Periodic Review Report

2424 Hamburg Turnpike Site BCP Site Number: C915296 Lackawanna, New York

May 2023 Revised September 2023

0689-022-001

Prepared By:

PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NUMBER: C915296 LACKAWANNA, NEW YORK

May 2023 Revised September 2023 B0689-022-001

Prepared for:

MLG Contracting Inc.

Prepared By:

PERIODIC REVIEW REPORT

2424 Hamburg Turnpike Site C915296

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
	2.2 Remedial History	2
3.0	SITE OVERVIEW	3
4.0	REMEDY PERFORMANCE	4
5.0	SITE MANAGEMENT PLAN	4
	5.1 Operation, Monitoring and Maintenance Plan 5.1.1 DPE System	5
	5.2 Excavation Work Plan	
	5.3 Engineering and Institutional Control Requirements and Compliance	8
6.0	CONCLUSIONS AND RECOMMENDATIONS	9
7.0	DECLARATION/LIMITATION	10

PERIODIC REVIEW REPORT

2424 Hamburg Turnpike Site C915296

TABLES

Table 1	Summary of DPE Analytical for Mass Removal Calculations
Table I	•
Table 2	Summary of Groundwater Elevations
Table 3	Summary of Groundwater Analytical Results
Table 4	Summary of DPE Mass Removal
Table 5	Summary of DPE Well Readings
	FIGURES
Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Groundwater Isopotential Map
Figure 4	DPE Mass Removal Trend
	APPENDICES
Appendix A	NYSDEC Certification, Notification Forms, and Permits Issued
Appendix B	Site Photolog
Appendix C	Laboratory Analytical Data Reports
Appendix D	Sewer Permit, Compliance Reports, and Analytical Data
Appendix E	Groundwater Monitoring Logs

1.0 EXECUTIVE SUMMARY

The 2424 Hamburg Turnpike Site (C915296) was a former automobile filling and service station. Prior to implementation of interim and final remedial measures the Site exhibited localized volatile organic contaminants (VOCs) in groundwater, localized semi-volatile organic contaminants (SVOCs) in soil, and metals contaminants in soil. The Site has had two documented petroleum spills prior to entering the BCP program. Remedial activities completed prior to NYSDEC issuance of a Certificate of Completion in December 2019 included: removal of hydraulic lifts, petroleum underground storage tanks (USTs), and petroleum piping, and petroleum-impacted soil; and installation of a dual-phase extraction (DPE) system. The DPE system has removed over 6,450 pounds of VOCs from the soil and groundwater since start-up in November 2019. It appears that the DPE system was effectively removing residual impacts for the first year of operation but has observed diminishing returns for the last two years. The Site is in compliance with the SMP, engineering, and institutional control requirements.

2.0 Introduction

Benchmark Civil/Environmental Engineering and Geology, PLLC (Benchmark), in association with TurnKey Environmental Restoration, LLC (TurnKey) have prepared this Periodic Review Report (PRR), on behalf of MLG Contracting Inc. to summarize the post-COC status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915296, located in the City of Lackawanna, Erie County, New York (Site; see Figure 1).

This PRR has been prepared for the 2424 Hamburg Turnpike Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A). This PRR and the associated inspection forms have been completed for the April 24, 2022 to April 24, 2023 reporting period.

2.1 Site Background

The Site is located at 2424 Hamburg Turnpike, in the City of Lackawanna, County of Erie, New York and is identified as S.B.L No. 141.59-5-2 on the Erie County Tax Map. The 1.04-acre BCP Site is currently unoccupied with a vacant commercial building, bound by an active gasoline station to the north, a retail store to the south, vacant land to the east and Hamburg Turnpike (aka NY State Route 5) with vacant industrial land across Route 5 to the west (see Figure 2).

The Site was historically used as an automobile filling and service station (Stop-N-Gas) beginning in at least 1957 when three 10,000-gallon underground storage tanks (USTs) were installed on-site. Petroleum bulk storage (PBS) records indicate that the three USTs were closed/removed in 1994. Subsequent to the automobile filling and service station operations, the Site operated as a retail store. Historic Sanborn maps and aerial photographs indicate that prior to the current on-site development, the Site was vacant land from at least 1926 through at least 1951.

2.2 Remedial History

After acceptance into the NYS BCP in November 2015, a Remedial Investigation/Alternatives Analysis (RI/AA) Work Plan and a Work Plan for Interim Remedial Measures were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of seven hydraulic lifts; excavation of

grossly contaminated soil/fill; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the removal of petroleum piping, installation of a dual-phase extraction (DPE) system, and installation of site-wide cover system. The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2019. The NYSDEC issued a COC for the Site on December 24, 2019.

3.0 SITE OVERVIEW

Previous investigations identified environmental contamination on-Site that required remediation. 2424 Hamburg Turnpike, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC to remediate the Site. BCP investigations and remediation were completed between 2015 and 2019.

The remedial activities included:

- Removal and disposal of seven in-ground lifts from the former automotive repair building.
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the Part 375
 Commercial Soil Cleanup Objectives (SCOs) encountered during in-ground lift removal activities.
- Demolition of the on-Site shed located in the southeast corner of the site, and demolition of the elevated concrete floor slabs located north of the shed and at the northern portion of the site.
- Excavation and off-site disposal of petroleum piping and non-hazardous soil/fill
 exceeding the Part 375 Commercial SCOs between the former tank field and the fuel
 dispensing islands.
- Installation of a dual-phase extraction (DPE) system to mitigate remaining contamination within the subsurface soil/fill and the groundwater.
- Replacement of existing exterior asphalt/concrete cover with a new primarily asphalt pavement cover over approximately 0.73 acres.
- Placement of a vegetated soil cover with a minimum of 12 inches of imported borrow soil meeting Part 375 Commercial SCOs over approximately 0.3 acres.
- And replacement of approximately 2,500 square feet of 6-inch-thick reinforced concrete floor in the garage bay of the building

Documentation of the completed remedial action activities described above are provided in the FER.

Remedial activities were completed in October 2019. The FER and SMP for the Site were approved by the Department in December 2019. The Certificate of Completion (COC) was issued for the Site on December 24, 2019. A Change of Use (COU) form was signed and submitted to the Department on March 8, 2022, notifying the Department of the change in ownership and transferring the COC. 2424 Hamburg Turnpike, LLC sold the Site on March 16, 2022 to MLG Contracting Inc. Four building permits (general repairs to building, electric, plumbing, and fencing) were issued from the City of Lackawanna during this reporting period. The permits and planned scope of work did not include intrusive work during this reporting period and did not involve removal or disruption of the cover system. Fence posts were installed in Fall 2022 using direct-push methods. There was no generation of soil/fill materials during the installation. The location of the fencing and fence post detail is provided on Figure 2 of this report. A copy of the permits are included in Appendix A.

4.0 REMEDY PERFORMANCE

The Site is in compliance with the SMP. The cover system is maintained in accordance with the approved SMP. The completed IC/EC Certification form and site photographs are included in Appendix A and Appendix B, respectively.

Post-remedial inspections, groundwater monitoring, and operation and maintenance of the DPE system have been completed at the Site. DPE influent air analytical and DPE groundwater analytical results used for mass removal calculations are summarized on Table 1.

Groundwater elevation data are summarized on Table 2, with representative groundwater isopotential shown on Figures 3 for the associated sampling event. Groundwater sample analytical results are summarized on Table 3, with laboratory analytical data reports provided electronically in Appendix C.

5.0 SITE MANAGEMENT PLAN

The SMP was prepared for the Site and approved by the Department in December 2019. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, Operation, Monitoring and Maintenance (OM&M) Plan, an Excavation Work Plan (EWP), and a copy of

the Environmental Easements. A brief description of the components of the SMP is presented below.

5.1 Operation, Monitoring and Maintenance Plan

The OM&M Plan addresses three major remedial components: the DPE system; groundwater monitoring; and the annual inspection & certification.

5.1.1 DPE System

The DPE system is comprised of 14 DPE wells, 2-inch diameter HDPE conveyance piping, and the DPE remedial system. The DPE system extracts soil vapor and groundwater. The soil vapor is discharged through a stack at the top of the building. The groundwater is treated with a carbon filter and discharged to the publicly operated treatment works (POTW) in accordance with the sewer discharge permit. A copy of the current sewer discharge permit and sampling results from this reporting period are included in Appendix D.

Installation of the DPE system was completed between August and September 2019. System startup and optimization was completed between November and December 2019.

Routine DPE system monitoring was completed during the reporting period, including field measurements of system soil vapor influent air with photoionization detector (PID), vacuum readings on the DPE wells, effluent water flow meter readings, and routine system maintenance.

DPE System Operation

The DPE system has been operating since November 8, 2019, with two major shutdowns for the winter (December 22, 2020 through April 19, 2021 and system has currently been off since December 9, 2022). Since startup, a total of 6,412 pounds of vapor-phase volatile organic carbons (VOCs) has been removed from the shallow vadose zone (see Table 4). Additionally, approximately 1,548,000 gallons of groundwater containing approximately 49 pounds of aqueous-phase VOCs has been removed and treated (see Table 1). The primary purpose of the liquid phase removal is to depress the water table slightly and expose the petroleum "smear zone" for vacuum extraction. The carbon that treats the groundwater was not replaced during the reporting period because no flow restrictions were observed. All sewer compliance sampling results were within limits during this monitoring period (see Appendix D).

The DPE system estimated mass removal is calculated by using the following method. The sum of the air phase hydrocarbon (APH) soil gas sample results provided in Table 1 in

micrograms per meter cubed (ug/m³) is divided by the PID reading collected during the sampling, resulting in a correction factor that is used until the next influent soil gas sample is collected. The correction factor is multiplied by the PID reading resulting in a corrected concentration. This corrected concentration is multiplied by a flow rate and time resulting in a mass. Table 4 provides a Summary of VOC mass removal from the vapor phase of the DPE system. A graph of the accumulative mass removed VS time is provided in Figure 4.

The DPE system works well at this site in seasonally dry and warm conditions when impacted soil vapor is effectively being extracted from the shallow vadose zone, as evident from the cumulative mass of VOCs removed thus far. Based on the slow removal rate trends observed from December 2019 through June 2020 a request to temporarily shut down the system for the winter was submitted to the Department and was approved on December 21, 2020. The DPE system was shut down from December 22, 2020 through April 19, 2021. The DPE system was not shut down in December 2021 in an attempt to achieve conditions warranting permanent termination of DPE operations. The DPE system was shut down for the winter in December 2022 and is currently off. We are proposing to keep the system off while we assess if the DPE system has met the requirements for shut down per the SMP. As depicted in Figure 4 and Table 4, the DPE system during the first year of operation removed approximately 5,700 pounds of VOCs and only 700 pounds of VOCs in the two following years. A rare dry and hot weather pattern in the summer/early fall of 2022 was responsible for removing approximately 545 of the 700 pounds mentioned above. The DPE system appears to have reached a point of diminishing returns with mass removal rates typically less than 0.3 pounds per day (for the last two years).

Table 5 provides a summary of the PID readings from individual DPE wells. The DPE well PID readings are consistent with the system influent PID readings and have decreased over time. During this monitoring period we reduced the vacuum at DPE-1 and DPE-10 to lessen the radius of influence to see if the total VOC concentration at MW-2 drops. After the adjustments were made, we waited one month for the groundwater to reach equilibrium before collecting groundwater samples from MW-2 and MW-3 for VOCs.

5.1.2 Groundwater Monitoring

Groundwater monitoring has been completed annually since receiving the COC in December 2019. Groundwater monitoring was completed on December 7, 2022 for this reporting period. Groundwater monitoring logs are provided in Appendix E. Groundwater analytical results were submitted to EQuIS on May 8, 2023.

Groundwater analytical results are summarized on Table 3, Figure 5, and laboratory analytical data reports are provided in Appendix C. Analytical results show a decrease in many VOC compounds (Ethylbenzene, Isopropylbenzene, and Total Xylenes) at MW-2 since the 2020 sampling event. Based on the December 2022 groundwater data it appears that reducing the vacuum at DPE-1 and DPE-10 had little to no effect on the groundwater results. The total detected VOCs at MW-2 and MW-3 are approximately 0.56 and 0.08 ppm, respectively.

5.1.3 Annual Inspection and Certification

Annual inspection and certification are required to verify, certify, and attest that the institutional controls (ICs) and/or engineering controls (ECs) employed at the Site:

- Are in place and effective;
- Are performing as designed;
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls;
- Access is available to the Site to evaluate continued operation and maintenance of such controls.

The site inspection was completed on April 19, 2023, for the current reporting period. The property is being used in accordance with the commercial or industrial uses. At the time of the inspection the interior of the building was being renovated. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the reporting period. No erosion of the cover system was noted during the site inspection.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the most recent Site inspection is included in Appendix B.

5.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved-SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive actives.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

5.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

5.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited without water quality treatment as determined by the NYSDOH or County DOH;
- Land-Use Restriction: The controlled property may be used for commercial and industrial uses as defined by Part 375-1.8(g), although land use is subject to local zoning laws; and
- Implementation of the SMP. Requires compliance with the Department- approved Site Management Plan

5.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Dual-Phase Extraction Based on the remaining VOC impacts in unsaturated and shallow saturated soil, an in-situ dual-phase soil vapor and groundwater extraction system was selected as an engineering control to treat the remaining impacts. DPE is an in-situ remediation technology that uses a blower to remove both contaminated groundwater and hydrocarbon vapor (i.e., soil gas) from the subsurface. The DPE system is evaluated based on mass removal trends, groundwater depression, groundwater quality improvements, and soil sampling (prior to discontinuation). DPE System has been operated and maintained in compliance with the SMP; and

• Cover System – Exposure to remaining soil contamination at the Site is mitigated by a cover system placed over the Site. This cover system is comprised of a minimum of 12 inches of DER-10 compliant soil material over demarcation layer, and hardscape elements of the redevelopment, including asphalt, concrete-covered sidewalks, and concrete building slabs. The cover system is evaluated by observing that the cover is intact without signs of excavation or erosion. The cover system, including buildings, concrete sidewalks, asphalt, and landscaped vegetated soil are being maintained in compliance with the SMP.

At the time of the site inspection, the Site was compliant with the engineering and institutional control requirements.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Site is compliant with the SMP, engineering, and institutional control requirements. Land use and groundwater use restrictions have been adhered to during this monitoring period. The DPE system has been effective at lowering the groundwater table, treating impacted groundwater, and removing VOCs from the soil, evident from the mass removal trends on Table 4. The cover system has prevented contact to remaining contamination by providing a barrier that has not been breached during this monitoring period.

The SMP, engineering, and institutional controls have been effective. During the first year of operation the DPE system removed approximately 5,700 pounds of VOCs and only 700 pounds of VOCs in the two following years. A rare dry and hot weather pattern in the summer/early fall of 2022 was responsible for removing approximately 545 of the 700 pounds mentioned above. The DPE system appears to have reached a point of diminishing returns with mass removal rates typically less than 0.3 pounds per day (for the last two years). Benchmark will submit to the Department in the Fall 2023, a separate work plan to collect soil samples to assess if the DPE system has met the requirements for shut down per the SMP. Benchmark plans on temporarily leaving the DPE system off until the results of the soil sampling have been reported. The DPE system will remain in-place and operational until approval from the Department (NYSDEC) is given to remove the system from the site. We plan on completing the next annual groundwater monitoring in the Fall of 2023 and a site inspection in the Spring of 2024. The next PRR report will be submitted in May 2024.

7.0 DECLARATION/LIMITATION

A Benchmark principal engineer, licensed in New York and with direct supervisory responsibility conducted the annual site inspections for the 2424 Hamburg Turnpike Site BCP Site No. C915296, located in Lackawanna, New York, according to generally accepted practices. This report complied with the scope of work provided to MLG Contracting by Benchmark-TurnKey.

This report has been prepared for the exclusive use of MLG Contracting Inc. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of MLG Contracting Inc. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark-TurnKey.

TABLES

Table 1 - Summary of DPE System Analytical for Mass Removal Calculations

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Parameters ¹	DPE Influent \		DPE Influent \\		DPE Influent Vapor Sample 9-29-22		
	TO-15 VOCs (ug/m ³)	APH (ug/m ³)	TO-15 VOCs (ug/m³)	APH (ug/m³)	TO-15 VOCs (ug/m³)	APH (ug/m ³)	
Dichlorodifluoromethane	ND	NA	1.62	NA	2.39	NA	
Chloromethane	ND	NA	ND	NA	0.522	NA	
Acetone	ND	NA	ND	NA	3.94	NA	
Trichlorofluoromethane	ND	NA	ND	NA	1.36	NA	
Carbon disulfide	ND	NA	1.49	NA	2.11	NA	
Freon-113	ND	NA	ND	NA	3.39	NA	
Chloroform	ND	NA	ND	NA	1.05	NA	
Tetrahydrofuran	ND	NA	ND	NA	2.49	NA	
n-Hexane	166,000	NA	38.8	NA	44.8	NA	
Benzene	1,550	1,900	34.5	35	21	21	
Cyclohexane	36,500	NA	39.2	NA	35.1	NA	
Kylene (total)	119,000	117,000	168.7	165	56.5	49	
2,2,4-Trimethylpentane	258,000	NA	113	NA	144	NA	
Heptane	132,000	NA	8.4	NA	14.7	NA	
Γoluene	18,900	19,000	31.3	35	14.5	14	
Ethylbenzene	26,900	27,000	71.7	74	22.9	19	
Styrene	ND	NA	ND	NA	0.928	NA	
1-Ethyltoluene	13,200	NA	33.4	NA	9.93	NA	
1,3,5-Trimethylbenzene	17,400	NA	32.4	NA	8.95	NA	
1,2,4-Trimethylbenzene	40,200	NA	147	NA	44.4	NA	
Naphthalene	NA	ND	NA	24	NA	2.8	
Fentatively Identified Compounds (TICs) (ppbV)	317,000	NA	250.8	NA	NA	NA	
C5-C8 Aliphatics	NA	5,200,000	NA	1,600	NA	3,700	
C9-C12 Aliphatics	NA	330,000	NA	160	NA	350	
C9-C10 Aromatics	NA	160,000	NA	700	NA	200	
Sum of APH (ug/m ³)	NA	5,854,900	NA	2,793	NA	4,356	
	Corre	lation Between APH	Results and PID Reading	s			
PID Reading at Time of Sample	1260		0.2	ppm	2.5 p		
Sum of APH (ug/m³)	5,854,900		2,7	93	4,35	56	
Sum of APH (mg/m³)	5,855		2.	79	4.36		
APH/PID) 1 ppm on PID =	4.65 mg/m ³			ng/m ³	1.74 mg/m ³		

Notes

APH = Air-phase Petroleum Hydrocarbons

NA = Not Analyzed

Parameters ¹	DPE Influent GW Sample 11-12-19
CP-51 List VOCs (ug/L)	
Benzene	21
Toluene	230
Ethylbenzene	300
p/m-Xylene	1200
o-Xylene	420
n-Butylbenzene	20 J
sec-Butylbenzene	12 J
Isopropylbenzene	39
p-Isopropylbenzene	7.8 J
n-Isopropylbenzene	100
1,3,5-Trimethylbenzene	320
1,2,4-Trimethylbenzene	1100
Subtotal	3770
VOC Mass Removal from Gro	undwater (GW) Treatment Since 11/08/19
Sum of VOCs (ug/L)	3770
Sum of VOCs (mg/L)	3.77
Water Treated by the DPE System (gallons)	1,548,380
Water Treated by the DPE System (liters)	5,861,238
GW VOCs Treated by the DPE System (mg)	22,095,694
GW VOCs Treated by the DPE System (lbs)	48.72

Notes

- Only parameters detected in at least one sample are presented in this table.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- $\label{eq:Jacobian} J = \text{Estimated value; result is less than the sample quantitation limit but greater than zero GW VOCs treated by DPE system (mg) = sum of VOCs (mg/L) * water treated (liters)$

¹⁾ Only parameters detected in at least one sample are presented in this table.

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

		TOR	Decembe	er 7, 2022
Location	Grade	Elevation (feet)	DTW (fbTOR)	Groundwater Elevation (feet)
MW-1	581.20	580.77	5.98	574.8
MW-2	578.16	577.96	4.11	573.9
MW-3	577.46	577.09	2.15	574.9
MW-4	577.52	577.07	2.00	575.1
MW-5	576.44	575.82	2.26	573.6
DPE-1	577.84	577.37	2.59	574.8
DPE-2	577.39	576.94	5.80	571.1
DPE-3	577.60	577.09	2.21	574.9
DPE-4	577.19	576.58	NA	NA
DPE-5	576.96	576.37	1.98	574.4
DPE-6	577.54	577.16	2.10	575.1
DPE-7	577.95	577.36	2.25	575.1
DPE-8	578.22	577.13	2.15	575.0
DPE-9	577.97	577.64	2.72	574.9
DPE-10	578.15	577.62	2.68	574.9
DPE-11	577.52	577.21	NA	NA
DPE-12	577.92	577.48	3.85	573.6
DPE-13	579.72	579.49	3.95	575.5
DPE-14	580.46	580.06	4.82	575.2

Notes:

TOR = Top of riser

DTW = Depth to water

fb = feet below

NA = Not available (DPE-4 manhole was filled with surface water. DPE-11 has a shipping container parked over it.)

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

Parameter ¹	NYSDEC Class GA GWQS ²	MW-1 11/16/21	MW-1 12/07/22	MW-2 7/27/16	MW-2 10/15/20	MW-2 11/16/21	MW-2 12/07/22	MW-3 7/27/16	MW-3 10/15/20	MW-3 11/16/21	MW-3 12/07/22	MW-4 11/16/21	MW-4 12/07/22	MW-5 11/16/21	MW-5 12/07/22
Field Measurements															
Dissolved Oxygen (mg/L)		1.84	1.22	0.91	NA	2.24	1.13	0.73	NA	0.75	1.75	1.32	1.07	NA	1.7
Field pH (S.U.)	12.5	7.21	7.37	6.79	6.88	7.1	7.44	6.57	6.86	7.62	7.39	6.57	7.25	6.44	6.61
Redox Potential (mV)		-141	-123	-109	-91	-86	-81	-86	-88	-140	-125	33	-93	-46	-47
Specific Conductance (umhos/cm)		1150	1409	1253	1100	1509	3147	1059	897.5	510.8	522.1	567.5	890.7	1138	1111
Temperature (deg C)		12.7	11.4	21.4	18.3	15.7	12.2	21.3	20.4	15.4	12.6	15.8	10.9	13.0	11.3
Turbidity (NTU)		>1000	783	672	12.10	>1000	138	114	15.3	29.80	32.4	55.4	451	35.6	>1000
TCL Volatile Organic Compounds (VC	DCs) - mg/L														
Acetone	0.05	NA	NA	0.012	NA	ND	ND	0.0044	ND	ND	ND	NA	NA	NA	NA
Benzene	0.001	NA	NA	0.0089	0.063 D	0.059 D	0.11 D	0.0088	0.0097	0.0081	0.016	NA	NA	NA	NA
Carbon disulfide	0.06	NA	NA	0.0004	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Cyclohexane	-	NA	NA	ND	0.083 D	0.066 D	0.061 D	ND	0.0036	0.0079	0.012	NA	NA	NA	NA
Ethylbenzene	0.005	NA	NA	0.0063	0.27 D	0.2 D	0.11 D	0.0035	0.005	0.014	0.013	NA	NA	NA	NA
Isopropylbenzene (Cumene)	0.005	NA	NA	ND	0.023 D	0.02 D	0.017 D	ND	0.0032	0.0054	0.0043	NA	NA	NA	NA
m,p-Xylenes	0.005	NA	NA	ND	0.48 D	0.13 D	0.11 D	ND	0.0056	0.0034	0.01	NA	NA	NA	NA
Methyl tert-butyl ether	0.01	NA	NA	0.0051	0.0027 D	0.0028 D	ND	0.0005	ND	ND	ND	NA	NA	NA	NA
Methylcyclohexane		NA	NA	ND	0.03 D	0.025 D	0.023 D	0.00097	ND	0.016	0.015	NA	NA	NA	NA
O-Xylene	0.005	NA	NA	ND	0.017 D	0.022 D	0.094 D	ND	0.0021	0.0045	0.0048	NA	NA	NA	NA
Toluene	0.005	NA	NA	0.0086	0.014 D	0.016 D	0.034 D	0.005	0.0022	0.00083	0.0049	NA	NA	NA	NA
Xylenes, Total	0.005	NA	NA	0.04	0.497 D	0.152 D	0.204 D	0.0095	0.0077	0.0079	0.0148	NA	NA	NA	NA
TOTAL VOCs		NA	NA	0.0000813	0.0009827 D	0.0005408 D	0.000559 D	0.00003267	0.0000314	0.00006013	0.00008	NA	NA	NA	NA

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds 1. Only those parameters detected at a minimum of one sample location are presented in the were reported as non-detect.
2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards (GWQS).

