Periodic Review Report

2424 Hamburg Turnpike Site BCP Site Number: C915296 Lackawanna, New York

May 2022 Revised July 2022

0345-021-001

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York 14218 | phone: (716) 856-0635 | fax: (716) 856-0583

PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NUMBER: C915296 LACKAWANNA, NEW YORK

May 2022 Revised July 2022 B0345-021-001

Prepared for:

2424 Hamburg Turnpike, LLC & MLG Contracting Inc.

Prepared By:

PERIODIC REVIEW REPORT

2424 Hamburg Turnpike Site C915296

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	2.1 Site Background	2
	2.2 Remedial History	2
3.0	SITE OVERVIEW	3
4.0	REMEDY PERFORMANCE	4
5.0	SITE MANAGEMENT PLAN	4
	5.1 Operation, Monitoring and Maintenance Plan 5.1.1 DPE System 5.1.2 Groundwater Monitoring	5 5 6
	5.2 Excavation Work Plan	
	5.3 Engineering and Institutional Control Requirements and Compliance 5.3.1 Institutional Controls	8
6.0	CONCLUSIONS AND RECOMMENDATIONS	9
7.0	DECLARATION/LIMITATION	9

PERIODIC REVIEW REPORT

2424 Hamburg Turnpike Site C915296

TABLES

Table 1	Summary of DPE Analytical for Mass Removal Calculations
Table 2	Summary of Groundwater Analytical Results
Table 3	Summary of DPE Mass Removal
Table 4	Summary of DPE Well Readings
	FIGURES
Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Groundwater Isopotential Map
Figure 4	DPE Mass Removal Trend
	APPENDICES
Appendix A	NYSDEC Certification and Notification Forms
Appendix B	Site Photolog
Appendix C	Laboratory Analytical Data Reports
Appendix D	Sewer Permit and Analytical Data
Appendix E	Carbon Recycling Documentation
Appendix F	Groundwater Monitoring Logs

1.0 EXECUTIVE SUMMARY

The 2424 Hamburg Turnpike Site (C915296) was a former automobile filling and service station. Prior to implementation of interim and final remedial measures the Site exhibited localized volatile organic contaminants (VOCs) in groundwater, localized semi-volatile organic contaminants (SVOCs) in soil, and metals contaminants in soil. The Site has had two documented petroleum spills prior to entering the BCP program. Remedial activities completed prior to NYSDEC issuance of a Certificate of Completion in December 2019 included: removal of hydraulic lifts, petroleum underground storage tanks (USTs), and petroleum piping, and petroleum-impacted soil; and installation of a dual-phase extraction (DPE) system. The DPE system has removed over 5,800 pounds of VOCs from the soil and groundwater since system start-up in November 2019. It appears that the DPE system is effectively removing residual impacts. The Site is in compliance with the SMP, engineering, and institutional control requirements.

2.0 Introduction

Benchmark Civil/Environmental Engineering and Geology, PLLC (Benchmark), in association with TurnKey Environmental Restoration, LLC (TurnKey) have prepared this Periodic Review Report (PRR), on behalf of 2424 Hamburg Turnpike, LLC and MLG Contracting Inc. to summarize the post-COC status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915296, located in the City of Lackawanna, Erie County, New York (Site; see Figure 1).

This PRR has been prepared for the 2424 Hamburg Turnpike Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A). This PRR and the associated inspection forms have been completed for the April 24, 2021 to April 24, 2022 reporting period.

2.1 Site Background

The Site is located at 2424 Hamburg Turnpike, in the City of Lackawanna, County of Erie, New York and is identified as S.B.L No. 141.59-5-2 on the Erie County Tax Map. The 1.04-acre BCP Site is currently unoccupied with a vacant commercial building, bound by an active gasoline station to the north, a retail store to the south, vacant land to the east and Hamburg Turnpike (aka NY State Route 5) with vacant industrial land across Route 5 to the west (see Figure 2).

The Site was historically used as an automobile filling and service station (Stop-N-Gas) beginning in at least 1957 when three 10,000-gallon underground storage tanks (USTs) were installed on-site. Petroleum bulk storage (PBS) records indicate that the three USTs were closed/removed in 1994. Subsequent to the automobile filling and service station operations, the Site operated as a retail store. Historic Sanborn maps and aerial photographs indicate that prior to the current on-site development, the Site was vacant land from at least 1926 through at least 1951.

2.2 Remedial History

After acceptance into the NYS BCP in November 2015, a Remedial Investigation/Alternatives Analysis (RI/AA) Work Plan and a Work Plan for Interim Remedial Measures were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of seven hydraulic lifts; excavation of

grossly contaminated soil/fill; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the removal of petroleum piping, installation of a dual-phase extraction (DPE) system, and installation of site-wide cover system. The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2019. The NYSDEC issued a COC for the Site on December 24, 2019.

3.0 SITE OVERVIEW

Previous investigations identified environmental contamination on-Site that required remediation. 2424 Hamburg Turnpike, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC to remediate the Site. BCP investigations and remediation were completed between 2015 and 2019.

The remedial activities included:

- Removal and disposal of seven in-ground lifts from the former automotive repair building.
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the Part 375
 Commercial Soil Cleanup Objectives (SCOs) encountered during in-ground lift removal activities.
- Demolition of the on-Site shed located in the southeast corner of the site, and demolition of the elevated concrete floor slabs located north of the shed and at the northern portion of the site.
- Excavation and off-site disposal of petroleum piping and non-hazardous soil/fill exceeding the Part 375 Commercial SCOs between the former tank field and the fuel dispensing islands.
- Installation of a dual-phase extraction (DPE) system to mitigate remaining contamination within the subsurface soil/fill and the groundwater.
- Replacement of existing exterior asphalt/concrete cover with a new primarily asphalt pavement cover over approximately 0.73 acres.
- Placement of a vegetated soil cover with a minimum of 12 inches of imported borrow soil meeting Part 375 Commercial SCOs over approximately 0.3 acres.
- And replacement of approximately 2,500 square feet of 6-inch-thick reinforced concrete floor in the garage bay of the building

Documentation of the completed remedial action activities described above are provided in the FER.

Remedial activities were completed in October 2019. The FER and SMP for the Site were approved by the Department in December 2019. The Certificate of Completion (COC) was issued for the Site on December 24, 2019. A Change of Use (COU) form was signed and submitted to the Department on March 8, 2022, notifying the Department of the change in ownership and transferring the COC. A copy of the COU form is included in Appendix A. 2424 Hamburg Turnpike, LLC sold the Site on March 16, 2022 to MLG Contracting Inc. MLG Contracting hired Neth & Sons, Inc. who obtained a permit to replace the roof from the City of Lackawanna during this reporting period. The permit and planned scope of work did not include intrusive work during this reporting period and did not involve removal or disruption of the cover system. We have requested a copy of the permit, however the contractor has not provided it as of the date of this PRR.

4.0 REMEDY PERFORMANCE

The Site is in compliance with the SMP. The cover system is maintained in accordance with the approved SMP. The completed IC/EC Certification form and site photographs are included in Appendix A and Appendix B, respectively.

Post-remedial inspections, groundwater monitoring, and operation and maintenance of the DPE system have been completed at the Site. DPE influent air analytical and DPE groundwater analytical results used for mass removal calculations are summarized on Table 1.

Groundwater sample analytical results are summarized on Table 2, with representative groundwater isopotential shown on Figures 3 for the associated sampling event. Laboratory analytical data reports are provided electronically in Appendix C.

5.0 SITE MANAGEMENT PLAN

The SMP was prepared for the Site and approved by the Department in December 2019. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, Operation, Monitoring and Maintenance (OM&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

5.1 Operation, Monitoring and Maintenance Plan

The OM&M Plan addresses three major remedial components: the DPE system; groundwater monitoring; and the annual inspection & certification.

5.1.1 DPE System

The DPE system is comprised of 14 DPE wells, 2-inch diameter HDPE conveyance piping, and the DPE remedial system. The DPE system extracts soil vapor and groundwater. The soil vapor is discharged through a stack at the top of the building. The groundwater is treated with a carbon filter and discharged to the publicly operated treatment works (POTW) in accordance with the sewer discharge permit. A copy of the current sewer discharge permit and sampling results from this reporting period are included in Appendix D.

Installation of the DPE system was completed between August and September 2019. System startup and optimization was completed between November and December 2019.

Routine DPE system monitoring was completed during the reporting period, including field measurements of system soil vapor influent air with photoionization detector (PID), vacuum readings on the DPE wells, effluent water flow meter readings, and routine system maintenance.

DPE System Operation

The DPE system has been operating since November 8, 2019, with one major shutdown for the winter (December 22, 2020 through April 19, 2021). Since startup, a total of 5,848 pounds of vapor-phase volatile organic carbons (VOCs) has been removed from the shallow vadose zone. Additionally, approximately 1,247,000 gallons of groundwater containing approximately 39 pounds of aqueous-phase VOCs has been removed and treated (see Table 1). The primary purpose of the liquid phase removal is to depress the water table slightly and expose the petroleum "smear zone" for vacuum extraction. The carbon that treats the groundwater was replaced on June 16, 2021 because of flow restrictions and the carbon recycling documentation is provided in Appendix E.

The sum of the air phase hydrocarbon (APH) soil gas sample results provided in Table 1 in micrograms per meter cubed (ug/m³) is divided by the PID reading collected during the sampling, resulting in a correction factor that is used until the next influent soil gas sample is collected. The correction factor is multiplied by the PID reading resulting in a corrected concentration. This corrected concentration is multiplied by a flow rate and time resulting mass. Table 3 provides a Summary of VOC mass removal from the vapor phase of the DPE system.

A graph of the accumulative mass removed VS time is provided in Figure 4. As depicted in Figure 4 and Table 3, the DPE system mass removal rate dropped by more than 50% in December 2019 and continued to drop and maintain low PID readings and mass removal rates into June 2020. During this time, the DPE system was removing less than two pounds of VOCs per day on average. This also corresponds to cold and wet seasonal conditions when the shallow water table rises, and ground temperatures are low. The DPE system mass removal rate slowed to less than two pounds per day again in October 2020. Based on trends observed from December 2019 through June 2020 a request to temporarily shut down the system for the winter was submitted to the Department and was approved on December 21, 2020. The DPE system was shut down from December 22, 2020 through April 19, 2021. The DPE system was not shut down in December 2021 in an attempt to achieve conditions warranting permanent termination of DPE operations. However, based upon recent sampling data the system will continue to operate with adjustments described later in this report. The DPE system works well at this site in seasonally dry and warm conditions when impacted soil vapor is effectively being extracted from the shallow vadose zone, as evident from the cumulative mass of VOCs removed thus far. Table 4 provides a summary of the PID readings from individual DPE wells. The DPE well PID readings are consistent with the system influent PID readings and have decreased over time. The system was not modified during this reporting period.

5.1.2 Groundwater Monitoring

Groundwater monitoring has been completed annually since receiving the COC in December 2019. Groundwater monitoring was completed on November 16, 2021 for this reporting period. MW-1 could not be located during 2020 groundwater monitoring activities. Prior to the 2021 groundwater monitoring event monitoring well MW-1 was located less than an inch below the surface using a GPS and metal detector. Groundwater monitoring logs are provided in Appendix F. Groundwater analytical results were submitted to EQuIS on April 13, 2022.

Groundwater analytical results are summarized on Table 2 and laboratory analytical data reports are provided in Appendix C. Analytical results show a decrease in many VOC compounds (Benzene, Ethylbenzene, Isopropylbenzene, and Total Xylenes) at MW-2 since last year's sampling event. VOC concentrations at MW-2 remain higher than concentration before completion of the IRMs and remedial actions. The elevated concentrations at MW-2 may be due to the DPE system drawing groundwater impacts past MW-2 into DPE-1 and DPE-10 as depicted in Figure 3. Additionally, the lab mistakenly analyzed the sample for additional analytes

from the CP-51 list VOCs in addition to the TCL list VOCs required by the SMP, which added additional compounds and associated concentrations thereof to the total VOC sum. If the CP-51 list VOCs were not included there would have been an overall reduction in VOCs at MW-2 (2020 = 928.7 ug/L VS 2021 = 496.8ug/L). Nevertheless, the total detected VOCs at MW-2 and MW-3 are approximately 1.1 and 0.1 ppm, respectively.

5.1.3 Annual Inspection and Certification

Annual inspection and certification are required to verify, certify, and attest that the institutional controls (ICs) and/or engineering controls (ECs) employed at the Site:

- Are in place and effective;
- Are performing as designed;
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls;
- Access is available to the Site to evaluate continued operation and maintenance of such controls.

The site inspection was completed on April 21, 2022, for the current reporting period. The property is being used in accordance with the commercial or industrial uses. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the reporting period. No erosion of the cover system was noted during the site inspection.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the most recent Site inspection is included in Appendix B.

5.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved-SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive actives.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

5.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

5.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited without water quality treatment as determined by the NYSDOH or County DOH;
- Land-Use Restriction: The controlled property may be used for commercial and industrial uses as defined by Part 375-1.8(g), although land use is subject to local zoning laws; and
- Implementation of the SMP. Requires compliance with the Department- approved Site Management Plan

5.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Dual-Phase Extraction Based on the remaining VOC impacts in unsaturated and shallow saturated soil, an in-situ dual-phase soil vapor and groundwater extraction system was selected as an engineering control to treat the remaining impacts. DPE is an in-situ remediation technology that uses a blower to remove both contaminated groundwater and hydrocarbon vapor (i.e., soil gas) from the subsurface. The DPE system is evaluated based on mass removal trends, groundwater depression, groundwater quality improvements, and soil sampling (prior to discontinuation). DPE System has been operated and maintained in compliance with the SMP; and
- Cover System Exposure to remaining soil contamination at the Site is mitigated by a cover system placed over the Site. This cover system is comprised of a minimum of 12 inches of DER-10 compliant soil material over demarcation layer, and hardscape elements of the redevelopment, including asphalt, concrete-covered

sidewalks, and concrete building slabs. The cover system is evaluated by observing that the cover is intact without signs of excavation or erosion. The cover system, including buildings, concrete sidewalks, asphalt, and landscaped vegetated soil are being maintained in compliance with the SMP.

At the time of the site inspection, the Site was compliant with the engineering and institutional control requirements.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Site is in compliance with the SMP, engineering, and institutional control requirements. Land use and groundwater use restrictions have been adhered to during this monitoring period. The DPE system has been effective at lower the groundwater table, treating impacted groundwater, and removing VOCs from the soil, evident from the mass removal trends on Table 3. The groundwater concentrations at MW-2 are greater than pre-remediation concentrations, but we believe that this was caused by the DPE system pulling contamination past MW-2. We expect to see concentrations continue to decrease over time. The cover system has prevented contact to remaining contamination by providing a barrier that has not been breached during this monitoring period.

The SMP, engineering, and institutional controls have been effective. We plan on making adjustments to the DPE system to reduce the off-site influence along Route 5 that may be influencing the groundwater concentrations at MW-2. Specifically, we plan to reduce the vacuum at DPE-1 and DPE-10 to lessen the radius of influence to see if the total VOC concentration at MW-2 drops. After the adjustments have been made, we will wait a month or two for the groundwater to reach equilibrium before collecting groundwater sample from MW-2 and MW-3 for VOCs. Based on the groundwater analytical results further adjustments and sampling may be required. We plan on completing the next annual groundwater monitoring in the Fall of 2022 and a site inspection in the Spring of 2023. The next PRR report will be submitted in May 2023.

7.0 DECLARATION/LIMITATION

A Benchmark principal engineer, licensed in New York and with direct supervisory responsibility conducted the annual site inspections for the 2424 Hamburg Turnpike Site BCP Site No. C915296, located in Lackawanna, New York, according to generally accepted practices.

This report complied with the scope of work provided to 2424 Hamburg Turnpike, LLC by Benchmark-TurnKey.

This report has been prepared for the exclusive use of 2424 Hamburg Turnpike, LLC and MLG Contracting Inc. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of 2424 Hamburg Turnpike, LLC and MLG Contracting Inc. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark-TurnKey.

TABLES

Table 1 - Summary of DPE System Analytical for Mass Removal Calculations

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Parameters ¹	DPE Influent \		DPE Influent Vapor Sample 11-18-21		
	TO-15 VOCs (ug/m ³)	APH (ug/m ³)	TO-15 VOCs (ug/m ³)	APH (ug/m ³)	
Dichlorodifluoromethane	ND	NA	1.62	NA	
Carbon disulfide	ND	NA	1.49	NA	
n-Hexane	166,000	NA	38.8	NA	
Benzene	1,550	1,900	34.5	35	
Cyclohexane	36,500	NA	39.2	NA	
Xylene (total)	119,000	117,000	168.7	165	
2,2,4-Trimethylpentane	258,000	NA	113	NA	
Heptane	132,000	NA	8.4	NA	
Toluene	18,900	19,000	31.3	35	
Ethylbenzene	26,900	27,000	71.7	74	
4-Ethyltoluene	13,200	NA	33.4	NA	
1,3,5-Trimethylbenzene	17,400	NA	32.4	NA	
1,2,4-Trimethylbenzene	40,200	NA	147	NA	
Naphthalene	NA	ND	NA	24	
Tentatively Identified Compounds (TICs) (ppbV)	317,000	NA	250.8	NA	
C5-C8 Aliphatics	NA	5,200,000	NA	1,600	
C9-C12 Aliphatics	NA	330,000	NA	160	
C9-C10 Aromatics	NA	160,000	NA	700	
Sum of APH (ug/m ³)	NA	5,854,900	NA	2,793	
Corr	elation Between APH Re	sults and PID Readir	ngs		
PID Reading at Time of Sample	1260		0.2 p		
Sum of APH (ug/m ³)	5,854	1,900	2,79	93	
Sum of APH (mg/m ³)	5,8		2.79		
(APH/PID) 1 ppm on PID =	4.65 i	mg/m ³	13.97 mg/m ³		

Notes:

1) Only parameters detected in at least one sample are presented in this table.

APH = Air-phase Petroleum Hydrocarbons

NA = Not Analyzed

Parameters ¹	DPE Influent GW Sample 11-12-19
CP-51 List VOCs (ug/L)	
Benzene	21
Toluene	230
Ethylbenzene	300
p/m-Xylene	1200
o-Xylene	420
n-Butylbenzene	20 J
sec-Butylbenzene	12 J
Isopropylbenzene	39
p-Isopropylbenzene	7.8 J
n-Isopropylbenzene	100
1,3,5-Trimethylbenzene	320
1,2,4-Trimethylbenzene	1100
Subtotal	3770
VOC Mass Removal from Gro	oundwater (GW) Treatment Since 11/08/19
Sum of VOCs (ug/L)	3770
Sum of VOCs (mg/L)	3.77
Water Treated by the DPE System (gallons)	1,247,150
Water Treated by the DPE System (liters)	4,720,962
GW VOCs Treated by the DPE System (mg)	17,797,081
GW VOCs Treated by the DPE System (lbs)	39.24

Notes:

- 1) Only parameters detected in at least one sample are presented in this table.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- GW VOCs treated by DPE system (mg) = sum of VOCs (mg/L) * water treated (liters)

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

Parameter ¹	NYSDEC Class GA GWQS ²	MW-1 11/16/21	MW-2 7/27/16	MW-2 10/15/20	MW-2 11/16/21	MW-3 7/27/16	MW-3 10/15/20	MW-3 11/16/21	MW-4 11/16/21	MW-5 11/16/21		
Field Measurements	Field Measurements											
Dissolved Oxygen (mg/L)		1.84	0.91	NA	2.24	0.73	NA	0.75	1.32	NA		
Field pH (S.U.)	12.5	7.21	6.79	6.88	7.1	6.57	6.86	7.62	6.57	6.44		
Redox Potential (mV)		-141	-109	-91	-86	-86	-88	-140	33	-46		
Specific Conductance (umhos/cm)		1150	1253	1100	1509	1059	897.5	510.8	567.5	1138		
Temperature (deg C)		12.7	21.4	18.3	15.7	21.3	20.4	15.4	15.8	13.0		
Turbidity (NTU)		>1000	672	12.10	>1000	114	15.3	29.80	55.4	35.6		
TCL Volatile Organic Compounds (V	OCs) - ug/L											
1,2,4-Trimethylbenzene	5	NA	NA	NA	530 J D	NA	NA	1.6 J	NA	NA		
1,3,5-Trimethylbenzene	5	NA	NA	NA	9.3 J D	NA	NA	ND	NA	NA		
Acetone	50	NA	12	ND	ND	4.4 J	ND	ND	NA	NA		
Benzene	1	NA	8.9	63 D	59 D	8.8	9.7	8.1	NA	NA		
Carbon disulfide	60	NA	0.4	ND	ND	ND	ND	ND	NA	NA		
Cyclohexane		NA	ND	83 D	66 D	ND	3.6 J	7.9 J	NA	NA		
Ethylbenzene	5	NA	6.3	270 D	200 D	3.5	5	14	NA	NA		
Isopropylbenzene (Cumene)	5	NA	ND	23 D	20 D	ND	3.2	5.4	NA	NA		
m,p-Xylenes	5	NA	NA	480 D	130 D	NA	5.6	3.4	NA	NA		
Methyl tert-butyl ether	10	NA	5.1	2.7 J D	2.8 J D	0.5 J	ND	ND	NA	NA		
Methylcyclohexane	-	NA	ND	30 D	25 J D	0.97 J	ND	16	NA	NA		
n-Butylbenzene	5	NA	NA	NA	2.8 J D	NA	NA	9.40	NA	NA		
n-Propylbenzene	5	NA	NA	NA	51	NA	NA	24.00	NA	NA		
O-Xylene	5	NA	NA	17 D	22 D	NA	2.1 J	4.5	NA	NA		
Sec-Butylbenzene	5	NA	NA	NA	5.6 J D	NA	NA	4.60	NA	NA		
Toluene	5	NA	8.6	14 D	16 D	5	2.2 J	0.83 J	NA	NA		
Xylenes, Total	5	NA	40	497 D	152 D	9.5	7.7 J	7.9	NA	NA		
TOTAL VOCs		NA	81.30	982.7 D	1139.5 D	32.67	31.4	99.73	NA	NA		

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards (GWQS).

