APPENDIX E

DATA USABILITITY SUMMARY REPORTS DUSRS

ANALITICAL LAB REPORTS

DATA USABILITY SUMMARY REPORT (DUSR)

31/150 Tonawanda Site Buffalo, NY 14207 NYSDEC BCP # C915299

SDG: 203556

6 soil samples

Prepared for:

BE3 Corp. 960 Busti Avenue Suite 150-B Buffalo, NY 14213 **Attention: John Berry**

October 2020

Table of Contents

		Page No.
REVII	EWER'S NARRATIVE	
1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	SAMPLE AND ANALYSIS SUMMARY	2
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA	2
5.0	DATA VALIDATION QUALIFIERS	3
6.0	RESULTS OF THE DATA REVIEW	4
7.0	TOTAL USABLE DATA	4
APPE	Validated Analytical Results Laboratory QC Documentation Validator Qualifications les	
Table Table		Data
Table	6-2 SVOCs 6-3 Pesticides 6-4 PCBs 6-5 Metals 6-6 Hexavalent chromium (Cr+6) 6-7 Herbicides (Silvex)	

REVIEWER'S NARRATIVE BE3 SDG 203556: 31/150 Tonawanda Site

The data associated with this Sample Delivery Group (SDG) 203556, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Michael K. Perry

Chemist

Date: 10/5/≥0

1.0 SUMMARY

SITE:

31/150 Tonawanda

Clean fill

Buffalo, NY 14207

SAMPLING DATE:

July 30, 2020

SAMPLE TYPE:

6 soil samples

LABORATORY:

Paradigm Environmental

Rochester, NY

SDG No.:

203556

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for six soil samples collected on July 30, 2020. These samples were analyzed for the Part 375 list of Volatile Organic Compounds, Semi-volatile Organic Compounds, PCBs, Pesticides, Cr+6, Herbicides, Metals, and PFAAs.

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 203556 except Herbicides and Mercury were analyzed by Adirondack Environmental, Albany, NY as SDG 200731035 and PFAAs by ALS Environmental, Rochester, NY as SDG R2006787. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance
110.0	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.
VOCs	**************************************
	USEPA, 2008, Statement of Work for Organic Analysis of
	Low/Medium Concentration of Volatile Organic
	Compounds SQM01.2; SOP HW-33, Rev. 2.
	USEPA, 2007, Statement of Work for Organic Analysis of
SVOCs	Low/Medium Concentration of Semivolatile Organic
	Compounds SQM01.2; SOP HW-35, Rev. 1.
	USEPA, 2006, CLP Organics Data Review and Preliminary
Pesticides/PCBs	Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14,
	Part C.
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.
Perfluoroalkyl	USEPA, 2018, Data Review and Validation Guidelines for
Substances	Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method
(PFASs)	537

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Canister Certification
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Lab Control Sample
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Instrument Tuning
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Blanks
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Initial Calibration &
Instrument Tuning	Internal Standards	Analyte ID	Sample		System Performance
Internal Standards	Initial Calibration	Lab Qualifiers	Spike Recoveries		Daily Calibration
Initial Calibration	Continuing Calibration	Field Duplicate	Lab Duplicate		Field Duplicate
Continuing Calibration	Lab Qualifiers		Lab Control Sample		
Lab Qualifiers	Field Duplicate		ICP Serial Dilutions		
Field Duplicate			Lab Qualifiers		
			Field Duplicate		

PFASs
Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check **Initial Calibration** Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any ± value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-8. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 203556, six samples were analyzed and results were reported for 520 analytes. Thirty-six results were rejected. Even though some results were flagged with a "J" as estimated, all other results (93 %) are considered usable. See the summary table for the analyses that have been rejected and the associated QC reasons.

NOTE: 1) As noted by the laboratory, the soil samples were not collected following SW846 5035A protocol. This adds an element of uncertainty to the analytical results for volatile organic analytes (VOAs). Although not specifically indicated on the final data sheets with a "J" flag, the VOA analytical results should be considered estimated, but usable.

NOTE: 2) The data packages for this project contained no laboratory QC data for the CRDL standard for metals (Form 2B) and the Serial Dilutions of metals (Form 8). Therefore, no evaluation of the CRDL recoveries and the serial dilution results were performed by this data reviewer and no data were qualified as a result.

SDG 203556

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
CF VOC1 CF VOC2 CF VOC3 CF VOC4	1,4-Dioxane	R all data	ICAL RF < 0.005	Data are rejected
CF VOC1 CF VOC2 CF VOC3 CF VOC4	All analytes	J detects UJ non-detects	Surr. rec for TD8 and 4BFB < QC limit and IS area #2 < 50 % of QC limit	Data may be biased low
CF VOC1 CF VOC2 CF VOC3 CF VOC4	1,2-DCB 1,3-DCB 1,4-DCB 1,2,4-TCB 1,2,3-TCB DBCP Naphthalene n-Butylbenzene	R all data	IS area #3 < 25 % of the QC limit	Data are rejected

Table 6-2 SVOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
CF1	Atrazine	UJ non-detects	% D for CCV > QC limit	Data are estimated
CF2	Hexachloropentadiene	J detects	% D for CCV > QC limit	Data are estimated

SDG 203556

Table 6-3 Pesticides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
CF1	Endrin ketone	J	>25 % D between dual column analysis	Matrix interference suspected
CF2	4,4'-DDE	J	>25 % D between dual column analysis	Matrix interference suspected

Table 6-4 PCBs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

Table 6-5 Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	*

SDG 203556

Table 6-6 Hexavalent Chromium

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-7 Herbicides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-8 PFAAs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
CF1 CF2	PFNA	J detects	Detected in Method Blank	Data are estimated
CF1 CF2	PFBS	UJ non-detects J detects	% LCS < QC limit	Data are estimated

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 203556 PROJECT NAME: 31/150 Tonawanda Clean Fill

SDG: 3556-01 CLIENT: BE3

Six soil samples were collected by the client on July 30, 2020 and were received by the Paradigm Laboratory on the same day. Samples were received under the conditions as noted on the Chain-of-Custody Supplement. The samples were submitted with the Chains-of-Custody requesting the Part 375 lists for SVOCs, VOCs, Pesticides, Metals, PCBs, Hexavalent Chromium, Silvex, and PFAs. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

Regarding surrogate limits for Semivolatiles, Pesticides, and PCBs: Quality Control limits were updated internally on August 05, 2020. The samples were analyzed before August 05, but because the summary was generated after that date, the report automatically included the updated limits in error. All forms included in this package have been corrected to reflect the limits that were in-use at the time of analysis.

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES AND SEMIVOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

VOLATILES

Soil samples were not sampled per EPA method 5035A compliance rules. Thus, an extra note has been added to all VOC reports.

Holding times were met for all samples.

Surrogate recoveries for the samples and associated QC were within acceptance limits, except Toluene-d8 was out low in all samples and 4-Bromofluorobenzene was out low in CF VOC 1, CF VOC 2, and CF VOC 4. These outliers have been flagged with an "*" on the surrogate recovery form and the sample results page. Matrix interference is suspected.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and QC, except Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 were out low in all samples. These outliers have been flagged with an "*" on the summary form and annotated on the sample report accordingly. The samples were repeated to confirm the results and the raw data for the confirmation has been supplies after the raw data from the reported results. Matrix interference is suspected. No further evaluation of this data or corresponding summary forms have been made.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes with the following exceptions: Dichlorodifluoromethane, Chloromethane, Chloroethane, Trichlorofluoromethane, and Freon 113 were out low in the CCV. Adequate sensitivity at the reporting limit for these compounds was verified by the analysis of a single point 1ppb standard. This is usable for non-detects only. All samples were non-detect for these compounds.

SEMI-VOLATILES

Holding time was met for the samples.

All surrogate recoveries for the samples and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and associated QC.

All data for the initial calibrations was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes, with the following exceptions: In both CCVs Benzaldehyde and Di-n-Octylphthalate were out high and Hexachlorocyclopentadiene and Atrazine were out low. For compounds that are out high data is usable if the samples are non-detect for those compounds. For the compounds that were out low, adequate sensitivity at the reporting limit was verified by the analysis of single point 5ppm and 10ppm standards. This is usable for non-detects only. All samples were non-detect for the outlying compounds.

PESTICIDES

Holding time was met for the samples.

Surrogate recoveries for the samples and associated QC were within acceptance limits, except Tetrachloro-m-xylene was out low in the LCS and CF2. These outliers have been flagged with an "*" on the surrogate recovery form and the sample results page. The LCS was deemed usable as the surrogate recovery was acceptable in the rest of the QC and all target analytes in the LCS were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control samples recovered within acceptance limits.

The method blank was free from contamination within the reportable ranges.

The internal standards areas and retention times were within acceptance ranges for the samples and associated QC, except the internal standard was out high in the Blank and Toxaphene LCS when compared to the Toxaphene calibration curve. The internal standard was within acceptance limits in both QC samples when compared to the single-peak pesticides calibration curve, and data was deemed usable. The Toxaphene LCS recovered within acceptance limits and the Blank was free from contamination within reportable ranges.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All continuing calibration data was within acceptable QC limits.

For all Pesticide hits, a Form 10 including Percent Difference has been included. Column confirmations above 40% difference have been flagged with a "P" on the sample reports and an "*" on the Form 10 indicating matrix interference. The reported result is always the lower of the two results.

PCBS

Holding time was met for the samples.

The surrogate recoveries for the samples and the associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The method blank was free from contamination within the reportable ranges.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All data for continuing calibrations was within acceptance limits.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding times were met for the samples.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

SUBCONTRACTED ANALYSES

Silvex by EPA 8151A, Total Mercury by EPA 7471B, and Hexavalent Chromium by EPA 7196A were subcontracted to Adirondack Environmental Services, Inc. of Albany, NY. PFAs by 537.1 were subcontracted to ALS Environmental of Rochester, New York. Their reports are provided in their entirety as a separate entity after the Paradigm Environmental Services, Inc. report. Separate case narratives addressing the above parameters are included with their reports.

(signed) Steven DeVito - Technical Director (date) 9/25/2020

BATCH LOG

Lab Name: Paradigm Environmental Services

Lab Project #: 203556 Client Name: BE3

31/150 Tonawanda Clean Fill N/A Client Project Name:

Client Project #: SDG No.: 3556-01

Report Due Date: 8/21/2020 Batch Due Date: 8/29/2020 Protocol: SW846

LAB	MATRIX	CLIENT	REQUESTED ANALYSIS	DATE	DATE
SAMPLE NO.		SAMPLE ID		SAMPLED	REC'D
203556-01	Soil	CF1	Metals, Mercury, SVOAs, Pest, PCB, Silvex, Hex Chrome, PFAs	7/30/2020	7/30/2020
203556-02	Soil	CF2	Metals, Mercury, SVOAs, Pest, PCB, Silvex, Hex Chrome, PFAs	7/30/2020	7/30/2020
203556-03	Soil	CF VOC 1	VOAS	7/30/2020	7/30/2020
203556-04	Soil	CF VOC 2	VOAS	7/30/2020	7/30/2020
203556-05	Soil	CF VOC 3	VOAS	7/30/2020	7/30/2020
203556-06	Soil	CF VOC 4	VOAS	7/30/2020	7/30/2020
			·		

11/2

CHAIN OF CUSTODY

PAR	ADIG	М			REPORT TO:		BILL	las serve		. 7	INVO	CETO	F = 1		7			
(Anticipal)	real maxima	MES			E3			CLIENT:								002	LAB PROJECT	ID
1000		· A		ADDRESS:	60 BUSIT S	URC 150	1-B	ADDRESS	5:							205	556	
				CITY: A	FALO STATE!	IS ZIP	4713	CITY:				STATE:		ZIP:		Quotation	#:	
-	A PER			PHONE:	6-200-4	220	4	PHONE:								Email:		
PROJEC	T REFER	ENCE		ATTN:	1	deno		ATTN:						_				
21/158	TON	ACUAN	4	Matrix Cod	S GONTON													
21/150	1010	100.0	7.	AQ - A	Aqueous Liquid	WA - W				V - Drinl				Soil		SD - Solid	WP - Wipe	OL - Oil
31/150 CLEAN	V FIII	4		NQ - N	Non-Aqueous Liquid	WG - G	Froundwa	ter		N - Was	V. E. C.			Sludge		PT - Paint	CK - Caulk	AR - Aīr
			-	NO 2 1		11.5	-	, c	RE	QUES	TED	ANALY	SIS	_	100	Burg S	TA IA	
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B		SAMPLE IDENTIFIER		M C A O T D R E I S	NUMTAINERS OF	375 Morals	325 189	シェントである	PKA STABIN	375 VOCS			REMARK:	s	PARADIGM LAB SAMPLE NUMBER
7-38-20	1210	X		CFI			50	4	XX	XX	W	KX						0(
				CFA				4	XX	K	42	UK						02
				CFV	20.1			(X					67
					8C2		\top	1		\vdash	\top	\dashv	X	\vdash				04
					003		+	ì	\vdash	+	+	++	2	+				
		-		COV	100 11		+	1	+	+	+	\dashv	X	+				05
		-		CFV	100 4		1	1	-	0				+				90
		-	_				يم ا	NV	514	In	M 1	30/2	620	_				
									$\perp \perp$	$\perp \downarrow$	\perp	\perp	\perp					
															CF	= CLE	TOU FILL	
														2	1000:0	ed sto	the FIH	tille
						¬ 1								100	rels. No	117/201	2020 17/2 custody pu	
Turnaroun				Report Sup		_ /	99-7	6	110				20	20	o o y · cc	- ALCO	undal pla	lo Paraly
Availabil	lity continger	nt upon I	ab appr	oval; additiona	l fees may apply.	Sample	10	Cyr.	RIE		•	/-	Time	10	111		Total Cost:	Wired 1
Standard 5 day		None R	equired		None Required	Jampi	1)	2	1	4-	1	Date	2000	N.F	22	'	otal Cost.	1
I0 day	M	Batch C	C		Basic EDD	Runq	uished B	Y	1	De	10	Date	/Time	0-5		2		
Rush 3 day		Catego	гу А		NYSDEC EDD 💟	1	20	a-	4	11	l		7/	30	120 3	3:15		_
Rush 2 day		Catego	гу В	Ø		Receiv	ed By	di	1/0	11		Date	Time	2 1	17	20	P.I.F.	
Rush 1 day				-		Receiv	red @ La	ь Ву	104			Date	//////////////////////////////////////	-0	/	79	L	
Date Needed		Other			Other EDD	l				27								
No is the read of	272	please ind	icate packi	age needed:	please indicate EDD needed :	By sig	gning th	iis fori	n, clie	nt agre	ees to	Parad	ıgm Te	rms a	nd Cond	itions (rev	erse). Page 7 o	f 706
THE	BETTER													See	additio	nal page f	or sample co	nditions.

VOLATILE ORGANICS SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 1

 Lab Sample ID:
 203556-03
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.92 <i>UJ</i>	ug/Kg		8/7/2020 19:50
1,1,2,2-Tetrachloroethane	< 3.92	ug/Kg		8/7/2020 19:50
1,1,2-Trichloroethane	< 3.92	ug/Kg		8/7/2020 19:50
1,1-Dichloroethane	< 3.92	ug/Kg		8/7/2020 19:50
1,1-Dichloroethene	< 3.92	ug/Kg		8/7/2020 19:50
1,2,3-Trichlorobenzene	<9.79 R	ug/Kg		8/7/2020 19:50
1,2,4-Trichlorobenzene	< 9.79 R	ug/Kg		8/7/2020 19:50
1,2,4-Trimethylbenzene	< 3.92 <i>UJ</i>	ug/Kg		8/7/2020 19:50
1,2-Dibromo-3-Chloropropane	<19.6 R	ug/Kg		8/7/2020 19:50
1,2-Dibromoethane	< 3.92 <i>UJ</i>	ug/Kg		8/7/2020 19:50
1,2-Dichlorobenzene	≤3.92 R	ug/Kg		8/7/2020 19:50
1,2-Dichloroethane	< 3.92 <i>UJ</i>	ug/Kg		8/7/2020 19:50
1,2-Dichloropropane	< 3.92	ug/Kg		8/7/2020 19:50
1,3,5-Trimethylbenzene	< 3.92	ug/Kg		8/7/2020 19:50
1,3-Dichlorobenzene	53.92 R	ug/Kg		8/7/2020 19:50
1,4-Dichlorobenzene	< 3.92	ug/Kg		8/7/2020 19:50
1,4-Dioxane	< 35.2	ug/Kg		8/7/2020 19:50
2-Butanone	< 19.6 <i>UJ</i>	ug/Kg		8/7/2020 19:50
2-Hexanone	< 9.79	ug/Kg		8/7/2020 19:50
4-Methyl-2-pentanone	< 9.79	ug/Kg		8/7/2020 19:50
Acetone	< 19.6	ug/Kg		8/7/2020 19:50
Benzene	< 3.92	ug/Kg		8/7/2020 19:50
Bromochloromethane	< 9.79 ♥	ug/Kg		8/7/2020 19:50

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 1					
Lab Sample ID:	203556-03			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	e	< 3.92 <i>UJ</i>	ug/Kg		8/7/2020	19:5
Bromoform		< 9.79	ug/Kg		8/7/2020	19:5
Bromomethane		< 3.92	ug/Kg		8/7/2020	19:5
Carbon disulfide		< 3.92	ug/Kg		8/7/2020	19:
Carbon Tetrachloride		< 3.92	ug/Kg		8/7/2020	19:5
Chlorobenzene		< 3.92	ug/Kg		8/7/2020	19:5
Chloroethane		< 3.92	ug/Kg		8/7/2020	19:
Chloroform		< 3.92	ug/Kg		8/7/2020	19:
Chloromethane		< 3.92	ug/Kg		8/7/2020	19:
cis-1,2-Dichloroethene		< 3.92	ug/Kg		8/7/2020	19:
cis-1,3-Dichloropropen	e	< 3.92	ug/Kg		8/7/2020	19:
Cyclohexane		< 19.6	ug/Kg		8/7/2020	19:
Dibromochloromethane	e	< 3.92	ug/Kg		8/7/2020	19:
Dichlorodifluorometha	ne	< 3.92	ug/Kg		8/7/2020	19:
Ethylbenzene		< 3.92	ug/Kg		8/7/2020	19:
Freon 113		< 3.92	ug/Kg		8/7/2020	19:
Isopropylbenzene		< 3.92	ug/Kg		8/7/2020	19:
m,p-Xylene		< 3.92	ug/Kg		8/7/2020	19:
Methyl acetate		< 3.92	ug/Kg		8/7/2020	19:
Methyl tert-butyl Ether		< 3.92	ug/Kg		8/7/2020	19:
Methylcyclohexane		< 3.92	ug/Kg		8/7/2020	19:
Methylene chloride		< 9.79	ug/Kg		8/7/2020	19:
Naphthalene		<9.79 R	ug/Kg		8/7/2020	19:
n-Butylbenzene		<3.92 R	ug/Kg		8/7/2020	19:
n-Propylbenzene		< 3.92 <i>UJ</i>	ug/Kg		8/7/2020	10.

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 1							
Lab Sample ID:	203556-03				Da	ate Sampled:	7/30/2020	
Matrix:	Soil				Da	ate Received:	7/30/2020	
o-Xylene		< 3.92 <i>U</i>	IJ 1	ug/Kg			8/7/2020	19:50
p-Isopropyltoluene		< 3.92	1	ug/Kg			8/7/2020	19:50
sec-Butylbenzene		< 3.92	1	ug/Kg			8/7/2020	19:50
Styrene		< 9.79	1	ug/Kg			8/7/2020	19:50
tert-Butylbenzene		< 3.92	1	ug/Kg			8/7/2020	19:50
Tetrachloroethene		< 3.92	1	ug/Kg			8/7/2020	19:50
Toluene		< 3.92	1	ug/Kg			8/7/2020	19:50
trans-1,2-Dichloroether	ne	< 3.92	1	ug/Kg			8/7/2020	19:50
trans-1,3-Dichloroprop	ene	< 3.92	1	ug/Kg			8/7/2020	19:50
Trichloroethene		< 3.92	1	ug/Kg			8/7/2020	19:50
Trichlorofluoromethan	e	< 3.92	1	ug/Kg			8/7/2020	19:50
Vinyl chloride		< 3.92	1	ug/Kg			8/7/2020	19:50
<u>Surrogate</u>		Per	rcent Re	covery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			119		75 - 134		8/7/2020	19:50
4-Bromofluorobenzene			58.6		59.5 - 129	*	8/7/2020	19:50

98.0

81.0

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Pentafluorobenzene

Toluene-D8

EPA 5035A - L

Data File: x72387.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/5/2020

88.8 - 118

84 - 114

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

8/7/2020

8/7/2020

19:50

19:50

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 2

 Lab Sample ID:
 203556-04
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.05 <i>UJ</i>	ug/Kg		8/7/2020 20:12
1,1,2,2-Tetrachloroethane	< 4.05	ug/Kg		8/7/2020 20:12
1,1,2-Trichloroethane	< 4.05	ug/Kg		8/7/2020 20:12
1,1-Dichloroethane	< 4.05	ug/Kg		8/7/2020 20:12
1,1-Dichloroethene	< 4.05	ug/Kg		8/7/2020 20:12
1,2,3-Trichlorobenzene	<10.1 R	ug/Kg		8/7/2020 20:12
1,2,4-Trichlorobenzene	<10.1 R	ug/Kg		8/7/2020 20:12
1,2,4-Trimethylbenzene	< 4.05 <i>UJ</i>	ug/Kg		8/7/2020 20:12
1,2-Dibromo-3-Chloropropane	≤20.3 R	ug/Kg		8/7/2020 20:12
1,2-Dibromoethane	< 4.05 <i>UJ</i>	ug/Kg		8/7/2020 20:12
1,2-Dichlorobenzene	<4.05 R	ug/Kg		8/7/2020 20:12
1,2-Dichloroethane	< 4.05 <i>UJ</i>	ug/Kg		8/7/2020 20:12
1,2-Dichloropropane	< 4.05	ug/Kg		8/7/2020 20:12
1,3,5-Trimethylbenzene	< 4.05	ug/Kg		8/7/2020 20:12
1,3-Dichlorobenzene	<4.05 R	ug/Kg		8/7/2020 20:12
1,4-Dichlorobenzene	≤4. 05 R	ug/Kg		8/7/2020 20:12
1,4-Dioxane	\$40.5 R	ug/Kg		8/7/2020 20:12
2-Butanone	< 20.3 <i>UJ</i>	ug/Kg		8/7/2020 20:12
2-Hexanone	< 10.1	ug/Kg		8/7/2020 20:12
4-Methyl-2-pentanone	< 10.1	ug/Kg		8/7/2020 20:12
Acetone	< 20.3	ug/Kg		8/7/2020 20:12
Benzene	< 4.05	ug/Kg		8/7/2020 20:12
Bromochloromethane	< 10.1	ug/Kg		8/7/2020 20:12

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 2					
Lab Sample ID:	203556-04			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethan	е	< 4.05 <i>UJ</i>	ug/Kg		8/7/2020	20:1
Bromoform		< 10.1	ug/Kg		8/7/2020	20:1
Bromomethane		< 4.05	ug/Kg		8/7/2020	20:
Carbon disulfide		< 4.05	ug/Kg		8/7/2020	20:
Carbon Tetrachloride		< 4.05	ug/Kg		8/7/2020	20:
Chlorobenzene		< 4.05	ug/Kg		8/7/2020	20:
Chloroethane		< 4.05	ug/Kg		8/7/2020	20:
Chloroform		< 4.05	ug/Kg		8/7/2020	20:
Chloromethane		< 4.05	ug/Kg		8/7/2020	20:
cis-1,2-Dichloroethene	!	< 4.05	ug/Kg		8/7/2020	20:
cis-1,3-Dichloroproper	ne	< 4.05	ug/Kg		8/7/2020	20:
Cyclohexane		< 20.3	ug/Kg		8/7/2020	20:
Dibromochloromethan	ie	< 4.05	ug/Kg		8/7/2020	20:
Dichlorodifluorometha	nne	< 4.05	ug/Kg		8/7/2020	20:
Ethylbenzene		< 4.05	ug/Kg		8/7/2020	20:
Freon 113		< 4.05	ug/Kg		8/7/2020	20:
Isopropylbenzene		< 4.05	ug/Kg		8/7/2020	20:
m,p-Xylene		2.13 J	ug/Kg	J	8/7/2020	20:
Methyl acetate		< 4.05 <i>VJ</i>	ug/Kg		8/7/2020	20:
Methyl tert-butyl Ether	r	< 4.05	ug/Kg		8/7/2020	20:
Methylcyclohexane		< 4.05	ug/Kg		8/7/2020	20:
Methylene chloride		< 10.1	ug/Kg		8/7/2020	20:
Naphthalene		<10.1 R	ug/Kg		8/7/2020	20:
n-Butylbenzene		<1.05 R	ug/Kg		8/7/2020	20:
n-Propylbenzene		< 4.05 <i>UJ</i>	ug/Kg		8/7/2020	20:

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 2						
Lab Sample ID:	203556-04			Dat	e Sampled:	7/30/2020	
Matrix:	Soil			Dat	e Received:	7/30/2020	
o-Xylene		< 4.05 <i>U</i>	J ug/Kg			8/7/2020	20:12
p-Isopropyltoluene		< 4.05	ug/Kg			8/7/2020	20:12
sec-Butylbenzene		< 4.05	ug/Kg			8/7/2020	20:12
Styrene		< 10.1	ug/Kg			8/7/2020	20:12
tert-Butylbenzene		< 4.05	ug/Kg			8/7/2020	20:12
Tetrachloroethene		< 4.05	ug/Kg			8/7/2020	20:12
Toluene		< 4.05	ug/Kg			8/7/2020	20:12
trans-1,2-Dichloroethe	ene	< 4.05	ug/Kg			8/7/2020	20:12
trans-1,3-Dichloroprop	oene	< 4.05	ug/Kg			8/7/2020	20:12
Trichloroethene		< 4.05	ug/Kg			8/7/2020	20:12
Trichlorofluoromethar	ne	< 4.05	ug/Kg			8/7/2020	20:12
Vinyl chloride		< 4.05	ug/Kg			8/7/2020	20:12
<u>Surrogate</u>		Per	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			120	75 - 134		8/7/2020	20:12
4-Bromofluorobenzen	2		58.2	595 - 129	*	8/7/2020	20.12

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
1,2-Dichloroethane-d4	120	75 - 134		8/7/2020	20:12	
4-Bromofluorobenzene	58.2	59.5 - 129	*	8/7/2020	20:12	
Pentafluorobenzene	99.8	88.8 - 118		8/7/2020	20:12	
Toluene-D8	83.1	84 - 114	*	8/7/2020	20:12	

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72388.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/5/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 3

 Lab Sample ID:
 203556-05
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.49 <i>UJ</i>	ug/Kg		8/7/2020 20:34
1,1,2,2-Tetrachloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1,2-Trichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1-Dichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1-Dichloroethene	< 4.49	ug/Kg		8/7/2020 20:34
1,2,3-Trichlorobenzene	511.2 R	ug/Kg		8/7/2020 20:34
1,2,4-Trichlorobenzene	\$11.2 R	ug/Kg		8/7/2020 20:34
1,2,4-Trimethylbenzene	< 4.49 <i>UJ</i>	ug/Kg		8/7/2020 20:34
1,2-Dibromo-3-Chloropropane	<22.4 R	ug/Kg		8/7/2020 20:34
1,2-Dibromoethane	< 4.49 <i>UJ</i>	ug/Kg		8/7/2020 20:34
1,2-Dichlorobenzene	< 1.49 R	ug/Kg		8/7/2020 20:34
1,2-Dichloroethane	< 4.49 <i>UJ</i>	ug/Kg		8/7/2020 20:34
1,2-Dichloropropane	< 4.49	ug/Kg		8/7/2020 20:34
1,3,5-Trimethylbenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,3-Dichlorobenzene	<4.49 R	ug/Kg		8/7/2020 20:34
1,4-Dichlorobenzene	4.49 R	ug/Kg		8/7/2020 20:34
1,4-Dioxane	544.9 R	ug/Kg		8/7/2020 20:34
2-Butanone	< 22.4 <i>UJ</i>	ug/Kg		8/7/2020 20:34
2-Hexanone	< 11.2	ug/Kg		8/7/2020 20:34
4-Methyl-2-pentanone	< 11.2	ug/Kg		8/7/2020 20:34
Acetone	< 22.4	ug/Kg		8/7/2020 20:34
Benzene	< 4.49	ug/Kg		8/7/2020 20:34
Bromochloromethane	< 11.2	ug/Kg		8/7/2020 20:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

- ' '	Sample Identifier:	CF VOC 3					
Bromodichloromethane < 4.49 UJ ug/Kg 8/7/2020 20 Bromoform < 11.2 ug/Kg 8/7/2020 20 Bromomethane < 4.49 ug/Kg 8/7/2020 20 Carbon disulfide < 4.49 ug/Kg 8/7/2020 20 Carbon Tetrachloride < 4.49 ug/Kg 8/7/2020 20 Chlorobenzene < 4.49 ug/Kg 8/7/2020 20 Chloroethane < 4.49 ug/Kg 8/7/2020 20 Chloroform < 4.49 ug/Kg 8/7/2020 20 Chloromethane < 4.49 ug/Kg 8/7/2020 20 cis-1,2-Dichloroethene < 4.49 ug/Kg 8/7/2020 20 Cyclohexane < 22.4 ug/Kg 8/7/2020 20 Cyclohexane < 22.4 ug/Kg 8/7/2020 20 Dibromochloromethane < 4.49 ug/Kg 8/7/2020 20 Ethylbenzene < 4.49 ug/Kg 8/7/2020 20	Lab Sample ID:	203556-05			Date Sampled:	7/30/2020	
Bromoform < 11.2 ug/kg 8/7/2020 20 Bromomethane < 4.49 ug/kg 8/7/2020 20 Carbon disulfide < 4.49 ug/kg 8/7/2020 20 Carbon Tetrachloride < 4.49 ug/kg 8/7/2020 20 Chlorobenzene < 4.49 ug/kg 8/7/2020 20 Chloroethane < 4.49 ug/kg 8/7/2020 20 Chloroform < 4.49 ug/kg 8/7/2020 20 Chloromethane < 4.49 ug/kg 8/7/2020 20 cis-1,2-Dichloroethene < 4.49 ug/kg 8/7/2020 20 cis-1,3-Dichloropropene < 4.49 ug/kg 8/7/2020 20 Cyclohexane < 22.4 ug/kg 8/7/2020 20 Dichlorodifluoromethane < 4.49 ug/kg 8/7/2020 20 Ethylbenzene < 4.49 ug/kg 8/7/2020 20 Freon 113 < 4.49 ug/kg 8/7/2020 20 Isopropylbenzene < 4.49 ug/kg 8/7/2020 20	Matrix:	Soil			Date Received:	7/30/2020	
Bromomethane	Bromodichloromethan	е	< 4.49 <i>UJ</i>	ug/Kg		8/7/2020	20:3
Carbon disulfide	Bromoform		< 11.2	ug/Kg		8/7/2020	20:3
Carbon Tetrachloride	Bromomethane		< 4.49	ug/Kg		8/7/2020	20:3
Chlorobenzene < 4.49	Carbon disulfide		< 4.49	ug/Kg		8/7/2020	20:3
Chloroethane < 4.49	Carbon Tetrachloride		< 4.49	ug/Kg		8/7/2020	20:3
Chloroform < 4.49 ug/Kg 8/7/2020 20 Chloromethane < 4.49 ug/Kg 8/7/2020 20 cis-1,2-Dichloroethene < 4.49 ug/Kg 8/7/2020 20 cis-1,3-Dichloropropene < 4.49 ug/Kg 8/7/2020 20 Cyclohexane < 22.4 ug/Kg 8/7/2020 20 Dibromochloromethane < 4.49 ug/Kg 8/7/2020 20 Dichlorodifluoromethane < 4.49 ug/Kg 8/7/2020 20 Ethylbenzene < 4.49 ug/Kg 8/7/2020 20 Freon 113 < 4.49 ug/Kg 8/7/2020 20 Isopropylbenzene < 4.49 ug/Kg 8/7/2020 20 Isopropylbenzene < 4.49 ug/Kg 8/7/2020 20 Methyl acetate < 4.49 ug/Kg 8/7/2020 20 Methyl tert-butyl Ether < 4.49 ug/Kg 8/7/2020 20 Methylcyclohexane < 4.49 ug/Kg 8/7/2020 20 Methylcyclohexane < 4.49 ug/Kg 8/7/2020 20 Methylene chloride < 11.2 ug/Kg 8/7/2020 20 Methylene chloride < 11.2 ug/Kg 8/7/2020 20 Naphthalene < 14.49 ug/Kg 8/7/2020 20 Naphthalene < 14.49 ug/Kg 8/7/2020 20 Naphthalene < 14.49 ug/Kg 8/7/2020 20 Naphthalene < 11.2 ug/Kg 8/7/2020 20 Naphthalene < 11.2 ug/Kg 8/7/2020 20 Naphthalene < 11.2 ug/Kg 8/7/2020 20	Chlorobenzene		< 4.49	ug/Kg		8/7/2020	20:3
Chloromethane	Chloroethane		< 4.49	ug/Kg		8/7/2020	20:3
cis-1,2-Dichloroethene < 4.49	Chloroform		< 4.49	ug/Kg		8/7/2020	20:3
cis-1,3-Dichloropropene < 4.49	Chloromethane		< 4.49	ug/Kg		8/7/2020	20:3
Cyclohexane < 22.4	cis-1,2-Dichloroethene		< 4.49	ug/Kg		8/7/2020	20:3
Dibromochloromethane < 4.49	cis-1,3-Dichloroproper	ne	< 4.49	ug/Kg		8/7/2020	20:
Dichlorodifluoromethane < 4.49	Cyclohexane		< 22.4	ug/Kg		8/7/2020	20:
Ethylbenzene < 4.49	Dibromochloromethan	е	< 4.49	ug/Kg		8/7/2020	20:
Freon 113	Dichlorodifluorometha	ine	< 4.49	ug/Kg		8/7/2020	20:
Isopropylbenzene < 4.49	Ethylbenzene		< 4.49	ug/Kg		8/7/2020	20:
m,p-Xylene < 4.49	Freon 113		< 4.49	ug/Kg		8/7/2020	20:
Methyl acetate < 4.49	Isopropylbenzene		< 4.49	ug/Kg		8/7/2020	20:
Methyl tert-butyl Ether < 4.49 ug/Kg $8/7/2020$ 20 Methylcyclohexane < 4.49 ug/Kg $8/7/2020$ 20 Methylene chloride < 11.2 ug/Kg $8/7/2020$ 20 Naphthalene < 11.2 ug/Kg $8/7/2020$ 20 n-Butylbenzene < 14.49 ug/Kg $8/7/2020$ 20	m,p-Xylene		< 4.49	ug/Kg		8/7/2020	20:
Methylcyclohexane < 4.49	Methyl acetate		< 4.49	ug/Kg		8/7/2020	20:
Methylene chloride < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 < 11.2 <td>Methyl tert-butyl Ether</td> <td>ſ</td> <td>< 4.49</td> <td>ug/Kg</td> <td></td> <td>8/7/2020</td> <td>20:</td>	Methyl tert-butyl Ether	ſ	< 4.49	ug/Kg		8/7/2020	20:
Naphthalene \$17.2 R ug/Kg 8/7/2020 20 n-Butylbenzene \$4.49 R ug/Kg 8/7/2020 20	Methylcyclohexane		< 4.49	ug/Kg		8/7/2020	20:
n-Butylbenzene	Methylene chloride		< 11.2	ug/Kg		8/7/2020	20:3
	Naphthalene		<11.2 R	ug/Kg		8/7/2020	20:3
n-Propylbenzene < 4.49 <i>UJ</i> ug/Kg 8/7/2020 20	n-Butylbenzene		\$4.49 R	ug/Kg		8/7/2020	20:3
	n-Propylbenzene		< 4.49 <i>UJ</i>	ug/Kg		8/7/2020	20:3

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 3						
Lab Sample ID:	203556-05			Date	e Sampled:	7/30/2020	
Matrix:	Soil			Date	e Received:	7/30/2020	
o-Xylene		< 4.49 <i>L</i>	<i>IJ</i> ug/Kg			8/7/2020	20:34
p-Isopropyltoluene		< 4.49	ug/Kg			8/7/2020	20:34
sec-Butylbenzene		< 4.49	ug/Kg			8/7/2020	20:34
Styrene		< 11.2	ug/Kg			8/7/2020	20:34
tert-Butylbenzene		< 4.49	ug/Kg			8/7/2020	20:34
Tetrachloroethene		< 4.49	ug/Kg			8/7/2020	20:34
Toluene		< 4.49	ug/Kg			8/7/2020	20:34
trans-1,2-Dichloroether	ne	< 4.49	ug/Kg			8/7/2020	20:34
trans-1,3-Dichloroprop	ene	< 4.49	ug/Kg			8/7/2020	20:34
Trichloroethene		< 4.49	ug/Kg			8/7/2020	20:34
Trichlorofluoromethan	e	< 4.49	ug/Kg			8/7/2020	20:34
Vinyl chloride		< 4.49	ug/Kg			8/7/2020	20:34
Surrogate		Per	cent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			119	75 - 134		8/7/2020	20:34
4-Bromofluorobenzene			59.8	59.5 - 129		8/7/2020	20:34
Pentafluorobenzene			98.6	88.8 - 118		8/7/2020	20:34

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Toluene-D8

EPA 5035A - L

Data File: x72389.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

79.7

MKP 10/5/2020

84 - 114

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

8/7/2020

20:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 4

 Lab Sample ID:
 203556-06
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.40 <i>UJ</i>	ug/Kg		8/7/2020 20:56
1,1,2,2-Tetrachloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1,2-Trichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1-Dichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1-Dichloroethene	< 4.40 V	ug/Kg		8/7/2020 20:56
1,2,3-Trichlorobenzene	11.0 R	ug/Kg		8/7/2020 20:56
1,2,4-Trichlorobenzene	<11.0 R	ug/Kg		8/7/2020 20:56
1,2,4-Trimethylbenzene	< 4.40 <i>UJ</i>	ug/Kg		8/7/2020 20:56
1,2-Dibromo-3-Chloropropane	522.0 R	ug/Kg		8/7/2020 20:56
1,2-Dibromoethane	< 4.40 <i>UJ</i>	ug/Kg		8/7/2020 20:56
1,2-Dichlorobenzene	4.40 R	ug/Kg		8/7/2020 20:56
1,2-Dichloroethane	< 4.40 <i>UJ</i>	ug/Kg		8/7/2020 20:56
1,2-Dichloropropane	< 4.40	ug/Kg		8/7/2020 20:56
1,3,5-Trimethylbenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,3-Dichlorobenzene	<4.40 R	ug/Kg		8/7/2020 20:56
1,4-Dichlorobenzene	<4.40 R	ug/Kg		8/7/2020 20:56
1,4-Dioxane	<44.0 R	ug/Kg		8/7/2020 20:56
2-Butanone	< 22.0 <i>UJ</i>	ug/Kg		8/7/2020 20:56
2-Hexanone	< 11.0	ug/Kg		8/7/2020 20:56
4-Methyl-2-pentanone	< 11.0	ug/Kg		8/7/2020 20:56
Acetone	< 22.0	ug/Kg		8/7/2020 20:56
Benzene	< 4.40	ug/Kg		8/7/2020 20:56
Bromochloromethane	< 11.0	ug/Kg		8/7/2020 20:56

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 4					
Lab Sample ID:	203556-06			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	9	< 4.40 <i>UJ</i>	ug/Kg		8/7/2020	20:56
Bromoform		< 11.0	ug/Kg		8/7/2020	20:56
Bromomethane		< 4.40	ug/Kg		8/7/2020	20:56
Carbon disulfide		< 4.40	ug/Kg		8/7/2020	20:56
Carbon Tetrachloride		< 4.40	ug/Kg		8/7/2020	20:50
Chlorobenzene		< 4.40	ug/Kg		8/7/2020	20:56
Chloroethane		< 4.40	ug/Kg		8/7/2020	20:5
Chloroform		< 4.40	ug/Kg		8/7/2020	20:5
Chloromethane		< 4.40	ug/Kg		8/7/2020	20:5
cis-1,2-Dichloroethene		< 4.40	ug/Kg		8/7/2020	20:5
cis-1,3-Dichloropropen	e	< 4.40	ug/Kg		8/7/2020	20:5
Cyclohexane		< 22.0	ug/Kg		8/7/2020	20:5
Dibromochloromethane	ė	< 4.40	ug/Kg		8/7/2020	20:5
Dichlorodifluorometha	ne	< 4.40	ug/Kg		8/7/2020	20:5
Ethylbenzene		< 4.40	ug/Kg		8/7/2020	20:5
Freon 113		< 4.40	ug/Kg		8/7/2020	20:5
Isopropylbenzene		< 4.40	ug/Kg		8/7/2020	20:5
m,p-Xylene		2.40 J	ug/Kg	J	8/7/2020	20:5
Methyl acetate		< 4.40 <i>VJ</i>	ug/Kg		8/7/2020	20:5
Methyl tert-butyl Ether		< 4.40	ug/Kg		8/7/2020	20:5
Methylcyclohexane		< 4.40	ug/Kg		8/7/2020	20:5
Methylene chloride		< 11.0	ug/Kg		8/7/2020	20:5
Naphthalene		<11.0 R	ug/Kg		8/7/2020	20:5
n-Butylbenzene		<4.40 R	ug/Kg		8/7/2020	20:5
n-Propylbenzene		< 4.40 <i>UJ</i>	ug/Kg		8/7/2020	20:5

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 4						
Lab Sample ID:	203556-06			Date	Sampled:	7/30/2020	
Matrix:	Soil			Date	Received:	7/30/2020	
o-Xylene		< 4.40	∪ ug/Kg			8/7/2020	20:56
p-Isopropyltoluene		< 4.40	ug/Kg			8/7/2020	20:56
sec-Butylbenzene		< 4.40	ug/Kg			8/7/2020	20:56
Styrene		< 11.0	ug/Kg			8/7/2020	20:56
tert-Butylbenzene		< 4.40	ug/Kg			8/7/2020	20:56
Tetrachloroethene		< 4.40	ug/Kg			8/7/2020	20:56
Toluene		< 4.40	ug/Kg			8/7/2020	20:56
trans-1,2-Dichloroethe	ne	< 4.40	ug/Kg			8/7/2020	20:56
trans-1,3-Dichloroprop	ene	< 4.40	ug/Kg			8/7/2020	20:56
Trichloroethene		< 4.40	ug/Kg			8/7/2020	20:56
Trichlorofluoromethan	e	< 4.40	ug/Kg			8/7/2020	20:56
Vinyl chloride		< 4.40	ug/Kg			8/7/2020	20:56
<u>Surrogate</u>		Percent Recovery		Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			119	75 - 134		8/7/2020	20:56

20:56
20:56
20:56
20:56
2

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72390.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/5/2020

SEMIVOLATILE ORGANICS SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	< 329	ug/Kg		8/4/2020	12:05
1,2,4,5-Tetrachlorobenzene	< 329	ug/Kg		8/4/2020	12:05
1,2,4-Trichlorobenzene	< 329	ug/Kg		8/4/2020	12:05
1,2-Dichlorobenzene	< 329	ug/Kg		8/4/2020	12:05
1,3-Dichlorobenzene	< 329	ug/Kg		8/4/2020	12:05
1,4-Dichlorobenzene	< 329	ug/Kg		8/4/2020	12:05
2,2-Oxybis (1-chloropropane)	< 329	ug/Kg		8/4/2020	12:05
2,3,4,6-Tetrachlorophenol	< 329	ug/Kg		8/4/2020	12:05
2,4,5-Trichlorophenol	< 329	ug/Kg		8/4/2020	12:05
2,4,6-Trichlorophenol	< 329	ug/Kg		8/4/2020	12:05
2,4-Dichlorophenol	< 329	ug/Kg		8/4/2020	12:05
2,4-Dimethylphenol	< 329	ug/Kg		8/4/2020	12:05
2,4-Dinitrophenol	< 1320	ug/Kg		8/4/2020	12:05
2,4-Dinitrotoluene	< 329	ug/Kg		8/4/2020	12:05
2,6-Dinitrotoluene	< 329	ug/Kg		8/4/2020	12:05
2-Chloronaphthalene	< 329	ug/Kg		8/4/2020	12:05
2-Chlorophenol	< 329	ug/Kg		8/4/2020	12:05
2-Methylnapthalene	< 329	ug/Kg		8/4/2020	12:05
2-Methylphenol	< 329	ug/Kg		8/4/2020	12:05
2-Nitroaniline	< 329	ug/Kg		8/4/2020	12:05
2-Nitrophenol	< 329	ug/Kg		8/4/2020	12:05
3&4-Methylphenol	< 329	ug/Kg		8/4/2020	12:05
3,3'-Dichlorobenzidine	< 329	ug/Kg		8/4/2020	12:05

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF1					
Lab Sample ID:	203556-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
3-Nitroaniline		< 329	ug/Kg		8/4/2020	12:05
4,6-Dinitro-2-methylp	ohenol	< 659	ug/Kg		8/4/2020	12:05
4-Bromophenyl pheny	yl ether	< 329	ug/Kg		8/4/2020	12:05
4-Chloro-3-methylpho	enol	< 329	ug/Kg		8/4/2020	12:0
4-Chloroaniline		< 329	ug/Kg		8/4/2020	12:0
4-Chlorophenyl pheny	yl ether	< 329	ug/Kg		8/4/2020	12:0
4-Nitroaniline		< 329	ug/Kg		8/4/2020	12:0
4-Nitrophenol		< 329	ug/Kg		8/4/2020	12:0
Acenaphthene		< 329	ug/Kg		8/4/2020	12:0
Acenaphthylene		< 329	ug/Kg		8/4/2020	12:0
Acetophenone		< 329	ug/Kg		8/4/2020	12:0
Anthracene		261	ug/Kg	J	8/4/2020	12:0
Atrazine		<329 <i>UJ</i>	ug/Kg		8/4/2020	12:0
Benzaldehyde		< 329	ug/Kg		8/4/2020	12:0
Benzo (a) anthracene		1080	ug/Kg		8/4/2020	12:0
Benzo (a) pyrene		1210	ug/Kg		8/4/2020	12:0
Benzo (b) fluoranther	ne	1340	ug/Kg		8/4/2020	12:0
Benzo (g,h,i) perylene		901	ug/Kg		8/4/2020	12:0
Benzo (k) fluoranthen	ne	983	ug/Kg		8/4/2020	12:0
Bis (2-chloroethoxy)	methane	< 329	ug/Kg		8/4/2020	12:0
Bis (2-chloroethyl) et	her	< 329	ug/Kg		8/4/2020	12:0
Bis (2-ethylhexyl) pht	halate	< 329	ug/Kg		8/4/2020	12:0
Butylbenzylphthalate		< 329	ug/Kg		8/4/2020	12:0
Caprolactam		< 329	ug/Kg		8/4/2020	12:0
Carbazole		< 329	ug/Kg		8/4/2020	12:0

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF1					
Lab Sample ID:	203556-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		1250	ug/Kg		8/4/2020	12:05
Dibenz (a,h) anthracene		270	ug/Kg	J	8/4/2020	12:05
Dibenzofuran		< 329	ug/Kg		8/4/2020	12:05
Diethyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Dimethyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Di-n-butyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Di-n-octylphthalate		< 329	ug/Kg		8/4/2020	12:05
Fluoranthene		2510	ug/Kg		8/4/2020	12:05
Fluorene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorobenzene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorobutadiene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorocyclopentadi	ene	< 1320 <i>UJ</i>	ug/Kg		8/4/2020	12:05
Hexachloroethane		< 329	ug/Kg		8/4/2020	12:05
Indeno (1,2,3-cd) pyreno	е	797	ug/Kg		8/4/2020	12:05
Isophorone		< 329	ug/Kg		8/4/2020	12:05
Naphthalene		< 329	ug/Kg		8/4/2020	12:05
Nitrobenzene		< 329	ug/Kg		8/4/2020	12:05
N-Nitroso-di-n-propylar	nine	< 329	ug/Kg		8/4/2020	12:05
N-Nitrosodiphenylamin	e	< 329	ug/Kg		8/4/2020	12:05
Pentachlorophenol		< 659	ug/Kg		8/4/2020	12:05
Phenanthrene		1110	ug/Kg		8/4/2020	12:05
Phenol		< 329	ug/Kg		8/4/2020	12:05
Pyrene		2000	ug/Kg		8/4/2020	12:05

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 320	ug/Kg		8/4/2020 12:34
1,2,4,5-Tetrachlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,2,4-Trichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,2-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,3-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,4-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
2,2-Oxybis (1-chloropropane)	< 320	ug/Kg		8/4/2020 12:34
2,3,4,6-Tetrachlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4,5-Trichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4,6-Trichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dimethylphenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dinitrophenol	< 1280	ug/Kg		8/4/2020 12:34
2,4-Dinitrotoluene	< 320	ug/Kg		8/4/2020 12:34
2,6-Dinitrotoluene	< 320	ug/Kg		8/4/2020 12:34
2-Chloronaphthalene	< 320	ug/Kg		8/4/2020 12:34
2-Chlorophenol	< 320	ug/Kg		8/4/2020 12:34
2-Methylnapthalene	< 320	ug/Kg		8/4/2020 12:34
2-Methylphenol	< 320	ug/Kg		8/4/2020 12:34
2-Nitroaniline	< 320	ug/Kg		8/4/2020 12:34
2-Nitrophenol	< 320	ug/Kg		8/4/2020 12:34
3&4-Methylphenol	< 320	ug/Kg		8/4/2020 12:34
3,3'-Dichlorobenzidine	< 320	ug/Kg		8/4/2020 12:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

-	•						
Sample Identifier:	CF2						
Lab Sample ID:	203556-02				Date Sampled:	7/30/2020	
Matrix:	Soil				Date Received:	7/30/2020	
3-Nitroaniline		< 320		ug/Kg		8/4/2020	12:34
4,6-Dinitro-2-methylp	henol	< 639		ug/Kg		8/4/2020	12:34
4-Bromophenyl pheny	l ether	< 320		ug/Kg		8/4/2020	12:34
4-Chloro-3-methylphe	nol	< 320		ug/Kg		8/4/2020	12:34
4-Chloroaniline		< 320		ug/Kg		8/4/2020	12:34
4-Chlorophenyl pheny	l ether	< 320		ug/Kg		8/4/2020	12:34
4-Nitroaniline		< 320		ug/Kg		8/4/2020	12:34
4-Nitrophenol		< 320		ug/Kg		8/4/2020	12:34
Acenaphthene		< 320		ug/Kg		8/4/2020	12:34
Acenaphthylene		< 320		ug/Kg		8/4/2020	12:34
Acetophenone		< 320		ug/Kg		8/4/2020	12:34
Anthracene		< 320		ug/Kg		8/4/2020	12:34
Atrazine		< 320	UJ	ug/Kg		8/4/2020	12:34
Benzaldehyde		< 320		ug/Kg		8/4/2020	12:34
Benzo (a) anthracene		386		ug/Kg		8/4/2020	12:34
Benzo (a) pyrene		486		ug/Kg		8/4/2020	12:34
Benzo (b) fluoranthen	e	607		ug/Kg		8/4/2020	12:34
Benzo (g,h,i) perylene		410		ug/Kg		8/4/2020	12:34
Benzo (k) fluoranthen	e	373		ug/Kg		8/4/2020	12:34
Bis (2-chloroethoxy) n	nethane	< 320		ug/Kg		8/4/2020	12:34
Bis (2-chloroethyl) eth	ner	< 320		ug/Kg		8/4/2020	12:34
Bis (2-ethylhexyl) phtl	nalate	< 320		ug/Kg		8/4/2020	12:34
Butylbenzylphthalate		< 320		ug/Kg		8/4/2020	12:34
Caprolactam		< 320		ug/Kg		8/4/2020	12:34
Carbazole		< 320		ug/Kg		8/4/2020	12:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF2					
Lab Sample ID:	203556-02			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		508	ug/Kg		8/4/2020	12:34
Dibenz (a,h) anthracene	e	< 320	ug/Kg		8/4/2020	12:34
Dibenzofuran		< 320	ug/Kg		8/4/2020	12:34
Diethyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Dimethyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Di-n-butyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Di-n-octylphthalate		< 320	ug/Kg		8/4/2020	12:34
Fluoranthene		944	ug/Kg		8/4/2020	12:34
Fluorene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorobenzene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorobutadiene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorocyclopentad	liene	< 1280 <i>UJ</i>	ug/Kg		8/4/2020	12:34
Hexachloroethane		< 320	ug/Kg		8/4/2020	12:34
Indeno (1,2,3-cd) pyren	ie	336	ug/Kg		8/4/2020	12:34
Isophorone		< 320	ug/Kg		8/4/2020	12:34
Naphthalene		< 320	ug/Kg		8/4/2020	12:34
Nitrobenzene		< 320	ug/Kg		8/4/2020	12:34
N-Nitroso-di-n-propyla	mine	< 320	ug/Kg		8/4/2020	12:34
N-Nitrosodiphenylamin	ne	< 320	ug/Kg		8/4/2020	12:34
Pentachlorophenol		< 639	ug/Kg		8/4/2020	12:34
Phenanthrene		312	ug/Kg	J	8/4/2020	12:34
Phenol		< 320	ug/Kg		8/4/2020	12:34
Pyrene		735	ug/Kg		8/4/2020	12:34

PESTICIDES SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.19	ug/Kg		8/3/2020 15:32
4,4-DDE	< 3.19	ug/Kg		8/3/2020 15:32
4,4-DDT	< 3.19	ug/Kg		8/3/2020 15:32
Aldrin	< 3.19	ug/Kg		8/3/2020 15:32
alpha-BHC	< 3.19	ug/Kg		8/3/2020 15:32
beta-BHC	< 3.19	ug/Kg		8/3/2020 15:32
cis-Chlordane	< 3.19	ug/Kg		8/3/2020 15:32
delta-BHC	< 3.19	ug/Kg		8/3/2020 15:32
Dieldrin	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan I	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan II	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan Sulfate	< 3.19	ug/Kg		8/3/2020 15:32
Endrin	< 3.19	ug/Kg		8/3/2020 15:32
Endrin Aldehyde	< 3.19	ug/Kg		8/3/2020 15:32
Endrin Ketone	2.14 J	ug/Kg	J	8/3/2020 15:32
gamma-BHC (Lindane)	3.84	ug/Kg		8/3/2020 15:32
Heptachlor	< 3.19	ug/Kg		8/3/2020 15:32
Heptachlor Epoxide	< 3.19	ug/Kg		8/3/2020 15:32
Methoxychlor	< 3.19	ug/Kg		8/3/2020 15:32
Toxaphene	< 31.9	ug/Kg		8/3/2020 15:32
trans-Chlordane	< 3.19	ug/Kg		8/3/2020 15:32

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.18	ug/Kg		8/3/2020 15:51
4,4-DDE	11.5 J	ug/Kg		8/3/2020 15:51
4,4-DDT	< 3.18	ug/Kg		8/3/2020 15:51
Aldrin	< 3.18	ug/Kg		8/3/2020 15:51
alpha-BHC	< 3.18	ug/Kg		8/3/2020 15:51
beta-BHC	< 3.18	ug/Kg		8/3/2020 15:51
cis-Chlordane	< 3.18	ug/Kg		8/3/2020 15:51
delta-BHC	< 3.18	ug/Kg		8/3/2020 15:51
Dieldrin	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan I	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan II	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan Sulfate	< 3.18	ug/Kg		8/3/2020 15:51
Endrin	< 3.18	ug/Kg		8/3/2020 15:51
Endrin Aldehyde	< 3.18	ug/Kg		8/3/2020 15:51
Endrin Ketone	< 3.18	ug/Kg		8/3/2020 15:51
gamma-BHC (Lindane)	< 3.18	ug/Kg		8/3/2020 15:51
Heptachlor	< 3.18	ug/Kg		8/3/2020 15:51
Heptachlor Epoxide	< 3.18	ug/Kg		8/3/2020 15:51
Methoxychlor	< 3.18	ug/Kg		8/3/2020 15:51
Toxaphene	< 31.8	ug/Kg		8/3/2020 15:51
trans-Chlordane	< 3.18	ug/Kg		8/3/2020 15:51

PCBS SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
PCB-1016	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1221	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1232	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1242	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1248	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1254	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1260	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1262	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1268	< 0.0319	mg/Kg			8/3/2020	15:58
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	æd
Tetrachloro-m-xylene	Ţ	52.4	18.2 - 85.6		8/3/2020	15:58

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/3/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

PCBs

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analy	vzed
PCB-1016	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1221	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1232	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1242	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1248	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1254	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1260	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1262	< 0.0318	mg/Kg			8/3/2020	16:23
PCB-1268	< 0.0318	mg/Kg			8/3/2020	16:23
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Tetrachloro-m-xylene	4	l 4.4	18.2 - 85.6		8/3/2020	16:23

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/3/2020

METALS DATA

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	10.8	mg/Kg		8/4/2020 20:25
Barium	65.8	mg/Kg		8/4/2020 20:25
Beryllium	0.365	mg/Kg		8/4/2020 20:25
Cadmium	2.03	mg/Kg		8/4/2020 20:25
Chromium	17.5	mg/Kg		8/4/2020 20:25
Copper	20.5	mg/Kg		8/4/2020 20:25
Lead	27.9	mg/Kg		8/4/2020 20:25
Manganese	318	mg/Kg		8/4/2020 20:25
Nickel	16.9	mg/Kg		8/4/2020 20:25
Selenium	< 1.07	mg/Kg		8/4/2020 20:25
Silver	< 0.536	mg/Kg		8/4/2020 20:25
Zinc	73.7	mg/Kg		8/5/2020 18:44

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 8/3/2020 Data File: 200804B

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	4.32	mg/Kg		8/4/2020 20:30
Barium	102	mg/Kg		8/4/2020 20:30
Beryllium	0.615	mg/Kg		8/4/2020 20:30
Cadmium	2.29	mg/Kg		8/4/2020 20:30
Chromium	14.8	mg/Kg		8/4/2020 20:30
Copper	15.0	mg/Kg		8/4/2020 20:30
Lead	40.4	mg/Kg		8/4/2020 20:30
Manganese	968	mg/Kg		8/5/2020 18:48
Nickel	13.3	mg/Kg		8/4/2020 20:30
Selenium	< 1.10	mg/Kg		8/4/2020 20:30
Silver	< 0.550	mg/Kg		8/4/2020 20:30
Zinc	96.6	mg/Kg		8/5/2020 18:53

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 8/3/2020 Data File: 200804B

Service Request No:R2006787

Paradigm Environmental Services, Inc. 179 Lake Avenue Rochester, NY 14608

Laboratory Results for: 203556

Dear Reporting,

Enclosed are the results of the sample(s) submitted to our laboratory July 31, 2020 For your reference, these analyses have been assigned our service request number **R2006787**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Brady.Kalkman@alsglobal.com.

Respectfully submitted,

Gody Kulker

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Client: Paradigm Environmental Services, Inc. Service Request: R2006787

Project: 203556 Date Received: 07/31/2020

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Two soil samples were received for analysis at ALS Environmental on 07/31/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Subcontracted Analytical Parameters:

One or more samples were subcontracted to another laboratory for testing. The certified analytical report from the subcontractor has been included in its entirety at the end of this report and includes the name and address of the subcontracted laboratory.

Approved by _____

Date 08/27/2020

CHAIN OF CUSTODY

ALS: ELAP ID: 10145 REPORT TO: . INVOICE TO: . 4 COMPANY: COMPANY: LAB PROJECT #: CLIENT PROJECT #: Paradigm Environmental Same ADDRESS: TURNAROUND TIME: (WORKING DAYS) CITY: STATE: CITY: STATE: ZIP: Standard PHONE: FAX: PHONE: **OTHER** PROJECT NAME/SITE NAME: ATTN: ATTN: Accounts Payable Reporting 31/150 Tonawanda Please email results to reporting@paradigmenv.com COMMENTS: Date Due: clean Fill report J Flags REQUESTED ANALYSIS ASP Cat B pachage Que 9/21 ¢ G reportage PrywT PARADIGM LAB BAS DATE TIME SAMPLE LOCATION/FIELD ID SAMPLE NUMBER 17/30/2020 1210 203556-01 CFI So: 203556-02 CFZ 110 **LAB USE ONLY BELOW THIS LINE** Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Receipt Parameter **NELAC Compliance** Container Type: Client Sampled By Comments: Date/Time Total Cost: 7-31-20 Preservation: Comments: Relinguished By Holding Time: Comments: Received By. Date/Time P.I.F. Temperature: Comments:

Page 7 of 300

August 26, 2020

Brady Kalkman ALS Environmental 1565 Jefferson Rd Bldg 300 Rochester, NY 14623

Re: **R2006787** Work Order: **20080320**

Dear Brady,

ALS Environmental received 2 sample(s) on Aug 05, 2020 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 286.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Ehrland Bosworth
/S/ Ehrland Bosworth

Ehrland Bosworth Project Manager

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🐎

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client: ALS Environmental

Project: R2006787 Case Narrative Work Order: 20080320

Samples for the above noted Work Order were received on 08/05/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Extractable Organics:

Batch 161297, Method LCMS_D7968_S, Sample LCS1-161297: The LCS recovery was below the lower control limit. The sample results for this analyte may be biased low for this analyte: PFBS, however passes QC criteria.

Batch 161297, Method LCMS_D7968_S, Sample LCS1-161297: PFDS ion ratio failed low. PFOS ion ratio failed low.

Batch 161297, Method LCMS_D7968_S, Sample LCS2-161297: NEtFOSAA ion ratio failed high.

Batch 161297, Method LCMS_D7968_S, Sample LCS3-161297: The LCS recovery was below the lower control limit. The sample results for this analyte may be biased low for this analyte: HFPO-DA, however passes QC criteria.

No other deviations or anomalies were noted.

ALS Group, USA

Date: 25-Aug-20

Client: ALS Environmental

Project: R2006787
Work Order: 20080320
Work Order Sample Summary

Lab Samp ID Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
20080320-01 203556-01 CF1	Soil		7/30/2020 12:10	8/5/2020 10:30	
20080320-02 203556-02 CF2	Soil		7/30/2020 12:10	8/5/2020 10:30	

ALS Group USA, Corp. dba ALS Environmental

Client: ALS - ROCHESTER

Project: R2006787 **Sample Matrix:** Soil

Sample Name:

Lab Code:

203556-01 CF1

20080320-01

Analytical Report

Service Request: 20080320 **Date Collected:** 07/30/20 12:10

Date Received: 08/05/20 10:30

Basis: Dry

Units: ng/Kg-dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorobutanoic Acid	130 J	140	1	08/11/20 18:45	08/11/20 17:00	_
(PFBA)						
Perfluoropentanoic Acid	75 J	140	1	08/11/20 18:45	08/11/20 17:00	
(PFPeA)	70 T	1.40		00/11/00 10 45	00/11/20 17 00	
Perfluorohexanoic Acid	59 J	140	1	08/11/20 18:45	08/11/20 17:00	
(PFHxA)	00 т	1.40	1	00/11/00 10 45	00/11/00 17 00	
Perfluoroheptanoic Acid	98 J	140	1	08/11/20 18:45	08/11/20 17:00	
(PFHpA) Perfluorooctanoic Acid	460	28	1	08/11/20 18:45	08/11/20 17:00	
(PFOA)	400	28	1	08/11/20 18:43	08/11/20 17:00	
Perfluorononanoic Acid	100 J	28	1	08/11/20 18:45	08/11/20 17:00	
(PFNA)	100 0	26	1	06/11/20 16.43	06/11/20 17.00	
Perfluorodecanoic Acid	37 J	140	1	08/11/20 18:45	08/11/20 17:00	
(PFDA)	37 9	170	1	06/11/20 16.43	00/11/20 17.00	
Perfluoroundecanoic Acid	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
(PFUnA)	110 0	110	1	00/11/20 10.13	00/11/2017:00	
Perfluorododecanoic Acid	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
(PFDoA)	110 0	1.0	-	00/11/20 10/10	00/11/201/100	
Perfluorotridecanoic Acid	47 J	140	1	08/11/20 18:45	08/11/20 17:00	
(PFTriA)						
Perfluorotetradecanoic Acid	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
(PFTeA)						
Perfluorobutanesulfonic	28 U <i>UJ</i>	28	1	08/11/20 18:45	08/11/20 17:00	
Acid (PFBS)						
Perfluorohexanesulfonic	41 J	140	1	08/11/20 18:45	08/11/20 17:00	
Acid (PFHxS)						
Perfluoroheptanesulfonic	48 J	140	1	08/11/20 18:45	08/11/20 17:00	
Acid (PFHpS)						
Perfluorooctanesulfonic	1,400	28	1	08/11/20 18:45	08/11/20 17:00	
Acid (PFOS)	A0.77			00/11/00/10/17	00/11/00/15/00	
Perfluorodecanesulfonic	28 U	28	1	08/11/20 18:45	08/11/20 17:00	
Acid (PFDS)	140 11	1.40	1	00/11/00 10 45	00/11/20 17 00	
Fluorotelomer Sulphonic	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
Acid 6:2 (FtS 6:2)	140 11	140	1	00/11/20 10 45	00/11/20 17 00	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
Perfluorooctanesulfonamide	28 U	28	1	08/11/20 18:45	08/11/20 17:00	
(PFOSA)	20 U	∠8	1	06/11/20 18:43	06/11/20 1/:00	
(PFOSA) N-	140 U	140	1	08/11/20 18:45	08/11/20 17:00	
Ethylperfluorooctanesulfon	170 0	170	1	00/11/20 10.43	00/11/20 1/.00	
amidoacetic Acid						
annuvacenc Aciu						

MKP 10/5/2020

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006787
Sample Matrix: Soil

Date Collected: 07/30/20 12:10 **Date Received:** 08/05/20 10:30

Service Request: 20080320

Sample Name: 203556-01 CF1 **Lab Code:** 20080320-01

Units: ng/Kg-dry

Basis: Dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

 Analyte Name
 Result
 MRL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 N 140 U
 140 I
 1 08/11/20 18:45
 08/11/20 17:00

Methylperfluoro octane sulfo

namidoacetic Acid

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFBA	103	50 - 130	08/11/20 18:45	
13C5-PFPeA	99.8	50 - 130	08/11/20 18:45	
13C2-PFHxA	102	50 - 130	08/11/20 18:45	
13C4-PFHpA	99.0	50 - 130	08/11/20 18:45	
13C4-PFOA	101	70 - 130	08/11/20 18:45	
13C5-PFNA	103	70 - 130	08/11/20 18:45	
13C2-PFDA	106	70 - 130	08/11/20 18:45	
13C2-PFUnA	102	70 - 130	08/11/20 18:45	
13C2-PFDoA	94.9	70 - 130	08/11/20 18:45	
13C2-PFTeA	57.1	50 - 130	08/11/20 18:45	
13C3-PFBS	95.0	50 - 130	08/11/20 18:45	
18O2-PFHxS	106	70 - 130	08/11/20 18:45	
13C4-PFOS	100	70 - 130	08/11/20 18:45	
13C2-FtS 4:2	82.5	50 - 130	08/11/20 18:45	
13C2-FtS 6:2	92.3	50 - 130	08/11/20 18:45	
13C2-FtS 8:2	87.8	50 - 130	08/11/20 18:45	
13C8-FOSA	98.9	50 - 130	08/11/20 18:45	
d3-N-MeFOSAA	102	50 - 130	08/11/20 18:45	
d5-N-EtFOSAA	105	50 - 130	08/11/20 18:45	
13C3-HFPO-DA	102	50 - 130	08/11/20 18:45	

Printed 8/26/2020 5:34:18 PM Superset Reference:20080320

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006787 **Sample Matrix:** Soil

Sample Name: 203556-02 CF2 Lab Code: 20080320-02

Service Request: 20080320 **Date Collected:** 07/30/20 12:10

Date Received: 08/05/20 10:30

Units: ng/Kg-dry

Basis: Dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorobutanoic Acid (PFBA)	160	140	1	08/11/20 18:56	08/11/20 17:00	
Perfluoropentanoic Acid (PFPeA)	100 J	140	1	08/11/20 18:56	08/11/20 17:00	
Perfluorohexanoic Acid	120 J	140	1	08/11/20 18:56	08/11/20 17:00	
(PFHxA)						
Perfluoroheptanoic Acid	110 J	140	1	08/11/20 18:56	08/11/20 17:00	
(PFHpA)						
Perfluorooctanoic Acid	360	28	1	08/11/20 18:56	08/11/20 17:00	
(PFOA) Perfluorononanoic Acid	100 J	28	1	08/11/20 18:56	08/11/20 17:00	
(PFNA)	100	26	1	06/11/20 16.50	06/11/20 17.00	
Perfluorodecanoic Acid	53 J	140	1	08/11/20 18:56	08/11/20 17:00	
(PFDA)						
Perfluoroundecanoic Acid	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
(PFUnA)	4.40. 77	4.40		00/44/80 40 76	00/44/204=00	
Perfluorododecanoic Acid	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
(PFDoA) Perfluorotridecanoic Acid	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
(PFTriA)	140 0	140	1	06/11/20 16.30	06/11/20 17.00	
Perfluorotetradecanoic Acid	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
(PFTeA)						
Perfluorobutanesulfonic	36 J	28	1	08/11/20 18:56	08/11/20 17:00	
Acid (PFBS)						
Perfluorohexanesulfonic	56 J	140	1	08/11/20 18:56	08/11/20 17:00	
Acid (PFHxS)	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
Perfluoroheptanesulfonic Acid (PFHpS)	140 U	140	1	08/11/20 18:30	08/11/20 17:00	
Perfluorooctanesulfonic	820	28	1	08/11/20 18:56	08/11/20 17:00	
Acid (PFOS)	020	_0	-	00/11/20 10/00	00/11/201/100	
Perfluorodecanesulfonic	28 U	28	1	08/11/20 18:56	08/11/20 17:00	
Acid (PFDS)						
Fluorotelomer Sulphonic	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
Acid 6:2 (FtS 6:2)	140 11	1.40	1	00/11/20 10 56	00/11/20 17 00	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
Perfluorooctanesulfonamide	28 U	28	1	08/11/20 18:56	08/11/20 17:00	
(PFOSA)	20 0	20	•	00/11/20 10.50	00/11/201/.00	
N-	140 U	140	1	08/11/20 18:56	08/11/20 17:00	
Ethylperfluorooctanesulfon amidoacetic Acid						

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006787

Sample Matrix: Soil

Sample Name:

203556-02 CF2

Lab Code: 20080320-02

Service Request: 20080320

Date Collected: 07/30/20 12:10

Date Received: 08/05/20 10:30

Units: ng/Kg-dry

Basis: Dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

 Analyte Name
 Result
 MRL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 N 140 U
 140
 1
 08/11/20 18:56
 08/11/20 17:00

Methylperfluoro octane sulfo

namidoacetic Acid

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFBA	109	50 - 130	08/11/20 18:56	
13C5-PFPeA	103	50 - 130	08/11/20 18:56	
13C2-PFHxA	102	50 - 130	08/11/20 18:56	
13C4-PFHpA	103	50 - 130	08/11/20 18:56	
13C4-PFOA	104	70 - 130	08/11/20 18:56	
13C5-PFNA	102	70 - 130	08/11/20 18:56	
13C2-PFDA	106	70 - 130	08/11/20 18:56	
13C2-PFUnA	102	70 - 130	08/11/20 18:56	
13C2-PFDoA	93.6	70 - 130	08/11/20 18:56	
13C2-PFTeA	55.3	50 - 130	08/11/20 18:56	
13C3-PFBS	93.8	50 - 130	08/11/20 18:56	
18O2-PFHxS	99.0	70 - 130	08/11/20 18:56	
13C4-PFOS	98.4	70 - 130	08/11/20 18:56	
13C2-FtS 4:2	78.3	50 - 130	08/11/20 18:56	
13C2-FtS 6:2	93.5	50 - 130	08/11/20 18:56	
13C2-FtS 8:2	87.0	50 - 130	08/11/20 18:56	
13C8-FOSA	99.6	50 - 130	08/11/20 18:56	
d3-N-MeFOSAA	101	50 - 130	08/11/20 18:56	
d5-N-EtFOSAA	109	50 - 130	08/11/20 18:56	
13C3-HFPO-DA	95.2	50 - 130	08/11/20 18:56	

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

September 02, 2020

Sarah Conlon Paradigm Environmental 179 Lake Avenue Rochester, NY 14608

TEL: (800) 724-1997 Work Order No: 200731035

RE: Sample Analysis Project# : 203556

Dear Sarah Conlon:

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed in the Case Narrative. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature."

