PERIODIC REVIEW REPORT

APRIL 22, 2022, TO AUGUST 1, 2024 NYSDEC SITE NO. C915299 31 TONAWANDA STREET BUFFALO, NEW YORK 14207

Prepared for:

31 Tonawanda Street, LLC 124 Meadow Road Orchard Park, NY 14127

Prepared by:

Brydges Engineering in Environment and Energy 960 Busti Avenue Suite B-150 Buffalo, New York 14213

September 2024

TABLE OF CONTENTS

Secti	on	Page
1.0	EXECUTIVE SUMMARY	1
1.1	Site Background	1
1	I.1.1 31 Tonawanda Street	1
1	I.1.2 150 Tonawanda Street	1
1.2	Compliance/Recommendations	2
2.0	SITE OVERVIEW AND REMEDIATION	2
2.1	Description of Selected Final Remedy	2
2.2	Nature and Extent of Contamination Remaining at Site	3
3.0	ENGINEERING AND INSTITUTIONAL CONTROLS	4
3.1	General	4
3.2	Institutional Controls	4
3.3	Engineering Controls	5
3	3.3.1 Cover System	5
3	3.3.2 Sub-Slab Depressurization System (SSDS)	5
3	3.3.3 Groundwater Monitoring	5
4.0	SITE EVALUATION	5
4.1	Site Wide Inspection	5
4.2	Cover Performance Summary	5
4.3	SSDS Performance Summary	6
4.4	Groundwater Monitoring Summary	6
5.0	CONCLUSIONS	6
6.0	CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	7

- Figure 1Property Location MapFigure 2150 Tonawanda St Soil Analytical ResultsFigure 331 Tonawanda St Soil Analytical ResultsFigure 3A2019 Crawlspace Investigation & GWTFigure 4Vapor Intrusion Sample ResultsFigure 5150 Tonawanda Street Groundwater Results & ContoursFigure 631 Tonawanda Street Groundwater Results & Contours
- Figure 7 Alternative 1 (150 Tonawanda Street)
- Figure 8 Alternative 1 (31 Tonawanda Street)

AS-BUILT FIGURES

Figure 9	31 Tonawanda Hot Spot Impacted Soil Excavation
Figure 10	Remaining Contamination Results Exceeding RR SCOs (150 Tonawanda Street)
Figure 11	Remaining Contamination Results Exceeding RR SCOs (31 Tonawanda Street)

INTERIM REMEDIAL MEASURES FIGURE

Figure 1 Groundwater Treatment System – As-Built

TABLES

Table 1	150 Tonawanda Street – RI Soil Boring Sample Analytical Results Summary
Table 2	31 Tonawanda Street – RI Soil Boring Sample Analytical Results Summary
Table 3	31 Tonawanda Street – Sub-Slab Vapor Ambient Air Analytical Results
Table 4	150 Tonawanda Street – RI GW Sample Analytical Results Summary
Table 5	31 Tonawanda Street – RI GW Sample Analytical Results Summary
Table 10	31 Tonawanda Street – Crawl Space Soil Boring Sample Analytical Results Summary
Table 11	31 Tonawanda Street – MW-2 GW Sample Analytical Results Summary
Table 12	31 Tonawanda Street – MW-3 GW Sample Analytical Results Summary

APPENDICES

- Appendix A NYSDEC SMP PRR Certification Form
- Appendix B Environmental Easement and Survey Maps
- Appendix C Site Wide Inspection Forms and Site Photos
- Appendix D SSDS As-Builts
- Appendix E Annual Monitoring Well/Groundwater Sampling

1.0 EXECUTIVE SUMMARY

Brydges Engineering in Environment and Energy (BE3) has prepared this Periodic Review Report (PRR) on behalf of 31 Tonawanda Street, LLC to summarize the post-remedial status of the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915299 known as 31 Tonawanda Street. The Site encompasses both 31 Tonawanda Street (SBL No. 88.58-1-1) and 150 Tonawanda Street (88.42-2-4.21) located in Buffalo, Erie County, New York (see **Figure 1**).

This PRR has been prepared in accordance with NYSDEC Division of Environmental Remediation (DER)-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) and the NYSDEC Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the site and provided in **Appendix A**.

This PRR has also been completed per the requirements stipulated in the approved Site Management Plan (SMP) dated December 2020 and describes any post-remedial activities conducted on-site during the April 22, 2022, through August 1, 2024, reporting period.

1.1 SITE BACKGROUND

The 31 Tonawanda Street BCP site includes two separate properties located in Buffalo, Erie County, New York. 150 Tonawanda Street is the more northern property located on the western side of the street and 31 Tonawanda Street on the eastern side. The Site boundaries and survey maps are provided in **Appendix B**.

1.1.1 31 Tonawanda Street

The 31 Tonawanda Street property is an approximately 1.83–acre property located adjacent to Scajaquada Creek on the southeast corner of Tonawanda and West Streets and contains an irregularly shaped, approximately 114,731 square feet, 1-3 story building. The property is bound by the Creek and the off ramp of the Scajaquada Expressway (State Highway 198) to the south and east, Tonawanda Street to the west, and West Avenue to the north. The existing building complex was initially constructed in the early 1900's as Fedder Manufacturing Company. The Fedders complex had a history of using various chemicals, oils, solvents and other materials in their manufacturing process. The processes at the property included metal stamping, soldering, brazing, welding, painting, acid washing and degreasing.

1.1.2 150 Tonawanda Street

The 150 Tonawanda property is a 0.91-acre former railroad property located on the west side of Tonawanda Street just north of the former rail depot/freight house/office located at 68 Tonawanda Street. The 150 Tonawanda property has been associated with rail operations since the mid-late 1800's. By the late 1800's the property contained freight platforms and separate freight depots. As a freight depot, much of the raw and manufactured products that supported the surrounding industry and residential community were probably temporarily stored at this location. Materials where on/off loaded from freight trains on the western rail side of the property and off/on loaded to vehicles on the eastern Tonawanda Street side of the property. By 1916 the Freight house building was located on the adjacent southern parcel and rail tracts extended across the subject rail parcel.

1.2 COMPLIANCE/RECOMMENDATIONS

All elements of the IC/EC Plan of the SMP were in compliance for the reporting period April 22, 2022 through August 1, 2024, and no changes to the SMP are recommended at this time.

2.0 SITE OVERVIEW AND REMEDIATION

2.1 DESCRIPTION OF SELECTED FINAL REMEDY

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The elements of the selected remedy, as shown in **Figure 7 (150 Tonawanda) and Figure 8 (31 Tonawanda)**, are as follows:

Remedial Design A remedial design program was based upon the results of the Remedial Investigation (RI) (See **Figures 2 – 6** and **Tables 1 – 5 & 10**), and was implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program.

Green remediation principles and techniques were implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;
- Increasing energy efficiency and minimizing use of non-renewable energy;
- · Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals; and
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development.

Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings will include, at a minimum, a 20-mil vapor barrier/waterproofing membrane on the foundation to improve efficiency as an element of construction.

150 Tonawanda Street Property – Remediation Summary

Excavation: No impacted soil was removed and disposed of offsite. Existing concrete slabs were broken up and hauled off site for recycling.

Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a soil and/or hardscape cover system placed over the site. This cover system is comprised of either a minimum of 24 inches of clean soil or minimum of 12 inches of asphalt pavement, concrete-covered sidewalks, and concrete building slabs (See **Figure 7**).

31 Tonawanda Street Property – Remediation Summary

Excavation: Completed excavation and off-site disposal of all soils that exceeded the restricted residential SCOs to 1-foot depth in areas where asphalt paving and concrete were installed, and 2-foot depth in areas where a clean soil cover was installed. In addition, petroleum impacted soils (hot spot) in an area East of the building was excavated and transported off-site for disposal (See **Figure 9**).

Backfill: Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) was brought in to complete the backfilling of excavation areas and establish the design grades at the site. Any excavated material from the installation of buried utilities was disposed of off-site at an approved facility and backfilled with clean stone and/or other approved material as set forth in 6 NYCRR Part 375-6.7(d). The stream bank along the western edge of Scajaquada Creek was restored with clean backfill over an area of approximately 1,300 sf located from West Street south along the creek bank about 65 feet. **Figure 9** shows the location of the restoration area.

Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a soil and/or hardscape cover system placed over the site. This cover system is comprised of either a minimum of 24 inches of clean soil or minimum of 12 inches of asphalt pavement, concrete-covered sidewalks, and concrete building slabs (See **Figure 8**).

In-Situ Groundwater Treatment IRM: In-situ enhanced bioremediation was employed to treat chlorinated VOCs in overburden groundwater at the southeast corner of the property including beneath the crawl space of the on-site building. The biological breakdown of contaminants through anaerobic reductive dichlorination was enhanced by the injection of a soluble organic carbon substrate containing zero valent iron (See IRM Groundwater Treatment System Figure 1)

Vapor Mitigation: A Sub-Slab Depressurization System (SSDS) was installed beneath the basement and first floor of the building to mitigate vapors into the on-site building from soil and/or groundwater. Details of the SSDS and as-built installation figures are provided in **Appendix D**.

2.2 NATURE AND EXTENT OF CONTAMINATION REMAINING AT SITE

150 Tonawanda Street Property

Beneath the cover system (clean fill or hardscape) remains a certain amount of impacted soils consisting of primarily elevated concentrations of metals and SVOCs (PAHs) compounds that exceed Part 375-6.8 Restricted Residential SCOs. A geofabric demarcation layer has been place directly beneath the cover system to delineate the cover system from any remaining impacted soil.

Figures 10 provides soil sample results that exceed Restricted Residential SCOs of the remaining soil contamination at the property below the cover system after completion of remediation.

31 Tonawanda Street Property

Beneath the cover system (clean fill or hardscape) remains a certain amount of impacted soils consisting of primarily elevated concentrations of metals, SVOCs (PAHs) and VOC compounds that exceed Part 375-6.8 Restricted Residential SCOs. A geofabric demarcation layer has been place directly beneath the cover system to delineate the cover system from any remaining impacted soil.

Figures 11 provides soil sample results that exceed Restricted Residential SCOs of the remaining soil contamination at the property below the cover system after completion of remediation.

3.0 ENGINEERING AND INSTITUTIONAL CONTROLS

3.1 GENERAL

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. The IC/EC Plan is one component of the SMP/EE and is subject to revision by the NYSDEC.

3.2 INSTITUTIONAL CONTROLS

A series of ICs is required by the SMP to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to restricted residential, commercial or industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and implemented under the SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. These ICs are:

- The property may be used for: to restricted residential, commercial or industrial use;

- -All ECs must be operated and maintained as specified in the SMP;

- All ECs must be inspected at a frequency and in a manner defined in the SMP;

- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;

- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and

- Vegetable gardens and farming on the site are prohibited.

The ICs identified are provided in the **Appendix B** - Environmental Easement and Boundary Survey Maps.

3.3 ENGINEERING CONTROLS

3.3.1 Cover System

Exposure to remaining contamination in soil/fill at the site is prevented by a soil cover system placed over the site. This cover system is comprised of a minimum of 2 feet of clean soil or approximately one foot, including base, of asphalt pavement, concrete covered sidewalks and concrete building slabs. **Figures 7 and 8** indicate the location of each cover system installed at the 150 Tonawanda and 31 Tonawanda properties respectively. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in the SMP.

3.3.2 Sub-Slab Depressurization System (SSDS)

A SSDS was installed in the existing 31 Tonawanda building in accordance with the NYSDOH Soil Vapor Intrusion Guidance. As-built construction drawings of the system are provided in **Appendix D**.

A soil vapor intrusion evaluation will be required for any new future buildings constructed on the site.

Monitoring and sampling the SSDS are not required by the SMP. However, annual inspections and routine maintenance of the system are required. During routine maintenance and/or inspections, the following activities are recommended:

- A visual inspection of the complete system (e.g., vent fan, piping, warning device or indicator, labeling on systems, soil vapor retarder integrity, etc.);
- Identification and repair of leaks per the NYSDOH Guidance; and,
- Inspection of the exhaust or discharge point to verify no air intakes have been located nearby.

3.3.3 Groundwater Monitoring

During the RI, a series of monitoring wells were installed to assess groundwater underlying the site. Two monitoring wells remain after development of the property including the "upgradient" monitoring well (31-MW-2) at the northwest corner of West and Tonawanda Streets and the "downgradient" monitoring well (31-MW-3) in the southeast corner of the property adjacent to the creek and downgradient of the remedial injections. Both wells must be annually sampled as outlined in the SMP. See **Figure 3** for exact well locations.

4.0 SITE EVALUATION

4.1 SITE WIDE INSPECTION

A Site Wide Inspection was completed by BE3 on July 17, 2024. The results of the inspection are provided in the BE3 Site Wide Inspection Forms provided in **Appendix C**. The inspection concluded that the site was in compliance with all SMP IC/EC.

4.2 COVER PERFORMANCE SUMMARY

The cover system has not been disturbed since initial placement at either the 150 or 31 Tonawanda properties. The soil/grass cover areas and concrete/asphalt cover areas are well maintained and undisturbed. No excavations into the cover system have occurred since initial placement. No overt ruts, bare spots or erosion rills were noted. For further details see the Site Wide Inspection Forms in **Appendix C**.

4.3 SSDS PERFORMANCE SUMMARY

As noted in Section 3.3.2, monitoring and sampling the SSDS installed at 31 Tonawanda Street are not required by the SMP. However, during the Site Wide Inspection a visual inspection of the SSDS was conducted and found to be in compliance with SMP requirements including; no identification and/or repair of leaks per the NYSDOH Guidance have been required and verification that no air intakes have been located nearby the system exhaust/discharge point.

4.4 GROUNDWATER MONITORING SUMMARY

As noted in the SMP, annual groundwater sampling at 31 Tonawanda Street is required, however, only RI-MW-2 and RI-MW-3 must be sampled. The sampling event was conducted on July 17, 2024. Both wells appeared in good visual condition and were performing as designed/anticipated. All samples collected were sent to a NYSDEC approved laboratory and compared to NYSDEC Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater) standards.

MW-2 is now clean. MW-3 is trending in the correct direction. There is no accumulation of DCE or vinyl chloride which indicates that complete dichlorination is occurring. The pH is in the desired target range of 6 to 8. The total organic carbon (TOC) continues to trend downward as the contaminants are anaerobically biodegraded. Dissolved iron remains unchanged, which indicates a stable geochemical state.

Purge logs and laboratory analytical results are provided in **Appendix E**. Summaries of pre- and post-injection analytical results for MW-2 and MW-3 are provided in **Tables 11 and 12**, respectively.

5.0 CONCLUSIONS

All components of the SMP (IC/EC) were in compliance during the reporting period as follows:

Cover System – The soil/grass cover areas and concrete/asphalt cover areas are well maintained and undisturbed. No excavations into the cover system have occurred since initial placement.

SSDS – The SSDS system was inspected during the Site Wide Inspection with no problems noted. There have been no changes or maintenance required to the system during the reporting period.

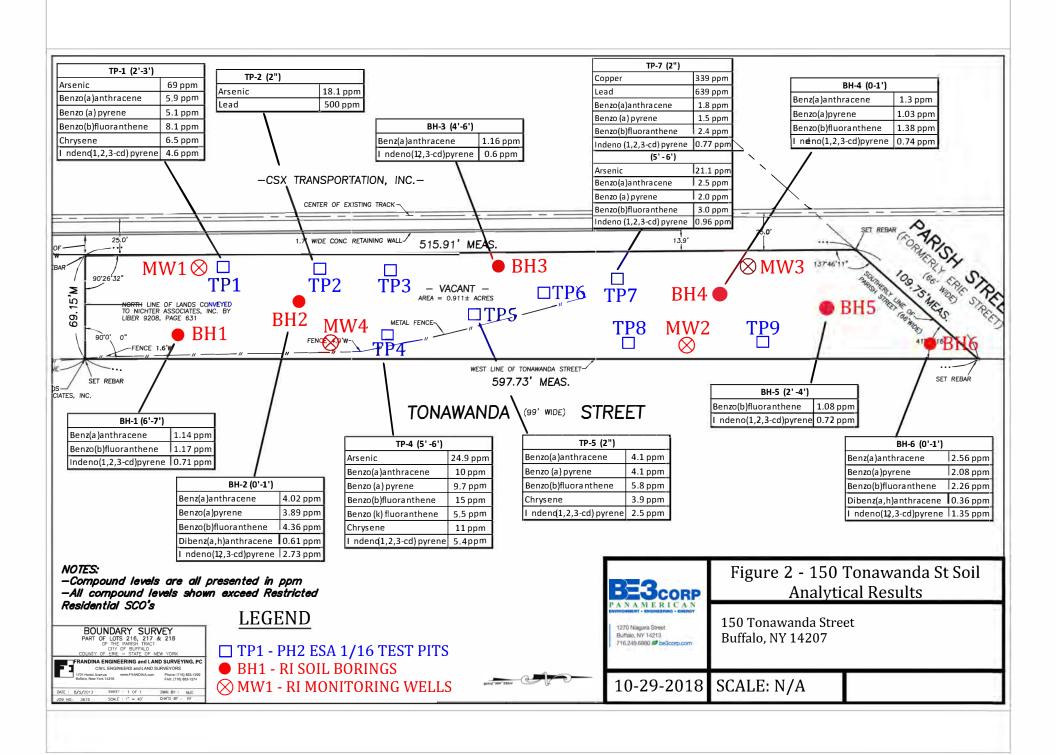
Monitoring Wells – Both remaining wells appear in good condition and functioning as designed. Annual well sampling was completed as outlined in the SMP.

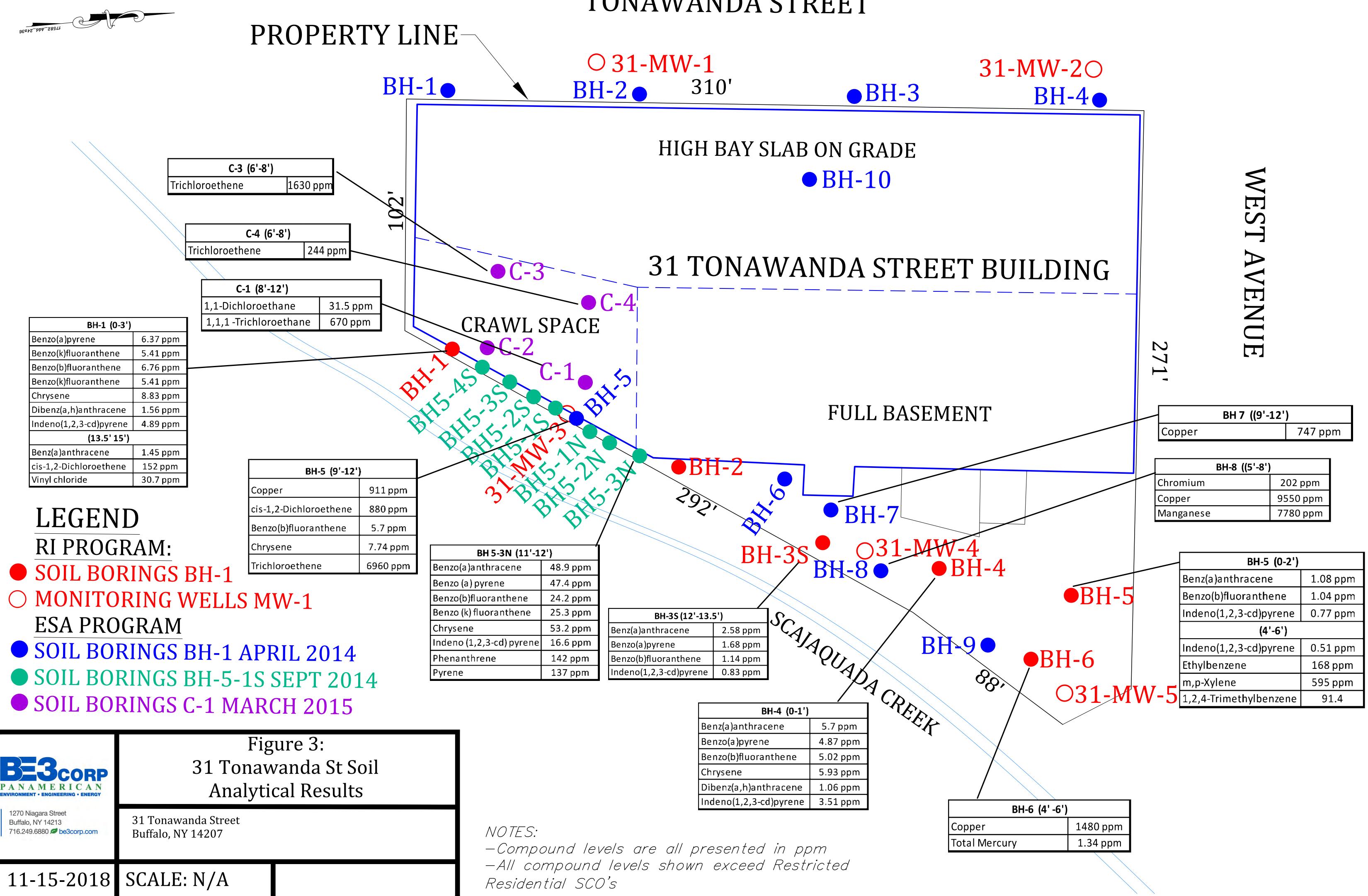
6.0 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

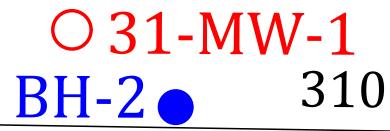
Below is the signed certification as required by section 7.2 of the SMP.

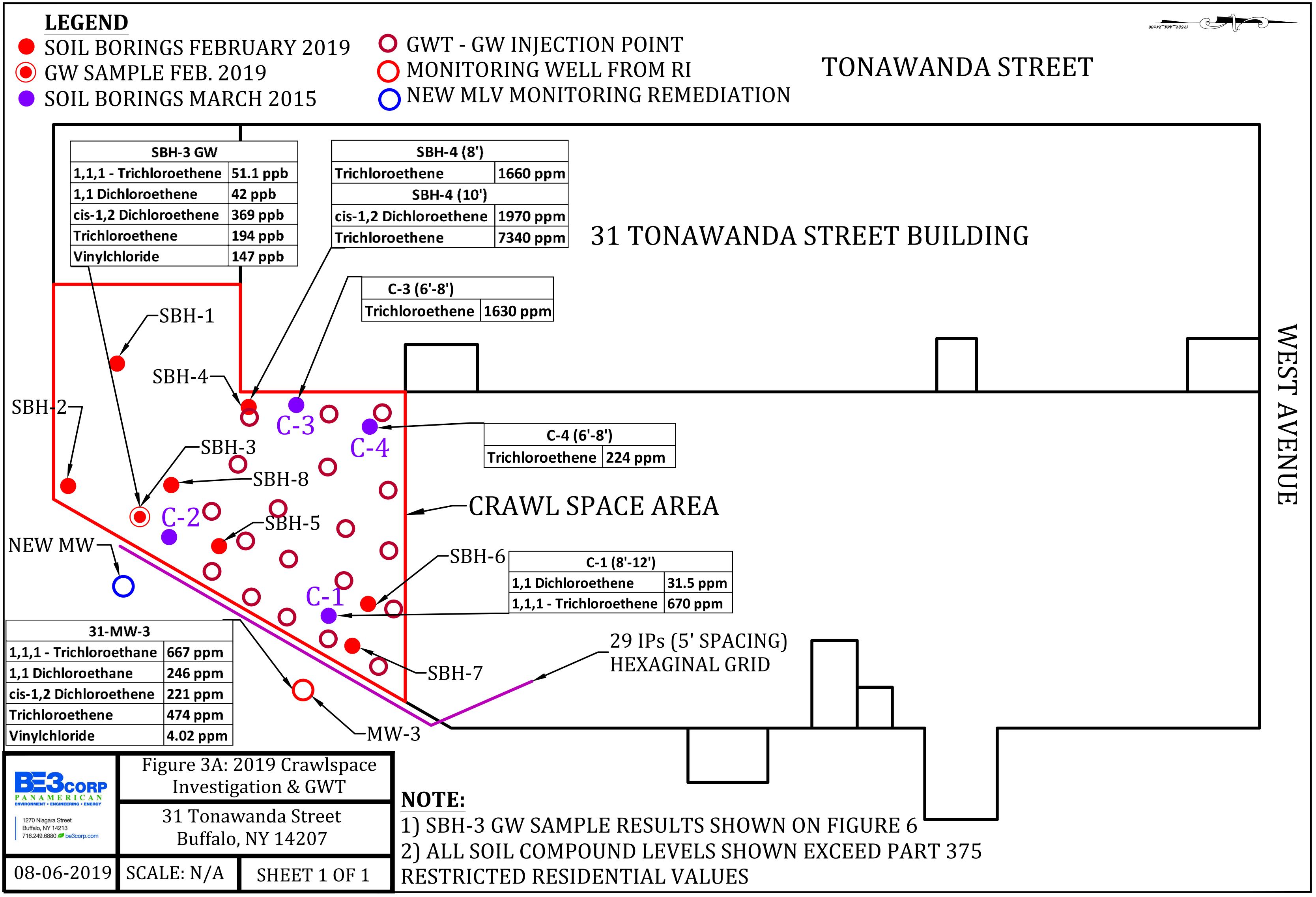
For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

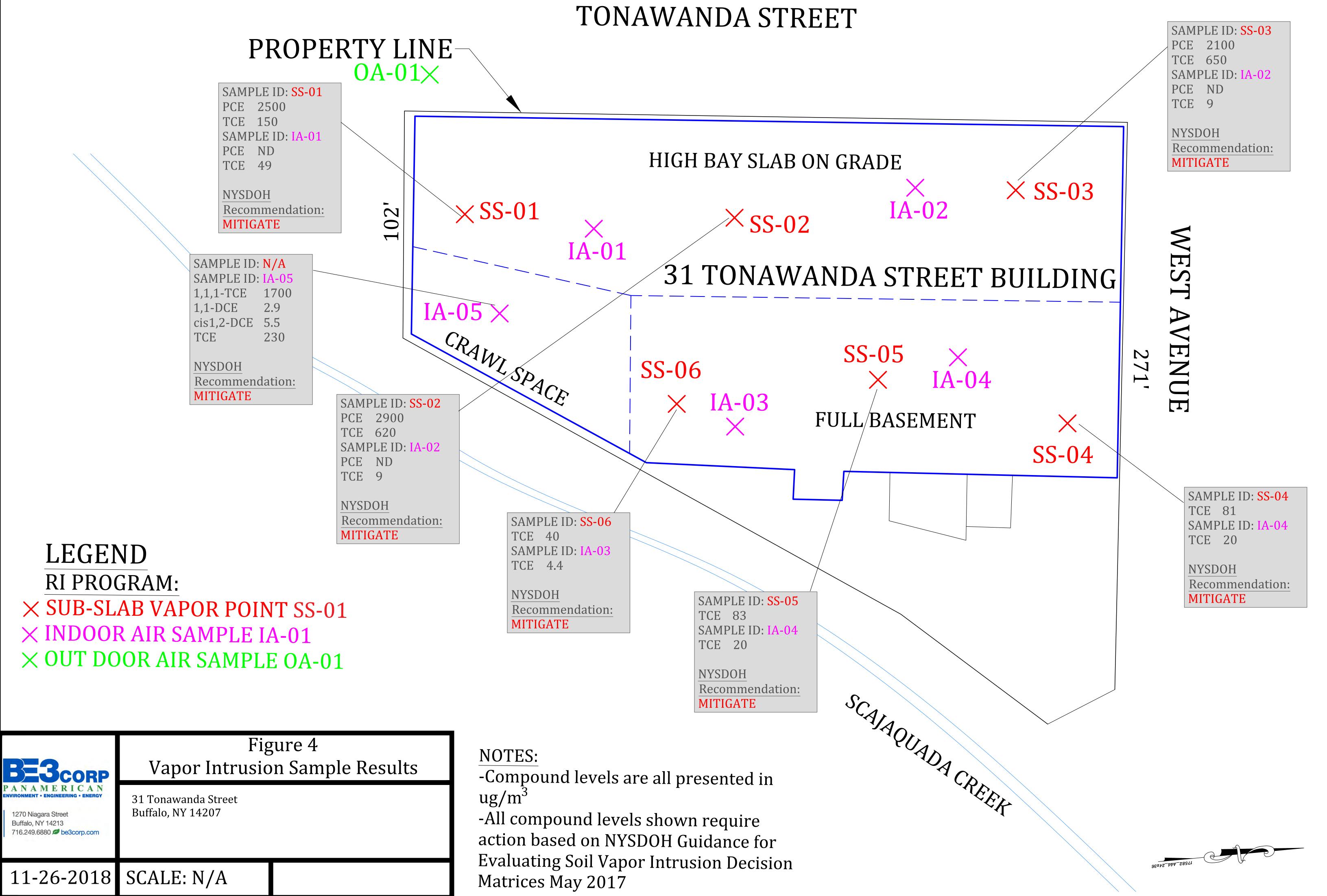
- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law I, Jason M. Brydges, PE of BE3 Corp 960 Busti Avenue, Buffalo New York 14213, in cell the stormer's Designated Site Representative for the site.