 Definitions:
 D = Concentration of analyte was quantified from diluted analysis.
 ND = Parameter not detected above laboratory detection limit.
 NA = Not Analyzed.

- NA = Not Analyzed
 "--" = No GWQS available.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero. ug/L = micrograms per liter

Exceeds NYSDEC Class GA GWQS

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date	Influent (Untreated) PID Reading ⁴ (ppm)	Corrected Influent Concentration ^{1,2} (mg/m3)	Corrected Influent Concentration ^{1,2} (Ib/CF)	Vacuum at Blower (in Hg)	Air Flow Rate (CFM)	Volume of Air Processed Since Last Monitoring Period (CF)	VOCs Removed Since Last Monitoring Period (lb)	Rate of VOC Removal (lb/day)	Total VOCs Removal to Date ⁵ (lb)	Notes
11/08/19 11/11/19	808 1,146	3757 5329	2.346E-04 3.327E-04	14.0 12.0	194 195	0 771572	0 218.8	0.0 79.6	0 218.83	
11/11/19	1,240	5766	3.600E-04	12.0	195	11714	4.1	97.4	222.89	
11/12/19 11/12/19	1,270 770	5906 3581	3.687E-04 2.235E-04	7.0	195 197	304568 11773	111.0 3.5	102.4 83.7	333.84 337.33	
11/13/19	610	2837	1.771E-04	8.0	197	260055	52.1	56.8	389.42	
11/13/19	900 730	4185 3395	2.613E-04 2.119E-04	9.0 8.5	196 197	47188 200448	10.3 47.4	62.1 67.0	399.76 447.18	
11/14/19	960	4464	2.787E-04	10.3	196	11776	2.9	69.3	450.07	
11/15/19	1,550 920	7208 4278	4.499E-04 2.671E-04	10.5	196 196	282049 858158	102.8 307.7	102.8 101.1	552.83 860.48	
11/20/19	400	1860	1.161E-04	9.5	196	553069	106.0	54.1	966.45	
11/21/19 11/21/19	570 200	2651 930	1.655E-04 5.806E-05	9.5 6.2	196 198	306107 23625	43.1 2.6	39.8 31.7	1009.54 1012.18	
11/22/19 11/22/19	79 370	367 1721	2.293E-05 1.074E-04	6.5 10.5	197 196	284349 23594	11.5 1.5	11.5 18.5	1023.70 1025.24	
11/25/19	580	2697	1.684E-04	9.0	196	811952	112.0	38.9	1137.20	
11/26/19 11/26/19	370 750	1721 3488	1.074E-04 2.177E-04	9.0	196 195	271059 23480	37.4 3.8	39.0 45.8	1174.57 1178.39	
11/27/19	810	3767	2.351E-04	11.0	196	-175748	-39.8	63.7	1138.59	
12/02/19 12/02/19	380 1,080	1767 5022	1.103E-04 3.135E-04	14.0 17.0	194 193	1848967 11631	319.4 2.5	48.5 59.2	1457.95 1460.42	
12/04/19	1,000	4650	2.903E-04	18.0	193	602367	181.9	83.9	1642.27	
12/09/19 12/09/19	860 450	3999 2093	2.496E-04 1.306E-04	17.7 15.0	193 194	1354356 11611	365.6 2.2	75.0 53.0	2007.91 2010.12	
12/11/19 12/18/19	420	1953	1.219E-04	15.0	194	570514	72.0 188.0	35.3 26.7	2082.16	
12/18/19 12/18/19	240 218	1116 1014	6.967E-05 6.328E-05	17.5 15.0	193 194	1962692 11614	188.0 0.8	26.7 18.5	2270.18 2270.95	
12/20/19 01/02/20	206 150	958 698	5.980E-05 4.354E-05	13.0 14.0	195 194	513340 2709448	31.6 140.0	17.2 14.5	2302.54 2442.54	Restart system
01/02/20	40	186	1.161E-05	15.6	194	11648	0.3	7.7	2442.86	Nestart system
01/02/20 01/03/20	20 11	93 51	5.806E-06 3.193E-06	16.5 14.8	193 194	23237 244183	0.2 1.1	2.4 1.3	2443.07 2444.16	
01/03/20	73	339	2.119E-05	12.0	195	11681	0.1	3.4	2444.31	
01/06/20	120 132	558 614	3.483E-05 3.832E-05	14.0 15.0	194 194	830025 11655	23.3 0.4	7.9 10.2	2467.56 2467.98	
01/08/20	168	781	4.877E-05	13.5	195	559723	24.4	12.2	2492.36	
01/14/20	125 122	581 567	3.629E-05 3.542E-05	13.0 12.0	195 195	1647525 1989395	70.1 71.3	11.9 10.1	2562.42 2633.74	
01/27/20	90	419	2.613E-05	13.0	195	1650028	50.8	8.6	2684.52	
02/05/20	68 10	316 45	1.974E-05 2.787E-06	14.0	194 196	2534268 1474046	58.1 16.6	6.4 3.2	2742.63 2759.24	Restart System
02/25/20	25	115	7.170E-06	12.6	195	70292	0.3	1.4	2759.59	Restart System
02/28/20	11 13	53 60	3.280E-06 3.774E-06	13.0	195 195	397638 1191585	2.1 4.2	1.5 1.0	2761.66 2765.87	Restart System Restart System
03/11/20	9	42	2.613E-06	12.5	195	1940228	6.2	0.9	2772.06	- Notice of Section 1
03/17/20	62 30	287 140	1.791E-05 8.767E-06	12.3 12.1	195 195	1673771 737694	17.2 9.8	2.9 3.7	2789.24 2799.08	Restart System
04/14/20	13	58	3.629E-06	10.0	196	46947	0.3	1.7	2799.37	Restart System
04/15/20 04/24/20	20 20	92 92	5.748E-06 5.748E-06	12.5 12.0	195 195	363689 23416	1.7 0.1	1.3 1.6	2801.07 2801.21	Restart System
04/27/20	70	324	2.023E-05	11.5	195	949326	12.3	3.7	2813.54	
05/01/20 05/01/20	20 6	94 27	5.864E-06 1.713E-06	13.7	195 196	772197 35153	10.1 0.1	3.7 1.1	2823.62 2823.75	Restart System
05/04/20 05/06/20	43 64	202 299	1.260E-05 1.869E-05	12.0 11.5	195 195	868599 609444	6.2 9.5	2.0 4.4	2829.97 2839.50	
05/06/20	72	334	2.087E-05	11.6	195	11725	0.2	5.6	2839.73	
05/12/20 05/19/20	78 25	361 114	2.253E-05 7.112E-06	11.0 10.5	196 196	1630571 1949462	35.4 28.9	6.1 4.2	2875.12 2904.00	
05/19/20	38	178	1.109E-05	11.0	196	35231	0.3	2.6	2904.33	
06/03/20 06/03/20	4	20	1.248E-06 1.248E-06	8.0	197 197	894773 70853	5.5 0.1	1.7 0.4	2909.85 2909.93	Restart System Turn System off too much water
06/04/20	4	16	1.016E-06	12.5	195	35267	0.0	0.3	2909.97	Restart system. Turn System off too much water
06/12/20 06/15/20	8 17	37 80	2.293E-06 5.022E-06	13.2	195 196	46776 854702	0.1 3.1	0.5 1.0	2910.05 2913.18	Restart system
06/15/20	28	131	8.157E-06	12.0	195	11722	0.1	1.9	2913.25	
06/17/20 06/17/20	80 130	372 606	2.322E-05 3.785E-05	10.0	196 195	551678 11726	8.7 0.4	4.4 8.6	2921.91 2922.27	
06/23/20	130 84	606 388	3.782E-05 2.424E-05	11.0 12.0	196 195	1675125 257972	63.4 8.0	10.6 8.7	2985.65 2993.66	Turned system off for earlier shapes suf
06/24/20 06/25/20	84	388	2.424E-05 2.433E-05	13.8	195 195	257972 35079	0.9	8.7 6.8	2993.66 2994.51	Turned system off for carbon change out Restart system
06/30/20 07/02/20	1,500 1,500	6975 6975	4.354E-04 4.354E-04	12.3 12.0	195 195	1449474 491846	333.2 214.2	64.5 122.4	3327.72 3541.88	
07/02/20	1,500	6975	4.354E-04	12.0	195	81999	35.7	122.4	3577.59	
07/08/20 07/14/20	1,240 362	5766 1683	3.600E-04 1.051E-04	11.5 12.0	195 195	1640811 1664251	652.5 387.0	111.9 65.4	4230.14 4617.11	
07/14/20	393	1827	1.141E-04	12.0	195	11714	1.3	30.8	4618.40	
08/09/20 08/09/20	100 76	465 355	2.906E-05 2.215E-05	16.0	194 195	6020079 11655	430.9 0.3	20.0 7.2	5049.26 5049.56	Restart system
08/16/20	87	403	2.514E-05	12.0	195	1965991	46.5	6.6	5096.04	
08/22/20 08/22/20	87 112	403 522	2.514E-05 3.260E-05	11.0	196 195	1711995 11717	43.0 0.3	7.1 8.1	5139.08 5139.42	
08/29/20	186	864	5.391E-05	12.7	195	1918211	83.0	12.1	5222.39	
09/05/20 09/12/20	205 139	953 644	5.948E-05 4.021E-05	12.0 12.0	195 195	1966587 1944551	111.5 96.9	15.9 14.0	5333.88 5430.80	
09/20/20	161	748	4.671E-05	11.5	195	2226815	96.8	12.2	5527.57	
09/27/20 09/27/20	188 309	876 1435	5.466E-05 8.955E-05	11.3 8.5	196 197	1993822 35292	101.1 2.5	14.3 20.4	5628.63 5631.17	
10/01/20 10/03/20	4	17	1.045E-06 6.503E-06	13.0	195	763344 538688	34.6	12.8	5665.75 5667.78	
10/03/20	22 24	104 113	6.503E-06 7.025E-06	11.3	196 196	538688 1972751	2.0 13.3	1.1 1.9	5667.78 5681.13	
10/18/20 10/18/20	26 20	121 94	7.577E-06 5.893E-06	10.5 11.7	196 195	2256390 23471	16.5 0.2	2.1 1.9	5697.60 5697.76	
10/18/20	14	66	4.151E-06	16.0	194	1668863	8.4	1.4	5706.14	
10/25/20 10/31/20	6.8 6.2	32 29	1.974E-06 1.800E-06	12.6 10.6	195 196	11660 1617861	0.0 3.1	0.9 0.5	5706.18 5709.23	
11/07/20	3.7	17	1.074E-06	10.0	196	2080529	3.0	0.4	5712.22	

Table 3 - Summary of DPE System VOC Mass Removal

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date	Influent (Untreated) PID Reading ⁴ (ppm)	Corrected Influent Concentration ^{1,2} (mg/m3)	Corrected Influent Concentration ^{1,2} (lb/CF)	Vacuum at Blower (in Hg)	Air Flow Rate (CFM)	Volume of Air Processed Since Last Monitoring Period (CF)	VOCs Removed Since Last Monitoring Period (lb)	Rate of VOC Removal (lb/day)	Total VOCs Removal to Date ⁵ (lb)	Notes
11/19/20	9.4	44	2.729E-06	9.9	196	3352365	6.4	0.5	5718.59	
12/03/20	4.0	19	1.161E-06	11.6	195	1550175	3.0	0.5	5721.61	
12/11/20	2.6	12	7.548E-07	10.5	196	4553819	4.4	0.3	5725.97	
12/17/20	2.3	11	6.677E-07	9.5	196	1681895	1.2	0.2	5727.17	
12/22/20	2.6	12	7.548E-07	11.5	195	1433459	1.0	0.2	5728.19	System shut down for winter
04/19/21	19.6	91	5.690E-06	14.0	194	35089	0.1	0.9	5728.30	System Startup
04/30/21	21.3	99	6.183E-06	14.0	194	3033373	18.0	1.7	5746.31	
04/30/21	16.4	76	4.761E-06	12.5	195	35054	0.2	1.5	5746.50	
05/08/21	1.5	7	4.354E-07	12.0	195	2283107	5.9	0.7	5752.43	
05/12/21	1.3	6	3.774E-07	12.3	195	1053955	0.4	0.1	5752.86	
05/21/21	2.6	12	7.548E-07	11.3	196	2507843	1.4	0.2	5754.28	
05/27/21	2.1	10	6.096E-07	11.0	196	1666268	1.1	0.2	5755.41	
06/02/21	1.1	5	3.193E-07	11.5	195	1736323	0.8	0.1	5756.22	
06/10/21	2.5	12	7.257E-07	12.0	195	23440	0.0	0.1	5756.23	Restart system after tank high alarm
06/15/21	1.5	7	4.354E-07	11.0	196	1336763	0.8	0.2	5757.01	Turned system off to drain carbon turned on 6-16
06/24/21	1.4	7	4.064E-07	10.5	196	2337006	1.0	0.1	5757.99	
07/02/21	16.7	78	4.848E-06	14.5	194	2223442	5.8	0.7	5763.83	
07/08/21	1.7	8	4.935E-07	10.5	196	1661730	4.4	0.8	5768.27	
07/15/21	0.6	3	1.742E-07	12.3	195	1958636	0.7	0.1	5768.93	70000 6 4 444
07/23/21	1.0	5	2.903E-07	14.0	194	876520	0.2	0.1	5769.13	Restart system on 7-22-22 after tank high alarm
07/29/21	1.3	6	3.774E-07	13.8	195	1622017	0.5	0.1	5769.67	
08/06/21	1.3	6	3.774E-07	12.8	195	2243211	0.8	0.1	5770.52	
08/06/21	3.6	17	1.045E-06	12.2	195	11702	0.0	0.2	5770.53	
08/12/21	2.0	9	5.806E-07	11.6	195	1722329	1.4	0.2	5771.93	
08/20/21	1.3	6	3.774E-07	13.2	195	2270710	1.1	0.1	5773.01	
08/27/21	5.0	23	1.451E-06	11.6	195	1966388	1.8	0.3	5774.81	
09/03/21	6.4	30	1.858E-06	11.2	196	1970365	3.3	0.5	5778.07	
09/08/21	26.3	122	7.635E-06	12.8	195	1405699	6.7	1.3	5784.74	
09/16/21	0.9	4	2.613E-07	14.0	194	2172670	8.6	1.1	5793.32	
09/24/21	1.0	5 7	2.903E-07	13.4	195	2323110	0.6	0.1	5793.96	
09/30/21	1.4		4.064E-07	11.9	195	1637828	0.6	0.1	5794.53	
10/07/21	3.0 0.9	14	8.709E-07 2.613E-07	15.6 12.3	194 195	1330692 1925221	0.8 1.1	0.2	5795.38 5796.47	
10/14/21	1.1	5	3.193E-07	15.3	195	2766158	0.8	0.2	5796.47	Restart system after power failure
11/05/21		5		16.0	194	1976720	0.6	0.1	5797.91	Restart system after power failure
11/12/21	1.1 2.4	11	3.193E-07 6.967E-07	16.0	194	1638347	0.8	0.1	5797.91	Restart system 11/10/21 from local power failure
11/12/21	0.2	3	1.744E-07	18.4	193	1031606	0.6	0.1	5799.19	Restart system 11/15 and 11/16 from power failure
11/18/21	1.7	24	1.482E-06	18.2	193	23130	0.0	0.1	5799.21	Turn DPE-11 and 12 on
11/24/21	1.4	20	1.482E-06	16.9	193	567557	0.8	0.4	5799.97	Tulli DFL-11 aliu 12 011
12/02/21	0.4	6	3.487E-07	16.1	193	2251883	1.8	0.4	5801.74	
12/02/21	0.4	7	4.359E-07	16.5	193	1683795	0.7	0.2	5802.40	
12/16/21	0.5	7	4.359E-07	16.4	193	2205677	1.0	0.1	5803.36	
12/22/21	0.0	0	0.000E+00	16.5	193	1671671	0.4	0.1	5803.73	
01/05/22	0.0	0	0.000E+00	16.8	193	3887372	0.0	0.0	5803.73	
01/13/22	0.1	1	8.718E-08	15.3	194	2195858	0.1	0.0	5803.82	
01/18/22	0.9	13	7.846E-07	15.1	194	826328	0.4	0.1	5804.18	Restart system after tank high alarm
01/28/22	6.8	95	5.928E-06	16.0	194	2802862	9.4	0.9	5813.59	,
02/11/22	10.4	145	9.067E-06	16.7	193	1521067	11.4	2.1	5824.99	Restart system after tank high alarm
02/18/22	4.7	66	4.097E-06	21.3	192	1120202	7.4	1.8	5832.37	2-14-22 Clean EQ tank floats and restart system
02/18/22	5.9	82	5.144E-06	19.6	192	11514	0.1	1.3	5832.42	Increased flow at DPE-4, 13, and 14.
03/09/22	0.2	3	1.744E-07	16.4	194	5195891	13.8	0.7	5846.24	
03/15/22	0.1	1	8.718E-08	15.9	194	1544919	0.2	0.0	5846.44	
03/25/22	0.3	4	2.615E-07	17.6	193	2854025	0.5	0.0	5846.94	
04/01/22	0.1	1	8.718E-08	17.4	193	1934524	0.3	0.0	5847.27	
04/06/22	0.3	4	2.615E-07	17.2	193	1390645	0.2	0.0	5847.52	
04/15/22	0.1	1	8.718E-08	17.8	193	2502139	0.4	0.0	5847.95	
	0.2	3	1.744E-07	17.5	193	1679162	0.2	0.0	5848.17	

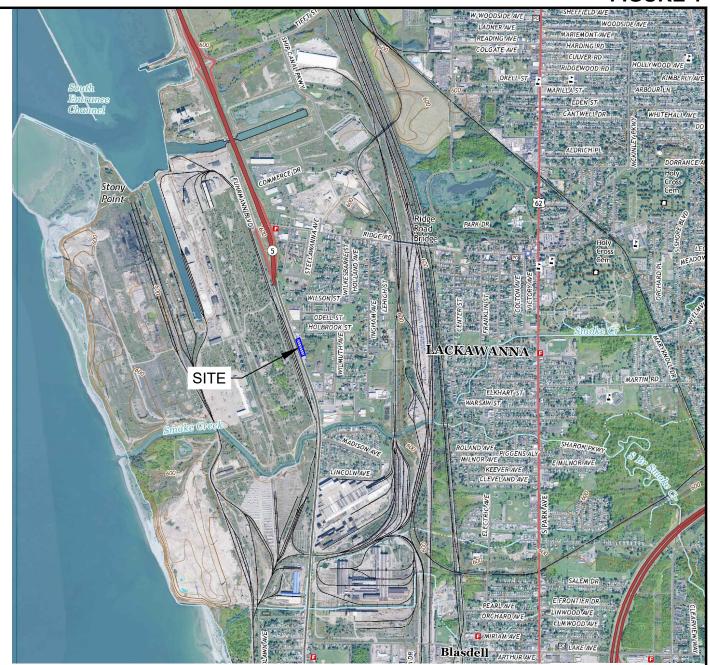
Notes:

- 1. The estimated mass of contamination recovered is based on ratio of the sum of the volatile organic carbons (VOCs) as measured by a vapor sample collected on November 15, 2019 with a summa canister compared to a contemporaneous PID reading. The average concentration of VOCs was 4.65 mg/m3 per 1 ppm PID reading.
- 2. The estimated mass of contamination recovered is based on ratio of the sum of the volatile organic carbons (VOCs) as measured by a vapor sample collected on November 18, 2021 with a summa canister compared to a contemporaneous PID reading. The average concentration of VOCs was 13.97 mg/m3 per 1 ppm PID reading.
- 3. VOCs = volatile organic compounds; ppm= parts per million; mg/m3 = milligrams per cubic meter; lb/cf = pounds of VOCs per cubic foot; in Hg = inches of mercury; CFM = cubic feet per minute; CF = cubic feet; lb = pounds
- 4. Please note the "influent" PID reading refers to untreated incoming vapor. The samples and PID readings are collected from the discharge side of the blower where positive pressure facilitates sample collection. There is no vapor phase treatment; and as such no difference between incoming or exiting concentrations across the DPE system.
- 5. The mass of VOCs removed is calculated by using the APH/PID (mg/m³) located on Table 1 * Influent PID reading (ppm) = Corrected influent (mg/m3), convert this to lb/cf. Take the vacuum reading (in Hg) and covert to CFM using the blower curve formula specific to the blower used. Take the CFM * elapsed time (minutes) = volume of air processed (CF) * the corrected influent concentration (lb/CF) = VOC's removed (lb)

Table 4 - Summary of DPE Well PID Readings

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date:	11/26	/2019	7/2/:	2020	9/27	/2020	10/3.	/2020	4/30/	/2021	8/6/	2021	11/18	3/2021
Well ID	PID (ppm)	Vac. (inch Hg)												
DPE-1	365.0	16.0	42.3	17.5	720.0	10.5	24.2	14.5	14.1	18.5	5.0	20.0	1.6	21.5
DPE-2	65.0	17.5	855.0	22.0	136.4	20.5	61.0	22.5	22.7	24.5	21.0	24.0	5.6	24.5
DPE-3	970.0	20.0	314.0	20.5	202.0	15.3	15.5	19.0	19.6	23.0	26.0	22.0	1.5	24.5
DPE-4	60.0	5.0	710.0	19.0	144.3	19.5	31.6	22.0	12.3	13.5	5.0	16.5	3.7	17.3
DPE-5	15.0	21.0	600.0	22.5	101.5	22.0	5.2	24.5	NC	NC	4.5	24.0	0.8	24.5
DPE-6	30.0	24.0	110.0	20.0	NC	NC	6.9	22.0	11.3	24.5	1.3	23.0	0.7	24.5
DPE-7	8.9	6.5	7.1	10.5	NC	NC	NC	NC	NC	NC	0.0	11.0	0.0	12.0
DPE-8	4.9	19.5	0.1	23.5	NC	NC								
DPE-9	1990.0	22.5	488.0	22.5	202.0	15.3	15.5	19.0	37.2	24.0	16.0	24.0	0.8	24.5
DPE-10	300.0	24.0	39.3	19.8	720.0	10.5	24.2	14.5	27.5	21.5	40.0	19.0	21.5	20.3
DPE-11	8.3	20.0	19.4	25.0	NC	NC	NC	NC	NC	NC	1.2	24.0	1.3	24.5
DPE-12	8.3	20.0	12.3	24.5	NC	NC	NC	NC	NC	NC	3.0	23.0	1.5	24.0
DPE-13	8.3	20.0	11.8	20.7	NC	NC	NC	NC	NC	NC	0.8	22.0	0.2	22.0
DPE-14	8.3	20.0	NC	NC	NC	NC	NC	NC	NC	NC	2.0	24.0	0.5	23.5


Notes:

- = Highlighted cells reading was taken with DPE-11, DPE-12, DPE-13, and DPE-14 open.
- = Highlighted cells reading was taken with DPE-1 and DPE-10 open.
- = Highlighted cells reading was taken with DPE-3 and DPE-9 open.