Tara Daniels

Laboratory Director

Work Order: 200731035

Workorder Sample Summary

Client: Paradigm Environmental

ProjectName: Sample Analysis
ProjLocation: Project# : 203556

AES Sample No	ClientSampID	Matrix	CollectionDate	DateReceived
200731035-001	CF1	Soil	7/30/2020 12:10:00 PM	7/31/2020
200731035-002	CF2	Soil	7/30/2020 12:10:00 PM	7/31/2020

8/5/2020 Page 1 of 1

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

Case Narrative

Client: Paradigm Environmental Services

Case: 200731035

SDG: CF1

Herbicides

1) The samples received on were analyzed for Silvex by EPA Method 8321B.

- 2) The sample bottles were not supplied by Adirondack Environmental Services.
- 3) The samples received on 7/31/20 had a temperature of 3 °C.
- 4) Peak height was used to calculate all values appearing in this data package.
- 5) The primary quantitation column is identified as C8.
- 6) AES sample number 200731026-001 was used for the matrix spike and the matrix spike duplicate analysis. All other recoveries were within acceptable limits.

Inorganics – Total Mercury

- 1) The samples were analyzed for Total Mercury as specified on the chain of custody.
- 2) Sample CF2 (AES sample number 200731035-002) was used as the Mercury matrix spike sample. All recoveries were within acceptable limits.
- 3) Sample CF2 (AES sample number 200731035-002) was used as the Mercury duplicate sample. All recoveries were within acceptable limits.

Inorganics

- 1) This project required the analysis of Hexavalent Chromium by EPA 3060A/7196A.
- 2) AES sample number 200728066-002 was used as the soil matrix spike sample for Hexavalent Chromium. The recovery for the soluble Hexavalent Chromium spike was below the acceptable limits. The recovery for the insoluble Hexavalent Chromium spike was below the acceptable limits. This sample is from a separate project, the sample from this project is not flagged.

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

- 3) Sample CF2 (AES sample number 200731035-002) was used as the Hexavalent Chromium duplicate sample. All recoveries were within acceptable limits.
- 4) AES sample number 200803044-008 was used as the soil duplicate sample for Percent Moisture. The recovery was outside the specified limits. This sample was from a different project. No samples in this project are flagged.

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Laboratory Director

Date: 9/2/2020

200731035

CHAIN OF CUSTODY

Δ	D	IR	0	N	D	Δ	CI	6 -	EL	A	P	1	Г
~~	1	1 B W	~	88	الستة	-		0 4	Barrer Comme	-	2 1	B 2	

					REPORT TO:						- INV	OICE	то:			NE	<u> </u>		#L.1/6	Amorphillion Albertalism	SUMMER TO STREET AND S
PA	RADIO	G MP	COMPAN	Y: Para	digm Environ	mental	5 (4 (1 4 C) 1 5 C)	COMPAN	IY:	Sar			Section 1995	KN-2005 ATT DRUG		LAB PRO	JECT #:	CLIEN	T PROJ	\$69757-51 \$69757-51	
			ADDRES	S:				ADDRES	S:												
			CITY:		STATE:	ZIP	1	CITY:				S	TATE:		ZIP:	TURNAR	OUND TIME: (WORKIN	DAYS)	AND THE OWNER OF THE OWNER OW	
			PHONE:	. ri	FAX:			PHONE:				FAX:							STD	est House	
PROJECT NAME/SIT	TE NAME:		ATTN:	Repo	orting			ATTN:	P	ccour	nts Pa	yable				1	2	3	5	\$5000000000000000000000000000000000000	
			COMMEN	тs: Plea	se email result	s to report	ing@pa	aradign	nenv.	com						Date	Due: 8/	7/5/	2.1	2000 2000 2000 2000 2000 2000 2000 200	NOTE A CHILDRE
	- 17 may 27							140	RE	QUE	STED	ANA	LYSI	S		epat	JFla	40			recognition come
		C						c							A5	Pout B	Due: 8/ JFla Pacher MTS Dry WI	je by	e 81.	ļ	
		M	G				M A	U N							nepo	746 1 7 00 6	Mrs Dry Wil	-			
DATE	TIME	0	R	SA	MPLE LOCATION/FIELD	OI O	T R	M A S	X	기 [REMAR	KS	1	PAR/ SAMP	AL LE NU	JMBER
1		l T	В				X X	E N R E	lvex	X I	7							1	e.		
		E						R	3	Z L											
17/30/2020	1210			CF(soil		4	+4					203.	556.	-01				
3	ط			CF2			soil		4 4	00						-	02				
3										•											
4																					
5																					
6	ž,			-																П	
7																					
8																					
9																					
10																				П	
**LAB USE C								100		100	(*										
Sample Condition	Receipt Pa		241/242/2		Compliance	1															
	Container	Туре:		Υ 🔲	N		Client	:									_				
Comments:				8		Sample		010	1	- 1			ate/Tin				Total (Cost:			
	Preserva	ition:		Υ 🔲	N	-	M	4/1	/a	<u>U</u>	7	131	120	الدر	08	370	-				
Comments:						Relinqu	uished B	ly /				D	ate/Tin	ne							
Comments:	Holding T	Time:		Υ	N _	i	- d Div										- 5.5	_		1	
Comments.		~ ~				Receive	eu by				mage		ate/Tin	ne	449 F		P.I.F.				
Comments:	Tempera	ture: 3°C		Υ 🔲	N	Receive	ed @ La	h Bv	Continue of the last	denotes	1,	/31/	20 ate/Tin	na	TILE	117	-	L]	
Commonts.				6		Necelvi	en mera	o by				U	ale/ [II]	110							

CLIENT: Paradigm Environmental

Work Order: 200731035

Reference: Sample Analysis / Project# : 203556

PO#:

Lab Sample ID: 200731035-001 Matrix: SOIL

Client Sample ID: CF1

Date: 05-Aug-20

Collection Date: 7/30/2020 12:10:00 PM

DF **Analyses** Result **RL Qual Units Date Analyzed** Analyst: KF **CHLORINATED HERBICIDES - EPA 8321B** (Prep: SW3545A - 7/31/2020) 2,4,5-TP (Silvex) ND μg/Kg-dry 8/3/2020 4:20:34 PM 358 Surr: Acifluorfen %REC 135 51.2-145 8/3/2020 4:20:34 PM

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Paradigm Environmental

Client Sample ID: CF2 Work Order: 200731035 **Collection Date:** 7/30/2020 12:10:00 PM

Reference: Sample Analysis / Project#: 203556 **Lab Sample ID:** 200731035-002

PO#: Matrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
CHLORINATED HERBICIDES - (Prep: SW3545A						Analyst: KF
2,4,5-TP (Silvex)	ND	361		μg/Kg-dry	1	8/3/2020 4:42:11 PM
Surr: Acifluorfen	160	51.2-145	S	%REC	1	8/3/2020 4:42:11 PM

Date: 05-Aug-20

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Paradigm Environmental

Work Order: 200731035

Reference: Sample Analysis / Project# : 203556

PO#:

Client Sample ID: CF1

Collection Date: 7/30/2020 12:10:00 PM

Date: 05-Aug-20

Lab Sample ID: 200731035-001

Matrix: SOIL

Analyses	Result	RL Qual	Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B - 8/3/2020)				Analyst: AVB
Mercury	ND	0.238	μg/g-dry	1	8/3/2020 3:18:07 PM

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Paradigm Environmental

Client Sample ID: CF2 Work Order: 200731035 **Collection Date:** 7/30/2020 12:10:00 PM

Reference: Sample Analysis / Project#: 203556 **Lab Sample ID:** 200731035-002

PO#: Matrix: SOIL

Analyses	Result	RL Qual Uni	ts DF	Date Analyzed
MERCURY - SW 7471B				Analyst: AVB
(Prep: SW7471B - 8/3/2020)			
Mercury	0.095	0.241 J μg/g-c	dry 1	8/3/2020 3:23:11 PM

Date: 05-Aug-20

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Paradigm Environmental

Work Order: 200731035

Reference: Sample Analysis / Project#: 203556

PO#: Matrix: SOIL

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
HEXAVALENT CHROMIUM - SW (Prep: SW3060A -	, ,				Analyst: JW
Chromium, Hexavalent	ND	1.2	μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM D2	2216 (NOT ELAP CERT	TFIED)			Analyst: TSZ
Percent Moisture	16.1	0.1	wt%	1	8/4/2020

Date: 05-Aug-20

Collection Date: 7/30/2020 12:10:00 PM

Lab Sample ID: 200731035-001

Client Sample ID: CF1

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Paradigm Environmental

Work Order: 200731035

PO#: Matrix: SOIL

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
HEXAVALENT CHROMIUM - S (Prep: SW3060A	` '				Analyst: JW
Chromium, Hexavalent	ND	1.2	μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM	02216 (NOT ELAP CERT	TFIED)			Analyst: TSZ
Percent Moisture	17.0	0.1	wt%	1	8/4/2020

Date: 05-Aug-20

Collection Date: 7/30/2020 12:10:00 PM

Client Sample ID: CF2

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Appendix B

Laboratory QC Documentation

2 VOLATILE SURROGATE RECOVERY

Lab Name: <u>Paradigm Environmental Services</u>

Lab Project #: 203556

Client Name: <u>Paradigm Environmental Services</u>

Matrix: Soil
QC Batch: voas200807

Instrument ID: <u>Instrument1</u>

GC Column 1: DB-624 ID (mm): 0.20 Detector: MSD

LAB SAMPLE NO.	CLIENT SAMPLE ID	PFB %REC	12DCEd4 %REC	TD8 %REC	4BFB %REC	Total Out
1 Blk 1	N/A	70 NEC	75.7	98.4	75	0
					_	
2 LCS 1	N/A	102	84.9	110	109	0
3 203556-03	CF VOC 1	98.0	119	81.0 *	58.6	2
4 203556-04	CF VOC 2	99.8	120	83.1 *	58.2 *	2
5 203556-05	CF VOC 3	98.6	119	79.7 *	59.8	1
6 203556-06	CF VOC 4	96.5	119	81.2 *	58.8 *	2
7						
8						
9						
10						
11						
12						
13						
14		1				
15						
16						
17						
18						
19	+					
20						
21		 				
	+	 				
22						
23	1					
24		-				
25						

 QC LIMITS %

 PFB = Pentafluorobenzene
 (88.8 - 118)

 12DCEd4 = 1,2-Dichloroethane-d4
 (75 - 134)

 TD8 = Toluene-d8
 (84 - 114)

 4BFB = 4-Bromofluorobenzene
 (59.5 - 129)

D Surrogate diluted out

^{*} Values outside of current required QC limits

8 VOLATILE INTERNAL STANDARD AREA and RT SUMMARY

Lab Name: Paradigm Environmental Services Sample ID: CCV Lab File ID: x72366a.D

Lab Project #: 203556

Paradigm Environmental Services Client Name:

Client Project Name: Date Analyzed: BE3 8/7/2020 31/150 Tonawanda Clean Fill Time Analyzed: Client Project #: 11:38

SDG No.: 3556-01

> QC Batch: voas200807

Instrument ID: Instrument1

GC Column 1: DV-624 ID (mm): 0.20 Detector: MSD

CCV	IS1: FB		IS2: CB	d5	IS3: 14DCBd4	
	Area RT Area R		RT	AREA	RT	
12 Hour Standard	206542	5.00	150040	7.95	85848	10.48
Upper Limit	413084	5.50	300080	8.45	171696	10.98
Lower Limit	103271	4.50	75020	7.45	42924	9.98

This CCV applies to the following Samples and QC

	Lab	Client	IS1: FB		IS2: 0	CBd5	IS3: 14DCBd4	
	Sample No.	Sample ID	Area	RT	Area	RT	AREA	RT
1	Blk1	N/A	225095	5.01	152994	7.95	58988	10.49
2	LCS1	N/A	195617	5.01	140010	7.95	81663	10.48
3	203556-03	CF VOC 1	125699	5.01	67913 *	7.96	15852 *	10.49
4	203556-04	CF VOC 2	112184	5.01	66416 *	7.95	15727 *	10.49
5	203556-05	CF VOC 3	115708	5.01	67782 *	7.96	17324 *	10.49
6	203556-06	CF VOC 4	131853	5.01	74005 *	7.96	18254 *	10.49
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

IS1: FB = Fluorobenzene IS2: CBd5 = Chlorobenzene-d5

IS3: 14DCBd4 = 1,4-Dichlorobenzene-d4

Notes: * Values outside of current required QC limits

Area Limits = -50% to +100% of 12 Hour Standard area

RT Limits = -0.50 to +0.50 minutes of 12 Hour Standard retention times

FORM VIII VOA

Method Path : C:\msdchem\1\METHODS\

Method File: 200803.M

Title : 8260/624 Analysis

Last Update : Mon Aug 03 14:04:06 2020

Response Via: Initial Calibration

Calibration Files

 $1 = x72208.D \quad 2 = x72209.D \quad 3 = x72210.D \quad 4 = x72211.D \quad 5 = x72212.D \quad 6 = x72213.D \quad 7 = x72214.D \quad 7 =$

		Compound		1	2	3	4	5	6	7	Avg	%R	SD
												===	
1)	I	Fluorobenzene											
2)	P	Dichlorodifluo	1.045	1.246	1.364	1.108	0.917	0.822		1.084	18.60		
3)		Chloromethane	1.257	1.470	1.652	1.305	1.093	1.019	0.997	1.256	19.35		
4)	P	Vinyl chloride Bromomethane	0.782	1.065	1.299	1.179	1.042	0.962	0.958	1.041	15.99		
5)	P	Bromomethane	1.000	0.957	0.984	0.776	0.641	0.597	0.589	0.792	23.60	*	
6)	P	Chloroethane	0.745	0.842	0.920	0.750	0.626	0.577	0.575	0.719	18.52		
7)	P	Trichlorofluor	1.457	1.718	1.927	1.539	1.248	1.091	1.075	1.436	22.33	*	-
8)		Ethyl ether			0.378						11.22		
9)	P	Freon 113	0.854	1.046	1.155	0.938	0.760	0.671	0.658	0.869	21.70	*	-
10)	P	1,1-Dichloroet									18.45		
11)	P	Acetone		0.189	0.224	0.164	0.141	0.134	0.138	0.225	72.08	X	
12)		Isopropyl Alcohol								0.000	-1.00		
13)		Carbon disulfide									15.92		
14)		Methyl acetate Methylene chlo	0.154	0.219	0.228	0.193	0.167	0.160	0.164	0.184	16.45	4	
15)	P										33.77	*	
16)		Acrylonitrile									18.87		
17)		tert-Butyl Alc									10.88		
18)		Methyl tert-bu									16.32		
19)		trans-1,2-Dich									18.73		
20)	P	1,1-Dichloroet									18.06		
21)		Vinyl acetate									13.34		
22)		2,2-Dichloropr									12.73		
23)		2-Butanone	0.040	0.041	0.055	0.050	0.046	0.046	0.047	0.046#	10.99		
24)	P	cis-1,2-Dichlo									14.79		
25)		Bromochloromet									15.76		
26)			1.244								18.08		
27)	S	Pentafluoroben									2.74		
28)		Tetrahydrofuran									15.01		
29)		1,1,1-Trichlor									16.58		
	P				1.538						14.16		
31)		1,2-Dichloroet									13.61		
	P	Carbon Tetrach	0.857	1.132	1.371	1.189	1.031	0.949	0.931	1.066	16.66		
33)		Benzene	2.192	3.028	3.859	3.374	2.883	2.686	2.602	2.946	18.50		
34)		1,2-Dichloroet									18.49		
35)	Р	Trichloroethene	0.550	0.700	0.860	0.822	0.770	0.754	0.764		13.42		
36)	_	tert-Butyl Ace		0						0.000	-1.00	*	
37)	Р	Methylcyclohexane	0.519								33.06	1	
38)		1,4-Dioxane			0.003	0.003	0.003	0.004	0.004	0.003	11.51		RF < 0.005

200803.M Mon Aug 03 16:03:59 2020 73VOAV2

Page: 1

8/3/2020 15/3

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\200804\

Data File : B48360.D

Acq On : 4 Aug 2020 9:40 am

Operator : A. Monfette

Sample : CCV 50PPM 8270 + PyrMulti

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 04 10:25:13 2020

Quant Method: C:\msdchem\1\methods\ABN200729A.M

Quant Title :

QLast Update : Mon Aug 03 12:06:51 2020

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Dev Area% Dev(min)
46 P 47 P 48 P 49 PM 50 PM 51 P 52 P 53 S 54 P 55 P 56 P 57 P 58 PM 59 S 60 PM 61 P 62 P 63 P	Dibenzofuran Diethyl phthalate Dimethyl phthalate 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluorene 2-Fluorobiphenyl Hexachlorocyclopentadiene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrophenol 2,4,6-Tribromophenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol Atrazine	50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	52.513 52.659 53.024 43.037 54.764 53.874 53.193 52.790 25.219 55.086 53.953 55.693 55.693 55.278 105.749 51.017 50.911 47.628 4.051	-5.0 148 0.00 -5.3 149 0.00 -6.0 148 0.00 13.9 129 0.00 -9.5 150 0.00 -7.7 150 0.00 -6.4 145 0.00 -5.6 147 0.00 149.6# 66 0.00 -10.2 151 0.00 -7.9 151 0.00 -7.9 151 0.00 -11.4 155 0.01 -10.6 159 0.02 -5.7 147 0.00 -2.0 140 0.00 -1.8 140 0.01 4.7 135 0.00 191.9# 14 0.00
64 I 65 P 66 P 67 PM 68 P 69 P 70 P 71 PM 72 P 73 P 74 P 75 P	Phenanthrene-d10 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol Fluoranthene Hexachlorobenzene N-Nitrosodiphenylamine Pentachlorophenol Anthracene Phenanthrene Carbazole Benzo (a) anthracene	40.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 52.006 55.914 45.184 53.422 52.098 53.016 41.612 51.943 51.472 53.151 54.011	0.0 143 0.00 -4.0 145 0.00 -11.8 152 0.00 9.6 138 0.01 -6.8 146 0.00 -4.2 146 0.00 -6.0 146 0.00 16.8 121 0.00 -3.9 143 0.00 -2.9 145 0.00 -6.3 148 0.00 -8.0 149 0.00
76 I 77 78 P 79 P 80 P 81 P 82 PM 83 S	Chrysene-d12 Benzidine Bis (2-ethylhexyl) phthalat Butylbenzylphthalate Chrysene 3,3'-Dichlorobenzidine Pyrene Terphenyl-d14	40.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 78.641 58.136 57.292 52.567 59.022 53.545 53.575	0.0 139 0.00 NT -57.3# 0 0.00 NT -16.3 155 0.00 -14.6 154 0.00 -5.1 143 0.01 -18.0 164 0.00 -7.1 146 0.00 -7.2 147 0.00
84 I 85 P 86 P 87 P 88 P 89 P	Perylene-d12 Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Dibenz (a,h) anthracene	40.000 50.000 50.000 50.000 50.000	40.000 51.882 55.819 54.326 55.231 54.587	$ \begin{array}{c ccccc} 0.0 & 142 & 0.01 \\ -3.8 & 143 & 0.00 \\ -11.6 & 150 & 0.00 \\ -8.7 & 149 & 0.01 \\ -10.5 & 147 & 0.00 \\ -9.2 & 145 & 0.01 \end{array} $

10

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Name:Paradigm Environmental ServicesSample ID:CF1Lab Project #:203556Lab Sample #:203556-01

Client Name: <u>BE3</u>

Client Project Name:31/150 Tonawanda Clean FillDate Analyzed:8/3/2020Client Project #:N/ATime Analyzed:15:32SDG#:3556-01Matrix:Soil

Instrument ID: <u>Dual ECD 1</u>

GC Column 1: Rtx-CLPesticides1 ID (mm): 0.32 Detector 1: ECD1
GC Column 2: Rtx-CLPesticides2 ID (mm): 0.32 Detector 2: ECD2

COMPOUND	COL	RT		NDOW	CONCENTRATION	%D	Q
			FROM	TO			
Endrin Ketone (1)	1	8.35	8.27	8.41	2.82 J		
Endrin Ketone (2)	2	9.81	9.67	9.81	2.14 J	27.4	
gamma-BHC (Lindane) (1)	1	3.53	3.46	3.60	4.26		
gamma-BHC (Lindane) (2)	2	3.99	3.92	4.06	3.84	10.4	
							1
	1						
							1
	+						+
							+
	+						+
	+						+
	+						+
	-		ļ			-	+
							_
							4
							1
	1						
	+						+
	+					1	+
	+						+
	+						+
	+						+
	+					-	+
							+
							4_
							1_
	ĺ	Ì				ĺ	
	1					1	1
	1						+
							+
	+	-	1			 	+
					%D = =</td <td></td> <td></td>		

%D = </= 40%; Passes

^{* =} Outside QC limits

10

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Name:Paradigm Environmental ServicesSample ID:CF2Lab Project #:203556Lab Sample #:203556-02

Client Name: <u>BE3</u>

Client Project Name:31/150 Tonawanda Clean FillDate Analyzed:8/3/2020Client Project #:N/ATime Analyzed:15:51SDG#:3556-01Matrix:Soil

Instrument ID: <u>Dual ECD 1</u>

GC Column 1: Rtx-CLPesticides1 ID (mm): 0.32 Detector 1: ECD1
GC Column 2: Rtx-CLPesticides2 ID (mm): 0.32 Detector 2: ECD2

COMPOUND	COL	RT	RT WII	WOOW	CONCENTRATION	%D	Q
			FROM	TO			
4,4-DDE (1)	1	5.08	5.02	5.16	11.5		
4,4-DDE (2)	2	6.31	6.26	6.40	16.1	33.3	
							₩
							┼
							-
						+	
							1
						+	₩
						+	+
						+	+-
						+	
						+	
				1			
<u> </u>							
							1
							1
							-
						1	-
					%D - -</td <td>_1</td> <td>1</td>	_1	1

%D = </= 40%; Passes

^{* =} Outside QC limits

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006787 **Sample Matrix:** Soil

Sample Name: MBLK2-161297 Lab Code: MBLK2-161297 Service Request: 20080320

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Wet

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorobutanoic Acid (PFBA)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	_
Perfluoropentanoic Acid (PFPeA)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorohexanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFHxA) Perfluoroheptanoic Acid (PFHpA)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorooctanoic Acid (PFOA)	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Perfluorononanoic Acid	14.96 J	25	1	08/11/20 17:53	08/11/20 17:00	
(PFNA) Perfluorodecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFDA) Perfluoroundecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFUnA) Perfluorododecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFDoA) Perfluorotridecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFTriA) Perfluorotetradecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFTeA) Perfluorobutanesulfonic	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFBS) Perfluorohexanesulfonic Acid (PFHxS)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluoroheptanesulfonic Acid (PFHpS)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorooctanesulfonic Acid (PFOS)	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Perfluorodecanesulfonic Acid (PFDS)	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorooctanesulfonamide (PFOSA)	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
N-	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Ethylperfluorooctanesulfon amidoacetic Acid						

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS - ROCHESTER

Soil

Project: R2006787

Sample Matrix:

 Service Request:
 20080320

 Date Analyzed:
 08/11/2020

Date Extracted: 08/11/2020

Lab Control Sample Summary
Organic LC

 Analysis Method:
 D7968-17a
 Units:
 ng/Kg

 Prep Method:
 D7968-17a
 Basis:
 Wet

Analysis Lot: LCMS1_200811A

LCS1-161297

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorobutanesulfonic Acid (PFBS)	25 S,U	22	0 *	35-150
Perfluorodecanesulfonic Acid (PFDS)	22.72 J	24	94.7	35-150
Perfluorononanoic Acid (PFNA)	24.19 J	25	96.8	35-150
Perfluorooctanesulfonamide (PFOSA)	23.46 J	25	93.8	35-150
Perfluorooctanesulfonic Acid (PFOS)	19.35 J	23	84.1	35-150
Perfluorooctanoic Acid (PFOA)	19.58 J	25	78.3	35-150

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

DATA USABILITY SUMMARY REPORT (DUSR)

31/150 Tonawanda Site Buffalo, NY 14207 **NYSDEC BCP # C915299**

SDG: 203558

5 soil samples

Prepared for:

BE3 Corp. 960 Busti Avenue Suite 150-B Buffalo, NY 14213 **Attention: John Berry**

October 2020

Table of Contents

		Page No.						
REVIE	EWER'S NARRATIVE							
1.0	SUMMARY	1						
2.0	INTRODUCTION	1						
3.0	SAMPLE AND ANALYSIS SUMMARY	2						
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA							
5.0	5.0 DATA VALIDATION QUALIFIERS							
6.0	6.0 RESULTS OF THE DATA REVIEW							
7.0	TOTAL USABLE DATA	4						
APPE	NDIX A Validated Analytical Results NDIX B Laboratory QC Documentation NDIX C Validator Qualifications							
Tabl	les							
Table 4		ical Data						
	naries of Validated Results							
Table (
Table (
Table (
Table (
Table (6-5 Metals							

Hexavalent chromium (Cr+6)

Herbicides (Silvex)

PFAAs by EPA 537

Table 6-6

Table 6-7

Table 6-8

REVIEWER'S NARRATIVE BE3 SDG 203558: 31/150 Tonawanda Site

The data associated with this Sample Delivery Group (SDG) 203558, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Multiple Date: 10/7/20

Michael K. Perry

Chemist

1.0 SUMMARY

SITE:

31/150 Tonawanda

BIO-Soil

Buffalo, NY 14207

SAMPLING DATE:

July 30, 2020

SAMPLE TYPE:

5 soil samples

LABORATORY:

Paradigm Environmental

Rochester, NY

SDG No.:

203558

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for five soil samples collected on July 30, 2020. These samples were analyzed for the Part 375 list of Volatile Organic Compounds, Semi-volatile Organic Compounds, PCBs, Pesticides, Cr+6, Herbicides, Metals, and PFAAs.

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 203558 except Herbicides and Mercury were analyzed by Adirondack Environmental, Albany, NY as SDG 200731032 and PFAAs by ALS Environmental, Rochester, NY as SDG R2006788. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance
110.0	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.
VOCs	**************************************
	USEPA, 2008, Statement of Work for Organic Analysis of
	Low/Medium Concentration of Volatile Organic
	Compounds SQM01.2; SOP HW-33, Rev. 2.
	USEPA, 2007, Statement of Work for Organic Analysis of
SVOCs	Low/Medium Concentration of Semivolatile Organic
	Compounds SQM01.2; SOP HW-35, Rev. 1.
	USEPA, 2006, CLP Organics Data Review and Preliminary
Pesticides/PCBs	Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14,
	Part C.
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.
Perfluoroalkyl	USEPA, 2018, Data Review and Validation Guidelines for
Substances	Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method
(PFASs)	537

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Canister Certification
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Lab Control Sample
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Instrument Tuning
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Blanks
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Initial Calibration &
Instrument Tuning	Internal Standards	Analyte ID	Sample		System Performance
Internal Standards	Initial Calibration	Lab Qualifiers	Spike Recoveries		Daily Calibration
Initial Calibration	Continuing Calibration	Field Duplicate	Lab Duplicate		Field Duplicate
Continuing Calibration	Lab Qualifiers		Lab Control Sample		
Lab Qualifiers	Field Duplicate		ICP Serial Dilutions		
Field Duplicate			Lab Qualifiers		
			Field Duplicate		

PFASs
Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check **Initial Calibration** Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-8. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 203558, five samples were analyzed and results were reported for 382 analytes. Thirty-six results were rejected. Even though some results were flagged with a "J" as estimated, all other results (91 %) are considered usable. See the summary table for the analyses that have been rejected and the associated QC reasons.

NOTE: 1) As noted by the laboratory, the soil samples were not collected following SW846 5035A protocol. This adds an element of uncertainty to the analytical results for volatile organic analytes (VOAs). Although not specifically indicated on the final data sheets with a "J" flag, the VOA analytical results should be considered estimated, but usable.

NOTE: 2) The data packages for this project contained no laboratory QC data for the CRDL standard for metals (Form 2B) and the Serial Dilutions of metals (Form 8). Therefore, no evaluation of the CRDL recoveries and the serial dilution results were performed by this data reviewer and no data were qualified as a result.

SDG 203558

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
BF VOC1 BF VOC2 BF VOC3 BF VOC4	1,4-Dioxane	R data	ICAL RF < 0.005	Data is rejected
BF VOC1 BF VOC2 BF VOC3 BF VOC4	All analytes	J detects UJ non-detects	Surr. rec for TD8 and 4BFB < QC limit and IS area #2 < 50 % of QC limit	Data may be biased low
BF VOC1 BF VOC2 BF VOC3 BF VOC4	1,2-DCB 1,3-DCB 1,4-DCB 1,2,4-TCB 1,2,3-TCB DBCP Naphthalene n-Butylbenzene	R	IS area #3 < 25 % of the QC limit	Data are rejected

Table 6-2 SVOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
BF1	Atrazine Hexachloropentadiene	UJ non-detects J detects	% D for CCV > QC limit	Data are estimated

SDG 203558

Table 6-3 Pesticides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
BF1	All analytes	UJ non-detects J detects	Both Suur. Recs < QC limit	Data are estimated

Table 6-4 PCBs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

Table 6-5 Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-6 Hexavalent Chromium

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

SDG 203558

Table 6-7 Herbicides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-8 PFAAs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
BF1	PFNA	J detects	Detected in Method Blank	Data are estimated
BF1	PFBS	UJ non-detects J detects	% LCS < QC limit	Data are estimated

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 203558 PROJECT NAME: 31/150 Tonawanda BIO-Soil

SDG: 3558-01 CLIENT: BE3

Five soil samples were collected by the client on July 30, 2020 and were received by the Paradigm Laboratory on the same day. Samples were received under the conditions as noted on the Chain-of-Custody Supplement. The samples were submitted with the Chains-of-Custody requesting the Part 375 lists for SVOCs, VOCs, Pesticides, Metals, PCBs, Hexavalent Chromium, Silvex, and PFAs. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

Regarding surrogate limits for Semivolatiles, Pesticides, and PCBs: Quality Control limits were updated internally on August 05, 2020. The samples were analyzed before August 05, but because the summary was generated after that date, the report automatically included the updated limits in error. All forms included in this package have been corrected to reflect the limits that were in-use at the time of analysis.

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES AND SEMIVOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

VOLATILES

Soil samples were not sampled per EPA method 5035A compliance rules. Thus, an extra note has been added to all VOC reports.

Holding times were met for all samples.

Surrogate recoveries for the samples and associated QC were within acceptance limits, except Toluene-d8 was out low in all samples and 4-Bromofluorobenzene was out low in BF VOC 1, BF VOC 2, and BF VOC 3. These outliers have been flagged with an "*" on the surrogate recovery form and the sample results page. Matrix interference is suspected.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and QC, except Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 were out low in all samples and Fluorobenzene was out low in BF VOC 4. These outliers have been flagged with an "*" on the summary form and annotated on the sample report accordingly. The samples were repeated to confirm the results and the raw data for the confirmation has been supplied after the raw data from the reported results. Matrix interference is suspected. No further evaluation of this data or corresponding summary forms have been made.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes with the following exceptions: Dichlorodifluoromethane, Chloromethane, Chloroethane, Trichlorofluoromethane, and Freon 113 were out low in the CCV. Adequate sensitivity at the reporting limit for these compounds was verified by the analysis of a single point 1ppb standard. This is usable for non-detects only. All samples were non-detect for these compounds.

SEMI-VOLATILES

Holding time was met for the sample.

All surrogate recoveries for the sample and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the sample and associated QC.

All data for the initial calibrations was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes, with the following exceptions: In both CCVs Benzaldehyde and Di-n-Octylphthalate were out high and Hexachlorocyclopentadiene and Atrazine were out low. For compounds that are out high data is usable if the samples are non-detect for those compounds. For the compounds that were out low, adequate sensitivity at the reporting limit was verified by the analysis of single point 5ppm and 10ppm standards. This is usable for non-detects only. All samples were non-detect for the outlying compounds.

PESTICIDES

Holding time was met for the sample.

Surrogate recoveries for the sample and associated QC were within acceptance limits, with the following exceptions: Tetrachloro-m-xylene and Decachlorobiphenyl were out low in BF1 and Decachlorobiphenyl was out high in the LCS. These outliers have been flagged with an "*" on the surrogate recovery form and the sample results page. Matrix interference is suspected for the outliers in the sample. The LCS was deemed usable as the surrogate recovery was acceptable in the rest of the QC and all target analytes in the LCS were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control samples recovered within acceptance limits

The method blank was free from contamination within the reportable ranges.

The internal standards areas and retention times were within acceptance ranges for the sample and associated QC.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All continuing calibration data was within acceptable QC limits, except for the Decachlorobiphenyl outlier in the LCS as mentioned above.

For all Pesticide hits, a Form 10 including Percent Difference has been included. Column confirmations above 40% difference have been flagged with a "P" on the sample reports and an "*" on the Form 10 indicating matrix interference. The reported result is always the lower of the two results.

PCBS

Holding time was met for the sample.

The surrogate recoveries for the sample and the associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The method blank was free from contamination within the reportable ranges.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All data for continuing calibrations was within acceptance limits.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding time was met for the sample.

Site specific QC was not requested on this SDG but was analyzed on BF 1 and there was one outlier. Manganese recovered low in the spike and the outlier was flagged with an "*" on the summary form and an "M" on the sample results page accordingly. As there was and outlier, Post Digest Spikes were analyzed accordingly. The raw data for these QC samples has been supplied on the attached ICP analytical worksheets, labeled as "pds". There are no data qualifiers or QC forms associated with the post digest spikes. Matrix Interference is suspected. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

SUBCONTRACTED ANALYSES

Silvex by EPA 8151A, Total Mercury by EPA 7471B, and Hexavalent Chromium by EPA 7196A were subcontracted to Adirondack Environmental Services, Inc. of Albany, NY. PFAs by 537.1 were subcontracted to ALS Environmental of Rochester, New York. Their reports are provided in their entirety as a separate entity after the Paradigm Environmental Services, Inc. report. Separate case narratives addressing the above parameters are included with their reports.

(signed) Steven DeVito Steven DeVito – Technical Director

BATCH LOG

Lab Name: Paradigm Environmental Services

Lab Project #: 203558 Client Name: BE3

31/150 Tonawanda BIO-Soil N/A Client Project Name:

Client Project #: 3558-01 SDG No.:

Report Due Date: 8/21/2020 Batch Due Date: 8/29/2020 Protocol: SW846

LAB	MATRIX	CLIENT	REQUESTED ANALYSIS	DATE	DATE
SAMPLE NO.		SAMPLE ID		SAMPLED	REC'D
203558-01	Soil	BF 1	Metals, Mercury, SVOAs, Pesticides, PCB, Silvex, Hex Chrome, PFAs	7/30/2020	7/30/2020
203558-02	Soil	BF VOC 1	VOAs	7/30/2020	7/30/2020
203558-03	Soil	BF VOC 2	VOAs	7/30/2020	7/30/2020
203558-04	Soil	BF VOC 3	VOAs	7/30/2020	7/30/2020
203558-05	Soil	BF VOC 4	VOAs	7/30/2020	7/30/2020
				1	

		В.				<u>CHA</u>	AIN	OF (CUS	STO	DY						7 0
PARA		1		CLIENT: BE ADDRESS: 900 CITY: Buff PHONE: 7/	REPORT TO 300 BUSIE ALU STATE 6-309	AVE IN ZIP 19	13-15 13/13	CLIENT: ADDRESS CITY: PHONE: ATTN:	S:			CE TO:	ZIP:	e-lan	Quotation	LAB PROJE 2035 #:	
PROJECT 31/150 B.FO-	FONT SOF	ENCE WAW	4			WA - W WG - G	√ater Groundwa	ter		W - Drink W - Was	king Wat stewater	er (SO Soil SL - Sludgi	9	SD - Solid PT - Paint	WP - Wipe CK - Caulk	
DATE COLLECTED C	TIME	C O M P O S I T E	G R A B		SAMPLE IDENTIFIER		M C T D R E X	NONTAI NERS	375 Mxx 165	375 PETS	Spring	PEAS 375 VDCs			REMARK	s	PARADIGM LAB SAMPLE NUMBER
7-30-16	1220	У.	XX	BFI	001		50	4	% x	(<u>y</u>)	(××	X					01
-	V		X	BEV	0C3 0C4			Wise m	7601	2410		X					05
													12	BF	end sta	التاريد	- CLEAN
Turnaround Availability		t upon l		Report Suppoval; additional	Diements fees may apply.		DEVE	n I	Γ. (ZON	TOW.	7	-30-	Upra 20	1220	istory of	eds Parady
Standard 5 day		None Ro Batch C			None Required Basic EDD	Sampl	uished E	tee	1	Bu	ur	Date/Tin	30-	10		Total Cost:	
Rush 3 day Rush 2 day		Categor			NYSDEC EDD 💢		1	rol	3	ail	1	7- Date/Tin	202	0 17	3:15	P.I.F.	
Push 1 day Date Needed please indicate date needed	TER	Other please indi	icate packa	ge needed:	Other EDD please indicate EDD needed	٦	ed @Li		m, clie	nt agre	ees to I	Date/Tin Paradigm		and Cond	litions (rev	erse). Page	7 of 680

See additional page for sample conditions.

VOLATILE ORGANICS SAMPLE DATA

Date Sampled:

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 1 Lab Sample ID: 203558-02

7/30/2020 **Matrix: Date Received:** 7/30/2020 Soil

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.82 <i>UJ</i>	ug/Kg		8/7/2020 21:18
1,1,2,2-Tetrachloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1,2-Trichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1-Dichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1-Dichloroethene	< 4.82	ug/Kg		8/7/2020 21:18
1,2,3-Trichlorobenzene	<12.0 R	ug/Kg		8/7/2020 21:18
1,2,4-Trichlorobenzene	≤12.0 R	ug/Kg		8/7/2020 21:18
1,2,4-Trimethylbenzene	< 4.82 <i>UJ</i>	ug/Kg		8/7/2020 21:18
1,2-Dibromo-3-Chloropropane	≤24.1 R	ug/Kg		8/7/2020 21:18
1,2-Dibromoethane	< 4.82 <i>UJ</i>	ug/Kg		8/7/2020 21:18
1,2-Dichlorobenzene	4.82 R	ug/Kg		8/7/2020 21:18
1,2-Dichloroethane	< 4.82 <i>UJ</i>	ug/Kg		8/7/2020 21:18
1,2-Dichloropropane	< 4.82	ug/Kg		8/7/2020 21:18
1,3,5-Trimethylbenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,3-Dichlorobenzene	\$4.82 R	ug/Kg		8/7/2020 21:18
1,4-Dichlorobenzene	< 1.82 R	ug/Kg		8/7/2020 21:18
1,4-Dioxane	< 48.2 R	ug/Kg		8/7/2020 21:18
2-Butanone	< 24.1 <i>UJ</i>	ug/Kg		8/7/2020 21:18
2-Hexanone	< 12.0	ug/Kg		8/7/2020 21:18
4-Methyl-2-pentanone	< 12.0	ug/Kg		8/7/2020 21:18
Acetone	< 24.1	ug/Kg		8/7/2020 21:18
Benzene	< 4.82	ug/Kg		8/7/2020 21:18
Bromochloromethane	< 12.0	ug/Kg		8/7/2020 21:18

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 1					
Lab Sample ID:	203558-02			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethan	ie	< 4.82 <i>UJ</i>	ug/Kg		8/7/2020	21:1
Bromoform		< 12.0	ug/Kg		8/7/2020	21:1
Bromomethane		< 4.82	ug/Kg		8/7/2020	21:2
Carbon disulfide		< 4.82	ug/Kg		8/7/2020	21:
Carbon Tetrachloride		< 4.82	ug/Kg		8/7/2020	21:
Chlorobenzene		< 4.82	ug/Kg		8/7/2020	21:
Chloroethane		< 4.82	ug/Kg		8/7/2020	21:
Chloroform		< 4.82	ug/Kg		8/7/2020	21:
Chloromethane		< 4.82	ug/Kg		8/7/2020	21:
cis-1,2-Dichloroethene		< 4.82	ug/Kg		8/7/2020	21:
cis-1,3-Dichloroproper	ne	< 4.82	ug/Kg		8/7/2020	21:
Cyclohexane		< 24.1	ug/Kg		8/7/2020	21:
Dibromochloromethan	ie	< 4.82	ug/Kg		8/7/2020	21:
Dichlorodifluorometha	ane	< 4.82	ug/Kg		8/7/2020	21:
Ethylbenzene		< 4.82	ug/Kg		8/7/2020	21:
Freon 113		< 4.82	ug/Kg		8/7/2020	21:
Isopropylbenzene		< 4.82	ug/Kg		8/7/2020	21:
m,p-Xylene		3.26 J	ug/Kg	J	8/7/2020	21:
Methyl acetate		< 4.82 <i>UJ</i>	ug/Kg		8/7/2020	21:
Methyl tert-butyl Ether	r	< 4.82	ug/Kg		8/7/2020	21:
Methylcyclohexane		< 4.82	ug/Kg		8/7/2020	21:
Methylene chloride		< 12.0	ug/Kg		8/7/2020	21:
Naphthalene		\$12.0 R	ug/Kg		8/7/2020	21:
n-Butylbenzene		< 4.82 R	ug/Kg		8/7/2020	21:
n-Propylbenzene		< 4.82 <i>UJ</i>	ug/Kg		8/7/2020	21:

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 1							_
Lab Sample ID:	203558-02				Da	ite Sampled:	7/30/2020	
Matrix:	Soil				Da	te Received:	7/30/2020	
o-Xylene		< 4.82	UJ	ug/Kg			8/7/2020	21:18
p-Isopropyltoluene		< 4.82		ug/Kg			8/7/2020	21:18
sec-Butylbenzene		< 4.82		ug/Kg			8/7/2020	21:18
Styrene		< 12.0		ug/Kg			8/7/2020	21:18
tert-Butylbenzene		< 4.82		ug/Kg			8/7/2020	21:18
Tetrachloroethene		< 4.82		ug/Kg			8/7/2020	21:18
Toluene		< 4.82		ug/Kg			8/7/2020	21:18
trans-1,2-Dichloroethe	ne	< 4.82		ug/Kg			8/7/2020	21:18
trans-1,3-Dichloroprop	ene	< 4.82		ug/Kg			8/7/2020	21:18
Trichloroethene		< 4.82		ug/Kg			8/7/2020	21:18
Trichlorofluoromethan	e	< 4.82		ug/Kg			8/7/2020	21:18
Vinyl chloride		< 4.82	\downarrow	ug/Kg			8/7/2020	21:18
<u>Surrogate</u>		P	ercent	t Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			1	123	75 - 134		8/7/2020	21:18
4-Bromofluorobenzene			5	8 4	595 - 129	*	8/7/2020	21.18

<u>Surrogate</u>	Percent Recovery	Limits	<u>outners</u>	Date Anal	<u>yzea</u>
1,2-Dichloroethane-d4	123	75 - 134		8/7/2020	21:18
4-Bromofluorobenzene	58.4	59.5 - 129	*	8/7/2020	21:18
Pentafluorobenzene	97.4	88.8 - 118		8/7/2020	21:18
Toluene-D8	80.3	84 - 114	*	8/7/2020	21:18

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72391.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/7/2020

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 2

 Lab Sample ID:
 203558-03
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.54 <i>UJ</i>	ug/Kg		8/7/2020 21:41
1,1,2,2-Tetrachloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1,2-Trichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1-Dichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1-Dichloroethene	< 4.54	ug/Kg		8/7/2020 21:41
1,2,3-Trichlorobenzene	\$11.3 R	ug/Kg		8/7/2020 21:41
1,2,4-Trichlorobenzene	≤11.3 R	ug/Kg		8/7/2020 21:41
1,2,4-Trimethylbenzene	< 4.54 <i>UJ</i>	ug/Kg		8/7/2020 21:41
1,2-Dibromo-3-Chloropropane	22.7 R	ug/Kg		8/7/2020 21:41
1,2-Dibromoethane	< 4.54 <i>UJ</i>	ug/Kg		8/7/2020 21:41
1,2-Dichlorobenzene	< 4.54 R	ug/Kg		8/7/2020 21:41
1,2-Dichloroethane	< 4.54 <i>UJ</i>	ug/Kg		8/7/2020 21:41
1,2-Dichloropropane	< 4.54	ug/Kg		8/7/2020 21:41
1,3,5-Trimethylbenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,3-Dichlorobenzene	< 4.54 R	ug/Kg		8/7/2020 21:41
1,4-Dichlorobenzene	54.54 R	ug/Kg		8/7/2020 21:41
1,4-Dioxane	< 15.4 R	ug/Kg		8/7/2020 21:41
2-Butanone	< 22.7 <i>UJ</i>	ug/Kg		8/7/2020 21:41
2-Hexanone	< 11.3	ug/Kg		8/7/2020 21:41
4-Methyl-2-pentanone	< 11.3	ug/Kg		8/7/2020 21:41
Acetone	< 22.7	ug/Kg		8/7/2020 21:41
Benzene	< 4.54	ug/Kg		8/7/2020 21:41
Bromochloromethane	< 11.3 😾	ug/Kg		8/7/2020 21:41

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 2					
Lab Sample ID:	203558-03			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethan	е	< 4.54 <i>UJ</i>	ug/Kg		8/7/2020	21:41
Bromoform		< 11.3	ug/Kg		8/7/2020	21:41
Bromomethane		< 4.54	ug/Kg		8/7/2020	21:43
Carbon disulfide		< 4.54	ug/Kg		8/7/2020	21:42
Carbon Tetrachloride		< 4.54	ug/Kg		8/7/2020	21:43
Chlorobenzene		< 4.54	ug/Kg		8/7/2020	21:41
Chloroethane		< 4.54	ug/Kg		8/7/2020	21:41
Chloroform		< 4.54	ug/Kg		8/7/2020	21:41
Chloromethane		< 4.54	ug/Kg		8/7/2020	21:41
cis-1,2-Dichloroethene		< 4.54	ug/Kg		8/7/2020	21:42
cis-1,3-Dichloropropen	ne	< 4.54	ug/Kg		8/7/2020	21:43
Cyclohexane		< 22.7	ug/Kg		8/7/2020	21:42
Dibromochloromethan	e	< 4.54	ug/Kg		8/7/2020	21:4
Dichlorodifluorometha	ine	< 4.54	ug/Kg		8/7/2020	21:4
Ethylbenzene		< 4.54	ug/Kg		8/7/2020	21:4
Freon 113		< 4.54	ug/Kg		8/7/2020	21:43
Isopropylbenzene		< 4.54	ug/Kg		8/7/2020	21:4
m,p-Xylene		3.13 J	ug/Kg	J	8/7/2020	21:4
Methyl acetate		< 4.54 <i>UJ</i>	ug/Kg		8/7/2020	21:4:
Methyl tert-butyl Ether		< 4.54	ug/Kg		8/7/2020	21:4
Methylcyclohexane		< 4.54	ug/Kg		8/7/2020	21:4:
Methylene chloride		< 11.3	ug/Kg		8/7/2020	21:4:
Naphthalene		<11.3 R	ug/Kg		8/7/2020	21:4
n-Butylbenzene		< 4.54 R	ug/Kg		8/7/2020	21:4
n-Propylbenzene		< 4.54 <i>UJ</i>	ug/Kg		8/7/2020	21:4

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 2						
Lab Sample ID:	203558-03			Dat	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.54 <i>UJ</i>	ug/Kg			8/7/2020	21:41
p-Isopropyltoluene		< 4.54	ug/Kg			8/7/2020	21:41
sec-Butylbenzene		< 4.54	ug/Kg			8/7/2020	21:41
Styrene		< 11.3	ug/Kg			8/7/2020	21:41
tert-Butylbenzene		< 4.54	ug/Kg			8/7/2020	21:41
Tetrachloroethene		< 4.54	ug/Kg			8/7/2020	21:41
Toluene		< 4.54	ug/Kg			8/7/2020	21:41
trans-1,2-Dichloroeth	ene	< 4.54	ug/Kg			8/7/2020	21:41
trans-1,3-Dichloropro	pene	< 4.54	ug/Kg			8/7/2020	21:41
Trichloroethene		< 4.54	ug/Kg			8/7/2020	21:41
Trichlorofluorometha	ne	< 4.54	ug/Kg			8/7/2020	21:41
Vinyl chloride		< 4.54	ug/Kg			8/7/2020	21:41
Surrogate		Percer	ıt Recovery	Limits	Outliers	Date Analy	zed
1.2 Dichloroothana de	1		120	75 - 12/		9 /7 /2020	21.//1

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	yzed
1,2-Dichloroethane-d4	120	75 - 134		8/7/2020	21:41
4-Bromofluorobenzene	56.2	59.5 - 129	*	8/7/2020	21:41
Pentafluorobenzene	94.1	88.8 - 118		8/7/2020	21:41
Toluene-D8	79.8	84 - 114	*	8/7/2020	21:41

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72392.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/7/2020

7/30/2020

Date Sampled:

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 3 **Lab Sample ID:** 203558-04

Matrix: Soil Date Received: 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.94 <i>UJ</i>	ug/Kg		8/7/2020 22:03
1,1,2,2-Tetrachloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1,2-Trichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1-Dichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1-Dichloroethene	< 4.94	ug/Kg		8/7/2020 22:03
1,2,3-Trichlorobenzene	<12.4 R	ug/Kg		8/7/2020 22:03
1,2,4-Trichlorobenzene	\$12.4 R	ug/Kg		8/7/2020 22:03
1,2,4-Trimethylbenzene	< 4.94 <i>UJ</i>	ug/Kg		8/7/2020 22:03
1,2-Dibromo-3-Chloropropane	524.7 R	ug/Kg		8/7/2020 22:03
1,2-Dibromoethane	< 4.94 <i>VJ</i>	ug/Kg		8/7/2020 22:03
1,2-Dichlorobenzene	54.94 R	ug/Kg		8/7/2020 22:03
1,2-Dichloroethane	< 4.94 <i>UJ</i>	ug/Kg		8/7/2020 22:03
1,2-Dichloropropane	< 4.94	ug/Kg		8/7/2020 22:03
1,3,5-Trimethylbenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,3-Dichlorobenzene	54.94 R	ug/Kg		8/7/2020 22:03
1,4-Dichlorobenzene	54.94 R	ug/Kg		8/7/2020 22:03
1,4-Dioxane	\$49.4 R	ug/Kg		8/7/2020 22:03
2-Butanone	< 24.7 <i>UJ</i>	ug/Kg		8/7/2020 22:03
2-Hexanone	< 12.4	ug/Kg		8/7/2020 22:03
4-Methyl-2-pentanone	< 12.4	ug/Kg		8/7/2020 22:03
Acetone	< 24.7	ug/Kg		8/7/2020 22:03
Benzene	< 4.94	ug/Kg		8/7/2020 22:03
Bromochloromethane	< 12.4	ug/Kg		8/7/2020 22:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Comple Identifies	DE VOC 2					
Sample Identifier: Lab Sample ID:	BF VOC 3 203558-04			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	<u> </u>	< 4.94 <i>UJ</i>	ug/Kg		8/7/2020	22:03
Bromoform		< 12.4	ug/Kg		8/7/2020	22:0
Bromomethane		< 4.94	ug/Kg		8/7/2020	22:0
Carbon disulfide		< 4.94	ug/Kg		8/7/2020	22:0
Carbon Tetrachloride		< 4.94	ug/Kg		8/7/2020	22:0
Chlorobenzene		< 4.94	ug/Kg		8/7/2020	22:0
Chloroethane		< 4.94	ug/Kg		8/7/2020	22:0
Chloroform		< 4.94	ug/Kg		8/7/2020	22:0
Chloromethane		< 4.94	ug/Kg		8/7/2020	22:0
cis-1,2-Dichloroethene		< 4.94	ug/Kg		8/7/2020	22:0
cis-1,3-Dichloropropen	e	< 4.94	ug/Kg		8/7/2020	22:0
Cyclohexane		< 24.7	ug/Kg		8/7/2020	22:0
Dibromochloromethane		< 4.94	ug/Kg		8/7/2020	22:0
Dichlorodifluoromethar	ne	< 4.94	ug/Kg		8/7/2020	22:0
Ethylbenzene		< 4.94	ug/Kg		8/7/2020	22:0
Freon 113		< 4.94	ug/Kg		8/7/2020	22:0
Isopropylbenzene		< 4.94	ug/Kg		8/7/2020	22:0
m,p-Xylene		< 4.94	ug/Kg		8/7/2020	22:0
Methyl acetate		< 4.94	ug/Kg		8/7/2020	22:0
Methyl tert-butyl Ether		< 4.94	ug/Kg		8/7/2020	22:0
Methylcyclohexane		< 4.94	ug/Kg		8/7/2020	22:0
Methylene chloride		< 12.4	ug/Kg		8/7/2020	22:0
Naphthalene		\$12.4 R	ug/Kg		8/7/2020	22:0
n-Butylbenzene		<4.94 R	ug/Kg		8/7/2020	22:0
n-Propylbenzene		< 4.94 <i>UJ</i>	ug/Kg		8/7/2020	22:0

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 3						
Lab Sample ID:	203558-04			Date	e Sampled:	7/30/2020	
Matrix:	Soil			Date	e Received:	7/30/2020	
o-Xylene		< 4.94 <i>UJ</i>	ug/Kg			8/7/2020	22:03
p-Isopropyltoluene		< 4.94	ug/Kg			8/7/2020	22:03
sec-Butylbenzene		< 4.94	ug/Kg			8/7/2020	22:03
Styrene		< 12.4	ug/Kg			8/7/2020	22:03
tert-Butylbenzene		< 4.94	ug/Kg			8/7/2020	22:03
Tetrachloroethene		< 4.94	ug/Kg			8/7/2020	22:03
Toluene		< 4.94	ug/Kg			8/7/2020	22:03
trans-1,2-Dichloroethe	ene	< 4.94	ug/Kg			8/7/2020	22:03
trans-1,3-Dichloropro	oene	< 4.94	ug/Kg			8/7/2020	22:03
Trichloroethene		< 4.94	ug/Kg			8/7/2020	22:03
Trichlorofluoromethan	ne	< 4.94	ug/Kg			8/7/2020	22:03
Vinyl chloride		< 4.94	ug/Kg			8/7/2020	22:03
Surrogate		Percer	ıt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1.2-Dichloroethane-d4			127	75 - 134		8/7/2020	22:03

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	127	75 - 134		8/7/2020	22:03
4-Bromofluorobenzene	52.7	59.5 - 129	*	8/7/2020	22:03
Pentafluorobenzene	95.9	88.8 - 118		8/7/2020	22:03
Toluene-D8	75.3	84 - 114	*	8/7/2020	22:03

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72393.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/7/2020

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 4

 Lab Sample ID:
 203558-05
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.38 <i>UJ</i>	ug/Kg		8/7/2020 22:25
1,1,2,2-Tetrachloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1,2-Trichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1-Dichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1-Dichloroethene	< 4.38	ug/Kg		8/7/2020 22:25
1,2,3-Trichlorobenzene	≤11.0 R	ug/Kg		8/7/2020 22:25
1,2,4-Trichlorobenzene	\$11.0 R	ug/Kg		8/7/2020 22:25
1,2,4-Trimethylbenzene	< 4.38 <i>UJ</i>	ug/Kg		8/7/2020 22:25
1,2-Dibromo-3-Chloropropane	\$21.9 R	ug/Kg		8/7/2020 22:25
1,2-Dibromoethane	< 4.38 <i>UJ</i>	ug/Kg		8/7/2020 22:25
1,2-Dichlorobenzene	£4.38 R	ug/Kg		8/7/2020 22:25
1,2-Dichloroethane	< 4.38 <i>UJ</i>	ug/Kg		8/7/2020 22:25
1,2-Dichloropropane	< 4.38	ug/Kg		8/7/2020 22:25
1,3,5-Trimethylbenzene	< 4.38 V	ug/Kg		8/7/2020 22:25
1,3-Dichlorobenzene	54.38 R	ug/Kg		8/7/2020 22:25
1,4-Dichlorobenzene	≤4.38 R	ug/Kg		8/7/2020 22:25
1,4-Dioxane	≤43.8 R	ug/Kg		8/7/2020 22:25
2-Butanone	< 21.9 <i>UJ</i>	ug/Kg		8/7/2020 22:25
2-Hexanone	< 11.0	ug/Kg		8/7/2020 22:25
4-Methyl-2-pentanone	< 11.0	ug/Kg		8/7/2020 22:25
Acetone	< 21.9	ug/Kg		8/7/2020 22:25
Benzene	< 4.38	ug/Kg		8/7/2020 22:25
Bromochloromethane	< 11.0 V	ug/Kg		8/7/2020 22:25

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 4			Data C I. I.	F /20 /2022	
Lab Sample ID: Matrix:	203558-05 Soil			Date Sampled: Date Received:	7/30/2020 7/30/2020	
Bromodichloromethan		< 4.38 <i>UJ</i>	ug/Kg	Date Received.	8/7/2020	22.2
Bromoform	5	< 11.0	ug/Kg		8/7/2020	
Bromomethane		< 4.38			8/7/2020	
Carbon disulfide			ug/Kg		, ,	
		< 4.38	ug/Kg		8/7/2020	
Carbon Tetrachloride		< 4.38	ug/Kg		8/7/2020	
Chlorobenzene		< 4.38	ug/Kg		8/7/2020	
Chloroethane		< 4.38	ug/Kg		8/7/2020	
Chloroform		< 4.38	ug/Kg		8/7/2020	
Chloromethane		< 4.38	ug/Kg		8/7/2020	
cis-1,2-Dichloroethene		< 4.38	ug/Kg		8/7/2020	
cis-1,3-Dichloropropen	e	< 4.38	ug/Kg		8/7/2020	
Cyclohexane		< 21.9	ug/Kg		8/7/2020	
Dibromochloromethan	e	< 4.38	ug/Kg		8/7/2020	22:
Dichlorodifluorometha	ne	< 4.38	ug/Kg		8/7/2020	22:
Ethylbenzene		< 4.38	ug/Kg		8/7/2020	22:
Freon 113		< 4.38	ug/Kg		8/7/2020	22:
Isopropylbenzene		< 4.38	ug/Kg		8/7/2020	22:
m,p-Xylene		< 4.38	ug/Kg		8/7/2020	22:
Methyl acetate		< 4.38	ug/Kg		8/7/2020	22:
Methyl tert-butyl Ether		< 4.38	ug/Kg		8/7/2020	22:
Methylcyclohexane		< 4.38	ug/Kg		8/7/2020	22:
Methylene chloride		6.69 J	ug/Kg	J	8/7/2020	22:
Naphthalene		511.0 R	ug/Kg		8/7/2020	22:
n-Butylbenzene		<4.38 R	ug/Kg		8/7/2020	22:
n-Propylbenzene		< 4.38 <i>UJ</i>	ug/Kg		8/7/2020	22:

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 4						
Lab Sample ID:	203558-05			Dat	e Sampled:	7/30/2020	
Matrix:	Soil			Dat	e Received:	7/30/2020	
o-Xylene		< 4.38 <i>U</i> .	J ug/Kg			8/7/2020	22:25
p-Isopropyltoluene		< 4.38	ug/Kg			8/7/2020	22:25
sec-Butylbenzene		< 4.38	ug/Kg			8/7/2020	22:25
Styrene		< 11.0	ug/Kg			8/7/2020	22:25
tert-Butylbenzene		< 4.38	ug/Kg			8/7/2020	22:25
Tetrachloroethene		< 4.38	ug/Kg			8/7/2020	22:25
Toluene		< 4.38	ug/Kg			8/7/2020	22:25
trans-1,2-Dichloroethe	ene	< 4.38	ug/Kg			8/7/2020	22:25
trans-1,3-Dichloroprop	oene	< 4.38	ug/Kg			8/7/2020	22:25
Trichloroethene		< 4.38	ug/Kg			8/7/2020	22:25
Trichlorofluoromethar	ne	< 4.38	ug/Kg			8/7/2020	22:25
Vinyl chloride		< 4.38	ug/Kg			8/7/2020	22:25
Surrogate		Perc	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			126	75 - 134		8/7/2020	22:25

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	126	75 - 134		8/7/2020	22:25
4-Bromofluorobenzene	62.5	59.5 - 129		8/7/2020	22:25
Pentafluorobenzene	99.9	88.8 - 118		8/7/2020	22:25
Toluene-D8	80.4	84 - 114	*	8/7/2020	22:25

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72394.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

MKP 10/7/2020

SEMIVOLATILE ORGANICS SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 314	ug/Kg		8/4/2020 13:03
1,2,4,5-Tetrachlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,2,4-Trichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,2-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,3-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,4-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
2,2-Oxybis (1-chloropropane)	< 314	ug/Kg		8/4/2020 13:03
2,3,4,6-Tetrachlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4,5-Trichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4,6-Trichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dimethylphenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dinitrophenol	< 1260	ug/Kg		8/4/2020 13:03
2,4-Dinitrotoluene	< 314	ug/Kg		8/4/2020 13:03
2,6-Dinitrotoluene	< 314	ug/Kg		8/4/2020 13:03
2-Chloronaphthalene	< 314	ug/Kg		8/4/2020 13:03
2-Chlorophenol	< 314	ug/Kg		8/4/2020 13:03
2-Methylnapthalene	< 314	ug/Kg		8/4/2020 13:03
2-Methylphenol	< 314	ug/Kg		8/4/2020 13:03
2-Nitroaniline	< 314	ug/Kg		8/4/2020 13:03
2-Nitrophenol	< 314	ug/Kg		8/4/2020 13:03
3&4-Methylphenol	< 314	ug/Kg		8/4/2020 13:03
3,3'-Dichlorobenzidine	< 314	ug/Kg		8/4/2020 13:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF 1					
Lab Sample ID:	203558-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
3-Nitroaniline		< 314	ug/Kg		8/4/2020	13:03
4,6-Dinitro-2-methylp	henol	< 628	ug/Kg		8/4/2020	13:03
4-Bromophenyl pheny	l ether	< 314	ug/Kg		8/4/2020	13:03
4-Chloro-3-methylphe	nol	< 314	ug/Kg		8/4/2020	13:03
4-Chloroaniline		< 314	ug/Kg		8/4/2020	13:03
4-Chlorophenyl pheny	l ether	< 314	ug/Kg		8/4/2020	13:03
4-Nitroaniline		< 314	ug/Kg		8/4/2020	13:03
4-Nitrophenol		< 314	ug/Kg		8/4/2020	13:03
Acenaphthene		< 314	ug/Kg		8/4/2020	13:03
Acenaphthylene		< 314	ug/Kg		8/4/2020	13:03
Acetophenone		< 314	ug/Kg		8/4/2020	13:03
Anthracene		< 314	ug/Kg		8/4/2020	13:03
Atrazine		< 314 <i>UJ</i>	ug/Kg		8/4/2020	13:03
Benzaldehyde		< 314	ug/Kg		8/4/2020	13:03
Benzo (a) anthracene		< 314	ug/Kg		8/4/2020	13:03
Benzo (a) pyrene		< 314	ug/Kg		8/4/2020	13:03
Benzo (b) fluoranthen	e	< 314	ug/Kg		8/4/2020	13:03
Benzo (g,h,i) perylene		< 314	ug/Kg		8/4/2020	13:03
Benzo (k) fluoranthen	e	< 314	ug/Kg		8/4/2020	13:03
Bis (2-chloroethoxy) n	nethane	< 314	ug/Kg		8/4/2020	13:03
Bis (2-chloroethyl) eth	ier	< 314	ug/Kg		8/4/2020	13:03
Bis (2-ethylhexyl) phtl	nalate	< 314	ug/Kg		8/4/2020	13:03
Butylbenzylphthalate		< 314	ug/Kg		8/4/2020	13:03
Caprolactam		< 314	ug/Kg		8/4/2020	13:03
Carbazole		< 314	ug/Kg		8/4/2020	13:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF 1					
Lab Sample ID:	203558-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		< 314	ug/Kg		8/4/2020	13:03
Dibenz (a,h) anthracene	9	< 314	ug/Kg		8/4/2020	13:03
Dibenzofuran		< 314	ug/Kg		8/4/2020	13:03
Diethyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Dimethyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Di-n-butyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Di-n-octylphthalate		< 314	ug/Kg		8/4/2020	13:03
Fluoranthene		< 314	ug/Kg		8/4/2020	13:03
Fluorene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorobenzene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorobutadiene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorocyclopentad	iene	<1260 <i>UJ</i>	ug/Kg		8/4/2020	13:03
Hexachloroethane		< 314	ug/Kg		8/4/2020	13:03
Indeno (1,2,3-cd) pyren	e	< 314	ug/Kg		8/4/2020	13:03
Isophorone		< 314	ug/Kg		8/4/2020	13:03
Naphthalene		< 314	ug/Kg		8/4/2020	13:03
Nitrobenzene		< 314	ug/Kg		8/4/2020	13:03
N-Nitroso-di-n-propyla	mine	< 314	ug/Kg		8/4/2020	13:03
N-Nitrosodiphenylamin	е	< 314	ug/Kg		8/4/2020	13:03
Pentachlorophenol		< 628	ug/Kg		8/4/2020	13:03
Phenanthrene		< 314	ug/Kg		8/4/2020	13:03
Phenol		< 314	ug/Kg		8/4/2020	13:03
Pyrene		< 314	ug/Kg		8/4/2020	13:03

PESTICIDES SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.40 <i>UJ</i>	ug/Kg		7/31/2020 21:42
4,4-DDE	< 3.40	ug/Kg		7/31/2020 21:42
4,4-DDT	< 3.40	ug/Kg		7/31/2020 21:42
Aldrin	< 3.40	ug/Kg		7/31/2020 21:42
alpha-BHC	< 3.40	ug/Kg		7/31/2020 21:42
beta-BHC	< 3.40	ug/Kg		7/31/2020 21:42
cis-Chlordane	< 3.40	ug/Kg		7/31/2020 21:42
delta-BHC	< 3.40	ug/Kg		7/31/2020 21:42
Dieldrin	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan I	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan II	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan Sulfate	< 3.40	ug/Kg		7/31/2020 21:42
Endrin	< 3.40	ug/Kg		7/31/2020 21:42
Endrin Aldehyde	< 3.40	ug/Kg		7/31/2020 21:42
Endrin Ketone	< 3.40	ug/Kg		7/31/2020 21:42
gamma-BHC (Lindane)	< 3.40	ug/Kg		7/31/2020 21:42
Heptachlor	2.37 J	ug/Kg	J	7/31/2020 21:42
Heptachlor Epoxide	< 3.40 <i>UJ</i>	ug/Kg		7/31/2020 21:42
Methoxychlor	< 3.40	ug/Kg		7/31/2020 21:42
Toxaphene	< 34.0	ug/Kg		7/31/2020 21:42
trans-Chlordane	< 3.40	ug/Kg		7/31/2020 21:42

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

 Surrogate
 Percent Recovery
 Limits
 Outliers
 Date Analyzed

 Decachlorobiphenyl (1)
 31.8
 33.3 - 107
 *
 7/31/2020
 21:42

 Tetrachloro-m-xylene (1)
 20.4
 28.5 - 99.8
 *
 7/31/2020
 21:42

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/31/2020

MKF 10/7/2020

PCBS SAMPLE DATA

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1221	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1232	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1242	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1248	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1254	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1260	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1262	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1268	< 0.0340	mg/Kg			8/1/2020	04:52
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Tetrachloro-m-xylene	3	35.7	18.2 - 85.6		8/1/2020	04:52

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/31/2020

METALS DATA

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	4.75	mg/Kg		8/4/2020 20:44
Barium	31.6	mg/Kg		8/4/2020 20:44
Beryllium	0.203	mg/Kg	J	8/4/2020 20:44
Cadmium	1.70	mg/Kg		8/4/2020 20:44
Chromium	9.54	mg/Kg		8/4/2020 20:44
Copper	20.0	mg/Kg		8/4/2020 20:44
Lead	9.34	mg/Kg		8/4/2020 20:44
Manganese	288	mg/Kg	M	8/4/2020 20:44
Nickel	17.5	mg/Kg		8/4/2020 20:44
Selenium	< 1.21	mg/Kg		8/4/2020 20:44
Silver	< 0.603	mg/Kg		8/4/2020 20:44
Zinc	53.1	mg/Kg		8/5/2020 19:30

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 8/3/2020 Data File: 200804B

MKF 10/7/2020

Service Request No:R2006788

Paradigm Environmental Services, Inc. 179 Lake Avenue Rochester, NY 14608

Laboratory Results for: 203558

Dear Reporting,

Enclosed are the results of the sample(s) submitted to our laboratory July 31, 2020 For your reference, these analyses have been assigned our service request number **R2006788**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Brady.Kalkman@alsglobal.com.

Respectfully submitted,

Gody Kulker

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Client: Paradigm Environmental Services, Inc. Service Request: R2006788

Project: 203558 Date Received: 07/31/2020

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

One soil sample was received for analysis at ALS Environmental on 07/31/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Subcontracted Analytical Parameters:

One or more samples were subcontracted to another laboratory for testing. The certified analytical report from the subcontractor has been included in its entirety at the end of this report and includes the name and address of the subcontracted laboratory.

