	540		ug/kg	170	48.	1
Pyrene	2300		ug/kg	130	42.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	82		30-120	
4-Terphenyl-d14	81		18-120	

01/15/14

Date Received:

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-02 D Date Collected: 01/14/14 12:30

Client ID: SB-5 (6-8)

Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 01/17/14 03:10
Analytical Date: 01/21/14 20:21

Analyst: RC Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	3300		ug/kg	3200	840	20
Fluoranthene	140000		ug/kg	2400	750	20
Naphthalene	50000		ug/kg	4100	1400	20
Benzo(a)anthracene	71000		ug/kg	2400	800	20
Benzo(a)pyrene	63000		ug/kg	3200	1000	20
Benzo(b)fluoranthene	79000		ug/kg	2400	820	20
Benzo(k)fluoranthene	33000		ug/kg	2400	780	20
Chrysene	71000		ug/kg	2400	800	20
Acenaphthylene	21000		ug/kg	3200	760	20
Anthracene	39000		ug/kg	2400	680	20
Benzo(ghi)perylene	38000		ug/kg	3200	850	20
Fluorene	24000		ug/kg	4100	1200	20
Phenanthrene	130000		ug/kg	2400	800	20
Dibenzo(a,h)anthracene	10000		ug/kg	2400	790	20
Indeno(1,2,3-cd)pyrene	41000		ug/kg	3200	900	20
Pyrene	110000		ug/kg	2400	790	20

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	0	Q	23-120
2-Fluorobiphenyl	0	Q	30-120
4-Terphenyl-d14	0	Q	18-120

01/15/14

Date Received:

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-03 D Date Collected: 01/14/14 14:15

Client ID: SB-6 (2-4)

2424 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Analytical Method: 1,8270D **Extraction Date:** 01/17/14 03:10 Analytical Date: 01/21/14 20:46

Analyst: RC 83% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	ND		ug/kg	3200	820	20
Fluoranthene	3400		ug/kg	2400	730	20
Naphthalene	48000		ug/kg	4000	1300	20
Benzo(a)anthracene	1600	J	ug/kg	2400	780	20
Benzo(a)pyrene	1600	J	ug/kg	3200	970	20
Benzo(b)fluoranthene	2300	J	ug/kg	2400	800	20
Benzo(k)fluoranthene	1000	J	ug/kg	2400	760	20
Chrysene	1600	J	ug/kg	2400	780	20
Acenaphthylene	ND		ug/kg	3200	740	20
Anthracene	760	J	ug/kg	2400	660	20
Benzo(ghi)perylene	1600	J	ug/kg	3200	830	20
Fluorene	1400	J	ug/kg	4000	1100	20
Phenanthrene	3200		ug/kg	2400	780	20
Dibenzo(a,h)anthracene	ND		ug/kg	2400	770	20
Indeno(1,2,3-cd)pyrene	1800	J	ug/kg	3200	880	20
Pyrene	2700		ug/kg	2400	770	20

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	0	Q	23-120
2-Fluorobiphenyl	0	Q	30-120
4-Terphenyl-d14	0	Q	18-120

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: Date Collected: L1401509-04 01/14/14 13:45

Client ID: SB-7 (2-4) Date Received: 01/15/14

Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified Matrix: **Extraction Method:** EPA 3546

Analytical Method: 1,8270D **Extraction Date:** 01/17/14 03:34

Analytical Date: 01/19/14 00:22 RC Analyst:

86%

Percent Solids:

Indeno(1,2,3-cd)pyrene

Pyrene

Qualifier RL MDL **Dilution Factor Parameter** Result Units Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND ug/kg 150 40. 1 270 35. Fluoranthene ug/kg 120 1 Naphthalene 600 ug/kg 190 64. 1 190 1 Benzo(a)anthracene ug/kg 120 38. 190 150 47. 1 Benzo(a)pyrene ug/kg Benzo(b)fluoranthene 260 ug/kg 120 39. 1 Benzo(k)fluoranthene 96 J ug/kg 120 37. 1 180 Chrysene ug/kg 120 38. 1 Acenaphthylene 100 J ug/kg 150 36. 1 Anthracene 75 J ug/kg 120 32. 1 Benzo(ghi)perylene 130 J 150 40. 1 ug/kg Fluorene 56 J ug/kg 190 55. 1 Phenanthrene 180 ug/kg 120 38. 1 Dibenzo(a,h)anthracene ND ug/kg 120 37. 1 J 1

ug/kg

ug/kg

150

120

43.

37.

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	71		30-120	
4-Terphenyl-d14	79		18-120	

140

220

1

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-05

Client ID: SB-8 (6-8)