NC = Not Collected

FIGURES

FIGURE 1

APPROXIMATE SCALE 1" = 2,500' BASE MAP IS USGS 2016 BUFFALO SE QUADRANGLE.

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0345-021-001

DATE:

DRAFTED BY: RFL/CCB

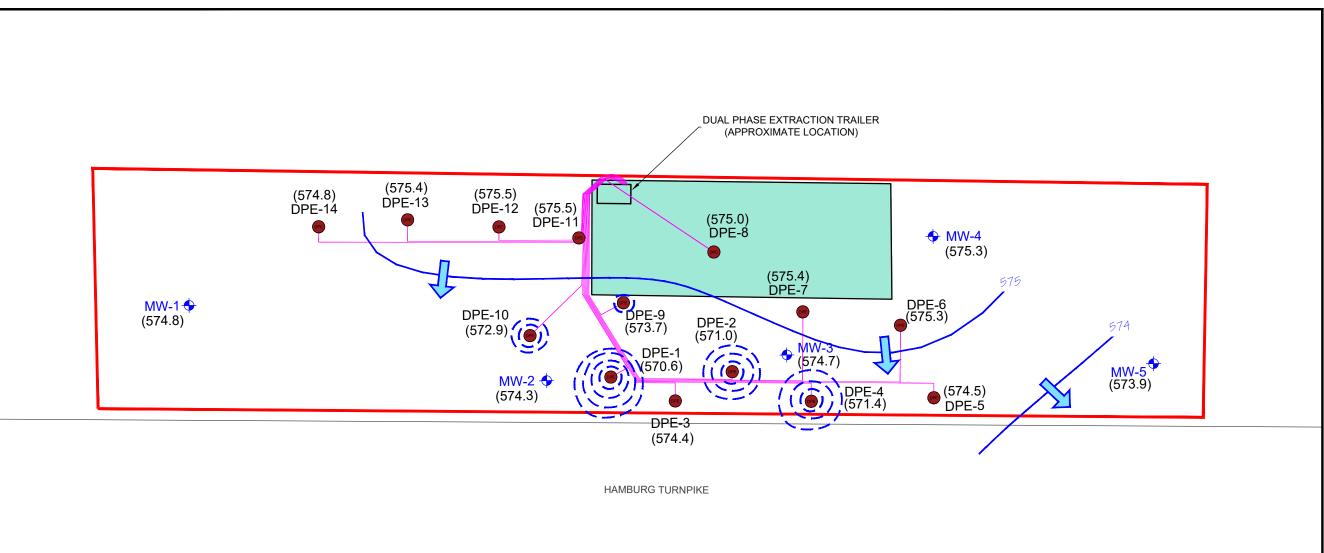
SITE LOCATION & VICINITY MAP

PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

PREPARED FOR

2424 HAMBURG TURNPIKE, LLC


PROPERTY OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

BENCHMARK 2558 HAMBURG TURNPIKE. (716) JOB NO.: 0345-021-001 2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK PREPARED FOR 2424 HAMBURG TURNPIKE, LLC PERIODIC REVIEW REPORT

PLAN

SITE

FIGURE 2

MAP ROUNDWATER ISOPOTENTIAL NOVEMBER 16, 2021 PERIODIC REVIEW REPORT <u>ত</u>

BENCHMARK

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

2424 HAMBURG TURNPIKE, LLC

JOB NO.: 0345-021-00

DPE SYSTEM PIPING DUAL PHASE (SOIL VAPOR AND GROUNDWATER) **EXTRACTION WELL (14)**

GROUNDWATER DEPRESSION CONTOUR LINE CAUSED FROM DPE WATER EXTRACTION

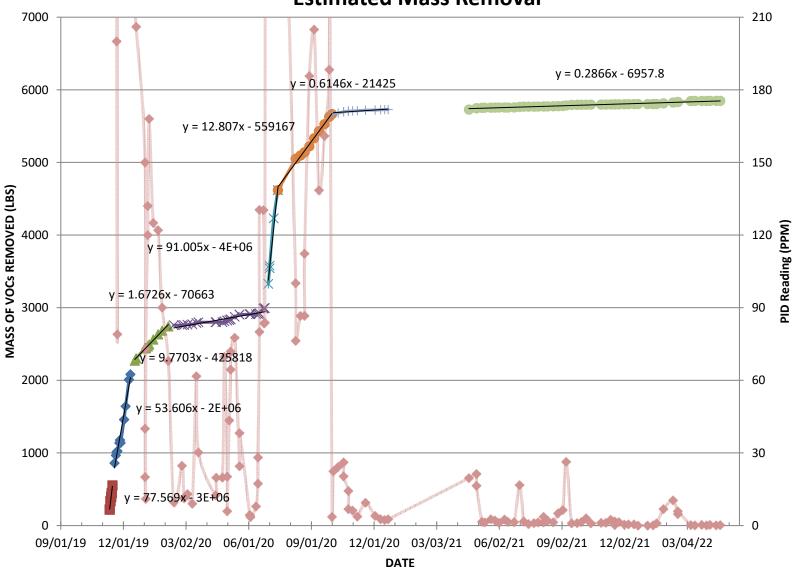
GROUNDWATER CONTOUR LINE

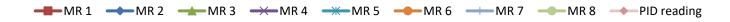
LEGEND:

MW-1+

DPE-1

GROUNDWATER FLOW DIRECTION


BCP AND PROPERTY BOUNDARY


EXISTING STRUCTURE RI MONITORING WELL

SCALE: 1 INCH = 40 FEET SCALE IN FEET (approximate)

FIGURE 3

FIGURE 4
2424 Hamburg Turnpike
Estimated Mass Removal

APPENDIX A

NYSDEC CERTIFICATION AND NOTIFICATION FORMS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	te No.	C915296	Site Details	Box 1				
Sit	te Name 24	24 Hamburg Turnpike						
Cit Co	e Address: :y/Town: La :unty:Erie e Acreage:		Zip Code: 14218					
Re	porting Peri	od: April 24, 2021 to April 24	4, 2022					
1.	Is the infor	mation above correct?		YES	NO			
		ude handwritten above or on	a senarate sheet	•	ш			
2.	Has some		en sold, subdivided, merged, or underg	one a	©.			
3.		been any change of use at th RR 375-1.11(d))?	ne site during this Reporting Period	ø	1			
4.		ederal, state, and/or local pe property during this Report	ermits (e.g., building, discharge) been is ing Period?	ssued				
			thru 4, include documentation or eviusly submitted with this certification					
5.	Is the site of	currently undergoing develop	oment?					
				Box 2				
				YES	NO			
6.		ent site use consistent with thal and Industrial	ne use(s) listed below?		П			
7.	Are all ICs	in place and functioning as o	designed?	1				
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A C	Corrective M	easures Work Plan must be	submitted along with this form to add	lress these iss	sues.			
Sigi	nature of Ow	mer, Remedial Party or Design	nated Representative	 Date				

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid?

(The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C915296 Box 3

Description of Institutional Controls

Parcel 141.59-5-2 Owner

2424 Hamburg Turnpike, LLC

MLG Contracting Inc.

Institutional Control

IC/EC Plan

Ground Water Use Restriction Landuse Restriction Site Management Plan O&M Plan

Monitoring Plan Building Use Restriction

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

141.59-5-2

Vapor Mitigation

Air Sparging/Soil Vapor Extraction

Cover System

Dual-phase extraction system and site cover

Box	5
-----	---

Periodic Review Report (PRR) Certification Statements

 I certify by checkin 	g "YES" below that:
--	---------------------

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915296

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Total Egit.	
n Michael Großeno at 2705 Hopic insignation print business at	dress
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	4/22/22
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Promas Forbes PE at B. Ffel. Ny 14218 Hamburg Tiple

print name print business address

am certifying as a Professional Engineer for the ____

(Owner or Remedial Party)

equired for PE)

Signature of Professional Engineer, for the Owner or

Remedial Party, Rendering Certification

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

60-Day Advance Notification of Site Change of Use, Transfer of Certificate of Completion, and/or Ownership

Required by 6NYCRR Part 375-1.11(d) and 375-1.9(f)

To be submitted at least 60 days prior to change of use to:

Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation, 625 Broadway Albany NY 12233-7020

II. Contact Information of Person Submitting Notification:								
Name: Thomas H. Forbes, P.E.								
Address1: 2558 Hamburg Turnpike, Suite 300								
Address2: Buffalo, NY 14218	D. W-L. ADV 44040							
Phone: (716) 856-0599 E-mail: tforbes@bm-tk.com								
 III. Type of Change and Date: Indicate the Type of Change(s) (check all that apply): ✓ Change in Ownership or Change in Remedial Party(ies) ✓ Transfer of Certificate of Completion (CoC) ☐ Other (e.g., any physical alteration or other change of use) Proposed Date of Change (mm/dd/yyyy): Mar 31, 2022 IV. Description: Describe proposed change(s) indicated above and attach maps, drawings parcel information. 2424 Hamburg Turnpike, LLC is planning to transfer ownership of the 2424 Hamburg Turnpike 								
No. C915296 to MLG Contracting Inc. This notice also requests transfer of the COC to MLG Contracting								
Inc.								
If "Other," the description must explain <u>and</u> advise the Department how such change n not affect the site's proposed, ongoing, or completed remedial program (attach additioneeded).								
	· ·							

order, agre	ertify that the prospecti eement, Site Manageme s well as a copy of all a	ent Plan, or Sta	te Assistance Co	ntract regar		
Name:	100	f 3		Mar 8, 2]
	(Signature)			(Date)	
	Thomas H. Forbes, P.E.					
	(Print Name)					
Address1:	2558 Hamburg Turnpike	e, Suite 300				
Address2:	Dff=l= NIV 44040					
Phone:	(716) 856-0599	E mail:	tforbes@bm-tk.co	m		
there will	nformation for New O be a new remedial party n. If the site is subject	, identify the p	prospective owne	r(s) or party	(ies) alor	ng with c
there will information Manageme	be a new remedial party	y, identify the p to an Environn dic certificatio	prospective owne mental Easement, n of institutional	r(s) or party Deed Resti controls/en	v(ies) alor riction, or gineering	ng with consistence of Site controls
there will information Manageme (IC/ECs), Prospe	be a new remedial party n. If the site is subject ent Plan requiring perio	y, identify the p to an Environn dic certification e certifying par	prospective owner mental Easement, n of institutional ty (attach addition	r(s) or party Deed Restr controls/en and sheets i	v(ies) alor riction, or gineering f needed)	ng with constrols
there will information Manageme (IC/ECs), Prosper Name:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp	y, identify the p to an Environn dic certification e certifying par	prospective owner mental Easement, n of institutional ty (attach addition	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed)	ng with constrols
there will information Manageme (IC/ECs), Prosper Name: Address1:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc.	y, identify the p to an Environn dic certification e certifying par	prospective owner nental Easement, n of institutional ty (attach addition	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed)	ng with co Site controls
there will information Manageme (IC/ECs), Prospet Name: Address1: Address2:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road Getzville, NY 14068	y, identify the p to an Environr dic certification e certifying par sective Remedi	prospective owner mental Easement, n of institutional ty (attach additional al Party Pro	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed) wner Rep	ng with co Site controls
there will information Manageme (IC/ECs), Prosper Name: Address1:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road	y, identify the p to an Environr dic certification e certifying par sective Remedi	prospective owner nental Easement, n of institutional ty (attach addition	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed) wner Rep	ng with constrols
there will information Manageme (IC/ECs), Prospet Name: Address1: Address2: Phone:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road Getzville, NY 14068 (717) 863-1115	y, identify the p to an Environn dic certificatio e certifying par ective Remedi E-mail:	prospective owner mental Easement, nof institutional ty (attach additional Party Promise Promi	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed) wner Rep	ng with constrols
there will information Manageme (IC/ECs), Prosper Name: Address1: Address2: Phone:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road Getzville, NY 14068	y, identify the p to an Environn dic certificatio e certifying par ective Remedi E-mail:	prospective owner mental Easement, nof institutional ty (attach additional Party Promise Promi	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed) wner Rep	ng with constrols
there will information Managemon (IC/ECs), Prosper Name: Address1: Address2: Phone: Certifying Address1:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road Getzville, NY 14068 (717) 863-1115 Party Name: 2424 Ham	y, identify the p to an Environn dic certificatio e certifying par ective Remedi E-mail:	prospective owner mental Easement, nof institutional ty (attach additional Party Promise Promi	r(s) or party Deed Restr controls/en anal sheets i	v(ies) alor riction, or gineering f needed) wner Rep	ng with c Site controls
there will information Manageme (IC/ECs), Prosper Name: Address1: Address2: Phone:	be a new remedial party n. If the site is subject ent Plan requiring perio indicate who will be the ective Owner Prosp MLG Contracting Inc. 2205 Hopkins Road Getzville, NY 14068 (717) 863-1115 Party Name: 2424 Ham 2558 Hamburg Turnpike	y, identify the pto an Environment of the pto an Environment of the certification of the certifying parameters. E-mail: hburg Turnpike, , Suite 300	prospective owner mental Easement, nof institutional ty (attach additional Party Promise Promi	r(s) or party Deed Restriction controls/en mal sheets i espective Or controls/en controls/	v(ies) alor riction, or gineering f needed) wner Rep	ng with c Site controls

Certification Statement: Where the change of use results in a change in ownership or in

 $\mathbf{V}_{\boldsymbol{k}}$

VII. Agreement to Notify DEC after Transfer: If Section VI applies, and all or part of the site will be sold, a letter to notify the DEC of the completion of the transfer must be provided. If the current owner is also the holder of the CoC for the site, the CoC should be transferred to the new owner using DEC's form found at http://www.dec.ny.gov/chemical/54736.html. This form has its own filing requirements (see 6NYCRR Part 375-1.9(f)).

Signing below indicates that these notices will be provided to the DEC within the specified time frames. If the sale of the site also includes the transfer of a CoC, the DEC agrees to accept the notice given in VII.3 below in satisfaction of the notice required by VII.1 below (which normally must be submitted within 15 days of the sale of the site).

Within 30 days of the sale of the site, I agree to submit to the DEC:

1.	the name and	contact	information	n for	the new	owner(s	s) ((see	§375-1.11	(d)	(3))(ii)));
----	--------------	---------	-------------	-------	---------	---------	------	------	-----------	-----	-----	-------	-----

2. the name and contact information for any owner representative; and

3. a notice of transfer using the DEC's form found at http://www.dec.ny.gov/chemical/54736.html

(see §3	75-1.9(f))	3	<u> </u>	Mar 8, 2022	
	(Signature) Thomas H. Forbes, P.E. (Print Name)			(Date)	
Address1:	2558 Hamburg Turnpike, Suite	300			
Address2:	Buffalo, NY 14218				
Phone:	(716) 856-0599	F-mail	tforbes@bm-tk.com		

APPENDIX B

SITE PHOTO LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 3:

Photo 2:

Photo 4:

Photo 1: 2424 Hamburg Turnpike Building (Looking SE)

Photo 2: Asphalt cover (Looking NE)

Photo 3: Vegetated soil cover (Looking N)

Photo 4: Vegetated soil cover (Looking SW)

SITE PHOTOGRAPHS

Photo 5:

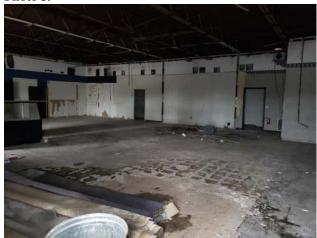


Photo 7:

Photo 8:

Photo 5: South half of building with concrete floor (Looking NE)

Photo 6: North half of building with garage doors and concrete floor (Looking SW)

Photo 7: Dual phase extraction system manifold piping (Looking E)

Photo 8: Dual phase extraction system (Looking NE)

APPENDIX C

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2163124

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Report Date: 12/01/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163124

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2163124-01	MW-2	WATER	BUFFALO, NY	11/16/21 14:34	11/16/21
L2163124-02	MW-3	WATER	BUFFALO, NY	11/16/21 13:11	11/16/21

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/01/21

Custin Walker Cristin Walker

ORGANICS

VOLATILES

L2163124

12/01/21

Not Specified

11/16/21

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

SAMPLE RESULTS

Date Collected: 11/16/21 14:34

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2163124-01 D

Client ID: MW-2

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/24/21 16:51

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	10	2.8	4	
1,1-Dichloroethane	ND		ug/l	10	2.8	4	
Chloroform	ND		ug/l	10	2.8	4	
Carbon tetrachloride	ND		ug/l	2.0	0.54	4	
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4	
Dibromochloromethane	ND		ug/l	2.0	0.60	4	
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4	
Tetrachloroethene	ND		ug/l	2.0	0.72	4	
Chlorobenzene	ND		ug/l	10	2.8	4	
Trichlorofluoromethane	ND		ug/l	10	2.8	4	
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4	
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4	
Bromodichloromethane	ND		ug/l	2.0	0.77	4	
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4	
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4	
Bromoform	ND		ug/l	8.0	2.6	4	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4	
Benzene	59		ug/l	2.0	0.64	4	
Toluene	16		ug/l	10	2.8	4	
Ethylbenzene	200		ug/l	10	2.8	4	
Chloromethane	ND		ug/l	10	2.8	4	
Bromomethane	ND		ug/l	10	2.8	4	
Vinyl chloride	ND		ug/l	4.0	0.28	4	
Chloroethane	ND		ug/l	10	2.8	4	
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4	
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4	
Trichloroethene	ND		ug/l	2.0	0.70	4	
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

SAMPLE RESULTS

Lab ID: L2163124-01 D Date Collected: 11/16/21 14:34

Client ID: MW-2 Date Received: 11/16/21
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	2.8	J	ug/l	10	2.8	4
p/m-Xylene	130		ug/l	10	2.8	4
o-Xylene	22		ug/l	10	2.8	4
cis-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	ND		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
n-Butylbenzene	2.8	J	ug/l	10	2.8	4
sec-Butylbenzene	5.6	J	ug/l	10	2.8	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	20		ug/l	10	2.8	4
p-Isopropyltoluene	ND		ug/l	10	2.8	4
n-Propylbenzene	51		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
1,3,5-Trimethylbenzene	9.3	J	ug/l	10	2.8	4
1,2,4-Trimethylbenzene	530		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	66		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	25	J	ug/l	40	1.6	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	99		70-130	

L2163124

12/01/21

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L2163124-02 Date Collected: 11/16/21 13:11

Client ID: Date Received: 11/16/21 MW-3 Not Specified

Sample Location: Field Prep: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/24/21 17:11

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	8.1		ug/l	0.50	0.16	1
Toluene	0.83	J	ug/l	2.5	0.70	1
Ethylbenzene	14		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2163124

Project Number: Report Date: B0345-021-001-1 12/01/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/16/21 13:11 L2163124-02

Date Received: Client ID: 11/16/21 MW-3

Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Kesuit	Qualifier	Ullita	NL.	WIDE	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	3.4		ug/l	2.5	0.70	1	
o-Xylene	4.5		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	9.4		ug/l	2.5	0.70	1	
sec-Butylbenzene	4.6		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	5.4		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	24		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	1.6	J	ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	7.9	J	ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	16		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	88	70-130	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/24/21 10:36

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1576309-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 2424 HAMBURG TURNPIKE **Lab Number**: L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/24/21 10:36

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1576309-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2163124

Project Number: B0345-021-001-1 **Report Date:** 12/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C

Analytical Date: 11/24/21 10:36

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1576309-5

		Acceptance			
Surrogate	%Recovery Qu	ualifier Criteria			
1,2-Dichloroethane-d4	122	70-130			
Toluene-d8	107	70-130			
4-Bromofluorobenzene	103	70-130			
Dibromofluoromethane	116	70-130			

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163124

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01-02 Batch: W	/G1576309-3 WG1576309-4		
Methylene chloride	110		100	70-130	10	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	120		110	70-130	9	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	100		110	70-130	10	20
Dibromochloromethane	92		100	63-130	8	20
1,1,2-Trichloroethane	95		97	70-130	2	20
Tetrachloroethene	110		100	70-130	10	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	120		120	67-130	0	20
Bromodichloromethane	100		110	67-130	10	20
trans-1,3-Dichloropropene	87		95	70-130	9	20
cis-1,3-Dichloropropene	87		94	70-130	8	20
Bromoform	97		98	54-136	1	20
1,1,2,2-Tetrachloroethane	94		94	67-130	0	20
Benzene	99		100	70-130	1	20
Toluene	100		100	70-130	0	20
Ethylbenzene	110		110	70-130	0	20
Chloromethane	100		96	64-130	4	20
Bromomethane	110		110	39-139	0	20
Vinyl chloride	96		93	55-140	3	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163124