Approved by _____

Date 08/27/2020

CHAIN OF CUSTODY

ALS: ELAP ID: 10145

DAI	SADIO	· Ma		The state of the s	REPORT TO:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					INVO	CE TO:	RETE		AND STATE OF	As-		137	10 - 35; A 16	**	٠
I PAL	RADIG	IVI	COMPAN		digm Environ			СОМРА		Same					LAE	PROJECT	#:	CLIENT	PROJEC	T#;	
	- 		ADDRESS):				ADDRES	SS:												
	bis and the		CITY:		STATE:	ZIP	:	CITY:				STATE:		ZIP:	TUF	RNAROUND	TIME: (W	ORKING E)AYS)		
, siè	Sec. 2	-	PHONE:		FAX:			PHONE:			FA	X:				<i>⊃π</i>		ST	D	ОТІ	HER
ROJECT NAME/SITI	NAME:		ATTN:	Repo	rting			ATTN:	Ad	counts	s Payal	ble				1	2	3	5		
			COMMEN	тs: Pleas	e email result	s to report	ing@pa	aradigi	nenv.c	om					Da	ate Due					
	bahadada Ba		ا داره السر اداری		o Vār	7.3			RE	QUEST	TED AI	VALYS	S		. ve	ant J	Fla	15	- 1		
		C				<u> </u>		C 0						<u>)</u>	A51	codi	pach	ose b	ue!	921	
		M	G				M A	UNT							SUE	546. F	173				
DATE	TIME	0	R	SAM	PLE LOCATION/FIEL	סו ס	R	M A S	2					L	· elina	MARKS	iws		PARADI SAMPLE		
		1	В				l x	E N	1												
		E						" E R	2						Dew	~7/30/	3.03.0				
7/30/2020	1220			RFI			50:	1	X					20	355	6			\prod		П
)				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				4-	1'	 				203	< < < <	50	1			1	П
· · · · · · · · · · · · · · · · · · ·														دريحم	<u>ء حر ر ا</u>		<i>L</i>				П
							 							1				_	++	+	
<u> </u>			-						╁╼┼╼	+	++			 					╁┈┼		\vdash
		4					 		+				\vdash	+				-	++		Н
-	1						-		 -				\vdash					_	++	+	$\vdash\vdash\vdash$
							-						\vdash							-	$\vdash\vdash$
3							-	-					 	 				-	++	+	Н
9		,					-		1				Н-						1	5	•
0	NI V DEG	014/ T 1 (10:11	1115+++===			<u>, ,-=-</u> .	<u> </u>	<u> </u>		<u> </u>				1		R2	0067	88	rylces, i	nc.	
*LAB USE O					15 15 15 15 15 15 15 15 15 15 15 15 15 1	<u> </u>	<u></u>	<u></u>	<u> </u>					<u> </u>		203556	m Environ	eni erije	niii W		MW
	Receipt Par	rameter		NELAC C	ompliance]													' Billi in a	Bi ibini	יפו וופן
Name a u.ta.	Container 1	Гуре:		Υ	N		Client	t													\Box
Comments:							•					Date/Ti					Total Co	st:			
Comments:	Preservat	ion:		Υ 🔲	N	Cm	144	1	aul	nex	<u> </u>	712	31/20	20				L			\Box
Johnneins.				i			ulshed #	, C	h 1			Date/Ti			.مره پد						
Comments:	Holding Ti	me:		Υ	N	i	ores	N>	John	<u> </u>		7-31			084	7	D. I. E.	_			
onanona.						Receiv	eu gy	۶				Date/Ti	_		ص. ۵۰		P.I.F.				
Comments:	Temperat	ure:		Y	N	-	leg	A.	<u> </u>			7/3// Date/Ti	2020	0	849			<u></u>			
						Receiv	ed g/, d Page	7 of 28	4			Date/11	III&								

Subcontracted Analytical Parameters

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

August 26, 2020

Brady Kalkman ALS Environmental 1565 Jefferson Rd Bldg 300 Rochester, NY 14623

Re: R2006788 Work Order: 20080315

Dear Brady,

ALS Environmental received 1 sample(s) on Aug 05, 2020 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 270.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Ehrland Bosworth
/S/ Ehrland Bosworth

Ehrland Bosworth Project Manager

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client: ALS Environmental

Project: R2006788 Case Narrative Work Order: 20080315

Analytical Comments:

Batch 161297, Method LCMS_D7968_S, Sample 20080315-01AMS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: PFTeA, PFTriA, passes in MSD.

Batch 161297, Method LCMS_D7968_S, Sample 20080315-01AMSD: The RPD between the MS and MSD was outside the control limit. The corresponding result in the parent sample should be considered estimated for this analyte: NMeFOSAA

Batch 161297, Method LCMS_D7968_S, Sample LCS1-161297: The LCS recovery was below the lower control limit. The sample results for this analyte may be biased low for this analyte: PFBS, however passes QC criteria.

Batch 161297, Method LCMS_D7968_S, Sample LCS1-161297: PFDS ion ratio failed low. PFOS ion ratio failed low.

Batch 161297, Method LCMS_D7968_S, Sample LCS2-161297: NEtFOSAA ion ratio failed high.

Batch 161297, Method LCMS_D7968_S, Sample LCS3-161297: The LCS recovery was below the lower control limit. The sample results for this analyte may be biased low for this analyte: HFPO-DA, however passes QC criteria.

ALS Group, USA

Date: 25-Aug-20

Client: ALS Environmental

Project: R2006788

Work Order: 20080315

Work Order Sample Summary

 Lab Samp ID
 Client Sample ID
 Matrix
 Tag Number
 Collection Date
 Date Received
 Hold

 20080315-01
 203558-01 BF1
 Soil
 7/30/2020 12:20
 8/5/2020 10:30
 □

Sample Results

ALS Environmental – Holland Laboratory 3352 128th Avenue, Holland, MI 49424 Phone (616) 399-6070 Fax (616) 399-6185 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006788 **Sample Matrix:** Soil

Sample Name: 203558-01 BF1 Lab Code: 20080315-01

Service Request: 20080315 **Date Collected:** 07/30/20 12:20

Date Received: 08/05/20 10:30

Units: ng/Kg-dry

Basis: Dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorobutanoic Acid (PFBA)	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Perfluoropentanoic Acid	29 J	150	1	08/11/20 18:35	08/11/20 17:00	
(PFPeA)						
Perfluorohexanoic Acid	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
(PFHxA)						
Perfluoroheptanoic Acid	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
(PFHpA)						
Perfluorooctanoic Acid	20 J	29	1	08/11/20 18:35	08/11/20 17:00	
(PFOA)						
Perfluorononanoic Acid	17-5	29 <i>UJ</i> 29	1	08/11/20 18:35	08/11/20 17:00	
(PFNA)	4.50	4.50		00/11/2010 27	00/44/2047 00	
Perfluorodecanoic Acid	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
(PFDA)	150 11	1.50		00/11/20 10 27	00/11/20 17 00	
Perfluoroundecanoic Acid	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
(PFUnA) Perfluorododecanoic Acid	150 II	150	1	00/11/20 10.25	09/11/20 17.00	
(PFDoA)	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Perfluorotridecanoic Acid	150 U	<i>UJ</i> 150	1	08/11/20 18:35	08/11/20 17:00	
(PFTriA)	130 0	130	1	06/11/20 16.55	06/11/20 17.00	
Perfluorotetradecanoic Acid	150 U	<i>UJ</i> 150	1	08/11/20 18:35	08/11/20 17:00	
(PFTeA)	130 0	130	1	00/11/20 10.33	06/11/20 17.00	
Perfluorobutanesulfonic	29 U	<i>VJ</i> 29	1	08/11/20 18:35	08/11/20 17:00	
Acid (PFBS)	2) 0	2)	1	00/11/20 10:55	00/11/20 17:00	
Perfluorohexanesulfonic	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Acid (PFHxS)			_	***************************************	***************************************	
Perfluoroheptanesulfonic	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Acid (PFHpS)						
Perfluorooctanesulfonic	48	29	1	08/11/20 18:35	08/11/20 17:00	
Acid (PFOS)						
Perfluorodecanesulfonic	29 U	29	1	08/11/20 18:35	08/11/20 17:00	
Acid (PFDS)						
Fluorotelomer Sulphonic	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Acid 6:2 (FtS 6:2)						
Fluorotelomer Sulphonic	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Acid 8:2 (FtS 8:2)						
Perfluorooctanesulfonamide	29 U	29	1	08/11/20 18:35	08/11/20 17:00	
(PFOSA)						
N-	150 U	150	1	08/11/20 18:35	08/11/20 17:00	
Ethylperfluorooctanesulfon						
amidoacetic Acid						

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Service Request: 20080315 **Date Collected:** 07/30/20 12:20 **Project:** R2006788 **Sample Matrix:** Soil **Date Received:** 08/05/20 10:30

Sample Name: 203558-01 BF1 Units: ng/Kg-dry

Lab Code: 20080315-01 Basis: Dry

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

MRL **Analyte Name** Result Dil. **Date Analyzed Date Extracted** Q N-150 U 08/11/20 18:35 08/11/20 17:00 150 1

Methylperfluorooctanesulfo

namidoacetic Acid

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFBA	100	50 - 130	08/11/20 18:35	
13C5-PFPeA	101	50 - 130	08/11/20 18:35	
13C2-PFHxA	101	50 - 130	08/11/20 18:35	
13C4-PFHpA	98.5	50 - 130	08/11/20 18:35	
13C4-PFOA	98.4	70 - 130	08/11/20 18:35	
13C5-PFNA	104	70 - 130	08/11/20 18:35	
13C2-PFDA	106	70 - 130	08/11/20 18:35	
13C2-PFUnA	101	70 - 130	08/11/20 18:35	
13C2-PFDoA	96.8	70 - 130	08/11/20 18:35	
13C2-PFTeA	55.0	50 - 130	08/11/20 18:35	
13C3-PFBS	93.1	50 - 130	08/11/20 18:35	
18O2-PFHxS	104	70 - 130	08/11/20 18:35	
13C4-PFOS	99.9	70 - 130	08/11/20 18:35	
13C2-FtS 4:2	76.6	50 - 130	08/11/20 18:35	
13C2-FtS 6:2	85.4	50 - 130	08/11/20 18:35	
13C2-FtS 8:2	90.1	50 - 130	08/11/20 18:35	
13C8-FOSA	103	50 - 130	08/11/20 18:35	
d3-N-MeFOSAA	105	50 - 130	08/11/20 18:35	
d5-N-EtFOSAA	106	50 - 130	08/11/20 18:35	
13C3-HFPO-DA	85.4	50 - 130	08/11/20 18:35	

Printed 8/26/2020 5:03:45 PM Superset Reference:20080315

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

September 02, 2020

Sarah Conlon Paradigm Environmental 179 Lake Avenue Rochester, NY 14608

TEL: (800) 724-1997 Work Order No: 200731032

Project#: 203558

RE: Sample Analysis Tonowanda BIO-Soil

Dear Sarah Conlon:

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed in the Case Narrative. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature."

Tara Daniels

Laboratory Director

Work Order: 200731032

Workorder Sample Summary

Client: Paradigm Environmental

ProjectName: Sample Analysis
ProjLocation: Tonowanda BIO-Soil

AES Sample No	ClientSampID	Matrix	CollectionDate	DateReceived
200731032-001	BF-1	Soil	7/30/2020 12:20:00 PM	7/31/2020

8/5/2020 Page 1 of 1

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

Case Narrative

Client: Paradigm Environmental Services

Case: 200731032

SDG: BF1

Herbicides

1) The samples received on were analyzed for Silvex by EPA Method 8321B.

- 2) The sample bottles were not supplied by Adirondack Environmental Services.
- 3) The samples received on 7/31/20 had a temperature of 3 °C.
- 4) Peak height was used to calculate all values appearing in this data package.
- 5) The primary quantitation column is identified as C8.
- 6) AES sample number 200731026-001 was used for the matrix spike and the matrix spike duplicate analysis. All other recoveries were within acceptable limits.

Inorganics – Total Mercury

- 1) The samples were analyzed for Total Mercury as specified on the chain of custody.
- 2) Sample BF1 (AES sample number 200731032-001) was used as the Mercury matrix spike sample. All recoveries were within acceptable limits.
- 3) Sample BF1 (AES sample number 200731032-001) was used as the Mercury duplicate sample. All recoveries were within acceptable limits.

Inorganics

- 1) This project required the analysis of Hexavalent Chromium by EPA 3060A/7196A.
- 2) AES sample number 200728066-002 was used as the soil matrix spike sample for Hexavalent Chromium. The recovery for the soluble Hexavalent Chromium spike was below the acceptable limits. The recovery for the insoluble Hexavalent Chromium spike was below the acceptable limits. This sample is from a separate project, the sample from this project is not flagged.

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

- 3) AES sample number 200731035-002 was used for the duplicate sample. All recoveries were within acceptable limits.
- 4) AES sample number 200803044-008 was used as the soil duplicate sample for Percent Moisture. The recovery was outside the specified limits. This sample was from a different project. No samples in this project are flagged.

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Laboratory Director

Date: 9/2/2020

200731032

DOI

CHAIN OF CUSTODY

ADIRONDACK: FLAPIC

	The Ho					<u>1AIN</u>	<u>UF</u>	<u> </u>	<u> </u>	<u>UU</u>	iali (S. 142a)		<u>, jana salah</u>	d Medwy		7		Marini	 		
PA	RADIO	3 M-	COMPAN	Y: Para	REPORT TO: digm Environi	mental		COMPAN	IY:	Sa	<u>เท</u> เme	VOICE	= 10:		NE		OJECT#:	CLI	ENT PRO		
			ADDRESS					ADDRES	S:						/- HA						
14 20 - 44			CITY:		STATE:	ZIP	:	CITY:					STATE:		ZiP:	TURNA	ROUND TIME:	(WORK	NG DAYS		\equiv ϵ
			PHONE:		FAX:			PHONE:				FAX:							STD		= 5
PROJECT NAME/SIT	E NAME:	1	ATTN:	Repo	orting			ATTN:		Accou	ınts P	ayabl	e			1	2	3	5		
31/1507	onowa	nda	COMMEN	TS: Pleas	se email results	to report	ing@pa	radigr	nenv	.com					· · · · · · · · · · · · · · · · · · ·			1-1-1	25		`
BIO-SU,	1		l		11.00				R	EQUE	ESTEI	D AN	ALYSI	s		Date	Due: 81	Floa	ンし. X		
		С	1	100000		2		С						Substitution i		ASP	Cat B +	Escho	eer		
		O M	G				M A	N N								SW8 repet REMAI	46 MIS	_			
DATE	TIME	P 0	R	SAN	IPLE LOCATION/FIELD	ID	T R	MAS	1	\$						re Rout	RKS Lry	W	PAF		
		S	В				ı X	EN	N C	32	1	11				* >			JAM		
		T			(9.)		^	R	He	4 /2											
17/30/2020	1220			B =1			5021	1	\ <u>\</u>	VV		++			29	3 <i>55</i> 8	-01			П	T
2	1220			017			30%		1	7	\vdash				000	3300				++	+
3									\vdash	\dashv		+									-
										+		++								++	+
4										+		+								$\dashv \uparrow$	+
5 6	\$						 		\forall	+	\vdash	++								++	+
7																			\vdash	\vdash	
8									\Box	_		+							\Box	$\dagger \dagger$	+
9									H	-		1					1			++	+
									H	_		+						- Duwin an	\vdash	++	+
10 **LAB USE O	NLY BEL	OW THIS LI	NE**								LL										
Sample Condition	n: Per NELA	AC/ELAP 210/2																			
	Receipt Pa				Compliance		0!!4														
Comments:	Container [*]	Type:		Υ	N N	Sample	Client ed By						Date/Tir	ne			- Total	Cost:			
	Preservat	fion:		Y 🗀	N 🗍			11.0	10	, 1	7	12.	1-12	20	08	-2 D					
Comments:	Pieseivai			'		Relinqu	Mornished B	y Y		<u> </u>		1	Date/Tir	ne		,20	-				
	Holding T	ime:		Υ	N																
Comments:	o.ding				—	Receiv	ed By						Date/Tir	ne			P.I.F.			1	
	Temperat	ture: Z°C		Υ	N	4	haz	nde Alfred Reich Alle (1880 Mille (1880 Mi				ruino	7/3	1/20	> 4	44le	2177				
Comments:		2		· Ш		Receiv	ed @ La	Ву					Date/Tir		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_			1	
					1																

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental

Work Order: 200731032

Reference:

PO#:

Sample Analysis / Tonowanda BIO-Soil

Collection Date: 7/30/2020 12:20:00 PM

Client Sample ID: BF-1

Date: 05-Aug-20

Lab Sample ID: 200731032-001

Matrix: SOIL

Project#: 203558

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
CHLORINATED HERBICIDES - EPA 8 (Prep: SW3545A - 7/31						Analyst: KF
2,4,5-TP (Silvex)	ND	344		μg/Kg-dry	1	8/3/2020 5:03:48 PM
Surr: Acifluorfen	178	51.2-145	S	%REC	1	8/3/2020 5:03:48 PM

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental Client Sample ID: BF-1

Work Order: 200731032 Collection Date: 7/30/2020 12:20:00 PM

Reference: Sample Analysis / Tonowanda BIO-Soil Lab Sample ID: 200731032-001

PO#: Matrix: SOIL

Project# : 203558

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
MERCURY - SW 7471B					Analyst: AVB
(Prep: SW7471B - 8/3/2020)				
Mercury	ND	0.229	μg/g-dry	1	8/3/2020 3:09:35 PM

Date: 05-Aug-20

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental

Work Order: 200731032

Reference:

PO#:

Sample Analysis / Tonowanda BIO-Soil

Collection Date: 7/30/2020 12:20:00 PM

Date: 05-Aug-20

Lab Sample ID: 200731032-001

Client Sample ID: BF-1

Matrix: SOIL

Project# : 203558

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
HEXAVALENT CHROMIUM - SW 719 (Prep: SW3060A - 8/3/2	• •				Analyst: JW
Chromium, Hexavalent	ND	1.2	μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM D2216		Analyst: TSZ			
Percent Moisture	12.7	0.1	wt%	1	8/4/2020

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Appendix B

Laboratory QC Documentation

2 VOLATILE SURROGATE RECOVERY

Lab Name: <u>Paradigm Environmental Services</u>

Lab Project #: 203558
Client Name: BE3

Client Project Name: <u>31/150 Tonawanda BIO-Soil</u>

Client Project #: <u>N/A</u> SDG No.: <u>3558-01</u>

Matrix: Soil
QC Batch: voas200807

Instrument ID: <u>Instrument1</u>

GC Column 1: DB-624 ID (mm): 0.20 Detector: MSD

LAB SAMPLE NO.	CLIENT SAMPLE ID	PFB %REC	12DCEd4 %REC	TD8 %REC	4BFB %REC	Total Out
1 Blk 1	N/A	105	75.7	98.4	75	0
2 LCS 1	N/A	102	84.9	110	109	0
3 203558-02	BF VOC 1	97.4	123	80.3 *	58.4 *	2
4 203558-03	BF VOC 2	94.1	120	79.8 *	56.2 *	2
5 203558-04	BF VOC 3	95.9	127	75.3 *	52.7 *	2
6 203558-05	BF VOC 4	99.9	126	80.4 *	62.5	1
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						

 QC LIMITS %

 PFB = Pentafluorobenzene
 (88.8 - 118)

 12DCEd4 = 1,2-Dichloroethane-d4
 (75 - 134)

 TD8 = Toluene-d8
 (84 - 114)

 4BFB = 4-Bromofluorobenzene
 (59.5 - 129)

^{*} Values outside of current required QC limits

D Surrogate diluted out

8 VOLATILE INTERNAL STANDARD AREA and RT SUMMARY

Lab Name:Paradigm Environmental ServicesSample ID:CCVLab Project #:203558Lab File ID:x72366a.D

Client Name: BE3

Client Project Name: 31/150 Tonawanda BIO-Soil Date Analyzed: 8/7/2020 Client Project #: N/A Time Analyzed: 11:38

SDG No.: <u>3558-01</u>

QC Batch: voas200807

Instrument ID: <u>Instrument1</u>

GC Column 1: DV-624 ID (mm): 0.20 Detector: MSD

CCV	IS1: FB		IS2: CB	d5	IS3: 14DCBd4		
	Area RT		Area	RT	AREA	RT	
12 Hour Standard	206542	5.00	150040	7.95	85848	10.48	
Upper Limit	413084	5.50	300080	8.45	171696	10.98	
Lower Limit	103271	4.50	75020	7.45	42924	9.98	

This CCV applies to the following Samples and QC

	Lab	Client	IS1:	: FB	IS2: (CBd5	IS3: 14	4DCBd4	
	Sample No.	Sample ID	Area	RT	Area	RT	AREA	RT	
1	Blk1	N/A	225095	5.01	152994	7.95	58988	10.49	
2	LCS1	N/A	195617	5.01	140010	7.95	81663	10.48	
3	203558-02	BF VOC 1	118605	5.01	59530 *	7.96	12675	10.49	
4	203558-03	BF VOC 2	124404	5.01	64507 *	7.96	14661 *	10.49	
5	203558-04	BF VOC 3	110057	5.01	48836 *	7.96	9128 *	10.49	
6	203558-05	BF VOC 4	101095 *	5.01	56727 *	7.96	14586 *	10.49	
7)		
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

IS1: FB = Fluorobenzene IS2: CBd5 = Chlorobenzene-d5

IS3: 14DCBd4 = 1,4-Dichlorobenzene-d4

Notes: * Values outside of current required QC limits

Area Limits = -50% to +100% of 12 Hour Standard area

RT Limits = -0.50 to +0.50 minutes of 12 Hour Standard retention times

FORM VIII VOA

Method Path : C:\msdchem\1\METHODS\

Method File: 200803.M

Title : 8260/624 Analysis

Last Update : Mon Aug 03 14:04:06 2020

Response Via: Initial Calibration

Calibration Files

1 =x72208.D 2 =x72209.D 3 =x72210.D 4 =x72211.D 5 =x72212.D 6 =x72213.D 7 =x72214.D

		Compound		1	2	3	4	5	6	7	Avg	%RSD
_												
1)	Ι	Fluorobenzene				IST	D					
2)	P	Dichlorodifluo	1.045	1.246	1.364	1.108	0.917	0.822		1.084	18.60	
3)	P					1.305			0.997	1.256	19.35	
4)	P	Vinyl chloride				1.179					15.99	
5)	P					0.776					23.60	*
6)	P	Chloroethane				0.750					18.52	
7)	P	Trichlorofluor									22.33	*
8)						0.339					11.22	
9)	P	Freon 113	0.854	1.046	1.155	0.938	0.760	0.671	0.658	0.869	21.70	*
10)	P	1,1-Dichloroet									18.45	
11)	P	Acetone		0.189	0.224	0.164	0.141	0.134	0.138	0.225	72.08	*
12)		Isopropyl Alcohol								0.000	-1.00	
13)	P	Carbon disulfide									15.92	
14)		Methyl acetate									16.45	4
15)	P	Methylene chlo									33.77	*
16)		Acrylonitrile									18.87	
17)		tert-Butyl Alc									10.88	
18)		Methyl tert-bu									16.32	
19)		trans-1,2-Dich									18.73	
20)	P	1,1-Dichloroet									18.06	
21)		Vinyl acetate									13.34	
22)		2,2-Dichloropr									12.73	
23)		2-Butanone	0.040	0.041	0.055	0.050	0.046	0.046	0.047	0.046		
24)	P	cis-1,2-Dichlo									14.79	
25)		Bromochloromet									15.76	
26)						1.484					18.08	
27)	S	Pentafluoroben									2.74	
28)		Tetrahydrofuran				0.046					15.01	
29)		1,1,1-Trichlor									16.58	
30)		- 1				1.724					14.16	
31)		1,2-Dichloroet									13.61	
32)		Carbon Tetrach									16.66	
33)						3.374					18.50	
34)		1,2-Dichloroet									18.49	
35)	Р	Trichloroethene	0.550	0.700	0.860	0.822	0.770	0.754	0.764		13.42	
36)	-	tert-Butyl Ace								0.000	-1.00	W-
37)	P	Methylcyclohexane	0.519	0.754							33.06	*
38)		1,4-Dioxane			0.003	0.003	0.003	0.004	0.004	0.003	11.51	RF < 0.005

8/3/2020 15/3

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\200804\

Data File : B48360.D

Acq On : 4 Aug 2020

Operator : A. Monfette

Sample : CCV 50PPM 8270 + PyrMulti

Misc : ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 04 10:25:13 2020

Quant Method: C:\msdchem\1\methods\ABN200729A.M

Quant Title

QLast Update : Mon Aug 03 12:06:51 2020 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area%	Dev(min)
46 P. 47 P. 48 P. 49 P.M. 50 P.M. 51 P. 52 P. 53 S. 54 P. 55 P. 56 P. 57 P. 58 P.M. 59 S. 60 P.M. 61 P. 62 P. 63 P.	Dibenzofuran Diethyl phthalate Dimethyl phthalate 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluorene 2-Fluorobiphenyl Hexachlorocyclopentadiene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrophenol 2,4,6-Tribromophenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol Atrazine	50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	52.513 52.659 53.024 43.037 54.764 53.874 53.193 52.790 25.219 55.086 53.953 55.693 55.278 105.749 51.017 50.911 47.628 4.051	-5.0 148 -5.3 149 -6.0 148 13.9 129 -9.5 150 -7.7 150 -6.4 145 -5.6 147 149.6# 66 10.2 151 -7.9 151 -11.4 155 -10.6 159 -5.7 147 -2.0 140 -1.8 140 4 7 135	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
64 I 65 P 66 P 67 PM 68 P 69 P 70 P 71 PM 72 P 73 P 74 P 75 P	Phenanthrene-d10 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol Fluoranthene Hexachlorobenzene N-Nitrosodiphenylamine Pentachlorophenol Anthracene Phenanthrene Carbazcle Benzo (a) anthracene	40.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 52.006 55.914 45.184 53.422 52.098 53.016 41.612 51.943 51.472 53.151 54.011	0.0 143 -4.0 145 -11.8 152 9.6 138 -6.8 146 -4.2 146 -6.0 146 16.8 121 -3.9 143 -2.9 145 -6.3 148 -8.0 149	0.00
76 I 77 78 P 79 P 80 P 81 P 82 PM 83 S	Chrysene-d12 Benzidine Bis (2-ethylhexyl) phthalat Butylbenzylphthalate Chrysene 3,3'-Dichlorobenzidine Pyrene Terphenyl-d14	40.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 78.641 58.136 57.292 52.567 59.022 53.545 53.575	0.0 139 7-57.3# 0 -16.3 155 -14.6 154 -5.1 143 -18.0 164 -7.1 146 -7.2 147	0.00 NT 0.00 O 0.00 0.00 0.01 0.00 0.00 0.00
84 I 85 P 86 P 87 P 88 P 89 P	Perylene-d12 Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Dibenz (a,h) anthracene	40.000 50.000 50.000 50.000 50.000	40.000 51.882 55.819 54.326 55.231 54.587	$ \begin{array}{c cccc} 0.0 & 142 \\ -3.8 & 143 \\ -11.6 & 150 \\ -8.7 & 149 \\ -10.5 & 147 \\ -9.2 & 145 \end{array} $	0.01 0.00 0.00 0.01 0.00 0.01

2 PESTICIDE SURROGATE RECOVERY

Lab Name: <u>Paradigm Environmental Services</u>

Lab Project #: 203558
Client Name: BE3

Client Project Name: <u>31/150 Tonawanda BIO-Soil</u>

Client Project #: N/A

SDG No.: <u>3558-01</u> Matrix: <u>Soil</u>

QC Batch: QC200731PESTS

Instrument ID: <u>Dual ECD 1</u>

GC Column 1: Rtx-CLPesticides1 ID (mm): 0.32 Detector: ECD1

	LAD	CHENT	TCV	DCDD	Takal
	LAB	CLIENT	TCmX	DCBP	Total
	SAMPLE NO.	SAMPLE ID	(%Recovery)	(%Recovery)	Out
1	Blk 1	N/A	46.9	71.6	0
2	LCS 1	N/A	45.9	124 *	1
3	LCS Tox	N/A	55.6	61.5	0
4	203558-01	BF 1	20.4 *	31.8 *	2
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
23					

 $\frac{QC \text{ LIMITS }\%}{\text{TCmX} = \text{Tetrachloro-m-xylene}}$ $\frac{QC \text{ LIMITS }\%}{(28.5 - 99.8)}$ $\frac{QC \text{ LIMITS }\%}{(28.5 - 99.8)}$ $\frac{QC \text{ LIMITS }\%}{(28.5 - 99.8)}$ $\frac{QC \text{ LIMITS }\%}{(28.5 - 99.8)}$

* Values outside of current required QC limits

D Surrogate diluted out

FORM II PEST

QC Report for Sample Spike and Sample Duplicate

SDG #: 3558-01

Client: BE3 Lab Project ID: 203558

Project Reference: 31/150 Tonawanda BIO-Soil

Lab Sample ID: 203558-01 **Date Sampled:** 7/30/2020

Sample Identifier: BF 1

Matrix: Soil

Date Received: 7/30/2020

Metals

	Sample	Result	<u>Spike</u>	Spike	Spike %	% Rec	<u>Spike</u>	Duplicate	Relative %	RPD	<u>RPD</u>	<u>Date</u>
<u>Analyte</u>	Results	<u>Units</u>	Added	Result	Recovery	Limits	Outliers	Result	Difference	Limit	Outliers	Analyzed
Arsenic	4.75	mg/Kg	141	126	86.1	75 - 125		4.39	7.86	20		8/4/2020
Barium	31.6	mg/Kg	141	158	89.7	75 - 125		34.2	8.00	20		8/4/2020
Beryllium	0.203	mg/Kg	28.2	23.4	82.3	75 - 125		0.175	NC	20		8/4/2020
Cadmium	1.70	mg/Kg	56.4	48.5	82.9	75 - 125		1.63	4.22	20		8/4/2020
Chromium	9.54	mg/Kg	141	127	83.6	75 - 125		10.9	13.1	20		8/4/2020
Copper	20.0	mg/Kg	141	138	83.7	75 - 125		19.1	4.98	20		8/4/2020
Lead	9.34	mg/Kg	141	126	82.5	75 - 125		9.50	1.72	20		8/4/2020
Manganese	288	mg/Kg	56.4 +	299	19.2	75 - 125	*	287	0.396	20		8/4/2020
Nickel	17.5	mg/Kg	282	234	76.8	75 - 125		15.7	11.2	20		8/4/2020
Selenium	< 1.21	mg/Kg	141	111	78.9	75 - 125		<1.14	NC	20		8/4/2020
Silver	< 0.603	mg/Kg	14.1	12.2	86.3	75 - 125		< 0.569	NC	20		8/4/2020
Zinc	53.1	mg/Kg	141	162	77.1	75 - 125		50.3	5.46	20		8/5/2020

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS - ROCHESTER

Project: R2006788
Sample Matrix: Soil

Service Request: 20080315

Date Collected: N/A
Date Received: N/A

Date Analyzed: 08/11/2020 **Date Extracted:** 08/11/2020

Matrix Spike Summary Organic LC

 Sample Name:
 203558-01 BF1

 Lab Code:
 203558-01 BF1

 Analysis Method:
 D7968-17a

Prep Method:

D7968-17a D7968-17a Units: ng/Kg
Basis: Wet

20080315-01AMS

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Perfluorobutanoic Acid (PFBA)	7.029	427.5	490.2	85.8	50-130
Perfluoropentanoic Acid	24.95	489.3	490.2	94.7	70-130
(PFPeA)					
Perfluorohexanoic Acid	5.145	391.7	490.2	78.8	50-130
(PFHxA)					
Perfluoroheptanoic Acid	16.13	432.9	490.2	85.0	50-130
(PFHpA)					
Perfluorooctanoic Acid (PFOA)	17.14	429.8	490.2	84.2	70-130
Perfluorononanoic Acid	15.14	431.8	490.2	85.0	70-130
(PFNA)					
Perfluorodecanoic Acid	9.579	435.3	490.2	86.9	70-130
(PFDA)					
Perfluoroundecanoic Acid	3.702	418.7	490.2	84.7	70-130
(PFUnA)					
Perfluorododecanoic Acid	1.516	385.9	490.2	78.4	70-130
(PFDoA)					
Perfluorotridecanoic Acid	0	315.8 S	490.2	64.4 *	70-130
(PFTriA)					
Perfluorotetradecanoic Acid	2.328	299 S	490.2	60.5 *	70-130
(PFTeA)					
Perfluorobutanesulfonic Acid	0	344.9	433.3	79.6	70-130
(PFBS)					
Perfluorohexanesulfonic Acid	0	337.9	446.1	75.7	70-130
(PFHxS)					
Perfluoroheptanesulfonic Acid	0	396.7	466.7	85.0	70-130
(PFHpS)					
Perfluorooctanesulfonic Acid	42.02	442.4	454.9	88.0	70-130
(PFOS)					
Perfluorodecanesulfonic Acid	0	357.1	472.5	75.6	70-130
(PFDS)					
Fluorotelomer Sulphonic Acid	0	444.6	464.7	95.7	70-130
6:2 (FtS 6:2)					
Fluorotelomer Sulphonic Acid	17.08	495.9	469.6	102	70-130
8:2 (FtS 8:2)					

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/26/2020 5:03:45 PM

Superset Reference:20080315 Page 32 of 270

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS - ROCHESTER

Project: R2006788 **Sample Matrix:** Soil

Sample Name: MBLK2-161297 Lab Code: MBLK2-161297 Service Request: 20080315

Date Collected: NA

Date Received: NA

Units: ng/Kg
Basis: Wet

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorobutanoic Acid (PFBA)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluoropentanoic Acid (PFPeA)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorohexanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFHxA) Perfluoroheptanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFHpA) Perfluorooctanoic Acid (PFOA)	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Perfluorononanoic Acid	14.96 J	25	1	08/11/20 17:53	08/11/20 17:00	
(PFNA) Perfluorodecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFDA) Perfluoroundecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFUnA) Perfluorododecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFDoA) Perfluorotridecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFTriA) Perfluorotetradecanoic Acid	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
(PFTeA) Perfluorobutanesulfonic	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFBS) Perfluorohexanesulfonic	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFHxS) Perfluoroheptanesulfonic	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFHpS) Perfluorooctanesulfonic	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFOS) Perfluorodecanesulfonic	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
Acid (PFDS) Fluorotelomer Sulphonic	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Acid 6:2 (FtS 6:2) Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Perfluorooctanesulfonamide	25 U	25	1	08/11/20 17:53	08/11/20 17:00	
(PFOSA) N-	120 U	120	1	08/11/20 17:53	08/11/20 17:00	
Ethylperfluorooctanesulfon amidoacetic Acid						

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS - ROCHESTER

Project: R2006788

Sample Matrix:

Soil

Service Request: Date Analyzed: 20080315 08/11/2020

Date Extracted:

08/11/2020

Lab Control Sample Summary

Organic LC

Analysis Method: D7968-17a **Prep Method:** D7968-17a

Units: ng/Kg

Basis: Wet

Analysis Lot: LCMS1_200811A

LCS1-161297

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorobutanesulfonic Acid (PFBS)	25 S,U	22	0 *	35-150
Perfluorodecanesulfonic Acid (PFDS)	22.72 J	24	94.7	35-150
Perfluorononanoic Acid (PFNA)	24.19 J	25	96.8	35-150
Perfluorooctanesulfonamide (PFOSA)	23.46 J	25	93.8	35-150
Perfluorooctanesulfonic Acid (PFOS)	19.35 J	23	84.1	35-150
Perfluorooctanoic Acid (PFOA)	19.58 J	25	78.3	35-150

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

DATA USABILITY SUMMARY REPORT (DUSR)

31Tonawanda Street Buffalo, NY 14207 NYSDEC BCP # C915299

SDG: 203903

1 soil sample

Prepared for:

BE3 Corp. 960 Busti Avenue Suite 150-B Buffalo, NY 14213 **Attention: John Berry**

October 2020

Table of Contents

	$\underline{\mathbf{p}}_{\mathbf{i}}$	age No.					
REVIE	EWER'S NARRATIVE						
1.0	SUMMARY	1					
2.0	INTRODUCTION	1					
3.0	SAMPLE AND ANALYSIS SUMMARY	2					
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA	2					
5.0	DATA VALIDATION QUALIFIERS						
6.0	RESULTS OF THE DATA REVIEW						
7.0	O TOTAL USABLE DATA						
APPE	APPENDIX A Validated Analytical Results APPENDIX B Laboratory QC Documentation APPENDIX C Validator Qualifications						
Table	es						
Table 4 Table 4		ta					
	aries of Validated Results						
Table 6	7 PRI 7 PRI 10 P						
Table 6							
Table 6							
Table 6							
Table 6	A CANAL AND A						
Table 6	5-6 TCN						

REVIEWER'S NARRATIVE BE3 SDG 203903: 31 Tonawanda Street

The data associated with this Sample Delivery Group (SDG) 203903, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Multiple Date: 10/22/20

Michael K. Perry

Chemist

1.0 SUMMARY

SITE:

31 Tonawanda Street

Buffalo, NY 14207

SAMPLING DATE:

August 18, 2020

SAMPLE TYPE:

1 soil sample

LABORATORY:

Paradigm Environmental

Rochester, NY

SDG No.:

203903

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for one soil sample collected on August 18, 2020. These samples were analyzed for the Part 375 list of Volatile Organic Compounds, Semi-volatile Organic Compounds, PCBs, Pesticides, Metals, and TCN.

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 203903. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance					
110.0	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.					
VOCs	**************************************					
	USEPA, 2008, Statement of Work for Organic Analysis of					
	Low/Medium Concentration of Volatile Organic					
	Compounds SQM01.2; SOP HW-33, Rev. 2.					
	USEPA, 2007, Statement of Work for Organic Analysis of					
SVOCs	Low/Medium Concentration of Semivolatile Organic					
	Compounds SQM01.2; SOP HW-35, Rev. 1.					
	USEPA, 2006, CLP Organics Data Review and Preliminary					
Pesticides/PCBs	Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14,					
	Part C.					
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.					
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)					
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.					
Perfluoroalkyl	USEPA, 2018, Data Review and Validation Guidelines for					
Substances	Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method					
(PFASs)	537					

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Canister Certification
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Lab Control Sample
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Instrument Tuning
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Blanks
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Initial Calibration &
Instrument Tuning	Internal Standards	Analyte ID	Sample		System Performance
Internal Standards	Initial Calibration	Lab Qualifiers	Spike Recoveries		Daily Calibration
Initial Calibration	Continuing Calibration	Field Duplicate	Lab Duplicate		Field Duplicate
Continuing Calibration	Lab Qualifiers		Lab Control Sample		
Lab Qualifiers	Field Duplicate		ICP Serial Dilutions		
Field Duplicate			Lab Qualifiers		
			Field Duplicate		

PFASs
Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check **Initial Calibration** Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-6. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 203903, one sample was analyzed and results were reported for 177 analytes. One result was rejected. Even though some results were flagged with a "J" as estimated, all other results (99 %) are considered usable. See the summary table for the analyses that have been rejected and the associated QC reasons.

NOTE: 1) As noted by the laboratory, the soil samples were not collected following SW846 5035A protocol. This adds an element of uncertainty to the analytical results for volatile organic analytes (VOAs). Although not specifically indicated on the final data sheets with a "J" flag, the VOA analytical results should be considered estimated, but usable.

NOTE: 2) The data packages for this project contained no laboratory QC data for the CRDL standard for metals (Form 2B) and the Serial Dilutions of metals (Form 8). Therefore, no evaluation of the CRDL recoveries and the serial dilution results were performed by this data reviewer and no data were qualified as a result.

SDG 203903

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
NFS-1	1,4-Dioxane	R all data	ICAL RF < 0.005	Data are rejected

Table 6-2 SVOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
NFS-1	Atrazine	UJ non-detects J detects	3 pt. ICAL	Data are estimated
NFS-1	Atrazine Hexachloropentadiene	UJ non-detects J detects	% D for CCV > QC limit	Data are estimated

Table 6-3 Pesticides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
NFS-1	4,4'-DDT g-BHC	J IN	>25 % D between dual column analysis	Matrix interference suspected

SDG 203903

Table 6-4 PCBs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

Table 6-5 Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-6 TCN

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 203903 PROJECT NAME: 31 Tonawanda

SDG: 3903-01 CLIENT: BE3

One soil sample was collected by the client on August 18, 2020 and received by the Paradigm Laboratory on August 19, 2020. Samples were received under the conditions as noted on the Chain-of-Custody Supplement. The samples were submitted with the Chains-of-Custody requesting the Part 375 lists for SVOCs, VOCs, Pesticides, Metals, PCBs, and Total Cyanide. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES AND SEMIVOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

VOLATILES

Soil samples were not sampled per EPA method 5035A compliance rules. Thus, an extra note has been added to all VOC reports.

Holding time was met for the sample.

All surrogate recoveries for the sample and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits, except 1,1,2,2-Tetrachloroethane and Chlorobenzene were out high in the LCS.

These outliers were flagged with an "*" on the summary form and an "L" on the sample results page accordingly. The samples were non-detect for these compounds so the LCS was deemed usable and no further action was taken.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the sample and QC.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes with the following exceptions: 4-Methyl-2-Pentanone and 1,2-Dibromo-3-Chloropropane were out low in the CCV. Adequate sensitivity at the reporting limit for these compounds was verified by the analysis of a single point 1ppb standard. This is usable for non-detects only. All samples were non-detect for these compounds.

SEMI-VOLATILES

Holding time was met for the sample.

All surrogate recoveries for the sample and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the sample and associated QC.

All data for the initial calibrations was within acceptance limits for the reported analytes, with the following exception: Atrazine did not have the minimum number of points required for the calibration curve. Adequate sensitivity for this analyte is verified by the analysis of a single point 5ppm standard. This is usable for non-detects only. All samples were non-detect for this compound.

All continuing calibration data was within acceptance limits for the reported analytes, with the following exceptions: Hexachlorocyclopentadiene and Atrazine were out low in the CCV. For the compounds that were out low, adequate sensitivity at the reporting limit was verified by the analysis of a single point 5ppm standard. This is usable for non-detects only. All samples were non-detect for these compounds.

PESTICIDES

Holding time was met for the sample.

Surrogate recoveries for the sample and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control samples recovered within acceptance limits.

The method blank was free from contamination within the reportable ranges.

The internal standards areas and retention times were within acceptance ranges for the sample and associated QC.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All continuing calibration data was within acceptable QC limits, except for the Decachlorobiphenyl outlier in the LCS as mentioned above.

For all Pesticide hits, a Form 10 including Percent Difference has been included. Column confirmations above 40% difference have been flagged with a "P" on the sample reports and an "*" on the Form 10 indicating matrix interference. The reported result is always the lower of the two results.

PCBS

Holding time was met for the sample.

The surrogate recoveries for the sample and the associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptance limits.

The method blank was free from contamination within the reportable ranges.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.99 or better for each peak.

All data for continuing calibrations was within acceptance limits.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding time was met for the sample.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

Total Cyanide

Holding times was met for the sample.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptable limits.

The Method Blank was free from contamination within reportable range.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

(signed) Steven DeVito
Steven DeVito – Technical Director

(date) 10/5/2020

BATCH LOG

Lab Name: <u>Paradigm Environmental Services</u>

 Lab Project #:
 203903

 Client Name:
 BE3

Client Project Name: 31 Tonawanda
Client Project #: N/A
SDG No.: 3903-01

 Protocol:
 SW846
 Report Due Date:
 8/21/2020
 Batch Due Date:
 9/18/2020

LAB SAMPLE NO.	MATRIX	CLIENT SAMPLE ID	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
203903-01	Soil	NFS-1	Metals, Mercury, PCBs, Pests, SVOAs, VOAs, Cyanide	8/18/2020	8/19/2020
	1				

CHAIN OF CUSTODY

DAF	ADIC			100	REPORT TO:	3 1 8					188	VOICE	TO:	130				J. S.		
PAF	RADIG	[V]		CLIENT:	3F3 COR	()		CLIENT:										LAB PRO	JECT ID	
				ADDRESS: 96	D BUSIT	Suit 15	0-3	ADDRES	S:							721	03	903)	
1				CITY: Au	FFAID STATE:	/ 7ID	213	CITY:		2		STATI	E:	ZIP		Quot	tation	#:		
-	-			PHONE:	716-308-	BARE		PHONE:								Ema	il:			
PROJE	CT REFER	ENCE		ATTN: (D)	70 J. (90	ATON		ATTN:												
21	TOMPU	MINI	A	Matrix Code		WA - W	later	1	-	W - D	rinkina	Water		SO - S	nil	SD - S	Solid	WP - W	/ine	OL - Oil
21	l o los to	y iy is.	ч		on-Aqueous Liquid		iroundwa	ter			Vastew			SL - SI		PT - P		CK - C		AR - Air
		_				THE LOSS.			R	EQUI	STE	D ANA	ALYSI	S		135			1112	
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B		SAMPLE IDENTIFIER		M C T D R E S X	NUMBER OFS	375 0009	375 5UBCS	DEST	John Cypnix					REMARKS	5		PARADIGM LAB SAMPLE NUMBER
8-18-20	300		X	NF5	-1		50	2	IX	XX	X	CX								01
0 1- 10					,		20	00			\Box			\Box						
															(1)	FS=1	= /	BATT	+ FI	1 SAMO
															1	FAS	He	XG	4Aan	
																trus '		LVEY	N	DI
																REDI	UIR	ED	- Santi	
									Ш											
Turnaroun	d Time	Т		Report Supp	alomonto	$\neg \cap$				-										
		nt upon l	ab app		fees may apply.	- 1 M	EVE	37	-0/	(70	(STO)	W	8	18.0	5 67	200)		
						Sample	By /			7)		Date/Ti	me				otal Cost:		
tandard 5 day		None R	equirea		None Required	1	el	u	-/	\nearrow	5=	rlò	~	8	019	20	8=	20		
0 day		Batch C	QC		Basic EDD	_	uished B	y_ /	/	• (1		Date/Ti	me	3	C	 r			
tush 3 day		Catego	ry A		NYSDEC EDD	-B	Re	in	3,	4	h		0	-1	9-20	> 8.	:20			7
tush 2 day	×	Catego	ry B	×		A Receiv	uly	Na	J		81	196	Date/Ti レンコ	20	113	34	_	P.I.F.		
lush 1 day						Receiv	ed @ La	b Ву	100	10		,	Date/Ti	me	(, /	1:0	took -	2	1
Pate Needed	led:	Other	licate nack	age needed:	Other EDD please indicate EDD needed :	Ryeir	ice o	is for	m cli	/d	O L.O	to Day	l . S	ァノ _・ n Torr	o bac an	andition	e (rov	arcoj	7000	, dated 199/200
		100	-	-9	The state of the s	Dy 31g	, mig u	101	ini, CII	ont di	51 003	to I di	auigi		anu C		2 (1 C V	Pag	ge 7 of	1/9/9/1200
				- 0											See add	itional p	oage f	or samp	ole con	ditions.

VOLATILE ORGANICS SAMPLE DATA

Lab Project ID: 203903

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

 Lab Sample ID:
 203903-01
 Date Sampled:
 8/18/2020

 Matrix:
 Soil
 Date Received:
 8/19/2020

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.86	ug/Kg		8/19/2020 14:25
1,1,2,2-Tetrachloroethane	< 4.86	ug/Kg	L	8/19/2020 14:25
1,1,2-Trichloroethane	< 4.86	ug/Kg		8/19/2020 14:25
1,1-Dichloroethane	< 4.86	ug/Kg		8/19/2020 14:25
1,1-Dichloroethene	< 4.86	ug/Kg		8/19/2020 14:25
1,2,3-Trichlorobenzene	< 12.1	ug/Kg		8/19/2020 14:25
1,2,4-Trichlorobenzene	< 12.1	ug/Kg		8/19/2020 14:25
1,2,4-Trimethylbenzene	< 4.86	ug/Kg		8/19/2020 14:25
1,2-Dibromo-3-Chloropropane	< 24.3	ug/Kg		8/19/2020 14:25
1,2-Dibromoethane	< 4.86	ug/Kg		8/19/2020 14:25
1,2-Dichlorobenzene	< 4.86	ug/Kg		8/19/2020 14:25
1,2-Dichloroethane	< 4.86	ug/Kg		8/19/2020 14:25
1,2-Dichloropropane	< 4.86	ug/Kg		8/19/2020 14:25
1,3,5-Trimethylbenzene	< 4.86	ug/Kg		8/19/2020 14:25
1,3-Dichlorobenzene	< 4.86	ug/Kg		8/19/2020 14:25
1,4-Dichlorobenzene	< 4.86	ug/Kg		8/19/2020 14:25
1,4-Dioxane	<18.6 R	ug/Kg		8/19/2020 14:25
2-Butanone	< 24.3	ug/Kg		8/19/2020 14:25
2-Hexanone	< 12.1	ug/Kg		8/19/2020 14:25
4-Methyl-2-pentanone	< 12.1	ug/Kg		8/19/2020 14:25
Acetone	< 24.3	ug/Kg		8/19/2020 14:25
Benzene	< 4.86	ug/Kg		8/19/2020 14:25
Bromochloromethane	< 12.1	ug/Kg		8/19/2020 14:25

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Lab Project ID: 203903

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier:	NFS-1					
Lab Sample ID:	203903-01			Date Sampled:	8/18/2020	
Matrix:	Soil			Date Received:	8/19/2020	
Bromodichloromethane)	< 4.86	ug/Kg		8/19/2020	14:25
Bromoform		< 12.1	ug/Kg		8/19/2020	14:25
Bromomethane		< 4.86	ug/Kg		8/19/2020	14:25
Carbon disulfide		< 4.86	ug/Kg		8/19/2020	14:25
Carbon Tetrachloride		< 4.86	ug/Kg		8/19/2020	14:25
Chlorobenzene		< 4.86	ug/Kg	L	8/19/2020	14:25
Chloroethane		< 4.86	ug/Kg		8/19/2020	14:25
Chloroform		< 4.86	ug/Kg		8/19/2020	14:25
Chloromethane		< 4.86	ug/Kg		8/19/2020	14:25
cis-1,2-Dichloroethene		< 4.86	ug/Kg		8/19/2020	14:25
cis-1,3-Dichloropropene	e	< 4.86	ug/Kg		8/19/2020	14:25
Cyclohexane		< 24.3	ug/Kg		8/19/2020	14:2
Dibromochloromethane	9	< 4.86	ug/Kg		8/19/2020	14:2
Dichlorodifluoromethar	ne	< 4.86	ug/Kg		8/19/2020	14:2
Ethylbenzene		< 4.86	ug/Kg		8/19/2020	14:2
Freon 113		< 4.86	ug/Kg		8/19/2020	14:25
Isopropylbenzene		< 4.86	ug/Kg		8/19/2020	14:2
m,p-Xylene		< 4.86	ug/Kg		8/19/2020	14:2
Methyl acetate		< 4.86	ug/Kg		8/19/2020	14:2
Methyl tert-butyl Ether		< 4.86	ug/Kg		8/19/2020	14:2
Methylcyclohexane		< 4.86	ug/Kg		8/19/2020	14:2
Methylene chloride		< 12.1	ug/Kg		8/19/2020	14:2
Naphthalene		< 12.1	ug/Kg		8/19/2020	14:2
n-Butylbenzene		< 4.86	ug/Kg		8/19/2020	14:2
n-Propylbenzene		< 4.86	ug/Kg		8/19/2020	14:2

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier:	NFS-1						
Lab Sample ID:	203903-01			Dat	te Sampled:	8/18/2020	
Matrix:	Soil			Dat	te Received:	8/19/2020	
o-Xylene		< 4.86	ug/Kg			8/19/2020	14:25
p-Isopropyltoluene		< 4.86	ug/Kg			8/19/2020	14:25
sec-Butylbenzene		< 4.86	ug/Kg			8/19/2020	14:25
Styrene		< 12.1	ug/Kg			8/19/2020	14:25
tert-Butylbenzene		< 4.86	ug/Kg			8/19/2020	14:25
Tetrachloroethene		< 4.86	ug/Kg			8/19/2020	14:25
Toluene		< 4.86	ug/Kg			8/19/2020	14:25
trans-1,2-Dichloroether	ne	< 4.86	ug/Kg			8/19/2020	14:25
trans-1,3-Dichloroprop	ene	< 4.86	ug/Kg			8/19/2020	14:25
Trichloroethene		< 4.86	ug/Kg			8/19/2020	14:25
Trichlorofluoromethan	e	< 4.86	ug/Kg			8/19/2020	14:25
Vinyl chloride		< 4.86	ug/Kg			8/19/2020	14:25
<u>Surrogate</u>		Pe	ercent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			102	75 - 134		8/19/2020	14:25
4-Bromofluorobenzene			87.2	59.5 - 129		8/19/2020	14:25

98.6

85.6

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72661.D

Pentafluorobenzene

Toluene-D8

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

88.8 - 118

84 - 114

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

8/19/2020

8/19/2020

14:25

14:25

SEMIVOLATILE ORGANICS SAMPLE DATA

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

 Lab Sample ID:
 203903-01
 Date Sampled:
 8/18/2020

 Matrix:
 Soil
 Date Received:
 8/19/2020

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	< 336	ug/Kg		8/20/2020	19:13
1,2,4,5-Tetrachlorobenzene	< 336	ug/Kg		8/20/2020	19:13
1,2,4-Trichlorobenzene	< 336	ug/Kg		8/20/2020	19:13
1,2-Dichlorobenzene	< 336	ug/Kg		8/20/2020	19:13
1,3-Dichlorobenzene	< 336	ug/Kg		8/20/2020	19:13
1,4-Dichlorobenzene	< 336	ug/Kg		8/20/2020	19:13
2,2-Oxybis (1-chloropropane)	< 336	ug/Kg		8/20/2020	19:13
2,3,4,6-Tetrachlorophenol	< 336	ug/Kg		8/20/2020	19:13
2,4,5-Trichlorophenol	< 336	ug/Kg		8/20/2020	19:13
2,4,6-Trichlorophenol	< 336	ug/Kg		8/20/2020	19:13
2,4-Dichlorophenol	< 336	ug/Kg		8/20/2020	19:13
2,4-Dimethylphenol	< 336	ug/Kg		8/20/2020	19:13
2,4-Dinitrophenol	< 1340	ug/Kg		8/20/2020	19:13
2,4-Dinitrotoluene	< 336	ug/Kg		8/20/2020	19:13
2,6-Dinitrotoluene	< 336	ug/Kg		8/20/2020	19:13
2-Chloronaphthalene	< 336	ug/Kg		8/20/2020	19:13
2-Chlorophenol	< 336	ug/Kg		8/20/2020	19:13
2-Methylnapthalene	< 336	ug/Kg		8/20/2020	19:13
2-Methylphenol	< 336	ug/Kg		8/20/2020	19:13
2-Nitroaniline	< 336	ug/Kg		8/20/2020	19:13
2-Nitrophenol	< 336	ug/Kg		8/20/2020	19:13
3&4-Methylphenol	< 336	ug/Kg		8/20/2020	19:13
3,3'-Dichlorobenzidine	< 336	ug/Kg		8/20/2020	19:13

Client: BE3

Project Reference: 31 Tonawanda

-						
Sample Identifier:	NFS-1					
Lab Sample ID:	203903-01			Date Sampled:	8/18/2020	
Matrix:	Soil			Date Received:	8/19/2020	
3-Nitroaniline		< 336	ug/Kg		8/20/2020	19:13
4,6-Dinitro-2-methylp	henol	< 672	ug/Kg		8/20/2020	19:13
4-Bromophenyl pheny	l ether	< 336	ug/Kg		8/20/2020	19:13
4-Chloro-3-methylphe	nol	< 336	ug/Kg		8/20/2020	19:13
4-Chloroaniline		< 336	ug/Kg		8/20/2020	19:13
4-Chlorophenyl pheny	l ether	< 336	ug/Kg		8/20/2020	19:13
4-Nitroaniline		< 336	ug/Kg		8/20/2020	19:13
4-Nitrophenol		< 336	ug/Kg		8/20/2020	19:13
Acenaphthene		977	ug/Kg		8/20/2020	19:13
Acenaphthylene		< 336	ug/Kg		8/20/2020	19:13
Acetophenone		< 336	ug/Kg		8/20/2020	19:13
Anthracene		2400	ug/Kg		8/20/2020	19:13
Atrazine		< 336 <i>UJ</i>	ug/Kg		8/20/2020	19:13
Benzaldehyde		< 336	ug/Kg		8/20/2020	19:13
Benzo (a) anthracene		3250	ug/Kg		8/20/2020	19:13
Benzo (a) pyrene		2570	ug/Kg		8/20/2020	19:13
Benzo (b) fluoranthen	e	2240	ug/Kg		8/20/2020	19:13
Benzo (g,h,i) perylene		1300	ug/Kg		8/20/2020	19:13
Benzo (k) fluoranthen	e	2110	ug/Kg		8/20/2020	19:13
Bis (2-chloroethoxy) n	nethane	< 336	ug/Kg		8/20/2020	19:13
Bis (2-chloroethyl) eth	ner	< 336	ug/Kg		8/20/2020	19:13
Bis (2-ethylhexyl) phtl	nalate	< 336	ug/Kg		8/20/2020	19:13
Butylbenzylphthalate		< 336	ug/Kg		8/20/2020	19:13
Caprolactam		< 336	ug/Kg		8/20/2020	19:13
Carbazole		978	ug/Kg		8/20/2020	19:13

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier:	NFS-1					
Lab Sample ID:	203903-01			Date Sampled:	8/18/2020	
Matrix:	Soil			Date Received:	8/19/2020	
Chrysene		3080	ug/Kg		8/20/2020	19:13
Dibenz (a,h) anthracen	e	579	ug/Kg		8/20/2020	19:13
Dibenzofuran		546	ug/Kg		8/20/2020	19:13
Diethyl phthalate		< 336	ug/Kg		8/20/2020	19:13
Dimethyl phthalate		< 336	ug/Kg		8/20/2020	19:13
Di-n-butyl phthalate		< 336	ug/Kg		8/20/2020	19:13
Di-n-octylphthalate		< 336	ug/Kg		8/20/2020	19:13
Fluoranthene		7880	ug/Kg		8/20/2020	19:13
Fluorene		970	ug/Kg		8/20/2020	19:13
Hexachlorobenzene		< 336	ug/Kg		8/20/2020	19:13
Hexachlorobutadiene		< 336	ug/Kg		8/20/2020	19:13
Hexachlorocyclopentac	liene	< 1340 <i>UJ</i>	ug/Kg		8/20/2020	19:13
Hexachloroethane		< 336	ug/Kg		8/20/2020	19:13
Indeno (1,2,3-cd) pyrer	ne	1350	ug/Kg		8/20/2020	19:13
Isophorone		< 336	ug/Kg		8/20/2020	19:13
Naphthalene		< 336	ug/Kg		8/20/2020	19:13
Nitrobenzene		< 336	ug/Kg		8/20/2020	19:13
N-Nitroso-di-n-propyla	mine	< 336	ug/Kg		8/20/2020	19:13
N-Nitrosodiphenylamir	ne	< 336	ug/Kg		8/20/2020	19:13
Pentachlorophenol		< 672	ug/Kg		8/20/2020	19:13
Phenanthrene		8020	ug/Kg		8/20/2020	19:13
Phenol		< 336	ug/Kg		8/20/2020	19:13
Pyrene		6260	ug/Kg		8/20/2020	19:13

PESTICIDES SAMPLE DATA

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

 Lab Sample ID:
 203903-01
 Date Sampled:
 8/18/2020

 Matrix:
 Soil
 Date Received:
 8/19/2020

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.36	ug/Kg		8/19/2020 18:52
4,4-DDE	< 3.36	ug/Kg		8/19/2020 18:52
4,4-DDT	3.04 J	ug/Kg	JP	8/19/2020 18:52
Aldrin	< 3.36	ug/Kg		8/19/2020 18:52
alpha-BHC	< 3.36	ug/Kg		8/19/2020 18:52
beta-BHC	< 3.36	ug/Kg		8/19/2020 18:52
cis-Chlordane	< 3.36	ug/Kg		8/19/2020 18:52
delta-BHC	< 3.36	ug/Kg		8/19/2020 18:52
Dieldrin	< 3.36	ug/Kg		8/19/2020 18:52
Endosulfan I	< 3.36	ug/Kg		8/19/2020 18:52
Endosulfan II	< 3.36	ug/Kg		8/19/2020 18:52
Endosulfan Sulfate	< 3.36	ug/Kg		8/19/2020 18:52
Endrin	< 3.36	ug/Kg		8/19/2020 18:52
Endrin Aldehyde	< 3.36	ug/Kg		8/19/2020 18:52
Endrin Ketone	2.48	ug/Kg	J	8/19/2020 18:52
gamma-BHC (Lindane)	1.73 JN	ug/Kg	JP	8/19/2020 18:52
Heptachlor	< 3.36	ug/Kg		8/19/2020 18:52
Heptachlor Epoxide	< 3.36	ug/Kg		8/19/2020 18:52
Methoxychlor	< 3.36	ug/Kg		8/19/2020 18:52
Toxaphene	< 33.6	ug/Kg		8/19/2020 18:52
trans-Chlordane	< 3.36	ug/Kg		8/19/2020 18:52

PCBS SAMPLE DATA

No Data Validation Qualifiers Were Added

MKP 10/20/2020

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

 Lab Sample ID:
 203903-01
 Date Sampled:
 8/18/2020

 Matrix:
 Soil
 Date Received:
 8/19/2020

<u>PCBs</u>

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Anal	yzed
PCB-1016	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1221	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1232	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1242	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1248	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1254	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1260	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1262	< 0.0336	mg/Kg			8/19/2020	17:55
PCB-1268	< 0.0336	mg/Kg			8/19/2020	17:55
Surrogate	Percen	t Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Tetrachloro-m-xylene	(67.4	17.8 - 74		8/19/2020	17:55

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/19/2020

METALS DATA

No Data Validation Qualifiers Were Added

MKP 10/20/2020

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

Lab Sample ID: 203903-01 **Date Sampled:** 8/18/2020

Matrix: Soil Date Received: 8/19/2020

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	yzed
Arsenic	5.25	mg/Kg		8/20/2020	14:32
Barium	114	mg/Kg		8/20/2020	14:32
Beryllium	0.416	mg/Kg		8/20/2020	14:32
Cadmium	2.05	mg/Kg		8/20/2020	14:32
Chromium	24.0	mg/Kg		8/20/2020	14:32
Copper	31.9	mg/Kg		8/20/2020	14:32
Lead	46.1	mg/Kg		8/20/2020	14:32
Manganese	1000	mg/Kg		8/21/2020	10:31
Nickel	22.5	mg/Kg		8/20/2020	14:32
Selenium	< 1.22	mg/Kg		8/20/2020	14:32
Silver	< 0.610	mg/Kg		8/20/2020	14:32
Zinc	95.0	mg/Kg		8/20/2020	14:32

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 8/19/2020

 Data File:
 200820A

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

 Lab Sample ID:
 203903-01
 Date Sampled:
 8/18/2020

 Matrix:
 Soil
 Date Received:
 8/19/2020

Mercury

Analyte Result Units Qualifier Date Analyzed

Mercury **0.0365** mg/Kg 8/21/2020 06:29

Method Reference(s):EPA 7471BPreparation Date:8/19/2020Data File:Hg200821A

WETCHEM DATA

No Data Validation Qualifiers Were Added

MKP 10/20/2020

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: NFS-1

Lab Sample ID: 203903-01 **Date Sampled:** 8/18/2020

Date Received: Matrix: Soil 8/19/2020

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total 8/19/2020 < 0.576 mg/Kg

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 8/19/2020

Appendix B

Laboratory QC Documentation

QC Report for Laboratory Control Sample

Client: BE3

Project Reference: 31 Tonawanda

Lab Project ID: 203903 **SDG #:** 3903-01

Matrix: Soil

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	<u>% Rec</u>	<u>LCS</u>	<u>Date</u>
<u>Analyte</u>	<u>Added</u>	<u>Units</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outliers</u>	Analyzed
1,1,1-Trichloroethane	20.0	ug/Kg	17.6	87.9	64.9 - 133		8/19/2020
1,1,2,2-Tetrachloroethane	20.0	ug/Kg	27.9	139	71.9 - 134	*	8/19/2020
1,1,2-Trichloroethane	20.0	ug/Kg	20.9	105	74.2 - 129		8/19/2020
1,1-Dichloroethane	20.0	ug/Kg	20.4	102	61.6 - 134		8/19/2020
1,1-Dichloroethene	20.0	ug/Kg	17.5	87.6	60.6 - 128		8/19/2020
1,2-Dichlorobenzene	20.0	ug/Kg	23.3	116	70.9 - 129		8/19/2020
1,2-Dichloroethane	20.0	ug/Kg	19.5	97.5	67.2 - 143		8/19/2020
1,2-Dichloropropane	20.0	ug/Kg	17.6	87.9	68.0 - 123		8/19/2020
1,3-Dichlorobenzene	20.0	ug/Kg	22.0	110	67.2 - 124		8/19/2020
1,4-Dichlorobenzene	20.0	ug/Kg	23.3	117	66.8 - 123		8/19/2020
Benzene	20.0	ug/Kg	19.6	98.1	72.2 - 129		8/19/2020
Bromodichloromethane	20.0	ug/Kg	16.7	83.7	64.2 - 129		8/19/2020
Bromoform	20.0	ug/Kg	16.3	81.4	55.2 - 123		8/19/2020
Bromomethane	20.0	ug/Kg	21.8	109	65.2 - 146		8/19/2020
Carbon Tetrachloride	20.0	ug/Kg	18.0	90.2	61.2 - 137		8/19/2020
Chlorobenzene	20.0	ug/Kg	25.8	129	71.6 - 127	*	8/19/2020

```
Method Path : C:\msdchem\1\METHODS\
Method File : 200817.M
Title : 8260/624 Analysis
Last Update : Mon Aug 17 16:04:59 2020
Response Via : Initial Calibration
```

8/17/2010 15/8

```
Response Via: Initial Calibration
 Calibration Files
    =x72583.D 2
                   =x72584.D 3
                                  =x72585.D 4 =x72586.D 5
                                                               =x72587.D 6
                                                                            =x72588.D 7 =x72589.D
      Compound
                                     2
                                           3
                                                       5
                                                                        Avg
                                                                                 8RSD
       Fluorobenzene
                             -----ISTD------
1) I
2) P
       Dichlorodifluo... 1.416 0.887 0.849 0.880 0.863 0.877 0.905 0.954
                                                                          21.46
 3) P
       Chloromethane
                      1.701 1.001 0.949 0.953 0.961 0.965 0.980 1.073
                                                                          25.87
 4) P
       Vinyl chloride
                         1.400 0.928 0.910 0.925 0.932 0.924 0.964 0.997
                                                                          17.87
5) P
                                                                          30.48 ≯
       Bromomethane 1.044 0.600 0.524 0.524 0.540 0.546 0.561 0.620
 6) P
                         0.833 0.489 0.450 0.474 0.484 0.484 0.506 0.531
                                                                          25.25
       Chloroethane
7) P
       Trichlorofluor... 1.828 1.184 1.099 1.168 1.148 1.138 1.176 1.249
                                                                          20.57
       Ethyl ether
                         0.408 0.276 0.266 0.272 0.294 0.292 0.304 0.302
                                                                          16.11
       Freon 113
9) P
                         0.984 0.634 0.608 0.628 0.631 0.626 0.644 0.679
                                                                          19.83
10) P
       1,1-Dichloroet... 1.529 0.973 0.955 0.982 0.982 0.961 0.987 1.053
                                                                          19.97
11) P
                         0.302 0.116 0.109 0.112 0.110 0.111 0.111 0.139
                                                                          51.98
       Acetone
12)
       Isopropyl Alcohol
                                                                  0.000
                                                                          -1.00
       Carbon disulfide 2.737 1.818 1.779 1.857 1.916 1.897 1.961 1.995
                                                                          16.68
13) P
14) P
       Methyl acetate
                         0.153 0.148 0.113 0.120 0.126 0.121 0.124 0.129
                                                                          11.80
15) P
       Methylene chlo... 1.287 0.594 0.504 0.491 0.517 0.519 0.538 0.636
                                                                          45.47
16)
       Acrylonitrile 0.080 0.070 0.065 0.068 0.075 0.072 0.076 0.072
                                                                           7.09
17)
       tert-Butyl Alc...
                               0.016 0.015 0.015 0.016 0.014 0.015 0.015
                                                                           4.77
18) P
       Methyl tert-bu... 1.248 0.864 0.837 0.860 0.897 0.894 0.913 0.930
                                                                          15.29
19) P
       trans-1,2-Dich... 1.341 0.859 0.832 0.844 0.856 0.850 0.868 0.921
                                                                          20.16
       1,1-Dichloroet... 1.959 1.257 1.192 1.188 1.138 1.239 1.227 1.314
                                                                          21.84
20) P
21)
       Vinyl acetate 0.726 0.468 0.476 0.511 0.498 0.541 0.529 0.536
                                                                          16.46
                                                                           3.42
22)
       2,2-Dichloropr...
                               1.123 1.052 1.108 1.120 1.142 1.166 1.118
23) P
       2-Butanone
                         0.063 0.040 0.040 0.041 0.041 0.041 0.041 0.044#
                                                                          19.54
24) P
       cis-1,2-Dichlo... 1.206 0.791 0.769 0.799 0.799 0.823 0.828 0.859
                                                                          17.94
       Bromochloromet... 0.425 0.285 0.279 0.281 0.285 0.298 0.301 0.308
                                                                          17.00
25)
                         1.768 1.266 1.160 1.192 1.177 1.206 1.225 1.285
                                                                          16.78
26) P
       Chloroform
27) S
       Pentafluoroben... 0.681 0.599 0.605 0.610 0.689 0.626 0.581 0.627
                                                                           6.66
```

Tetrahydrofuran 0.076 0.054 0.049 0.052 0.053 0.055 0.055 0.056

1,1,1-Trichlor... 1.857 1.174 1.145 1.214 1.221 1.243 1.271 1.304

1,2-Dichloroet... 0.161 0.173 0.172 0.170 0.197 0.174 0.165 0.173

Carbon Tetrach... 1.395 1.026 1.021 1.109 1.100 1.115 1.136 1.129

1,2-Dichloroet... 0.975 0.639 0.624 0.632 0.627 0.632 0.647 0.682

Trichloroethene 1.281 0.827 0.819 0.872 0.883 0.896 0.925 0.929

Methylcyclohexane 1.900 1.330 1.390 1.504 1.474 1.485 1.499 1.512

2.012 1.379 1.337 1.403 1.370 1.398 1.269 1.452

4.267 2.954 2.788 2.835 2.760 2.764 2.792 3.023

0.003 0.004 0.004 0.004 0.004 0.004

200817.M Mon Aug 17 16:33:59 2020 73VOAV2

1,4-Dioxane

tert-Butyl Ace...