Sample Location: 2424 HAMBURG TURNPIKE

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 01/19/14 00:50

Analyst: RC Percent Solids: 64%

Date Collected: 01/14/14 16:00
Date Received: 01/15/14
Field Prep: Not Specified

Field Prep: Not Specified
Extraction Method: EPA 3546

Extraction Date: 01/17/14 03:35

Result	Qualifier	Units	RL	MDL	Dilution Factor
stborough Lab					
ND		ug/kg	200	53.	1
300		ug/kg	150	47.	1
10000		ug/kg	260	85.	1
110	J	ug/kg	150	50.	1
71	J	ug/kg	200	62.	1
120	J	ug/kg	150	52.	1
51	J	ug/kg	150	49.	1
160		ug/kg	150	50.	1
ND		ug/kg	200	48.	1
74	J	ug/kg	150	42.	1
60	J	ug/kg	200	53.	1
130	J	ug/kg	260	73.	1
420		ug/kg	150	50.	1
ND		ug/kg	150	50.	1
60	J	ug/kg	200	57.	1
230		ug/kg	150	50.	1
	Stborough Lab ND 300 10000 110 71 120 51 160 ND 74 60 130 420 ND 60	Stborough Lab ND 300 10000 110 J 71 J 120 J 51 J 160 ND 74 J 60 J 130 J 420 ND 60 J	ND ug/kg 300 ug/kg 10000 ug/kg 1110 J ug/kg 71 J ug/kg 120 J ug/kg 51 J ug/kg 160 ug/kg ND ug/kg 74 J ug/kg 60 J ug/kg 130 J ug/kg 420 ug/kg ND ug/kg ND ug/kg	ND ug/kg 200 300 ug/kg 150 10000 ug/kg 260 110 J ug/kg 200 71 J ug/kg 200 120 J ug/kg 150 51 J ug/kg 150 160 ug/kg 150 ND ug/kg 200 74 J ug/kg 200 74 J ug/kg 200 130 J ug/kg 200 130 J ug/kg 150 ND ug/kg 200 ND ug/kg 150	ND ug/kg 200 53. 300 ug/kg 150 47. 10000 ug/kg 260 85. 110 J ug/kg 150 50. 71 J ug/kg 200 62. 120 J ug/kg 150 52. 51 J ug/kg 150 50. ND ug/kg 150 50. ND ug/kg 150 50. ND ug/kg 150 49. 48. 74 J ug/kg 200 48. 74 J ug/kg 200 53. 130 J ug/kg 150 42. 60 J ug/kg 150 50. ND ug/kg 150 50.

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	62		23-120	
2-Fluorobiphenyl	70		30-120	
4-Terphenyl-d14	74		18-120	

Lab Number: **Project Name:** 2424 HAMBURG TURNPIKE L1401509

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-06 Date Collected: 01/14/14 16:30

Client ID: SB-9 (6-8) Date Received: 01/15/14

2424 HAMBURG TURNPIKE Sample Location: Field Prep: Not Specified **Extraction Method:** EPA 3546 Matrix: Soil

Analytical Method: 1,8270D **Extraction Date:** 01/17/14 03:35 Analytical Date: 01/19/14 01:18

Analyst: RC 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	83	J	ug/kg	150	40.	1
		J				<u>.</u>
Fluoranthene	1000		ug/kg	120	36.	1
Naphthalene	3300		ug/kg	190	64.	1
Benzo(a)anthracene	470		ug/kg	120	38.	1
Benzo(a)pyrene	390		ug/kg	150	47.	1
Benzo(b)fluoranthene	480		ug/kg	120	39.	1
Benzo(k)fluoranthene	210		ug/kg	120	37.	1
Chrysene	460		ug/kg	120	38.	1
Acenaphthylene	200		ug/kg	150	36.	1
Anthracene	360		ug/kg	120	32.	1
Benzo(ghi)perylene	250		ug/kg	150	40.	1
Fluorene	350		ug/kg	190	55.	1
Phenanthrene	1300		ug/kg	120	38.	1
Dibenzo(a,h)anthracene	51	J	ug/kg	120	37.	1
Indeno(1,2,3-cd)pyrene	250		ug/kg	150	43.	1
Pyrene	760		ug/kg	120	38.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	70		23-120	
2-Fluorobiphenyl	70		30-120	
4-Terphenyl-d14	75		18-120	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Report Date: 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8270D 01/18/14 16:30

Analyst: RC

Extraction Method: EPA 3546
Extraction Date: 01/17/14 03:10

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	/IS - Westborough	Lab for s	ample(s):	01-06	Batch:	WG665228-1
Acenaphthene	ND		ug/kg	130		34.
Fluoranthene	ND		ug/kg	99		30.
Naphthalene	ND		ug/kg	160		55.
Benzo(a)anthracene	ND		ug/kg	99		32.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		33.
Benzo(k)fluoranthene	ND		ug/kg	99		32.
Chrysene	ND		ug/kg	99		32.
Acenaphthylene	ND		ug/kg	130		31.
Anthracene	ND		ug/kg	99		28.
Benzo(ghi)perylene	ND		ug/kg	130		34.
Fluorene	ND		ug/kg	160		47.
Phenanthrene	ND		ug/kg	99		32.
Dibenzo(a,h)anthracene	ND		ug/kg	99		32.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		37.
Pyrene	ND		ug/kg	99		32.

Tentatively Identified Compounds			
Unknown	150	J	ug/kg

L1401509

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001 Report Date:

01/22/14

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 01/18/14 16:30

Analyst:

RC

Extraction Method: EPA 3546 01/17/14 03:10 Extraction Date:

Result Qualifier Units RL MDL **Parameter**

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG665228-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	83	25-120
Phenol-d6	84	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	84	30-120
2,4,6-Tribromophenol	88	0-136
4-Terphenyl-d14	88	18-120