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W0	G1576309-3 WG1576309-4		
Chloroethane	130		120	55-138	8	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	110		110	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	110		100	70-130	10	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	100		110	63-130	10	20
p/m-Xylene	110		110	70-130	0	20
o-Xylene	110		110	70-130	0	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Styrene	115		115	70-130	0	20
Dichlorodifluoromethane	80		81	36-147	1	20
Acetone	85		87	58-148	2	20
Carbon disulfide	100		100	51-130	0	20
2-Butanone	80		79	63-138	1	20
4-Methyl-2-pentanone	83		87	59-130	5	20
2-Hexanone	68		79	57-130	15	20
Bromochloromethane	92		96	70-130	4	20
1,2-Dibromoethane	93		100	70-130	7	20
n-Butylbenzene	110		110	53-136	0	20
sec-Butylbenzene	120		110	70-130	9	20
1,2-Dibromo-3-chloropropane	79		86	41-144	8	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163124

arameter	LCS %Recovery C	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborou	igh Lab Associated sam	ple(s): 01-02	2 Batch:	WG1576309-3	WG1576309-4			
Isopropylbenzene	120		110		70-130	9		20
p-Isopropyltoluene	110		110		70-130	0		20
n-Propylbenzene	120		110		69-130	9		20
1,2,3-Trichlorobenzene	76		82		70-130	8		20
1,2,4-Trichlorobenzene	87		92		70-130	6		20
1,3,5-Trimethylbenzene	110		100		64-130	10		20
1,2,4-Trimethylbenzene	110		110		70-130	0		20
Methyl Acetate	80		80		70-130	0		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	108		102		56-162	6		20
Freon-113	110		120		70-130	9		20
Methyl cyclohexane	98		100		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	118	115	70-130
Toluene-d8	109	107	70-130
4-Bromofluorobenzene	109	106	70-130
Dibromofluoromethane	107	108	70-130

Lab Number: L2163124

Report Date: 12/01/21

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C Pres		Seal	Date/Time	Analysis(*)
L2163124-01A	Vial HCl preserved	А	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2163124-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2163124-01C	Vial HCl preserved	А	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2163124-02A	Vial HCl preserved	А	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2163124-02B	Vial HCl preserved	А	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L2163124-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)

Project Name:2424 HAMBURG TURNPIKELab Number:L2163124Project Number:B0345-021-001-1Report Date:12/01/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2163124Project Number:B0345-021-001-1Report Date:12/01/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2163124Project Number:B0345-021-001-1Report Date:12/01/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2163124Project Number:B0345-021-001-1Report Date:12/01/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Address: 2558 Hamb	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3268	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: Project Location: Project # (Use Project name as Project Manager:	2424 Hambi Buffalo, NY B0345-021-(urg Turnpike		e 1 f 1	Delivi	Date Rec'd in Lab erables ASP-A EQuIS (1 F Other latory Requi	ile)	17/2 ASP-B EQuIS (4 File)	Billing Information Same as Client Info Po# Disposal Site Information Please identify below location of
Fax: Email: bgreene	Turn-Around Time Standard Due Date: ail: bgreene@bm-tk.com Rush (only if pre approved) # of Days: se samples have been previously analyzed by Alpha				AWQ Standards NY CP-51 NY Restricted Use Other NY Unrestricted Use NYC Sewer Discharge ANALYSIS				applicable disposal facilities. Disposal Facility: NJ NY Other: NA Sample Filtration		
Other project specific Email results to: Please specify Metals		ents:					TCL 8260				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials					Sample Specific Comments
0/10/10	MW-3		11/10/21	1311	Water	TIM	x				3
C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certificati	lo: MA015 By:	11/16/21	F e/Time	9314	V B Receiv	red By:	1/	Date/Time /16/21 15:4. /7/21 0250	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.

ANALYTICAL REPORT

Lab Number: L2163827

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Report Date: 12/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number:

L2163827

Report Date:

12/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2163827-01	INFLUENT VAPOR	SOIL_VAPOR	Not Specified	11/18/21 09:40	11/18/21

L2163827

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.									

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on November 8, 2021. The canister certification results are provided as an addendum.

Petroleum Hydrocarbons in Air

L2163827-01 All significant concentrations of non-petroleum VOCs detected in the TO-15 analysis were subtracted from the corresponding hydrocarbon ranges.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/06/21

Christopher J. Anderson

AIR

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1 Lab Number:

L2163827

Report Date: 12/06/21

SAMPLE RESULTS

Lab ID: L2163827-01

Client ID: **INFLUENT VAPOR**

Date Received:

11/18/21 09:40

Sample Location:

Date Collected: Field Prep:

11/18/21 Not Specified

Sample Depth:

Matrix: Anaytical Method: Soil_Vapor 48,TO-15

Analytical Date:

12/03/21 05:19

Analyst: TS

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mar	nsfield Lab								
Dichlorodifluoromethane	0.327	0.200		1.62	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
Freon-114	ND	0.200		ND	1.40			1	
Vinyl chloride	ND	0.200		ND	0.511			1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Bromomethane	ND	0.200		ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528			1	
Ethanol	ND	5.00		ND	9.42			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acetone	ND	1.00		ND	2.38			1	
Trichlorofluoromethane	ND	0.200		ND	1.12			1	
Isopropanol	ND	0.500		ND	1.23			1	
1,1-Dichloroethene	ND	0.200		ND	0.793			1	
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	0.479	0.200		1.49	0.623			1	
Freon-113	ND	0.200		ND	1.53			1	
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number:

L2163827

Report Date: 12/06/21

SAMPLE RESULTS

Lab ID: L2163827-01
Client ID: INFLUENT VAPOR

Sample Location:

Date Collected:

11/18/21 09:40

Date Received: Field Prep:

11/18/21 Not Specified

Sample Depth:

Затріе Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	11.0	0.200		38.8	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	10.8	0.200		34.5	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	11.4	0.200		39.2	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	24.3	0.200		113	0.934			1
Heptane	2.05	0.200		8.40	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	8.30	0.200		31.3	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	16.5	0.200		71.7	0.869			1

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number:

L2163827

Report Date: 12/06/21

SAMPLE RESULTS

Lab ID: L2163827-01
Client ID: INFLUENT VAPOR

Date Collected:

11/18/21 09:40

Sample Location:

Date Received: Field Prep:

11/18/21 Not Specified

Sample Depth:

оапріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	30.5	0.400		132	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	8.45	0.200		36.7	0.869			1
4-Ethyltoluene	6.80	0.200		33.4	0.983			1
1,3,5-Trimethylbenzene	6.60	0.200		32.4	0.983			1
1,2,4-Trimethylbenzene	29.9	0.200		147	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
unknown benzene	13	J	ppbV		1
Butane, 2-Methyl-	46	NJ	ppbV		1
Unknown	15	J	ppbV		1
Cyclohexane, methyl-	8.8	NJ	ppbV		1
Pentane, 2-methyl-	32	NJ	ppbV		1
Unknown	40	J	ppbV		1
2-Pentene, 3-methyl-, (E)-	12	NJ	ppbV		1
Pentane, 3-methyl-	29	NJ	ppbV		1
unknown alkane	32	J	ppbV		1

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

SAMPLE RESULTS

Lab ID: L2163827-01

Client ID: INFLUENT VAPOR

Sample Location:

Date Collected: 11/18/21 09:40

Date Received: 11/18/21

Field Prep: Not Specified

Sample Depth:

Volatile Organics in Air - Mansfield Lab

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
Pentane	23	NJ	ppbV		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-Difluorobenzene	104		60-140		
Bromochloromethane	94		60-140		
chlorobenzene-d5	92		60-140		

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/02/21 16:18

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Eactor
Volatile Organics in Air - Mansfield	l Lab for samp	ole(s): 01	Batch:	WG1578426-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/02/21 16:18

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG1578426-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/02/21 16:18

	ppbV			ug/m3			
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab for samp	le(s): 01	Batch:	WG1578426-	4			
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND N	Results RL ND 0.200 ND 0.200	Results RL MDL ND 0.200 ND 0.200	Results RL MDL Results Id Lab for sample(s): 01 Batch: WG1578426- ND 0.200 ND ND 0.200 ND ND	Results RL MDL Results RL A Lab for sample(s): 01 Batch: WG1578426-4 ND 2.07 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL I Lab for sample(s): 01 Batch: WG1578426-4 Head of the complex of the	Results RL MDL Results RL MDL Qualifier I Lab for sample(s): 01 Batch: WG1578426-4 Section 1 Section 2 Section 3 Section 3

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s)	: 01 Batch	n: WG1578426-3					
Dichlorodifluoromethane	84		-		70-130	-		
Chloromethane	87		-		70-130	-		
Freon-114	83		-		70-130	-		
Vinyl chloride	83		-		70-130	-		
1,3-Butadiene	90		-		70-130	-		
Bromomethane	84		-		70-130	-		
Chloroethane	70		-		70-130	-		
Ethanol	82		-		40-160	-		
Vinyl bromide	90		-		70-130	-		
Acetone	98		-		40-160	-		
Trichlorofluoromethane	109		-		70-130	-		
Isopropanol	91		-		40-160	-		
1,1-Dichloroethene	90		-		70-130	-		
Tertiary butyl Alcohol	89		-		70-130	-		
Methylene chloride	87		-		70-130	-		
3-Chloropropene	98		-		70-130	-		
Carbon disulfide	79		-		70-130	-		
Freon-113	96		-		70-130	-		
trans-1,2-Dichloroethene	82		-		70-130	-		
1,1-Dichloroethane	89		-		70-130	-		
Methyl tert butyl ether	94		-		70-130	-		
2-Butanone	97		-		70-130	-		
cis-1,2-Dichloroethene	89		-		70-130	-		

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s)	: 01 Batch	n: WG1578426-3					
Ethyl Acetate	88		-		70-130	-		
Chloroform	86		-		70-130	-		
Tetrahydrofuran	90		-		70-130	-		
1,2-Dichloroethane	104		-		70-130	-		
n-Hexane	86		-		70-130	-		
1,1,1-Trichloroethane	123		-		70-130	-		
Benzene	79		-		70-130	-		
Carbon tetrachloride	120		-		70-130	-		
Cyclohexane	83		-		70-130	-		
1,2-Dichloropropane	99		-		70-130	-		
Bromodichloromethane	100		-		70-130	-		
1,4-Dioxane	88		-		70-130	-		
Trichloroethene	99		-		70-130	-		
2,2,4-Trimethylpentane	89		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	107		-		70-130	-		
4-Methyl-2-pentanone	114		-		70-130	-		
trans-1,3-Dichloropropene	97		-		70-130	-		
1,1,2-Trichloroethane	104		-		70-130	-		
Toluene	81		-		70-130	-		
2-Hexanone	106		-		70-130	-		
Dibromochloromethane	112		-		70-130	-		
1,2-Dibromoethane	93		-		70-130	-		

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	01 Bat	tch: WG1578426-3					
Tetrachloroethene	88		-		70-130	-		
Chlorobenzene	84		-		70-130	-		
Ethylbenzene	92		-		70-130	-		
p/m-Xylene	94		-		70-130	-		
Bromoform	117		-		70-130	-		
Styrene	90		-		70-130	-		
1,1,2,2-Tetrachloroethane	86		-		70-130	-		
o-Xylene	97		-		70-130	-		
4-Ethyltoluene	87		-		70-130	-		
1,3,5-Trimethylbenzene	93		-		70-130	-		
1,2,4-Trimethylbenzene	98		-		70-130	-		
Benzyl chloride	106		-		70-130	-		
1,3-Dichlorobenzene	95		-		70-130	-		
1,4-Dichlorobenzene	92		-		70-130	-		
1,2-Dichlorobenzene	91		-		70-130	-		
1,2,4-Trichlorobenzene	93		-		70-130	-		
Hexachlorobutadiene	97		-		70-130	-		

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

Parameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1578426-5	QC Sample:	L2163827-01	Client ID: INFLUENT VAPOR
Dichlorodifluoromethane	0.327	0.316	ppbV	3	25
Chloromethane	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethanol	ND	ND	ppbV	NC	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	ND	ND	ppbV	NC	25
Trichlorofluoromethane	ND	ND	ppbV	NC	25
Isopropanol	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Tertiary butyl Alcohol	ND	ND	ppbV	NC	25
Methylene chloride	ND	ND	ppbV	NC	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	0.479	0.521	ppbV	8	25
Freon-113	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

Parameter	Native Samp	ole Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1578426-5	QC Sample:	L2163827-01	Client ID: INFLUENT VAPOR
2-Butanone	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	11.0	10.8	ppbV	2	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	10.8	10.9	ppbV	1	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	11.4	11.3	ppbV	1	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	24.3	24.0	ppbV	1	25
Heptane	2.05	2.06	ppbV	0	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

L2163827 Report Date: 12/06/21

Lab Number:

arameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Qual Limits	
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1578426-5	QC Sample:	L2163827-01	Client ID: INFLUENT	Γ VAPOR
Toluene	8.30	8.57	ppbV	3	25	
2-Hexanone	ND	ND	ppbV	NC	25	
Dibromochloromethane	ND	ND	ppbV	NC	25	
1,2-Dibromoethane	ND	ND	ppbV	NC	25	
Tetrachloroethene	ND	ND	ppbV	NC	25	
Chlorobenzene	ND	ND	ppbV	NC	25	
Ethylbenzene	16.5	17.2	ppbV	4	25	
p/m-Xylene	30.5	31.4	ppbV	3	25	
Bromoform	ND	ND	ppbV	NC	25	
Styrene	ND	ND	ppbV	NC	25	
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25	
o-Xylene	8.45	8.73	ppbV	3	25	
4-Ethyltoluene	6.80	7.49	ppbV	10	25	
1,3,5-Trimethylbenzene	6.60	6.97	ppbV	5	25	
1,2,4-Trimethylbenzene	29.9	31.0	ppbV	4	25	
Benzyl chloride	ND	ND	ppbV	NC	25	
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25	
Hexachlorobutadiene	ND	ND	ppbV	NC	25	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

SAMPLE RESULTS

Lab ID: L2163827-01 Date Collected: 11/18/21 09:40

Client ID: INFLUENT VAPOR Date Received: 11/18/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Analytical Method: 96,APH

Analytical Date: 12/03/21 05:19

Analyst: TS

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab					
1,3-Butadiene	ND		ug/m3	0.50		1
Methyl tert butyl ether	ND		ug/m3	0.70		1
Benzene	35		ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	1600		ug/m3	10		1
Toluene	35		ug/m3	0.90		1
Ethylbenzene	74		ug/m3	0.90		1
p/m-Xylene	130		ug/m3	0.90		1
o-Xylene	35		ug/m3	0.90		1
Naphthalene	24		ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	160		ug/m3	10		1
C9-C10 Aromatics Total	700		ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	109		50-200
Bromochloromethane	93		50-200
Chlorobenzene-d5	93		50-200

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 96,APH

Analytical Date: 12/02/21 16:18

Analyst: TS

Parameter	Result	Qualifier Un	its	RL	MDL	
Petroleum Hydrocarbons in Air - Ma	ansfield Lab	for sample(s):	01	Batch:	WG1578429-4	
1,3-Butadiene	ND	ug/	′m3	0.50		
Methyl tert butyl ether	ND	ug/	/m3	0.70		
Benzene	ND	ug/	/m3	0.60		
C5-C8 Aliphatics, Adjusted	ND	ug/	/m3	10		
Toluene	ND	ug/	/m3	0.90		
Ethylbenzene	ND	ug/	/m3	0.90		
p/m-Xylene	ND	ug/	/m3	0.90		
o-Xylene	ND	ug/	/m3	0.90		
Naphthalene	ND	ug/	/m3	1.1		
C9-C12 Aliphatics, Adjusted	ND	ug/	/m3	10		
C9-C10 Aromatics Total	ND	ug/	/m3	10		

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L210

L2163827

Report Date:

12/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Petroleum Hydrocarbons in Air - Mansfield La	ab Associated s	ample(s): 0	1 Batch: WG15	78429-3				
1,3-Butadiene	77		-		70-130	-		
Methyl tert butyl ether	86		-		70-130	-		
Benzene	81		-		70-130	-		
C5-C8 Aliphatics, Adjusted	85		-		70-130	-		
Toluene	90		-		70-130	-		
Ethylbenzene	94		-		70-130	-		
p/m-Xylene	90		-		70-130	-		
o-Xylene	92		-		70-130	-		
Naphthalene	115		-		50-150	-		
C9-C12 Aliphatics, Adjusted	97		-		70-130	-		
C9-C10 Aromatics Total	84		-		70-130	-		

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-1

Lab Number: L2163827

Notive Sample	Dunliaata Samala	Unito	DDD	Ougl	RPD Limits
Native Sample	Duplicate Sample	Ullits	KPU	Quai	Lillius
Associated sample(s): 01	QC Batch ID: WG1578	429-5 QC Sai	mple: L2163	827-01 CI	ent ID: INFLUENT
ND	ND	ug/m3	NC		30
ND	ND	ug/m3	NC		30
35	36	ug/m3	3		30
1600	1500	ug/m3	6		30
35	36	ug/m3	3		30
74	77	ug/m3	4		30
130	130	ug/m3	0		30
35	37	ug/m3	6		30
24	20	ug/m3	18		30
160	160	ug/m3	0		30
700	730	ug/m3	4		30
	ND ND 35 1600 35 74 130 35 24	Associated sample(s): 01 QC Batch ID: WG15784 ND ND ND 35 36 1600 1500 35 36 74 77 130 130 35 37 24 20 160 160	Associated sample(s): 01 QC Batch ID: WG1578429-5 QC Same ND ND ug/m3 ND ND ND ug/m3 35 36 ug/m3 1600 1500 ug/m3 35 36 ug/m3 74 77 ug/m3 130 130 ug/m3 35 37 ug/m3 24 20 ug/m3 160 160 ug/m3	Associated sample(s): 01 QC Batch ID: WG1578429-5 QC Sample: L2163 ND ND ug/m3 NC ND ND ug/m3 NC 35 36 ug/m3 3 1600 1500 ug/m3 6 35 36 ug/m3 3 74 77 ug/m3 4 130 130 ug/m3 0 35 37 ug/m3 6 24 20 ug/m3 18 160 160 ug/m3 0	Associated sample(s): 01 QC Batch ID: WG1578429-5 QC Sample: L2163827-01 Cli ND ND Ug/m3 NC ND ND Ug/m3 NC 35 36 Ug/m3 3 1600 1500 Ug/m3 6 35 36 Ug/m3 3 74 77 Ug/m3 4 130 130 Ug/m3 0 35 37 Ug/m3 6 24 20 Ug/m3 18 160 160 Ug/m3 0

2424 HAMBURG TURNPIKE L2163827

Project Number: B0345-021-001-1 **Report Date:** 12/06/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	
L2163827-01	INFLUENT VAPOR	2790	2.7L Can	11/08/21	369713	L2159737-03	Pass	-29.7	0.0	-	-	-	-

Project Name:

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: CAN 235 SHELF 20 Date Received: 11/01/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 11/02/21 21:23

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: CAN 235 SHELF 20 Date Received: 11/01/21

Sample Location: Field Prep: Not Specified

Затріє Беріп.		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: CAN 235 SHELF 20 Date Received: 11/01/21

Sample Location: Field Prep: Not Specified

Затріє Беріп.		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: CAN 235 SHELF 20 Date Received: 11/01/21

Sample Location: Field Prep:

Not Specified

Запріє Беріп.		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2159737

Project Number: CANISTER QC BAT Report Date: 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Client ID: CAN 235 SHELF 20

Sample Location:

Date Collected:

10/29/21 14:00

Date Received:

11/01/21

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	84		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	89		60-140

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: CAN 235 SHELF 20 Date Received: 11/01/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 11/02/21 21:23

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2159737

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Date Collected: 10/29/21 14:00 Client ID: **CAN 235 SHELF 20** Date Received: 11/01/21

Sample Location:

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2159737

Project Number: CANISTER QC BAT Report Date: 12/06/21

Air Canister Certification Results

Lab ID: L2159737-03

Client ID: CAN 235 SHELF 20

Sample Location:

Date Collected:

10/29/21 14:00

Date Received:

11/01/21

Field Prep:

Not Specified

ouripic Doptii.								
		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	96		60-140

AIR Petro Can Certification

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2159737

Project Number: Report Date: CANISTER QC BAT 12/06/21

AIR CAN CERTIFICATION RESULTS

Lab ID: L2159737-03 Date Collected: 10/29/21 14:00

Client ID: Date Received: **CAN 235 SHELF 20** 11/01/21 Field Prep: Not Specified

Sample Location: Not Specified

Matrix: Air Analytical Method: 96,APH

Analytical Date: 11/02/21 21:23

Analyst: TS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air						
1,3-Butadiene	ND		ug/m3	0.50		1
Methyl tert butyl ether	ND		ug/m3	0.70		1
Benzene	ND		ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	10		1
Toluene	ND		ug/m3	0.90		1
Ethylbenzene	ND		ug/m3	0.90		1
p/m-Xylene	ND		ug/m3	0.90		1
o-Xylene	ND		ug/m3	0.90		1
Naphthalene	ND		ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	10		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Lab Number: L2163827

Report Date: 12/06/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

2424 HAMBURG TURNPIKE

Cooler Information

Project Name:

Custody Seal Cooler

Project Number: B0345-021-001-1

NA Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
I 2163827-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		APH-10(30) TO15-LL(30)