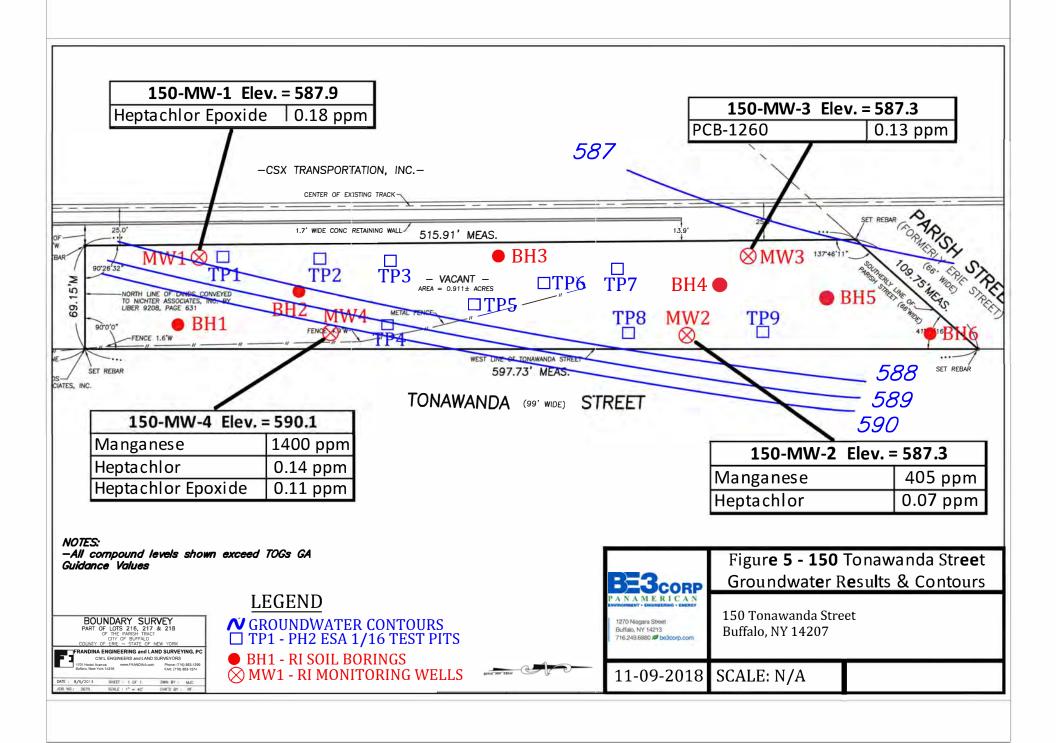



SMP FIGURES

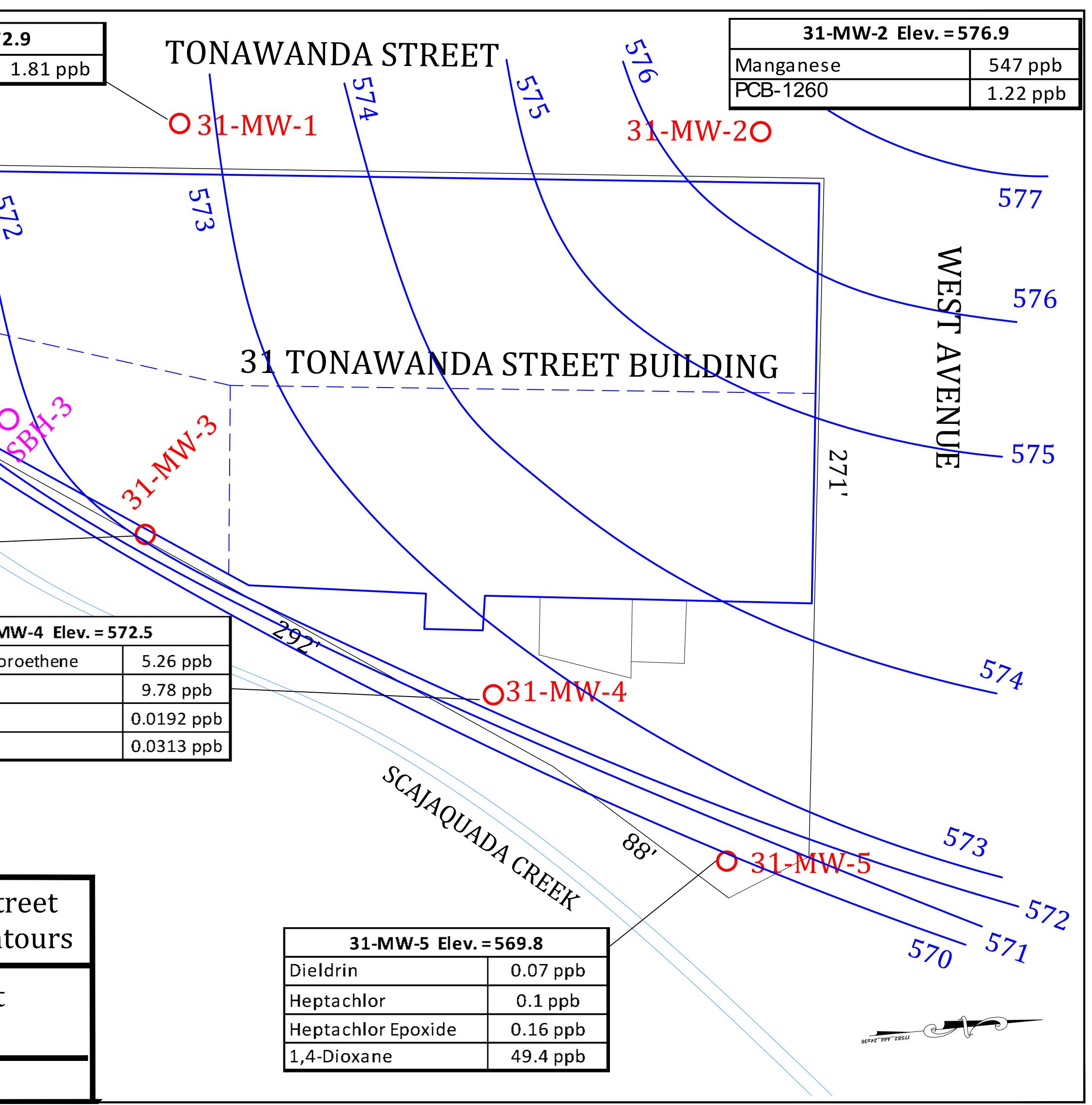


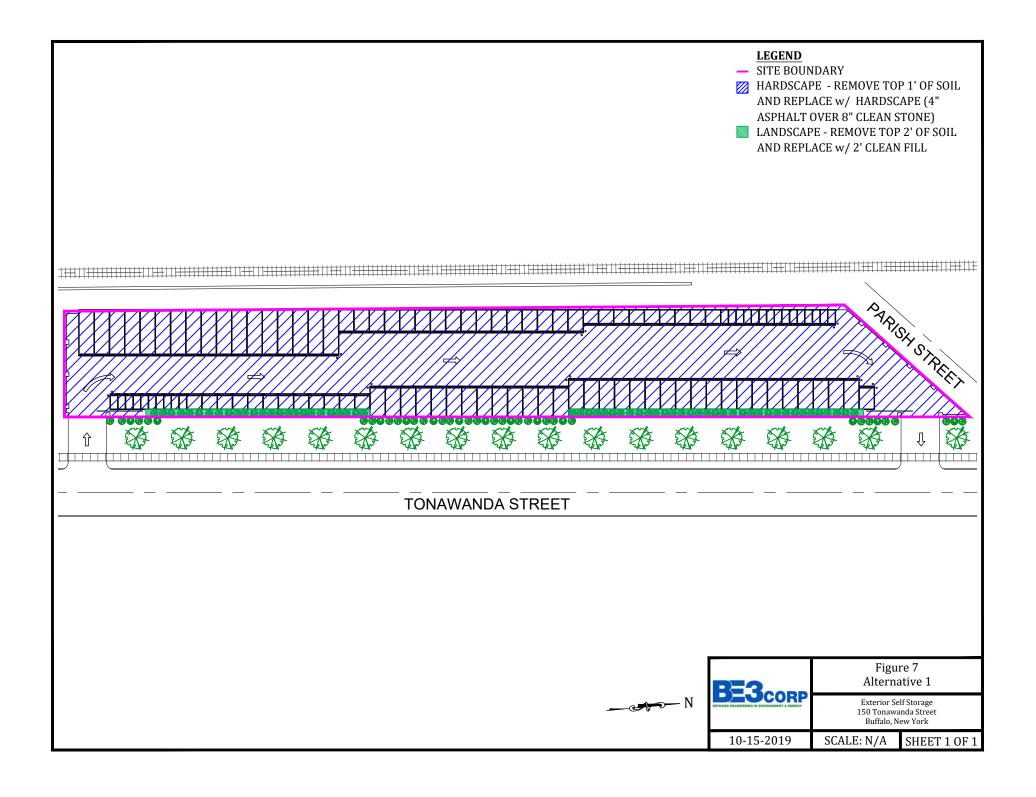


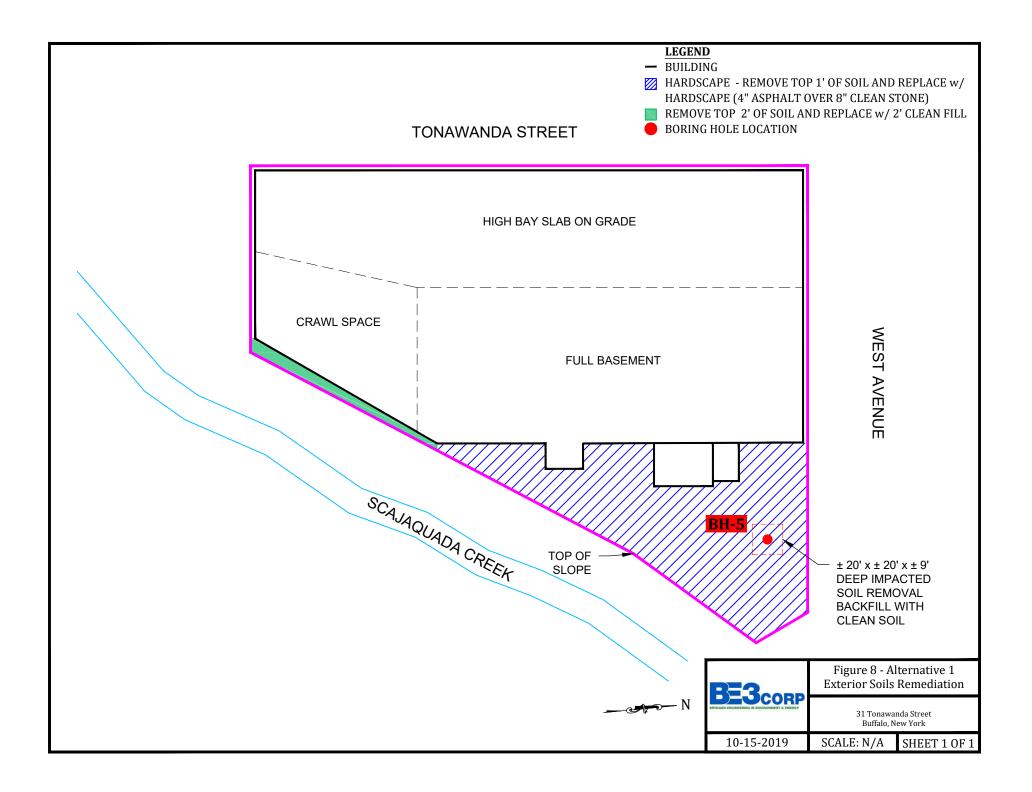

TONAWANDA STREET



SBH-6	C-1 (8'-12')	
	1,1 Dichloroethene	31.5 ppm
	1,1,1 - Trichloroethene	670 ppm

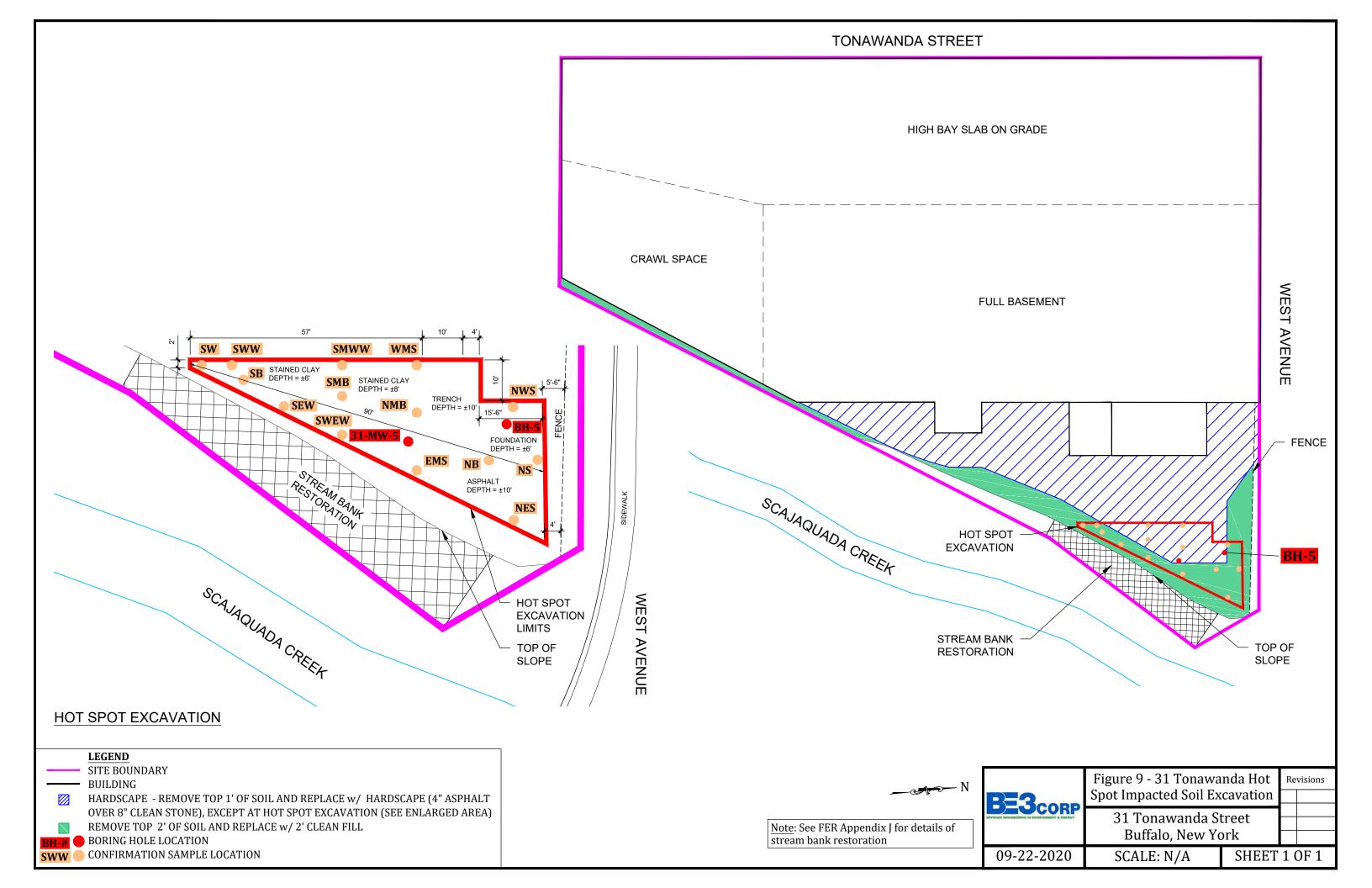


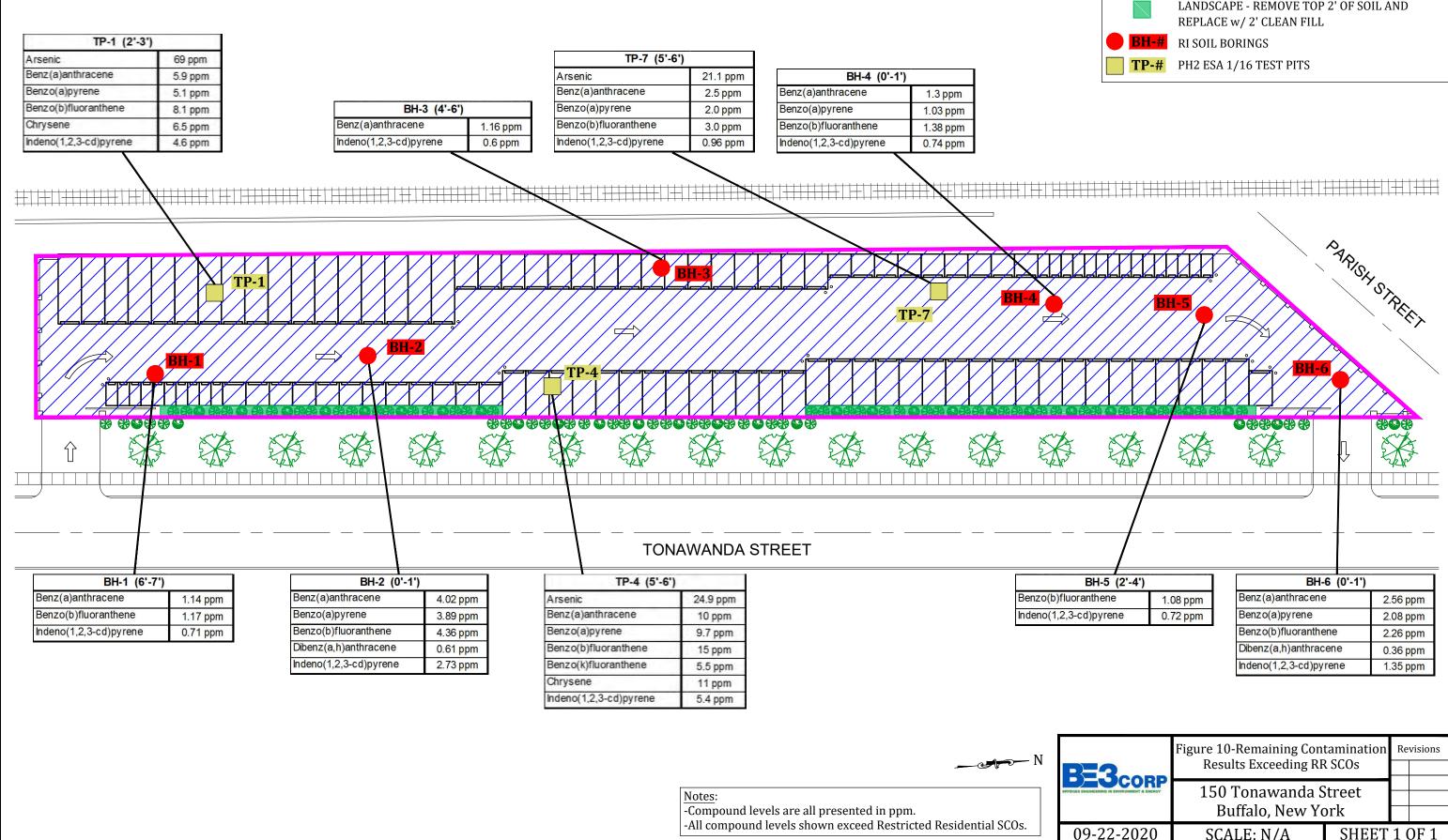

Notes: -All compund levels shown exceed TOGS GA Guidance Values or NYSDEC emergent chemical guidance values

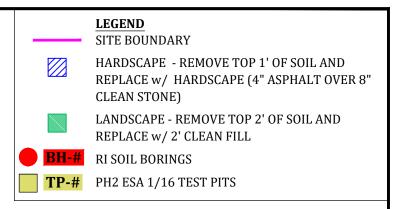

31-MW-1 Elev. = 572.9

PCB-1260

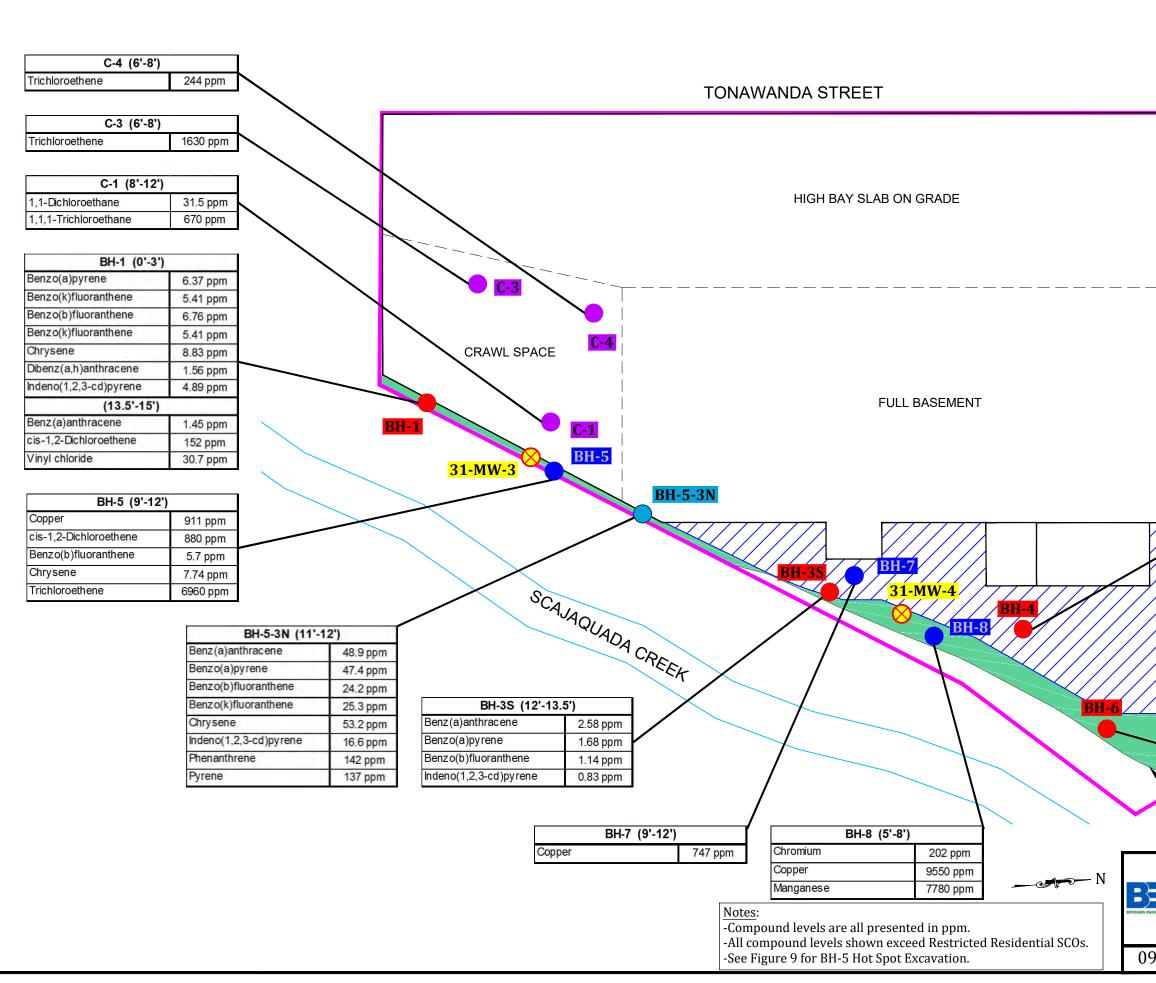
						Г	
							5
		SBH-3 GW	, 				1
	1,1,1-Trichlo	proethane	51.1 p	b			
	1,1-Dichloro	ethane	42 pp	b		102'	
	cis-1,2-Dich	loroethene	e 369 pr	b		1	
	Trichloroeth	nene	194 pp	b			
	Vinyl chloric	le	147 pp	b		571	
	31-M	N-3 Elev. =	572 1		570	2	
	1,1,1-Trichlor			nh			CB
	1,1-Dichloroe		188800 p 75700 p				
			-	-			
	1,1-Dichloroe		2510 pp				
	cis-1,2-Dichlo		37500 p				
	Vinyl chloride		5080 pp				
	1,4-Dioxane		5020pp				
	PFOA		0.0148p	-			31-MW-4
	PFOS		0.01 pp	b			oichloroet
						1,4-Diox	ane
	LEGEN	D				PFOA	
	RI PROG	RAM:				PFOS	
(C GW SAM	PLE FRC)M SBH-	-3 -	FEB	2019	
	D MONITC						
	V GROUNE						
							-
		Figur	e 6: 31	T C	onav	wanda	a Stree
P A	SCORP NAMERICAN	Groun	dwate	r R	esu	lts & (Contoi
	270 Niagara Street		21 To-			da Cru	
	uffalo, NY 14213 16.249.6880		31 Toi				
			Buff	alo	, NY	1420)7
С	8-06-2019	SCALE:	N/A	SH	IEET	1 OF 1	

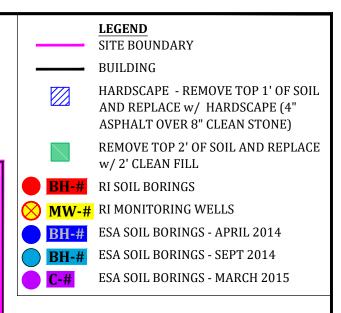






AS-BUILT FIGURES





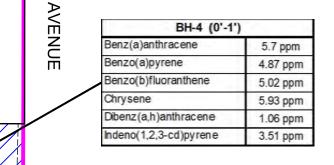


	Figure 10-Remaining Con	Revisions	
E3CORP	Results Exceeding RF	(SCOs	
NGINEERING IN ENVIRONMENT & ENERGY	150 Tonawanda S		
	Buffalo, New York		
9-22-2020	SCALE: N/A	1 OF 1	

BH-6 (4'-6	')
Copper	1480 ppm
Total Mercury	1.34 ppm

TOP OF SLOPE

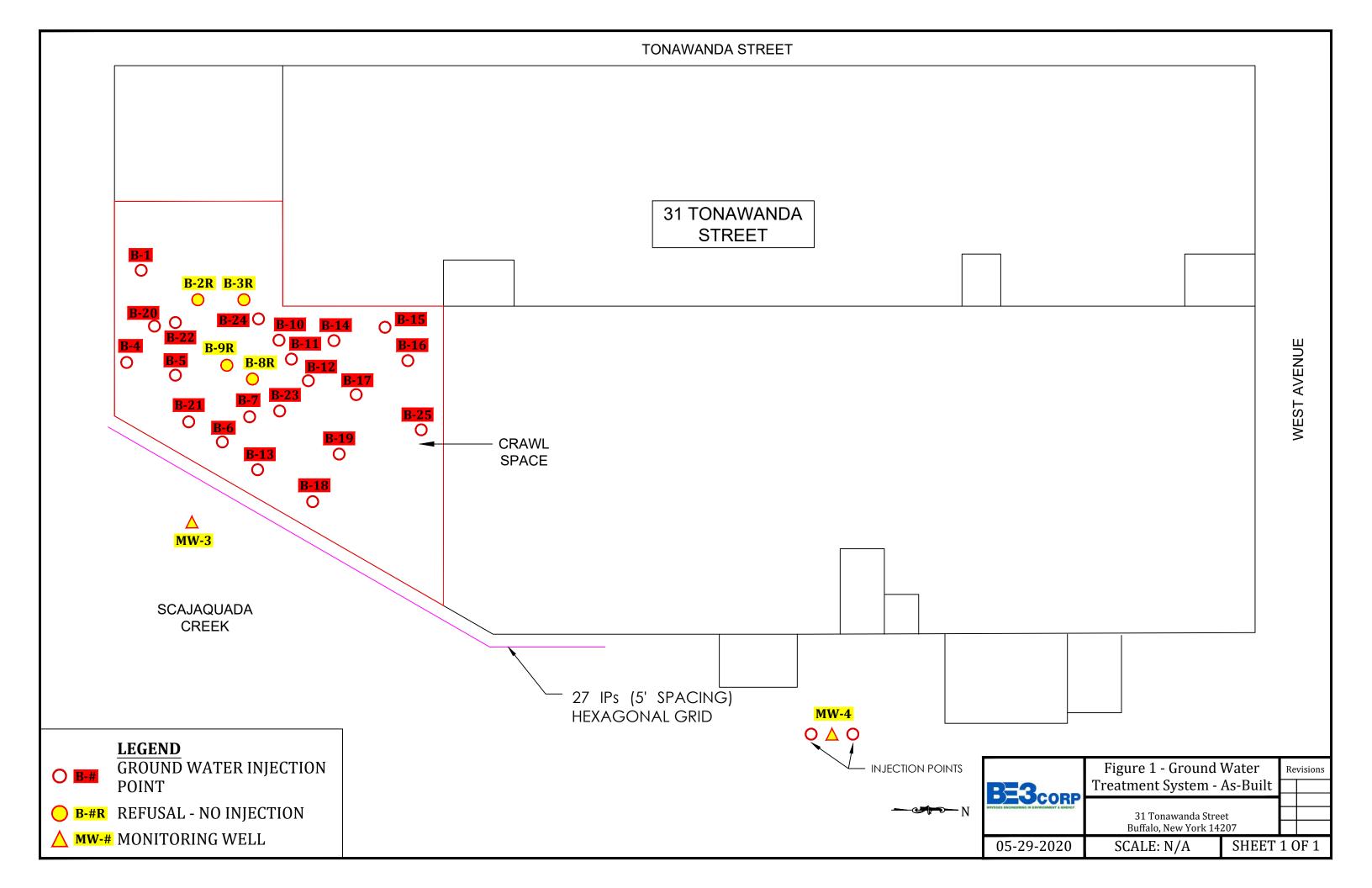

WEST

	Figure 11-Remaining Cont	Re	visions	
-3copp	Results Exceeding RR SCOs			
	31 Tonawanda S			
	Buffalo, New York			
9-22-2020	SCALE: N/A	1 (OF 1	

INTERIM REMEDIAL MEASURES FIGURE

TABLES

TABLE 1
150 TONAWANDA STREET - RI SOIL BORING SAMPLE ANALYTICAL RESULTS SUMMARY

				Sam	ple Identificati	on	Date Sam	PART 375 Soil Cleanup Objectives				
Contaminants	BH-1 (6-7')	BH-2 (0 -1') Surface	BH-2 (8 -10') Native	BH-3 (4 - 6')	BH-4 (0 -1') Surface	BH-4 (2.8 -4') Native	BH-5 (2 - 4')	BH-6 (0-1') Surface	BH-6 (5.5 -8') Native	Unrestricted Use	Residential	Restricted Residential
		•				METALS		•	•			
Arsenic	8.17	4.23	5.18	6.92	15.10	3.38	3.96 J	6.37	3.51	13	16	16
Barium	116	96.8	119.0	107.0	82.3	129.0	64.2	68.9	94.6	350	350	400
Beryllium	0.877	0.703	0.840	0.990	0.670	1.090	0.580	0.580	0.960	7.2	14	72
Cadmium	0.361	0.541	0.401	0.960	1.11	0.380	0.54 J	0.670	0.380	2.5	2.5	4.3
Chromium	20.6	15.8	20.9	33.9	14.5	25.9	24.7 J	11.2	23.9	30	36	180
Copper	28.3	22.9	21.0	96.5	141.0	18.7	54.2 J	30.3	19.1	50	270	270
ead	36.6	27.7	12.0	119.0	271.0	12.5	23.1 J	134.0	8.2	63	400	400
Manganese	325	197	395	479	477	329	1560 J	680	366	1600	2,000	2,000
otal Mercury	0.042	0.36	0.03	0.13	0.24	0.04	0.05	0.32	0.02	0.18	0.81	0.81
vickel	21.4	17.3	22.3	27.3	21.7	27.3	20 J	9.42	23.4	30	140	310
elenium	ND	ND	ND	ND	1.1	ND	ND	ND	ND	3.9	36	180
ilver	0.487	0.84	1.26	1.79	2.98	1.69	1.98	1.09	1.37	2	36	180
ot Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	27	27
linc	115	78.7	61.3	144	199	73.1 J	71.3	128	60.1	109	2200	10,000
	113	,	01.5	177	100	PCBs	/1.5	110	00.1	105	2200	10,000
PCB-1254	ND	ND	ND	ND	ND	ND	ND	0.14 J	ND	0.1	1	1
PCB-1260	0.021 J	0.04 J	ND	0.04 J	ND	ND	ND	ND	ND	0.1	1	1
0 1200	0.0213	0.043	ND	0.043	ND	PESTICIDES		ND	ND	0.1	-	±
I,4-DDT	0.005	ND	ND	ND	ND	ND	, ND	0.032	ND	0.0033	1.7	7.9
1,4-DDT 1,4-DDE	ND	0.005 J	ND	ND	ND	ND	ND	0.009 J	ND	0.0033	1.7	8.9
	ND	ND	ND	ND	ND	ND	ND	0.009 J	ND			13
I,4-DDD	ND	ND ND	ND	ND	ND ND	ND ND	ND	0.01 J	ND ND	0.0033	2.6 0.072	0.36
eta-BHC												
Delta-BHC	ND	ND	ND	ND	0.004	ND	ND	0.004	ND	0.04	100	100
Endosulfan Sulfate	0.002 J	0.003 J	ND	0.005 J	ND	ND	ND	0.007 J	ND	2.4	4.8	24
Indrin	0.004 J	ND	ND	0.004 J	ND	ND	ND	0.01 J	ND	0.014	2.2	11
Endrin Ketone	0.004	ND	ND	ND	0.008 J	ND	ND	0.014	ND	NA	NA	NA
Dieldrin	ND	0.002 J	ND	ND	ND	ND	ND	0.009 J	ND	0.005	0.039	0.2
Aldin	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND	0.005	0.019	0.097
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.042	0.42	2.1
						ATILE ORGANIC						
Acenaphthene	0.311 J	0.4	ND	0.177 J	0.93	ND	ND	0.36	ND	20	100	100
Acenapthylene	ND	ND	ND	ND	ND	ND	ND	0.32	ND	100	100	100
Anthracene	0.389	1.22	ND	0.566	0.67	ND	ND	0.97	ND	100	100	100
Benz(a)anthracene	1.140	4.02	0.185 J	1.16	1.3	ND	0.393	2.56	ND	1	1	1
Benzo(a)pyrene	0.981	3.89	ND	0.89	1.03	ND	0.355	2.08	ND	1	1	1
Benzo(b)fluoranthene	1.170	4.36	ND	0.865	1.38	ND	1.08	2.26	ND	1	1	1
Benzo(g,h,i)perylene	0.732	2.93	ND	0.589	0.708	ND	0.73	1.34	ND	100	100	100
Benzo(k)fluoranthene	0.735	2.28	ND	0.779	1.01	ND	0.321	1.4	ND	0.8	1	3.9
Chrysene	1.240	4.32	0.216 J	1.19	1.45	ND	0.773	2.56	ND	1	1	3.9
Dibenz(a,h)anthracene	0.209 J	0.61	ND	0.202 J	0.266 J	ND	0.255 J	0.36	ND	0.33	0.33	0.33
luoranthene	2.34	9.02	0.303	2.48	1.76	ND	0.642	5.85	ND	100	100	100
luorene	ND	0.38	ND	0.25 J	ND	ND	ND	0.326	ND	30	100	100
Vaphthalene	0.281 J	0.18	ND	0.182 J	1.19	ND	ND	0.34	ND	12	100	100
ndeno(1,2,3-cd)pyrene	0.705	2.73	ND	0.601	0.736	ND	0.715	1.35	ND	0.5	0.5	0.5
henanthrene	1.440	4.79	0.42	1.94	1.23	ND	0.247 J	3.92	ND	100	100	100
yrene	1.890	7.61	0.33 J	1.97	1.52	ND	0.499	5.02	ND	100	100	100
TICs	21 J	20.2 J	ND	5.0 J	28.9 J	4.1 J	4.7 J	19.7 J	ND	NA	NA	NA
						atile Organic Co	-					
Acetone	ND	NA	ND	0.013 J	NA	0.04	ND	NA	ND	0.05	100	100
is-1,2-Dichloroethene	0.004 J	NA	ND	0.013 J	NA	0.04 ND	ND	NA	ND	0.25	59	100
n,p-Xylene	0.004 J	NA	ND	ND	NA	ND	ND	NA	ND	0.25	100	100
n,p-Xylene "oluene	0.005 J	NA	ND	ND	NA	ND	ND	NA	ND	0.26	100	100
	,						ND					
TICs .	ND	NA	ND	ND	NA	ND		NA	ND	NA on of the analyte in t	NA	NA

>/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO

All values in ppm

>Unrestricted Use & Residential SCO but <Restricted-Residential SCO

	TABLE 2
31 TONAWANDA STREET - RI SOIL	BORING SAMPLE ANALYTICAL RESULTS SUMMARY

Contaminants	BH-1	BH-1	BH-2		BH-4		BH-5		BD-6				
Arsonic	(0-3')	(13.5 -15')	(19- 20') Native	BH-3S (12 -13.5')	(0 -1') Surface	BH-4 (11.5 - 12')	(0-2') Surface	BH-5 (4 - 6')	(0 - 2') Surface	BH-6 (4 - 6')	Unrestricted Use	Residential	Restricted Residential
	1					META	-				10	10	1.0
	3.9 20.8	4.21 74.2	1.33 26.4	6.61 102	7.18	11.5 93.9	7.45	4.16 61.8	6.01 88.6	8.96 269	13 350	16 350	16 400
Barium Beryllium	0.058	0.52	0.138	0.544	0.556	0.59	0.499	0.134	0.476	0.394	7.2	14	72
Cadmium	0.509	0.68	0.361	0.997	1.18	0.72	1.23	1.61	0.805	2.55	2.5	2.5	4.3
Chromium	9.9	16	6.5	21.6	17.9	13.9	18.2	7.14	18.4	28.1	30	36	180
Copper	121	28.2	14	150	66.8	29.8	102	141	34.4	1480	50	270	270
_ead	59.5	68.3	7.19	120	249	46.3	309	190	134	346	63	400	400
Vlanganese	198	221	306	238	624	213	516	246	438	175	1600	2,000	2,000
Fotal Mercury	0.08	0.46	0.01	0.56	0.69	0.38	0.43	0.21	0.13 J	1.34	0.18	0.81	0.81
Nickel	6.94	20.3	8.08	19.2	15.7	40.9	16.3	9.83	14.1	16.3	30	140	310
Selenium	0.337	0.731	0.411 ND	1.22 0.628	1.12 0.395	0.746 ND	0.888	0.697	0.576 J 0.21 J	1.16 0.58	3.9	36 36	180 180
Silver Zinc	119	0.266 85.9	ND 83.5	219	0.395 248	950	0.546	1180	0.21 J	1350	109	2200	10,000
Cyanide	0.0004 J	ND	ND	ND	ND	0.71 J	ND	0.001 J	ND	ND	27	2200	27
						PCE							
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	1
PCB-1260	0.035 J	ND	ND	ND	ND	ND	ND	0.068 J	ND	ND	0.1	1	1
						PESTIC							
I,4-DDT	0.033 J	ND	ND	ND	ND	ND	ND	0.006	0.005	0.003 J	0.0033	1.7	7.9
4,4-DDE	ND	ND	ND	ND	ND	ND	ND	ND	0.004 J	ND	0.0033	1.8	8.9
1,4-DDD	ND	ND	ND	0.005 J	ND	ND	ND	0.005 J	0.004 J	ND	0.0033	2.6	13
alpha-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 J	0.02	0.097	0.48
Deta-BHC	0.24	ND	ND	ND	ND ND	ND	ND	ND 0.004 I	ND	ND ND	0.036	0.072	0.36
ndosulfan 11	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.002 J	0.004 J ND	ND ND	ND 0.007 J	2.4	4.8	24 24
Endosulfan Sulfate Endrin	0.076 J 0.019 J	ND	ND	ND	ND	ND	0.002 J	ND	ND	0.007 J	0.014	2.2	11
Endrin Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	NA	NA
Dieldrin	0.112 J	ND	ND	ND	ND	ND	0.005 J	0.002 J	ND	ND	0.005	0.039	0.2
Jeidini	U.L.L.	110	110	110		OLATILE ORGA	ANIC COMPOL		110	110	0.000	0.000	0.2
Acenaphthene	1.2 J	ND	0.438	1.46 J	1.23	ND	ND	ND	ND	ND	20	100	100
Acenapthylene	ND	ND	0.31	0.595 J	0.398 J	ND	ND	ND	ND	ND	100	100	100
Anthracene	2.25	0.73 J	ND	1.76 J	2.8	ND	0.303 J	0.229 J	ND	ND	100	100	100
Benz(a)anthracene	7.17	1.45 J	ND	2.58 J	5.7	ND	1.08	0.756 J	0.588	0.28 J	1	1	1
Benzo(a)pyrene	6.37	0.908 J	ND	1.68 J	4.87	ND	0.997	0.669 J	0.541	0.24 J	1	1	1
Benzo(b)fluoranthene	6.76	0.663 J	ND	1.14 J	5.02	ND	1.04	0.656 J	0.627	0.35 J	1	1	1
Benzo(g,h,i)perylene Benzo(k)fluoranthene	4.25	0.354 J 0.762 J	ND ND	0.908 J 1.02 J	2.98	ND ND	0.682	0.536 J 0.482 J	0.384	0.22 J 0.22 J	100	100	100
Chrysene	8.83	1.3 J	ND	2.88 J	5.05	0.27 J	1.18	0.482 J	0.689	0.22 J 0.409 J	0.8	1	3.9
Dibenz(a,h)anthracene	1.56 J	ND	ND	2.00 J ND	1.06	0.27 J ND	0.246 J	0.841 J ND	0.889 ND	0.409 J ND	0.33	0.33	0.33
Fluoranthene	18.8	2.29 J	ND	4.36 J	13.5	0.478	2.32	1.45 J	1.2	0.498 J	100	100	100
Fluorene	1.06 J	0.283 J	0.23 J	1.14 J	1.18	ND	ND	0.35 J	ND	ND	30	100	100
ndeno(1,2,3-cd)pyrene	4.89	0.458 J	ND	0.829 J	3.51	ND	0.765	0.507 J	0.423	0.21 J	0.5	0.5	0.5
Naphthalene	0.88 J	ND	2.7	0.701 J	0.44 J	0.38 J	ND	46 J	ND	0.212 J	12	100	100
Phenanthrene	15.1	1.4 J	0.58	5.11 J	10.6	0.587	1.19	1.4 J	0.56	0.58	100	100	100
Pyrene	16	2 J	ND	7.75 J	11.4	0.427 J	1.99	1.3 J	1.0	0.49	100	100	100
FICs	33.4 J	18.5 J	4 J	47.1 J	26.4 J	24.6 J	3 J	178 J	8.8 J	48 J	NA	NA	NA
	1					ATILE ORGAN						100	1.05
Acetone	ND ND	ND	ND ND	0.25 J 0.015	NA	0.062	NA	ND	NA	0.38 J 0.219 J	0.05	100	100
oluene 1,1,1-Trichloroethane	0.007	ND ND	ND	0.015 ND	NA	ND ND	NA NA	8.06 ND	NA	0.219 J 0.101 J	0.68	100	100 100
L,1,1-Trichloroethane	0.007 ND	ND	ND	ND	NA	ND	NA	ND	NA	0.101 J 0.192 J	0.68	100	26
L,1-Dichloroethene	ND	ND	ND	ND	NA	ND	NA	ND	NA	0.192 J	0.33	100	100
1,2-Dichloroethane	ND	ND	ND	ND	NA	ND	NA	ND	NA	0.014	0.02	2.3	3.1
Benzene	ND	ND	0.082 J	ND	NA	ND	NA	ND	NA	0.007 J	0.06	2.9	4.8
is-1,2-Dichloroethene	0.004 J	152.0	0.36	0.004 J	NA	ND	NA	ND	NA	0.417 J	0.25	59	100
thylbenzene	ND	ND	0.18	0.005 J	NA	ND	NA	168	NA	0.051 J	1	30	41
n,p-Xylene	ND	ND	ND	0.017 J	NA	0.005 J	NA	595	NA	0.172 J	0.26	100	100
Aethylene chloride	ND	ND	ND	0.018 J	NA	ND	NA	ND	NA	0.02 J	0.05	51	100
n-Propylbenzene	ND	ND	ND	ND	NA	ND	NA	11.5	NA	0.01 J	3.9	100	100
ec-Butylbenzene	ND	ND	ND	ND	NA	ND	NA	8.5	NA	0.007 J	11	100	100
etrachloroethene	ND 0.206	ND ND	ND	ND	NA	ND ND	NA	ND ND	NA	0.019 J	1.3	5.5 10	19 21
Frichloroethene	0.206 ND	ND 2.3 J	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	0.16 J ND	0.47	10	100
rans-1,2-Dichloroethene /inyl chloride	ND ND	30.7	0.2	ND ND	NA	ND ND	NA	ND ND	NA	0.086 J	0.19	0.21	0.9
L,2,4-Trimethylbenzene	ND	ND	ND	0.008 J	NA	ND	NA	91.4	NA	0.080 J	3.6	47	52
L,2,4-Trimethylbenzene	ND	ND	ND	0.008 J	NA	ND	NA	44.3	NA	0.097 J 0.041 J	8.4	47	52
	0.09 J	ND	0.35 J	1.16 J	NA	6.91 J	NA	1790 J	NA	18.1 J	NA	NA	NA

All values in ppm

Icable All Data is validated J - The analyte was positively identi >/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO >Unrestricted Use & Residential SCO but <Restricted-Residential SCO</p>

Table 3 31 Tonawanda Street Building Sub Slab Vapor Ambient Air Analytical Results EPA Air Method Toxic Organics -15 (TO-15)

					S	ample Ide	ntification						NYSDOH Minimu	m Action Levels ^a
Sample Date	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18		
TO-15 Contaminants	IA-01 Indoor	SS-01 Sub Slab	IA-02 Indoor	SS-02 Sub Slab	SS-03 Sub Slab	IA-03 Indoor	SS-06 Sub Slab	IA-04 Indoor	SS-04 Sub Slab	SS-05 Sub Slab	IA-05 (1) Indoor	OA-01 Outdoor	Sub Slab Vapor Concentration	Indoor Air Concentration
						VOLATILI	ORGANIC	COMPOU	NDS⁵					
1,1,1-Trichloroethane	2.8	78 J	9.2	350 J	290 J	5	68 J	34	59	16	1700	ND	100	3
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	8.2	ND	2.9	ND	6	0.2
1,2,4-Trimethylbenzene	1.4	9.9 J	2.4	9.3 J	8.6 J	1.4	2.5 J	1.4	5.5 J	4.7 J	7.3 J	0.69		
1,3,5-Trimethylbenzene	ND	3.4	0.88	3.3 J	3 J	0.59	0.79 J	ND	2.7 J	2.1 J	3.4 J	ND		
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,2,4-Trimethylpentane	0.61	0.79	1.4	1.8	3.5 J	1.7	1.4	0.89	0.51	1.7	0.51	ND		
4-Ethyltoluene	ND	2.5 J	ND	2.4 J	2.2 J	ND	ND	ND	1.4 J	1.1 J	1.8 J	ND		
Acetone	19	910	17	1200 J	140 J	12	140	17	170	49	77	20		
Benzene	1.6	4.8 J	2.3	4.6 J	ND	1.7	2 J	0.93	4.6	1.6	0.99	0.54		
Carbon disulfide	ND	17	ND	18 J	31 J	ND	2.7	ND	27	1.3	ND	ND		
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	0.2
Chloroethane	ND	ND	ND	ND	ND	0.68	0.34	0.7	7.7	ND	0.63	ND		
Chloroform	ND	1.3	ND	1.8 J	1.9 J	ND	ND	ND	2.4	ND	1.4	ND		
Chloromethane	0.89	0.35	0.81	0.54 J	0.62 J	ND	0.6	ND	1.7	ND	2.1	0.66		
cis-1,2-Dichloroethene	ND	ND	ND	0.79 J	ND	ND	0.71	ND	0.75	ND	5.5	ND	6	0.2
Cyclohexane	0.62	280	0.79	390 J	560 J	0.45	65	ND	68	9.6	1.4	ND		
Ethyl acetate	0.43	7.4	ND	5.3 J	11 J	ND	2.5	ND	3.9	1.5	5	ND		
Ethylbenzene	0.91	11 J	2.3	7.9 J	8.2 J	1.7	2.3 J	0.78	1.1 J	1.3 J	0.82 J	ND		
Freon 11	9.6	4.5	4.3	3.5 J	2.4 J	2.3	1.6	1.8	2	2.2	1.7	1.1		
Freon 113	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND		
Freon 12	1.9	2	2.1	2.4 J	J	2.3	2	2	ND	1.8	1.9	1.9		
Heptane	1.3	72 J	2	39 J	J	1.8	7.4 J	1.3	23	4.7 J	3.6 J	0.57		
Hexane	5	89	6.6	150 J	510	3.7	19	2.2	41	16	2.5	0.7		
Isopropyl alcohol	19	51 J	6.1	650 J	J	2.7	16 J	3.1	19	13 J	25 J	6.6		
m&p-Xylene	3	22 J	8.4	17 J	J	6.5	5.3 J	2.7	2.7 J	4 J	1.9 J	0.61		
Methyl Ethyl Ketone	2.4	69	2.9	110 J	J	1.9	14	1.4	10	3.1	6.4	1.1		
Methylene chloride	ND	3.5	0.63	2.6 J	J	ND	1.3	0.69	3.4	1.6	4.7	ND	100	3
o-Xylene	1.3	7.6 J	2.6	5.8 J	J	2	1.9 J	1.1	1.1 J	1.4 J	0.91 J	ND		
Tetrachloroethylene	ND	2500 J	ND	2900 J	2100 J	ND	390 J	ND	3.9 J	2.1 J	1 J	ND	100	3
Toluene	57	430 J	38	640 J	790 J	15	63 J	7.9	59 J	24 J	21 J	3.2		
Trichloroethene	49	150 J	9	620 J	650 J	4.4	40 J	20	81	83	230	1.3	6	0.2
Vinvl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	0.2

Results and Action levels are presented in micrograms per meters cubed (ug/m³). All data has been validated

N/A - Not Applicable ND - Non-detect (1) - Sample from Sub Floor Crawlspace

J - Analyte positively identified; the associated numerical value is approximate concentration of the analyte in the sample.

^aNew York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates (select matrix coumpounds).

^bCompounds with detected concentrations

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, May 2017 Decision Matrices Notes:

NO FURTHER ACTION:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub -slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures IDENTIFY SOURCE(S) AND RESAMPLE OR MITIGATE:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor int rusion given the concentration detected in the sub-slab vapor sample.

Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers capped or by storing VOC-containing products in places where people do not spend much time, such as a garage or shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concen trations in the indoor air or sub-slab vapor have changed.

Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions.

Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions.

		Sam	ple Identification	Date Sampled: 9/21/18	NYSDEC	
Contaminants	MW-1	MW-2	MW-3	MW-4	TOGS 1.1.1. GA	
	101.0.0		-		(1)	
		META	-		-	
Arsenic	ND	ND	ND	ND	25	
Barium	ND	ND	ND	ND	1000	
Beryllium	ND	ND	ND	ND	3	
Chromium	ND	ND	ND	ND	50	
Copper	15 J	14.4 J	18 J	20 J	200	
Cyanide	ND	ND	ND	ND	200	
Manganese	196	405	258	1400	300	
Nickel	ND	ND	ND	60	100	
Total Mercury	ND	ND	ND	ND	0.7	
Zinc	ND	ND	72	100	2000	
Selenium	ND	ND	ND	ND	10	
		PCB	-			
PCB 1254	ND	ND	0.065 J	ND	0.09	
PCB-1260	ND	ND	0.134 J	ND	0.09	
		PESTIC	IDES			
Aldrin	ND	ND	ND	0.127 J	ND	
alpha-BHC	ND	ND	ND	0.111	NA	
beta-BHC	ND	ND	ND	ND	NA	
Endrin	0.11 J	ND	ND	0.172	ND	
Heptachlor	ND	0.065	ND	0.141 J	0.04	
Heptachlor Epoxide	0.178 J	ND	ND	0.11 J	0.03	
trans-Chlordane	0.056 J	ND	ND	ND	NA	
		SEMIVOLATILE ORGA	ANIC COMPOUNDS			
SVOCs	ND	ND	ND	ND	NA	
		Volatile Organic	Compounds			
Acetone	ND	ND	ND	0.006	50	
Carbon disulfide	ND	1.44 J	ND	0.003	NA	
TICs	ND	ND	ND	ND	NA	
	-	Field Para	meters	·	-	
Turbidity (NTU)	1.0	6.4	18	19	NA	
pH	6.97	6.71	6.84	6.2	NA	
Dissolved Oxygen	1.98	0	1.32	0	NA	
Temp (degrees C)	19.79	17.08	17.93	15.8	NA	
Conductivity	2.11	2.23	3.03	4.15	NA	

 TABLE 4

 150 TONAWANDA STREET - RI GW SAMPLE ANALYTICAL RESULTS SUMMARY

All values in ppb

N/A - Not Applicable ND - Non-detect All Data is Validated

(1) - TOGs 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

Exceeds TOGs Guidance Value

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

		Sam	ole Identification Da	te Sampled: 9/24/18		NYSDEC
Contaminants	MW-1	MW-2	MW-3	MW-4	MW-5	TOGS 1.1.1. GA (1)
			METALS			
Arsenic	ND	ND	ND	ND	0.02	25
Barium	0.05 J	ND	0.26	0.11	0.06 J	1000
Beryllium	ND	ND	ND	ND	ND	3
Chromium	ND	5.0 J	ND	ND	ND	50
Copper	ND	20.2	ND	0.01	0.01 J	200
Cyanide	ND	ND	ND	ND	ND	200
_ead	ND	6.2 J	ND	ND	ND	25
Vanganese	7.23	547	0.62	0.65 J	1.15	300
Nickel	ND	ND	ND	ND	ND	100
Fotal Mercury	ND	ND	ND	ND	ND	0.7
Zinc	0.05 J	38.9 J	ND	0.97	ND	2000
Selenium	ND	ND	ND	ND	ND	10
			PCBs			
PCB 1254	ND	ND	ND	ND	ND	0.09
PCB-1260	1.81 J	1.22 J	ND	ND	ND	0.09
			PESTICIDES		•	
Aldrin	0.057 J	ND	ND	ND	0.12	ND
alpha-BHC	ND	ND	ND	ND	0.08 J	NA
peta-BHC	ND	ND	ND	ND	ND	NA
Dieldrin	ND	ND	ND	ND	0.07 J	0.004
Endrin	ND	ND	ND	ND	0.13 J	ND
Heptachlor	ND	ND	0.104 J	ND	0.1 J	0.04
Heptachlor Epoxide	ND	ND	ND	ND	0.16 J	0.03
trans-Chlordane	ND	ND	ND	ND	0.06 J	NA
		SEMIVOLATI	LE ORGANIC COMPOU	NDS		
Bis (2-ethylhexyl) phthalate	ND	ND	49.2	ND	ND	5
			Organic Compounds		115	-
Acetone	12.9 J	5.13 J	ND	5.94 J	17.5	50
1.1.1-Trichloroethane	ND	1.21 J	188000 J	ND	ND	5
1.1-Dichloroethane	ND	ND	75700	1.63 J	3.52	5
1.1-Dichloroethene	ND	ND	2510 J	ND	ND	5
cis-1,2-Dichloroethene	ND	2.1 J	37500	5.26	ND	5
1,2,4-Trimethylbenzene	ND	ND	ND	ND	3.03	5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	1.15 J	5
1.4-Dioxane	ND	ND	ND	ND	49.4	0.35
Trichloroethene	ND	ND	ND	4.32	1.69 J	5
/invl chloride	ND	ND	5080	1.69 J	ND	2
Carbon disulfide	ND	3.45	ND	ND	ND	NA
TICs	ND	ND	ND	ND	518 J	NA
			ield Parameters	110	0100	
Furbidity (NTU)	69.4	10.2	2.3	13.2	17.3	NA
oH	6.81	6.95	6.28	6.98	6.64	NA
Dissolved Oxygen	0.01	0.95	0.20	0.90	0.04	NA
Temp (degrees C)	15.82	14.74	15.93	17.87	16.71	NA
Conductivity	3.65	8.44	1.47	1.12	2.75	NA

 TABLE 5

 31 TONAWANDA STREET - RI GW SAMPLE ANALYTICAL RESULTS SUMMARY

All values in ppb

N/A - Not Applicable ND - Non-detect

(1) - TOGS 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

Exceeds TOGs Guidance Value

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

All Data is Validated

TABLE 10 31 TONAWANDA STREET - CRAWL SPACE SOIL BORING SAMPLE ANALYTICAL RESULTS SUMMARY

SBH-1 (8') ND 0.075 ND ND ND	SBH-1 (16') ND ND ND	SBH-3 (10 -11') ND 0.29	SBH-4 (8') VOL ND ND	SBH-4 (10') ATILE ORGANI ND	SBH-4 (12') IC COMPOUNI	-	SBH-5 (8')	SBH-5 (12')	Unrestricted Use	Residential	Restricted Residential
ND 0.075 ND ND	ND ND ND	ND 0.29	ND	ND		-					·
ND 0.075 ND ND	ND ND ND	ND 0.29			ND						
0.075 ND ND	ND ND	0.29	ND		ND	ND	ND	ND	0.05	100	100
ND ND	ND			ND	ND	ND	ND	ND	0.7	100	100
ND			37 J	ND	ND	0.18	4.23	667	0.68	100	100
		ND	ND	ND	ND	ND			0.27	19	26
ND	ND	ND	ND	ND	ND	ND	0.079 J	17.9	0.33	100	100
	ND	0.075	ND	ND	ND	0.035 J	1.79	246	0.02	2.3	3.1
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	2.9	4.8
ND	0.012	0.46	35.4 J	1970	1.29	ND	1.47	221	0.25	59	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	1	30	41
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	51	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	11	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	5.5	19
2.56	0.009	3.89	1660	7340	0.72	3.65	11.5	474	0.47	10	21
ND	ND	ND	ND	ND	0.03	ND	0.19	7.12	0.19	100	100
ND	0.039	ND	ND	ND	0.034	ND	ND	4.02 J	0.02	0.21	0.9
ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	47	52
ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	47	52
	ND ND 2.56 ND ND ND ND ND	ND ND ND ND 2.56 0.009 ND ND ND 0.039 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND 2.56 0.009 3.89 ND ND ND ND ND ND	ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 ND ND ND ND ND 0.03 ND ND ND ND 0.034 ND ND ND ND 0.034 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 3.65 ND ND ND ND ND 0.03 ND ND ND ND ND ND 0.034 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 ND ND ND ND ND 0.03 ND 0.19 ND 0.039 ND ND ND 0.034 ND ND ND ND ND ND ND ND ND ND	ND ND<	ND ND ND ND ND ND ND ND ND 11 ND ND ND ND ND ND ND ND ND 11 ND ND ND ND ND ND ND ND 13 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 474 0.47 ND ND ND ND ND 0.03 ND 0.19 7.12 0.19 ND 0.039 ND ND ND ND 0.02 0.02 ND ND ND ND ND ND ND 3.6 ND ND ND ND ND ND ND 3.6 ND ND ND ND ND ND ND 8.4	ND ND ND ND ND ND ND ND ND 11 100 ND ND ND ND ND ND ND ND ND 1.3 5.5 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 474 0.47 10 ND ND ND ND 0.03 ND 0.19 7.12 0.19 100 ND ND ND ND 0.034 ND ND 4.02 J 0.02 0.21 ND ND ND ND ND ND ND A7 10 ND ND ND ND 0.034 ND 0.19 7.12 0.19 100 ND ND ND ND ND ND A02 J 0.02 0.21 ND ND ND ND ND ND ND 3.6 47

All values in ppm

>/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO

>Unrestricted Use & Residential SCO but <Restricted-Residential SCO

TABLE 11 31 TONAWANDA STREET - MW-2 GW SAMPLE ANALYTICAL RESULTS SUMMARY

Sample Identification		MW-2		NYSDEC TOGS 1.1.1. GA							
Sample Date	9/24/2018	8/8/2023	7/17/2024	NYSDEC 1065 1.1.1. GF							
-	Metals (mg/L)										
Dissolved Iron	NA	0.037 J	0.023 J	N/A							
	Volatil	e Organic Compound	s (ug/L)								
1,1,1-Trichloroethane	1.21 J	ND	ND	5							
1,1-Dichloroethane	ND	1.1	ND	5							
1,1-Dichloroethene	ND	ND	ND	5							
Chloroethane	ND	ND	ND	5							
cis-1,2-Dichloroethene	2.1 J	1.4	ND	5							
Methyl tert-butyl ether	ND	2.6	0.87 J	NR							
trans-1,2-Dichloroethene	ND	ND	ND	5							
Trichloroethene	ND	1.5	ND	5							
Vinyl chloride	ND	ND	ND	2							
		Field Parameters									
Turbidity (NTU)	10.2	2.5	1.3	N/A							
рН	6.95	7.1	7.14	N/A							
Dissolved Oxygen (mg/L)	0	8.9	9.85	N/A							
Temperature (°C)	14.74	16.9	19.07	N/A							
Conductivity (mS/cm)	8.44	1.12	5.37	N/A							
TOC (mg/L)	NA	4.7	3.2	N/A							
Sulfate (mg/L)	NA	2210	3850	N/A							

Notes:

°C	degrees Celsius
J	Result less than RL but greater than/equal to MDL and the concentration is approximate.
MDL	Method Detection Limit
mg/L	Milligrams per liter
ug/L	Microgram per liter
mS/cm	MilliSiemens per centimeter
N/A	Not Applicable
ND	Non Detect
NR	Not Regulated
NTU	Nephelometric Turbidity Unit
RL	Reporting Limit
TOC	Total Organic Carbon
TOGs 1.1.1 GA	Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

TABLE 12 31 TONAWANDA STREET - MW-3 GW SAMPLE ANALYTICAL RESULTS SUMMARY

Sample Identification			MW-3			NYSDEC TOGS 1.1.1. GA	
Sample Date	9/24/2018	5/22/2020	9/15/2020	8/8/2023	7/17/2024	NTSDEC 10GS 1.1.1. GA	
			Metals (mg/L)	•			
Dissolved Iron (mg/L)	NA	254	887	173	178	N/A	
		Volat	ile Organic Compounds ((ug/L)			
1,1,1-Trichloroethane	188000 J	20500	26500	18000	12000	5	
1,1-Dichloroethane	75700	30500	26100	14000	8800	5	
1,1-Dichloroethene	2510 J	495	630	ND	ND	5	
Chloroethane	ND	2090	21900	56000	51000	5	
cis-1,2-Dichloroethene	37500	24300	28200	15000	9800	5	
trans-1,2-Dichloroethene	ND	ND	284 J	ND	ND	5	
Trichloroethene	ND	594	1290	ND	ND	5	
Vinyl chloride	5980	5080	3770	9200	5100	2	
		·	Field Parameters				
Turbidity (NTU)	2.3	190	137	6	0.7	N/A	
рН	6.28	6.67	6.92	5.1	6.3	N/A	
Dissolved Oxygen (mg/L)	0	5.24	2.73	4.4	10.55	N/A	
Temperature (°C)	15.93	22.1	16.1	21.1	17.94	N/A	
Conductivity (mS/cm)	1.47	1.12	4.28	2.01	2.09	N/A	
TOC (mg/L)	NA	2400	1700	190	170	N/A	
Sulfate (mg/L)	NA	1.9	11	ND	2.5 J	N/A	

Notes: °C degrees Celsius J Result less than RL but greater than/equal to MDL and the concentration is approximate. MDL Method Detection Limit mg/L Milligrams per liter ug/L Microgram per liter mS/cm MilliSiemens per centimeter N/A Not Applicable ND Non Detect NR Not Regulated NTU Nephelometric Turbidity Unit RL **Reporting Limit** Total Organic Carbon TOC Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater) TOGs 1.1.1 GA Exceeds TOGs Guidance Value

APPENDIX A

NYSDEC SMP PRR CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. C915299	Box 1			
	e Name 31 Tonawanda Street				
Site Cit Co	e Address: 31 Tonawanda Street Zip Code: 14207 y/Town: Buffalo unty:Erie e Acreage: 2.740				
Re	porting Period: April 22, 2022 to August 01, 2024				
		YES	NO		
1.	Is the information above correct?	X			
	If NO, include handwritten above or on a separate sheet.				
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X		
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.				
5.	Is the site currently undergoing development?		X		
		Box 2			
		YES	NO		
6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	X			
7.	Are all ICs in place and functioning as designed?				
AC	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
Sig	nature of Owner, Remedial Party or Designated Representative Date				

		Box 2	Α
0	Has any new information revealed that assumptions made in the Qualitative Exposure	YES	NO
0.	Assessment regarding offsite contamination are no longer valid?		Х
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE NO. C915299		Bo	x 3
	Description of Institutional Controls		

Parcel	<u>Owner</u>	Institutional Control
88.42-2-4.21	31 Tonawanda Street, LLC	Landuse Restriction Site Management Plan IC/EC Plan
Controlled Property may be following long-term institution maintained as specified in the inspected at a frequency and property is prohibited without County Department of Healt user must first notify and obte environmental or public head information pertinent to Site in a manner defined in the Site contaminated material must performance and effectiven maintenance, monitoring, in remedy shall be performed employees or other represe	used for restricted residential onal controls are employed: (1) the Site Management Plan (SM ad in a manner defined in the S out necessary water quality treat th to render it safe for use as on otain written approval to do so of the monitoring must be perform Management of the Controlle SMP; (6) all future activities on t be conducted in accordance ess of the remedy must be per ispection, and reporting of any as defined in the SMP; and (9) entatives of the State of New Y	Ground Water Use Restriction ty Clerk's Office on September 22, 2020. The commercial and industrial use as long as the all Engineering Controls must be operated and IP); (2) all Engineering Controls must be SMP; (3) the use of groundwater underlying the timent as determined by the NYSDOH or the Erie drinking water or for industrial purposes, and the from the Department; (4) groundwater and other ned as defined in the SMP; (5) data and d Property must be reported at the frequency and the property that will disturb remaining with the SMP; (7) monitoring to assess the formed as defined in the SMP; (8) operation, mechanical or physical components of the access to the site must be provided to agents, ork with reasonable prior notice to the property I by this Environmental Easement.
		Site Management Plan
Controlled Property may be following long-term institution maintained as specified in the inspected at a frequency and property is prohibited without County Department of Heal user must first notify and obte environmental or public head information pertinent to Site in a manner defined in the Site contaminated material must performance and effectiven maintenance, monitoring, in remedy shall be performed employees or other represe	used for restricted residential onal controls are employed: (1) the Site Management Plan (SM ad in a manner defined in the S ut necessary water quality treat th to render it safe for use as on that written approval to do so of the monitoring must be perform Management of the Controlle SMP; (6) all future activities on t be conducted in accordance ess of the remedy must be per ispection, and reporting of any as defined in the SMP; and (9) entatives of the State of New Y	ty Clerk's Office on September 22, 2020. The commercial and industrial use as long as the all Engineering Controls must be operated and IP); (2) all Engineering Controls must be SMP; (3) the use of groundwater underlying the timent as determined by the NYSDOH or the Erie drinking water or for industrial purposes, and the from the Department; (4) groundwater and other ned as defined in the SMP; (5) data and d Property must be reported at the frequency and the property that will disturb remaining with the SMP; (7) monitoring to assess the formed as defined in the SMP; (8) operation, mechanical or physical components of the) access to the site must be provided to agents, ork with reasonable prior notice to the property I by this Environmental Easement.
		Box 4
Description of Engin	-	
Parcel 88.42-2-4.21	Engineering Co	ntrol
(1) A site cover currently ex residential/commercial/indu		allow for restricted redevelopment will maintain the existing site crete sidewalks, asphalt parking lots, and

Parcel Engineering Control					
Vapor Mitigation Monitoring Wells					
(1) A site cover currently exists and will be maintained to allow for restricted					
residential/commercial/industrial use of the site. Any site redevelopment will maintain cover, which consists of structures such as buildings, concrete sidewalks, asphalt particular structures and structures are sidewalks.					
clean soil covers.	ning ioto, and				
(2) A Sub-slab depressurization system exists in the on-site building. This system wi	l continuo to				
operate to prevent the migration of sub-slab soil vapor from soil and groundwater into					
		Box 5			
Periodic Review Report (PRR) Certification Statements					
1. I certify by checking "YES" below that:					
 a) the Periodic Review report and all attachments were prepared under the reviewed by, the party making the Engineering Control certification; 	e direction of,	and			
 b) to the best of my knowledge and belief, the work and conclusions desc are in accordance with the requirements of the site remedial program, and engineering practices; and the information presented is accurate and compete 	generally acc				
	YES	NO			
	X				
2. For each Engineering control listed in Box 4, I certify by checking "YES" below th following statements are true:	nat all of the				
(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the since the date that the Control was put in-place.	ne Departmer	ıt;			
(b) nothing has occurred that would impair the ability of such Control, to p the environment;	rotect public h	ealth and			
(c) access to the site will continue to be provided to the Department, to ev remedy, including access to evaluate the continued maintenance of this C					
(d) nothing has occurred that would constitute a violation or failure to com Site Management Plan for this Control; and	ply with the				
(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.					
	YES	NO			
	X				
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise con					
A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
Signature of Owner, Remedial Party or Designated Representative	Date				

	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE S I certify that all information and statements in Boxes 1,2, and 3 are true. statement made herein is punishable as a Class "A" misdemeanor, pursu Penal Law.	understand that a false
I Area at IZY Meanw Kor print name print business addre	
am certifying as OUMOR	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	
	8)31/24

EC CERTIFICATIONS	
Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understan punishable as a Class "A" misdemeanor, pursuant to Section 210	
I Jason M. Brydges at 960 Bust Ave print name print busine professional engineer am certifying as a for the Owner	<u>, Suite B-150, Buffalu, NY 1421,3</u> ss address
* SINTE OF NEW PORT	(Owner or Remedial Party)
1.6.5.2 (2.4.) - 1.44 (2.5.) (2.5.) · 2.5.) ·	amp Date

APPENDIX B

ENVIRONMENTAL EASEMENT AND SURVEY MAPS

MICHAEL P. KEARNS, ERIE COUNTY CLERK REF : DATE:9/8/2020 TIME:9:55:50 AM RECEIPT: 20330004 - DUPLICATE -SLATER LAW FIRM ACCOUNT #: 0 DUPLICATE RECEIPT ITEM - 01 785 RECD: 9/8/2020 10:21:15 AM FILE: 2020148049 BK/PG D 11365/6056 Deed Sequence: TT2020002670 31 TONAWANDA STREET LLC PEOPLE OF THE STATE OF NEW YORK (THE) Recording Fees 95.(10.(95.00 Subtotal 10.00 105.00 TOTAL DUE PAID TOTAL PAID CHECK \$105.00 \$105.00 Check #2548: \$105.00 105.00 Frences. -----REC BY: Megan COUNTY RECORDER -----

- -

×----

ERIE COUNTY CLERK'S OFFICE

County Clerk's Recording Page

Return to:

THE SLATER LAW FIRM 500 SENECA ST SUITE 504 BUFFALO, NY 14204

Party 1:

31 TONAWANDA STREET LLC

Party 2:

PEOPLE OF THE STATE OF NEW YORK (THE)

Recording Fees:

RECORDING	\$75.00
COE CO \$1 RET	\$1.00
COE STATE \$14.25 GEN	\$14.25
COE STATE \$4.75 RM	\$4.75
TP584	\$10.00

Book Type: D Book: 11365 Page: 6056 Page Count: 11 Doc Type: EASEMENT/RTWY Rec Date: 09/08/2020

Rec Time:10:21:15 AMControl #:2020148049UserID:MeganTrans #:20330004Document Sequence NumberTT2020002670

Consideration Amount: 1.00

BASIC MT	\$0.00
SONYMA MT	\$0.00
ADDL MT/NFTA	\$0.00
SP MT/M-RAIL	\$0.00
NY STATE TT	\$0.00
ROAD FUND TT	\$0.00

Total: \$105.00

STATE OF NEW YORK ERIE COUNTY CLERK'S OFFICE

WARNING – THIS SHEET CONSTITUTES THE CLERK'S ENDORSEMENT REQUIRED BY SECTION 319&316-a (5) OF THE REAL PROPERTY LAW OF THE STATE OF NEW YORK. DO NOT DETACH. THIS IS NOT A BILL.

> Michael P. Kearns Erie County Clerk

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36

THIS INDENTURE made this <u>12</u> day of <u>Cwapet</u>, 20<u>2</u>, between Owner, 31 Tonawanda Street, LLC, having an office at 124 Meadow Road, Orchard Park, New York 14127, County of Erie, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233.

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 31 Tonawanda Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 88.58 Block 1 Lot 1, being the same as that property conveyed to Grantor by deed dated June 2, 2014 and recorded in the Erie County Clerk's Office in Liber and Page 11264/6998. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 1.83 +/- acres, and is hereinafter more fully described in the Land Title Survey dated October 31, 2018 and last revised April 20, 2020 prepared by Daniel J. Regan, L.L.S. of WM Schutt Associates, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, Grantor, is the owner of real property located at the address of 150 Tonawanda Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 88.42

Block 2 Lot 4.21, being the same as that property conveyed to Grantor by deed dated May 8, 2017 and recorded in the Erie County Clerk's Office in Liber and Page 11313/64. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.91 +/- acres, and is hereinafter more fully described in the Land Title Survey dated October 31, 2018 and last revised April 20, 2020 prepared by Daniel J. Regan, L.L.S. of WM Schutt Associates, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule B; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C915299-08-17, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without

necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement

is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

Grantor covenants and agrees that this Environmental Easement shall be F. incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

Grantor covenants and agrees that it shall, at such time as NYSDEC may require, G. submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

the inspection of the site to confirm the effectiveness of the institutional and (1)engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3). (2)

the institutional controls and/or engineering controls employed at such site: (i) are in-place;

are unchanged from the previous certification, or that any identified (ii) changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

that nothing has occurred that would impair the ability of such (iii) control to protect the public health and environment;

the owner will continue to allow access to such real property to evaluate the (3)continued maintenance of such controls;

nothing has occurred that would constitute a violation or failure to comply (4)with any site management plan for such controls;

the report and all attachments were prepared under the direction of, and (5)reviewed by, the party making the certification;

to the best of his/her knowledge and belief, the work and conclusions (6)described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

the information presented is accurate and complete. (7)

Right to Enter and Inspect. Grantee, its agents, employees, or other representatives of the 3. State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

Reserved Grantor's Rights. Grantor reserves for itself, its assigns, representatives, and 4. successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C915299 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

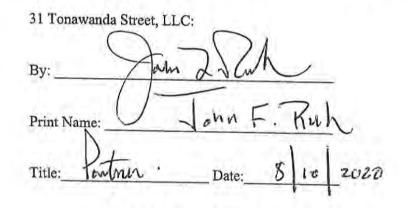
With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.


9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. Joint Obligation. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor's Acknowledgment

STATE OF NEW YORK

)) ss:

)

COUNTY OF

On the 10th day of Atomic , in the year 20 22 before me, the undersigned, personally appeared 1200 ± 1200 , ± 1200 , personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New Vork JOHN M. SKRZYPCZYK Notary Public, State of New York Qualified in Erie County My Commission Expires Oct. 6, 20

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By: Ill Q

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK COUNTY OF ALBANY

On the 12^{-44} day of 44gust, in the year 2022; before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

)) ss:

)

Notary Public - State of New York

Drew A. Wellette Notary Public, State of New York Qualified in Schenectady Co. No. 01WE6089074 Commission Expires 03/17/ 2023

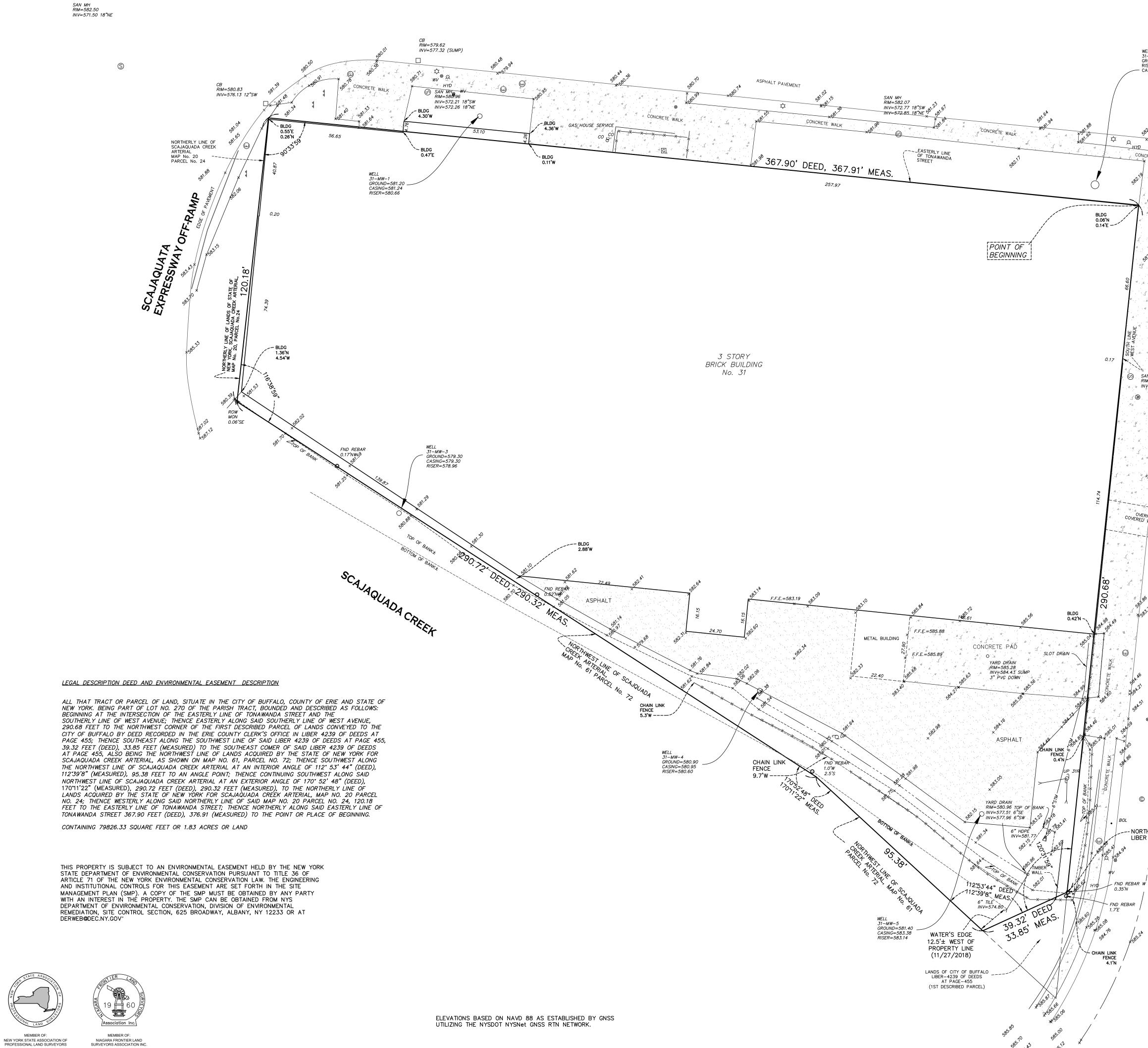
SCHEDULE "A" PROPERTY DESCRIPTION

LEGAL DESCRIPTION DEED AND ENVIRONMENTAL EASEMENT DESCRIPTION - 31 Tonawanda St

ALL THAT TRACT OR PARCEL OF LAND, SITUATE IN THE CITY OF BUFFALO, COUNTY OF ERIE AND STATE OF NEW YORK. BEING PART OF LOT NO. 270 OF THE PARISH TRACT, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE INTERSECTION OF THE EASTERLY LINE OF TONAWANDA STREET AND THE SOUTHERLY LINE OF WEST AVENUE; THENCE EASTERLY ALONG SAID SOUTHERLY LINE OF WEST AVENUE, 290.68 FEET TO THE NORTHWEST CORNER OF THE FIRST DESCRIBED PARCEL OF LANDS CONVEYED TO THE CITY OF BUFFALO BY DEED RECORDED IN THE ERIE COUNTY CLERK'S OFFICE IN LIBER 4239 OF DEEDS AT PAGE 455; THENCE SOUTHEAST ALONG THE SOUTHWEST LINE OF SAID LIBER 4239 OF DEEDS AT PAGE 455, 39.32 FEET (DEED), 33.85 FEET (MEASURED) TO THE SOUTHEAST COMER OF SAID LIBER 4239 OF DEEDS AT PAGE 455, ALSO BEING THE NORTHWEST LINE OF LANDS ACQUIRED BY THE STATE OF NEW YORK FOR SCAJAQUADA CREEK ARTERIAL, AS SHOWN ON MAP NO. 61, PARCEL NO. 72; THENCE SOUTHWEST ALONG THE NORTHWEST LINE OF SCAJAQUADA CREEK ARTERIAL AT AN INTERIOR ANGLE OF 112° 53' 44" (DEED), 112°39'8" (MEASURED), 95.38 FEET TO AN ANGLE POINT; THENCE CONTINUING SOUTHWEST ALONG SAID NORTHWEST LINE OF SCAJAQUADA CREEK ARTERIAL AT AN EXTERIOR ANGLE OF 170° 52' 48" (DEED), 170°11'22" (MEASURED), 290.72 FEET (DEED), 290.32 FEET (MEASURED), TO THE NORTHERLY LINE OF LANDS ACQUIRED BY THE STATE OF NEW YORK FOR SCAJAQUADA CREEK ARTERIAL, MAP NO. 20 PARCEL NO. 24; THENCE WESTERLY ALONG SAID NORTHERLY LINE OF SAID MAP NO. 20 PARCEL NO. 24, 120.18 FEET TO THE EASTERLY LINE OF TONAWANDA STREET; THENCE NORTHERLY ALONG SAID EASTERLY LINE OF TONAWANDA STREET 367.90 FEET (DEED), 376.91 (MEASURED) TO THE POINT OR PLACE OF BEGINNING.

CONTAINING 79826.33 SQUARE FEET OR 1.83 ACRES OR LAND


SCHEDULE "B" PROPERTY DESCRIPTION

DEED AND ENVIRONMENTAL EASEMENT DESCRIPTION - 150 Tonawanda St

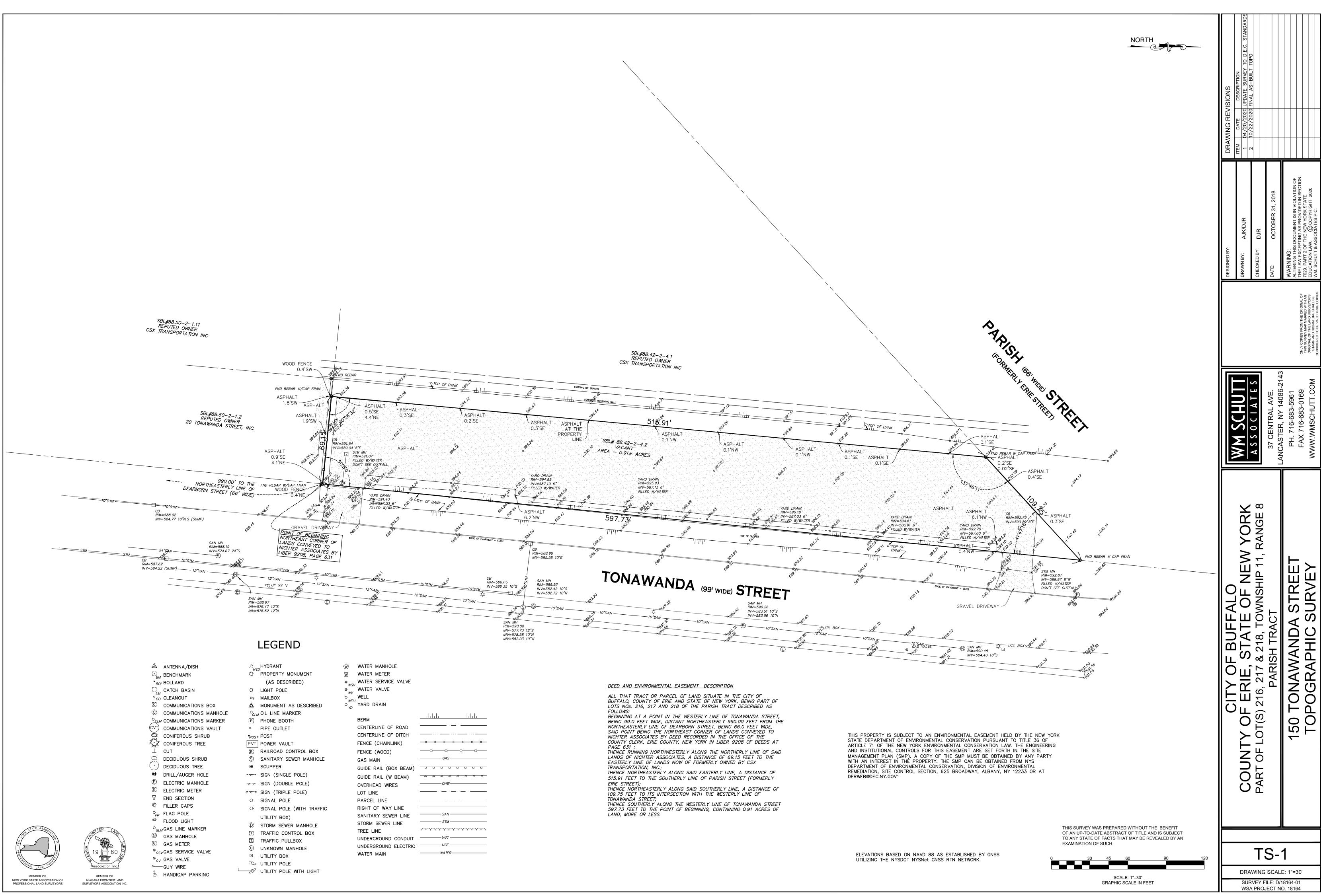
ALL THAT TRACT OR PARCEL OF LAND SITUATE IN THE CITY OF BUFFALO, COUNTY OF ERIE AND STATE OF NEW YORK, BEING PART OF LOTS NOS. 216, 217 AND 218 OF THE PARISH TRACT DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT IN THE WESTERLY LINE OF TONAWANDA STREET, BEING 99.0 FEET WIDE, DISTANT NORTHEASTERLY 990.00 FEET FROM THE NORTHEASTERLY LINE OF DEARBORN STREET, BEING 66.0 FEET WIDE, SAID POINT BEING THE NORTHEAST CORNER OF LANDS CONVEYED TO NICHTER ASSOCIATES BY DEED RECORDED IN THE OFFICE OF THE COUNTY CLERK, ERIE COUNTY, NEW YORK IN LIBER 9208 OF DEEDS AT PAGE 631 ; THENCE RUNNING NORTHWESTERLY ALONG THE NORTHERLY LINE OF SAID LANDS OF NICHTER ASSOCIATES, A DISTANCE OF 69.15 FEET TO THE EASTERLY LINE OF LANDS NOW OF FORMERLY OWNED BY CSX TRANSPORTATION, INC.; THENCE NORTHEASTERLY ALONG SAID EASTERLY LINE, A DISTANCE OF 515.91 FEET TO THE SOUTHERLY LINE OF PARISH STREET (FORMERLY ERIE STREET); THENCE NORTHEASTERLY ALONG SAID SOUTHERLY LINE, A DISTANCE OF 109.75 FEET TO ITS INTERSECTION WITH THE WESTERLY LINE OF TONAWANDA STREET; THENCE SOUTHERLY ALONG THE WESTERLY LINE OF TONAWANDA STREET; THENCE SOUTHERLY ALONG THE WESTERLY LINE OF TONAWANDA STREET; 597.73 FEET TO THE POINT OF BEGINNING.

CONTAINING 0.91 ACRES OF LAND, MORE OR LESS.

TONAWANDA (99' WIDE) STREET

BEGINNING AT THE INTERSECTION OF THE EASTERLY LINE OF TONAWANDA STREET AND THE SOUTHERLY LINE OF WEST AVENUE; THENCE EASTERLY ALONG SAID SOUTHERLY LINE OF WEST AVENUE, AT PAGE 455, ALSO BEING THE NORTHWEST LINE OF LANDS ACQUIRED BY THE STATE OF NEW YORK FOR SCAJAQUADA CREEK ARTERIAL, AS SHOWN ON MAP NO. 61, PARCEL NO. 72; THENCE SOUTHWEST ALONG THE NORTHWEST LINE OF SCAJAQUADA CREEK ARTERIAL AT AN INTERIOR ANGLE OF 112. 53' 44" (DEED), 112'39'8" (MEASURED), 95.38 FEET TO AN ANGLE POINT; THENCE CONTINUING SOUTHWEST ALONG SAID NORTHWEST LINE OF SCAJAQUADA CREEK ARTERIAL AT AN EXTERIOR ANGLE OF 170' 52' 48" (DEED), 170"11'22" (MEASURED), 290.72 FEET (DEED), 290.32 FEET (MEASURED), TO THE NORTHERLY LINE OF LANDS ACQUIRED BY THE STATE OF NEW YORK FOR SCAJAQUADA CREEK ARTERIAL, MAP NO. 20 PARCEL NO. 24; THENCE WESTERLY ALONG SAID NORTHERLY LINE OF SAID MAP NO. 20 PARCEL NO. 24, 120.18 FEET TO THE EASTERLY LINE OF TONAWANDA STREET; THENCE NORTHERLY ALONG SAID EASTERLY LINE OF TONAWANDA STREET 367.90 FEET (DEED), 376.91 (MEASURED) TO THE POINT OR PLACE OF BEGINNING.


STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 OF ARTICLE 71 OF THE NEW YORK ENVIRONMENTAL CONSERVATION LAW. THE ENGINEERING AND INSTITUTIONAL CONTROLS FOR THIS EASEMENT ARE SET FORTH IN THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL

VELL 1-MW-2 ROUND=582.30 ROUND=582.31 RSING=581.89	NORTH	VG REVISIONS DATE DESCRIPTION (27/2018 ADDED INVERT AND FOUND REBAR 20/2020 UPDATE SURVEY TO D.E.C. STANDARDS (22/2020 FINAL AS-BUILT TOPO
8 ^{2,18} ,91 × *6 ^{3,91} ,5,2 ^h WV v6 ^{2,5^h}	LEGEND	DRAWING ITEM DAT 1 11/27 3 10/22/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \bigtriangleup$ ANTENNA/DISH $ \begin{array}{c} \boxdot$ BENCHMARK $ \begin{array}{c} \bullet \\ BOL \\ BOLLARD \\ \Box \\ CB \\ CATCH BASIN \\ \begin{array}{c} \bullet \\ CB \\ CATCH BASIN \\ \begin{array}{c} \bullet \\ CB \\ CO \\ CLEANOUT \\ \hline \end{array} \\ \begin{array}{c} CO \\ CLEANOUT \\ \hline \end{array} \\ \begin{array}{c} COMMUNICATIONS BOX \\ \hline \end{array} \\ \begin{array}{c} COMMUNICATIONS BOX \\ \hline \end{array} \\ \begin{array}{c} COMMUNICATIONS MANHOLE \\ \begin{array}{c} \bullet \\ COMMUNICATIONS MARKER \\ \hline \end{array} \\ \begin{array}{c} COMMUNICATIONS MARKER \\ \hline \end{array} \\ \begin{array}{c} CONIFEROUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} CONIFEROUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} CONIFEROUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} COIFEROUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} COIFEROUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} DECIDUOUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} DECIDUOUS SHRUB \\ \hline \end{array} \\ \begin{array}{c} DECIDUOUS TREE \\ \hline \end{array} \\ \begin{array}{c} DECIDUOUS TREE \\ \hline \end{array} \\ \begin{array}{c} DECIDUOUS TREE \\ \hline \end{array} \\ \begin{array}{c} ELECTRIC MANHOLE \end{array} $	DESIGNED BY: DRAWN BY: AJK/DJR CHECKED BY: AJK/DJR CHECKED BY: DJR DATE: DJR DATE: OCTOBER 31, 2018 DATE: OCTOBER 31, 2018 MARNING: MARNING: ALTERING THIS DOCUMENT IS IN VIOLATION OF THE LAW EXCEPTING AS PROVIDED IN SECTION 7029, PART 2 OF THE NEW YORK STATE EDUCATION LAW. © COPYRIGHT 2020 WM. SCHUTT & ASSOCIATES P.C.
$ \begin{array}{c} & & & \\ & & & &$	E ELECTRIC MANHOLE E ELECTRIC METER \forall END SECTION \textcircled{C} FILLER CAPS \circ_{FP} FLAG POLE $\stackrel{\circ}{}_{FLM}$ GAS LINE MARKER \textcircled{O} GAS MANHOLE \textcircled{G} GAS METER $\overset{\circ}{}_{GV}$ GAS VALVE $\overset{\circ}{}_{GV}$ GAS VALVE	ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MARKED WITH AN ORIGINAL OF THE LAND SURVEYOR'S STAMP AND SIGNATURE SHALL BE CONSIDERED TO BE VALID TRUE COPIES
MEST 665 WDE ALE CONTRACT OF C	GUY WRE $\stackrel{\leftarrow}{\leftarrow}$ HANDICAP PARKING $\stackrel{\sim}{\rightarrow}_{HYD}$ HYDRANT $\stackrel{\bigcirc}{\bigcirc}$ PROPERTY MONUMENT (AS DESCRIBED) $\stackrel{\leftarrow}{\leftrightarrow}$ LIGHT POLE $\stackrel{\Box_{\nabla}}{\rightarrow}$ MAILBOX $\stackrel{\leftarrow}{\triangle}$ MONUMENT AS DESCRIBED $\stackrel{\circ}{\rightarrow}_{OLM}$ OIL LINE MARKER $\stackrel{\frown}{\bigcirc}$ PHONE BOOTH > PIPE OUTLET $\stackrel{\bullet_{POST}}{\rightarrow}$ POST $\stackrel{\frown}{\bigtriangledown}$ PVT POWER VAULT $\stackrel{\frown}{\boxtimes}$ RAILROAD CONTROL BOX	WM SCHUTA S S O C I A T E SA S S O C I A T E S37 CENTRAL AVE.37 CENTRAL AVE.LANCASTER, NY 14086-2143PH. 716-683-5961FAX 716-683-0169WWW.WMSCHUTT.COM
$\begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	SANITARY SEWER MANHOLE ■ SCUPPER ¬ SIGN (SINGLE POLE) ¬ SIGN (DOUBLE POLE) ¬ SIGN (DOUBLE POLE) ○ SIGNAL POLE ○ SIGNAL POLE (WITH TRAFFIC ∪TILITY BOX) ① ○ STORM SEWER MANHOLE □ TRAFFIC CONTROL BOX ① UNKNOWN MANHOLE □ UTILITY BOX ○ UTILITY POLE □ UTILITY POLE □ UTILITY POLE □ UTILITY POLE □ WATER MANHOLE □ WATER VALVE WW WATER VALVE WW WATER VALVE WW WATER VALVE WW WATER VALVE WATER VALVE	CITY OF BUFFALO CITY OF BUFFALO COF ERIE, STATE OF NEW YORK T OF LOT 270, TOWNSHIP 11, RANGE 6 OLLAND LAND COMPANY'S SURVEY 31 TONAWANDA STREET DARY & TOPOGRAPHIC SURVEY
хо СаР SAN MH RIM=585.07	RIGHT OF WAY LINE SANITARY SEWER LINE STORM SEWER LINE STORM SEWER LINE TREE LINE UNDERGROUND CONDUIT UNDERGROUND ELECTRIC WATER MAIN	COUNTY PART BOUND
	THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF AN UP-TO-DATE ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED BY AN EXAMINATION OF SUCH.	
	20 30 40 60 80 SCALE: 1"=20' GRAPHIC SCALE IN FEET	BT-1 DRAWING SCALE: 1"=20' SURVEY FILE: D/18164-01

SURVEY FILE: D/18164-01 WSA PROJECT NO. 18164

APPENDIX C

SITE WIDE INSPECTION FORMS AND SITE PHOTOS

31 TONAWANDA STREET

BE3 Corp. 960 Busti Ave. Suite B-150 Buffalo, New York

SITE WIDE INSPECTION FORM

Date: 7/17/2024

Site Name: 31 Tonawanda Street (Brownfield Cleanup Program [BCP] Site No. C915299)

Location: 31 Tonawanda Street, Buffalo, New York 14207

General Site Conditions

The vast majority of the site contains a commercial building operated by Secure Storage. An asphalt parking lot and loading dock in the northeastern portion of the site can be accessed from West Avenue. Small amounts of green space occupy the remainder of the site. All ECs seem to be functioning properly (i.e., cover system, SSDS and monitoring wells) and all ICs are being followed. Overall, the site appears relatively unchanged since the previous reporting period.

Weather Conditions: 77°F, partly sunny, 7 mph NW winds

Compliance/Evaluation ICs and ECs

Property is in compliance with all ICs including land and groundwater use restrictions, SMP requirements and the IC/EC Plan. ECs remain in compliance as follows: (1) cover system (i.e., grass areas, concrete sidewalk, asphalt parking areas and building footprint) in good condition and no ruts, bare spots or erosion rills were noted, (2) wells in good condition, and (3) SSDS system appears to be functioning properly. No excavation has occurred into the cover system.

Site Management Activities (Sampling, H & S Inspection, etc.)

All wells were visually examined and found to be in good condition. MW-2 and MW-3 were sampled per SMP requirements. Results are provided as an attachment and further discussed in the report.

Compliance with Permits and O & M Plan

The site is in compliance with Section 5.0 (Operation and Maintenance Plan) of the Site Management Plan (SMP).

Records Compliance

No activity or issues occurred at the site during the reporting period that would require reporting/recording.

General Comments

The site remains in compliance with all ECs and ICs. No corrective measures are warranted at this time.

Inspector: Alexis Palumbo-Compton, Project Engineer

1. Southern property boundary, facing east.

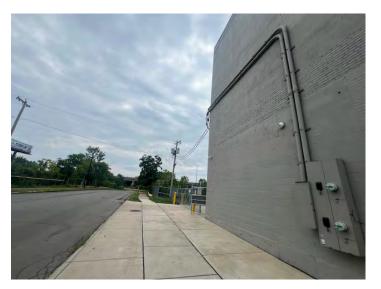
2. Southwest corner of property, facing southeast.

3. Southwestern area of property, facing north.

4. Central western portion of property, facing northeast.

5. Northwest portion of property, facing south-southeast.

6. Northwest corner of property, facing southeast.



7. Northern property boundary, facing east.

8. Northwest portion of property, facing east.

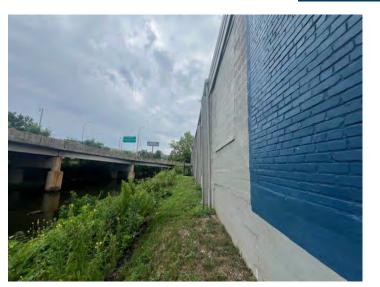
9. Central northern property boundary, facing east.

10. Northeast loading/unloading area entrance, facing southeast.

BRYDGES ENGINEERING

11. Northeastern corner of property, facing east.

12. Northeastern portion of property, facing south.



13. Central eastern portion of property, southwest.

14. Southeastern portion of property, facing southwest.

15. Central eastern property boundary, facing south.

16. Southeastern property boundary, facing southwest

150 TONAWANDA STREET

BE3 Corp. 960 Busti Ave. Suite B-150 Buffalo, New York

SITE WIDE INSPECTION FORM

Date: 7/17/2024

Site Name: 31 Tonawanda Street (Brownfield Cleanup Program [BCP] Site No. C915299)

Location: 150 Tonawanda Street, Buffalo, New York 14207

General Site Conditions

The site contains two rows of self-storage units (also a part of Secure Storage) traversed by an asphalt driving area. The property is gated, and a northern and southern entrance/exit are located along Tonawanda Street. Minimal amounts of green space surround the perimeter of the site. The only EC at this site is the cover system, which is functioning as designed and all ICs are being followed. Overall, the site appears relatively unchanged since the previous reporting period.

Weather Conditions: 77°F, partly sunny, 7 mph NW winds

Compliance/Evaluation ICs and ECs

Property is in compliance with all ICs including land and groundwater use restrictions, SMP requirements and the IC/EC Plan. The only EC is the cover system (i.e., limited grass areas, asphalt driving area and building footprint) which remains in good condition. No ruts, bare spots or erosion rills were noted. No excavation has occurred into the cover system.

Site Management Activities (Sampling, H & S Inspection, etc.)

No sampling is required under the Site Management Plan (SMP).

Compliance with Permits and O & M Plan

No permits or Operation & Maintenance Plan is required for this site under the SMP.

Records Compliance

No activity or issues occurred at the site during the reporting period that would require reporting/recording.

General Comments

The site remains in compliance with all ECs and ICs. No corrective measures are warranted at this time.

Inspector: Alexis Palumbo-Compton, Project Engineer

1. Southern entrance along Tonawanda Street, facing east.

2. Southwestern corner, facing west.

3. Southern portion of property, facing north.

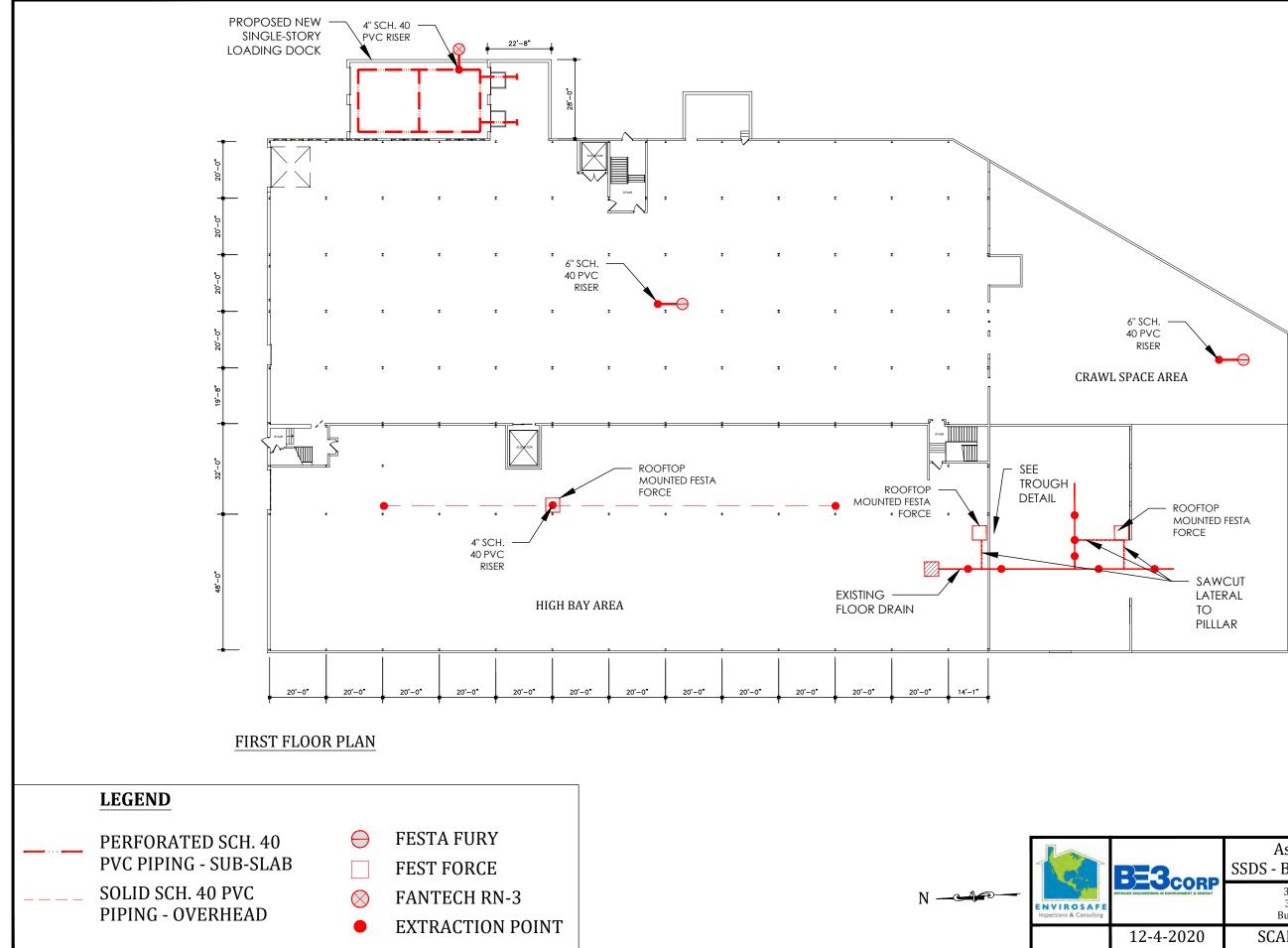
4. Central portion of property, facing north.

7/17/2024

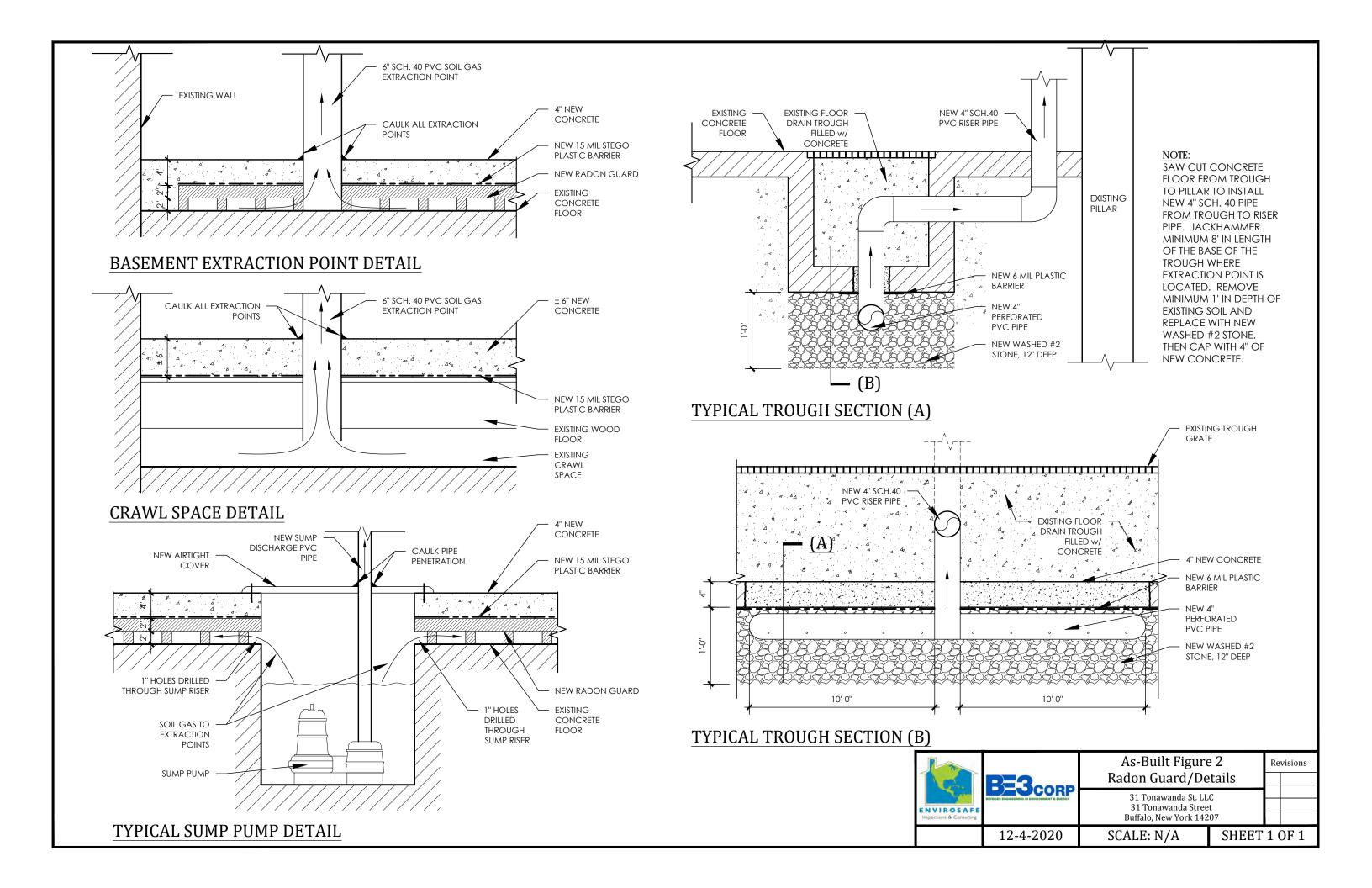
5 Central northern portion of property, facing north.

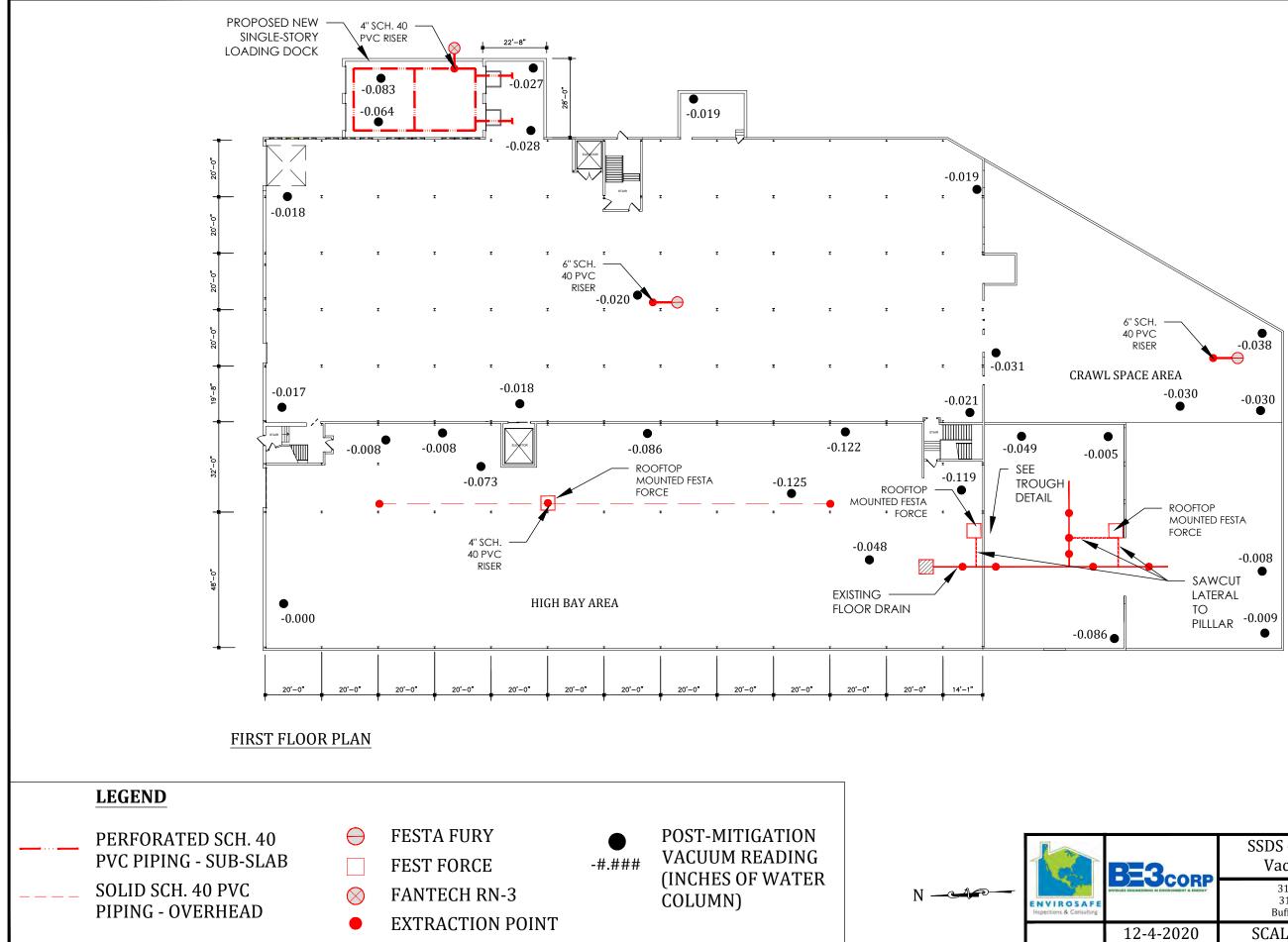
6. Northwest corner of property, facing west.

7. Northern entrance along Tonawanda Street, facing northeast.


8. Northeastern property boundary, facing south.

Page 2 of 2




APPENDIX D SSDS AS-BUILTS

			Re	visions
2	SSDS - Basement/Fin	rst Floor		
ECCORP	31 Tonawanda St. LL	C		
INCERNIG IN ENVIRONMENT & ENERGY	31 Tonawanda Street			
	Buffalo, New York 142	07		
2-4-2020	SCALE: N/A SHEET		1 (OF 1

0	SSDS - Post-Mitigation Vacuum Readings		Re	visions
LOCORP	31 Tonawanda St. LLC			
INCERTING IN ENVIRONMENT & ENERGY	31 Tonawanda Street			
	Buffalo, New York 14207			
2-4-2020	SCALE: N/A SHEET 1 O		OF 1	

RADON GUARD[®]

Structural under-slab insulation/ventilation panel

Radon Guard® is a patent-pending, structural under-slab insulation and ventilation panel system that provides for radon gas removal, insulation, and a capillary break. Radon Guard is a sub-slab depressurization insulation panel that provides radon gas movement between the ground and the soil-gas-retarder to a vent pipe.

Advantages.

- · Provides for the extraction of radon gas from the sub-slab area to mitigate its entry into the building.
- Code compliant one-to-one replacement for gravel.
- Meets code requirements for radon mitigation.
- Structural under-slab insulation.
- Provides capillary break.
- Superior moisture resistance.
- No long-term R-value loss or thermal drift.
- No CFC, HCFC, HFC, or formaldehyde.

Strength/R-value

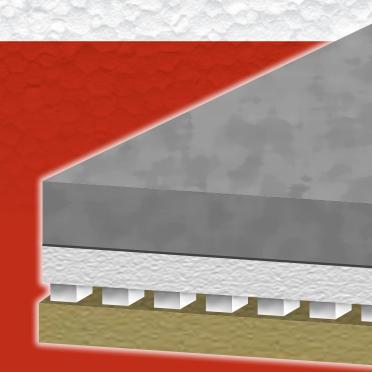
RADON	Load	R-value				
Guard	Capacity ¹ , psf	75°F³	40°F⁴			
150	260	10	12			
250	390	11	12			

¹ Based on compressive strength @ 1% deformation. Each structure designed with Radon Guard must be reviewed by a qualified design professional. ²R-value units are °F·ft²·h/Btu.

³Recommended for design in WARM climates. ⁴Recommended for design in COLD climates.

Proven to meet, or exceed, building codes.

Radon Guard is manufactured under an industry leading quality control program monitored by UL and further recognized in UL Evaluation Report UL ER11812-06.


Evaluation Report UL ER11812-06 confirms that Radon Guard is a code compliant replacement for a 4 inch thick layer of clean granular fill material as required by code.

Radon Guard meets ASTM C578, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation" and ICC-ES AC461, "Acceptance Criteria for An Alternate Gas Permeable Layer of a

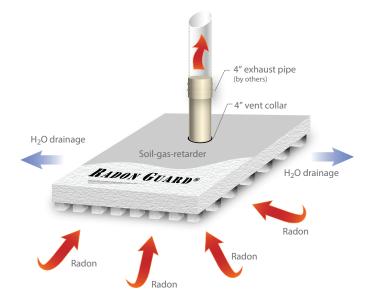
Subslab Depressurization System for Radon Gas Control"

CONTROL, **NOT COMPROMISE.®**

Foam face-off: Choosing Radon Guard over gravel.

- No shipping and delivery hassles
- Faster/easier installation
- Reliable strength properties
- Provides insulation to meet codes
- Meets ICC-ES AC461 requirements
- Provides a level and puncture resistant surface for placement of soil-gas-retarder
- Radon Guard with
 Perform Guard available to provide resistance to termites

What is radon and how does radon get into your building?


Radon is a gaseous radioactive element. It is an extremely toxic, colorless gas derived from the radioactive decay of radium. It comes from the natural decay of uranium that is found in nearly all soils. It typically moves up through the ground to the air above and into your building through cracks and other holes in the foundation. Your building traps radon inside where it can build up. Any building may have a radon problem. Radon Guard together with a soil-gas-retarder will ensure your new building is safe and free from harmful levels of radiation.

How does Radon Guard work?

The interconnected channels on the underside of the Radon Guard panel depressurize the sub-slab space to direct radon gases to the vent pipe.

Radon Guard with Perform Guard.

One of the most destructive forces anywhere is termites. Radon Guard **Perform Guard*** can be manufactured with Perform Guard, a proven and safe additive, that effectively resists termites.

Ready to take control? Start here.

If you're starting to wonder how Radon Guard can contribute to your next project, here's how to find out: Just contact your nearest Radon Guard supplier. They'll be happy to give you a design consultation, information about Radon Guard products, pricing, and the answers to all your questions. Contact a sales rep and download Radon Guard documentation at www.radon-guard.com

Radon Guard is manufactured in the USA by AFM Corporation licensees.

Copyright © 2017 AFM Corporation. All rights reserved. Printed in USA. Foam-Control and Perform Guard are registered trademarks of AFM Corporation, Lakeville, MN.

Radon Guard is a registered trademark of Terra Vent Systems Inc.

UL logo is a registered trademark of UL LLC.

USGBC logo is a registered trademark of U.S. Green Building Council.

RD01-06/17

BE3 Photolog

RF

1270 Niagara Street Buffalo, NY 14213

1. Installing SSDS in High-Bay area of building

2. Staged SSDS materials

3. Installation of SSDS in High-Bay area

BE3 Photolog

Date: 3/2-3/20

5. Installation of SSDS in High-Bay area

6. High-Bay area SSDS vertical piping

1270 Niagara Street Buffalo, NY 14213 716.249.6880 Ø be3corp.com

7. SSDS completed trench and vertical piping

8. View of SSDS piping

APPENDIX E

ANNUAL MONITORING WELL/GROUNDWATER SAMPLING

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Project:	31 Tonawand	da St		BCP Site No.:	C915299	_	Well I.D.:	MW	-2	
Date:	7/17/2024	Sampling	Personnel:	Joseph Gam	nbino & Alexis	s Palumbo	_ Company: _	BE3 C	Corp	
Purging/ Sampling Device:	Peristaltic Pump			_ Tubing Type:	HDPE +	+ Silicone	Pump/Tubing Inlet Location:	Mid Screen		
Measuring Point:	TOR Marking	Initial Depth to Water:	5.6'	Depth to Well Bottom:	30'	Well Diameter:	2"	Screen Length:	10'	
Casing Type:	PVC		Volume in 1 Well Casing:	15.05 L		Estimated Purge Volume:	20 L			
Sample ID: MW-2				Sample Time: 14:00			_			
Samp	le Parameters:	Part 37	5 VOCs & TI	Cs, SVOC & TICs,	Metals, Pestio	cides, PCBs ,I	PFA's, 1-4 Dioxan	e, Total Cyani	ide	

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:30	7.16	19.72	6.91	11.01	12.0	5	-	-
12:45	7.12	20.36	6.41	9.82	7.3	75	-	-
13:00	7.11	20.11	6.21	9.45	4.2	72	-	-
13:15	7.12	19.86	5.97	10.71	3.1	76	-	-
13:30	7.14	20.52	5.70	9.14	1.9	70	-	-
13:50	7.14	19.07	5.37	9.85	1.3	82		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft $(vol_{cvl} = pr^2h)$

Remarks: PURGING--began at 12:00; first parameters recorded 30 minutes after

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Project:	31 Tonawar	nda St		BCP Site No.:	C915299	_	Well I.D.:	MW-	.3
Date:	7/17/2024	_ Sampling	Personnel:	Joseph Gam	nbino & Alexi	is Palumbo	_ Company: _	BE3 C	orp
Purging/ Sampling Device:	Peristaltic Pump			Tubing Type: HDPE + Silicone		Pump/Tubing Inlet Location:	Mid Scr	reen	
Measuring Point:	TOR Marking	Initial Depth to Water:	6.1'	Depth to Well Bottom:	18'	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC			Volume in 1 Well Casing:	7.34 L	_	Estimated Purge Volume:	30 L	
Sample ID:	MW-3			Sample Time: 16:00			_		
Samp	le Parameters	Part 37	5 VOCs & TI	Cs, SVOC & TICs,	, Metals, Pest	icides, PCBs ,F	PFA's, 1-4 Dioxan	e, Total Cyani	de

PURGE PARAMETERS

	/I) (NTU) Eh (mV) DEPTH TO FLOW RATE WATER (ml/min.) (btor)	DISS. O₂ (mg/l	COND. (mS/cm)	TEMP (°C)	рН	ТІМЕ
15:25 6.47 18.80 2.11 10.32 7.1 -109 - 15:40 6.3 18.75 2.09 9.16 5.2 -103 -	10.4 -128	10.35	2.04	25.37	6.63	14:55
15:40 6.3 18.75 2.09 9.16 5.2 -103 -	7.9 -119	 11.54	2.06	20.80	6.54	15:10
	7.1 -109	10.32	2.11	18.80	6.47	15:25
15:55 6.3 17.94 2.09 10.55 0.7 -102 -	5.2 -103	9.16	2.09	18.75	6.3	15:40
Image: series of the series	0.7 -102	10.55	2.09	17.94	6.3	15:55
Tolerance: 0.1 3% 10% 10% + or - 10	10% + or - 10					

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft ($vol_{cvl} = pr^2h$)

Remarks: PURGING--began at 14:25; first parameters recorded 30 minutes after

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Jason Brydges Brydges Engineering in Environment & Energy DPC 960 Busti Ave Suite B-150 Buffalo, New York 14213 Generated 8/1/2024 8:05:21 AM

JOB DESCRIPTION

31 Tonawanda Street Project

JOB NUMBER

480-221759-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 8/1/2024 8:05:21 AM 1

5 6 7

Authorized for release by John Beninati, Project Manager I John.Beninati@et.eurofinsus.com (716)504-9874

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	22
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30

Definitions/Glossary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Job ID: 480-221759-1

Qualifiers

Qualifier Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Metals Qualifier Description Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description Qualifier Qualifier Description (CCV) is outside acceptance limits, low biased. Ar Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. <td< th=""><th>Qualifiers</th><th></th><th>3</th></td<>	Qualifiers		3
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Metals Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Qualifier Description Δ. Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary These commonly used abbreviations may or may not be present in this report. μ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFL <th>GC/MS VOA</th> <th></th> <th></th>	GC/MS VOA		
U Indicates the analyte was analyzed for but not detected. Metals Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description Qualifier Qualifier Description A- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Con	Qualifier		
Metals Audifier Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description A- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Rese commonly used abbreviations may or may not be present in this report. # Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains No Free Liquid CFL Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Uion Factor <td>J</td> <td></td> <td></td>	J		
Qualifier Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description ^- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Contains Ro Free Commonly used abbreviations may or may not be present in this report. x Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL <	U	Indicates the analyte was analyzed for but not detected.	5
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description ^- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Abbreviation Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFV Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	Metals		6
U Indicates the analyte was analyzed for but not detected. General Chemistry Qualifier Description ^- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Abbreviation Abbreviation These commonly used abbreviations may or may not be present in this report. I Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	Qualifier		
General Chemistry Qualifier Description A- Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFV Contains No Free Liquid CFF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	J 		
QualifierQualifier Description^-Continuing Calibration Verification (CCV) is outside acceptance limits, low biased.HFParameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.JResult is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.UIndicates the analyte was analyzed for but not detected.BbbreviationThese commonly used abbreviations may or may not be present in this report.mListed under the "D" column to designate that the result is reported on a dry weight basis%RPercent RecoveryCFLContains Free LiquidCFVColony Forming UnitCNFContains No Free LiquidDERDuplicate Error Ratio (normalized absolute difference)DII FacDilution Factor			
 Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Indicates the analyte was analyzed for but not detected. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. a Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dill Fac 		/nistry	
HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Abbreviation Abbreviation These commonly used abbreviations may or may not be present in this report. a Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFV Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dill Fac Dilution Factor	Qualifier		8
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. Glossary Abbreviation Abbreviation These commonly used abbreviations may or may not be present in this report. x Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFF Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) DII Fac Dilution Factor	^_	5	
U Indicates the analyte was analyzed for but not detected. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.	g
Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dill Fac Dillution Factor	J		
Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	U	Indicates the analyte was analyzed for but not detected.	
aListed under the "D" column to designate that the result is reported on a dry weight basis%RPercent RecoveryCFLContains Free LiquidCFUColony Forming UnitCNFContains No Free LiquidDERDuplicate Error Ratio (normalized absolute difference)Dil FacDilution Factor	Glossary		
%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dill Fac Dilution Factor	Abbreviation	These commonly used abbreviations may or may not be present in this report.	
CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	%R	Percent Recovery	
CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	CFL	Contains Free Liquid	4
DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor	CFU	Colony Forming Unit	
Dil Fac Dilution Factor	CNF	Contains No Free Liquid	
	DER	Duplicate Error Ratio (normalized absolute difference)	
DI Detection Limit (DoD/DOF)	Dil Fac	Dilution Factor	
	DL	Detection Limit (DoD/DOE)	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Buffalo

Job ID: 480-221759-1

Job Narrative 480-221759-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 7/18/2024 9:25 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 8.9°C.

GC/MS VOA

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW- 2 (480-221759-1). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-718985 recovered above the upper control limit for Benzyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: MW- 2 (480-221759-1).

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following sample was received preserved with hydrochloric acid: MW- 2 (480-221759-1). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-719182 recovered outside acceptance criteria, low biased, for Benzyl chloride. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-3 (480-221759-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following sample was received preserved with hydrochloric acid: MW-3 (480-221759-2). The requested target analyte list includes 2-Chloroethyl vinyl ether, an acid-labile compound that degrades in an acidic medium.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2580B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW- 2 (480-221759-1) and MW-3 (480-221759-2).

Method SM4500 H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been gualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW- 2 (480-221759-1) and MW-3 (480-221759-2).

Method SM4500_O_G: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW- 2 (480-221759-1) and MW-3 (480-221759-2).

Case Narrative

Client: Brydges Engineering in Environment & Energy DPC Project: 31 Tonawanda Street Project

Eurofins Buffalo

Job ID: 480-221759-1 (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample ID: MW-2

Lab Sample ID: 480-221759-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Methyl tert-butyl ether	0.87	J	2.0	0.32	ug/L	2	8260C	Total/NA
Iron, Dissolved	0.023	J	0.050	0.019	mg/L	1	6010C	Dissolved
Total Organic Carbon	3.2		1.0	0.43	mg/L	1	9060A	Total/NA
Total Organic Carbon - Quad	3.2		1.0	0.43	mg/L	1	9060A	Total/NA
TOC Result 1	3.4		1.0	0.43	mg/L	1	9060A	Total/NA
TOC Result 2	2.9		1.0	0.43	mg/L	1	9060A	Total/NA
TOC Result 3	3.5		1.0	0.43	mg/L	1	9060A	Total/NA
TOC Result 4	2.9		1.0	0.43	mg/L	1	9060A	Total/NA
Sulfate	3850		500	150	mg/L	100	D516-90, 02	Total/NA
Oxidation Reduction Potential	430	HF			millivolts	1	SM 2580B	Total/NA
рН	7.2	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	20.9	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Oxygen, Dissolved	6.1	HF	0.050	0.050	mg/L	1	SM 4500 O G	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 480-221759-2

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1,1-Trichloroethane	12000	1000	820	ug/L	1000	8260C	Total/NA
1,1-Dichloroethane	8800	1000	380	ug/L	1000	8260C	Total/NA
1,2-Dichloroethene, Total	9800	2000	810	ug/L	1000	8260C	Total/NA
Chloroethane	51000	1000	320	ug/L	1000	8260C	Total/NA
cis-1,2-Dichloroethene	9800	1000	810	ug/L	1000	8260C	Total/NA
Vinyl chloride	5100	1000	900	ug/L	1000	8260C	Total/NA
Iron, Dissolved	178	0.050	0.019	mg/L	1	6010C	Dissolved
Total Organic Carbon	170	5.0	2.2	mg/L	5	9060A	Total/NA
Total Organic Carbon - Quad	170	5.0	2.2	mg/L	5	9060A	Total/NA
TOC Result 1	176	5.0	2.2	mg/L	5	9060A	Total/NA
TOC Result 2	161	5.0	2.2	mg/L	5	9060A	Total/NA
TOC Result 3	176	5.0	2.2	mg/L	5	9060A	Total/NA
TOC Result 4	165	5.0	2.2	mg/L	5	9060A	Total/NA
Sulfate	2.5 J	5.0	1.5	mg/L	1	D516-90	, 02 Total/NA
Oxidation Reduction Potential	178 HF	:		millivolts	1	SM 2580)B Total/NA
рН	5.9 HF	0.1	0.1	SU	1	SM 4500) H+ B Total/NA
Temperature	20.6 HF	0.001	0.001	Degrees C	1	SM 4500) H+ B Total/NA
Oxygen, Dissolved	2.8 HF	0.050	0.050	mg/L	1	SM 4500	OG Total/NA

This Detection Summary does not include radiochemical test results.

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample ID: MW- 2 Date Collected: 07/16/24 15:30 Date Received: 07/18/24 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2.0	U	2.0	1.6	ug/L			07/19/24 15:09	2
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.42	ug/L			07/19/24 15:09	2
1,1,2-Trichloroethane	2.0	U	2.0	0.46	ug/L			07/19/24 15:09	2
1,1,2-Trichloro-1,2,2-trifluoroethane	2.0	U	2.0	0.62	ug/L			07/19/24 15:09	2
1,1-Dichloroethane	2.0	U	2.0	0.76	ug/L			07/19/24 15:09	2
1,1-Dichloroethene	2.0	U	2.0	0.58	ug/L			07/19/24 15:09	2
1,2,4-Trichlorobenzene	2.0	U	2.0	0.82	ug/L			07/19/24 15:09	2
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.78	ug/L			07/19/24 15:09	2
1,2-Dichlorobenzene	2.0	U	2.0	1.6	ug/L			07/19/24 15:09	2
1,2-Dichloroethane	2.0	U	2.0	0.42	ug/L			07/19/24 15:09	2
1,2-Dichloropropane	2.0	U	2.0		ug/L			07/19/24 15:09	2
1,3-Dichlorobenzene	2.0	U	2.0		ug/L			07/19/24 15:09	2
1,4-Dichlorobenzene	2.0	U	2.0		ug/L			07/19/24 15:09	2
2-Butanone (MEK)	20	U	20		ug/L			07/19/24 15:09	2
2-Hexanone	10	U	10		ug/L			07/19/24 15:09	2
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			07/19/24 15:09	2
Acetone	20		20		ug/L			07/19/24 15:09	2
Benzene	2.0	U	2.0	0.82	-			07/19/24 15:09	2
1,2-Dichloroethene, Total	4.0		4.0		ug/L			07/19/24 15:09	2
Bromodichloromethane	2.0		2.0	0.78				07/19/24 15:09	2
Bromoform	2.0		2.0	0.52	-			07/19/24 15:09	2
1,3,5-Trichlorobenzene	2.0		2.0	0.46	Ũ			07/19/24 15:09	2
Bromomethane	2.0		2.0		ug/L			07/19/24 15:09	2
Carbon disulfide	2.0		2.0	0.38	•			07/19/24 15:09	2
Carbon tetrachloride	2.0		2.0	0.54				07/19/24 15:09	2
1,3-Dichloropropane	2.0		2.0		ug/L			07/19/24 15:09	2
Chlorobenzene	2.0		2.0		ug/L			07/19/24 15:09	2
1,3-Dichloropropene, Total	4.0		4.0		ug/L			07/19/24 15:09	2
Dibromochloromethane	2.0		2.0	0.64	-			07/19/24 15:09	2
Chloroethane	2.0		2.0	0.64	-			07/19/24 15:09	2
Chloroform	2.0		2.0	0.68				07/19/24 15:09	2
Chloromethane	2.0		2.0	0.70	-			07/19/24 15:09	2
cis-1,2-Dichloroethene	2.0		2.0		ug/L			07/19/24 15:09	2
cis-1,3-Dichloropropene	2.0		2.0	0.72				07/19/24 15:09	2
2,2-Dichloropropane	2.0		2.0	0.80	-			07/19/24 15:09	2
Cvclohexane	2.0		2.0	0.36	0			07/19/24 15:09	2
Dichlorodifluoromethane	2.0		2.0		ug/L			07/19/24 15:09	2
Chloroprene	2.0		2.0	0.98				07/19/24 15:09	2
Ethylbenzene	2.0		2.0		ug/L			07/19/24 15:09	2
1,2-Dibromoethane	2.0		2.0		ug/L			07/19/24 15:09	2
2-Chlorobenzotrifluoride	2.0		2.0		ug/L			07/19/24 15:09	2
2-Chloroethyl vinyl ether	2.0		10		ug/L			07/19/24 15:09	2
Isopropylbenzene	2.0		2.0		ug/L			07/19/24 15:09	2
2-Chlorotoluene	2.0		2.0		ug/L ug/L			07/19/24 15:09	2
Methyl acetate	5.0		2.0 5.0		ug/L ug/L			07/19/24 15:09	2
				0.32				07/19/24 15:09	2
Methyl tert-butyl ether Methylcyclohexane	0.87 2.0		2.0	0.32					
			2.0					07/19/24 15:09	2
Methylene Chloride Styrene	2.0	U	2.0 2.0	0.88 1.5				07/19/24 15:09 07/19/24 15:09	2

Lab Sample ID: 480-221759-1

Matrix: Water

Eurofins Buffalo

%Recovery	Qualifier	Limits				Pre	epa	are	d
 102		80 - 120				-			
108		77 - 120							
103		73 - 120							
108		75 - 123							

. .

• •

Method: SW846 6010C - Metals (ICP) - Dissolved

~ ~ =

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.023 J	0.050	0.019	mg/L		07/22/24 09:16	07/22/24 15:50	1

General Chemistry Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Oxidation Reduction Potential (SM 2580B)	430	HF			millivolts			07/31/24 15:53	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	3.2		1.0	0.43	mg/L			07/24/24 23:54	1
Total Organic Carbon - Quad (SW846 9060A)	3.2		1.0	0.43	mg/L			07/24/24 23:54	1
TOC Result 1 (SW846 9060A)	3.4		1.0	0.43	mg/L			07/24/24 23:54	1
TOC Result 2 (SW846 9060A)	2.9		1.0	0.43	mg/L			07/24/24 23:54	1
TOC Result 3 (SW846 9060A)	3.5		1.0	0.43	mg/L			07/24/24 23:54	1
TOC Result 4 (SW846 9060A)	2.9		1.0	0.43	mg/L			07/24/24 23:54	1
Sulfate (ASTM D516-90, 02)	3850		500	150	mg/L			07/19/24 10:33	100
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	0.1	0.1	SU	·		07/22/24 14:24	1
Temperature (SM 4500 H+ B)	20.9	HF	0.001	0.001	Degrees C			07/22/24 14:24	1
Oxygen, Dissolved (SM 4500 O G)	6.1	HF	0.050	0.050	mg/L			07/19/24 10:28	1

Eurofins Buffalo

Page 9 of 31

Vinyl chloride	2.0	U 2.	0 1.8	ug/L	07/19/24 15:09
Xylenes, Total	4.0	U 4.	0 1.3	ug/L	07/19/24 15:09
Chlorobromomethane	2.0	U 2.	0 1.7	ug/L	07/19/24 15:09
Chlorodifluoromethane	2.0	U 2.	0 0.52	ug/L	07/19/24 15:09
Dichlorofluoromethane	2.0	U 2.	0 0.68	ug/L	07/19/24 15:09
Hexachlorobutadiene	4.0	U 4.	0 0.56	ug/L	07/19/24 15:09
Allyl chloride	2.0	U 2.	0 0.88	ug/L	07/19/24 15:09
3-Chlorobenzotrifluoride	2.0	U 2.	0 0.98	ug/L	07/19/24 15:09
3-Chlorotoluene	2.0	U 2.	0 0.90	ug/L	07/19/24 15:09
4-Chlorobenzotrifluoride	2.0	U 2.	0 0.42	ug/L	07/19/24 15:09
1-Chlorohexane	10	U 1	0 0.40	ug/L	07/19/24 15:09
Benzyl chloride	10	U 1	0 0.86	ug/L	07/19/24 15:09

Date Received: 07/18/24 09:25 Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL

2.0 U

Client Sample ID: MW-2

Date Collected: 07/16/24 15:30

4-Chlorotoluene

Trichloroethene

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene

Tetrachloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample Results

2.0

2.0

2.0

2.0

2.0

2.0

2.0

MDL Unit

1.7 ug/L

0.72 ug/L

1.0 ug/L

1.8 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

D

Prepared

Lab Sample ID: 480-221759-1

Matrix: Water

Job ID: 480-221759-1

Analyzed

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

Analyzed

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

07/19/24 15:09

2

2

2

2

2

Dil Fac

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample ID: MW-3 Date Collected: 07/16/24 16:00 Date Received: 07/18/24 09:25

Method: SW846 8260C - Vo	latile Organic	Compounds	s by GC/MS		
Analyte	Result	Qualifier	RL	MDL	Unit
1,1,1-Trichloroethane	12000		1000	820	ug/L
1,1,2,2-Tetrachloroethane	1000	U	1000	210	ug/L

	Quaimer	KL	MDL			Prepared	Analyzeu	DIFAC
12000		1000		-			07/22/24 16:13	1000
1000	U	1000	210	ug/L			07/22/24 16:13	1000
1000	U	1000	230	ug/L			07/22/24 16:13	1000
1000	U	1000	310	ug/L			07/22/24 16:13	1000
8800		1000	380	ug/L			07/22/24 16:13	1000
1000	U	1000	290	ug/L			07/22/24 16:13	1000
1000	U	1000	410	ug/L			07/22/24 16:13	1000
1000	U	1000	390	ug/L			07/22/24 16:13	1000
1000	U	1000	790	ug/L			07/22/24 16:13	1000
1000	U	1000	210	ug/L			07/22/24 16:13	1000
1000	U	1000	720	ug/L			07/22/24 16:13	1000
1000	U	1000	780	ug/L			07/22/24 16:13	1000
1000	U	1000	840	ug/L			07/22/24 16:13	1000
10000	U	10000	1300	ug/L			07/22/24 16:13	1000
5000	U	5000	1200	ug/L			07/22/24 16:13	1000
5000	U	5000					07/22/24 16:13	1000
10000	U	10000		-			07/22/24 16:13	1000
1000	U	1000		-			07/22/24 16:13	1000
9800		2000					07/22/24 16:13	1000
	U			-			07/22/24 16:13	1000
1000	U			-				1000
								1000
				-				1000
				•				1000
				•				1000
				-				1000
				-				1000
								1000
				-				1000
	C			-				1000
								1000
				-				1000
	C			-				1000
								1000
				-				1000
				-				1000
								1000
				0				1000
								1000
								1000
								1000
				-				1000
				-				1000 1000
				-				
								1000
								1000
1000		1000		ug/L ug/L			07/22/24 16:13 07/22/24 16:13	1000 1000
			7771					
	1000 1000 8800 1000 1000 1000 1000 1000 1000 1000	1000 U 1000 U 8800 1000 U 8800 1000 U 1000 U	1000 U 1000 1000 U 10	1000 U 1000 210 1000 U 1000 330 1000 U 1000 380 1000 U 1000 290 1000 U 1000 290 1000 U 1000 390 1000 U 1000 390 1000 U 1000 210 1000 U 1000 210 1000 U 1000 210 1000 U 1000 720 1000 U 1000 780 1000 U 1000 840 10000 U 1000 200 5000 U 5000 2100 1000 U 1000 390 1000 U 1000 390 1000 U 1000 390 1000 U 1000 200 1000 U 1000 2	1000 U 1000 210 ug/L 1000 U 1000 230 ug/L 1000 U 1000 310 ug/L 8800 1000 380 ug/L 1000 U 1000 290 ug/L 1000 U 1000 410 ug/L 1000 U 1000 390 ug/L 1000 U 1000 790 ug/L 1000 U 1000 720 ug/L 1000 U 1000 720 ug/L 1000 U 1000 780 ug/L 1000 U 1000 840 ug/L 1000 U 1000 840 ug/L 10000 U 1000 100 ug/L 10000 U 1000 100 ug/L 10000 U 1000 100 ug/L 1000 U <t< td=""><td>1000 U 1000 210 ug/L 1000 U 1000 330 ug/L 1000 U 1000 380 ug/L 1000 U 1000 290 ug/L 1000 U 1000 290 ug/L 1000 U 1000 390 ug/L 1000 U 1000 790 ug/L 1000 U 1000 720 ug/L 1000 U 1000 780 ug/L 1000 U 1000 780 ug/L 1000 U 1000 840 ug/L 10000 U 1000 1300 ug/L 10000 U 1000 300 ug/L 10000 U 1000 300 ug/L 10000 U 1000 300 ug/L 1000 U 1000 280 ug/L 1000 U 1000 280 ug/L 1000 1000 320</td><td>1000 U 1000 210 ug/L 1000 U 1000 230 ug/L 1000 U 1000 380 ug/L 1000 U 1000 290 ug/L 1000 U 1000 410 ug/L 1000 U 1000 290 ug/L 1000 U 1000 720 ug/L 1000 U 1000 780 ug/L 10000 U 1000 1300 ug/L 10000 U 1000 1400 ug/L 10000 U 1000 300 ug/L 10000 U 1000 200 ug/L 1000 U 1000 260 ug/L 1000 U 1000 270 ug/L 1000 1000 750</td><td>1000 U 1000 210 ug/L 07/22/24 16:13 1000 U 1000 330 ug/L 07/22/24 16:13 1000 U 1000 380 ug/L 07/22/24 16:13 1000 U 1000 280 ug/L 07/22/24 16:13 1000 U 1000 410 ug/L 07/22/24 16:13 1000 U 1000 790 ug/L 07/22/24 16:13 1000 U 1000 790 ug/L 07/22/24 16:13 1000 U 1000 720 ug/L 07/22/24 16:13 1000 U 1000 780 ug/L 07/22/24 16:13 1000 U 1000 840 ug/L 07/22/24 16:13 1000 U 1000 801 ug/L 07/22/24 16:13 1000 U 1000 200 ug/L 07/22/24 16:13 1000 U 1000 200 ug/L 07/22/24 16:13</td></t<>	1000 U 1000 210 ug/L 1000 U 1000 330 ug/L 1000 U 1000 380 ug/L 1000 U 1000 290 ug/L 1000 U 1000 290 ug/L 1000 U 1000 390 ug/L 1000 U 1000 790 ug/L 1000 U 1000 720 ug/L 1000 U 1000 780 ug/L 1000 U 1000 780 ug/L 1000 U 1000 840 ug/L 10000 U 1000 1300 ug/L 10000 U 1000 300 ug/L 10000 U 1000 300 ug/L 10000 U 1000 300 ug/L 1000 U 1000 280 ug/L 1000 U 1000 280 ug/L 1000 1000 320	1000 U 1000 210 ug/L 1000 U 1000 230 ug/L 1000 U 1000 380 ug/L 1000 U 1000 290 ug/L 1000 U 1000 410 ug/L 1000 U 1000 290 ug/L 1000 U 1000 720 ug/L 1000 U 1000 780 ug/L 10000 U 1000 1300 ug/L 10000 U 1000 1400 ug/L 10000 U 1000 300 ug/L 10000 U 1000 200 ug/L 1000 U 1000 260 ug/L 1000 U 1000 270 ug/L 1000 1000 750	1000 U 1000 210 ug/L 07/22/24 16:13 1000 U 1000 330 ug/L 07/22/24 16:13 1000 U 1000 380 ug/L 07/22/24 16:13 1000 U 1000 280 ug/L 07/22/24 16:13 1000 U 1000 410 ug/L 07/22/24 16:13 1000 U 1000 790 ug/L 07/22/24 16:13 1000 U 1000 790 ug/L 07/22/24 16:13 1000 U 1000 720 ug/L 07/22/24 16:13 1000 U 1000 780 ug/L 07/22/24 16:13 1000 U 1000 840 ug/L 07/22/24 16:13 1000 U 1000 801 ug/L 07/22/24 16:13 1000 U 1000 200 ug/L 07/22/24 16:13 1000 U 1000 200 ug/L 07/22/24 16:13

Eurofins Buffalo

Job ID: 480-221759-1

Analyzed

Matrix: Water

Dil Fac

Lab Sample ID: 480-221759-2

D

Prepared

6

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample ID: MW-3 Date Collected: 07/16/24 16:00 Date Received: 07/18/24 09:25

Lab Sample ID: 480-221759-2

Matrix: Water

5

6

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chlorotoluene	1000	U	1000	840	ug/L			07/22/24 16:13	1000
Tetrachloroethene	1000	U	1000	360	ug/L			07/22/24 16:13	1000
Toluene	1000	U	1000	510	ug/L			07/22/24 16:13	1000
rans-1,2-Dichloroethene	1000	U	1000	900	ug/L			07/22/24 16:13	1000
trans-1,3-Dichloropropene	1000	U	1000	370	ug/L			07/22/24 16:13	1000
Trichloroethene	1000	U	1000	460	ug/L			07/22/24 16:13	1000
Trichlorofluoromethane	1000	U	1000	880	ug/L			07/22/24 16:13	1000
Vinyl chloride	5100		1000	900	ug/L			07/22/24 16:13	1000
Xylenes, Total	2000	U	2000	660	ug/L			07/22/24 16:13	1000
Chlorobromomethane	1000	U	1000	870	ug/L			07/22/24 16:13	1000
Chlorodifluoromethane	1000	U	1000	260	ug/L			07/22/24 16:13	1000
Dichlorofluoromethane	1000	U	1000	340	ug/L			07/22/24 16:13	1000
Hexachlorobutadiene	2000	U	2000		ug/L			07/22/24 16:13	1000
Allyl chloride	1000	U	1000		ug/L			07/22/24 16:13	1000
3-Chlorobenzotrifluoride	1000	U	1000		ug/L			07/22/24 16:13	1000
3-Chlorotoluene	1000	U	1000		ug/L			07/22/24 16:13	1000
4-Chlorobenzotrifluoride	1000	U	1000		ug/L			07/22/24 16:13	1000
1-Chlorohexane	5000	U	5000		ug/L			07/22/24 16:13	1000
Benzyl chloride	5000	U	5000		ug/L			07/22/24 16:13	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	107		80 - 120					07/22/24 16:13	1000
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					07/22/24 16:13	1000
4-Bromofluorobenzene (Surr)	97		73 - 120					07/22/24 16:13	1000
Dibromofly oromothers (C)	108		75 - 123					07/22/24 16:13	4004
ושוטווטווטועוטומוחפותם (SUIT)			75-725					01/22/24 10.13	1000
Method: SW846 6010C - Metals	s (ICP) - Dis					_			
Method: SW846 6010C - Metals	s (ICP) - Dis Result	SSOIVED Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 6010C - Metals	s (ICP) - Dis			MDL 0.019		D	Prepared 07/22/24 09:16		
Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry	s (ICP) - Dis Result 178	Qualifier	RL 0.050	0.019	mg/L		07/22/24 09:16	Analyzed 07/22/24 15:52	Dil Fac
Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry Analyte	s (ICP) - Dis Result 178 Result	Qualifier Qualifier	RL		mg/L Unit	D	· · · · · · · · · · · · · · · · · · ·	Analyzed 07/22/24 15:52 Analyzed	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM	s (ICP) - Dis Result 178	Qualifier Qualifier	RL 0.050	0.019	mg/L		07/22/24 09:16	Analyzed 07/22/24 15:52	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Dxidation Reduction Potential (SM 2580B)	s (ICP) - Dis Result 178 Result 178	Qualifier Qualifier	RL 0.050	0.019	mg/L Unit millivolts		07/22/24 09:16	Analyzed 07/22/24 15:52 Analyzed	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Dxidation Reduction Potential (SM 2580B) Analyte Fotal Organic Carbon (SW846	s (ICP) - Dis Result 178 Result 178	Qualifier Qualifier HF	RL 0.050	0.019 NONE MDL	mg/L Unit millivolts	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55	Dil Far Dil Far Dil Far
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad	s (ICP) - Dis Result 178 Result 178 Result	Qualifier Qualifier HF	RL 0.050 NONE	0.019 NONE MDL 2.2	mg/L Unit millivolts Unit	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed Analyzed	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Dxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad (SW846 9060A)	s (ICP) - Dis Result 178 Result 178 Result 170 170	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE MDL 2.2 2.2	mg/L Unit millivolts Unit mg/L mg/L	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Dxidation Reduction Potential (SM 2580B) Analyte Fotal Organic Carbon (SW846 2060A) Fotal Organic Carbon - Quad SW846 9060A) FOC Result 1 (SW846 9060A)	s (ICP) - Dis Result 178 Result 178 Result 170 170 176	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE MDL 2.2 2.2 2.2	mg/L Unit millivolts Unit mg/L mg/L	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22	Dil Fac
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Dxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 6060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A)	s (ICP) - Dis Result 178 Result 178 Result 170 170	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE 2.2 2.2 2.2 2.2 2.2	mg/L Unit millivolts Unit mg/L mg/L mg/L	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22	Dil Fac
Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A)	s (ICP) - Dis Result 178 Result 178 Result 170 170 176 161 176	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE MDL 2.2 2.2 2.2 2.2 2.2 2.2 2.2	mg/L Unit millivolts Unit mg/L mg/L mg/L mg/L	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22	Dil Fac
Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A) TOC Result 4 (SW846 9060A)	s (ICP) - Dis Result 178 Result 178 Result 170 170 170 176 161	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE MDL 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	mg/L Unit millivolts Unit mg/L mg/L mg/L mg/L mg/L mg/L	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22	Dil Fa
Method: SW846 6010C - Metals Analyte ron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 2060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A) TOC Result 4 (SW846 9060A) Sulfate (ASTM D516-90, 02)	s (ICP) - Dis Result 178 Result 178 Result 170 170 176 161 176 165 2.5	Qualifier Qualifier HF Qualifier	RL 0.050 NONE	0.019 NONE 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1.5	mg/L Unit millivolts Unit mg/L mg/L mg/L mg/L mg/L mg/L	_ D	07/22/24 09:16 Prepared Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22	Dil Fac
Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A) TOC Result 3 (SW846 9060A) TOC Result 4 (SW846 9060A) Sulfate (ASTM D516-90, 02)	s (ICP) - Dis Result 178 Result 178 Result 170 170 170 176 161 176 165 2.5 Result	Qualifier Qualifier HF Qualifier J Qualifier	RL 0.050 NONE	0.019 NONE 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	mg/L Unit millivolts Unit mg/L mg/L mg/L mg/L mg/L mg/L Unit	D	07/22/24 09:16 Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22	Dil Fac
Dibromofluoromethane (Surr) Method: SW846 6010C - Metals Analyte Iron, Dissolved General Chemistry Analyte Oxidation Reduction Potential (SM 2580B) Analyte Total Organic Carbon (SW846 9060A) Total Organic Carbon - Quad (SW846 9060A) TOC Result 1 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A) TOC Result 4 (SW846 9060A) Sulfate (ASTM D516-90, 02) Analyte pH (SM 4500 H+ B) Temperature (SM 4500 H+ B)	s (ICP) - Dis Result 178 Result 178 Result 170 170 170 176 161 176 165 2.5 Result	Qualifier Qualifier HF Qualifier J Qualifier HF	RL 0.050 NONE	0.019 NONE 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	mg/L Unit millivolts Unit mg/L mg/L mg/L mg/L mg/L mg/L	_ D	07/22/24 09:16 Prepared Prepared	Analyzed 07/22/24 15:52 Analyzed 07/31/24 15:55 Analyzed 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22 07/25/24 00:22	Dil Fac

Eurofins Buffalo

Surrogate Summary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project Job ID: 480-221759-1

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

			ogate Recov	/ery (Ac		
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-221759-1	MW- 2	102	108	103	108	
480-221759-2	MW-3	107	108	97	108	
LCS 480-718985/7	Lab Control Sample	102	105	104	103	
LCS 480-719182/6	Lab Control Sample	103	106	98	103	
MB 480-718985/9	Method Blank	103	106	102	106	
MB 480-719182/8	Method Blank	106	107	97	106	

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

5

6 7 8

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-718985/9 Matrix: Water Analysis Batch: 718985

Client Sample ID: Method Blank Prep Type: Total/NA

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.82	-			07/19/24 12:13	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			07/19/24 12:13	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			07/19/24 12:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			07/19/24 12:13	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			07/19/24 12:13	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			07/19/24 12:13	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.41	ug/L			07/19/24 12:13	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.39	ug/L			07/19/24 12:13	1
1,2-Dichlorobenzene	1.0	U	1.0	0.79	ug/L			07/19/24 12:13	1
1,2-Dichloroethane	1.0	U	1.0	0.21	ug/L			07/19/24 12:13	1
1,2-Dichloropropane	1.0	U	1.0	0.72	ug/L			07/19/24 12:13	1
1,3-Dichlorobenzene	1.0	U	1.0	0.78	ug/L			07/19/24 12:13	1
1,4-Dichlorobenzene	1.0	U	1.0	0.84	ug/L			07/19/24 12:13	1
2-Butanone (MEK)	10	U	10		ug/L			07/19/24 12:13	1
2-Hexanone	5.0	U	5.0		ug/L			07/19/24 12:13	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			07/19/24 12:13	1
Acetone	10	U	10		ug/L			07/19/24 12:13	1
Benzene	1.0		1.0		ug/L			07/19/24 12:13	1
1,2-Dichloroethene, Total	2.0		2.0		ug/L			07/19/24 12:13	1
Bromodichloromethane	1.0		1.0		ug/L			07/19/24 12:13	1
Bromoform	1.0		1.0		ug/L			07/19/24 12:13	1
1,3,5-Trichlorobenzene	1.0		1.0		ug/L			07/19/24 12:13	
Bromomethane	1.0		1.0		ug/L			07/19/24 12:13	1
Carbon disulfide	1.0		1.0		ug/L			07/19/24 12:13	1
Carbon tetrachloride	1.0		1.0		ug/L			07/19/24 12:13	
1,3-Dichloropropane	1.0		1.0		ug/L			07/19/24 12:13	1
Chlorobenzene	1.0		1.0		ug/L			07/19/24 12:13	1
1,3-Dichloropropene, Total	2.0		2.0		ug/L			07/19/24 12:13	· · · · · · · · 1
Dibromochloromethane	2.0		1.0		ug/L			07/19/24 12:13	1
Chloroethane	1.0		1.0	0.32	-			07/19/24 12:13	י 1
Chloroform	1.0		1.0		ug/L			07/19/24 12:13	
					-				1
Chloromethane	1.0		1.0		ug/L			07/19/24 12:13	1
cis-1,2-Dichloroethene	1.0		1.0		ug/L			07/19/24 12:13	1
cis-1,3-Dichloropropene	1.0		1.0		ug/L			07/19/24 12:13	1
2,2-Dichloropropane	1.0		1.0	0.40	-			07/19/24 12:13	1
Cyclohexane	1.0		1.0		ug/L			07/19/24 12:13	1
Dichlorodifluoromethane	1.0		1.0		ug/L			07/19/24 12:13	1
Chloroprene	1.0		1.0		ug/L			07/19/24 12:13	1
Ethylbenzene	1.0		1.0		ug/L			07/19/24 12:13	1
1,2-Dibromoethane	1.0		1.0		ug/L			07/19/24 12:13	1
2-Chlorobenzotrifluoride	1.0		1.0		ug/L			07/19/24 12:13	1
2-Chloroethyl vinyl ether	5.0		5.0		ug/L			07/19/24 12:13	1
Isopropylbenzene	1.0		1.0		ug/L			07/19/24 12:13	1
2-Chlorotoluene	1.0		1.0		ug/L			07/19/24 12:13	1
Methyl acetate	2.5	U	2.5	1.3	ug/L			07/19/24 12:13	1
Methyl tert-butyl ether	1.0		1.0		ug/L			07/19/24 12:13	1
Methylcyclohexane	1.0	U	1.0	0.16	ug/L			07/19/24 12:13	1
Methylene Chloride	1.0	U	1.0	0.44	ug/L			07/19/24 12:13	1

Eurofins Buffalo

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

....

Lab Sample ID: MB 480-718985/9 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 718985

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	1.0	U	1.0	0.73	ug/L			07/19/24 12:13	1
4-Chlorotoluene	1.0	U	1.0	0.84	ug/L			07/19/24 12:13	1
Tetrachloroethene	1.0	U	1.0	0.36	ug/L			07/19/24 12:13	1
Toluene	1.0	U	1.0	0.51	ug/L			07/19/24 12:13	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.90	ug/L			07/19/24 12:13	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.37	ug/L			07/19/24 12:13	1
Trichloroethene	1.0	U	1.0	0.46	ug/L			07/19/24 12:13	1
Trichlorofluoromethane	1.0	U	1.0	0.88	ug/L			07/19/24 12:13	1
Vinyl chloride	1.0	U	1.0	0.90	ug/L			07/19/24 12:13	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			07/19/24 12:13	1
Chlorobromomethane	1.0	U	1.0	0.87	ug/L			07/19/24 12:13	1
Chlorodifluoromethane	1.0	U	1.0	0.26	ug/L			07/19/24 12:13	1
Dichlorofluoromethane	1.0	U	1.0	0.34	ug/L			07/19/24 12:13	1
Hexachlorobutadiene	2.0	U	2.0	0.28	ug/L			07/19/24 12:13	1
Allyl chloride	1.0	U	1.0	0.44	ug/L			07/19/24 12:13	1
3-Chlorobenzotrifluoride	1.0	U	1.0	0.49	ug/L			07/19/24 12:13	1
3-Chlorotoluene	1.0	U	1.0	0.45	ug/L			07/19/24 12:13	1
4-Chlorobenzotrifluoride	1.0	U	1.0	0.21	ug/L			07/19/24 12:13	1
1-Chlorohexane	5.0	U	5.0	0.20	ug/L			07/19/24 12:13	1
Benzyl chloride	5.0	U	5.0	0.43	ug/L			07/19/24 12:13	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	103		80 - 120	-		07/19/24 12:13	1	
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			07/19/24 12:13	1	
4-Bromofluorobenzene (Surr)	102		73 - 120			07/19/24 12:13	1	
Dibromofluoromethane (Surr)	106		75 - 123			07/19/24 12:13	1	

Lab Sample ID: LCS 480-718985/7 Matrix: Water Analysis Batch: 718985

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	25.5		ug/L		102	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.7		ug/L		103	76 - 120	
1,1,2-Trichloroethane	25.0	23.8		ug/L		95	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.2		ug/L		105	61 - 148	
ne								
1,1-Dichloroethane	25.0	24.0		ug/L		96	77 - 120	
1,1-Dichloroethene	25.0	24.5		ug/L		98	66 - 127	
1,2,4-Trichlorobenzene	25.0	27.3		ug/L		109	79_122	
1,2-Dibromo-3-Chloropropane	25.0	29.3		ug/L		117	56 - 134	
1,2-Dichlorobenzene	25.0	24.7		ug/L		99	80 - 124	
1,2-Dichloroethane	25.0	23.8		ug/L		95	75 - 120	
1,2-Dichloropropane	25.0	23.8		ug/L		95	76 - 120	
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	77 _ 120	
1,4-Dichlorobenzene	25.0	23.9		ug/L		96	80 - 120	
2-Butanone (MEK)	125	133		ug/L		106	57 _ 140	
2-Hexanone	125	130		ug/L		104	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	135		ug/L		108	71 - 125	

Eurofins Buffalo

lts

Job ID: 480-221759-1

5

8

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-718985/7 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 718985

Analysis Datch. 710305	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	125	127		ug/L		102	56 - 142
Benzene	25.0	23.7		ug/L		95	71 - 124
Bromodichloromethane	25.0	25.1		ug/L		100	80 - 122
Bromoform	25.0	30.8		ug/L		123	61 - 132
Bromomethane	25.0	29.7		ug/L		119	55 - 144
Carbon disulfide	25.0	23.9		ug/L		96	59 - 134
Carbon tetrachloride	25.0	27.5		ug/L		110	72 - 134
,3-Dichloropropane	25.0	24.1		ug/L		96	75 - 120
Chlorobenzene	25.0	23.4		ug/L		94	80 - 120
,3-Dichloropropene, Total	50.0	49.7		ug/L		99	80 - 124
Dibromochloromethane	25.0	27.4		ug/L		109	75 - 125
Chloroethane	25.0	27.9		ug/L		112	69 - 136
Chloroform	25.0	22.8		ug/L		91	73 - 127
Chloromethane	25.0	26.9		ug/L		108	68 - 124
is-1,2-Dichloroethene	25.0	23.5		ug/L		94	74 - 124
is-1,3-Dichloropropene	25.0	24.6		ug/L		98	74 - 124
,2-Dichloropropane	25.0	23.2		ug/L		93	63 - 136
Cyclohexane	25.0	25.5		ug/L		102	59 - 135
vichlorodifluoromethane	25.0	31.7		ug/L		127	59 - 135
thylbenzene	25.0	23.9		ug/L		95	77 - 123
,2-Dibromoethane	25.0	24.5		ug/L		98	77 - 120
-Chloroethyl vinyl ether	25.0	25.0		ug/L		100	70 - 129
sopropylbenzene	25.0	24.4		ug/L		98	77 - 122
-Chlorotoluene	25.0	24.7		ug/L		99	76 - 121
1ethyl acetate	50.0	51.6		ug/L		103	74 - 133
1ethyl tert-butyl ether	25.0	23.8		ug/L		95	77 - 120
lethylcyclohexane	25.0	25.3		ug/L		101	68 - 134
lethylene Chloride	25.0	24.8		ug/L		99	75 - 124
Styrene	25.0	24.5		ug/L		98	80 - 120
-Chlorotoluene	25.0	24.7		ug/L		99	77 - 121
etrachloroethene	25.0	24.0		ug/L		96	74 - 122
oluene	25.0	22.6		ug/L		90	80 - 122
rans-1,2-Dichloroethene	25.0	23.5		ug/L		94	73 - 127
ans-1,3-Dichloropropene	25.0	25.1		ug/L		101	80 - 120
richloroethene	25.0	23.6		ug/L		94	74 - 123
richlorofluoromethane	25.0	28.8		ug/L		115	62 - 150
/inyl chloride	25.0	27.8		ug/L		111	65 - 133
Chlorobromomethane	25.0	24.3		ug/L		97	72 - 130
Dichlorofluoromethane	25.0	25.9		ug/L		104	76 - 127
lexachlorobutadiene	25.0	24.8		ug/L		99	68 - 131
Allyl chloride	25.0	23.9		ug/L		95	60 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	104		73 - 120
Dibromofluoromethane (Surr)	103		75 - 123

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

MDL Unit

0.82 ug/L

0.21 ug/L

0.23 ug/L

0.31 ug/L

0.38 ug/L

0.29 ug/L

0.41 ug/L

0.39 ug/L

D

Prepared

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

1.0 U

Result Qualifier

Lab Sample ID: MB 480-719182/8 Matrix: Water Analysis Batch: 719182

Analyte

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

1,1,2,2-Tetrachloroethane

1,1,2-Trichloro-1,2,2-trifluoroethane

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

07/22/24 15:50

5
8
9

12 13

14

1,2-Dichlorobenzene	1.0 U	1.0	0.79 ug/L	07/22/24 15:50 1
1,2-Dichloroethane	1.0 U	1.0	0.21 ug/L	07/22/24 15:50 1
1,2-Dichloropropane	1.0 U	1.0	0.72 ug/L	07/22/24 15:50 1
1,3-Dichlorobenzene	1.0 U	1.0	0.78 ug/L	07/22/24 15:50 1
1,4-Dichlorobenzene	1.0 U	1.0	0.84 ug/L	07/22/24 15:50 1
2-Butanone (MEK)	10 U	10	1.3 ug/L	07/22/24 15:50 1
2-Hexanone	5.0 U	5.0	1.2 ug/L	07/22/24 15:50 1
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	2.1 ug/L	07/22/24 15:50 1
Acetone	10 U	10	3.0 ug/L	07/22/24 15:50 1
Benzene	1.0 U	1.0	0.41 ug/L	07/22/24 15:50 1
1,2-Dichloroethene, Total	2.0 U	2.0	0.81 ug/L	07/22/24 15:50 1
Bromodichloromethane	1.0 U	1.0	0.39 ug/L	07/22/24 15:50 1
Bromoform	1.0 U	1.0	0.26 ug/L	07/22/24 15:50 1
1,3,5-Trichlorobenzene	1.0 U	1.0	0.23 ug/L	07/22/24 15:50 1
Bromomethane	1.0 U	1.0	0.69 ug/L	07/22/24 15:50 1
Carbon disulfide	1.0 U	1.0	0.19 ug/L	07/22/24 15:50 1
Carbon tetrachloride	1.0 U	1.0	0.27 ug/L	07/22/24 15:50 1
1,3-Dichloropropane	1.0 U	1.0	0.75 ug/L	07/22/24 15:50 1
Chlorobenzene	1.0 U	1.0	0.75 ug/L	07/22/24 15:50 1
1,3-Dichloropropene, Total	2.0 U	2.0	0.72 ug/L	07/22/24 15:50 1
Dibromochloromethane	1.0 U	1.0	0.32 ug/L	07/22/24 15:50 1
Chloroethane	1.0 U	1.0	0.32 ug/L	07/22/24 15:50 1
Chloroform	1.0 U	1.0	0.34 ug/L	07/22/24 15:50 1
Chloromethane	1.0 U	1.0	0.35 ug/L	07/22/24 15:50 1
cis-1,2-Dichloroethene	1.0 U	1.0	0.81 ug/L	07/22/24 15:50 1
cis-1,3-Dichloropropene	1.0 U	1.0	0.36 ug/L	07/22/24 15:50 1
2,2-Dichloropropane	1.0 U	1.0	0.40 ug/L	07/22/24 15:50 1
Cyclohexane	1.0 U	1.0	0.18 ug/L	07/22/24 15:50 1
Dichlorodifluoromethane	1.0 U	1.0	0.68 ug/L	07/22/24 15:50 1
Chloroprene	1.0 U	1.0	0.49 ug/L	07/22/24 15:50 1
Ethylbenzene	1.0 U	1.0	0.74 ug/L	07/22/24 15:50 1
1,2-Dibromoethane	1.0 U	1.0	0.73 ug/L	07/22/24 15:50 1
2-Chlorobenzotrifluoride	1.0 U	1.0	0.50 ug/L	07/22/24 15:50 1
2-Chloroethyl vinyl ether	5.0 U	5.0	0.96 ug/L	07/22/24 15:50 1
Isopropylbenzene	1.0 U	1.0	0.79 ug/L	07/22/24 15:50 1
2-Chlorotoluene	1.0 U	1.0	0.86 ug/L	07/22/24 15:50 1
Methyl acetate	2.5 U	2.5	1.3 ug/L	07/22/24 15:50 1
Methyl tert-butyl ether	1.0 U	1.0	0.16 ug/L	07/22/24 15:50 1
Methylcyclohexane	1.0 U	1.0	0.16 ug/L	07/22/24 15:50 1
Methylene Chloride	1.0 U	1.0	0.44 ug/L	07/22/24 15:50 1

Eurofins Buffalo

Job ID: 480-221759-1

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-719182/8 Matrix: Water Analysis Batch: 719182

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Che

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	1.0	U	1.0	0.73	ug/L			07/22/24 15:50	1
4-Chlorotoluene	1.0	U	1.0	0.84	ug/L			07/22/24 15:50	1
Tetrachloroethene	1.0	U	1.0	0.36	ug/L			07/22/24 15:50	1
Toluene	1.0	U	1.0	0.51	ug/L			07/22/24 15:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.90	ug/L			07/22/24 15:50	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.37	ug/L			07/22/24 15:50	1
Trichloroethene	1.0	U	1.0	0.46	ug/L			07/22/24 15:50	1
Trichlorofluoromethane	1.0	U	1.0	0.88	ug/L			07/22/24 15:50	1
Vinyl chloride	1.0	U	1.0	0.90	ug/L			07/22/24 15:50	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			07/22/24 15:50	1
Chlorobromomethane	1.0	U	1.0	0.87	ug/L			07/22/24 15:50	1
Chlorodifluoromethane	1.0	U	1.0	0.26	ug/L			07/22/24 15:50	1
Dichlorofluoromethane	1.0	U	1.0	0.34	ug/L			07/22/24 15:50	1
Hexachlorobutadiene	2.0	U	2.0	0.28	ug/L			07/22/24 15:50	1
Allyl chloride	1.0	U	1.0	0.44	ug/L			07/22/24 15:50	1
3-Chlorobenzotrifluoride	1.0	U	1.0	0.49	ug/L			07/22/24 15:50	1
3-Chlorotoluene	1.0	U	1.0	0.45	ug/L			07/22/24 15:50	1
4-Chlorobenzotrifluoride	1.0	U	1.0	0.21	ug/L			07/22/24 15:50	1
1-Chlorohexane	5.0	U	5.0	0.20	ug/L			07/22/24 15:50	1
Benzyl chloride	5.0	U	5.0	0.43	ug/L			07/22/24 15:50	1

	MB M	18				
Surrogate	%Recovery Q	ualifier Limit	S	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106	80 - 12	20		07/22/24 15:50	1
1,2-Dichloroethane-d4 (Surr)	107	77 - 12	20		07/22/24 15:50	1
4-Bromofluorobenzene (Surr)	97	73 - 12	20		07/22/24 15:50	1
Dibromofluoromethane (Surr)	106	75 - 1	23		07/22/24 15:50	1

Lab Sample ID: LCS 480-719182/6 Matrix: Water Analysis Batch: 719182

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	26.2		ug/L		105	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.8		ug/L		99	76 - 120	
1,1,2-Trichloroethane	25.0	23.6		ug/L		94	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.1		ug/L		108	61 - 148	
ne								
1,1-Dichloroethane	25.0	24.4		ug/L		97	77 - 120	
1,1-Dichloroethene	25.0	25.4		ug/L		102	66 - 127	
1,2,4-Trichlorobenzene	25.0	29.7		ug/L		119	79_122	
1,2-Dibromo-3-Chloropropane	25.0	31.0		ug/L		124	56 - 134	
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	80 - 124	
1,2-Dichloroethane	25.0	24.3		ug/L		97	75 - 120	
1,2-Dichloropropane	25.0	24.0		ug/L		96	76 - 120	
1,3-Dichlorobenzene	25.0	24.0		ug/L		96	77 - 120	
1,4-Dichlorobenzene	25.0	23.3		ug/L		93	80 - 120	
2-Butanone (MEK)	125	130		ug/L		104	57 - 140	
2-Hexanone	125	129		ug/L		103	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	136		ug/L		109	71 - 125	

Eurofins Buffalo

Job ID: 480-221759-1

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-719182/6 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 719182					Prep Type: Total
Analysis Batch. 119102	Spike	LCS	LCS		%Rec
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Acetone	125	128	ug/L	102	56 - 142
Benzene	25.0	23.9	ug/L	96	71 - 124
Bromodichloromethane	25.0	25.4	ug/L	101	80 - 122
Bromoform	25.0	29.0	ug/L	116	61 - 132
Bromomethane	25.0	28.7	ug/L	115	55 - 144
Carbon disulfide	25.0	24.4	ug/L	98	59 - 134
Carbon tetrachloride	25.0	27.9	ug/L	112	72 - 134
1,3-Dichloropropane	25.0	23.4	ug/L	94	75 - 120
Chlorobenzene	25.0	23.5	ug/L	94	80 - 120
1,3-Dichloropropene, Total	50.0	49.0	ug/L	98	80 - 124
Dibromochloromethane	25.0	27.2	ug/L	109	75 - 125
Chloroethane	25.0	27.8	ug/L	111	69 - 136
Chloroform	25.0	22.9	ug/L	92	73 - 127
Chloromethane	25.0	26.5	ug/L	106	68 - 124
cis-1,2-Dichloroethene	25.0	23.8	ug/L	95	74 - 124
cis-1,3-Dichloropropene	25.0	24.0	ug/L	96	74 - 124
2,2-Dichloropropane	25.0	21.8	ug/L	87	63 - 136
Cyclohexane	25.0	25.8	ug/L	103	59 - 135
Dichlorodifluoromethane	25.0	28.4	ug/L	114	59 - 135
Ethylbenzene	25.0	24.0	ug/L	96	77 - 123
1,2-Dibromoethane	25.0	24.3	ug/L	97	77 - 120
2-Chloroethyl vinyl ether	25.0	23.5	ug/L	94	70 - 129
Isopropylbenzene	25.0	24.9	ug/L	100	77 - 122
2-Chlorotoluene	25.0	24.4	ug/L	98	76 - 121
Methyl acetate	50.0	51.1	ug/L	102	74 - 133
Methyl tert-butyl ether	25.0	23.1	ug/L	92	77 - 120
Methylcyclohexane	25.0	25.5	ug/L	102	68 - 134
Methylene Chloride	25.0	24.7	ug/L	99	75 - 124
Styrene	25.0	23.5	ug/L	94	80 - 120
4-Chlorotoluene	25.0	24.0	ug/L	96	77 - 121
Tetrachloroethene	25.0	25.1	ug/L	101	74 - 122
Toluene	25.0	23.1	ug/L	92	80 - 122
trans-1,2-Dichloroethene	25.0	23.6	ug/L	94	73 - 127
trans-1,3-Dichloropropene	25.0	25.0	ug/L	100	80 - 120
Trichloroethene	25.0	24.1	ug/L	96	74 - 123
Trichlorofluoromethane	25.0	29.0	ug/L	116	62 - 150
Vinyl chloride	25.0	27.5	ug/L	110	65 - 133
Chlorobromomethane	25.0	23.9	ug/L	95	72 - 130
Dichlorofluoromethane	25.0	26.0	ug/L	104	76 - 127
Hexachlorobutadiene	25.0	26.9	ug/L	108	68 - 131
Allyl chloride	25.0	24.6	ug/L	98	60 - 140

	LCS	LCS				
Surrogate	%Recovery	Qualifier	Limits			
Toluene-d8 (Surr)	103		80 - 120			
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			
4-Bromofluorobenzene (Surr)	98		73 - 120			
Dibromofluoromethane (Surr)	103		75 - 123			

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Method: 6010C - Metals (ICP)

Matrix: Water

Lab Sample ID: MB 480-718978/1-B

		MB											
Analyte		Qualifier		RL	-		Unit		D		repared	Analyzed	Dil F
Iron, Dissolved	0.050	U	(0.050	0	.019	mg/L			07/2	2/24 09:16	07/22/24 15:28	
Lab Sample ID: LCS 480-718978/2-	В							Cli	ent	Sar	nple ID:	Lab Control	Samp
Matrix: Water											F	rep Type: Di	ssolv
Analysis Batch: 719228												Prep Batch:	7190
			Spike		LCS	LCS	5					%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	_
Iron, Dissolved			5.10		5.96			mg/L			117	80 - 120	
Lab Sample ID: LCSD 480-718978/3	3-B						C	lient S	Sam	ple	ID: Lab	Control Sam	ole D
Matrix: Water										÷		rep Type: Di	
Analysis Batch: 719228												Prep Batch:	
-			Spike		LCSD	LCS	D					%Rec	R
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits RP	D Li
Iron, Dissolved			5.10		5.75			mg/L			113	80 - 120	4
lethod: 9060A - Organic Carb	on, T	otal (TC)C)										
<u>_</u>			,										
Lab Sample ID: MB 480-719607/28										Clie	ent Samp	ole ID: Metho	
Matrix: Water												Prep Type: T	otal/I
Analysis Batch: 719607	MD	МВ											
Analyta		Qualifier		RL			Unit		D	в.	roporod	Applyzod	Dil F
Analyte	1.0			1.0			mg/L		<u> </u>		repared	Analyzed 07/24/24 04:04	
Total Organic Carbon - Quad	1.0			1.0			mg/L					07/24/24 04:04	
TOC Result 1	1.0			1.0			mg/L					07/24/24 04:04	
TOC Result 2	1.0			1.0			mg/L					07/24/24 04:04	
TOC Result 3	1.0			1.0			mg/L					07/24/24 04:04	
TOC Result 4		U ^-		1.0			mg/L					07/24/24 04:04	
Lab Sample ID: NP 490 740607/52											nt Com	la ID: Matha	
Lab Sample ID: MB 480-719607/52										Cile	ent Samp	ole ID: Metho	
Matrix: Water Analysis Batch: 719607												Prep Type: T	otal/I
Analysis Batch. 7 19007	MB	МВ											
Analyte		Qualifier		RL		мы	Unit		D	Pr	repared	Analyzed	Dil F
Total Organic Carbon	1.0			1.0			mg/L		-		opulou	07/24/24 15:40	
Total Organic Carbon - Quad	1.0			1.0			mg/L					07/24/24 15:40	
TOC Result 1	1.0			1.0			mg/L					07/24/24 15:40	
TOC Result 2	1.0	U		1.0			mg/L					07/24/24 15:40	
TOC Result 3	1.0			1.0			mg/L					07/24/24 15:40	
TOC Result 4	1.0	U ^-		1.0		0.43	mg/L					07/24/24 15:40	
Lab Sample ID: LCS 480-719607/29								Cli	ent	Sar	nple ID:	Lab Control	
Matrix: Water												Prep Type: T	otal/l
Analysis Batch: 719607			0									0/ D	
Analysia			Spike		LCS			11		~	0/ D = -	%Rec	
Analyte			Added		Result	Qua	Inter				%Rec	Limits	
Total Organic Carbon			60.0		58.26			mg/L			97 07	90 - 110	
Total Organic Carbon - Quad TOC Result 1			60.0		58.26			mg/L			97 101	90 - 110	
			60.0		60.86			mg/L			101	90 - 110	

Page 19 of 31

8/1/2024

Job ID: 480-221759-1

Prep Type: Dissolved

5

Client Sample ID: Method Blank

Spike

Added

60.0

60.0

60.0

LCS LCS

55.83

60.78

55.58 ^-

Result Qualifier

Unit

mg/L

mg/L

mg/L

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Prep Type: Total/NA

1 2 3 4 5 6

8

/L 93 90 - 110 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

D %Rec

93

101

%Rec

Limits

90 - 110

90 - 110

Lab Sample ID: LCS 480-719607/53
Matrix: Water
Analysis Batch: 719607

Analysis Batch: 719607

Matrix: Water

Analyte

TOC Result 2

TOC Result 3

TOC Result 4

Lab Sample ID: LCS 480-719607/29

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	60.0	56.69		mg/L		94	90 - 110
Total Organic Carbon - Quad	60.0	56.69		mg/L		94	90 - 110
TOC Result 1	60.0	58.67		mg/L		98	90 - 110
TOC Result 2	60.0	54.84		mg/L		91	90 - 110
TOC Result 3	60.0	58.79		mg/L		98	90 - 110
TOC Result 4	60.0	54.46	^_	mg/L		91	90 - 110

Method: D516-90, 02 - Sulfate

Lab Sample ID: MB 480-719030/47 Matrix: Water							Client Sam	ple ID: Method Prep Type: T	
Analysis Batch: 719030									
······,	МВ	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5.0	U	5.0	1.5	mg/L			07/19/24 10:00	1
Lab Sample ID: MB 480-719030/53							Client Sam	ple ID: Method	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 719030									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5.0	U	5.0	1.5	mg/L			07/19/24 10:02	1
Lab Sample ID: MB 480-719030/68							Client Sam	ple ID: Method	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 719030									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5.0	U	5.0	1.5	mg/L			07/19/24 10:09	1
Lab Sample ID: MB 480-719030/75							Client Sam	ple ID: Method	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 719030									
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5.0	U	5.0	1.5	mg/L			07/19/24 10:12	1

Eurofins Buffalo

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Job ID: 480-221759-1

Method: D516-90, 02 - Sulfate (Continued)

-														
Lab Sample ID: MB 480-719030/88									CI	ient	Sam	ple ID: Met		
Matrix: Water												Prep Type	: To	tal/NA
Analysis Batch: 719030														
		MB							_	_				
Analyte		Qualifier		RL			Unit		<u>D</u>	Prep	ared	Analyzed		Dil Fac
Sulfate	5.0	U		5.0		1.5	mg/L					07/19/24 10	:23	1
Lab Sample ID: MB 480-719030/92									CI	ient	Sam	ple ID: Met	hod	Blank
Matrix: Water												Prep Type	: To	tal/NA
Analysis Batch: 719030														
-	MB	MB												
Analyte	Result	Qualifier		RL	I		Unit		D	Prep	ared	Analyzec	I	Dil Fac
Sulfate	5.0	U		5.0		1.5	mg/L					07/19/24 10	:33	1
_ Lab Sample ID: LCS 480-719030/52)							Clie	ont Sa	amn		: Lab Contr	ol Sa	amnlo
Matrix: Water								ond				Prep Type		
Analysis Batch: 719030												пер турс		
Analysis Baten. 110000			Spike		LCS	LCS						%Rec		
Analyte			Added		Result			Unit	D) %	Rec	Limits		
Sulfate			30.0		29.98			mg/L			100	90 - 110		
			00.0		20.00			<u>9</u> , E			100	001110		
Lab Sample ID: LCS 480-719030/74	Ļ							Clie	ent Sa	amp	le ID:	Lab Contr	ol Sa	ample
Matrix: Water										1		Prep Type		
Analysis Batch: 719030														
			Spike		LCS	LCS	;					%Rec		
Analyte			Added		Result	Qua	lifier	Unit	D) %	Rec	Limits		
Sulfate			30.0		30.09			mg/L			100	90 - 110		
-														
Lab Sample ID: LCS 480-719030/91								Clie	ent Sa	amp	le ID:	: Lab Contr		
Matrix: Water												Prep Type	: To	tal/NA
Analysis Batch: 719030														
			Spike		LCS	LCS	;					%Rec		
Analyte			Added		Result	Qua	lifier	Unit) %	Rec	Limits		
Sulfate			30.0		30.17			mg/L			101	90 - 110		
Method: SM 4500 H+ B - pH														
- Lob Somple ID: LCS 490 740222/4								0114	ant C			Lab Cantr		omolo
Lab Sample ID: LCS 480-719222/1								Cite	in Se	amp		Lab Contr		
Matrix: Water												Prep Type	: 10	
Analysis Batch: 719222			Spike		LCS	1.00						%Rec		
Analyta			Added		Result			Unit		0 /	Rec			
Analyte			7.00		7.0	Qua	inner	Unit SU	[/0	100	Limits 99 - 101		
-					7.0			30			100	99-101		
Method: SM 4500 O G - Oxyge	n, Dis	ssolved												
_ Lab Sample ID: 480-221759-1 DU											Cliv	ent Sample	י יחו	MW_ 2
Matrix: Water											Cife	Prep Type		
Analysis Batch: 719006												-ieh ishe	. 10	
-	ole San	nnlo			יוח	DU								RPD
-	ult Qua	-			Result		lifier	Unit	D	,			RPD	Limit
-	$\frac{1}{3.1}$ $\frac{1}{HF}$				5.82	Qud		mg/L	Ľ	·			5	20
					5 Q.7									

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Matrix

Water

Water

Water

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

MW- 2

MW-3

Client Sample ID

Lab Control Sample

Client Sample ID

Lab Control Sample

Method Blank

Method Blank

Job ID: 480-221759-1

Method

8260C

8260C

8260C

Method

8260C

8260C

8260C

Prep Batch

Prep Batch

9

Filtration Batch: 718978

GC/MS VOA

Lab Sample ID

MB 480-718985/9

LCS 480-718985/7

Lab Sample ID

MB 480-719182/8

LCS 480-719182/6

480-221759-2

Metals

480-221759-1

Analysis Batch: 718985

Analysis Batch: 719182

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1	MW- 2	Dissolved	Water	FILTRATION	
480-221759-2	MW-3	Dissolved	Water	FILTRATION	
MB 480-718978/1-B	Method Blank	Dissolved	Water	FILTRATION	
LCS 480-718978/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 480-718978/3-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1	MW- 2	Dissolved	Water	3005A	718978
	•				· · · · · · · · · · · · · · · · · · ·
480-221759-1	MW- 2	Dissolved	Water	3005A	718978
480-221759-1 480-221759-2	MW-2 MW-3	Dissolved	Water Water	3005A 3005A	718978 718978

Analysis Batch: 719228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1	MW- 2	Dissolved	Water	6010C	719014
480-221759-2	MW-3	Dissolved	Water	6010C	719014
MB 480-718978/1-B	Method Blank	Dissolved	Water	6010C	719014
LCS 480-718978/2-B	Lab Control Sample	Dissolved	Water	6010C	719014
LCSD 480-718978/3-B	Lab Control Sample Dup	Dissolved	Water	6010C	719014

General Chemistry

Analysis Batch: 719006

Lab Sample ID 480-221759-1	Client Sample ID MW- 2	Prep Type Total/NA	Matrix Water	Method SM 4500 O G	Prep Batch
480-221759-2	MW-3	Total/NA	Water	SM 4500 O G	
480-221759-1 DU	MW- 2	Total/NA	Water	SM 4500 O G	

Analysis Batch: 719030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1 480-221759-2	MW-3	Total/NA Total/NA	Water Water	D516-90, 02 D516-90, 02	
MB 480-719030/47	Method Blank	Total/NA	Water	D516-90, 02	
MB 480-719030/53	Method Blank	Total/NA	Water	D516-90, 02	
MB 480-719030/68	Method Blank	Total/NA	Water	D516-90, 02	
MB 480-719030/75	Method Blank	Total/NA	Water	D516-90, 02	

Eurofins Buffalo

QC Association Summary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

General Chemistry (Continued)

Analysis Batch: 719030 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-719030/88	Method Blank	Total/NA	Water	D516-90, 02	
MB 480-719030/92	Method Blank	Total/NA	Water	D516-90, 02	
LCS 480-719030/52	Lab Control Sample	Total/NA	Water	D516-90, 02	
LCS 480-719030/74	Lab Control Sample	Total/NA	Water	D516-90, 02	
LCS 480-719030/91	Lab Control Sample	Total/NA	Water	D516-90. 02	

alysis Batch: (19222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1	MW- 2	Total/NA	Water	SM 4500 H+ B	
480-221759-2	MW-3	Total/NA	Water	SM 4500 H+ B	
LCS 480-719222/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 719607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-221759-1	MW- 2	Total/NA	Water	9060A	
480-221759-2	MW-3	Total/NA	Water	9060A	
MB 480-719607/28	Method Blank	Total/NA	Water	9060A	
MB 480-719607/52	Method Blank	Total/NA	Water	9060A	
LCS 480-719607/29	Lab Control Sample	Total/NA	Water	9060A	
LCS 480-719607/53	Lab Control Sample	Total/NA	Water	9060A	
-					

Analysis Batch: 988184

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
480-221759-1	MW- 2	Total/NA	Water	SM 2580B		
480-221759-2	MW-3	Total/NA	Water	SM 2580B		

Job ID: 480-221759-1

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Client Sample ID: MW- 2 Date Collected: 07/16/24 15:30 Date Received: 07/18/24 09:25

Lab Sample ID: 480-221759-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	718985	AXK	EET BUF	07/19/24 15:09
Dissolved	Filtration	FILTRATION			718978	EMO	EET BUF	07/19/24 09:22
Dissolved	Prep	3005A			719014	EMO	EET BUF	07/22/24 09:16
Dissolved	Analysis	6010C		1	719228	NZG	EET BUF	07/22/24 15:50
Total/NA	Analysis	9060A		1	719607	AF	EET BUF	07/24/24 23:54
Total/NA	Analysis	D516-90, 02		100	719030	CG	EET BUF	07/19/24 10:33
Total/NA	Analysis	SM 2580B		1	988184	YAH	EET EDI	07/31/24 15:53
Total/NA	Analysis	SM 4500 H+ B		1	719222	KB	EET BUF	07/22/24 14:24
Total/NA	Analysis	SM 4500 O G		1	719006	CG	EET BUF	07/19/24 10:28

Client Sample ID: MW-3 Date Collected: 07/16/24 16:00 Date Received: 07/18/24 09:25

Lab Sample ID: 480-221759-2

Matrix: Water

-	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1000	719182	AXK	EET BUF	07/22/24 16:13
Dissolved	Filtration	FILTRATION			718978	EMO	EET BUF	07/19/24 09:22
Dissolved	Prep	3005A			719014	EMO	EET BUF	07/22/24 09:16
Dissolved	Analysis	6010C		1	719228	NZG	EET BUF	07/22/24 15:52
Total/NA	Analysis	9060A		5	719607	AF	EET BUF	07/25/24 00:22
Total/NA	Analysis	D516-90, 02		1	719030	CG	EET BUF	07/19/24 10:19
Total/NA	Analysis	SM 2580B		1	988184	YAH	EET EDI	07/31/24 15:55
Total/NA	Analysis	SM 4500 H+ B		1	719222	KB	EET BUF	07/22/24 14:27
Total/NA	Analysis	SM 4500 O G		1	719006	CG	EET BUF	07/19/24 10:28

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Job ID: 480-221759-1

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progr	am	Identification Number	Expiration Date
lew York	NELA	P	10026	03-31-25
The following analyte	s are included in this repo	rt but the laboratory is r	not certified by the governing authori	ity This list may include analytes
o ,	does not offer certification	•		
Analysis Method	Prep Method	Matrix	Analyte	
8260C		Water	1,2-Dichloroethene, Total	
8260C		Water	1,3,5-Trichlorobenzene	
8260C		Water	1,3-Dichloropropene, Tota	al
8260C		Water	1-Chlorohexane	
8260C		Water	2-Chlorobenzotrifluoride	
8260C		Water	3-Chlorobenzotrifluoride	
8260C		Water	3-Chlorotoluene	
8260C		Water	4-Chlorobenzotrifluoride	
8260C		Water	Chlorodifluoromethane	
8260C		Water	Dichlorofluoromethane	
9060A		Water	TOC Result 1	
9060A		Water	TOC Result 2	
9060A		Water	TOC Result 3	
9060A		Water	TOC Result 4	
SM 4500 H+ B		Water	pH	
SM 4500 H+ B		Water	Temperature	
SM 4500 O G		Water	Oxygen, Dissolved	

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0818	09-30-24
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-02-25
Georgia	State	12028 (NJ)	07-01-25
Massachusetts	State	M-NJ312	07-01-25
New Jersey	NELAP	12028	06-30-25
New York	NELAP	11452	04-01-25
Pennsylvania	NELAP	68-00522	02-28-25
Rhode Island	State	LAO00376	12-31-24
USDA	US Federal Programs	525-24-149-77606	05-21-27

Method Summary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
5010C	Metals (ICP)	SW846	EET BUF
9060A	Organic Carbon, Total (TOC)	SW846	EET BUF
D516-90, 02	Sulfate	ASTM	EET BUF
SM 2580B	Reduction-Oxidation (REDOX) Potential	SM	EET EDI
SM 4500 H+ B	рН	SM	EET BUF
SM 4500 O G	Oxygen, Dissolved	SM	EET BUF
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF
FILTRATION	Sample Filtration	None	EET BUF

Protocol References:

ASTM = ASTM International

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Buffalo

Sample Summary

Client: Brydges Engineering in Environment & Energy DPC Project/Site: 31 Tonawanda Street Project

Job ID: 480-221759-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-221759-1	MW- 2	Water	07/16/24 15:30	07/18/24 09:25
480-221759-2	MW-3	Water	07/16/24 16:00	07/18/24 09:25

- si vinis Dunaiu

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991 Chain of Custody Record

Environment Testing

Client Information	Sampler: P. Stand Phone: 585-944-6		Lab PM: Beninati, John			Carrier Tracking No(s)						Carrier Tracking No(s)				COC No: 480-198041-39443,1		
Mr. Paul Staub	Phone: 585-944-6	793	E-Mail John	^{ail:} In.Beninati@et.eurofinsus.com				Sta	State of Origin.					Page				
Company: Brydges Engineering in Environment & Energy DPC		PWSID:	1									-					Page 1 of 1 Job #:	
Address 960 Busti Ave Suite B-150	Due Date Requested:				T	T			Tary		eque	stea					Preservation Codes:	
City.	TAT Requested (days):	, 1															N - None A - HCL	
Buffalo State, Zip:	St	andurd															S - H2SO4	
NY, 14213 Phone:	Compliance Project: A Yes	ΔΝο																
716-362-6533(Tel)	PO #: Purchase Order not require	ed		_		o List												
Email: pstaub@be3corp.com	WO #:			or No	5	Extended Chloro	(TOC)	/ed		Dissolved								
Project Name 31 Tonawanda Street Project	Project #			Yes or N	5	nded	Total	Dissolved		Diss						ners		
Site:	48026706 SSOW#:														ontai	o c c c c c c c c c c c c c c c c c c c		
		1		San	3	VOCs +	c Car	Oxygen,	±	(ICP)						5	Other:	
		Sample Mat		Field Filtered : Perform MS/M	RP	CL V	- Organic	SM4500_0_G -	D516, SM4500_H+	Metals (ICP)						Number		
	Sample	Type (w=w. S=so O=wasi	olid,	d Fill	2580B - ORP	8260C - TCL	0 - A	500_(S, SM							INUL		
Sample Identification	Sample Date Time	G=grab) BT=Tissue	e. A=Air)	Fiel	258(8260	9060A	SM4	D51(6010C						Total	Special Instructions/	Note:
MW-2		Preservation Co	i	¥		A	S	++		N	1	28	000	198		М		
MW-3	7-16 3:30pm	G Wa			X		X	X	X	X	_							
MW-J	7-16 4'00pm	G Wa	ter		X	(X)	X	X	X	X								
																100		
											+							
			'					1 1	1		1	1						
			_											_	+			
														_				
				480	-221	759 (Jhain	n of C	Custo	ody		_	_	_				
Possible Hazard Identification						1												
	son B Unknown	Radiological		S	amp	le Dis Retur	posa		fee r	nay b	e asse	essed	if sar	nples a			ed longer than 1 month)	
Deliverable Day 111 House and Day	re-vill reach our	1 the pro John	11-	h SI		Retur al Insti				quirer	Disp nents:	osal E	y Lat)		Arch	ive For Months	
Empty Kit Relinquished by: ALEXIS PC		8/24 Confi	Con I	Time							1	Moth	nd of S	hipment:				
Relinquished by: ang Pe	Date/Time: 1/18/24 9	25an Compan	17	1	_	ceived	by:	1 11	11		A	<u> </u>	1.	Date/Time	e: 1	T	10/1 A - Company	
Relinquished by:	7/18/29 7 Date/Time:	Compan	ISC V	5		ceived	(M	IM	(W/	110	(0)	0		71	18	3/24 9/2 Company	2
Relinquished by:	Date/Time													Date/Tim	e: •		Company	
	Date/Time.	Compan	ч		Re	ceived	by:						1	Date/Tim	e:		Company	
Custody Seals Intact: Custody Seal No.: ∆ Yes					Co	oler Te	mperat	ture(s)	°Cyan	d Other	Remark	ks:						
				_			8	4	Ŧ	11	ce	·						

14

Ver: 04/02/2024

5

Eurofins Buffalo 10 Hazelwood Drive

Amherst, NY 14228-2298

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691 7991	Sampler	liai	b PM:					Can	ier Trackir	g No(s):			ÇOC No:	
Client Information (Sub Contract Lab)	Beninati, John							-		480-88527 1				
Client Contact: Shipping/Receiving	Phone:	Mail: bhn.Ben	inati@e	et.eurofins	State of Origin: Finsus.com New York							Page: Page 1 of 1		
Company:		Accre	editations Required (See note):											
Eurofins Environment Testing Northeast,	Due Date Requested:			AP New York								ies:		
Address: 777 New Durham Road,	7/31/2024			Analysis Requested										
City:	TAT Requested (days):			P 4										
Edison State, Zip:				Contration of								2		
NJ, 08817												10 m		
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	PO #:			Conversion of the second								an a		
Email:	WO #:		<u>or No</u>									1		
	Project #:			Ž								Liena		
Project Name: 31 Tonawanda Street Project	48026706		β	89				1				container	'	
Site:	SSOW#:		Samp									§ Other		
			- S Ps	Parform MS/M9D (Yea or No) 2580B/ ORP								Total Number of		
		Sample Matrix Type (Wewater,	liter	M M OR D								Munk		
	Sample	(C=comp, O=waste/oil	a line	Perfori 2580B/								otal		· · · · · · · · · - · · · · · · · · · ·
Sample Identification Client ID (Lab ID)	Sample Date Time	G=grab) BT=Tissue, A=		<u>8</u> 8			1				200	Ŕ	Special Ir	structions/Note:
	15:30	Preservation Code	S. 1997	<u>X</u>			ปไห้สุดกอลี้ เ	<u></u>		di latan	<u>يدا لايدون</u>		8	
MW- 2 (480-221759-1)	//16/24 Eastern	Water		×			<u> </u>					- Inter		
MW-3 (480-221759-2)	7/16/24 16:00 Eastern	Water	r	X								1		
												1. A. A.		
										1				
					<u> </u>				┿╌┼			8.2		······
					 							-		
											tit	1660		
							+	_	+		┝╍┊┟╍			
		1											3	
Note: Since laboratory accreditations are subject to change, Eurofins Environment	ent Testing Northeast, LLC places the o	wnership of method, ana	alyte & ac	creditatio	n complianc	e upon ou	r subcon	tract lab	oratories.	This sam	ple shipn er instrur	nent is t	forwarded under chair dli be provided - Any r	n-of-custody. If the laborate thanges to accreditation
Note: Since laboratory accreditations are subject to change, Eurofins Environm does not currently maintain accreditation in the State of Origin listed above for status should be brought to Eurofins Environment Testing Northeast, LLC atter	analysis/tests/matrix being analyzed, the ntion immediately. If all requested accre-	e samples must be shippe iditations are current to dr	ed back t ate, retun	o the Eur n the sigr	ned Chain of	Custody a	attesting i	to said c	ompliance	to Eurofi	ns Enviro	nment	Testing Northeast, LL	.C.
Possible Hazard Identification				Sample	e Disposa	l (A fee	e may i	be ass	essed if	sampl	es are	retain	ed longer than	1 month)
Unconfirmed				\Box	Return To	Client	Ľ	Dis	oosal By	Lab			hive For	Months
Deliverable Requested: 1 II, III IV Other (specify)	Primary Deliverable Rank: 2			Specia	I Instructio	ins/QC f	Require	ements						
Empty Kit Relinquished by	Date:		Tin	ne:					Method	s of Shipr	nent:	1-	edex	
Policewished by	Date/Time:	Company	l	Rec	eived by: (2 0				Date	/Time:		4955	Company
INMININ MULEID	Date/Time: 7/18/24				\sum	ter.	- Xanana	<u>``</u>			<u> 110</u> 1/Time:	$\frac{115}{115}$	4933	Company
Relinquished by:	Date/Time:	Company		Rec	eived by:						Ţ			
Relinquished by:	Date/Time:	Company		Rec	ceived by:					Date	vTime:			Company
Custody Sople Intert Custody Soci No		l		Cox	oler Tempera	ture(s) °C	and Oth	er Rema	rks:	<u>I</u>				
Custody Seals Intact: Custody Seal No. Δ Yes Δ No	· · · · · · · · · · · · · · · · · · ·													11
IRG1-221160														Ver 04/02/2024
JRYCLLLE					<u> </u>				6				କ ଓ ।	
				4	ω					1.00				

Login Sample Receipt Checklist

Client: Brydges Engineering in Environment & Energy DPC

Login Number: 221759 List Number: 1 Creator: Stapleton, Kaitlyn

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	8.9 #1 ice
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins Buffalo

Login Sample Receipt Checklist

Client: Brydges Engineering in Environment & Energy DPC

Login Number: 221759 List Number: 2 Creator: Armbruster, Chris

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2/1.6°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 480-221759-1

List Source: Eurofins Edison

List Creation: 07/19/24 11:37 AM