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s):	01-06 Bate	ch: WG665228-2 WG665228	-3	
Acenaphthene	97		97	31-137	0	50
1,2,4-Trichlorobenzene	84		82	38-107	2	50
Hexachlorobenzene	92		92	40-140	0	50
Bis(2-chloroethyl)ether	92		90	40-140	2	50
2-Chloronaphthalene	92		94	40-140	2	50
1,2-Dichlorobenzene	87		82	40-140	6	50
1,3-Dichlorobenzene	85		80	40-140	6	50
1,4-Dichlorobenzene	84		81	28-104	4	50
3,3'-Dichlorobenzidine	61		51	40-140	18	50
2,4-Dinitrotoluene	97	Q	100	Q 28-89	3	50
2,6-Dinitrotoluene	94		94	40-140	0	50
Fluoranthene	101		104	40-140	3	50
4-Chlorophenyl phenyl ether	95		97	40-140	2	50
4-Bromophenyl phenyl ether	91		93	40-140	2	50
Bis(2-chloroisopropyl)ether	91		89	40-140	2	50
Bis(2-chloroethoxy)methane	93		89	40-117	4	50
Hexachlorobutadiene	84		85	40-140	1	50
Hexachlorocyclopentadiene	71		69	40-140	3	50
Hexachloroethane	88		85	40-140	3	50
Isophorone	95		92	40-140	3	50
Naphthalene	90		90	40-140	0	50

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	01-06 Bat	ch: WG665228-2 WG665228-	3	
Nitrobenzene	97		96	40-140	1	50
NitrosoDiPhenylAmine(NDPA)/DPA	101		100		1	50
n-Nitrosodi-n-propylamine	93		90	32-121	3	50
Bis(2-Ethylhexyl)phthalate	117		120	40-140	3	50
Butyl benzyl phthalate	106		107	40-140	1	50
Di-n-butylphthalate	109		113	40-140	4	50
Di-n-octylphthalate	121		123	40-140	2	50
Diethyl phthalate	107		106	40-140	1	50
Dimethyl phthalate	99		100	40-140	1	50
Benzo(a)anthracene	104		106	40-140	2	50
Benzo(a)pyrene	104		104	40-140	0	50
Benzo(b)fluoranthene	93		95	40-140	2	50
Benzo(k)fluoranthene	113		114	40-140	1	50
Chrysene	104		105	40-140	1	50
Acenaphthylene	93		94	40-140	1	50
Anthracene	108		110	40-140	2	50
Benzo(ghi)perylene	95		99	40-140	4	50
Fluorene	98		98	40-140	0	50
Phenanthrene	104		108	40-140	4	50
Dibenzo(a,h)anthracene	84		89	40-140	6	50
Indeno(1,2,3-cd)pyrene	88		92	40-140	4	50

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

arameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery imits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	01-06 Batch:	WG665228-2	WG665228-3			
Pyrene	100		102	35	5-142	2		50
Biphenyl	99		99			0		50
4-Chloroaniline	88		91	40	0-140	3		50
2-Nitroaniline	90		91	47	7-134	1		50
3-Nitroaniline	47		35	26	6-129	29		50
4-Nitroaniline	86		83	41	1-125	4		50
Dibenzofuran	104		103	40	0-140	1		50
2-Methylnaphthalene	91		91	40	0-140	0		50
1,2,4,5-Tetrachlorobenzene	91		89	40	0-117	2		50
Acetophenone	94		90	14	1-144	4		50
2,4,6-Trichlorophenol	92		92	30	0-130	0		50
P-Chloro-M-Cresol	102		102	26	6-103	0		50
2-Chlorophenol	88		88	25	5-102	0		50
2,4-Dichlorophenol	90		90	30	0-130	0		50
2,4-Dimethylphenol	100		96	30	0-130	4		50
2-Nitrophenol	88		86	30	0-130	2		50
4-Nitrophenol	107		104	11	1-114	3		50
2,4-Dinitrophenol	84		85	4	-130	1		50
4,6-Dinitro-o-cresol	90		86	10	0-130	5		50
Pentachlorophenol	98		99	17	7-109	1		50
Phenol	93	Q	89	2	6-90	4		50

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/	%. Qual	Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS -	· Westborough Lab Associat	ed sample(s):	: 01-06 Ba	atch:	WG665228-2	2 WG665228-	-3			
2-Methylphenol	95		90			30-130.	5		50	
3-Methylphenol/4-Methylphenol	95		92			30-130	3		50	
2,4,5-Trichlorophenol	93		96			30-130	3		50	
Benzoic Acid	66		68				3		50	
Benzyl Alcohol	87		85			40-140	2		50	
Carbazole	101		102			54-128	1		50	

LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria
74	70	25-120
74	70	25-120
77	75	10-120
87	84	23-120
81	81	30-120
84	86	0-136
83	83	18-120
	%Recovery 74 77 87 81 84	%Recovery Qual %Recovery 74 70 77 75 87 84 81 81 84 86

INORGANICS & MISCELLANEOUS

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Report Date: **Project Number:** 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: Date Collected: L1401509-01 01/14/14 11:45

SB-4 (6-8) Client ID: Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE Not Specified

Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	76.2		%	0.100	NA	1	-	01/16/14 23:21	30,2540G	RT

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-02 Date Collected: 01/14/14 12:30

Client ID: SB-5 (6-8) Date Received: 01/15/14
Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total % 0.100 NA 1 01/16/14 23:21 30,2540G RT

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: Report Date: 01/22/14 0298-014-001

SAMPLE RESULTS

Lab ID: Date Collected: L1401509-03 01/14/14 14:15

SB-6 (2-4) Client ID: Date Received: 01/15/14 2424 HAMBURG TURNPIKE

Matrix: Soil

Not Specified Sample Location: Field Prep:

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter**

Analyst General Chemistry - Westborough Lab Solids, Total 82.8 % 0.100 NA 1 01/16/14 23:21 30,2540G RT

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

SAMPLE RESULTS

Lab ID: L1401509-04 Date Collected: 01/14/14 13:45

Client ID: SB-7 (2-4) Date Received: 01/15/14
Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	86.0		%	0.100	NA	1	-	01/16/14 23:21	30,2540G	RT

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Report Date: **Project Number:** 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: Date Collected: 01/14/14 16:00 L1401509-05

SB-8 (6-8) Client ID: Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE

Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	64.1		%	0.100	NA	1	-	01/16/14 23:21	30,2540G	RT

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401509

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401509-06 Date Collected: 01/14/14 16:30

Client ID: SB-9 (6-8) Date Received: 01/15/14
Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 84.9 % 0.100 NA 1 01/16/14 23:21 30,2540G RT

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** 2424 HAMBURG TURNPIKE L1401509

01/22/14 **Project Number:** Report Date: 0298-014-001

Parameter	Native Sam	nple D	uplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	WG665196-1	QC Sample: L1	401410-01	Client ID:	DUP Sample
Solids, Total	86.5		87.0	%	1		20

Project Name: 2424 HAMBURG TURNPIKE

Lab Number: L1401509 **Report Date:** 01/22/14 **Project Number:** 0298-014-001

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1401509-01A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-01B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1401509-02A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-02B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1401509-03A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-03B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1401509-04A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-04B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1401509-05A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-05B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1401509-06A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)
L1401509-06B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8270(14),TS(7)

Project Name:2424 HAMBURG TURNPIKELab Number:L1401509Project Number:0298-014-001Report Date:01/22/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L1401509Project Number:0298-014-001Report Date:01/22/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L1401509Project Number:0298-014-001Report Date:01/22/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endeauten L. Endeauten author. Endeauten Aldrin Aldrin alpha-blanda BCR.

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дерна	CH	AIN OF	F CU	STO	OY .	PAGE	OF	Dai	te Rec	'd in I	Lab:		ا إن	j.			ALP		1 5 1 5 1 5 1 5	11.00	1221413 14015	40.00	
WESTBORO, MA	MANSFIELD, MA		Project	Informati	ion			Re	eport	Infor	matic	on - Da	ta De	livera	bles	2988			nforma	the set of the factor of set	And the state of t	and the state of t	23807 A 19945
TEL: 508-898-9220	TEL: 508-822-9300		_			hive 1	The sale		FAX			EMAI	L				3 Sar	me as	s Client	info	PO #:		
FAX: 508-898-9193 Client Information	FAX: 508-822-328	8	Project I	ocation:	<u> </u>	1 -	1	X	ADEx			Add'l	Delive	rables									
• •			Design of the	29	24 Ham	burg lur.	17/KC	Reg	julato	ory Re	equir	ement	s/Rep	ort L	imits	3							
Client: Tunke		. /	Project #	lame: 24 ocation: 24 t: 0298 lanager:	3-014 U 1	-001	1 1	Stat	e /Fed	l Prog	gram			Criter	ia						L		
Address: 2556 A	Hamburg To	Vrapike.	Project N	fanager:	Mike.	Lesakon	JsK <u>i</u>									. *							
Buttale N	MALI	ZE 14218	ALPHA (Quote #:																			
Phone: 7/6 2	856-059	9	Turn-A	Around Tin	ne					•													
Fax: 716 85	6-1583		Ük Standa	ord D	DI IQLI	/ confirmed if pre-ap																	
Email:							iprovea:)		~ /				/	///	/ /		$\overline{}$	$ \top $	_/	/			T 0
☐ These samples hav	e been previously	analyzed by Alpha	- Date Du	^{le:} 1/22/	114	Time:			10/1/ 12/1/1/2	y/ ,		/ /	/		- /				/ /		PLE HAN	DLING	A
Other Project Sp	pecific Requir	rements/Comr	nents/De	etection Li	mits:			3			∀	/ /				/ ,	/ /	/ /	/ /	<i>Filtrat</i> □ Do			#
					٠.			A	(E)	/ ガ	/ /			/ /	/ /	/ /					t needed b to do		В
									U/			/ /	/ /	/ /						Prese	ervation		O T
				Calle		Sample	Camaniani	-	√ {			/ /				/ ,	/ /	/	/		b to do specify below)		T L
ALPHA Lab ID		Sample ID		Date	ection Time	Matrix	Sampler's Initials	s //]		/ /								Sam	ple Spe	ecific Com	ments	S
0/509-01	5B- H	(6-8)		1-14-14	1145	Soil	PWU	χ	Х												· ·	\$	2
-02	58-5	(6-8)		1	1230	1 1		K	X														Z
-03	58-6	(2.4)			1415			Х	X									\perp			·		2
-74	50-7	(2-4)			1345			×	X					ļ <u>.</u>				_					2
70%	SB-8	(6-8)			1600			X	×									\perp					2
-06	SB-9	(6-8)		4	1630		Ψ	X	X														2_
														<u> </u>									
						,					-		-										
		_																					
V 44 8447 4 8 43	<u></u>				· · [Conta	ainer Type														learly, leg		
	•				•	Pr	eservative														ples can n ound time		
	•	A	Relingu	ished By:	•	Dat	e/Time			Re	geived	l By: 🌈	$\hat{\mathcal{L}}$		<u> </u>	ate/T	ime]:	start u	ntil any	ambiguiti	es are re	solved.
		fel	4 44	4		1-15-1;	4 1645		1 V		gr.	كسك		U	15/1	y Ì	6	ur	Alpha's	s Terms	ubmitted a s and Con	ne subje ditions:	GI (U)
FORM NO: 01-01 (rev. 14-00	CT-07)		- X7.	يسر		1/15/2	4215			N	چ			///	7/4	(2	<u>m2</u>	3	See re	verse s	iide.	A P. PASSURE	
Page 53 of 53		Ju Co	WE			1767T	~ 0000	<u> </u>	الأكار	7					L <i>[][Y]</i>	14 (מענ		<u> </u>				時日 基輯