Cyclohexane

28)

29) P 30) P

31) S 32) P

33) P

34) P

35) P

37) P

36)

* curve is not any, of uspense factors

RF < 0.005

15.73

19.00

17.28

11.12

18.28

18.96

17.19

-1.00

12.09

9.21

6.64

```
Method Path : C:\msdchem\1\methods\
Method File: ABN200814.M
38) P
       Caprolactam
                        0.156 0.164 0.156 0.164 0.164 0.164 0.160 0.157 0.161
                                                                               2.34
39) P
       1,2,4,5-Tetrac... 0.271 0.273 0.258 0.268 0.269 0.267 0.258 0.251 0.264
                                                                               2.92
40) P
       Biphenyl
                  0.840 0.835 0.779 0.802 0.802 0.780 0.747 0.718 0.788
                                                                               5.26
41) I
       Acenaphthene-d10
                        -----ISTD-----
42) P
       2-Chloronaphth... 0.382 0.395 0.379 0.385 0.379 0.379 0.360 0.343 0.375#
                                                                               4.31
43) PM Acenaphthene 1.228 1.226 1.172 1.219 1.198 1.212 1.159 1.116 1.191
                                                                               3.31
44) P
       Acenaphthylene 1.808 1.865 1.772 1.861 1.835 1.852 1.757 1.705 1.807
                                                                               3.20
       4-Chlorophenyl... 0.622 0.631 0.596 0.623 0.617 0.628 0.596 0.573 0.611
45) P
                                                                               3.29
       Dibenzofuran 1.678 1.718 1.643 1.700 1.671 1.684 1.613 1.568 1.659
46) P
                                                                               2.96
47) P
       Diethyl phthalate 1.536 1.484 1.376 1.416 1.382 1.387 1.318 1.274 1.397
                                                                               6.01
48) P
       Dimethyl phtha... 1.949 1.637 1.422 1.384 1.372 1.375 1.315 1.272 1.466
                                                                              15.22
49) PM
       2,4-Dinitrophenol 0.056 0.089 0.147 0.171 0.183 0.197 0.199 0.149
                                                                              37.65×
50) PM 2,4-Dinitrotol... 0.363 0.411 0.411 0.439 0.443 0.450 0.435 0.427 0.422
                                                                               6.55
       2,6-Dinitrotol... 0.286 0.309 0.304 0.328 0.327 0.332 0.324 0.316 0.316
51) P
                                                                               4.87
52) P
       Fluorene
                        1.371 1.396 1.327 1.381 1.353 1.344 1.284 1.233 1.336
                                                                               4.07
53) S
       2-Fluorobiphenyl 1.353 1.373 1.314 1.363 1.350 1.345 1.301 1.273 1.334
                                                                               2.58
54) P
       Hexachlorocycl... 0.105 0.155 0.192 0.250 0.272 0.278 0.261 0.226 0.218
                                                                              28.43
       2-Nitroaniline 0.382 0.422 0.419 0.453 0.458 0.463 0.453 0.441 0.436
                                                                               6.28
55) P
56) P
       3-Nitroaniline 0.350 0.379 0.361 0.379 0.384 0.386 0.377 0.366 0.373
                                                                               3.35
57) P
       4-Nitroaniline 0.323 0.361 0.366 0.380 0.387 0.385 0.365 0.369 0.367
                                                                               5.52
58) PM 4-Nitrophenol 0.248 0.283 0.287 0.314 0.315 0.318 0.305 0.296 0.296
                                                                               7.83
59) S
       2,4,6-Tribromo... 0.158 0.170 0.168 0.174 0.171 0.173 0.161 0.160 0.167
                                                                               3.75
60) PM 2,4,6-Trichlor... 0.328 0.342 0.337 0.352 0.353 0.355 0.348 0.334 0.343
                                                                               2.91
       2,4,5-Trichlor... 0.343 0.364 0.360 0.381 0.382 0.386 0.383 0.362 0.370
                                                                               4.13
61) P
       2,3,4,6-Tetrac... 0.253 0.270 0.273 0.284 0.278 0.279 0.287 0.272 0.274
                                                                               3.84
62) P
                                                                              17.67 V
63) P Atrazine
                        0.322 0.292 0.225
                                                                      0.280
                                                                                        3 pt. ICAL
                        ----ISTD-----
64) I
       Phenanthrene-d10
       4-Bromophenyl ... 0.194 0.200 0.190 0.198 0.193 0.198 0.191 0.189 0.194
                                                                               2.18
65) P
66) P
       Di-n-butyl pht... 1.284 1.390 1.309 1.415 1.374 1.418 1.355 1.327 1.359
                                                                               3.62
67) PM 4,6-Dinitro-2-... 0.057 0.085 0.101 0.133 0.141 0.150 0.153 0.152 0.122
                                                                              29.67*
       Fluoranthene 1.148 1.194 1.133 1.192 1.165 1.192 1.145 1.123 1.162
                                                                               2.46
68) P
69) P
       Hexachlorobenzene 0.211 0.220 0.209 0.217 0.214 0.215 0.207 0.205 0.212
                                                                               2.43
                                                                               2.15
70) P
       N-Nitrosodiphe... 0.666 0.694 0.662 0.685 0.674 0.681 0.665 0.649 0.672
71) PM Pentachlorophenol 0.047 0.074 0.084 0.109 0.115 0.121 0.124 0.122 0.099
                                                                              28.25*
                                                                               2.62
72) P
       Anthracene 1.115 1.185 1.125 1.177 1.157 1.167 1.129 1.108 1.145
73) P
                       1.130 1.162 1.085 1.139 1.116 1.137 1.100 1.069 1.117
                                                                               2.77
       Phenanthrene
       Carbazole 1.088 1.129 1.050 1.097 1.084 1.102 1.077 1.052 1.085
74) P
                                                                               2.39
                                                                               2.26
75) P
       Benzo (a) anth... 1.083 1.123 1.063 1.112 1.089 1.099 1.071 1.051 1.086
76) I
       Chrysene-d12
                          ----ISTD-----
                                                                              39.49
                                                                      0.301
                        0.217 0.385
77)
       Benzidine
78) P
       Bis (2-ethylhe... 0.867 0.933 0.912 0.981 0.990 0.981 0.970 0.947 0.948
                                                                               4.44
                                                                               5.95
79) P
       Butylbenzylpht... 0.590 0.657 0.637 0.694 0.697 0.710 0.693 0.672 0.669
       Chrysene 1.145 1.215 1.160 1.218 1.211 1.201 1.161 1.138 1.181
                                                                               2.82
80) P
                                                                               4.85
81) P
       3,3'-Dichlorob... 0.435 0.470 0.451 0.432 0.455 0.424 0.402 0.425 0.437
82) PM Pyrene 1.256 1.349 1.285 1.351 1.357 1.348 1.302 1.286 1.317
                                                                               2.99
```

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\200820\

Data File: B48859.D Acq On: 20 Aug 2020 Operator: A. Monfette 3:16 pm

Sample : CCV 50PPM 8270 + PyrMulti

Misc :

ALS Vial: 4 Sample Multiplier: 1

Quant Time: Aug 20 15:41:51 2020
Quant Method: C:\msdchem\1\methods\ABN200814A.M

Quant Title : QLast Update : Tue Aug 18 14:44:35 2020

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area% Dev(min)
46 P 47 P 48 P 49 PM 50 PM 51 P 52 P 53 S 54 P 55 P 56 P 57 P 58 PM 59 S 60 PM 61 P 62 P 63 P	Dibenzofuran Diethyl phthalate Dimethyl phthalate 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluorene 2-Fluorobiphenyl Hexachlorocyclopentadiene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrophenol 2,4,6-Tribromophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol Atrazine	50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	51.279 50.275 46.547 40.614 49.553 50.524 51.071 52.968 22.406 50.914 50.949 50.213 48.101 98.060 49.066 49.306 49.306 46.511 4.288	-2.6 107 0.00 -0.5 106 0.00 6.9 106 0.00 18.8 96 0.00 0.9 102 0.00 -1.0 104 0.00 -2.1 106 0.00 -5.9 111 -0.01 55.2# 56 0.00 -1.8 105 0.00 -1.9 107 0.00 -0.4 104 0.00 3.8 97 -0.04 1.9 101 0.00 1.9 103 -0.01 1.4 103 -0.03 7.0 96 -0.01 1.91.4# 0 -0.01
64 I 65 P 66 P 67 PM 68 P 69 P 70 P 71 PM 72 P 73 P 74 P 75 P	Phenanthrene-d10 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol Fluoranthene Hexachlorobenzene N-Nitrosodiphenylamine Pentachlorophenol Anthracene Phenanthrene Carbazole Benzo (a) anthracene	40.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 51.452 51.246 43.603 50.866 51.041 52.259 40.533 51.164 51.349 51.028 51.022	0.0 103 0.00 -2.9 104 0.00 -2.5 102 0.00 12.8 95 0.00 -1.7 102 0.00 -2.1 103 0.00 -4.5 106 0.00 18.9 87 -0.01 -2.3 103 0.00 -2.7 104 -0.01 -2.1 104 0.00 -2.0 103 0.00
76 I 77 78 P 79 P 80 P 81 P 82 PM 83 S	Chrysene-d12 Benzidine Bis (2-ethylhexyl) phthalat Butylbenzylphthalate Chrysene 3,3'-Dichlorobenzidine Pyrene Terphenyl-d14	40.000 50.000 50.000 50.000 50.000 50.000 50.000	40.000 82.815 48.704 50.631 51.161 55.505 51.346 51.613	0.0 102 0.00 7 -65.6# 0 0.00 2.6 96 0.00 -1.3 100 0.00 -2.3 102 0.00 -11.0 115 0.00 -2.7 102 0.00 -3.2 102 -0.01
84 I 85 P 86 P 87 P 88 P 89 P	Perylene-d12 Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Dibenz (a,h) anthracene	40.000 50.000 50.000 50.000 50.000	40.000 53.828 53.197 55.300 53.408 55.857	$\begin{array}{c ccccc} 0.0 & 100 & 0.00 \\ -7.7 & 102 & 0.00 \\ -6.4 & 108 & 0.00 \\ -10.6 & 109 & 0.00 \\ -6.8 & 104 & 0.00 \\ -11.7 & 110 & 0.00 \\ \end{array}$

10

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Name:Paradigm Environmental ServicesSample ID:NFS-1Lab Project #:203903Lab Sample #:203903-01

Client Name: <u>BE3</u>

Client Project Name:31 TonawandaDate Analyzed:8/19/2020Client Project #:N/ATime Analyzed:18:52SDG#:3903-01Matrix:Soil

Instrument ID: <u>Dual ECD 1</u>

GC Column 1: Rtx-CLPesticides1 ID (mm): 0.32 Detector 1: ECD1
GC Column 2: Rtx-CLPesticides2 ID (mm): 0.32 Detector 2: ECD2

COMPOUND	COL	RT	RT WI	NDOW	CONCENTRATION	%D	Q
			FROM	TO			
4,4-DDT (1)	1	5.95	5.92	6.06	3.04 J		
4,4-DDT (2)	2	7.73	7.66	7.80	4.84	45.7	*
Endrin Ketone (1)	1	7.95	7.84	7.98	2.69 J		
Endrin Ketone (2)	2	9.39	9.32	9.46	2.48 J	8.12	
gamma-BHC (Lindane) (1)	1	3.32	3.24	3.38	1.73 J		
gamma-BHC (Lindane) (2)	2	3.76	3.69	3.83	4.47	88.4	*
							$oxed{\bot}$
							Ł
							$oxed{\bot}$
							\vdash
							Ħ
							二
							Ħ
							上
							上
							_
							\vdash
							Ħ
							二
							士
							上
	1						+-

%D = </= 40%; Passes

^{* =} Outside QC limits

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

DATA USABILITY SUMMARY REPORT (DUSR)

31 Tonawanda Buffalo, NY 14211 NYSDEC BCP # C91299

SDG: 202239

1 water sample

Prepared for:

BE3 1270 Niagara Street Buffalo, NY 14213 **Attention: John Berry**

July 2020

Table of Contents

			Page No.					
REV	EWER'S NARRATIVE							
1.0	SUMMARY	SUMMARY						
2.0	INTRODUCTION							
3.0	SAMPLE AND ANALYSIS SUMMARY							
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA							
5.0	DATA VALIDATION QUALIFIERS							
6.0	RESULTS OF THE D	ATA REVIEW	4					
7.0	TOTAL USABLE DA	TA	4					
APPENDIX A APPENDIX B APPENDIX C		Validated Analytical Results Laboratory QC Documentation Validator Qualifications						
Tab	les							

Table 4-1	Data Validation Guidance Documents
Table 4-2	Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

The state of the s	
Table 6-1	SVOCs
Table 6-2	Metals
Table 6-3	Sulfate and TOC

REVIEWER'S NARRATIVE BE3 SDG 202239: 31 Tonawanda

The data associated with this Sample Delivery Group (SDG) 202239, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Michael K. Perry	Date:	7/22/2020	
	Michael K. Perry			
	Chemist			

1.0 SUMMARY

SITE:

31 Tonawanda Street

Buffalo, NY 14211

SAMPLING DATE:

May 22, 2020

SAMPLE TYPE:

1 water sample (31-MW-3)

LABORATORY:

Paradigm Environmental Services, Inc.

Rochester, NY

SDG No.:

202239

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for one water sample collected on May 22, 2020. This sample were analyzed for Volatile Organic Compounds (VOCs), Iron, Sulfate, and TOC.

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 202239 except Sulfate and TOC were subcontracted to Alpha analytical in Westbourogh, MA and analyzed as SDG L2021382. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance			
110.0	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.			
VOCs	**************************************			
	USEPA, 2008, Statement of Work for Organic Analysis of			
	Low/Medium Concentration of Volatile Organic			
	Compounds SQM01.2; SOP HW-33, Rev. 2.			
	USEPA, 2007, Statement of Work for Organic Analysis of			
SVOCs	Low/Medium Concentration of Semivolatile Organic			
	Compounds SQM01.2; SOP HW-35, Rev. 1.			
	USEPA, 2006, CLP Organics Data Review and Preliminary			
Pesticides/PCBs	Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14,			
	Part C.			
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.			
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)			
VOCs (Ambient air) USEPA, 2006, Validating Air Samples, Volatile Organic A of Ambient Air in Canister by Method TO-15; SOP # 1 Rev. 4.				
Perfluoroalkyl	USEPA, 2018, Data Review and Validation Guidelines for			
Substances	Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method			
(PFASs)	537			

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Canister Certification
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Lab Control Sample
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Instrument Tuning
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Blanks
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Initial Calibration &
Instrument Tuning	Internal Standards	Analyte ID	Sample		System Performance
Internal Standards	Initial Calibration	Lab Qualifiers	Spike Recoveries		Daily Calibration
Initial Calibration	Continuing Calibration	Field Duplicate	Lab Duplicate		Field Duplicate
Continuing Calibration	Lab Qualifiers		Lab Control Sample		
Lab Qualifiers	Field Duplicate		ICP Serial Dilutions		
Field Duplicate			Lab Qualifiers		
_			Field Duplicate		

PFASs
Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check **Initial Calibration** Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any ± value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-3. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 202239, one sample was analyzed and results were reported for 31 analytes. All results (100 %) are considered usable. See the summary table for any associated QC issues.

NOTE: 1) The data packages for this project contained no laboratory QC data for the CRDL standard for metals (Form 2B) and the Serial Dilutions of metals (Form 8). Therefore, no evaluation of the CRDL recoveries and the serial dilution results were performed by this data reviewer and no data were qualified as a result.

SDG 202239

Table 6-1

VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-2

Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-3

Wet Chemistry

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 202239 PROJECT NAME: 31 Tonawanda

SDG: 2039-01 CLIENT: BE3

One Groundwater sample was collected by the client on May 22, 2020. The sample was received by the Paradigm Laboratory on May 26, 2020. Containers and holding times were acceptable at the time of receipt, the sample was received at 6°C and was on ice. The sample was submitted with the Chains-of-Custody requesting Halogenated VOCs, TOC, Dissolved Iron, and Sulfates. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

Holding time was met for the sample.

All surrogate recoveries for the sample and associated QC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges.

All data for the initial calibrations was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding time was met for the sample.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

SUBCONTRACTED ANALYSES

Sulfates by EPA method 9038, Total Organic Carbon by EPA 9060A were subcontracted to Alpha Analytical of Westborough, MA. Their reports are provided in their entirety as a separate entity after the Paradigm Environmental Services, Inc. report. Separate case narratives addressing the above parameters are included with their reports.

(signed) Steven DeVito Steven DeVito – Technical Director

BATCH LOG

Lab Name: <u>Paradigm Environmental Services</u>

 Lab Project #:
 202239

 Client Name:
 BE3

 Client Project Name:
 31 Tonawanda

 Client Project #:
 N/A

 SDG No.:
 2239-01

 Protocol:
 SW846
 Report Due Date:
 6/2/2020
 Batch Due Date:
 6/25/2020

LAB SAMPLE NO.	MATRIX	CLIENT SAMPLE ID	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
202239-01	Groundwater	31-MW-3	Metals, VOAs, TOC, Sulfates	5/22/2020	5/26/2020
			<u>I</u>		

10/2

CHAIN OF CUSTODY

PARADIGM GLIENT: BE3 COFP				=======	CLIENT:									LAB PROJECT ID					
				ADDRESS: 1770	Minga	ra St			ADDRES:	5:						\neg a 0	2239	ì	
1				Bulla	Niaga In Niaga	ATE	ZIP [4]	134	CITY:	9			STATE	ZII	:	Quotat			
-	The second of			PHONE: 716-	462-740		PHONE:						Email:						
PROJECT REFERENCE Jesse Fiendel				o V			ATTN:							JZ	ientek O	be3ce	FP. COM		
31 Tonas	unda	,		Matrix Code	s:		1012	AV.											
of tone	war v				queous Liquid on-Aqueous Liqui	d	WG - G	ater oundwat	es			nking W astewate		SO - S SL - S		SD - Solid PT - Pain		Wipe Caulk	OL - Oil AR - Air
		-				ALC: N				RE	QUE	STED	ANALY:	SIS					
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B		SAMPLE IDENTII	FIER		M C A O D R E I S	CONTAINERS NUMBER OF	MOAs	Disselved From	S.I.Peles				REM	MARKS		PARADIGM LAB SAMPLE NUMBER
5/22/2020	8944		X	31-m	1W-3			WG	2	X	\forall			+		AT DIVOY	lalacenat	ed VOCT	
Jugos			X		1				2	1				\top	1	AND ALL	, an ogenean	W V C	
			X						1		X			11					10/
V	V		V		V				1		_	X				TOCa	nd Soil	fater	
									•							TOC a sent to	Alpha		1
																	ι		
											Щ			\perp					
		_								1	\sqcup			\perp	ļ.,	4.C. A			
																, ciyy	51261	2020	1548
Turnaroun	d Time			Report Supp	ements								7.	7	NO	9:47 Am	Hales	mycy	sishborn
Availabil	lity continger	nt upon I			fees may apply.		Sample	33e [iren	kell			5/2	2/20	20	9:47 Am			
Standard 5 day	\square	None R	equired		None Required		Sample	d By	1	-			Date/				Total Cos	t:	
10 day		Batch C	OC .		Basic EDD	$\overline{-}$	Remot	ished B	le	uf	1		5/Z	2/000 Time	0	1:45 Pm	^	L.	
Rush 3 day		Categor			NYSDEC EDD		12	~ ~ <i>n</i>	-0	1	-0	_				1:45			
					N 13DEC EDD		Brief Stade 5-22-20 1:45 Received By Date/Time P.I.F.						1						
Rush 2 day		Categor	ув	\boxtimes			11	wes	Va	il	_ <	5/2	-6/2	020	l	1554			
Rush 1 day							Receive	d @ La	Ву				Date/	Time					
Date Needed	ed:	Other please indi	icate packa	ge needed:	Other EDD please indicate EDD	needed :	By sig	ning th	is fort	n, clie	nt ag	rees to) Paradi	gm Ter	ms and	Conditions (reverse). Pa	ge 5 of 1	.93
]													See ac	lditional pa	ge for san	ple con	ditions.

VOLATILE ORGANICS SAMPLE DATA

No Data Validation Qualifiers Were Added

MKP 7/22/2020

METALS DATA

No Data Validation Qualifiers Were Added

MKF 7/22/2020

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2021328

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: 31 TONAWANDA **Project Number:** 31 TONAWANDA

 Lab Number:
 L2021328

 Report Date:
 05/29/20

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2021328-01 31-MW-3 WATER Not Specified 05/22/20 09:47 05/22/20

Project Name:31 TONAWANDALab Number:L2021328Project Number:31 TONAWANDAReport Date:05/29/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Jufani Morrissey_

Report Date: 05/29/20

Title: Technical Director/Representative

L2021328 11148

CHAIN OF CUSTODY

DAI	DADIC				REPORT TO:	P 3 0 19	SIII		0.0	Con	IN	VOICE	TO:	1 18	1	Favoris.	W. E.		dist.	100	BANK I
PA	RADIG	IVI	COMPANY:	Para	digm Enviror	nmental		COMPAN	ry:	5	Same					LABP	ROJECT #:	CLIEN	NT PROJE	CT #:	
			ADDRESS:	179 1	Lake Avenue			ADDRES:	S:												
			CITY:	Rocheste	STATE:	NY ZIP: 1	4608	CITY:				- 3	STATE:		ZIP:	TURNA	VROUND TIME: (WORKING	DAYS)		
			PHONE:		FAX:			PHONE:				FAX:						5	STD		OTHER
PROJECT NAME/SITE			ATTN:	Repo	orting			ATTN: Accounts Payable							\Box		73F	7-5	Г		
31 70	nawanda		COMMENT	s: Pleas	se email resul	lts to reporting	д@р	aradigr	men	v.cor	n					Date Due:					
			SAN	15/15			Tr.All	UE IN	F	REQU	JESTE	D AN	ALYS	IS		Date	e Due.	-	25233		U PACILIE
DATE	TIME	C O M P O S I T E	G R A B	SAA	MPLE LOCATION/FIEL	LDID	M A T R I	C O N T A I N E R R	Π	Sulfates						REM	ARKS		PARADI	3M LAB S	AMPLE NUMBER
5-22-20	9:47		×	31-	m W-3	1	16	3	X	v	+	+	+	\forall	+			\rightarrow			
5 00 00	1.41		1/	31	11110	,	V G	2	1		++	+	+	+	+			\neg	+	+	
-	-		+ +	-		_	-		+	H	+	+	+	Н	+			\rightarrow	+	+	
			+				-		+	H	++	+	+	Н	+			-	+	+	
	-		+-+				_		+	H	+	+	+	\vdash	+-			\rightarrow	+	+	
	-		+				_	-	\vdash	H	++	+	+	₩	+-				+	+	
			+-+				_	-	-	H	+	+	+	\vdash	+			\rightarrow		+	
			+				-		-	\vdash	+	+	-	H	+-			_		-	
			-			-	_		\vdash	Н	+	+	-	Н	_			_	-	-	
			+			-			\vdash	Н	+	+	_	Н	-			_	\perp	\vdash	
	WW PELO	IN THE					_		_	Ш	\perp	\perp		Ш						Ш	
*LAB USE O				3/244								N/P					To be seen in				N. D. St.
	Receipt Para				Compliance																
Comments	Container Ty	/pe:		Y 🗀	N	Sampled	-		_		_		Date/T	îme			Total	Cost:			
Comments	Preservation	on;		Y 🗀	N 🗀	Relinquis	3	rian	1	30	ch		S-2 Date/T	2-2 ime	0 2	2:05	1405				
Comments	Holding Tim	ne:		۲ 🗀	N 🔲	Received	31 By	3	7	Soc			- 22 -		C14:0	5	P.I.F.			1	
	Temperatu	re:		Y 🗀	N	13	1	_				5	- 2	2-2	001	4:05	_				
Comments						Received	By		1	11-	0	10	Date/T	No.	000	(a)					
						Received	6 V6	b By	10	n	V	-	Date/T	ime	000	50	_				
Page 14 of	77					/	100	100		,	1										

Wet Chemistry

No Data Validation Qualifiers Were Added

MKP 7/22/2020

Appendix B

Laboratory QC Documentation

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

DATA USABILITY SUMMARY REPORT (DUSR)

31 Tonawanda Buffalo, NY 14211 NYSDEC BCP # C91299

SDG: 204418

1 water sample

Prepared for:

BE3 Corp. 960 Busti Avenue Suite 150-B Buffalo, NY 14213 **Attention: John Berry**

November 2020

Table of Contents

			Page No.				
REVI	EWER'S NARRATIVE						
1.0	SUMMARY		1				
2.0	INTRODUCTION						
3.0	SAMPLE AND ANALYSIS SUMMARY						
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA 2						
5.0	DATA VALIDATION QUALIFIERS						
6.0	RESULTS OF THE DA	ATA REVIEW	4				
7.0	TOTAL USABLE DATA						
APPI	ENDIX B	Validated Analytical Results Laboratory QC Documentation Validator Qualifications					

Tables

Table 4-1	Data Validation Guidance Documents
Table 4-2	Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

Table 6-1	SVOCs
Table 6-2	Metals
Table 6-3	Sulfate and TOC

REVIEWER'S NARRATIVE BE3 SDG 204418: 31 Tonawanda Street

The data associated with this Sample Delivery Group (SDG) 204418, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Muchael K. Perry

Chemist

1.0 SUMMARY

SITE:

31 Tonawanda Street

Buffalo, NY 14211

SAMPLING DATE:

September 15, 2020

SAMPLE TYPE:

1 water sample (31-MW-3)

LABORATORY:

Paradigm Environmental Services, Inc.

Rochester, NY

SDG No.:

204418

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for one water sample collected on September 15, 2020. This sample were analyzed for Volatile Organic Compounds (VOCs), Iron, Sulfate, and TOC.

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 204418 except Sulfate and TOC were subcontracted to Alpha Analytical in Westbourogh, MA and analyzed as SDG L2038411. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance
110.0	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.
VOCs	**************************************
	USEPA, 2008, Statement of Work for Organic Analysis of
	Low/Medium Concentration of Volatile Organic
	Compounds SQM01.2; SOP HW-33, Rev. 2.
	USEPA, 2007, Statement of Work for Organic Analysis of
SVOCs	Low/Medium Concentration of Semivolatile Organic
	Compounds SQM01.2; SOP HW-35, Rev. 1.
	USEPA, 2006, CLP Organics Data Review and Preliminary
Pesticides/PCBs	Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14,
	Part C.
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.
Perfluoroalkyl	USEPA, 2018, Data Review and Validation Guidelines for
Substances	Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method
(PFASs)	537

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Canister Certification
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Lab Control Sample
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Instrument Tuning
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Blanks
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Initial Calibration &
Instrument Tuning	Internal Standards	Analyte ID	Sample		System Performance
Internal Standards	Initial Calibration	Lab Qualifiers	Spike Recoveries		Daily Calibration
Initial Calibration	Continuing Calibration	Field Duplicate	Lab Duplicate		Field Duplicate
Continuing Calibration	Lab Qualifiers		Lab Control Sample		
Lab Qualifiers	Field Duplicate		ICP Serial Dilutions		
Field Duplicate			Lab Qualifiers		
			Field Duplicate		

PFASs
Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check **Initial Calibration** Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-3. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 204418, one sample was analyzed and results were reported for 64 analytes. All results (100 %) are considered usable. See the summary table for any associated QC issues.

NOTE: 1) The data packages for this project contained no laboratory QC data for the CRDL standard for metals (Form 2B) and the Serial Dilutions of metals (Form 8). Therefore, no evaluation of the CRDL recoveries and the serial dilution results were performed by this data reviewer and no data were qualified as a result.

SDG 204418

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-2 Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none			none	

Table 6-3 Wet Chemistry

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
31-MW-3	Sulfate	J Detects	Detected in method blank	Results < 10X method blank contamination are estimated

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 204418 PROJECT NAME: 31 Tonawanda

SDG: 4418-01 CLIENT: BE3

One groundwater sample was collected by the client on September 15, 2020 and was received by the Paradigm Laboratory on September 16, 2020. Containers and holding times were acceptable at the time of receipt; the sample was received at 5°C and was on ice. The sample was submitted with the Chains-of-Custody requesting Dissolved Oxygen, the Part 375 list for VOCs, Sulfate, Total Organic Carbon, and Dissolved Iron. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

Holding time was met for the sample.

All surrogate recoveries for the sample and associated OC were within acceptance limits.

Site specific QC was not requested on this SDG. The Laboratory Control Sample recovered within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

All internal standards areas and retention times were within acceptance ranges for the sample and QC.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding times were met for the samples.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The Method Blank was free from contamination within reportable ranges.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits.

Wet Chemistry – Dissolved Oxygen

There are no Laboratory Control Samples associated with this analysis.

There are no Method Blanks associated with this analysis.

SUBCONTRACTED ANALYSES

Total Organic Carbon by EPA 9060A and Sulfate by EPA 9038 were subcontracted to Alpha Analytical of Westborough, MA. Their reports are provided in their entirety as a separate entity after the Paradigm Environmental Services, Inc. report. Separate case narratives addressing the above parameters are included with their reports.

(signed)	Steven DeVito	(date)	10/27/2020
	Steven DeVito - Technical Director		

10/2

See additional page for sample conditions.

CHAIN OF CUSTODY

PAF	RADIG	М		CLIENT: BE ADDRESS: 96 CITY: BAYER PHONE: 716	3 Cart 0 Bush als	Ave TATE: NY	Sule ZIP	BRQ	CLIENT: ADDRES CITY: PRONE:	s: >>		STAT		ZIP:		2040 Quotation Email:		200
PROJE	CT REFER	ENCE		ATTN: Jess	e 7 ver	-			ATTN:							Jziem	tek & bei	sort on
31 Tono	iwan	gler			es: Aqueous Liquid Ion-Aqueous Liqu	iid	WA - W WG - G	ater roundwa	ter	W	W - Was		S	iO - Soil iL - Slude	je	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - Oil AR - Air
DATE COLLECTED	TIME	C O M P O S I T E	G R A B		SAMPLE IDENT	IFIER		M C O D E S X	NUNTAINER OF S	Dissoluted Oz	Desired Francisco	100	ALYSIS			REMARKS	S	PARADIGM LAB SAMPLE NUMBER
9/15/20	0930		X	31	-mw-	-3		GW	5	XX	(X)				inclus	de CVO	A	DIA
															Sub	lissolva 19116/2022 sent di	restl b	
				-							H	\vdash			scule	lub m	1/16/2020	
				1 - 364														
Turnaroun Availabi		it upon la		Report Sup	plements fees may apply		Sample		Zre	nte	K		9/15 Date/Time	120	28	9:30	otal Cost:	
Standard 5 day 0 day		None Re			None Required		Relingu	ohi		w	77			5/20	20		Otal Cost.	I
Rush 3 day		Categor			NYSDEC EDD	×	1	7	ion	3	uch				0 2	:05		
Rush 2 day		Category	уВ	×			Receive	d By	No	ug	(1/16	Date/Time	20	155		A.I.F.	
Rush 1 day Date Needed	ed:	Other	cate packe	ge needed:	Other EDD please indicate EDD	needed :		ice	10		, / Le it agre	10		02	NO and Cond	waterly se litions (reve	erse)	200

VOLATILE ORGANICS SAMPLE DATA

No Data Validation Qualifiers Were Added

MKP 11/16/2020

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: 31-MW-3

Lab Sample ID:204418-01Date Sampled:9/15/2020Matrix:GroundwaterDate Received:9/16/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	26500	ug/L		9/17/2020 17:52
1,1,2,2-Tetrachloroethane	< 500	ug/L		9/17/2020 17:52
1,1,2-Trichloroethane	< 500	ug/L		9/17/2020 17:52
1,1-Dichloroethane	26100	ug/L		9/17/2020 17:52
1,1-Dichloroethene	630	ug/L		9/17/2020 17:52
1,2,3-Trichlorobenzene	< 1250	ug/L		9/17/2020 17:52
1,2,4-Trichlorobenzene	< 1250	ug/L		9/17/2020 17:52
1,2,4-Trimethylbenzene	< 500	ug/L		9/17/2020 17:52
1,2-Dibromo-3-Chloropropane	< 2500	ug/L		9/17/2020 17:52
1,2-Dibromoethane	< 500	ug/L		9/17/2020 17:52
1,2-Dichlorobenzene	< 500	ug/L		9/17/2020 17:52
1,2-Dichloroethane	< 500	ug/L		9/17/2020 17:52
1,2-Dichloropropane	< 500	ug/L		9/17/2020 17:52
1,3,5-Trimethylbenzene	< 500	ug/L		9/17/2020 17:52
1,3-Dichlorobenzene	< 500	ug/L		9/17/2020 17:52
1,4-Dichlorobenzene	< 500	ug/L		9/17/2020 17:52
1,4-Dioxane	< 5000	ug/L		9/17/2020 17:52
2-Butanone	< 2500	ug/L		9/17/2020 17:52
2-Hexanone	< 1250	ug/L		9/17/2020 17:52
4-Methyl-2-pentanone	< 1250	ug/L		9/17/2020 17:52
Acetone	< 2500	ug/L		9/17/2020 17:52
Benzene	< 250	ug/L		9/17/2020 17:52
Bromochloromethane	< 1250	ug/L		9/17/2020 17:52

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier:	31-MW-3					
Lab Sample ID:	204418-01			Date Sampled:	9/15/2020	
Matrix:	Groundwater	r		Date Received:	9/16/2020	
Bromodichloromethane		< 500	ug/L		9/17/2020	17:52
Bromoform		< 1250	ug/L		9/17/2020	17:5
Bromomethane		< 500	ug/L		9/17/2020	17:5
Carbon disulfide		< 500	ug/L		9/17/2020	17:5
Carbon Tetrachloride		< 500	ug/L		9/17/2020	17:5
Chlorobenzene		< 500	ug/L		9/17/2020	17:5
Chloroethane		21900	ug/L		9/17/2020	17:5
Chloroform		< 500	ug/L		9/17/2020	17:5
Chloromethane		< 500	ug/L		9/17/2020	17:5
cis-1,2-Dichloroethene		28200	ug/L		9/17/2020	17:5
cis-1,3-Dichloropropene	?	< 500	ug/L		9/17/2020	17:5
Cyclohexane		< 2500	ug/L		9/17/2020	17:5
Dibromochloromethane		< 500	ug/L		9/17/2020	17:5
Dichlorodifluoromethan	ie	< 500	ug/L		9/17/2020	17:5
Ethylbenzene		< 500	ug/L		9/17/2020	17:5
Freon 113		< 500	ug/L		9/17/2020	17:5
Isopropylbenzene		< 500	ug/L		9/17/2020	17:5
m,p-Xylene		< 500	ug/L		9/17/2020	17:5
Methyl acetate		< 500	ug/L		9/17/2020	17:5
Methyl tert-butyl Ether		< 500	ug/L		9/17/2020	17:5
Methylcyclohexane		< 500	ug/L		9/17/2020	17:5
Methylene chloride		1000	ug/L	J	9/17/2020	17:5
Naphthalene		< 1250	ug/L		9/17/2020	17:5
n-Butylbenzene		< 500	ug/L		9/17/2020	17:5
n-Propylbenzene		< 500	ug/L		9/17/2020	17:5

Client: BE3

Project Reference: 31 Tonawanda

18-01					
10 01		Dat	e Sampled:	9/15/2020	
ndwater		Dat	e Received:	9/16/2020	
< 500	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
< 1250	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
284	ug/L		J	9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
1290	ug/L			9/17/2020	17:52
< 500	ug/L			9/17/2020	17:52
3770	ug/L			9/17/2020	17:52
Perce	Percent Recovery		<u>Outliers</u>	Date Analy	zed
	91.9	70.9 - 139		9/17/2020	17:52
	79.6	59.5 - 129		9/17/2020	17:52
	101	89.3 - 117		9/17/2020	17:52
	93.8	82.9 - 115		9/17/2020	17:52
	1290 < 500 3770 Perce	1290 ug/L < 500 ug/L 3770 ug/L Percent Recovery 91.9 79.6 101 93.8	1290 ug/L < 500 ug/L 3770 ug/L Percent Recovery Limits 91.9 70.9 - 139 79.6 59.5 - 129 101 89.3 - 117 93.8 82.9 - 115	1290 ug/L < 500 ug/L 3770 ug/L Percent Recovery Limits Outliers 91.9 70.9 - 139 79.6 59.5 - 129 101 89.3 - 117	1290 ug/L 9/17/2020 < 500

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x73345.D

METALS DATA

No Data Validation Qualifiers Were Added

MKP 11/16/2020

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: 31-MW-3

Lab Sample ID:204418-01ADate Sampled:9/15/2020Matrix:GroundwaterDate Received:9/16/2020

Dissolved Metals

AnalyteResultUnitsQualifierDate AnalyzedIron887mg/L9/21/2020 15:16

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date:9/18/2020Data File:200921B

WETCHEM DATA

Client: BE3

Project Reference: 31 Tonawanda

Sample Identifier: 31-MW-3

Lab Sample ID:204418-01Date Sampled:9/15/2020Matrix:GroundwaterDate Received:9/16/2020

Dissolved Oxygen

AnalyteResultUnitsQualifierDate AnalyzedDissolved Oxygen1.40mg/LA9/22/2020 15:05

Method Reference(s): SM 4500 O G

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2038411

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: 31 TONAWANDA ST **Project Number:** 31 TONAWANDA ST

Lab Number: L2038411 **Report Date:** 09/21/20

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2038411-01 31 - MW - 3 WATER Not Specified 09/15/20 09:30 09/15/20

Project Name:31 TONAWANDA STLab Number:L2038411Project Number:31 TONAWANDA STReport Date:09/21/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Civilin Walker

Authorized Signature:

Report Date: 09/21/20

Title: Technical Director/Representative

CHAIN OF CUSTODY

L2038411

11148

DΛ	DADIO	M.	2 112		REPORT TO):					1	NVOICE	TO:							
	RADIO	1000	COMPANY:	Parac	ligm Enviro	onmental		COMPAN	IY:	:	Same					LAS PROJECT	t: Ci	LIENT PROJE	CT#:	
Value			ADORESS:	179 L	ake Avenu	е		ADDRES	S:							1				
	-		CITY:	Rochester	STATI	E NY ZIP:	14608	CITY:	_				STATE		ZIP:	TURNAROUND	TIME: (WORK	(ING DAYS)		
7		,	PHONE:		FAX:			PHONE:				FAX:		_		-		STD		OTHER
PROJECT NAME/S/T	E NAME:		ATTN:	Repor	rting		_	ATTN:	-	Acc	ounts	Payabl	e			ΤιΠ	· [3 X 5		OTHER
			COMMENTS			ults to reportin	വരിവ	aradio	men			· uyub		_		H, L	2	VIS		
31 7	onawand	a St	COMMENT	a. 1 1000	o omair rost	una to reporti	'9@P	aradigi								Date Due	1			
	THE PERSON NAMED IN		1	THE PARTY OF		The section		The last	F	REQ	JEST	ED AN	ALYSIS	5				41507767		
DATE	TIME	C O M P O S I T E	G R A B	SAM	PLE LOCATION FI	ELD ID	M A T R I	C O N N T S E N E R E R	Sulfate	TOC						REMARKS		PARADI	IGM LAB SI	AMPLE NUMBER
9/15/20	9:30		x		31 - MW - :	3	GW	3		x	\Box									
									1		\top			\top	Category	B and NYS	DEC		\Box	
									T	Н	\top	\vdash	\Box		EDD req				Н	
			+						+	H	+		+	+	EDD led	ulled,		+	HH	
			+					-	+	Н	+	+	-	+	2 10	ate and	+01	++-	HH	
_			+ +			_		-	+	H	+	+	-	-		Address of the second	- 1	++	H	
	-		+						+	Н	+		-	+	areis	preserve	1	++	H	
			_						-	Н	_			\perp		*.		+	+	
	1																			
										П										
"LAB USE						MED TAN			N. F		3		SPEN	1		NAME OF TAXABLE PARTY.	20 40 11		22/2	EN ENTE
Sample Conditi	on: Per NELA Receipt Pa		/241/242/24		ompliance	_														
	Container			Y 🗀	N 🗀	┥	Clien													
Comments	Container	, , , , , ,		. \Box	🗀	Sample							Date/Tir	me			Total Cos	at:		
Comments	Preservat	tion:		Y 🗀	N 🔲	Relipqu	ished,E	an)	3	11	ch	_	4/	15/	20	16:00				
Comments	Holding T	ime:		٧ 🗀	N 🔲	Receive	dBy	1	_	A	2		9/10 Date/Tir		0	1600	P.I.F.		1	
Comments	Temperat	ture;		Y 🗀	N 🗀	Receive	dBy)	retore	us	J	h	M	Date/Ty	115-/	100	1600				
Page 14	of 78					Receive	d @ La	b By	ede	L	3		9/1 Date/Tir	es l'es	oli	35				

Total Organic Carbon Analysis

No Data Validation Qualifiers Were Added

MKP 11/16/2020

Form 1 WETCHEM

Client : Paradigm Environmental Services Lab Number : L2038411

Project Name : 31 TONAWANDA ST Project Number : 31 TONAWANDA ST

 Lab ID
 : L2038411-01
 Date Collected
 : 09/15/20 09:30

 Client ID
 : 31 - MW - 3
 Date Received
 : 09/15/20

Sample Location : Date Analyzed : 09/17/20 13:08

Sample Matrix : WATER Dilution Factor : 400
Analytical Method : 1,9060A Analyst : DW
Lab File ID : WG1410952 Instrument ID : TOC-VW4

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
	T.10	4700		40	
7440-44-0	Total Organic Carbon	1700	200	46.	

Sulfate Analysis

Form 1 WETCHEM

Client : Paradigm Environmental Services Lab Number : L2038411

Project Name : 31 TONAWANDA ST Project Number : 31 TONAWANDA ST

 Lab ID
 : L2038411-01
 Date Collected
 : 09/15/20 09:30

 Client ID
 : 31 - MW - 3
 Date Received
 : 09/15/20

Sample Location : Date Analyzed : 09/17/20 10:20 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,9038 Analyst : MV
Lab File ID : WG1410967.csv Instrument ID : SPEC 2
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 09/17/20

MKP 11/16/2020

Appendix B

Laboratory QC Documentation

Form 1 WETCHEM

Client : Paradigm Environmental Services Lab Number : L2038411

Project Name : 31 TONAWANDA ST Project Number : 31 TONAWANDA ST

Lab ID : WG1410967-1 Date Collected : NA Client ID : WG1410967-1BLANK Date Received : NA

Sample Location : Date Analyzed : 09/17/20 10:20 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,9038 Analyst : MV
Lab File ID : WG1410967.csv Instrument ID : SPEC 2
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 09/17/20

 CAS NO.
 Parameter
 mg/l Results
 MDL
 Qualifier

 14808-79-8
 Sulfate
 1.5
 10
 1.4
 J

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

Analytical Report For

BE3

For Lab Project ID

193078

Referencing

Marrano

Prepared

Monday, July 22, 2019

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001

Lab Sample ID: 193078-01 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 9.95	ug/Kg	7/9/2019 14:17
1,1,2,2-Tetrachloroethane	< 9.95	ug/Kg	7/9/2019 14:17
1,1,2-Trichloroethane	< 9.95	ug/Kg	7/9/2019 14:17
1,1-Dichloroethane	< 9.95	ug/Kg	7/9/2019 14:17
1,1-Dichloroethene	< 9.95	ug/Kg	7/9/2019 14:17
1,2,3-Trichlorobenzene	< 24.9	ug/Kg	7/9/2019 14:17
1,2,4-Trichlorobenzene	< 24.9	ug/Kg	7/9/2019 14:17
1,2,4-Trimethylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
1,2-Dibromo-3-Chloropropane	< 49.7	ug/Kg	7/9/2019 14:17
1,2-Dibromoethane	< 9.95	ug/Kg	7/9/2019 14:17
1,2-Dichlorobenzene	< 9.95	ug/Kg	7/9/2019 14:17
1,2-Dichloroethane	< 9.95	ug/Kg	7/9/2019 14:17
1,2-Dichloropropane	< 9.95	ug/Kg	7/9/2019 14:17
1,3,5-Trimethylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
1,3-Dichlorobenzene	< 9.95	ug/Kg	7/9/2019 14:17
1,4-Dichlorobenzene	< 9.95	ug/Kg	7/9/2019 14:17
1,4-Dioxane	< 99.5	ug/Kg	7/9/2019 14:17
2-Butanone	< 49.7	ug/Kg	7/9/2019 14:17
2-Hexanone	< 24.9	ug/Kg	7/9/2019 14:17
4-Methyl-2-pentanone	< 24.9	ug/Kg	7/9/2019 14:17
Acetone	< 49.7	ug/Kg	7/9/2019 14:17
Benzene	< 9.95	ug/Kg	7/9/2019 14:17
Bromochloromethane	< 24.9	ug/Kg	7/9/2019 14:17
Bromodichloromethane	< 9.95	ug/Kg	7/9/2019 14:17
Bromoform	< 24.9	ug/Kg	7/9/2019 14:17
Bromomethane	< 9.95	ug/Kg	7/9/2019 14:17
Carbon disulfide	< 9.95	ug/Kg	7/9/2019 14:17
Carbon Tetrachloride	< 9.95	ug/Kg	7/9/2019 14:17

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001

Lab Sample ID:193078-01Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 9.95	ug/Kg	7/9/2019 14:17
Chloroethane	< 9.95	ug/Kg	7/9/2019 14:17
Chloroform	< 9.95	ug/Kg	7/9/2019 14:17
Chloromethane	< 9.95	ug/Kg	7/9/2019 14:17
cis-1,2-Dichloroethene	< 9.95	ug/Kg	7/9/2019 14:17
cis-1,3-Dichloropropene	< 9.95	ug/Kg	7/9/2019 14:17
Cyclohexane	< 49.7	ug/Kg	7/9/2019 14:17
Dibromochloromethane	< 9.95	ug/Kg	7/9/2019 14:17
Dichlorodifluoromethane	< 9.95	ug/Kg	7/9/2019 14:17
Ethylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
Freon 113	< 9.95	ug/Kg	7/9/2019 14:17
Isopropylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
m,p-Xylene	< 9.95	ug/Kg	7/9/2019 14:17
Methyl acetate	< 9.95	ug/Kg	7/9/2019 14:17
Methyl tert-butyl Ether	< 9.95	ug/Kg	7/9/2019 14:17
Methylcyclohexane	< 9.95	ug/Kg	7/9/2019 14:17
Methylene chloride	< 24.9	ug/Kg	7/9/2019 14:17
Naphthalene	< 24.9	ug/Kg	7/9/2019 14:17
n-Butylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
n-Propylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
o-Xylene	< 9.95	ug/Kg	7/9/2019 14:17
p-Isopropyltoluene	< 9.95	ug/Kg	7/9/2019 14:17
sec-Butylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
Styrene	< 24.9	ug/Kg	7/9/2019 14:17
tert-Butylbenzene	< 9.95	ug/Kg	7/9/2019 14:17
Tetrachloroethene	< 9.95	ug/Kg	7/9/2019 14:17
Toluene	< 9.95	ug/Kg	7/9/2019 14:17
trans-1,2-Dichloroethene	< 9.95	ug/Kg	7/9/2019 14:17
trans-1,3-Dichloropropene	< 9.95	ug/Kg	7/9/2019 14:17
Trichloroethene	< 9.95	ug/Kg	7/9/2019 14:17

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001

 Lab Sample ID:
 193078-01
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 9.95	ug/Kg			7/9/2019	14:17
Vinyl chloride	< 9.95	ug/Kg			7/9/2019	14:17
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		125	71 - 141		7/9/2019	14:17
4-Bromofluorobenzene		87.3	60.2 - 128		7/9/2019	14:17
Pentafluorobenzene		91.3	86.6 - 111		7/9/2019	14:17
Toluene-D8		91.7	77.5 - 115		7/9/2019	14:17

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62459.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002

Lab Sample ID: 193078-02 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 6.06	ug/Kg		7/9/2019 14:40
1,1,2,2-Tetrachloroethane	< 6.06	ug/Kg		7/9/2019 14:40
1,1,2-Trichloroethane	< 6.06	ug/Kg		7/9/2019 14:40
1,1-Dichloroethane	< 6.06	ug/Kg		7/9/2019 14:40
1,1-Dichloroethene	< 6.06	ug/Kg		7/9/2019 14:40
1,2,3-Trichlorobenzene	< 15.2	ug/Kg		7/9/2019 14:40
1,2,4-Trichlorobenzene	< 15.2	ug/Kg		7/9/2019 14:40
1,2,4-Trimethylbenzene	< 6.06	ug/Kg		7/9/2019 14:40
1,2-Dibromo-3-Chloropropane	< 30.3	ug/Kg		7/9/2019 14:40
1,2-Dibromoethane	< 6.06	ug/Kg		7/9/2019 14:40
1,2-Dichlorobenzene	< 6.06	ug/Kg		7/9/2019 14:40
1,2-Dichloroethane	< 6.06	ug/Kg		7/9/2019 14:40
1,2-Dichloropropane	< 6.06	ug/Kg		7/9/2019 14:40
1,3,5-Trimethylbenzene	< 6.06	ug/Kg		7/9/2019 14:40
1,3-Dichlorobenzene	< 6.06	ug/Kg		7/9/2019 14:40
1,4-Dichlorobenzene	< 6.06	ug/Kg		7/9/2019 14:40
1,4-Dioxane	< 60.6	ug/Kg		7/9/2019 14:40
2-Butanone	< 30.3	ug/Kg		7/9/2019 14:40
2-Hexanone	< 15.2	ug/Kg		7/9/2019 14:40
4-Methyl-2-pentanone	< 15.2	ug/Kg		7/9/2019 14:40
Acetone	< 30.3	ug/Kg		7/9/2019 14:40
Benzene	< 6.06	ug/Kg		7/9/2019 14:40
Bromochloromethane	< 15.2	ug/Kg		7/9/2019 14:40
Bromodichloromethane	< 6.06	ug/Kg		7/9/2019 14:40
Bromoform	< 15.2	ug/Kg		7/9/2019 14:40
Bromomethane	< 6.06	ug/Kg		7/9/2019 14:40
Carbon disulfide	< 6.06	ug/Kg		7/9/2019 14:40
Carbon Tetrachloride	< 6.06	ug/Kg		7/9/2019 14:40

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002

Lab Sample ID:193078-02Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

			1 1
Chlorobenzene	< 6.06	ug/Kg	7/9/2019 14:40
Chloroethane	< 6.06	ug/Kg	7/9/2019 14:40
Chloroform	< 6.06	ug/Kg	7/9/2019 14:40
Chloromethane	< 6.06	ug/Kg	7/9/2019 14:40
cis-1,2-Dichloroethene	< 6.06	ug/Kg	7/9/2019 14:40
cis-1,3-Dichloropropene	< 6.06	ug/Kg	7/9/2019 14:40
Cyclohexane	< 30.3	ug/Kg	7/9/2019 14:40
Dibromochloromethane	< 6.06	ug/Kg	7/9/2019 14:40
Dichlorodifluoromethane	< 6.06	ug/Kg	7/9/2019 14:40
Ethylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
Freon 113	< 6.06	ug/Kg	7/9/2019 14:40
Isopropylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
m,p-Xylene	< 6.06	ug/Kg	7/9/2019 14:40
Methyl acetate	< 6.06	ug/Kg	7/9/2019 14:40
Methyl tert-butyl Ether	< 6.06	ug/Kg	7/9/2019 14:40
Methylcyclohexane	< 6.06	ug/Kg	7/9/2019 14:40
Methylene chloride	< 15.2	ug/Kg	7/9/2019 14:40
Naphthalene	< 15.2	ug/Kg	7/9/2019 14:40
n-Butylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
n-Propylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
o-Xylene	< 6.06	ug/Kg	7/9/2019 14:40
p-Isopropyltoluene	< 6.06	ug/Kg	7/9/2019 14:40
sec-Butylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
Styrene	< 15.2	ug/Kg	7/9/2019 14:40
tert-Butylbenzene	< 6.06	ug/Kg	7/9/2019 14:40
Tetrachloroethene	< 6.06	ug/Kg	7/9/2019 14:40
Toluene	< 6.06	ug/Kg	7/9/2019 14:40
trans-1,2-Dichloroethene	< 6.06	ug/Kg	7/9/2019 14:40
trans-1,3-Dichloropropene	< 6.06	ug/Kg	7/9/2019 14:40
Trichloroethene	< 6.06	ug/Kg	7/9/2019 14:40

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002

 Lab Sample ID:
 193078-02
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 6.06	ug/Kg			7/9/2019	14:40
Vinyl chloride	< 6.06	ug/Kg			7/9/2019	14:40
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		129	71 - 141		7/9/2019	14:40
4-Bromofluorobenzene		86.4	60.2 - 128		7/9/2019	14:40
Pentafluorobenzene		87.3	86.6 - 111		7/9/2019	14:40
Toluene-D8		90.9	77.5 - 115		7/9/2019	14:40

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62460.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1003

Lab Sample ID: 193078-03 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 7.42	ug/Kg	7/9/2019 15:03	3
1,1,2,2-Tetrachloroethane	< 7.42	ug/Kg	7/9/2019 15:03	3
1,1,2-Trichloroethane	< 7.42	ug/Kg	7/9/2019 15:03	3
1,1-Dichloroethane	< 7.42	ug/Kg	7/9/2019 15:03	3
1,1-Dichloroethene	< 7.42	ug/Kg	7/9/2019 15:03	3
1,2,3-Trichlorobenzene	< 18.6	ug/Kg	7/9/2019 15:03	3
1,2,4-Trichlorobenzene	< 18.6	ug/Kg	7/9/2019 15:03	3
1,2,4-Trimethylbenzene	< 7.42	ug/Kg	7/9/2019 15:03	}
1,2-Dibromo-3-Chloropropane	< 37.1	ug/Kg	7/9/2019 15:03	}
1,2-Dibromoethane	< 7.42	ug/Kg	7/9/2019 15:03	}
1,2-Dichlorobenzene	< 7.42	ug/Kg	7/9/2019 15:03	}
1,2-Dichloroethane	< 7.42	ug/Kg	7/9/2019 15:03	}
1,2-Dichloropropane	< 7.42	ug/Kg	7/9/2019 15:03	}
1,3,5-Trimethylbenzene	< 7.42	ug/Kg	7/9/2019 15:03	}
1,3-Dichlorobenzene	< 7.42	ug/Kg	7/9/2019 15:03	}
1,4-Dichlorobenzene	< 7.42	ug/Kg	7/9/2019 15:03	}
1,4-Dioxane	< 74.2	ug/Kg	7/9/2019 15:03	}
2-Butanone	< 37.1	ug/Kg	7/9/2019 15:03	}
2-Hexanone	< 18.6	ug/Kg	7/9/2019 15:03	}
4-Methyl-2-pentanone	< 18.6	ug/Kg	7/9/2019 15:03	}
Acetone	< 37.1	ug/Kg	7/9/2019 15:03	}
Benzene	< 7.42	ug/Kg	7/9/2019 15:03	}
Bromochloromethane	< 18.6	ug/Kg	7/9/2019 15:03	}
Bromodichloromethane	< 7.42	ug/Kg	7/9/2019 15:03	}
Bromoform	< 18.6	ug/Kg	7/9/2019 15:03	}
Bromomethane	< 7.42	ug/Kg	7/9/2019 15:03	}
Carbon disulfide	< 7.42	ug/Kg	7/9/2019 15:03	}
Carbon Tetrachloride	< 7.42	ug/Kg	7/9/2019 15:03	3

Client: BE3

Project Reference: Marrano

Sample Identifier: 1003

Lab Sample ID:193078-03Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.42	ug/Kg	7/9/2019 15:03
Chloroethane	< 7.42	ug/Kg	7/9/2019 15:03
Chloroform	< 7.42	ug/Kg	7/9/2019 15:03
Chloromethane	< 7.42	ug/Kg	7/9/2019 15:03
cis-1,2-Dichloroethene	< 7.42	ug/Kg	7/9/2019 15:03
cis-1,3-Dichloropropene	< 7.42	ug/Kg	7/9/2019 15:03
Cyclohexane	< 37.1	ug/Kg	7/9/2019 15:03
Dibromochloromethane	< 7.42	ug/Kg	7/9/2019 15:03
Dichlorodifluoromethane	< 7.42	ug/Kg	7/9/2019 15:03
Ethylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
Freon 113	< 7.42	ug/Kg	7/9/2019 15:03
Isopropylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
m,p-Xylene	< 7.42	ug/Kg	7/9/2019 15:03
Methyl acetate	< 7.42	ug/Kg	7/9/2019 15:03
Methyl tert-butyl Ether	< 7.42	ug/Kg	7/9/2019 15:03
Methylcyclohexane	< 7.42	ug/Kg	7/9/2019 15:03
Methylene chloride	< 18.6	ug/Kg	7/9/2019 15:03
Naphthalene	< 18.6	ug/Kg	7/9/2019 15:03
n-Butylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
n-Propylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
o-Xylene	< 7.42	ug/Kg	7/9/2019 15:03
p-Isopropyltoluene	< 7.42	ug/Kg	7/9/2019 15:03
sec-Butylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
Styrene	< 18.6	ug/Kg	7/9/2019 15:03
tert-Butylbenzene	< 7.42	ug/Kg	7/9/2019 15:03
Tetrachloroethene	< 7.42	ug/Kg	7/9/2019 15:03
Toluene	< 7.42	ug/Kg	7/9/2019 15:03
trans-1,2-Dichloroethene	< 7.42	ug/Kg	7/9/2019 15:03
trans-1,3-Dichloropropene	< 7.42	ug/Kg	7/9/2019 15:03
Trichloroethene	< 7.42	ug/Kg	7/9/2019 15:03

Client: BE3

Project Reference: Marrano

Sample Identifier: 1003

 Lab Sample ID:
 193078-03
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.42	ug/Kg			7/9/2019	15:03
Vinyl chloride	< 7.42	ug/Kg			7/9/2019	15:03
<u>Surrogate</u>	<u>Perce</u>	ent Recovery	<u>Limits</u>	Outliers	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		129	71 - 141		7/9/2019	15:03
4-Bromofluorobenzene		94.0	60.2 - 128		7/9/2019	15:03
Pentafluorobenzene		89.0	86.6 - 111		7/9/2019	15:03
Toluene-D8		91.2	77.5 - 115		7/9/2019	15:03

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62461.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1004

Lab Sample ID: 193078-04 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 7.83	ug/Kg	7/9/2019 15:26
1,1,2,2-Tetrachloroethane	< 7.83	ug/Kg	7/9/2019 15:26
1,1,2-Trichloroethane	< 7.83	ug/Kg	7/9/2019 15:26
1,1-Dichloroethane	< 7.83	ug/Kg	7/9/2019 15:26
1,1-Dichloroethene	< 7.83	ug/Kg	7/9/2019 15:26
1,2,3-Trichlorobenzene	< 19.6	ug/Kg	7/9/2019 15:26
1,2,4-Trichlorobenzene	< 19.6	ug/Kg	7/9/2019 15:26
1,2,4-Trimethylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
1,2-Dibromo-3-Chloropropane	< 39.2	ug/Kg	7/9/2019 15:26
1,2-Dibromoethane	< 7.83	ug/Kg	7/9/2019 15:26
1,2-Dichlorobenzene	< 7.83	ug/Kg	7/9/2019 15:26
1,2-Dichloroethane	< 7.83	ug/Kg	7/9/2019 15:26
1,2-Dichloropropane	< 7.83	ug/Kg	7/9/2019 15:26
1,3,5-Trimethylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
1,3-Dichlorobenzene	< 7.83	ug/Kg	7/9/2019 15:26
1,4-Dichlorobenzene	< 7.83	ug/Kg	7/9/2019 15:26
1,4-Dioxane	< 78.3	ug/Kg	7/9/2019 15:26
2-Butanone	< 39.2	ug/Kg	7/9/2019 15:26
2-Hexanone	< 19.6	ug/Kg	7/9/2019 15:26
4-Methyl-2-pentanone	< 19.6	ug/Kg	7/9/2019 15:26
Acetone	< 39.2	ug/Kg	7/9/2019 15:26
Benzene	< 7.83	ug/Kg	7/9/2019 15:26
Bromochloromethane	< 19.6	ug/Kg	7/9/2019 15:26
Bromodichloromethane	< 7.83	ug/Kg	7/9/2019 15:26
Bromoform	< 19.6	ug/Kg	7/9/2019 15:26
Bromomethane	< 7.83	ug/Kg	7/9/2019 15:26
Carbon disulfide	< 7.83	ug/Kg	7/9/2019 15:26
Carbon Tetrachloride	< 7.83	ug/Kg	7/9/2019 15:26

Client: BE3

Project Reference: Marrano

Sample Identifier: 1004

Lab Sample ID:193078-04Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.83	ug/Kg	7/9/2019 15:26
Chloroethane	< 7.83	ug/Kg	7/9/2019 15:26
Chloroform	< 7.83	ug/Kg	7/9/2019 15:26
Chloromethane	< 7.83	ug/Kg	7/9/2019 15:26
cis-1,2-Dichloroethene	< 7.83	ug/Kg	7/9/2019 15:26
cis-1,3-Dichloropropene	< 7.83	ug/Kg	7/9/2019 15:26
Cyclohexane	< 39.2	ug/Kg	7/9/2019 15:26
Dibromochloromethane	< 7.83	ug/Kg	7/9/2019 15:26
Dichlorodifluoromethane	< 7.83	ug/Kg	7/9/2019 15:26
Ethylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
Freon 113	< 7.83	ug/Kg	7/9/2019 15:26
Isopropylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
m,p-Xylene	< 7.83	ug/Kg	7/9/2019 15:26
Methyl acetate	< 7.83	ug/Kg	7/9/2019 15:26
Methyl tert-butyl Ether	< 7.83	ug/Kg	7/9/2019 15:26
Methylcyclohexane	< 7.83	ug/Kg	7/9/2019 15:26
Methylene chloride	< 19.6	ug/Kg	7/9/2019 15:26
Naphthalene	< 19.6	ug/Kg	7/9/2019 15:26
n-Butylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
n-Propylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
o-Xylene	< 7.83	ug/Kg	7/9/2019 15:26
p-Isopropyltoluene	< 7.83	ug/Kg	7/9/2019 15:26
sec-Butylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
Styrene	< 19.6	ug/Kg	7/9/2019 15:26
tert-Butylbenzene	< 7.83	ug/Kg	7/9/2019 15:26
Tetrachloroethene	< 7.83	ug/Kg	7/9/2019 15:26
Toluene	< 7.83	ug/Kg	7/9/2019 15:26
trans-1,2-Dichloroethene	< 7.83	ug/Kg	7/9/2019 15:26
trans-1,3-Dichloropropene	< 7.83	ug/Kg	7/9/2019 15:26
Trichloroethene	< 7.83	ug/Kg	7/9/2019 15:26

Client: BE3

Project Reference: Marrano

Sample Identifier: 1004

 Lab Sample ID:
 193078-04
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.83	ug/Kg			7/9/2019	15:26
Vinyl chloride	< 7.83	ug/Kg			7/9/2019	15:26
<u>Surrogate</u>	Perce	Percent Recovery		<u>Outliers</u>	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		129	71 - 141		7/9/2019	15:26
4-Bromofluorobenzene		92.4	60.2 - 128		7/9/2019	15:26
Pentafluorobenzene		91.1	86.6 - 111		7/9/2019	15:26
Toluene-D8		91.0	77.5 - 115		7/9/2019	15:26

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62462.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1005

Lab Sample ID: 193078-05 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 8.35	ug/Kg	7/9/2019 15:49
1,1,2,2-Tetrachloroethane	< 8.35	ug/Kg	7/9/2019 15:49
1,1,2-Trichloroethane	< 8.35	ug/Kg	7/9/2019 15:49
1,1-Dichloroethane	< 8.35	ug/Kg	7/9/2019 15:49
1,1-Dichloroethene	< 8.35	ug/Kg	7/9/2019 15:49
1,2,3-Trichlorobenzene	< 20.9	ug/Kg	7/9/2019 15:49
1,2,4-Trichlorobenzene	< 20.9	ug/Kg	7/9/2019 15:49
1,2,4-Trimethylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
1,2-Dibromo-3-Chloropropane	< 41.8	ug/Kg	7/9/2019 15:49
1,2-Dibromoethane	< 8.35	ug/Kg	7/9/2019 15:49
1,2-Dichlorobenzene	< 8.35	ug/Kg	7/9/2019 15:49
1,2-Dichloroethane	< 8.35	ug/Kg	7/9/2019 15:49
1,2-Dichloropropane	< 8.35	ug/Kg	7/9/2019 15:49
1,3,5-Trimethylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
1,3-Dichlorobenzene	< 8.35	ug/Kg	7/9/2019 15:49
1,4-Dichlorobenzene	< 8.35	ug/Kg	7/9/2019 15:49
1,4-Dioxane	< 83.5	ug/Kg	7/9/2019 15:49
2-Butanone	< 41.8	ug/Kg	7/9/2019 15:49
2-Hexanone	< 20.9	ug/Kg	7/9/2019 15:49
4-Methyl-2-pentanone	< 20.9	ug/Kg	7/9/2019 15:49
Acetone	< 41.8	ug/Kg	7/9/2019 15:49
Benzene	< 8.35	ug/Kg	7/9/2019 15:49
Bromochloromethane	< 20.9	ug/Kg	7/9/2019 15:49
Bromodichloromethane	< 8.35	ug/Kg	7/9/2019 15:49
Bromoform	< 20.9	ug/Kg	7/9/2019 15:49
Bromomethane	< 8.35	ug/Kg	7/9/2019 15:49
Carbon disulfide	< 8.35	ug/Kg	7/9/2019 15:49
Carbon Tetrachloride	< 8.35	ug/Kg	7/9/2019 15:49

Client: BE3

Project Reference: Marrano

Sample Identifier: 1005

Lab Sample ID:193078-05Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

			<i>i i</i>
Chlorobenzene	< 8.35	ug/Kg	7/9/2019 15:49
Chloroethane	< 8.35	ug/Kg	7/9/2019 15:49
Chloroform	< 8.35	ug/Kg	7/9/2019 15:49
Chloromethane	< 8.35	ug/Kg	7/9/2019 15:49
cis-1,2-Dichloroethene	< 8.35	ug/Kg	7/9/2019 15:49
cis-1,3-Dichloropropene	< 8.35	ug/Kg	7/9/2019 15:49
Cyclohexane	< 41.8	ug/Kg	7/9/2019 15:49
Dibromochloromethane	< 8.35	ug/Kg	7/9/2019 15:49
Dichlorodifluoromethane	< 8.35	ug/Kg	7/9/2019 15:49
Ethylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
Freon 113	< 8.35	ug/Kg	7/9/2019 15:49
Isopropylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
m,p-Xylene	< 8.35	ug/Kg	7/9/2019 15:49
Methyl acetate	< 8.35	ug/Kg	7/9/2019 15:49
Methyl tert-butyl Ether	< 8.35	ug/Kg	7/9/2019 15:49
Methylcyclohexane	< 8.35	ug/Kg	7/9/2019 15:49
Methylene chloride	< 20.9	ug/Kg	7/9/2019 15:49
Naphthalene	< 20.9	ug/Kg	7/9/2019 15:49
n-Butylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
n-Propylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
o-Xylene	< 8.35	ug/Kg	7/9/2019 15:49
p-Isopropyltoluene	< 8.35	ug/Kg	7/9/2019 15:49
sec-Butylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
Styrene	< 20.9	ug/Kg	7/9/2019 15:49
tert-Butylbenzene	< 8.35	ug/Kg	7/9/2019 15:49
Tetrachloroethene	< 8.35	ug/Kg	7/9/2019 15:49
Toluene	< 8.35	ug/Kg	7/9/2019 15:49
trans-1,2-Dichloroethene	< 8.35	ug/Kg	7/9/2019 15:49
trans-1,3-Dichloropropene	< 8.35	ug/Kg	7/9/2019 15:49
Trichloroethene	< 8.35	ug/Kg	7/9/2019 15:49

Client: BE3

Project Reference: Marrano

Sample Identifier: 1005

 Lab Sample ID:
 193078-05
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 8.35	ug/Kg			7/9/2019	15:49
Vinyl chloride	< 8.35	ug/Kg			7/9/2019	15:49
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		138	71 - 141		7/9/2019	15:49
4-Bromofluorobenzene		88.8	60.2 - 128		7/9/2019	15:49
Pentafluorobenzene		96.3	86.6 - 111		7/9/2019	15:49
Toluene-D8		91.9	77.5 - 115		7/9/2019	15:49

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62463.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1006

Lab Sample ID: 193078-06 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 7.90	ug/Kg		7/9/2019 16:11
1,1,2,2-Tetrachloroethane	< 7.90	ug/Kg		7/9/2019 16:11
1,1,2-Trichloroethane	< 7.90	ug/Kg		7/9/2019 16:11
1,1-Dichloroethane	< 7.90	ug/Kg		7/9/2019 16:11
1,1-Dichloroethene	< 7.90	ug/Kg		7/9/2019 16:11
1,2,3-Trichlorobenzene	< 19.8	ug/Kg		7/9/2019 16:11
1,2,4-Trichlorobenzene	< 19.8	ug/Kg		7/9/2019 16:11
1,2,4-Trimethylbenzene	< 7.90	ug/Kg		7/9/2019 16:11
1,2-Dibromo-3-Chloropropane	< 39.5	ug/Kg		7/9/2019 16:11
1,2-Dibromoethane	< 7.90	ug/Kg		7/9/2019 16:11
1,2-Dichlorobenzene	< 7.90	ug/Kg		7/9/2019 16:11
1,2-Dichloroethane	< 7.90	ug/Kg		7/9/2019 16:11
1,2-Dichloropropane	< 7.90	ug/Kg		7/9/2019 16:11
1,3,5-Trimethylbenzene	< 7.90	ug/Kg		7/9/2019 16:11
1,3-Dichlorobenzene	< 7.90	ug/Kg		7/9/2019 16:11
1,4-Dichlorobenzene	< 7.90	ug/Kg		7/9/2019 16:11
1,4-Dioxane	< 79.0	ug/Kg		7/9/2019 16:11
2-Butanone	< 39.5	ug/Kg		7/9/2019 16:11
2-Hexanone	< 19.8	ug/Kg		7/9/2019 16:11
4-Methyl-2-pentanone	< 19.8	ug/Kg		7/9/2019 16:11
Acetone	< 39.5	ug/Kg		7/9/2019 16:11
Benzene	< 7.90	ug/Kg		7/9/2019 16:11
Bromochloromethane	< 19.8	ug/Kg		7/9/2019 16:11
Bromodichloromethane	< 7.90	ug/Kg		7/9/2019 16:11
Bromoform	< 19.8	ug/Kg		7/9/2019 16:11
Bromomethane	< 7.90	ug/Kg		7/9/2019 16:11
Carbon disulfide	< 7.90	ug/Kg		7/9/2019 16:11
Carbon Tetrachloride	< 7.90	ug/Kg		7/9/2019 16:11

Client: BE3

Project Reference: Marrano

Sample Identifier: 1006

Lab Sample ID:193078-06Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

			1 1
Chlorobenzene	< 7.90	ug/Kg	7/9/2019 16:11
Chloroethane	< 7.90	ug/Kg	7/9/2019 16:11
Chloroform	< 7.90	ug/Kg	7/9/2019 16:11
Chloromethane	< 7.90	ug/Kg	7/9/2019 16:11
cis-1,2-Dichloroethene	< 7.90	ug/Kg	7/9/2019 16:11
cis-1,3-Dichloropropene	< 7.90	ug/Kg	7/9/2019 16:11
Cyclohexane	< 39.5	ug/Kg	7/9/2019 16:11
Dibromochloromethane	< 7.90	ug/Kg	7/9/2019 16:11
Dichlorodifluoromethane	< 7.90	ug/Kg	7/9/2019 16:11
Ethylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
Freon 113	< 7.90	ug/Kg	7/9/2019 16:11
Isopropylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
m,p-Xylene	< 7.90	ug/Kg	7/9/2019 16:11
Methyl acetate	< 7.90	ug/Kg	7/9/2019 16:11
Methyl tert-butyl Ether	< 7.90	ug/Kg	7/9/2019 16:11
Methylcyclohexane	< 7.90	ug/Kg	7/9/2019 16:11
Methylene chloride	< 19.8	ug/Kg	7/9/2019 16:11
Naphthalene	< 19.8	ug/Kg	7/9/2019 16:11
n-Butylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
n-Propylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
o-Xylene	< 7.90	ug/Kg	7/9/2019 16:11
p-Isopropyltoluene	< 7.90	ug/Kg	7/9/2019 16:11
sec-Butylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
Styrene	< 19.8	ug/Kg	7/9/2019 16:11
tert-Butylbenzene	< 7.90	ug/Kg	7/9/2019 16:11
Tetrachloroethene	< 7.90	ug/Kg	7/9/2019 16:11
Toluene	< 7.90	ug/Kg	7/9/2019 16:11
trans-1,2-Dichloroethene	< 7.90	ug/Kg	7/9/2019 16:11
trans-1,3-Dichloropropene	< 7.90	ug/Kg	7/9/2019 16:11
Trichloroethene	< 7.90	ug/Kg	7/9/2019 16:11

Client: BE3

Project Reference: Marrano

Sample Identifier: 1006

 Lab Sample ID:
 193078-06
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.90	ug/Kg			7/9/2019	16:11
Vinyl chloride	< 7.90	ug/Kg			7/9/2019	16:11
Surrogate	Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>yzed</u>
1,2-Dichloroethane-d4		131	71 - 141		7/9/2019	16:11
4-Bromofluorobenzene		92.2	60.2 - 128		7/9/2019	16:11
Pentafluorobenzene		91.3	86.6 - 111		7/9/2019	16:11
Toluene-D8		92.6	77.5 - 115		7/9/2019	16:11