Definitions:

D = Concentration of analyte was quantified from diluted analysis.

ND = Parameter not detected above laboratory detection limit.

NA = Not Analyzed

"--" = No GWQS available.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ug/L = micrograms per liter

Exceeds NYSDEC Class GA GWQS

Table 4 - Summary of DPE System VOC Mass Removal

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date	Influent (Untreated) PID Reading ⁵ (ppm)	Corrected Influent Concentration ^{1,2,3} (mg/m3)	Corrected Influent Concentration ^{1,2,3} (Ib/CF)	Vacuum at Blower (in Hg)	Air Flow Rate (CFM)	Volume of Air Processed Since Last Monitoring Period (CF)	VOCs Removed Since Last Monitoring Period (lb)	Rate of VOC Removal (lb/day)	Total VOCs Removal to Date ⁶ (lb)	Notes
11/08/19	808	3757	2.346E-04	14.0	194	0	0	0.0	0	
11/11/19 11/11/19	1,146 1,240	5329 5766	3.327E-04 3.600E-04	12.0 12.0	195 195	771572 11714	218.8 4.1	79.6 97.4	218.83 222.89	
11/12/19	1,270	5906	3.687E-04	12.0	195	304568	111.0	102.4	333.84	
11/12/19 11/13/19	770 610	3581 2837	2.235E-04 1.771E-04	7.0 8.0	197 197	11773 260055	3.5 52.1	83.7 56.8	337.33 389.42	
11/13/19	900	4185	2.613E-04	9.0	196	47188	10.3	62.1	399.76	
11/14/19	730 960	3395 4464	2.119E-04 2.787E-04	8.5 10.3	197 196	200448 11776	47.4 2.9	67.0 69.3	447.18 450.07	
11/15/19	1,550	7208	4.499E-04	10.5	196	282049	102.8	102.8	552.83	
11/18/19 11/20/19	920	4278	2.671E-04	10.0	196	858158	307.7	101.1 54.1	860.48	
11/21/19	400 570	1860 2651	1.161E-04 1.655E-04	9.5 9.5	196 196	553069 306107	106.0 43.1	39.8	966.45 1009.54	
11/21/19	200	930	5.806E-05	6.2	198	23625	2.6	31.7	1012.18	
11/22/19 11/22/19	79 370	367 1721	2.293E-05 1.074E-04	6.5 10.5	197 196	284349 23594	11.5 1.5	11.5 18.5	1023.70 1025.24	
11/25/19	580	2697	1.684E-04	9.0	196	811952	112.0	38.9	1137.20	
11/26/19 11/26/19	370 750	1721 3488	1.074E-04 2.177E-04	9.0	196 195	271059 23480	37.4 3.8	39.0 45.8	1174.57 1178.39	
11/27/19	810	3767	2.351E-04	11.0	196	-175748	-39.8	63.7	1138.59	
12/02/19	380	1767	1.103E-04	14.0	194	1848967	319.4	48.5	1457.95	
12/02/19 12/04/19	1,080 1,000	5022 4650	3.135E-04 2.903E-04	17.0 18.0	193 193	11631 602367	2.5 181.9	59.2 83.9	1460.42 1642.27	
12/09/19	860	3999	2.496E-04	17.7	193	1354356	365.6	75.0	2007.91	
12/09/19 12/11/19	450 420	2093 1953	1.306E-04 1.219E-04	15.0 15.0	194 194	11611 570514	2.2 72.0	53.0 35.3	2010.12 2082.16	
12/18/19	240	1116	6.967E-05	17.5	193	1962692	188.0	26.7	2270.18	
12/18/19	218 206	1014 958	6.328E-05	15.0 13.0	194 195	11614 513340	0.8	18.5 17.2	2270.95 2302.54	
12/20/19 01/02/20	206 150	958 698	5.980E-05 4.354E-05	13.0	195 194	513340 2709448	31.6 140.0	17.2	2302.54 2442.54	Restart system
01/02/20	40	186	1.161E-05	15.6	194	11648	0.3	7.7	2442.86	
01/02/20 01/03/20	20 11	93 51	5.806E-06 3.193E-06	16.5 14.8	193 194	23237 244183	0.2 1.1	2.4 1.3	2443.07 2444.16	
01/03/20	73	339	2.119E-05	12.0	195	11681	0.1	3.4	2444.31	
01/06/20	120 132	558 614	3.483E-05 3.832E-05	14.0 15.0	194 194	830025 11655	23.3 0.4	7.9 10.2	2467.56 2467.98	
01/06/20 01/08/20	168	781	3.832E-05 4.877E-05	13.5	194	559723	24.4	10.2	2492.36	
01/14/20	125	581	3.629E-05	13.0	195	1647525	70.1	11.9	2562.42	
01/21/20 01/27/20	122 90	567 419	3.542E-05 2.613E-05	12.0	195 195	1989395 1650028	71.3 50.8	10.1 8.6	2633.74 2684.52	
02/05/20	68	316	1.974E-05	14.0	194	2534268	58.1	6.4	2742.63	
02/13/20 02/25/20	10 25	45 115	2.787E-06 7.170E-06	11.3 12.6	196 195	1474046 70292	16.6 0.3	3.2 1.4	2759.24 2759.59	Restart System Restart System
02/28/20	11	53	3.280E-06	13.0	195	397638	2.1	1.5	2761.66	Restart System
03/04/20 03/11/20	13 9	60 42	3.774E-06 2.613E-06	13.7 12.5	195 195	1191585 1940228	4.2 6.2	1.0 0.9	2765.87 2772.06	Restart System
03/17/20	62	287	1.791E-05	12.3	195	1673771	17.2	2.9	2789.24	
03/20/20	30	140	8.767E-06	12.1	195	737694	9.8	3.7	2799.08	Restart System
04/14/20 04/15/20	13 20	58 92	3.629E-06 5.748E-06	10.0	196 195	46947 363689	0.3 1.7	1.7 1.3	2799.37 2801.07	Restart System
04/24/20	20	92	5.748E-06	12.0	195	23416	0.1	1.6	2801.21	Restart System
04/27/20 05/01/20	70 20	324 94	2.023E-05 5.864E-06	11.5	195 195	949326 772197	12.3 10.1	3.7 3.7	2813.54 2823.62	Restart System
05/01/20	6	27	1.713E-06	10.0	196	35153	0.1	1.1	2823.75	restart dystem
05/04/20 05/06/20	43 64	202 299	1.260E-05	12.0	195	868599	6.2	2.0	2829.97	
05/06/20	72	334	1.869E-05 2.087E-05	11.5 11.6	195 195	609444 11725	9.5 0.2	4.4 5.6	2839.50 2839.73	
05/12/20	78	361	2.253E-05	11.0	196	1630571	35.4	6.1	2875.12	
05/19/20 05/19/20	25 38	114 178	7.112E-06 1.109E-05	10.5 11.0	196 196	1949462 35231	28.9 0.3	4.2 2.6	2904.00 2904.33	
06/03/20	4	20	1.248E-06	8.0	197	894773	5.5	1.7	2909.85	Restart System
06/03/20 06/04/20	4	20 16	1.248E-06 1.016E-06	8.0 12.5	197 195	70853 35267	0.1	0.4	2909.93 2909.97	Turn System off too much water Restart system. Turn System off too much water
06/12/20	8	37	2.293E-06	13.2	195	46776	0.1	0.5	2910.05	Restart system
06/15/20	17	80	5.022E-06	11.3	196	854702	3.1	1.0	2913.18	
06/15/20 06/17/20	28 80	131 372	8.157E-06 2.322E-05	12.0	195 196	11722 551678	0.1 8.7	1.9 4.4	2913.25 2921.91	
06/17/20	130	606	3.785E-05	13.0	195	11726	0.4	8.6	2922.27	
06/23/20 06/24/20	130 84	606 388	3.782E-05 2.424E-05	11.0 12.0	196 195	1675125 257972	63.4 8.0	10.6 8.7	2985.65 2993.66	Turned system off for carbon change out
06/25/20	84	390	2.424E-05 2.433E-05	13.8	195	35079	0.9	6.8	2993.66	Restart system
06/30/20	1,500 1,500	6975 6975	4.354E-04 4.354E-04	12.3 12.0	195 195	1449474 491846	333.2 214.2	64.5 122.4	3327.72 3541.88	
07/02/20 07/02/20	1,500	6975 6975	4.354E-04 4.354E-04	12.0	195 195	491846 81999	214.2 35.7	122.4 122.4	3541.88 3577.59	
07/08/20	1,240	5766	3.600E-04	11.5	195	1640811	652.5	111.9	4230.14	
07/14/20 07/14/20	362 393	1683 1827	1.051E-04 1.141E-04	12.0	195 195	1664251 11714	387.0 1.3	65.4 30.8	4617.11 4618.40	
08/09/20	100	465	2.906E-05	16.0	194	6020079	430.9	20.0	5049.26	Restart system
08/09/20 08/16/20	76 87	355 403	2.215E-05 2.514E-05	13.0 12.0	195 195	11655 1965991	0.3 46.5	7.2 6.6	5049.56 5096.04	
08/22/20	87	403	2.514E-05 2.514E-05	11.0	195 196	1711995	43.0	7.1	5139.08	
08/22/20	112	522	3.260E-05	12.8	195	11717	0.3	8.1	5139.42	
08/29/20 09/05/20	186 205	864 953	5.391E-05 5.948E-05	12.7	195 195	1918211 1966587	83.0 111.5	12.1 15.9	5222.39 5333.88	
09/12/20	139	644	4.021E-05	12.0	195	1944551	96.9	14.0	5430.80	
09/20/20 09/27/20	161 188	748 876	4.671E-05 5.466E-05	11.5 11.3	195 196	2226815 1993822	96.8 101.1	12.2 14.3	5527.57 5628.63	
09/27/20	309	1435	8.955E-05	8.5	197	35292	2.5	20.4	5631.17	
10/01/20	4	17	1.045E-06	13.0	195	763344	34.6	12.8	5665.75	
10/03/20 10/10/20	22 24	104 113	6.503E-06 7.025E-06	11.3	196 196	538688 1972751	2.0 13.3	1.1 1.9	5667.78 5681.13	
10/18/20	26	121	7.577E-06	10.5	196	2256390	16.5	2.1	5697.60	
10/18/20 10/25/20	20 14	94 66	5.893E-06 4.151E-06	11.7 16.0	195 194	23471 1668863	0.2 8.4	1.9	5697.76 5706.14	
10/25/20	6.8	32	4.151E-06 1.974E-06	16.0	194 195	11660	0.0	0.9	5706.14 5706.18	
10/31/20	6.2	29	1.800E-06	10.6	196	1617861	3.1	0.5	5709.23	
11/07/20 11/19/20	3.7 9.4	17 44	1.074E-06 2.729E-06	10.0 9.9	196 196	2080529 3352365	3.0 6.4	0.4 0.5	5712.22 5718.59	
12/03/20	4.0	19	1.161E-06	11.6	195	1550175	3.0	0.5	5721.61	
12/11/20	2.6	12	7.548E-07	10.5	196	4553819 1681895	4.4	0.3	5725.97 5727.17	
12/17/20 12/22/20	2.3 2.6	11 12	6.677E-07 7.548E-07	9.5 11.5	196 195	1681895 1433459	1.2	0.2	5727.17 5728.19	System shut down for winter
04/19/21	19.6	91	5.690E-06	14.0	194	35089	0.1	0.9	5728.30	System Startup
04/30/21 04/30/21	21.3 16.4	99 76	6.183E-06 4.761E-06	14.0 12.5	194 195	3033373 35054	18.0 0.2	1.7 1.5	5746.31 5746.50	
0-7/00/Z1	10.4	1 10	4.101E-00	12.0	190	55054	U.Z	1.0	57 4 0.50	<u> </u>

Table 4 - Summary of DPE System VOC Mass Removal

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date	Influent (Untreated) PID Reading ⁵ (ppm)	Corrected Influent Concentration ^{1,2,3} (mg/m3)	Corrected Influent Concentration ^{1,2,3} (Ib/CF)	Vacuum at Blower (in Hg)	Air Flow Rate (CFM)	Volume of Air Processed Since Last Monitoring Period (CF)	VOCs Removed Since Last Monitoring Period (lb)	Rate of VOC Removal (lb/day)	Total VOCs Removal to Date ⁶ (lb)	Notes
05/08/21	1.5	7	4.354E-07	12.0	195	2283107	5.9	0.7	5752.43	
05/12/21	1.3	6	3.774E-07	12.3	195	1053955	0.4	0.1	5752.86	
05/21/21	2.6	12	7.548E-07	11.3	196	2507843	1.4	0.2	5754.28	
05/27/21 06/02/21	2.1 1.1	10 5	6.096E-07 3.193E-07	11.0 11.5	196 195	1666268 1736323	1.1 0.8	0.2	5755.41 5756.22	
06/02/21	2.5	12	7.257E-07	12.0	195	23440	0.0	0.1	5756.23	Restart system after tank high alarm
06/15/21	1.5	7	4.354E-07	11.0	196	1336763	0.8	0.2	5757.01	Turned system off to drain carbon turned on 6-16
06/24/21	1.4	7	4.064E-07	10.5	196	2337006	1.0	0.1	5757.99	rumou dyddin on to urain darbon tamou dir o 10
07/02/21	16.7	78	4.848E-06	14.5	194	2223442	5.8	0.7	5763.83	
07/08/21	1.7	8	4.935E-07	10.5	196	1661730	4.4	0.8	5768.27	
07/15/21	0.6	3	1.742E-07	12.3	195	1958636	0.7	0.1	5768.93	
07/23/21	1.0	5	2.903E-07	14.0	194	876520	0.2	0.1	5769.13	Restart system on 7-22-22 after tank high alarm
07/29/21	1.3	6	3.774E-07	13.8	195	1622017	0.5	0.1	5769.67	
08/06/21 08/06/21	1.3 3.6	6 17	3.774E-07 1.045E-06	12.8	195 195	2243211 11702	0.8	0.1	5770.52	
08/12/21	2.0	9	5.806E-07	11.6	195	17702	0.0 1.4	0.2	5770.53 5771.93	
08/20/21	1.3	6	3.774E-07	13.2	195	2270710	1.1	0.1	5773.01	
08/27/21	5.0	23	1.451E-06	11.6	195	1966388	1.8	0.3	5774.81	
09/03/21	6.4	30	1.858E-06	11.2	196	1970365	3.3	0.5	5778.07	
09/08/21	26.3	122	7.635E-06	12.8	195	1405699	6.7	1.3	5784.74	
09/16/21	0.9	4	2.613E-07	14.0	194	2172670	8.6	1.1	5793.32	
09/24/21	1.0	5	2.903E-07	13.4	195	2323110	0.6	0.1	5793.96	
09/30/21	1.4	7	4.064E-07	11.9	195	1637828	0.6	0.1	5794.53	
10/07/21	3.0	14	8.709E-07	15.6	194	1330692	0.8	0.2	5795.38	
10/14/21	0.9	4	2.613E-07	12.3	195	1925221	1.1	0.2	5796.47	Destart water affine a constant
10/29/21	1.1	5 5	3.193E-07 3.193E-07	15.3 16.0	194 194	2766158 1976720	0.8	0.1 0.1	5797.27 5797.91	Restart system atfter power failure
11/05/21 11/12/21	2.4	11	3.193E-07 6.967E-07	16.0	194	1976720	0.6	0.1	5797.91 5798.74	
11/18/21	0.2	3	1.744E-07	18.4	193	1038347	0.6	0.1	5799.19	
11/18/21	1.7	24	1.482E-06	18.2	193	23130	0.0	0.2	5799.21	Turn DPE-11 and 12 on
11/24/21	1.4	20	1.221E-06	16.9	193	567557	0.8	0.4	5799.97	
12/02/21	0.4	6	3.487E-07	16.1	194	2251883	1.8	0.2	5801.74	
12/08/21	0.5	7	4.359E-07	16.5	193	1683795	0.7	0.1	5802.40	
12/16/21	0.5	7	4.359E-07	16.4	194	2205677	1.0	0.1	5803.36	
12/22/21	0.0	0	0.000E+00	16.5	193	1671671	0.4	0.1	5803.73	
01/05/22	0.0	0	0.000E+00	16.8	193	3887372	0.0	0.0	5803.73	
01/13/22	0.1	1	8.718E-08	15.3	194	2195858	0.1 0.4	0.0	5803.82	Destant avertone offerstands blink alarms
01/18/22 01/28/22	0.9 6.8	13 95	7.846E-07 5.928E-06	15.1 16.0	194 194	826328 2802862	9.4	0.1	5804.18 5813.59	Restart system after tank high alarm
02/11/22	10.4	145	9.067E-06	16.7	193	1521067	11.4	2.1	5824.99	Restart system after tank high alarm
02/18/22	4.7	66	4.097E-06	21.3	192	1120202	7.4	1.8	5832.37	2-14-22 Clean EQ tank floats and restart system
02/18/22	5.9	82	5.144E-06	19.6	192	11514	0.1	1.3	5832.42	Increased flow at DPE-4, 13, and 14.
03/09/22	0.2	3	1.744E-07	16.4	194	5195891	13.8	0.7	5846.24	
03/15/22	0.1	1	8.718E-08	15.9	194	1544919	0.2	0.0	5846.44	
03/25/22	0.3	4	2.615E-07	17.6	193	2854025	0.5	0.0	5846.94	
04/01/22	0.1	1	8.718E-08	17.4	193	1934524	0.3	0.0	5847.27	
04/06/22	0.3 0.1	4 1	2.615E-07 8.718E-08	17.2 17.8	193 193	1390645 2502139	0.2	0.0	5847.52 5847.95	
04/15/22 04/21/22	0.1	3	8.718E-08 1.744E-07	17.5	193	1679162	0.4	0.0	5847.95 5848.17	
04/21/22	0.6	8	5.231E-07	19.2	193	1607376	0.6	0.0	5848.73	
05/05/22	1.1	15	9.590E-07	19.0	192	2205306	1.6	0.2	5850.37	Meter = 470708 before calibration
05/13/22	0.7	10	6.103E-07	18.0	193	2219579	1.7	0.2	5852.11	
05/19/22	0.3	4	2.615E-07	18.3	193	1700583	0.7	0.1	5852.85	
05/26/22	0.0	0	0.000E+00	17.5	193	2002390	0.3	0.0	5853.11	
06/02/22	0.6	8	5.231E-07	17.6	193	1922743	0.5	0.1	5853.61	
06/23/22	1.1	15	9.590E-07	17.4	193	5861491	4.3	0.2	5857.96	
06/30/22	0.4	6	3.487E-07	16.7	193	1855140	1.2	0.2	5859.17	
07/07/22 07/21/22	14.7 14.4	205 201	1.282E-05 1.255E-05	16.9 17.4	193 193	2053296 3848630	13.5 48.8	1.8 3.5	5872.69 5921.51	
07/21/22	5.6	78	4.882E-06	17.4	193	1981669	17.3	2.4	5921.51	Flow meter battery died need to get a replacement
08/05/22	11.6	162	1.011E-05	14.5	193	2196753	16.5	2.4	5955.25	
08/10/22	60.7	848	5.292E-05	13.5	195	1341684	42.3	8.8	5997.54	
08/26/22	83.4	1165	7.271E-05	12.5	195	4465767	280.5	17.6	6278.05	
09/06/22	21.4	299	1.866E-05	12.8	195	1169877	53.4	12.8	6331.49	Owner turned breaker off and forgot to turn back on.
09/15/22	17.2	240	1.500E-05	12.6	195	2503284	42.1	4.7	6373.61	
09/29/22	10.5	18.3	1.142E-06	14.2	194	3843056	31.0	2.3	6404.62	
10/07/22	1.3	2.3	1.414E-07	13.3	195	1365710	0.9	0.2	6405.50	Owner turned breaker off and forgot to turn back on.
10/13/22	10.4	18.1	1.131E-06	14.6	194	1668525	1.1	0.2	6406.56	
10/21/22	0.8 2.0	1.4 3.5	8.702E-08 2.175E-07	14.4	194 194	2191137 1946975	1.3 0.3	0.2	6407.89 6408.19	
10/28/22	3.6	6.3	2.175E-07 3.916E-07	14.4	194	1946975	0.3	0.0	6408.19	System off because pump clogged. Cleaned and restart.
11/04/22	2.1	3.7	2.284E-07	13.9	194	23327	0.0	0.1	6408.50	Reduced vacuum in DPE-1, 3, 9, 10, 11, and 13
11/09/22	13.8	24.0	1.501E-06	13.6	195	1365710	1.2	0.1	6409.69	On 11/4/22 increased vacuum in DPE-6, 7, and 8
11/16/22	1.7	3.0	1.849E-07	14.8	194	1912582	1.6	0.2	6411.30	
11/23/22	0.8	1.4	8.702E-08	15.4	194	2002215	0.3	0.0	6411.57	
12/01/22	0.2	0.3	2.175E-08	18.0	193	2181347	0.1	0.0	6411.69	
	0.2	0.3	2.175E-08	15.2	194	2251424	0.0	0.0	6411.74	Turned system off for winter