ANALYTICAL REPORT

Lab Number: L1401510

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Report Date: 01/22/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1401510

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001 Report Date: 01/22/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1401510-01	TMW-2	2424 HAMBURG TURNPIKE	01/14/14 15:15
L1401510-02	TMW-3	2424 HAMBURG TURNPIKE	01/14/14 15:00

Project Number: 0298-014-001 **Report Date:** 01/22/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services a	at 800-6	524-9220	with a	any q	uestions.

Project Name:2424 HAMBURG TURNPIKELab Number:L1401510Project Number:0298-014-001Report Date:01/22/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/22/14

Cypelling The Cynthia McQueen

ORGANICS

VOLATILES

01/15/14

Not Specified

Date Received:

Field Prep:

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L1401510

Project Number: Report Date: 0298-014-001 01/22/14

SAMPLE RESULTS

Lab ID: L1401510-01 D

Date Collected: 01/14/14 15:15

Client ID: TMW-2

Sample Location: 2424 HAMBURG TURNPIKE

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/20/14 19:31

PD Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	120	35.	50
1,1-Dichloroethane	ND		ug/l	120	35.	50
Chloroform	ND		ug/l	120	35.	50
Carbon tetrachloride	ND		ug/l	25	6.7	50
1,2-Dichloropropane	ND		ug/l	50	6.6	50
Dibromochloromethane	ND		ug/l	25	7.5	50
1,1,2-Trichloroethane	ND		ug/l	75	25.	50
Tetrachloroethene	ND		ug/l	25	9.1	50
Chlorobenzene	ND		ug/l	120	35.	50
Trichlorofluoromethane	ND		ug/l	120	35.	50
1,2-Dichloroethane	ND		ug/l	25	6.6	50
1,1,1-Trichloroethane	ND		ug/l	120	35.	50
Bromodichloromethane	ND		ug/l	25	9.6	50
trans-1,3-Dichloropropene	ND		ug/l	25	8.2	50
cis-1,3-Dichloropropene	ND		ug/l	25	7.2	50
Bromoform	ND		ug/l	100	32.	50
1,1,2,2-Tetrachloroethane	ND		ug/l	25	7.2	50
Benzene	520		ug/l	25	7.9	50
Toluene	3000		ug/l	120	35.	50
Ethylbenzene	1500		ug/l	120	35.	50
Chloromethane	ND		ug/l	120	35.	50
Bromomethane	ND		ug/l	120	35.	50
Vinyl chloride	ND		ug/l	50	16.	50
Chloroethane	ND		ug/l	120	35.	50
1,1-Dichloroethene	ND		ug/l	25	7.1	50
trans-1,2-Dichloroethene	ND		ug/l	120	35.	50
Trichloroethene	ND		ug/l	25	8.7	50
1,2-Dichlorobenzene	ND		ug/l	120	35.	50
1,3-Dichlorobenzene	ND		ug/l	120	35.	50
1,4-Dichlorobenzene	ND		ug/l	120	35.	50
Methyl tert butyl ether	ND		ug/l	120	35.	50

Dilution Factor

50

50

50

50

50

50

50

50

50

50

50

50

50

MDL

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401510

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: D L1401510-01

Parameter

Isopropylbenzene

p-Isopropyltoluene

n-Propylbenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Freon-113

Methyl cyclohexane

Naphthalene

Date Collected: 01/14/14 15:15

Qualifier

Units

RL

Client ID: TMW-2 Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Result

Volatile Organics by GC/MS - Westborough Lab p/m-Xylene 5600 120 35. 50 ug/l ug/l o-Xylene 2200 120 35. 50 cis-1,2-Dichloroethene ND 120 35. 50 ug/l ND Styrene ug/l 120 35. 50 Dichlorodifluoromethane ND ug/l 250 50. 50 J 140 250 50 Acetone ug/l 50. Carbon disulfide ND ug/l 250 50. 50 2-Butanone ND ug/l 250 50. 50 ND 4-Methyl-2-pentanone ug/l 250 50. 50 ND 50. 50 2-Hexanone ug/l 250 Bromochloromethane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 n-Butylbenzene ND 120 35. 50 ug/l ND 120 35. 50 sec-Butylbenzene ug/l ND 120 35. 50 tert-Butylbenzene ug/l 1,2-Dibromo-3-chloropropane ND 120 35. 50 ug/l

J

J

J

ug/l

120

120

120

120

120

120

120

120

100

500

12000

120

500

35.

35.

35.

35.

35.

35.

35.

35.

12.

12.

2000

35.

14.