Project Name:2424 HAMBURG TURNPIKELab Number:L2163827Project Number:B0345-021-001-1Report Date:12/06/21

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:2424 HAMBURG TURNPIKELab Number:L2163827Project Number:B0345-021-001-1Report Date:12/06/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:2424 HAMBURG TURNPIKELab Number:L2163827Project Number:B0345-021-001-1Report Date:12/06/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:2424 HAMBURG TURNPIKELab Number:L2163827Project Number:B0345-021-001-1Report Date:12/06/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAMIXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12062115:30

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	AIR	ANALY	SIS	PAGE	, 1	333								Ph.	:12062115:3	
MPHA	CHAIN OF CUSTO	DY		PAGE	L OF_	Date	Rec'd in L	ab:	111	912	1	A	LPHA	A Job	#: 2210	6382
320 Forbes Blvd,	Mansfield, MA 02048		Information			Rep	ort Inforr	nation	Data	Deliver	ables	1	Billing	Infor	rmation	7 1107
Client Informat	00 FAX: 508-822-3288	Project Na	ime: 2424 /	tanburg 7.	somple	□ FA						¥	Same	as Clic	ent info PO#	:
Client: Bench		Project Lo	cation:	11		D AL	DEx Criteria C	hecker:								
		Project #:	B0345-0	21-001-	-1		(Default ba	sed on Reg	ulatory Cri	teria Indica	ted)					
2558	Hambery Tumpike NY 142118	Project Ma	nager. Broc	k freen	e	O EN	MAIL (stan	dard pdf	report)			F	legula	itory i	Requirement	s/Report L
Phone:	104 142118						Iditional De						ate/Fed		Program	Res / Co
Phone: 716 - 1	056-0599	Turn-Ard	ound Time			Repo	rt to: (If differe	nt than Projec	f Manager)			-				
mail:	1 1	Standard	☐ RUSH	jonly continued if pri	- motorio di									\pm		
byrene	ne@bm-tk.com			1,000,000,000,000,000,000	- Approved y							1	Al	NALY	YSIS	
Other Project S	ave been previously analyzed by A Specific Requirements/C	Ipha Date Due:		Time:									11.	7		
	c Target Compound Lis											W CS+TIC	1	/ / 8	Ď/ / Ž	
ALPHA Lab ID (Lab Use Only)	Sample ID	All Colu	COLLEC				Sampler's	Can	ID	ID-Flow	70.15	4PL SIM	Fixed Gases	A Mercaptana by 77.	/	
3827-01	Influent Vapor	940	939 940		- o.4	SVE	13MG	Size	THE REAL PROPERTY.	Controller	X		4/0	H		
		11.10.0				216	56	2.12	2170	0129	^	X	+	+	PID = C	2ppm
											H	+	+	+		
											-	+	-	1		
												Н				
				-								Ш				
				-												
				-								Ш		1		
											-		1			
*SAMPLE	MATRIX CODES	AA = Ambient Ai SV = Soil Vapor/I Other = Please Sp	Landfill Gas/SVE)			Co	ontainer '	Туре	cs					Please print cle	arly, legibly ar
		Relinquishe		Dat	e/Time		Receiv	and Bur				ate/Tir			completely. Sar logged in and tu clock will not sta	rnaround time
	Brook	K Greege		11-18-2	1/1200	Am	AC	AAL	_	1	4		ne: '513	Δ	guities are resol submitted are si	ved. All samp
age 40°6f°40°25-8	Sep-15)	THE AAC	_	11/18/	2116:40	7		_			119/21		20	_	Terms and Cond See reverse side	fitions.
age 40 01 40	we	my Mon	Soots	11/19/	216:0	10		ممر	20	191	9/2	10	269	0	See reverse sid	-

APPENDIX D

SEWER DISCHARGE PERMIT AND ANALYTICAL DATA

APR 2 2 2021

MARK C. POLONCARZ County Executive

THOMAS R. HERSEY, JR Commissioner DEPARTMENT OF ENVIRONMENT AND PLANNING

JOSEPH L. FIEGL, P.E. Deputy Commissioner

April 19, 2021

Brock Greene, Senior Project Environmental Scientist Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, New York 14218

RE: Erie County Sewer District No.6 (ECSD No.6) Industrial Wastewater Discharge Permit LA-04 2424 Hamburg Turnpike, Lackawanna, New York

Dear Mr. Greene:

Enclosed please find an original copy of the Industrial Wastewater Discharge Permit for above referenced site. The Permit must be maintained on site and available for review upon request. Please note that the initial monitoring report, due August 8, 2021, is to include EPA 625, EPA 608 and Total Oil & Grease analysis.

Please review the permit carefully. If you should have any questions or concerns you may reach me at 823-5888, ext 223.

Sincerely,

Laura A. Surdej

Industrial Wastewater Specialist

Juna Sudi

Cc: G. Absolom/K. Kaminski/6.2.4 2424 Hamburg Turnpike

E. EigenbrodM. Dembski

WI. Dellioski

Paul H Werthman, P.E. (Turnkey)

Tom Forbes, P.E. (Turnkey)

Industrial Wastewater Discharge Permit

Permit No. LA-04

In accordance with all terms and conditions of the Rules and Regulations for Erie County Sewer Districts, as adopted by Erie County Sewer District #6 (ECSD #6) and with any applicable provision of Federal or State law or regulation;

Permission is Hereby Granted To 2424 Hamburg Turnpike LLC

(Address) 2424 Hamburg Turnpike

Lackawanna, New York 14218

(Responsible Person) Paul H. Werthman P.E.

(Title) Managing Member

(Telephone No.) (716)856-0635 (Emergency Telephone No.)

(Standard Industrial Classification Code) (remedial site)

(Categorical Classification)

For the contribution of wastewaters containing regulated pollutants into the ECSD #6 sewerage system.

This permit, including the general provisions, is granted in accordance with the application filed on <u>March 23, 2021</u> in the office of the ECSD #6 and in conformity with any plans, specifications and other data submitted to ECSD #6 in support of the above application, all of which are filed with and considered a part of this permit.

Effective this 10th day of May, 2021

To expire the 9th day of May, 2024

Glenn H. Absolom, Chief Treatment Plant Supervisor

De

DISCHARGE MONITORING REPORTING REQUIREMENTS

Industry	2424	Hamburg	Turnpike	LLC	Permit	No.LA-04
Effective	Date	May 10,	2021			

During the period beginning the effective date of this permit and lasting until its expiration date, discharge monitoring results shall be summarized and reported by the permittee by the dates specified below:

Sample Point	Initial Report	Subsequent Reports(1)
001	August 8, 2021	Every February 8 and August 8

Report due dates cover the preceding six (6) month's report period.

i.e.	Report Date	Report Covers This Reporting Period
	August 8	February 9 - August 8
	February 8	August 9 - February 8

DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

LA-04 Permit No. 2424 Hamburg Turnpike LLC Industry

May 10, Effective Date

discharge from the permitted facility's outfall(s) shall be limited and monitored by the permittee as During the period beginning the effective date of this Permit and lasting until the expiration date, specified below.

שטדשת משודושלים	•			
Sample Point	Parameter	Discharge Limits	Sample Type	Sampling Frequency
001	Hd	5.0-12.0	Grab	One Day
	Flow	25,000 gallons		Daily
	T. Phenols	monitor	Grab	One Day
	T. Cyanide (2)	0.48 mg/l	Grab	One Day
	Barium	monitor	Grab	One Day
	Iron	Monitor	Grab	One Day
	Arsenic (2)	0.18 mg/l	Grab	One Day
	Cadmium (2)	0.26 mg/l	Grab	One Day
	Chromium (2)	4.85 mg/l	Grab	One Day
	Copper (2)	0.57 mg/l	Grab	One Day
	Lead (2)	0.40 mg/l	Grab	One Day
	Mercury (2)	0.06 mg/l	Grab	One Day
	Nickel (2)	0.88 mg/l	Grab	One Day
	Selenium (2)	0.17 mg/l	Grab	One Day
	Silver (2)	0.01 mg/l	Grab	One Day
	Zinc (2)	6.35 mg/l	Grab	One Day
	Total Oil & Grease (1)	100 mg/l	Grab	One Day
	TIO:	2.13 mg/l		
	EPA 624		Grab	One Day
	EPA 625 (1)		Grab	One Day
	EPA 608 (1)		Grab	One Day

All limits are in mg/l except pH and flow.

⁽¹⁾

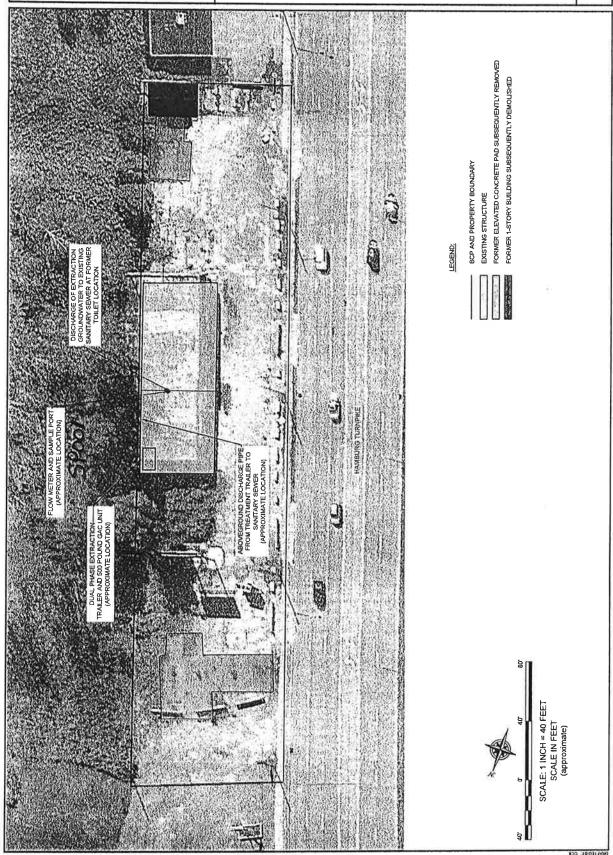
See Special Requirements, page 4. Proposed local limits. See special requirements, page 4.

SPECIAL REQUIREMENTS

Industry 2424 Hamburg Turnpike LLC Permit No. LA-04

Effective Date May 10, 2021

- 1. The initial monitoring report, due August 8, 2021 shall include analysis for EPA 608, EPA 625 and Total Oil & Grease. If results are within acceptable limits, then subsequent analyses must only be reported annually, in August monitoring reports.
- 2. Total metals to include: As, Ba, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn.
- 3. Proposed Local Limit parameters are included in the monitoring.


 These limits are pending EPA approval and may be subject to change.
- 4. The Total Oil & Grease limit is based on the required test method EPA 1664A.
- 5. Flow should be recorded daily. Semi-annual reports shall include flow data for sampling period.
- 6. Once per year, the flow meter must be calibrated and certified by an outside source. A copy of this recertification must be submitted.

> Еиункоимеитац Ейбімеевіне В Всієнсе, Рісс

ВЕИСНМАВК

8568 HAMBURG TURNPIKE BUTTE 300 BUPTALO, NY 14818 (315) 868-669 2424 HAMBURG TURNPIKE SITE
BCP SITE NO. C815296
LACKAWANNA, NEW YORK
PREPARED FOR

SITE PLAN (AERIAL)

GENERAL PROVISIONS

1. All submittals and correspondence shall be addressed to:

Erie County Division of Sewerage Management Southtowns Water Resource Recovery Facility c/o Laura Surdej S-3690 Lakeshore Blvd. Buffalo, New York 14219

- 2. This permit shall not be transferred, reassigned or sold to a new owner, new user, different premises or a new or changed operation without the written approval of the District.
- 3. This permit shall be valid for a period of three years from the date of issuance. The applications for renewing this permit must be submitted at least 90 days prior to the expiration of this permit.
- 4. As U.S.E.P.A. or N.Y.S.D.E.C. adds or amended specific effluent guidelines, or as the Board deems necessary to protect employees or the sewerage works or operations, the conditions of this Industrial Wastewater Discharge Permit may be amended. Written notice of proposed changes shall be sent to the permittee.
- 5. When the permitted discharge is substantially altered in volume, character of strength, the permittee must notify the Board in writing 30 days prior to altering the discharge. If the Board determines that a new permit is necessary the permittee shall apply for a new permit for the altered discharge.
- 6. This permit may be revoked by the Board, if after a hearing, a violation is determined to exist and no corrective measures are taken within 30 days of such determination. If this permit is revoked, all discharges covered by this permit shall cease immediately.
- 7. The permittee, shall when requested, complete an Industrial Waste Survey. The permittee may be requested to update the survey annually.
- 8. The permittee shall submit monitoring reports as per the requirements listed in the attached Monitoring and Reporting Requirements.
- 9. Methods employed for flow measurements, sample collection and analyses shall conform to the Erie County Sewer District's "Sampling, Measurement and Analytical Guidelines."

- 10. The permittee shall notify immediately of changes that occur at the facility affecting the potential for a slug discharge to allow for reevaluation of slug control plan or other actions to prevent such discharges.
- 11. The permittee, shall maintain a Slug Control Plan as outlined in the "Spill Control/Solvent Management Guidelines".
- 12. In the event that any slug discharge or accidental discharge occurs at the facility for which this permit is issued the permittee shall immediately notify ECSD #6 by telephone (823-5888) of the quantity and character of such discharge.

Within five days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

- 13. All records and information resulting from the monitoring activities required by the Permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained for a minimum of three years. If it is deemed necessary, this period shall be extended as is needed. Additionally, these records must be available for inspection and copying during normal business hours.
- 14. The monitoring report, which shall consist of the analysis, field log(s), map, certification statement and chain of possession log, must be submitted by the industry and not by a contract or consulting firm.
- 15. Monitoring reports <u>must contain the following signed certification</u> statement:

I certify, under penalty of law, that this document and all attachments were prepared under/by direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

16. If the permittee is not meeting the limits imposed by this permit, the permittee shall submit a compliance schedule for meeting the limits. The time limits proposed to meet full compliance must be approved by the Board. If a compliance schedule is established

because of a change in a Federal Categorical Pretreatment Regulation, then the federally established deadline will be the compliance time allowed.

No later than fourteen calendar days following each milestone date identified in the Schedule of Compliance, the permittee shall submit either a report of progress or, in the case of specific actions being required by identified dates, a written notice of compliance or noncompliance. In the latter case, the notice shall include the cause of noncompliance, any remedial action taken, and the probability of meeting the next schedule date requirement.

All reports, plans and/or specifications that propose new or modified waste treatment and/or disposal facilities must be approved, and signed and sealed by a professional engineer licensed to practice in New York State.

- 17. If sampling performed by the permittee indicates a violation, the permittee shall notify the Erie County Department of Environment and Planning, Division of Sewerage Management (823-8188) within 24 hours of becoming aware of the violation. The permittee shall also repeat the sampling and analysis and submit the results of the repeat analysis to the Division of Sewerage Management within 30 days after becoming aware of the violation.
- 18. The permittee shall be subject to a premium assessment not to exceed ten thousand dollars for each violation of the limits or requirements of this permit.

Each day a violation is shown to exist shall constitute a separate violation. A day shall be a twenty-four hour period beginning at 12:01 A.M. and ending the following 12:01 A.M. This permit may be revoked, if after a hearing, a violation is determined to exist and corrective measures are not taken within 30 days of such determination.

Nothing in this section shall be construed to limit the right of the Board to enforce, or avail themselves of the benefits of any and all other applicable laws and ordinances including injunctive relief.

- 19. The following definitions shall apply to this permit:
- The "monthly average" discharge shall mean the arithmetic average of daily values, reported in appropriate units, for all calendar days during any calendar month that flow measurement and/or wastewater discharge sample analysis are required.
- b. The "daily maximum" discharge shall mean the flow measurements and/or wastewater discharge analysis for any 24 hour period that reasonably represents the calendar day, when such measurements and analyses are taken as required.

- c. "Daily" each operating day.
- d. "Weekly" one day each week and a normal operating day.
- e. "Monthly" one day each month and normal operating day.
- f. "Composite" shall mean a combination of individual (or continuously taken) samples obtained at regular intervals over the entire discharge day. The volume of each sample shall be proportional to the discharge flow rate. For continuous discharge, a minimum of forty-eight individual grab samples (at half hour intervals) shall be collected and combined to constitute a 24-hour composite sample. For intermittent discharges of less than 4 hours duration grab samples shall be taken at a minimum of 15 minute intervals.
- g. "Grab" shall mean an individual sample collected over a period of time not exceeding fifteen minutes.
- h. "Board" shall mean the Board of Managers of an Erie County Sewer District or its authorized representatives.

Revised 6/13/18
IWD permits/generalprovisions_dist6

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Parameter ¹	Effluent 07/08/21	Discharge Permit Limitations ²
Volatile Organic Compounds (VOCs - Method	l 624) - mg/L	
Bromomethane	0.0014 J	
Acetone	0.0024 J	
Dibromomethane	0.00029 J	
TOTAL VOCs (mg/L)	0.0041	
Semi-Volatile Organic Compounds (SVOCs -	Method 625) - mg/L	
All Compounds Non-Detect		
Polychlorinated Biphenyls (PCBs) (Method 6	608)- mg/L	
All Compounds Non-Detect		
Organochlorine Pesticide Compounds (Meth	od 608) - mg/L	
All Compounds Non-Detect		
Metal Compounds (Method 200.7 Rev 4.4) - m		
Barium	0.054	Monitor
Copper	0.005 J	0.57
Iron	0.618	Monitor
TOTAL Metals (mg/L)	0.677 J	Monitor
General Chemistry - mg/L		
Cyanide, Total	ND	Monitor
Phenolics, Total Recoverable	0.008 J	Monitor
Oil & Grease	1 J	100
Ph	7.5	5-12
Total Toxic Organic Pollutants (TTO) 4	0.0041	2.13

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per the Nov 2019 Erie County Sewer District No. 6 Discharge Permit LA-04
- 3. Metals include Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Methods 608, 624, & 625.

Definitions:

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- NS = Parameter not sampled for at this time.

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Parameter ¹	Effluent 01/13/22	Discharge Permit Limitations ²
Volatile Organic Compounds (VOCs - Method	l 624) - mg/L	
All Compounds Non-Detect		
Semi-Volatile Organic Compounds (SVOCs -	Method 625) - mg/L	
NS		
Polychlorinated Biphenyls (PCBs) (Method 6	608)- mg/L	
NS		
Organochlorine Pesticide Compounds (Meth	od 608) - mg/L	
NS		
Metal Compounds (Method 200.7 Rev 4.4) - m	g/L ³	
Arsenic	0.004 J	0.18
Barium	0.058	Monitor
Chromium	0.002 J	4.85
Copper	0.003 J	0.57
Iron	2.31	Monitor
Zinc	0.011 J	6.35
TOTAL Metals (mg/L)	2.388 J	Monitor
General Chemistry - mg/L		
Cyanide, Total	ND	0.48
Phenolics, Total Recoverable	0.006 J	Monitor
Oil & Grease	NS	100
Ph	7.6	5-12
Total Toxic Organic Pollutants (TTO) 4	ND	2.13

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per the May 2021 Erie County Sewer District No. 6 Discharge Permit LA-04
- 3. Metals include Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Methods 608, 624, & 625.

Definitions:

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = Parameter is non-detect.
- NS = Parameter not sampled for at this time.