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62464.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1007

Lab Sample ID: 193078-07 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 9.02	ug/Kg		7/9/2019 16:34
1,1,2,2-Tetrachloroethane	< 9.02	ug/Kg		7/9/2019 16:34
1,1,2-Trichloroethane	< 9.02	ug/Kg		7/9/2019 16:34
1,1-Dichloroethane	< 9.02	ug/Kg		7/9/2019 16:34
1,1-Dichloroethene	< 9.02	ug/Kg		7/9/2019 16:34
1,2,3-Trichlorobenzene	< 22.6	ug/Kg		7/9/2019 16:34
1,2,4-Trichlorobenzene	< 22.6	ug/Kg		7/9/2019 16:34
1,2,4-Trimethylbenzene	< 9.02	ug/Kg		7/9/2019 16:34
1,2-Dibromo-3-Chloropropane	< 45.1	ug/Kg		7/9/2019 16:34
1,2-Dibromoethane	< 9.02	ug/Kg		7/9/2019 16:34
1,2-Dichlorobenzene	< 9.02	ug/Kg		7/9/2019 16:34
1,2-Dichloroethane	< 9.02	ug/Kg		7/9/2019 16:34
1,2-Dichloropropane	< 9.02	ug/Kg		7/9/2019 16:34
1,3,5-Trimethylbenzene	< 9.02	ug/Kg		7/9/2019 16:34
1,3-Dichlorobenzene	< 9.02	ug/Kg		7/9/2019 16:34
1,4-Dichlorobenzene	< 9.02	ug/Kg		7/9/2019 16:34
1,4-Dioxane	< 90.2	ug/Kg		7/9/2019 16:34
2-Butanone	< 45.1	ug/Kg		7/9/2019 16:34
2-Hexanone	< 22.6	ug/Kg		7/9/2019 16:34
4-Methyl-2-pentanone	< 22.6	ug/Kg		7/9/2019 16:34
Acetone	< 45.1	ug/Kg		7/9/2019 16:34
Benzene	< 9.02	ug/Kg		7/9/2019 16:34
Bromochloromethane	< 22.6	ug/Kg		7/9/2019 16:34
Bromodichloromethane	< 9.02	ug/Kg		7/9/2019 16:34
Bromoform	< 22.6	ug/Kg		7/9/2019 16:34
Bromomethane	< 9.02	ug/Kg		7/9/2019 16:34
Carbon disulfide	< 9.02	ug/Kg		7/9/2019 16:34
Carbon Tetrachloride	< 9.02	ug/Kg		7/9/2019 16:34

Client: BE3

Project Reference: Marrano

Sample Identifier: 1007

Lab Sample ID:193078-07Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

		-	•	
Chlorobenzene	< 9.02	ug/Kg	7/9/2019	16:34
Chloroethane	< 9.02	ug/Kg	7/9/2019	16:34
Chloroform	< 9.02	ug/Kg	7/9/2019	16:34
Chloromethane	< 9.02	ug/Kg	7/9/2019	16:34
cis-1,2-Dichloroethene	< 9.02	ug/Kg	7/9/2019	16:34
cis-1,3-Dichloropropene	< 9.02	ug/Kg	7/9/2019	16:34
Cyclohexane	< 45.1	ug/Kg	7/9/2019	16:34
Dibromochloromethane	< 9.02	ug/Kg	7/9/2019	16:34
Dichlorodifluoromethane	< 9.02	ug/Kg	7/9/2019	16:34
Ethylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
Freon 113	< 9.02	ug/Kg	7/9/2019	16:34
Isopropylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
m,p-Xylene	< 9.02	ug/Kg	7/9/2019	16:34
Methyl acetate	< 9.02	ug/Kg	7/9/2019	16:34
Methyl tert-butyl Ether	< 9.02	ug/Kg	7/9/2019	16:34
Methylcyclohexane	< 9.02	ug/Kg	7/9/2019	16:34
Methylene chloride	< 22.6	ug/Kg	7/9/2019	16:34
Naphthalene	< 22.6	ug/Kg	7/9/2019	16:34
n-Butylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
n-Propylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
o-Xylene	< 9.02	ug/Kg	7/9/2019	16:34
p-Isopropyltoluene	< 9.02	ug/Kg	7/9/2019	16:34
sec-Butylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
Styrene	< 22.6	ug/Kg	7/9/2019	16:34
tert-Butylbenzene	< 9.02	ug/Kg	7/9/2019	16:34
Tetrachloroethene	< 9.02	ug/Kg	7/9/2019	16:34
Toluene	< 9.02	ug/Kg	7/9/2019	16:34
trans-1,2-Dichloroethene	< 9.02	ug/Kg	7/9/2019	16:34
trans-1,3-Dichloropropene	< 9.02	ug/Kg	7/9/2019	16:34
Trichloroethene	< 9.02	ug/Kg	7/9/2019	16:34

Client: BE3

Project Reference: Marrano

Sample Identifier: 1007

 Lab Sample ID:
 193078-07
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 9.02	ug/Kg			7/9/2019	16:34
Vinyl chloride	< 9.02	ug/Kg			7/9/2019	16:34
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		130	71 - 141		7/9/2019	16:34
4-Bromofluorobenzene		88.7	60.2 - 128		7/9/2019	16:34
Pentafluorobenzene		90.3	86.6 - 111		7/9/2019	16:34
Toluene-D8		89.9	77.5 - 115		7/9/2019	16:34

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62465.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001

Lab Sample ID:193078-08Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Volatile Organics

1014 MILE OF BAILINGS				
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 8.40	ug/Kg		7/9/2019 16:57
1,1,2,2-Tetrachloroethane	< 8.40	ug/Kg		7/9/2019 16:57
1,1,2-Trichloroethane	< 8.40	ug/Kg		7/9/2019 16:57
1,1-Dichloroethane	< 8.40	ug/Kg		7/9/2019 16:57
1,1-Dichloroethene	< 8.40	ug/Kg		7/9/2019 16:57
1,2,3-Trichlorobenzene	< 21.0	ug/Kg		7/9/2019 16:57
1,2,4-Trichlorobenzene	< 21.0	ug/Kg		7/9/2019 16:57
1,2,4-Trimethylbenzene	< 8.40	ug/Kg		7/9/2019 16:57
1,2-Dibromo-3-Chloropropane	< 42.0	ug/Kg		7/9/2019 16:57
1,2-Dibromoethane	< 8.40	ug/Kg		7/9/2019 16:57
1,2-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 16:57
1,2-Dichloroethane	< 8.40	ug/Kg		7/9/2019 16:57
1,2-Dichloropropane	< 8.40	ug/Kg		7/9/2019 16:57
1,3,5-Trimethylbenzene	< 8.40	ug/Kg		7/9/2019 16:57
1,3-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 16:57
1,4-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 16:57
1,4-Dioxane	< 84.0	ug/Kg		7/9/2019 16:57
2-Butanone	< 42.0	ug/Kg		7/9/2019 16:57
2-Hexanone	< 21.0	ug/Kg		7/9/2019 16:57
4-Methyl-2-pentanone	< 21.0	ug/Kg		7/9/2019 16:57
Acetone	< 42.0	ug/Kg		7/9/2019 16:57
Benzene	< 8.40	ug/Kg		7/9/2019 16:57
Bromochloromethane	< 21.0	ug/Kg		7/9/2019 16:57
Bromodichloromethane	< 8.40	ug/Kg		7/9/2019 16:57
Bromoform	< 21.0	ug/Kg		7/9/2019 16:57
Bromomethane	< 8.40	ug/Kg		7/9/2019 16:57
Carbon disulfide	< 8.40	ug/Kg		7/9/2019 16:57
Carbon Tetrachloride	< 8.40	ug/Kg		7/9/2019 16:57

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001

Lab Sample ID:193078-08Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 8.40	ug/Kg	7/9/2019 16:57
Chloroethane	< 8.40	ug/Kg	7/9/2019 16:57
Chloroform	< 8.40	ug/Kg	7/9/2019 16:57
Chloromethane	< 8.40	ug/Kg	7/9/2019 16:57
cis-1,2-Dichloroethene	< 8.40	ug/Kg	7/9/2019 16:57
cis-1,3-Dichloropropene	< 8.40	ug/Kg	7/9/2019 16:57
Cyclohexane	< 42.0	ug/Kg	7/9/2019 16:57
Dibromochloromethane	< 8.40	ug/Kg	7/9/2019 16:57
Dichlorodifluoromethane	< 8.40	ug/Kg	7/9/2019 16:57
Ethylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
Freon 113	< 8.40	ug/Kg	7/9/2019 16:57
Isopropylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
m,p-Xylene	< 8.40	ug/Kg	7/9/2019 16:57
Methyl acetate	< 8.40	ug/Kg	7/9/2019 16:57
Methyl tert-butyl Ether	< 8.40	ug/Kg	7/9/2019 16:57
Methylcyclohexane	< 8.40	ug/Kg	7/9/2019 16:57
Methylene chloride	< 21.0	ug/Kg	7/9/2019 16:57
Naphthalene	< 21.0	ug/Kg	7/9/2019 16:57
n-Butylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
n-Propylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
o-Xylene	< 8.40	ug/Kg	7/9/2019 16:57
p-Isopropyltoluene	< 8.40	ug/Kg	7/9/2019 16:57
sec-Butylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
Styrene	< 21.0	ug/Kg	7/9/2019 16:57
tert-Butylbenzene	< 8.40	ug/Kg	7/9/2019 16:57
Tetrachloroethene	< 8.40	ug/Kg	7/9/2019 16:57
Toluene	< 8.40	ug/Kg	7/9/2019 16:57
trans-1,2-Dichloroethene	< 8.40	ug/Kg	7/9/2019 16:57
trans-1,3-Dichloropropene	< 8.40	ug/Kg	7/9/2019 16:57
Trichloroethene	< 8.40	ug/Kg	7/9/2019 16:57

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001

Lab Sample ID:193078-08Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 8.40	ug/Kg			7/9/2019	16:57
Vinyl chloride	< 8.40	ug/Kg			7/9/2019	16:57
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		<u>Outliers</u>	Date Anal	<u>yzed</u>
1,2-Dichloroethane-d4		134	71 - 141		7/9/2019	16:57
4-Bromofluorobenzene		88.2			7/9/2019	16:57
Pentafluorobenzene		91.6	86.6 - 111		7/9/2019	16:57
Toluene-D8		88.5	77.5 - 115		7/9/2019	16:57

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62466.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 2002

Lab Sample ID: 193078-09 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 6.58	ug/Kg		7/9/2019 17:20
1,1,2,2-Tetrachloroethane	< 6.58	ug/Kg		7/9/2019 17:20
1,1,2-Trichloroethane	< 6.58	ug/Kg		7/9/2019 17:20
1,1-Dichloroethane	< 6.58	ug/Kg		7/9/2019 17:20
1,1-Dichloroethene	< 6.58	ug/Kg		7/9/2019 17:20
1,2,3-Trichlorobenzene	< 16.5	ug/Kg		7/9/2019 17:20
1,2,4-Trichlorobenzene	< 16.5	ug/Kg		7/9/2019 17:20
1,2,4-Trimethylbenzene	< 6.58	ug/Kg		7/9/2019 17:20
1,2-Dibromo-3-Chloropropane	< 32.9	ug/Kg		7/9/2019 17:20
1,2-Dibromoethane	< 6.58	ug/Kg		7/9/2019 17:20
1,2-Dichlorobenzene	< 6.58	ug/Kg		7/9/2019 17:20
1,2-Dichloroethane	< 6.58	ug/Kg		7/9/2019 17:20
1,2-Dichloropropane	< 6.58	ug/Kg		7/9/2019 17:20
1,3,5-Trimethylbenzene	< 6.58	ug/Kg		7/9/2019 17:20
1,3-Dichlorobenzene	< 6.58	ug/Kg		7/9/2019 17:20
1,4-Dichlorobenzene	< 6.58	ug/Kg		7/9/2019 17:20
1,4-Dioxane	< 65.8	ug/Kg		7/9/2019 17:20
2-Butanone	< 32.9	ug/Kg		7/9/2019 17:20
2-Hexanone	< 16.5	ug/Kg		7/9/2019 17:20
4-Methyl-2-pentanone	< 16.5	ug/Kg		7/9/2019 17:20
Acetone	< 32.9	ug/Kg		7/9/2019 17:20
Benzene	< 6.58	ug/Kg		7/9/2019 17:20
Bromochloromethane	< 16.5	ug/Kg		7/9/2019 17:20
Bromodichloromethane	< 6.58	ug/Kg		7/9/2019 17:20
Bromoform	< 16.5	ug/Kg		7/9/2019 17:20
Bromomethane	< 6.58	ug/Kg		7/9/2019 17:20
Carbon disulfide	< 6.58	ug/Kg		7/9/2019 17:20
Carbon Tetrachloride	< 6.58	ug/Kg		7/9/2019 17:20

Client: BE3

Project Reference: Marrano

Sample Identifier: 2002

Lab Sample ID:193078-09Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 6.58	ug/Kg	7/9/2019 17:20
Chloroethane	< 6.58	ug/Kg	7/9/2019 17:20
Chloroform	< 6.58	ug/Kg	7/9/2019 17:20
Chloromethane	< 6.58	ug/Kg	7/9/2019 17:20
cis-1,2-Dichloroethene	< 6.58	ug/Kg	7/9/2019 17:20
cis-1,3-Dichloropropene	< 6.58	ug/Kg	7/9/2019 17:20
Cyclohexane	< 32.9	ug/Kg	7/9/2019 17:20
Dibromochloromethane	< 6.58	ug/Kg	7/9/2019 17:20
Dichlorodifluoromethane	< 6.58	ug/Kg	7/9/2019 17:20
Ethylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
Freon 113	< 6.58	ug/Kg	7/9/2019 17:20
Isopropylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
m,p-Xylene	< 6.58	ug/Kg	7/9/2019 17:20
Methyl acetate	< 6.58	ug/Kg	7/9/2019 17:20
Methyl tert-butyl Ether	< 6.58	ug/Kg	7/9/2019 17:20
Methylcyclohexane	< 6.58	ug/Kg	7/9/2019 17:20
Methylene chloride	< 16.5	ug/Kg	7/9/2019 17:20
Naphthalene	< 16.5	ug/Kg	7/9/2019 17:20
n-Butylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
n-Propylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
o-Xylene	< 6.58	ug/Kg	7/9/2019 17:20
p-Isopropyltoluene	< 6.58	ug/Kg	7/9/2019 17:20
sec-Butylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
Styrene	< 16.5	ug/Kg	7/9/2019 17:20
tert-Butylbenzene	< 6.58	ug/Kg	7/9/2019 17:20
Tetrachloroethene	< 6.58	ug/Kg	7/9/2019 17:20
Toluene	< 6.58	ug/Kg	7/9/2019 17:20
trans-1,2-Dichloroethene	< 6.58	ug/Kg	7/9/2019 17:20
trans-1,3-Dichloropropene	< 6.58	ug/Kg	7/9/2019 17:20
Trichloroethene	< 6.58	ug/Kg	7/9/2019 17:20

Client: BE3

Project Reference: Marrano

Sample Identifier: 2002

Lab Sample ID:193078-09Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 6.58	ug/Kg			7/9/2019	17:20
Vinyl chloride	< 6.58	ug/Kg			7/9/2019	17:20
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		<u>Outliers</u>	Date Analy	<u>yzed</u>
1,2-Dichloroethane-d4		137	71 - 141		7/9/2019	17:20
4-Bromofluorobenzene		90.8			7/9/2019	17:20
Pentafluorobenzene		89.5	86.6 - 111		7/9/2019	17:20
Toluene-D8		90.4	77.5 - 115		7/9/2019	17:20

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62467.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001

Lab Sample ID:193078-10Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 8.40	ug/Kg		7/9/2019 17:43
1,1,2,2-Tetrachloroethane	< 8.40	ug/Kg		7/9/2019 17:43
1,1,2-Trichloroethane	< 8.40	ug/Kg		7/9/2019 17:43
1,1-Dichloroethane	< 8.40	ug/Kg		7/9/2019 17:43
1,1-Dichloroethene	< 8.40	ug/Kg		7/9/2019 17:43
1,2,3-Trichlorobenzene	< 21.0	ug/Kg		7/9/2019 17:43
1,2,4-Trichlorobenzene	< 21.0	ug/Kg		7/9/2019 17:43
1,2,4-Trimethylbenzene	< 8.40	ug/Kg		7/9/2019 17:43
1,2-Dibromo-3-Chloropropane	< 42.0	ug/Kg		7/9/2019 17:43
1,2-Dibromoethane	< 8.40	ug/Kg		7/9/2019 17:43
1,2-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 17:43
1,2-Dichloroethane	< 8.40	ug/Kg		7/9/2019 17:43
1,2-Dichloropropane	< 8.40	ug/Kg		7/9/2019 17:43
1,3,5-Trimethylbenzene	< 8.40	ug/Kg		7/9/2019 17:43
1,3-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 17:43
1,4-Dichlorobenzene	< 8.40	ug/Kg		7/9/2019 17:43
1,4-Dioxane	< 84.0	ug/Kg		7/9/2019 17:43
2-Butanone	< 42.0	ug/Kg		7/9/2019 17:43
2-Hexanone	< 21.0	ug/Kg		7/9/2019 17:43
4-Methyl-2-pentanone	< 21.0	ug/Kg		7/9/2019 17:43
Acetone	< 42.0	ug/Kg		7/9/2019 17:43
Benzene	< 8.40	ug/Kg		7/9/2019 17:43
Bromochloromethane	< 21.0	ug/Kg		7/9/2019 17:43
Bromodichloromethane	< 8.40	ug/Kg		7/9/2019 17:43
Bromoform	< 21.0	ug/Kg		7/9/2019 17:43
Bromomethane	< 8.40	ug/Kg		7/9/2019 17:43
Carbon disulfide	< 8.40	ug/Kg		7/9/2019 17:43
Carbon Tetrachloride	< 8.40	ug/Kg		7/9/2019 17:43

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001

Lab Sample ID:193078-10Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 8.40	ug/Kg	7/9/2019 17:43
Chloroethane	< 8.40	ug/Kg	7/9/2019 17:43
Chloroform	< 8.40	ug/Kg	7/9/2019 17:43
Chloromethane	< 8.40	ug/Kg	7/9/2019 17:43
cis-1,2-Dichloroethene	< 8.40	ug/Kg	7/9/2019 17:43
cis-1,3-Dichloropropene	< 8.40	ug/Kg	7/9/2019 17:43
Cyclohexane	< 42.0	ug/Kg	7/9/2019 17:43
Dibromochloromethane	< 8.40	ug/Kg	7/9/2019 17:43
Dichlorodifluoromethane	< 8.40	ug/Kg	7/9/2019 17:43
Ethylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
Freon 113	< 8.40	ug/Kg	7/9/2019 17:43
Isopropylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
m,p-Xylene	< 8.40	ug/Kg	7/9/2019 17:43
Methyl acetate	< 8.40	ug/Kg	7/9/2019 17:43
Methyl tert-butyl Ether	< 8.40	ug/Kg	7/9/2019 17:43
Methylcyclohexane	< 8.40	ug/Kg	7/9/2019 17:43
Methylene chloride	< 21.0	ug/Kg	7/9/2019 17:43
Naphthalene	< 21.0	ug/Kg	7/9/2019 17:43
n-Butylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
n-Propylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
o-Xylene	< 8.40	ug/Kg	7/9/2019 17:43
p-Isopropyltoluene	< 8.40	ug/Kg	7/9/2019 17:43
sec-Butylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
Styrene	< 21.0	ug/Kg	7/9/2019 17:43
tert-Butylbenzene	< 8.40	ug/Kg	7/9/2019 17:43
Tetrachloroethene	< 8.40	ug/Kg	7/9/2019 17:43
Toluene	< 8.40	ug/Kg	7/9/2019 17:43
trans-1,2-Dichloroethene	< 8.40	ug/Kg	7/9/2019 17:43
trans-1,3-Dichloropropene	< 8.40	ug/Kg	7/9/2019 17:43
Trichloroethene	< 8.40	ug/Kg	7/9/2019 17:43

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001

 Lab Sample ID:
 193078-10
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 8.40	ug/Kg			7/9/2019	17:43
Vinyl chloride	< 8.40	ug/Kg			7/9/2019	17:43
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		137	71 - 141		7/9/2019	17:43
4-Bromofluorobenzene		89.1			7/9/2019	17:43
Pentafluorobenzene		91.3	86.6 - 111		7/9/2019	17:43
Toluene-D8		94.5	77.5 - 115		7/9/2019	17:43

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62468.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 3002

Lab Sample ID: 193078-11 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 9.11	ug/Kg		7/9/2019 18:06
1,1,2,2-Tetrachloroethane	< 9.11	ug/Kg		7/9/2019 18:06
1,1,2-Trichloroethane	< 9.11	ug/Kg		7/9/2019 18:06
1,1-Dichloroethane	< 9.11	ug/Kg		7/9/2019 18:06
1,1-Dichloroethene	< 9.11	ug/Kg		7/9/2019 18:06
1,2,3-Trichlorobenzene	< 22.8	ug/Kg		7/9/2019 18:06
1,2,4-Trichlorobenzene	< 22.8	ug/Kg		7/9/2019 18:06
1,2,4-Trimethylbenzene	< 9.11	ug/Kg		7/9/2019 18:06
1,2-Dibromo-3-Chloropropane	< 45.6	ug/Kg		7/9/2019 18:06
1,2-Dibromoethane	< 9.11	ug/Kg		7/9/2019 18:06
1,2-Dichlorobenzene	< 9.11	ug/Kg		7/9/2019 18:06
1,2-Dichloroethane	< 9.11	ug/Kg		7/9/2019 18:06
1,2-Dichloropropane	< 9.11	ug/Kg		7/9/2019 18:06
1,3,5-Trimethylbenzene	< 9.11	ug/Kg		7/9/2019 18:06
1,3-Dichlorobenzene	< 9.11	ug/Kg		7/9/2019 18:06
1,4-Dichlorobenzene	< 9.11	ug/Kg		7/9/2019 18:06
1,4-Dioxane	< 91.1	ug/Kg		7/9/2019 18:06
2-Butanone	< 45.6	ug/Kg		7/9/2019 18:06
2-Hexanone	< 22.8	ug/Kg		7/9/2019 18:06
4-Methyl-2-pentanone	< 22.8	ug/Kg		7/9/2019 18:06
Acetone	< 45.6	ug/Kg		7/9/2019 18:06
Benzene	< 9.11	ug/Kg		7/9/2019 18:06
Bromochloromethane	< 22.8	ug/Kg		7/9/2019 18:06
Bromodichloromethane	< 9.11	ug/Kg		7/9/2019 18:06
Bromoform	< 22.8	ug/Kg		7/9/2019 18:06
Bromomethane	< 9.11	ug/Kg		7/9/2019 18:06
Carbon disulfide	< 9.11	ug/Kg		7/9/2019 18:06
Carbon Tetrachloride	< 9.11	ug/Kg		7/9/2019 18:06

Client: BE3

Project Reference: Marrano

Sample Identifier: 3002

Lab Sample ID:193078-11Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 9.11	ug/Kg	7/9/2019	18:06
Chloroethane	< 9.11	ug/Kg	7/9/2019	18:06
Chloroform	< 9.11	ug/Kg	7/9/2019	18:06
Chloromethane	< 9.11	ug/Kg	7/9/2019	18:06
cis-1,2-Dichloroethene	< 9.11	ug/Kg	7/9/2019	18:06
cis-1,3-Dichloropropene	< 9.11	ug/Kg	7/9/2019	18:06
Cyclohexane	< 45.6	ug/Kg	7/9/2019	18:06
Dibromochloromethane	< 9.11	ug/Kg	7/9/2019	18:06
Dichlorodifluoromethane	< 9.11	ug/Kg	7/9/2019	18:06
Ethylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
Freon 113	< 9.11	ug/Kg	7/9/2019	18:06
Isopropylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
m,p-Xylene	< 9.11	ug/Kg	7/9/2019	18:06
Methyl acetate	< 9.11	ug/Kg	7/9/2019	18:06
Methyl tert-butyl Ether	< 9.11	ug/Kg	7/9/2019	18:06
Methylcyclohexane	< 9.11	ug/Kg	7/9/2019	18:06
Methylene chloride	< 22.8	ug/Kg	7/9/2019	18:06
Naphthalene	< 22.8	ug/Kg	7/9/2019	18:06
n-Butylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
n-Propylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
o-Xylene	< 9.11	ug/Kg	7/9/2019	18:06
p-Isopropyltoluene	< 9.11	ug/Kg	7/9/2019	18:06
sec-Butylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
Styrene	< 22.8	ug/Kg	7/9/2019	18:06
tert-Butylbenzene	< 9.11	ug/Kg	7/9/2019	18:06
Tetrachloroethene	< 9.11	ug/Kg	7/9/2019	18:06
Toluene	< 9.11	ug/Kg	7/9/2019	18:06
trans-1,2-Dichloroethene	< 9.11	ug/Kg	7/9/2019	18:06
trans-1,3-Dichloropropene	< 9.11	ug/Kg	7/9/2019	18:06
Trichloroethene	< 9.11	ug/Kg	7/9/2019	18:06

Client: BE3

Project Reference: Marrano

Sample Identifier: 3002

Lab Sample ID:193078-11Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 9.11	ug/Kg			7/9/2019	18:06
Vinyl chloride	< 9.11	ug/Kg			7/9/2019	18:06
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		138	71 - 141		7/9/2019	18:06
4-Bromofluorobenzene		92.5			7/9/2019	18:06
Pentafluorobenzene		91.6	86.6 - 111		7/9/2019	18:06
Toluene-D8		89.3	77.5 - 115		7/9/2019	18:06

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62469.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001

Lab Sample ID: 193078-12 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyz	<u>ed</u>
1,1,1-Trichloroethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,1,2,2-Tetrachloroethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,1,2-Trichloroethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,1-Dichloroethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,1-Dichloroethene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,2,3-Trichlorobenzene	< 17.9	ug/Kg	7/9/2019 2	1:09
1,2,4-Trichlorobenzene	< 17.9	ug/Kg	7/9/2019 2	1:09
1,2,4-Trimethylbenzene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,2-Dibromo-3-Chloropropane	< 35.8	ug/Kg	7/9/2019 2	1:09
1,2-Dibromoethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,2-Dichlorobenzene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,2-Dichloroethane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,2-Dichloropropane	< 7.15	ug/Kg	7/9/2019 2	1:09
1,3,5-Trimethylbenzene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,3-Dichlorobenzene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,4-Dichlorobenzene	< 7.15	ug/Kg	7/9/2019 2	1:09
1,4-Dioxane	< 71.5	ug/Kg	7/9/2019 2	1:09
2-Butanone	< 35.8	ug/Kg	7/9/2019 2	1:09
2-Hexanone	< 17.9	ug/Kg	7/9/2019 2	1:09
4-Methyl-2-pentanone	< 17.9	ug/Kg	7/9/2019 2	1:09
Acetone	< 35.8	ug/Kg	7/9/2019 2	1:09
Benzene	< 7.15	ug/Kg	7/9/2019 2	1:09
Bromochloromethane	< 17.9	ug/Kg	7/9/2019 2	1:09
Bromodichloromethane	< 7.15	ug/Kg	7/9/2019 2	1:09
Bromoform	< 17.9	ug/Kg	7/9/2019 2	1:09
Bromomethane	< 7.15	ug/Kg	7/9/2019 2	1:09
Carbon disulfide	< 7.15	ug/Kg	7/9/2019 2	1:09
Carbon Tetrachloride	< 7.15	ug/Kg	7/9/2019 2	1:09

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001

Lab Sample ID:193078-12Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.15	ug/Kg	7/9/2019 21:09
Chloroethane	< 7.15	ug/Kg	7/9/2019 21:09
Chloroform	< 7.15	ug/Kg	7/9/2019 21:09
Chloromethane	< 7.15	ug/Kg	7/9/2019 21:09
cis-1,2-Dichloroethene	< 7.15	ug/Kg	7/9/2019 21:09
cis-1,3-Dichloropropene	< 7.15	ug/Kg	7/9/2019 21:09
Cyclohexane	< 35.8	ug/Kg	7/9/2019 21:09
Dibromochloromethane	< 7.15	ug/Kg	7/9/2019 21:09
Dichlorodifluoromethane	< 7.15	ug/Kg	7/9/2019 21:09
Ethylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
Freon 113	< 7.15	ug/Kg	7/9/2019 21:09
Isopropylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
m,p-Xylene	< 7.15	ug/Kg	7/9/2019 21:09
Methyl acetate	< 7.15	ug/Kg	7/9/2019 21:09
Methyl tert-butyl Ether	< 7.15	ug/Kg	7/9/2019 21:09
Methylcyclohexane	< 7.15	ug/Kg	7/9/2019 21:09
Methylene chloride	< 17.9	ug/Kg	7/9/2019 21:09
Naphthalene	< 17.9	ug/Kg	7/9/2019 21:09
n-Butylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
n-Propylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
o-Xylene	< 7.15	ug/Kg	7/9/2019 21:09
p-Isopropyltoluene	< 7.15	ug/Kg	7/9/2019 21:09
sec-Butylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
Styrene	< 17.9	ug/Kg	7/9/2019 21:09
tert-Butylbenzene	< 7.15	ug/Kg	7/9/2019 21:09
Tetrachloroethene	< 7.15	ug/Kg	7/9/2019 21:09
Toluene	< 7.15	ug/Kg	7/9/2019 21:09
trans-1,2-Dichloroethene	< 7.15	ug/Kg	7/9/2019 21:09
trans-1,3-Dichloropropene	< 7.15	ug/Kg	7/9/2019 21:09
Trichloroethene	< 7.15	ug/Kg	7/9/2019 21:09

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001

Lab Sample ID:193078-12Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 7.15	ug/Kg			7/9/2019	21:09
Vinyl chloride	< 7.15	ug/Kg			7/9/2019	21:09
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d4		141	71 - 141		7/9/2019	21:09
4-Bromofluorobenzene		90.2	60.2 - 128		7/9/2019	21:09
Pentafluorobenzene		90.6	86.6 - 111		7/9/2019	21:09
Toluene-D8		89.6	77.5 - 115		7/9/2019	21:09

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62477.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 4002

Lab Sample ID: 193078-13 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u> <u>Da</u>	ate Analyz	<u>zed</u>
1,1,1-Trichloroethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,1,2,2-Tetrachloroethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,1,2-Trichloroethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,1-Dichloroethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,1-Dichloroethene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,2,3-Trichlorobenzene	< 18.1	ug/Kg	7,	/9/2019	18:29
1,2,4-Trichlorobenzene	< 18.1	ug/Kg	7,	/9/2019	18:29
1,2,4-Trimethylbenzene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,2-Dibromo-3-Chloropropane	< 36.3	ug/Kg	7,	/9/2019	18:29
1,2-Dibromoethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,2-Dichlorobenzene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,2-Dichloroethane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,2-Dichloropropane	< 7.26	ug/Kg	7,	/9/2019	18:29
1,3,5-Trimethylbenzene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,3-Dichlorobenzene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,4-Dichlorobenzene	< 7.26	ug/Kg	7,	/9/2019	18:29
1,4-Dioxane	< 72.6	ug/Kg	7,	/9/2019	18:29
2-Butanone	< 36.3	ug/Kg	7,	/9/2019	18:29
2-Hexanone	< 18.1	ug/Kg	7,	/9/2019	18:29
4-Methyl-2-pentanone	< 18.1	ug/Kg	7,	/9/2019	18:29
Acetone	< 36.3	ug/Kg	7,	/9/2019	18:29
Benzene	< 7.26	ug/Kg	7,	/9/2019	18:29
Bromochloromethane	< 18.1	ug/Kg	7,	/9/2019	18:29
Bromodichloromethane	< 7.26	ug/Kg	7,	/9/2019	18:29
Bromoform	< 18.1	ug/Kg	7,	/9/2019	18:29
Bromomethane	< 7.26	ug/Kg	7,	/9/2019	18:29
Carbon disulfide	< 7.26	ug/Kg	7,	/9/2019	18:29
Carbon Tetrachloride	< 7.26	ug/Kg	7,	/9/2019	18:29

Client: BE3

Project Reference: Marrano

Sample Identifier: 4002

Lab Sample ID:193078-13Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.26	ug/Kg	7/9/2019 18:29
Chloroethane	< 7.26	ug/Kg	7/9/2019 18:29
Chloroform	< 7.26	ug/Kg	7/9/2019 18:29
Chloromethane	< 7.26	ug/Kg	7/9/2019 18:29
cis-1,2-Dichloroethene	< 7.26	ug/Kg	7/9/2019 18:29
cis-1,3-Dichloropropene	< 7.26	ug/Kg	7/9/2019 18:29
Cyclohexane	< 36.3	ug/Kg	7/9/2019 18:29
Dibromochloromethane	< 7.26	ug/Kg	7/9/2019 18:29
Dichlorodifluoromethane	< 7.26	ug/Kg	7/9/2019 18:29
Ethylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
Freon 113	< 7.26	ug/Kg	7/9/2019 18:29
Isopropylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
m,p-Xylene	< 7.26	ug/Kg	7/9/2019 18:29
Methyl acetate	< 7.26	ug/Kg	7/9/2019 18:29
Methyl tert-butyl Ether	< 7.26	ug/Kg	7/9/2019 18:29
Methylcyclohexane	< 7.26	ug/Kg	7/9/2019 18:29
Methylene chloride	< 18.1	ug/Kg	7/9/2019 18:29
Naphthalene	< 18.1	ug/Kg	7/9/2019 18:29
n-Butylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
n-Propylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
o-Xylene	< 7.26	ug/Kg	7/9/2019 18:29
p-Isopropyltoluene	< 7.26	ug/Kg	7/9/2019 18:29
sec-Butylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
Styrene	< 18.1	ug/Kg	7/9/2019 18:29
tert-Butylbenzene	< 7.26	ug/Kg	7/9/2019 18:29
Tetrachloroethene	< 7.26	ug/Kg	7/9/2019 18:29
Toluene	< 7.26	ug/Kg	7/9/2019 18:29
trans-1,2-Dichloroethene	< 7.26	ug/Kg	7/9/2019 18:29
trans-1,3-Dichloropropene	< 7.26	ug/Kg	7/9/2019 18:29
Trichloroethene	< 7.26	ug/Kg	7/9/2019 18:29

Client: BE3

Project Reference: Marrano

Sample Identifier: 4002

 Lab Sample ID:
 193078-13
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.26	ug/Kg			7/9/2019	18:29
Vinyl chloride	< 7.26	ug/Kg			7/9/2019	18:29
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		141	71 - 141		7/9/2019	18:29
4-Bromofluorobenzene		90.8	60.2 - 128		7/9/2019	18:29
Pentafluorobenzene		93.1	86.6 - 111		7/9/2019	18:29
Toluene-D8		94.8	77.5 - 115		7/9/2019	18:29

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62470.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001

Lab Sample ID: 193078-14 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 7.63	ug/Kg		7/9/2019 18:51
1,1,2,2-Tetrachloroethane	< 7.63	ug/Kg		7/9/2019 18:51
1,1,2-Trichloroethane	< 7.63	ug/Kg		7/9/2019 18:51
1,1-Dichloroethane	< 7.63	ug/Kg		7/9/2019 18:51
1,1-Dichloroethene	< 7.63	ug/Kg		7/9/2019 18:51
1,2,3-Trichlorobenzene	< 19.1	ug/Kg		7/9/2019 18:51
1,2,4-Trichlorobenzene	< 19.1	ug/Kg		7/9/2019 18:51
1,2,4-Trimethylbenzene	< 7.63	ug/Kg		7/9/2019 18:51
1,2-Dibromo-3-Chloropropane	< 38.1	ug/Kg		7/9/2019 18:51
1,2-Dibromoethane	< 7.63	ug/Kg		7/9/2019 18:51
1,2-Dichlorobenzene	< 7.63	ug/Kg		7/9/2019 18:51
1,2-Dichloroethane	< 7.63	ug/Kg		7/9/2019 18:51
1,2-Dichloropropane	< 7.63	ug/Kg		7/9/2019 18:51
1,3,5-Trimethylbenzene	< 7.63	ug/Kg		7/9/2019 18:51
1,3-Dichlorobenzene	< 7.63	ug/Kg		7/9/2019 18:51
1,4-Dichlorobenzene	< 7.63	ug/Kg		7/9/2019 18:51
1,4-Dioxane	< 76.3	ug/Kg		7/9/2019 18:51
2-Butanone	< 38.1	ug/Kg		7/9/2019 18:51
2-Hexanone	< 19.1	ug/Kg		7/9/2019 18:51
4-Methyl-2-pentanone	< 19.1	ug/Kg		7/9/2019 18:51
Acetone	< 38.1	ug/Kg		7/9/2019 18:51
Benzene	< 7.63	ug/Kg		7/9/2019 18:51
Bromochloromethane	< 19.1	ug/Kg		7/9/2019 18:51
Bromodichloromethane	< 7.63	ug/Kg		7/9/2019 18:51
Bromoform	< 19.1	ug/Kg		7/9/2019 18:51
Bromomethane	< 7.63	ug/Kg		7/9/2019 18:51
Carbon disulfide	< 7.63	ug/Kg		7/9/2019 18:51
Carbon Tetrachloride	< 7.63	ug/Kg		7/9/2019 18:51

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001

Lab Sample ID:193078-14Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.63	ug/Kg	7/9/2019 18:51
Chloroethane	< 7.63	ug/Kg	7/9/2019 18:51
Chloroform	< 7.63	ug/Kg	7/9/2019 18:51
Chloromethane	< 7.63	ug/Kg	7/9/2019 18:51
cis-1,2-Dichloroethene	< 7.63	ug/Kg	7/9/2019 18:51
cis-1,3-Dichloropropene	< 7.63	ug/Kg	7/9/2019 18:51
Cyclohexane	< 38.1	ug/Kg	7/9/2019 18:51
Dibromochloromethane	< 7.63	ug/Kg	7/9/2019 18:51
Dichlorodifluoromethane	< 7.63	ug/Kg	7/9/2019 18:51
Ethylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
Freon 113	< 7.63	ug/Kg	7/9/2019 18:51
Isopropylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
m,p-Xylene	< 7.63	ug/Kg	7/9/2019 18:51
Methyl acetate	< 7.63	ug/Kg	7/9/2019 18:51
Methyl tert-butyl Ether	< 7.63	ug/Kg	7/9/2019 18:51
Methylcyclohexane	< 7.63	ug/Kg	7/9/2019 18:51
Methylene chloride	< 19.1	ug/Kg	7/9/2019 18:51
Naphthalene	< 19.1	ug/Kg	7/9/2019 18:51
n-Butylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
n-Propylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
o-Xylene	< 7.63	ug/Kg	7/9/2019 18:51
p-Isopropyltoluene	< 7.63	ug/Kg	7/9/2019 18:51
sec-Butylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
Styrene	< 19.1	ug/Kg	7/9/2019 18:51
tert-Butylbenzene	< 7.63	ug/Kg	7/9/2019 18:51
Tetrachloroethene	< 7.63	ug/Kg	7/9/2019 18:51
Toluene	< 7.63	ug/Kg	7/9/2019 18:51
trans-1,2-Dichloroethene	< 7.63	ug/Kg	7/9/2019 18:51
trans-1,3-Dichloropropene	< 7.63	ug/Kg	7/9/2019 18:51
Trichloroethene	< 7.63	ug/Kg	7/9/2019 18:51

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001

 Lab Sample ID:
 193078-14
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.63	ug/Kg			7/9/2019	18:51
Vinyl chloride	< 7.63	ug/Kg			7/9/2019	18:51
<u>Surrogate</u>	<u>Perce</u>	Percent Recovery		Outliers	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		136	71 - 141		7/9/2019	18:51
4-Bromofluorobenzene		94.2	60.2 - 128		7/9/2019	18:51
Pentafluorobenzene		89.0	86.6 - 111		7/9/2019	18:51
Toluene-D8		90.9	77.5 - 115		7/9/2019	18:51

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62471.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 5002

Lab Sample ID: 193078-15 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 8.02	ug/Kg		7/9/2019 19:14
1,1,2,2-Tetrachloroethane	< 8.02	ug/Kg		7/9/2019 19:14
1,1,2-Trichloroethane	< 8.02	ug/Kg		7/9/2019 19:14
1,1-Dichloroethane	< 8.02	ug/Kg		7/9/2019 19:14
1,1-Dichloroethene	< 8.02	ug/Kg		7/9/2019 19:14
1,2,3-Trichlorobenzene	< 20.1	ug/Kg		7/9/2019 19:14
1,2,4-Trichlorobenzene	< 20.1	ug/Kg		7/9/2019 19:14
1,2,4-Trimethylbenzene	< 8.02	ug/Kg		7/9/2019 19:14
1,2-Dibromo-3-Chloropropane	< 40.1	ug/Kg		7/9/2019 19:14
1,2-Dibromoethane	< 8.02	ug/Kg		7/9/2019 19:14
1,2-Dichlorobenzene	< 8.02	ug/Kg		7/9/2019 19:14
1,2-Dichloroethane	< 8.02	ug/Kg		7/9/2019 19:14
1,2-Dichloropropane	< 8.02	ug/Kg		7/9/2019 19:14
1,3,5-Trimethylbenzene	< 8.02	ug/Kg		7/9/2019 19:14
1,3-Dichlorobenzene	< 8.02	ug/Kg		7/9/2019 19:14
1,4-Dichlorobenzene	< 8.02	ug/Kg		7/9/2019 19:14
1,4-Dioxane	< 80.2	ug/Kg		7/9/2019 19:14
2-Butanone	< 40.1	ug/Kg		7/9/2019 19:14
2-Hexanone	< 20.1	ug/Kg		7/9/2019 19:14
4-Methyl-2-pentanone	< 20.1	ug/Kg		7/9/2019 19:14
Acetone	< 40.1	ug/Kg		7/9/2019 19:14
Benzene	< 8.02	ug/Kg		7/9/2019 19:14
Bromochloromethane	< 20.1	ug/Kg		7/9/2019 19:14
Bromodichloromethane	< 8.02	ug/Kg		7/9/2019 19:14
Bromoform	< 20.1	ug/Kg		7/9/2019 19:14
Bromomethane	< 8.02	ug/Kg		7/9/2019 19:14
Carbon disulfide	< 8.02	ug/Kg		7/9/2019 19:14
Carbon Tetrachloride	< 8.02	ug/Kg		7/9/2019 19:14

Client: BE3

Project Reference: Marrano

Sample Identifier: 5002

Lab Sample ID:193078-15Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

				· · ·	
Chlorobenze	ene	< 8.02	ug/Kg	7/9/2019	19:14
Chloroethan	e	< 8.02	ug/Kg	7/9/2019	19:14
Chloroform		< 8.02	ug/Kg	7/9/2019	19:14
Chlorometha	ane	< 8.02	ug/Kg	7/9/2019	19:14
cis-1,2-Dichl	oroethene	< 8.02	ug/Kg	7/9/2019	19:14
cis-1,3-Dichl	oropropene	< 8.02	ug/Kg	7/9/2019	19:14
Cyclohexane	!	< 40.1	ug/Kg	7/9/2019	19:14
Dibromochlo	oromethane	< 8.02	ug/Kg	7/9/2019	19:14
Dichlorodiflu	uoromethane	< 8.02	ug/Kg	7/9/2019	19:14
Ethylbenzen	e	< 8.02	ug/Kg	7/9/2019	19:14
Freon 113		< 8.02	ug/Kg	7/9/2019	19:14
Isopropylbei	nzene	< 8.02	ug/Kg	7/9/2019	19:14
m,p-Xylene		< 8.02	ug/Kg	7/9/2019	19:14
Methyl aceta	ite	< 8.02	ug/Kg	7/9/2019	19:14
Methyl tert-l	outyl Ether	< 8.02	ug/Kg	7/9/2019	19:14
Methylcyclol	hexane	< 8.02	ug/Kg	7/9/2019	19:14
Methylene cl	hloride	< 20.1	ug/Kg	7/9/2019	19:14
Naphthalene	2	< 20.1	ug/Kg	7/9/2019	19:14
n-Butylbenz	ene	< 8.02	ug/Kg	7/9/2019	19:14
n-Propylben	zene	< 8.02	ug/Kg	7/9/2019	19:14
o-Xylene		< 8.02	ug/Kg	7/9/2019	19:14
p-Isopropylt	coluene	< 8.02	ug/Kg	7/9/2019	19:14
sec-Butylber	nzene	< 8.02	ug/Kg	7/9/2019	19:14
Styrene		< 20.1	ug/Kg	7/9/2019	19:14
tert-Butylbe	nzene	< 8.02	ug/Kg	7/9/2019	19:14
Tetrachloroe	ethene	< 8.02	ug/Kg	7/9/2019	19:14
Toluene		< 8.02	ug/Kg	7/9/2019	19:14
trans-1,2-Dio	chloroethene	< 8.02	ug/Kg	7/9/2019	19:14
trans-1,3-Dio	chloropropene	< 8.02	ug/Kg	7/9/2019	19:14
Trichloroeth	iene	< 8.02	ug/Kg	7/9/2019	19:14

Client: BE3

Project Reference: Marrano

Sample Identifier: 5002

Lab Sample ID:193078-15Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 8.02	ug/Kg			7/9/2019	19:14
Vinyl chloride	< 8.02	ug/Kg			7/9/2019	19:14
<u>Surrogate</u>	Perce	Percent Recovery		Outliers	Date Analy	vzed
1,2-Dichloroethane-d4		146	71 - 141	*	7/9/2019	19:14
4-Bromofluorobenzene		93.2	60.2 - 128		7/9/2019	19:14
Pentafluorobenzene		88.1	86.6 - 111		7/9/2019	19:14
Toluene-D8		92.8	77.5 - 115		7/9/2019	19:14

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62472.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001

Lab Sample ID: 193078-16 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 8.54	ug/Kg		7/9/2019 19:37
1,1,2,2-Tetrachloroethane	< 8.54	ug/Kg		7/9/2019 19:37
1,1,2-Trichloroethane	< 8.54	ug/Kg		7/9/2019 19:37
1,1-Dichloroethane	< 8.54	ug/Kg		7/9/2019 19:37
1,1-Dichloroethene	< 8.54	ug/Kg		7/9/2019 19:37
1,2,3-Trichlorobenzene	< 21.4	ug/Kg		7/9/2019 19:37
1,2,4-Trichlorobenzene	< 21.4	ug/Kg		7/9/2019 19:37
1,2,4-Trimethylbenzene	< 8.54	ug/Kg		7/9/2019 19:37
1,2-Dibromo-3-Chloropropane	< 42.7	ug/Kg		7/9/2019 19:37
1,2-Dibromoethane	< 8.54	ug/Kg		7/9/2019 19:37
1,2-Dichlorobenzene	< 8.54	ug/Kg		7/9/2019 19:37
1,2-Dichloroethane	< 8.54	ug/Kg		7/9/2019 19:37
1,2-Dichloropropane	< 8.54	ug/Kg		7/9/2019 19:37
1,3,5-Trimethylbenzene	< 8.54	ug/Kg		7/9/2019 19:37
1,3-Dichlorobenzene	< 8.54	ug/Kg		7/9/2019 19:37
1,4-Dichlorobenzene	< 8.54	ug/Kg		7/9/2019 19:37
1,4-Dioxane	< 85.4	ug/Kg		7/9/2019 19:37
2-Butanone	< 42.7	ug/Kg		7/9/2019 19:37
2-Hexanone	< 21.4	ug/Kg		7/9/2019 19:37
4-Methyl-2-pentanone	< 21.4	ug/Kg		7/9/2019 19:37
Acetone	< 42.7	ug/Kg		7/9/2019 19:37
Benzene	< 8.54	ug/Kg		7/9/2019 19:37
Bromochloromethane	< 21.4	ug/Kg		7/9/2019 19:37
Bromodichloromethane	< 8.54	ug/Kg		7/9/2019 19:37
Bromoform	< 21.4	ug/Kg		7/9/2019 19:37
Bromomethane	< 8.54	ug/Kg		7/9/2019 19:37
Carbon disulfide	< 8.54	ug/Kg		7/9/2019 19:37
Carbon Tetrachloride	< 8.54	ug/Kg		7/9/2019 19:37

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001

Lab Sample ID:193078-16Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

- 1441 MI			2400 1100011 041 7/2/2019
Chlorobenzene	< 8.54	ug/Kg	7/9/2019 19:37
Chloroethane	< 8.54	ug/Kg	7/9/2019 19:37
Chloroform	< 8.54	ug/Kg	7/9/2019 19:37
Chloromethane	< 8.54	ug/Kg	7/9/2019 19:37
cis-1,2-Dichloroethene	< 8.54	ug/Kg	7/9/2019 19:37
cis-1,3-Dichloropropene	< 8.54	ug/Kg	7/9/2019 19:37
Cyclohexane	< 42.7	ug/Kg	7/9/2019 19:37
Dibromochloromethane	< 8.54	ug/Kg	7/9/2019 19:37
Dichlorodifluoromethane	< 8.54	ug/Kg	7/9/2019 19:37
Ethylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
Freon 113	< 8.54	ug/Kg	7/9/2019 19:37
Isopropylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
m,p-Xylene	< 8.54	ug/Kg	7/9/2019 19:37
Methyl acetate	< 8.54	ug/Kg	7/9/2019 19:37
Methyl tert-butyl Ether	< 8.54	ug/Kg	7/9/2019 19:37
Methylcyclohexane	< 8.54	ug/Kg	7/9/2019 19:37
Methylene chloride	< 21.4	ug/Kg	7/9/2019 19:37
Naphthalene	< 21.4	ug/Kg	7/9/2019 19:37
n-Butylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
n-Propylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
o-Xylene	< 8.54	ug/Kg	7/9/2019 19:37
p-Isopropyltoluene	< 8.54	ug/Kg	7/9/2019 19:37
sec-Butylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
Styrene	< 21.4	ug/Kg	7/9/2019 19:37
tert-Butylbenzene	< 8.54	ug/Kg	7/9/2019 19:37
Tetrachloroethene	< 8.54	ug/Kg	7/9/2019 19:37
Toluene	< 8.54	ug/Kg	7/9/2019 19:37
trans-1,2-Dichloroethene	< 8.54	ug/Kg	7/9/2019 19:37
trans-1,3-Dichloropropene	< 8.54	ug/Kg	7/9/2019 19:37
Trichloroethene	< 8.54	ug/Kg	7/9/2019 19:37

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001

Lab Sample ID:193078-16Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Trichlorofluoromethane	< 8.54	ug/Kg			7/9/2019	19:37
Vinyl chloride	< 8.54	ug/Kg			7/9/2019	19:37
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		137	71 - 141		7/9/2019	19:37
4-Bromofluorobenzene		91.6	60.2 - 128		7/9/2019	19:37
Pentafluorobenzene		88.5	86.6 - 111		7/9/2019	19:37
Toluene-D8		91.0	77.5 - 115		7/9/2019	19:37

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62473.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 6002

Lab Sample ID: 193078-17 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 7.22	ug/Kg		7/9/2019 20:00
1,1,2,2-Tetrachloroethane	< 7.22	ug/Kg		7/9/2019 20:00
1,1,2-Trichloroethane	< 7.22	ug/Kg		7/9/2019 20:00
1,1-Dichloroethane	< 7.22	ug/Kg		7/9/2019 20:00
1,1-Dichloroethene	< 7.22	ug/Kg		7/9/2019 20:00
1,2,3-Trichlorobenzene	< 18.1	ug/Kg		7/9/2019 20:00
1,2,4-Trichlorobenzene	< 18.1	ug/Kg		7/9/2019 20:00
1,2,4-Trimethylbenzene	< 7.22	ug/Kg		7/9/2019 20:00
1,2-Dibromo-3-Chloropropane	< 36.1	ug/Kg		7/9/2019 20:00
1,2-Dibromoethane	< 7.22	ug/Kg		7/9/2019 20:00
1,2-Dichlorobenzene	< 7.22	ug/Kg		7/9/2019 20:00
1,2-Dichloroethane	< 7.22	ug/Kg		7/9/2019 20:00
1,2-Dichloropropane	< 7.22	ug/Kg		7/9/2019 20:00
1,3,5-Trimethylbenzene	< 7.22	ug/Kg		7/9/2019 20:00
1,3-Dichlorobenzene	< 7.22	ug/Kg		7/9/2019 20:00
1,4-Dichlorobenzene	< 7.22	ug/Kg		7/9/2019 20:00
1,4-Dioxane	< 72.2	ug/Kg		7/9/2019 20:00
2-Butanone	< 36.1	ug/Kg		7/9/2019 20:00
2-Hexanone	< 18.1	ug/Kg		7/9/2019 20:00
4-Methyl-2-pentanone	< 18.1	ug/Kg		7/9/2019 20:00
Acetone	< 36.1	ug/Kg		7/9/2019 20:00
Benzene	< 7.22	ug/Kg		7/9/2019 20:00
Bromochloromethane	< 18.1	ug/Kg		7/9/2019 20:00
Bromodichloromethane	< 7.22	ug/Kg		7/9/2019 20:00
Bromoform	< 18.1	ug/Kg		7/9/2019 20:00
Bromomethane	< 7.22	ug/Kg		7/9/2019 20:00
Carbon disulfide	< 7.22	ug/Kg		7/9/2019 20:00
Carbon Tetrachloride	< 7.22	ug/Kg		7/9/2019 20:00

Client: BE3

Project Reference: Marrano

Sample Identifier: 6002

Lab Sample ID:193078-17Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Chlorobenzene	< 7.22	ug/Kg	7/9/2019 20:00
Chloroethane	< 7.22	ug/Kg	7/9/2019 20:00
Chloroform	< 7.22	ug/Kg	7/9/2019 20:00
Chloromethane	< 7.22	ug/Kg	7/9/2019 20:00
cis-1,2-Dichloroethene	< 7.22	ug/Kg	7/9/2019 20:00
cis-1,3-Dichloropropene	< 7.22	ug/Kg	7/9/2019 20:00
Cyclohexane	< 36.1	ug/Kg	7/9/2019 20:00
Dibromochloromethane	< 7.22	ug/Kg	7/9/2019 20:00
Dichlorodifluoromethane	< 7.22	ug/Kg	7/9/2019 20:00
Ethylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
Freon 113	< 7.22	ug/Kg	7/9/2019 20:00
Isopropylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
m,p-Xylene	< 7.22	ug/Kg	7/9/2019 20:00
Methyl acetate	< 7.22	ug/Kg	7/9/2019 20:00
Methyl tert-butyl Ether	< 7.22	ug/Kg	7/9/2019 20:00
Methylcyclohexane	< 7.22	ug/Kg	7/9/2019 20:00
Methylene chloride	< 18.1	ug/Kg	7/9/2019 20:00
Naphthalene	< 18.1	ug/Kg	7/9/2019 20:00
n-Butylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
n-Propylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
o-Xylene	< 7.22	ug/Kg	7/9/2019 20:00
p-Isopropyltoluene	< 7.22	ug/Kg	7/9/2019 20:00
sec-Butylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
Styrene	< 18.1	ug/Kg	7/9/2019 20:00
tert-Butylbenzene	< 7.22	ug/Kg	7/9/2019 20:00
Tetrachloroethene	< 7.22	ug/Kg	7/9/2019 20:00
Toluene	< 7.22	ug/Kg	7/9/2019 20:00
trans-1,2-Dichloroethene	< 7.22	ug/Kg	7/9/2019 20:00
trans-1,3-Dichloropropene	< 7.22	ug/Kg	7/9/2019 20:00
Trichloroethene	< 7.22	ug/Kg	7/9/2019 20:00

Client: BE3

Project Reference: Marrano

Sample Identifier: 6002

 Lab Sample ID:
 193078-17
 Date Sampled:
 7/1/2019

 Matrix:
 Soil
 Date Received:
 7/2/2019

Trichlorofluoromethane	< 7.22	ug/Kg			7/9/2019	20:00
Vinyl chloride	< 7.22	ug/Kg			7/9/2019	20:00
<u>Surrogate</u>	<u>Perce</u>	nt Recovery	<u>Limits</u>	Outliers	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4		140	71 - 141		7/9/2019	20:00
4-Bromofluorobenzene		92.2	60.2 - 128		7/9/2019	20:00
Pentafluorobenzene		87.3	86.6 - 111		7/9/2019	20:00
Toluene-D8		94.7	77.5 - 115		7/9/2019	20:00

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x62474.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001-1

Lab Sample ID: 193078-18 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	2.63	mg/Kg		7/9/2019 23:06
Barium	74.2	mg/Kg		7/9/2019 23:06
Beryllium	0.523	mg/Kg		7/9/2019 23:06
Cadmium	0.970	mg/Kg		7/9/2019 23:06
Chromium	14.5	mg/Kg		7/9/2019 23:06
Copper	14.5	mg/Kg		7/9/2019 23:06
Lead	7.73	mg/Kg		7/9/2019 23:06
Manganese	393	mg/Kg		7/9/2019 23:06
Nickel	15.7	mg/Kg		7/9/2019 23:06
Selenium	1.63	mg/Kg		7/9/2019 23:06
Silver	< 0.559	mg/Kg		7/9/2019 23:06
Zinc	56.4	mg/Kg		7/9/2019 23:06

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:7/8/2019

Preparation Date: 7/8/2019 **Data File:** 190709B

Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0206	mg/Kg		7/8/2019 10:26

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0282	mg/Kg		7/3/2019 17:37
PCB-1221	< 0.0282	mg/Kg		7/3/2019 17:37
PCB-1232	< 0.0282	mg/Kg		7/3/2019 17:37
PCB-1242	< 0.0282	mg/Kg		7/3/2019 17:37

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001-1

Lab Sample ID:193078-18Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Surrogate Tetrachloro-m-xylene		t Recovery 42.4	<u>Limits</u> 21.7 - 82.5	<u>Outliers</u>	Date Analy 7/3/2019	zea 17:37
		0, 0	*	0 11	, ,	
PCB-1268	< 0.0282	mg/Kg			7/3/2019	17.37
PCB-1262	< 0.0282	mg/Kg			7/3/2019	17:37
PCB-1260	< 0.0282	mg/Kg			7/3/2019	17:37
PCB-1254	< 0.0282	mg/Kg			7/3/2019	17:37
PCB-1248	< 0.0282	mg/Kg			7/3/2019	17:37

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
4,4-DDD	< 2.82	ug/Kg	7/5/2019 15:52
4,4-DDE	< 2.82	ug/Kg	7/5/2019 15:52
4,4-DDT	< 2.82	ug/Kg	7/5/2019 15:52
Aldrin	< 2.82	ug/Kg	7/5/2019 15:52
alpha-BHC	< 2.82	ug/Kg	7/5/2019 15:52
beta-BHC	< 2.82	ug/Kg	7/5/2019 15:52
cis-Chlordane	< 2.82	ug/Kg	7/5/2019 15:52
delta-BHC	< 2.82	ug/Kg	7/5/2019 15:52
Dieldrin	< 2.82	ug/Kg	7/5/2019 15:52
Endosulfan I	< 2.82	ug/Kg	7/5/2019 15:52
Endosulfan II	< 2.82	ug/Kg	7/5/2019 15:52
Endosulfan Sulfate	< 2.82	ug/Kg	7/5/2019 15:52
Endrin	< 2.82	ug/Kg	7/5/2019 15:52
Endrin Aldehyde	< 2.82	ug/Kg	7/5/2019 15:52
Endrin Ketone	< 2.82	ug/Kg	7/5/2019 15:52
gamma-BHC (Lindane)	< 2.82	ug/Kg	7/5/2019 15:52
Heptachlor	< 2.82	ug/Kg	7/5/2019 15:52
Heptachlor Epoxide	< 2.82	ug/Kg	7/5/2019 15:52

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001-1

Lab Sample ID:193078-18Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Methoxychlor < 2.82 ug/Kg 7/5/2019 15:52 Toxaphene < 28.2 ug/Kg L 7/5/2019 15:52 trans-Chlordane < 2.82 ug/Kg 7/5/2019 15:52 **Surrogate Percent Recovery Outliers Date Analyzed** Limits

 Decachlorobiphenyl (1)
 35.7
 23.6 - 123
 7/5/2019
 15:52

 Tetrachloro-m-xylene (1)
 51.5
 36.2 - 86.9
 7/5/2019
 15:52

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 332	ug/Kg		7/10/2019 07:17
1,2,4,5-Tetrachlorobenzene	< 332	ug/Kg		7/10/2019 07:17
1,2,4-Trichlorobenzene	< 332	ug/Kg		7/10/2019 07:17
1,2-Dichlorobenzene	< 332	ug/Kg		7/10/2019 07:17
1,3-Dichlorobenzene	< 332	ug/Kg		7/10/2019 07:17
1,4-Dichlorobenzene	< 332	ug/Kg		7/10/2019 07:17
2,2-Oxybis (1-chloropropane)	< 332	ug/Kg		7/10/2019 07:17
2,3,4,6-Tetrachlorophenol	< 332	ug/Kg		7/10/2019 07:17
2,4,5-Trichlorophenol	< 332	ug/Kg		7/10/2019 07:17
2,4,6-Trichlorophenol	< 332	ug/Kg		7/10/2019 07:17
2,4-Dichlorophenol	< 332	ug/Kg		7/10/2019 07:17
2,4-Dimethylphenol	< 332	ug/Kg		7/10/2019 07:17
2,4-Dinitrophenol	< 1330	ug/Kg		7/10/2019 07:17
2,4-Dinitrotoluene	< 332	ug/Kg		7/10/2019 07:17
2,6-Dinitrotoluene	< 332	ug/Kg		7/10/2019 07:17
2-Chloronaphthalene	< 332	ug/Kg		7/10/2019 07:17
2-Chlorophenol	< 332	ug/Kg		7/10/2019 07:17
2-Methylnapthalene	< 332	ug/Kg		7/10/2019 07:17
2-Methylphenol	< 332	ug/Kg		7/10/2019 07:17

Client: BE3

Project Reference: Marrano

Sample Identifier:1001-1Lab Sample ID:193078-18Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

2-Nitroaniline	< 332	ug/Kg	7/10/2019 07:17
2-Nitrophenol	< 332	ug/Kg	7/10/2019 07:17
3&4-Methylphenol	< 332	ug/Kg	7/10/2019 07:17
3,3'-Dichlorobenzidine	< 332	ug/Kg	7/10/2019 07:17
3-Nitroaniline	< 332	ug/Kg	7/10/2019 07:17
4,6-Dinitro-2-methylphenol	< 445	ug/Kg	7/10/2019 07:17
4-Bromophenyl phenyl ether	< 332	ug/Kg	7/10/2019 07:17
4-Chloro-3-methylphenol	< 332	ug/Kg	7/10/2019 07:17
4-Chloroaniline	< 332	ug/Kg	7/10/2019 07:17
4-Chlorophenyl phenyl ether	< 332	ug/Kg	7/10/2019 07:17
4-Nitroaniline	< 332	ug/Kg	7/10/2019 07:17
4-Nitrophenol	< 332	ug/Kg	7/10/2019 07:17
Acenaphthene	< 332	ug/Kg	7/10/2019 07:17
Acenaphthylene	< 332	ug/Kg	7/10/2019 07:17
Acetophenone	< 332	ug/Kg	7/10/2019 07:17
Anthracene	< 332	ug/Kg	7/10/2019 07:17
Atrazine	< 332	ug/Kg	7/10/2019 07:17
Benzaldehyde	< 332	ug/Kg	7/10/2019 07:17
Benzo (a) anthracene	< 332	ug/Kg	7/10/2019 07:17
Benzo (a) pyrene	< 332	ug/Kg	7/10/2019 07:17
Benzo (b) fluoranthene	< 332	ug/Kg	7/10/2019 07:17
Benzo (g,h,i) perylene	< 332	ug/Kg	7/10/2019 07:17
Benzo (k) fluoranthene	< 332	ug/Kg	7/10/2019 07:17
Bis (2-chloroethoxy) methane	< 332	ug/Kg	7/10/2019 07:17
Bis (2-chloroethyl) ether	< 332	ug/Kg	7/10/2019 07:17
Bis (2-ethylhexyl) phthalate	< 332	ug/Kg	7/10/2019 07:17
Butylbenzylphthalate	< 332	ug/Kg	7/10/2019 07:17
Caprolactam	< 332	ug/Kg	7/10/2019 07:17
Carbazole	< 332	ug/Kg	7/10/2019 07:17
Chrysene	< 332	ug/Kg	7/10/2019 07:17

Client: BE3

Project Reference: Marrano

Sample Identifier:1001-1Lab Sample ID:193078-18Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 332	ug/Kg	7/10/2019 07:17
Dibenzofuran	< 332	ug/Kg	7/10/2019 07:17
Diethyl phthalate	< 332	ug/Kg	7/10/2019 07:17
Dimethyl phthalate	< 332	ug/Kg	7/10/2019 07:17
Di-n-butyl phthalate	< 332	ug/Kg	7/10/2019 07:17
Di-n-octylphthalate	< 332	ug/Kg	7/10/2019 07:17
Fluoranthene	< 332	ug/Kg	7/10/2019 07:17
Fluorene	< 332	ug/Kg	7/10/2019 07:17
Hexachlorobenzene	< 332	ug/Kg	7/10/2019 07:17
Hexachlorobutadiene	< 332	ug/Kg	7/10/2019 07:17
Hexachlorocyclopentadiene	< 1330	ug/Kg	7/10/2019 07:17
Hexachloroethane	< 332	ug/Kg	7/10/2019 07:17
Indeno (1,2,3-cd) pyrene	< 332	ug/Kg	7/10/2019 07:17
Isophorone	< 332	ug/Kg	7/10/2019 07:17
Naphthalene	< 332	ug/Kg	7/10/2019 07:17
Nitrobenzene	< 332	ug/Kg	7/10/2019 07:17
N-Nitroso-di-n-propylamine	< 332	ug/Kg	7/10/2019 07:17
N-Nitrosodiphenylamine	< 332	ug/Kg	7/10/2019 07:17
Pentachlorophenol	< 664	ug/Kg	7/10/2019 07:17
Phenanthrene	< 332	ug/Kg	7/10/2019 07:17
Phenol	< 332	ug/Kg	7/10/2019 07:17
Pyrene	< 332	ug/Kg	7/10/2019 07:17

Client: BE3

Project Reference: Marrano

Sample Identifier: 1001-1

Date Sampled: Lab Sample ID: 193078-18 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	61.4	34.9 - 92.6		7/10/2019	07:17
2-Fluorobiphenyl	61.7	39 - 77.6		7/10/2019	07:17
2-Fluorophenol	69.6	39.1 - 76.8		7/10/2019	07:17
Nitrobenzene-d5	62.9	35.4 - 75.3		7/10/2019	07:17
Phenol-d5	67.5	40.4 - 77.7		7/10/2019	07:17
Terphenyl-d14	67.1	42 - 93.5		7/10/2019	07:17

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019 B38626.D

Data File:

Dioxane

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,4-Dioxane	< 30.8	ug/Kg		7/11/2019 09:58

Method Reference(s): **EPA 8270D SIM**

EPA 3546

Preparation Date: 7/8/2019

Data File:

B38690.D

Total Cyanide

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Cyanide, Total	< 0.548	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002-1

Date Sampled: Lab Sample ID: 193078-19 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	4.44	mg/Kg		7/9/2019 23:11
Barium	99.9	mg/Kg		7/9/2019 23:11
Beryllium	0.671	mg/Kg		7/9/2019 23:11
Cadmium	1.29	mg/Kg		7/9/2019 23:11
Chromium	18.3	mg/Kg		7/9/2019 23:11
Copper	22.1	mg/Kg		7/9/2019 23:11
Lead	45.5	mg/Kg		7/9/2019 23:11
Manganese	388	mg/Kg		7/9/2019 23:11
Nickel	18.8	mg/Kg		7/9/2019 23:11
Selenium	1.82	mg/Kg		7/9/2019 23:11
Silver	< 0.605	mg/Kg		7/9/2019 23:11
Zinc	92.5	mg/Kg		7/9/2019 23:11

EPA 6010C Method Reference(s): EPA 3050B **Preparation Date:** 7/8/2019

Data File: 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0349	mg/Kg		7/8/2019 10:28

Method Reference(s): EPA 7471B **Preparation Date:** 7/3/2019 Data File: Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0317	mg/Kg		7/3/2019 18:00
PCB-1221	< 0.0317	mg/Kg		7/3/2019 18:00
PCB-1232	< 0.0317	mg/Kg		7/3/2019 18:00
PCB-1242	< 0.0317	mg/Kg		7/3/2019 18:00

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002-1

Lab Sample ID:193078-19Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

PCB-1248	< 0.0317	mg/Kg			7/3/2019 18:00
PCB-1254	< 0.0317	mg/Kg			7/3/2019 18:00
PCB-1260	< 0.0317	mg/Kg			7/3/2019 18:00
PCB-1262	< 0.0317	mg/Kg			7/3/2019 18:00
PCB-1268	< 0.0317	mg/Kg			7/3/2019 18:00
Surrogate	<u>Percen</u>	t Recovery	Limits	<u>Outliers</u>	Date Analyzed

Tetrachloro-m-xylene 46.8 21.7 - 82.5 7/3/2019 18:00

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.17	ug/Kg		7/5/2019 16:11
4,4-DDE	4.91	ug/Kg		7/5/2019 16:11
4,4-DDT	< 3.17	ug/Kg		7/5/2019 16:11
Aldrin	< 3.17	ug/Kg		7/5/2019 16:11
alpha-BHC	< 3.17	ug/Kg		7/5/2019 16:11
beta-BHC	< 3.17	ug/Kg		7/5/2019 16:11
cis-Chlordane	6.86	ug/Kg		7/5/2019 16:11
delta-BHC	< 3.17	ug/Kg		7/5/2019 16:11
Dieldrin	< 3.17	ug/Kg		7/5/2019 16:11
Endosulfan I	< 3.17	ug/Kg		7/5/2019 16:11
Endosulfan II	< 3.17	ug/Kg		7/5/2019 16:11
Endosulfan Sulfate	< 3.17	ug/Kg		7/5/2019 16:11
Endrin	< 3.17	ug/Kg		7/5/2019 16:11
Endrin Aldehyde	< 3.17	ug/Kg		7/5/2019 16:11
Endrin Ketone	< 3.17	ug/Kg		7/5/2019 16:11
gamma-BHC (Lindane)	< 3.17	ug/Kg		7/5/2019 16:11
Heptachlor	< 3.17	ug/Kg		7/5/2019 16:11
Heptachlor Epoxide	< 3.17	ug/Kg		7/5/2019 16:11

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002-1

Lab Sample ID:193078-19Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Methoxychlor < 3.17 ug/Kg 7/5/2019 16:11 Toxaphene < 31.7 ug/Kg L 7/5/2019 16:11 trans-Chlordane 4.14 ug/Kg 7/5/2019 16:11 **Surrogate Percent Recovery Outliers Date Analyzed** Limits