Notes

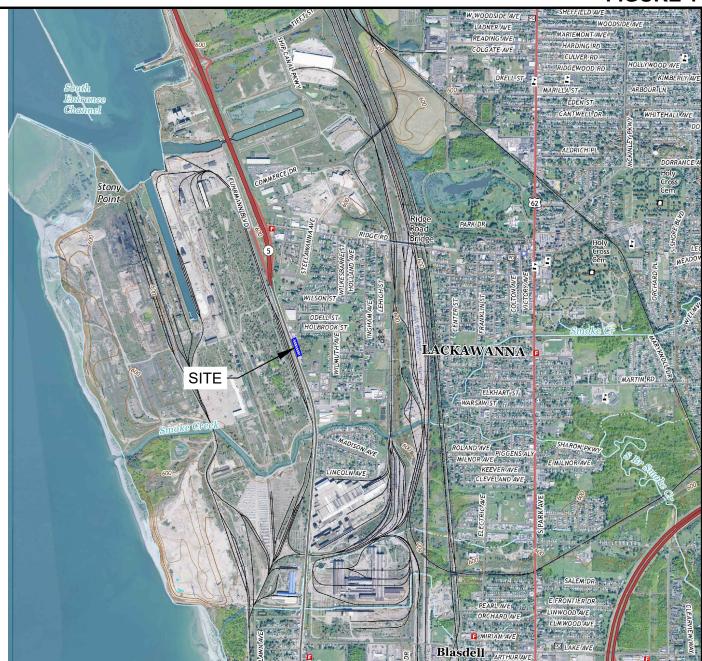
- 1. The estimated mass of contamination recovered is based on ratio of the sum of the volatile organic carbons (VOCs) as measured by a vapor sample collected on November 15, 2019 with a summa canister compared to a contemporaneous PID reading. The average concentration of VOCs was 4.65 mg/m3 per 1 ppm PID reading.
- 2. The estimated mass of contamination recovered is based on ratio of the sum of the volatile organic carbons (VOCs) as measured by a vapor sample collected on November 18, 2021 with a summa canister compared to a contemporaneous PID reading. The average concentration of VOCs was 13.97 mg/m3 per 1 ppm PID reading. This conversion factor was used after November 18, 2021.
- 3. The estimated mass of contamination recovered is based on ratio of the sum of the volatile organic carbons (VOCs) as measured by a vapor sample collected on September 29, 2022 with a summa canister compared to a contemporaneous PID reading. The average concentration of VOCs was 1.74 mg/m3 per 1 ppm PID reading. This conversion factor was used after September 29, 2022.
- 4. VOCs = volatile organic compounds; ppm= parts per million; mg/m3 = milligrams per cubic meter; lb/cf = pounds of VOCs per cubic foot; in Hg = inches of mercury; CFM = cubic feet per minute; CF = cubic feet; lb = pounds
- 5. Please note the "influent" PID reading refers to untreated incoming vapor. The samples and PID readings are collected from the discharge side of the blower where positive pressure facilitates sample collection. There is no vapor phase treatment; and as such no difference between incoming or exiting concentrations across the DPE system.
- 6. The mass of VOCs removed is calculated by using the APH/PID (mg/m³) located on Table 1 * Influent PID reading (ppm) = Corrected influent (mg/m³), convert this to lb/cf. Take the vacuum reading (in Hg) and covert to CFM using the blower curve formula specific to the blower used. Take the CFM * elapsed time (minutes) = volume of air processed (CF) * the corrected influent concentration (lb/CF) = VOC's removed (lb)

Table 5 - Summary of DPE Well PID Readings

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

Date:	11/26	1/26/2019 7/2/2020 9/27/2020 10/3/2020		4/30/2021		8/6/2021		11/18/2021		4/15/2022		11/4/2022						
Well ID	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)	PID (ppm)	Vac. (inch Hg)
DPE-1	365.0	16.0	42.3	17.5	720.0	10.5	24.2	14.5	14.1	18.5	5.0	20.0	1.6	21.5	0.8	14.5	1.4	18.0
DPE-2	65.0	17.5	855.0	22.0	136.4	20.5	61.0	22.5	22.7	24.5	21.0	24.0	5.6	24.5	2.0	24.0	6.6	21.0
DPE-3	970.0	20.0	314.0	20.5	202.0	15.3	15.5	19.0	19.6	23.0	26.0	22.0	1.5	24.5	5.6	22.5	5.1	20.6
DPE-4	60.0	5.0	710.0	19.0	144.3	19.5	31.6	22.0	12.3	13.5	5.0	16.5	3.7	17.3	1.8	21.5	2.9	23.0
DPE-5	15.0	21.0	600.0	22.5	101.5	22.0	5.2	24.5	NC	NC	4.5	24.0	0.8	24.5	2.4	22.0	5.0	22.2
DPE-6	30.0	24.0	110.0	20.0	NC	NC	6.9	22.0	11.3	24.5	1.3	23.0	0.7	24.5	2.0	21.5	1.7	20.0
DPE-7	8.9	6.5	7.1	10.5	NC	NC	NC	NC	NC	NC	0.0	11.0	0.0	12.0	0.4	8.0	0.6	8.6
DPE-8	4.9	19.5	0.1	23.5	NC	NC												
DPE-9	1990.0	22.5	488.0	22.5	202.0	15.3	15.5	19.0	37.2	24.0	16.0	24.0	0.8	24.5	2.6	23.0	2.5	23.6
DPE-10	300.0	24.0	39.3	19.8	720.0	10.5	24.2	14.5	27.5	21.5	40.0	19.0	21.5	20.3	5.4	19.1	8.6	18.5
DPE-11	8.3	20.0	19.4	25.0	NC	NC	NC	NC	NC	NC	1.2	24.0	1.3	24.5	2.9	22.5	2.4	23.6
DPE-12	8.3	20.0	12.3	24.5	NC	NC	NC	NC	NC	NC	3.0	23.0	1.5	24.0	1.6	19.0	10.9	22.5
DPE-13	8.3	20.0	11.8	20.7	NC	NC	NC	NC	NC	NC	0.8	22.0	0.2	22.0	5.2	22.0	2.6	21.0
DPE-14	8.3	20.0	NC	NC	NC	NC	NC	NC	NC	NC	2.0	24.0	0.5	23.5	2.9	21.0	2.6	22.0

Notes:


- = Highlighted cells reading was taken with DPE-11, DPE-12, DPE-13, and DPE-14 open.
- = Highlighted cells reading was taken with DPE-1 and DPE-10 open.
- = Highlighted cells reading was taken with DPE-3 and DPE-9 open.
- = Highlighted cells reading was taken with DPE-9 open.
- = Highlighted cells reading was taken with DPE-2 and DPE-9 open.

= Highlighted cells reading was taken with DPE-2 open.

NC = Not Collected

FIGURES

FIGURE 1

APPROXIMATE SCALE 1" = 2,500' BASE MAP IS USGS 2016 BUFFALO SE QUADRANGLE.

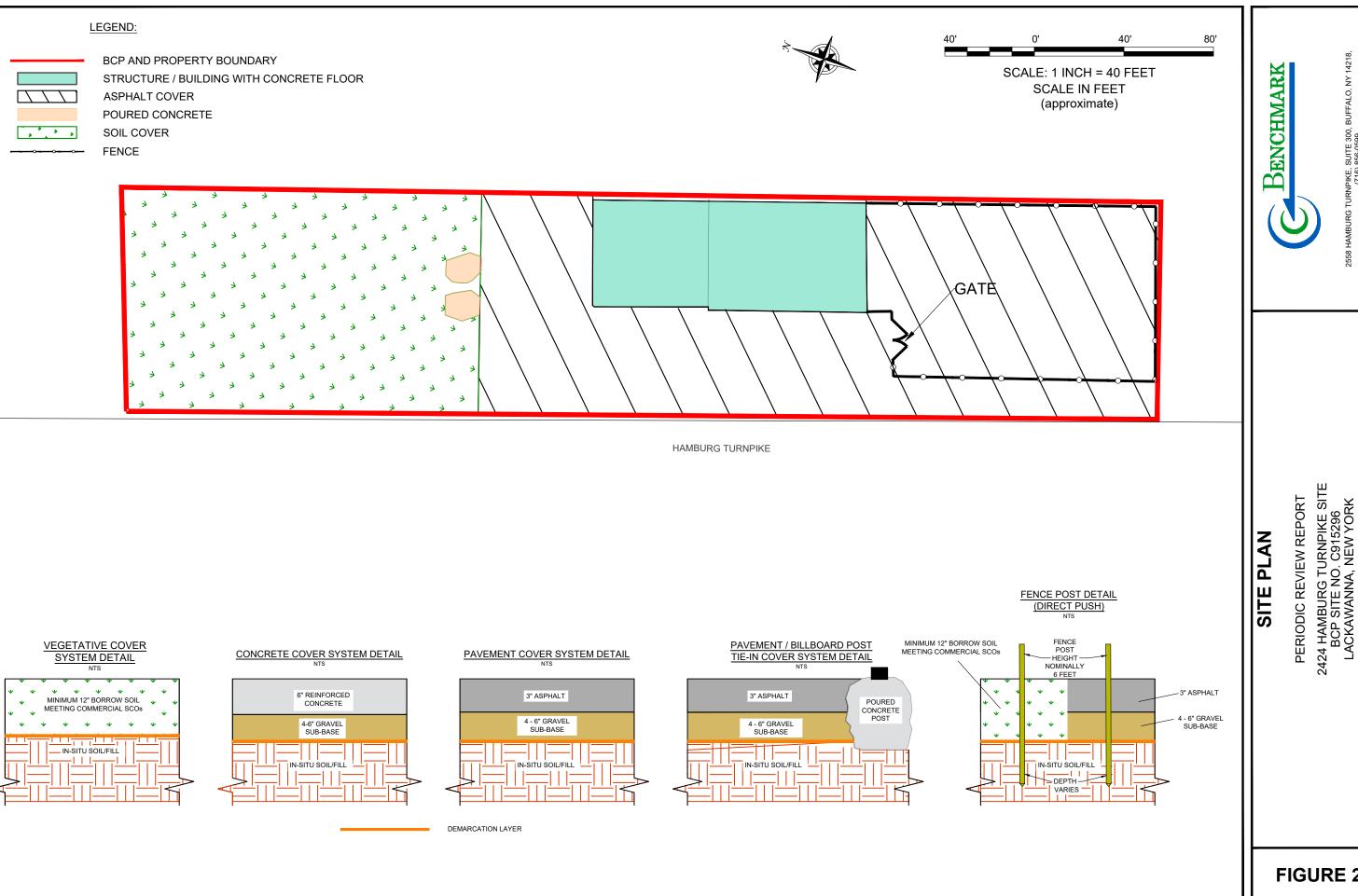
2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0689-022-001

DATE:

DRAFTED BY: RFL/CCB

SITE LOCATION & VICINITY MAP

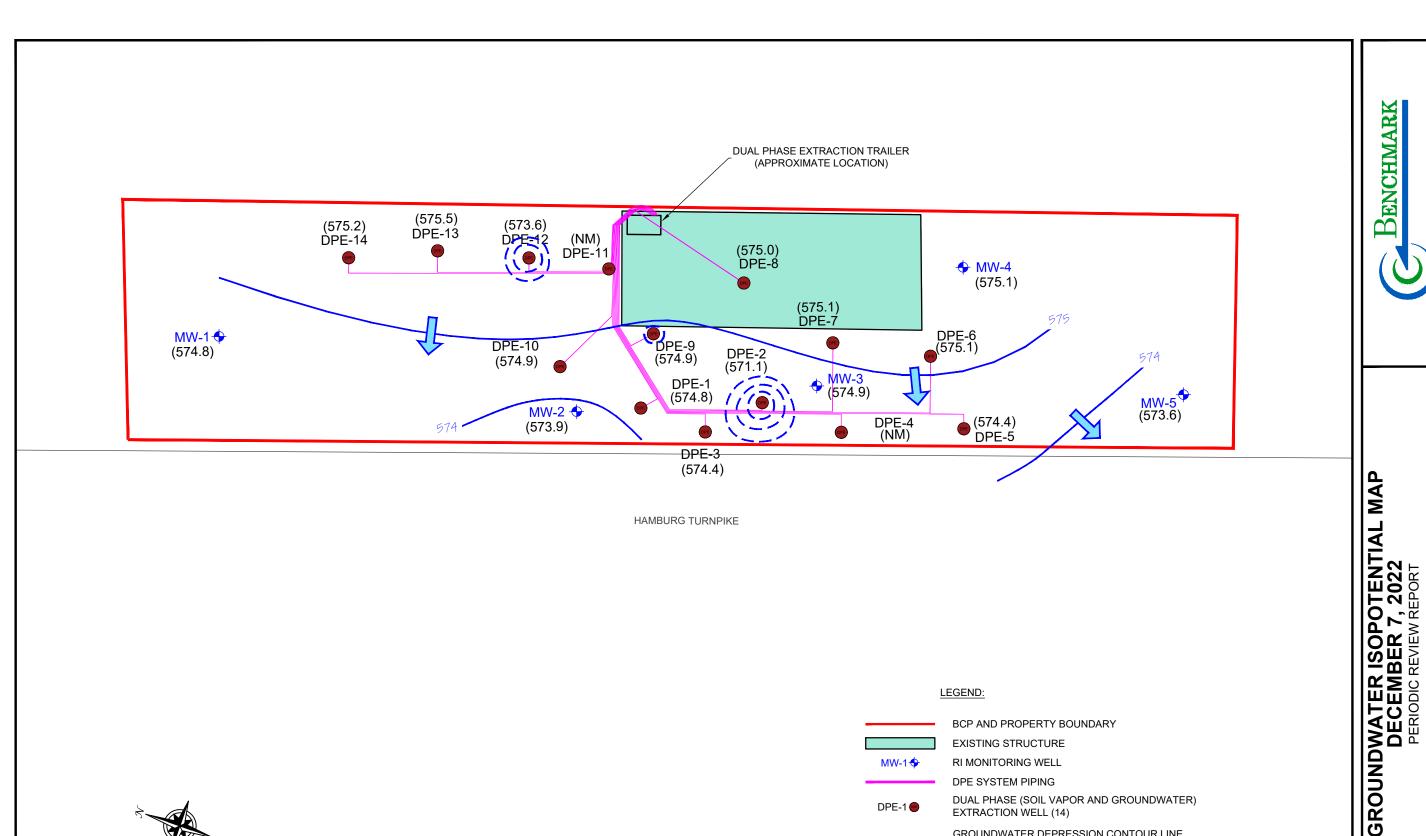

PERIODIC REVIEW REPORT

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK

PREPARED FOR

MLG CONTRACTING, INC.

PROPERTY OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.



PRINT IS LOANED FOR MUTUAL ASSISTANCE BCONTRACTORS & SUPPLIERS WITHOUT THE MLG CONTRACTING, INC.

2558 HAMBURG TURNPIKE, SI (716) 88 (716) 88 (700) 100 (7

JOB

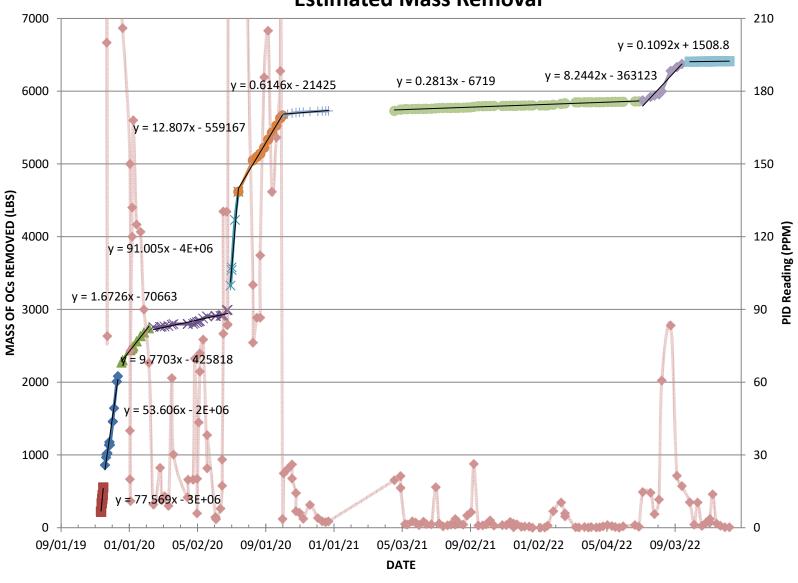
FIGURE 2

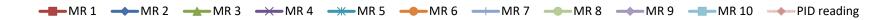
LEGEND: BCP AND PROPERTY BOUNDARY **EXISTING STRUCTURE** RI MONITORING WELL MW-1+ DPE SYSTEM PIPING DUAL PHASE (SOIL VAPOR AND GROUNDWATER) DPE-1 **EXTRACTION WELL (14)** GROUNDWATER DEPRESSION CONTOUR LINE CAUSED FROM DPE WATER EXTRACTION GROUNDWATER CONTOUR LINE GROUNDWATER FLOW DIRECTION

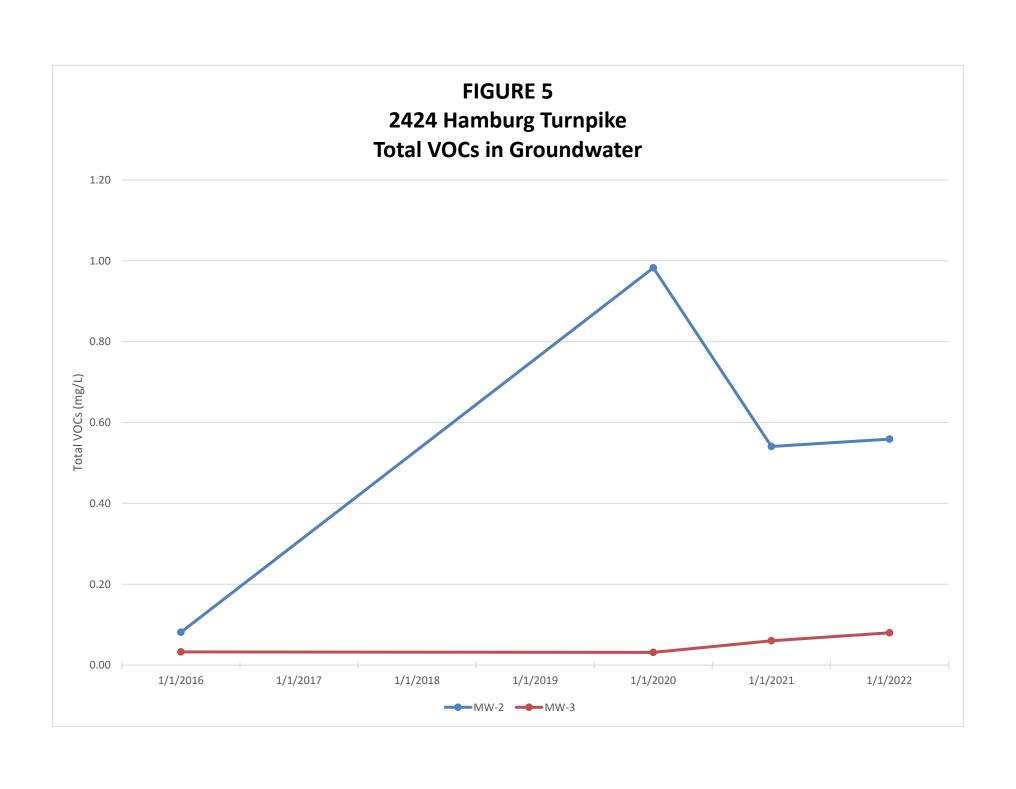
NM = NOT MEASURED

FIGURE 3

2424 HAMBURG TURNPIKE SITE BCP SITE NO. C915296 LACKAWANNA, NEW YORK


MLG CONTRACTING, INC


JOB NO.: 0689-022-00


SCALE: 1 INCH = 40 FEET

SCALE IN FEET (approximate)

FIGURE 4
2424 Hamburg Turnpike
Estimated Mass Removal

APPENDIX A

NYSDEC CERTIFICATION, NOTIFICATION FORMS, AND PERMITS ISSUED

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

S	Site Details te No. C915296	Box 1						
S	te Name 2424 Hamburg Turnpike							
C	te Address: 2424 Hamburg Turnpike Zip Code: 14218 ty/Town: Lackawanna ounty: Erie te Acreage: 1.040							
R	eporting Period: April 24, 2022 to April 24, 2023							
		YES	NO					
1.	Is the information above correct?	2						
	If NO, include handwritten above or on a separate sheet.							
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?							
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?	0						
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	1						
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		1					
5.	Is the site currently undergoing development?		/					
		Box 2						
		YES	NO					
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial							
7.	Are all ICs in place and functioning as designed?							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
A	A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
Sic	gnature of Owner, Remedial Party or Designated Representative Date							

Box 2A

YES

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

NO

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

Are the assumptions in the Qualitative Exposure Assessment still valid?
 (The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C915296

Description of Institutional Controls

Parcel Parcel

141.59-5-2

Owner

MLG Contracting Inc.

Institutional Control

Ground Water Use Restriction

Landuse Restriction Site Management Plan

O&M Plan IC/EC Plan

Monitoring Plan

Building Use Restriction

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

141.59-5-2

Vapor Mitigation

Air Sparging/Soil Vapor Extraction

Cover System

Dual-phase extraction system and site cover

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

- For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
:	·						
Signature of Owner, Remedial Party or Designated Representative	Date						

IC CERTIFICATIONS SITE NO. C915296

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Michael Goldans at Zi	print business address						
am certifying as <u>Owner</u>	(Owner or Remedial Party)						
for the Site named in the Site Details Section of this form.							
Signature of Owner, Remedial Party, or Designat	ed Representative Date						

EC CERTIFICATIONS

Site No. C915296

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Print name at 2558	Hamburg Tumpike Buffelb, WY 14215 print business address
print Hallie	print bacinedo adareco
am certifying as a Professional Engineer for the	Dioner
	(Owner or Remedial Party)
THE OF NEW CONTROL OF THE PROPERTY OF THE PROP	4-19-23
Signature of Professional Engineer for the Owner o	r Stamp Date
Remedial Party, Rendering Certification	(Required for PE)

City of Lackawanna Office of Code Enforcement

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: <u>shayes@lackny.com</u>

Building Permit Notice

Permit No.: **22-0150**has been issued for this building **2424 Hamburg Tpke**

Unit/Lot No.:

This notice is to be fastened on a part of the building for which it is issued where it may be seen plainly by all persons

All work on this building must be done in accordance with the Ordinances of the Building Code of the City of Lackawanna

Work must commence within SIX months of May 9, 2022.

EXPIRATION DATE: May 8, 2023

Tax Map No.: 141.59-5-2

Tax Map No.: 141.59-5-2

Hamburg Turnpike, LLC

Permit Type: Construction Commercial
Permit Use: AlterationCommercial

Code Enforcement Officer / Building Inspector

City of Lackawanna Office of Code Enforcement

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: <u>shayes@lackny.com</u>

BUILDING PERMIT DOCUMENTATION

Application #: 22-0158		Parcel #: 141.59-5-2					
	<u>Unit ID:</u>	n: Lot Area: <u>sq.ft.</u>					
I. TYPE AND COST OF BUILDING							
A. TYPE OF IMPROVEMENT D.		D. PROPOSED USE:					
B. CURRENT ZONING: C. PROPOSED ZONING: Total Cost of		E. COST Total Cost of Improvement (including material &labor)	Cost of Improvement \$\structure{\s}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}				
F. EXISTING USE G. DESCRIPTION OF WO	DRK - Use addii	ional pages if necessary					
III CHARACTERISTICS OF BUILDING - For new buildings, additions, and alterations complete Parts g-n; for all others, skip to Section IV.							
H. STRUCTURE TYPE		J. TYPE OF SEWAGE SYSTEM Public K. TYPE OF WATER SUPPLY Public L. IMPERVIOUS COVERAGE		III .	N. DIMENSIONS No. of stories:		
I. FUEL FIRED APPLIANO	CES				Total Sq. Ft: O. OFF STREET PARKING No. of spaces:		
							
		M. STRUCTURED SP.	P. RESIDENTIAL BUILDINGS No. of bedrooms: No. of bathrooms:		drooms:		
		Will there be an eleva Yes ☐No ☐	itor?				
V. IDENTIFICATION - To be completed by all applicants.							
Name	Mailing	g Address E-,mail Address			Telephone #		
l. Owner/Lessee 2424 Hamburg Turnpike, LL	2558 Ha Lackawa	amburg Tpke Ste 300, nna, NY 14218					
2. Contractor							
3. Applicant MLG Contracting Inc.	2205 He 14068	opkins Rd. Getzville NY					

Page 2. - Application #: 22-0158

The undersigned agrees to conform to all applicable laws of this jurisdiction. The issuance of this permit does not relieve the owners, or any other person or persons in possession or control of the building, or any part thereof, from obtaining such other permit or licenses as may be prescribed by law for the uses or purposes for which the land or building is designed or intended, nor from complying with any lawful order issued with the object of maintaining the building or land in a safe or lawful condition, nor from complying from any regulations specified in property deed restrictions or regulations specified by any homeowners' association. Permit may expire if work described therein has not begun within 6 months after issuance or if work lapses with no activity for a period of 6 months.

Contractor's Registration Number:		License Expires:
Applicant's Signature	Applicant's Address: 2205 Hopkins Rd. Getzville NY 14068	Application Date: May 9, 2022
Owner's Signature		

V. VALIDATION

Building	Permit Number: 22-0150		The second secon	100000000000000000000000000000000000000		
Date	Description	Paid Date	Amount	Paid	Balance	
May 9, 2022	Commercial Construction Repairs/Alterations - Filing Fee		\$10.00			
May 9, 2022	Commercial Construction Additions - Plan Review		\$90.00			
May 9, 2022	TOTAL: Permit Fees		\$100.00		\$100.00	
	Credit/Debit Card 1003	May 9, 2022		\$100.00	\$0,00	
	TOTAL FEES		\$100.00			
	TOTAL PAID			\$100.00		
	TOTAL DUE				\$0.00	
Permit Issued on: May 9, 2022						
- Constitution of the Cons	Approve	d by:	Building	Inspector		

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: shayes@lackny.com

BUILDING PERMIT CRITERIA -** APPLICANT KEEPS THIS PAGE **

CONSTRUCTION INFORMATION: The following information must be submitted with this application:

- Two (2) sets of plans. (for new residential and commercial builds, both sets must be stapled & signed)
- A cross-section diagram/specification sheet showing all components of the project (i.e., insulation, roof pitch, footings, joists).
- Floor plan showing dimensions of the structure, window locations and sizes, doorways and openings, and any other details that might be included.
- Exterior elevations.

Note: In many cases, New York law requires stamped architectural drawings.

PLOT PLAN: An instrument survey or tape location map must accompany the application, showing as follows:

- Outline of the property.
- Location of all buildings or structures.
- Where the proposed structure will be constructed.
- Distances from the building to the front, rear, and side lot lines.

INSPECTIONS: Inspections are required during the building process; at least 24 HOURS NOTICE is necessary to schedule the required inspection. Items not previously inspected shall be uncovered or exposed for the inspector, so be sure to schedule all pertinent inspections. It is your responsibility.

- Post holes
- · Footing before concrete. Call with a pour time.
- Wall-after water proofing, prior to back fill.
- Rough Plumbing- underground prior to backfill. System to be filled.
- Rough Framing- after mechanicals and prior to insulation.
- Insulation- before interior wall surfaces.
- Fireplace- masonry before first flue tile/ insert and before clearances are blocked.
- Final electric- by agency- see below.
- Final- when all work is complete and structure is ready to be used.
- Certificate of Occupancy or Certificate of Compliance will be issued.

ELECTRICAL INSPECTIONS: Final electrical inspection certificates are required by the Building Department before a certificate of occupancy/compliance will be issued. The City of Lackawanna recognizes Commonwealth Electrical Services for final electrical inspections. It is the property owner's responsibility to contact one of the approved agencies to schedule a final inspection.

ADDITIONAL INFORMATION: The Building Permit Notice must be posted in a conspicuous place at the construction site so that it is visible from the road. PLEASE NOTE: All of the above information is required prior to a permit being issued. Payment is due at that time to the "City of Lackawanna" by cash or check only. The Building Permit expires 1 year from date of issuance. Permit is void if construction is not started within 6 months of date of issuance. A final inspection is required. 10112

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: shayes@lackny.com

Building Permit Notice

Permit No.: **22-0501**has been issued for this building **2424 Hamburg Tpke**

Unit/Lot No.:

This notice is to be fastened on a part of the building for which it is issued where it may be seen plainly by all persons

All work on this building must be done in accordance with the Ordinances of the Building Code of the City of Lackawanna

Work must commence within SIX months of October 4, 2022.

EXPIRATION DATE: October 3, 2023

Tax Map No.: 141.59-5-2

Owner Information: 2424 Hamburg Turnpike, LLC Permit Type: Construction -

Commercial

Permit Use: Fence-Commercial

Code Enforcement Officer / Building Inspector

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: <u>shayes@lackny.com</u>

BUILDING PERMIT DOCUMENTATION

		7		***************************************			
Application #: 22-0444		•	Parcel #: 141.59	-5-2			
	it ID:	Hamburg Tpke Lot Area: <u>sq.ft.</u>					
II. TYPE AND COST	OF BUILI	DING		SECTION OF THE PROPERTY OF THE			
A. TYPE OF IMPROVEMENT Fence B. CURRENT ZONING: MC/ COMMERICAL-INDUSTRIAI C. PROPOSED ZONING:	I - MIXED E.	PROPOSED USE: COST otal Cost of Improvement neluding material & Labor)	\$10,000.00				
F. EXISTING USE B Business G. DESCRIPTION OF WORK - Use additional pages if necessary Install 329 feet of 6 foot chain link with 3 strands of barbed wire topper. Barber wire is approved to be in commercial zones. III CHARACTERISTICS OF BUILDING - For new buildings, additions, and alterations complete Parts g-n; for all others, skip to Section IV.							
Parts g-n; for all othe	rs, skip to						
H. STRUCTURE TYPE	:	J. TYPE OF SEWAGE Public	SYSTEM	N. DIMEN	ries:		
I. FUEL FIRED APPLIANCES	No Result of manage Personner agreement continued	K. TYPE OF WATER S	UPPLY		TREET PARKING		
a man a ghaladhal ann a mara mara ann an dhaladh an sail a a mara da dhar a na fallan 1640 a mara dhala mar an	Marketing committee of the property of the pro	L. IMPERVIOUS COVERAGE		No. of spaces:			
		M. STRUCTURED SPRINKLERED No		P. RESIDENTIAL BUILDINGS No. of bedrooms: No. of bathrooms:			
		Will there be an eleva	tor?				
	I - To be	completed by all a	applicants.				
IV. IDENTIFICATION		- Control of the cont			li . "		
IV. IDENTIFICATION Name	Mailing A	Contraction to a grant and an artistic and a section of the contraction and party and a section and a section of the contraction and a section of the contraction of	E-,mail Address		Telephone #		
	Mailing A 2558 Han	ddress nburg Tpke Ste 300, na, NY 14218	E-, mail Address		Telephone #		

Page 2. - Application #: 22-0444

The undersigned agrees to conform to all applicable laws of this jurisdiction. The issuance of this permit does not relieve the owners, or any other person or persons in possession or control of the building, or any part thereof, from obtaining such other permit or licenses as may be prescribed by law for the uses or purposes for which the land or building is designed or intended, nor from complying with any lawful order issued with the object of maintaining the building or land in a safe or lawful condition, nor from complying from any regulations specified in property deed restrictions or regulations specified by any homeowners' association. Permit may expire if work described therein has not begun within 6 months after issuance or if work lapses with no activity for a period of 6 months.

Contractor's Registration Number: _ Contractor's Workers Comp No.:	!	License Expires: Expiration Date:
Applicant's Signature Owner's Signature	Applicant's Address: 2205 Hopkins Rd., Getzville, NY14068	Application Date: September 8, 2022

V. VALIDATION

Building Permit Number:	, , , , , , , , , , , , , , , , , , , ,	******
	7.7	

Date	Description	Paid Date	Amount	Paid	Balance
September 8, 2022			\$57.90		
September 8, 2022	TOTAL: Permit Fees		\$57.90		\$57.90
	Check 5834	October 4, 2022	,	\$57.90	\$0.00
	TOTAL FEES		\$57.90		
	TOTAL PAID		-	\$57.90	
	TOTAL DUE				\$0.00

Permit Issued on: October 4, 2022

Approved by:

Building Inspector

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: <u>shayos@lackny.com</u>

BUILDING PERMIT CRITERIA -** APPLICANT KEEPS THIS PAGE **

CONSTRUCTION INFORMATION: The following information must be submitted with this application:

- Two (2) sets of plans.(for new residential and commercial builds, both sets must be stapled & signed)
- A cross-section diagram/specification sheet showing all components of the project (i.e., insulation, roof pitch, footings, joists).
- Floor plan showing dimensions of the structure, window locations and sizes, doorways and openings, and any other details that might be included.
- Exterior elevations.

Note: In many cases, New York law requires stamped architectural drawings.

PLOT PLAN: An instrument survey or tape location map must accompany the application, showing as follows:

- Outline of the property.
- · Location of all buildings or structures.
- · Where the proposed structure will be constructed.
- Distances from the building to the front, rear, and side lot lines.

INSPECTIONS: Inspections are required during the building process; at least 24 HOURS NOTICE is necessary to schedule the required inspection. Items not previously inspected shall be uncovered or exposed for the inspector, so be sure to schedule all pertinent inspections. It is your responsibility.

- Post holes
- Footing before concrete. Call with a pour time.
- · Wall-after water proofing, prior to back fill.
- Rough Plumbing- underground prior to backfill. System to be filled.
- Rough Framing- after mechanicals and prior to insulation.
- Insulation- before interior wall surfaces.
- Fireplace- masonry before first flue tile/ insert and before clearances are blocked.
- Final electric- by agency- see below.
- · Final- when all work is complete and structure is ready to be used.
- Certificate of Occupancy or Certificate of Compliance will be issued.

ELECTRICAL INSPECTIONS: Final electrical inspection certificates are required by the Building Department before a certificate of occupancy/compliance will be issued. The City of Lackawanna recognizes Commonwealth Electrical Services for final electrical inspections. It is the property owner's responsibility to contact one of the approved agencies to schedule a final inspection.

ADDITIONAL INFORMATION: The Building Permit Notice must be posted in a conspicuous place at the construction site so that it is visible from the road. PLEASE NOTE: All of the above information is required prior to a permit being issued. Payment is due at that time to the "City of Lackawanna" by cash or check only. The Building Permit expires 1 year from date of issuance. Permit is void if construction is not started within 6 months of date of issuance. A final inspection is required. 10112

714 Ridge Road – Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1866 Email: shayes@lackny.com

Building Permit Notice

Permit No.: 23-0067
has been issued for this building
2424 Hamburg Tpke

Unit/Lot No.:

This notice is to be fastened on a part of the building for which it is issued where it may be seen plainly by all persons

All work on this building must be done in accordance with the Ordinances of the Building Code of the City of Lackawanna

Work must commence within SIX months of February 27, 2023.

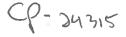
EXPIRATION DATE: February 26, 2024

Tax Map No.: 141.59-5-2

Owner Information: MLG

Contracting, Inc.,

Permit Type: Construction -


Commercial

Permit Use: Electrical-

Commercial

Code Enforcement Officer / Building Inspector

714 Ridge Road -- Room 311 Lackawanna, NY 14218 Tel: (716) 827-6474 Fax: (716) 827-1868

Email: shaves@lackny.com

Building Permit Notice

Permit No.: 23-0074
has been issued for this building
2424 Hamburg Tpke

Unit/Lot No.:

This notice is to be fastened on a part of the building for which it is issued where it may be seen plainly by all persons

All work on this building must be done in accordance with the Ordinances of the Building Code of the City of Lackawanna

Work must commence within SIX months of February 28, 2023.

EXPIRATION DATE: February 27, 2024

Tax Map No.: 141.59-5-2

Owner Information: MLG

Contracting, Inc.,

Permit Type: Plumbing

Permit Use: Commercial-

Plumbing

Code Enforcement Officer / Building Inspector

Page 2. - Application #: 23-0067

The undersigned agrees to conform to all applicable laws of this jurisdiction. The issuance of this permit does not relieve the owners, or any other person or persons in possession or control of the building, or any part thereof, from obtaining such other permit or licenses as may be prescribed by law for the uses or purposes for which the land or building is designed or intended, nor from complying with any lawful order issued with the object of maintaining the building or land in a safe or lawful condition, nor from complying from any regulations specified in property deed restrictions or regulations specified by any homeowners' association. Permit may expire if work described therein has not begun within 6 months after issuance or if work lapses with no activity for a period of 6 months.

Contractor's Registration Number: _ Contractor's Workers Comp No.:		License Expires: Expiration Date:
Applicant's Signature	Applicant's Address: 2286 South Park Ave Buffalo NY 14220	Application Date: February 28, 2023
Owner's Signature		

V. VALIDATION

Building Per	mit Number: 23-0074						
Date	Description	Paid Date	Amount	Paid	Balance		
February 28, 2023	Commercial Plumbing (includes multidwelling) - Filing Fee		\$115.00				
February 28, 2023	TOTAL: Permit Fees		\$115.00		\$115.00		
7	Credit/Debit Card 3846067169	February 28, 2023		\$115.00	\$0.00		
	TOTAL FEES		\$115.00				
	TOTAL PAID			\$115.00			
	TOTAL DUE				\$0.00		
Permit Issued on: February 28, 2023 Approved by: Building Inspector							

APPENDIX B

SITE PHOTO LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: 2424 Hamburg Turnpike Building (Looking SE)

Photo 2: Asphalt cover (Looking NE)

Photo 3: Vegetated soil cover (Looking N)

Photo 4: Vegetated soil cover (Looking SW)

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: South half of building with concrete floor. Painters working on inside. (Looking NW)

Photo 6: North half of building with garage doors and concrete floor (Looking NE)

Photo 7: Dual phase extraction system manifold piping (Looking E)

Photo 8: Dual phase extraction system (Looking N)

APPENDIX C

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2269111

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Report Date: 12/21/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Lab Number:

L2269111

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2269111-01	MW-2	WATER	BUFFALO, NY	12/07/22 12:00	12/08/22
L2269111-02	MW-3	WATER	BUFFALO, NY	12/07/22 11:20	12/08/22

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Leley Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 12/21/22

ORGANICS

VOLATILES

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

SAMPLE RESULTS

Lab ID: L2269111-01 D Date Collected: 12/07/22 12:00

Client ID: MW-2 Date Received: 12/08/22

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/14/22 16:46

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	110		ug/l	1.2	0.40	2.5
Toluene	34		ug/l	6.2	1.8	2.5
Ethylbenzene	110		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5
Trichloroethene	ND		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

Project Name: 2424 HAMBURG TURNPIKE **Lab Number**: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

SAMPLE RESULTS

Lab ID: L2269111-01 D Date Collected: 12/07/22 12:00

Client ID: MW-2 Date Received: 12/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	ıgh Lab						
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	94		ug/l	6.2	1.8	2.5	
o-Xylene	110		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	ND		ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	17		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl Acetate	ND		ug/l	5.0	0.58	2.5	
Cyclohexane	61		ug/l	25	0.68	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
Methyl cyclohexane	23	J	ug/l	25	0.99	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	90	70-130	

L2269111

12/21/22

Project Name: 2424 HAMBURG TURNPIKE

MW-3

L2269111-02

BUFFALO, NY

Project Number: B0345-021-001-2

SAMPLE RESULTS

Date Collected: 12/07/22 11:20

Lab Number:

Report Date:

Date Received: 12/08/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/14/22 16:21

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	16		ug/l	0.50	0.16	1
Toluene	4.9		ug/l	2.5	0.70	1
Ethylbenzene	13		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 2424 HAMBURG TURNPIKE **Lab Number**: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

SAMPLE RESULTS

Lab ID: L2269111-02 Date Collected: 12/07/22 11:20

Client ID: MW-3 Date Received: 12/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	10		ug/l	2.5	0.70	1
o-Xylene	4.8		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	4.3		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	12		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	15		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	73	70-130	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/14/22 08:36

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1723441-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/14/22 08:36

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-02	Batch:	WG1723441-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2269111

Project Number: B0345-021-001-2 **Report Date:** 12/21/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/14/22 08:36

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1723441-5

		Acceptance
Surrogate 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	%Recovery Qu	ualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	118	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Lab Number: L2269111

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W0	G1723441-3 WG1723441-4		
Methylene chloride	110		110	70-130	0	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	95		100	70-130	5	20
Carbon tetrachloride	100		100	63-132	0	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	79		81	63-130	3	20
1,1,2-Trichloroethane	80		84	70-130	5	20
Tetrachloroethene	98		100	70-130	2	20
Chlorobenzene	99		100	75-130	1	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	100		93	70-130	7	20
1,1,1-Trichloroethane	100		100	67-130	0	20
Bromodichloromethane	91		93	67-130	2	20
trans-1,3-Dichloropropene	82		86	70-130	5	20
cis-1,3-Dichloropropene	90		97	70-130	7	20
Bromoform	77		79	54-136	3	20
1,1,2,2-Tetrachloroethane	85		87	67-130	2	20
Benzene	100		100	70-130	0	20
Toluene	96		98	70-130	2	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	120		120	64-130	0	20
Bromomethane	97		97	39-139	0	20
Vinyl chloride	100		110	55-140	10	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Lab Number: L2269111

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1723441-3	WG1723441-4			
Chloroethane	110		120		55-138	9	20	
1,1-Dichloroethene	110		110		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	97		98		70-130	1	20	
1,2-Dichlorobenzene	98		100		70-130	2	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	99		100		70-130	1	20	
Methyl tert butyl ether	83		87		63-130	5	20	
p/m-Xylene	105		110		70-130	5	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Styrene	100		105		70-130	5	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	100		99		58-148	1	20	
Carbon disulfide	120		120		51-130	0	20	
2-Butanone	81		89		63-138	9	20	
4-Methyl-2-pentanone	76		83		59-130	9	20	
2-Hexanone	88		98		57-130	11	20	
Bromochloromethane	100		100		70-130	0	20	
1,2-Dibromoethane	84		87		70-130	4	20	
1,2-Dibromo-3-chloropropane	82		86		41-144	5	20	
Isopropylbenzene	100		110		70-130	10	20	
1,2,3-Trichlorobenzene	90		95		70-130	5	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Lab Number: L2269111

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02 Batch	: WG1723441-3	WG1723441-4				
1,2,4-Trichlorobenzene	89		94		70-130	5		20	
Methyl Acetate	100		100		70-130	0		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	86		80		56-162	7		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	110		110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	97	70-130
Toluene-d8	99	100	70-130
4-Bromofluorobenzene	100	101	70-130
Dibromofluoromethane	104	101	70-130

Lab Number: L2269111

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001-2

Report Date: 12/21/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2269111-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2269111-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2269111-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2269111-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2269111-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2269111-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2269111 B0345-021-001-2 **Report Date: Project Number:** 12/21/22

GLOSSARY

Acronyms

EMPC

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2269111Project Number:B0345-021-001-2Report Date:12/21/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2269111Project Number:B0345-021-001-2Report Date:12/21/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2269111Project Number:B0345-021-001-2Report Date:12/21/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873**

Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C Project Information	Pag	in l					ALPHA Job # L2269111 Billing Information						
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:		urg Turnpike			1 🗆	ASP-		L	ASP-		Same as Client Info		
O September 122 of Principles	The office of the second	Project Location:	Buffalo, NY					EQui	S (1 File)		EQui	S (4 File)	PO#		
Client Information	en Special	Project #	B0345-021-	001-2				Other	_						
Cartes and	rk Environmental	(Use Project name as Project #)					Regu	ulatory	Requireme	nt			Disposal Site Information		
	burg Turnpike,Ste300	Project Manager:							GS		NY Pa	rt 375	Please identify below location of		
Buffalo, NY 14218		Contract of the Party of the Pa	LPHAQuote #:						Standards		NY CF	-51	applicable disposal facilities.		
Phone: 716-856-0	599	Turn-Around Time		desilia d				NY Re	stricted Use		Other		Disposal Facility:		
Fax:		Standar		Due Date	e:			NY Un	restricted Us	е			□ NJ □ NY		
Email: bgrere(c	Uhm-tk.com	Rush (only if pre approved	1)	# of Day:	S:			NYC S	ewer Discha	rge			Other: NA		
	peen previously analyze						ANA	LYSIS					Sample Filtration		
Email results to:	c requirements/comm	ents:		100			TCL 8260						Done Lab to do Preservation Lab to do (Please Specify below)		
ALPHA Lab ID	Car	male ID	Collection	Sample	Sampler's	1	1 1					1911 10 10			
(Lab Use Only)	Sai	mple ID	Date	Time	Matrix	Initials							Sample Specific Comments		
9111-01	MW-2		12-7-22	1200	Water	CEH	х					\neg			
-02	MW-3		12-7-22	1120	Water	CEH	x	\Box		\vdash					
District Con-															
MENSO LUNIS															
SECOND REPORT															
reservative Code: = None = HCI = HNO ₃ = H ₂ SO ₄ = NaOH	None		Container Type Preservative		reservative	V						Please print clearly, legibly and completely. Samples c not be logged in and turnaround time clock will n			
= MaOH = MeOH = NaHSO ₄ = Na ₂ S ₂ O ₃ E = Zn Ac/NaOH						AML 10/8/2			Date/Time \$\frac{3}{2} \text{2} \text{1400}		start until any ambiguities a resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA				

APPENDIX D

SEWER DISCHARGE PERMIT, COMPLIANCE REPORTS, AND ANALYTICAL DATA

APR 2 2 2021

MARK C. POLONCARZ County Executive

THOMAS R. HERSEY, JR Commissioner

DEPARTMENT OF ENVIRONMENT AND PLANNING

JOSEPH L. FIEGL, P.E. Deputy Commissioner

April 19, 2021

Brock Greene, Senior Project Environmental Scientist Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, New York 14218

RE: Erie County Sewer District No.6 (ECSD No.6) Industrial Wastewater Discharge Permit LA-04 2424 Hamburg Turnpike, Lackawanna, New York

Dear Mr. Greene:

Enclosed please find an original copy of the Industrial Wastewater Discharge Permit for above referenced site. The Permit must be maintained on site and available for review upon request. Please note that the initial monitoring report, due August 8, 2021, is to include EPA 625, EPA 608 and Total Oil & Grease analysis.

Please review the permit carefully. If you should have any questions or concerns you may reach me at 823-5888, ext 223.

Sincerely,

Laura A. Surdej

Industrial Wastewater Specialist

Juna Sudi

Cc: G. Absolom/K. Kaminski/6.2.4 2424 Hamburg Turnpike

E. Eigenbrod

M. Dembski

Paul H Werthman, P.E. (Turnkey)

Tom Forbes, P.E. (Turnkey)

Industrial Wastewater Discharge Permit

Permit No. LA-04

In accordance with all terms and conditions of the Rules and Regulations for Erie County Sewer Districts, as adopted by Erie County Sewer District #6 (ECSD #6) and with any applicable provision of Federal or State law or regulation;

Permission is Hereby Granted To 2424 Hamburg Turnpike LLC

(Address) 2424 Hamburg Turnpike

Lackawanna, New York 14218

(Responsible Person) Paul H. Werthman P.E.

(Title) Managing Member

(Telephone No.) (716)856-0635 (Emergency Telephone No.)

(Standard Industrial Classification Code) (remedial site)

(Categorical Classification)

For the contribution of wastewaters containing regulated pollutants into the ECSD #6 sewerage system.

This permit, including the general provisions, is granted in accordance with the application filed on <u>March 23, 2021</u> in the office of the ECSD #6 and in conformity with any plans, specifications and other data submitted to ECSD #6 in support of the above application, all of which are filed with and considered a part of this permit.

Effective this 10th day of May, 2021

To expire the 9th day of May, 2024

Glenn H. Absolom, Chief Treatment Plant Supervisor

De

DISCHARGE MONITORING REPORTING REQUIREMENTS

Industry	2424	Hamburg	Turnpike	LLC	Permit	No.LA-04
Effective	Date	May 10,	2021			

During the period beginning the effective date of this permit and lasting until its expiration date, discharge monitoring results shall be summarized and reported by the permittee by the dates specified below:

Sample Point	Initial Report	Subsequent Reports(1)
001	August 8, 2021	Every February 8 and August 8

Report due dates cover the preceding six (6) month's report period.

i.e.	Report Date	Report Covers This Reporting Period
	August 8	February 9 - August 8
	February 8	August 9 - February 8

DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

LA-04 Permit No. 2424 Hamburg Turnpike LLC Industry

May 10, Effective Date

discharge from the permitted facility's outfall(s) shall be limited and monitored by the permittee as During the period beginning the effective date of this Permit and lasting until the expiration date, specified below.

שטדשת משדורשל	•			
Sample Point	Parameter	Discharge Limits	Sample Type	Sampling Frequency
001	Hd	5.0-12.0	Grab	One Day
	Flow	25,000 gallons		Daily
	T. Phenols	monitor	Grab	One Day
	T. Cyanide (2)	0.48 mg/l	Grab	One Day
	Barium	monitor	Grab	One Day
	Iron	Monitor	Grab	One Day
	Arsenic (2)	0.18 mg/l	Grab	One Day
	Cadmium (2)	0.26 mg/l	Grab	One Day
	Chromium (2)	4.85 mg/l	Grab	One Day
	Copper (2)	0.57 mg/l	Grab	One Day
	Lead (2)	0.40 mg/l	Grab	One Day
	Mercury (2)	0.06 mg/l	Grab	One Day
	Nickel (2)	0.88 mg/l	Grab	One Day
	Selenium (2)	0.17 mg/l	Grab	One Day
	Silver (2)	0.01 mg/l	Grab	One Day
	Zinc (2)	6.35 mg/l	Grab	One Day
	Total Oil & Grease (1)	100 mg/l	Grab	One Day
	TTO:	2.13 mg/l		
	EPA 624		Grab	One Day
	EPA 625 (1)		Grab	One Day
	EPA 608 (1)		Grab	One Day

All limits are in mg/l except pH and flow.

⁽¹⁾

See Special Requirements, page 4. Proposed local limits. See special requirements, page 4.

SPECIAL REQUIREMENTS

Industry 2424 Hamburg Turnpike LLC Permit No. LA-04

Effective Date May 10, 2021

- 1. The initial monitoring report, due August 8, 2021 shall include analysis for EPA 608, EPA 625 and Total Oil & Grease. If results are within acceptable limits, then subsequent analyses must only be reported annually, in August monitoring reports.
- 2. Total metals to include: As, Ba, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn.
- 3. Proposed Local Limit parameters are included in the monitoring.

 These limits are pending EPA approval and may be subject to change.
- 4. The Total Oil & Grease limit is based on the required test method EPA 1664A.
- 5. Flow should be recorded daily. Semi-annual reports shall include flow data for sampling period.
- 6. Once per year, the flow meter must be calibrated and certified by an outside source. A copy of this recertification must be submitted.

SITE PLAN (AERIAL)

8568 HAMBURG TURNPIKE BUTTE 300 BUPTALO, NY 14818 (315) 868-669

ВЕИСНИВВК

BCP AND PROPERTY BOUNDARY SCALE: 1 INCH = 40 FEET SCALE IN FEET (approximate)

GENERAL PROVISIONS

1. All submittals and correspondence shall be addressed to:

Erie County Division of Sewerage Management Southtowns Water Resource Recovery Facility c/o Laura Surdej S-3690 Lakeshore Blvd. Buffalo, New York 14219

- 2. This permit shall not be transferred, reassigned or sold to a new owner, new user, different premises or a new or changed operation without the written approval of the District.
- 3. This permit shall be valid for a period of three years from the date of issuance. The applications for renewing this permit must be submitted at least 90 days prior to the expiration of this permit.
- 4. As U.S.E.P.A. or N.Y.S.D.E.C. adds or amended specific effluent guidelines, or as the Board deems necessary to protect employees or the sewerage works or operations, the conditions of this Industrial Wastewater Discharge Permit may be amended. Written notice of proposed changes shall be sent to the permittee.
- 5. When the permitted discharge is substantially altered in volume, character of strength, the permittee must notify the Board in writing 30 days prior to altering the discharge. If the Board determines that a new permit is necessary the permittee shall apply for a new permit for the altered discharge.
- 6. This permit may be revoked by the Board, if after a hearing, a violation is determined to exist and no corrective measures are taken within 30 days of such determination. If this permit is revoked, all discharges covered by this permit shall cease immediately.
- 7. The permittee, shall when requested, complete an Industrial Waste Survey. The permittee may be requested to update the survey annually.
- 8. The permittee shall submit monitoring reports as per the requirements listed in the attached Monitoring and Reporting Requirements.
- 9. Methods employed for flow measurements, sample collection and analyses shall conform to the Erie County Sewer District's "Sampling, Measurement and Analytical Guidelines."

- 10. The permittee shall notify immediately of changes that occur at the facility affecting the potential for a slug discharge to allow for reevaluation of slug control plan or other actions to prevent such discharges.
- 11. The permittee, shall maintain a Slug Control Plan as outlined in the "Spill Control/Solvent Management Guidelines".
- 12. In the event that any slug discharge or accidental discharge occurs at the facility for which this permit is issued the permittee shall immediately notify ECSD #6 by telephone (823-5888) of the quantity and character of such discharge.

Within five days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

- 13. All records and information resulting from the monitoring activities required by the Permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained for a minimum of three years. If it is deemed necessary, this period shall be extended as is needed. Additionally, these records must be available for inspection and copying during normal business hours.
- 14. The monitoring report, which shall consist of the analysis, field log(s), map, certification statement and chain of possession log, must be submitted by the industry and not by a contract or consulting firm.
- 15. Monitoring reports <u>must contain the following signed certification</u> statement:

I certify, under penalty of law, that this document and all attachments were prepared under/by direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

16. If the permittee is not meeting the limits imposed by this permit, the permittee shall submit a compliance schedule for meeting the limits. The time limits proposed to meet full compliance must be approved by the Board. If a compliance schedule is established

because of a change in a Federal Categorical Pretreatment Regulation, then the federally established deadline will be the compliance time allowed.

No later than fourteen calendar days following each milestone date identified in the Schedule of Compliance, the permittee shall submit either a report of progress or, in the case of specific actions being required by identified dates, a written notice of compliance or noncompliance. In the latter case, the notice shall include the cause of noncompliance, any remedial action taken, and the probability of meeting the next schedule date requirement.

All reports, plans and/or specifications that propose new or modified waste treatment and/or disposal facilities must be approved, and signed and sealed by a professional engineer licensed to practice in New York State.

- 17. If sampling performed by the permittee indicates a violation, the permittee shall notify the Erie County Department of Environment and Planning, Division of Sewerage Management (823-8188) within 24 hours of becoming aware of the violation. The permittee shall also repeat the sampling and analysis and submit the results of the repeat analysis to the Division of Sewerage Management within 30 days after becoming aware of the violation.
- 18. The permittee shall be subject to a premium assessment not to exceed ten thousand dollars for each violation of the limits or requirements of this permit.

Each day a violation is shown to exist shall constitute a separate violation. A day shall be a twenty-four hour period beginning at 12:01 A.M. and ending the following 12:01 A.M. This permit may be revoked, if after a hearing, a violation is determined to exist and corrective measures are not taken within 30 days of such determination.

Nothing in this section shall be construed to limit the right of the Board to enforce, or avail themselves of the benefits of any and all other applicable laws and ordinances including injunctive relief.

- 19. The following definitions shall apply to this permit:
- The "monthly average" discharge shall mean the arithmetic average of daily values, reported in appropriate units, for all calendar days during any calendar month that flow measurement and/or wastewater discharge sample analysis are required.
- b. The "daily maximum" discharge shall mean the flow measurements and/or wastewater discharge analysis for any 24 hour period that reasonably represents the calendar day, when such measurements and analyses are taken as required.

- c. "Daily" each operating day.
- d. "Weekly" one day each week and a normal operating day.
- e. "Monthly" one day each month and normal operating day.
- f. "Composite" shall mean a combination of individual (or continuously taken) samples obtained at regular intervals over the entire discharge day. The volume of each sample shall be proportional to the discharge flow rate. For continuous discharge, a minimum of forty-eight individual grab samples (at half hour intervals) shall be collected and combined to constitute a 24-hour composite sample. For intermittent discharges of less than 4 hours duration grab samples shall be taken at a minimum of 15 minute intervals.
- g. "Grab" shall mean an individual sample collected over a period of time not exceeding fifteen minutes.
- h. "Board" shall mean the Board of Managers of an Erie County Sewer District or its authorized representatives.

Revised 6/13/18
IWD permits/generalprovisions_dist6

Strong Advocates, Effective Solutions, Integrated Implementation

August 1, 2022

Ms. Laura Surdej Erie County Sewer/Southtowns Sewage Treatment Plant 2060 Lehigh St Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-04 – Discharge Report (February 2022 - July 2022) For 2424 Hamburg Turnpike, Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this correspondence on behalf of our client, 2424 Hamburg Turnpike LLC, for the treated groundwater at the above-referenced property location in accordance with Erie County Sewer District No. 6 (ECSD No. 6) Permit No. LA-04, effective May 10, 2021. As required by the permit, this report summarizes flow and compliance sample results for the report period from February 2022 through July 2022.

TurnKey personnel recorded totalizer (total gallons) weekly during the reporting period. Table 1 summarizes the total volume (gallons) and calculated daily flow (gallons per day) measured from February 2022 through July 2022.

On July 8, 2022, TurnKey personnel collected an effluent water sample and submitted the sample under chain-of-custody command to Alpha Analytical for laboratory analysis in accordance with the discharge permit. Table 2 summarizes the analytical results; Attachment 1 contains the Laboratory Analytical Report. All parameters meet corresponding permitted discharge limits.

As of July 29, 2022, approximately 206,263 gallons of water has been pre-treated and discharged during this monitoring period to the ECSD No.6 collection and conveyance system. The calculated daily flow for the reporting period has ranged between zero and 2,836 GPD, well below permitted flows of up to 25,000 GPD. The flow meter was subjected to third party annual calibration on May 5, 2022. The calibration certificate is presented as Attachment 2. We plan on calibrating the flow meter in May of 2023.

Please contact me if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Sr. Project Environmental Scientist

TABLES

TABLE 1 SUMMARY OF EFFLUENT FLOW

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Date	Totalizer (gallons)	Gallons per Period (gallons)	Calculated GPD (gallons/day)
			Permit Limit 25,000 GPD
2/11/22	385647	5,626	402
2/18/22	400261	14,614	2,088
3/9/22	422941	22,680	1,194
3/15/22	429933	6,992	1,165
3/25/22	435621	5,688	569
4/1/22	439250	3,629	518
4/6/22	441256	2,006	401
4/15/22	445886	4,630	514
4/22/22	453609	7,723	1,103
4/27/22	461827	8,218	1,644
5/5/22	470546	8,719	1,090
5/13/22	16453	16,615	2,077
5/19/22	26074	9,621	1,604
5/26/22	42429	16,355	2,336
6/2/22	62281	19,852	2,836
6/23/22	91809	29,528	1,406
6/30/22	97134	5,325	761
7/7/22	101809	4,675	668
7/21/22	110232	8,423	602
7/29/22	0	5,344	668

Gallons discharged this monitoring period = 206,263

Notes:

On 5/5/22 totalizer readings was 470,708. The flow meter was calibrated and the totalizer was reset to zero. Flow meter battery was dead on 7/28/22 so a 668 GPD flow rate was used to estimate gallons treated. On 7/29/22 the flow meter battery was changed and the flow meter was reset to zero.

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Parameter ¹	Effluent 07/08/22	Discharge Permit Limitations ²
Volatile Organic Compounds (VOCs - Method		
All Compounds Non-Detect	-	
Semi-Volatile Organic Compounds (SVOCs -	Method 625) - mg/L	
All Compounds Non-Detect		
Polychlorinated Biphenyls (PCBs) (Method (608)- mg/L	
All Compounds Non-Detect		
Organochlorine Pesticide Compounds (Meth	od 608) - mg/L	
All Compounds Non-Detect		1
Metal Compounds (Method 200.7 Rev 4.4) - m	g/L ³	
Barium	0.044	Monitor
Chromium	0.002 J	4.85
Iron	0.198	Monitor
TOTAL Metals (mg/L)	0.244 J	Monitor
General Chemistry - mg/L		
Cyanide, Total	0.003 J	0.48
Phenolics, Total Recoverable	ND	Monitor
Oil & Grease	0.75 J	100
Ph	7.9	5-12
Total Toxic Organic Pollutants (TTO) 4	0.0000	2.13

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per the Nov 2019 Erie County Sewer District No. 6 Discharge Permit LA-04
- 3. Metals include Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Methods 608, 624, & 625.

Definitions:

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- NS = Parameter not sampled for at this time.

ATTACHMENT 1

Laboratory Data (in electronic copy only)

ANALYTICAL REPORT

Lab Number: L2236576

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Report Date: 07/22/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 Lab Number: L2236576

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2236576-01	EFFLUENT	WATER	BUFFALO, NY	07/08/22 11:00	07/08/22
L2236576-02	TRIP BLANK	WATER	BUFFALO, NY	07/08/22 11:00	07/08/22

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:07222217:55

Project Name:2424 HAMBURG TURNPIKELab Number:L2236576Project Number:B0345-025-001Report Date:07/22/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Phenolics was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Semivolatile Organics by Method 625

The WG1660764-2 LCS recovery, associated with L2236576-01, is above the acceptance criteria for 4,6-dinitro-o-cresol (137%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Steven Gniadek

Authorized Signature:

Title: Technical Director/Representative

Date: 07/22/22

ORGANICS

VOLATILES

Serial_No:07222217:55

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

SAMPLE RESULTS

Lab Number: L2236576

Report Date: 07/22/22

Lab ID: Date Collected: 07/08/22 11:00 L2236576-01

Client ID: Date Received: 07/08/22 **EFFLUENT** Field Prep: Sample Location: Not Specified BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/09/22 13:54

Analyst: GT

1,1-Dichloroethane ND ug/l 1.5 0.40 1 Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 1.0 0.24 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.25 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.0 0.28 1 1,1-1-Trichloroethane ND ug/l 1.5 0.31	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethyfvinyl ether ND ug/l 1.0 0.26 1 1-Chlorobene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 1.5 0.30 1 Chlorobenzene ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromochloromothane ND ug/l 1.5 0.31 1 Leans-1,3-Dichloropropene ND ug/l 1.5 0.31	Methylene chloride	ND		ug/l	1.0	0.56	1
Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.31 1 Bromodichloromethane ND ug/l 1.5 0.31 1 Lass-1,3-Dichloropropene ND ug/l 1.5	1,1-Dichloroethane	ND		ug/l	1.5	0.40	1
1,2-Dichloropropane ND Ug/l 3.5 0.46 1	Chloroform	ND		ug/l	1.0	0.38	1
Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.31 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0	Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 10 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 Chloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>3.5</td> <td>0.46</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
ND	Dibromochloromethane	ND		ug/l	1.0	0.27	1
Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.38 1 Ethylbenzene ND ug/l 5.0 1.0 1 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td>0.34</td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 1,1,1-Trichloroethane ND ug/l 1.0 0.28 1 1 1,1,1-Trichloroperopene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 1 1 1 1 1 1 1 1	2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 Bromofermen ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 5.0 1.0 1 Chloromethane ND ug/l 5.0 1.2 1 </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.26</td> <td>1</td>	Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane ND	Chlorobenzene	ND		ug/l	3.5	0.30	1
ND	1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1	1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromodichloromethane	ND		ug/l	1.0	0.28	1
1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	1
Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromoform	ND		ug/l	1.0	0.22	1
Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 I,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Benzene	ND		ug/l	1.0	0.38	1
Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Toluene	ND		ug/l	1.0	0.31	1
Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Ethylbenzene	ND		ug/l	1.0	0.28	1
Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloromethane	ND		ug/l	5.0	1.0	1
Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromomethane	ND		ug/l	5.0	1.2	1
1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Vinyl chloride	ND		ug/l	1.0	0.38	1
trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloroethane	ND		ug/l	2.0	0.37	1
	1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
Trichloroethene ND ug/l 1.0 0.33 1	trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
	Trichloroethene	ND		ug/l	1.0	0.33	1

Serial_No:07222217:55

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID: L2236576-01 Date Collected: 07/08/22 11:00

Client ID: EFFLUENT Date Received: 07/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
Acrolein	ND		ug/l	8.0	1.8	1
Acrylonitrile	ND		ug/l	10	0.33	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	104	60-140	
Fluorobenzene	94	60-140	
4-Bromofluorobenzene	93	60-140	

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/09/22 10:08

Analyst: GT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01	Batch:	WG1661286-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/09/22 10:08

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample	(s): 01	Batch:	WG1661286-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

Surrogate	%Recovery	Acceptance Qualifier Criteria
Pentafluorobenzene	117	60-140
Fluorobenzene	99	60-140
4-Bromofluorobenzene	88	60-140

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	661286-3				
Methylene chloride	90		-		60-140	-		28
1,1-Dichloroethane	90		-		50-150	-		49
Chloroform	100		-		70-135	-		54
Carbon tetrachloride	95		-		70-130	-		41
1,2-Dichloropropane	100		-		35-165	-		55
Dibromochloromethane	90		-		70-135	-		50
1,1,2-Trichloroethane	90		-		70-130	-		45
2-Chloroethylvinyl ether	60		-		1-225	-		71
Tetrachloroethene	80		-		70-130	-		39
Chlorobenzene	75		-		65-135	-		53
1,2-Dichloroethane	105		-		70-130	-		49
1,1,1-Trichloroethane	90		-		70-130	-		36
Bromodichloromethane	105		-		65-135	-		56
trans-1,3-Dichloropropene	90		-		50-150	-		86
cis-1,3-Dichloropropene	95		-		25-175	-		58
Bromoform	85		-		70-130	-		42
1,1,2,2-Tetrachloroethane	90		-		60-140	-		61
Benzene	100		-		65-135	-		61
Toluene	95		-		70-130	-		41
Ethylbenzene	80		-		60-140	-		63
Chloromethane	115		-		1-205	-		60
Bromomethane	29		-		15-185	-		61
Vinyl chloride	140		-		5-195	-		66

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

roject Number.	80345-025-001	Report Date.	01/22/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	1 Batch: WG1	661286-3					
Chloroethane	115		-		40-160	-		78	
1,1-Dichloroethene	85		-		50-150	-		32	
trans-1,2-Dichloroethene	85		-		70-130	-		45	
Trichloroethene	80		-		65-135	-		48	
1,2-Dichlorobenzene	80		-		65-135	-		57	
1,3-Dichlorobenzene	75		-		70-130	-		43	
1,4-Dichlorobenzene	75		-		65-135	-		57	
Acrolein	110		-		60-140	-		30	
Acrylonitrile	90		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Pentafluorobenzene	127		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	90		60-140	

SEMIVOLATILES

Serial_No:07222217:55

L2236576

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Project Number: Report Date: B0345-025-001 07/22/22

SAMPLE RESULTS

Lab ID: L2236576-01 Date Collected: 07/08/22 11:00

Client ID: **EFFLUENT** Date Received: 07/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Analyst:

JG

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 07/09/22 23:44 Analytical Method: 129,625.1

Analytical Date: 07/22/22 12:13

Qualifier Units RL MDL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND 2.00 0.407 1 ug/l Benzidine¹ ND 20.0 12.1 ug/l 1,2,4-Trichlorobenzene ND ug/l 5.00 1.49 1 Hexachlorobenzene ND ug/l 2.00 0.952 1 Bis(2-chloroethyl)ether ND ug/l 2.00 0.600 1 2-Chloronaphthalene ND ug/l 2.00 0.319 1 ND 5.00 0.457 3,3'-Dichlorobenzidine ug/l 1 2,4-Dinitrotoluene ND 5.00 0.636 1 ug/l 2,6-Dinitrotoluene ND ug/l 5.00 0.631 1 Fluoranthene ND 2.00 0.736 1 ug/l 4-Chlorophenyl phenyl ether ND 2.00 0.371 1 ug/l ND 2.00 0.447 4-Bromophenyl phenyl ether ug/l 1 Bis(2-chloroisopropyl)ether ND 2.00 0.822 1 ug/l Bis(2-chloroethoxy)methane ND 5.00 0.585 1 ug/l Hexachlorobutadiene ND 2.00 0.921 1 ug/l ND 10.0 Hexachlorocyclopentadiene1 1.36 1 ug/l Hexachloroethane ND ug/l 2.00 0.973 1 ND Isophorone 5.00 0.546 1 ug/l Naphthalene ND 2.00 0.896 1 ug/l ND 2.00 0.788 1 Nitrobenzene ug/l NDPA/DPA1 ND 2.00 0.783 1 ug/l n-Nitrosodi-n-propylamine ND ug/l 5.00 0.630 1 ND Bis(2-ethylhexyl)phthalate 2.20 1.70 1 ug/l Butyl benzyl phthalate ND 5.00 0.670 1 ug/l Di-n-butylphthalate ND 5.00 0.631 1 ug/l Di-n-octylphthalate ND 5.00 0.633 1 ug/l ND 5.00 0.717 Diethyl phthalate 1 ug/l Dimethyl phthalate ND ug/l 5.00 1.40 1

Serial_No:07222217:55

MDL

Dilution Factor

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID: L2236576-01 Date Collected: 07/08/22 11:00

Client ID: EFFLUENT Date Received: 07/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Faranielei	Nesuit	Qualifier Offics	IXE.	IIIDL	Dilution Lactor	
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzo(a)anthracene	ND	ug/l	2.00	0.665	1	
Benzo(a)pyrene	ND	ug/l	2.00	0.610	1	
Benzo(b)fluoranthene	ND	ug/l	2.00	0.741	1	
Benzo(k)fluoranthene	ND	ug/l	2.00	0.739	1	
Chrysene	ND	ug/l	2.00	0.668	1	
Acenaphthylene	ND	ug/l	2.00	0.930	1	
Anthracene	ND	ug/l	2.00	0.791	1	
Benzo(ghi)perylene	ND	ug/l	2.00	0.672	1	
Fluorene	ND	ug/l	2.00	0.927	1	
Phenanthrene	ND	ug/l	2.00	0.818	1	
Dibenzo(a,h)anthracene	ND	ug/l	2.00	0.687	1	
Indeno(1,2,3-cd)pyrene	ND	ug/l	2.00	0.633	1	
Pyrene	ND	ug/l	2.00	0.728	1	
n-Nitrosodimethylamine ¹	ND	ug/l	2.00	0.407	1	
2,4,6-Trichlorophenol	ND	ug/l	5.00	0.607	1	
p-Chloro-m-cresol ¹	ND	ug/l	2.00	0.533	1	
2-Chlorophenol	ND	ug/l	2.00	0.513	1	
2,4-Dichlorophenol	ND	ug/l	5.00	0.554	1	
2,4-Dimethylphenol	ND	ug/l	5.00	0.851	1	
2-Nitrophenol	ND	ug/l	5.00	0.604	1	
4-Nitrophenol	ND	ug/l	10.0	0.834	1	
2,4-Dinitrophenol	ND	ug/l	20.0	1.21	1	
4,6-Dinitro-o-cresol	ND	ug/l	10.0	1.20	1	
Pentachlorophenol	ND	ug/l	5.00	0.622	1	
Phenol	ND	ug/l	5.00	0.262	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	25-87
Phenol-d6	32	16-65
Nitrobenzene-d5	82	42-122
2-Fluorobiphenyl	84	46-121
2,4,6-Tribromophenol	107	45-128
4-Terphenyl-d14	98	47-138

L2236576

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: Report Date: B0345-025-001 07/22/22

Method Blank Analysis Batch Quality Control

Analyst: SZ

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 07/11/22 11:45 07/09/22 11:37 **Extraction Date:**

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01 Batch	: WG1660764-1
Acenaphthene	ND		ug/l	2.00	0.407
Benzidine ¹	ND		ug/l	20.0	12.1
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49
Hexachlorobenzene	ND		ug/l	2.00	0.952
Bis(2-chloroethyl)ether	ND		ug/l	2.00	0.600
2-Chloronaphthalene	ND		ug/l	2.00	0.319
3,3'-Dichlorobenzidine	ND		ug/l	5.00	0.457
2,4-Dinitrotoluene	ND		ug/l	5.00	0.636
2,6-Dinitrotoluene	ND		ug/l	5.00	0.631
Fluoranthene	ND		ug/l	2.00	0.736
4-Chlorophenyl phenyl ether	ND		ug/l	2.00	0.371
4-Bromophenyl phenyl ether	ND		ug/l	2.00	0.447
Bis(2-chloroisopropyl)ether	ND		ug/l	2.00	0.822
Bis(2-chloroethoxy)methane	ND		ug/l	5.00	0.585
Hexachlorobutadiene	ND		ug/l	2.00	0.921
Hexachlorocyclopentadiene ¹	ND		ug/l	10.0	1.36
Hexachloroethane	ND		ug/l	2.00	0.973
Isophorone	ND		ug/l	5.00	0.546
Naphthalene	ND		ug/l	2.00	0.896
Nitrobenzene	ND		ug/l	2.00	0.788
NDPA/DPA ¹	ND		ug/l	2.00	0.783
n-Nitrosodi-n-propylamine	ND		ug/l	5.00	0.630
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20	1.70
Butyl benzyl phthalate	ND		ug/l	5.00	0.670
Di-n-butylphthalate	ND		ug/l	5.00	0.631
Di-n-octylphthalate	ND		ug/l	5.00	0.633
Diethyl phthalate	ND		ug/l	5.00	0.717
Dimethyl phthalate	ND		ug/l	5.00	1.40
Benzo(a)anthracene	ND		ug/l	2.00	0.665

L2236576

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 07/11/22 11:45
 Extraction Date:
 07/09/22 11:37

Analyst: SZ

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sa	mple(s):	01	Batch:	WG1660764-1
Benzo(a)pyrene	ND		ug/l	:	2.00	0.610
Benzo(b)fluoranthene	ND		ug/l	:	2.00	0.741
Benzo(k)fluoranthene	ND		ug/l	:	2.00	0.739
Chrysene	ND		ug/l	2	2.00	0.668
Acenaphthylene	ND		ug/l	:	2.00	0.930
Anthracene	ND		ug/l	:	2.00	0.791
Benzo(ghi)perylene	ND		ug/l	:	2.00	0.672
Fluorene	ND		ug/l	:	2.00	0.927
Phenanthrene	ND		ug/l	:	2.00	0.818
Dibenzo(a,h)anthracene	ND		ug/l	:	2.00	0.687
Indeno(1,2,3-cd)pyrene	ND		ug/l	:	2.00	0.633
Pyrene	ND		ug/l	:	2.00	0.728
n-Nitrosodimethylamine1	ND		ug/l	:	2.00	0.407
2,4,6-Trichlorophenol	ND		ug/l	;	5.00	0.607
p-Chloro-m-cresol ¹	ND		ug/l	:	2.00	0.533
2-Chlorophenol	ND		ug/l	:	2.00	0.513
2,4-Dichlorophenol	ND		ug/l		5.00	0.554
2,4-Dimethylphenol	ND		ug/l	;	5.00	0.851
2-Nitrophenol	ND		ug/l	,	5.00	0.604
4-Nitrophenol	ND		ug/l		10.0	0.834
2,4-Dinitrophenol	ND		ug/l	:	20.0	1.21
4,6-Dinitro-o-cresol	ND		ug/l		10.0	1.20
Pentachlorophenol	ND		ug/l	,	5.00	0.622
Phenol	ND		ug/l	;	5.00	0.262

Serial_No:07222217:55

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1

Analytical Date: 07/11/22 11:45 Extraction Date: 07/09/22 11:37

Analyst: SZ

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1660764-1

Surrogate	%Recovery Qu	Acceptance ualifier Criteria
2-Fluorophenol	47	25-87
Phenol-d6	32	16-65
Nitrobenzene-d5	75	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	95	45-128
4-Terphenyl-d14	92	47-138

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s): 01 Batch:	WG1660764	-2				
Acenaphthene	94		-		60-132	-		48	
Benzidine ¹	23		-		0-70	-		30	
1,2,4-Trichlorobenzene	85		-		57-130	-		50	
Hexachlorobenzene	109		-		8-142	-		55	
Bis(2-chloroethyl)ether	80		-		43-126	-		108	
2-Chloronaphthalene	94		-		65-120	-		24	
3,3'-Dichlorobenzidine	49		-		8-213	-		108	
2,4-Dinitrotoluene	114		-		48-127	-		42	
2,6-Dinitrotoluene	116		-		68-137	-		48	
Fluoranthene	106		-		43-121	-		66	
4-Chlorophenyl phenyl ether	101		-		38-145	-		61	
4-Bromophenyl phenyl ether	110		-		65-120	-		43	
Bis(2-chloroisopropyl)ether	73		-		63-139	-		76	
Bis(2-chloroethoxy)methane	92		-		49-165	-		54	
Hexachlorobutadiene	85		-		38-120	-		62	
Hexachlorocyclopentadiene ¹	78		-		7-118	-		35	
Hexachloroethane	77		-		55-120	-		52	
Isophorone	90		-		47-180	-		93	
Naphthalene	87		-		36-120	-		65	
Nitrobenzene	95		-		54-158	-		62	
NDPA/DPA1	105		-		45-112	-		36	
n-Nitrosodi-n-propylamine	90		-		14-198	-		87	
Bis(2-ethylhexyl)phthalate	106		-		29-137	-		82	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s): 01 Batch:	WG1660764	-2				
Butyl benzyl phthalate	124		-		1-140	-		60	
Di-n-butylphthalate	113		-		8-120	-		47	
Di-n-octylphthalate	122		-		19-132	-		69	
Diethyl phthalate	108		-		1-120	-		100	
Dimethyl phthalate	109		-		1-120	-		183	
Benzo(a)anthracene	104		-		42-133	-		53	
Benzo(a)pyrene	114		-		32-148	-		72	
Benzo(b)fluoranthene	112		-		42-140	-		71	
Benzo(k)fluoranthene	117		-		25-146	-		63	
Chrysene	102		-		44-140	-		87	
Acenaphthylene	102		-		54-126	-		74	
Anthracene	99		-		43-120	-		66	
Benzo(ghi)perylene	107		-		1-195	-		97	
Fluorene	104		-		70-120	-		38	
Phenanthrene	94		-		65-120	-		39	
Dibenzo(a,h)anthracene	111		-		1-200	-		126	
Indeno(1,2,3-cd)pyrene	124		-		1-151	-		99	
Pyrene	104		-		70-120	-		49	
n-Nitrosodimethylamine ¹	51		-		15-68	-		17	
2,4,6-Trichlorophenol	120		-		52-129	-		58	
p-Chloro-m-cresol ¹	114		-		68-130	-		73	
2-Chlorophenol	94		-		36-120	-		61	
2,4-Dichlorophenol	108		-		53-122	-		50	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ated sample(s	s): 01 Batch:	WG166076	4-2				
2,4-Dimethylphenol	96		-		42-120	-		58	
2-Nitrophenol	135		-		45-167	-		55	
4-Nitrophenol	78		-		13-129	-		131	
2,4-Dinitrophenol	94		-		1-173	-		132	
4,6-Dinitro-o-cresol	137	Q	-		56-130	-		203	
Pentachlorophenol	91		-		38-152	-		86	
Phenol	49		-		17-120	-		64	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	64		25-87
Phenol-d6	47		16-65
Nitrobenzene-d5	101		42-122
2-Fluorobiphenyl	102		46-121
2,4,6-Tribromophenol	125		45-128
4-Terphenyl-d14	110		47-138

PCBS

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID: Date Collected: 07/08/22 11:00 L2236576-01 Date Received: Client ID: 07/08/22 **EFFLUENT** Not Specified

Sample Location: Field Prep: BUFFALO, NY

Sample Depth: Extraction Method: EPA 608.3 Matrix: Water

Extraction Date: 07/09/22 20:08 Analytical Method: 127,608.3 Cleanup Method: EPA 3665A Analytical Date: 07/12/22 10:13 Cleanup Date: 07/10/22

Analyst: JM Cleanup Method: EPA 3660B Cleanup Date: 07/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.050	0.008	1	А
Aroclor 1221	ND		ug/l	0.050	0.011	1	Α
Aroclor 1232	ND		ug/l	0.050	0.023	1	Α
Aroclor 1242	ND		ug/l	0.050	0.018	1	Α
Aroclor 1248	ND		ug/l	0.050	0.023	1	А
Aroclor 1254	ND		ug/l	0.050	0.008	1	А
Aroclor 1260	ND		ug/l	0.050	0.017	1	А
PCBs, Total	ND		ua/l	0.050	0.008	1	Α

	Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		37-123	Α
Decachlorobiphenyl	74		38-114	Α
2,4,5,6-Tetrachloro-m-xylene	68		37-123	В
Decachlorobiphenyl	77		38-114	В

L2236576

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 07/12/22 11:48

Analyst: JM

Extraction Method: EPA 608.3
Extraction Date: 07/09/22 20:08
Cleanup Method: EPA 3665A
Cleanup Date: 07/10/22
Cleanup Method: EPA 3660B
Cleanup Date: 07/10/22

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - '	Westborough	Lab for s	ample(s):	01 Batch:	WG1660841	-1
Aroclor 1016	ND		ug/l	0.050	0.008	Α
Aroclor 1221	ND		ug/l	0.050	0.011	Α
Aroclor 1232	ND		ug/l	0.050	0.023	Α
Aroclor 1242	ND		ug/l	0.050	0.018	Α
Aroclor 1248	ND		ug/l	0.050	0.023	Α
Aroclor 1254	ND		ug/l	0.050	0.008	Α
Aroclor 1260	ND		ug/l	0.050	0.017	Α
PCBs, Total	ND		ug/l	0.050	0.008	Α

			Acceptanc	ce				
Surrogate	%Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	72		37-123	Α				
Decachlorobiphenyl	64		38-114	Α				
2,4,5,6-Tetrachloro-m-xylene	74		37-123	В				
Decachlorobiphenyl	64		38-114	В				

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

B0345-025-001

Project Number:

Lab Number: L2236576

Report Date:

07/22/22

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s)): 01 Batch:	WG1660841	1-2				
Aroclor 1016	83		-		50-140	-		36	Α
Aroclor 1260	81		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colum	n
2,4,5,6-Tetrachloro-m-xylene	72		37-123 A	
Decachlorobiphenyl	58		38-114 A	
2,4,5,6-Tetrachloro-m-xylene	73		37-123 B	
Decachlorobiphenyl	60		38-114 B	

PESTICIDES

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID: L2236576-01 Date Collected: 07/08/22 11:00

Client ID: EFFLUENT Date Received: 07/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/10/22 00:12
Analytical Date: 07/11/22 10:41 Cleanup Method: EPA 3620B

Analytical Date: 07/11/22 10:41 Cleanup Method: EPA 3620
Analyst: AKM Cleanup Date: 07/10/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/l	0.020	0.005	1	Α
Lindane	ND		ug/l	0.020	0.003	1	Α
Alpha-BHC	ND		ug/l	0.020	0.004	1	Α
Beta-BHC	ND		ug/l	0.020	0.009	1	Α
Heptachlor	ND		ug/l	0.020	0.005	1	Α
Aldrin	ND		ug/l	0.020	0.005	1	Α
Heptachlor epoxide	ND		ug/l	0.020	0.007	1	Α
Endrin	ND		ug/l	0.040	0.004	1	Α
Endrin aldehyde	ND		ug/l	0.040	0.017	1	Α
Endrin ketone ¹	ND		ug/l	0.040	0.005	1	Α
Dieldrin	ND		ug/l	0.040	0.003	1	Α
4,4'-DDE	ND		ug/l	0.040	0.003	1	Α
4,4'-DDD	ND		ug/l	0.040	0.008	1	Α
4,4'-DDT	ND		ug/l	0.040	0.008	1	Α
Endosulfan I	ND		ug/l	0.020	0.008	1	Α
Endosulfan II	ND		ug/l	0.040	0.003	1	Α
Endosulfan sulfate	ND		ug/l	0.040	0.017	1	Α
Methoxychlor ¹	ND		ug/l	0.100	0.008	1	Α
Toxaphene	ND		ug/l	0.400	0.126	1	Α
Chlordane	ND		ug/l	0.200	0.042	1	Α
cis-Chlordane ¹	ND		ug/l	0.020	0.005	1	Α
trans-Chlordane ¹	ND		ug/l	0.020	0.008	1	Α

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID: Date Collected: 07/08/22 11:00 L2236576-01

Date Received: Client ID: 07/08/22 **EFFLUENT** Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		47-124	Α
Decachlorobiphenyl	54		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	72		47-124	В
Decachlorobiphenyl	57		32-167	В

L2236576

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Batch Quality Contro

127,608.3

07/11/22 09:00

Analyst: EJL

Analytical Method:

Analytical Date:

Extraction Method: EPA 608.3
Extraction Date: 07/09/22 09:29
Cleanup Method: EPA 3620B
Cleanup Date: 07/10/22

Parameter	Result	Qualifier Units	RL	MDL	Column
Organochlorine Pesticides by 0	GC - Westboroug	gh Lab for sample(s):	01 Batch:	WG166072	27-1
Delta-BHC	ND	ug/l	0.020	0.005	А
Lindane	ND	ug/l	0.020	0.003	А
Alpha-BHC	ND	ug/l	0.020	0.004	A
Beta-BHC	ND	ug/l	0.020	0.009	Α
Heptachlor	ND	ug/l	0.020	0.005	Α
Aldrin	ND	ug/l	0.020	0.005	Α
Heptachlor epoxide	ND	ug/l	0.020	0.007	Α
Endrin	ND	ug/l	0.040	0.004	А
Endrin aldehyde	ND	ug/l	0.040	0.017	Α
Endrin ketone ¹	ND	ug/l	0.040	0.005	Α
Dieldrin	ND	ug/l	0.040	0.003	Α
4,4'-DDE	ND	ug/l	0.040	0.003	Α
4,4'-DDD	ND	ug/l	0.040	0.008	Α
4,4'-DDT	ND	ug/l	0.040	0.008	Α
Endosulfan I	ND	ug/l	0.020	0.008	Α
Endosulfan II	ND	ug/l	0.040	0.003	Α
Endosulfan sulfate	ND	ug/l	0.040	0.017	Α
Methoxychlor ¹	ND	ug/l	0.100	0.008	Α
Toxaphene	ND	ug/l	0.400	0.126	Α
Chlordane	ND	ug/l	0.200	0.042	А
cis-Chlordane ¹	ND	ug/l	0.020	0.005	А
trans-Chlordane1	ND	ug/l	0.020	0.008	Α

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 07/11/22 09:00

Analyst: EJL

Extraction Method: EPA 608.3
Extraction Date: 07/09/22 09:29
Cleanup Method: EPA 3620B
Cleanup Date: 07/10/22

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
Organochlorine Pesticides by GC -	Westborou	gh Lab for s	sample(s):	01	Batch:	WG166072	7-1

		Acceptano	e					
Surrogate	%Recovery Qualif	ier Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	55	47-124	Α					
Decachlorobiphenyl	62	32-167	Α					
2,4,5,6-Tetrachloro-m-xylene	55	47-124	В					
Decachlorobiphenyl	66	32-167	В					

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westbo	rough Lab Assoc	ciated sample(s)	: 01 Batch:	WG166072	27-2				
Delta-BHC	88		-		19-140	-		52	Α
Lindane	88		-		32-140	-		39	Α
Alpha-BHC	94		-		37-140	-		36	Α
Beta-BHC	88		-		17-147	-		44	Α
Heptachlor	74		-		34-140	-		43	Α
Aldrin	64		-		42-140	-		35	Α
Heptachlor epoxide	77		-		37-142	-		26	Α
Endrin	87		-		30-147	-		48	Α
Endrin aldehyde	72		-		30-150	-		30	А
Endrin ketone ¹	87		-		30-150	-		30	Α
Dieldrin	93		-		36-146	-		49	Α
4,4'-DDE	83		-		30-145	-		35	Α
4,4'-DDD	95		-		31-141	-		39	Α
4,4'-DDT	84		-		25-160	-		42	Α
Endosulfan I	81		-		45-153	-		28	Α
Endosulfan II	85		-		1-202	-		53	Α
Endosulfan sulfate	77		-		26-144	-		38	Α
Methoxychlor ¹	86		-		30-150	-		30	А
cis-Chlordane ¹	63		-		45-140	-		35	А
trans-Chlordane ¹	90		-		45-140	-		35	Α

Lab Control Sample Analysis

Batch Quality Control 2424 HAMBURG TURNPIKE

Lab Number: L2236576

Project Number: Report Date: B0345-025-001

07/22/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1660727-2

Surrogate	LCS %Recovery Q	LCSD ual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63			47-124	Α
Decachlorobiphenyl	61			32-167	Α
2,4,5,6-Tetrachloro-m-xylene	63			47-124	В
Decachlorobiphenyl	71			32-167	В

Project Name:

METALS

Project Name: Lab Number: 2424 HAMBURG TURNPIKE L2236576 **Report Date:** 07/22/22

Project Number: B0345-025-001

SAMPLE RESULTS

Lab ID: L2236576-01 Date Collected: 07/08/22 11:00 Client ID: **EFFLUENT** Date Received: 07/08/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala Mana	field Lab										
Total Metals - Mans	ileid Lab										
Arsenic, Total	ND		mg/l	0.005	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Barium, Total	0.044		mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Cadmium, Total	ND		mg/l	0.005	0.001	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Chromium, Total	0.002	J	mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Copper, Total	ND		mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	МС
Iron, Total	0.198		mg/l	0.050	0.009	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Lead, Total	ND		mg/l	0.010	0.003	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/13/22 14:38	07/14/22 09:26	EPA 245.1	3,245.1	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	MC
Selenium, Total	ND		mg/l	0.010	0.004	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	МС
Silver, Total	ND		mg/l	0.007	0.003	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	МС
Zinc, Total	ND		mg/l	0.050	0.002	1	07/11/22 20:04	07/21/22 19:44	EPA 3005A	19,200.7	МС

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: Report Date: L2236576

07/22/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	: WG16	661434-	1				
Arsenic, Total	ND	mg/l	0.005	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Barium, Total	ND	mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Cadmium, Total	ND	mg/l	0.005	0.001	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Chromium, Total	ND	mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Copper, Total	ND	mg/l	0.010	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Iron, Total	ND	mg/l	0.050	0.009	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Lead, Total	ND	mg/l	0.010	0.003	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Nickel, Total	ND	mg/l	0.025	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Selenium, Total	ND	mg/l	0.010	0.004	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Silver, Total	ND	mg/l	0.007	0.003	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB
Zinc, Total	ND	mg/l	0.050	0.002	1	07/11/22 20:04	07/21/22 16:25	19,200.7	SB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG16	62357-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	07/13/22 14:38	07/14/22 08:28	3,245.1	DMB

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG166143	34-2					
Arsenic, Total	111		-		85-115	-		
Barium, Total	104		-		85-115	-		
Cadmium, Total	110		-		85-115	-		
Chromium, Total	102		-		85-115	-		
Copper, Total	102		-		85-115	-		
Iron, Total	106		-		85-115	-		
Lead, Total	102		-		85-115	-		
Nickel, Total	105		-		85-115	-		
Selenium, Total	115		-		85-115	-		
Silver, Total	103		-		85-115	-		
Zinc, Total	109		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG16623	57-2					
Mercury, Total	104		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits		RPD Limits
Associated san	nple(s): 01	QC Batch	ID: WG1661434	-3 QC Sample	e: L2236139-01	Client ID: MS S	ample	
0.014	0.12	0.153	116	-	-	75-125	-	20
0.012	2	2.09	104	-	-	75-125	-	20
ND	0.053	0.056	105	-	-	75-125	-	20
0.016	0.2	0.214	99	-	-	75-125	-	20
0.006J	0.25	0.262	105	-	-	75-125	-	20
0.338	1	1.38	104	-	-	75-125	-	20
ND	0.53	0.516	97	-	-	75-125	-	20
0.006J	0.5	0.500	100	-	-	75-125	-	20
ND	0.12	0.138	115	-	-	75-125	-	20
ND	0.05	0.051	102	-	-	75-125	-	20
0.021J	0.5	0.552	110	-	-	75-125	-	20
	Sample Associated sam 0.014 0.012 ND 0.016 0.006J 0.338 ND 0.006J ND ND ND	Sample Added Associated sample(s): 01 0.014 0.12 0.012 2 ND 0.053 0.016 0.2 0.006J 0.25 0.338 1 ND 0.53 0.006J 0.5 ND 0.12 ND 0.05	Sample Added Found Associated sample(s): 01 QC Batch 0.014 0.12 0.153 0.012 2 2.09 ND 0.053 0.056 0.016 0.2 0.214 0.006J 0.25 0.262 0.338 1 1.38 ND 0.53 0.516 0.006J 0.5 0.500 ND 0.12 0.138 ND 0.05 0.051	Sample Added Found %Recovery Associated sample(s): 01 QC Batch ID: WG1661434 0.014 0.12 0.153 116 0.012 2 2.09 104 ND 0.053 0.056 105 0.016 0.2 0.214 99 0.006J 0.25 0.262 105 0.338 1 1.38 104 ND 0.53 0.516 97 0.006J 0.5 0.500 100 ND 0.12 0.138 115 ND 0.05 0.051 102	Sample Added Found %Recovery Qual Found Associated sample(s): 01 QC Batch ID: WG1661434-3 QC Sample 0.014 0.12 0.153 116 - 0.012 2 2.09 104 - ND 0.053 0.056 105 - 0.016 0.2 0.214 99 - 0.006J 0.25 0.262 105 - ND 0.53 0.516 97 - 0.006J 0.5 0.500 100 - ND 0.12 0.138 115 - ND 0.05 0.051 102 -	Sample Added Found %Recovery Qual Found %Recovery Associated sample(s): 01 QC Batch ID: WG1661434-3 QC Sample: L2236139-01 0.014 0.12 0.153 116 - - 0.012 2 2.09 104 - - ND 0.053 0.056 105 - - 0.016 0.2 0.214 99 - - 0.006J 0.25 0.262 105 - - ND 0.53 0.516 97 - - 0.006J 0.5 0.500 100 - - ND 0.12 0.138 115 - - ND 0.05 0.051 102 - -	Sample Added Found %Recovery Qual Found %Recovery Qual Limits Associated sample(s): 01 QC Batch ID: WG1661434-3 QC Sample: L2236139-01 Client ID: MS S 0.014 0.12 0.153 116 - - - 75-125 0.012 2 2.09 104 - - - 75-125 ND 0.053 0.056 105 - - - 75-125 0.016 0.2 0.214 99 - - - 75-125 0.006J 0.25 0.262 105 - - - 75-125 ND 0.53 0.516 97 - - - 75-125 ND 0.53 0.500 100 - - - 75-125 ND 0.12 0.138 115 - - - 75-125 ND 0.05 0.051 102 - -	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Qual Associated sample(s): 01 QC Batch ID: WG1661434-3 QC Sample: L2236139-01 Client ID: MS Sample - - - 75-125 -

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Гotal Metals - Mansfield La	b Associated san	nple(s): 01	QC Batch II	D: WG166143	4-7	QC Sample	: L2236149-01	Client ID: MS Sa	ample	
Arsenic, Total	ND	0.12	0.138	115		-	-	75-125	-	20
Barium, Total	0.019	2	0.213	11	Q	-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.055	103		-	-	75-125	-	20
Chromium, Total	ND	0.2	0.201	100		-	-	75-125	-	20
Copper, Total	ND	0.25	0.258	103		-	-	75-125	-	20
Iron, Total	0.509	1	1.54	154	Q	-	-	75-125	-	20
Lead, Total	ND	0.53	0.132	25	Q	-	-	75-125	-	20
Nickel, Total	0.016J	0.5	0.481	96		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.143	119		-	-	75-125	-	20
Silver, Total	ND	0.05	0.053	106		-	-	75-125	-	20
Zinc, Total	0.011J	0.5	0.538	108		-	-	75-125	-	20
otal Metals - Mansfield La	b Associated san	nple(s): 01	QC Batch II	D: WG166235	7-3	QC Sample	: L2236609-01	Client ID: MS Sa	ample	
Mercury, Total	0.00025	0.005	0.00514	98		-	-	70-130	-	20
otal Metals - Mansfield La	b Associated san	nple(s): 01	QC Batch II	D: WG166235	7-5	QC Sample	: L2236609-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00494	99		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2236576

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID: WG1662	2357-4 QC Sample:	L2236609-01	Client ID:	DUP Sample	
Mercury, Total	0.00025	0.00025	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID: WG1662	2357-6 QC Sample:	L2236609-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2236576

Project Number: B0345-025-001 **Report Date:** 07/22/22

SAMPLE RESULTS

Lab ID:L2236576-01Date Collected:07/08/22 11:00Client ID:EFFLUENTDate Received:07/08/22Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	07/14/22 11:50	07/14/22 14:31	121,4500CN-CE	CS
pH (H)	7.9		SU	-	NA	1	-	07/11/22 09:05	121,4500H+-B	KS
Oil & Grease, Hem-Grav	0.75	J	mg/l	1.8	0.41	.9	07/21/22 09:15	07/21/22 13:00	140,1664B	MA

L2236576

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001 **Report Date:** 07/22/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab	for sam	ple(s): 01	Batch:	WG16	62798-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	07/14/22 11:50	07/14/22 14:25	121,4500CN-C	E CS
General Chemistry - W	estborough Lab	for sam	ple(s): 01	Batch:	WG16	65651-1				
Oil & Grease, Hem-Grav	0.46	J	mg/l	2.0	0.46	1	07/21/22 09:15	07/21/22 13:00	140,1664B	MA

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2236576

Report Date:

07/22/22

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1661116-1					
pH	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1662798-2					
Cyanide, Total	108			90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1665651-2					
Oil & Grease, Hem-Grav	87	-		78-114	-		18

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2236576

Report Date:

07/22/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Four	11100	Recovery y Qual Limits	RPD Q	RPD _{ual} Limits
General Chemistry - Westbor	rough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1662798-3	QC Sample: L2	2237081-01 Clien	t ID: MS S	ample
Cyanide, Total	0.002J	0.2	0.190	95		· •	90-110	-	30
General Chemistry - Westboo	rough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1665651-4	QC Sample: L2	2200039-70 Clien	t ID: MS S	ample
Oil & Grease, Hem-Grav	1.3J	38.5	34	89			78-114	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number:

L2236576

Parameter	Native Sample	Duplicate Sample	Units	RPD Qua	al RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 QC Batch ID:	WG1661116-2 QC	Sample: L223619	4-01 Client ID	: DUP Sample
рН	7.5	7.4	SU	1	5
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 QC Batch ID:	WG1662798-4 QC	Sample: L223708	1-02 Client ID	: DUP Sample
Cyanide, Total	ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 QC Batch ID:	WG1665651-3 QC	Sample: L220003	9-69 Client ID	: DUP Sample
Oil & Grease, Hem-Grav	0.77J	ND	mg/l	NC	18

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-025-001

Lab Number: L2236576 **Report Date:** 07/22/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2236576-01A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1(3)
L2236576-01B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1(3)
L2236576-01C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1(3)
L2236576-01D	Plastic 120ml unpreserved	Α	7	7	2.3	Υ	Absent		PH-4500(.01)
L2236576-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Absent		BA-UI(180),NI-UI(180),ZN-UI(180),AG- UI(180),FE-UI(180),SE-UI(180),HG-U(28),CD- UI(180),CR-UI(180),AS-UI(180),CU- UI(180),PB-UI(180)
L2236576-01F	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Absent		TCN-4500(14)
L2236576-01G	Amber 1000ml H2SO4 preserved	Α	<4	<4	2.3	Υ	Absent		SUB-PHENOL()
L2236576-01H	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1(7)
L2236576-01I	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1(7)
L2236576-01J	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		PESTICIDE-608.3(7)
L2236576-01K	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		PESTICIDE-608.3(7)
L2236576-01L	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		NYPCB-608-2L(365)
L2236576-01M	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		NYPCB-608-2L(365)
L2236576-01N	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		NYPCB-608-2L(365)
L2236576-01O	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		NYPCB-608-2L(365)
L2236576-01P	Amber 1000ml HCl preserved	Α	NA		2.3	Υ	Absent		NY-OG-1664-LOW(28)
L2236576-01Q	Amber 1000ml HCl preserved	Α	NA		2.3	Υ	Absent		NY-OG-1664-LOW(28)
L2236576-02A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		HOLD-624(7)
L2236576-02B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		HOLD-624(7)

GLOSSARY

Acronyms

EMPC

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 1,2,4,

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name:	Pag I c	e 1	Deli	Date Rec'd in Lab 7/9/22 Deliverables ASP-A ASP-B EQuIS (1 File) EQUIS (4 File)							ALPHA Job # L2-23-657-6 Billing Information Same as Client Info			
Client Information	CHARLES TO THE	Project Location:	Buffalo, NY				1 -		20.5140.71	File)		J EQu	15 (4 1	-ile)	PO#	
Client Information Client: Benchmar	k Environmental	Project #	B0345-025-0	001			0	Othe		ATT COLUMN TO	-	N 4 1	F 18		Discount City Left	
	burg Turnpike,Ste300	(Use Project name as Pr					Reg			uireme	nt	ANY D			Disposal Site Information	
Buffalo, NY 14218	bulg rumpike, stesoo	Project Manager: 137 ALPHAQuote #:	EEE BY	eene			1 =	NYT	Stand	anda	H	NYC	art 375		Please identify below location of applicable disposal facilities.	if .
Phone: 716-856-0	500	A second		91 1					estricte		F					
Fax:	355	Turn-Around Time Standard		Due Date			1 -					Otne	50		Disposal Facility:	
Email: bareenel	BM-tkymu	Rush (only if pre approved)		Due Date			1 =			cted Us					NJ NY	
These samples have b				# of Days	5.		ANA	LYSIS		Discha	rge		_	_	Other: NA	100
Other project specific							ANA	T	<u>, </u>	_	_	т—	_	_	Sample Filtration	- 0
	ls: As, Ba, Cd, Cr, Cu,	Fe, Pb, Hg, Ni, Se, Ag, Zr	1				otal Phenol	T. CN	624.1	T. Metals*	Hd	0&G	Pest/608 PCB	625.1	☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	a B o t
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	1						809			1
(Lab Use Only)		mpie ID	Date	Time	Matrix	Initials				1					Sample Specific Comments	е
36576-01	Effluent		7-8-22	1100	Water	Brieb	x	х	х	х	х	х	х	х		17
62	Trip Blank		7-8-22	1100	uster	BING			X						Hola	2
						-			-							
多人,但是唯一工作的																
								-								
															VE	
A = None P = Plastic B = HCl A = Amber Glass Manst C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass		Westboro: Certification No: MA935 Mansfield: Certification No: MA015				ntainer Type Preservative	A	Р	V	Р	Р	A	A	A	Please print clearly, legit and completely. Sample not be logged in and turnaround time clock wi	s can
	B = Bacteria Cup C = Cube	Relinquished B	No.	Delta	/Time		D	E	Н	С	Α	В	JH.	H	start until any ambiguitie	s are
H = Na ₂ S ₂ O ₃	O = Other E = Encore D = BOD Bottle		Evere AAL		/1130	Hun	Res	H M		in	-	8/22		350	resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALP TERMS & CONDITIONS	T ES HA'S
Form No: 01-25 (rev. 30-Se	pt-2013)														TELINO G CONDITIONS	E.

Tuesday, July 19, 2022

Attn: Candace Fox Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2236576 SDG ID: GCL73811 Sample ID#s: CL73811

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

July 19, 2022

SDG I.D.: GCL73811

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance. Compounds that are detected above MDL but below RL are qualified with a J flag.

Page 54 of 60 Page 2 of 8

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 19, 2022

SDG I.D.: GCL73811

Project ID: L2236576

Client Id	Lab Id	Matrix
EFFLUENT	CL73811	WATER

Page 55 of 60 Page 3 of 8

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 19, 2022

FOR: Attn: Candace Fox

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:07/08/2211:00Location Code:ALPHAReceived by:LB07/11/2211:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

aboratory Data SDG ID: GCL73811

Phoenix ID: CL73811

Project ID: L2236576 Client ID: EFFLUENT

RL/ LOD/

Parameter Result **PQL** MDL Units Dilution Date/Time Reference By **Phenolics** ND 0.015 0.005 mg/L 1 07/18/22 EG E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 19, 2022

Reviewed and Released by: Anil Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 19, 2022

QA/QC Data

SDG I.D.: GCL73811

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
QA/QC Batch 633378 (mg/L), QC Sample No: CL73807 (CL73811)													
Phenolics	BRL	0.015	0.008 J	0.007 J	NC	99.6			101			90 - 110	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director July 19, 2022

Page 5 of 8

Sample Criteria Exceedances Report

GCL73811 - ALPHA

Analysis Units RL Criteria Criteria 묍 Result Criteria Phoenix Analyte *** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Tuesday, July 19, 2022

Criteria: None State: NY Acode

SampNo

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

July 19, 2022

SDG I.D.: GCL73811

The samples in this delivery group were received at 1.9°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 59 of 60

19' WCGE

		Su	bcontrac	Subcontract Chain of Custody				
A Prix		Phoeni 587 Ea Manch	x Environm st Middle T ester, CT 0	Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040			Alpha Job Number L2236576	umber
Client Information		Р	Project Information	ormation	Regula	Regulatory Requirements/Report Limits	nts/Report Lim	its
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	19	Project Location: NY Project Manager: Candace Fox Turnaround & Deliver	۲ andace Fo» ۱ & Delive	t Location: NY t Manager: Candace Fox Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:	l Program: riteria:		
Phone: 716-427-5223 Email: cfox@alphalab.com		Due Date: Deliverables:						
		Project Specific R	equireme	oject Specific Requirements and/or Report Requirements	ements			
Reference following Alpha Job Number	Alpha Job Num	ber on final report/deliverables: L2236576	iverables:		port to include M	Report to include Method Blank, LCS/LCSD:	CSD:	
Additional Comments: Send all results/reports to subreports@alphalab.com Method 420. Report to the MDL	ts/reports to su	breports@alphalab.co	om Method	420. Report to the MDL				
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
Lab ID Client ID		Collection Date/Time	Sample Matrix	Analysis				Batch
73811 EFFLUENT		07-08-22 11:00	WATER	Phenol				
を 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Relinquished By		(Date/Time:	Received BV:	y Grill	Date/Time:	2
		o coult coult		411 JUN 1080	Cupatura	m	Tellit	11:11
Form No: AL_subcoc								

ATTACHMENT 2

Flow Meter Calibration Certificate

Cold Spring Environmental

3248 Buffalo Rd., Varysburg, N.Y. 14167

Ph: 716-863-7052

May 11, 2022

Benchmark & Turnkey Att. Brock Greene 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

Ref: Flow Meter Calibration

Dear Mr. Greene,

Calibration Date: May 5, 2022

Site location: 2424 Hamburg Turnpike Equipment Model:GPI A109GMN100NA1 Equipment type: Closed Pipe impellor

Equipment S/N: EDM 1615558
Measuring device: 1 inch pipe

Output type: none

Totalizer multiplier: X1 gallon

Initial Readings:

Meter Flow Rate 4.3 GPM

Totalizer 8.8 gallons Water meter 10 gallons

Difference 12%

After Adjustment:

Readings:

Meter Flow Rate 4.3 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Readings:

Meter Flow Rate 1.9 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Please contact me with any questions.

Sincerely, Jon Wolak

716-863-7052

jonwolak@yahoo.com

Strong Advocates, Effective Solutions, Integrated Implementation

February 1, 2023

Ms. Laura Surdej Erie County Sewer/Southtowns Sewage Treatment Plant 2060 Lehigh St Lackawanna, NY 14218

Re: ECSD No.6 Discharge Permit LA-04 – Discharge Report (August 2022 - January 2023) For 2424 Hamburg Turnpike, Lackawanna, New York

Dear Ms. Surdej:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this correspondence on behalf of our client, 2424 Hamburg Turnpike LLC, for the treated groundwater at the above-referenced property location in accordance with Erie County Sewer District No. 6 (ECSD No. 6) Permit No. LA-04, effective May 10, 2021. As required by the permit, this report summarizes flow and compliance sample results for the report period from August 2022 through January 2023.

TurnKey personnel recorded totalizer (total gallons) weekly during the reporting period. Table 1 summarizes the total volume (gallons) and calculated daily flow (gallons per day) measured from August 2022 through January 2023.

On December 1, 2022, TurnKey personnel collected an effluent water sample and submitted the sample under chain-of-custody command to Alpha Analytical for laboratory analysis in accordance with the discharge permit. Table 2 summarizes the analytical results; Attachment 1 contains the Laboratory Analytical Report. All parameters meet corresponding permitted discharge limits.

As of January 31, 2023, a total of 168,555 gallons of water has been pre-treated and discharged during this monitoring period to the ECSD No.6 collection and conveyance system. The calculated daily flow for the reporting period has ranged between zero and 4,891 GPD, well below permitted flows of up to 25,000 GPD. The flow meter was subjected to third party annual calibration on May 5, 2022. The calibration certificate is presented as Attachment 2. We plan on calibrating the flow meter in May of 2023.

Please contact me if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Sr. Project Environmental Scientist

TABLES

TABLE 1
SUMMARY OF EFFLUENT FLOW

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Date	Totalizer (gallons)	Gallons per Period (gallons)	Calculated GPD (gallons/day)
			Permit Limit 25,000 GPD
8/5/22	3843	3,843	549
8/10/22	6301	2,458	492
8/26/22	14684	8,383	524
9/6/22	16766	2,082	189
9/15/22	22437	5,671	630
9/29/22	31798	9,361	669
10/7/22	36460	4,662	583
10/13/22	43685	7,225	1,204
10/21/22	57981	14,296	1,787
10/28/22	69750	11,769	1,681
11/4/22	74547	4,797	685
11/9/22	87627	13,080	2,616
11/16/22	106496	18,869	2,696
11/23/22	124251	17,755	2,536
12/1/22	163380	39,129	4,891
12/9/22	168555	5,175	647
1/31/23	168555	0	0

Gallons discharged this monitoring period = 168,555

Notes:

TABLE 2

SUMMARY OF EFFLUENT WATER ANALYTICAL DATA

2424 HAMBURG TURNPIKE GROUNDWATER PRE-TREATMENT SYSTEM Lackawanna, New York

Parameter ¹	Effluent 12/01/22	Discharge Permit Limitations ²
Volatile Organic Compounds (VOCs - Method	l 624) - mg/L	
All Compounds Non-Detect		
Semi-Volatile Organic Compounds (SVOCs -	Method 625) - mg/L	
NS		
Polychlorinated Biphenyls (PCBs) (Method 6	608)- mg/L	
NS		
Organochlorine Pesticide Compounds (Meth	od 608) - mg/L	
NS		
Metal Compounds (Method 200.7 Rev 4.4) - m	g/L ³	
Arsenic	0.0026 J	0.18
Barium	0.0417	Monitor
Chromium	0.01	4.85
Iron	0.0582	Monitor
TOTAL Metals (mg/L)	0.1125 J	Monitor
General Chemistry - mg/L		
Cyanide, Total	0.003 J	0.48
Phenolics, Total Recoverable	ND	Monitor
Oil & Grease	NS	100
Ph	7.7	5-12
Total Toxic Organic Pollutants (TTO) 4	ND	2.13

Notes:

- 1. Only those parameters detected are presented in this table; all others were reported as non-detect.
- 2. Per the May 2021 Erie County Sewer District No. 6 Discharge Permit LA-04
- 3. Metals include Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn
- 4. TTO is determined by totaling the reported compound concentrations detected via EPA Methods 608, 624, & 625.

Definitions:

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = Parameter is non-detect.
- NS = Parameter not sampled for at this time.

ATTACHMENT 1

Laboratory Data (in electronic copy only)

ANALYTICAL REPORT

Lab Number: L2267357

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Report Date: 12/15/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

Report Date:

12/15/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2267357-01	EFFLUENT	WATER	BUFFALO, NY	12/01/22 11:00	12/01/22

L2267357

Project Name: 2424 HAMBURG TURNPIKE Lab Number:

Project Number: B0345-021-001 **Report Date:** 12/15/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Phenolics was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Volatile Organics by 624.1

L2267357-01D: The sample has an elevated detection limit due to the dilution performed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Mell Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 12/15/22

ORGANICS

VOLATILES

L2267357

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

SAMPLE RESULTS

Report Date: 12/15/22

Lab Number:

Lab ID: Date Collected: 12/01/22 11:00 L2267357-01 Client ID: Date Received: 12/01/22 **EFFLUENT** Sample Location: Field Prep: Not Specified BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 12/05/22 12:30

Analyst: GMT

1,1-Dichloroethane ND ug/l 1.5 0.40 1 Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 1.0 0.24 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.25 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.31 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethyfvinyl ether ND ug/l 1.0 0.26 1 1-Chlorobene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 1.5 0.30 1 Chlorobenzene ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromochloromothane ND ug/l 1.5 0.31 1 Leans-1,3-Dichloropropene ND ug/l 1.5 0.31	Methylene chloride	ND		ug/l	1.0	0.56	1
Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.31 1 Bromodichloromethane ND ug/l 1.5 0.31 1 Lass-1,3-Dichloropropene ND ug/l 1.5 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>1.5</td><td>0.40</td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	1.5	0.40	1
1,2-Dichloropropane ND Ug/l 3.5 0.46 1	Chloroform	ND		ug/l	1.0	0.38	1
Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.31 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0	Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 10 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 Chloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.31 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>3.5</td> <td>0.46</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
ND	Dibromochloromethane	ND		ug/l	1.0	0.27	1
Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 5.0 1.0 1 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td>0.34</td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 1,1,1-Trichloroethane ND ug/l 1.0 0.28 1 1 1,1,1-Trichloroperopene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 1 1 1 1 1 1 1 1	2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 Bromofermen ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 5.0 1.0 1 Chloromethane ND ug/l 5.0 1.2 1 </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.26</td> <td>1</td>	Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane ND	Chlorobenzene	ND		ug/l	3.5	0.30	1
ND	1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1	1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromodichloromethane	ND		ug/l	1.0	0.28	1
1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	1
Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromoform	ND		ug/l	1.0	0.22	1
Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 I,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Benzene	ND		ug/l	1.0	0.38	1
Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Toluene	ND		ug/l	1.0	0.31	1
Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Ethylbenzene	ND		ug/l	1.0	0.28	1
Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloromethane	ND		ug/l	5.0	1.0	1
Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromomethane	ND		ug/l	5.0	1.2	1
1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Vinyl chloride	ND		ug/l	1.0	0.38	1
trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloroethane	ND		ug/l	2.0	0.37	1
	1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
Trichloroethene ND ug/l 1.0 0.33 1	trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
	Trichloroethene	ND		ug/l	1.0	0.33	1

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

SAMPLE RESULTS

Lab ID: L2267357-01 Date Collected: 12/01/22 11:00

Client ID: EFFLUENT Date Received: 12/01/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
Acrylonitrile	ND		ua/l	10	0.33	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	72	60-140	
Fluorobenzene	84	60-140	
4-Bromofluorobenzene	97	60-140	

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

SAMPLE RESULTS

Lab ID: L2267357-01 D Date Collected: 12/01/22 11:00

Client ID: EFFLUENT Date Received: 12/01/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 12/03/22 17:54

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Acrolein	ND		ug/l	32	7.3	4
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Acceptance Qualifier Criteria
Pentafluorobenzene	74	60-140
Fluorobenzene	83	60-140
4-Bromofluorobenzene	98	60-140

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/03/22 11:37

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01 Batch:	WG1719369-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/03/22 11:37

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westk	orough Lat	o for sampl	e(s): 01	Batch:	WG1719369-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	74	60-140
Fluorobenzene	84	60-140
4-Bromofluorobenzene	91	60-140

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/05/22 11:23

Analyst: GMT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch:	WG1719973-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/05/22 11:23

Analyst: GMT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westk	orough Lat	o for sampl	e(s): 01	Batch:	WG1719973-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	80	60-140
Fluorobenzene	89	60-140
4-Bromofluorobenzene	89	60-140

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number: L2267357

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPI Qual Limi	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	1719369-3				
Methylene chloride	80		-		60-140	-	28	
1,1-Dichloroethane	85		-		50-150	-	49	
Chloroform	90		-		70-135	-	54	
Carbon tetrachloride	95		-		70-130	-	41	
1,2-Dichloropropane	95		-		35-165	-	55	
Dibromochloromethane	85		-		70-135	-	50	
1,1,2-Trichloroethane	95		-		70-130	-	45	
2-Chloroethylvinyl ether	85		-		1-225	-	71	
Tetrachloroethene	85		-		70-130	-	39	
Chlorobenzene	80		-		65-135	-	53	
1,2-Dichloroethane	100		-		70-130	-	49	
1,1,1-Trichloroethane	95		-		70-130	-	36	
Bromodichloromethane	95		-		65-135	-	56	
trans-1,3-Dichloropropene	90		-		50-150	-	86	
cis-1,3-Dichloropropene	95		-		25-175	-	58	
Bromoform	75		-		70-130	-	42	
1,1,2,2-Tetrachloroethane	90		-		60-140	-	61	
Benzene	100		-		65-135	-	61	
Toluene	100		-		70-130	-	41	
Ethylbenzene	90		-		60-140	-	63	
Chloromethane	95		-		1-205	-	60	
Bromomethane	75		-		15-185	-	61	
Vinyl chloride	80		-		5-195	-	66	

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

Report Date:

12/15/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	719369-3					
Chloroethane	95		-		40-160	-		78	
1,1-Dichloroethene	80		-		50-150	-		32	
trans-1,2-Dichloroethene	80		-		70-130	-		45	
Trichloroethene	80		-		65-135	-		48	
1,2-Dichlorobenzene	90		-		65-135	-		57	
1,3-Dichlorobenzene	80		-		70-130	-		43	
1,4-Dichlorobenzene	80		-		65-135	-		57	
Acrolein	72		-		60-140	-		30	
Acrylonitrile	82		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	89		60-140
Fluorobenzene	99		60-140
4-Bromofluorobenzene	90		60-140

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number: L2267357

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	719973-3				
Methylene chloride	90				60-140	-		28
1,1-Dichloroethane	95		-		50-150	-		49
Chloroform	105		-		70-135	-		54
Carbon tetrachloride	120		-		70-130	-		41
1,2-Dichloropropane	105		-		35-165	-		55
Dibromochloromethane	90		-		70-135	-		50
1,1,2-Trichloroethane	100		-		70-130	-		45
2-Chloroethylvinyl ether	100		-		1-225	-		71
Tetrachloroethene	100		-		70-130	-		39
Chlorobenzene	90		-		65-135	-		53
1,2-Dichloroethane	115		-		70-130	-		49
1,1,1-Trichloroethane	115		-		70-130	-		36
Bromodichloromethane	105		-		65-135	-		56
trans-1,3-Dichloropropene	95		-		50-150	-		86
cis-1,3-Dichloropropene	100		-		25-175	-		58
Bromoform	75		-		70-130	-		42
1,1,2,2-Tetrachloroethane	90		-		60-140	-		61
Benzene	115		-		65-135	-		61
Toluene	110		-		70-130	-		41
Ethylbenzene	105		-		60-140	-		63
Chloromethane	110		-		1-205	-		60
Bromomethane	80		-		15-185	-		61
Vinyl chloride	90		-		5-195	-		66

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	_ab Associated	sample(s): 0	1 Batch: WG1	719973-3					
Chloroethane	110		-		40-160	-		78	
1,1-Dichloroethene	90		-		50-150	-		32	
trans-1,2-Dichloroethene	90		-		70-130	-		45	
Trichloroethene	95		-		65-135	-		48	
1,2-Dichlorobenzene	90		-		65-135	-		57	
1,3-Dichlorobenzene	85		-		70-130	-		43	
1,4-Dichlorobenzene	85		-		65-135	-		57	
Acrolein	80		-		60-140	-		30	
Acrylonitrile	90		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	87		60-140
Fluorobenzene	99		60-140
4-Bromofluorobenzene	90		60-140

METALS

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

SAMPLE RESULTS

 Lab ID:
 L2267357-01
 Date Collected:
 12/01/22 11:00

 Client ID:
 EFFLUENT
 Date Received:
 12/01/22

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala, Man	ما ا ما م										
Total Metals - Man	sileid Lab										
Arsenic, Total	0.0026	J	mg/l	0.0050	0.0019	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Barium, Total	0.0417		mg/l	0.0100	0.0021	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Cadmium, Total	ND		mg/l	0.0050	0.0010	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Chromium, Total	0.0100		mg/l	0.0100	0.0021	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Copper, Total	ND		mg/l	0.0100	0.0022	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Iron, Total	0.0582		mg/l	0.0500	0.0090	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Lead, Total	ND		mg/l	0.0100	0.0027	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Mercury, Total	ND		mg/l	0.00020	0.00009	1	12/05/22 16:52	12/06/22 08:02	EPA 245.1	3,245.1	DMB
Nickel, Total	ND		mg/l	0.0250	0.0024	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Selenium, Total	ND		mg/l	0.0100	0.0035	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Silver, Total	ND		mg/l	0.0070	0.0028	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL
Zinc, Total	ND		mg/l	0.0500	0.0021	1	12/05/22 14:21	12/05/22 23:42	EPA 3005A	19,200.7	GCL

L2267357

Lab Number:

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001 **Report Date:** 12/15/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
Total Metals - Mansfi	Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1719150-1											
Arsenic, Total	ND	mg/l	0.0050	0.0019	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Barium, Total	ND	mg/l	0.0100	0.0021	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Cadmium, Total	ND	mg/l	0.0050	0.0010	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Chromium, Total	ND	mg/l	0.0100	0.0021	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Copper, Total	ND	mg/l	0.0100	0.0022	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Iron, Total	ND	mg/l	0.0500	0.0090	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Lead, Total	ND	mg/l	0.0100	0.0027	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Nickel, Total	ND	mg/l	0.0250	0.0024	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Selenium, Total	ND	mg/l	0.0100	0.0035	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Silver, Total	ND	mg/l	0.0070	0.0028	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			
Zinc, Total	ND	mg/l	0.0500	0.0021	1	12/05/22 14:21	12/05/22 22:41	19,200.7	GCL			

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG17	'19151-'	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	12/05/22 16:52	12/06/22 07:42	3,245.1	DMB

Prep Information

Digestion Method: EPA 245.1

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number: L2267357

Parameter	LCS %Recovery	LCSD Qual %Recovery	% Qual	Recovery	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1719150-2					
Arsenic, Total	108	-		85-115	-		
Barium, Total	104	-		85-115	-		
Cadmium, Total	100	-		85-115	-		
Chromium, Total	92	-		85-115	-		
Copper, Total	99	-		85-115	-		
Iron, Total	108	-		85-115	-		
Lead, Total	99	-		85-115	-		
Nickel, Total	96	-		85-115	-		
Selenium, Total	104	-		85-115	-		
Silver, Total	89	-		85-115	-		
Zinc, Total	96	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1719151-2					
Mercury, Total	105	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number: L2267357

nrameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lal	b Associated san	nple(s): 01	QC Batch	ID: WG1719150	-3 (QC Sample	: L2267092-01	Clier	nt ID: MS Sa	ample		
Arsenic, Total	ND	0.12	0.141	118		-	-		75-125	-		20
Barium, Total	0.027	2	1.96	97		-	-		75-125	-		20
Cadmium, Total	ND	0.053	0.0584	110		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.212	106		-	-		75-125	-		20
Copper, Total	0.017	0.25	0.279	105		-	-		75-125	-		20
Iron, Total	0.172	1	1.30	113		-	-		75-125	-		20
Lead, Total	ND	0.53	0.557	105		-	-		75-125	-		20
Nickel, Total	0.135	0.5	0.652	103		-	-		75-125	-		20
Selenium, Total	ND	0.12	0.136	113		-	-		75-125	-		20
Silver, Total	ND	0.05	0.0578	116		-	-		75-125	-		20
Zinc, Total	0.232	0.5	0.780	110		-	-		75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number: L2267357

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG1719150-7	QC Sample	: L2267092-02	Client ID: MS Sa	ample	
Arsenic, Total	ND	0.12	0.140	117	-	-	75-125	-	20
Barium, Total	0.028	2	2.02	100	-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.0569	107	-	-	75-125	-	20
Chromium, Total	ND	0.2	0.207	104	-	-	75-125	-	20
Copper, Total	0.017	0.25	0.274	103	-	-	75-125	-	20
Iron, Total	0.183	1	1.28	110	-	-	75-125	-	20
Lead, Total	ND	0.53	0.551	104	-	-	75-125	-	20
Nickel, Total	0.134	0.5	0.638	101	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.135	112	-	-	75-125	-	20
Silver, Total	ND	0.05	0.0567	113	-	-	75-125	-	20
Zinc, Total	0.230	0.5	0.763	107	-	-	75-125	-	20
otal Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG1719151-3	QC Sample	: L2267836-01	Client ID: MS Sa	ample	
Mercury, Total	0.00056	0.005	0.00566	102	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

Parameter	Native Sample Dup	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1719150-4	QC Sample: L2	.2267092-01	Client ID:	DUP Sample	
Iron, Total	0.172	0.175	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1719150-8	QC Sample: L2	.2267092-02	Client ID:	DUP Sample	
Iron, Total	0.183	0.170	mg/l	7		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1719151-4	QC Sample: L2	.2267836-01	Client ID:	DUP Sample	
Mercury, Total	0.00056	0.00055	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: 2424 HAMBURG TURNPIKE Lab Number: L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

SAMPLE RESULTS

Lab ID:L2267357-01Date Collected:12/01/22 11:00Client ID:EFFLUENTDate Received:12/01/22Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough La	ıb								
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	12/13/22 12:10	12/13/22 15:35	121,4500CN-CE	JER
pH (H)	7.7		SU	-	NA	1	-	12/08/22 14:07	121,4500H+-B	KES

Project Name: 2424 HAMBURG TURNPIKE **Lab Number:** L2267357

> Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for san	nple(s): 01	Batch:	: WG17	22465-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	12/13/22 12:10	12/13/22 15:32	121,4500CN-C	E JER

Lab Control Sample Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number:

B0345-021-001

Lab Number:

L2267357

Report Date:

12/15/22

Parameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s): 01	Batch: WG1720797-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab Ass	sociated sample(s): 01 E	Batch: WG1722465-2				
Cyanide, Total	99	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

Report Date:

12/15/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qı	RPD _{ual} Limits
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1722465-3	QC Sample: L226735	7-01 Client	ID: EFFLU	JENT
Cyanide, Total	0.003J	0.2	0.182	91	-	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: 2424 HAMBURG TURNPIKE

Project Number: B0345-021-001

Lab Number:

L2267357

Report Date: 12/15/22

Parameter	Native S	ample	Duplicate Sam	nple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1720797-2	QC Sample:	L2267751-06	Client ID:	DUP Sample
рН	6.4		6.4	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1722465-4	QC Sample:	L2267419-02	Client ID:	DUP Sample
Cyanide, Total	ND)	ND	mg/l	NC		30

2424 HAMBURG TURNPIKE L2267357

Project Number: B0345-021-001 **Report Date:** 12/15/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2267357-01A	Vial Na2S2O3 preserved	Α	NA		4.0	Υ	Absent		624.1(3)
L2267357-01B	Vial Na2S2O3 preserved	Α	NA		4.0	Υ	Absent		624.1(3)
L2267357-01C	Vial Na2S2O3 preserved	Α	NA		4.0	Υ	Absent		624.1(3)
L2267357-01D	Plastic 120ml unpreserved	Α	7	7	4.0	Υ	Absent		PH-4500(.01)
L2267357-01E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Υ	Absent		NI-UI(180),BA-UI(180),ZN-UI(180),AG- UI(180),FE-UI(180),SE-UI(180),HG-U(28),CD- UI(180),CR-UI(180),CU-UI(180),PB- UI(180),AS-UI(180)
L2267357-01F	Plastic 250ml NaOH preserved	Α	>12	>12	4.0	Υ	Absent		TCN-4500(14)
L2267357-01G	Amber 1000ml H2SO4 preserved	Α	<2	<2	4.0	Υ	Absent		SUB-PHENOL()

Project Name:2424 HAMBURG TURNPIKELab Number:L2267357Project Number:B0345-021-001Report Date:12/15/22

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2267357Project Number:B0345-021-001Report Date:12/15/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2267357Project Number:B0345-021-001Report Date:12/15/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:2424 HAMBURG TURNPIKELab Number:L2267357Project Number:B0345-021-001Report Date:12/15/22

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12152216:11

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: Benchmark Environmental Address: 2558 Hamburg Turnpike, Ste300 Buffalo, NY 14218 Phone: 716-856-0599 Fax: Email: bgreene @ bm-tk.om	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo Project Information Project Name: Project Location: Project # (Use Project name as Pro Project Manager: ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	2424 Hambu Buffalo, NY B0345-021-0 oject #)	rg Turnpike		e 1 f 1	Reg	in verable ASP EQu Other ulatory NY T AWQ NY R NY U NYC	-A IS (1 F IR Requ OGS Standa estricte nrestrict Sewer	ile) lireme	at OOO	NY Pa	B S (4 File) rt 375	ALPHA Job # L 2 26 7 3 5 7 Billing Information Same as Client Info PO # Disposal Site Information Please Identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: NA
These samples have been previously analyze Other project specific requirements/comme Email results to: *Metals: As, Ba, Cd, Cr, Cu, Please specify Metals or TAL.	ents:					otal Phenol	NO I	624.1	T. Metals*	H			Sample Filtration Done Lab to do Preservation Lab to do (Please Specify below)
(Lab Use Only)	nple ID	Date	Time	Sample Matrix	Sampler's Initials								Sample Specific Comments
67357 OI Effluent		121-22	11 90	Water	Bing	^	X	X	X	X			
			- 500										
A = None	Westboro: Certification No Mansfield: Certification No				ntainer Type	A	P	V	P	P			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore K/E = Zn Ac/NaOH D = BOD Bottle O = Other Form No: 01-25 (rev. 30-Sept-2013)	Relinquished B	у:	Date:	/Time	S)	-	ived B]Н y:	c	_	1/22	Time /34 2 0030	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT

Tuesday, December 13, 2022

Attn: Candace Fox Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2267357 SDG ID: GCM96536 Sample ID#s: CM96536

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

December 13, 2022

SDG I.D.: GCM96536

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance. Compounds that are detected above MDL but below RL are qualified with a J flag.

Page 39 of 45

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

December 13, 2022

SDG I.D.: GCM96536

Project ID: L2267357

Client Id	Lab Id	Matrix
EFFLUENT	CM96536	WATER

Page 40 of 45 Page 3 of 8

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 13, 2022

FOR: Attn: Candace Fox

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WATER	Collected by:		12/01/22	11:00
Location Code:	ALPHA	Received by:	SW	12/05/22	12:05
Rush Request:	Standard	Analyzed by:	soo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCM96536

Phoenix ID: CM96536

Project ID: L2267357 Client ID: EFFLUENT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Phenolics	ND	0.015	0.005	mg/L	1	12/12/22	EG	E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 13, 2022

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 13, 2022

QA/QC Data

SDG I.D.: GCM96536

Parameter	B Blank R	lk Sample L Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 654919 (mg/L),	QC Sample	No: CM96536	6 (CM965	536)								
Phenolics	BRL 0	.015 <0.015	0.008 J	NC	98.9			98.5			90 - 110	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

December 13, 2022

Sample Criteria Exceedances Report

GCM96536 - ALPHA

Analysis Units

RL Criteria

Criteria

귐

Result

Criteria Phoenix Analyte *** No Data to Display *** Acode

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page	43	of	45
ugo	.0	٠.	.0

Criteria: None State: NY

SampNo

Tuesday, December 13, 2022

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

December 13, 2022

SDG I.D.: GCM96536

The samples in this delivery group were received at 2.5°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 44 of 45

WCFO 2.S Alpha Job Number L2267357	Regulatory Requirements/Report Limits			nk, LCS/LCSD:		Batch QC	8	Date/Time: 13/10 13/10 13/10 13/10 13/10 13/10
	Regulatory Rec	State/Federal Program: Regulatory Criteria:		uirements Report to include Method Blank, LCS/LCSD			JOSO MU WHAT HOSO	Received By:
Subcontract Chain of Custody Phoenix Environmental Laboratories 587 East Middle Tumpike Manchester, CT 06040	formation	ocation: NY anager: Candace Fox rnarounc & Deliverables Information		or Report Reg	d 420. Report to the MDL	Analysis	Phenol ★ 1 2000 %	Date/Time: 1割ら12~ 13~
Subcontra enix Environn East Middle 1 Ichester, CT (Project Information	: NY :: Candace Fo und & Delive		pecific Requirements and/report/deliverables: L2267357	b.com Methoc	Sample Matrix	WATER	
Pho 587 Mar		Project Location: NY Project Manager: Candace Fox Turnarounc & Deliver	Due Date: Deliverables:	Project Specifin	ubreports@alphala	Collection Date/Time	12-01-22 11:00	W:
	Client Information	cal Labs Drive MA 01581-1019	b.com	Project S Reference following Alpha Job Number on final	Additional Comments: Send all results/reports to subreports@alphalab.com Method 420. Report to the MDL	Client ID	EFFLUENT	Relinquished By
AHCIV	Client I	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Phone: 716-427-5223 Email: cfox@alphalab.com	Refere	Additional Comments:	Lab ID	965 36	Form No: AL_subcoc

ATTACHMENT 2

Flow Meter Calibration Certificate

Cold Spring Environmental

3248 Buffalo Rd., Varysburg, N.Y. 14167

Ph: 716-863-7052

May 11, 2022

Benchmark & Turnkey Att. Brock Greene 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

Ref: Flow Meter Calibration

Dear Mr. Greene,

Calibration Date: May 5, 2022

Site location: 2424 Hamburg Turnpike Equipment Model:GPI A109GMN100NA1 Equipment type: Closed Pipe impellor

Equipment S/N: EDM 1615558
Measuring device: 1 inch pipe

Output type: none

Totalizer multiplier: X1 gallon

Initial Readings:

Meter Flow Rate 4.3 GPM

Totalizer 8.8 gallons Water meter 10 gallons

Difference 12%

After Adjustment:

Readings:

Meter Flow Rate 4.3 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Readings:

Meter Flow Rate 1.9 GPM

Totalizer 10 gallons Water meter 10 gallons

Difference 0%

Please contact me with any questions.

Sincerely, Jon Wolak

716-863-7052

jonwolak@yahoo.com

APPENDIX E

GROUNDWATER MONITORING LOGS

roject Nar	me: QuQu	Ham burg	Turnpin	ce Project	: N o.:			12-7-8 eam: CE P	
Wall No) A		Diameter /ir	neboe):		Sample Dat			
Well No. Mw-2 Product Depth (fbTOR):			Diameter (inches): 2 Water Column (ft): (2)			Sample Date / Time: DTW when sampled:			
DTW (static) (fbTOR): Total Depth (fbTOR):			One Well Volume (gal): Total Volume Purged (gal):			Purpose: Development Sample Purge & Sample Purge Method: Bailer			
1130	o Initial	0.00	7.44	124	3106	44.3	1.12	-108	clear, si penni
138	1 7.25	2.00	7.43	12.7	3245	404	1.51	-43	clour sc arm
1138	2 6.22	4.00	7.48	14.1	3241	819	1.33	-120	Tuchidan "
1148	3 14.20	6.00	7.58	13.9	3200	71000	2.27	-122	W D B
1150	4 Dry	6.50			33				
	5								
	6								
ři.	7								
	8								
	9								
	10								
Sample	Information:	95		Y		'			
1200	s1 11 12	6.50	7.44	122	3147	138	1 13	-81	0 //
13851	S2 6 42	6.50	7.49	12.9	3163	91.3	1.18	-93	6 //
									nt.
MAZ-II MI				45					
Well No. MW-3			Diameter (inches):			Sample Date / Time:			
Product Depth (fbTOR):			Water Column (ft): 11, 99			DTW when sampled			
DTW (static) (fbTOR): 2,15 Total Depth (fbTOR): 14,14			One Well Volume (gal): 1.95 Total Volume Purged (gal): 10.00			Purpose: Development Sample Purge & Sample			
Total Deptr			Total Volum	e Purged (gai):	10.00	Purge Metho	od: Bailer	F .	T
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1055	o Initial	0.00	6.80	12.8	598.8	111	1.81	-115	SL Turnid, SLP
1105	1 2.75	200	7.35	12.6	513.5	65.7	1.63	-130	SL Turbin, SL
1107	2 3 39	4.00	7.28	12.7	511.5	61.8	1.71	-129	SL Turbid, SL Pe
1111	³ 3 53	600	7.34	12.7	508.3	48.1	1.64	-118	Clear SL Per
1114	4 3 70	800	7.34	12.9	517.2	55.4	189	-127	
1116	5.3.79	10.00	7.42	12.5	558.3	59.1	1.83	-133	
_	6		7.3 m	24	5		1-75		
	7			***					
	8								
	9					V			
	10								

REMARKS: Note: All measurements are in feet, distance from top of riser.

10 00

Volume Calculation Diam, Vol. (g/ft) 0.041 2" 0.163 4" 0.653 1,469

Stabilization Criteria Parameter Criteria ± 0.1 unit pH SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

-11

SL PEND

11 -11

PREPARED BY:

CEH

Groundwaler Field Forms.xls GWFF - TK

Sample Information: \$1 2.48

240

Depth to Water (DTW) Measurements

2424 Hamburg Turnpike 2424 Hamburg Turnpike LLC

		12-7-22
Well ID	DTW	Notes
DPE-1	2.59	
DPE-2	5.80	Well under vacuum
DPE-3	221	
DPE-4	FOR NA	Well under vacuum, MH under wester
DPE-5	1.98	Well under vacuum.
DPE-6	2.10	Well under vacuum.
DPE-7	a.25	Well under vacuum
DPE-8	2.15	
DPE-9	2.72	Well under vacuum,
DPE-10	2.68	
DPE-11	3-85	Under Shipping Container
DPE-12	385	Well under vacuum,
DPE-13	3.95	
DPE-14	4.82	Well under vacuum.
DPE-1W	2.65	
DPE-2W	2.05	
		Temp, pH, conductivity, ORP, DO, and notes
MW-1	5. 98	11.4, 7.37, 1409, -123, 1.22 Turb-753; turbol, no ador
MVV-2	4.11	, INDEXTOR
MW-3	2.15	
MW-4	2.00	10.9,7.25, 890.7, -93 1.07, Turb 451, turbid; no

EQUIPMENT CALIBRATION LOG

Date: 12-7-22

PROJECT INFORMATION:

Project Name: 3424 Hamburg Tumpire

Project No.:

Client: × × X \times Oxygen E PID Carbon monoxide Hydrogen sulfide Radiation Meter Particulate meter Dissolved Oxygen pH meter Turbidity meter Turbidity meter Sp. Cond. meter METER TYPE mg/m³ UNITS TIME uR/H ppm units ppm ppm ppm O.L.N ZTU Sm % % 1030 1030 10:30 1030 Myron L Company
Ultra Meter 6P Myron L Company Ultra Meter 6P HACH Model HQ30d MAKE/MODEL Hach 2100P or MinRAE 2000 LaMotte 2020 Turbidimeter 2100Q 6213516 6243084 6213516 6243084 6212375 6212375 6223973 6523-1816 (La) 06120C020523 (P) 6223973 1402000100319 100500041867 080700023281 13120C030432 (Q) 🔀 SERIAL NUMBER $\mathbf{X} \square$ CEH CEH CEH CEH CAL. BY Instrument Source: < 0.4 or 10 tor 2100 a mS @ 25 °C background area 100% Satuartion open air zero STANDARD open air open air open air open air 0.0 NTU 1.0 NTU 10.0 NTU zero air ppm Iso. Gas 10.01 7.00 4.00 800 100 20 × 100 % POST CAL. READING 7000 10.7 7.02 4.00 BΜ 100 MIBK response Rental **SETTINGS** factor = 1.0

PEREPARED BY: CEH ADDITIONAL REMARKS:

DATE: 12-7-22