ANALYTICAL REPORT

Lab Number: L2136732

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Report Date: 07/30/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date:

07/30/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2136732-01	EFFLUENT	WATER	Not Specified	07/08/21 13:30	07/08/21

Project Name:2424 HAMBURG TURNPIKE SITELab Number:L2136732Project Number:B0345-021-001-001Report Date:07/30/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:2424 HAMBURG TURNPIKE SITELab Number:L2136732Project Number:B0345-021-001-001Report Date:07/30/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics by Method 624

The WG1522510-3 LCS recovery, associated with L2136732-01, is above the acceptance criteria for vinyl acetate (190%), acrolein (195%), and acrylonitrile (145%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

417

Date: 07/30/21

ORGANICS

VOLATILES

L2136732

07/30/21

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

SAMPLE RESULTS

E RESULTS

Lab Number:

Report Date:

 Lab ID:
 L2136732-01
 Date Collected:
 07/08/21 13:30

 Client ID:
 EFFLUENT
 Date Received:
 07/08/21

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 07/09/21 15:36

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	1.0	0.56	1	
1,1-Dichloroethane	ND		ug/l	1.5	0.40	1	
Chloroform	ND		ug/l	1.0	0.38	1	
Carbon tetrachloride	ND		ug/l	1.0	0.24	1	
1,2-Dichloropropane	ND		ug/l	3.5	0.46	1	
Dibromochloromethane	ND		ug/l	1.0	0.27	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1	
2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1	
Tetrachloroethene	ND		ug/l	1.0	0.26	1	
Chlorobenzene	ND		ug/l	3.5	0.30	1	
Trichlorofluoromethane	ND		ug/l	5.0	0.28	1	
1,2-Dichloroethane	ND		ug/l	1.5	0.47	1	
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1	
Bromodichloromethane	ND		ug/l	1.0	0.28	1	
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1	
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1	
Bromoform	ND		ug/l	1.0	0.22	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1	
Benzene	ND		ug/l	1.0	0.38	1	
Toluene	ND		ug/l	1.0	0.31	1	
Ethylbenzene	ND		ug/l	1.0	0.28	1	
Chloromethane	ND		ug/l	5.0	1.0	1	
Bromomethane	1.4	J	ug/l	5.0	1.2	1	
Vinyl chloride	ND		ug/l	1.0	0.38	1	
Chloroethane	ND		ug/l	2.0	0.37	1	
1,1-Dichloroethene	ND		ug/l	1.0	0.31	1	
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1	
cis-1,2-Dichloroethene	ND		ug/l	1.0	0.17	1	

07/30/21

Report Date:

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001

L2136732-01

SAMPLE RESULTS

Date Collected: 07/08/21 13:30

Client ID: EFFLUENT Date Received: 07/08/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
Trichloroethene	ND		ug/l	1.0	0.33	1	
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1	
p/m-Xylene	ND		ug/l	2.0	0.30	1	
o-xylene	ND		ug/l	1.0	0.34	1	
Xylenes, Total	ND		ug/l	1.0	0.30	1	
Styrene	ND		ug/l	1.0	0.37	1	
Acetone	2.4	J	ug/l	10	2.4	1	
Carbon disulfide	ND		ug/l	5.0	0.28	1	
2-Butanone	ND		ug/l	10	1.0	1	
Vinyl acetate	ND		ug/l	10	0.41	1	
4-Methyl-2-pentanone	ND		ug/l	10	0.19	1	
2-Hexanone	ND		ug/l	10	0.55	1	
Acrolein	ND		ug/l	8.0	1.8	1	
Acrylonitrile	ND		ug/l	10	0.33	1	
Dibromomethane	0.29	J	ug/l	1.0	0.23	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	101		60-140	
4-Bromofluorobenzene	93		60-140	

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001 **Report Date:** 07/30/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/09/21 14:47

Analyst: GT

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether	Result Q	ualifier Units	RL	MDL
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	· Westborough Lab fo	r sample(s): 01	Batch:	WG1522510-4
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND	ug/l	1.0	0.56
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND	ug/l	1.5	0.40
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND	ug/l	1.0	0.38
Dibromochloromethane 1,1,2-Trichloroethane	ND	ug/l	1.0	0.24
1,1,2-Trichloroethane	ND	ug/l	3.5	0.46
	ND	ug/l	1.0	0.27
2-Chloroethylvinyl ether	ND	ug/l	1.5	0.34
	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
Trichlorofluoromethane	ND	ug/l	5.0	0.28
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	1.8	J ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene	ND	ug/l	1.0	0.17
Trichloroethene				

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

> Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/09/21 14:47

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - V	estborough Lab	o for sample	e(s): 01	Batch:	WG1522510-4	
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
p/m-Xylene	ND		ug/l	2.0	0.30	
o-xylene	ND		ug/l	1.0	0.34	
Xylenes, Total	ND		ug/l	1.0	0.30	
Styrene	ND		ug/l	1.0	0.37	
Acetone	ND		ug/l	10	2.4	
Carbon disulfide	ND		ug/l	5.0	0.28	
2-Butanone	ND		ug/l	10	1.0	
Vinyl acetate	ND		ug/l	10	0.41	
4-Methyl-2-pentanone	ND		ug/l	10	0.19	
2-Hexanone	ND		ug/l	10	0.55	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	
Dibromomethane	0.39	J	ug/l	1.0	0.23	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Pentafluorobenzene	102	60-140	
Fluorobenzene	102	60-140	
4-Bromofluorobenzene	92	60-140	

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0°	1 Batch: WG1	1522510-3				
Methylene chloride	115		-		60-140	-	28	
1,1-Dichloroethane	130		-		50-150	-	49	
Chloroform	105		-		70-135	-	54	
Carbon tetrachloride	105		-		70-130	-	41	
1,2-Dichloropropane	110		-		35-165	-	55	
Dibromochloromethane	110		-		70-135	-	50	
1,1,2-Trichloroethane	95		-		70-130	-	45	
2-Chloroethylvinyl ether	90		-		1-225	-	71	
Tetrachloroethene	95		-		70-130	-	39	
Chlorobenzene	95		-		65-135	-	53	
Trichlorofluoromethane	115		-		50-150	-	84	
1,2-Dichloroethane	105		-		70-130	-	49	
1,1,1-Trichloroethane	105		-		70-130	-	36	
Bromodichloromethane	100		-		65-135	-	56	
trans-1,3-Dichloropropene	85		-		50-150	-	86	
cis-1,3-Dichloropropene	85		-		25-175	-	58	
Bromoform	130		-		70-130	-	42	
1,1,2,2-Tetrachloroethane	120		-		60-140	-	61	
Benzene	110		-		65-135	-	61	
Toluene	95		-		70-130	-	41	
Ethylbenzene	100		-		60-140	-	63	
Chloromethane	95		-		1-205	-	60	
Bromomethane	85		-		15-185	-	61	

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG1	522510-3				
Vinyl chloride	105		-		5-195	-		66
Chloroethane	120		-		40-160	-		78
1,1-Dichloroethene	120		-		50-150	-		32
trans-1,2-Dichloroethene	120		-		70-130	-		45
cis-1,2-Dichloroethene	115		-		60-140	-		30
Trichloroethene	110		-		65-135	-		48
1,2-Dichlorobenzene	100		-		65-135	-		57
1,3-Dichlorobenzene	95		-		70-130	-		43
1,4-Dichlorobenzene	100		-		65-135	-		57
p/m-Xylene	95		-		60-140	•		30
o-xylene	95		-		60-140	•		30
Styrene	90		-		60-140	•		30
Acetone	132		-		40-160	-		30
Carbon disulfide	115		-		60-140	-		30
2-Butanone	120		-		60-140	-		30
Vinyl acetate	190	Q	-		60-140	-		30
4-Methyl-2-pentanone	108		-		60-140	-		30
2-Hexanone	112		-		60-140	-		30
Acrolein	195	Q	-		60-140	-		30
Acrylonitrile	145	Q	-		60-140	-		60
Dibromomethane	105		-		70-130	-		30

Project Name: 2424 HAMBURG TURNPIKE SITE

Lab Number:

L2136732

Project Number: B0345-021-001-001

Report Date:

07/30/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1522510-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	102			60-140
Fluorobenzene	102			60-140
4-Bromofluorobenzene	91			60-140

SEMIVOLATILES

L2136732

07/30/21

Project Name: Lab Number: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

07/13/21 16:17

SAMPLE RESULTS

Date Collected: 07/08/21 13:30

Report Date:

Lab ID: L2136732-01 Client ID: Date Received: **EFFLUENT** 07/08/21

Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 07/13/21 00:47 Analytical Method: 129,625.1

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.00	0.407	1	
Benzidine ¹	ND		ug/l	20.0	12.1	1	
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1	
Hexachlorobenzene	ND		ug/l	2.00	0.952	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.00	0.600	1	
2-Chloronaphthalene	ND		ug/l	2.00	0.319	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.00	0.457	1	
2,4-Dinitrotoluene	ND		ug/l	5.00	0.636	1	
2,6-Dinitrotoluene	ND		ug/l	5.00	0.631	1	
Azobenzene ¹	ND		ug/l	2.00	0.889	1	
Fluoranthene	ND		ug/l	2.00	0.736	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.00	0.371	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.00	0.447	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.00	0.822	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.00	0.585	1	
Hexachlorobutadiene	ND		ug/l	2.00	0.921	1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10.0	1.36	1	
Hexachloroethane	ND		ug/l	2.00	0.973	1	
Isophorone	ND		ug/l	5.00	0.546	1	
Naphthalene	ND		ug/l	2.00	0.896	1	
Nitrobenzene	ND		ug/l	2.00	0.788	1	
NDPA/DPA ¹	ND		ug/l	2.00	0.783	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.00	0.630	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20	1.70	1	
Butyl benzyl phthalate	ND		ug/l	5.00	0.670	1	
Di-n-butylphthalate	ND		ug/l	5.00	0.631	1	
Di-n-octylphthalate	ND		ug/l	5.00	0.633	1	
Diethyl phthalate	ND		ug/l	5.00	0.717	1	

07/30/21

Report Date:

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001

SAMPLE RESULTS

Lab ID: L2136732-01 Date Collected: 07/08/21 13:30

Client ID: EFFLUENT Date Received: 07/08/21
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Dimethyl phthalate	ND		ug/l	5.00	1.40	1
Benzo(a)anthracene	ND		ug/l	2.00	0.665	1
Benzo(a)pyrene	ND		ug/l	2.00	0.610	1
Benzo(b)fluoranthene	ND		ug/l	2.00	0.741	1
Benzo(k)fluoranthene	ND		ug/l	2.00	0.739	1
Chrysene	ND		ug/l	2.00	0.668	1
Acenaphthylene	ND		ug/l	2.00	0.930	1
Anthracene	ND		ug/l	2.00	0.791	1
Benzo(ghi)perylene	ND		ug/l	2.00	0.672	1
Fluorene	ND		ug/l	2.00	0.927	1
Phenanthrene	ND		ug/l	2.00	0.818	1
Dibenzo(a,h)anthracene	ND		ug/l	2.00	0.687	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.00	0.633	1
Pyrene	ND		ug/l	2.00	0.728	1
n-Nitrosodimethylamine ¹	ND		ug/l	2.00	0.407	1
2,4,6-Trichlorophenol	ND		ug/l	5.00	0.607	1
p-Chloro-m-cresol ¹	ND		ug/l	2.00	0.533	1
2-Chlorophenol	ND		ug/l	2.00	0.513	1
2,4-Dichlorophenol	ND		ug/l	5.00	0.554	1
2,4-Dimethylphenol	ND		ug/l	5.00	0.851	1
2-Nitrophenol	ND		ug/l	5.00	0.604	1
4-Nitrophenol	ND		ug/l	10.0	0.834	1
2,4-Dinitrophenol	ND		ug/l	20.0	1.21	1
4,6-Dinitro-o-cresol	ND		ug/l	10.0	1.20	1
Pentachlorophenol	ND		ug/l	5.00	0.622	1
Phenol	ND		ug/l	5.00	0.262	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	33	16-65
Nitrobenzene-d5	73	42-122
2-Fluorobiphenyl	75	46-121
2,4,6-Tribromophenol	103	45-128
4-Terphenyl-d14	91	47-138

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

Report Date: 07/30/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 07/13/21 11:27

Analyst: SZ

Extraction Method: EPA 625.1 Extraction Date: 07/12/21 07:42

arameter	Result	Qualifier	Units	R	L	MDL	
emivolatile Organics by GC/M	S - Westborough	n Lab for sa	ample(s):	01 l	Batch:	WG152	2745-1
Acenaphthene	ND		ug/l	2.0	00	0.40	7
Benzidine ¹	ND		ug/l	20	.0	12.1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	00	1.49	
Hexachlorobenzene	ND		ug/l	2.0	00	0.95	2
Bis(2-chloroethyl)ether	ND		ug/l	2.0	00	0.60	0
2-Chloronaphthalene	ND		ug/l	2.0	00	0.31	9
3,3'-Dichlorobenzidine	ND		ug/l	5.0	00	0.45	7
2,4-Dinitrotoluene	ND		ug/l	5.0	00	0.63	6
2,6-Dinitrotoluene	ND		ug/l	5.0	00	0.63	1
Azobenzene ¹	ND		ug/l	2.0	00	0.88	9
Fluoranthene	ND		ug/l	2.0	00	0.73	6
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	00	0.37	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	00	0.44	7
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	00	0.82	2
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	00	0.58	5
Hexachlorobutadiene	ND		ug/l	2.0	00	0.92	1
Hexachlorocyclopentadiene ¹	ND		ug/l	10	.0	1.36	i
Hexachloroethane	ND		ug/l	2.0	00	0.97	3
Isophorone	ND		ug/l	5.0	00	0.54	6
Naphthalene	ND		ug/l	2.0	00	0.89	6
Nitrobenzene	ND		ug/l	2.0	00	0.78	3
NDPA/DPA ¹	ND		ug/l	2.0	00	0.78	3
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	00	0.63	0
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2	20	1.70	
Butyl benzyl phthalate	ND		ug/l	5.0	00	0.67)
Di-n-butylphthalate	ND		ug/l	5.0	00	0.63	1
Di-n-octylphthalate	ND		ug/l	5.0	00	0.63	3
Diethyl phthalate	ND		ug/l	5.0	00	0.71	7
Dimethyl phthalate	ND		ug/l	5.0	00	1.40	1

L2136732

Project Name: 2424 HAMBURG TURNPIKE SITE Lab Number:

Project Number: B0345-021-001-001 **Report Date:** 07/30/21

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1

 Analytical Date:
 07/13/21 11:27

 Extraction Method:
 EPA 625.1

 Extraction Date:
 07/12/21 07:42

Analyst: SZ

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/N	1S - Westboroug	h Lab for s	sample(s):	01 Batch	: WG1522745-1
Benzo(a)anthracene	ND		ug/l	2.00	0.665
Benzo(a)pyrene	ND		ug/l	2.00	0.610
Benzo(b)fluoranthene	ND		ug/l	2.00	0.741
Benzo(k)fluoranthene	ND		ug/l	2.00	0.739
Chrysene	ND		ug/l	2.00	0.668
Acenaphthylene	ND		ug/l	2.00	0.930
Anthracene	ND		ug/l	2.00	0.791
Benzo(ghi)perylene	ND		ug/l	2.00	0.672
Fluorene	ND		ug/l	2.00	0.927
Phenanthrene	ND		ug/l	2.00	0.818
Dibenzo(a,h)anthracene	ND		ug/l	2.00	0.687
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.00	0.633
Pyrene	ND		ug/l	2.00	0.728
n-Nitrosodimethylamine1	ND		ug/l	2.00	0.407
2,4,6-Trichlorophenol	ND		ug/l	5.00	0.607
p-Chloro-m-cresol ¹	ND		ug/l	2.00	0.533
2-Chlorophenol	ND		ug/l	2.00	0.513
2,4-Dichlorophenol	ND		ug/l	5.00	0.554
2,4-Dimethylphenol	ND		ug/l	5.00	0.851
2-Nitrophenol	ND		ug/l	5.00	0.604
4-Nitrophenol	ND		ug/l	10.0	0.834
2,4-Dinitrophenol	ND		ug/l	20.0	1.21
4,6-Dinitro-o-cresol	ND		ug/l	10.0	1.20
Pentachlorophenol	ND		ug/l	5.00	0.622
Phenol	ND		ug/l	5.00	0.262

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001 **Report Date:** 07/30/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1

Analytical Date: 07/13/21 11:27 Extraction Date: 07/12/21 07:42

Analyst: SZ

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1522745-1

		Acceptance		
Surrogate	%Recovery Qual	ifier Criteria		
2-Fluorophenol	31	25-87		
Phenol-d6	20	16-65		
Nitrobenzene-d5	50	42-122		
2-Fluorobiphenyl	55	46-121		
2,4,6-Tribromophenol	76	45-128		
4-Terphenyl-d14	70	47-138		

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s): 01 Batch:	WG1522745	5-2		
Acenaphthene	78		-		60-132	-	48
Benzidine ¹	8		-		0-70	-	30
1,2,4-Trichlorobenzene	74		-		57-130	-	50
Hexachlorobenzene	99		-		8-142	-	55
Bis(2-chloroethyl)ether	75		-		43-126	-	108
2-Chloronaphthalene	86		-		65-120	-	24
3,3'-Dichlorobenzidine	45		-		8-213	-	108
2,4-Dinitrotoluene	100		-		48-127	-	42
2,6-Dinitrotoluene	102		-		68-137	-	48
Azobenzene ¹	96		-		44-115	-	23
Fluoranthene	89		-		43-121	-	66
4-Chlorophenyl phenyl ether	88		-		38-145	-	61
4-Bromophenyl phenyl ether	94		-		65-120	-	43
Bis(2-chloroisopropyl)ether	74		-		63-139	-	76
Bis(2-chloroethoxy)methane	82		-		49-165	-	54
Hexachlorobutadiene	80		-		38-120	-	62
Hexachlorocyclopentadiene ¹	84		-		7-118	-	35
Hexachloroethane	67		-		55-120	-	52
Isophorone	84		-		47-180	-	93
Naphthalene	75		-		36-120	-	65
Nitrobenzene	111		-		54-158	-	62
NDPA/DPA ¹	85		-		45-112	-	36
n-Nitrosodi-n-propylamine	85		-		14-198	-	87

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associate	ed sample(s): 01 Batch:	WG1522745-2		
Bis(2-ethylhexyl)phthalate	105	-	29-137	-	82
Butyl benzyl phthalate	105	-	1-140	-	60
Di-n-butylphthalate	95	-	8-120	-	47
Di-n-octylphthalate	108	-	19-132	-	69
Diethyl phthalate	93	-	1-120	-	100
Dimethyl phthalate	96	-	1-120	-	183
Benzo(a)anthracene	87	-	42-133	-	53
Benzo(a)pyrene	109	-	32-148	-	72
Benzo(b)fluoranthene	101	-	42-140	-	71
Benzo(k)fluoranthene	94	-	25-146	-	63
Chrysene	90	-	44-140	-	87
Acenaphthylene	87	-	54-126	-	74
Anthracene	84	-	43-120	-	66
Benzo(ghi)perylene	89	-	1-195	-	97
Fluorene	85	-	70-120	-	38
Phenanthrene	81	-	65-120	-	39
Dibenzo(a,h)anthracene	88	-	1-200	-	126
Indeno(1,2,3-cd)pyrene	90	-	1-151	-	99
Pyrene	87	-	70-120	-	49
n-Nitrosodimethylamine ¹	54	-	15-68	-	17
2,4,6-Trichlorophenol	106	-	52-129	-	58
p-Chloro-m-cresol ¹	102	-	68-130	-	73
2-Chlorophenol	83	-	36-120	-	61

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbor	ough Lab Associa	ited sample(s): 01 Batch:	WG152274	5-2				
2,4-Dichlorophenol	94		-		53-122	-		50	
2,4-Dimethylphenol	87		-		42-120	-		58	
2-Nitrophenol	101		-		45-167	-		55	
4-Nitrophenol	69		-		13-129	-		131	
2,4-Dinitrophenol	87		-		1-173	-		132	
4,6-Dinitro-o-cresol	114		-		56-130	-		203	
Pentachlorophenol	89		-		38-152	-		86	
Phenol	42		-		17-120	-		64	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	60		25-87
Phenol-d6	45		16-65
Nitrobenzene-d5	87		42-122
2-Fluorobiphenyl	84		46-121
2,4,6-Tribromophenol	116		45-128
4-Terphenyl-d14	93		47-138

PCBS

07/30/21

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001 Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: 07/08/21 13:30

Client ID: EFFLUENT Date Received: 07/08/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/22/21 15:17
Analytical Date: 07/23/21 09:10 Cleanup Method: EPA 3665A

Analyst: CW Cleanup Date: 07/23/21

Cleanup Method: EPA 3660B Cleanup Date: 07/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.050	0.008	1	А
Aroclor 1221	ND		ug/l	0.050	0.011	1	Α
Aroclor 1232	ND		ug/l	0.050	0.023	1	Α
Aroclor 1242	ND		ug/l	0.050	0.018	1	Α
Aroclor 1248	ND		ug/l	0.050	0.023	1	А
Aroclor 1254	ND		ug/l	0.050	0.008	1	Α
Aroclor 1260	ND		ug/l	0.050	0.017	1	Α

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	74		37-123	Α	
Decachlorobiphenyl	73		38-114	Α	
2,4,5,6-Tetrachloro-m-xylene	75		37-123	В	
Decachlorobiphenyl	73		38-114	В	

L2136732

Project Name: 2424 HAMBURG TURNPIKE SITE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 07/23/21 08:32

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 07/22/21 15:17
Cleanup Method: EPA 3665A
Cleanup Date: 07/23/21
Cleanup Method: EPA 3660B
Cleanup Date: 07/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborougl	h Lab for s	ample(s):	01 Batch:	WG1526864	l-1
Aroclor 1016	ND		ug/l	0.050	0.008	Α
Aroclor 1221	ND		ug/l	0.050	0.011	А
Aroclor 1232	ND		ug/l	0.050	0.023	Α
Aroclor 1242	ND		ug/l	0.050	0.018	Α
Aroclor 1248	ND		ug/l	0.050	0.023	Α
Aroclor 1254	ND		ug/l	0.050	0.008	Α
Aroclor 1260	ND		ug/l	0.050	0.017	Α

		Acceptance				
Surrogate	%Recovery Qualifie	er Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	78	37-123	Α			
Decachlorobiphenyl	76	38-114	Α			
2,4,5,6-Tetrachloro-m-xylene	75	37-123	В			
Decachlorobiphenyl	70	38-114	В			

07/30/21

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

BURG TURNPIKE SITE

Lab Number: L2136732

Project Number: B0345-021-001-001 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - We	stborough Lab Associa	ted sample(s):	: 01 Bato	h: WG152686	4-2				
Aroclor 1016	85		-		50-140	-		36	Α
Aroclor 1260	89		-		8-140	-		38	Α

	LCS	LCSD	Acceptance		
Surrogate	%Recovery Qu	ual %Recovery	Qual Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	80		37-123	Α	
Decachlorobiphenyl	69		38-114	Α	
2,4,5,6-Tetrachloro-m-xylene	78		37-123	В	
Decachlorobiphenyl	65		38-114	В	

PESTICIDES

Project Name: Lab Number: 2424 HAMBURG TURNPIKE SITE L2136732

Report Date: **Project Number:** B0345-021-001-001 07/30/21

SAMPLE RESULTS

Lab ID: L2136732-01 Date Collected: 07/08/21 13:30

Date Received: Client ID: **EFFLUENT** 07/08/21 Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:** 07/13/21 00:44 Analytical Method: 127,608.3