 Decachlorobiphenyl (1)
 49.7
 23.6 - 123
 7/5/2019
 16:11

 Tetrachloro-m-xylene (1)
 58.0
 36.2 - 86.9
 7/5/2019
 16:11

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 338	ug/Kg		7/10/2019 07:46
1,2,4,5-Tetrachlorobenzene	< 338	ug/Kg		7/10/2019 07:46
1,2,4-Trichlorobenzene	< 338	ug/Kg		7/10/2019 07:46
1,2-Dichlorobenzene	< 338	ug/Kg		7/10/2019 07:46
1,3-Dichlorobenzene	< 338	ug/Kg		7/10/2019 07:46
1,4-Dichlorobenzene	< 338	ug/Kg		7/10/2019 07:46
2,2-Oxybis (1-chloropropane)	< 338	ug/Kg		7/10/2019 07:46
2,3,4,6-Tetrachlorophenol	< 338	ug/Kg		7/10/2019 07:46
2,4,5-Trichlorophenol	< 338	ug/Kg		7/10/2019 07:46
2,4,6-Trichlorophenol	< 338	ug/Kg		7/10/2019 07:46
2,4-Dichlorophenol	< 338	ug/Kg		7/10/2019 07:46
2,4-Dimethylphenol	< 338	ug/Kg		7/10/2019 07:46
2,4-Dinitrophenol	< 1350	ug/Kg		7/10/2019 07:46
2,4-Dinitrotoluene	< 338	ug/Kg		7/10/2019 07:46
2,6-Dinitrotoluene	< 338	ug/Kg		7/10/2019 07:46
2-Chloronaphthalene	< 338	ug/Kg		7/10/2019 07:46
2-Chlorophenol	< 338	ug/Kg		7/10/2019 07:46
2-Methylnapthalene	< 338	ug/Kg		7/10/2019 07:46
2-Methylphenol	< 338	ug/Kg		7/10/2019 07:46

Client: BE3

Project Reference: Marrano

Sample Identifier:1002-1Lab Sample ID:193078-19Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

2-Nitroaniline	< 338	ug/Kg	7/10/2019 07:46
2-Nitrophenol	< 338	ug/Kg	7/10/2019 07:46
3&4-Methylphenol	< 338	ug/Kg	7/10/2019 07:46
3,3'-Dichlorobenzidine	< 338	ug/Kg	7/10/2019 07:46
3-Nitroaniline	< 338	ug/Kg	7/10/2019 07:46
4,6-Dinitro-2-methylphenol	< 452	ug/Kg	7/10/2019 07:46
4-Bromophenyl phenyl ether	< 338	ug/Kg	7/10/2019 07:46
4-Chloro-3-methylphenol	< 338	ug/Kg	7/10/2019 07:46
4-Chloroaniline	< 338	ug/Kg	7/10/2019 07:46
4-Chlorophenyl phenyl ether	< 338	ug/Kg	7/10/2019 07:46
4-Nitroaniline	< 338	ug/Kg	7/10/2019 07:46
4-Nitrophenol	< 338	ug/Kg	7/10/2019 07:46
Acenaphthene	< 338	ug/Kg	7/10/2019 07:46
Acenaphthylene	< 338	ug/Kg	7/10/2019 07:46
Acetophenone	< 338	ug/Kg	7/10/2019 07:46
Anthracene	< 338	ug/Kg	7/10/2019 07:46
Atrazine	< 338	ug/Kg	7/10/2019 07:46
Benzaldehyde	< 338	ug/Kg	7/10/2019 07:46
Benzo (a) anthracene	< 338	ug/Kg	7/10/2019 07:46
Benzo (a) pyrene	< 338	ug/Kg	7/10/2019 07:46
Benzo (b) fluoranthene	< 338	ug/Kg	7/10/2019 07:46
Benzo (g,h,i) perylene	< 338	ug/Kg	7/10/2019 07:46
Benzo (k) fluoranthene	< 338	ug/Kg	7/10/2019 07:46
Bis (2-chloroethoxy) methane	< 338	ug/Kg	7/10/2019 07:46
Bis (2-chloroethyl) ether	< 338	ug/Kg	7/10/2019 07:46
Bis (2-ethylhexyl) phthalate	< 338	ug/Kg	7/10/2019 07:46
Butylbenzylphthalate	< 338	ug/Kg	7/10/2019 07:46
Caprolactam	< 338	ug/Kg	7/10/2019 07:46
Carbazole	< 338	ug/Kg	7/10/2019 07:46
Chrysene	< 338	ug/Kg	7/10/2019 07:46

Client: BE3

Project Reference: Marrano

Sample Identifier:1002-1Lab Sample ID:193078-19Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 338	ug/Kg	7/10/2019 07:46
Dibenzofuran	< 338	ug/Kg	7/10/2019 07:46
Diethyl phthalate	< 338	ug/Kg	7/10/2019 07:46
Dimethyl phthalate	< 338	ug/Kg	7/10/2019 07:46
Di-n-butyl phthalate	< 338	ug/Kg	7/10/2019 07:46
Di-n-octylphthalate	< 338	ug/Kg	7/10/2019 07:46
Fluoranthene	< 338	ug/Kg	7/10/2019 07:46
Fluorene	< 338	ug/Kg	7/10/2019 07:46
Hexachlorobenzene	< 338	ug/Kg	7/10/2019 07:46
Hexachlorobutadiene	< 338	ug/Kg	7/10/2019 07:46
Hexachlorocyclopentadiene	< 1350	ug/Kg	7/10/2019 07:46
Hexachloroethane	< 338	ug/Kg	7/10/2019 07:46
Indeno (1,2,3-cd) pyrene	< 338	ug/Kg	7/10/2019 07:46
Isophorone	< 338	ug/Kg	7/10/2019 07:46
Naphthalene	< 338	ug/Kg	7/10/2019 07:46
Nitrobenzene	< 338	ug/Kg	7/10/2019 07:46
N-Nitroso-di-n-propylamine	< 338	ug/Kg	7/10/2019 07:46
N-Nitrosodiphenylamine	< 338	ug/Kg	7/10/2019 07:46
Pentachlorophenol	< 676	ug/Kg	7/10/2019 07:46
Phenanthrene	< 338	ug/Kg	7/10/2019 07:46
Phenol	< 338	ug/Kg	7/10/2019 07:46
Pyrene	< 338	ug/Kg	7/10/2019 07:46

Client: BE3

Project Reference: Marrano

Sample Identifier: 1002-1

Date Sampled: Lab Sample ID: 193078-19 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	59.4	34.9 - 92.6		7/10/2019	07:46
2-Fluorobiphenyl	58.1	39 - 77.6		7/10/2019	07:46
2-Fluorophenol	64.3	39.1 - 76.8		7/10/2019	07:46
Nitrobenzene-d5	61.1	35.4 - 75.3		7/10/2019	07:46
Phenol-d5	63.9	40.4 - 77.7		7/10/2019	07:46
Terphenyl-d14	67.9	42 - 93.5		7/10/2019	07:46

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019

Data File:

B38627.D

Dioxane

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,4-Dioxane	< 34.4	ug/Kg		7/11/2019 10:08

Method Reference(s): **EPA 8270D SIM**

EPA 3546

Preparation Date: 7/8/2019 Data File: B38691.D

Total Cyanide

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Cyanide, Total	< 0.555	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001-1

Lab Sample ID: 193078-20 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	3.78	mg/Kg		7/9/2019 23:15
Barium	94.2	mg/Kg		7/9/2019 23:15
Beryllium	0.713	mg/Kg		7/9/2019 23:15
Cadmium	1.28	mg/Kg		7/9/2019 23:15
Chromium	19.5	mg/Kg		7/9/2019 23:15
Copper	20.1	mg/Kg		7/9/2019 23:15
Lead	9.74	mg/Kg		7/9/2019 23:15
Manganese	451	mg/Kg		7/9/2019 23:15
Nickel	21.4	mg/Kg		7/9/2019 23:15
Selenium	1.25	mg/Kg		7/9/2019 23:15
Silver	< 0.596	mg/Kg		7/9/2019 23:15
Zinc	67.6	mg/Kg		7/9/2019 23:15
		· ·		<i>,</i> ,

Method Reference(s): EPA 6010C EPA 3050B

Preparation Date: 7/8/2019 Data File: 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury	0.0155	mg/Kg		7/8/2019 10:30

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0342	mg/Kg		7/3/2019 18:23
PCB-1221	< 0.0342	mg/Kg		7/3/2019 18:23
PCB-1232	< 0.0342	mg/Kg		7/3/2019 18:23
PCB-1242	< 0.0342	mg/Kg		7/3/2019 18:23

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001-1

Lab Sample ID:193078-20Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

PCB-1248	< 0.0342	mg/Kg			7/3/2019	10:23
PCB-1254	< 0.0342	mg/Kg			7/3/2019	18:23
PCB-1260	< 0.0342	mg/Kg			7/3/2019	18:23
PCB-1262	< 0.0342	mg/Kg			7/3/2019	18:23
PCB-1268	< 0.0342	mg/Kg			7/3/2019	18:23
<u>Surrogate</u>	Percen	t Recovery	Limits	Outliers	Date Analy	zed
Tetrachloro-m-xylene	4	43.9	21.7 - 82.5		7/3/2019	18:23

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.42	ug/Kg		7/5/2019 16:30
4,4-DDE	< 3.42	ug/Kg		7/5/2019 16:30
4,4-DDT	< 3.42	ug/Kg		7/5/2019 16:30
Aldrin	< 3.42	ug/Kg		7/5/2019 16:30
alpha-BHC	< 3.42	ug/Kg		7/5/2019 16:30
beta-BHC	< 3.42	ug/Kg		7/5/2019 16:30
cis-Chlordane	< 3.42	ug/Kg		7/5/2019 16:30
delta-BHC	< 3.42	ug/Kg		7/5/2019 16:30
Dieldrin	< 3.42	ug/Kg		7/5/2019 16:30
Endosulfan I	< 3.42	ug/Kg		7/5/2019 16:30
Endosulfan II	< 3.42	ug/Kg		7/5/2019 16:30
Endosulfan Sulfate	< 3.42	ug/Kg		7/5/2019 16:30
Endrin	< 3.42	ug/Kg		7/5/2019 16:30
Endrin Aldehyde	< 3.42	ug/Kg		7/5/2019 16:30
Endrin Ketone	< 3.42	ug/Kg		7/5/2019 16:30
gamma-BHC (Lindane)	< 3.42	ug/Kg		7/5/2019 16:30
Heptachlor	< 3.42	ug/Kg		7/5/2019 16:30
Heptachlor Epoxide	< 3.42	ug/Kg		7/5/2019 16:30

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001-1

Lab Sample ID:193078-20Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

<u>Surrogate</u>	<u>Perce</u>	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed
trans-Chlordane	< 3.42	ug/Kg			7/5/2019 16:30
Toxaphene	< 34.2	ug/Kg		L	7/5/2019 16:30
Methoxychlor	< 3.42	ug/Kg			7/5/2019 16:30

 Decachlorobiphenyl (1)
 47.3
 23.6 - 123
 7/5/2019
 16:30

 Tetrachloro-m-xylene (1)
 59.1
 36.2 - 86.9
 7/5/2019
 16:30

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Ana	llyzed
1,1-Biphenyl	< 329	ug/Kg	7/10/201	9 08:15
1,2,4,5-Tetrachlorobenzene	< 329	ug/Kg	7/10/201	9 08:15
1,2,4-Trichlorobenzene	< 329	ug/Kg	7/10/201	9 08:15
1,2-Dichlorobenzene	< 329	ug/Kg	7/10/201	9 08:15
1,3-Dichlorobenzene	< 329	ug/Kg	7/10/201	9 08:15
1,4-Dichlorobenzene	< 329	ug/Kg	7/10/201	9 08:15
2,2-0xybis (1-chloropropane)	< 329	ug/Kg	7/10/201	9 08:15
2,3,4,6-Tetrachlorophenol	< 329	ug/Kg	7/10/201	9 08:15
2,4,5-Trichlorophenol	< 329	ug/Kg	7/10/201	9 08:15
2,4,6-Trichlorophenol	< 329	ug/Kg	7/10/201	9 08:15
2,4-Dichlorophenol	< 329	ug/Kg	7/10/201	9 08:15
2,4-Dimethylphenol	< 329	ug/Kg	7/10/201	9 08:15
2,4-Dinitrophenol	< 1320	ug/Kg	7/10/201	9 08:15
2,4-Dinitrotoluene	< 329	ug/Kg	7/10/201	9 08:15
2,6-Dinitrotoluene	< 329	ug/Kg	7/10/201	9 08:15
2-Chloronaphthalene	< 329	ug/Kg	7/10/201	9 08:15
2-Chlorophenol	< 329	ug/Kg	7/10/201	9 08:15
2-Methylnapthalene	< 329	ug/Kg	7/10/201	9 08:15
2-Methylphenol	< 329	ug/Kg	7/10/201	9 08:15

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001-1

Lab Sample ID:193078-20Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

			1 1 -
2-Nitroaniline	< 329	ug/Kg	7/10/2019 08:15
2-Nitrophenol	< 329	ug/Kg	7/10/2019 08:15
3&4-Methylphenol	< 329	ug/Kg	7/10/2019 08:15
3,3'-Dichlorobenzidine	< 329	ug/Kg	7/10/2019 08:15
3-Nitroaniline	< 329	ug/Kg	7/10/2019 08:15
4,6-Dinitro-2-methylphenol	< 440	ug/Kg	7/10/2019 08:15
4-Bromophenyl phenyl ether	< 329	ug/Kg	7/10/2019 08:15
4-Chloro-3-methylphenol	< 329	ug/Kg	7/10/2019 08:15
4-Chloroaniline	< 329	ug/Kg	7/10/2019 08:15
4-Chlorophenyl phenyl ether	< 329	ug/Kg	7/10/2019 08:15
4-Nitroaniline	< 329	ug/Kg	7/10/2019 08:15
4-Nitrophenol	< 329	ug/Kg	7/10/2019 08:15
Acenaphthene	< 329	ug/Kg	7/10/2019 08:15
Acenaphthylene	< 329	ug/Kg	7/10/2019 08:15
Acetophenone	< 329	ug/Kg	7/10/2019 08:15
Anthracene	< 329	ug/Kg	7/10/2019 08:15
Atrazine	< 329	ug/Kg	7/10/2019 08:15
Benzaldehyde	< 329	ug/Kg	7/10/2019 08:15
Benzo (a) anthracene	< 329	ug/Kg	7/10/2019 08:15
Benzo (a) pyrene	< 329	ug/Kg	7/10/2019 08:15
Benzo (b) fluoranthene	< 329	ug/Kg	7/10/2019 08:15
Benzo (g,h,i) perylene	< 329	ug/Kg	7/10/2019 08:15
Benzo (k) fluoranthene	< 329	ug/Kg	7/10/2019 08:15
Bis (2-chloroethoxy) methane	< 329	ug/Kg	7/10/2019 08:15
Bis (2-chloroethyl) ether	< 329	ug/Kg	7/10/2019 08:15
Bis (2-ethylhexyl) phthalate	< 329	ug/Kg	7/10/2019 08:15
Butylbenzylphthalate	< 329	ug/Kg	7/10/2019 08:15
Caprolactam	< 329	ug/Kg	7/10/2019 08:15
Carbazole	< 329	ug/Kg	7/10/2019 08:15
Chrysene	< 329	ug/Kg	7/10/2019 08:15

Client: BE3

Project Reference: Marrano

Sample Identifier:2001-1Lab Sample ID:193078-20Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 329	ug/Kg	7/10/2019 08:15
Dibenzofuran	< 329	ug/Kg	7/10/2019 08:15
Diethyl phthalate	< 329	ug/Kg	7/10/2019 08:15
Dimethyl phthalate	< 329	ug/Kg	7/10/2019 08:15
Di-n-butyl phthalate	< 329	ug/Kg	7/10/2019 08:15
Di-n-octylphthalate	< 329	ug/Kg	7/10/2019 08:15
Fluoranthene	< 329	ug/Kg	7/10/2019 08:15
Fluorene	< 329	ug/Kg	7/10/2019 08:15
Hexachlorobenzene	< 329	ug/Kg	7/10/2019 08:15
Hexachlorobutadiene	< 329	ug/Kg	7/10/2019 08:15
Hexachlorocyclopentadiene	< 1320	ug/Kg	7/10/2019 08:15
Hexachloroethane	< 329	ug/Kg	7/10/2019 08:15
Indeno (1,2,3-cd) pyrene	< 329	ug/Kg	7/10/2019 08:15
Isophorone	< 329	ug/Kg	7/10/2019 08:15
Naphthalene	< 329	ug/Kg	7/10/2019 08:15
Nitrobenzene	< 329	ug/Kg	7/10/2019 08:15
N-Nitroso-di-n-propylamine	< 329	ug/Kg	7/10/2019 08:15
N-Nitrosodiphenylamine	< 329	ug/Kg	7/10/2019 08:15
Pentachlorophenol	< 658	ug/Kg	7/10/2019 08:15
Phenanthrene	< 329	ug/Kg	7/10/2019 08:15
Phenol	< 329	ug/Kg	7/10/2019 08:15
Pyrene	< 329	ug/Kg	7/10/2019 08:15

Client: BE3

Project Reference: Marrano

Sample Identifier: 2001-1

Date Sampled: Lab Sample ID: 193078-20 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	63.4	34.9 - 92.6		7/10/2019	08:15
2-Fluorobiphenyl	63.0	39 - 77.6		7/10/2019	08:15
2-Fluorophenol	71.2	39.1 - 76.8		7/10/2019	08:15
Nitrobenzene-d5	64.0	35.4 - 75.3		7/10/2019	08:15
Phenol-d5	68.9	40.4 - 77.7		7/10/2019	08:15
Terphenyl-d14	70.3	42 - 93.5		7/10/2019	08:15

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019 B38628.D

Data File:

Dioxane

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,4-Dioxane	< 33.4	ug/Kg		7/11/2019 10:19

Method Reference(s): EPA 8270D SIM

EPA 3546

7/8/2019 **Preparation Date:** B38692.D

Data File:

Total Cyanide

Analyte	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Cyanide, Total	< 0.568	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001-1

Lab Sample ID: 193078-21 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
3.75	mg/Kg		7/9/2019 23:20
83.0	mg/Kg		7/9/2019 23:20
0.552	mg/Kg		7/9/2019 23:20
1.04	mg/Kg		7/9/2019 23:20
14.7	mg/Kg		7/9/2019 23:20
18.0	mg/Kg		7/9/2019 23:20
12.3	mg/Kg		7/9/2019 23:20
439	mg/Kg		7/9/2019 23:20
16.9	mg/Kg		7/9/2019 23:20
1.20	mg/Kg		7/10/2019 17:09
< 0.519	mg/Kg		7/9/2019 23:20
61.7	mg/Kg		7/9/2019 23:20
	3.75 83.0 0.552 1.04 14.7 18.0 12.3 439 16.9 1.20 < 0.519	3.75 mg/Kg 83.0 mg/Kg 0.552 mg/Kg 1.04 mg/Kg 14.7 mg/Kg 18.0 mg/Kg 12.3 mg/Kg 439 mg/Kg 16.9 mg/Kg 1.20 mg/Kg < 0.519 mg/Kg	3.75 mg/Kg 83.0 mg/Kg 0.552 mg/Kg 1.04 mg/Kg 14.7 mg/Kg 18.0 mg/Kg 12.3 mg/Kg 439 mg/Kg 16.9 mg/Kg 1.20 mg/Kg < 0.519 mg/Kg

Method Reference(s): EPA 6010C
EPA 3050B
Preparation Date: 7/8/2019

Preparation Date: 7/8/2019 Data File: 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0119	mg/Kg		7/8/2019 10:36

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0308	mg/Kg		7/3/2019 18:46
PCB-1221	< 0.0308	mg/Kg		7/3/2019 18:46
PCB-1232	< 0.0308	mg/Kg		7/3/2019 18:46
PCB-1242	< 0.0308	mg/Kg		7/3/2019 18:46

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001-1

Lab Sample ID:193078-21Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

PCB-1248	< 0.0308	mg/Kg			7/3/2019	
PCB-1254	< 0.0308	mg/Kg			7/3/2019	18:46
PCB-1260	< 0.0308	mg/Kg			7/3/2019	18:46
PCB-1262	< 0.0308	mg/Kg			7/3/2019	18:46
PCB-1268	< 0.0308	mg/Kg			7/3/2019	18:46
<u>Surrogate</u>	Percen	t Recovery	Limits	Outliers	Date Analy	zed
Tetrachloro-m-xylene	!	52.9	21.7 - 82.5		7/3/2019	18:46

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.08	ug/Kg		7/5/2019 16:49
4,4-DDE	< 3.08	ug/Kg		7/5/2019 16:49
4,4-DDT	< 3.08	ug/Kg		7/5/2019 16:49
Aldrin	< 3.08	ug/Kg		7/5/2019 16:49
alpha-BHC	< 3.08	ug/Kg		7/5/2019 16:49
beta-BHC	< 3.08	ug/Kg		7/5/2019 16:49
cis-Chlordane	< 3.08	ug/Kg		7/5/2019 16:49
delta-BHC	< 3.08	ug/Kg		7/5/2019 16:49
Dieldrin	< 3.08	ug/Kg		7/5/2019 16:49
Endosulfan I	< 3.08	ug/Kg		7/5/2019 16:49
Endosulfan II	< 3.08	ug/Kg		7/5/2019 16:49
Endosulfan Sulfate	< 3.08	ug/Kg		7/5/2019 16:49
Endrin	< 3.08	ug/Kg		7/5/2019 16:49
Endrin Aldehyde	< 3.08	ug/Kg		7/5/2019 16:49
Endrin Ketone	< 3.08	ug/Kg		7/5/2019 16:49
gamma-BHC (Lindane)	< 3.08	ug/Kg		7/5/2019 16:49
Heptachlor	< 3.08	ug/Kg		7/5/2019 16:49
Heptachlor Epoxide	< 3.08	ug/Kg		7/5/2019 16:49

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001-1

Lab Sample ID:193078-21Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

<u>Surrogate</u>	<u>Pero</u>	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed
trans-Chlordane	< 3.08	ug/Kg			7/5/2019 16:49
Toxaphene	< 30.8	ug/Kg		L	7/5/2019 16:49
Methoxychlor	< 3.08	ug/Kg			7/5/2019 16:49

 Decachlorobiphenyl (1)
 49.8
 23.6 - 123
 7/5/2019
 16:49

 Tetrachloro-m-xylene (1)
 60.4
 36.2 - 86.9
 7/5/2019
 16:49

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 324	ug/Kg		7/10/2019 08:44
1,2,4,5-Tetrachlorobenzene	< 324	ug/Kg		7/10/2019 08:44
1,2,4-Trichlorobenzene	< 324	ug/Kg		7/10/2019 08:44
1,2-Dichlorobenzene	< 324	ug/Kg		7/10/2019 08:44
1,3-Dichlorobenzene	< 324	ug/Kg		7/10/2019 08:44
1,4-Dichlorobenzene	< 324	ug/Kg		7/10/2019 08:44
2,2-Oxybis (1-chloropropane)	< 324	ug/Kg		7/10/2019 08:44
2,3,4,6-Tetrachlorophenol	< 324	ug/Kg		7/10/2019 08:44
2,4,5-Trichlorophenol	< 324	ug/Kg		7/10/2019 08:44
2,4,6-Trichlorophenol	< 324	ug/Kg		7/10/2019 08:44
2,4-Dichlorophenol	< 324	ug/Kg		7/10/2019 08:44
2,4-Dimethylphenol	< 324	ug/Kg		7/10/2019 08:44
2,4-Dinitrophenol	< 1290	ug/Kg		7/10/2019 08:44
2,4-Dinitrotoluene	< 324	ug/Kg		7/10/2019 08:44
2,6-Dinitrotoluene	< 324	ug/Kg		7/10/2019 08:44
2-Chloronaphthalene	< 324	ug/Kg		7/10/2019 08:44
2-Chlorophenol	< 324	ug/Kg		7/10/2019 08:44
2-Methylnapthalene	< 324	ug/Kg		7/10/2019 08:44
2-Methylphenol	< 324	ug/Kg		7/10/2019 08:44

Client: BE3

Project Reference: Marrano

Sample Identifier:3001-1Lab Sample ID:193078-21Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

2-Nitroaniline	< 32	24	ug/Kg	7/10/2019	08:44
2-Nitrophenol	< 32	24	ug/Kg	7/10/2019	08:44
3&4-Methylphenol	< 32	24	ug/Kg	7/10/2019	08:44
3,3'-Dichlorobenzio	line < 32	24	ug/Kg	7/10/2019	08:44
3-Nitroaniline	< 32	24	ug/Kg	7/10/2019	08:44
4,6-Dinitro-2-meth	ylphenol < 43	33	ug/Kg	7/10/2019	08:44
4-Bromophenyl ph	enyl ether < 32	24	ug/Kg	7/10/2019	08:44
4-Chloro-3-methyl	ohenol < 32	24	ug/Kg	7/10/2019	08:44
4-Chloroaniline	< 32	24	ug/Kg	7/10/2019	08:44
4-Chlorophenyl pho	enyl ether < 32	24	ug/Kg	7/10/2019	08:44
4-Nitroaniline	< 32	24	ug/Kg	7/10/2019	08:44
4-Nitrophenol	< 32	24	ug/Kg	7/10/2019	08:44
Acenaphthene	< 32	24	ug/Kg	7/10/2019	08:44
Acenaphthylene	< 32	24	ug/Kg	7/10/2019	08:44
Acetophenone	< 32	24	ug/Kg	7/10/2019	08:44
Anthracene	< 32	24	ug/Kg	7/10/2019	08:44
Atrazine	< 32	24	ug/Kg	7/10/2019	08:44
Benzaldehyde	< 32	24	ug/Kg	7/10/2019	08:44
Benzo (a) anthrace	ne < 32	24	ug/Kg	7/10/2019	08:44
Benzo (a) pyrene	< 32	24	ug/Kg	7/10/2019	08:44
Benzo (b) fluoranth	iene < 32	24	ug/Kg	7/10/2019	08:44
Benzo (g,h,i) peryle	ne < 32	24	ug/Kg	7/10/2019	08:44
Benzo (k) fluoranth	iene < 32	24	ug/Kg	7/10/2019	08:44
Bis (2-chloroethoxy	y) methane < 32	24	ug/Kg	7/10/2019	08:44
Bis (2-chloroethyl)	ether < 32	24	ug/Kg	7/10/2019	08:44
Bis (2-ethylhexyl) រុ	ohthalate < 32	24	ug/Kg	7/10/2019	08:44
Butylbenzylphthala	te < 32	24	ug/Kg	7/10/2019	08:44
Caprolactam	< 32	24	ug/Kg	7/10/2019	08:44
Carbazole	< 32	24	ug/Kg	7/10/2019	08:44
Chrysene	< 32	24	ug/Kg	7/10/2019	08:44

Client: BE3

Project Reference: Marrano

Sample Identifier:3001-1Lab Sample ID:193078-21Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 324	ug/Kg	7/10/2019 08:44
Dibenzofuran	< 324	ug/Kg	7/10/2019 08:44
Diethyl phthalate	< 324	ug/Kg	7/10/2019 08:44
Dimethyl phthalate	< 324	ug/Kg	7/10/2019 08:44
Di-n-butyl phthalate	< 324	ug/Kg	7/10/2019 08:44
Di-n-octylphthalate	< 324	ug/Kg	7/10/2019 08:44
Fluoranthene	< 324	ug/Kg	7/10/2019 08:44
Fluorene	< 324	ug/Kg	7/10/2019 08:44
Hexachlorobenzene	< 324	ug/Kg	7/10/2019 08:44
Hexachlorobutadiene	< 324	ug/Kg	7/10/2019 08:44
Hexachlorocyclopentadiene	< 1290	ug/Kg	7/10/2019 08:44
Hexachloroethane	< 324	ug/Kg	7/10/2019 08:44
Indeno (1,2,3-cd) pyrene	< 324	ug/Kg	7/10/2019 08:44
Isophorone	< 324	ug/Kg	7/10/2019 08:44
Naphthalene	< 324	ug/Kg	7/10/2019 08:44
Nitrobenzene	< 324	ug/Kg	7/10/2019 08:44
N-Nitroso-di-n-propylamine	< 324	ug/Kg	7/10/2019 08:44
N-Nitrosodiphenylamine	< 324	ug/Kg	7/10/2019 08:44
Pentachlorophenol	< 647	ug/Kg	7/10/2019 08:44
Phenanthrene	< 324	ug/Kg	7/10/2019 08:44
Phenol	< 324	ug/Kg	7/10/2019 08:44
Pyrene	< 324	ug/Kg	7/10/2019 08:44

Client: BE3

Project Reference: Marrano

Sample Identifier: 3001-1

Date Sampled: Lab Sample ID: 193078-21 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	59.1	34.9 - 92.6		7/10/2019	08:44
2-Fluorobiphenyl	61.3	39 - 77.6		7/10/2019	08:44
2-Fluorophenol	63.9	39.1 - 76.8		7/10/2019	08:44
Nitrobenzene-d5	61.6	35.4 - 75.3		7/10/2019	08:44
Phenol-d5	62.7	40.4 - 77.7		7/10/2019	08:44
Terphenyl-d14	62.0	42 - 93.5		7/10/2019	08:44

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019 B38629.D

Data File:

Dioxane

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1.4-Dioxane	< 30.9	ug/Kg		7/11/2019 10:30

Method Reference(s): EPA 8270D SIM

EPA 3546

7/8/2019 **Preparation Date:** Data File: B38693.D

Total Cyanide

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Cyanide, Total	< 0.529	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001-1

Lab Sample ID: 193078-22 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4.57	mg/Kg		7/9/2019 23:24
115	mg/Kg		7/9/2019 23:24
0.939	mg/Kg		7/9/2019 23:24
1.41	mg/Kg		7/9/2019 23:24
23.1	mg/Kg		7/9/2019 23:24
20.7	mg/Kg		7/9/2019 23:24
12.5	mg/Kg		7/9/2019 23:24
419	mg/Kg		7/9/2019 23:24
24.7	mg/Kg		7/9/2019 23:24
1.61	mg/Kg		7/10/2019 17:13
< 0.598	mg/Kg		7/9/2019 23:24
65.7	mg/Kg		7/9/2019 23:24
	4.57 115 0.939 1.41 23.1 20.7 12.5 419 24.7 1.61 < 0.598	4.57 mg/Kg 115 mg/Kg 0.939 mg/Kg 1.41 mg/Kg 23.1 mg/Kg 20.7 mg/Kg 12.5 mg/Kg 419 mg/Kg 24.7 mg/Kg 1.61 mg/Kg	4.57 mg/Kg 115 mg/Kg 0.939 mg/Kg 1.41 mg/Kg 23.1 mg/Kg 20.7 mg/Kg 12.5 mg/Kg 419 mg/Kg 24.7 mg/Kg 1.61 mg/Kg < 0.598 mg/Kg

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:7/8/2019

Preparation Date: 7/8/2019 **Data File:** 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0204	mg/Kg		7/8/2019 10:38

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0343	mg/Kg		7/3/2019 19:09
PCB-1221	< 0.0343	mg/Kg		7/3/2019 19:09
PCB-1232	< 0.0343	mg/Kg		7/3/2019 19:09
PCB-1242	< 0.0343	mg/Kg		7/3/2019 19:09

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001-1

Lab Sample ID:193078-22Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

PCB-1248	< 0.0343	mg/Kg			7/3/2019	19:09
PCB-1254	< 0.0343	mg/Kg			7/3/2019	19:09
PCB-1260	< 0.0343	mg/Kg			7/3/2019	19:09
PCB-1262	< 0.0343	mg/Kg			7/3/2019	19:09
PCB-1268	< 0.0343	mg/Kg			7/3/2019	19:09
<u>Surrogate</u>	Percen	t Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Tetrachloro-m-xylene	4	40.6	21.7 - 82.5		7/3/2019	19:09

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
4,4-DDD	< 3.43	ug/Kg	7/5/2019 17:08
4,4-DDE	< 3.43	ug/Kg	7/5/2019 17:08
4,4-DDT	< 3.43	ug/Kg	7/5/2019 17:08
Aldrin	< 3.43	ug/Kg	7/5/2019 17:08
alpha-BHC	< 3.43	ug/Kg	7/5/2019 17:08
beta-BHC	< 3.43	ug/Kg	7/5/2019 17:08
cis-Chlordane	< 3.43	ug/Kg	7/5/2019 17:08
delta-BHC	< 3.43	ug/Kg	7/5/2019 17:08
Dieldrin	< 3.43	ug/Kg	7/5/2019 17:08
Endosulfan I	< 3.43	ug/Kg	7/5/2019 17:08
Endosulfan II	< 3.43	ug/Kg	7/5/2019 17:08
Endosulfan Sulfate	< 3.43	ug/Kg	7/5/2019 17:08
Endrin	< 3.43	ug/Kg	7/5/2019 17:08
Endrin Aldehyde	< 3.43	ug/Kg	7/5/2019 17:08
Endrin Ketone	< 3.43	ug/Kg	7/5/2019 17:08
gamma-BHC (Lindane)	< 3.43	ug/Kg	7/5/2019 17:08
Heptachlor	< 3.43	ug/Kg	7/5/2019 17:08
Heptachlor Epoxide	< 3.43	ug/Kg	7/5/2019 17:08

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001-1

Lab Sample ID:193078-22Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Methoxychlor < 3.43 7/5/2019 17:08 ug/Kg Toxaphene < 34.3 ug/Kg L 7/5/2019 17:08 trans-Chlordane < 3.43 ug/Kg 7/5/2019 17:08 **Surrogate Percent Recovery** Limits **Outliers Date Analyzed**

 Decachlorobiphenyl (1)
 49.0
 23.6 - 123
 7/5/2019
 17:08

 Tetrachloro-m-xylene (1)
 59.9
 36.2 - 86.9
 7/5/2019
 17:08

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 339	ug/Kg		7/10/2019 17:50
1,2,4,5-Tetrachlorobenzene	< 339	ug/Kg		7/10/2019 17:50
1,2,4-Trichlorobenzene	< 339	ug/Kg		7/10/2019 17:50
1,2-Dichlorobenzene	< 339	ug/Kg		7/10/2019 17:50
1,3-Dichlorobenzene	< 339	ug/Kg		7/10/2019 17:50
1,4-Dichlorobenzene	< 339	ug/Kg		7/10/2019 17:50
2,2-Oxybis (1-chloropropane)	< 339	ug/Kg		7/10/2019 17:50
2,3,4,6-Tetrachlorophenol	< 339	ug/Kg		7/10/2019 17:50
2,4,5-Trichlorophenol	< 339	ug/Kg		7/10/2019 17:50
2,4,6-Trichlorophenol	< 339	ug/Kg		7/10/2019 17:50
2,4-Dichlorophenol	< 339	ug/Kg		7/10/2019 17:50
2,4-Dimethylphenol	< 339	ug/Kg		7/10/2019 17:50
2,4-Dinitrophenol	< 1360	ug/Kg		7/10/2019 17:50
2,4-Dinitrotoluene	< 339	ug/Kg		7/10/2019 17:50
2,6-Dinitrotoluene	< 339	ug/Kg		7/10/2019 17:50
2-Chloronaphthalene	< 339	ug/Kg		7/10/2019 17:50
2-Chlorophenol	< 339	ug/Kg		7/10/2019 17:50
2-Methylnapthalene	< 339	ug/Kg		7/10/2019 17:50
2-Methylphenol	< 339	ug/Kg		7/10/2019 17:50

Client: BE3

Project Reference: Marrano

Sample Identifier:4001-1Lab Sample ID:193078-22Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

2-Nitroaniline	< 339	ug/Kg	7/10/2019 17:50
2-Nitrophenol	< 339	ug/Kg	7/10/2019 17:50
3&4-Methylphenol	< 339	ug/Kg	7/10/2019 17:50
3,3'-Dichlorobenzidine	< 339	ug/Kg	7/10/2019 17:50
3-Nitroaniline	< 339	ug/Kg	7/10/2019 17:50
4,6-Dinitro-2-methylphenol	< 453	ug/Kg	7/10/2019 17:50
4-Bromophenyl phenyl ether	< 339	ug/Kg	7/10/2019 17:50
4-Chloro-3-methylphenol	< 339	ug/Kg	7/10/2019 17:50
4-Chloroaniline	< 339	ug/Kg	7/10/2019 17:50
4-Chlorophenyl phenyl ether	< 339	ug/Kg	7/10/2019 17:50
4-Nitroaniline	< 339	ug/Kg	7/10/2019 17:50
4-Nitrophenol	< 339	ug/Kg	7/10/2019 17:50
Acenaphthene	< 339	ug/Kg	7/10/2019 17:50
Acenaphthylene	< 339	ug/Kg	7/10/2019 17:50
Acetophenone	< 339	ug/Kg	7/10/2019 17:50
Anthracene	< 339	ug/Kg	7/10/2019 17:50
Atrazine	< 339	ug/Kg	7/10/2019 17:50
Benzaldehyde	< 339	ug/Kg	7/10/2019 17:50
Benzo (a) anthracene	< 339	ug/Kg	7/10/2019 17:50
Benzo (a) pyrene	< 339	ug/Kg	7/10/2019 17:50
Benzo (b) fluoranthene	< 339	ug/Kg	7/10/2019 17:50
Benzo (g,h,i) perylene	< 339	ug/Kg	7/10/2019 17:50
Benzo (k) fluoranthene	< 339	ug/Kg	7/10/2019 17:50
Bis (2-chloroethoxy) methane	< 339	ug/Kg	7/10/2019 17:50
Bis (2-chloroethyl) ether	< 339	ug/Kg	7/10/2019 17:50
Bis (2-ethylhexyl) phthalate	< 339	ug/Kg	7/10/2019 17:50
Butylbenzylphthalate	< 339	ug/Kg	7/10/2019 17:50
Caprolactam	< 339	ug/Kg	7/10/2019 17:50
Carbazole	< 339	ug/Kg	7/10/2019 17:50
Chrysene	< 339	ug/Kg	7/10/2019 17:50

Client: BE3

Project Reference: Marrano

Sample Identifier:4001-1Lab Sample ID:193078-22Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 339	ug/Kg	7/10/2019 17:50	
Dibenzofuran	< 339	ug/Kg	7/10/2019 17:50	
Diethyl phthalate	< 339	ug/Kg	7/10/2019 17:50	
Dimethyl phthalate	< 339	ug/Kg	7/10/2019 17:50	
Di-n-butyl phthalate	< 339	ug/Kg	7/10/2019 17:50	
Di-n-octylphthalate	< 339	ug/Kg	7/10/2019 17:50	
Fluoranthene	< 339	ug/Kg	7/10/2019 17:50	
Fluorene	< 339	ug/Kg	7/10/2019 17:50	
Hexachlorobenzene	< 339	ug/Kg	7/10/2019 17:50	
Hexachlorobutadiene	< 339	ug/Kg	7/10/2019 17:50	
Hexachlorocyclopentadiene	< 1360	ug/Kg	7/10/2019 17:50	
Hexachloroethane	< 339	ug/Kg	7/10/2019 17:50	
Indeno (1,2,3-cd) pyrene	< 339	ug/Kg	7/10/2019 17:50	
Isophorone	< 339	ug/Kg	7/10/2019 17:50	
Naphthalene	< 339	ug/Kg	7/10/2019 17:50	
Nitrobenzene	< 339	ug/Kg	7/10/2019 17:50	
N-Nitroso-di-n-propylamine	< 339	ug/Kg	7/10/2019 17:50	
N-Nitrosodiphenylamine	< 339	ug/Kg	7/10/2019 17:50	
Pentachlorophenol	< 678	ug/Kg	7/10/2019 17:50	
Phenanthrene	< 339	ug/Kg	7/10/2019 17:50	
Phenol	< 339	ug/Kg	7/10/2019 17:50	
Pyrene	< 339	ug/Kg	7/10/2019 17:50	

Client: BE3

Project Reference: Marrano

Sample Identifier: 4001-1

Date Sampled: Lab Sample ID: 193078-22 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	52.8	34.9 - 92.6		7/10/2019	17:50
2-Fluorobiphenyl	56.5	39 - 77.6		7/10/2019	17:50
2-Fluorophenol	62.3	39.1 - 76.8		7/10/2019	17:50
Nitrobenzene-d5	59.0	35.4 - 75.3		7/10/2019	17:50
Phenol-d5	60.9	40.4 - 77.7		7/10/2019	17:50
Terphenyl-d14	57.7	42 - 93.5		7/10/2019	17:50

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019

Data File:

B38651.D

Dioxane

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1.4-Dioxane	< 34.1	ug/Kg		7/11/2019 10:41

Method Reference(s): EPA 8270D SIM

EPA 3546

7/8/2019 **Preparation Date:** Data File: B38694.D

Total Cyanide

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Cyanide, Total	< 0.565	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001-1

Lab Sample ID: 193078-23 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	3.07	mg/Kg		7/9/2019 23:29
Barium	66.3	mg/Kg		7/9/2019 23:29
Beryllium	0.524	mg/Kg		7/9/2019 23:29
Cadmium	0.974	mg/Kg		7/9/2019 23:29
Chromium	14.9	mg/Kg		7/9/2019 23:29
Copper	16.0	mg/Kg		7/9/2019 23:29
Lead	8.28	mg/Kg		7/9/2019 23:29
Manganese	334	mg/Kg		7/9/2019 23:29
Nickel	14.4	mg/Kg		7/9/2019 23:29
Selenium	1.26	mg/Kg		7/9/2019 23:29
Silver	< 0.563	mg/Kg		7/9/2019 23:29
Zinc	62.8	mg/Kg		7/9/2019 23:29

Method Reference(s): EPA 6010C EPA 3050B

Preparation Date: 7/8/2019

Data File: 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0649	mg/Kg		7/8/2019 10:40

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0315	mg/Kg		7/3/2019 19:33
PCB-1221	< 0.0315	mg/Kg		7/3/2019 19:33
PCB-1232	< 0.0315	mg/Kg		7/3/2019 19:33
PCB-1242	< 0.0315	mg/Kg		7/3/2019 19:33

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001-1

Lab Sample ID:193078-23Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

PCB-1248	< 0.0315	mg/Kg			7/3/2019	19:33
PCB-1254	< 0.0315	mg/Kg			7/3/2019	19:33
PCB-1260	< 0.0315	mg/Kg			7/3/2019	19:33
PCB-1262	< 0.0315	mg/Kg			7/3/2019	19:33
PCB-1268	< 0.0315	mg/Kg			7/3/2019	19:33
<u>Surrogate</u>	Percen	t Recovery	Limits	Outliers	Date Analy	zed
Tetrachloro-m-xylene	Ţ	59.1	21.7 - 82.5		7/3/2019	19:33

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
4,4-DDD	< 3.15	ug/Kg	7/5/2019 17:27
4,4-DDE	< 3.15	ug/Kg	7/5/2019 17:27
4,4-DDT	< 3.15	ug/Kg	7/5/2019 17:27
Aldrin	< 3.15	ug/Kg	7/5/2019 17:27
alpha-BHC	< 3.15	ug/Kg	7/5/2019 17:27
beta-BHC	< 3.15	ug/Kg	7/5/2019 17:27
cis-Chlordane	< 3.15	ug/Kg	7/5/2019 17:27
delta-BHC	< 3.15	ug/Kg	7/5/2019 17:27
Dieldrin	< 3.15	ug/Kg	7/5/2019 17:27
Endosulfan I	< 3.15	ug/Kg	7/5/2019 17:27
Endosulfan II	< 3.15	ug/Kg	7/5/2019 17:27
Endosulfan Sulfate	< 3.15	ug/Kg	7/5/2019 17:27
Endrin	< 3.15	ug/Kg	7/5/2019 17:27
Endrin Aldehyde	< 3.15	ug/Kg	7/5/2019 17:27
Endrin Ketone	< 3.15	ug/Kg	7/5/2019 17:27
gamma-BHC (Lindane)	< 3.15	ug/Kg	7/5/2019 17:27
Heptachlor	< 3.15	ug/Kg	7/5/2019 17:27
Heptachlor Epoxide	< 3.15	ug/Kg	7/5/2019 17:27

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001-1

Lab Sample ID:193078-23Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Methoxychlor < 3.15 ug/Kg 7/5/2019 17:27 Toxaphene < 31.5 ug/Kg L 7/5/2019 17:27 trans-Chlordane < 3.15 ug/Kg 7/5/2019 17:27 **Surrogate Percent Recovery** Limits **Outliers Date Analyzed**

 Decachlorobiphenyl (1)
 67.2
 23.6 - 123
 7/5/2019
 17:27

 Tetrachloro-m-xylene (1)
 78.8
 36.2 - 86.9
 7/5/2019
 17:27

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 319	ug/Kg		7/10/2019 18:19
1,2,4,5-Tetrachlorobenzene	< 319	ug/Kg		7/10/2019 18:19
1,2,4-Trichlorobenzene	< 319	ug/Kg		7/10/2019 18:19
1,2-Dichlorobenzene	< 319	ug/Kg		7/10/2019 18:19
1,3-Dichlorobenzene	< 319	ug/Kg		7/10/2019 18:19
1,4-Dichlorobenzene	< 319	ug/Kg		7/10/2019 18:19
2,2-Oxybis (1-chloropropane)	< 319	ug/Kg		7/10/2019 18:19
2,3,4,6-Tetrachlorophenol	< 319	ug/Kg		7/10/2019 18:19
2,4,5-Trichlorophenol	< 319	ug/Kg		7/10/2019 18:19
2,4,6-Trichlorophenol	< 319	ug/Kg		7/10/2019 18:19
2,4-Dichlorophenol	< 319	ug/Kg		7/10/2019 18:19
2,4-Dimethylphenol	< 319	ug/Kg		7/10/2019 18:19
2,4-Dinitrophenol	< 1270	ug/Kg		7/10/2019 18:19
2,4-Dinitrotoluene	< 319	ug/Kg		7/10/2019 18:19
2,6-Dinitrotoluene	< 319	ug/Kg		7/10/2019 18:19
2-Chloronaphthalene	< 319	ug/Kg		7/10/2019 18:19
2-Chlorophenol	< 319	ug/Kg		7/10/2019 18:19
2-Methylnapthalene	< 319	ug/Kg		7/10/2019 18:19
2-Methylphenol	< 319	ug/Kg		7/10/2019 18:19

Client: BE3

Project Reference: Marrano

Sample Identifier:5001-1Lab Sample ID:193078-23Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

			1 1
2-Nitroaniline	< 319	ug/Kg	7/10/2019 18:19
2-Nitrophenol	< 319	ug/Kg	7/10/2019 18:19
3&4-Methylphenol	< 319	ug/Kg	7/10/2019 18:19
3,3'-Dichlorobenzidine	< 319	ug/Kg	7/10/2019 18:19
3-Nitroaniline	< 319	ug/Kg	7/10/2019 18:19
4,6-Dinitro-2-methylphenol	< 426	ug/Kg	7/10/2019 18:19
4-Bromophenyl phenyl ether	< 319	ug/Kg	7/10/2019 18:19
4-Chloro-3-methylphenol	< 319	ug/Kg	7/10/2019 18:19
4-Chloroaniline	< 319	ug/Kg	7/10/2019 18:19
4-Chlorophenyl phenyl ether	< 319	ug/Kg	7/10/2019 18:19
4-Nitroaniline	< 319	ug/Kg	7/10/2019 18:19
4-Nitrophenol	< 319	ug/Kg	7/10/2019 18:19
Acenaphthene	< 319	ug/Kg	7/10/2019 18:19
Acenaphthylene	< 319	ug/Kg	7/10/2019 18:19
Acetophenone	< 319	ug/Kg	7/10/2019 18:19
Anthracene	< 319	ug/Kg	7/10/2019 18:19
Atrazine	< 319	ug/Kg	7/10/2019 18:19
Benzaldehyde	< 319	ug/Kg	7/10/2019 18:19
Benzo (a) anthracene	< 319	ug/Kg	7/10/2019 18:19
Benzo (a) pyrene	< 319	ug/Kg	7/10/2019 18:19
Benzo (b) fluoranthene	< 319	ug/Kg	7/10/2019 18:19
Benzo (g,h,i) perylene	< 319	ug/Kg	7/10/2019 18:19
Benzo (k) fluoranthene	< 319	ug/Kg	7/10/2019 18:19
Bis (2-chloroethoxy) methane	< 319	ug/Kg	7/10/2019 18:19
Bis (2-chloroethyl) ether	< 319	ug/Kg	7/10/2019 18:19
Bis (2-ethylhexyl) phthalate	< 319	ug/Kg	7/10/2019 18:19
Butylbenzylphthalate	< 319	ug/Kg	7/10/2019 18:19
Caprolactam	< 319	ug/Kg	7/10/2019 18:19
Carbazole	< 319	ug/Kg	7/10/2019 18:19
Chrysene	< 319	ug/Kg	7/10/2019 18:19

Client: BE3

Project Reference: Marrano

Sample Identifier:5001-1Lab Sample ID:193078-23Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 319	ug/Kg	7/10/2019 18:19
Dibenzofuran	< 319	ug/Kg	7/10/2019 18:19
Diethyl phthalate	< 319	ug/Kg	7/10/2019 18:19
Dimethyl phthalate	< 319	ug/Kg	7/10/2019 18:19
Di-n-butyl phthalate	< 319	ug/Kg	7/10/2019 18:19
Di-n-octylphthalate	< 319	ug/Kg	7/10/2019 18:19
Fluoranthene	< 319	ug/Kg	7/10/2019 18:19
Fluorene	< 319	ug/Kg	7/10/2019 18:19
Hexachlorobenzene	< 319	ug/Kg	7/10/2019 18:19
Hexachlorobutadiene	< 319	ug/Kg	7/10/2019 18:19
Hexachlorocyclopentadiene	< 1270	ug/Kg	7/10/2019 18:19
Hexachloroethane	< 319	ug/Kg	7/10/2019 18:19
Indeno (1,2,3-cd) pyrene	< 319	ug/Kg	7/10/2019 18:19
Isophorone	< 319	ug/Kg	7/10/2019 18:19
Naphthalene	< 319	ug/Kg	7/10/2019 18:19
Nitrobenzene	< 319	ug/Kg	7/10/2019 18:19
N-Nitroso-di-n-propylamine	< 319	ug/Kg	7/10/2019 18:19
N-Nitrosodiphenylamine	< 319	ug/Kg	7/10/2019 18:19
Pentachlorophenol	< 637	ug/Kg	7/10/2019 18:19
Phenanthrene	< 319	ug/Kg	7/10/2019 18:19
Phenol	< 319	ug/Kg	7/10/2019 18:19
Pyrene	< 319	ug/Kg	7/10/2019 18:19

Client: BE3

Project Reference: Marrano

Sample Identifier: 5001-1

Date Sampled: Lab Sample ID: 193078-23 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	58.0	34.9 - 92.6		7/10/2019	18:19
2-Fluorobiphenyl	58.5	39 - 77.6		7/10/2019	18:19
2-Fluorophenol	60.4	39.1 - 76.8		7/10/2019	18:19
Nitrobenzene-d5	55.5	35.4 - 75.3		7/10/2019	18:19
Phenol-d5	61.3	40.4 - 77.7		7/10/2019	18:19
Terphenyl-d14	62.5	42 - 93.5		7/10/2019	18:19

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019 B38652.D

Data File:

Dioxane

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,4-Dioxane	< 33.0	ug/Kg		7/11/2019 10:52

EPA 8270D SIM Method Reference(s):

EPA 3546

7/8/2019 **Preparation Date:** Data File: B38695.D

Total Cyanide

Analyte	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Cyanide, Total	< 0.537	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001-1

Lab Sample ID: 193078-24 **Date Sampled:** 7/1/2019

Matrix: Soil Date Received: 7/2/2019

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	3.10	mg/Kg		7/9/2019 23:33
Barium	94.2	mg/Kg		7/9/2019 23:33
Beryllium	0.626	mg/Kg		7/9/2019 23:33
Cadmium	1.20	mg/Kg		7/9/2019 23:33
Chromium	17.6	mg/Kg		7/9/2019 23:33
Copper	18.8	mg/Kg		7/9/2019 23:33
Lead	9.11	mg/Kg		7/9/2019 23:33
Manganese	432	mg/Kg		7/9/2019 23:33
Nickel	18.8	mg/Kg		7/9/2019 23:33
Selenium	1.45	mg/Kg		7/9/2019 23:33
Silver	< 0.544	mg/Kg		7/9/2019 23:33
Zinc	65.3	mg/Kg		7/9/2019 23:33

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:7/8/2019

Preparation Date: 7/8/2019 **Data File:** 190709B

Mercury

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.00916	mg/Kg		7/8/2019 10:42

Method Reference(s):EPA 7471BPreparation Date:7/3/2019Data File:Hg190708B

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.0332	mg/Kg		7/3/2019 19:56
PCB-1221	< 0.0332	mg/Kg		7/3/2019 19:56
PCB-1232	< 0.0332	mg/Kg		7/3/2019 19:56
PCB-1242	< 0.0332	mg/Kg		7/3/2019 19:56

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001-1

Lab Sample ID:193078-24Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Surrogate	Percen	t Recovery	Limits	<u>Outliers</u>	Date Analy	zed
PCB-1268	< 0.0332	mg/Kg			7/3/2019	19:56
PCB-1262	< 0.0332	mg/Kg			7/3/2019	19:56
PCB-1260	< 0.0332	mg/Kg			7/3/2019	19:56
PCB-1254	< 0.0332	mg/Kg			7/3/2019	19:56
PCB-1248	< 0.0332	mg/Kg			7/3/2019	19:56

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/3/2019

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analy	zed
4,4-DDD	< 3.32	ug/Kg	7/5/2019	17:45
4,4-DDE	< 3.32	ug/Kg	7/5/2019	17:45
4,4-DDT	< 3.32	ug/Kg	7/5/2019	17:45
Aldrin	< 3.32	ug/Kg	7/5/2019	17:45
alpha-BHC	< 3.32	ug/Kg	7/5/2019	17:45
beta-BHC	< 3.32	ug/Kg	7/5/2019	17:45
cis-Chlordane	< 3.32	ug/Kg	7/5/2019	17:45
delta-BHC	< 3.32	ug/Kg	7/5/2019	17:45
Dieldrin	< 3.32	ug/Kg	7/5/2019	17:45
Endosulfan I	< 3.32	ug/Kg	7/5/2019	17:45
Endosulfan II	< 3.32	ug/Kg	7/5/2019	17:45
Endosulfan Sulfate	< 3.32	ug/Kg	7/5/2019	17:45
Endrin	< 3.32	ug/Kg	7/5/2019	17:45
Endrin Aldehyde	< 3.32	ug/Kg	7/5/2019	17:45
Endrin Ketone	< 3.32	ug/Kg	7/5/2019	17:45
gamma-BHC (Lindane)	< 3.32	ug/Kg	7/5/2019	17:45
Heptachlor	< 3.32	ug/Kg	7/5/2019	17:45
Heptachlor Epoxide	< 3.32	ug/Kg	7/5/2019	17:45

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001-1

Lab Sample ID:193078-24Date Sampled:7/1/2019Matrix:SoilDate Received:7/2/2019

Methoxychlor < 3.32 ug/Kg 7/5/2019 17:45 Toxaphene < 33.2 ug/Kg L 7/5/2019 17:45 trans-Chlordane < 3.32 ug/Kg 7/5/2019 17:45 **Surrogate Percent Recovery Outliers Date Analyzed** Limits

Decachlorobiphenyl (1) 48.3 23.6 - 123 7/5/2019 17:45
Tetrachloro-m-xylene (1) 65.0 36.2 - 86.9 7/5/2019 17:45

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/3/2019

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	Ĺ
1,1-Biphenyl	< 330	ug/Kg		7/10/2019 18:4	49
1,2,4,5-Tetrachlorobenzene	< 330	ug/Kg		7/10/2019 18:4	49
1,2,4-Trichlorobenzene	< 330	ug/Kg		7/10/2019 18:4	49
1,2-Dichlorobenzene	< 330	ug/Kg		7/10/2019 18:4	49
1,3-Dichlorobenzene	< 330	ug/Kg		7/10/2019 18:4	49
1,4-Dichlorobenzene	< 330	ug/Kg		7/10/2019 18:4	49
2,2-Oxybis (1-chloropropane)	< 330	ug/Kg		7/10/2019 18:4	49
2,3,4,6-Tetrachlorophenol	< 330	ug/Kg		7/10/2019 18:4	49
2,4,5-Trichlorophenol	< 330	ug/Kg		7/10/2019 18:4	49
2,4,6-Trichlorophenol	< 330	ug/Kg		7/10/2019 18:4	49
2,4-Dichlorophenol	< 330	ug/Kg		7/10/2019 18:4	49
2,4-Dimethylphenol	< 330	ug/Kg		7/10/2019 18:4	49
2,4-Dinitrophenol	< 1320	ug/Kg		7/10/2019 18:4	49
2,4-Dinitrotoluene	< 330	ug/Kg		7/10/2019 18:4	49
2,6-Dinitrotoluene	< 330	ug/Kg		7/10/2019 18:4	49
2-Chloronaphthalene	< 330	ug/Kg		7/10/2019 18:4	49
2-Chlorophenol	< 330	ug/Kg		7/10/2019 18:4	49
2-Methylnapthalene	< 330	ug/Kg		7/10/2019 18:4	49
2-Methylphenol	< 330	ug/Kg		7/10/2019 18:4	49

Client: BE3

Project Reference: Marrano

Sample Identifier:6001-1Lab Sample ID:193078-24Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

2-Nitroaniline	< 330	ug/Kg	7/10/2019 18:49
2-Nitrophenol	< 330	ug/Kg	7/10/2019 18:49
3&4-Methylphenol	< 330	ug/Kg	7/10/2019 18:49
3,3'-Dichlorobenzidine	< 330	ug/Kg	7/10/2019 18:49
3-Nitroaniline	< 330	ug/Kg	7/10/2019 18:49
4,6-Dinitro-2-methylphenol	< 442	ug/Kg	7/10/2019 18:49
4-Bromophenyl phenyl ether	< 330	ug/Kg	7/10/2019 18:49
4-Chloro-3-methylphenol	< 330	ug/Kg	7/10/2019 18:49
4-Chloroaniline	< 330	ug/Kg	7/10/2019 18:49
4-Chlorophenyl phenyl ether	< 330	ug/Kg	7/10/2019 18:49
4-Nitroaniline	< 330	ug/Kg	7/10/2019 18:49
4-Nitrophenol	< 330	ug/Kg	7/10/2019 18:49
Acenaphthene	< 330	ug/Kg	7/10/2019 18:49
Acenaphthylene	< 330	ug/Kg	7/10/2019 18:49
Acetophenone	< 330	ug/Kg	7/10/2019 18:49
Anthracene	< 330	ug/Kg	7/10/2019 18:49
Atrazine	< 330	ug/Kg	7/10/2019 18:49
Benzaldehyde	< 330	ug/Kg	7/10/2019 18:49
Benzo (a) anthracene	< 330	ug/Kg	7/10/2019 18:49
Benzo (a) pyrene	< 330	ug/Kg	7/10/2019 18:49
Benzo (b) fluoranthene	< 330	ug/Kg	7/10/2019 18:49
Benzo (g,h,i) perylene	< 330	ug/Kg	7/10/2019 18:49
Benzo (k) fluoranthene	< 330	ug/Kg	7/10/2019 18:49
Bis (2-chloroethoxy) methane	< 330	ug/Kg	7/10/2019 18:49
Bis (2-chloroethyl) ether	< 330	ug/Kg	7/10/2019 18:49
Bis (2-ethylhexyl) phthalate	< 330	ug/Kg	7/10/2019 18:49
Butylbenzylphthalate	< 330	ug/Kg	7/10/2019 18:49
Caprolactam	< 330	ug/Kg	7/10/2019 18:49
Carbazole	< 330	ug/Kg	7/10/2019 18:49
Chrysene	< 330	ug/Kg	7/10/2019 18:49

Client: BE3

Project Reference: Marrano

Sample Identifier:6001-1Lab Sample ID:193078-24Matrix:SoilDate Sampled:7/1/2019Date Received:7/2/2019

Dibenz (a,h) anthracene	< 330	ug/Kg	7/10/2019 18:49
Dibenzofuran	< 330	ug/Kg	7/10/2019 18:49
Diethyl phthalate	< 330	ug/Kg	7/10/2019 18:49
Dimethyl phthalate	< 330	ug/Kg	7/10/2019 18:49
Di-n-butyl phthalate	< 330	ug/Kg	7/10/2019 18:49
Di-n-octylphthalate	< 330	ug/Kg	7/10/2019 18:49
Fluoranthene	< 330	ug/Kg	7/10/2019 18:49
Fluorene	< 330	ug/Kg	7/10/2019 18:49
Hexachlorobenzene	< 330	ug/Kg	7/10/2019 18:49
Hexachlorobutadiene	< 330	ug/Kg	7/10/2019 18:49
Hexachlorocyclopentadiene	< 1320	ug/Kg	7/10/2019 18:49
Hexachloroethane	< 330	ug/Kg	7/10/2019 18:49
Indeno (1,2,3-cd) pyrene	< 330	ug/Kg	7/10/2019 18:49
Isophorone	< 330	ug/Kg	7/10/2019 18:49
Naphthalene	< 330	ug/Kg	7/10/2019 18:49
Nitrobenzene	< 330	ug/Kg	7/10/2019 18:49
N-Nitroso-di-n-propylamine	< 330	ug/Kg	7/10/2019 18:49
N-Nitrosodiphenylamine	< 330	ug/Kg	7/10/2019 18:49
Pentachlorophenol	< 660	ug/Kg	7/10/2019 18:49
Phenanthrene	< 330	ug/Kg	7/10/2019 18:49
Phenol	< 330	ug/Kg	7/10/2019 18:49
Pyrene	< 330	ug/Kg	7/10/2019 18:49

Client: BE3

Project Reference: Marrano

Sample Identifier: 6001-1

Date Sampled: Lab Sample ID: 193078-24 7/1/2019

Matrix: Soil **Date Received:** 7/2/2019

Surrogate	Percent Recovery	<u>Limits</u>	Outliers	Date Analyzed		
2,4,6-Tribromophenol	56.4	34.9 - 92.6		7/10/2019	18:49	
2-Fluorobiphenyl	53.5	39 - 77.6		7/10/2019	18:49	
2-Fluorophenol	58.3	39.1 - 76.8		7/10/2019	18:49	
Nitrobenzene-d5	55.7	35.4 - 75.3		7/10/2019	18:49	
Phenol-d5	56.4	40.4 - 77.7		7/10/2019	18:49	
Terphenyl-d14	56.3	42 - 93.5		7/10/2019	18:49	

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 7/8/2019 B38653.D

Data File:

Dioxane

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1.4-Dioxane	< 32.5	ug/Kg		7/11/2019 11:03

Method Reference(s): EPA 8270D SIM

EPA 3546

7/8/2019 **Preparation Date:** Data File: B38696.D

Total Cyanide

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Cyanide, Total	< 0.544	mg/Kg		7/10/2019

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 7/10/2019

Method Blank Report

Client:

BE3

Project Reference:

Marrano

Lab Project ID:

193078

Matrix:

Soil

Chlorinated Pesticides						
<u>Analyte</u>		Result	<u>Units</u>	<u>Qualifier</u>	<u>Date Analy</u>	zed
4,4-DDD		<2.79	ug/Kg		7/5/2019	14:17
4,4-DDE		<2.79	ug/Kg		7/5/2019	14:17
4,4-DDT		<2.79	ug/Kg		7/5/2019	14:17
Aldrin		<2.79	ug/Kg		7/5/2019	14:17
alpha-BHC		<2.79	ug/Kg		7/5/2019	14:17
beta-BHC		<2.79	ug/Kg		7/5/2019	14:17
cis-Chlordane		<2.79	ug/Kg		7/5/2019	14:17
delta-BHC		<2.79	ug/Kg		7/5/2019	14:17
Dieldrin		<2.79	ug/Kg		7/5/2019	14:17
Endosulfan I		<2.79	ug/Kg		7/5/2019	14:17
Endosulfan II		<2.79	ug/Kg		7/5/2019	14:17
Endosulfan Sulfate		<2.79	ug/Kg		7/5/2019	14:17
Endrin		<2.79	ug/Kg		7/5/2019	14:17
Endrin Aldehyde		<2.79	ug/Kg		7/5/2019	14:17
Endrin Ketone		<2.79	ug/Kg		7/5/2019	14:17
gamma-BHC (Lindane)		<2.79	ug/Kg		7/5/2019	14:17
Heptachlor		<2.79	ug/Kg		7/5/2019	14:17
Heptachlor Epoxide		<2.79	ug/Kg		7/5/2019	14:17
Methoxychlor		<2.79	ug/Kg		7/5/2019	14:17
Toxaphene		<27.9	ug/Kg	ăii	7/5/2019	14:17
trans-Chlordane		<2.79	ug/Kg		7/5/2019	14:17
<u>Surrogate</u>	Ĭ	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	yzed
Decachlorobiphenyl (1)		66.7	23.6 - 123		7/5/2019	14:17
Tetrachloro-m-xylene (1)		59.5	36.2 - 86.9		7/5/2019	14:17
Method Reference(s):	EPA 8081B EPA 3546					
Preparation Date: QC Batch ID: QC Number:	7/3/2019 QC190703PESTS 1	3				

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

QC Report for Laboratory Control Sample

Client:

BE3

Project Reference:

Marrano

Lab Project ID:

193078

Matrix:

Soil

Chlorinated Pesticides

CHICA THROUGH A OBCIOTAGE							
	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	Date
<u>Analyte</u>	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	<u>Outliers</u>	Analyzed
4,4-DDD (1)	13.6	ug/Kg	7.41	54.5	22.2 - 102		7/5/2019
4,4-DDE (1)	13.6	ug/Kg	7.33	53.9	26.4 - 99.5		7/5/2019
4,4-DDT (1)	13.6	ug/Kg	7.74	57.0	20.4 - 107		7/5/2019
Aldrin (1)	13.6	ug/Kg	7.84	57.7	25.7 - 86		7/5/2019
alpha-BHC (1)	13.6	ug/Kg	6.48	47.7	23.7 - 89.3		7/5/2019
beta-BHC (1)	13.6	ug/Kg	7.15	52.6	26 - 90		7/5/2019
cis-Chlordane (1)	13.6	ug/Kg	7.87	58.0	27.2 - 98.7		7/5/2019
delta-BHC (1)	13.6	ug/Kg	7.22	53.1	14.8 - 105		7/5/2019
Dieldrin (1)	13.6	ug/Kg	7.57	55.7	26.3 - 93		7/5/2019
Endosulfan I (1)	13.6	ug/Kg	7.09	52.2	20 - 93.9		7/5/2019
Endosulfan II (1)	13.6	ug/Kg	7.80	57.4	29 - 111		7/5/2019
Endosulfan Sulfate (1)	13.6	ug/Kg	7.74	57.0	23 - 102		7/5/2019
Endrin (1)	13.6	ug/Kg	6.28	46.2	26.6 - 83.6		7/5/2019
Endrin Aldehyde (1)	13.6	ug/Kg	7.22	53.1	26.8 - 98.3		7/5/2019
Endrin Ketone (1)	13.6	ug/Kg	8.93	65.7	28 - 122		7/5/2019
gamma-BHC (Lindane) (1)	13.6	ug/Kg	7.26	53.4	24.8 - 84.9		7/5/2019

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

QC Report for Laboratory Control Sample

Client:

BE₃

Project Reference:

Marrano

Lab Project ID:

193078

Matrix:

Soil

Chlorinated Pesticides

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	<u>LCS</u>	<u>Date</u>
<u>Analyte</u>	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	Outliers	<u>Analyzed</u>
Heptachlor (1)	13.6	ug/Kg	8.19	60.3	27.3 - 86.3		7/5/2019
Heptachlor Epoxide (1)	13.6	ug/Kg	7.47	55.0	29.4 - 90.4		7/5/2019
Methoxychlor (1)	13.6	ug/Kg	8.93	65.7	24.1 - 105		7/5/2019
Toxaphene (1)	136	ug/Kg	43.3	31.8	34.6 - 104	*	7/5/2019
trans-Chlordane (1)	13.6	ug/Kg	7.50	55.2	22.1 - 90.8		7/5/2019

Method Reference(s):

EPA 8081B

EPA 3546

Preparation Date:

7/3/2019

ST035541.D

Data File:

QC Number:

1

QC Batch ID:

QC190703PESTS

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

CHAIN OF CUSTODY

PRGE 1 0F3 1994

DAG	24 510			REPORT TO:		True MOV	INV	VOICE TO:			ar Sunt Base		
PAF	RADIG	M		CLIENT: BES COLP		CLIENT:		Sam	е		LAB PROJECT	ID	
1				ADDRESS: 17 10 A / A / A	ST	ADDRES	S:			1930	78		
				CITY: STATE: NY	ZIP: 14213	CITY:		STATE:	ZIP:	Quotation	#:		
				PHONE: 711 8308636	1701	PHONE:				Email:			
PROJE	CT REFER	ENCE		ATTN:		ATTN:					WY ES		24
1000				Matrix Codes:									
[NATE	CAAL			AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	WA - Water WG - Groundwa	ater	DW - Drinking WW - Wastew		SO - Soil SL - Sludge	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - O	
							REQUESTE	D ANALYS	SIS	THE REST OF STREET			
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	GRAB	SAMPLE IDENTIFIER	M C O D E R E S	N U M T A I N E R O F S	VOCS TOWN			REMARKS	S		GM LAB IPLE IBER
7-1-19	30m		X	1001	50	1	X						01
	11		1	1002	1	1							02
				1003									03
				1,04									04
				7005									05
				1006		17							06
				1007		H				9			0 7
				2001									0 8
	*			2002									09
1	3:310m		V	3001	1	1.1	14 11						10
Turnarour Availabi Standard 5 day Rush 3 day Rush 2 day Rush 1 day Other please indicate:		t upon la Batch Q Categor Categor Other please indi	ab appro	Report Supplements roval; additional fees may apply. Basic EDD NYSDEC EDD Other EDD please indicate:	Retinquished Received By Received @	Voii ab By	Stein 1 7/2/19	7- Date 2, 7/ Date	71 3-77 1	PM	Total Cost:		
									See a	dditional pag	ge for sample	e condit	ions

Page 101 of 155

CHAIN OF CUSTODY

\cap	391
YMB30P3	5
(1000)	

(KISS)						CITAL	IN OI	UU	101	OL					1:00			
DAD	DADIC	M		C	REPORT TO					INV	DICE .	10:		A A			W D	
PAI	RADIG	IVI		CLIENT:	5E3CORD	-	CLIENT:				S	ame			LAB PROJECT	ID		
100				ADDRESS:	(2-70 N/26M)	4 51	ADDRES	S:						7 1930	78			
				CITY: SUK	FALO STATE:	NY ZIP: 1421	3 CITY:				STATE:	ZIP	:	Quotation				
7				PHONE:	716 830 863		PHONE:							Email:				
PROJE	CT REFER	ENCE		ATTN:	2. 0	2	ATTN:											
				Matrix Co	odes:	x (DGZ)		_										
DAND	RANO				- Aqueous Liquid - Non-Aqueous Liquid	WA - Water WG - Groun	dwater			inking V		SO - S SL - S		SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL -	- Oil - Air	
10 Mar	7/400	7			Trom / iquodad ziquid	770 010011	- Trater			STED			Or Walks	CONTRACTOR CONTRACTOR	A DECEMBER OF THE	Dy Journ		154
		С	T				N C		8									5/5/
		O M				м	CMN	Sylves	200		8	1年		9(
DATE COLLECTED	TIME	P	G R		SAMPLE IDENTIFIER	A	O B A E	2	\$ 3		7 6	33		REMARK	re.		ADIGM	
	COLLECTED	S	B			R	ERN	1	#1	35	TOF	- V		Tamara			NUMBER	
		Ť				×	O R	100	27	0	4							
0 110	(1	-		2. 11		S	2	7			+++				+		1
7-1-19		1	-		300 -1	5	3	1.	X	XX	X	+++	-			+	2	1
-		1	-		1-1001		-	111	111	111	1		-			_	2	2
	-		1		5001-1		\perp	111	Ш		11	+++	-				2	3
1	5000	型			6001-1	9	4	4	4	1 1	40						2	4
	\\		_															L.
																	1.0	
						0												
								Λ	_									_
Turnarou	Control Management (No.			•	pplements		1	1)()		(11/	0	SOM				
Availabi	ility contingen	t upon	lab app	roval; addition	onal fees may apply.		MM	1	Va	~		7/19	5	25///	Tatal Cast			
Standard 5 day	X	Batch (QC		Basic EDD	Sampled B	LA	(A)		Date/Time		b	Total Cost:			
Rush 3 day		Catego	ory A		NYSDEC EDD	Relinquish	ed By	1	1	7	1	Date/Time		oes	Α			
Rush 2 day		Catego	ory B]	Réceived E	me	8 1	He	em	er	Date/Time	96	PM	P.I.F.	\neg		
Rush 1 day						On	UN	ail	-	7/2			13		t del e			
Other		Other	dicate:		Other EDD	Received (D Lab√By					Date/Time						

CHAIN OF CUSTODY

0	^		2 20/4	1
PAGE	()	OP	3001	
1	0			

PAI	RADIG	M-		REPORT TO) :				INVOICE	TO:					4	To the same of
A.	TADIO	143		CLIENT: (553COLU		CLIENT				Same			LAB PROJECT	ID		
1				ADDRESS: 1270 NIK	MAST	ADDRE	ss:					1930				
				CITY: SUFFIXO STATE:	NY ZIP LG 13	CITY:	70	5	STATE	: 1	ZIP:	Quotation	#:			
	-			IPHONE:	26	PHONE	-3,	Se Z				Email:				
PROJE	CT REFER	ENCE		ATTN:	7,7	ATTN:	en	mer					HATT			ľ
Λ	4			Matrix Codes:			10				2 W					٦
MAD	RANO			AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	WA - Water WG - Groundwa	ater	2,2	- Was	king Water stewater	SO - SL -	Soil Sludge	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - C		
	70 1100					AL.	21	QUES	TED ANA	LYSIS	WEST OF STREET	OTEN SHEET SHEET			9190	
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B	SAMPLE IDENTIFIER	M C O D E E S X	NU M T A I N E R O F S	10CS TCL	OCS METAS	M.S			REMARK:	s		DIGM LAMPLE	
7-1-19	35300M		X	3002	150	1	-								1 0	
1	111		1	4001	- 1		1								1 2	2
				4002											-	3
				€001												4
				5002		\Box	111								1	18
				6001			- 111	\top	\Box						1	_
	Hom		V	6002		45	> 10									7
	1,	X		1001-1		3		111	/ X X	X		<u> </u>			1	8
		1		1002-1		1	\top	11	177					+		9
V	1	4		2001-1	4	1	+	110							1	
Turnarous Availabi Standard 5 day Rush 3 day Rush 2 day Rush 1 day Other	er in animaler		lab appi QC ry A	Report Supplements roval; additional fees may apply. Basic EDD NYSDEC EDD Other EDD	Sampled By Reinquished Received By	M By	Lai		7 mê 7/2/1	Date/Time Date/Time Date/Time	3-1190	5 PM	Total Cost:		3.1	_
please indicate:		please inc	dicate:	please indicate:	_						See a	dditional nag	e for sample	condi	tion	10

Chain of Custody Supplement

Client: Lab Project ID:	<u>BE3</u> 193078	Completed by: Date:	My Cylail
	Sample Cond	lition Requirements AP 210/241/242/243/244	710111
Condition	NELAC compliance with the sam Yes	ple condition requirements up No	on receipt N/A
Container Type Comments		5023	
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			文
Holding Time Comments	X		
Temperature Comments	3%, (4)		met
Compliant Sample Quantity/Ty	уре		

ANALYTICAL REPORT

Lab Number: L1929092

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: 193078
Project Number: 193078
Report Date: 07/22/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 193078
 Lab Number:
 L1929092

 Project Number:
 193078
 Report Date:
 07/22/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1929092-01	193078-18 1001-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-02	193078-19 1002-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-03	193078-20 2001-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-04	193078-21 3001-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-05	193078-22 4001-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-06	193078-23 5001-1	SOIL	Not Specified	07/01/19 16:00	07/02/19
L1929092-07	193078-24 6001-1	SOIL	Not Specified	07/01/19 17:00	07/02/19

 Project Name:
 193078
 Lab Number:
 L1929092

 Project Number:
 193078
 Report Date:
 07/22/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 193078
 Lab Number:
 L1929092

 Project Number:
 193078
 Report Date:
 07/22/19

Case Narrative (continued)

Report Submission

July 22, 2019: This final report includes the results of all requested analyses.