56

ND

340

210

ND

ND

490

2000

ND

180

ND

ND

97

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	85		70-130	

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L1401510

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: Date Collected: 01/14/14 15:00

Client ID: TMW-3 Date Received: 01/15/14 Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C

01/22/14 10:34

Analyst: MS

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.34	J	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	6.3		ug/l	0.50	0.16	1
Toluene	12		ug/l	2.5	0.70	1
Ethylbenzene	8.6		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1

01/14/14 15:00

Date Collected:

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401510

Project Number: 0298-014-001 **Report Date:** 01/22/14

SAMPLE RESULTS

Lab ID: L1401510-02

Client ID: TMW-3 Date Received: 01/15/14
Sample Location: 2424 HAMBURG TURNPIKE Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab p/m-Xylene 46 2.5 0.70 ug/l 1 ug/l o-Xylene 24 2.5 0.70 1 cis-1,2-Dichloroethene ND 2.5 0.70 1 ug/l ND Styrene ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 15 Acetone ug/l 5.0 1.0 1 J Carbon disulfide 1.1 ug/l 5.0 1.0 1 1 2-Butanone ND ug/l 5.0 1.0 ND 4-Methyl-2-pentanone ug/l 5.0 1.0 1 ND 1.0 2-Hexanone ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene 2.0 J 2.5 0.70 1 ug/l J 0.79 2.5 0.70 1 sec-Butylbenzene ug/l ND 2.5 0.70 1 tert-Butylbenzene ug/l 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l Isopropylbenzene 1.8 J ug/l 2.5 0.70 1 p-Isopropyltoluene ND 2.5 0.70 1 ug/l Naphthalene 9.2 ug/l 2.5 0.70 1 6.7 2.5 0.70 1 n-Propylbenzene ug/l 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene 22 2.5 0.70 1 ug/l 1,2,4-Trimethylbenzene 85 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 5.4 J ug/l 10 0.24 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND ug/l 2.5 0.70 1 8.8 J 0.29 Methyl cyclohexane ug/l 10 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	109		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	97		70-130	

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/20/14 13:09

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	01 Batch:	WG665926-3	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.13	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.33	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.14	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.17	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/20/14 13:09

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG665926-3	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.0	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.24	
1,4-Dioxane	ND	ug/l	250	41.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.29	

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/20/14 13:09

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG665926-3

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	103		70-130	

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/22/14 10:07

Analyst: MS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 02	2 Batch:	WG666244-3
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.33
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.17
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/22/14 10:07

Analyst: MS

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG666244-3 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromochloromethane ND ug/l 2.5 0.70 1,2-Dibromochloromethane ND ug/l 2.5 0.70 1,2-Dibromochloromethane ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 4-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70	Volatile Organics by GC/MS	- Westborough La	b for sample	e(s): 0	2 Batch:	WG666244-3
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodiffuoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 4-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 <	p/m-Xylene	ND		ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70	o-Xylene	ND		ug/l	2.5	0.70
Dichlorodiffuoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.0 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 P-Isopropylbouene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5	Styrene	ND		ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND		ug/l	5.0	1.0
2-Butanone ND	Acetone	ND		ug/l	5.0	1.0
A-Methyl-2-pentanone ND	Carbon disulfide	ND		ug/l	5.0	1.0
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.0
ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 P-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 N-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l	2-Hexanone	ND		ug/l	5.0	1.0
n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 41 Freon-113 ND ug/l 2.5	Bromochloromethane	ND		ug/l	2.5	0.70
sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 41 Freon-113 ND ug/l 2	1,2-Dibromoethane	ND		ug/l	2.0	0.65
tert-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 41. Freon-113 ND ug/l 2.5 0.70	n-Butylbenzene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 41 1,4-Dioxane ND ug/l 2.5 0.70	sec-Butylbenzene	ND		ug/l	2.5	0.70
Isopropylbenzene ND ug/l 2.5 0.70	tert-Butylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene ND ug/l 2.5 0.70 Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Naphthalene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND		ug/l	2.5	0.70
n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	p-Isopropyltoluene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	Naphthalene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	n-Propylbenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41 Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41. Freon-113 ND ug/l 2.5 0.70	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.24 1,4-Dioxane ND ug/l 250 41. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 41. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND		ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND		ug/l	10	0.24
	1,4-Dioxane	ND		ug/l	250	41.
Methyl cyclohexane ND ug/l 10 0.29	Freon-113	ND		ug/l	2.5	0.70
	Methyl cyclohexane	ND		ug/l	10	0.29

Project Number: 0298-014-001 **Report Date:** 01/22/14

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/22/14 10:07

Analyst: MS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG666244-3

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	125		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	103		70-130	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s):	01 Batch: WG	665926-1	WG665926-2			
Methylene chloride	94		92		70-130	2		20
1,1-Dichloroethane	108		104		70-130	4		20
Chloroform	106		103		70-130	3		20
2-Chloroethylvinyl ether	116		115		70-130	1		20
Carbon tetrachloride	97		94		63-132	3		20
1,2-Dichloropropane	105		102		70-130	3		20
Dibromochloromethane	100		98		63-130	2		20
1,1,2-Trichloroethane	117		113		70-130	3		20
Tetrachloroethene	100		96		70-130	4		20
Chlorobenzene	105		102		75-130	3		20
Trichlorofluoromethane	107		104		62-150	3		20
1,2-Dichloroethane	107		106		70-130	1		20
1,1,1-Trichloroethane	102		97		67-130	5		20
Bromodichloromethane	105		102		67-130	3		20
trans-1,3-Dichloropropene	107		105		70-130	2		20
cis-1,3-Dichloropropene	101		99		70-130	2		20
1,1-Dichloropropene	93		89		70-130	4		20
Bromoform	96		93		54-136	3		20
1,1,2,2-Tetrachloroethane	106		105		67-130	1		20
Benzene	103		100		70-130	3		20
Toluene	107		103		70-130	4		20

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	665926-1	WG665926-2			
Ethylbenzene	106		102		70-130	4	20	
Chloromethane	96		90		64-130	6	20	
Bromomethane	108		101		39-139	7	20	
Vinyl chloride	98		93		55-140	5	20	
Chloroethane	115		112		55-138	3	20	
1,1-Dichloroethene	87		97		61-145	11	20	
trans-1,2-Dichloroethene	101		97		70-130	4	20	
Trichloroethene	108		104		70-130	4	20	
1,2-Dichlorobenzene	104		100		70-130	4	20	
1,3-Dichlorobenzene	105		100		70-130	5	20	
1,4-Dichlorobenzene	103		100		70-130	3	20	
Methyl tert butyl ether	104		102		63-130	2	20	
p/m-Xylene	109		105		70-130	4	20	
o-Xylene	108		103		70-130	5	20	
cis-1,2-Dichloroethene	100		98		70-130	2	20	
Dibromomethane	106		104		70-130	2	20	
1,2,3-Trichloropropane	114		111		64-130	3	20	
Acrylonitrile	108		107		70-130	1	20	
Isopropyl Ether	102		100		70-130	2	20	
tert-Butyl Alcohol	131	Q	120		70-130	9	20	
Styrene	116		112		70-130	4	20	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG6	65926-1	WG665926-2			
Dichlorodifluoromethane	72		68		36-147	6	20	
Acetone	82		81		58-148	1	20	
Carbon disulfide	58		64		51-130	10	20	
2-Butanone	104		97		63-138	7	20	
Vinyl acetate	90		89		70-130	1	20	
4-Methyl-2-pentanone	110		108		59-130	2	20	
2-Hexanone	110		109		57-130	1	20	
Bromochloromethane	102		99		70-130	3	20	
2,2-Dichloropropane	98		93		63-133	5	20	
1,2-Dibromoethane	105		104		70-130	1	20	
1,3-Dichloropropane	110		108		70-130	2	20	
1,1,1,2-Tetrachloroethane	107		102		64-130	5	20	
Bromobenzene	96		93		70-130	3	20	
n-Butylbenzene	117		112		53-136	4	20	
sec-Butylbenzene	107		103		70-130	4	20	
tert-Butylbenzene	102		97		70-130	5	20	
o-Chlorotoluene	105		101		70-130	4	20	
p-Chlorotoluene	103		99		70-130	4	20	
1,2-Dibromo-3-chloropropane	111		107		41-144	4	20	
Hexachlorobutadiene	103		88		63-130	16	20	
Isopropylbenzene	97		93		70-130	4	20	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01 Batch: WG	6665926-1	WG665926-2		
p-Isopropyltoluene	108		103		70-130	5	20
Naphthalene	104		100		70-130	4	20
n-Propylbenzene	108		104		69-130	4	20
1,2,3-Trichlorobenzene	109		104		70-130	5	20
1,2,4-Trichlorobenzene	104		90		70-130	14	20
1,3,5-Trimethylbenzene	107		103		64-130	4	20
1,2,4-Trimethylbenzene	110		106		70-130	4	20
Methyl Acetate	114		117		70-130	3	20
Ethyl Acetate	119		117		70-130	2	20
Cyclohexane	101		96		70-130	5	20
Ethyl-Tert-Butyl-Ether	98		96		70-130	2	20
Tertiary-Amyl Methyl Ether	98		95		66-130	3	20
1,4-Dioxane	148		130		56-162	13	20
Freon-113	80		87		70-130	8	20
1,4-Diethylbenzene	108		103		70-130	5	20
4-Ethyltoluene	103		98		70-130	5	20
1,2,4,5-Tetramethylbenzene	109		104		70-130	5	20
Ethyl ether	98		98		59-134	0	20
trans-1,4-Dichloro-2-butene	75		74		70-130	1	20
lodomethane	63	Q	69	Q	70-130	9	20
Methyl cyclohexane	108		102		70-130	6	20

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number:

L1401510

Report Date:

01/22/14

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG665926-1 WG665926-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	111		109		70-130	
Toluene-d8	107		105		70-130	
4-Bromofluorobenzene	93		93		70-130	
Dibromofluoromethane	105		104		70-130	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 02	Batch: Wo	G666244-1	WG666244-2		
Methylene chloride	82		82		70-130	0	20
1,1-Dichloroethane	95		93		70-130	2	20
Chloroform	110		92		70-130	18	20
2-Chloroethylvinyl ether	111		113		70-130	2	20
Carbon tetrachloride	101		87		63-132	15	20
1,2-Dichloropropane	107		106		70-130	1	20
Dibromochloromethane	99		98		63-130	1	20
1,1,2-Trichloroethane	116		113		70-130	3	20
Tetrachloroethene	100		98		70-130	2	20
Chlorobenzene	103		103		75-130	0	20
Trichlorofluoromethane	135		132		62-150	2	20
1,2-Dichloroethane	112		104		70-130	7	20
1,1,1-Trichloroethane	106		90		67-130	16	20
Bromodichloromethane	107		106		67-130	1	20
trans-1,3-Dichloropropene	106		107		70-130	1	20
cis-1,3-Dichloropropene	102		101		70-130	1	20
1,1-Dichloropropene	99		82		70-130	19	20
Bromoform	92		97		54-136	5	20
1,1,2,2-Tetrachloroethane	105		104		67-130	1	20
Benzene	106		89		70-130	17	20
Toluene	107		106		70-130	1	20

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	02 Batch: WG6	66244-1	WG666244-2			
Ethylbenzene	104		107		70-130	3	20	
Chloromethane	127		124		64-130	2	20	
Bromomethane	131		148	Q	39-139	12	20	
Vinyl chloride	129		126		55-140	2	20	
Chloroethane	139	Q	139	Q	55-138	0	20	
1,1-Dichloroethene	97		93		61-145	4	20	
trans-1,2-Dichloroethene	89		86		70-130	3	20	
Trichloroethene	112		109		70-130	3	20	
1,2-Dichlorobenzene	102		104		70-130	2	20	
1,3-Dichlorobenzene	101		101		70-130	0	20	
1,4-Dichlorobenzene	102		101		70-130	1	20	
Methyl tert butyl ether	79		80		63-130	1	20	
p/m-Xylene	110		108		70-130	2	20	
o-Xylene	102		102		70-130	0	20	
cis-1,2-Dichloroethene	87		84		70-130	4	20	
Dibromomethane	106		107		70-130	1	20	
1,2,3-Trichloropropane	114		118		64-130	3	20	
Acrylonitrile	84		85		70-130	1	20	
Isopropyl Ether	79		78		70-130	1	20	
tert-Butyl Alcohol	93		93		70-130	0	20	
Styrene	108		112		70-130	4	20	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	02 Batch: WG6	66244-1	WG666244-2			
Dichlorodifluoromethane	130		125		36-147	4	20	
Acetone	68		75		58-148	10	20	
Carbon disulfide	82		80		51-130	2	20	
2-Butanone	111		96		63-138	14	20	
Vinyl acetate	79		79		70-130	0	20	
4-Methyl-2-pentanone	106		105		59-130	1	20	
2-Hexanone	103		107		57-130	4	20	
Bromochloromethane	103		89		70-130	15	20	
2,2-Dichloropropane	98		84		63-133	15	20	
1,2-Dibromoethane	102		104		70-130	2	20	
1,3-Dichloropropane	108		109		70-130	1	20	
1,1,1,2-Tetrachloroethane	102		102		64-130	0	20	
Bromobenzene	93		91		70-130	2	20	
n-Butylbenzene	116		119		53-136	3	20	
sec-Butylbenzene	108		109		70-130	1	20	
tert-Butylbenzene	99		101		70-130	2	20	
o-Chlorotoluene	105		106		70-130	1	20	
p-Chlorotoluene	99		104		70-130	5	20	
1,2-Dibromo-3-chloropropane	105		111		41-144	6	20	
Hexachlorobutadiene	97		94		63-130	3	20	
Isopropylbenzene	97		97		70-130	0	20	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: 0298-014-001

Lab Number: L1401510

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG6	66244-1	WG666244-2				
p-Isopropyltoluene	107		107		70-130	0		20	
Naphthalene	98		102		70-130	4		20	
n-Propylbenzene	109		108		69-130	1		20	
1,2,3-Trichlorobenzene	102		106		70-130	4		20	
1,2,4-Trichlorobenzene	98		97		70-130	1		20	
1,3,5-Trimethylbenzene	106		108		64-130	2		20	
1,2,4-Trimethylbenzene	111		111		70-130	0		20	
Methyl Acetate	94		93		70-130	1		20	
Ethyl Acetate	111		94		70-130	17		20	
Cyclohexane	93		75		70-130	21	Q	20	
Ethyl-Tert-Butyl-Ether	75		76		70-130	1		20	
Tertiary-Amyl Methyl Ether	87		76		66-130	13		20	
1,4-Dioxane	117		115		56-162	2		20	
Freon-113	73		71		70-130	3		20	
1,4-Diethylbenzene	93		97		70-130	4		20	
4-Ethyltoluene	94		95		70-130	1		20	
1,2,4,5-Tetramethylbenzene	97		98		70-130	1		20	
Ethyl ether	92		92		59-134	0		20	
trans-1,4-Dichloro-2-butene	71		73		70-130	3		20	
lodomethane	78		80		70-130	3		20	
Methyl cyclohexane	99		96		70-130	3		20	

Project Name: 2424 HAMBURG TURNPIKE

Lab Number: L1401510

Project Number: 0298-014-001 Report Date: 01/22/14

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG666244-1 WG666244-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	115		100		70-130	
Toluene-d8	105		105		70-130	
4-Bromofluorobenzene	91		90		70-130	
Dibromofluoromethane	104		90		70-130	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L1401510

Project Number: 0298-014-001 **Report Date:** 01/22/14

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information					Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)			
L1401510-01A	Vial HCI preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			
L1401510-01B	Vial HCl preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			
L1401510-01C	Vial HCl preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			
L1401510-02A	Vial HCl preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			
L1401510-02B	Vial HCl preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			
L1401510-02C	Vial HCl preserved	Α	N/A	2.7	Υ	Absent	NYTCL-8260(14)			

Project Name:2424 HAMBURG TURNPIKELab Number:L1401510Project Number:0298-014-001Report Date:01/22/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L1401510Project Number:0298-014-001Report Date:01/22/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L1401510Project Number:0298-014-001Report Date:01/22/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.