Cleanup Method: EPA 3620B Analytical Date: 07/13/21 12:03 Cleanup Date: 07/13/21

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Organochlorine Pesticides by GC - Westborough Lab										
Delta-BHC	ND		ug/l	0.020	0.005	1	Α			
Lindane	ND		ug/l	0.020	0.003	1	Α			
Alpha-BHC	ND		ug/l	0.020	0.004	1	Α			
Beta-BHC	ND		ug/l	0.020	0.009	1	Α			
Heptachlor	ND		ug/l	0.020	0.005	1	Α			
Aldrin	ND		ug/l	0.020	0.005	1	Α			
Heptachlor epoxide	ND		ug/l	0.020	0.007	1	Α			
Endrin	ND		ug/l	0.040	0.004	1	Α			
Endrin aldehyde	ND		ug/l	0.040	0.017	1	Α			
Endrin ketone ¹	ND		ug/l	0.040	0.005	1	Α			
Dieldrin	ND		ug/l	0.040	0.003	1	Α			
4,4'-DDE	ND		ug/l	0.040	0.003	1	Α			
4,4'-DDD	ND		ug/l	0.040	0.008	1	Α			
4,4'-DDT	ND		ug/l	0.040	0.008	1	Α			
Endosulfan I	ND		ug/l	0.020	0.008	1	Α			
Endosulfan II	ND		ug/l	0.040	0.003	1	Α			
Endosulfan sulfate	ND		ug/l	0.040	0.017	1	Α			
Methoxychlor ¹	ND		ug/l	0.100	0.008	1	Α			
Toxaphene	ND		ug/l	0.400	0.126	1	Α			
Chlordane	ND		ug/l	0.200	0.042	1	Α			
cis-Chlordane ¹	ND		ug/l	0.020	0.005	1	А			
trans-Chlordane ¹	ND		ug/l	0.020	0.008	1	Α			

07/30/21

Project Name: 2424 HAMBURG TURNPIKE SITE **Lab Number:** L2136732

Project Number: B0345-021-001-001

L2136732-01

SAMPLE RESULTS

Date Collected: 07/08/21 13:30

Report Date:

Client ID: EFFLUENT Date Received: 07/08/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	84		47-124	Α
Decachlorobiphenyl	72		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	83		47-124	В
Decachlorobiphenyl	67		32-167	В

L2136732

Project Name: 2424 HAMBURG TURNPIKE SITE Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Extraction Method: EPA 608.3 Analytical Date: 07/13/21 12:44 Extraction Date: 07/12/21 08:0

Analyst: AR

Extraction Date: 07/12/21 08:06
Cleanup Method: EPA 3620B
Cleanup Date: 07/13/21

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
Organochlorine Pesticides by GC	- Westboroug	h Lab for	sample(s):	01	Batch:	WG152274	8-1
Delta-BHC	ND		ug/l	0.	020	0.005	А
Lindane	ND		ug/l	0.	020	0.003	Α
Alpha-BHC	ND		ug/l	0.	020	0.004	A
Beta-BHC	ND		ug/l	0.	020	0.009	Α
Heptachlor	ND		ug/l	0.	020	0.005	Α
Aldrin	ND		ug/l	0.	020	0.005	Α
Heptachlor epoxide	ND		ug/l	0.	020	0.007	А
Endrin	ND		ug/l	0.	040	0.004	А
Endrin aldehyde	ND		ug/l	0.	040	0.017	Α
Endrin ketone ¹	ND		ug/l	0.	040	0.005	Α
Dieldrin	ND		ug/l	0.	040	0.003	Α
4,4'-DDE	ND		ug/l	0.	040	0.003	Α
4,4'-DDD	ND		ug/l	0.	040	0.008	Α
4,4'-DDT	ND		ug/l	0.	040	0.008	Α
Endosulfan I	ND		ug/l	0.	020	0.008	Α
Endosulfan II	ND		ug/l	0.	040	0.003	Α
Endosulfan sulfate	ND		ug/l	0.	040	0.017	Α
Methoxychlor ¹	ND		ug/l	0.	100	0.008	Α
Toxaphene	ND		ug/l	0.	400	0.126	Α
Chlordane	ND		ug/l	0.	200	0.042	Α
cis-Chlordane ¹	ND		ug/l	0.	020	0.005	Α
trans-Chlordane1	ND		ug/l	0.	020	0.008	А

Serial_No:07302112:53

07/12/21 08:06

Project Name: Lab Number: 2424 HAMBURG TURNPIKE SITE L2136732

Project Number: Report Date: B0345-021-001-001 07/30/21

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 127,608.3 Extraction Method: EPA 608.3 Analytical Date: 07/13/21 12:44 **Extraction Date:**

Analyst: AR Cleanup Method: EPA 3620B Cleanup Date: 07/13/21

Column RLResult Qualifier Units MDL **Parameter** Organochlorine Pesticides by GC - Westborough Lab for sample(s): 01 Batch: WG1522748-1

,4,5,6-Tetrachloro-m-xylene		Acceptance						
Surrogate	%Recovery Qual	ifier Criteria	Column					
2.4.5.C. Tatasahlara ya urdana	54	47.404	^					
2,4,5,6-1 etracnioro-m-xylene	54	47-124	А					
Decachlorobiphenyl	71	32-167	Α					
2,4,5,6-Tetrachloro-m-xylene	54	47-124	В					
Decachlorobiphenyl	63	32-167	В					

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

Report Date: 07/30/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westboro	ugh Lab Assoc	iated sample(s	s): 01 Batch:	WG152274	8-2				
Delta-BHC	100		-		19-140	-		52	Α
Lindane	100		-		32-140	-		39	А
Alpha-BHC	99		-		37-140	-		36	Α
Beta-BHC	85		-		17-147	-		44	Α
Heptachlor	82		-		34-140	-		43	А
Aldrin	76		-		42-140	-		35	А
Heptachlor epoxide	85		-		37-142	-		26	А
Endrin	91		-		30-147	-		48	А
Endrin aldehyde	75		-		30-150	-		30	А
Endrin ketone ¹	94		-		30-150	-		30	А
Dieldrin	96		-		36-146	-		49	А
4,4'-DDE	91		-		30-145	-		35	А
4,4'-DDD	104		-		31-141	-		39	А
4,4'-DDT	103		-		25-160	-		42	А
Endosulfan I	86		-		45-153	-		28	Α
Endosulfan II	93		-		1-202	-		53	Α
Endosulfan sulfate	83		-		26-144	-		38	Α
Methoxychlor ¹	103		-		30-150	-		30	А
cis-Chlordane ¹	77		-		45-140	-		35	Α
trans-Chlordane ¹	77		-		45-140	-		35	А

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Lab Number: L2136732

Project Number: B0345-021-001-001

Report Date:

07/30/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1522748-2

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	66		47-124 A
Decachlorobiphenyl	76		32-167 A
2,4,5,6-Tetrachloro-m-xylene	66		47-124 B
Decachlorobiphenyl	69		32-167 B

METALS

Project Name: Lab Number: 2424 HAMBURG TURNPIKE SITE L2136732 **Report Date:** 07/30/21

Project Number: B0345-021-001-001

SAMPLE RESULTS

Lab ID: L2136732-01 Date Collected: 07/08/21 13:30 Client ID: **EFFLUENT** Date Received: 07/08/21 Field Prep: Not Specified

Sample Location: Not Specified

Sample Depth:

Matrix: Water

esult	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
d Lab										
D		mg/l	0.005	0.002	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
.054		mg/l	0.010	0.002	1	07/11/21 14:20	07/29/21 15:11	EPA 3005A	19,200.7	SV
D		mg/l	0.005	0.001	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.010	0.002	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
.005	J	mg/l	0.010	0.002	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
618		mg/l	0.050	0.009	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.010	0.003	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.00020	0.00009	1	07/11/21 14:48	07/13/21 20:05	EPA 245.1	3,245.1	OU
D		mg/l	0.025	0.002	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.010	0.004	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.007	0.003	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
D		mg/l	0.050	0.002	1	07/11/21 14:20	07/28/21 12:56	EPA 3005A	19,200.7	GD
	d Lab D 054 D 005 618 D D D D	d Lab D 054 D 005 J 618 D D D	d Lab D mg/l 054 mg/l D mg/l D mg/l 005 J mg/l 618 mg/l D mg/l	d Lab D mg/l 0.005 054 mg/l 0.010 D mg/l 0.005 D mg/l 0.010 005 J mg/l 0.010 618 mg/l 0.050 D mg/l 0.010 D mg/l 0.0020 D mg/l 0.025 D mg/l 0.025 D mg/l 0.007	d Lab D mg/l 0.005 0.002 054 mg/l 0.010 0.002 D mg/l 0.005 0.001 D mg/l 0.010 0.002 005 J mg/l 0.010 0.002 618 mg/l 0.050 0.009 D mg/l 0.010 0.003 D mg/l 0.0020 0.00009 D mg/l 0.025 0.002 D mg/l 0.010 0.004 D mg/l 0.007 0.003	Mole March March	d Lab mg/l 0.005 0.002 1 07/11/21 14:20 054 mg/l 0.010 0.002 1 07/11/21 14:20 D mg/l 0.010 0.002 1 07/11/21 14:20 D mg/l 0.005 0.001 1 07/11/21 14:20 D mg/l 0.010 0.002 1 07/11/21 14:20 005 J mg/l 0.010 0.002 1 07/11/21 14:20 618 mg/l 0.050 0.009 1 07/11/21 14:20 D mg/l 0.010 0.003 1 07/11/21 14:20 D mg/l 0.0020 0.00009 1 07/11/21 14:20 D mg/l 0.005 0.002 1 07/11/21 14:20 D mg/l 0.005 0.002 1 07/11/21 14:20 D mg/l 0.010 0.004 1 07/11/21 14:20 D mg/l 0.010 0.004 1 0	Compute Name	esult Qualifier Units RL MDL Factor Prepared Analyzed Method d Lab D mg/l 0.005 0.002 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A 054 mg/l 0.010 0.002 1 07/11/21 14:20 07/28/21 15:11 EPA 3005A D mg/l 0.005 0.001 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A D mg/l 0.010 0.002 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A D mg/l 0.010 0.002 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A 005 J mg/l 0.050 0.009 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A D mg/l 0.010 0.003 1 07/11/21 14:20 07/28/21 12:56 EPA 3005A D mg/l 0.0020 0.0009 1 07/11/21 14:48 07/13/21 20:05 EPA 245.1 D mg/l 0.0025 0.002 1 07/11/21 14:20 07/28/21	Method M

Serial_No:07302112:53

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date: 07/30/21

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sar	mple(s):	01 Batch	n: WG15	522256-	1				
Arsenic, Total	ND		mg/l	0.005	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Barium, Total	ND		mg/l	0.010	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Cadmium, Total	ND		mg/l	0.005	0.001	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Chromium, Total	ND		mg/l	0.010	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Copper, Total	0.003	J	mg/l	0.010	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Iron, Total	ND		mg/l	0.050	0.009	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Lead, Total	ND		mg/l	0.010	0.003	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Nickel, Total	ND		mg/l	0.025	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Selenium, Total	ND		mg/l	0.010	0.004	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Silver, Total	ND		mg/l	0.007	0.003	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD
Zinc, Total	ND		mg/l	0.050	0.002	1	07/11/21 14:20	07/28/21 11:09	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG15	22259-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	07/11/21 14:48	07/13/21 19:48	3,245.1	OU

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732

Report Date: 07/30/21

Parameter	LCS %Recovery	LCSD Qual %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1522256-2					
Arsenic, Total	112	-		85-115	-		
Barium, Total	115	-		85-115	-		
Cadmium, Total	104	-		85-115	-		
Chromium, Total	109	-		85-115	-		
Copper, Total	109	-		85-115	-		
Iron, Total	106	-		85-115	-		
Lead, Total	104	-		85-115	-		
Nickel, Total	100	-		85-115	-		
Selenium, Total	112	-		85-115	-		
Silver, Total	105	-		85-115	-		
Zinc, Total	109	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1522259-2					
Mercury, Total	97	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date:

07/30/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	o Associated sam	ple(s): 01	QC Batch ID): WG1522256	6-3	QC Sample:	L2136299-01	Clier	nt ID: MS Sa	ample		
Arsenic, Total	ND	0.12	0.141	118		-	-		75-125	-		20
Barium, Total	0.025	2	2.33	115		-	-		75-125	-		20
Cadmium, Total	ND	0.053	0.056	105		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.220	110		-	-		75-125	-		20
Copper, Total	0.005J	0.25	0.280	112		-	-		75-125	-		20
Iron, Total	0.172	1	1.23	106		-	-		75-125	-		20
Lead, Total	ND	0.53	0.553	104		-	-		75-125	-		20
Nickel, Total	ND	0.5	0.498	100		-	-		75-125	-		20
Selenium, Total	ND	0.12	0.138	115		-	-		75-125	-		20
Silver, Total	ND	0.05	0.054	107		-	-		75-125	-		20
Zinc, Total	ND	0.5	0.548	110		-	-		75-125	-		20
otal Metals - Mansfield Lab	o Associated sam	ple(s): 01	QC Batch ID): WG1522259	9-3	QC Sample:	L2136732-01	Clier	t ID: EFFLU	JENT		
Mercury, Total	ND	0.005	0.00479	96		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date: 07/30/21

Parameter	Native	Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associa	ated sample(s): 01 QC Bate	ch ID: WG152225	66-4 QC Sample:	L2136299-01	Client ID: D	UP Sample	
Iron, Total	0.4	172	0.172	mg/l	0		20
Zinc, Total	N	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associa	ated sample(s): 01 QC Bate	ch ID: WG152225	59-4 QC Sample:	L2136732-01	Client ID: E	FFLUENT	
Mercury, Total	N	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:07302112:53

Project Name: 2424 HAMBURG TURNPIKE SITE Lab Number: L2136732

SAMPLE RESULTS

Lab ID: L2136732-01 Date Collected: 07/08/21 13:30

Client ID: EFFLUENT Date Received: 07/08/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	07/13/21 09:40	07/13/21 13:55	121,4500CN-CE	CR
pH (H)	7.5		SU	-	NA	1	-	07/09/21 17:00	121,4500H+-B	AS
Oil & Grease, Hem-Grav	1.0	J	mg/l	2.0	0.46	1	07/23/21 15:30	07/23/21 22:00	74,1664A	IR
Phenolics, Total	0.008	J	mg/l	0.030	0.006	1	07/19/21 07:16	07/19/21 11:18	4,420.1	KP

Serial_No:07302112:53

L2136732

74,1664A

IR

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE SITE

General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1527308-1

0.84

> Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab fo	or sample(s):	01 Batch:	WG15	523211-1				
Cyanide, Total	ND	mg.	íl 0.005	0.001	1	07/13/21 09:40	07/13/21 13:20	121,4500CN-CE	E CR
General Chemistry - W	estborough Lab fo	or sample(s):	01 Batch:	WG15	25205-1				
Phenolics, Total	ND	mg	'I 0.030	0.006	1	07/19/21 07:16	07/19/21 11:14	4,420.1	KP

0.46

1

07/23/21 15:30

07/23/21 22:00

2.0

mg/l

Oil & Grease, Hem-Grav

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date:

07/30/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	: 01	Batch: WG1522366-					
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	: 01	Batch: WG1523211-2	2				
Cyanide, Total	106		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	: 01	Batch: WG1525205-2	2				
Phenolics, Total	93		-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s):	: 01	Batch: WG1527308-2	2				
Oil & Grease, Hem-Grav	79		-		78-114	-		18

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date: 07/30/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1523211-4	QC Sample: L21	36195-05 Client	ID: MS Samp	ole
Cyanide, Total	ND	0.2	0.209	104	-	-	90-110	-	30
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1525205-4	QC Sample: L21	38046-01 Client	ID: MS Samp	ole
Phenolics, Total	ND	0.4	0.32	80	-	-	70-130	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1527308-4	QC Sample: L21	35615-160 Clier	it ID: MS San	nple
Oil & Grease, Hem-Grav	ND	39.2	30	76	Q -	-	78-114	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number:

L2136732

Report Date:

07/30/21

Parameter	Native Sample	Duplicate Sample	<u>Units</u>	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	WG1522366-2 Q	C Sample: L2136	732-01 Cli	ent ID: EFFLUENT
pH (H)	7.5	7.7	SU	3	5
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	WG1523211-3 Q	C Sample: L2136	195-02 Cli	ent ID: DUP Sample
Cyanide, Total	ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	WG1525205-3 Q	C Sample: L2138	046-01 Cli	ent ID: DUP Sample
Phenolics, Total	ND	0.017J	mg/l	NC	20
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	WG1527308-3 Q	C Sample: L2135	615-159 C	Client ID: DUP Sample
Oil & Grease, Hem-Grav	ND	0.68J	mg/l	NC	18

Serial_No:07302112:53

Project Name: 2424 HAMBURG TURNPIKE SITE

Project Number: B0345-021-001-001

Lab Number: L2136732
Report Date: 07/30/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container into	rmation	miliai i mai Temp		Frozen					
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2136732-01A	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2136732-01B	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2136732-01C	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2136732-01D	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		PH-4500(.01)
L2136732-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	3.8	Y	Absent		NI-UI(180),BA-UI(180),AG-UI(180),ZN- UI(180),FE-UI(180),SE-UI(180),HG-U(28),CD- UI(180),CR-UI(180),CU-UI(180),AS- UI(180),PB-UI(180)
L2136732-01F	Plastic 250ml NaOH preserved	Α	>12	>12	3.8	Υ	Absent		TCN-4500(14)
L2136732-01G	Amber 1000ml H2SO4 preserved	Α	<2	<2	3.8	Υ	Absent		NY-TPHENOL-420(28)
L2136732-01H	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1(7)
L2136732-01J	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1(7)
L2136732-01K	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		PESTICIDE-608.3(7)
L2136732-01L	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		PESTICIDE-608.3(7)
L2136732-01M	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		NYPCB-608-2L(365)
L2136732-01N	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		NYPCB-608-2L(365)
L2136732-01O	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		NYPCB-608-2L(365)
L2136732-01P	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		NYPCB-608-2L(365)
L2136732-01Q	Amber 1000ml HCl preserved	Α	NA		3.8	Υ	Absent		NY-OG-1664-LOW(28)
L2136732-01R	Amber 1000ml HCl preserved	Α	NA		3.8	Υ	Absent		NY-OG-1664-LOW(28)

Project Name:2424 HAMBURG TURNPIKE SITELab Number:L2136732Project Number:B0345-021-001-001Report Date:07/30/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKE SITELab Number:L2136732Project Number:B0345-021-001-001Report Date:07/30/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report. Initial pH reflects pH of container determined upon

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKE SITELab Number:L2136732Project Number:B0345-021-001-001Report Date:07/30/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 2424 HAMBURG TURNPIKE SITE
 Lab Number:
 L2136732

 Project Number:
 B0345-021-001-001
 Report Date:
 07/30/21

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07302112:53

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: Benchman Address: 2558 / Buffalo, NY Phone: 716-225	Hamburg Trongil	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: 2 42 Project Location: Project # B 0 3 4 5 (Use Project name as Project Manager: Sylvania) ALPHAQuote #: Turn-Around Time	Vay oper Ave, Suite 1 4 Hamb - 02 (- 0) roject #)	ng Tump,		f (Deliv	erable ASP- EQuI Othe latory NY TO	A S (1 F r Requ	ile) Iremer	ont	ASP- EQUI- NY Pa NY CF Other	B S (4 F		ALPHA Job # L2 32-732 Billing Information Same as Client Info PO # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility:	
Fax:	21 11 -	Standard		Due Date					nrestric						□ NJ □ NY	
These samples have be	en previously analyz		"	# of Days		_	ANA	LYSIS	Sewer [Dischar	ge			_	Other: Sample Filtration	
Other project specific	requirements/comm		Hg, N., S.	e, Ag, 2n		*	5 624	S	8 (PCB+ Pau)	t brease		(phenols)	als (PP 13) *	mide	Done Lab to do Preservation Lab to do B (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	nple ID Collection		Sample Matrix	Sampler's Initials	700	62	600	1:0	廿日	TRP	Metals	Cya	1	
36732 -01	200 Eff	unt	7-8-21	1330	Water	Bm6-	X	X	X	X	X	X	X	X	Sample Specific Comments a 17	
					-											
NO STORES																
							-			\vdash						
A = None B = HCl	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N		Container Type		V	V A A	A A A	A	P	A	P	P	Please print clearly, legibly and completely. Samples can not be logged in and		
	G = Glass Preser B = Bacteria Cup				reservative	4	H	H	B	A	D	K	E	turnaround time clock will not start until any ambiguities are		
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished Brooks breeze		7-8-21/ 7/8/2	1405 1305	Die	Receiv	ed By	111	Ser.		Date 12 1 721		35	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30 age 52 of 52	-Sept-2013)					/			V		ė				(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2202097

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Report Date: 01/27/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:01272211:14

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 Lab Number:

L2202097

Report Date: 01/27/22

Alpha Sample ID

L2202097-01

Client ID **EFFLUENT** Matrix WATER Sample Location

BUFFALO, NY

Collection Date/Time 01/13/22 09:40

Receive Date

01/13/22

Serial No:01272211:14

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:01272211:14

Project Name: 2424 HAMBURG TURNPIKE

Lab Number:

L2202097

Project Number:

B0345-025-001

Report Date:

01/27/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Phenolics was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 01/27/22

ORGANICS

VOLATILES

Serial_No:01272211:14

L2202097

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Report Date: 01/27/22

Lab Number:

SAMPLE RESULTS

Lab ID: L2202097-01 Date Collected: 01/13/22 09:40

Client ID: Date Received: 01/13/22 **EFFLUENT** Field Prep: Sample Location: Not Specified BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/14/22 14:31

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	1.0	0.56	1
1,1-Dichloroethane	ND		ug/l	1.5	0.40	1
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
Dibromochloromethane	ND		ug/l	1.0	0.27	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Bromodichloromethane	ND		ug/l	1.0	0.28	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	1
Bromoform	ND		ug/l	1.0	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
Chloromethane	ND		ug/l	5.0	1.0	1
Bromomethane	ND		ug/l	5.0	1.2	1
Vinyl chloride	ND		ug/l	1.0	0.38	1
Chloroethane	ND		ug/l	2.0	0.37	1
1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
Trichloroethene	ND		ug/l	1.0	0.33	1

Serial_No:01272211:14

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

SAMPLE RESULTS

Lab ID: L2202097-01 Date Collected: 01/13/22 09:40

Client ID: EFFLUENT Date Received: 01/13/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
Acrolein	ND		ug/l	8.0	1.8	1
Acrylonitrile	ND		ua/l	10	0.33	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	96	60-140	
Fluorobenzene	94	60-140	
4-Bromofluorobenzene	108	60-140	

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/14/22 11:41

Analyst: GT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s):	01 Batch:	WG1594574-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/14/22 11:41

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westk	orough Lat	o for sampl	e(s): 01	Batch:	WG1594574-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

	Acceptance							
Surrogate	%Recovery Qua	lifier Criteria						
Pentafluorobenzene	95	60-140						
Fluorobenzene	94	60-140						
4-Bromofluorobenzene	109	60-140						

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2202097

Report Date: 01/27/22

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 01 Ba	atch: WG1	594574-3				
Methylene chloride	95		-		60-140	-		28
1,1-Dichloroethane	100		-		50-150	-		49
Chloroform	105		-		70-135	-		54
Carbon tetrachloride	105		-		70-130	-		41
1,2-Dichloropropane	100		-		35-165	-		55
Dibromochloromethane	105		-		70-135	-		50
1,1,2-Trichloroethane	100		-		70-130	-		45
2-Chloroethylvinyl ether	80		-		1-225	-		71
Tetrachloroethene	115		-		70-130	-		39
Chlorobenzene	110		-		65-135	-		53
1,2-Dichloroethane	100		-		70-130	-		49
1,1,1-Trichloroethane	110		-		70-130	-		36
Bromodichloromethane	105		-		65-135	-		56
trans-1,3-Dichloropropene	95		-		50-150	-		86
cis-1,3-Dichloropropene	100		-		25-175	-		58
Bromoform	110		-		70-130	-		42
1,1,2,2-Tetrachloroethane	110		-		60-140	-		61
Benzene	110		-		65-135	-		61
Toluene	115		-		70-130	-		41
Ethylbenzene	125		-		60-140	-		63
Chloromethane	85		-		1-205	-		60
Bromomethane	85		-		15-185	-		61
Vinyl chloride	90		-		5-195	-		66

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2202097

Report Date:

01/27/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0°	1 Batch: WG1	594574-3					
Chloroethane	95		-		40-160	-		78	
1,1-Dichloroethene	110		-		50-150	-		32	
trans-1,2-Dichloroethene	105		-		70-130	-		45	
Trichloroethene	105		-		65-135	-		48	
1,2-Dichlorobenzene	120		-		65-135	-		57	
1,3-Dichlorobenzene	110		-		70-130	-		43	
1,4-Dichlorobenzene	115		-		65-135	-		57	
Acrolein	125		-		60-140	-		30	
Acrylonitrile	82		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	103		60-140
Fluorobenzene	99		60-140
4-Bromofluorobenzene	110		60-140

METALS

Serial_No:01272211:14

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2202097 **Report Date:** 01/27/22

Project Number: B0345-025-001

SAMPLE RESULTS

Lab ID: L2202097-01 Date Collected: 01/13/22 09:40 Client ID: **EFFLUENT** Date Received: 01/13/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Arsenic, Total	0.004	J	mg/l	0.005	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Barium, Total	0.058		mg/l	0.010	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Cadmium, Total	ND		mg/l	0.005	0.001	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Chromium, Total	0.002	J	mg/l	0.010	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Copper, Total	0.003	J	mg/l	0.010	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Iron, Total	2.31		mg/l	0.050	0.009	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Lead, Total	ND		mg/l	0.010	0.003	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Mercury, Total	ND		mg/l	0.00020	0.00009	1	01/19/22 13:00	01/19/22 17:15	EPA 245.1	3,245.1	AC
Nickel, Total	ND		mg/l	0.025	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Selenium, Total	ND		mg/l	0.010	0.004	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Silver, Total	ND		mg/l	0.007	0.003	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL
Zinc, Total	0.011	J	mg/l	0.050	0.002	1	01/19/22 10:44	01/20/22 00:17	EPA 3005A	19,200.7	DL

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: Report Date: L2202097

01/27/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batcl	h: WG15	94802-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	9 1	01/19/22 13:00	01/19/22 16:25	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sa	ample(s):	01 Batcl	h: WG1	595062-	1				
Arsenic, Total	0.002	J	mg/l	0.005	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Barium, Total	ND		mg/l	0.010	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Cadmium, Total	ND		mg/l	0.005	0.001	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Chromium, Total	ND		mg/l	0.010	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Copper, Total	ND		mg/l	0.010	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Iron, Total	ND		mg/l	0.050	0.009	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Lead, Total	ND		mg/l	0.010	0.003	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Nickel, Total	ND		mg/l	0.025	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Selenium, Total	ND		mg/l	0.010	0.004	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Silver, Total	ND		mg/l	0.007	0.003	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL
Zinc, Total	ND		mg/l	0.050	0.002	1	01/19/22 10:44	01/19/22 23:32	19,200.7	DL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2202097

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG159480	2-2					
Mercury, Total	98		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG159506	2-2					
Arsenic, Total	107		-		85-115	-		
Barium, Total	107		-		85-115	-		
Cadmium, Total	103		-		85-115	-		
Chromium, Total	102		-		85-115	-		
Copper, Total	104		-		85-115	-		
Iron, Total	104		-		85-115	-		
Lead, Total	102		-		85-115	-		
Nickel, Total	100		-		85-115	-		
Selenium, Total	106		-		85-115	-		
Silver, Total	106		-		85-115	-		
Zinc, Total	103		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2202097

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limits	•	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1594802	2-3	QC Sample:	L2202574-01	Client ID: MS	S Sample		
Mercury, Total	ND	0.005	0.00484	97		-	-	70-130	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1594802	2-5	QC Sample:	L2202575-01	Client ID: MS	S Sample		
Mercury, Total	ND	0.005	0.00490	98		-	-	70-130	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1595062	2-3	QC Sample:	L2202404-01	Client ID: MS	S Sample		
Arsenic, Total	ND	0.12	0.135	112		-	-	75-125	-		20
Barium, Total	0.072	2	2.18	105		-	-	75-125	-		20
Cadmium, Total	ND	0.053	0.053	100		-	-	75-125	-		20
Chromium, Total	ND	0.2	0.201	100		-	-	75-125	-		20
Copper, Total	0.002J	0.25	0.263	105		-	-	75-125	-		20
Iron, Total	0.604	1	1.61	101		-	-	75-125	-		20
Lead, Total	ND	0.53	0.510	96		-	-	75-125	-		20
Nickel, Total	ND	0.5	0.476	95		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.133	111		-	-	75-125	-		20
Silver, Total	ND	0.05	0.054	108		-	-	75-125	-		20
Zinc, Total	0.004J	0.5	0.502	100		-	-	75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2202097

ırameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lal	b Associated san	nple(s): 01	QC Batch	ID: WG1595062-7	QC Sample	: L2202404-02	Client ID: MS Sa	ample	
Arsenic, Total	ND	0.12	0.132	110	-	-	75-125	-	20
Barium, Total	0.069	2	2.16	104	-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.053	99	-	-	75-125	-	20
Chromium, Total	ND	0.2	0.200	100	-	-	75-125	-	20
Copper, Total	0.004J	0.25	0.261	104	-	-	75-125	-	20
Iron, Total	0.020J	1	1.02	102	-	-	75-125	-	20
Lead, Total	ND	0.53	0.504	95	-	-	75-125	-	20
Nickel, Total	0.003J	0.5	0.473	95	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.131	109	-	-	75-125	-	20
Silver, Total	ND	0.05	0.053	105	-	-	75-125	-	20
Zinc, Total	0.023J	0.5	0.518	104		-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2202097

Parameter	Native Sample Dup	licate Sample Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1594802-4	QC Sample: L2202574-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1594802-6	QC Sample: L2202575-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1595062-4	QC Sample: L2202404-01	Client ID:	DUP Sample	
Iron, Total	0.604	0.602 mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1595062-8	QC Sample: L2202404-02	Client ID:	DUP Sample	
Iron, Total	0.020J	0.016J mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

SAMPLE RESULTS

Lab ID: L2202097-01 Date Collected: 01/13/22 09:40

Client ID: EFFLUENT Date Received: 01/13/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/17/22 05:00	01/17/22 10:39	121,4500CN-CE	CS
pH (H)	7.6		SU	-	NA	1	-	01/14/22 20:51	121,4500H+-B	AS

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2202097

Project Number: B0345-025-001 **Report Date:** 01/27/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sar	mple(s): 01	Batch:	: WG15	594598-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	01/17/22 05:00	01/17/22 10:29	121,4500CN-C	E CS

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 Lab Number:

L2202097

Report Date:

01/27/22

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01 B	atch: WG1594235-1						
pH	100	-		99-101	-		5	
General Chemistry - Westborough Lab A	ssociated sample(s): 01 B	atch: WG1594598-2						
Cyanide, Total	99	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2202097

Report Date:

01/27/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Four	111.00	Recovery y Qual Limits	RPD Qu	RPD ual Limits
General Chemistry - Westboro	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1594598-4	QC Sample: L2	2202404-02 Client	ID: MS Sa	ample
Cyanide, Total	ND	0.2	0.173	86	Q	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2202097

Report Date:

01/27/22

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual F	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch IE	D: WG1594235-2	QC Sample: L2201	580-01 C	lient ID: DUP	Sample
рН	6.3	6.3	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch IE	D: WG1594598-3	QC Sample: L2202	404-01 C	lient ID: DUP	Sample
Cyanide, Total	0.730	0.801	mg/l	9	1	30

Lab Number: L2202097

Report Date: 01/27/22

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН рН		deg C Pres S		Date/Time	Analysis(*)
L2202097-01A	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1(3)
L2202097-01B	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1(3)
L2202097-01C	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1(3)
L2202097-01D	Plastic 120ml unpreserved	Α	7	7	2.4	Υ	Absent		PH-4500(.01)
L2202097-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	2.4	Υ	Absent		BA-UI(180),NI-UI(180),AG-UI(180),ZN- UI(180),FE-UI(180),SE-UI(180),HG-U(28),CD- UI(180),CR-UI(180),PB-UI(180),CU- UI(180),AS-UI(180)
L2202097-01F	Plastic 250ml NaOH preserved	Α	>12	>12	2.4	Υ	Absent		TCN-4500(14)
L2202097-01G	Amber 1000ml H2SO4 preserved	Α	<2	<2	2.4	Υ	Absent		SUB-PHENOL()

Project Name:2424 HAMBURG TURNPIKELab Number:L2202097Project Number:B0345-025-001Report Date:01/27/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2202097Project Number:B0345-025-001Report Date:01/27/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2202097Project Number:B0345-025-001Report Date:01/27/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2202097Project Number:B0345-025-001Report Date:01/27/22

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288 ark Environmental mburg Turnpike, Ste300	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co Project Information Project Name: Project Location: Project # (Use Project name as Pr Project Manager: ALPHAQuote #: Turn-Around Time	2424 Hambu Buffalo, NY B0345-025-(urg Turnpike		e 1	Reg	verable ASP EQu Othe NY T AWG	Lab -A IS (1 IF Required Standerstricted)	File) Jireme ards ed Use	ent	ASP- EQUI: NY Pa NY CF Other	B S (4 File) rt 375	ALPHA Job # L252097 Billing Information Same as Client Info Po# Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility:	
Fax:	31 11	Standard		Due Date			_			cted Us				☐ NJ ☐ NY	
	@bm-tk.com	Rush (only if pre approved)		# of Days	к			LYSIS		Discha	irge			Other: NA Sample Filtration	
Other project specif			n				Total Phenol	T. CN	624.1	. Metals*	Hd			☐ Done ☐ Lab to do Preservation ☐ Lab to do	o t a l B o t
ALPHA Lab ID	1	75 A15 - VIOS	Colle	ection	Sample	Sampler's	P	1		l-				(Please Specify below)	· t
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix	Initials	1							Sample Specific Comments	e
02097-01	Effluent		1-13-22	940	Water	BMG	х	X	х	х	Х				7
					-		\vdash	-	-	\vdash	-				╀
															#
															+
															\pm
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N			305-80	ntainer Type Preservative	A D	P	V	Р	P			Please print clearly, legibl and completely. Samples not be logged in and turnaround time clock will	s can
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Brock Greens	By:		Time 2/950	3	_	ived B	_		1-1:	3-22	/Time 2 <i>130</i> 0 る(のひ	start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS.	IG T ES HA'S
Form No: 01-25 /rev: 30-5	Sent-2013)													TEINIO & CONDITIONS.	81

Monday, January 17, 2022

Attn: Candace Fox Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2202097 SDG ID: GCK16259 Sample ID#s: CK16259

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

January 17, 2022

SDG I.D.: GCK16259

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance. Compounds that are detected above MDL but below RL are qualified with a J flag.

Page 34 of 40 Page 2 of 8

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

January 17, 2022

SDG I.D.: GCK16259

Project ID: L2202097

Client Id	Lab Id	Matrix
EFFLUENT	CK16259	WATER

Page 35 of 40 Page 3 of 8

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

January 17, 2022

FOR: Attn: Candace Fox

> Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Information Custody Information <u>Date</u> **Time** WATER Collected by: 01/13/22 Matrix: 9:40 **ALPHA** Received by: **Location Code:** LB 01/14/22 11:15 Analyzed by: Rush Request: Standard

see "By" below

aboratory Data

SDG ID: GCK16259

Phoenix ID: CK16259

Project ID: L2202097 **EFFLUENT** Client ID:

> RL/ LOD/

Parameter Result **PQL** MDL Units Dilution Date/Time Reference By **Phenolics** 0.006 J 0.015 0.005 mg/L 1 01/17/22 MSF E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

January 17, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

January 17, 2022

QA/QC Data

SDG I.D.: GCK16259

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	% RPD Limits
QA/QC Batch 608427 (mg/L),	QC Samp	ole No:	CK16260	(CK162	59)								
Phenolics	BRL	0.015	0.010 J	0.011 J	NC	101			99.0			90 - 110	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

January 17, 2022

Sample Criteria Exceedances Report

GCK16259 - ALPHA

Criteria

Analysis Units

RL Criteria

Criteria

귐

Result

SampNo Acode Phoenix Analyte
*** No Data to Display ***

efforts are	∍ly the site	
edences. All	. It is ultimate	
d criteria exce	to the criteria.	
ntify requester	conformance	
nal tool to ide	sarily suggest	
led as an additional	ses not neces	
It is provided	information do	
edance report.	exceedence	
in this exceed	es). A lack of	
e data contained	priate agencie	ą:
oility for the da	tained from appropri	riate compliance
ume responsil	ne data (obtained fr	nal's responsibility to determine appropriate cor
es does not assume respons	scuracy of the	sibility to dete
ix Laboratories	de to ensure the accurac	onal's respons
Phoenix	made to	profession

Monday, January 17, 2022

Criteria: None State: NY

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

January 17, 2022

SDG I.D.: GCK16259

The samples in this delivery group were received at 1.0°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 39 of 40

Alpha Job Number Batch OC Regulatory Requirements/Report Limits L2202097 Date/Time: Report to include Method Blank, LCS/LCSD: State/Federal Program: Regulatory Criteria: Received By Project Specific Requirements and/or Report Requirements Analysis Subcontract Chain of Custody **Turnaround & Deliverables Information** Q Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Date/Time: 78 M-1 Project Information Reference following Alpha Job Number on final report/deliverables: L2202097 Additional Comments: Send all results/reports to subreports@alphalab.com REPORT to MDL Phenol Project Location: NY Project Manager: Candace Fox Sample Matrix WATER 122) MI なのな Due Date: Deliverables: Collection Date/Time 01-13-22 09:40 Relinquished By: Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Client Information Client ID EFFLUENT Phone: 716-427-5223 Email: cfox@alphalab.com Form No: AL_subcoc 16259 Lab ID

APPENDIX E

CARBON RECYCLING DOCUMENTATION

ACTIVATED CARBON & RELATED SERVICES

CARBON ACTIVATED CORP.

3774 Hoover Rd Blasdell NY 14219 Phone (716) 821 7830 Fax (716) 821 0790

Email: carbonactivated@earthlink.net

CERTIFICATE OF REACTIVATION

Customer : Benchmark Turnkey Site: 2424 Hamburg Turnpike

Date	Pick Up Location	Grade	Quantity Approx.	Approval Code
6/16/2021	CAC - NY	Liquid	500 lb. Vessel	SPA-PL-20-010

Carbon Activated Corporation certifies that the shipments above were received into to our Blasdell NY reactivation facility and the carbon has been added to our pool and will be processed through our reactivation plant which operates under New York State Department of Environmental Conservation Permit No. 9-1448-00042/00022.

Regards

Christopher Allen
Director – Carbon Activated Corp.

APPENDIX F

GROUNDWATER MONITORING LOGS

GROUNDWATER FIELD FORM

Project Name: 2424 Hamburg Turnpike

11/16/2021

Location:

Bailer

Lackawanna, NY

Project No.: B0345-021-001

Field Team: TJM

Date:

Well No	0.	MW-2	Diameter (in	ches 2"		Sample Date	e / Time: 11/	16/2021	@ 1434
Product De	pth (fbTOR):		Water Colur	nn (ft): 1.2	106	DTW when	sampled:		
DTW (stati	c) (fbTOR):	000 3.71	One Well Vo		- Company	Cpurpose:	Development	Sample	Purge & Sample
Total Depth	(fbTOR): 16.32		Total Volum	e Purged (gal):	5000 b	Purge Metho	od: Low flow	1 Baile	(
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1345	o Initial	0	17.01	14.8	1557	248	054	-111	little tuck
1348	1 8	1	7.00	14.3	1538	139.3	0.89	-37	Clear
1354	2 4.7	2.5	7.03	15.4	1608	55.6	1.01	-88	70-
1356	3 9.5	3.25	7,01	16.2	1701	34.3	1.07	- 88	
1359	4 iD 45	4.50	7.62	15.7	1745	51.7	0.97	-18	a little more
1427	5 10:70	7	7.11	15.4	1432	OR	1.66	-81	
	6					1	7:		9
	7	Alloca	J17 (5) 2.	30	÷				
	В		And the second	1.					
	9	127.19	灰龍 山流。	tile ille	7	14	y 5	25	
	10		1000	78.7 %		- V	4	40	
Sample	Information:	- Charles	W 1	THE PROOF OF	À		001 1-	- V	0.
1434	s1 11.64	9	7.10	15.7	1509	OR	2.24	-86	
1436	52 11,30	9,5	7.15	15.2	1400	OR	and the	-89	- W

Well No	0.	MW-3	Diameter (in	ches 2"	40.000	Sample Da	te / Time: 11/	16/2021	@ 1311
Product De	pth (fbTOR):	SWIE -	Water Colum	nn (ft): 11 .	7	DTW when	sampled:		
DTW (stati	c) (fbTOR):	1.43	One Well Vo	olume (gal):	1.9071	Purpose:	Development	Sample	Purge & Sample
Total Depth	n (fbTOR): 14.13	6	Total Volume	e Purged (gal):	5.7	Purge Meth	od: Low flow		511
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1253	o Initial	0	7.01	13.8	550.4	OR	1.61	-94	Turbid
1256	1 2.47	0.75	7.30	15.5	541.6	668	0.45	- 104	Less turbed
25%	2 2.56	1.5	7.40	15.4	536	244	0.68	-120	ever less the
1301	3 2.60	2.50	7.45	16.1	521.3	78.7	0.87	-129	Stight Fuch
304	4 2.65	3.5	7.49	16.3	518.6	50.9	0:81	-/35	
306	5 2,66	4.25	7.52	16.0	519.0	43.2	0.81	-140	Y
1309	6.2.67	5	7.58	16.0	512.4	31	10.75	-140	(war
	9				, ,				
100	10		- 0						
Sample	Information:		W. (2)	20. 2					
13.11	S1 2.67	5.50	7.62	15.4	\$510.8	29.8	0.75	-140	Cloth
311	52 A.56	5.75	7.60	15.9	511.8	46.4	0.98	-136	cuar

REMARKS: MW-2 Stopped had to use a bailly sample, pumping so

Note: All water level measurements are in feet, distance from top of riser.

/olume	Calculation
Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1,469

Stabilizat	on Criteria
Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

2424 Hamburg Turnpike Groundwater Field Form

GWFF - BM (2)

PREPARED BY: * TJM

PROJECT INFORMATION:	ï							
Project Name: 2424 Hamburg Turnpike Project No: B0345-021-001	mbu rg	Turnpi	ke		Date: 11/16/2021	16/2021		
12.2	Turnpik	e, LLC			Instrumer	Instrument Source: X	BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron Company	6213516		4.00	10'h	
pH meter	units	8:45		6243084	TIM	7.00	7,03	
				6243003 📈 6223973 🗆		10.01	10.00	
				ĺ		10 NTU verification	9.01	
		,	Нас		•	< 0.4		
Turbidity meter	D L	90:00		4	TIM	20	2	
			l urbidimeter	17110C062619 (Q)	1	100	101	
						800	828	
Sp. Cond. meter	Sn SE		Myron L Company Ultra Meter 6P	6213516		2° 52 @ 25°C		
6				6243003				
Old	mod		MinBAF 2000			open air zero		MIBK response
!						ppm Iso. Gas		factor = 1.0
Dissolved Oxygen	8	1	POR MORE	080700023281			9/0001	17.3°C
	<u></u>	8:h}			MICL	100% Satuartion		9/5/1 mg/L
				140200100319				offset= 0.00%
Particulate meter	mg/m ₃					zero air		
☐ Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS:								
PREPARED BY: TJM				DATE : 11/16/2021				