July 18, 2019: This is a preliminary report. The Client IDs were changed on L1929092-01 through -07.

July 18, 2019: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1929092-01 through -07: At the client's request, the Hexavalent Chromium analysis was performed.

Perfluorinated Alkyl Acids by Isotope Dilution

L1929092-02 through -07: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1262123-3: The continuing calibration standard had the response for Perfluoroctanesulfonic Acid-Branched (br-PFOS) outside of acceptance criteria. The response for Perfluoroctanesulfonic Acid (PFOS) was within acceptance criteria; therefore, no further action was taken.

WG1262123-5: The continuing calibration standard had the response for Perfluorohexanesulfonic Acid-Branched (br-PFHxS), outside of acceptance criteria. The response for Perfluorohexanesulfonic Acid (PFHxS) was within acceptance criteria; therefore, no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(600, Skindow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 07/22/19

ORGANICS

SEMIVOLATILES

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-01 Date Collected: 07/01/19 16:00

Client ID: 193078-18 1001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 03:43

Analyst: JW Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.00	0.023	1
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.00	0.046	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.00	0.039	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.00	0.053	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.00	0.045	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.00	0.061	1
Perfluorooctanoic Acid (PFOA)	0.061	J	ug/kg	1.00	0.042	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.00	0.180	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.00	0.137	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.00	0.075	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.00	0.130	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.00	0.067	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.00	0.287	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.00	0.202	1
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.00	0.047	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.00	0.153	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.00	0.098	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.00	0.085	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.00	0.070	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.00	0.205	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.00	0.054	1
PFOA/PFOS, Total	0.061	J	ug/kg	1.00	0.042	1

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-01 Date Collected: 07/01/19 16:00

Client ID: 193078-18 1001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	81	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	78	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	77	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	78	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	77	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	75	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	70	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	83	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	75	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	86	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	51	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	76	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	43	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	66	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	41	26-160

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-02 Date Collected: 07/01/19 16:00

Client ID: 193078-19 1002-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 03:59

Analyst: JW Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.19	0.027	1				
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.19	0.055	1				
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.19	0.046	1				
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.19	0.062	1				
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.19	0.054	1				
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.19	0.072	1				
Perfluorooctanoic Acid (PFOA)	0.064	J	ug/kg	1.19	0.050	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.19	0.213	1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.19	0.162	1				
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.19	0.089	1				
Perfluorooctanesulfonic Acid (PFOS)	0.342	J	ug/kg	1.19	0.154	1				
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.19	0.080	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.19	0.341	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.19	0.239	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.19	0.056	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.19	0.182	1				
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.19	0.116	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.188	J	ug/kg	1.19	0.100	1				
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.19	0.083	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.19	0.243	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.19	0.064	1				
PFOA/PFOS, Total	0.406	J	ug/kg	1.19	0.050	1				

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-02 Date Collected: 07/01/19 16:00

Client ID: 193078-19 1002-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	75		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	80		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	81		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	77		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	71		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	87		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	50		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	4		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	39	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	70		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	47		26-160	

 Project Name:
 193078

 Lab Number:
 L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-03 Date Collected: 07/01/19 16:00

Client ID: 193078-20 2001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 04:16

Analyst: JW Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.12	0.025	1				
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.12	0.052	1				
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.12	0.044	1				
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.12	0.059	1				
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.12	0.051	1				
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.12	0.068	1				
Perfluorooctanoic Acid (PFOA)	0.110	J	ug/kg	1.12	0.047	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.12	0.201	1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.12	0.153	1				
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.12	0.084	1				
Perfluorooctanesulfonic Acid (PFOS)	0.213	J	ug/kg	1.12	0.146	1				
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.12	0.075	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.12	0.322	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.12	0.226	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.12	0.052	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.12	0.171	1				
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.12	0.110	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.12	0.095	1				
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.12	0.078	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.12	0.229	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.12	0.061	1				
PFOA/PFOS, Total	0.323	J	ug/kg	1.12	0.047	1				

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-03 Date Collected: 07/01/19 16:00

Client ID: 193078-20 2001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	83		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	83		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	79		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	66		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	75		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	44	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	16		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	32	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	69		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	24	Q	26-160	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-04 Date Collected: 07/01/19 16:00

Client ID: 193078-21 3001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 04:32

Analyst: JW Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.11	0.025	1	
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.11	0.051	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.11	0.043	1	
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.11	0.058	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.11	0.050	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.11	0.067	1	
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	1.11	0.046	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.11	0.199	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.11	0.151	1	
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.11	0.083	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.11	0.144	1	
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.11	0.074	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.11	0.318	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.11	0.223	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.11	0.052	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.11	0.169	1	
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.11	0.108	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.11	0.094	1	
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.11	0.078	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.11	0.226	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.11	0.060	1	
PFOA/PFOS, Total	ND		ug/kg	1.11	0.046	1	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-04 Date Collected: 07/01/19 16:00

Client ID: 193078-21 3001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	77		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	81		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	83		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	81		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	76		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	70		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	88		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	77		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	40	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	77		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	39	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	66		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	42		26-160	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-05 Date Collected: 07/01/19 16:00

Client ID: 193078-22 4001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54

Analytical Date: 07/20/19 04:49

Analyst: JW Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.13	0.026	1
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.13	0.052	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.13	0.044	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.13	0.059	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.13	0.051	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.13	0.068	1
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	1.13	0.047	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.13	0.202	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.13	0.154	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.13	0.084	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.13	0.146	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.13	0.075	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.13	0.323	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.13	0.227	1
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.13	0.053	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.13	0.172	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.13	0.110	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.13	0.095	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.13	0.079	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.13	0.230	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.13	0.061	1
PFOA/PFOS, Total	ND		ug/kg	1.13	0.047	1

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-05 Date Collected: 07/01/19 16:00

Client ID: 193078-22 4001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	70		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	74		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	72		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	67		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	72		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	53		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	72		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	69		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	76		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	33	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	69		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	7		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	29	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	57		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	25	Q	26-160	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-06 Date Collected: 07/01/19 16:00

Client ID: 193078-23 5001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 05:06

Analyst: JW Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.03	0.023	1	
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.03	0.047	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.03	0.040	1	
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.03	0.054	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.03	0.046	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.03	0.062	1	
Perfluorooctanoic Acid (PFOA)	0.062	J	ug/kg	1.03	0.043	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.03	0.185	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.03	0.140	1	
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.03	0.077	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.03	0.134	1	
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.03	0.069	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.03	0.295	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.03	0.207	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.03	0.048	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.03	0.157	1	
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.03	0.101	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.03	0.087	1	
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.03	0.072	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.03	0.210	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.03	0.056	1	
PFOA/PFOS, Total	0.062	J	ug/kg	1.03	0.043	1	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-06 Date Collected: 07/01/19 16:00

Client ID: 193078-23 5001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	62		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	67		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	67	Q	70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	64		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	65		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	61	Q	62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	56		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	68		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	68		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	62	Q	65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	58		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	27	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	63	Q	64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	19	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	51	Q	56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	24	Q	26-160	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-07 Date Collected: 07/01/19 17:00

Client ID: 193078-24 6001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/18/19 12:54
Analytical Date: 07/20/19 05:22

Analyst: JW Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND			1.04	0.024	1
			ug/kg			
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.04	0.048	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.04	0.041	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.04	0.055	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.04	0.047	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.04	0.063	1
Perfluorooctanoic Acid (PFOA)	0.077	J	ug/kg	1.04	0.044	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.04	0.187	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.04	0.142	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.04	0.078	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.04	0.136	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.04	0.070	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.04	0.300	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.04	0.210	1
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.04	0.049	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.04	0.160	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.04	0.102	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.04	0.088	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.04	0.073	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.04	0.214	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.04	0.056	1
PFOA/PFOS, Total	0.077	J	ug/kg	1.04	0.044	1

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-07 Date Collected: 07/01/19 17:00

Client ID: 193078-24 6001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	72		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	76		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	72		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	73		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	70		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	71		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	61		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	74		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	71		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	60		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	31	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	72		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	13		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	26	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	59		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	18	Q	26-160	

 Project Name:
 193078

 Lab Number:
 L1929092

Project Number: 193078 Report Date: 07/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537(M)
Analytical Date: 07/20/19 01:30 Extraction Date: 07/18/19 12:54

Analyst: JW

Parameter F	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope I WG1261565-1	Dilution -	Mansfield I	Lab for sa	ample(s):	01-07 Batch:	
Perfluorobutanoic Acid (PFBA)	0.068	J	ug/kg	1.00	0.023	
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.00	0.046	
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.00	0.039	
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.00	0.053	
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.00	0.045	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.00	0.061	
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	1.00	0.042	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.00	0.180	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.00	0.136	
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.00	0.075	
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.00	0.130	
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.00	0.067	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.00	0.287	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.00	0.202	
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.00	0.047	
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.00	0.153	
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.00	0.098	
N-Ethyl Perfluorooctanesulfonamidoacetic A (NEtFOSAA)	cid ND		ug/kg	1.00	0.085	
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.00	0.070	
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.00	0.204	
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.00	0.054	
PFOA/PFOS, Total	ND		ug/kg	1.00	0.042	

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537(M)
Analytical Date: 07/20/19 01:30 Extraction Date: 07/18/19 12:54

Analyst: JW

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s):
 01-07
 Batch:

 WG1261565-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	81	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	82	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	88	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	74	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	91	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	85	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	87	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	17	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	58	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	76	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62	26-160

Lab Control Sample Analysis Batch Quality Control

Project Name: 193078
Project Number: 193078

Lab Number: L1929092

Report Date: 07/22/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	y Qual	%Recovery Limits	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	ı - Mansfield Lab	Associated sample(s): 01	1-07 Batch:	WG1261565-2	WG1261565-3		
Perfluorobutanoic Acid (PFBA)	106	103		71-135	3	30	
Perfluoropentanoic Acid (PFPeA)	102	98		69-132	4	30	
Perfluorobutanesulfonic Acid (PFBS)	92	89		72-128	3	30	
Perfluorohexanoic Acid (PFHxA)	113	112		70-132	1	30	
Perfluoroheptanoic Acid (PFHpA)	106	101		71-131	5	30	
Perfluorohexanesulfonic Acid (PFHxS)	117	114		67-130	3	30	
Perfluorooctanoic Acid (PFOA)	107	107		69-133	0	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	106	100		64-140	6	30	
Perfluoroheptanesulfonic Acid (PFHpS)	104	94		70-132	10	30	
Perfluorononanoic Acid (PFNA)	111	108		72-129	3	30	
Perfluorooctanesulfonic Acid (PFOS)	100	90		68-136	11	30	
Perfluorodecanoic Acid (PFDA)	112	110		69-133	2	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	104	110		65-137	6	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	111	111		63-144	0	30	
Perfluoroundecanoic Acid (PFUnA)	98	99		64-136	1	30	
Perfluorodecanesulfonic Acid (PFDS)	110	97		59-134	13	30	
Perfluorooctanesulfonamide (FOSA)	91	97		67-137	6	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	100	103		61-139	3	30	
Perfluorododecanoic Acid (PFDoA)	105	102		69-135	3	30	
Perfluorotridecanoic Acid (PFTrDA)	108	105		66-139	3	30	
Perfluorotetradecanoic Acid (PFTA)	118	114		69-133	3	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: 193078

Lab Number:

L1929092 07/22/19

Project Number: 193078 Report Date:

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07 Batch: WG1261565-2 WG1261565-3

	LCS		LCSD		Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria	_
Perfluoro[13C4]Butanoic Acid (MPFBA)	89		77		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	95		82		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96		80		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92		82		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90		83		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	91		78		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		81		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	83		68		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		89		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		83		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92		81		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96		73		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	71		65		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	95		82		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19		11		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	65		57		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	85		73		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	69		60		26-160	

PESTICIDES

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-01 Date Collected: 07/01/19 16:00

Client ID: 193078-18 1001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analytical Date: 07/16/ Analyst: DGM Percent Solids: 87%

Methylation Date: 07/15/19 20:25

07/16/19 15:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC	- Westborough Lab						
2,4,5-TP (Silvex)	ND		ug/kg	191	5.09	1	Α
		Acceptance					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	80		30-150	Α
DCAA	73		30-150	В

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

07/16/19 15:33

Lab ID: L1929092-02 Date Collected: 07/01/19 16:00

Client ID: 193078-19 1002-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analyst: 07/16/
Analyst: DGM
Percent Solids: 84%

Methylation Date: 07/15/19 20:25

Parameter	Result	Qualifier	Units	RL	MDL	MDL Dilution Factor		
Chlorinated Herbicides by GC	- Westborough Lab							
2,4,5-TP (Silvex)	ND		ug/kg	196	5.22	1	Α	
				Acceptance				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	80		30-150	А
DCAA	77		30-150	В

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-03 Date Collected: 07/01/19 16:00

Client ID: 193078-20 2001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analytical Date: 07/16/
Analyst: DGM
Percent Solids: 84%

Methylation Date: 07/15/19 20:25

07/16/19 15:52

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Chlorinated Herbicides by GC - Westborough Lab									
2,4,5-TP (Silvex)	ND		ug/kg	196	5.20	1	Α		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	71		30-150	А
DCAA	64		30-150	В

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-04 Date Collected: 07/01/19 16:00

Client ID: 193078-21 3001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analyst: DGM
Percent Solids: 88%

Methylation Date: 07/15/19 20:25

07/16/19 16:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Chlorinated Herbicides by GC - Westborough Lab								
2,4,5-TP (Silvex)	ND		ug/kg	188	4.99	1	Α	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	78		30-150	Α
DCAA	74		30-150	В

30-150

В

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 **Report Date:** 07/22/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 16:00 L1929092-05 Client ID: 193078-22 4001-1 Date Received: 07/02/19

Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Extraction Method: EPA 8151A Matrix: Soil **Extraction Date:** 07/14/19 03:32 1,8151A Analytical Method:

Analytical Date: 07/16/19 16:29 Analyst: DGM

80% Percent Solids: 07/15/19 20:25 Methylation Date:

Qualifier Units RL MDL Result **Dilution Factor** Column **Parameter** Chlorinated Herbicides by GC - Westborough Lab 208 2,4,5-TP (Silvex) ND ug/kg 5.53 1 Α Acceptance Criteria % Recovery Surrogate Qualifier Column DCAA 78 30-150 Α

69

DCAA

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-06 Date Collected: 07/01/19 16:00

Client ID: 193078-23 5001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analyst: DGM Percent Solids: 87%

Methylation Date: 07/15/19 20:25

07/16/19 16:48

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Chlorinated Herbicides by GC - Westborough Lab											
2,4,5-TP (Silvex)	ND		ug/kg	186	4.94	1	Α				
				Acceptones							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	88		30-150	А
DCAA	75		30-150	В

Project Name: 193078 Lab Number: L1929092

Project Number: 193078 Report Date: 07/22/19

SAMPLE RESULTS

07/16/19 17:07

LE RESULTS

Lab ID: L1929092-07 Date Collected: 07/01/19 17:00

Client ID: 193078-24 6001-1 Date Received: 07/02/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 07/14/19 03:32

Analytical Date: 07/16/
Analyst: DGM
Percent Solids: 85%

Methylation Date: 07/15/19 20:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC -	· Westborough Lab						
2,4,5-TP (Silvex)	ND		ug/kg	191	5.07	1	Α
Surrogate			% Recovery	Qualifier		ptance iteria Col	lumn

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	84		30-150	Α
DCAA	74		30-150	В

 Project Name:
 193078

 Lab Number:
 L1929092

Project Number: 193078 Report Date: 07/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8151A Analytical Date: 07/16/19 12:42

Analyst: DGM

Methylation Date: 07/15/19 20:25

Extraction Method: EPA 8151A Extraction Date: 07/14/19 03:32

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
Chlorinated Herbicides by GC - We	stborough l	Lab for sam	ple(s):	01-07	Batch:	WG1259655-	.1
2,4,5-TP (Silvex)	ND		ug/kg	1	164	4.37	Α

		Acceptance				
Surrogate	%Recovery Q	ualifier Criteria	Column			
DCAA	88	30-150	Α			
DCAA	80	30-150	В			

Lab Control Sample Analysis Batch Quality Control

Project Name: 193078 **Project Number:** 193078

Lab Number:

L1929092

Report Date:

Parameter	%F	LCS Recovery	Qual		CSD covery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Chlorinated Herbicides by GC -	Westborough Lab	Associate	d sample(s):	01-07	Batch:	WG1259655-2	WG1259655-3				
2,4,5-TP (Silvex)		92			88		30-150	4		30	А

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
DCAA DCAA	83 84		78 85		30-150 30-150	A B

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-01 Date Collected: 07/01/19 16:00 Client ID: 193078-18 1001-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total	86.5		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.925	0.185	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-02 Date Collected: 07/01/19 16:00 Client ID: 193078-19 1002-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lal)								
Solids, Total	83.6		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.957	0.191	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-03 Date Collected: 07/01/19 16:00 Client ID: 193078-20 2001-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	84.0		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.952	0.190	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-04 Date Collected: 07/01/19 16:00 Client ID: 193078-21 3001-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total	88.3		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.906	0.181	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-05 Date Collected: 07/01/19 16:00 Client ID: 193078-22 4001-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	80.0		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	1.00	0.200	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-06 Date Collected: 07/01/19 16:00 193078-23 5001-1 Client ID: Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	87.2		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.917	0.183	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

SAMPLE RESULTS

Lab ID: L1929092-07 Date Collected: 07/01/19 17:00 Client ID: 193078-24 6001-1 Date Received: 07/02/19 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	85.1		%	0.100	NA	1	-	07/04/19 01:47	121,2540G	YA
Chromium, Hexavalent	ND		mg/kg	0.940	0.188	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Project Name: Lab Number: 193078 L1929092 Project Number: 193078

Report Date: 07/22/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab for sam	ple(s): 01	-07 Bat	tch: W0	G1258646-1				
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	07/11/19 12:33	07/12/19 09:19	1,7196A	NH

Lab Control Sample Analysis Batch Quality Control

Project Name: 193078 **Project Number:** 193078

Lab Number: Report Date:

L1929092

Parameter	LCS %Recovery Qu		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	-07 Batch:	WG12586	46-2					
Chromium, Hexavalent	97		-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: 193078
Project Number: 193078

Lab Number:

L1929092

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery (Recove Qual Limits	,	RPD Qual Limits
General Chemistry - Westborou 1	ıgh Lab Asso	ciated samp	le(s): 01-07	QC Batch II	D: WG1258646-4	QC Sample: L	1929092-06	Client ID:	193078-23 5001-
Chromium, Hexavalent	ND	1060	1100	104	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 193078 **Project Number:** 193078 Lab Number:

L1929092

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sa	ample(s): 01-07 QC Ba	atch ID: WG1256473-1	QC Sample:	L1928791-03	Client ID:	DUP Sample
Solids, Total	81.3	79.6	%	2		20
General Chemistry - Westborough Lab Associated sa	ample(s): 01-07 QC Ba	atch ID: WG1258646-6	QC Sample:	L1929092-06	Client ID:	193078-23 5001-
Chromium, Hexavalent	ND	ND	mg/kg	NC		20

Project Name: 193078 **Lab Number:** L1929092 Project Number: 193078

Report Date: 07/22/19

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1929092-01A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-01B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-01C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-02A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-02B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-02C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-03A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-03B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-03C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-04A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-04B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-04C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-05A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-05B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-05C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-06A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-06B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-06C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1929092-07A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		TS(7)
L1929092-07B	Glass 120ml/4oz unpreserved	Α	NA		4.3	Υ	Absent		HERB-APA(14)
L1929092-07C	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-NY-537-ISOTOPE(28)

Project Name: Lab Number: L1929092 193078 **Report Date: Project Number:** 193078 07/22/19

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS. MSD

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 193078
 Lab Number:
 L1929092

 Project Number:
 193078
 Report Date:
 07/22/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- $R \hspace{10mm}$ Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 193078
 Lab Number:
 L1929092

 Project Number:
 193078
 Report Date:
 07/22/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. **EPA 522.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

9	1.1	
	186	
1	148	

CHAIN OF CUSTODY

L1929092

	RADIO		COMPANY		REPORT TO:	di d	COMPA		9	ame	OICET	0:	E TEL	6-2-02	LAB PR	OJECT #	Dane.	CLE	IT PROJEC	T No.	THE REAL PROPERTY.
1			ADDRESS	raiac	ake Avenue		ADDRE	SS:	-	arrio	_	_	_		-						
			CITY:	Rochester		ZIP: 14608	CITY:	-			STA	TE:	ZIP:	8	TURNA	ROUND TI	ME: (V	VORKING	DAYS)		
1	CHERT I		PHONE:		FAX:	197.000	PHONE	:	_		FAX:				-			1	STD		OTHE
OJECT NAME/SITE	NAME:		ATTN	Repor	rting		ATTN		Acco	unts Pa	ayable				П		Г	اء[75		11)
			COMMENT	rs: Pleas	e email results to re	porting@p	aradig	men	v.con						Date	Due:	-			_	
C 41484	199 EM			SEE SEE SEE	THE PERSON	机多类	Wales	F	REQU	ESTED	ANAL	YSIS		阿尔斯				470	SE SEN	MAN TO	W. 1860
DATE	TIME	C O M P O S I T E	G R A B	SAM	PLE LOCATIONIFIELD ID	M A T R	CONTAINER	Silvex	PFAS						REMA	RKS			PARADIG	M LAB SA	MPLE NUMBER
7/1/19	1600			19307	8-18	Soil	3	X	X	1	+	+						-	П	П	
7111	1			1,100	19	1	1	1	1		\top	\top								\Box	
					20		\top	1	111	\top	\forall	+	\top							\top	
					21		\Box	11	111	\Box								TITE		\top	
					2)		11	11	111	\top	\Box	T	\top							\top	
					23		11	1	П	\Box		\Box								\Box	
	1700				24		17	1	П	\Box		\Box							П		
					7	-	1	T	П			\Box				-1.4					
									П	T											
0																7					
LAB USE Of					2016年2月2日	September 1	自然	*************************************	200		100		NS 125	KPISE.	W.	经	561	信等級		动解类	等途影
	Receipt Pa		1241/242/2		ompliance																
omments:	Container	Type:		Υ 🗆	N 🔲 Si	Clies	nt) () a		٨		, D	ate/Time	0 ,			-	Total	Cost:			*
omments:	Preserva	tion;		Y 🔲	N O	elinquished	NU	ai)	710	2/19	ate/Time	160	0		_				_	161
unments:	Holding T	îme:		Y 🗆	NU	e pived By	eire	ul	HAL	7/	2/19	ate/Tim	e	16	3		P.LF				
omments:	Tempera	ture:		Y 🗆	N 🗆 🗼	edelved By	والمعا	11	AC.	7/	2/19	ate/Tim	0-7/2	16	33	_				ļ	

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	4.75	mg/Kg		8/4/2020 20:44
Barium	31.6	mg/Kg		8/4/2020 20:44
Beryllium	0.203	mg/Kg	J	8/4/2020 20:44
Cadmium	1.70	mg/Kg		8/4/2020 20:44
Chromium	9.54	mg/Kg		8/4/2020 20:44
Copper	20.0	mg/Kg		8/4/2020 20:44
Lead	9.34	mg/Kg		8/4/2020 20:44
Manganese	288	mg/Kg	M	8/4/2020 20:44
Nickel	17.5	mg/Kg		8/4/2020 20:44
Selenium	< 1.21	mg/Kg		8/4/2020 20:44
Silver	< 0.603	mg/Kg		8/4/2020 20:44
Zinc	53.1	mg/Kg		8/5/2020 19:30

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 8/3/2020

 Data File:
 200804B

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

_		
P	CRc	,

Analyte	Result	<u>Units</u>		Qualifier	Date Anal	yzed
PCB-1016	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1221	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1232	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1242	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1248	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1254	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1260	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1262	< 0.0340	mg/Kg			8/1/2020	04:52
PCB-1268	< 0.0340	mg/Kg			8/1/2020	04:52
Surrogate	Percen	t Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Tetrachloro-m-xylene	3	35.7	17.8 - 74		8/1/2020	04:52

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/31/2020

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.40	ug/Kg		7/31/2020 21:42
4,4-DDE	< 3.40	ug/Kg		7/31/2020 21:42
4,4-DDT	< 3.40	ug/Kg		7/31/2020 21:42
Aldrin	< 3.40	ug/Kg		7/31/2020 21:42
alpha-BHC	< 3.40	ug/Kg		7/31/2020 21:42
beta-BHC	< 3.40	ug/Kg		7/31/2020 21:42
cis-Chlordane	< 3.40	ug/Kg		7/31/2020 21:42
delta-BHC	< 3.40	ug/Kg		7/31/2020 21:42
Dieldrin	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan I	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan II	< 3.40	ug/Kg		7/31/2020 21:42
Endosulfan Sulfate	< 3.40	ug/Kg		7/31/2020 21:42
Endrin	< 3.40	ug/Kg		7/31/2020 21:42
Endrin Aldehyde	< 3.40	ug/Kg		7/31/2020 21:42
Endrin Ketone	< 3.40	ug/Kg		7/31/2020 21:42
gamma-BHC (Lindane)	< 3.40	ug/Kg		7/31/2020 21:42
Heptachlor	2.37	ug/Kg	J	7/31/2020 21:42
Heptachlor Epoxide	< 3.40	ug/Kg		7/31/2020 21:42
Methoxychlor	< 3.40	ug/Kg		7/31/2020 21:42
Toxaphene	< 34.0	ug/Kg		7/31/2020 21:42
trans-Chlordane	< 3.40	ug/Kg		7/31/2020 21:42

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	31.8	27.3 - 111		7/31/2020	21:42
Tetrachloro-m-xylene (1)	20.4	28.5 - 102	*	7/31/2020	21:42

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 7/31/2020

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 314	ug/Kg		8/4/2020 13:03
1,2,4,5-Tetrachlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,2,4-Trichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,2-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,3-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
1,4-Dichlorobenzene	< 314	ug/Kg		8/4/2020 13:03
2,2-Oxybis (1-chloropropane)	< 314	ug/Kg		8/4/2020 13:03
2,3,4,6-Tetrachlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4,5-Trichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4,6-Trichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dichlorophenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dimethylphenol	< 314	ug/Kg		8/4/2020 13:03
2,4-Dinitrophenol	< 1260	ug/Kg		8/4/2020 13:03
2,4-Dinitrotoluene	< 314	ug/Kg		8/4/2020 13:03
2,6-Dinitrotoluene	< 314	ug/Kg		8/4/2020 13:03
2-Chloronaphthalene	< 314	ug/Kg		8/4/2020 13:03
2-Chlorophenol	< 314	ug/Kg		8/4/2020 13:03
2-Methylnapthalene	< 314	ug/Kg		8/4/2020 13:03
2-Methylphenol	< 314	ug/Kg		8/4/2020 13:03
2-Nitroaniline	< 314	ug/Kg		8/4/2020 13:03
2-Nitrophenol	< 314	ug/Kg		8/4/2020 13:03
3&4-Methylphenol	< 314	ug/Kg		8/4/2020 13:03
3,3'-Dichlorobenzidine	< 314	ug/Kg		8/4/2020 13:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF 1					
Lab Sample ID:	203558-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
3-Nitroaniline		< 314	ug/Kg		8/4/2020	13:0
4,6-Dinitro-2-methylp	henol	< 628	ug/Kg		8/4/2020	13:0
4-Bromophenyl pheny	l ether	< 314	ug/Kg		8/4/2020	13:0
4-Chloro-3-methylphe	enol	< 314	ug/Kg		8/4/2020	13:0
4-Chloroaniline		< 314	ug/Kg		8/4/2020	13:0
4-Chlorophenyl pheny	l ether	< 314	ug/Kg		8/4/2020	13:0
4-Nitroaniline		< 314	ug/Kg		8/4/2020	13:0
4-Nitrophenol		< 314	ug/Kg		8/4/2020	13:0
Acenaphthene		< 314	ug/Kg		8/4/2020	13:0
Acenaphthylene		< 314	ug/Kg		8/4/2020	13:0
Acetophenone		< 314	ug/Kg		8/4/2020	13:0
Anthracene		< 314	ug/Kg		8/4/2020	13:0
Atrazine		< 314	ug/Kg		8/4/2020	13:0
Benzaldehyde		< 314	ug/Kg		8/4/2020	13:0
Benzo (a) anthracene		< 314	ug/Kg		8/4/2020	13:0
Benzo (a) pyrene		< 314	ug/Kg		8/4/2020	13:0
Benzo (b) fluoranthen	e	< 314	ug/Kg		8/4/2020	13:0
Benzo (g,h,i) perylene		< 314	ug/Kg		8/4/2020	13:0
Benzo (k) fluoranthen	e	< 314	ug/Kg		8/4/2020	13:0
Bis (2-chloroethoxy) n	nethane	< 314	ug/Kg		8/4/2020	13:0
Bis (2-chloroethyl) eth	ner	< 314	ug/Kg		8/4/2020	13:0
Bis (2-ethylhexyl) pht	halate	< 314	ug/Kg		8/4/2020	13:0
Butylbenzylphthalate		< 314	ug/Kg		8/4/2020	13:0
Caprolactam		< 314	ug/Kg		8/4/2020	13:0
Carbazole		< 314	ug/Kg		8/4/2020	13:0

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF 1					
Lab Sample ID:	203558-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		< 314	ug/Kg		8/4/2020	13:03
Dibenz (a,h) anthracene	9	< 314	ug/Kg		8/4/2020	13:03
Dibenzofuran		< 314	ug/Kg		8/4/2020	13:03
Diethyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Dimethyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Di-n-butyl phthalate		< 314	ug/Kg		8/4/2020	13:03
Di-n-octylphthalate		< 314	ug/Kg		8/4/2020	13:03
Fluoranthene		< 314	ug/Kg		8/4/2020	13:03
Fluorene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorobenzene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorobutadiene		< 314	ug/Kg		8/4/2020	13:03
Hexachlorocyclopentad	iene	< 1260	ug/Kg		8/4/2020	13:03
Hexachloroethane		< 314	ug/Kg		8/4/2020	13:03
Indeno (1,2,3-cd) pyren	e	< 314	ug/Kg		8/4/2020	13:03
Isophorone		< 314	ug/Kg		8/4/2020	13:03
Naphthalene		< 314	ug/Kg		8/4/2020	13:03
Nitrobenzene		< 314	ug/Kg		8/4/2020	13:03
N-Nitroso-di-n-propyla	mine	< 314	ug/Kg		8/4/2020	13:03
N-Nitrosodiphenylamin	e	< 314	ug/Kg		8/4/2020	13:03
Pentachlorophenol		< 628	ug/Kg		8/4/2020	13:03
Phenanthrene		< 314	ug/Kg		8/4/2020	13:03
Phenol		< 314	ug/Kg		8/4/2020	13:03
Pyrene		< 314	ug/Kg		8/4/2020	13:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF 1

 Lab Sample ID:
 203558-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
2,4,6-Tribromophenol	60.8	37.8 - 85.8		8/4/2020	13:03	
2-Fluorobiphenyl	57.0	40.4 - 80.4		8/4/2020	13:03	
2-Fluorophenol	56.9	38.8 - 77.4		8/4/2020	13:03	
Nitrobenzene-d5	56.8	37.4 - 75.9		8/4/2020	13:03	
Phenol-d5	62.7	40.4 - 78		8/4/2020	13:03	
Terphenyl-d14	55.1	40.2 - 90		8/4/2020	13:03	

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 8/3/2020

 Data File:
 B48367.D

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 1

 Lab Sample ID:
 203558-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1,2,2-Tetrachloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1,2-Trichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1-Dichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,1-Dichloroethene	< 4.82	ug/Kg		8/7/2020 21:18
1,2,3-Trichlorobenzene	< 12.0	ug/Kg		8/7/2020 21:18
1,2,4-Trichlorobenzene	< 12.0	ug/Kg		8/7/2020 21:18
1,2,4-Trimethylbenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,2-Dibromo-3-Chloropropane	< 24.1	ug/Kg		8/7/2020 21:18
1,2-Dibromoethane	< 4.82	ug/Kg		8/7/2020 21:18
1,2-Dichlorobenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,2-Dichloroethane	< 4.82	ug/Kg		8/7/2020 21:18
1,2-Dichloropropane	< 4.82	ug/Kg		8/7/2020 21:18
1,3,5-Trimethylbenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,3-Dichlorobenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,4-Dichlorobenzene	< 4.82	ug/Kg		8/7/2020 21:18
1,4-Dioxane	< 48.2	ug/Kg		8/7/2020 21:18
2-Butanone	< 24.1	ug/Kg		8/7/2020 21:18
2-Hexanone	< 12.0	ug/Kg		8/7/2020 21:18
4-Methyl-2-pentanone	< 12.0	ug/Kg		8/7/2020 21:18
Acetone	< 24.1	ug/Kg		8/7/2020 21:18
Benzene	< 4.82	ug/Kg		8/7/2020 21:18
Bromochloromethane	< 12.0	ug/Kg		8/7/2020 21:18

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 1					
Lab Sample ID:	203558-02			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethan	e	< 4.82	ug/Kg		8/7/2020	21:1
Bromoform		< 12.0	ug/Kg		8/7/2020	21:1
Bromomethane		< 4.82	ug/Kg		8/7/2020	21:1
Carbon disulfide		< 4.82	ug/Kg		8/7/2020	21:1
Carbon Tetrachloride		< 4.82	ug/Kg		8/7/2020	21:3
Chlorobenzene		< 4.82	ug/Kg		8/7/2020	21:1
Chloroethane		< 4.82	ug/Kg		8/7/2020	21:
Chloroform		< 4.82	ug/Kg		8/7/2020	21:
Chloromethane		< 4.82	ug/Kg		8/7/2020	21:
cis-1,2-Dichloroethene		< 4.82	ug/Kg		8/7/2020	21:
cis-1,3-Dichloropropen	ie	< 4.82	ug/Kg		8/7/2020	21:
Cyclohexane		< 24.1	ug/Kg		8/7/2020	21:
Dibromochloromethan	e	< 4.82	ug/Kg		8/7/2020	21:
Dichlorodifluorometha	ne	< 4.82	ug/Kg		8/7/2020	21:
Ethylbenzene		< 4.82	ug/Kg		8/7/2020	21:
Freon 113		< 4.82	ug/Kg		8/7/2020	21:
Isopropylbenzene		< 4.82	ug/Kg		8/7/2020	21:
m,p-Xylene		3.26	ug/Kg	J	8/7/2020	21:
Methyl acetate		< 4.82	ug/Kg		8/7/2020	21:
Methyl tert-butyl Ether	•	< 4.82	ug/Kg		8/7/2020	21:
Methylcyclohexane		< 4.82	ug/Kg		8/7/2020	21:
Methylene chloride		< 12.0	ug/Kg		8/7/2020	21:
Naphthalene		< 12.0	ug/Kg		8/7/2020	21:
n-Butylbenzene		< 4.82	ug/Kg		8/7/2020	21:
n-Propylbenzene		< 4.82	ug/Kg		8/7/2020	21:

8/7/2020

8/7/2020

21:18

21:18

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 1						
Lab Sample ID:	203558-02			Da	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.82	ug/Kg			8/7/2020	21:18
p-Isopropyltoluene		< 4.82	ug/Kg			8/7/2020	21:18
sec-Butylbenzene		< 4.82	ug/Kg			8/7/2020	21:18
Styrene		< 12.0	ug/Kg			8/7/2020	21:18
tert-Butylbenzene		< 4.82	ug/Kg			8/7/2020	21:18
Tetrachloroethene		< 4.82	ug/Kg			8/7/2020	21:18
Toluene		< 4.82	ug/Kg			8/7/2020	21:18
trans-1,2-Dichloroether	ne	< 4.82	ug/Kg			8/7/2020	21:18
trans-1,3-Dichloroprop	ene	< 4.82	ug/Kg			8/7/2020	21:18
Trichloroethene		< 4.82	ug/Kg			8/7/2020	21:18
Trichlorofluoromethan	e	< 4.82	ug/Kg			8/7/2020	21:18
Vinyl chloride		< 4.82	ug/Kg			8/7/2020	21:18
<u>Surrogate</u>		Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			123	75 - 134		8/7/2020	21:18
4-Bromofluorobenzene			58.4	59.5 - 129	*	8/7/2020	21:18

97.4

80.3

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Pentafluorobenzene

Toluene-D8

EPA 5035A - L

Data File: x72391.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

88.8 - 118

84 - 114

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 2

 Lab Sample ID:
 203558-03
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1,2,2-Tetrachloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1,2-Trichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1-Dichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,1-Dichloroethene	< 4.54	ug/Kg		8/7/2020 21:41
1,2,3-Trichlorobenzene	< 11.3	ug/Kg		8/7/2020 21:41
1,2,4-Trichlorobenzene	< 11.3	ug/Kg		8/7/2020 21:41
1,2,4-Trimethylbenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,2-Dibromo-3-Chloropropane	< 22.7	ug/Kg		8/7/2020 21:41
1,2-Dibromoethane	< 4.54	ug/Kg		8/7/2020 21:41
1,2-Dichlorobenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,2-Dichloroethane	< 4.54	ug/Kg		8/7/2020 21:41
1,2-Dichloropropane	< 4.54	ug/Kg		8/7/2020 21:41
1,3,5-Trimethylbenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,3-Dichlorobenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,4-Dichlorobenzene	< 4.54	ug/Kg		8/7/2020 21:41
1,4-Dioxane	< 45.4	ug/Kg		8/7/2020 21:41
2-Butanone	< 22.7	ug/Kg		8/7/2020 21:41
2-Hexanone	< 11.3	ug/Kg		8/7/2020 21:41
4-Methyl-2-pentanone	< 11.3	ug/Kg		8/7/2020 21:41
Acetone	< 22.7	ug/Kg		8/7/2020 21:41
Benzene	< 4.54	ug/Kg		8/7/2020 21:41
Bromochloromethane	< 11.3	ug/Kg		8/7/2020 21:41

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 2					
Lab Sample ID:	203558-03			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	е	< 4.54	ug/Kg		8/7/2020	21:42
Bromoform		< 11.3	ug/Kg		8/7/2020	21:4
Bromomethane		< 4.54	ug/Kg		8/7/2020	21:4
Carbon disulfide		< 4.54	ug/Kg		8/7/2020	21:4
Carbon Tetrachloride		< 4.54	ug/Kg		8/7/2020	21:4
Chlorobenzene		< 4.54	ug/Kg		8/7/2020	21:4
Chloroethane		< 4.54	ug/Kg		8/7/2020	21:4
Chloroform		< 4.54	ug/Kg		8/7/2020	21:4
Chloromethane		< 4.54	ug/Kg		8/7/2020	21:4
cis-1,2-Dichloroethene		< 4.54	ug/Kg		8/7/2020	21:4
cis-1,3-Dichloropropen	e	< 4.54	ug/Kg		8/7/2020	21:4
Cyclohexane		< 22.7	ug/Kg		8/7/2020	21:4
Dibromochloromethan	e	< 4.54	ug/Kg		8/7/2020	21:4
Dichlorodifluorometha	ne	< 4.54	ug/Kg		8/7/2020	21:4
Ethylbenzene		< 4.54	ug/Kg		8/7/2020	21:4
Freon 113		< 4.54	ug/Kg		8/7/2020	21:4
Isopropylbenzene		< 4.54	ug/Kg		8/7/2020	21:4
m,p-Xylene		3.13	ug/Kg	J	8/7/2020	21:4
Methyl acetate		< 4.54	ug/Kg		8/7/2020	21:4
Methyl tert-butyl Ether		< 4.54	ug/Kg		8/7/2020	21:4
Methylcyclohexane		< 4.54	ug/Kg		8/7/2020	21:4
Methylene chloride		< 11.3	ug/Kg		8/7/2020	21:4
Naphthalene		< 11.3	ug/Kg		8/7/2020	21:4
n-Butylbenzene		< 4.54	ug/Kg		8/7/2020	21:4
n-Propylbenzene		< 4.54	ug/Kg		8/7/2020	21:4

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 2						
Lab Sample ID:	203558-03			Dat	e Sampled:	7/30/2020	
Matrix:	Soil			Dat	e Received:	7/30/2020	
o-Xylene		< 4.54	ug/Kg			8/7/2020	21:41
p-Isopropyltoluene		< 4.54	ug/Kg			8/7/2020	21:41
sec-Butylbenzene		< 4.54	ug/Kg			8/7/2020	21:41
Styrene		< 11.3	ug/Kg			8/7/2020	21:41
tert-Butylbenzene		< 4.54	ug/Kg			8/7/2020	21:41
Tetrachloroethene		< 4.54	ug/Kg			8/7/2020	21:41
Toluene		< 4.54	ug/Kg			8/7/2020	21:41
trans-1,2-Dichloroethe	ne	< 4.54	ug/Kg			8/7/2020	21:41
trans-1,3-Dichloroprop	ene	< 4.54	ug/Kg			8/7/2020	21:41
Trichloroethene		< 4.54	ug/Kg			8/7/2020	21:41
Trichlorofluoromethan	ie	< 4.54	ug/Kg			8/7/2020	21:41
Vinyl chloride		< 4.54	ug/Kg			8/7/2020	21:41
Surrogate		Perc	cent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			120	75 - 134		8/7/2020	21:41
4-Bromofluorobenzene	9		56.2	59.5 - 129	*	8/7/2020	21:41
Pentafluorobenzene			94.1	88.8 - 118		8/7/2020	21:41

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Toluene-D8

EPA 5035A - L

Data File: x72392.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

84 - 114

8/7/2020

21:41

79.8

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 3

 Lab Sample ID:
 203558-04
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1,2,2-Tetrachloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1,2-Trichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1-Dichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,1-Dichloroethene	< 4.94	ug/Kg		8/7/2020 22:03
1,2,3-Trichlorobenzene	< 12.4	ug/Kg		8/7/2020 22:03
1,2,4-Trichlorobenzene	< 12.4	ug/Kg		8/7/2020 22:03
1,2,4-Trimethylbenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,2-Dibromo-3-Chloropropane	< 24.7	ug/Kg		8/7/2020 22:03
1,2-Dibromoethane	< 4.94	ug/Kg		8/7/2020 22:03
1,2-Dichlorobenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,2-Dichloroethane	< 4.94	ug/Kg		8/7/2020 22:03
1,2-Dichloropropane	< 4.94	ug/Kg		8/7/2020 22:03
1,3,5-Trimethylbenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,3-Dichlorobenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,4-Dichlorobenzene	< 4.94	ug/Kg		8/7/2020 22:03
1,4-Dioxane	< 49.4	ug/Kg		8/7/2020 22:03
2-Butanone	< 24.7	ug/Kg		8/7/2020 22:03
2-Hexanone	< 12.4	ug/Kg		8/7/2020 22:03
4-Methyl-2-pentanone	< 12.4	ug/Kg		8/7/2020 22:03
Acetone	< 24.7	ug/Kg		8/7/2020 22:03
Benzene	< 4.94	ug/Kg		8/7/2020 22:03
Bromochloromethane	< 12.4	ug/Kg		8/7/2020 22:03

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

0 1 1 1 .:0	DEMOGO					
Sample Identifier: Lab Sample ID:	BF VOC 3			Date Sampled:	7/30/2020	
Matrix:	203558-04 Soil			Date Sampleu: Date Received:	7/30/2020	
Bromodichloromethan		< 4.94	ug/Kg		8/7/2020	22:0
Bromoform		< 12.4	ug/Kg		8/7/2020	
Bromomethane		< 4.94	ug/Kg		8/7/2020	
Carbon disulfide		< 4.94	ug/Kg		8/7/2020	22:0
Carbon Tetrachloride		< 4.94	ug/Kg		8/7/2020	
Chlorobenzene		< 4.94	ug/Kg		8/7/2020	22:0
Chloroethane		< 4.94	ug/Kg		8/7/2020	22:0
Chloroform		< 4.94	ug/Kg		8/7/2020	22:0
Chloromethane		< 4.94	ug/Kg		8/7/2020	22:0
cis-1,2-Dichloroethene		< 4.94	ug/Kg		8/7/2020	22:0
cis-1,3-Dichloroproper	ie	< 4.94	ug/Kg		8/7/2020	22:0
Cyclohexane		< 24.7	ug/Kg		8/7/2020	22:0
Dibromochloromethan	e	< 4.94	ug/Kg		8/7/2020	22:0
Dichlorodifluorometha	ne	< 4.94	ug/Kg		8/7/2020	22:0
Ethylbenzene		< 4.94	ug/Kg		8/7/2020	22:0
Freon 113		< 4.94	ug/Kg		8/7/2020	22:0
Isopropylbenzene		< 4.94	ug/Kg		8/7/2020	22:0
m,p-Xylene		< 4.94	ug/Kg		8/7/2020	22:0
Methyl acetate		< 4.94	ug/Kg		8/7/2020	22:0
Methyl tert-butyl Ether	•	< 4.94	ug/Kg		8/7/2020	22:0
Methylcyclohexane		< 4.94	ug/Kg		8/7/2020	22:0
Methylene chloride		< 12.4	ug/Kg		8/7/2020	22:0
Naphthalene		< 12.4	ug/Kg		8/7/2020	22:0
n-Butylbenzene		< 4.94	ug/Kg		8/7/2020	22:0
n-Propylbenzene		< 4.94	ug/Kg		8/7/2020	22:0

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 3						
Lab Sample ID:	203558-04			Da	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.94	ug/Kg			8/7/2020	22:03
p-Isopropyltoluene		< 4.94	ug/Kg			8/7/2020	22:03
sec-Butylbenzene		< 4.94	ug/Kg			8/7/2020	22:03
Styrene		< 12.4	ug/Kg			8/7/2020	22:03
tert-Butylbenzene		< 4.94	ug/Kg			8/7/2020	22:03
Tetrachloroethene		< 4.94	ug/Kg			8/7/2020	22:03
Toluene		< 4.94	ug/Kg			8/7/2020	22:03
trans-1,2-Dichloroether	ne	< 4.94	ug/Kg			8/7/2020	22:03
trans-1,3-Dichloroprop	ene	< 4.94	ug/Kg			8/7/2020	22:03
Trichloroethene		< 4.94	ug/Kg			8/7/2020	22:03
Trichlorofluoromethan	e	< 4.94	ug/Kg			8/7/2020	22:03
Vinyl chloride		< 4.94	ug/Kg			8/7/2020	22:03
Surrogate		Perc	ent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			127	75 - 134		8/7/2020	22:03
4-Bromofluorobenzene			52.7	59.5 - 129	*	8/7/2020	22:03
Pentafluorobenzene			95.9	88.8 - 118		8/7/2020	22:03

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72393.D

Toluene-D8

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

84 - 114

8/7/2020

22:03

75.3

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier: BF VOC 4

 Lab Sample ID:
 203558-05
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1,2,2-Tetrachloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1,2-Trichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1-Dichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,1-Dichloroethene	< 4.38	ug/Kg		8/7/2020 22:25
1,2,3-Trichlorobenzene	< 11.0	ug/Kg		8/7/2020 22:25
1,2,4-Trichlorobenzene	< 11.0	ug/Kg		8/7/2020 22:25
1,2,4-Trimethylbenzene	< 4.38	ug/Kg		8/7/2020 22:25
1,2-Dibromo-3-Chloropropane	< 21.9	ug/Kg		8/7/2020 22:25
1,2-Dibromoethane	< 4.38	ug/Kg		8/7/2020 22:25
1,2-Dichlorobenzene	< 4.38	ug/Kg		8/7/2020 22:25
1,2-Dichloroethane	< 4.38	ug/Kg		8/7/2020 22:25
1,2-Dichloropropane	< 4.38	ug/Kg		8/7/2020 22:25
1,3,5-Trimethylbenzene	< 4.38	ug/Kg		8/7/2020 22:25
1,3-Dichlorobenzene	< 4.38	ug/Kg		8/7/2020 22:25
1,4-Dichlorobenzene	< 4.38	ug/Kg		8/7/2020 22:25
1,4-Dioxane	< 43.8	ug/Kg		8/7/2020 22:25
2-Butanone	< 21.9	ug/Kg		8/7/2020 22:25
2-Hexanone	< 11.0	ug/Kg		8/7/2020 22:25
4-Methyl-2-pentanone	< 11.0	ug/Kg		8/7/2020 22:25
Acetone	< 21.9	ug/Kg		8/7/2020 22:25
Benzene	< 4.38	ug/Kg		8/7/2020 22:25
Bromochloromethane	< 11.0	ug/Kg		8/7/2020 22:25

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

C 1 11 .'C'	DE HOC 4					
Sample Identifier: Lab Sample ID:	BF VOC 4 203558-05			Date Sampled:	7/20/2020	
Matrix:	203336-03 Soil			Date Received:	7/30/2020 7/30/2020	
Bromodichloromethane		< 4.38	ug/Kg		8/7/2020	22:2
Bromoform		< 11.0	ug/Kg		8/7/2020	
Bromomethane		< 4.38	ug/Kg		8/7/2020	
Carbon disulfide		< 4.38	ug/Kg		8/7/2020	22:2
Carbon Tetrachloride		< 4.38	ug/Kg		8/7/2020	22:2
Chlorobenzene		< 4.38	ug/Kg		8/7/2020	22:2
Chloroethane		< 4.38	ug/Kg		8/7/2020	22:2
Chloroform		< 4.38	ug/Kg		8/7/2020	22:2
Chloromethane		< 4.38	ug/Kg		8/7/2020	22:2
cis-1,2-Dichloroethene		< 4.38	ug/Kg		8/7/2020	22:2
cis-1,3-Dichloropropen	e	< 4.38	ug/Kg		8/7/2020	22:2
Cyclohexane		< 21.9	ug/Kg		8/7/2020	22:2
Dibromochloromethan	е	< 4.38	ug/Kg		8/7/2020	22:2
Dichlorodifluorometha	ne	< 4.38	ug/Kg		8/7/2020	22:2
Ethylbenzene		< 4.38	ug/Kg		8/7/2020	22:2
Freon 113		< 4.38	ug/Kg		8/7/2020	22:2
Isopropylbenzene		< 4.38	ug/Kg		8/7/2020	22:2
m,p-Xylene		< 4.38	ug/Kg		8/7/2020	22:2
Methyl acetate		< 4.38	ug/Kg		8/7/2020	22:2
Methyl tert-butyl Ether		< 4.38	ug/Kg		8/7/2020	22:2
Methylcyclohexane		< 4.38	ug/Kg		8/7/2020	22:2
Methylene chloride		6.69	ug/Kg	J	8/7/2020	22:2
Naphthalene		< 11.0	ug/Kg		8/7/2020	22:2
n-Butylbenzene		< 4.38	ug/Kg		8/7/2020	22:2
n-Propylbenzene		< 4.38	ug/Kg		8/7/2020	22:2

8/7/2020

8/7/2020

22:25

22:25

Client: BE3

Project Reference: 31/150 Tonawanda BIO-Soil

Sample Identifier:	BF VOC 4						
Lab Sample ID:	203558-05			Dat	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.38	ug/Kg			8/7/2020	22:25
p-Isopropyltoluene		< 4.38	ug/Kg			8/7/2020	22:25
sec-Butylbenzene		< 4.38	ug/Kg			8/7/2020	22:25
Styrene		< 11.0	ug/Kg			8/7/2020	22:25
tert-Butylbenzene		< 4.38	ug/Kg			8/7/2020	22:25
Tetrachloroethene		< 4.38	ug/Kg			8/7/2020	22:25
Toluene		< 4.38	ug/Kg			8/7/2020	22:25
trans-1,2-Dichloroether	ne	< 4.38	ug/Kg			8/7/2020	22:25
trans-1,3-Dichloroprop	ene	< 4.38	ug/Kg			8/7/2020	22:25
Trichloroethene		< 4.38	ug/Kg			8/7/2020	22:25
Trichlorofluoromethan	e	< 4.38	ug/Kg			8/7/2020	22:25
Vinyl chloride		< 4.38	ug/Kg			8/7/2020	22:25
<u>Surrogate</u>		Pe	ercent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			126	75 - 134		8/7/2020	22:25
4-Bromofluorobenzene			62.5	59.5 - 129		8/7/2020	22:25

99,9

80.4

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Pentafluorobenzene

Toluene-D8

EPA 5035A - L

Data File: x72394.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

88.8 - 118

84 - 114

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

DAE	RADIG	M			REPORT TO:						IN	VOICE	TO:				ALYS	Sla	1	Town !	The state of the s	4
FAI	ADIG	IVI .		CLIENT: BE	3.	Su	re	CLIENT:									<u>.</u>		LAB PRO			
No. of Lot		- B		ADDRESS: 90		tue 1	3-15	ADDRES	S:								20	5 6	203:	555	5	
1		B		CITY: BUTT	ALC STATE: N	ZIP 14	213	CITY:				STAT	E:	ZIF		e-em	Quota	tion #	ł:			
-	STEEL			PHONE: 7/	6-308-9	7220	Ou J	PHONE:									Email:					1
PPO IE	CT REFER	ENCE		ATTN:			_	ATTN:														
31/15	O TON	ALL'AN	SA	Matrix Code	eve J. God	2Tot		l	_					-	_		_					1
31/150 B.FO	7075	-1	-, (AQ - Ac	queous Liquid	WA - W					Orinking			SO.	ioil		SD - Sol		WP - W		OL - Oil	
15.40	-501			NQ - No	on-Aqueous Liquid	WG - G	roundwa	ter		-	Wastew			SL-S	ludge		PT - Pair	nt	CK - Ca	aulk	AR - Air	
	A 113 (3 (2)		200			and the	TEAK.	, c	F	REQU	ESTE	D AN	ALVS	5	-	1 5 12		2 1	1,5	3 4 1	F 12 710 3	1
	TIME	C O M P	G R				M C A O T O	U N M T B A	7465	4005	92	5	4								PARADIGM LA	
DATE COLLECTED	COLLECTED	O S	A		SAMPLE IDENTIFIER		RE	RN	A-S	20	10	713	4 3	1			RE	MARKS			SAMPLE NUMBER	
		T T	"				x s	O E	3	30	3/2	35	2 4									
		E						FRS	3	3	30	S	10 4									
7-30-16	1220	X.		BFI	L		50	4	X	XX	LX	CX	K								01	
1	1		K	BFV	DC 1		1	1					X								02	
4			X	BKI	202						\Box		V	П							03	1
			×	BEV	26.3		\top	1			\top		¥	\Box							04	1
V	V		V	AY 1	DC- H		\Box	1	T	1	\Box	\top	N	\vdash							05	1
			1	91				1.00	1		+	+	V	\vdash							26€	do
•			1				M	40,50	L	1.	+	+		++	+							7/
			1					m	1170	2 12.11	4	+	+	\vdash	+							1
			-						\vdash	-	+	+	_	\vdash	10	٢.	. 1	77	1-	1	· · · · · ·	-
									\vdash	-	++	+	+	\vdash	- 10	0 1	0	10	14		LEAN	1
		<u> </u>	1						L	_1_	11			Ш	120	Cic	ردلار	Tan		inf	ille	J
Turnaroun	d Time			Report Supp	olements	7	1								MU	Wai			tody.		Paraely	0
N 107 1 107 10 100 100 100 100 100 100 10		nt upon l			fees may apply.	1	EVE	70]		Caro	Krav		7	-30	0-20	6	1220)	and	deli	vect	i
						Sample		0	_	(-)	1		Date/T	me				То	tal Cost:			
Standard 5 day	L	None R	equired		None Required	/	t	(ee)	1	6	ch	4,	7	-30	- 12	9						
10 day	X	Batch C	QC		Basic EDD	Relingu	ished B	У	-		Total		Date/T	me	The state of the s			C				4
Rush 3 day		Categor	rv A		NYSDEC EDD 🚺	_	BA	in	0		1		7-	30	-71	2	3:15	5				
					~	Receive	ed By	4	0		,		Date/T		-				I.F.		7	
Rush 2 day		Catego	ryВ	K			M	No	4/	/a	J	71	30	1511	20	17	55	-				
Rush 1 day						Receive	ed @La	b By	1			1	Date/T	me	00)	s =			7	
Date Needed		Other			Other EDD	1																
Note Pa	led:		licate packs	ge needed:	please indicate EDD needed :	By sig	ning tl	is fori	m, cli	ient a	grees	to Pa	radigi	n Teri	ns and	Cond	itions ((reve	rse).			
MAIR -	A				-										S00.00	dditio	nal na	ao fo	w 00 max	la aan	ditions	

See additional page for sample conditions.

Chain of Custody Supplement

Client:	BE3	Completed by:	Mryfail
Lab Project ID:	263558	Date:	* *
	Sample Conditi Per NELAC/ELAP 2	ion Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements up No	on receipt N/A
Container Type		5075	
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			\searrow
Preservation			TY.
Comments			·
Chlorine Absent (<0.10 ppm per test strip) Comments			TY_
Holding Time			
Comments			
Comments	20°C; cul stan	tulin Lield	met
Compliant Sample Quantity/T			
Comments		x	

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental

Work Order: 200731032 Collection Date: 7/30/2020 12:20:00 PM

Reference: Sample Analysis / Tonowanda BIO-Soil Lab Sample ID: 200731032-001

PO#: Matrix: SOIL

Project# : 203558

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
CHLORINATED HERBICIDES - EPA 8321I (Prep: SW3545A - 7/31/2020	_					Analyst: KF
2,4,5-TP (Silvex)	ND	344		μg/Kg-dry	1	8/3/2020 5:03:48 PM
Surr: Acifluorfen	178	51.2-145	S	%REC	1	8/3/2020 5:03:48 PM
MERCURY - SW 7471B (Prep: SW7471B - 8/3/2020)					Analyst: AVB
Mercury	ND	0.229		μg/g-dry	1	8/3/2020 3:09:35 PM
HEXAVALENT CHROMIUM - SW 7196A (3 (Prep: SW3060A - 8/3/2020	8060A))					Analyst: JW
Chromium, Hexavalent	ND	1.2		μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM D2216 (NOT	ELAP CE	RTIFIED)				Analyst: TSZ
Percent Moisture	12.7	0.1		wt%	1	8/4/2020

Date: 05-Aug-20

Client Sample ID: BF-1

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

200731032

DOI

CHAIN OF CUSTODY

ADIRONDACK: FLAPIC

	The Ho					<u>1AIN</u>	<u>UF</u>	<u> </u>	<u> </u>	<u> </u>	iali (N. 142a)		<u>, jana salah</u>	d Medwy		7		Marini	 		
PA	RADIO	3 M-	COMPAN	Y: Para	REPORT TO: digm Environi	mental		COMPAN	IY:	Sa	<u>เท</u> เme	VOICE	= 10:		NE		OJECT#:	CLI	ENT PRO		
			ADDRESS					ADDRES	S:						/- HA						
14 20 - 44			CITY:		STATE:	ZIP	:	CITY:					STATE:		ZiP:	TURNA	ROUND TIME:	(WORK	NG DAYS		\equiv ϵ
			PHONE:		FAX:			PHONE:				FAX:							STD		= 5
PROJECT NAME/SIT	E NAME:	1	ATTN:	Repo	orting			ATTN:		Accou	ınts P	ayabl	e			1	2	3	5		
31/1507	onowa	nda	COMMEN	TS: Pleas	se email results	to report	ing@pa	radigr	nenv	.com					· · · · · · · · · · · · · · · · · · ·			1-1-1	25		`
BIO-SU,	1		l		11.00				R	EQUE	ESTEI	D AN	ALYSI	s		Date	Due: 81	Floa	ンし. X		
		С	1	100000		2		С								ASP	Cat B +	Escho	eer		
		O M	G				M A	N N								SW8 repet REMAI	46 MIS	_			
DATE	TIME	P 0	R	SAN	IPLE LOCATION/FIELD	ID	T R	MAS	1	\$						re Rout	RKS Lry	W	PAF		
		S	В				ı X	EN	N C	32	1	11				* >			JAM		
		T			(9.)		^	R E	He	JK											
17/30/2020	1220			B =1			5021	1	\ <u>\</u>	VV		++			29	3 <i>55</i> 8	-01			П	T
2	1220			017			30%		1	7	\vdash				000	3300				++	+
3									\vdash	\dashv		+									-
										+		++								++	+
4										+		+								$\dashv \uparrow$	+
5 6	\$						 		\forall	+	\vdash	++								++	+
7																			\vdash	\vdash	
8									\Box	_		+							\Box	$\dagger \dagger$	+
9									H	-		1					1			++	+
									H	_		+						- Duwin an	\vdash	++	+
10 **LAB USE O	NLY BEL	OW THIS LI	NE**								LL										
Sample Condition	n: Per NELA	AC/ELAP 210/2																			
	Receipt Pa				Compliance		0!!4														
Comments:	Container [*]	Type:		Υ	N N	Sample	Client ed By						Date/Tir	ne			- Total	Cost:			
	Preservat	fion:		Υ 🖂	N 🗍			11.0	10	, 1	7	12.	1-12	20	08	-2 D					
Comments:	Pieseivai			'		Relinqu	Mornished B	y Y		<u> </u>		1	Date/Tir	ne		,20	-				
	Holding T	ime:		Υ	N																
Comments:					—	Receiv	ed By						Date/Tir	ne			P.I.F.			1	
	Temperat	ture: Z°C		Υ	N	4	haz	nde Alfred November (1980)				ruino	7/3	1/20	> 4	44le	2177				
Comments:		2		· Ш		Receiv	ed @ La	Ву					Date/Tir		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_			1	
					1																

ALS Group, USA

Sample Receipt Checklist

Client Name:	ALS - RUCHESTER				Date/Time i	Received:	<u>05-Aug-2</u>	<u>0 10:30</u>	
Work Order:	<u>20080315</u>				Received by	y:	KRW		
Checklist comple	eted by Keith Wierenga eSignature	0:	5-Aug-20 Date		Reviewed by:	Ehrland Designature	Bosworth		05-Aug-20 Date
Matrices: Carrier name:	<u>Soil</u> <u>FedEx</u>	l							I
Shipping contain	er/cooler in good condition?		Yes	✓	No 🗌	Not Prese	ent 🗌		
Custody seals in	tact on shipping container/coole	r?	Yes	~	No 🗌	Not Prese	ent 🗌		
Custody seals in	tact on sample bottles?		Yes		No 🗌	Not Prese	ent 🗹		
Chain of custody	present?		Yes	~	No 🗌				
Chain of custody	signed when relinquished and r	eceived?	Yes	~	No 🗌				
Chain of custody	agrees with sample labels?		Yes	~	No 🗌				
Samples in prope	er container/bottle?		Yes	~	No 🗌				
Sample containe	ers intact?		Yes	✓	No 🗌				
Sufficient sample	e volume for indicated test?		Yes	~	No 🗌				
All samples rece	vived within holding time?		Yes	~	No 🗌				
Container/Temp	Blank temperature in complianc	e?	Yes	~	No 🗌				
Sample(s) receiv			Yes 2.0/2.0		No 🗆	<u>IR3</u>	3]	
Cooler(s)/Kit(s):	. ,								
Date/Time samp	le(s) sent to storage:		8/5/202	20 1:	10:59 PM				
Water - VOA vial	ls have zero headspace?		Yes		No L	No VOA vials	submitted	✓	
	ptable upon receipt?		Yes		No _	N/A			
pH adjusted? pH adjusted by:			Yes -		No 🗔	N/A 🗸			
Login Notes:									
Client Contacted	l:	Date Contacted:			Person	Contacted:			
Contacted By:		Regarding:							
Comments:									
CorrectiveAction	:							SRC F	Page 1 of 1

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	10.8	mg/Kg		8/4/2020 20:25
Barium	65.8	mg/Kg		8/4/2020 20:25
Beryllium	0.365	mg/Kg		8/4/2020 20:25
Cadmium	2.03	mg/Kg		8/4/2020 20:25
Chromium	17.5	mg/Kg		8/4/2020 20:25
Copper	20.5	mg/Kg		8/4/2020 20:25
Lead	27.9	mg/Kg		8/4/2020 20:25
Manganese	318	mg/Kg		8/4/2020 20:25
Nickel	16.9	mg/Kg		8/4/2020 20:25
Selenium	< 1.07	mg/Kg		8/4/2020 20:25
Silver	< 0.536	mg/Kg		8/4/2020 20:25
Zinc	73.7	mg/Kg		8/5/2020 18:44

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 8/3/2020 Data File: 200804B

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

PCRs
LUDS

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Anal	yzed
PCB-1016	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1221	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1232	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1242	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1248	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1254	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1260	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1262	< 0.0319	mg/Kg			8/3/2020	15:58
PCB-1268	< 0.0319	mg/Kg			8/3/2020	15:58
<u>Surrogate</u>	Percen	t Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Tetrachloro-m-xylene	!	52.4	17.8 - 74		8/3/2020	15:58

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/3/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.19	ug/Kg		8/3/2020 15:32
4,4-DDE	< 3.19	ug/Kg		8/3/2020 15:32
4,4-DDT	< 3.19	ug/Kg		8/3/2020 15:32
Aldrin	< 3.19	ug/Kg		8/3/2020 15:32
alpha-BHC	< 3.19	ug/Kg		8/3/2020 15:32
beta-BHC	< 3.19	ug/Kg		8/3/2020 15:32
cis-Chlordane	< 3.19	ug/Kg		8/3/2020 15:32
delta-BHC	< 3.19	ug/Kg		8/3/2020 15:32
Dieldrin	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan I	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan II	< 3.19	ug/Kg		8/3/2020 15:32
Endosulfan Sulfate	< 3.19	ug/Kg		8/3/2020 15:32
Endrin	< 3.19	ug/Kg		8/3/2020 15:32
Endrin Aldehyde	< 3.19	ug/Kg		8/3/2020 15:32
Endrin Ketone	2.14	ug/Kg	J	8/3/2020 15:32
gamma-BHC (Lindane)	3.84	ug/Kg		8/3/2020 15:32
Heptachlor	< 3.19	ug/Kg		8/3/2020 15:32
Heptachlor Epoxide	< 3.19	ug/Kg		8/3/2020 15:32
Methoxychlor	< 3.19	ug/Kg		8/3/2020 15:32
Toxaphene	< 31.9	ug/Kg		8/3/2020 15:32
trans-Chlordane	< 3.19	ug/Kg		8/3/2020 15:32

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
Decachlorobiphenyl (1)	81.3	27.3 - 111		8/3/2020	15:32	
Tetrachloro-m-xylene (1)	33.8	28.5 - 102		8/3/2020	15:32	

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 8/3/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 329	ug/Kg		8/4/2020 12:05
1,2,4,5-Tetrachlorobenzene	< 329	ug/Kg		8/4/2020 12:05
1,2,4-Trichlorobenzene	< 329	ug/Kg		8/4/2020 12:05
1,2-Dichlorobenzene	< 329	ug/Kg		8/4/2020 12:05
1,3-Dichlorobenzene	< 329	ug/Kg		8/4/2020 12:05
1,4-Dichlorobenzene	< 329	ug/Kg		8/4/2020 12:05
2,2-Oxybis (1-chloropropane)	< 329	ug/Kg		8/4/2020 12:05
2,3,4,6-Tetrachlorophenol	< 329	ug/Kg		8/4/2020 12:05
2,4,5-Trichlorophenol	< 329	ug/Kg		8/4/2020 12:05
2,4,6-Trichlorophenol	< 329	ug/Kg		8/4/2020 12:05
2,4-Dichlorophenol	< 329	ug/Kg		8/4/2020 12:05
2,4-Dimethylphenol	< 329	ug/Kg		8/4/2020 12:05
2,4-Dinitrophenol	< 1320	ug/Kg		8/4/2020 12:05
2,4-Dinitrotoluene	< 329	ug/Kg		8/4/2020 12:05
2,6-Dinitrotoluene	< 329	ug/Kg		8/4/2020 12:05
2-Chloronaphthalene	< 329	ug/Kg		8/4/2020 12:05
2-Chlorophenol	< 329	ug/Kg		8/4/2020 12:05
2-Methylnapthalene	< 329	ug/Kg		8/4/2020 12:05
2-Methylphenol	< 329	ug/Kg		8/4/2020 12:05
2-Nitroaniline	< 329	ug/Kg		8/4/2020 12:05
2-Nitrophenol	< 329	ug/Kg		8/4/2020 12:05
3&4-Methylphenol	< 329	ug/Kg		8/4/2020 12:05
3,3'-Dichlorobenzidine	< 329	ug/Kg		8/4/2020 12:05

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF1					
Lab Sample ID:	203556-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
3-Nitroaniline		< 329	ug/Kg		8/4/2020	12:05
4,6-Dinitro-2-methylph	nenol	< 659	ug/Kg		8/4/2020	12:05
4-Bromophenyl phenyl	ether	< 329	ug/Kg		8/4/2020	12:05
4-Chloro-3-methylpher	nol	< 329	ug/Kg		8/4/2020	12:05
4-Chloroaniline		< 329	ug/Kg		8/4/2020	12:05
4-Chlorophenyl phenyl	ether	< 329	ug/Kg		8/4/2020	12:05
4-Nitroaniline		< 329	ug/Kg		8/4/2020	12:05
4-Nitrophenol		< 329	ug/Kg		8/4/2020	12:05
Acenaphthene		< 329	ug/Kg		8/4/2020	12:05
Acenaphthylene		< 329	ug/Kg		8/4/2020	12:05
Acetophenone		< 329	ug/Kg		8/4/2020	12:05
Anthracene		261	ug/Kg	J	8/4/2020	12:05
Atrazine		< 329	ug/Kg		8/4/2020	12:05
Benzaldehyde		< 329	ug/Kg		8/4/2020	12:05
Benzo (a) anthracene		1080	ug/Kg		8/4/2020	12:05
Benzo (a) pyrene		1210	ug/Kg		8/4/2020	12:05
Benzo (b) fluoranthene		1340	ug/Kg		8/4/2020	12:05
Benzo (g,h,i) perylene		901	ug/Kg		8/4/2020	12:05
Benzo (k) fluoranthene		983	ug/Kg		8/4/2020	12:05
Bis (2-chloroethoxy) m	ethane	< 329	ug/Kg		8/4/2020	12:05
Bis (2-chloroethyl) etho	er	< 329	ug/Kg		8/4/2020	12:05
Bis (2-ethylhexyl) phth	alate	< 329	ug/Kg		8/4/2020	12:05
Butylbenzylphthalate		< 329	ug/Kg		8/4/2020	12:05
Caprolactam		< 329	ug/Kg		8/4/2020	12:05
Carbazole		< 329	ug/Kg		8/4/2020	12:05

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF1					
Lab Sample ID:	203556-01			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		1250	ug/Kg		8/4/2020	12:05
Dibenz (a,h) anthracene		270	ug/Kg	J	8/4/2020	12:05
Dibenzofuran		< 329	ug/Kg		8/4/2020	12:05
Diethyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Dimethyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Di-n-butyl phthalate		< 329	ug/Kg		8/4/2020	12:05
Di-n-octylphthalate		< 329	ug/Kg		8/4/2020	12:05
Fluoranthene		2510	ug/Kg		8/4/2020	12:05
Fluorene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorobenzene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorobutadiene		< 329	ug/Kg		8/4/2020	12:05
Hexachlorocyclopentad	iene	< 1320	ug/Kg		8/4/2020	12:05
Hexachloroethane		< 329	ug/Kg		8/4/2020	12:05
Indeno (1,2,3-cd) pyren	e	797	ug/Kg		8/4/2020	12:05
Isophorone		< 329	ug/Kg		8/4/2020	12:05
Naphthalene		< 329	ug/Kg		8/4/2020	12:05
Nitrobenzene		< 329	ug/Kg		8/4/2020	12:05
N-Nitroso-di-n-propyla	mine	< 329	ug/Kg		8/4/2020	12:05
N-Nitrosodiphenylamin	e	< 329	ug/Kg		8/4/2020	12:05
Pentachlorophenol		< 659	ug/Kg		8/4/2020	12:05
Phenanthrene		1110	ug/Kg		8/4/2020	12:05
Phenol		< 329	ug/Kg		8/4/2020	12:05
Pyrene		2000	ug/Kg		8/4/2020	12:05

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF1

 Lab Sample ID:
 203556-01
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
2,4,6-Tribromophenol	53.8	37.8 - 85.8		8/4/2020	12:05
2-Fluorobiphenyl	52.3	40.4 - 80.4		8/4/2020	12:05
2-Fluorophenol	52.4	38.8 - 77.4		8/4/2020	12:05
Nitrobenzene-d5	51.1	37.4 - 75.9		8/4/2020	12:05
Phenol-d5	57.3	40.4 - 78		8/4/2020	12:05
Terphenyl-d14	50.7	40.2 - 90		8/4/2020	12:05

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 8/3/2020 Data File: 848365.D

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	4.32	mg/Kg		8/4/2020 20:30
Barium	102	mg/Kg		8/4/2020 20:30
Beryllium	0.615	mg/Kg		8/4/2020 20:30
Cadmium	2.29	mg/Kg		8/4/2020 20:30
Chromium	14.8	mg/Kg		8/4/2020 20:30
Copper	15.0	mg/Kg		8/4/2020 20:30
Lead	40.4	mg/Kg		8/4/2020 20:30
Manganese	968	mg/Kg		8/5/2020 18:48
Nickel	13.3	mg/Kg		8/4/2020 20:30
Selenium	< 1.10	mg/Kg		8/4/2020 20:30
Silver	< 0.550	mg/Kg		8/4/2020 20:30
Zinc	96.6	mg/Kg		8/5/2020 18:53

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 8/3/2020 Data File: 200804B

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analyze	<u>ed</u>
PCB-1016	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1221	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1232	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1242	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1248	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1254	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1260	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1262	< 0.0318	mg/Kg			8/3/2020 16	5:23
PCB-1268	< 0.0318	mg/Kg			8/3/2020 16	5:23
Surrogate	Percer	ıt Recovery	<u>Limits</u>	Outliers	Date Analyzed	d
Tetrachloro-m-xylene		44.4	17.8 - 74		8/3/2020 10	6:23

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/3/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	< 3.18	ug/Kg		8/3/2020 15:51
4,4-DDE	11.5	ug/Kg		8/3/2020 15:51
4,4-DDT	< 3.18	ug/Kg		8/3/2020 15:51
Aldrin	< 3.18	ug/Kg		8/3/2020 15:51
alpha-BHC	< 3.18	ug/Kg		8/3/2020 15:51
beta-BHC	< 3.18	ug/Kg		8/3/2020 15:51
cis-Chlordane	< 3.18	ug/Kg		8/3/2020 15:51
delta-BHC	< 3.18	ug/Kg		8/3/2020 15:51
Dieldrin	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan I	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan II	< 3.18	ug/Kg		8/3/2020 15:51
Endosulfan Sulfate	< 3.18	ug/Kg		8/3/2020 15:51
Endrin	< 3.18	ug/Kg		8/3/2020 15:51
Endrin Aldehyde	< 3.18	ug/Kg		8/3/2020 15:51
Endrin Ketone	< 3.18	ug/Kg		8/3/2020 15:51
gamma-BHC (Lindane)	< 3.18	ug/Kg		8/3/2020 15:51
Heptachlor	< 3.18	ug/Kg		8/3/2020 15:51
Heptachlor Epoxide	< 3.18	ug/Kg		8/3/2020 15:51
Methoxychlor	< 3.18	ug/Kg		8/3/2020 15:51
Toxaphene	< 31.8	ug/Kg		8/3/2020 15:51
trans-Chlordane	< 3.18	ug/Kg		8/3/2020 15:51

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

 Surrogate
 Percent Recovery
 Limits
 Outliers
 Date Analyzed

 Decachlorobiphenyl (1)
 42.3
 27.3 - 111
 8/3/2020
 15:51

 Tetrachloro-m-xylene (1)
 28.0
 28.5 - 102
 *
 8/3/2020
 15:51

Method Reference(s): EPA 8081B

EPA 3546

Preparation Date: 8/3/2020

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 320	ug/Kg		8/4/2020 12:34
1,2,4,5-Tetrachlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,2,4-Trichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,2-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,3-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
1,4-Dichlorobenzene	< 320	ug/Kg		8/4/2020 12:34
2,2-Oxybis (1-chloropropane)	< 320	ug/Kg		8/4/2020 12:34
2,3,4,6-Tetrachlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4,5-Trichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4,6-Trichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dichlorophenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dimethylphenol	< 320	ug/Kg		8/4/2020 12:34
2,4-Dinitrophenol	< 1280	ug/Kg		8/4/2020 12:34
2,4-Dinitrotoluene	< 320	ug/Kg		8/4/2020 12:34
2,6-Dinitrotoluene	< 320	ug/Kg		8/4/2020 12:34
2-Chloronaphthalene	< 320	ug/Kg		8/4/2020 12:34
2-Chlorophenol	< 320	ug/Kg		8/4/2020 12:34
2-Methylnapthalene	< 320	ug/Kg		8/4/2020 12:34
2-Methylphenol	< 320	ug/Kg		8/4/2020 12:34
2-Nitroaniline	< 320	ug/Kg		8/4/2020 12:34
2-Nitrophenol	< 320	ug/Kg		8/4/2020 12:34
3&4-Methylphenol	< 320	ug/Kg		8/4/2020 12:34
3,3'-Dichlorobenzidine	< 320	ug/Kg		8/4/2020 12:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF2					
Lab Sample ID:	203556-02			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
3-Nitroaniline		< 320	ug/Kg		8/4/2020	12:34
4,6-Dinitro-2-methylp	henol	< 639	ug/Kg		8/4/2020	12:34
4-Bromophenyl pheny	yl ether	< 320	ug/Kg		8/4/2020	12:34
4-Chloro-3-methylphe	enol	< 320	ug/Kg		8/4/2020	12:34
4-Chloroaniline		< 320	ug/Kg		8/4/2020	12:34
4-Chlorophenyl pheny	ol ether	< 320	ug/Kg		8/4/2020	12:34
4-Nitroaniline		< 320	ug/Kg		8/4/2020	12:34
4-Nitrophenol		< 320	ug/Kg		8/4/2020	12:34
Acenaphthene		< 320	ug/Kg		8/4/2020	12:34
Acenaphthylene		< 320	ug/Kg		8/4/2020	12:34
Acetophenone		< 320	ug/Kg		8/4/2020	12:34
Anthracene		< 320	ug/Kg		8/4/2020	12:34
Atrazine		< 320	ug/Kg		8/4/2020	12:34
Benzaldehyde		< 320	ug/Kg		8/4/2020	12:34
Benzo (a) anthracene		386	ug/Kg		8/4/2020	12:34
Benzo (a) pyrene		486	ug/Kg		8/4/2020	12:34
Benzo (b) fluoranthen	ie	607	ug/Kg		8/4/2020	12:34
Benzo (g,h,i) perylene		410	ug/Kg		8/4/2020	12:34
Benzo (k) fluoranthen	e	373	ug/Kg		8/4/2020	12:34
Bis (2-chloroethoxy) r	nethane	< 320	ug/Kg		8/4/2020	12:34
Bis (2-chloroethyl) etl	her	< 320	ug/Kg		8/4/2020	12:34
Bis (2-ethylhexyl) pht	halate	< 320	ug/Kg		8/4/2020	12:34
Butylbenzylphthalate		< 320	ug/Kg		8/4/2020	12:34
Caprolactam		< 320	ug/Kg		8/4/2020	12:34
Carbazole		< 320	ug/Kg		8/4/2020	12:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF2					
Lab Sample ID:	203556-02			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Chrysene		508	ug/Kg		8/4/2020	12:34
Dibenz (a,h) anthracene	e	< 320	ug/Kg		8/4/2020	12:34
Dibenzofuran		< 320	ug/Kg		8/4/2020	12:34
Diethyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Dimethyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Di-n-butyl phthalate		< 320	ug/Kg		8/4/2020	12:34
Di-n-octylphthalate		< 320	ug/Kg		8/4/2020	12:34
Fluoranthene		944	ug/Kg		8/4/2020	12:34
Fluorene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorobenzene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorobutadiene		< 320	ug/Kg		8/4/2020	12:34
Hexachlorocyclopentad	liene	< 1280	ug/Kg		8/4/2020	12:34
Hexachloroethane		< 320	ug/Kg		8/4/2020	12:34
Indeno (1,2,3-cd) pyren	ie	336	ug/Kg		8/4/2020	12:34
Isophorone		< 320	ug/Kg		8/4/2020	12:34
Naphthalene		< 320	ug/Kg		8/4/2020	12:34
Nitrobenzene		< 320	ug/Kg		8/4/2020	12:34
N-Nitroso-di-n-propyla	mine	< 320	ug/Kg		8/4/2020	12:34
N-Nitrosodiphenylamin	ne	< 320	ug/Kg		8/4/2020	12:34
Pentachlorophenol		< 639	ug/Kg		8/4/2020	12:34
Phenanthrene		312	ug/Kg	J	8/4/2020	12:34
Phenol		< 320	ug/Kg		8/4/2020	12:34
Pyrene		735	ug/Kg		8/4/2020	12:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF2

 Lab Sample ID:
 203556-02
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
2,4,6-Tribromophenol	59.4	37.8 - 85.8		8/4/2020	12:34
2-Fluorobiphenyl	57.3	40.4 - 80.4		8/4/2020	12:34
2-Fluorophenol	55.4	38.8 - 77.4		8/4/2020	12:34
Nitrobenzene-d5	55.0	37.4 - 75.9		8/4/2020	12:34
Phenol-d5	61.5	40.4 - 78		8/4/2020	12:34
Terphenyl-d14	54.1	40.2 - 90		8/4/2020	12:34

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 8/3/2020 Data File: 848366.D

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 1

 Lab Sample ID:
 203556-03
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 3.92	ug/Kg	8/7/2020 19:50
1,1,2,2-Tetrachloroethane	< 3.92	ug/Kg	8/7/2020 19:50
1,1,2-Trichloroethane	< 3.92	ug/Kg	8/7/2020 19:50
1,1-Dichloroethane	< 3.92	ug/Kg	8/7/2020 19:50
1,1-Dichloroethene	< 3.92	ug/Kg	8/7/2020 19:50
1,2,3-Trichlorobenzene	< 9.79	ug/Kg	8/7/2020 19:50
1,2,4-Trichlorobenzene	< 9.79	ug/Kg	8/7/2020 19:50
1,2,4-Trimethylbenzene	< 3.92	ug/Kg	8/7/2020 19:50
1,2-Dibromo-3-Chloropropane	< 19.6	ug/Kg	8/7/2020 19:50
1,2-Dibromoethane	< 3.92	ug/Kg	8/7/2020 19:50
1,2-Dichlorobenzene	< 3.92	ug/Kg	8/7/2020 19:50
1,2-Dichloroethane	< 3.92	ug/Kg	8/7/2020 19:50
1,2-Dichloropropane	< 3.92	ug/Kg	8/7/2020 19:50
1,3,5-Trimethylbenzene	< 3.92	ug/Kg	8/7/2020 19:50
1,3-Dichlorobenzene	< 3.92	ug/Kg	8/7/2020 19:50
1,4-Dichlorobenzene	< 3.92	ug/Kg	8/7/2020 19:50
1,4-Dioxane	< 39.2	ug/Kg	8/7/2020 19:50
2-Butanone	< 19.6	ug/Kg	8/7/2020 19:50
2-Hexanone	< 9.79	ug/Kg	8/7/2020 19:50
4-Methyl-2-pentanone	< 9.79	ug/Kg	8/7/2020 19:50
Acetone	< 19.6	ug/Kg	8/7/2020 19:50
Benzene	< 3.92	ug/Kg	8/7/2020 19:50
Bromochloromethane	< 9.79	ug/Kg	8/7/2020 19:50

Client: <u>BE3</u>

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 1					
Lab Sample ID:	203556-03			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	!	< 3.92	ug/Kg		8/7/2020	19:50
Bromoform		< 9.79	ug/Kg		8/7/2020	19:50
Bromomethane		< 3.92	ug/Kg		8/7/2020	19:50
Carbon disulfide		< 3.92	ug/Kg		8/7/2020	19:50
Carbon Tetrachloride		< 3.92	ug/Kg		8/7/2020	19:50
Chlorobenzene		< 3.92	ug/Kg		8/7/2020	19:50
Chloroethane		< 3.92	ug/Kg		8/7/2020	19:50
Chloroform		< 3.92	ug/Kg		8/7/2020	19:5
Chloromethane		< 3.92	ug/Kg		8/7/2020	19:5
cis-1,2-Dichloroethene		< 3.92	ug/Kg		8/7/2020	19:5
cis-1,3-Dichloropropene	2	< 3.92	ug/Kg		8/7/2020	19:5
Cyclohexane		< 19.6	ug/Kg		8/7/2020	19:5
Dibromochloromethane	!	< 3.92	ug/Kg		8/7/2020	19:5
Dichlorodifluoromethan	ne	< 3.92	ug/Kg		8/7/2020	19:5
Ethylbenzene		< 3.92	ug/Kg		8/7/2020	19:5
Freon 113		< 3.92	ug/Kg		8/7/2020	19:5
Isopropylbenzene		< 3.92	ug/Kg		8/7/2020	19:5
m,p-Xylene		< 3.92	ug/Kg		8/7/2020	19:5
Methyl acetate		< 3.92	ug/Kg		8/7/2020	19:5
Methyl tert-butyl Ether		< 3.92	ug/Kg		8/7/2020	19:5
Methylcyclohexane		< 3.92	ug/Kg		8/7/2020	19:5
Methylene chloride		< 9.79	ug/Kg		8/7/2020	19:5
Naphthalene		< 9.79	ug/Kg		8/7/2020	19:5
n-Butylbenzene		< 3.92	ug/Kg		8/7/2020	19:5
n-Propylbenzene		< 3.92	ug/Kg		8/7/2020	19:5

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 1						
Lab Sample ID:	203556-03			Dat	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 3.92	ug/Kg			8/7/2020	19:50
p-Isopropyltoluene		< 3.92	ug/Kg			8/7/2020	19:50
sec-Butylbenzene		< 3.92	ug/Kg			8/7/2020	19:50
Styrene		< 9.79	ug/Kg			8/7/2020	19:50
tert-Butylbenzene		< 3.92	ug/Kg			8/7/2020	19:50
Tetrachloroethene		< 3.92	ug/Kg			8/7/2020	19:50
Toluene		< 3.92	ug/Kg			8/7/2020	19:50
trans-1,2-Dichloroether	ne	< 3.92	ug/Kg			8/7/2020	19:50
trans-1,3-Dichloroprop	ene	< 3.92	ug/Kg			8/7/2020	19:50
Trichloroethene		< 3.92	ug/Kg			8/7/2020	19:50
Trichlorofluoromethan	e	< 3.92	ug/Kg			8/7/2020	19:50
Vinyl chloride		< 3.92	ug/Kg			8/7/2020	19:50
<u>Surrogate</u>		Per	cent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			119	75 - 134		8/7/2020	19:50
4-Bromofluorobenzene			58.6	59.5 - 129	*	8/7/2020	19:50
Pentafluorobenzene			98.0	88.8 - 118		8/7/2020	19:50

 $Internal\, standard\, outliers\, indicate\, probable\, matrix\, interference$

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72387.D

Toluene-D8

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

84 - 114

8/7/2020

19:50

81.0

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 2

 Lab Sample ID:
 203556-04
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyz	<u>ed</u>
1,1,1-Trichloroethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,1,2,2-Tetrachloroethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,1,2-Trichloroethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,1-Dichloroethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,1-Dichloroethene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,2,3-Trichlorobenzene	< 10.1	ug/Kg	8/7/2020 2	0:12
1,2,4-Trichlorobenzene	< 10.1	ug/Kg	8/7/2020 2	0:12
1,2,4-Trimethylbenzene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,2-Dibromo-3-Chloropropane	< 20.3	ug/Kg	8/7/2020 2	0:12
1,2-Dibromoethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,2-Dichlorobenzene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,2-Dichloroethane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,2-Dichloropropane	< 4.05	ug/Kg	8/7/2020 2	0:12
1,3,5-Trimethylbenzene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,3-Dichlorobenzene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,4-Dichlorobenzene	< 4.05	ug/Kg	8/7/2020 2	0:12
1,4-Dioxane	< 40.5	ug/Kg	8/7/2020 2	0:12
2-Butanone	< 20.3	ug/Kg	8/7/2020 2	0:12
2-Hexanone	< 10.1	ug/Kg	8/7/2020 2	0:12
4-Methyl-2-pentanone	< 10.1	ug/Kg	8/7/2020 2	0:12
Acetone	< 20.3	ug/Kg	8/7/2020 2	0:12
Benzene	< 4.05	ug/Kg	8/7/2020 2	0:12
Bromochloromethane	< 10.1	ug/Kg	8/7/2020 2	0:12

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 2					
Lab Sample ID:	203556-04			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane	9	< 4.05	ug/Kg		8/7/2020	20:12
Bromoform		< 10.1	ug/Kg		8/7/2020	20:12
Bromomethane		< 4.05	ug/Kg		8/7/2020	20:12
Carbon disulfide		< 4.05	ug/Kg		8/7/2020	20:12
Carbon Tetrachloride		< 4.05	ug/Kg		8/7/2020	20:12
Chlorobenzene		< 4.05	ug/Kg		8/7/2020	20:12
Chloroethane		< 4.05	ug/Kg		8/7/2020	20:1
Chloroform		< 4.05	ug/Kg		8/7/2020	20:1
Chloromethane		< 4.05	ug/Kg		8/7/2020	20:1
cis-1,2-Dichloroethene		< 4.05	ug/Kg		8/7/2020	20:1
cis-1,3-Dichloropropen	e	< 4.05	ug/Kg		8/7/2020	20:1
Cyclohexane		< 20.3	ug/Kg		8/7/2020	20:1
Dibromochloromethane	2	< 4.05	ug/Kg		8/7/2020	20:1
Dichlorodifluoromethan	ne	< 4.05	ug/Kg		8/7/2020	20:1
Ethylbenzene		< 4.05	ug/Kg		8/7/2020	20:1
Freon 113		< 4.05	ug/Kg		8/7/2020	20:1
Isopropylbenzene		< 4.05	ug/Kg		8/7/2020	20:1
m,p-Xylene		2.13	ug/Kg	J	8/7/2020	20:1
Methyl acetate		< 4.05	ug/Kg		8/7/2020	20:1
Methyl tert-butyl Ether		< 4.05	ug/Kg		8/7/2020	20:1
Methylcyclohexane		< 4.05	ug/Kg		8/7/2020	20:1
Methylene chloride		< 10.1	ug/Kg		8/7/2020	20:1
Naphthalene		< 10.1	ug/Kg		8/7/2020	20:1
n-Butylbenzene		< 4.05	ug/Kg		8/7/2020	20:1
n-Propylbenzene		< 4.05	ug/Kg		8/7/2020	20:1

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 2						
Lab Sample ID:	203556-04			Da	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.05	ug/Kg			8/7/2020	20:12
p-Isopropyltoluene		< 4.05	ug/Kg			8/7/2020	20:12
sec-Butylbenzene		< 4.05	ug/Kg			8/7/2020	20:12
Styrene		< 10.1	ug/Kg			8/7/2020	20:12
tert-Butylbenzene		< 4.05	ug/Kg			8/7/2020	20:12
Tetrachloroethene		< 4.05	ug/Kg			8/7/2020	20:12
Toluene		< 4.05	ug/Kg			8/7/2020	20:12
trans-1,2-Dichloroether	ne	< 4.05	ug/Kg			8/7/2020	20:12
trans-1,3-Dichloroprop	ene	< 4.05	ug/Kg			8/7/2020	20:12
Trichloroethene		< 4.05	ug/Kg			8/7/2020	20:12
Trichlorofluoromethan	e	< 4.05	ug/Kg			8/7/2020	20:12
Vinyl chloride		< 4.05	ug/Kg			8/7/2020	20:12
<u>Surrogate</u>		Pero	cent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			120	75 - 134		8/7/2020	20:12
4-Bromofluorobenzene			58.2	59.5 - 129	*	8/7/2020	20:12
Pentafluorobenzene			99.8	88.8 - 118		8/7/2020	20:12

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72388.D

Toluene-D8

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

84 - 114

8/7/2020

20:12

83.1

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 3

 Lab Sample ID:
 203556-05
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1,2,2-Tetrachloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1,2-Trichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1-Dichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,1-Dichloroethene	< 4.49	ug/Kg		8/7/2020 20:34
1,2,3-Trichlorobenzene	< 11.2	ug/Kg		8/7/2020 20:34
1,2,4-Trichlorobenzene	< 11.2	ug/Kg		8/7/2020 20:34
1,2,4-Trimethylbenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,2-Dibromo-3-Chloropropane	< 22.4	ug/Kg		8/7/2020 20:34
1,2-Dibromoethane	< 4.49	ug/Kg		8/7/2020 20:34
1,2-Dichlorobenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,2-Dichloroethane	< 4.49	ug/Kg		8/7/2020 20:34
1,2-Dichloropropane	< 4.49	ug/Kg		8/7/2020 20:34
1,3,5-Trimethylbenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,3-Dichlorobenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,4-Dichlorobenzene	< 4.49	ug/Kg		8/7/2020 20:34
1,4-Dioxane	< 44.9	ug/Kg		8/7/2020 20:34
2-Butanone	< 22.4	ug/Kg		8/7/2020 20:34
2-Hexanone	< 11.2	ug/Kg		8/7/2020 20:34
4-Methyl-2-pentanone	< 11.2	ug/Kg		8/7/2020 20:34
Acetone	< 22.4	ug/Kg		8/7/2020 20:34
Benzene	< 4.49	ug/Kg		8/7/2020 20:34
Bromochloromethane	< 11.2	ug/Kg		8/7/2020 20:34

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 3					
Lab Sample ID:	203556-05			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethan	e	< 4.49	ug/Kg		8/7/2020	20:34
Bromoform		< 11.2	ug/Kg		8/7/2020	20:34
Bromomethane		< 4.49	ug/Kg		8/7/2020	20:3
Carbon disulfide		< 4.49	ug/Kg		8/7/2020	20:3
Carbon Tetrachloride		< 4.49	ug/Kg		8/7/2020	20:3
Chlorobenzene		< 4.49	ug/Kg		8/7/2020	20:3
Chloroethane		< 4.49	ug/Kg		8/7/2020	20:3
Chloroform		< 4.49	ug/Kg		8/7/2020	20:3
Chloromethane		< 4.49	ug/Kg		8/7/2020	20:3
cis-1,2-Dichloroethene		< 4.49	ug/Kg		8/7/2020	20:3
cis-1,3-Dichloropropen	ne	< 4.49	ug/Kg		8/7/2020	20:3
Cyclohexane		< 22.4	ug/Kg		8/7/2020	20:3
Dibromochloromethan	e	< 4.49	ug/Kg		8/7/2020	20:3
Dichlorodifluorometha	ne	< 4.49	ug/Kg		8/7/2020	20:3
Ethylbenzene		< 4.49	ug/Kg		8/7/2020	20:3
Freon 113		< 4.49	ug/Kg		8/7/2020	20:3
Isopropylbenzene		< 4.49	ug/Kg		8/7/2020	20:3
m,p-Xylene		< 4.49	ug/Kg		8/7/2020	20:3
Methyl acetate		< 4.49	ug/Kg		8/7/2020	20:3
Methyl tert-butyl Ether	•	< 4.49	ug/Kg		8/7/2020	20:3
Methylcyclohexane		< 4.49	ug/Kg		8/7/2020	20:3
Methylene chloride		< 11.2	ug/Kg		8/7/2020	20:3
Naphthalene		< 11.2	ug/Kg		8/7/2020	20:3
n-Butylbenzene		< 4.49	ug/Kg		8/7/2020	20:3
n-Propylbenzene		< 4.49	ug/Kg		8/7/2020	20:3

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 3						
Lab Sample ID:	203556-05			Dat	e Sampled:	7/30/2020	
Matrix:	Soil			Dat	e Received:	7/30/2020	
o-Xylene		< 4.49	ug/Kg			8/7/2020	20:34
p-Isopropyltoluene		< 4.49	ug/Kg			8/7/2020	20:34
sec-Butylbenzene		< 4.49	ug/Kg			8/7/2020	20:34
Styrene		< 11.2	ug/Kg			8/7/2020	20:34
tert-Butylbenzene		< 4.49	ug/Kg			8/7/2020	20:34
Tetrachloroethene		< 4.49	ug/Kg			8/7/2020	20:34
Toluene		< 4.49	ug/Kg			8/7/2020	20:34
trans-1,2-Dichloroethe	ne	< 4.49	ug/Kg			8/7/2020	20:34
trans-1,3-Dichloroprop	ene	< 4.49	ug/Kg			8/7/2020	20:34
Trichloroethene		< 4.49	ug/Kg			8/7/2020	20:34
Trichlorofluoromethan	e	< 4.49	ug/Kg			8/7/2020	20:34
Vinyl chloride		< 4.49	ug/Kg			8/7/2020	20:34
<u>Surrogate</u>		Pero	cent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			119	75 - 134		8/7/2020	20:34
4-Bromofluorobenzene			59.8	59.5 - 129		8/7/2020	20:34
Pentafluorobenzene			98.6	88.8 - 118		8/7/2020	20:34

 $Internal\, standard\, outliers\, indicate\, probable\, matrix\, interference$

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72389.D

Toluene-D8

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

84 - 114

8/7/2020

20:34

79.7

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier: CF VOC 4

 Lab Sample ID:
 203556-06
 Date Sampled:
 7/30/2020

 Matrix:
 Soil
 Date Received:
 7/30/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1,2,2-Tetrachloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1,2-Trichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1-Dichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,1-Dichloroethene	< 4.40	ug/Kg		8/7/2020 20:56
1,2,3-Trichlorobenzene	< 11.0	ug/Kg		8/7/2020 20:56
1,2,4-Trichlorobenzene	< 11.0	ug/Kg		8/7/2020 20:56
1,2,4-Trimethylbenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,2-Dibromo-3-Chloropropane	< 22.0	ug/Kg		8/7/2020 20:56
1,2-Dibromoethane	< 4.40	ug/Kg		8/7/2020 20:56
1,2-Dichlorobenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,2-Dichloroethane	< 4.40	ug/Kg		8/7/2020 20:56
1,2-Dichloropropane	< 4.40	ug/Kg		8/7/2020 20:56
1,3,5-Trimethylbenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,3-Dichlorobenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,4-Dichlorobenzene	< 4.40	ug/Kg		8/7/2020 20:56
1,4-Dioxane	< 44.0	ug/Kg		8/7/2020 20:56
2-Butanone	< 22.0	ug/Kg		8/7/2020 20:56
2-Hexanone	< 11.0	ug/Kg		8/7/2020 20:56
4-Methyl-2-pentanone	< 11.0	ug/Kg		8/7/2020 20:56
Acetone	< 22.0	ug/Kg		8/7/2020 20:56
Benzene	< 4.40	ug/Kg		8/7/2020 20:56
Bromochloromethane	< 11.0	ug/Kg		8/7/2020 20:56

Client: <u>BE3</u>

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 4					
Lab Sample ID:	203556-06			Date Sampled:	7/30/2020	
Matrix:	Soil			Date Received:	7/30/2020	
Bromodichloromethane)	< 4.40	ug/Kg		8/7/2020	20:56
Bromoform		< 11.0	ug/Kg		8/7/2020	20:56
Bromomethane		< 4.40	ug/Kg		8/7/2020	20:56
Carbon disulfide		< 4.40	ug/Kg		8/7/2020	20:56
Carbon Tetrachloride		< 4.40	ug/Kg		8/7/2020	20:56
Chlorobenzene		< 4.40	ug/Kg		8/7/2020	20:56
Chloroethane		< 4.40	ug/Kg		8/7/2020	20:56
Chloroform		< 4.40	ug/Kg		8/7/2020	20:56
Chloromethane		< 4.40	ug/Kg		8/7/2020	20:56
cis-1,2-Dichloroethene		< 4.40	ug/Kg		8/7/2020	20:56
cis-1,3-Dichloropropene	ė	< 4.40	ug/Kg		8/7/2020	20:56
Cyclohexane		< 22.0	ug/Kg		8/7/2020	20:56
Dibromochloromethane		< 4.40	ug/Kg		8/7/2020	20:56
Dichlorodifluoromethar	ne	< 4.40	ug/Kg		8/7/2020	20:56
Ethylbenzene		< 4.40	ug/Kg		8/7/2020	20:56
Freon 113		< 4.40	ug/Kg		8/7/2020	20:56
Isopropylbenzene		< 4.40	ug/Kg		8/7/2020	20:56
m,p-Xylene		2.40	ug/Kg	J	8/7/2020	20:56
Methyl acetate		< 4.40	ug/Kg		8/7/2020	20:56
Methyl tert-butyl Ether		< 4.40	ug/Kg		8/7/2020	20:56
Methylcyclohexane		< 4.40	ug/Kg		8/7/2020	20:56
Methylene chloride		< 11.0	ug/Kg		8/7/2020	20:56
Naphthalene		< 11.0	ug/Kg		8/7/2020	20:56
n-Butylbenzene		< 4.40	ug/Kg		8/7/2020	20:56
n-Propylbenzene		< 4.40	ug/Kg		8/7/2020	20:56

Client: BE3

Project Reference: 31/150 Tonawanda Clean Fill

Sample Identifier:	CF VOC 4						
Lab Sample ID:	203556-06			Dat	te Sampled:	7/30/2020	
Matrix:	Soil			Dat	te Received:	7/30/2020	
o-Xylene		< 4.40	ug/Kg			8/7/2020	20:56
p-Isopropyltoluene		< 4.40	ug/Kg			8/7/2020	20:56
sec-Butylbenzene		< 4.40	ug/Kg			8/7/2020	20:56
Styrene		< 11.0	ug/Kg			8/7/2020	20:56
tert-Butylbenzene		< 4.40	ug/Kg			8/7/2020	20:56
Tetrachloroethene		< 4.40	ug/Kg			8/7/2020	20:56
Toluene		< 4.40	ug/Kg			8/7/2020	20:56
trans-1,2-Dichloroethe	ne	< 4.40	ug/Kg			8/7/2020	20:56
trans-1,3-Dichloroprop	oene	< 4.40	ug/Kg			8/7/2020	20:56
Trichloroethene		< 4.40	ug/Kg			8/7/2020	20:56
Trichlorofluoromethan	ie	< 4.40	ug/Kg			8/7/2020	20:56
Vinyl chloride		< 4.40	ug/Kg			8/7/2020	20:56
<u>Surrogate</u>		Per	cent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			119	75 - 134		8/7/2020	20:56
4-Bromofluorobenzene	2		58.8	59.5 - 129	*	8/7/2020	20:56
Pentafluorobenzene			96.5	88.8 - 118		8/7/2020	20:56
Toluene-D8			81.2	84 - 114	*	8/7/2020	20:56

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: x72390.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

10/2

CHAIN OF CUSTODY

DAR	ADIG	М			REPORT	O:		20	10		INVO	ICE TO:		5-0		- King	1	- 15
	ADIG	141			E3			CLIENT:							000	LAB PROJEC	TID	
175				ADDRESS: 96	O BUSIT	Surc 150	1-B	ADDRES	S:						1203	556		
-				CITY: A	STATE	NO ZIP /	4713	CITY: STATE: ZIP:						Quotation	Quotation #:			
-				PHONE: 7/	-308-	8220		PHONE:							Email:			
PROJEC	T REFER	ENCE		ATTN:	GORT			ATTN:										
31/150	TON!	AWAN	SA	Matrix Code	s:	a-												
- FM	NFII	ī			queous Liquid on-Aqueous Liquid	WA - W WG - G	/ater Froundwa	ter			nking Wa astewate		SO -	Soil Sludge	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - (
CZEMI	一十二二	TO DE TO		-0 -0 -		1355		1 2 1				ANALY		N REI	40 59	1 to 10 to 10	W. S. Tri	11.5
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B		SAMPLE IDENTIFIER		M C T D R E I S	NONTAINER OFS	375 Merals	375 Agg	375 Ped. SELVET	FK CITOM PKAS	375 1805		REMARK	s	SA	DIGM LAB MPLE MBER
7-38-20	1210	X		CFI			59	4	XX	(X	XX	KX					0	(
				CFA				4	XX	CK	x x	UK.					0	2
				CFVE	CI			(X				6	
					002			1		\Box			X				00	-
				NKV	003		11	1		11		777	92				05	_
				CFV	DC 4		H	ì		\vdash	\top	\dashv	X				08	
					-			nv	Y	Va	الزالد	30/26		3			0.6	9
							-		True.	11		34124						
									+	+	11	\dashv	11	C	t i cle	the Er	,	
									Ħ	+	\dashv	\dashv	+	2:1	icel sta	- 4-1	1:1.0	1
								-	4	1 1	_1_1		1_1	120	and old	www.m	puro	
Turnaroun	d Time			Report Supp	lements			1						may	Nail 7 Gol	2020 171	ula Par	role;
Availabil	lity continger	nt upon l	ab appr	oval; additional	fees may apply.	16	10	(The	RIE	200		7-3	30-	701	20 N/A	custory	deline	10
Standard 5 day		None R	equired		None Required	Sample	d By	2	1	1	1	Date/	Time			Total Cost:		
10 day	×	Batch C	•		Basic EDD	Refinqi	uished E	y	1	De	lo	Date/	Time	20		L		
Rush 3 day		Categor	уА		NYSDEC EDD	1 1	200	m_	2	11	l	_	71.	30/20	3:15			
Rush 2 day		Categor		Ø		Receiv	ed By	ĵ,	0	1		Date/	Time			P.I.F.		
Rush 1 day						Receiv	ed @ La	b By	/Va	V	7	7 13 0 Date/	202 Time	0 1	728	L		
Date Needed	STELL	Other please indi	cate packe	ige needed:	Other EDD please indicate EDD need	By sig	ning tl	nis fori	n, clie	nt agr	ees to	Paradiį	gm Ter		onditions (rev		rondition	ns
1 San															hape I	nevitable	- VII WILLIUI	ALPI

2012

Chain of Custody Supplement

Client:	1053	Completed by:	mourau
Lab Project ID:	203556	Date:	7/3/2020
		dition Requirements AP 210/241/242/243/244	
Condition	NELAC compliance with the san Yes	nple condition requirements u No	pon receipt N/A
Container Type	T/-	5036	
Comments			
Transferred to method- compliant container			4
Headspace (<1 mL) Comments			TX.
Preservation			
Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
i ē			
Holding Time Comments	7		
-			
l'emperature	700	ed started in f	met
Comments	200,0	ed sterled in f	1010
Compliant Sample Quantity/Ty	ре		
Comments			

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental

Work Order: 200731035 Collection Date: 7/30/2020 12:10:00 PM

Reference: Sample Analysis / Project# : 203556 Lab Sample ID: 200731035-001

PO#: Matrix: SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
CHLORINATED HERBICIDES - EPA 8321 (Prep: SW3545A - 7/31/2020					Analyst: KF
2,4,5-TP (Silvex)	ND	358	μg/Kg-dry	1	8/3/2020 4:20:34 PM
Surr: Acifluorfen	135	51.2-145	%REC	1	8/3/2020 4:20:34 PM
MERCURY - SW 7471B (Prep: SW7471B - 8/3/2020)				Analyst: AVB
Mercury	ND	0.238	μg/g-dry	1	8/3/2020 3:18:07 PM
HEXAVALENT CHROMIUM - SW 7196A (3 (Prep: SW3060A - 8/3/2020	8060A))				Analyst: JW
Chromium, Hexavalent	ND	1.2	μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM D2216 (NOT	ELAP CE	RTIFIED)			Analyst: TSZ
Percent Moisture	16.1	0.1	wt%	1	8/4/2020

Date: 05-Aug-20

Client Sample ID: CF1

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental

Work Order: 200731035 Collection Date: 7/30/2020 12:10:00 PM

Reference: Sample Analysis / Project# : 203556 Lab Sample ID: 200731035-002

PO#: Matrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
CHLORINATED HERBICIDES - EPA 8321E (Prep: SW3545A - 7/31/2020						Analyst: KF
2,4,5-TP (Silvex)	ND	361		μg/Kg-dry	1	8/3/2020 4:42:11 PM
Surr: Acifluorfen	160	51.2-145	S	%REC	1	8/3/2020 4:42:11 PM
MERCURY - SW 7471B (Prep: SW7471B - 8/3/2020)					Analyst: AVB
Mercury	0.095	0.241	J	μg/g-dry	1	8/3/2020 3:23:11 PM
HEXAVALENT CHROMIUM - SW 7196A (3 (Prep: SW3060A - 8/3/2020	060A))					Analyst: JW
Chromium, Hexavalent	ND	1.2		μg/g-dry	1	8/3/2020 3:40:00 PM
MOISTURE CONTENT-ASTM D2216 (NOT	RTIFIED)				Analyst: TSZ	
Percent Moisture	17.0	0.1		wt%	1	8/4/2020

Date: 05-Aug-20

Client Sample ID: CF2

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

200731035

CHAIN OF CUSTODY

Δ	D	IR	0	N	D	Δ	CI	6 -	EL	A	P	1	Г
~~	1	1 B W	~	88	الستة	-		0 4	Barrer Comme	-	2 1	B 2	

				e Cestral Popular	REPORT TO:						- INV	OICE	то:			NE	<u> </u>		#L.1/6	Amorphillion Albertalism	SUMMER TO STREET AND S
PA	RADIO	G MP	COMPAN	Y: Para	digm Environ	mental	5 (4 (1 4 C) 1 5 C)	COMPAN	IY:	Sar			Section 1980	KN-2005 ATT DRUG		LAB PRO	JECT #:	CLIEN	T PROJ	\$69757-51 \$69757-51	
			ADDRES	S:				ADDRES	S:												
			CITY:		STATE:	ZIP	1	CITY:				S	TATE:		ZIP:	TURNAR	OUND TIME: (WORKIN	DAYS)	AND THE OWNER OF THE OWNER OW	
			PHONE:	. ri	FAX:			PHONE:				FAX:							STD	est House	
PROJECT NAME/SIT	TE NAME:		ATTN:	Repo	orting			ATTN:	P	ccour	nts Pa	yable				1	2	3	5	\$5000000000000000000000000000000000000	
			COMMEN	тs: Plea	se email result	s to report	ing@pa	aradign	nenv.	com						Date	Due: 8/	7/5/	2.1	2000 2000 2000 2000 2000 2000 2000 200	NOTE A CHILDRE
	- 17 may 27							140	RE	QUE	STED	ANA	LYSI	S		epat	JFla	40			recognition come
		C						c							A5.	Pout B	Due: 8/ JFla Pacher MTS Dry WI	je by	e 81.	ļ	
		M	G				M A	U N							nepo	746 1 7 00 6	Mrs Dry Wil	-			
DATE	TIME	0	R	SA	MPLE LOCATION/FIELD	OI O	T R	M A S	X	기 [REMAR	KS	1	PAR/ SAMP	AL LE NU	JMBER
1		l T	В				X X	E N R E	lvex	X I	7							1	e.		
		E						R	3	Z L											
17/30/2020	1210			CF(soil		4	+4					203.	556.	-01				
3	ط			CF2			soil		4 4	00						-	02				
3										•											
4																					
5																					
6	ž,			-																	
7																					
8																					
9																					
10																				П	
**LAB USE C								100			(* j. 24)										
Sample Condition	Receipt Pa		241/242/2		Compliance	1															
	Container	Туре:		Υ 🔲	N		Client	:									_				
Comments:				8		Sample		010	1	- 1			ate/Tin				Total (Cost:			
	Preserva	ition:		Υ 🔲	N	-	M	4/1	/a	<u>U</u>	7	131	120	الدر	08	370	-				
Comments:						Relinqu	uished B	ly /				D	ate/Tin	ne							
Comments:	Holding T	Time:		Υ	N _	i	- d Div										- 5.5	_		1	
Comments.		~ ~				Receive	eu by				mage		ate/Tin	ne	449 F		P.I.F.				
Comments:	Tempera	ture: 3°C		Υ 🔲	N	Receive	ed @ La	h Bv	Continue of the last	denotes	1,	/31/	20 ate/Tin	na	TILE	117	-	L]	
Commonts.				8		Necelvi	en mera	o by				D	ale/ [II]	110							

Analytical Report For

BE3

For Lab Project ID

203480

Referencing

150 Tonawanda

Prepared

Wednesday, August 5, 2020

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: BE3

Project Reference: 150 Tonawanda

Sample Identifier: WD-1

Lab Sample ID: 203480-01 **Date Sampled:** 7/27/2020

Matrix: Soil Date Received: 7/28/2020

Ignitability

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Ignitability No Burn mm / sec 7/30/2020

Method Reference(s): EPA 1030

PCBs

Analyte Result Units **Oualifier Date Analyzed** PCB-1016 < 0.151 mg/Kg 7/29/2020 17:46 PCB-1221 < 0.151 7/29/2020 17:46 mg/Kg PCB-1232 < 0.151 mg/Kg 7/29/2020 17:46 PCB-1242 < 0.151 mg/Kg 7/29/2020 17:46 PCB-1248 < 0.151 7/29/2020 17:46 mg/Kg

 PCB-1254
 < 0.151</td>
 mg/Kg
 7/29/2020
 17:46

 PCB-1260
 0.168
 mg/Kg
 7/29/2020
 17:46

PCB-1262 < 0.151 mg/Kg 7/29/2020 17:46 PCB-1268 < 0.151 mg/Kg 7/29/2020 17:46

Surrogate Percent Recovery Limits Outliers Date Analyzed

81.5

17.8 - 74

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 7/29/2020

<u>рН</u>

Tetrachloro-m-xylene

Analyte Result Units Qualifier Date Analyzed

pH 8.32 @ 23.0 C S.U. 7/30/2020 13:29

Method Reference(s): EPA 9045D

Petroleum Hydrocarbons by GC

AnalyteResultUnitsQualifierDate AnalyzedHeavy weight PHC as Lube Oil223mg/Kg7/30/202017:31

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 2 of 11

7/29/2020

17:46

Client: BE3

Project Reference: 150 Tonawanda

Sample Identifier: WD-1

 Lab Sample ID:
 203480-01
 Date Sampled:
 7/27/2020

 Matrix:
 Soil
 Date Received:
 7/28/2020

Method Reference(s): NYSDOH 310.13
Preparation Date: 7/29/2020

ELAP does not offer this test for approval as part of their laboratory certification program.

Reactive Cyanide

AnalyteResultUnitsQualifierDate AnalyzedReactivity, Cyanide<100</td>mg/Kg8/4/2020

Method Reference(s):EPA 7.3.3.2Subcontractor ELAP ID:10709

ELAP does not offer this test for approval as part of their laboratory certification program.

Reactive Sulfide

AnalyteResultUnitsQualifierDate AnalyzedReactivity, Sulfide<100</td>mg/Kg8/5/2020

Method Reference(s):EPA 7.3.4.2Subcontractor ELAP ID:10709

ELAP does not offer this test for approval as part of their laboratory certification program.

Client: BE3

Project Reference: 150 Tonawanda

Sample Identifier: WD-1

Lab Sample ID:203480-01ADate Sampled:7/27/2020Matrix:TCLP ExtractDate Received:7/28/2020

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qu	ualifier Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	7/30/2020 16:21
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	7/30/2020 16:21
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	7/30/2020 16:21
2,4-Dinitrotoluene	< 40.0	ug/L	130	7/30/2020 16:21
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	7/30/2020 16:21
Hexachlorobenzene	< 40.0	ug/L	130	7/30/2020 16:21
Hexachlorobutadiene	< 40.0	ug/L	500	7/30/2020 16:21
Hexachloroethane	< 40.0	ug/L	3000	7/30/2020 16:21
Nitrobenzene	< 40.0	ug/L	2000	7/30/2020 16:21
Pentachlorophenol	< 80.0	ug/L	100000	7/30/2020 16:21
Pyridine	< 40.0	ug/L	5000	7/30/2020 16:21
<u>Surrogate</u>	Perce	nt Recovery	<u>Limits</u> Oi	utliers Date Analyzed

Surrogate	<u>Percent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	83.8	53.8 - 116		7/30/2020	16:21
2-Fluorobiphenyl	60.7	36.5 - 95.3		7/30/2020	16:21
2-Fluorophenol	67.5	11.1 - 99.3		7/30/2020	16:21
Nitrobenzene-d5	73.2	49.4 - 100		7/30/2020	16:21
Phenol-d5	65.4	10 - 103		7/30/2020	16:21
Terphenyl-d14	79.3	54.3 - 109		7/30/2020	16:21

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 7/29/2020 Data File: B48249.D

TCLP Herbicides

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
2,4,5-TP (Silvex)	< 0.10	mg/L	1	7/31/2020
2,4-D	< 0.50	mg/L	10	7/31/2020

Client: BE3

Project Reference: 150 Tonawanda

Sample Identifier: WD-1

Lab Sample ID:203480-01ADate Sampled:7/27/2020Matrix:TCLP ExtractDate Received:7/28/2020

Method Reference(s): EPA 8321B

EPA 1311

Subcontractor ELAP ID: 10709

TCLP Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Mercury	< 0.00200	mg/L	0.2	7/30/2020 12:01

Method Reference(s):EPA 7470AEPA 1311Preparation Date:7/30/2020Data File:Hg200730A

TCLP Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Lim	<u>it Qualifier</u>	Date Analy	zed
Chlordane	< 2.00	ug/L	30		7/30/2020	11:21
Endrin	< 1.00	ug/L	20		7/30/2020	11:21
gamma-BHC (Lindane)	< 1.00	ug/L	400		7/30/2020	11:21
Heptachlor	< 1.00	ug/L	8		7/30/2020	11:21
Heptachlor Epoxide	< 2.00	ug/L	8		7/30/2020	11:21
Methoxychlor	< 1.00	ug/L	10000		7/30/2020	11:21
Toxaphene	< 20.0	ug/L	500		7/30/2020	11:21
<u>Surrogate</u>	<u>Perce</u>	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl (1)		107	19.3 - 157		7/30/2020	11:21
Tetrachloro-m-xylene (1)		89.9	33.3 - 107		7/30/2020	11:21

Method Reference(s): EPA 8081B EPA 1311 / 3510C

Preparation Date: 7/29/2020

TCLP RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Arsenic	< 0.500	mg/L	5	7/30/2020 17:07
Barium	1.12	mg/L	100	7/30/2020 17:07
Cadmium	< 0.0250	mg/L	1	7/30/2020 17:07

Client: BE3

Project Reference: 150 Tonawanda

Sample Identifier: WD-1

Lab Sample ID:203480-01ADate Sampled:7/27/2020Matrix:TCLP ExtractDate Received:7/28/2020

Chromium	< 0.500	mg/L	5	7/30/2020 17:07
Lead	< 0.500	mg/L	5	7/30/2020 17:07
Selenium	< 0.200	mg/L	1	7/30/2020 17:07
Silver	< 0.500	mg/L	5	7/30/2020 17:07

Method Reference(s): EPA 6010C

EPA 1311 / 3005A

 Preparation Date:
 7/30/2020

 Data File:
 200730B

TCLP Volatile Organics

Analyte	Result	<u>Units</u>	Regulatory Limi	t Qualifier	Date Analy	yzed
1,1-Dichloroethene	< 20.0	ug/L	700		7/30/2020	19:02
1,2-Dichloroethane	< 20.0	ug/L	500		7/30/2020	19:02
2-Butanone	< 100	ug/L	200000		7/30/2020	19:02
Benzene	< 20.0	ug/L	500		7/30/2020	19:02
Carbon Tetrachloride	< 20.0	ug/L	500		7/30/2020	19:02
Chlorobenzene	< 20.0	ug/L	100000		7/30/2020	19:02
Chloroform	< 20.0	ug/L	6000		7/30/2020	19:02
Tetrachloroethene	< 20.0	ug/L	700		7/30/2020	19:02
Trichloroethene	< 20.0	ug/L	500		7/30/2020	19:02
Vinyl chloride	< 20.0	ug/L	200		7/30/2020	19:02
<u>Surrogate</u>	Percer	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		122	70.9 - 139		7/30/2020	19:02
4-Bromofluorobenzene		66.1	59.5 - 129		7/30/2020	19:02
Pentafluorobenzene		108	89.3 - 117		7/30/2020	19:02
Toluene-D8		81.2	82.9 - 115	*	7/30/2020	19:02

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: x72159.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 7 of 11

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

10/2

All		k.					CHA	AIN (OF (CUS	TO	DY							. 0
PARAD	IGM			CLIENT: BE ADDRESS: 96 CITY: BUFF PHONE: 710	3 Con DBU	STATE OF		15D-13 1213	ADDRESS GITY: PHONE:	3:	900	INVOIC	ETO:	ZIP:	0	Quotati Email:	348	AB PROJECT	ID do
PROJECT RE					queous Liquid on-Aqueous Lic	Gara	WA-W		er	是	7 - Drinki V - Wast	ing Wate	r (\$0 80 \$L - Sla		SD - Solid PT - Paint		WP - Wipe CK - Caulk	OL - Oil AR - Air
DATE COLLECTED COLLE	AE ECTED	C O M P O S I T E	G R A B		SAMPLE IDEN	ITIFIER		M C T D R E I S	NONTAL NERS	PHO HOT	Dear Transacti	の地位の名の方	TO VOAS	TO WELL	876	REM	IARKS		PARADIGM LAB SAMPLE NUMBER
7-21-20 3	1/5			WA	-1			\$	3	X X	XX	XX	YY	Y X X	X	Text,			014
u- 19															HG UNI Sam	,	- 5A	D-Z to rm	8 Max
Turnaround Tim		pon lal		Report Suppoval; additional		ly.	1 FE) NEV	27	-6	n DRV	on o	7.	27	-20	315	-		
tandard 5 day 0 day	-	one Rec		2	None Require		Sample	ed By Lete	7	20	orte	2	Date/T	ime 27-2		36	Total	Cost:	
Rush 3 day	_	ategory ategory			NYSDEC ED		Receiv	SAZ ed By	Na	Zh	el 7	<u> </u>	Date/T	27-2 ime () 20	20 6	1:30	P.I.E.		7
tush 1 day		her			Other EDD		Receiv 10	ed @ Lal	By	7/2	8/2	000	Date/T	ime	7				

plagse indicate date needed:

please indicate package needed:

please indicate EDD needed :

By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

See additional page for sample conditions.

Chain of Custody Supplement

Client:	BED	Completed by:	MolfVail
Lab Project ID:	203480	Date:	7/28/2020
	Sample Cond Per NELAC/ELA	lition Requirements P 210/241/242/243/244	
Condition	NELAC compliance with the sam Yes	ple condition requirements (No	upon receipt N/A
Container Type Comments	X	¥:	
Transferred to method- compliant container			TX.
Headspace (<1 mL) Comments			
Preservation Comments			Y
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments	The state of the s		
- Temperature Comments	[n'c	icul	net
Compliant Sample Quantity/Ty			
Comments -			

1	TOTAL CONTRACTOR OF THE PARTY O	and the second		mental	COMPANY: Sar			-	
		ADDRES			ADDRESS:				
The same of the sa		CITY:	STATE:	ZIP:	CITY:	STATE:	ZIP:	TURNAROUND TIME: (WO	DRKING DAYS)
7/19	The same of the sa	PHONE	AT .		PHONE;	FAX:			STD
ROJECT NAME/SITE	NAME:	ATTN:	Reporting			nts Payable		1 2	3 🗙 5
		СОММЕ	Please email results			STED ANALYSIS	Tark	Date Due: 8/5	5/2020
DATE	TIME	COMM GPRASSI	SAMPLE LOCATION/FIELD	M A T R I X	Nanamana Nana-baroo Ceachiu. 4			REMARKS	PARADIG SAMPLE NUMBER
7/27/2020	1515		203480-01	50:1	1 X		TCL	P Spun at	
1			203480-01A	TE Paci	1 X		Para	lien	
- V			1203401	21,000			1 20.50	0	

-							1	1	
			-				1		
							-	11 - 4 - 14 - 17 - 17 - 17 - 17 - 17 - 1	
							- I		
0	U V DELOW T	NC LINES	Carlo	D of the revent of the new o					
	ILY BELOW THE Per NELAC/ELAF		243/244	是一种"多文化"的"关系"。	in the formed Tribe con			U. ALMEN WE WAS A	(A) 图 (D) 图 (D) 图 (D)
	Receipt Parameter		NELAC Compliance		27				
omments:	Container Type:		Y N	Client Sampled By		O Date/Time	8/2024	Total Co	st:
nments:	Preservation:		Y N	Relinquished B	y Vail	7/39/2022 Date/Time	08.	0 8	

Analytical Report For

BE3

For Lab Project ID

203997

Referencing

31 Tonawanda Street

Prepared

Thursday, August 27, 2020

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

2 Nos

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: BE3

31 Tonawanda Street **Project Reference:**

Sample Identifier: WD-8-25-20

203997-01 Lab Sample ID: **Date Sampled:** 8/25/2020 Matrix: **Date Received:** Soil 8/25/2020

Diesel Range Organics (C10-C28)

Analyte Result **Units Qualifier Date Analyzed Diesel Range Organics** 5050000 ug/Kg 8/26/2020 12:57 **Surrogate** Percent Recovery Limits **Outliers Date Analyzed** 10 - 152 Nonacosane NC 8/26/2020 12:57

Sample chromatographic pattern does not match a typical diesel fuel fingerprint.

EPA 8015D (M)

Method Reference(s): EPA 8015D

EPA 3546

Preparation Date: 8/26/2020 Data File: PHC13721.D

Gasoline Range Organics (C5-C10)

Method Reference(s):

Subcontractor ELAP ID:

Analyte Oualifier Result **Units Date Analyzed** ug/Kg 8/26/2020

180000 Gasoline Range Organics

11148

Ignitability

Analyte Result Units **Oualifier Date Analyzed** No Burn 8/27/2020 Ignitability mm / sec

Method Reference(s): EPA 1030

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
PCB-1016	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1221	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1232	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1242	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1248	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1254	< 0.180	mg/Kg		8/26/2020	10:09
PCB-1260	< 0.180	mg/Kg		8/26/2020	10:09

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 2 of 11

8/26/2020 10:09

Client: BE3

Project Reference: 31 Tonawanda Street

Sample Identifier: WD-8-25-20

 Lab Sample ID:
 203997-01
 Date Sampled:
 8/25/2020

 Matrix:
 Soil
 Date Received:
 8/25/2020

PCB-1262 < 0.180 mg/Kg 8/26/2020 10:09

PCB-1268 < 0.180 mg/Kg

Surrogate Percent Recovery Limits Outliers Date Analyzed

Tetrachloro-m-xylene 75.4 17.8 - 74 * 8/26/2020 10:09

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 8/25/2020

pН

Analyte Result Units Qualifier Date Analyzed

pH 7.57 @ 24.6 C S.U. 8/27/2020 14:16

Method Reference(s): EPA 9045D

Reactive Cvanide

Analyte Result Units Qualifier Date Analyzed

Reactivity, Cyanide <100 mg/Kg 8/26/2020

Method Reference(s): EPA 7.3.3.2 Subcontractor ELAP ID: 11148

ELAP does not offer this test for approval as part of their laboratory certification program.

Reactive Sulfide

Analyte Result Units Qualifier Date Analyzed

Reactivity, Sulfide <100 mg/Kg 8/26/2020

Method Reference(s): EPA 7.3.4.2 **Subcontractor ELAP ID:** 11148

ELAP does not offer this test for approval as part of their laboratory certification program.

Client: BE3

Project Reference: 31 Tonawanda Street

Sample Identifier: WD-8-25-20

Lab Sample ID:203997-01ADate Sampled:8/25/2020Matrix:TCLP ExtractDate Received:8/25/2020

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500	8/26/2020 13:43
2,4,5-Trichlorophenol	< 40.0	ug/L	400000	8/26/2020 13:43
2,4,6-Trichlorophenol	< 40.0	ug/L	2000	8/26/2020 13:43
2,4-Dinitrotoluene	< 40.0	ug/L	130	8/26/2020 13:43
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	8/26/2020 13:43
Hexachlorobenzene	< 40.0	ug/L	130	8/26/2020 13:43
Hexachlorobutadiene	< 40.0	ug/L	500	8/26/2020 13:43
Hexachloroethane	< 40.0	ug/L	3000	8/26/2020 13:43
Nitrobenzene	< 40.0	ug/L	2000	8/26/2020 13:43
Pentachlorophenol	< 80.0	ug/L	100000	8/26/2020 13:43
Pyridine	< 40.0	ug/L	5000	8/26/2020 13:43
Currogata	Downson	+ Doggregary	Limita Outliana	Data Analyzad

Percent Recovery	Limits	Outliers	Date Analy	zed
85.8	53.8 - 116		8/26/2020	13:43
69.3	36.5 - 95.3		8/26/2020	13:43
75.0	11.1 - 99.3		8/26/2020	13:43
82.1	49.4 - 100		8/26/2020	13:43
71.6	10 - 103		8/26/2020	13:43
80.4	54.3 - 109		8/26/2020	13:43
	85.8 69.3 75.0 82.1 71.6	85.8 53.8 - 116 69.3 36.5 - 95.3 75.0 11.1 - 99.3 82.1 49.4 - 100 71.6 10 - 103	85.8 53.8 - 116 69.3 36.5 - 95.3 75.0 11.1 - 99.3 82.1 49.4 - 100 71.6 10 - 103	85.8 53.8 - 116 8/26/2020 69.3 36.5 - 95.3 8/26/2020 75.0 11.1 - 99.3 8/26/2020 82.1 49.4 - 100 8/26/2020 71.6 10 - 103 8/26/2020

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 8/26/2020 **Data File:** 848956.D

TCLP Herbicides

Analyte	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
2,4,5-TP (Silvex)	< 0.05	mg/L	1	8/27/2020
2,4-D	< 0.50	mg/L	10	8/27/2020

Client: BE3

Project Reference: 31 Tonawanda Street

Sample Identifier: WD-8-25-20

Lab Sample ID:203997-01ADate Sampled:8/25/2020Matrix:TCLP ExtractDate Received:8/25/2020

Method Reference(s): EPA 8151A

EPA 1311

Subcontractor ELAP ID: 11148

TCLP Mercury

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Mercury	< 0.00200	mg/L	0.2	8/27/2020 10:53

Method Reference(s):EPA 7470AEPA 1311Preparation Date:8/26/2020Data File:Hg200827A

TCLP Pesticides

<u>Analyte</u>	<u>Result</u>	Result <u>Units</u>		it Qualifier	Date Analyzed			
Chlordane	< 2.00	ug/L	30		8/26/2020	14:58		
Endrin	< 1.00	ug/L	20		8/26/2020	14:58		
gamma-BHC (Lindane)	< 1.00	ug/L	400		8/26/2020	14:58		
Heptachlor	< 1.00	ug/L	8		8/26/2020	14:58		
Heptachlor Epoxide	< 2.00	ug/L	8		8/26/2020	14:58		
Methoxychlor	< 1.00	ug/L	10000		8/26/2020	14:58		
Toxaphene	< 20.0	ug/L	500		8/26/2020	14:58		
<u>Surrogate</u>	<u>Percer</u>	Percent Recovery		Outliers	Date Analy	<u>zed</u>		
Decachlorobiphenyl (1)		92.0			8/26/2020	14:58		
Tetrachloro-m-xylene (1)		109	33.3 - 107	*	8/26/2020	14:58		

Method Reference(s): EPA 8081B EPA 1311 / 3510C

Preparation Date: 8/26/2020

TCLP RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Arsenic	< 0.500	mg/L	5	8/27/2020 10:04
Barium	0.739	mg/L	100	8/27/2020 10:04
Cadmium	< 0.0250	mg/L	1	8/27/2020 10:04

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 5 of 11
Report Prepared Thursday, August 27, 2020

Client: BE3

Project Reference: 31 Tonawanda Street

Sample Identifier:WD-8-25-20Lab Sample ID:203997-01ADate Sampled:8/25/2020Matrix:TCLP ExtractDate Received:8/25/2020

Chromium	< 0.500	mg/L	5	8/27/2020 10:04
Lead	1.98	mg/L	5	8/27/2020 10:04
Selenium	< 0.200	mg/L	1	8/27/2020 10:04
Silver	< 0.500	mg/L	5	8/27/2020 10:04

Method Reference(s): EPA 6010C

EPA 1311 / 3005A

Preparation Date: 8/27/2020 Data File: 200827A

TCLP Volatile Organics

Analyte	Result	<u>Units</u>	Regulatory Limit	Qualifier	Date Analy	vzed
1,1-Dichloroethene	< 20.0	ug/L	700		8/26/2020	12:45
1,2-Dichloroethane	< 20.0	ug/L	500		8/26/2020	12:45
2-Butanone	< 100	ug/L	200000		8/26/2020	12:45
Benzene	< 20.0	ug/L	500		8/26/2020	12:45
Carbon Tetrachloride	< 20.0	ug/L	500		8/26/2020	12:45
Chlorobenzene	< 20.0	ug/L	100000		8/26/2020	12:45
Chloroform	< 20.0	ug/L	6000		8/26/2020	12:45
Tetrachloroethene	< 20.0	ug/L	700		8/26/2020	12:45
Trichloroethene	< 20.0	ug/L	500		8/26/2020	12:45
Vinyl chloride	< 20.0	ug/L	200		8/26/2020	12:45
<u>Surrogate</u>	Percen	t Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		102	70.9 - 139		8/26/2020	12:45
4-Bromofluorobenzene	,	74.9	59.5 - 129		8/26/2020	12:45
Pentafluorobenzene	•	99.7	89.3 - 117		8/26/2020	12:45
Toluene-D8	:	89.1	82.9 - 115		8/26/2020	12:45

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: x72818.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 7 of 11

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

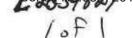
LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

1	7 1		1
1	0	١.,	0


							0111	NA A W			<u> </u>											
PAF	RADIG	М		CLIENT: A		RT TO:	B.E.I.	-1	CLIENT:	10	E.	8	VOI	CET):	-		THE STATE OF	TEN	LAB PRO	IECT ID	
				ADDRESS: CIT	E3 G	06b	Swite 1	E7)-12	ADDRES	S:		_							203	99-	7	
1		1		CITY: R.	EFAID S	TATELY	7113	213	CITY:				ST	ATE:		ZIP:		_	otation			
- 19	NAME OF TAXABLE PARTY.			PHONE:	V 11-6	, , ,		~ >	PHONE:									Em	nail:			
	CT REFER			ATTN:	DER	5,	GUR	TOL .	ATTN:													
31 TON	A WAS	LA	200	Matrix Code AQ - A	queous Liquid		WA - W				DW - D			er	(s	0-86			- Solid	WP - Wi		OL - Oil
	- 1000	STR		NQ - N	Ion-Aqueous Liqu	lia	WG - G	Groundwa	ter		KW - V	vaste	-	NAL	The Park Street	C - Slui	ige	PI.	- Paint	CK - Ca	uik ————————————————————————————————————	AR - Air
DATE COLLECTED	TIME	C O M P O S I T E	G R A		SAMPLE IDENT	IFIER		M C C C C C C C C C C C C C C C C C C C	NONTAINER OF S	HO	アゴララ	SACTION CARE	Cacrair Starfied	TCLP VOCS	TCLP SYDCS	PCB			REMARKS	5		PARADIGM LA SAMPLE NUMBER
8-25-200	920	X.		WS	- 8-25-	20		50	3	X	XX	V	X	1 X	(V)		- A	for.	TCLF	extro	·c+.	OIA
														1			G	P8/	25/20	20		
		-		2				-		\vdash	+	+	+	+		+						
										\vdash	+	\forall	+	\vdash	\dashv	± 1						
												\Box										
											1				_							
										H	+	\vdash	+	+	+	+						
		1						1								Ţ						
Turnaroun				Report Supp				10	126)	1	6	'A A			D	15	2027	920			
	lity continger	nt upon I	ab appi		fees may apply		Sample	By	1	=	-17	9	010	Date	/Time	8	00.	1420	100	otal Cost:		
Standard 5 day		None R	equired	X	None Required	X	//	12	the	//	X	I	on	-								
10 day		Batch Q	C		Basic EDD		Relinqu	ished B	/		V	n		Date	/Time			78.	_			
Rush 3 day		Categor	у А		NYSDEC EDD		Receive	ed By	6	31	W	h	_	Date	-Z	5~	20	10	10 p	.l.F.		1
Rush 2 day	X	Categor	уВ				/	7) 0	_			8	25	- 1	202	0 1	3:3		and a		
Rush 1 day							Receive	ed @ Lat	Ву	1		0	. 7	Date	/Time	1						1
Date Needed	od:	Other	anta		Other EDD		8 °C										درد	13:				
elease indicate date need	o u.	please indi	cate packs	ege needed:	please indicate EDD	needed :	By Sig	ning th	IS IOFN	n, Clie	ent ag	grees	to P	arad	igm T				ns (reve			
					1		l									Se	e addi	tional	page fo	or sampl	e con	ditions.

Chain of Custody Supplement

Client:	BE3	Completed by:	Glen Pezzulo	
Lab Project ID:	203997	Date:	8/25/2020	
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244				
NELAC compliance with the sample condition requirements upon receipt Condition Yes No N/A				
Container Type				
Comments		12		
Transferred to method- compliant container		,		
Headspace (<1 mL) Comments	TCLP VO,	Α		
Preservation Comments			× ,	
Chlorine Absent (<0.10 ppm per test strip)				
Comments		*,		
Holding Time Comments				
Temperature Comments	8,		Metals	
Compliant Sample Quantity/	Туре			
(A			+	

Serial_tho:0827201	1:16
1.4.1	

11148 CHAIN OF CUSTODY REPORT TO: INVOICE TO: PARADIGM COMPANY: LAB PROJECT #: Paradigm Environmental COMPANY: CLIENT PROJECT #: Same ADDRESS: ADDRESS: 179 Lake Avenue STATE: NY ZIP: 14608 STATE: TURNAROUND TIME: (WORKING DAYS) Rochester Rush PHONE: PHONE FAX: OTHER PROJECT NAME/SITE NAME: ATTN: Reporting Accounts Payable Please email results to reporting@paradigmenv.com 3PM Date Due: 8 27 2020 REQUESTED ANALYSIS 0 N G MAS R SAMPLE LOCATION/FIELD ID DATE TIME REMARKS PARADIGM LAB SAMPLE NUMBER 3RO EN 203997-01 125/200 09:20 X **LAB USE ONLY BELOW THIS LINE** Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Receipt Parameter **NELAC Compliance** Container Type: Client Sampled By Date/Time Total Cost: Comments: 16:00 Preservation: Date/Time Comments: Relinguished By Holding Time: Comments: Temperature:

Received, Lab By

Comments: