
APPENDIX G DATA USABILITY SUMMARY REPORTS

Quality Assessment Data Usability Summary Report

			RemVer Project #2020GE39		
			Client Project # <u>0901816-02-840</u>		
Site:	31 Tonawanda St., Off-site Buffalo, NY	Site #:	C915299A		
Client:	NYSDEC via GES, Inc.	Site Owner:	-N/A-		
Sample I	Sample Delivery Groups (SDGs) See Table #1				
Sample	□ Drinking water □ Groundwa	ater 🛛 Su	ırface water		
Matrix:	Sediment ☐ Sediment	☐ Aiı	r		
iviati ix.	☐ Biota (tissue, type:)	☐ Ot	her:		

Introduction

Groundwater & Environmental Services (GES) contracted RemVer to perform a data quality assessment (DQA) on analytical laboratory data of groundwater samples. Eurofins/Test America (E/TA) reported the data in separate Sample Delivery Groups (SDGs, see Table 1). Table 2 provides a cross-list of the samples associated with each SDG.

A DQA is an evaluation of the performance of analytical procedures and quality of the resulting data. Following the requirements of the New York State Department of Environmental Conservation (NYSDEC) Data Usability Summary Report (DUSR) guidelines for an Analytical Services Protocol (ASP) Category B Data Deliverable, RemVer prepared a separate DQA/DUSR sub-report for each SDG, evaluating the performance of the analytical procedures and the quality of the resulting data. Each sub-report includes a narrative discussion of qualified sample, a DQA Detail Worksheet, and a Non-Conformance Summary Worksheet describing the final reported qualification flags applied to the data during the DQA. Additionally, one validated EXCEL electronic data deliverable (EDD) is included with this deliverable for each SDG discussed herein.

Intended Use of Data Under Review

NYSDEC contracted GES to perform an off-site monitoring event at the referenced site. The monitoring event's (September 2020) purpose was to collect soil. surface water. and drinking water data regarding two classes of analytes: volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).

Significant Data Usability Issues

RemVer rejected no results and the data are acceptable for use. Certain results may have flagged analytes indicating non-detection or quality issues arising from sample handling, laboratory accuracy, or precision issues. Please refer to the individual SDG report and the respective Data Usability Narrative section of the DUSR sub-report for further detail.

Reported Methods Method 1311 TCLP ☐ Method TO-13A PAHs (air) Method 1312 SPLP Method TO-14A / -15 VOCs (air, summa) () Method 6010A, B & C / 6020 Trace Metals Method TO-17 VOCs (air, sorbent) Method 7000 Metals ☐ Method 537 PFCs via SPE & LC/MS-MS Method 7196 Hexavalent Chromium (other: ☐ Volatile Petroleum Hydrocarbons (VPH) Method Extractable Petroleum Hydrocarbons (EPH) Method 7470A or 7471 Mercury Method 8021 Volatile Organic Compounds (VOCs) GC Other Methods: ☐ Method 8081B or ☐ 608 Pesticides ☑ Method 5030 Purge & Trap ☐ Method 8082 or ☐ 608 PCBs ☑ Method 5030A_H Purge & Trap, closed, Hi Method 8151 Chlorinated Herbicides ☑ Method 5030A_L Purge & Trap, closed, Lo ☑ Method 3550C Ultrasonic Extraction Method 8260C VOCs GC/MS Method 8270D Semi-VOCs (sVOCs) GC/MS &/or SIM-ID ☑ Method Percent Moisture Method 9010/9012/9014 Cyanides () **Quality Control Requirements Summary** □ Duplicate Other Field QC: Field notes regarding sampling Matrix Spike [MS] / Matrix Spike Duplicate [MSD] Special QAPP Requirements: ___ Trip Blanks (as appropriate) Equipment, Method, &/or Rinsate Blank

Table 1. Sample Data Group (SDG) List

CDC 400 #	# Commiss	# Dlamks	# D	Commis Data	Metl	nods	Matrice
SDG 480-#	# Samples	# Blanks	# Dups	Sample Date	VOCs	SVOCs	Matrix
175104	4			09/14/2020	X	X	Soil & Surface Water
175253	3			09/15-16/2020	X	X	Soil
175318	1	_	_	09/17/2020	Х	_	Drinking Water
175394	3			09/17/2020	X	X	Soil

Table 2. Sample List

Count	SDG480-#	Sample #	Sample Name	Sample Date	Received
1		#_1	RI-MW-5-R-A	09/14/20 14:00	09/14/20 15:50
2	175104	#–2	RI-MW-5-R-B	09/14/20 14:20	09/14/20 15:50
3	175104	#–3	RI-MW-3	09/14/20 13:00	09/14/20 15:50
4		#_4	31-SW-1	09/14/20 12:05	09/14/20 15:50
5		#_1	1675-MW-1	09/15/20 12:25	09/16/20 17:00
6	175253	#–2	1660-SB-1	09/16/20 13:00	09/16/20 17:00
7		#_3	1660-MW-8	09/16/20 14:45	09/16/20 17:00
8	175318	#_1	DW-1	09/17/20 08:30	09/17/20 16:30
9		#_1	SB-100	09/17/20 09:35	09/17/20 15:15
10	175394	#–2	SB-103	09/17/20 11:15	09/17/20 15:15
11		#_3	SB-106	09/17/20 13:00	09/17/20 15:15

NOTE: EB = Equipment Blank

Dup = Duplicate

References

- NYSDEC, 2010, *Technical Guidance for Site Investigation and Remediation*, "DER-10," Division of Environmental Remediation: Albany, NY, May, 232p
- NYSDEC, 2010, Guidance for Data Deliverables and the Development of Data Usability Summary Reports, Appendix 2B IN Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation: Albany, NY, May, 232p
- USEPA, 2008, Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-48, USEPA-540-R-08-01, Office of Superfund Remediation and Technology Innovation: Washington, DC, June, 225p
- USEPA, 2010, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-51, USEPA-540-R-10-011, Office of Superfund Remediation and Technology Innovation: Washington, DC, January, 110p
- USEPA, 2012, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846*, Current Online Revision: http://www.epa.gov/epawaste/hazard/testmethods/sw846/online/index.htm, accessed April 2012

Attachments

- 1. Qualifier Flags
- 2. Data Usability Reviewer Biography
- 3. DUSR Sub-Report for SDG #480-175104
- 4. DUSR Sub-Report for SDG #480-175253
- 5. DUSR Sub-Report for SDG #480-175318
- 6. DUSR Sub-Report for SDG #480-175394

NOTE: If Client requests, each DUSR Sub-Report includes validated EDD attached hereto (Excel File Name Format: SDG-# EquaNysdec-V.xls)

KATrat

Revised: 11/10/2020

Prepared by: Kurt A. Frantzen, PhD November 10, 2020

GES PO #1113284-1100

Attachment 1. Qualifier Flags

Qualifier	Quality Implication				
0–9	Use with Co-eluting Congeners				
Α	Tentatively Identified Compound (TIC) suspected to be an aldol condensation product				
B EB	An analyte identified in method blank (B), aqueous equipment (EB), rinsate (RB), trip (TB), or bottle blanks (BB)				
TB BB	used to assess field contamination associated with soil or sediment samples mandates these qualifiers for only				
RB	soil and sediment sample results.				
BH/BL	Analyte detected in Blank at level >10X/5-10X that of the Sample				
D	Sample analysis from dilution of original sample				
E	Analyte concentration exceeds calibration range				
HT	Holding time violation				
J	Analyte positively identified at a numerical value that is the approximate concentration of the analyte in the sample				
J +	Sample likely to have a high bias				
J –	Sample likely to have a low bias				
	Analyte not detected above the sample quantitation limit; the associated quantitation limit is approximate and				
UJ	may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the				
	analyte in the sample				
N	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative				
	identification."				
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated				
	numerical value represents its approximate concentration.				
	Sample result rejected due to serious deficiency in ability to analyze sample and meet quality control criteria;				
R	the presence or absence of the analyte cannot be confirmed. This qualifier also may apply when more than				
	one sample result is generated for a target analyte (<i>i.e.</i> , dilutions or re-analyses), the most technically acceptable result is considered acceptable.				
	Use professional judgment based on data use. It usually has an "M" with it, which indicates that a manual				
	check should be made if the data that are qualified with the "P" are important to the data user. In addition, "PM"				
P	also means a decision is necessary from the Project Manager (or a delegate) concerning the need for further				
	review of the data (see below).				
	A manual review of the raw data is recommended to determine if the defect affects data use, as in "R" above.				
	This review should include consideration of potential affects that could result from using the "P" qualified data.				
	For example, in the case of holding-time exceedance, the Project Manager or delegate can decide to use the				
PM	data with no qualification when analytes of interest are known not to be adversely affected by holding-time				
	exceedances. Another example is the case where soil sample duplicate analyses for metals exceed the				
	precision criteria; because this is likely due to sample non-homogeneity rather than contract laboratory error,				
	then the manager or delegate must decide how to use the data.				
U	Analyte analyzed for, but not detected above the sample's reported quantitation limit				

Attachment 2. Data Usability Reviewer: Kurt A. Frantzen, PhD

Experience

2013-Present d/b/a RemVēr Owner **AECC** Senior EHS Consultant 2014-2019 2011-2012 RemVer. Inc. President 2006-2011 Kleinfelder Senior Principal Scientist 2005 Kleinfelder Principal Scientist, Part-Time/On Call 2004-2006 d/b/a Environmental Risk Group Owner 2004-2006 RemVer, Inc., Larchmont, NY Founder, President VHB. Inc. 1999-2004 **ERM Director & Associate** 1997-1998 GEI Consultants, Inc. Senior Project Manager 1992-1997 Ecology and Environment, Inc. **Technical Chief** 1991-1992 EA Engineering, Science, & Technology, Inc. Project Manager III 1990-1991 Ecology and Environment, Inc. Technical Group Manager 1986-1990 Ecology and Environment, Inc. Senior Environmental Scientist

Education

Am Cancer Soc. Post-Doctoral Fellow, U Washington 1985-1986

PhD—Life Sci. / Biochem, NU—Lincoln 1985 MS—Plant Pathology, Kansas State Univ. 1980 BS—Biology, NU—Omaha 1978

Other

- CERCLA & RCRA experience, as well as DOD (Air Force & Army) & DOE (INEL)
- NE Regional Experience—NY BCP; Mass MCP; & various sites in CT, RI & NH
- National Experience: NE, SE, Gulf & West Coast, Mid-west, Inter-mountain, California, Alaska
- International: Germany, Israel, Kuwait, Australia
- Selected Publications
 - Using Risk Appraisals to Manage Environmentally Impaired Properties, 2000, VHB Site Works, Report 108
 - o Risk-Based Analysis for Environmental Managers, 2001, CRC/Lewis
 - o Chapter 7 Risk Assessment, Managing Hazardous Materials, 2002 & 2009, IHMM
 - o Chapter 22 Cleanup Goals, Brownfields Law & Practice, 2004-Present, Lexis/Nexis
 - Use of Risk Assessment in Risk Management of Contaminated Sites, 2008, ITRC
- 60 Conference Papers & Invited Professional Presentations
 - o 1999-2019, Visiting Lecturer, Brownfields Program, Harvard Graduate School of Design
 - o 2010-2013, Invited Lecturer, Pace University Law School
 - 2014-2015, Adjunct Professor, Pace University Law School

Attachment 3. Data Usability Sub-Report for SDG #480-175104

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175104)

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	Duplicate results
☐ Data Package Summary Forms	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	☐ Internal standard area & retention time summary
☐ Test Results (no tentatively identified compounds [TICs])	
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?						
Laboratory Report	Laboratory Report Complete (Y/N) Comments					
480-175104	Υ	No				

Sample Preservation Requirements & Holding Times Met?							
Laboratory Report	Hold Times (Y/N)	Preservation (Y/N)	Exception Comment				
480-175104	Y N	Y N	None #-4 collected in unpreserved vial & analyzed beyond hold time limits				

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate									
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175104									
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.									

Were the data generated using established and agreed upon analytical protocols?					
Laboratory Report Protocols (Y/N) Exception Comment					
480-175104	Υ	No			

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?					
Laboratory Report	Confirmation (Y/N)	Exception Comment			
480-175104	Υ	No			

Were correct data qualifiers used and are they consistent with the most current guidance?				
Laboratory Report	Laboratory Report Qualifiers (Y/N) Comment			
480-175104	Υ	The laboratory generally applied appropriate qualifiers.		

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report QC Exceedances Documented (Y/N) Comment				
480-175104	Υ	Data qualifications were applied as described below		

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 14, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175104 (dated 25-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175104—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/14/2020 @ 15:50 PM (designated as SDG-#480-175104). The temperature of the cooler(s) at receipt were 3.1°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with one exception:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH 7.0 s.u.) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 was decanted (removal of soil-water) prior to preparation (ultrasonic extraction). RemVer set no flag.

RemVer

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH was 7.0) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—If VOC analyte concentrations were below 200 μg/kg the laboratory set a "vs" flag because the result may be biased low due to sample collection not following Method 5035A-L low-level specifications. Therefore, RemVer set a UJ- or J- flag, as appropriate.
- Method 8260C—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8270D—Sample #-1 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Sample #-2 was diluted to bring the target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8270D—Batch 549994 recovery was beyond control limits (in both straight and diluted runs) for 2,4,6-Tribromophenol (surrogate) but impacted only Sample #-1. RemVer flagged the SVOC results in as UJ or J, as appropriate.

Blank Evaluation

SDG #480-175104 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with no exception(s).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175104.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Sample #-1 required a dilution due to physical characteristics, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175104. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175104

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	All Others	No Comment
	Χ	_	Χ	2,4,6-Tribromophenol	Flag UJ or J
#-1	X	_	_	2-Fluorophenol, Nitrobenzene-d5, & Phenol-d5	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	Not Run, See LCS
SVOC (8270)	_	_	-			Not Run, See LCS

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes	
None	None	_	_	<u> </u>	None	
None	None	_	_	_	None	
LAB DUPLICATES						
All Methods	Batch	N/A	_	As listed	No Comment	
Reasonable Confidence Achieved						
Abbreviations: RL = Reporting Limit						

DQA Non-Conformance Summary Worksheet for SDG #480-175104

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
	Any	MDL>result <rdl< td=""><td>ı</td><td>ı</td><td></td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	ı	ı		Validator Flag UJ Interpreted Flag U
All	Any	Calibration (E)	>R	ange, Flag i	f>RL	Flag JE
	Any VOC	Lab vs-flag due to non-Low-Level Sampling	I	-	Lo	Flag UJ– or J–
#-4	All	Holding & Out of compliance		Flag H UJ or H J		
#-1 & -2	VOCs	Dilution	ı	1	_	Flag D
#-1 & -2	SVOCs	Dilution		_	_	Flag D
#-1	SVOC	CCV	<lcl <br="">>UCL</lcl>		_	Flag UJ or J
#-1	SVOC	Surrogate / Dilution	<lcl <br="">>UCL</lcl>	>	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 4. Data Usability Sub-Report for SDG #480-175253

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables		\boxtimes		None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-1752)

 ☐ Contract Lab Sample Information Sheets ☐ Data Package Summary Forms ☐ Chain-of-Custody (COC) Forms ☐ Test Results (no tentatively identified compounds [TICs]) ☐ Calibration standards 	 Spike recoveries Duplicate results Confirmation (lab check/QC) samples Internal standard area & retention time summary Chromatograms Raw data files
	1 <u>—</u>

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?					
Laboratory Report Complete (Y/N) Comments					
480-175253	Υ	No			

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment						
480-175253	Υ	Υ	None			

	Do the QC data fall within the protocol required limits and specifications?						
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate						
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data						
SDG	SDG 1 2 3 4 5 6 7 8 9						
480-175253							
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.							

Were the data generated using established and agreed upon analytical protocols?						
Laboratory Report	Exception Comment					
480-175253	Υ	No				

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?						
Laboratory Report	Confirmation (Y/N)	Exception Comment				
480-175253	Υ	No				

Were correct data qualifiers used and are they consistent with the most current guidance?						
Laboratory Report	Qualifiers (Y/N)	Comment				
480-175253	Υ	The laboratory generally applied appropriate qualifiers.				

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?					
Laboratory Report	QC Exceedances Documented (Y/N)	Comment			
480-175253	Υ	Data qualifications were applied as described below			

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 15 – September 16, 2016. RemVer no issues in the provided documentation.

<u>Laboratory Report Inspection</u>

E/TA produced an SDG report #480-175253 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175253—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/16/2020 @ 17:00 PM (designated as SDG-#480-175253). The temperature of the cooler(s) at receipt were 4.7°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis.

<u>Analysis</u>

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the RL, then then a "UJ" flag was set to indicate a qualified non-detection.
- If an SVOC analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, -2, and -3 were analyzed using medium level soil analysis and diluted due to the abundance of target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-2 and #-3 were diluted due to color and appearance and to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and forced surrogate recoveries below their calibration range. RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes.

Blank Evaluation

SDG #480-175253 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

<u>Laboratory Control Samples (LCS)</u>

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175253.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Samples #-2 and -3 required dilution due to physical characteristics and target analyte abundance, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175253 were within normal control limits.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175253

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	<u> </u>	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	All	No Comment
SVOC (8270)	_	_	_	All	No Comment
#-2 & #-3	Χ	X	1	Various Surrogates	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
SVOC (8270)	_	_	_	#-1	_	No Comment
_	_		1		1	

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes			
None	None	N/A	_	As listed	None			
None	None	N/A	_	_	_			
LAB DUPLICATES								
All Methods	Batch	N/A	_	As listed	No Comment			
Reasonable Confidence Achieved								
Abbreviations: RL = Reporting Limit								

DQA Non-Conformance Summary Worksheet for SDG #480-175253

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any	Analyte Non-detect				Flag U
All	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	SVOCs	Calibration (E)	>Range, Flag if >RL		f>RL	Flag JE
	VOCs	Dilution	_			Flag D
#-2 & -3	SVOCs	Dilution	_			Flag D
#-2 & 3	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 5. Data Usability Sub-Report for SDG #480-175318

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes	\boxtimes			
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

<u> Lab Report Contents (</u>	<u>(Test America SDG Reports: #480-175318)</u>

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	□ Duplicate results
☑ Data Package Summary Forms	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
☑ Calibration standards	Raw data files
	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?						
Laboratory Report Complete (Y/N) Comments						
480-175318	Υ	No				

Sample Preservation Requirements & Holding Times Met?					
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment					
480-175318	Υ	Υ	None		

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	(6) spike re	coveries, (7)	replicate al	nalyses, (8)	laboratory c	ontrols, (9)	and sample	data	
SDG	SDG 1 2 3 4 5 6 7 8 9								
480-175318									
The r	The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.								

Were the data generated using established and agreed upon analytical protocols?							
Laboratory Report Protocols (Y/N) Exception Comment							
480-175318	Υ	No					

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?						
Laboratory Report Confirmation (Y/N) Exception Comment						
480-175318	Υ	No				

Were correct data qualifiers used and are they consistent with the most current guidance?					
Laboratory Report	Qualifiers (Y/N)	Comment			
480-175318	Υ	The laboratory generally applied appropriate qualifiers.			

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report QC Exceedances Documented (Y/N) Comment				
480-175318	Υ	Data qualifications were applied as described below		

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175318 (dated 29-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175318—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/17/2020 @ 16:30 PM (designated as SDG-#480-175318). The temperature of the cooler(s) at receipt were 3.9°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for VOCs.

Analysis

The laboratory reported no analytical issues associated with the analytical runs.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

Method 8260C—Batch 550761 CCV recovery was above the upper control limit (>UCL) for Cyclohexane in all samples but was not detected. RemVer flagged the results in all samples as UJ+ or J+, as appropriate.

Blank Evaluation

SDG #480-175318 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175318.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria. Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs for all analyses met the QA criteria in SDG 480-175318.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175318

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
_	_	_	_

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	<u> </u>	No Comment
_	_	_	_	_	_

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	-	_	No Comment
_	_	_		_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
_	_	_	1		1	

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes
None	None	N/A	_	As listed	None
None	None	N/A	_	_	_
LAB DUPLICATES					
All Methods	Batch	N/A	_	As listed	No Comment
Reasonable Confidence Achieved					
Abbreviations: RL = Reporting Limit					

DQA Non-Conformance Summary Worksheet for SDG #480-175318

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
All	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	Cyclohexane	CCV	>UCL	_	Hi	Flag UJ+ or J+
	_	_	_	_	_	_
_	_	_	_	_	_	_

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 6. Data Usability Sub-Report for SDG #480-175394

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports		\boxtimes		If so, CA documentation of results required.
Any deviation from methods noted? If so, explain		\boxtimes		None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175394)

SDG Narrative	Spike recoveries
	Duplicate results
□ Data Package Summary Forms □ Data Package Summary F	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?				
Laboratory Report	Complete (Y/N) Comments			
480-175394	Υ	No		

Sample Preservation Requirements & Holding Times Met?					
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment					
480-175394	Υ	Υ	None		

	Do the QC data fall within the protocol required limits and specifications?								
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175394	480-175394								
The r	The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.								

Were the data generated using established and agreed upon analytical protocols?						
Laboratory Report	Laboratory Report Protocols (Y/N) Exception Comment					
480-175394	Υ	No				

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?				
Laboratory Report Confirmation (Y/N) Exception Comment				
480-175394	Υ	No		

Were correct data qualifiers used and are they consistent with the most current guidance?				
Laboratory Report Qualifiers (Y/N) Comment				
480-175394	Υ	The laboratory generally applied appropriate qualifiers.		

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report	Comment			
480-175394	Υ	Data qualifications were applied as described below		

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175394 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175394—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received coolers with samples on 9/17/2020 @ 15:15 PM (designated as SDG-#480-175394). The temperature of the cooler(s) at receipt were 3.0 and 3.2°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 which had a sample volume different from the standard procedure for preparation (ultrasonic extraction). This had an impact to reporting limits (RLs).

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, #-2, and #-3 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8260C—Sample #-3 was analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-1, #-2, and #-3 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and also forced surrogate recoveries below their calibration range. RemVer set a "D" flag for all VOCs in these samples.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8260C—Batch 550866 CCV recovery was beyond control limits (<LCL or >UCL) for 4-Nitrophenol in all samples but was not detected. RemVer flagged the results in all samples as UJ, as appropriate.

Blank Evaluation

SDG #480-175394 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with the following exception(s):

Method 8260—analyte Methylene Chloride was detected in the MB (Batch #550876 / 551207) above the RDL and was flagged as a "B J" result in sample's with detections as a method blank detection. While it appears to only impact Sample #-3, sample non-detections were flagged as "UJ B."

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175394 with the following exception(s):

 Method 8260—Batch 551207 spike recover for Methylene Chloride was beyond the upper control limit (>UCL) with high bias due to laboratory contamination. RemVer set either a UJ+ or J+ flag, as appropriate in all samples.

RemVer

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria, except for:

- Method 8270D: Samples #-1 and -3 required dilution due to physical characteristics, which
 not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery
 analysis. RemVer flagged the results as UJ or J as appropriate.
- Method 8270D: Samples #-1 and -2 required dilution due to target analyte abundance impacting RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175394. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175394

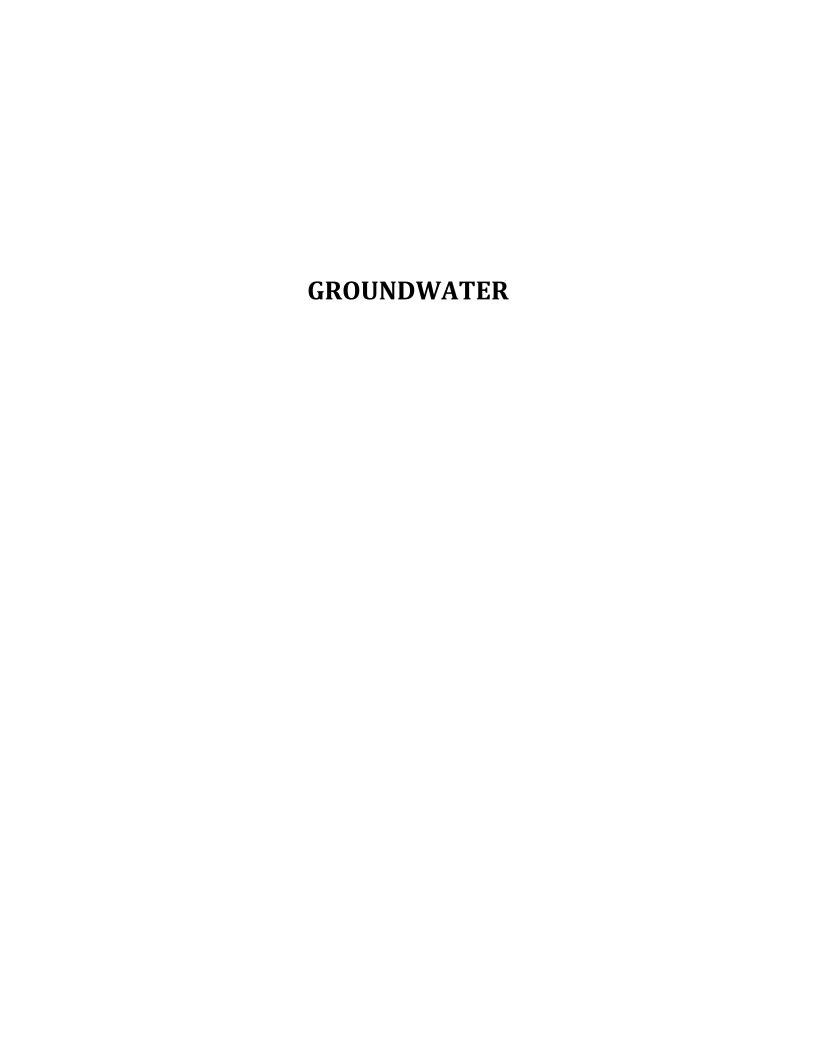
BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
All Samples	X	Methylene Chloride	Flag BJ or UJ B
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
All	_	_	Х	Methylene Chloride	Flag UJ+ / J+
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	Х	X	_	Various Surrogates	Flag UJ or J
_	_	_	_	_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
SVOC (8270)	_		1		1	None

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes	
None	None	N/A —		As listed	None	
None	None	N/A —		_	_	
LAB DUPLICATES						
All Methods	Batch	N/A	_	As listed	No Comment	
Reasonable Confidence Achieved						
Abbreviations: RL = Reporting Limit						


DQA Non-Conformance Summary Worksheet for SDG #480-175394

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any	Analyte Non-detect				Flag U
	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	Any	Calibration (E)	Calibration (E) >Range, Flag if >RL			Flag JE
All	4-Nitrophenol	CCV	<lcl <br="">>UCL</lcl>	_	Hi/Lo	Flag UJ or J
	VOC & SVOC	Dilution	_		Flag D	
	Methylene Chloride	LCS	>UCL	_	HI	Flag UJ+ or J+
	Methylene Chloride	Blank	_	_	_	Flag BJ or UJ B
	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J
#1	VOVs & SVOCs	Sample Volume		RLs impacte	ed	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A

Laboratory: Eurofins Test America

Job No: 480-177831-1 Fraction: Inorganic Matrix: Aqueous Report Date: 1/24/2021

This data usability summary report is based upon a review of analytical data generated for groundwater samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample was analyzed for total metals. Sample analyses were performed in accordance with the procedures outlined in the methods referenced at the end of this report.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "ICP-AES Data Validation", HW-2a, revision 15, December 2012. The quality control requirements specified in the analysis methods and associated acceptance criteria were also used to evaluate the data. The parameters presented on the following page were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/ Sample Receipt
- X Holding Times
- X Initial and Continuing Calibrations
- X ICP Interference Check Sample Results
- X Laboratory and Field Blank Analysis Results
- X Matrix Spike Recoveries and Reproducibility
- X Laboratory Duplicate Analysis Results
- X ICP Serial Dilution Results
- X Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Qualitative Identification
- X Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound Mit

Shawne M. Rodgers President

January 24, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

4.0

All criteria were met. No qualifiers were applied. *INITIAL AND CONTINUING CALIBRATIONS*

All criteria were met. No qualifiers were applied.

5.0 ICP INTERFERENCE CHECK SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following inorganic analytes were detected in the laboratory preparation blanks, and/or calibration blanks. The positive blank results were less than their respective reporting limits (RLs). Positive results for the associated samples were greater than the RL. Qualification was unnecessary.

Blank	Analyte	Concentration (mg/L)	Associated Samples
CCB 480-558741/18	Potassium	0.106 J	MW-1, MW-2, MW-3R
CCB 480-558741/38	Chromium Copper	0.00132 J 0.00334 J	MW-5R, DUP-001

No field or equipment blanks were submitted for this job number. This should be noted when assessing the data.

7.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

All criteria were met. No qualifiers were applied.

8.0 LABORATORY DUPLICATE RESULTS

Laboratory duplicate precision was evaluated using the MS/MSD analysis results as discussed above in Section 7.0, Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility.

9.0 ICP SERIAL DILUTION RESULTS

All criteria were met. No qualifiers were applied.

10.0 FIELD DUPLICATE RESULTS

Field duplicate samples MW-5R and DUP-001 were submitted to the laboratory evaluate sampling and analytical precision for those analytes determined to be present. Results for these duplicate samples are presented in Table 2.

11.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 REPORTING LIMITS

As required by USEPA protocol, all analytes, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Metals	Method 6010C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Mercury	Method 7470B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Specific Gravity	Method D1429-87, ASTM

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-177831-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	
MW-1	480-177831-1	11/4/2020	Groundwater	X	X	X	X	X	X	
MW-2	480-177831-2	11/4/2020	Groundwater		X	X	X	X	X	
MW-3R	480-177831-3	11/4/2020	Groundwater	X	X	X	X	X	X	
MW-5R	480-177831-4	11/4/2020	Groundwater	X	X	X	X	X	X	
DUP-001	480-177831-5	11/4/2020	Groundwater	X	X	X	X	Χ	X	

Table 2 Field Duplicate Sample Results for Inorganic Analyses
Groundwater Duplicate Samples MW-5R and DUP-001

Analyte	MW-5R		DUP-001		RPD	Comments
	(mg/L)		(mg/L)			
Aluminum	19.5		20.5		5.0	
Bariumn	0.78		0.78		0.0	
Beryllium	0.00079	J	0.000758	J	4.1	
Calcium	363		365		0.5	
chromium	0.027		0.028		3.6	
Cobalt	0.011		0.011		0.0	
Copper	0.024		0.024		0.0	
Iron	31.9		32.8		2.8	
Lead	0.036		0.038		5.4	
Magnesium	116		118		1.7	
Manganese	1.1		1.2		8.7	
Nickel	0.024		0.025		4.1	
Potassium	12.4		12.9		4.0	
Sodium	745		744		0.1	
Vanadium	0.041		0.044		7	
Zinc	0.094		0.098		4	

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A **Laboratory:** Eurofins Environmental Testing -Test America

Job No: 480-177831-1

Fraction: Organic
Matrix: Aqueous
Report Date: 1/24/2021

This data usability summary report is based upon a review of analytical data generated for groundwater samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds, semivolatile organic compounds, pesticide compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

For the volatile and semivolatile fraction determined by Gas Chromatography/Mass Spectrometry, library searches were performed to "tentatively identify" chromatographic peaks whose characteristics did not match those of targeted compounds. Library searches were performed for up to ten volatile and twenty semivolatile extraneous peaks.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
- X Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
- X Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound Miller

Shawne M. Rodgers President

January 24, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed the no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. Results for the compounds are considered quantitative estimates. The nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-559515/3 (Laboratory ID	4-Nitrophenol Atrazine	28.3 21.3	All Samples
W10011042.D)	Pentachlorophenol	-23.1	
	Bis(2-Chloroisopropyl)	-21.8	
	ether	-44.4	

The continuing calibration precision criterion (the percent difference between initial and continuing relative response factors (RRF) \leq 20 percent) was exceeded for the following pesticide continuing calibration standard. This indicates a lack of instrument stability for this analyte. Results for the compounds should be considered quantitative estimates. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-569484/5	Hepatchlor	24.8	All Samples
(File ID 25_40-267.D)	4,4'-DDT	28.5	
(Column ID RTX CLP-	Methoxychlor	35.0	
I)			
CCV 480-558484/7	Toxaphene 1	34.6	All Samples
(Column ID RTX CLP-	Toxaphene 2	30.1	
II)			

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following polychlorinated biphenyls continuing calibration standards. This indicates a lack of instrument stability for these analytes. The results for polychlorinated biphenyls for associated samples are considered quantitative estimates. Positive results for these analytes have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetects are marked "UJ".

Calibration Standard	Analyte		%Difference	Associated Samples
	Aroclor 1016	1	28.4	
CCV 490 EE976E/E0	Aroclor 1016	2	23.9	
CCV 480-558765/59 (File ID 7_83-043.D)	Aroclor 1016	3	26.9	All Samples
(1110127_00 01012)	Aroclor 1016	4	24.2	
	Aroclor 1016	5	28.4	
	Aroclor 1260	1	25.2	
	Aroclor 1260	2		
	Aroclor 1260	3	25.1	All Samples
	Aroclor 1260	4		
	Aroclor 1260	5	23.1	

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following pesticide compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (µg/L)	Associated Samples
MB 480-558262/1- A	4,4'-DDT Endrin Aldehyde gamma-BHC	0.0291 J 0.0272 J 0.00893 J	All Samples

The blank results were less than the RL. The following positive results reported for these compounds are also less than the RL and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for uncommon contaminants, that are less than or equal to the associated blank contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

Compound	Qualified Results
4,4'-DDT	MW-1, MW-2, MW-3R MW-5R
gamma-BHC	MW-3R, MW-5R, DUP-001

Field and equipment blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

Samples MW-5R and DUP-001 were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences

and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 SUMMARIES OF MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

All criteria were met. No qualifiers were applied.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples MW-5R and DUP-001 were submitted to the laboratory evaluate sampling and analytical precision for those compounds determined to be present. Results for these duplicate samples are presented in Table 2.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the semivolatile laboratory control sample (LCS) results that did not meet the indicated acceptance limits:

Compound	LCS	QC
	(480-558357/2-A)	Limits
	%REC	
Atrazine	138	60-127

The high recovery for the above compound suggests inefficiencies with the extraction/analytical processes. All samples were associated with the unacceptable LCS. Positive results for the compounds should be considered biased high quantitative estimates, and may be higher than reported. There were no positive results for the compound for associated samples.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

For the following samples, a lack of precision (greater than 25 % difference between results) was observed for this analyte on the dual chromatographic columns used for sample analysis. The laboratory for reporting purposes used the higher concentration for these compounds. The results have previously been qualified due to blank results.

Sample	Affected Compound
Sample	Affected Compound
MW-1	4,4'-DDT
MW-2	4,4'-DDT
MW-3R	4,4'-DDT

The samples presented below were analyzed volatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-1	125
MW-3R	40.0
MW-5R	2000
DUP-001	2000

The samples presented below were analyzed semivolatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for

target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-5R	10.0
DUP-001	20.0

The following samples were analyzed at dilutions for pesticide compounds. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for the samples.

Sample	Dilution Factor
MW-5R	5.0
DUP-001	5.0

The samples presented below were re-analyzed at dilutions for semivolatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
MW-5R	200	2-Methylnaphthalene, Naphthaleme
DUP-001	200	2-Methylnaphthalene, Naphthaleme

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

As required by USEPA protocol, all volatile and semivolatiles TICs have been reported with "J" qualifiers to indicate that they are quantitative estimates. EDQ has reported only those TIC results that have not been

determined to be laboratory or field artifacts, and where possible has grouped TIC of similar classification.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Pesticide Compounds	Method 8081B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-177831-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	
MW-1	480-177831-1	11/4/2020	Groundwater	X	X	X	X	X	X	
MW-2	480-177831-2	11/4/2020	Groundwater		X	X	X	X	X	
MW-3R	480-177831-3	11/4/2020	Groundwater	X	X	X	X	X	X	
MW-5R	480-177831-4	11/4/2020	Groundwater	X	X	X	X	X	X	
DUP-001	480-177831-5	11/4/2020	Groundwater	X	X	X	X	Χ	X	

Table 2 Field Duplicate Sample Results for Organic Analyses
Groundwater Duplicate Samples MW-5R and DUP-001

Compound	MW-5R (μg/L)		DUP-001 (μg/L)		RPD	Comment
1,1,1-Trichloroethane	2800		2900		3.5	
1,1-Dichlororethane	1500	J	1500	J	0.0	
1,1-Dichlororethene	910	J	940	J	3.2	
Benzene	4300		4100		4.8	
cis-1,2-Dichloroethene	160000		160000		0.0	
Ethylbenzene	3100		3000		3.3	
Toluene	2600		2500		3.9	
Trichloroethene	5900		6200		5.0	
Vinyl Chloride	5800		6100		5.0	
Xylene	1600	J	1600	J	0.0	
2-Methylnaphthalene	1500		1700		12.5	
Acenaphethene	67		80	J	17.7	
Acenaphthylene	390		450		14.3	
Acetophenone	6.5	J	ND		NC	
Anthracene	22	J	40	J	58.1	
Biphenyl	110		130		16.7	
Benzo(a) anthracene	ND		12	J	NC	
Benzo (a) pyrene	ND		15	J	NC	
Benzo (b) fluoranthene	ND		8.9	J	NC	
Benzo (g,h,i) perylene	ND		7.3	J	NC	
Carbazole	9.5	J	10	J	5.1	
Chrysene	ND		10	J	NC	
Dibenzofuran	19	J	24	J	23.3	
Flouranthene	9.5	J	27	J	95.9	
Flourene	80		100		22.2	
Naphthalene	8700		8700		0.0	
Phenanthrene	100		180		57.1	
Pyrene	18	J	52	J	97.1	
Aldrin	0.12	J	0.11	J	8.7	
alpha BHC	0.25		0.23	J	8.3	
delta-BHC	0.067	J	0.065	J	3.0	
Endrin Ketone	0.097	J	0.062	J	44.0	
Hepatchlor Epoxide	0.065	J	ND		NC	
Methoxychlor	0.21	J	0.21	J	0.0	
4,4'-DDD	0.11	J	0.11	J	0.0	

NC: Results not calculated due to already considered estimated or one results was not detected (ND).

ND: Not detected.

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-1 Lab Sample ID: 480-177831-1

Date Collected: 11/04/20 09:40 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		130	100	ug/L			11/11/20 11:26	12
1,1,2,2-Tetrachloroethane	ND		130	26	ug/L			11/11/20 11:26	12
1,1,2-Trichloroethane	ND		130	29	ug/L			11/11/20 11:26	12
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		130	39	ug/L			11/11/20 11:26	12
1,1-Dichloroethane	120	J	130	48	ug/L			11/11/20 11:26	12
1,1-Dichloroethene	ND		130	36	ug/L			11/11/20 11:26	12
1,2,4-Trichlorobenzene	ND		130	51	ug/L			11/11/20 11:26	12
1,2-Dibromo-3-Chloropropane	ND		130		ug/L			11/11/20 11:26	12
1,2-Dichlorobenzene	ND		130		ug/L			11/11/20 11:26	12
1,2-Dichloroethane	ND		130	26	ug/L			11/11/20 11:26	12
1,2-Dichloropropane	ND		130		ug/L			11/11/20 11:26	12
1,3-Dichlorobenzene	ND		130		ug/L			11/11/20 11:26	12
1,4-Dichlorobenzene	ND		130		ug/L			11/11/20 11:26	12
2-Butanone (MEK)	ND		1300		ug/L			11/11/20 11:26	12
2-Hexanone	ND		630		ug/L			11/11/20 11:26	12
4-Methyl-2-pentanone (MIBK)	ND		630		ug/L			11/11/20 11:26	12
Acetone	ND		1300		ug/L			11/11/20 11:26	12
Benzene	890		130		ug/L			11/11/20 11:26	12
Bromodichloromethane	ND		130		ug/L			11/11/20 11:26	12
Bromoform	ND		130		ug/L			11/11/20 11:26	12
Bromomethane	ND		130		ug/L			11/11/20 11:26	12
Carbon disulfide	ND		130		ug/L			11/11/20 11:26	12
Carbon tetrachloride	ND		130		ug/L			11/11/20 11:26	12
Chlorobenzene	ND		130		ug/L			11/11/20 11:26	12
Dibromochloromethane	ND		130		ug/L			11/11/20 11:26	12
Chloroethane	ND		130		ug/L			11/11/20 11:26	12
Chloroform	ND		130		ug/L			11/11/20 11:26	12
Chloromethane	ND		130		ug/L			11/11/20 11:26	12
					_			11/11/20 11:26	12
cis-1,2-Dichloroethene	2200 ND		130 130		ug/L			11/11/20 11:26	
cis-1,3-Dichloropropene					ug/L				12
Cyclohexane Dichlorodifluoromethane	ND		130		ug/L			11/11/20 11:26	12
	ND		130		ug/L			11/11/20 11:26	12
Ethylbenzene	ND		130		ug/L			11/11/20 11:26	12
1,2-Dibromoethane	ND		130		ug/L			11/11/20 11:26	12
Isopropylbenzene	ND		130		ug/L			11/11/20 11:26	12
Methyl acetate	ND		310		ug/L			11/11/20 11:26	12
Methyl tert-butyl ether	ND		130		ug/L			11/11/20 11:26	12
Methylcyclohexane	ND		130		ug/L			11/11/20 11:26	12
Methylene Chloride	ND		130		ug/L			11/11/20 11:26	12
Styrene	ND		130		ug/L			11/11/20 11:26	12
Tetrachloroethene	ND		130		ug/L			11/11/20 11:26	12
Toluene	ND		130		ug/L			11/11/20 11:26	12
trans-1,2-Dichloroethene	ND		130		ug/L			11/11/20 11:26	12
trans-1,3-Dichloropropene	ND		130		ug/L			11/11/20 11:26	12
Trichloroethene	ND		130		ug/L			11/11/20 11:26	12
Trichlorofluoromethane	ND		130	110	ug/L			11/11/20 11:26	12
Vinyl chloride	4200		130		ug/L			11/11/20 11:26	12
Xylenes, Total	ND		250	83	ug/L			11/11/20 11:26	12

Eurofins TestAmerica, Buffalo

Page 15 of 1900

12/03/2020

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-1

Date Collected: 11/04/20 09:40

Lab Sample ID: 480-177831-1

Matrix: Water

Date Collected: 11/04/20 09:40
Date Received: 11/05/20 12:20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107	80 - 120		11/11/20 11:26	125
1,2-Dichloroethane-d4 (Surr)	111	77 - 120		11/11/20 11:26	125
4-Bromofluorobenzene (Surr)	104	73 - 120		11/11/20 11:26	125
Dibromofluoromethane (Surr)	113	75 - 123		11/11/20 11:26	125

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	40.1
bis (2-chloroisopropyl) ether	MUT	5.0	0.52	ug/L		11/10/20 15:08	11/18/20 10:12	004
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:12	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Chlorophenol	ND	5.0	0.53	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Methylphenol	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Nitroaniline	ND	10	0.42	ug/L		11/10/20 15:08	11/18/20 10:12	1
2-Nitrophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 10:12	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:12	1
3-Nitroaniline	ND	10	0.48	ug/L		11/10/20 15:08	11/18/20 10:12	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Chloroaniline	ND	5.0	0.59	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Methylphenol	5.5 J	10	0.36	ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Nitroaniline	ND _	10		ug/L		11/10/20 15:08	11/18/20 10:12	1
4-Nitrophenol	MOUJ	10	1.5	ug/L		11/10/20 15:08	11/18/20 10:12	CCH1
Acenaphthene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	. 1
Acenaphthylene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Acetophenone	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Anthracene	ND ,	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Atrazine	NE / LET	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	CGA 1
Benzaldehyde	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Benzo[a]anthracene	ND	5.0	0.36	-		11/10/20 15:08	11/18/20 10:12	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		11/10/20 15:08	11/18/20 10:12	1
Benzo[b]fluoranthene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Benzo[g,h,i]perylene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Benzo[k]fluoranthene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Bis(2-chloroethoxy)methane	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Bis(2-chloroethyl)ether	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Butyl benzyl phthalate	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Caprolactam	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Carbazole	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1
Chrysene	ND	5.0		ug/L		11/10/20 15:08	11/18/20 10:12	1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-1 Lab Sample ID: 480-177831-1

Date Collected: 11/04/20 09:40

Date Received: 11/05/20 12:20

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND ND	5.0	0.42	ug/L		11/10/20 15:08	11/18/20 10:12	1
Di-n-butyl phthalate	ND	5.0	0.31	ug/L		11/10/20 15:08	11/18/20 10:12	1
Di-n-octyl phthalate	ND	5.0	0.47	ug/L		11/10/20 15:08	11/18/20 10:12	1
Dibenzofuran	ND	10	0.51	ug/L		11/10/20 15:08	11/18/20 10:12	1
Diethyl phthalate	ND	5.0	0.22	ug/L		11/10/20 15:08	11/18/20 10:12	1
Dimethyl phthalate	ND	5.0	0.36	ug/L		11/10/20 15:08	11/18/20 10:12	1
Fluoranthene	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:12	1
Fluorene	ND	5.0	0.36	ug/L		11/10/20 15:08	11/18/20 10:12	1
Hexachlorobenzene	ND	5.0	0.51	ug/L		11/10/20 15:08	11/18/20 10:12	1
Hexachlorobutadiene	ND	5.0	0.68	ug/L		11/10/20 15:08	11/18/20 10:12	1
Hexachlorocyclopentadiene	ND	5.0	0.59	ug/L		11/10/20 15:08	11/18/20 10:12	1
Hexachloroethane	ND	5.0	0.59	ug/L		11/10/20 15:08	11/18/20 10:12	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		11/10/20 15:08	11/18/20 10:12	1
Isophorone	ND	5.0	0.43	ug/L		11/10/20 15:08	11/18/20 10:12	1
N-Nitrosodi-n-propylamine	ND	5.0	0.54	ug/L		11/10/20 15:08	11/18/20 10:12	1
N-Nitrosodiphenylamine	ND	5.0	0.51	ug/L		11/10/20 15:08	11/18/20 10:12	1
Naphthalene	ND	5.0	0.76	ug/L		11/10/20 15:08	11/18/20 10:12	1
Nitrobenzene	ND	5.0	0.29	ug/L		11/10/20 15:08	11/18/20 10:12	1
Pentachlorophenol	ye UT	10	2.2	ug/L		11/10/20 15:08	11/18/20 10:12	104
Phenanthrene	ND	5.0	0.44	ug/L		11/10/20 15:08	11/18/20 10:12	1
Phenol	7.7	5.0	0.39	ug/L		11/10/20 15:08	11/18/20 10:12	1
Pyrene	ND	5.0	0.34	ug/L		11/10/20 15:08	11/18/20 10:12	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	84	46 - 120				11/10/20 15:08	11/18/20 10:12	1

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	84	46 - 120	11/10/20 15:08	11/18/20 10:12	1
Phenol-d5 (Surr)	40	22 - 120	11/10/20 15:08	11/18/20 10:12	1
p-Terphenyl-d14 (Surr)	73	60 - 148	11/10/20 15:08	11/18/20 10:12	1
2,4,6-Tribromophenol (Surr)	100	41 - 120	11/10/20 15:08	11/18/20 10:12	1
2-Fluorobiphenyl (Surr)	95	48 - 120	11/10/20 15:08	11/18/20 10:12	1
2-Fluorophenol (Surr)	61	35 - 120	11/10/20 15:08	11/18/20 10:12	1

Method: 8081B - Organochlorine Pesticides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.050	0.0092	ug/L		11/10/20 08:39	11/11/20 12:45	1
4,4'-DDE	ND		0.050	0.012	ug/L		11/10/20 08:39	11/11/20 12:45	1
4,4'-DDT	0.0500.028	XP U	0.050	0.011	ug/L		11/10/20 08:39	11/11/20 12:45	MSL_1
Aldrin	ND		0.050	0.0081	ug/L		11/10/20 08:39	11/11/20 12:45	1
alpha-BHC	ND		0.050	0.0077	ug/L		11/10/20 08:39	11/11/20 12:45	1
cis-Chlordane	ND		0.050	0.015	ug/L		11/10/20 08:39	11/11/20 12:45	1
beta-BHC	ND		0.050	0.025	ug/L		11/10/20 08:39	11/11/20 12:45	1
delta-BHC	0.013	J	0.050	0.010	ug/L		11/10/20 08:39	11/11/20 12:45	1
Dieldrin	ND		0.050	0.0098	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endosulfan I	ND		0.050	0.011	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endosulfan II	ND		0.050	0.012	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endosulfan sulfate	ND		0.050	0.016	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endrin	ND		0.050	0.014	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endrin aldehyde	ND		0.050	0.016	ug/L		11/10/20 08:39	11/11/20 12:45	1
Endrin ketone	ND		0.050	0.012	ug/L		11/10/20 08:39	11/11/20 12:45	1
gamma-BHC (Lindane)	ND		0.050	0.0080	ug/L		11/10/20 08:39	11/11/20 12:45	1
trans-Chlordane	ND		0.050	0.011	ug/L		11/10/20 08:39	11/11/20 12:45	1

Eurofins TestAmerica, Buffalo

12/03/2020

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-1 Lab Sample ID: 480-177831-1

Date Collected: 11/04/20 09:40 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Heptachlor	0.011	J	0.050	0.0085	ug/L		11/10/20 08:39	11/11/20 12:45	
Heptachlor epoxide	ND		0.050	0.0074	ug/L		11/10/20 08:39	11/11/20 12:45	
Methoxychlor	MO	ω	0.050	0.014	-		11/10/20 08:39	11/11/20 12:45	CCL
Toxaphene	MD		0.50	0.12	ug/L		11/10/20 08:39	11/11/20 12:45	CCT
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	64		20 - 120				11/10/20 08:39	11/11/20 12:45	
DCB Decachlorobiphenyl	58		20 - 120				11/10/20 08:39	11/11/20 12:45	
Tetrachloro-m-xylene	142	X	44 - 120				11/10/20 08:39	11/11/20 12:45	
Tetrachloro-m-xylene	73		44 - 120				11/10/20 08:39	11/11/20 12:45	
Method: 8082A - Polychlorin	ated Bipheny	/Is (PCBs)	by Gas Chr	omatogr	aphy				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016		W	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 05:37	cclf
PCB-1221	ND		0.50	0.18	-		11/11/20 09:34	11/13/20 05:37	
PCB-1232	ND		0.50		ug/L		11/11/20 09:34	11/13/20 05:37	
PCB-1242	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 05:37	
PCB-1248	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 05:37	
PCB-1254	ND	_	0.50		ug/L		11/11/20 09:34	11/13/20 05:37	
PCB-1260	AND.	W	0.50		ug/L		11/11/20 09:34	11/13/20 05:37	CI
PCB-1262	ND		0.50		ug/L		11/11/20 09:34	11/13/20 05:37	~
PCB-1268	ND		0.50	0.25	-		11/11/20 09:34	11/13/20 05:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene (Surr)	115		39 - 121				11/11/20 09:34	11/13/20 05:37	-
Tetrachloro-m-xylene (Surr)	111		39 - 121				11/11/20 09:34	11/13/20 05:37	
DCB Decachlorobiphenyl (Surr)	112		19 - 120				11/11/20 09:34	11/13/20 05:37	
DCB Decachlorobiphenyl (Surr)	116		19 - 120				11/11/20 09:34	11/13/20 05:37	
Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1.3		0.20	0.060	mg/L		11/11/20 08:45	11/11/20 22:33	
Antimony	ND		0.020	0.0068	mg/L		11/11/20 08:45	11/11/20 22:33	
Arsenic	ND	4	0.015	0.0056	mg/L		11/11/20 08:45	11/11/20 22:33	
Barium	0.20	<i>†</i>	0.0020	0.00070	mg/L		11/11/20 08:45	11/11/20 22:33	
Beryllium	ND	•	0.0020	0.00030	mg/L		11/11/20 08:45	11/11/20 22:33	
0 1 1	ND		0.0020	0.00050	mg/L		11/11/20 08:45	11/11/20 22:33	
Cadmium	ND		0.0020				11/11/20 00:45	11/11/20 22:33	
Cadmium Calcium	393		0.50		mg/L		11/11/20 06.45		
					-		11/11/20 08:45	11/11/20 22:33	
Calcium Chromium	393 0.0018		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt	393 0.0018 0.00076		0.50 0.0040	0.10 0.0010 0.00063	mg/L mg/L		11/11/20 08:45	11/11/20 22:33	
Calcium Chromium Cobalt Copper	393 0.0018 0.00076 ND		0.50 0.0040 0.0040	0.10 0.0010 0.00063 0.0016	mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron	393 0.0018 0.00076	J	0.50 0.0040 0.0040 0.010	0.10 0.0010 0.00063	mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead	393 0.0018 0.00076 ND 18.0 0.0074	J	0.50 0.0040 0.0040 0.010 0.050	0.10 0.0010 0.00063 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead Magnesium	393 0.0018 0.00076 ND 18.0 0.0074	J	0.50 0.0040 0.0040 0.010 0.050 0.010 0.20	0.10 0.0010 0.00063 0.0016 0.019 0.0030 0.043	mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	393 0.0018 0.00076 ND 18.0 0.0074 185 0.78	J	0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030	0.10 0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040	mg/L mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	393 0.0018 0.00076 ND 18.0 0.0074 185 0.78	J	0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010	0.10 0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	393 0.0018 0.00076 ND 18.0 0.0074 185 0.78 ND	J	0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50	0.10 0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	393 0.0018 0.00076 ND 18.0 0.0074 185 0.78	J	0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010	0.10 0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45 11/11/20 08:45	11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33 11/11/20 22:33	

Eurofins TestAmerica, Buffalo

Page 18 of 1900

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: MW-1 Lab Sample ID: 480-177831-1

Date Collected: 11/04/20 09:40 Matrix: Water

Date Received: 11/05/20 12:20

motification to the motato (1917)	(Continuou)	,							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	ND		0.020	0.010	mg/L		11/11/20 08:45	11/11/20 22:33	1
Vanadium	0.0016	J	0.0050	0.0015	mg/L		11/11/20 08:45	11/11/20 22:33	1
Zinc	0.0049	J	0.010	0.0015	mg/L		11/11/20 08:45	11/11/20 22:33	1

Method: 7470A - Mercury (CVAA)

 Analyte
 Result Mercury
 Qualifier
 RL ND
 MDL 0.00020
 Unit mg/L
 D mg/L
 Prepared 11/10/20 13:55
 Analyzed 11/10/20 17:34
 Dil Fac 11/10/20 17:34

Client Sample ID: MW-2 Lab Sample ID: 480-177831-2

Date Collected: 11/04/20 10:55	Matrix: Water
Date Received: 11/05/20 12:20	

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	9.6		1.0	0.82	ug/L			11/11/20 11:50	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/11/20 11:50	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/11/20 11:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/11/20 11:50	1
1,1-Dichloroethane	7.6		1.0	0.38	ug/L			11/11/20 11:50	1
1,1-Dichloroethene	1.9		1.0	0.29	ug/L			11/11/20 11:50	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/11/20 11:50	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/11/20 11:50	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/11/20 11:50	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/11/20 11:50	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/11/20 11:50	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/11/20 11:50	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/11/20 11:50	1
2-Butanone (MEK)	ND		10	1.3	ug/L			11/11/20 11:50	1
2-Hexanone	ND		5.0	1.2	ug/L			11/11/20 11:50	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/11/20 11:50	1
Acetone	ND		10	3.0	ug/L			11/11/20 11:50	1
Benzene	ND		1.0	0.41	ug/L			11/11/20 11:50	1
Bromodichloromethane	ND		1.0	0.39	ug/L			11/11/20 11:50	1
Bromoform	ND		1.0	0.26	ug/L			11/11/20 11:50	1
Bromomethane	ND		1.0	0.69	ug/L			11/11/20 11:50	1
Carbon disulfide	ND		1.0	0.19	ug/L			11/11/20 11:50	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			11/11/20 11:50	1
Chlorobenzene	ND		1.0	0.75	ug/L			11/11/20 11:50	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/11/20 11:50	1
Chloroethane	ND		1.0	0.32	ug/L			11/11/20 11:50	1
Chloroform	ND		1.0	0.34	ug/L			11/11/20 11:50	1
Chloromethane	ND		1.0	0.35	ug/L			11/11/20 11:50	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/11/20 11:50	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/11/20 11:50	1
Cyclohexane	ND		1.0	0.18	ug/L			11/11/20 11:50	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/11/20 11:50	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/11/20 11:50	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			11/11/20 11:50	1
Isopropylbenzene	ND		1.0	0.79	ug/L			11/11/20 11:50	1
Methyl acetate	ND		2.5		ug/L			11/11/20 11:50	1

Eurofins TestAmerica, Buffalo

12/03/2020

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-2 Lab Sample ID: 480-177831-2

Date Collected: 11/04/20 10:55 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	0.48	J	1.0	0.16	ug/L			11/11/20 11:50	1
Methylcyclohexane	ND		1.0	0.16	ug/L			11/11/20 11:50	1
Methylene Chloride	ND		1.0	0.44	ug/L			11/11/20 11:50	1
Styrene	ND		1.0	0.73	ug/L			11/11/20 11:50	1
Tetrachloroethene	0.42	J	1.0	0.36	ug/L			11/11/20 11:50	1
Toluene	ND		1.0	0.51	ug/L			11/11/20 11:50	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/11/20 11:50	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/11/20 11:50	1
Trichloroethene	0.68	J	1.0	0.46	ug/L			11/11/20 11:50	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/11/20 11:50	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/11/20 11:50	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/11/20 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120			-		11/11/20 11:50	1
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					11/11/20 11:50	1
4-Bromofluorobenzene (Surr)	105		73 - 120					11/11/20 11:50	1
Dibromofluoromethane (Surr)	113		75 - 123					11/11/20 11:50	1

Method: 8270D	- Semivolatile	Organic (Compounds	(GC/MS)
---------------	----------------	-----------	-----------	---------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		11/10/20 15:08	11/18/20 10:40	1
bis (2-chloroisopropyl) ether	MILI	5.0	0.52	ug/L		11/10/20 15:08	11/18/20 10:40	CCL1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:40	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Chlorophenol	ND	5.0	0.53	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Methylphenol	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Nitroaniline	ND	10	0.42	ug/L		11/10/20 15:08	11/18/20 10:40	1
2-Nitrophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 10:40	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:40	1
3-Nitroaniline	ND	10	0.48	ug/L		11/10/20 15:08	11/18/20 10:40	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Chloroaniline	ND	5.0	0.59	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Methylphenol	ND	10	0.36	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Nitroaniline	ND	10	0.25	ug/L		11/10/20 15:08	11/18/20 10:40	1
4-Nitrophenol	NO CO	10	1.5	ug/L		11/10/20 15:08	11/18/20 10:40	CG
Acenaphthene	ND	5.0	0.41	ug/L		11/10/20 15:08	11/18/20 10:40	1
Acenaphthylene	ND	5.0	0.38	ug/L		11/10/20 15:08	11/18/20 10:40	1
Acetophenone	ND	5.0	0.54	ug/L		11/10/20 15:08	11/18/20 10:40	1
Anthracene	ND	5.0	0.28	ug/L		11/10/20 15:08	11/18/20 10:40	1

Eurofins TestAmerica, Buffalo

4/1 L 1/24/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-2 Lab Sample ID: 480-177831-2

Date Collected: 11/04/20 10:55

Date Received: 11/05/20 12:20

Matrix: Water

Analyte	Result		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Atrazine		*(4)	5.0	0.46	ug/L		11/10/20 15:08	11/18/20 10:40	cch
Benzaldehyde	ND		5.0	0.27	ug/L		11/10/20 15:08	11/18/20 10:40	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/10/20 15:08	11/18/20 10:40	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/10/20 15:08	11/18/20 10:40	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/10/20 15:08	11/18/20 10:40	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/10/20 15:08	11/18/20 10:40	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/10/20 15:08	11/18/20 10:40	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/10/20 15:08	11/18/20 10:40	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/10/20 15:08	11/18/20 10:40	1
Bis(2-ethylhexyl) phthalate	ND		5.0	2.2	ug/L		11/10/20 15:08	11/18/20 10:40	1
Butyl benzyl phthalate	ND		5.0		ug/L		11/10/20 15:08	11/18/20 10:40	1
Caprolactam	ND		5.0		ug/L		11/10/20 15:08	11/18/20 10:40	1
Carbazole	ND		5.0	0.30	_		11/10/20 15:08	11/18/20 10:40	1
Chrysene	ND		5.0	0.33			11/10/20 15:08	11/18/20 10:40	1
Dibenz(a,h)anthracene	ND		5.0	0.42	_			11/18/20 10:40	1
Di-n-butyl phthalate	ND		5.0	0.31	_			11/18/20 10:40	1
Di-n-octyl phthalate	ND		5.0	0.47				11/18/20 10:40	1
Dibenzofuran	ND		10		ug/L			11/18/20 10:40	1
Diethyl phthalate	ND		5.0	0.22	_			11/18/20 10:40	1
Dimethyl phthalate	ND		5.0	0.36				11/18/20 10:40	
Fluoranthene	ND		5.0		-		11/10/20 15:08	11/18/20 10:40	1
Fluorene	ND		5.0	0.36	_			11/18/20 10:40	1
Hexachlorobenzene	ND		5.0					11/18/20 10:40	
Hexachlorobutadiene	ND		5.0		ug/L		11/10/20 15:08	11/18/20 10:40	1
Hexachlorocyclopentadiene	ND		5.0	0.59	_			11/18/20 10:40	1
Hexachloroethane	ND		5.0	0.59				11/18/20 10:40	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	_		11/10/20 15:08	11/18/20 10:40	1
Isophorone	ND		5.0	0.43	_		11/10/20 15:08	11/18/20 10:40	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54				11/18/20 10:40	
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ND ND		5.0		ug/L ug/L		11/10/20 15:08	11/18/20 10:40	1
Naphthalene	1.8		5.0	0.76	-		11/10/20 15:08	11/18/20 10:40	1
Nitrobenzene	ND	J	5.0	0.70				11/18/20 10:40	
Pentachlorophenol		<i>اس</i> ه ر	10						aci
'	ND C	AU.	5.0		ug/L			11/18/20 10:40	1
Phenanthrene	ND			0.44				11/18/20 10:40	
Phenol	ND		5.0	0.39	•		11/10/20 15:08		1
Pyrene	ND		5.0	0.34	ug/L		11/10/20 15:08	11/18/20 10:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	86		46 - 120				11/10/20 15:08	11/18/20 10:40	1
Phenol-d5 (Surr)	45		22 - 120				11/10/20 15:08	11/18/20 10:40	1
p-Terphenyl-d14 (Surr)	88		60 - 148				11/10/20 15:08	11/18/20 10:40	1
2,4,6-Tribromophenol (Surr)	98		41 - 120					11/18/20 10:40	1
2-Fluorobiphenyl (Surr)	99		48 - 120					11/18/20 10:40	1
2-Fluorophenol (Surr)	66		35 - 120					11/18/20 10:40	1
Method: 8081B - Organo	chlorine Pesticide	es (GC)							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.052	0.0096	ug/L		11/10/20 08:39	11/11/20 13:05	1
4,4'-DDE	ND		0.052	0.012	ug/L		11/10/20 08:39	11/11/20 13:05	1
4,4'-DDT	0.052 2029,	XX U	0.052	0.011	ug/L		11/10/20 08:39	11/11/20 13:05	MB

Eurofins TestAmerica, Buffalo

12/03/2020 ML 1/2420

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-2 Lab Sample ID: 480-177831-2

Date Collected: 11/04/20 10:55

Date Received: 11/05/20 12:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.052	0.0084	ug/L		11/10/20 08:39	11/11/20 13:05	1
alpha-BHC	ND		0.052	0.0080	ug/L		11/10/20 08:39	11/11/20 13:05	1
cis-Chlordane	ND		0.052	0.015	ug/L		11/10/20 08:39	11/11/20 13:05	1
beta-BHC	ND		0.052	0.026	ug/L		11/10/20 08:39	11/11/20 13:05	1
delta-BHC	0.013	J	0.052	0.010	ug/L		11/10/20 08:39	11/11/20 13:05	1
Dieldrin	ND		0.052	0.010	ug/L		11/10/20 08:39	11/11/20 13:05	1
Endosulfan I	ND		0.052	0.011	ug/L		11/10/20 08:39	11/11/20 13:05	1
Endosulfan II	ND		0.052	0.013	ug/L		11/10/20 08:39	11/11/20 13:05	1
Endosulfan sulfate	ND		0.052	0.016	ug/L		11/10/20 08:39	11/11/20 13:05	1
Endrin	ND		0.052	0.014	ug/L		11/10/20 08:39	11/11/20 13:05	1
Endrin aldehyde	ND		0.052	0.017	-		11/10/20 08:39	11/11/20 13:05	1
Endrin ketone	ND		0.052	0.013	•		11/10/20 08:39	11/11/20 13:05	1
gamma-BHC (Lindane)	ND		0.052	0.0083			11/10/20 08:39	11/11/20 13:05	1
trans-Chlordane	ND		0.052	0.011	-		11/10/20 08:39	11/11/20 13:05	1
Heptachlor		UJ	0.052	0.0089	•		11/10/20 08:39	11/11/20 13:05	(ELL) 1
Heptachlor epoxide	ND		0.052	0.0077			11/10/20 08:39	11/11/20 13:05	
Methoxychlor		<u> </u>	0.052	0.015	•		11/10/20 08:39	11/11/20 13:05	1 للك
Toxaphene		W	0.52	0.13	•		11/10/20 08:39	11/11/20 13:05	cclb
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	61		20 - 120				11/10/20 08:39	11/11/20 13:05	1
DCB Decachlorobiphenyl	56		20 - 120				11/10/20 08:39	11/11/20 13:05	1
Tetrachloro-m-xylene	108		44 - 120				11/10/20 08:39	11/11/20 13:05	1
Tetrachloro-m-xylene	75		44 - 120				11/10/20 08:39	11/11/20 13:05	1
Method: 8082A - Polychlorii	nated Bipheny	/le (PCRe)			anhv				
		113 (1 OD3)	by Gas Chro	omatogra	арпу				
Analyte	Result	Qualifier	by Gas Chro	omatogra MDL		D	Prepared	Analyzed	Dil Fac
Analyte PCB-1016		Qualifier	-	_	Unit	<u>D</u>	Prepared 11/11/20 09:34	Analyzed 11/13/20 05:53	_
	Result	Qualifier	RL	MDL	Unit ug/L	<u>D</u>			_
PCB-1016	Result	Qualifier	RL 0.52	MDL 0.18	Unit ug/L ug/L	<u>D</u>	11/11/20 09:34	11/13/20 05:53	Call4 1
PCB-1016 PCB-1221	Result ND	Qualifier	RL 0.52 0.52	0.18 0.18	Unit ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53	Call4 1
PCB-1016 PCB-1221 PCB-1232	Result ND ND	Qualifier	RL 0.52 0.52 0.52	MDL 0.18 0.18 0.18	Unit ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	Call4 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242	Result yo ND ND ND	Qualifier	RL 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.18	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	Call4 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Result ND ND ND ND ND	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.18 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	Call4 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Result ND ND ND ND ND	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.18 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	Call4 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	Result NO ND ND ND ND ND	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.18 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	1 1 1 1 1 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	Result y/O ND ND ND ND ND ND ND ND ND N	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.26 0.26 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	1 1 1 1 1 1 2 1 2 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268	Result NO ND	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.26 0.26 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	2 Dil Face
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268 Surrogate	Result y/O ND ND ND ND ND ND ND ND ND N	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.26 0.26 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268 Surrogate Tetrachloro-m-xylene (Surr)	Result JO ND ND ND ND ND ND ND ND ND N	Qualifier UN	RL 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MDL 0.18 0.18 0.18 0.18 0.26 0.26 0.26	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53 11/13/20 05:53	Dil Fac 2 1 1 1 1 1 1 1 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Method:	6010C	- Metals	(ICP)	
wictilou.	00100	- Wictais	(101)	

4	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1	Aluminum	ND		0.20	0.060	mg/L		11/11/20 08:45	11/11/20 22:36	1
.	Antimony	ND		0.020	0.0068	mg/L		11/11/20 08:45	11/11/20 22:36	1
.	Arsenic	ND		0.015	0.0056	mg/L		11/11/20 08:45	11/11/20 22:36	1
	Barium	0.068	/	0.0020	0.00070	mg/L		11/11/20 08:45	11/11/20 22:36	1
	Beryllium	ND		0.0020	0.00030	mg/L		11/11/20 08:45	11/11/20 22:36	. 1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Analyte

Client Sample ID: MW-2 Lab Sample ID: 480-177831-2

Date Collected: 11/04/20 10:55 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0020	0.00050	mg/L		11/11/20 08:45	11/11/20 22:36	1
Calcium	136		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 22:36	1
Chromium	0.0062		0.0040	0.0010	mg/L		11/11/20 08:45	11/11/20 22:36	1
Cobalt	0.0014	J	0.0040	0.00063	mg/L		11/11/20 08:45	11/11/20 22:36	1
Copper	0.0070	J	0.010	0.0016	mg/L		11/11/20 08:45	11/11/20 22:36	1
Iron	0.87		0.050	0.019	mg/L		11/11/20 08:45	11/11/20 22:36	1
Lead	0.0043	J	0.010	0.0030	mg/L		11/11/20 08:45	11/11/20 22:36	1
Magnesium	33.1		0.20	0.043	mg/L		11/11/20 08:45	11/11/20 22:36	1
Manganese	0.59		0.0030	0.00040	mg/L		11/11/20 08:45	11/11/20 22:36	1
Nickel	0.0064	J	0.010	0.0013	mg/L		11/11/20 08:45	11/11/20 22:36	1
Potassium	8.3		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 22:36	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 08:45	11/11/20 22:36	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 08:45	11/11/20 22:36	1
Sodium	50.6		1.0	0.32	mg/L		11/11/20 08:45	11/11/20 22:36	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 08:45	11/11/20 22:36	1
Vanadium	ND		0.0050	0.0015	mg/L		11/11/20 08:45	11/11/20 22:36	1
Zinc	0.0049	J	0.010	0.0015	mg/L		11/11/20 08:45	11/11/20 22:36	1

Mercury ND 0.00020 0.00012 mg/L 11/10/20 13:55 11/10/20 17:35 1

Client Sample ID: MW-3R Lab Sample ID: 480-177831-3

RL

MDL Unit

Prepared

Analyzed

Dil Fac

Result Qualifier

Date Collected: 11/04/20 12:25 Matrix: Water

Date Received: 11/05/20 12:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	40	33	ug/L			11/11/20 12:14	40
1,1,2,2-Tetrachloroethane	ND	40	8.4	ug/L			11/11/20 12:14	40
1,1,2-Trichloroethane	ND	40	9.2	ug/L			11/11/20 12:14	40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	40	12	ug/L			11/11/20 12:14	40
1,1-Dichloroethane	ND	40	15	ug/L			11/11/20 12:14	40
1,1-Dichloroethene	ND	40	12	ug/L			11/11/20 12:14	40
1,2,4-Trichlorobenzene	ND	40	16	ug/L			11/11/20 12:14	40
1,2-Dibromo-3-Chloropropane	ND	40	16	ug/L			11/11/20 12:14	40
1,2-Dichlorobenzene	ND	40	32	ug/L			11/11/20 12:14	40
1,2-Dichloroethane	ND	40	8.4	ug/L			11/11/20 12:14	40
1,2-Dichloropropane	ND	40	29	ug/L			11/11/20 12:14	40
1,3-Dichlorobenzene	ND	40	31	ug/L			11/11/20 12:14	40
1,4-Dichlorobenzene	ND	40	34	ug/L			11/11/20 12:14	40
2-Butanone (MEK)	ND	400	53	ug/L			11/11/20 12:14	40
2-Hexanone	ND	200	50	ug/L			11/11/20 12:14	40
4-Methyl-2-pentanone (MIBK)	ND	200	84	ug/L			11/11/20 12:14	40
Acetone	ND	400	120	ug/L			11/11/20 12:14	40
Benzene	180	40	16	ug/L			11/11/20 12:14	40
Bromodichloromethane	ND	40	16	ug/L			11/11/20 12:14	40
Bromoform	ND	40	10	ug/L			11/11/20 12:14	40
Bromomethane	ND	40	28	ug/L			11/11/20 12:14	40
Carbon disulfide	ND	40		ug/L			11/11/20 12:14	40

Eurofins TestAmerica, Buffalo

Page 23 of 1900

12/03/2020 SMIL 1/0/00

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-3R Lab Sample ID: 480-177831-3

Date Collected: 11/04/20 12:25 **Matrix: Water** Date Received: 11/05/20 12:20

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		40	11	ug/L			11/11/20 12:14	40
Chlorobenzene	ND		40	30	ug/L			11/11/20 12:14	40
Dibromochloromethane	ND		40	13	ug/L			11/11/20 12:14	40
Chloroethane	ND		40	13	ug/L			11/11/20 12:14	40
Chloroform	ND		40	14	ug/L			11/11/20 12:14	40
Chloromethane	ND		40	14	ug/L			11/11/20 12:14	40
cis-1,2-Dichloroethene	1600		40	32	ug/L			11/11/20 12:14	40
cis-1,3-Dichloropropene	ND		40	14	ug/L			11/11/20 12:14	40
Cyclohexane	ND		40	7.2	ug/L			11/11/20 12:14	40
Dichlorodifluoromethane	ND		40	27	ug/L			11/11/20 12:14	40
Ethylbenzene	ND		40	30	ug/L			11/11/20 12:14	40
1,2-Dibromoethane	ND		40	29	ug/L			11/11/20 12:14	40
Isopropylbenzene	ND		40	32	ug/L			11/11/20 12:14	40
Methyl acetate	ND		100	52	ug/L			11/11/20 12:14	40
Methyl tert-butyl ether	ND		40	6.4	ug/L			11/11/20 12:14	40
Methylcyclohexane	ND		40	6.4	ug/L			11/11/20 12:14	40
Methylene Chloride	ND		40	18	ug/L			11/11/20 12:14	40
Styrene	ND		40	29	ug/L			11/11/20 12:14	40
Tetrachloroethene	ND		40	14	ug/L			11/11/20 12:14	40
Toluene	ND		40	20	ug/L			11/11/20 12:14	40
trans-1,2-Dichloroethene	ND		40	36	ug/L			11/11/20 12:14	40
trans-1,3-Dichloropropene	ND		40	15	ug/L			11/11/20 12:14	40
Trichloroethene	ND		40	18	ug/L			11/11/20 12:14	40
Trichlorofluoromethane	ND		40	35	ug/L			11/11/20 12:14	40
Vinyl chloride	1300		40	36	ug/L			11/11/20 12:14	40
Xylenes, Total	ND		80	26	ug/L			11/11/20 12:14	40
Surrogate	%Recovery Q	ualifier L	imits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106	8	0 - 120			-		11/11/20 12:14	40
1,2-Dichloroethane-d4 (Surr)	110	7	7 - 120					11/11/20 12:14	40
4-Bromofluorobenzene (Surr)	106	7	3 - 120					11/11/20 12:14	40

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120		11/11/20 12:14	40
1,2-Dichloroethane-d4 (Surr)	110		77 - 120		11/11/20 12:14	40
4-Bromofluorobenzene (Surr)	106		73 - 120		11/11/20 12:14	40
Dibromofluoromethane (Surr)	112		75 - 123		11/11/20 12:14	40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		11/10/20 15:08	11/18/20 09:44	1
bis (2-chloroisopropyl) ether	MG (LUT	5.0	0.52	ug/L		11/10/20 15:08	11/18/20 09:44	COLL
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/10/20 15:08	11/18/20 09:44	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Chlorophenol	ND	5.0	0.53	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Methylphenol	ND	5.0	0.40	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Methylnaphthalene	0.84 J	5.0	0.60	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Nitroaniline	ND	10	0.42	ug/L		11/10/20 15:08	11/18/20 09:44	1
2-Nitrophenol	ND	5.0	0.48	ug/L		11/10/20 15:08	11/18/20 09:44	1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-3R Lab Sample ID: 480-177831-3

Date Collected: 11/04/20 12:25

Date Received: 11/05/20 12:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/10/20 15:08	11/18/20 09:44	1
3-Nitroaniline	ND		10	0.48	ug/L		11/10/20 15:08	11/18/20 09:44	1
1,6-Dinitro-2-methylphenol	ND		10		ug/L		11/10/20 15:08	11/18/20 09:44	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
4-Chloro-3-methylphenol	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
4-Chloroaniline	ND		5.0	0.59	_		11/10/20 15:08	11/18/20 09:44	1
4-Chlorophenyl phenyl ether	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
4-Methylphenol	ND		10		ug/L		11/10/20 15:08	11/18/20 09:44	1
4-Nitroaniline	ND		10		ug/L		11/10/20 15:08	11/18/20 09:44	1
1-Nitrophenol	NE	LOT	10		ug/L		11/10/20 15:08	11/18/20 09:44	Coff.
Acenaphthene	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Acenaphthylene	0.81	J	5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Acetophenone	ND		5.0		ug/L			11/18/20 09:44	· · · · · · · · · · · · · · · · · · ·
Anthracene	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Atrazine	NE.	*IT	5.0		ug/L		11/10/20 15:08	11/18/20 09:44	ریجے
Benzaldehyde	ND		5.0		ug/L			11/18/20 09:44	
Benzo[a]anthracene	ND ND		5.0		ug/L ug/L		11/10/20 15:08	11/18/20 09:44	1
Benzo[a]pyrene	ND ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Benzo[b]fluoranthene	ND		5.0		ug/L			11/18/20 09:44	
	ND ND		5.0		•		11/10/20 15:08	11/18/20 09:44	1
Benzo[g,h,i]perylene	ND ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Benzo[k]fluoranthene					ug/L				
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			11/18/20 09:44	
Bis(2-chloroethyl)ether	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	
Butyl benzyl phthalate	ND		5.0		ug/L			11/18/20 09:44	1
Caprolactam	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Carbazole	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Chrysene	ND		5.0		ug/L			11/18/20 09:44	1
Dibenz(a,h)anthracene	ND		5.0	0.42	_		11/10/20 15:08	11/18/20 09:44	1
Di-n-butyl phthalate	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Di-n-octyl phthalate	ND		5.0		ug/L			11/18/20 09:44	1
Dibenzofuran	ND		10	0.51	ug/L		11/10/20 15:08	11/18/20 09:44	1
Diethyl phthalate	ND		5.0	0.22	ug/L		11/10/20 15:08	11/18/20 09:44	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		11/10/20 15:08	11/18/20 09:44	1
Fluoranthene	ND		5.0	0.40	ug/L		11/10/20 15:08	11/18/20 09:44	1
Fluorene	0.46	J	5.0	0.36	ug/L		11/10/20 15:08	11/18/20 09:44	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		11/10/20 15:08	11/18/20 09:44	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		11/10/20 15:08	11/18/20 09:44	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		11/10/20 15:08	11/18/20 09:44	1
Hexachloroethane	ND		5.0	0.59	ug/L		11/10/20 15:08	11/18/20 09:44	1
ndeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/10/20 15:08	11/18/20 09:44	1
sophorone	ND		5.0	0.43	ug/L		11/10/20 15:08	11/18/20 09:44	1
N-Nitrosodi-n-propylamine	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
N-Nitrosodiphenylamine	ND		5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Naphthalene	1.4	J	5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Vitrobenzene	ND		5.0		ug/L			11/18/20 09:44	1
Pentachlorophenol	NET	INT	10		ug/L		11/10/20 15:08	11/18/20 09:44	CC
Phenanthrene	1.8	J	5.0		ug/L		11/10/20 15:08	11/18/20 09:44	1
Phenol	2.9		5.0		ug/L			11/18/20 09:44	

Eurofins TestAmerica, Buffalo

12/03/2020 SMC 1124/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: MW-3R Lab Sample ID: 480-177831-3

Date Collected: 11/04/20 12:25

Date Received: 11/05/20 12:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	0.50	J	5.0	0.34	ug/L		11/10/20 15:08	11/18/20 09:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	87		46 - 120				11/10/20 15:08	11/18/20 09:44	1
Phenol-d5 (Surr)	45		22 - 120				11/10/20 15:08	11/18/20 09:44	1
p-Terphenyl-d14 (Surr)	72		60 ₋ 148				11/10/20 15:08	11/18/20 09:44	1
2,4,6-Tribromophenol (Surr)	100		41 - 120				11/10/20 15:08	11/18/20 09:44	1
2-Fluorobiphenyl (Surr)	96		48 - 120				11/10/20 15:08	11/18/20 09:44	1
2-Fluorophenol (Surr)	65		35 - 120					11/18/20 09:44	1
Method: 8081B - Organo	ochlorine Pesticio	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.052	0.0096	ug/L		11/10/20 08:39	11/11/20 11:46	1
4,4'-DDE	ND		0.052	0.012	ug/L		11/10/20 08:39	11/11/20 11:46	1
4,4'-DDT	0.0520.032	XX (/	0.052	0.011	-		11/10/20 08:39	11/11/20 11:46	MBL_1
Aldrin	ND		0.052	0.0084			11/10/20 08:39	11/11/20 11:46	1
alpha-BHC	0.011	J	0.052	0.0080	-		11/10/20 08:39	11/11/20 11:46	1
cis-Chlordane	ND		0.052	0.015	-		11/10/20 08:39	11/11/20 11:46	1
beta-BHC	ND		0.052	0.026			11/10/20 08:39	11/11/20 11:46	1
delta-BHC	0.013	J	0.052	0.010	•		11/10/20 08:39	11/11/20 11:46	1
Dieldrin	ND		0.052	0.010	•		11/10/20 08:39	11/11/20 11:46	1
Endosulfan I	ND		0.052	0.011			11/10/20 08:39	11/11/20 11:46	1
Endosulfan II	ND		0.052	0.013	-		11/10/20 08:39	11/11/20 11:46	1
Endosulfan sulfate	ND		0.052	0.016	-		11/10/20 08:39	11/11/20 11:46	1
Endrin	ND		0.052	0.014			11/10/20 08:39	11/11/20 11:46	1
Endrin aldehyde	ND		0.052	0.017	•		11/10/20 08:39	11/11/20 11:46	1
Endrin ketone	ND		0.052	0.013	J		11/10/20 08:39	11/11/20 11:46	1
gamma-BHC (Lindane)	0.05200093	120	0.052	0.0083			11/10/20 08:39	11/11/20 11:46	MB/ 1
trans-Chlordane	ND		0.052	0.011	•		11/10/20 08:39	11/11/20 11:46	، کے . 1
Heptachlor		uJ	0.052	0.0089	_		11/10/20 08:39	11/11/20 11:46	\mathcal{A}_1
Heptachlor epoxide	ND	··· <u>-</u>	0.052	0.0077			11/10/20 08:39	11/11/20 11:46	
Methoxychlor		$\omega \overline{\omega}$	0.052	0.017	•		11/10/20 08:39	11/11/20 11:46	CCH1
Toxaphene		UJ	0.52		ug/L		11/10/20 08:39	11/11/20 11:46	cett 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	66		20 - 120				11/10/20 08:39	11/11/20 11:46	1
DCB Decachlorobiphenyl	61		20 - 120				11/10/20 08:39	11/11/20 11:46	1
Tetrachloro-m-xylene	113		44 - 120				11/10/20 08:39	11/11/20 11:46	1
Tetrachloro-m-xylene	71		44 - 120					11/11/20 11:46	1
Method: 8082A - Polychi Analyte		y <mark>ls (PCBs)</mark> Quali <u>f</u> ier	by Gas Chr		aphy Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	NZ NZ		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 03:46	CCA
PCB-1221	ND		0.50		ug/L		11/11/20 09:34	11/13/20 03:46	1
PCB-1232	ND		0.50		ug/L		11/11/20 09:34	11/13/20 03:46	1
PCB-1242	ND		0.50		ug/L		11/11/20 09:34	11/13/20 03:46	1
PCB-1248	ND		0.50		ug/L		11/11/20 09:34	11/13/20 03:46	1
	112		0.00	00	- J. –				

Eurofins TestAmerica, Buffalo

11/11/20 09:34 11/13/20 03:46

11/11/20 09:34 11/13/20 03:46

11/11/20 09:34 11/13/20 03:46

12/03/2020 SAK 1/21/2020

CCH

0.50

0.50

0.50

0.25 ug/L

0.25 ug/L

0.25 ug/L

ND

ND

M (VI

PCB-1254

PCB-1260

PCB-1262

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-3R

Lab Sample ID: 480-177831-3

Date Collected: 11/04/20 12:25 **Matrix: Water** Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1268	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 03:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	98		39 - 121				11/11/20 09:34	11/13/20 03:46	1
Tetrachloro-m-xylene (Surr)	94		39 - 121				11/11/20 09:34	11/13/20 03:46	1
DCB Decachlorobiphenyl (Surr)	109		19 - 120				11/11/20 09:34	11/13/20 03:46	1
DCB Decachlorobiphenyl (Surr)	117		19 - 120				11/11/20 09:34	11/13/20 03:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.35		0.20	0.060	mg/L		11/11/20 08:45	11/11/20 22:40	1
Antimony	ND		0.020	0.0068	mg/L		11/11/20 08:45	11/11/20 22:40	1
Arsenic	ND		0.015	0.0056	mg/L		11/11/20 08:45	11/11/20 22:40	1
Barium	0.18	/	0.0020	0.00070	mg/L		11/11/20 08:45	11/11/20 22:40	1
Beryllium	ND		0.0020	0.00030	mg/L		11/11/20 08:45	11/11/20 22:40	1
Cadmium	ND		0.0020	0.00050	mg/L		11/11/20 08:45	11/11/20 22:40	1
Calcium	348		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 22:40	1
Chromium	0.0030	J	0.0040	0.0010	mg/L		11/11/20 08:45	11/11/20 22:40	1
Cobalt	0.00090	J	0.0040	0.00063	mg/L		11/11/20 08:45	11/11/20 22:40	1
Copper	0.0019	J	0.010	0.0016	mg/L		11/11/20 08:45	11/11/20 22:40	1
Iron	12.6		0.050	0.019	mg/L		11/11/20 08:45	11/11/20 22:40	1
Lead	0.0056	J	0.010	0.0030	mg/L		11/11/20 08:45	11/11/20 22:40	1
Magnesium	125		0.20	0.043	mg/L		11/11/20 08:45	11/11/20 22:40	1
Manganese	0.89		0.0030	0.00040	mg/L		11/11/20 08:45	11/11/20 22:40	1
Nickel	0.0014	J	0.010	0.0013	mg/L		11/11/20 08:45	11/11/20 22:40	1
Potassium	6.7		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 22:40	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 08:45	11/11/20 22:40	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 08:45	11/11/20 22:40	1
Sodium	121		1.0	0.32	mg/L		11/11/20 08:45	11/11/20 22:40	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 08:45	11/11/20 22:40	1
Vanadium	ND		0.0050	0.0015	mg/L		11/11/20 08:45	11/11/20 22:40	1
Zinc	0.0022	J	0.010	0.0015	mg/L		11/11/20 08:45	11/11/20 22:40	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/10/20 13:55	11/10/20 17:37	1

Client Sample ID: MW-5R Lab Sample ID: 480-177831-4 Date Collected: 11/04/20 14:30 **Matrix: Water**

Date Received: 11/05/20 12:20

Method: 8260C - Volatile Organ	ic Compo	unds by GC	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2800		2000	1600	ug/L			11/11/20 12:38	2000
1,1,2,2-Tetrachloroethane	ND		2000	420	ug/L			11/11/20 12:38	2000
1,1,2-Trichloroethane	ND		2000	460	ug/L			11/11/20 12:38	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2000	620	ug/L			11/11/20 12:38	2000
1,1-Dichloroethane	1500	J	2000	760	ug/L			11/11/20 12:38	2000
1,1-Dichloroethene	910	J	2000	580	ug/L			11/11/20 12:38	2000
1,2,4-Trichlorobenzene	ND		2000	820	ug/L			11/11/20 12:38	2000
1,2-Dibromo-3-Chloropropane	ND		2000	780	ug/L			11/11/20 12:38	2000

Eurofins TestAmerica, Buffalo

12/03/2020 SMR 1/24/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177831-4

Date Collected: 11/04/20 14:30 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		2000	1600	ug/L			11/11/20 12:38	2000
1,2-Dichloroethane	ND		2000	420	ug/L			11/11/20 12:38	2000
1,2-Dichloropropane	ND		2000	1400	ug/L			11/11/20 12:38	2000
1,3-Dichlorobenzene	ND		2000	1600	ug/L			11/11/20 12:38	2000
1,4-Dichlorobenzene	ND		2000	1700	ug/L			11/11/20 12:38	2000
2-Butanone (MEK)	ND		20000	2600	-			11/11/20 12:38	2000
2-Hexanone	ND		10000	2500	_			11/11/20 12:38	2000
4-Methyl-2-pentanone (MIBK)	ND		10000	4200	ug/L			11/11/20 12:38	2000
Acetone	ND		20000	6000	-			11/11/20 12:38	2000
Benzene	4300		2000		ug/L			11/11/20 12:38	2000
Bromodichloromethane	ND		2000		ug/L			11/11/20 12:38	2000
Bromoform	ND		2000		ug/L			11/11/20 12:38	2000
Bromomethane	ND		2000	1400	-			11/11/20 12:38	2000
Carbon disulfide	ND		2000		ug/L			11/11/20 12:38	2000
Carbon tetrachloride	ND		2000		ug/L			11/11/20 12:38	2000
Chlorobenzene	ND		2000	1500	-			11/11/20 12:38	2000
Dibromochloromethane	ND		2000		ug/L			11/11/20 12:38	2000
Chloroethane	ND		2000		ug/L			11/11/20 12:38	2000
Chloroform	ND		2000		ug/L			11/11/20 12:38	2000
Chloromethane	ND		2000		ug/L			11/11/20 12:38	2000
cis-1,2-Dichloroethene	160000		2000	1600	-			11/11/20 12:38	2000
cis-1,3-Dichloropropene	ND		2000		ug/L			11/11/20 12:38	2000
Cyclohexane	ND		2000		ug/L			11/11/20 12:38	2000
Dichlorodifluoromethane	ND		2000	1400	-			11/11/20 12:38	2000
	3100		2000	1500	-			11/11/20 12:38	2000
Ethylbenzene 1,2-Dibromoethane	ND		2000	1500				11/11/20 12:38	2000
Isopropylbenzene	ND ND		2000	1600	-			11/11/20 12:38	2000
Methyl acetate	ND		5000	2600	-			11/11/20 12:38	2000
	ND							11/11/20 12:38	
Methyl tert-butyl ether	ND ND		2000 2000		ug/L			11/11/20 12:38	2000
Methylcyclohexane	ND ND		2000		ug/L			11/11/20 12:38	2000
Methylene Chloride	ND				ug/L			11/11/20 12:38	2000
Styrene Tetrachloroethene			2000 2000	1500	-				2000
	ND				ug/L			11/11/20 12:38	2000
Toluene	2600		2000	1000				11/11/20 12:38	2000
trans-1,2-Dichloroethene	ND		2000	1800				11/11/20 12:38	2000
trans-1,3-Dichloropropene	ND		2000		ug/L			11/11/20 12:38	2000
Trichloroethene	5900		2000		ug/L			11/11/20 12:38	2000
Trichlorofluoromethane	ND		2000	1800	-			11/11/20 12:38	2000
Vinyl chloride	5800		2000	1800	-			11/11/20 12:38	2000
Xylenes, Total	1600	J	4000	1300	ug/L			11/11/20 12:38	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	105		80 - 120					11/11/20 12:38	2000
1,2-Dichloroethane-d4 (Surr)	109		77 - 120					11/11/20 12:38	2000
4-Bromofluorobenzene (Surr)	102		73 - 120					11/11/20 12:38	2000
Dibromofluoromethane (Surr)	114		75 - 123					11/11/20 12:38	2000
Method: 8270D - Semivolat	_		•						
Analyte	Dogult	Qualifier	RL	ME	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Buffalo

SANC 1/2/03/2020

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177831-4

Date Collected: 11/04/20 14:30 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	W CD	50	5.2	ug/L		11/10/20 15:08	11/18/20 11:08	1000
2,4,5-Trichlorophenol	ND	50	4.8	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,4,6-Trichlorophenol	ND	50	6.1	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,4-Dichlorophenol	ND	50	5.1	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,4-Dimethylphenol	ND	50	5.0	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,4-Dinitrophenol	ND	100	22	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,4-Dinitrotoluene	ND	50	4.5	ug/L		11/10/20 15:08	11/18/20 11:08	10
2,6-Dinitrotoluene	ND	50	4.0	ug/L		11/10/20 15:08	11/18/20 11:08	10
2-Chloronaphthalene	ND	50	4.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
2-Chlorophenol	ND	50	5.3	ug/L		11/10/20 15:08	11/18/20 11:08	10
2-Methylphenol	ND	50	4.0	ug/L		11/10/20 15:08	11/18/20 11:08	10
2-Methylnaphthalene	∯ 1300 E	50	6.0			11/10/20 15:08	11/18/20 11:08	10
2-Nitroaniline	ND	100		ug/L		11/10/20 15:08	11/18/20 11:08	10
2-Nitrophenol	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
3,3'-Dichlorobenzidine	ND	50				11/10/20 15:08	11/18/20 11:08	10
3-Nitroaniline	ND	100		•		11/10/20 15:08	11/18/20 11:08	10
4,6-Dinitro-2-methylphenol	ND	100		ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Bromophenyl phenyl ether	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Chloro-3-methylphenol	ND	50	4.5	ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Chloroaniline	ND	50	5.9	ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Chlorophenyl phenyl ether	ND	50	3.5	ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Methylphenol	ND	100	3.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Nitroaniline	ND	100		ug/L		11/10/20 15:08	11/18/20 11:08	10
4-Nitrophenol	Wat	100	15	ug/L		11/10/20 15:08	11/18/20 11:08	10
	67	50	4.1	•		11/10/20 15:08	11/18/20 11:08	10 (2)
Acenaphthene	390	50	3.8	ug/L		11/10/20 15:08	11/18/20 11:08	10
Acetaphanana	6.5 J	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Acetophenone		50	2.8			11/10/20 15:08	11/18/20 11:08	10
Anthracene Atrazine	22 J NO UJ	50		ug/L		11/10/20 15:08	11/18/20 11:08	10 004
				ug/L				
Benzaldehyde	ND	50	2.7	•		11/10/20 15:08	11/18/20 11:08	10
Benzo[a]anthracene	ND	50	3.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
Benzo[a]pyrene	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Benzo[b]fluoranthene	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Benzo[g,h,i]perylene	ND	50		ug/L			11/18/20 11:08	10
Benzo[k]fluoranthene	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Bis(2-chloroethoxy)methane	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Bis(2-chloroethyl)ether	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Bis(2-ethylhexyl) phthalate	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Butyl benzyl phthalate	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Caprolactam	ND	50	22	J		11/10/20 15:08	11/18/20 11:08	10
Carbazole	9.5 J	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Chrysene	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Dibenz(a,h)anthracene	ND	50		•		11/10/20 15:08	11/18/20 11:08	10
Di-n-butyl phthalate	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Di-n-octyl phthalate	ND	50		ug/L		11/10/20 15:08	11/18/20 11:08	10
Dibenzofuran	19 J	100	5.1	•		11/10/20 15:08	11/18/20 11:08	10
Diethyl phthalate	ND	50	2.2	ug/L		11/10/20 15:08	11/18/20 11:08	10
Dimethyl phthalate	ND	50	3.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
Fluoranthene	9.5 J	50	4.0	ug/L		11/10/20 15:08	11/18/20 11:08	10

Eurofins TestAmerica, Buffalo

12/03/2020 ShlUlalael

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R

Lab Sample ID: 480-177831-4

11/10/20 15:08 11/18/20 11:08

11/10/20 15:08 11/18/20 11:08

*Report from a ution 10/20 15:08 11/18/20 11:08

10

Matrix: Water

Date Collected: 11/04/20 14:30 Date Received: 11/05/20 12:20

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	80	50	3.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
Hexachlorobenzene	ND	50	5.1	ug/L		11/10/20 15:08	11/18/20 11:08	10
Hexachlorobutadiene	ND	50	6.8	ug/L		11/10/20 15:08	11/18/20 11:08	10
Hexachlorocyclopentadiene	ND	50	5.9	ug/L		11/10/20 15:08	11/18/20 11:08	10
Hexachloroethane	ND	50	5.9	ug/L		11/10/20 15:08	11/18/20 11:08	10
Indeno[1,2,3-cd]pyrene	ND	50	4.7	ug/L		11/10/20 15:08	11/18/20 11:08	10
Isophorone	ND	50	4.3	ug/L		11/10/20 15:08	11/18/20 11:08	10
N-Nitrosodi-n-propylamine	ND	50	5.4	ug/L		11/10/20 15:08	11/18/20 11:08	10
N-Nitrosodiphenylamine	ND	50	5.1	ug/L		11/10/20 15:08	11/18/20 11:08	10
Naphthalene	Ø 3200 E	50	7.6	ug/L		11/10/20 15:08	11/18/20 11:08	10
Nitrobenzene	ND	50	2.9	ug/L		11/10/20 15:08	11/18/20 11:08	10
Pentachlorophenol	MUT	100	22	ug/L		11/10/20 15:08	11/18/20 11:08	Cas
Phenanthrene	100	50	4.4	ug/L		11/10/20 15:08	11/18/20 11:08	10
Phenol	ND	50	3.9	ug/L		11/10/20 15:08	11/18/20 11:08	10
Pyrene	18 J	50	3.4	ug/L		11/10/20 15:08	11/18/20 11:08	10
Surrogate	%Recovery Quality	fier Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	98	46 - 120				11/10/20 15:08	11/18/20 11:08	10
Phenol-d5 (Surr)	39	22 - 120				11/10/20 15:08	11/18/20 11:08	10
p-Terphenyl-d14 (Surr)	72	60 - 148				11/10/20 15:08	11/18/20 11:08	10

41 - 120

48 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL

107

100

60

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	1000	130	ug/L		11/10/20 15:08	11/18/20 16:57	200
bis (2-chloroisopropyl) ether	ND	1000	100	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4,5-Trichlorophenol	ND	1000	96	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4,6-Trichlorophenol	ND	1000	120	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4-Dichlorophenol	ND	1000	100	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4-Dimethylphenol	ND	1000	100	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4-Dinitrophenol	ND	2000	440	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,4-Dinitrotoluene	ND	1000	89	ug/L		11/10/20 15:08	11/18/20 16:57	200
2,6-Dinitrotoluene	ND	1000	80	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Chloronaphthalene	ND	1000	92	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Chlorophenol	ND	1000	110	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Methylphenol	ND	1000	80	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Methylnaphthalene	1500	1000	120	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Nitroaniline	ND	2000	84	ug/L		11/10/20 15:08	11/18/20 16:57	200
2-Nitrophenol	ND	1000	96	ug/L		11/10/20 15:08	11/18/20 16:57	200
3,3'-Dichlorobenzidine	ND	1000	80	ug/L		11/10/20 15:08	11/18/20 16:57	200
3-Nitroaniline	ND	2000	96	ug/L		11/10/20 15:08	11/18/20 16:57	200
4,6-Dinitro-2-methylphenol	ND	2000	440	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Bromophenyl phenyl ether	ND	1000	90	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Chloro-3-methylphenol	ND	1000	90	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Chloroaniline	ND	1000	120	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Chlorophenyl phenyl ether	ND	1000	70	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Methylphenol	ND	2000	72	ug/L		11/10/20 15:08	11/18/20 16:57	200
4-Nitroaniline	ND	2000	50	ug/L		11/10/20 15:08	11/18/20 16:57	200

Eurofins TestAmerica, Buffalo

12/03/2020 ML/24/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R

p-Terphenyl-d14 (Surr)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

Lab Sample ID: 480-177831-4

Date Collected: 11/04/20 14:30 **Matrix: Water** Date Received: 11/05/20 12:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4-Nitrophenol	ND		2000	300	ug/L		11/10/20 15:08	11/18/20 16:57	200
Acenaphthene	ND		1000	82	ug/L		11/10/20 15:08	11/18/20 16:57	200
Acenaphthylene	390	J	1000	76	ug/L		11/10/20 15:08	11/18/20 16:57	200
Acetophenone	ND		1000	110	ug/L		11/10/20 15:08	11/18/20 16:57	200
Anthracene	ND	_	1000	56	ug/L		11/10/20 15:08	11/18/20 16:57	200
Atrazine	ND	<i>}</i>	1000	92	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzaldehyde	ND		1000	53	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzo[a]anthracene	ND		1000	72	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzo[a]pyrene	ND		1000	94	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzo[b]fluoranthene	ND		1000	68	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzo[g,h,i]perylene	ND		1000	70	ug/L		11/10/20 15:08	11/18/20 16:57	200
Benzo[k]fluoranthene	ND		1000	150	ug/L		11/10/20 15:08	11/18/20 16:57	200
Bis(2-chloroethoxy)methane	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Bis(2-chloroethyl)ether	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Bis(2-ethylhexyl) phthalate	ND		1000	440	ug/L		11/10/20 15:08	11/18/20 16:57	200
Butyl benzyl phthalate	ND		1000	200	ug/L		11/10/20 15:08	11/18/20 16:57	200
Caprolactam	ND		1000	440	ug/L		11/10/20 15:08	11/18/20 16:57	200
Carbazole	ND		1000	60	ug/L		11/10/20 15:08	11/18/20 16:57	200
Chrysene	ND		1000	66	ug/L		11/10/20 15:08	11/18/20 16:57	200
Dibenz(a,h)anthracene	ND		1000	84	ug/L		11/10/20 15:08	11/18/20 16:57	200
Di-n-butyl phthalate	ND		1000	62	ug/L		11/10/20 15:08	11/18/20 16:57	200
Di-n-octyl phthalate	ND		1000	94	ug/L		11/10/20 15:08	11/18/20 16:57	200
Dibenzofuran	ND		2000	100	ug/L		11/10/20 15:08	11/18/20 16:57	200
Diethyl phthalate	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Dimethyl phthalate	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Fluoranthene	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Fluorene	76	J	1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Hexachlorobenzene	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Hexachlorobutadiene	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Hexachlorocyclopentadiene	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Hexachloroethane	ND		1000	120	ug/L		11/10/20 15:08	11/18/20 16:57	200
Indeno[1,2,3-cd]pyrene	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Isophorone	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
N-Nitrosodi-n-propylamine	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
N-Nitrosodiphenylamine	ND		1000	100	ug/L		11/10/20 15:08	11/18/20 16:57	200
Naphthalene	★ 8700		1000		ug/L			11/18/20 16:57	200
Nitrobenzene	ND		1000		ug/L			11/18/20 16:57	200
Pentachlorophenol	ND		2000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Phenanthrene	120	J	1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Phenol	ND		1000		ug/L		11/10/20 15:08	11/18/20 16:57	200
Pyrene	ND		1000	68	ug/L		11/10/20 15:08	11/18/20 16:57	200
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	378		46 - 120				11/10/20 15:08	11/18/20 16:57	200
Phenol-d5 (Surr)	0	X	22 - 120				11/10/20 15:08	11/18/20 16:57	200

78

103

0 X

0 X

Eurofins TestAmerica, Buffalo

11/10/20 15:08 11/18/20 16:57

11/10/20 15:08 11/18/20 16:57

11/10/20 15:08 11/18/20 16:57

11/10/20 15:08 11/18/20 16:57

12/03/2020 SML 1/25/1200/

200

200

200

200

60 - 148

41 - 120

48 - 120

35 - 120

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Method: 8081B - Organochlorine Pesticides (GC)

Analyte

Client Sample ID: MW-5R Lab Sample ID: 480-177831-4

Date Collected: 11/04/20 14:30 Matrix: Water Date Received: 11/05/20 12:20

RL

MDL Unit

D

Prepared

Analyzed

Dil Fac

Result Qualifier

0.11	_							
	J	0.25	0.046	ug/L		11/10/20 08:39	11/11/20 13:24	- 5
ND		0.25	0.058	ug/L		11/10/20 08:39	11/11/20 13:24	5
0.25 2.15	JB U	0.25	0.055	ug/L		11/10/20 08:39	11/11/20 13:24	MBL 5
0.12	J	0.25	0.041	ug/L		11/10/20 08:39	11/11/20 13:24	5
0.25		0.25	0.039	ug/L		11/10/20 08:39	11/11/20 13:24	5
ND		0.25	0.074	ug/L		11/10/20 08:39	11/11/20 13:24	5
ND		0.25	0.12	ug/L		11/10/20 08:39	11/11/20 13:24	5
0.067	J	0.25		_		11/10/20 08:39	11/11/20 13:24	5
ND		0.25	0.049	ug/L		11/10/20 08:39	11/11/20 13:24	5
ND		0.25	0.055	ug/L		11/10/20 08:39	11/11/20 13:24	5
ND		0.25		_		11/10/20 08:39	11/11/20 13:24	5
ND		0.25		•		11/10/20 08:39	11/11/20 13:24	5
ND		0.25					11/11/20 13:24	5
				-				5
	J			_				5
<i>)</i> ·	<i>y</i> = 0			-				F. C.
	45			Ü				CCI_{5}
				_				act.
W1	UJ			-				CCH
ALD		2.0	0.00	ug/L		11/10/20 00:00	11/11/20 10:24	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
54		20 - 120				11/10/20 08:39	11/11/20 13:24	
67		20 - 120				11/10/20 08:39	11/11/20 13:24	5
199	X	44 - 120				11/10/20 08:39	11/11/20 13:24	5
91		44 - 120				11/10/20 08:39	11/11/20 13:24	
		-	_					
				l lni+		Duamana		
		RL			D	Prepared	Analyzed	Dil Fac
NE	UJ	0.50	0.18	ug/L	D	11/11/20 09:34	11/13/20 06:09	Dil Fac
ND	UJ	0.50 0.50	0.18 0.18	ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09	
ND ND	UJ	0.50 0.50 0.50	0.18 0.18 0.18	ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	
ND ND ND	UJ	0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18	ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	
ND ND ND ND	UJ	0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	
ND ND ND ND	······································	0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	1 1 1
ND ND ND ND	W	0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	
ND ND ND ND	······································	0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	1 1 1
ND ND ND ND ND ND	······································	0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	1 1 1
ND ND ND ND ND ND	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u> _	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	CCH 1 1 1 1 1 1 1
ND ND ND ND ND ND ND ND	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	CCH 1 1 1 1 1 1 1
ND 87	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 Analyzed 11/13/20 06:09	CCH
ND ND ND ND ND ND ND ND	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 Malyzed 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	CCH 1 1 1 1 1 1 1 1 1 1 1
ND 99 59	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09	CCH OH-
ND ND ND ND ND ND ND ND	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09 Malyzed 11/13/20 06:09 11/13/20 06:09 11/13/20 06:09	CCII
ND ND ND ND ND ND ND 87 99 59	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 0.50 0.50	0.18 0.18 0.18 0.18 0.18 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u> _	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09	CCH OH-
ND ND ND ND ND ND ND 99 59 65	W Qualifier	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.18 0.18 0.18 0.25 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09	CCH 1 1 1 1 1 Dil Fac
ND ND ND ND ND ND ND 99 59 65	w	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 0.50 0.50	0.18 0.18 0.18 0.18 0.25 0.25 0.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D_	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 06:09 11/13/20 06:09	CC # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ND ND 0.067 ND ND ND ND ND ND ND ND 0.097 ND WO 0.065 0.21 MD %Recovery 54 67 199 91	ND ND 0.067 J ND ND ND ND ND ND ND ND 0.097 J 0.097 J 0.065 J 0.21 J ND WC WRecovery Qualifier 54 67 199 X 91 ated Biphenyls (PCBs)	ND 0.25 O.097 J 0.25 O.097 J 0.25 O.25 O.25	ND 0.25 0.074 ND 0.25 0.12 0.067 J 0.25 0.050 ND 0.25 0.049 ND 0.25 0.060 ND 0.25 0.060 ND 0.25 0.069 ND 0.25 0.069 ND 0.25 0.069 ND 0.25 0.069 ND 0.25 0.060 ND 0.25 0.071 D.25 0.0	ND 0.25 0.074 ug/L ND 0.25 0.12 ug/L 0.067 J 0.25 0.050 ug/L ND 0.25 0.049 ug/L ND 0.25 0.055 ug/L ND 0.25 0.060 ug/L ND 0.25 0.060 ug/L ND 0.25 0.069 ug/L ND 0.25 0.069 ug/L ND 0.25 0.060 ug/L O.097 J 0.25 0.060 ug/L ND 0.25 0.040 ug/L O.097 J 0.25 0.040 ug/L O.25 0.043 ug/L O.25 0.037 ug/L O.25 0.071 ug/L O.26 0.071 ug/L O.27 0.071 ug/L O.28 0.071 ug/L O.29 0.07	ND 0.25 0.074 ug/L ND 0.25 0.12 ug/L 0.067 J 0.25 0.050 ug/L ND 0.25 0.049 ug/L ND 0.25 0.055 ug/L ND 0.25 0.060 ug/L ND 0.25 0.060 ug/L ND 0.25 0.069 ug/L ND 0.25 0.082 ug/L ND 0.25 0.082 ug/L ND 0.25 0.060 ug/L ND 0.25 0.060 ug/L ND 0.25 0.060 ug/L ND 0.25 0.060 ug/L O.097 J 0.25 0.060 ug/L O.097 J 0.25 0.040 ug/L O.097 J 0.25 0.040 ug/L O.25 0.041 ug/L O.25 0.037 ug/L O.26 0.071 ug/L O.27 0.28 0.071 ug/L O.28 0.071 ug/L O.29 0.071 ug/L	ND 0.25 0.074 ug/L 11/10/20 08:39 ND 0.25 0.12 ug/L 11/10/20 08:39 0.067 J 0.25 0.050 ug/L 11/10/20 08:39 ND 0.25 0.049 ug/L 11/10/20 08:39 ND 0.25 0.055 ug/L 11/10/20 08:39 ND 0.25 0.055 ug/L 11/10/20 08:39 ND 0.25 0.060 ug/L 11/10/20 08:39 ND 0.25 0.079 ug/L 11/10/20 08:39 ND 0.25 0.069 ug/L 11/10/20 08:39 ND 0.25 0.069 ug/L 11/10/20 08:39 ND 0.25 0.069 ug/L 11/10/20 08:39 ND 0.25 0.060 ug/L 11/10/20 08:39 ND 0.25 0.060 ug/L 11/10/20 08:39 ND 0.25 0.060 ug/L 11/10/20 08:39 ND 0.25 0.040 ug/L 11/10/20 08:39 ND 0.25 0.040 ug/L 11/10/20 08:39 ND 0.25 0.043 ug/L 11/10/20 08:39 O.065 J 0.25 0.043 ug/L 11/10/20 08:39 O.065 J 0.25 0.043 ug/L 11/10/20 08:39 O.065 J 0.25 0.071 ug/L 11/10/20 08:39 O.071 Ug/L 11/10/20 08:39 O.0839 0.09/L 11/10/20 08:39 O.097 D 0.25 0.000 ug/L 11/10/	ND 0.25 0.074 ug/L 11/10/20 08:39 11/11/20 13:24 0.067 J 0.25 0.050 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.050 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.049 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.055 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.060 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.060 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.060 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.069 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.069 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.069 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.082 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.060 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.060 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.055 ug/L 11/10/20 08:39 11/11/20 13:24 ND 0.25 0.043 ug/L 11/10/20 08:39 11/11/20 13:24 O.065 J 0.25 0.043 ug/L 11/10/20 08:39 11/11/20 13:24 O.065 J 0.25 0.071 ug/L 11/10/20 08:39 11/11/20 13:24 O.21 J 0.25 0.071 ug/L 11/10/20 08:39 11/11/20 13:24 **Recovery Qualifier Limits

Eurofins TestAmerica, Buffalo

12/03/2020 ML (124/20)

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177831-4

Date Collected: 11/04/20 14:30 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/11/20 08:45	11/11/20 23:10	1
Barium	0.78	1	0.0020	0.00070	mg/L		11/11/20 08:45	11/11/20 23:10	1
Beryllium	0.00079	J	0.0020	0.00030	mg/L		11/11/20 08:45	11/11/20 23:10	1
Cadmium	ND		0.0020	0.00050	mg/L		11/11/20 08:45	11/11/20 23:10	1
Calcium	363		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 23:10	1
Chromium	0.027		0.0040	0.0010	mg/L		11/11/20 08:45	11/11/20 23:10	1
Cobalt	0.011		0.0040	0.00063	mg/L		11/11/20 08:45	11/11/20 23:10	1
Copper	0.024		0.010	0.0016	mg/L		11/11/20 08:45	11/11/20 23:10	1
Iron	31.9		0.050	0.019	mg/L		11/11/20 08:45	11/11/20 23:10	1
Lead	0.036		0.010	0.0030	mg/L		11/11/20 08:45	11/11/20 23:10	1
Magnesium	116		0.20	0.043	mg/L		11/11/20 08:45	11/11/20 23:10	1
Manganese	1.1		0.0030	0.00040	mg/L		11/11/20 08:45	11/11/20 23:10	1
Nickel	0.024		0.010	0.0013	mg/L		11/11/20 08:45	11/11/20 23:10	1
Potassium	12.4		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 23:10	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 08:45	11/11/20 23:10	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 08:45	11/11/20 23:10	1
Sodium	745		1.0	0.32	mg/L		11/11/20 08:45	11/11/20 23:10	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 08:45	11/11/20 23:10	1
Vanadium	0.041		0.0050	0.0015	mg/L		11/11/20 08:45	11/11/20 23:10	1
Zinc	0.094		0.010	0.0015	mg/L		11/11/20 08:45	11/11/20 23:10	1
Method: 7470A - Merc	ury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/10/20 13:55	11/10/20 17:42	1

Client Sample ID: DUP-001

Date Collected: 11/04/20 00:00

Lab Sample ID: 480-177831-5

Matrix: Water

Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2900		2000	1600	ug/L			11/11/20 13:02	2000
1,1,2,2-Tetrachloroethane	ND		2000	420	ug/L			11/11/20 13:02	2000
1,1,2-Trichloroethane	ND		2000	460	ug/L			11/11/20 13:02	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2000	620	ug/L			11/11/20 13:02	2000
1,1-Dichloroethane	1500	J	2000	760	ug/L			11/11/20 13:02	2000
1,1-Dichloroethene	940	J	2000	580	ug/L			11/11/20 13:02	2000
1,2,4-Trichlorobenzene	ND		2000	820	ug/L			11/11/20 13:02	2000
1,2-Dibromo-3-Chloropropane	ND		2000	780	ug/L			11/11/20 13:02	2000
1,2-Dichlorobenzene	ND		2000	1600	ug/L			11/11/20 13:02	2000
1,2-Dichloroethane	ND		2000	420	ug/L			11/11/20 13:02	2000
1,2-Dichloropropane	ND		2000	1400	ug/L			11/11/20 13:02	2000
1,3-Dichlorobenzene	ND		2000	1600	ug/L			11/11/20 13:02	2000
1,4-Dichlorobenzene	ND		2000	1700	ug/L			11/11/20 13:02	2000
2-Butanone (MEK)	ND		20000	2600	ug/L			11/11/20 13:02	2000
2-Hexanone	ND		10000	2500	ug/L			11/11/20 13:02	2000
4-Methyl-2-pentanone (MIBK)	ND		10000	4200	ug/L			11/11/20 13:02	2000
Acetone	ND		20000	6000	ug/L			11/11/20 13:02	2000
Benzene	4100		2000	820	ug/L			11/11/20 13:02	2000
Bromodichloromethane	ND		2000	780	ug/L			11/11/20 13:02	2000

Eurofins TestAmerica, Buffalo

12/03/2020 SMX 1/24/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001 Lab Sample ID: 480-177831-5

Date Collected: 11/04/20 00:00 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	ND		2000	520	ug/L			11/11/20 13:02	2000
Bromomethane	ND		2000	1400	ug/L			11/11/20 13:02	2000
Carbon disulfide	ND		2000	380	ug/L			11/11/20 13:02	2000
Carbon tetrachloride	ND		2000	540	ug/L			11/11/20 13:02	2000
Chlorobenzene	ND		2000	1500	ug/L			11/11/20 13:02	2000
Dibromochloromethane	ND		2000	640	ug/L			11/11/20 13:02	2000
Chloroethane	ND		2000	640	ug/L			11/11/20 13:02	2000
Chloroform	ND		2000	680	ug/L			11/11/20 13:02	2000
Chloromethane	ND		2000	700	ug/L			11/11/20 13:02	2000
cis-1,2-Dichloroethene	160000		2000	1600	ug/L			11/11/20 13:02	2000
cis-1,3-Dichloropropene	ND		2000	720	ug/L			11/11/20 13:02	2000
Cyclohexane	ND		2000	360	ug/L			11/11/20 13:02	2000
Dichlorodifluoromethane	ND		2000	1400	ug/L			11/11/20 13:02	2000
Ethylbenzene	3000		2000	1500	ug/L			11/11/20 13:02	2000
1,2-Dibromoethane	ND		2000	1500	ug/L			11/11/20 13:02	2000
Isopropylbenzene	ND		2000	1600	ug/L			11/11/20 13:02	2000
Methyl acetate	ND		5000	2600	ug/L			11/11/20 13:02	2000
Methyl tert-butyl ether	ND		2000	320	ug/L			11/11/20 13:02	2000
Methylcyclohexane	ND		2000	320	ug/L			11/11/20 13:02	2000
Methylene Chloride	ND		2000	880	ug/L			11/11/20 13:02	2000
Styrene	ND		2000	1500	ug/L			11/11/20 13:02	2000
Tetrachloroethene	ND		2000	720	ug/L			11/11/20 13:02	2000
Toluene	2500		2000	1000	ug/L			11/11/20 13:02	2000
trans-1,2-Dichloroethene	ND		2000	1800	ug/L			11/11/20 13:02	2000
trans-1,3-Dichloropropene	ND		2000	740	ug/L			11/11/20 13:02	2000
Trichloroethene	6200		2000	920	ug/L			11/11/20 13:02	2000
Trichlorofluoromethane	ND		2000	1800	ug/L			11/11/20 13:02	2000
Vinyl chloride	6100		2000	1800	ug/L			11/11/20 13:02	2000
Xylenes, Total	1600	J	4000	1300	ug/L			11/11/20 13:02	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		80 - 120					11/11/20 13:02	2000
1,2-Dichloroethane-d4 (Surr)	109		77 - 120					11/11/20 13:02	2000
4-Bromofluorobenzene (Surr)	106		73 - 120					11/11/20 13:02	2000
Dibromofluoromethane (Surr)	113		75 - 123					11/11/20 13:02	2000

Method: 8270D - Semivolatil	e Organic Compounds (G	SC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	130	100	13	ug/L		11/10/20 15:08	11/18/20 11:36	20
bis (2-chloroisopropyl) ether	MUT	100	10	ug/L		11/10/20 15:08	11/18/20 11:36	CO(\$0
2,4,5-Trichlorophenol	ND	100	9.6	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,4,6-Trichlorophenol	ND	100	12	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,4-Dichlorophenol	ND	100	10	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,4-Dimethylphenol	ND	100	10	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,4-Dinitrophenol	ND	200	44	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,4-Dinitrotoluene	ND	100	8.9	ug/L		11/10/20 15:08	11/18/20 11:36	20
2,6-Dinitrotoluene	ND	100	8.0	ug/L		11/10/20 15:08	11/18/20 11:36	20
2-Chloronaphthalene	ND	100	9.2	ug/L		11/10/20 15:08	11/18/20 11:36	20
2-Chlorophenol	ND	100	11	ug/L		11/10/20 15:08	11/18/20 11:36	20
2-Methylphenol	ND	100	8.0	ua/L		11/10/20 15:08	11/18/20 11:36	20

Eurofins TestAmerica, Buffalo

12/03/2020 SML 1/2420

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001 Lab Sample ID: 480-177831-5

Date Collected: 11/04/20 00:00 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	≥ 1500 E	100	12	ug/L		11/10/20 15:08	11/18/20 11:36	2
2-Nitroaniline	ND	200		ug/L		11/10/20 15:08	11/18/20 11:36	2
2-Nitrophenol	ND	100	9.6	ug/L		11/10/20 15:08	11/18/20 11:36	2
3,3'-Dichlorobenzidine	ND	100	8.0	ug/L		11/10/20 15:08	11/18/20 11:36	2
3-Nitroaniline	ND	200		ug/L		11/10/20 15:08	11/18/20 11:36	2
4,6-Dinitro-2-methylphenol	ND	200		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Bromophenyl phenyl ether	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Chloro-3-methylphenol	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Chloroaniline	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Chlorophenyl phenyl ether	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Methylphenol	ND	200		ug/L		11/10/20 15:08	11/18/20 11:36	2
4-Nitroaniline	ND	200		ug/L		11/10/20 15:08	11/18/20 11:36	
4-Nitrophenol	MUJ	200		ug/L		11/10/20 15:08	11/18/20 11:36	
Acenaphthene	80 J	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Acenaphthylene	450	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Acetophenone	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Anthracene	40 J	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Atrazine	M UJ	100		ug/L		11/10/20 15:08	11/18/20 11:36	œ
Benzaldehyde	ND ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
		100		ug/L ug/L		11/10/20 15:08	11/18/20 11:36	2
Benzo[a]anthracene	12 J 15 J	100		_		11/10/20 15:08	11/18/20 11:36	2
Benzo[a]pyrene				ug/L				
Benzo[b]fluoranthene	8.9 J	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Benzo[g,h,i]perylene	7.3 J	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Benzo[k]fluoranthene	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	
Bis(2-chloroethoxy)methane	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Bis(2-chloroethyl)ether	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Bis(2-ethylhexyl) phthalate	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	
Butyl benzyl phthalate	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Caprolactam	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Carbazole	10 J	100	6.0	ug/L		11/10/20 15:08	11/18/20 11:36	2
Chrysene	10 J	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Dibenz(a,h)anthracene	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Di-n-butyl phthalate	ND	100	6.2	ug/L		11/10/20 15:08	11/18/20 11:36	2
Di-n-octyl phthalate	ND	100	9.4	ug/L		11/10/20 15:08	11/18/20 11:36	2
Dibenzofuran	24 J	200		ug/L		11/10/20 15:08	11/18/20 11:36	2
Diethyl phthalate	ND	100	4.4	ug/L		11/10/20 15:08	11/18/20 11:36	2
Dimethyl phthalate	ND	100	7.2	ug/L		11/10/20 15:08	11/18/20 11:36	2
Fluoranthene	27 J	100	8.0	ug/L		11/10/20 15:08	11/18/20 11:36	2
Fluorene	100	100	7.2	ug/L		11/10/20 15:08	11/18/20 11:36	2
Hexachlorobenzene	ND	100	10	ug/L		11/10/20 15:08	11/18/20 11:36	2
Hexachlorobutadiene	ND	100	14	ug/L		11/10/20 15:08	11/18/20 11:36	2
Hexachlorocyclopentadiene	ND	100	12	ug/L		11/10/20 15:08	11/18/20 11:36	2
Hexachloroethane	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Indeno[1,2,3-cd]pyrene	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Isophorone	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
N-Nitrosodi-n-propylamine	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
N-Nitrosodiphenylamine	ND	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Naphthalene	₩ 4500 E	100		ug/L		11/10/20 15:08	11/18/20 11:36	2
Nitrobenzene	ND	100		ug/L ug/L		11/10/20 15:08	11/18/20 11:36	2

Eurofins TestAmerica, Buffalo

12/03/2020 4m/U/24/25

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001

Lab Sample ID: 480-177831-5

Matrix: Water

Date Collected: 11/04/20 00:00 Date Received: 11/05/20 12:20

Analyte	Result_Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ME CUT	200	44	ug/L		11/10/20 15:08	11/18/20 11:36	00/20
Phenanthrene	180	100	8.8	ug/L		11/10/20 15:08	11/18/20 11:36	20
Phenol	ND	100	7.8	ug/L		11/10/20 15:08	11/18/20 11:36	20
Pyrene	52 J	100	6.8	ug/L		11/10/20 15:08	11/18/20 11:36	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	115		46 - 120	11/10/20 15:08 11/	/18/20 11:36	20
Phenol-d5 (Surr)	43		22 - 120	11/10/20 15:08 11/	/18/20 11:36	20
p-Terphenyl-d14 (Surr)	74		60 - 148	11/10/20 15:08 11/	/18/20 11:36	20
2,4,6-Tribromophenol (Surr)	130	X	41 - 120	11/10/20 15:08 11/	/18/20 11:36	20
2-Fluorobiphenyl (Surr)	102		48 - 120	11/10/20 15:08 11/	/18/20 11:36	20
2-Fluorophenol (Surr)	53		35 - 120	11/10/20 15:08 11/	/18/20 11:36	20
_				ARROW FROM A MILETUM		

Property	Method: 8270D - Semivolati			(GC/MS) - I	DL Ateport	tiony	dilut	ION		
bis (2-chloroisopropyl) ether ND 1000 1000 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4.5-Trichlorophenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dichlorophenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dichlorophenol ND 1000 1000 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dichlorophenol ND 1000 1000 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dimethylphenol ND 1000 1000 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dimethylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dimitrobluene ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4.6-Dimitro-2-methylphenol ND 2000							D			Dil Fac
2.4,5-Trichlorophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4,6-Trichlorophenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dichlorophenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dinitrophenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dinitrobluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dinitrobluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dinitrobluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylp			J			-				
2,4,6-Trichlorophenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 20 2,4-Dinitrophenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 20 2,4-Dinitrophenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 20 2,4-Dinitrophenol ND 1000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,4-Dinitrophenol ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,6-Dinitrophenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Mitrophiphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol </td <td>bis (2-chloroisopropyl) ether</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>11/10/20 15:08</td> <td>11/18/20 17:25</td> <td></td>	bis (2-chloroisopropyl) ether					-		11/10/20 15:08	11/18/20 17:25	
2,4-Dichlorophenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,4-Dinitrophenol ND 2000 4.40 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,4-Dinitrofoluene ND 2000 4.40 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,6-Dinitrofoluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,6-Dinitrofoluene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Mitophinaline ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophinaline ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitrophenol </td <td>2,4,5-Trichlorophenol</td> <td>ND</td> <td></td> <td>1000</td> <td></td> <td></td> <td></td> <td>11/10/20 15:08</td> <td>11/18/20 17:25</td> <td>200</td>	2,4,5-Trichlorophenol	ND		1000				11/10/20 15:08	11/18/20 17:25	200
2,4-Dimethylphenol ND 1000 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,4-Dinitrophenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,4-Dinitrobluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,6-Dinitrobluene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitropaline ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-3*-Dichloroberzidine ND <td>2,4,6-Trichlorophenol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11/18/20 17:25</td> <td></td>	2,4,6-Trichlorophenol								11/18/20 17:25	
2.4-Dinitrophenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.4-Dinitrotoluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2.6-Dinitrotoluene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chloroaphthalene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphaphtalene ₱ 1700 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Mitrophenol ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Simphylenol	2,4-Dichlorophenol	ND		1000	100	ug/L		11/10/20 15:08	11/18/20 17:25	200
2,4-Dinitrotoluene ND 1000 89 ug/L 11/10/20 15:08 11/18/20 17:25 200 2,6-Dinitrotoluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chloronaphthalene ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 100 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphaphthalene ₱ 1700 1000 420 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Mitrophenol ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitrophenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitrophenol ND 2000 40 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl	2,4-Dimethylphenol	ND		1000	100	ug/L		11/10/20 15:08	11/18/20 17:25	200
2,6-Dinitrotoluene ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chloronaphthalene ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-6-Dinitro-2-methylphenol ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthene ND 1000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthene ND 1000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Renaphthylene ND 1000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Renaphthylene ND 1000 86 ug/L 11/10/20 15:08 11/18/20 17:25	2,4-Dinitrophenol	ND		2000	440	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Chlorophenol ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Chlorophenol ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphaphthalene 1700 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Mitrophinaphthalene ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3 -Dichlorobenzidine ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3 -Dichlorobenzidine ND 2000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3 -Dichlorobenzidine ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6 -Dinitro-2-methylphenol ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6 -Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 1000 1000 1000 1000 1000 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthene 84 J 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene 420 J 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene 420 J 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cen	2,4-Dinitrotoluene	ND		1000	89	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Chlorophenol ND 1000 1100 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylphenol P 1700 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylnaphthalene P 1700 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3'-Dichlorobenzidine ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3'-Dichlorobenzidine ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3'-Dichlorobenzidine ND 2000 86 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cetaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cetaphenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cetaphenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaphthylene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaphthylene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaphthylene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaphthylene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaphthylene ND 1000 57 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaplehylene ND 1000 58 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Reaplehylene ND 1000 58 ug/L	2,6-Dinitrotoluene	ND		1000	80	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Methylphenol ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Methylnaphthalene	2-Chloronaphthalene	ND		1000	92	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Methylnaphthalene ₹ 1700 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitroaniline ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3'-Dichlorobenzidine ND 2000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 40 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroaniline ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroaniline ND 200 50 ug/L 11/10/20 15:08	2-Chlorophenol	ND		1000	110	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Nitroaniline ND 2000 84 ug/L 11/10/20 15:08 11/18/20 17:25 200 2-Nitrophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3°-Dichlorobenzidine ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Mitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Artrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 74 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 75 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 75 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 75 ug/L 11/10/20 15:08 11/18/20 17:25 200	2-Methylphenol	ND		1000	80	ug/L		11/10/20 15:08	11/18/20 17:25	200
2-Nitrophenol ND 1000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 3,3'-Dichlorobenzidine ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-a-methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-a-methylphenol ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 30 ug/L 11/10/20 15:08 11/18/2	2-Methylnaphthalene	1700		1000	120	ug/L		11/10/20 15:08	11/18/20 17:25	200
3,3'-Dichlorobenzidine ND 1000 80 ug/L 11/10/20 15:08 11/18/20 17:25 200 3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroa-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200	2-Nitroaniline	ND		2000	84	ug/L		11/10/20 15:08	11/18/20 17:25	200
3-Nitroaniline ND 2000 96 ug/L 11/10/20 15:08 11/18/20 17:25 200 4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroaniline ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 2000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene 420 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Cenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 100 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 72 ug/L 11/10/20 15:0	2-Nitrophenol	ND		1000	96	ug/L		11/10/20 15:08	11/18/20 17:25	200
4,6-Dinitro-2-methylphenol ND 2000 440 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 42 J 1000 76 ug/L 11/10/20 15:0	3,3'-Dichlorobenzidine	ND		1000	80	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Bromophenyl phenyl ether ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroaniline ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 </td <td>3-Nitroaniline</td> <td>ND</td> <td></td> <td>2000</td> <td>96</td> <td>ug/L</td> <td></td> <td>11/10/20 15:08</td> <td>11/18/20 17:25</td> <td>200</td>	3-Nitroaniline	ND		2000	96	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Chloro-3-methylphenol ND 1000 90 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chloroaniline ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 100 100 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 <t< td=""><td>4,6-Dinitro-2-methylphenol</td><td>ND</td><td></td><td>2000</td><td>440</td><td>ug/L</td><td></td><td>11/10/20 15:08</td><td>11/18/20 17:25</td><td>200</td></t<>	4,6-Dinitro-2-methylphenol	ND		2000	440	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Chloroaniline ND 1000 120 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 <tr< td=""><td>4-Bromophenyl phenyl ether</td><td>ND</td><td></td><td>1000</td><td>90</td><td>ug/L</td><td></td><td>11/10/20 15:08</td><td>11/18/20 17:25</td><td>200</td></tr<>	4-Bromophenyl phenyl ether	ND		1000	90	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Chlorophenyl phenyl ether ND 1000 70 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 10 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene	4-Chloro-3-methylphenol	ND		1000	90	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Methylphenol ND 2000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 <td< td=""><td>4-Chloroaniline</td><td>ND</td><td></td><td>1000</td><td>120</td><td>ug/L</td><td></td><td>11/10/20 15:08</td><td>11/18/20 17:25</td><td>200</td></td<>	4-Chloroaniline	ND		1000	120	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Nitroaniline ND 2000 50 ug/L 11/10/20 15:08 11/18/20 17:25 200 4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	4-Chlorophenyl phenyl ether	ND		1000	70	ug/L		11/10/20 15:08	11/18/20 17:25	200
4-Nitrophenol ND 2000 300 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	4-Methylphenol	ND		2000	72	ug/L		11/10/20 15:08	11/18/20 17:25	200
Acenaphthene 84 J 1000 82 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	4-Nitroaniline	ND		2000	50	ug/L		11/10/20 15:08	11/18/20 17:25	200
Acenaphthylene 420 J 1000 76 ug/L 11/10/20 15:08 11/18/20 17:25 200 Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	4-Nitrophenol	ND		2000	300	ug/L		11/10/20 15:08	11/18/20 17:25	200
Acetophenone ND 1000 110 ug/L 11/10/20 15:08 11/18/20 17:25 200 Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Acenaphthene	84	J	1000	82	ug/L		11/10/20 15:08	11/18/20 17:25	200
Anthracene ND 1000 56 ug/L 11/10/20 15:08 11/18/20 17:25 200 Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Acenaphthylene	420	J	1000	76	ug/L		11/10/20 15:08	11/18/20 17:25	200
Atrazine ND 1000 92 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Acetophenone	ND		1000	110	ug/L		11/10/20 15:08	11/18/20 17:25	200
Benzaldehyde ND 1000 53 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Anthracene	ND		1000	56	ug/L		11/10/20 15:08	11/18/20 17:25	200
Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Atrazine	ND	/	1000	92	ug/L		11/10/20 15:08	11/18/20 17:25	200
Benzo[a]anthracene ND 1000 72 ug/L 11/10/20 15:08 11/18/20 17:25 200 200 Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200 200	Benzaldehyde	ND	•	1000	53	ug/L		11/10/20 15:08	11/18/20 17:25	200
Benzo[a]pyrene ND 1000 94 ug/L 11/10/20 15:08 11/18/20 17:25 200 Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200	Benzo[a]anthracene	ND		1000				11/10/20 15:08	11/18/20 17:25	200
Benzo[b]fluoranthene ND 1000 68 ug/L 11/10/20 15:08 11/18/20 17:25 200		ND		1000		-		11/10/20 15:08	11/18/20 17:25	200
		ND		1000				11/10/20 15:08	11/18/20 17:25	200
	Benzo[g,h,i]perylene	ND		1000		-		11/10/20 15:08	11/18/20 17:25	200

Eurofins TestAmerica, Buffalo

12/03/2020 SMC ITELESE

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001

Lab Sample ID: 480-177831-5

Date Collected: 11/04/20 00:00 **Matrix: Water** Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[k]fluoranthene	ND		1000	150	ug/L		11/10/20 15:08	11/18/20 17:25	20
Bis(2-chloroethoxy)methane	ND		1000	70	ug/L		11/10/20 15:08	11/18/20 17:25	20
Bis(2-chloroethyl)ether	ND		1000	80	ug/L		11/10/20 15:08	11/18/20 17:25	20
Bis(2-ethylhexyl) phthalate	ND		1000	440	ug/L		11/10/20 15:08	11/18/20 17:25	20
Butyl benzyl phthalate	ND		1000	200	ug/L		11/10/20 15:08	11/18/20 17:25	20
Caprolactam	ND		1000	440	ug/L		11/10/20 15:08	11/18/20 17:25	20
Carbazole	ND		1000	60	ug/L		11/10/20 15:08	11/18/20 17:25	20
Chrysene	ND		1000	66	ug/L		11/10/20 15:08	11/18/20 17:25	20
Dibenz(a,h)anthracene	ND		1000	84	ug/L		11/10/20 15:08	11/18/20 17:25	20
Di-n-butyl phthalate	ND		1000	62	ug/L		11/10/20 15:08	11/18/20 17:25	20
Di-n-octyl phthalate	ND		1000	94	ug/L		11/10/20 15:08	11/18/20 17:25	20
Dibenzofuran	ND		2000	100	ug/L		11/10/20 15:08	11/18/20 17:25	20
Diethyl phthalate	ND		1000	44	ug/L		11/10/20 15:08	11/18/20 17:25	20
Dimethyl phthalate	ND		1000	72	ug/L		11/10/20 15:08	11/18/20 17:25	20
Fluoranthene	ND		1000	80	ug/L		11/10/20 15:08	11/18/20 17:25	20
Fluorene	90	J	1000	72	ug/L		11/10/20 15:08	11/18/20 17:25	20
Hexachlorobenzene	ND		1000	100	ug/L		11/10/20 15:08	11/18/20 17:25	20
Hexachlorobutadiene	ND		1000	140	ug/L		11/10/20 15:08	11/18/20 17:25	20
Hexachlorocyclopentadiene	ND		1000	120	ug/L		11/10/20 15:08	11/18/20 17:25	20
Hexachloroethane	ND		1000	120	ug/L		11/10/20 15:08	11/18/20 17:25	20
Indeno[1,2,3-cd]pyrene	ND		1000	94	ug/L		11/10/20 15:08	11/18/20 17:25	20
Isophorone	ND		1000	86	ug/L		11/10/20 15:08	11/18/20 17:25	20
N-Nitrosodi-n-propylamine	ND		1000	110	ug/L		11/10/20 15:08	11/18/20 17:25	20
N-Nitrosodiphenylamine	ND		1000	100	ug/L		11/10/20 15:08	11/18/20 17:25	20
Naphthalene	* 8700		1000	150	ug/L		11/10/20 15:08	11/18/20 17:25	20
Nitrobenzene	ND		1000	58	ug/L		11/10/20 15:08	11/18/20 17:25	20
Pentachlorophenol	ND		2000	440	ug/L		11/10/20 15:08	11/18/20 17:25	20
Phenanthrene	200	J	1000	88	ug/L		11/10/20 15:08	11/18/20 17:25	20
Phenol	ND		1000	78	ug/L		11/10/20 15:08	11/18/20 17:25	20
Pyrene	ND		1000	68	ug/L		11/10/20 15:08	11/18/20 17:25	20
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	367	X	46 - 120				11/10/20 15:08	11/18/20 17:25	20
Phenol-d5 (Surr)	0	Χ	22 - 120				11/10/20 15:08	11/18/20 17:25	20
p-Terphenyl-d14 (Surr)	0	X	60 - 148				11/10/20 15:08	11/18/20 17:25	20
2,4,6-Tribromophenol (Surr)	0	X	41 - 120				11/10/20 15:08	11/18/20 17:25	20
2-Fluorobiphenyl (Surr)	99		48 - 120				11/10/20 15:08	11/18/20 17:25	20

Method: 8	3081B -	Organochlorine	Pesticides ((GC)
-----------	---------	----------------	--------------	------

2-Fluorophenol (Surr)

0 X

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.11	J	0.25	0.046	ug/L		11/10/20 08:39	11/11/20 13:44	5
4,4'-DDE	ND		0.25	0.058	ug/L		11/10/20 08:39	11/11/20 13:44	5
4,4'-DDT	MG	W	0.25	0.055	ug/L		11/10/20 08:39	11/11/20 13:44	CCH5
Aldrin	0.11	J	0.25	0.041	ug/L		11/10/20 08:39	11/11/20 13:44	5
alpha-BHC	0.23	J	0.25	0.039	ug/L		11/10/20 08:39	11/11/20 13:44	5
cis-Chlordane	ND		0.25	0.074	ug/L		11/10/20 08:39	11/11/20 13:44	5
beta-BHC	ND		0.25	0.12	ug/L		11/10/20 08:39	11/11/20 13:44	5
delta-BHC	0.065	J	0.25	0.050	ug/L		11/10/20 08:39	11/11/20 13:44	5
Dieldrin	ND		0.25	0.049	ug/L		11/10/20 08:39	11/11/20 13:44	5

Eurofins TestAmerica, Buffalo

11/10/20 15:08 11/18/20 17:25

200

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001 Lab Sample ID: 480-177831-5

Date Collected: 11/04/20 00:00 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Endosulfan I	ND		0.25	0.055	ug/L		11/10/20 08:39	11/11/20 13:44	
Endosulfan II	ND		0.25	0.060	ug/L		11/10/20 08:39	11/11/20 13:44	
Endosulfan sulfate	ND		0.25	0.079	ug/L		11/10/20 08:39	11/11/20 13:44	
Endrin	ND		0.25	0.069	ug/L		11/10/20 08:39	11/11/20 13:44	
Endrin aldehyde	ND		0.25	0.082	ug/L		11/10/20 08:39	11/11/20 13:44	
Endrin ketone	0.062	J	0.25	0.060	ug/L		11/10/20 08:39	11/11/20 13:44	
gamma-BHC (Lindane)	0.25 2.081	1×U	0.25	0.040	ug/L		11/10/20 08:39	11/11/20 13:44	
trans-Chlordane	ND ND	•	0.25	0.055	ug/L		11/10/20 08:39	11/11/20 13:44	
Heptachlor	אוע	ひナ	0.25	0.043	ug/L		11/10/20 08:39	11/11/20 13:44	CC4
Heptachlor epoxide	ND		0.25	0.037	ug/L		11/10/20 08:39	11/11/20 13:44	
Methoxychlor	0.21		0.25	0.071	ug/L		11/10/20 08:39	11/11/20 13:44	
Toxaphene	MQ	W	2.5	0.60	ug/L		11/10/20 08:39	11/11/20 13:44	cct
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	55		20 - 120				11/10/20 08:39	11/11/20 13:44	
DCB Decachlorobiphenyl	56		20 - 120				11/10/20 08:39	11/11/20 13:44	
Tetrachloro-m-xylene	198	X	44 - 120				11/10/20 08:39	11/11/20 13:44	
Tetrachloro-m-xylene	98		44 - 120				11/10/20 08:39	11/11/20 13:44	
Method: 8082A - Polychlor	inated Binhon	de (DCRe)	by Gae Chr	omatoar	anhy				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
PCB-1016	NØ	W	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:25	$-\infty$
PCB-1221	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1232	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1242	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1248	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1254	ND	_	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1260	ZHZ ZHQ	US	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:25	CC+
PCB-1262	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:25	
PCB-1268	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene (Surr)	109		39 - 121				11/11/20 09:34	11/13/20 06:25	
Tetrachloro-m-xylene (Surr)	119		39 - 121				11/11/20 09:34	11/13/20 06:25	
DCB Decachlorobiphenyl (Surr)	66		19 - 120				11/11/20 09:34	11/13/20 06:25	
DCB Decachlorobiphenyl (Surr)	72		19 - 120				11/11/20 09:34	11/13/20 06:25	
Method: 6010C - Metals (IC	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	20.5	-	0.20	0.060	mg/L		11/11/20 08:45	11/11/20 23:14	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20.5		0.20	0.060	mg/L		11/11/20 08:45	11/11/20 23:14	1
Antimony	ND		0.020	0.0068	mg/L		11/11/20 08:45	11/11/20 23:14	1
Arsenic	ND		0.015	0.0056	mg/L		11/11/20 08:45	11/11/20 23:14	1
Barium	0.78	2	0.0020	0.00070	mg/L		11/11/20 08:45	11/11/20 23:14	1
Beryllium	0.00075	J	0.0020	0.00030	mg/L		11/11/20 08:45	11/11/20 23:14	1
Cadmium	ND		0.0020	0.00050	mg/L		11/11/20 08:45	11/11/20 23:14	1
Calcium	365		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 23:14	1
Chromium	0.028		0.0040	0.0010	mg/L		11/11/20 08:45	11/11/20 23:14	1
Cobalt	0.011		0.0040	0.00063	mg/L		11/11/20 08:45	11/11/20 23:14	1
Copper	0.024		0.010	0.0016	mg/L		11/11/20 08:45	11/11/20 23:14	1
Iron	32.8		0.050	0.019	mg/L		11/11/20 08:45	11/11/20 23:14	1

Eurofins TestAmerica, Buffalo

12/03/2020 SML 1/24/2021

Client: New York State D.E.C. Job ID: 480-177831-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: DUP-001 Lab Sample ID: 480-177831-5

Date Collected: 11/04/20 00:00 Matrix: Water Date Received: 11/05/20 12:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.038		0.010	0.0030	mg/L		11/11/20 08:45	11/11/20 23:14	1
Magnesium	118		0.20	0.043	mg/L		11/11/20 08:45	11/11/20 23:14	1
Manganese	1.2		0.0030	0.00040	mg/L		11/11/20 08:45	11/11/20 23:14	1
Nickel	0.025		0.010	0.0013	mg/L		11/11/20 08:45	11/11/20 23:14	1
Potassium	12.9		0.50	0.10	mg/L		11/11/20 08:45	11/11/20 23:14	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 08:45	11/11/20 23:14	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 08:45	11/11/20 23:14	1
Sodium	744		1.0	0.32	mg/L		11/11/20 08:45	11/11/20 23:14	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 08:45	11/11/20 23:14	1
Vanadium	0.044		0.0050	0.0015	mg/L		11/11/20 08:45	11/11/20 23:14	1
Zinc	0.098		0.010	0.0015	mg/L		11/11/20 08:45	11/11/20 23:14	1
Method: 7470A - Mercu	ıry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/10/20 13:55	11/10/20 17:43	1

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A **Laboratory:** Eurofins Environmental Testing -Test America

Job No: 480-175853-1 **Fraction:** Organic

Matrix: Aqueous and Solid

Report Date: 1/22/2021

This data usability summary report is based upon a review of analytical data generated for groundwater and DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds, semivolatile organic compounds, pesticide compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

For the volatile and semivolatile fraction determined by Gas Chromatography/Mass Spectrometry, library searches were performed to "tentatively identify" chromatographic peaks whose characteristics did not match those of targeted compounds. Library searches were performed for up to ten volatile and twenty semivolatile extraneous peaks.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound Milos

Shawne M. Rodgers President

January 22, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed the following missing items or issues:

Continuing calibration criterion was not met for methoxychlor, heptachlor, and 4, 4'-DDT for standards CCV 480-569484/5 and CCV 480-569484/7. There was no mention in the case narrative.

Continuing calibration criterion was not met for aroclor 1016 for standards CCV 480-558765-1. There was no mention in the case narrative.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

The semivolatile organic compound results for sample MW-100 should be considered biased low quantitative estimates, and may be higher than reported. The sample was extracted 4-days outside of the method 7-day method hold time. Because the sample was extracted outside of the holding time, chemical or biological degradation may have occurred. Positive results for semivolatile organic compounds for the samples have been marked with "J" qualifiers to indicate that they are quantitative estimates. Reporting limits (RLs) have been marked "UJ".

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following volatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. The nondetect results for these compounds have been marked "UJ" to indicate that they are quantitative estimates.

Calibration Standard	Compound	%Difference	Associated Samples
CCV 480-559861/3 (File ID N7433.D)	1,1,2-Trichloro-1,2,2- trifluoroethane Carbon Disulfide Carbon Tetrachloride Methylcyclohexane	28.0 22.1 22.3 25.3	MW-100 DNAPL

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ". Sample MW-100 was qualified previously due to holing times.

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-560544/3 (Laboratory ID V3148308.D)	Bis(2-Chloroisopropyl) ether Hexachlorobutadiene	-44.4 26.4	MW-100 DNAPL
CCV 480-559179/3 (Laboratory ID W10010932.D)	4-Nitrophenol	21.0	MW-8R, MW-103, MW-106
CCV 480-560162/3 (Laboratory ID W10011114.D)	Bis(2-Chloroisopropyl) ether Hexachlorobutadiene	-31.3 21.8	MW-100

The continuing calibration precision criterion (the percent difference between initial and continuing relative response factors (RRF) \leq 15 percent) was exceeded for the following pesticide continuing calibration standard. This indicates a lack of instrument stability for this analyte. Results for the compounds should be considered quantitative estimates. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-569484/5	Hepatchlor	24.8	MW-8R, MW-106
(File ID 25_40-267.D)	4,4'-DDT	28.5	
(Column ID RTX CLP-	Methoxychlor	35.0	
I)			
CCV 480-558484/7	Toxaphene 1	34.6	MW-8R, MW-106
(Column ID RTX CLP-	Toxaphene 2	30.1	
II)			

Table 2 presents polychlorinated biphenyls calibration standards that exceeded the precision criterion (the percent difference between initial and continuing CFs \leq 20 percent). This indicates a lack of instrument stability for these analytes. The results for polychlorinated biphenyls for associated samples are considered quantitative estimates. There were no positive results for the analytes. Nondetect results for the samples are marked "UJ" to indicate that they are estimates.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following pesticide compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (μg/L)	Associated Samples
MB 480-558262/1- A	4,4'-DDT Endrin Aldehyde gamma-BHC	0.0291 J 0.0272 J 0.00893 J	MW-8R, MW-100, MW-103, MW- 106
MB 480-559856/1- A	delta-BHC	0.154 J	MW-100 DNAPL

The blank results were less than the reporting limit. The following positive results reported for these compounds are also less than the RL and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for uncommon contaminants, that are less than or equal to the associated blank

contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

Compound	Qualified Results
gamma-BHC	MW-8R, MW-103

Field and equipment blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

Samples MW-100 and MW-100 DNAPL were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Samples MW-100 and MW-100 DNAPL were analyzed for pesticide compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 SUMMARIES OF MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the semivolatile laboratory control sample (LCS)/ laboratory control sample duplicate (LCSD) results that did not meet the indicated acceptance limits:

Compound	LCS (480-559859/2-A) %REC	LCSD (480-559859/3-A) %REC	QC Limits
Atrazine	133	129	60-127
Benzo(g,h,i) perylene		150	45-145
Dibenz (a,h) anthracene	135	137	54-132
Hexachlorobenzene		127	60-120
Hexachlorobutadiene	124	122	45-120
Indeno (1,2,3-cd) pyrene	136	143	56-124

The high recoveries for the above compounds suggest inefficiencies with the extraction/analytical processes. Sample MW-100 DNAPL is associated with the unacceptable LCS/LCSD. Positive results for the compounds should be considered biased high quantitative estimates, and may be higher than reported. The positive results are marked "J".

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

The following pesticide compounds were reported by the laboratory at concentrations less than the RL. Poor precision was observed for these compounds on the dual chromatographic columns used for sample analysis (greater than 50 % difference between results). The laboratory for

reporting purposes used the higher concentration for these compounds. The positive pesticide results should be considered non-detected at the quantitation limit. The results have been replaced with the RL and marked "U".

Sample	Affected Compound
MW-100 DNAPL	4,4′-DDT

For the following samples, a lack of precision (greater than 25 % difference between results) was observed for this analyte on the dual chromatographic columns used for sample analysis. The laboratory for reporting purposes used the higher concentration for these compounds. The result has been marked with "J" qualifiers to indicate that it is a quantitative estimate.

Sample	Affected Compound
MW-8R	gamma-BHC
MW-106	gamma-BHC, heptachlor, 4,4'-DDT

Sample MW-100 DNAPL for volatile organic compound analyses was collected in accordance with protocols specified by SW-846 method 5035. The sample was then analyzed for volatile organic compounds according to medium level protocols. The RLs for the nondetect volatile compounds for the sample are elevated by its medium level protocol dilution factor for compounds that were not detected. The elevated RLs should be noted when assessing the data.

The samples presented below were analyzed volatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-8R	1000
MW-100	200
MW-103	20.0
MW-106	20.0
MW-100	100
DNAPL	

The samples presented below were analyzed semivolatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	50.0
MW-100	100
DNAPL	

The samples presented below were analyzed pesticide compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	100
MW-100	10.0
DNAPL	

MW-100 DNAPL was analyzed for polychlorinated biphenyls at a ten-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for the sample.

Sample MW-100 DNAPL was re-analyzed at a 1000-fold dilution for volatile organic compounds. The reanalysis was performed because the response for ethylbenzene exceeded the linear range of the GC/MS instrument for the initial analysis. The affected result was reported from the dilution analysis. All other results have been reported from the initial analysis.

The samples presented below were re-analyzed at dilutions for semivolatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
MW-8R	200	2-Methylnaphthalene, Acenaphthene,
		Acenaphthylene, Naphthaleme
MW-100	200	2-Methylnaphthalene, Acenaphthene,
		Phenanthrene
MW-103	5.0	Acenaphthene, Phenanthrene
MW-106	5.0	Acenaphthene, Phenanthrene

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

As required by USEPA protocol, all volatile and semivolatiles TICs have been reported with "J" qualifiers to indicate that they are quantitative estimates. EDQ has reported only those TIC results that have not been determined to be laboratory or field artifacts, and where possible has grouped TIC of similar classification.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Pesticide Compounds	Method 8081B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17853-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW7471B	D1429	
MW-8R	480-177853-1	11/5/2020	Groundwater	X	X	X	X	X	X			
MW-100	480-177853-2	11/5/2020	Groundwater	X	X	X	X	X	Χ			
MW-103	480-177853-3	11/5/2020	Groundwater	X	X	X	Χ	X	Χ			
MW-106	480-177853-4	11/5/2020	Groundwater	X	X	X	Χ	X	Χ			
MW-100 DNAPL	480-177853-5	11/5/2020	DNAPL	X	X	X	X	X	X	X	X	

 Table 2
 Polychlorinated Biphenyls Continuing Calibrations Exceeding the Precision Criterion

Calibration Standard	Analyte	%D	Difference	Associated Samples
	Aroclor 1016	1	28.4	
	Aroclor 1016	2	23.9	
	Aroclor 1016	3	26.9	
	Aroclor 1016	4	24.2	
CCV 480-558765/59 File	Aroclor 1016	5	28.4	
ID 7_83-043.D (GC				MW-8R, MW-100, MW-103, MW-106
Column: ZB-5)				1V1 VV - OIX, 1V1 VV - 100, 1V1 VV - 100
	Aroclor 1260	1		
	Aroclor 1260	2	25.1	
	Aroclor 1260	3		
	Aroclor 1260	4	23.1	
	Aroclor 1260	5	28.7	
	Aroclor 1016	1	33.0	
	Aroclor 1016	2		
	Aroclor 1016	3		
	Aroclor 1016	4		
CCV 480-558765/59 File	Aroclor 1016	5		
ID 7_83-043.D (GC				MALOD MAL 100 MAL 102 MAL 107
Column: ZB-35)				MW-8R, MW-100, MW-103, MW-106
	Aroclor 1260	1	24.7	
	Aroclor 1260	2	26.3	
	Aroclor 1260	3	25.3	
	Aroclor 1260	4	27.0	
	Aroclor 1260	5	25.7	

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A

Laboratory: Eurofins Test America

Job No: 480-175853-1 Fraction: Inorganic

Matrix: Aqueous and Solid

Report Date: 1/22/2021

This data usability summary report is based upon a review of analytical data generated for groundwater and DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample was analyzed for total metals and specific gravity. Sample analyses were performed in accordance with the procedures outlined in the methods referenced at the end of this report.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "ICP-AES Data Validation", HW-2a, revision 15, December 2012. The quality control requirements specified in the analysis methods and associated acceptance criteria were also used to evaluate the data. The parameters presented on the following page were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/ Sample Receipt
- X Holding Times
- X Initial and Continuing Calibrations
- X ICP Interference Check Sample Results
- X Laboratory and Field Blank Analysis Results
- X Matrix Spike Recoveries and Reproducibility
- X Laboratory Duplicate Analysis Results
- X ICP Serial Dilution Results
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Qualitative Identification
- X Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Spux MA

Shawne M. Rodgers President

January 22, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

4.0

All criteria were met. No qualifiers were applied. *INITIAL AND CONTINUING CALIBRATIONS*

All criteria were met. No qualifiers were applied.

5.0 ICP INTERFERENCE CHECK SAMPLE RESULTS

Barium was detected in interference check standard (ICS) A 480-559254/8 at a concentration of 0.0071 mg/L, which is greater than twice the reporting limit. Samples MW-8R, MW-100, MW-103, and MW-106 were associated with the unacceptable ICS. The data package case narrative indicated that barium may have been present as an impurity in the standard solution. Barium results for the samples were all significantly greater than RL. Qualification was unnecessary.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following inorganic analytes were detected in the laboratory preparation blanks, and/or calibration blanks. The positive blank results were less than their respective reporting limits (RLs). Results for the

associated samples were greater than the RL. Qualification was unnecessary.

Blank	Analyte	Concentration (mg/L)	Associated Samples
MB 480-559736/1-A, mg/Kg	Calcium	3.77 J	MW-100 DNAPL
CCB 480-559258/18	Potassium	0.117 J	MW-8R, MW-100

No field or equipment blanks were submitted for this job number. This should be noted when assessing the data.

7.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

All criteria were met. No qualifiers were applied.

8.0 LABORATORY DUPLICATE RESULTS

Laboratory duplicate precision was evaluated using the MS/MSD analysis results as discussed above in Section 7.0, Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility.

9.0 ICP SERIAL DILUTION RESULTS

All criteria were met. No qualifiers were applied.

10.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted with this job number.

11.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 REPORTING LIMITS

As required by USEPA protocol, all analytes, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Metals	Method 6010C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Mercury	Method 7470B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Specific Gravity	Method D1429-87, ASTM

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17853-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW7471B	D1429	
MW-8R	480-177853-1	11/5/2020	Groundwater	X	X	X	X	X	X			
MW-100	480-177853-2	11/5/2020	Groundwater	X	X	X	X	X	Χ			
MW-103	480-177853-3	11/5/2020	Groundwater	X	X	X	Χ	X	Χ			
MW-106	480-177853-4	11/5/2020	Groundwater	X	X	X	Χ	X	Χ			
MW-100 DNAPL	480-177853-5	11/5/2020	DNAPL	X	X	X	X	X	X	X	X	

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	1400		1000	820	ug/L		-	11/11/20 13:25	100
1,1,2,2-Tetrachloroethane	ND		1000		ug/L			11/11/20 13:25	100
1,1,2-Trichloroethane	ND		1000	230	ug/L			11/11/20 13:25	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1000	310	ug/L			11/11/20 13:25	100
1,1-Dichloroethane	1400		1000		ug/L			11/11/20 13:25	100
1,1-Dichloroethene	500	J	1000		ug/L			11/11/20 13:25	100
1,2,4-Trichlorobenzene	ND		1000		ug/L			11/11/20 13:25	100
1,2-Dibromo-3-Chloropropane	ND		1000		ug/L			11/11/20 13:25	100
1,2-Dichlorobenzene	ND		1000		ug/L			11/11/20 13:25	100
1,2-Dichloroethane	ND		1000		ug/L			11/11/20 13:25	100
1,2-Dichloropropane	ND		1000		ug/L			11/11/20 13:25	100
1,3-Dichlorobenzene	ND		1000		ug/L			11/11/20 13:25	100
1,4-Dichlorobenzene	ND		1000		ug/L			11/11/20 13:25	100
2-Butanone (MEK)	ND		10000	1300	_			11/11/20 13:25	100
2-Hexanone	ND		5000	1200	_			11/11/20 13:25	100
4-Methyl-2-pentanone (MIBK)	ND		5000	2100				11/11/20 13:25	100
Acetone	ND		10000	3000	_			11/11/20 13:25	100
Benzene	3000		1000		ug/L			11/11/20 13:25	100
Bromodichloromethane	ND		1000		ug/L			11/11/20 13:25	100
Bromoform	ND		1000		ug/L			11/11/20 13:25	100
Bromomethane	ND		1000		ug/L			11/11/20 13:25	100
Carbon disulfide	ND		1000		ug/L			11/11/20 13:25	100
Carbon tetrachloride	ND		1000		ug/L			11/11/20 13:25	100
Chlorobenzene	ND		1000		ug/L			11/11/20 13:25	100
Dibromochloromethane	ND		1000		ug/L			11/11/20 13:25	100
Chloroethane	ND		1000		ug/L			11/11/20 13:25	100
Chloroform	ND		1000		ug/L			11/11/20 13:25	100
Chloromethane	ND		1000		ug/L			11/11/20 13:25	100
cis-1,2-Dichloroethene	★ - 110000	=	1000		ug/L			11/11/20 13:25	100
cis-1,3-Dichloropropene	ND	_	1000		ug/L			11/11/20 13:25	100
Cyclohexane	ND		1000		ug/L			11/11/20 13:25	100
Dichlorodifluoromethane	ND		1000		ug/L			11/11/20 13:25	100
Ethylbenzene	2900		1000		ug/L			11/11/20 13:25	100
1.2-Dibromoethane	2900 ND		1000		ug/L			11/11/20 13:25	100
sopropylbenzene	ND		1000		ug/L			11/11/20 13:25	100
Methyl acetate	ND		2500	1300				11/11/20 13:25	100
Methyl tert-butyl ether	ND		1000		ug/L			11/11/20 13:25	100
Methylcyclohexane	ND		1000		ug/L ug/L			11/11/20 13:25	100
Methylene Chloride	ND		1000		ug/L ug/L			11/11/20 13:25	100
	ND				ug/L			11/11/20 13:25	100
Styrene Tetrachloroethene	ND		1000 1000		ug/L ug/L			11/11/20 13:25	
					-				100
Toluene	2100		1000		ug/L			11/11/20 13:25	100
rans-1,2-Dichloroethene	ND		1000		ug/L			11/11/20 13:25	100
rans-1,3-Dichloropropene	ND		1000		ug/L			11/11/20 13:25	100
Trichloroethene	ND		1000		ug/L			11/11/20 13:25	100
Trichlorofluoromethane	ND		1000		ug/L			11/11/20 13:25	100
Vinyl chloride	5600		1000		ug/L ug/L			11/11/20 13:25	100 100

& Report from dilution

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25

Date Received: 11/06/20 11:30

Matrix: Water

	0.5				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107	80 - 120		11/11/20 13:25	1000
1,2-Dichloroethane-d4 (Surr)	111	77 - 120		11/11/20 13:25	1000
4-Bromofluorobenzene (Surr)	106	73 - 120		11/11/20 13:25	1000
Dibromofluoromethane (Surr)	118	75 - 123		11/11/20 13:25	1000

Method: 8260C - Volatile Organ Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2000	1600	ug/L			11/12/20 11:25	2000
1,1,2,2-Tetrachloroethane	ND		2000	420	ug/L			11/12/20 11:25	2000
1,1,2-Trichloroethane	ND		2000	460	ug/L			11/12/20 11:25	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2000	620	ug/L			11/12/20 11:25	2000
1,1-Dichloroethane	1400	J	2000	760	ug/L			11/12/20 11:25	2000
1,1-Dichloroethene	ND		2000	580	ug/L			11/12/20 11:25	2000
1,2,4-Trichlorobenzene	ND		2000	820	ug/L			11/12/20 11:25	2000
1,2-Dibromo-3-Chloropropane	ND		2000	780	ug/L			11/12/20 11:25	2000
1,2-Dichlorobenzene	ND		2000	1600	ug/L			11/12/20 11:25	2000
1,2-Dichloroethane	ND		2000	420	ug/L			11/12/20 11:25	2000
1,2-Dichloropropane	ND		2000	1400	ug/L			11/12/20 11:25	2000
1,3-Dichlorobenzene	ND		2000	1600	ug/L			11/12/20 11:25	2000
1,4-Dichlorobenzene	ND		2000	1700	ug/L			11/12/20 11:25	2000
2-Butanone (MEK)	ND		20000	2600	ug/L			11/12/20 11:25	2000
2-Hexanone	ND		10000	2500	ug/L			11/12/20 11:25	2000
4-Methyl-2-pentanone (MIBK)	ND		10000	4200	ug/L			11/12/20 11:25	2000
Acetone	ND		20000	6000	ug/L			11/12/20 11:25	2000
Benzene	3000		2000	820	ug/L			11/12/20 11:25	2000
Bromodichloromethane	ND		2000	780	ug/L			11/12/20 11:25	2000
Bromoform	ND		2000	520	ug/L			11/12/20 11:25	2000
Bromomethane	ND		2000	1400	ug/L			11/12/20 11:25	2000
Carbon disulfide	ND		2000	380	ug/L			11/12/20 11:25	2000
Carbon tetrachloride	ND		2000	540	ug/L			11/12/20 11:25	2000
Chlorobenzene	ND		2000	1500	ug/L			11/12/20 11:25	2000
Dibromochloromethane	ND		2000	640	ug/L			11/12/20 11:25	2000
Chloroethane	ND		2000	640	ug/L			11/12/20 11:25	2000
Chloroform	ND		2000	680	ug/L			11/12/20 11:25	2000
Chloromethane	ND		2000	700	ug/L			11/12/20 11:25	2000
cis-1,2-Dichloroethene	100000		2000	1600	ug/L			11/12/20 11:25	2000
cis-1,3-Dichloropropene	ND		2000	720	ug/L			11/12/20 11:25	2000
Cyclohexane	ND		2000	360	ug/L			11/12/20 11:25	2000
Dichlorodifluoromethane	ND		2000	1400	ug/L			11/12/20 11:25	2000
Ethylbenzene	3000		2000	1500	ug/L			11/12/20 11:25	2000
1,2-Dibromoethane	ND		2000	1500	ug/L			11/12/20 11:25	2000
Isopropylbenzene	ND		2000	1600	ug/L			11/12/20 11:25	2000
Methyl acetate	ND		5000	2600	ug/L			11/12/20 11:25	2000
Methyl tert-butyl ether	ND		2000	320	ug/L			11/12/20 11:25	2000
Methylcyclohexane	ND		2000		ug/L			11/12/20 11:25	2000
Methylene Chloride	ND		2000		ug/L			11/12/20 11:25	2000
Styrene	ND		2000	1500				11/12/20 11:25	2000
Tetrachloroethene	ND		2000		ug/L			11/12/20 11:25	2000
Toluene	2200		2000	1000	-			11/12/20 11:25	2000
trans-1,2-Dichloroethene	ND		2000	1800				11/12/20 11:25	2000

Eurofins TestAmerica, Buffalo

Page 17 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		2000	740	ug/L			11/12/20 11:25	2000
Trichloroethene	ND		2000	920	ug/L			11/12/20 11:25	2000
Trichlorofluoromethane	ND		2000	1800	ug/L			11/12/20 11:25	2000
Vinyl chloride	5900		2000	1800	ug/L			11/12/20 11:25	2000
Xylenes, Total	1600	J	4000	1300	ug/L			11/12/20 11:25	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120					11/12/20 11:25	2000
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					11/12/20 11:25	2000
4-Bromofluorobenzene (Surr)	105		73 - 120					11/12/20 11:25	2000
Dibromofluoromethane (Surr)	112		75 - 123					11/12/20 11:25	2000

Dibromondomethane (Sum) - -	112		75-125					11/12/20 11.25	2000
Method: 8270D - Semivolat Analyte		mpounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl		F	5.0	0.65	ug/L		11/11/20 15:04	11/15/20 21:31	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/11/20 15:04	11/15/20 21:31	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Methylphenol	4.2	J	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Methylnaphthalene	₽ 760		5.0	0.60	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Nitroaniline	ND		10	0.42	ug/L		11/11/20 15:04	11/15/20 21:31	1
2-Nitrophenol	ND		5.0	0.48	ug/L		11/11/20 15:04	11/15/20 21:31	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/11/20 15:04	11/15/20 21:31	1
3-Nitroaniline	ND		10	0.48	ug/L		11/11/20 15:04	11/15/20 21:31	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Chloroaniline	ND		5.0	0.59	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Methylphenol	0.74	J	10	0.36	ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Nitroaniline	ND		10		ug/L		11/11/20 15:04	11/15/20 21:31	1
4-Nitrophenol	NG.	UT	10	1.5	ug/L		11/11/20 15:04	11/15/20 21:31	1
Acenaphthene	∞ − 66	=	5.0	0.41	ug/L		11/11/20 15:04	11/15/20 21:31	1
Acenaphthylene	45 -170	-	5.0	0.38	ug/L		11/11/20 15:04	11/15/20 21:31	1
Acetophenone	5.3		5.0	0.54	ug/L		11/11/20 15:04	11/15/20 21:31	1
Anthracene	10		5.0	0.28	ug/L		11/11/20 15:04	11/15/20 21:31	1
Atrazine	ND		5.0	0.46	ug/L		11/11/20 15:04	11/15/20 21:31	1
Benzaldehyde	ND		5.0		ug/L		11/11/20 15:04	11/15/20 21:31	1
Benzo[a]anthracene	ND		5.0		ug/L		11/11/20 15:04	11/15/20 21:31	1
Benzo[a]pyrene	ND		5.0		ug/L		11/11/20 15:04	11/15/20 21:31	1
Benzo[b]fluoranthene	ND		5.0		ug/L		11/11/20 15:04	11/15/20 21:31	1
Benzo[g,h,i]perylene	ND		5.0		ug/L		11/11/20 15:04	11/15/20 21:31	1
Delizo[g,ii,i]peryielle	110		0.0						

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25

Date Received: 11/06/20 11:30

Matrix: Water

Nitrobenzene-d5 (Surr) 145 X 46 - 120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bist/2-ethylnexyl phthalate	Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/11/20 15:04	11/15/20 21:31	1
Bullyl benzyl phthalate	Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/11/20 15:04	11/15/20 21:31	1
Caprolactam	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2	ug/L		11/11/20 15:04	11/15/20 21:31	1
Carbazole 8.8 5.0 0.30 ug/L 11/11/20 15:04 11/15/20 21:31 Chrysene ND 5.0 0.33 ug/L 11/11/20 15:04 11/15/20 21:31 Dibenz(a,h)anthracene ND 5.0 0.42 ug/L 11/11/20 15:04 11/15/20 21:31 Di-n-cutyl phthalate ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 Di-n-cutyl phthalate ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.22 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 <t< td=""><td>Butyl benzyl phthalate</td><td>ND</td><td></td><td>5.0</td><td>1.0</td><td>ug/L</td><td></td><td>11/11/20 15:04</td><td>11/15/20 21:31</td><td>1</td></t<>	Butyl benzyl phthalate	ND		5.0	1.0	ug/L		11/11/20 15:04	11/15/20 21:31	1
Chrysene	Caprolactam	ND		5.0	2.2	ug/L		11/11/20 15:04	11/15/20 21:31	1
Dibenzica, h)anthracene	Carbazole	8.8		5.0	0.30	ug/L		11/11/20 15:04	11/15/20 21:31	1
Di-n-butyl phthalate	Chrysene	ND		5.0	0.33	ug/L		11/11/20 15:04	11/15/20 21:31	1
Di-n-octyl phthalate	Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/11/20 15:04	11/15/20 21:31	1
Dibenzofuran 14 10 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Diethyl phthalate ND 5.0 0.22 ug/L 11/11/20 15:04 11/15/20 21:31 Dimethyl phthalate ND 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Fluoranthene 3.2 J 5.0 0.40 ug/L 11/11/20 15:04 11/15/20 21:31 Fluorene 52 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorobetare ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21	Di-n-butyl phthalate	ND		5.0	0.31	ug/L		11/11/20 15:04	11/15/20 21:31	1
Diethyl phthalate	Di-n-octyl phthalate	ND		5.0	0.47	ug/L		11/11/20 15:04	11/15/20 21:31	1
Dimethyl phthalate	Dibenzofuran	14		10	0.51	ug/L		11/11/20 15:04	11/15/20 21:31	1
Fluoranthene 3.2 J 5.0 0.40 ug/L 11/11/20 15:04 11/15/20 21:31	Diethyl phthalate	ND		5.0	0.22	ug/L		11/11/20 15:04	11/15/20 21:31	1
Fluorene 52 5.0 0.36 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorobenzene ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.68 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.43 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.54 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.54 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.54 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene S.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene S.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene S.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene S.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene S.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20 11/15/20	Dimethyl phthalate	ND		5.0	0.36	ug/L		11/11/20 15:04	11/15/20 21:31	1
Hexachlorobenzene ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.68 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 11/11/20 15:04 11/15/20 21:31 Indeno[1,2,3-cd]pyrene ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 Isophorone ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 Isophorone ND 5.0 0.47 ug/L 11/11/20 15:04 11/15/20 21:31 N-Nitrosodi-n-propylamine ND 5.0 0.54 ug/L 11/11/20 15:04 11/15/20 21:31 N-Nitrosodi-n-propylamine ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Naphthalene 1200 E 5.0 0.76 ug/L 11/11/20 15:04 11/15/20 21:31 Nitrobenzene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Pentachlorophenol ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Phenolthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenolthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Prepared Analyzed Dil Formation	Fluoranthene	3.2	J	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 21:31	1
Hexachlorobutadiene	Fluorene	52		5.0	0.36	ug/L		11/11/20 15:04	11/15/20 21:31	1
Hexachlorocyclopentadiene	Hexachlorobenzene	ND		5.0	0.51	ug/L		11/11/20 15:04	11/15/20 21:31	1
Hexachloroethane	Hexachlorobutadiene	ND		5.0	0.68	ug/L		11/11/20 15:04	11/15/20 21:31	1
Indeno[1,2,3-cd]pyrene	Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		11/11/20 15:04	11/15/20 21:31	1
Isophorone ND 5.0 0.43 ug/L 11/11/20 15:04 11/15/20 21:31	Hexachloroethane	ND		5.0	0.59	ug/L		11/11/20 15:04	11/15/20 21:31	1
N-Nitrosodi-n-propylamine ND 5.0 0.54 ug/L 11/11/20 15:04 11/15/20 21:31 N-Nitrosodiphenylamine ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Naphthalene 1200 E 5.0 0.76 ug/L 11/11/20 15:04 11/15/20 21:31 Nitrobenzene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Nitrobenzene ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Pentachlorophenol ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Phenanthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Surrogate WRecovery Qualifier Limits Nitrobenzene-d5 (Surr) 145 X 46 - 120 Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2.4,6-Tribromophenol (Surr) 90 48 - 120 2-Fluorophenol (Surr) 55 35 - 120 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/11/20 15:04	11/15/20 21:31	1
N-Nitrosodiphenylamine ND 5.0 0.51 ug/L 11/11/20 15:04 11/15/20 21:31 Naphthalene ND 5.0 0.76 ug/L 11/11/20 15:04 11/15/20 21:31 Nitrobenzene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Pentachlorophenol ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Phenanthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Surrogate Nitrobenzene-d5 (Surr) 145 X 46-120 Nitrobenzene-d5 (Surr) Phenol-d5 (Surr) 50 22-120 11/11/20 15:04 11/15/20 21:31 P-Terphenyl-d14 (Surr) 57 68-148 11/11/20 15:04 11/15/20 21:31 2.4,6-Tribromophenol (Surr) 90 48-120 2-Fluorophenol (Surr) 55 35-120 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Isophorone	ND		5.0	0.43	ug/L		11/11/20 15:04	11/15/20 21:31	1
Naphthalene	N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		11/11/20 15:04	11/15/20 21:31	1
Nitrobenzene ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Pentachlorophenol ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Phenanthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 145 X 46-120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22-120 11/11/20 15:04 11/15/20 21:31 P-Terphenyl-d14 (Surr) 67 60-148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 90 48-120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35-120 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04	N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		11/11/20 15:04	11/15/20 21:31	1
ND 5.0 0.29 ug/L 11/11/20 15:04 11/15/20 21:31 Pentachlorophenol ND 10 2.2 ug/L 11/11/20 15:04 11/15/20 21:31 Phenanthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F Nitrobenzene-d5 (Surr) 145 X 46 - 120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 P-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Naphthalene	∆ 1200	₽	5.0	0.76	ug/L		11/11/20 15:04	11/15/20 21:31	1
Phenanthrene 58 5.0 0.44 ug/L 11/11/20 15:04 11/15/20 21:31 Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F Nitrobenzene-d5 (Surr) 145 X 46 - 120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Nitrobenzene			5.0	0.29	ug/L		11/11/20 15:04	11/15/20 21:31	1
Phenol 15 5.0 0.39 ug/L 11/11/20 15:04 11/15/20 21:31 Pyrene 5.3 5.0 0.34 ug/L 11/11/20 15:04 11/15/20 21:31 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F Nitrobenzene-d5 (Surr) 145 X 46-120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22-120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60-148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41-120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48-120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35-120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Pentachlorophenol	ND		10	2.2	ug/L		11/11/20 15:04	11/15/20 21:31	1
Surrogate %Recovery Nitrobenzene-d5 (Surr) Qualifier Limits X Limits 46-120 Prepared 11/11/20 15:04 Analyzed 11/15/20 21:31 Dil F Phenol-d5 (Surr) 50 22-120 11/11/20 15:04 11/15/20 21:31 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60-148 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48-120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35-120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL GC/MS) - DL 11/11/20 15:04 11/15/20 21:31	Phenanthrene	58		5.0	0.44	ug/L		11/11/20 15:04	11/15/20 21:31	1
Surrogate %Recovery Nitrobenzene-d5 (Surr) Qualifier Limits Limits Prepared 11/11/20 15:04 Analyzed 11/15/20 21:31 Dil F Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 11/15/20 21:31 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/15/20 21:31 24,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/11/20 15:04 11/15/20 21:31	Phenol	15		5.0	0.39	ug/L		11/11/20 15:04	11/15/20 21:31	1
Nitrobenzene-d5 (Surr) 145 X 46 - 120 11/11/20 15:04 11/15/20 21:31 Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	Pyrene	5.3		5.0	0.34	ug/L		11/11/20 15:04	11/15/20 21:31	1
Phenol-d5 (Surr) 50 22 - 120 11/11/20 15:04 11/15/20 21:31 p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 11/11/20 15	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr) 67 60 - 148 11/11/20 15:04 11/15/20 21:31 2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/15/20 21:31	Nitrobenzene-d5 (Surr)	145	X	46 - 120				11/11/20 15:04	11/15/20 21:31	1
2,4,6-Tribromophenol (Surr) 102 41 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/15/20 21:31 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04 11/11/20 15:04	Phenol-d5 (Surr)	50		22 - 120				11/11/20 15:04	11/15/20 21:31	1
2-Fluorobiphenyl (Surr) 90 48 - 120 11/11/20 15:04 11/15/20 21:31 2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 11/15/20 21:31 11/15/20 21	p-Terphenyl-d14 (Surr)	67		60 - 148				11/11/20 15:04	11/15/20 21:31	1
2-Fluorophenol (Surr) 55 35 - 120 11/11/20 15:04 11/15/20 21:31 Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	2,4,6-Tribromophenol (Surr)	102		41 - 120				11/11/20 15:04	11/15/20 21:31	1
Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL	2-Fluorobiphenyl (Surr)	90		48 - 120	_			11/11/20 15:04	11/15/20 21:31	1
	2-Fluorophenol (Surr)	55		35 - 120	# Rep	nt fon	\	11/11/20 15:04	11/15/20 21:31	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil F	Method: 8270D - Semivola Analyte	_	mpounds Qualifier	(GC/MS) - DI		<i>ω</i> ,	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	1000	130	ug/L		11/11/20 15:04	11/23/20 22:59	200
bis (2-chloroisopropyl) ether	ND	1000	100	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4,5-Trichlorophenol	ND	1000	96	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4,6-Trichlorophenol	ND	1000	120	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4-Dichlorophenol	ND	1000	100	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4-Dimethylphenol	ND	1000	100	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4-Dinitrophenol	ND	2000	440	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,4-Dinitrotoluene	ND	1000	89	ug/L		11/11/20 15:04	11/23/20 22:59	200
2,6-Dinitrotoluene	ND	1000	80	ug/L		11/11/20 15:04	11/23/20 22:59	200
2-Chloronaphthalene	ND	1000	92	ug/L		11/11/20 15:04	11/23/20 22:59	200

Eurofins TestAmerica, Buffalo

Page 19 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result Qualifie		MDL		D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	ND	1000	110	ug/L		11/11/20 15:04	11/23/20 22:59	20
2-Methylphenol	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
2-Methylnaphthalene	880 J	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
2-Nitroaniline	ND	2000	84	ug/L		11/11/20 15:04	11/23/20 22:59	20
2-Nitrophenol	ND	1000	96	ug/L		11/11/20 15:04	11/23/20 22:59	20
3,3'-Dichlorobenzidine	ND	1000	80	ug/L		11/11/20 15:04	11/23/20 22:59	20
3-Nitroaniline	ND	2000	96	ug/L		11/11/20 15:04	11/23/20 22:59	20
4,6-Dinitro-2-methylphenol	ND	2000	440	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Bromophenyl phenyl ether	ND	1000	90	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Chloro-3-methylphenol	ND	1000	90	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Chloroaniline	ND	1000	120	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Chlorophenyl phenyl ether	ND	1000	70	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Methylphenol	ND	2000	72	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Nitroaniline	ND	2000	50	ug/L		11/11/20 15:04	11/23/20 22:59	20
4-Nitrophenol	ND	2000	300	ug/L		11/11/20 15:04	11/23/20 22:59	20
Acenaphthene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Acenaphthylene	170 J	1000	76	ug/L		11/11/20 15:04	11/23/20 22:59	20
Acetophenone	ND	1000	110	ug/L		11/11/20 15:04	11/23/20 22:59	20
Anthracene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Atrazine	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzaldehyde	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzo[a]anthracene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzo[a]pyrene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzo[b]fluoranthene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzo[g,h,i]perylene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Benzo[k]fluoranthene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Bis(2-chloroethoxy)methane	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Bis(2-chloroethyl)ether	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Bis(2-ethylhexyl) phthalate	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Butyl benzyl phthalate Caprolactam	ND	1000		ug/L ug/L		11/11/20 15:04	11/23/20 22:59	20
Caprolaciam Carbazole	ND	1000		_		11/11/20 15:04	11/23/20 22:59	20
				ug/L				
Chrysene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Dibenz(a,h)anthracene	ND	1000		ug/L		11/11/20 15:04		20
Di-n-butyl phthalate	ND	1000		ug/L			11/23/20 22:59	20
Di-n-octyl phthalate	ND	1000		ug/L			11/23/20 22:59	20
Dibenzofuran	ND	2000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Diethyl phthalate	ND	1000		ug/L			11/23/20 22:59	20
Dimethyl phthalate	ND	1000		ug/L			11/23/20 22:59	20
Fluoranthene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Fluorene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Hexachlorobenzene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Hexachlorobutadiene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Hexachlorocyclopentadiene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Hexachloroethane	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
ndeno[1,2,3-cd]pyrene	ND	1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Isophorone	ND	1000	86	ug/L		11/11/20 15:04	11/23/20 22:59	20
N-Nitrosodi-n-propylamine	ND	1000	110	ug/L		11/11/20 15:04	11/23/20 22:59	20

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25

Date Received: 11/06/20 11:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	5700		1000	150	ug/L		11/11/20 15:04	11/23/20 22:59	20
Nitrobenzene	ND		1000	58	ug/L		11/11/20 15:04	11/23/20 22:59	20
Pentachlorophenol	ND		2000	440	ug/L		11/11/20 15:04	11/23/20 22:59	20
Phenanthrene	ND		1000	88	ug/L		11/11/20 15:04	11/23/20 22:59	20
Phenol	ND		1000	78	ug/L		11/11/20 15:04	11/23/20 22:59	20
Pyrene	ND		1000		ug/L		11/11/20 15:04	11/23/20 22:59	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)		X	46 - 120				11/11/20 15:04	11/23/20 22:59	20
Phenol-d5 (Surr)	0	X	22 - 120				11/11/20 15:04	11/23/20 22:59	20
p-Terphenyl-d14 (Surr)	0	X	60 - 148				11/11/20 15:04	11/23/20 22:59	20
2,4,6-Tribromophenol (Surr)	0	X	41 - 120				11/11/20 15:04	11/23/20 22:59	20
2-Fluorobiphenyl (Surr)	70		48 - 120					11/23/20 22:59	20
2-Fluorophenol (Surr)		X	35 - 120					11/23/20 22:59	20
Method: 8081B - Organo	chlorine Pesticio	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4,4'-DDD	0.021	J	0.050	0.0092	ug/L		11/10/20 08:39	11/11/20 15:02	
4,4'-DDE	ND	_	0.050	0.012	ug/L		11/10/20 08:39	11/11/20 15:02	
4,4'-DDT	ND⁄	'UT	0.050	0.011	ug/L		11/10/20 08:39	11/11/20 15:02	<u> 1</u> C4
Aldrin	0.098		0.050	0.0081	ug/L		11/10/20 08:39	11/11/20 15:02	
alpha-BHC	0.14		0.050	0.0077	_		11/10/20 08:39	11/11/20 15:02	
cis-Chlordane	ND		0.050	0.015	_		11/10/20 08:39	11/11/20 15:02	
beta-BHC	ND		0.050	0.025			11/10/20 08:39	11/11/20 15:02	
delta-BHC	0.022	J	0.050	0.010	_		11/10/20 08:39	11/11/20 15:02	
Dieldrin	ND		0.050	0.0098	_		11/10/20 08:39	11/11/20 15:02	
Endosulfan I	ND		0.050	0.011			11/10/20 08:39	11/11/20 15:02	
Endosulfan II	ND		0.050	0.012	_		11/10/20 08:39	11/11/20 15:02	
Endosulfan sulfate	ND		0.050	0.016	_		11/10/20 08:39	11/11/20 15:02	
Endrin	ND		0.050	0.014			11/10/20 08:39	11/11/20 15:02	
Endrin aldehyde	ND		0.050	0.014	_		11/10/20 08:39	11/11/20 15:02	
Endrin ketone	ND		0.050	0.010	_		11/10/20 08:39	11/11/20 15:02	
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.050	0.0080			11/10/20 08:39	11/11/20 15:02	MRL
gamma-BHC (Lindane)	0.05 0.015 ND	JB U	0.050		_				MISC
trans-Chlordane	ND	·W		0.011	_		11/10/20 08:39	11/11/20 15:02	Cl
Heptachlor			0.050	0.0085				11/11/20 15:02	
Heptachlor epoxide	ND		0.050	0.0074				11/11/20 15:02	ا مہ
Methoxychlor	0.045	•	0.050	0.014	_		11/10/20 08:39	11/11/20 15:02	cch
Toxaphene	₩ D	LI	0.50	0.12	ug/L		11/10/20 08:39	11/11/20 15:02	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	72		20 - 120				11/10/20 08:39	11/11/20 15:02	
DCB Decachlorobiphenyl	57		20 - 120				11/10/20 08:39	11/11/20 15:02	
Tetrachloro-m-xylene	160	X	44 - 120				11/10/20 08:39	11/11/20 15:02	
Tetrachloro-m-xylene	73		44 - 120				11/10/20 08:39	11/11/20 15:02	

Method: 8082A - Polychlorinat	ed Biphenyls (PC	Bs) by Gas Chro	omatogra	phy				
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	M UST	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:41	C1_L
PCB-1221	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:41	1
PCB-1232	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:41	1

Eurofins TestAmerica, Buffalo

Page 21 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Date Received: 11/06/20 11:30

Client Sample ID: MW-8R Lab Sample ID: 480-177853-1

Date Collected: 11/05/20 09:25 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1242	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:41	1
PCB-1248	ND		0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:41	1
PCB-1254	ND	, -	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:41	1
PCB-1260) DIE		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:41	CCH 1
PCB-1262	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:41	1
PCB-1268	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	105		39 - 121				11/11/20 09:34	11/13/20 06:41	1
Tetrachloro-m-xylene (Surr)	120		39 - 121				11/11/20 09:34	11/13/20 06:41	1
DCB Decachlorobiphenyl (Surr)	64		19 - 120				11/11/20 09:34	11/13/20 06:41	1
DCB Decachlorobiphenyl (Surr)	70		19 - 120				11/11/20 09:34	11/13/20 06:41	1
Method: 6010C - Metals (ICP)									
Analyte		O lifi							
Analyto	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.066		0.20	MDL 0.060	Unit mg/L	D	Prepared 11/11/20 12:42	Analyzed 11/13/20 18:34	Dil Fac
						<u>D</u>			Dil Fac 1
Aluminum	0.066		0.20	0.060	mg/L mg/L	<u>D</u>	11/11/20 12:42	11/13/20 18:34	1
Aluminum Antimony	0.066 ND	J	0.20	0.060	mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34	1
Aluminum Antimony Arsenic	0.066 ND ND	J	0.20 0.020 0.015	0.060 0.0068 0.0056	mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1
Aluminum Antimony Arsenic Barium	0.066 ND ND	J	0.20 0.020 0.015 0.0020	0.060 0.0068 0.0056 0.00070	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1
Aluminum Antimony Arsenic Barium Beryllium	0.066 ND ND 0.51	J	0.20 0.020 0.015 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1
Aluminum Antimony Arsenic Barium Beryllium Cadmium	0.066 ND ND 0.51 ND	J	0.20 0.020 0.015 0.0020 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1 1 1 1 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	0.066 ND ND 0.51 ND ND	J	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1 1 1 1 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	0.066 ND ND 0.51 ND ND	J	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42 11/11/20 12:42	11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34 11/13/20 18:34	1 1 1 1 1

Copper	ND	0.010	0.0016 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Iron	4.3	0.050	0.019 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Lead	0.0053 J	0.010	0.0030 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Magnesium	82.4	0.20	0.043 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Manganese	0.69	0.0030	0.00040 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Nickel	ND	0.010	0.0013 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Potassium	7.3	0.50	0.10 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Selenium	ND	0.025	0.0087 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Silver	ND	0.0060	0.0017 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Sodium	623	1.0	0.32 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Thallium	ND	0.020	0.010 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Vanadium	ND	0.0050	0.0015 m	ng/L	11/11/20 12:42	11/13/20 18:34	1
Zinc	0.0019 J	0.010	0.0015 m	ng/L	11/11/20 12:42	11/13/20 18:34	1

 Method: 7470A - Mercury (CVAA)

 Analyte
 Result Mercury
 Qualifier
 RL ND
 MDL ND
 Unit mg/L
 D Prepared 11/16/20 13:25
 Analyzed Analyzed 11/16/20 16:50
 Dil Fac 11/16/20 16:50

Client Sample ID: MW-100

Date Collected: 11/05/20 11:35

Lab Sample ID: 480-177853-2

Matrix: Water

Method: 8260C - Volatile Org	anic Compo	unds by GC/	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		200	160	ug/L			11/11/20 13:49	200
1,1,2,2-Tetrachloroethane	ND		200	42	ug/L			11/11/20 13:49	200
1,1,2-Trichloroethane	ND		200	46	ug/L			11/11/20 13:49	200

Eurofins TestAmerica, Buffalo

Page 22 of 3614 12/03/2020

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35 Matrix: Water Date Received: 11/06/20 11:30

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		200	62	ug/L			11/11/20 13:49	200
1,1-Dichloroethane	ND		200	76	ug/L			11/11/20 13:49	200
1,1-Dichloroethene	ND		200	58	ug/L			11/11/20 13:49	200
1,2,4-Trichlorobenzene	ND		200	82	ug/L			11/11/20 13:49	200
1,2-Dibromo-3-Chloropropane	ND		200	78	ug/L			11/11/20 13:49	200
1,2-Dichlorobenzene	ND		200	160	ug/L			11/11/20 13:49	200
1,2-Dichloroethane	ND		200	42	ug/L			11/11/20 13:49	200
1,2-Dichloropropane	ND		200	140	ug/L			11/11/20 13:49	200
1,3-Dichlorobenzene	ND		200	160	ug/L			11/11/20 13:49	200
1,4-Dichlorobenzene	ND		200	170	ug/L			11/11/20 13:49	200
2-Butanone (MEK)	ND		2000	260	ug/L			11/11/20 13:49	200
2-Hexanone	ND		1000	250	ug/L			11/11/20 13:49	200
4-Methyl-2-pentanone (MIBK)	ND		1000	420	ug/L			11/11/20 13:49	200
Acetone	ND		2000	600	ug/L			11/11/20 13:49	200
Benzene	11000		200	82	ug/L			11/11/20 13:49	200
Bromodichloromethane	ND		200	78	ug/L			11/11/20 13:49	200
Bromoform	ND		200	52	ug/L			11/11/20 13:49	200
Bromomethane	ND		200	140	ug/L			11/11/20 13:49	200
Carbon disulfide	ND		200		ug/L			11/11/20 13:49	200
Carbon tetrachloride	ND		200		ug/L			11/11/20 13:49	200
Chlorobenzene	ND		200		ug/L			11/11/20 13:49	200
Dibromochloromethane	ND		200		ug/L			11/11/20 13:49	200
Chloroethane	ND		200		ug/L			11/11/20 13:49	200
Chloroform	ND		200		ug/L			11/11/20 13:49	200
Chloromethane	ND		200		ug/L			11/11/20 13:49	200
cis-1,2-Dichloroethene	ND		200		ug/L			11/11/20 13:49	200
cis-1,3-Dichloropropene	ND		200		ug/L			11/11/20 13:49	200
Cyclohexane	ND		200		ug/L			11/11/20 13:49	200
Dichlorodifluoromethane	ND		200		ug/L			11/11/20 13:49	200
Ethylbenzene	5100		200		ug/L			11/11/20 13:49	200
1,2-Dibromoethane	ND		200		ug/L			11/11/20 13:49	200
Isopropylbenzene	ND		200		ug/L			11/11/20 13:49	200
Methyl acetate	ND		500		ug/L			11/11/20 13:49	200
Methyl tert-butyl ether	ND		200		ug/L			11/11/20 13:49	200
Methylcyclohexane	ND		200		ug/L			11/11/20 13:49	200
Methylene Chloride	ND		200		ug/L			11/11/20 13:49	200
Styrene	220		200		ug/L			11/11/20 13:49	200
Tetrachloroethene	ND		200		ug/L			11/11/20 13:49	200
Toluene	4000		200		ug/L			11/11/20 13:49	200
trans-1,2-Dichloroethene	ND		200		ug/L			11/11/20 13:49	200
trans-1,3-Dichloropropene	ND		200		ug/L			11/11/20 13:49	200
Trichloroethene	ND		200		ug/L			11/11/20 13:49	200
Trichlorofluoromethane	ND		200		ug/L			11/11/20 13:49	200
Vinyl chloride	ND		200		ug/L			11/11/20 13:49	200
Xylenes, Total	3200		400		ug/L			11/11/20 13:49	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120					11/11/20 13:49	200
1,2-Dichloroethane-d4 (Surr)	107		77 - 120					11/11/20 13:49	200
4-Bromofluorobenzene (Surr)	106		73 - 120					11/11/20 13:49	200

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35 Matrix: Water Date Received: 11/06/20 11:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	116	75 - 123		11/11/20 13:49	200

Dibromofluoromethane (Surr)	116	75 - 123					11/11/20 13:49	200
Method: 8270D - Semivolatile Analyte	e Organic Compounds (C	GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	340 A.J_	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
bis (2-chloroisopropyl) ether	ND 'A UJ	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4,5-Trichlorophenol	ND H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4,6-Trichlorophenol	ND H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4-Dichlorophenol	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4-Dimethylphenol	26 J H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4-Dinitrophenol	DUN DN	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
2,4-Dinitrotoluene	ND H	250		-		11/16/20 15:00	11/20/20 17:42	50
2,6-Dinitrotoluene	ND H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Chloronaphthalene	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Chlorophenol	ND	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Methylphenol	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Methylnaphthalene	3000 A J	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Nitroaniline	ND X U	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
2-Nitrophenol	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
3,3'-Dichlorobenzidine	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
3-Nitroaniline	ND A	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
4,6-Dinitro-2-methylphenol	ND H	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Bromophenyl phenyl ether	ND A,	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Chloro-3-methylphenol	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Chloroaniline	ND H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Chlorophenyl phenyl ether	ND A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Methylphenol	ND A	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Nitroaniline	ND /H/	500		ug/L		11/16/20 15:00	11/20/20 17:42	50
4-Nitrophenol	ND W	500	76	ug/L		11/16/20 15:00	11/20/20 17:42	50
Acenaphthene	340 H J	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Acenaphthylene	770 A J	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Acetophenone	ND I UJ	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Anthracene	330 H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Atrazine	ND A, UJ	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzaldehyde	ND A UJ	250	13	ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzo[a]anthracene	170 J.A	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzo[a]pyrene	200 J M	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzo[b]fluoranthene	110 J H	250	17	ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzo[g,h,i]perylene	84 J H	250	18	ug/L		11/16/20 15:00	11/20/20 17:42	50
Benzo[k]fluoranthene	48 J H	250	37	ug/L		11/16/20 15:00	11/20/20 17:42	50
Bis(2-chloroethoxy)methane	ND H, W	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Bis(2-chloroethyl)ether	ND X	250	20	ug/L		11/16/20 15:00	11/20/20 17:42	50
Bis(2-ethylhexyl) phthalate	ND M	250		ug/L			11/20/20 17:42	50
Butyl benzyl phthalate	ND A	250		ug/L			11/20/20 17:42	50
Caprolactam	ND // I	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Carbazole	16 J.H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Chrysene	140 J H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Dibenz(a,h)anthracene	24 J H	250		ug/L		11/16/20 15:00	11/20/20 17:42	50
Di-n-butyl phthalate	ND HINT	250		ug/L			11/20/20 17:42	50

Eurofins TestAmerica, Buffalo

Page 24 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35 Matrix: Water

Method: 8270D - Semivolati	ile Organic Co	mnounda	(GC/MS) (C	Continued	1			
Analyte		Qualifier	(GC/M3) (C	MDL		Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	ND	A	250	24	ug/L	11/16/20 15:00	11/20/20 17:42	5
Dibenzofuran	76	JA	500	26	ug/L	11/16/20 15:00	11/20/20 17:42	5
Diethyl phthalate	ND	γ ^k ,	250	11	ug/L	11/16/20 15:00	11/20/20 17:42	5
Dimethyl phthalate	ND		250	18	ug/L	11/16/20 15:00	11/20/20 17:42	5
Fluoranthene	330	ИJ	250	20	ug/L	11/16/20 15:00	11/20/20 17:42	5
Fluorene	400	カナ	250	18	ug/L	11/16/20 15:00	11/20/20 17:42	5
Hexachlorobenzene		M.	250	26	ug/L	11/16/20 15:00	11/20/20 17:42	5
Hexachlorobutadiene	ND	A	250	34	ug/L	11/16/20 15:00	11/20/20 17:42	5
Hexachlorocyclopentadiene	ND	'A	250	30	ug/L	11/16/20 15:00	11/20/20 17:42	5
Hexachloroethane	ND	A	250	30	ug/L	11/16/20 15:00	11/20/20 17:42	5
Indeno[1,2,3-cd]pyrene	57	JA	250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Isophorone	ND	Á	250	22	ug/L	11/16/20 15:00	11/20/20 17:42	5
N-Nitrosodi-n-propylamine	ND	A	250		ug/L	11/16/20 15:00	11/20/20 17:42	5
N-Nitrosodiphenylamine	ND	\mathcal{A}	250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Naphthalene	8300		250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Nitrobenzene	ND	Ä.	250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Pentachlorophenol	ND '	, H	500		ug/L	11/16/20 15:00	11/20/20 17:42	5
Phenanthrene	1200	#J	250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Phenol		J H	250		ug/L		11/20/20 17:42	5
Pyrene	620		250		ug/L	11/16/20 15:00	11/20/20 17:42	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	156		46 - 120				11/20/20 17:42	5
Phenol-d5 (Surr)	0	Χ	22 - 120			11/16/20 15:00	11/20/20 17:42	5
p-Terphenyl-d14 (Surr)	70		60 - 148			11/16/20 15:00	11/20/20 17:42	5
2,4,6-Tribromophenol (Surr)	0	X	41 - 120			11/16/20 15:00	11/20/20 17:42	5
2-Fluorobiphenyl (Surr)	100		48 - 120			11/16/20 15:00	11/20/20 17:42	5
2-Fluorophenol (Surr)	0	X	35 - 120	A-Report	fondilution	11/16/20 15:00	11/20/20 17:42	5
Method: 8270D - Semivolati	ile Organic Co	mpounds	(GC/MS) -	1	1			
Analyte		Qualifier	ŘL	MDL	Unit D	Prepared	Analyzed	Dil Fa
Biphenyl	360	JH	1000	130	ug/L	11/16/20 15:00	11/23/20 19:11	20
bis (2-chloroisopropyl) ether	ND	Н	1000	100	ug/L	11/16/20 15:00	11/23/20 19:11	20
2,4,5-Trichlorophenol	ND	Н	1000	96	ug/L	11/16/20 15:00	11/23/20 19:11	20
					/1	11/16/20 15:00	11/23/20 19:11	20
2,4,6-Trichlorophenol	ND	Н	1000	120	ug/L			
•	ND ND		1000 1000	120 100			11/23/20 19:11	20
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol		Н		100	ug/L	11/16/20 15:00	11/23/20 19:11 11/23/20 19:11	
2,4-Dichlorophenol 2,4-Dimethylphenol	ND	H H	1000	100	ug/L ug/L			20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND	Н Н Н	1000 1000	100 100 440	ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00	11/23/20 19:11	20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	ND ND ND	Н Н Н	1000 1000 2000	100 100 440 89	ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11	20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ND ND	H H H H	1000 1000 2000 1000	100 100 440 89 80	ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	ND ND ND ND	H H H H H	1000 1000 2000 1000 1000	100 100 440 89 80 92	ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND ND	H H H H H	1000 1000 2000 1000 1000	100 100 440 89 80 92 110	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol	ND ND ND ND ND ND	H H H H H H	1000 1000 2000 1000 1000 1000	100 100 440 89 80 92 110 80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20 20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylnaphthalene	ND ND ND ND ND ND	H H H H H H	1000 1000 2000 1000 1000 1000 1000	100 100 440 89 80 92 110 80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	200 200 200 200 200 200 200 200 200 200
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylnaphthalene 2-Nitroaniline	ND ND ND ND ND ND ND	H H H H H H H	1000 1000 2000 1000 1000 1000 1000 1000	100 100 440 89 80 92 110 80 120 84	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20 20 20 20 20 20 20
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	ND N	H H H H H H H	1000 1000 2000 1000 1000 1000 1000 1000	100 100 440 89 80 92 110 80 120 84	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00 11/16/20 15:00	11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11 11/23/20 19:11	20 20 20 20 20 20 20 20

Eurofins TestAmerica, Buffalo

11/16/20 15:00 11/23/20 19:11

11/16/20 15:00 11/23/20 19:11

Page 25 of 3614

2000

1000

440 ug/L

90 ug/L

ND H

ND H

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

200

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35

Date Received: 11/06/20 11:30

Matrix: Water

Method: 8270D - Semivola Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloro-3-methylphenol	ND	Н	1000	90	ug/L		11/16/20 15:00	11/23/20 19:11	200
4-Chloroaniline	ND	Н	1000	120	ug/L		11/16/20 15:00	11/23/20 19:11	200
4-Chlorophenyl phenyl ether	ND	Н	1000	70	ug/L		11/16/20 15:00	11/23/20 19:11	200
4-Methylphenol	ND	Н	2000	72	ug/L		11/16/20 15:00	11/23/20 19:11	200
4-Nitroaniline	ND	Н	2000		ug/L		11/16/20 15:00	11/23/20 19:11	200
4-Nitrophenol	ND	Н	2000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Acenaphthene	360	J H	1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Acenaphthylene	830		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Acetophenone	ND	Н	1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Anthracene		J H	1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Atrazine	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Benzaldehyde	ND		1000		ug/L			11/23/20 19:11	200
Benzo[a]anthracene	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Benzo[a]pyrene	230		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Benzo[a]pyrene Benzo[b]fluoranthene	130		1000		ug/L			11/23/20 19:11	200
Benzo[g,h,i]perylene		JH	1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Benzo[k]fluoranthene	ND.		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Bis(2-chloroethoxy)methane	ND		1000		ug/L			11/23/20 19:11	200
Bis(2-chloroethyl)ether	ND ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Bis(2-ethylhexyl) phthalate	ND ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
	ND		1000					11/23/20 19:11	200
Butyl benzyl phthalate Caprolactam	ND ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Carbazole	ND ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
					ug/L				200
Chrysene	170 ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Dibenz(a,h)anthracene			1000		ug/L		11/16/20 15:00	11/23/20 19:11	
Di-n-butyl phthalate	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Di-n-octyl phthalate	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Dibenzofuran	ND		2000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Diethyl phthalate	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Dimethyl phthalate	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Fluoranthene		JH	1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Fluorene	430		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Hexachlorobenzene	ND		1000		ug/L		11/16/20 15:00	11/23/20 19:11	200
Hexachlorobutadiene	ND		1000		ug/L			11/23/20 19:11	200
Hexachlorocyclopentadiene	ND		1000		ug/L			11/23/20 19:11	200
Hexachloroethane	ND		1000		ug/L		11/16/20 15:00		200
Indeno[1,2,3-cd]pyrene	ND	Н	1000		ug/L		11/16/20 15:00		200
Isophorone	ND		1000		ug/L		11/16/20 15:00		200
N-Nitrosodi-n-propylamine	ND		1000		ug/L		11/16/20 15:00		200
N-Nitrosodiphenylamine	ND	-	1000		ug/L		11/16/20 15:00		200
Naphthalene	12000		1000		ug/L		11/16/20 15:00		200
Nitrobenzene	ND		1000		ug/L		11/16/20 15:00		200
Pentachlorophenol	ND	Н	2000	440	ug/L		11/16/20 15:00	11/23/20 19:11	200
Phenanthrene	1300	Н	1000	88	ug/L		11/16/20 15:00	11/23/20 19:11	200
Phenol	ND	Н	1000	78	ug/L		11/16/20 15:00	11/23/20 19:11	200
Pyrene	660	J H	1000	68	ug/L		11/16/20 15:00	11/23/20 19:11	200
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)		X	46 - 120				11/16/20 15:00	11/23/20 19:11	200
Phenol-d5 (Surr)	0	X	22 - 120				11/16/20 15:00	11/23/20 19:11	200

Report

Eurofins TestAmerica, Buffalo

Page 26 of 3614

12/03/2020

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35 Matrix: Water Date Received: 11/06/20 11:30

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL (Continue		Method: 8270D -	- Semivolatile	Organic Compounds	(GC/MS) - DL	(Continued
---	--	-----------------	----------------	--------------------------	--------------	------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	0	X	60 - 148	11/16/20 15:00	11/23/20 19:11	200
2,4,6-Tribromophenol (Surr)	0	X	41 - 120	11/16/20 15:00	11/23/20 19:11	200
2-Fluorobiphenyl (Surr)	105		48 - 120	11/16/20 15:00	11/23/20 19:11	200
2-Fluorophenol (Surr)	0	X	35 - 120	11/16/20 15:00	11/23/20 19:11	200

Method: 8081B - Organochlorine Pesticides (GC)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	5.0	0.92	ug/L		11/10/20 08:39	11/12/20 10:05	100
4,4'-DDE	ND	5.0	1.2	ug/L		11/10/20 08:39	11/12/20 10:05	100
4,4'-DDT	ND	5.0	1.1	ug/L		11/10/20 08:39	11/12/20 10:05	100
Aldrin	ND	5.0	0.81	ug/L		11/10/20 08:39	11/12/20 10:05	100
alpha-BHC	ND	5.0	0.77	ug/L		11/10/20 08:39	11/12/20 10:05	100
cis-Chlordane	ND	5.0	1.5	ug/L		11/10/20 08:39	11/12/20 10:05	100
beta-BHC	ND	5.0	2.5	ug/L		11/10/20 08:39	11/12/20 10:05	100
delta-BHC	ND	5.0	1.0	ug/L		11/10/20 08:39	11/12/20 10:05	100
Dieldrin	ND	5.0	0.98	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endosulfan I	ND	5.0	1.1	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endosulfan II	ND	5.0	1.2	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endosulfan sulfate	ND	5.0	1.6	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endrin	ND	5.0	1.4	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endrin aldehyde	ND	5.0	1.6	ug/L		11/10/20 08:39	11/12/20 10:05	100
Endrin ketone	ND	5.0	1.2	ug/L		11/10/20 08:39	11/12/20 10:05	100
gamma-BHC (Lindane)	ND	5.0	0.80	ug/L		11/10/20 08:39	11/12/20 10:05	100
trans-Chlordane	ND	5.0	1.1	ug/L		11/10/20 08:39	11/12/20 10:05	100
Heptachlor	ND	5.0	0.85	ug/L		11/10/20 08:39	11/12/20 10:05	100
Heptachlor epoxide	ND	5.0	0.74	ug/L		11/10/20 08:39	11/12/20 10:05	100
Methoxychlor	ND	5.0	1.4	ug/L		11/10/20 08:39	11/12/20 10:05	100
Toxaphene	ND	50	12	ug/L		11/10/20 08:39	11/12/20 10:05	100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	20 - 120	11/10/20 08:39	11/12/20 10:05	100
DCB Decachlorobiphenyl	0	X	20 - 120	11/10/20 08:39	11/12/20 10:05	100
Tetrachloro-m-xylene	0	X	44 - 120	11/10/20 08:39	11/12/20 10:05	100
Tetrachloro-m-xylene	0	X	44 - 120	11/10/20 08:39	11/12/20 10:05	100

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

95

Tetrachloro-m-xylene (Surr)

Analyte	Result Qu <u>al</u> ifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	DIE CEJ	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:57	ectt
PCB-1221	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1232	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1242	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1248	ND	0.50	0.18	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1254	ND	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1260	LADAN	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:57	604
PCB-1262	ND	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:57	1
PCB-1268	ND	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 06:57	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	86	39 - 121				11/11/20 09:34	11/13/20 06:57	1

Eurofins TestAmerica, Buffalo

11/11/20 09:34 11/13/20 06:57

Page 27 of 3614

39 - 121

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100

Lab Sample ID: 480-177853-2

Date Collected: 11/05/20 11:35 **Matrix: Water** Date Received: 11/06/20 11:30

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	42	19 - 120	11/11/20 09:34	11/13/20 06:57	1
DCB Decachlorobiphenyl (Surr)	48	19 - 120	11/11/20 09:34	11/13/20 06:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.8		0.20	0.060	mg/L		11/11/20 12:42	11/13/20 18:38	1
Antimony	ND		0.020	0.0068	mg/L		11/11/20 12:42	11/13/20 18:38	1
Arsenic	ND		0.015	0.0056	mg/L		11/11/20 12:42	11/13/20 18:38	1
Barium	0.68	1	0.0020	0.00070	mg/L		11/11/20 12:42	11/13/20 18:38	1
Beryllium	ND		0.0020	0.00030	mg/L		11/11/20 12:42	11/13/20 18:38	1
Cadmium	0.00091	J	0.0020	0.00050	mg/L		11/11/20 12:42	11/13/20 18:38	1
Calcium	217		0.50	0.10	mg/L		11/11/20 12:42	11/13/20 18:38	1
Chromium	0.0060		0.0040	0.0010	mg/L		11/11/20 12:42	11/13/20 18:38	1
Cobalt	0.0027	J	0.0040	0.00063	mg/L		11/11/20 12:42	11/13/20 18:38	1
Copper	0.018		0.010	0.0016	mg/L		11/11/20 12:42	11/13/20 18:38	1
Iron	4.9		0.050	0.019	mg/L		11/11/20 12:42	11/13/20 18:38	1
Lead	0.037		0.010	0.0030	mg/L		11/11/20 12:42	11/13/20 18:38	1
Magnesium	166		0.20	0.043	mg/L		11/11/20 12:42	11/13/20 18:38	1
Manganese	0.37		0.0030	0.00040	mg/L		11/11/20 12:42	11/13/20 18:38	1
Nickel	0.0035	J	0.010	0.0013	mg/L		11/11/20 12:42	11/13/20 18:38	1
Potassium	9.9		0.50	0.10	mg/L		11/11/20 12:42	11/13/20 18:38	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 12:42	11/13/20 18:38	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 12:42	11/13/20 18:38	1
Sodium	173		1.0	0.32	mg/L		11/11/20 12:42	11/13/20 18:38	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 12:42	11/13/20 18:38	1
Vanadium	0.010		0.0050	0.0015	mg/L		11/11/20 12:42	11/13/20 18:38	1
Zinc	0.062		0.010	0.0015	mg/L		11/11/20 12:42	11/13/20 18:38	1

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.00020 0.00012 mg/L 11/16/20 13:25 11/16/20 16:51 Mercury

Client Sample ID: MW-103 Lab Sample ID: 480-177853-3 Date Collected: 11/05/20 14:05 **Matrix: Water**

Date Received: 11/06/20 11:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	20	16	ug/L			11/11/20 14:13	20
1,1,2,2-Tetrachloroethane	ND	20	4.2	ug/L			11/11/20 14:13	20
1,1,2-Trichloroethane	ND	20	4.6	ug/L			11/11/20 14:13	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	20	6.2	ug/L			11/11/20 14:13	20
1,1-Dichloroethane	ND	20	7.6	ug/L			11/11/20 14:13	20
1,1-Dichloroethene	ND	20	5.8	ug/L			11/11/20 14:13	20
1,2,4-Trichlorobenzene	ND	20	8.2	ug/L			11/11/20 14:13	20
1,2-Dibromo-3-Chloropropane	ND	20	7.8	ug/L			11/11/20 14:13	20
1,2-Dichlorobenzene	ND	20	16	ug/L			11/11/20 14:13	20
1,2-Dichloroethane	ND	20	4.2	ug/L			11/11/20 14:13	20
1,2-Dichloropropane	ND	20	14	ug/L			11/11/20 14:13	20
1,3-Dichlorobenzene	ND	20	16	ug/L			11/11/20 14:13	20

Eurofins TestAmerica, Buffalo

12/03/2020 Page 28 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Dibromofluoromethane (Surr)

Client Sample ID: MW-103

Date Collected: 11/05/20 14:05 Matrix: Water
Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		20	17	ug/L			11/11/20 14:13	20
2-Butanone (MEK)	ND		200	26	ug/L			11/11/20 14:13	20
2-Hexanone	ND		100	25	ug/L			11/11/20 14:13	20
4-Methyl-2-pentanone (MIBK)	ND		100	42	ug/L			11/11/20 14:13	20
Acetone	ND		200	60	ug/L			11/11/20 14:13	20
Benzene	18	J	20	8.2	ug/L			11/11/20 14:13	20
Bromodichloromethane	ND		20	7.8	ug/L			11/11/20 14:13	20
Bromoform	ND		20	5.2	ug/L			11/11/20 14:13	20
Bromomethane	ND		20	14	ug/L			11/11/20 14:13	20
Carbon disulfide	ND		20	3.8	ug/L			11/11/20 14:13	20
Carbon tetrachloride	ND		20	5.4	ug/L			11/11/20 14:13	20
Chlorobenzene	ND		20	15	ug/L			11/11/20 14:13	20
Dibromochloromethane	ND		20	6.4	ug/L			11/11/20 14:13	20
Chloroethane	ND		20	6.4	ug/L			11/11/20 14:13	20
Chloroform	ND		20	6.8	ug/L			11/11/20 14:13	20
Chloromethane	ND		20	7.0	ug/L			11/11/20 14:13	20
cis-1,2-Dichloroethene	ND		20	16	ug/L			11/11/20 14:13	20
cis-1,3-Dichloropropene	ND		20	7.2	ug/L			11/11/20 14:13	20
Cyclohexane	ND		20	3.6	ug/L			11/11/20 14:13	20
Dichlorodifluoromethane	ND		20	14	ug/L			11/11/20 14:13	20
Ethylbenzene	170		20	15	ug/L			11/11/20 14:13	20
1,2-Dibromoethane	ND		20	15	ug/L			11/11/20 14:13	20
Isopropylbenzene	ND		20	16	ug/L			11/11/20 14:13	20
Methyl acetate	ND		50	26	ug/L			11/11/20 14:13	20
Methyl tert-butyl ether	ND		20	3.2	ug/L			11/11/20 14:13	20
Methylcyclohexane	ND		20	3.2	ug/L			11/11/20 14:13	20
Methylene Chloride	ND		20	8.8	ug/L			11/11/20 14:13	20
Styrene	ND		20	15	ug/L			11/11/20 14:13	20
Tetrachloroethene	ND		20	7.2	ug/L			11/11/20 14:13	20
Toluene	10	J	20	10	ug/L			11/11/20 14:13	20
trans-1,2-Dichloroethene	ND		20	18	ug/L			11/11/20 14:13	20
trans-1,3-Dichloropropene	ND		20	7.4	ug/L			11/11/20 14:13	20
Trichloroethene	ND		20	9.2	ug/L			11/11/20 14:13	20
Trichlorofluoromethane	ND		20	18	ug/L			11/11/20 14:13	20
Vinyl chloride	ND		20	18	ug/L			11/11/20 14:13	20
Xylenes, Total	110		40	13	ug/L			11/11/20 14:13	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	105		80 - 120			•		11/11/20 14:13	20
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					11/11/20 14:13	20
4-Bromofluorobenzene (Surr)	105		73 - 120					11/11/20 14:13	20

Method: 8270D - Semivolatile	e Organic Compounds (G	SC/MS)						
Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		11/11/20 15:04	11/15/20 22:00	1
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		11/11/20 15:04	11/15/20 22:00	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/11/20 15:04	11/15/20 22:00	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/11/20 15:04	11/15/20 22:00	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/11/20 15:04	11/15/20 22:00	1

75 - 123

108

Eurofins TestAmerica, Buffalo

11/11/20 14:13

Lab Sample ID: 480-177853-3

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-103 Lab Sample ID: 480-177853-3

Date Collected: 11/05/20 14:05

Date Received: 11/06/20 11:30

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND ND	5.0	0.50	ug/L		11/11/20 15:04	11/15/20 22:00	
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/11/20 15:04	11/15/20 22:00	
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/11/20 15:04	11/15/20 22:00	
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:00	
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/11/20 15:04	11/15/20 22:00	
2-Chlorophenol	ND	5.0	0.53	ug/L		11/11/20 15:04	11/15/20 22:00	
2-Methylphenol	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:00	
2-Methylnaphthalene	Ø 74 E`	5.0	0.60	ug/L		11/11/20 15:04	11/15/20 22:00	
2-Nitroaniline	ND	10		ug/L		11/11/20 15:04	11/15/20 22:00	
2-Nitrophenol	ND	5.0	0.48	ug/L		11/11/20 15:04	11/15/20 22:00	
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:00	
3-Nitroaniline	ND	10		ug/L		11/11/20 15:04	11/15/20 22:00	
4,6-Dinitro-2-methylphenol	ND	10		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Bromophenyl phenyl ether	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Chloro-3-methylphenol	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Chloroaniline	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Chlorophenyl phenyl ether	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Methylphenol	ND	10		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Nitroaniline	ND	10		ug/L		11/11/20 15:04	11/15/20 22:00	
4-Nitrophenol	W W	10		ug/L			11/15/20 22:00	CCI
Acenaphthene	440 =	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
· · ·	12	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Acenaphthylene Acetophenone	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
•		5.0		_		11/11/20 15:04	11/15/20 22:00	
Anthracene Atrazine	17 ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
	ND			ug/L				
Benzaldehyde		5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Benzo[a]anthracene	0.68 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Benzo[a]pyrene	0.52 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Benzo[b]fluoranthene	0.34 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Benzo[g,h,i]perylene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Benzo[k]fluoranthene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Bis(2-chloroethoxy)methane	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Bis(2-chloroethyl)ether	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Butyl benzyl phthalate	ND	5.0		ug/L			11/15/20 22:00	
Caprolactam	ND	5.0		ug/L		11/11/20 15:04		
Carbazole	1.5 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Chrysene	0.53 J	5.0	0.33	ug/L		11/11/20 15:04	11/15/20 22:00	
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		11/11/20 15:04	11/15/20 22:00	
Di-n-butyl phthalate	ND	5.0	0.31	ug/L		11/11/20 15:04	11/15/20 22:00	
Di-n-octyl phthalate	ND	5.0	0.47	ug/L		11/11/20 15:04	11/15/20 22:00	
Dibenzofuran	7.2 J	10	0.51	ug/L		11/11/20 15:04	11/15/20 22:00	
Diethyl phthalate	ND	5.0	0.22	ug/L		11/11/20 15:04	11/15/20 22:00	
Dimethyl phthalate	ND	5.0	0.36	ug/L		11/11/20 15:04	11/15/20 22:00	
Fluoranthene	7.0	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:00	
Fluorene	42	5.0	0.36	ug/L		11/11/20 15:04	11/15/20 22:00	
Hexachlorobenzene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Hexachlorobutadiene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	
Hexachlorocyclopentadiene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:00	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-103

Lab Sample ID: 480-177853-3

Date Collected: 11/05/20 14:05 **Matrix: Water** Date Received: 11/06/20 11:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachloroethane	ND ND	5.0	0.59	ug/L		11/11/20 15:04	11/15/20 22:00	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		11/11/20 15:04	11/15/20 22:00	1
Isophorone	ND	5.0	0.43	ug/L		11/11/20 15:04	11/15/20 22:00	1
N-Nitrosodi-n-propylamine	ND	5.0	0.54	ug/L		11/11/20 15:04	11/15/20 22:00	1
N-Nitrosodiphenylamine	ND	5.0	0.51	ug/L		11/11/20 15:04	11/15/20 22:00	1
Naphthalene	27	5.0	0.76	ug/L		11/11/20 15:04	11/15/20 22:00	1
Nitrobenzene	ND	5.0	0.29	ug/L		11/11/20 15:04	11/15/20 22:00	1
Pentachlorophenol	ND	10	2.2	ug/L		11/11/20 15:04	11/15/20 22:00	1
Phenanthrene	♦ ~73-E	5.0	0.44	ug/L		11/11/20 15:04	11/15/20 22:00	1
Phenol	1.9 J	5.0	0.39	ug/L		11/11/20 15:04	11/15/20 22:00	1
Pyrene	10	5.0	0.34	ug/L		11/11/20 15:04	11/15/20 22:00	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	103	46 - 120				11/11/20 15:04	11/15/20 22:00	1

Phenol-d5 (Surr)	50	22 - 120	11/11/20 15:04 11/15/20 22:00	1
p-Terphenyl-d14 (Surr)	78	60 - 148	11/11/20 15:04 11/15/20 22:00	1
2,4,6-Tribromophenol (Surr)	115	41 - 120	11/11/20 15:04 11/15/20 22:00	1
2-Fluorobiphenyl (Surr)	108	48 - 120	11/11/20 15:04 11/15/20 22:00	1
2-Fluorophenol (Surr)	69	35 - 120	11/11/20 15:04 11/15/20 22:00	1
- 		I (00/M0) DI		

Analyte	Resul	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	NE)	25	3.3	ug/L		11/11/20 15:04	11/23/20 23:27	5
bis (2-chloroisopropyl) ether	NE)	25	2.6	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4,5-Trichlorophenol	NE)	25	2.4	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4,6-Trichlorophenol	NE)	25	3.1	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4-Dichlorophenol	NE)	25	2.6	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4-Dimethylphenol	NE)	25	2.5	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4-Dinitrophenol	NE)	50	11	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,4-Dinitrotoluene	NE)	25	2.2	ug/L		11/11/20 15:04	11/23/20 23:27	5
2,6-Dinitrotoluene	NE)	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Chloronaphthalene	NE)	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Chlorophenol	NE)	25	2.7	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Methylphenol	NE)	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Methylnaphthalene	A 81		25	3.0	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Nitroaniline	NE)	50	2.1	ug/L		11/11/20 15:04	11/23/20 23:27	5
2-Nitrophenol	NE)	25	2.4	ug/L		11/11/20 15:04	11/23/20 23:27	5
3,3'-Dichlorobenzidine	NE)	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:27	5
3-Nitroaniline	NE)	50	2.4	ug/L		11/11/20 15:04	11/23/20 23:27	5
4,6-Dinitro-2-methylphenol	NE)	50	11	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Bromophenyl phenyl ether	NE)	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Chloro-3-methylphenol	NE)	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Chloroaniline	NE)	25	3.0	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Chlorophenyl phenyl ether	NE)	25	1.8	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Methylphenol	NE)	50	1.8	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Nitroaniline	NE)	50	1.3	ug/L		11/11/20 15:04	11/23/20 23:27	5
4-Nitrophenol	NE)	50	7.6	ug/L		11/11/20 15:04	11/23/20 23:27	5
Acenaphthene	₩ 110)	25	2.1	ug/L		11/11/20 15:04	11/23/20 23:27	5
Acenaphthylene	10) J	25	1.9	ug/L		11/11/20 15:04	11/23/20 23:27	5

Eurofins TestAmerica, Buffalo

11/11/20 15:04 11/23/20 23:27

25

2.7 ug/L

ND

Acetophenone

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-103 Lab Sample ID: 480-177853-3

Date Collected: 11/05/20 14:05

Date Received: 11/06/20 11:30

Matrix: Water

Method: 8270D - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Anthracene	16	J	25	1.4	ug/L		11/11/20 15:04	11/23/20 23:27	
Atrazine	ND		25	2.3	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzaldehyde	7.3	J	25	1.3	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzo[a]anthracene	ND		25	1.8	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzo[a]pyrene	ND		25	2.4	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzo[b]fluoranthene	ND		25	1.7	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		11/11/20 15:04	11/23/20 23:27	
Benzo[k]fluoranthene	ND		25	3.7	ug/L		11/11/20 15:04	11/23/20 23:27	
Bis(2-chloroethoxy)methane	ND		25	1.8	ug/L		11/11/20 15:04	11/23/20 23:27	
Bis(2-chloroethyl)ether	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Bis(2-ethylhexyl) phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Butyl benzyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	;
Caprolactam	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Carbazole	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Chrysene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Dibenz(a,h)anthracene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Di-n-butyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Di-n-octyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Dibenzofuran	7.2	J	50		ug/L		11/11/20 15:04	11/23/20 23:27	
Diethyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Dimethyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Fluoranthene	6.8	J	25		ug/L		11/11/20 15:04	11/23/20 23:27	
Fluorene	40		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Hexachlorobenzene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Hexachlorobutadiene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Hexachlorocyclopentadiene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Hexachloroethane	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	;
Indeno[1,2,3-cd]pyrene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Isophorone	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
N-Nitrosodi-n-propylamine	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
N-Nitrosodiphenylamine	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Naphthalene	27		25		ug/L			11/23/20 23:27	
Nitrobenzene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:27	
Pentachlorophenol	ND		50		ug/L			11/23/20 23:27	
Phenanthrene	A 77		25		ug/L			11/23/20 23:27	
Phenol	ND.		25		ug/L			11/23/20 23:27	
Pyrene	9.7	J	25		ug/L			11/23/20 23:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	89		46 - 120				11/11/20 15:04	11/23/20 23:27	2
Phenol-d5 (Surr)	43		22 - 120				11/11/20 15:04		
p-Terphenyl-d14 (Surr)	76		60 - 148					11/23/20 23:27	
2,4,6-Tribromophenol (Surr)	114		41 - 120					11/23/20 23:27	,
2-Fluorobiphenyl (Surr)	104		48 - 120					11/23/20 23:27	
2-Fluorophenol (Surr)	59		35 - 120					11/23/20 23:27	
			JJ - 120	A ROOK	k				
Method: 8081B - Organochlo				- 1					
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
4,4'-DDD	ND		0.050	0.0092	ua/l		11/10/20 08:39	11/12/20 10:25	

Eurofins TestAmerica, Buffalo

Page 32 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-103 Lab Sample ID: 480-177853-3

Date Collected: 11/05/20 14:05

Date Received: 11/06/20 11:30

Matrix: Water

Method: 8081B - Organoc Analyte		Qualifier	RĹ	MDL	Unit	D	Prepared	Analyzed	Dil F
I,4'-DDT	ND		0.050	0.011	ug/L		11/10/20 08:39	11/12/20 10:25	
ldrin	ND		0.050	0.0081	ug/L		11/10/20 08:39	11/12/20 10:25	
lpha-BHC	ND		0.050	0.0077	ug/L		11/10/20 08:39	11/12/20 10:25	
is-Chlordane	ND		0.050	0.015	-		11/10/20 08:39	11/12/20 10:25	
eta-BHC	ND		0.050	0.025				11/12/20 10:25	
elta-BHC	ND		0.050	0.010	_		11/10/20 08:39	11/12/20 10:25	
Dieldrin	ND		0.050	0.0098	-			11/12/20 10:25	
ndosulfan I	ND		0.050	0.011			11/10/20 08:39	11/12/20 10:25	
indosulfan II	ND		0.050	0.012	•		11/10/20 08:39	11/12/20 10:25	
Endosulfan sulfate	ND		0.050	0.016	•		11/10/20 08:39	11/12/20 10:25	
Indrin	ND		0.050	0.014				11/12/20 10:25	
Endrin aldehyde	ND		0.050	0.014	-		11/10/20 08:39	11/12/20 10:25	
Endrin ketone	ND		0.050	0.010	•			11/12/20 10:25	
		TR ()	0.050	0.0080				11/12/20 10:25	MI
gamma-BHC (Lindane) rans-Chlordane	0.050 2.016 ND		0.050	0.0080	-		11/10/20 08:39	11/12/20 10:25	J" L
leptachlor	ND ND		0.050	0.011	•			11/12/20 10:25	
								11/12/20 10:25	
leptachlor epoxide	ND		0.050	0.0074	•				
Methoxychlor	ND		0.050	0.014	-		11/10/20 08:39	11/12/20 10:25	
oxaphene	ND		0.50	0.12	ug/L		11/10/20 08:39	11/12/20 10:25	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
CB Decachlorobiphenyl	50		20 - 120				11/10/20 08:39	11/12/20 10:25	
CB Decachlorobiphenyl	50		20 - 120				11/10/20 08:39	11/12/20 10:25	
etrachloro-m-xylene	96		44 - 120				11/10/20 08:39	11/12/20 10:25	
etrachloro-m-xylene	67		44 - 120				11/10/20 08:39	11/12/20 10:25	
Method: 8082A - Polychlo			-			_			5
nalyte		Qualifier	RL 0.50	MDL		D	Prepared	Analyzed	Dil F
CB-1016		W	0.50		ug/L		11/11/20 09:34	11/13/20 07:12	CC
CB-1221	ND		0.50		ug/L		11/11/20 09:34	11/13/20 07:12	
PCB-1232	ND		0.50		ug/L		11/11/20 09:34	11/13/20 07:12	
PCB-1242	ND		0.50		ug/L		11/11/20 09:34	11/13/20 07:12	
CB-1248	ND		0.50		ug/L		11/11/20 09:34	11/13/20 07:12	
PCB-1254	ND	, <u></u>	0.50		ug/L			11/13/20 07:12	
PCB-1260	ME	at	0.50	0.25	ug/L		11/11/20 09:34	11/13/20 07:12	α
	ND		0.50	0.25	ug/L		11/11/20 09:34	11/13/20 07:12	
			0.50	0.25	ug/L		11/11/20 09:34	11/13/20 07:12	
	ND		0.50						
CB-1268	ND %Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
PCB-1268		Qualifier					Prepared 11/11/20 09:34	Analyzed 11/13/20 07:12	Dil F
CCB-1268 Surrogate Tetrachloro-m-xylene (Surr)	%Recovery	Qualifier	Limits				11/11/20 09:34		Dil F
CB-1268 urrogate etrachloro-m-xylene (Surr) etrachloro-m-xylene (Surr)	%Recovery 97	Qualifier	Limits 39 - 121				11/11/20 09:34 11/11/20 09:34	11/13/20 07:12	Dil F
CB-1268 urrogate etrachloro-m-xylene (Surr) etrachloro-m-xylene (Surr) CB Decachlorobiphenyl (Surr)	%Recovery 97 111	Qualifier	Limits 39 - 121 39 - 121				11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 07:12 11/13/20 07:12	Dil I
urrogate etrachloro-m-xylene (Surr) etrachloro-m-xylene (Surr) CB Decachlorobiphenyl (Surr) CB Decachlorobiphenyl (Surr)	%Recovery 97 111 55 62	Qualifier	Limits 39 - 121 39 - 121 19 - 120				11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 07:12 11/13/20 07:12 11/13/20 07:12	Dil I
cB-1268 urrogate etrachloro-m-xylene (Surr) etrachloro-m-xylene (Surr) cB Decachlorobiphenyl (Surr) cB Decachlorobiphenyl (Surr) lCB Decachlorobiphenyl (Surr)	%Recovery 97 111 55 62	Qualifier Qualifier	Limits 39 - 121 39 - 121 19 - 120	MDL	Unit	D	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 07:12 11/13/20 07:12 11/13/20 07:12	
ecropate Surrogate Setrachloro-m-xylene (Surr) Setrachloro-m-xylene (Surr) SCB Decachlorobiphenyl (Surr) SCB Decachlorobiphenyl (Surr) SCB Decachlorobiphenyl (Surr) SCB Decachlorobiphenyl (Surr)	%Recovery 97 111 55 62		Limits 39 - 121 39 - 121 19 - 120 19 - 120	MDL 0.060		<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34	11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 11/13/20 07:12	
PCB-1268 Surrogate Tetrachloro-m-xylene (Surr) Tetrachloro-m-xylene (Surr) DCB Decachlorobiphenyl (Surr) DCB Decachlorobiphenyl (Surr) Method: 6010C - Metals (Idanalyte Aluminum	%Recovery 97 111 55 62 CP) Result		Limits 39 - 121 39 - 121 19 - 120 19 - 120 RL		mg/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared	11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 Analyzed	Dil F
PCB-1262 PCB-1268 Surrogate Tetrachloro-m-xylene (Surr) Tetrachloro-m-xylene (Surr) DCB Decachlorobiphenyl (Surr) DCB Decachlorobiphenyl (Surr) Method: 6010C - Metals (Idanalyte Aluminum Antimony Arsenic	%Recovery 97 111 55 62 CP) Result 0.21		Limits 39 - 121 39 - 121 19 - 120 19 - 120 RL 0.20	0.060	mg/L mg/L	<u>D</u>	11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 11/11/20 09:34 Prepared 11/11/20 12:42 11/11/20 12:42	11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 11/13/20 07:12 Analyzed 11/13/20 18:53	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-103 Lab Sample ID: 480-177853-3

Date Collected: 11/05/20 14:05 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.0020	0.00030	mg/L		11/11/20 12:42	11/13/20 18:53	1
Cadmium	ND		0.0020	0.00050	mg/L		11/11/20 12:42	11/13/20 18:53	1
Calcium	102		0.50	0.10	mg/L		11/11/20 12:42	11/13/20 18:53	1
Chromium	ND		0.0040	0.0010	mg/L		11/11/20 12:42	11/13/20 18:53	1
Cobalt	ND		0.0040	0.00063	mg/L		11/11/20 12:42	11/13/20 18:53	1
Copper	0.0022	J	0.010	0.0016	mg/L		11/11/20 12:42	11/13/20 18:53	1
Iron	2.0		0.050	0.019	mg/L		11/11/20 12:42	11/13/20 18:53	1
Lead	0.0070	J	0.010	0.0030	mg/L		11/11/20 12:42	11/13/20 18:53	1
Magnesium	32.5		0.20	0.043	mg/L		11/11/20 12:42	11/13/20 18:53	1
Manganese	0.89		0.0030	0.00040	mg/L		11/11/20 12:42	11/13/20 18:53	1
Nickel	ND		0.010	0.0013	mg/L		11/11/20 12:42	11/13/20 18:53	1
Potassium	9.2		0.50	0.10	mg/L		11/11/20 12:42	11/13/20 18:53	1
Selenium	ND		0.025	0.0087	mg/L		11/11/20 12:42	11/13/20 18:53	1
Silver	ND		0.0060	0.0017	mg/L		11/11/20 12:42	11/13/20 18:53	1
Sodium	50.9		1.0	0.32	mg/L		11/11/20 12:42	11/13/20 18:53	1
Thallium	ND		0.020	0.010	mg/L		11/11/20 12:42	11/13/20 18:53	1
Vanadium	ND		0.0050	0.0015	mg/L		11/11/20 12:42	11/13/20 18:53	1
Zinc	0.0051	J	0.010	0.0015	mg/L		11/11/20 12:42	11/13/20 18:53	1
Method: 7470A - Merci	ury (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/16/20 13:25	11/16/20 16:52	1

Client Sample ID: MW-106

Date Collected: 11/05/20 15:15

Lab Sample ID: 480-177853-4

Matrix: Water

Date Collected: 11/05/20 15:15 Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20	16	ug/L			11/11/20 14:37	20
1,1,2,2-Tetrachloroethane	ND		20	4.2	ug/L			11/11/20 14:37	20
1,1,2-Trichloroethane	ND		20	4.6	ug/L			11/11/20 14:37	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20	6.2	ug/L			11/11/20 14:37	20
1,1-Dichloroethane	ND		20	7.6	ug/L			11/11/20 14:37	20
1,1-Dichloroethene	ND		20	5.8	ug/L			11/11/20 14:37	20
1,2,4-Trichlorobenzene	ND		20	8.2	ug/L			11/11/20 14:37	20
1,2-Dibromo-3-Chloropropane	ND		20	7.8	ug/L			11/11/20 14:37	20
1,2-Dichlorobenzene	ND		20	16	ug/L			11/11/20 14:37	20
1,2-Dichloroethane	ND		20	4.2	ug/L			11/11/20 14:37	20
1,2-Dichloropropane	ND		20	14	ug/L			11/11/20 14:37	20
1,3-Dichlorobenzene	ND		20	16	ug/L			11/11/20 14:37	20
1,4-Dichlorobenzene	ND		20	17	ug/L			11/11/20 14:37	20
2-Butanone (MEK)	ND		200	26	ug/L			11/11/20 14:37	20
2-Hexanone	ND		100	25	ug/L			11/11/20 14:37	20
4-Methyl-2-pentanone (MIBK)	ND		100	42	ug/L			11/11/20 14:37	20
Acetone	ND		200	60	ug/L			11/11/20 14:37	20
Benzene	ND		20	8.2	ug/L			11/11/20 14:37	20
Bromodichloromethane	ND		20	7.8	ug/L			11/11/20 14:37	20
Bromoform	ND		20	5.2	ug/L			11/11/20 14:37	20
Bromomethane	ND		20	14	ug/L			11/11/20 14:37	20

Eurofins TestAmerica, Buffalo

Page 34 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-106 Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15 Matrix: Water Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Carbon disulfide	ND		20	3.8	ug/L			11/11/20 14:37	20
Carbon tetrachloride	ND		20	5.4	ug/L			11/11/20 14:37	20
Chlorobenzene	ND		20	15	ug/L			11/11/20 14:37	20
Dibromochloromethane	ND		20	6.4	ug/L			11/11/20 14:37	20
Chloroethane	ND		20	6.4	ug/L			11/11/20 14:37	20
Chloroform	ND		20	6.8	ug/L			11/11/20 14:37	20
Chloromethane	ND		20	7.0	ug/L			11/11/20 14:37	20
cis-1,2-Dichloroethene	ND		20	16	ug/L			11/11/20 14:37	20
cis-1,3-Dichloropropene	ND		20	7.2	ug/L			11/11/20 14:37	20
Cyclohexane	ND		20	3.6	ug/L			11/11/20 14:37	20
Dichlorodifluoromethane	ND		20	14	ug/L			11/11/20 14:37	20
Ethylbenzene	200		20	15	ug/L			11/11/20 14:37	20
1,2-Dibromoethane	ND		20	15	ug/L			11/11/20 14:37	20
Isopropylbenzene	16	J	20	16	ug/L			11/11/20 14:37	20
Methyl acetate	ND		50	26	ug/L			11/11/20 14:37	20
Methyl tert-butyl ether	ND		20	3.2	ug/L			11/11/20 14:37	20
Methylcyclohexane	ND		20	3.2	ug/L			11/11/20 14:37	20
Methylene Chloride	ND		20	8.8	ug/L			11/11/20 14:37	20
Styrene	ND		20	15	ug/L			11/11/20 14:37	20
Tetrachloroethene	ND		20	7.2	ug/L			11/11/20 14:37	20
Toluene	ND		20	10	ug/L			11/11/20 14:37	20
trans-1,2-Dichloroethene	ND		20	18	ug/L			11/11/20 14:37	20
trans-1,3-Dichloropropene	ND		20	7.4	ug/L			11/11/20 14:37	20
Trichloroethene	ND		20	9.2	ug/L			11/11/20 14:37	20
Trichlorofluoromethane	ND		20	18	ug/L			11/11/20 14:37	20
Vinyl chloride	ND		20	18	ug/L			11/11/20 14:37	20
Xylenes, Total	74		40	13	ug/L			11/11/20 14:37	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	104		80 - 120					11/11/20 14:37	2
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					11/11/20 14:37	2
4-Bromofluorobenzene (Surr)	107		73 - 120					11/11/20 14:37	2
Dibromofluoromethane (Surr)	109		75 - 123					11/11/20 14:37	2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	27	5.0	0.65	ug/L		11/11/20 15:04	11/15/20 22:28	1
bis (2-chloroisopropyl) ether	wat	5.0	0.52	ug/L		11/11/20 15:04	11/15/20 22:28	CC 11
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/11/20 15:04	11/15/20 22:28	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:28	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/11/20 15:04	11/15/20 22:28	1
2-Chlorophenol	ND	5.0	0.53	ug/L		11/11/20 15:04	11/15/20 22:28	1
2-Methylphenol	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:28	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		11/11/20 15:04	11/15/20 22:28	1
2-Nitroaniline	ND	10	0.42	ug/L		11/11/20 15:04	11/15/20 22:28	1

Eurofins TestAmerica, Buffalo

Page 35 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-106 Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15

Date Received: 11/06/20 11:30

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2-Nitrophenol	ND ND	5.0	0.48	ug/L		11/11/20 15:04	11/15/20 22:28	
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		11/11/20 15:04	11/15/20 22:28	
3-Nitroaniline	ND	10	0.48	ug/L		11/11/20 15:04	11/15/20 22:28	
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Chloroaniline	ND	5.0	0.59	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Methylphenol	ND	10		ug/L		11/11/20 15:04	11/15/20 22:28	
4-Nitroaniline	ND	10	0.25	ug/L		11/11/20 15:04	11/15/20 22:28	
4-Nitrophenol	W (L)	10		ug/L		11/11/20 15:04	11/15/20 22:28	CCL
Acenaphthene	₹ 120 E	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Acenaphthylene	5.6	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Acetophenone	3.9 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Anthracene	17	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Atrazine	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Benzaldehyde	ND	5.0		ug/L			11/15/20 22:28	
Benzo[a]anthracene	0.53 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Benzo[a]pyrene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Benzo[b]fluoranthene	ND	5.0		ug/L			11/15/20 22:28	
Benzo[g,h,i]perylene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Benzo[k]fluoranthene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Bis(2-chloroethoxy)methane	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Bis(2-chloroethyl)ether	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Butyl benzyl phthalate	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Caprolactam	ND ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Carbazole	1.8 J	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
	0.46 J	5.0				11/11/20 15:04	11/15/20 22:28	
Chrysene	0.46 J ND			ug/L ug/L			11/15/20 22:28	
Dibenz(a,h)anthracene		5.0		_		11/11/20 15:04		
Di-n-butyl phthalate	ND ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Di-n-octyl phthalate	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Dibenzofuran	4.5 J	10		ug/L		11/11/20 15:04	11/15/20 22:28	
Diethyl phthalate	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Dimethyl phthalate	ND	5.0		ug/L			11/15/20 22:28	
Fluoranthene	6.1	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Fluorene	44	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Hexachlorobenzene	ND	5.0		ug/L			11/15/20 22:28	
Hexachlorobutadiene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Hexachlorocyclopentadiene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Hexachloroethane	ND	5.0		ug/L			11/15/20 22:28	
Indeno[1,2,3-cd]pyrene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Isophorone	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
N-Nitrosodi-n-propylamine	ND	5.0		ug/L			11/15/20 22:28	
N-Nitrosodiphenylamine	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Naphthalene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Nitrobenzene	ND	5.0		ug/L		11/11/20 15:04	11/15/20 22:28	
Pentachlorophenol	ND	10	2.2	ug/L		11/11/20 15:04	11/15/20 22:28	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-106 Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15

Date Received: 11/06/20 11:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.50	J	5.0	0.39	ug/L		11/11/20 15:04	11/15/20 22:28	1
Pyrene	10		5.0	0.34	ug/L		11/11/20 15:04	11/15/20 22:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	101		46 - 120				11/11/20 15:04	11/15/20 22:28	1
Phenol-d5 (Surr)	54		22 - 120				11/11/20 15:04	11/15/20 22:28	1
p-Terphenyl-d14 (Surr)	67		60 - 148				11/11/20 15:04	11/15/20 22:28	1
2,4,6-Tribromophenol (Surr)	117		41 - 120				11/11/20 15:04	11/15/20 22:28	1
2-Fluorobiphenyl (Surr)	97		48 - 120				11/11/20 15:04	11/15/20 22:28	1
2-Fluorophenol (Surr)	77		35 - 120	_	~ I	,	11/11/20 15:04	11/15/20 22:28	1

Method: 8270D - Semivolatile	Organic	Compounds	(GC/MS) - DL
------------------------------	---------	-----------	--------------

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	26	25	3.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
bis (2-chloroisopropyl) ether	ND	25	2.6	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4,5-Trichlorophenol	ND	25	2.4	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4,6-Trichlorophenol	ND	25	3.1	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4-Dichlorophenol	ND	25	2.6	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4-Dimethylphenol	ND	25	2.5	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4-Dinitrophenol	ND	50	11	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,4-Dinitrotoluene	ND	25	2.2	ug/L		11/11/20 15:04	11/23/20 23:55	5
2,6-Dinitrotoluene	ND	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Chloronaphthalene	ND	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Chlorophenol	ND	25	2.7	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Methylphenol	ND	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Methylnaphthalene	ND	25	3.0	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Nitroaniline	ND	50	2.1	ug/L		11/11/20 15:04	11/23/20 23:55	5
2-Nitrophenol	ND	25	2.4	ug/L		11/11/20 15:04	11/23/20 23:55	5
3,3'-Dichlorobenzidine	ND	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:55	5
3-Nitroaniline	ND	50	2.4	ug/L		11/11/20 15:04	11/23/20 23:55	5
4,6-Dinitro-2-methylphenol	ND	50	11	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Bromophenyl phenyl ether	ND	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Chloro-3-methylphenol	ND	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Chloroaniline	ND	25	3.0	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Chlorophenyl phenyl ether	ND	25	1.8	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Methylphenol	ND	50	1.8	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Nitroaniline	ND	50	1.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
4-Nitrophenol	ND	50	7.6	ug/L		11/11/20 15:04	11/23/20 23:55	5
Acenaphthene	★ 130	25	2.1	ug/L		11/11/20 15:04	11/23/20 23:55	5
Acenaphthylene	5.3 J	25	1.9	ug/L		11/11/20 15:04	11/23/20 23:55	5
Acetophenone	3.7 J	25	2.7	ug/L		11/11/20 15:04	11/23/20 23:55	5
Anthracene	15 J	25	1.4	ug/L		11/11/20 15:04	11/23/20 23:55	5
Atrazine	ND	25	2.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzaldehyde	ND	25	1.3	ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzo[a]anthracene	ND	25	1.8	ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzo[a]pyrene	ND	25	2.4	ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzo[b]fluoranthene	ND	25	1.7	ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzo[g,h,i]perylene	ND	25		ug/L		11/11/20 15:04	11/23/20 23:55	5
Benzo[k]fluoranthene	ND	25		ug/L		11/11/20 15:04	11/23/20 23:55	5
Bis(2-chloroethoxy)methane	ND	25		ug/L		11/11/20 15:04	11/23/20 23:55	5

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Endosulfan I

Endosulfan II

Client Sample ID: MW-106 Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15 Matrix: Water Date Received: 11/06/20 11:30

Method: 8270D - Semivolat	_	-	•	-		_	D	Amal:	D:: -
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethyl)ether	ND		25	2.0	ug/L		11/11/20 15:04	11/23/20 23:55	;
Bis(2-ethylhexyl) phthalate	ND		25				11/11/20 15:04	11/23/20 23:55	
Butyl benzyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	;
Caprolactam	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	;
Carbazole	1.6	. J	25				11/11/20 15:04	11/23/20 23:55	
Chrysene	ND		25		U		11/11/20 15:04	11/23/20 23:55	;
Dibenz(a,h)anthracene	ND		25		U		11/11/20 15:04	11/23/20 23:55	;
Di-n-butyl phthalate	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
Di-n-octyl phthalate	ND		25	2.4	ug/L		11/11/20 15:04	11/23/20 23:55	
Dibenzofuran	4.3	J	50	2.6	ug/L		11/11/20 15:04	11/23/20 23:55	
Diethyl phthalate	ND		25	1.1	ug/L		11/11/20 15:04	11/23/20 23:55	;
Dimethyl phthalate	ND		25	1.8	ug/L		11/11/20 15:04	11/23/20 23:55	;
Fluoranthene	6.1	J	25	2.0	ug/L		11/11/20 15:04	11/23/20 23:55	
luorene	45		25	1.8	ug/L		11/11/20 15:04	11/23/20 23:55	
Hexachlorobenzene	ND		25	2.6	ug/L		11/11/20 15:04	11/23/20 23:55	
Hexachlorobutadiene	ND		25	3.4	ug/L		11/11/20 15:04	11/23/20 23:55	
Hexachlorocyclopentadiene	ND		25	3.0	ug/L		11/11/20 15:04	11/23/20 23:55	
Hexachloroethane	ND		25	3.0	ug/L		11/11/20 15:04	11/23/20 23:55	
ndeno[1,2,3-cd]pyrene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
sophorone	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
- N-Nitrosodi-n-propylamine	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
N-Nitrosodiphenylamine	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
Naphthalene	ND		25		ug/L		11/11/20 15:04	11/23/20 23:55	
Vitrobenzene	ND		25		ug/L			11/23/20 23:55	
Pentachlorophenol	ND		50		ug/L		11/11/20 15:04	11/23/20 23:55	
Phenanthrene	★ 71		25		ug/L			11/23/20 23:55	
Phenol	ND		25		ug/L			11/23/20 23:55	
Pyrene	9.0	J	25		ug/L			11/23/20 23:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	87		46 - 120				11/11/20 15:04	11/23/20 23:55	
Phenol-d5 (Surr)	43		22 - 120				11/11/20 15:04	11/23/20 23:55	
o-Terphenyl-d14 (Surr)	62		60 - 148				11/11/20 15:04	11/23/20 23:55	
2,4,6-Tribromophenol (Surr)	122	X	41 - 120				11/11/20 15:04	11/23/20 23:55	
2-Fluorobiphenyl (Surr)	99		48 - 120				11/11/20 15:04	11/23/20 23:55	
2-Fluorophenol (Surr)	61		35 - 120		,		11/11/20 15:04	11/23/20 23:55	
, , ,				ARA	txac				
Method: 8081B - Organoch	lorine Pesticid	les (GC)		D I A	- 				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,4'-DDD	ND		0.050	0.0092	ug/L		11/10/20 08:39	11/11/20 16:01	
1,4'-DDE	ND		0.050	0.012	_		11/10/20 08:39	11/11/20 16:01	
I,4'-DDT	0.085	₽J	0.050	0.011	_		11/10/20 08:39	11/11/20 16:01	004
Aldrin	ND	./:	0.050	0.0081			11/10/20 08:39	11/11/20 16:01	
	ND		0.050	0.0077			11/10/20 08:39	11/11/20 16:01	
alpha-BHC					_				
alpha-BHC sis-Chlordane			0.050	0.015	ua/L		11/10/20 08:39	11/11/20 16:01	
sis-Chlordane	ND		0.050	0.015			11/10/20 08:39 11/10/20 08:39	11/11/20 16:01 11/11/20 16:01	
			0.050 0.050 0.050	0.015 0.025 0.010	ug/L		11/10/20 08:39 11/10/20 08:39 11/10/20 08:39	11/11/20 16:01 11/11/20 16:01 11/11/20 16:01	

Eurofins TestAmerica, Buffalo

11/10/20 08:39 11/11/20 16:01

11/10/20 08:39 11/11/20 16:01

Page 38 of 3614

0.050

0.050

ND

ND

0.011 ug/L

0.012 ug/L

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Copper

Magnesium

Iron

Lead

Client Sample ID: MW-106 Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15

Date Received: 11/06/20 11:30

Matrix: Water

Method: 8081B - Organochi	orine Pesticid	les (GC) (C	Continued)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	ND		0.050	0.016	ug/L		11/10/20 08:39	11/11/20 16:01	1
Endrin	ND		0.050	0.014	ug/L		11/10/20 08:39	11/11/20 16:01	1
Endrin aldehyde	0.051	×	0.050	0.016	ug/L		11/10/20 08:39	11/11/20 16:01	1
Endrin ketone	0.020	/	0.050	0.012	ug/L		11/10/20 08:39	11/11/20 16:01	1
gamma-BHC (Lindane)	0.11	J	0.050	0.0080	ug/L		11/10/20 08:39	11/11/20 16:01	aC1
trans-Chlordane	ND '		0.050	0.011	ug/L		11/10/20 08:39	11/11/20 16:01	,1
Heptachlor	0.10	J	0.050	0.0085	ug/L		11/10/20 08:39	11/11/20 16:01	cch
Heptachlor epoxide	ND	—	0.050	0.0074	ug/L		11/10/20 08:39	11/11/20 16:01	1
Methoxychlor	NA	ω .	0.050	0.014	ug/L		11/10/20 08:39	11/11/20 16:01	ركر
Toxaphene	•	W	0.50	0.12	ug/L		11/10/20 08:39	11/11/20 16:01	Ca
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	42		20 - 120				11/10/20 08:39	11/11/20 16:01	1
DCB Decachlorobiphenyl	37		20 - 120				11/10/20 08:39	11/11/20 16:01	1
Tetrachloro-m-xylene	116		44 - 120				11/10/20 08:39	11/11/20 16:01	1
Tetrachloro-m-xylene	81		44 - 120				11/10/20 08:39	11/11/20 16:01	1
Method: 8082A - Polychlorii	nated Bipheny	/Is (PCBs)	by Gas Chr	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	NAS	uJ	0.52	0.18	ug/L		11/11/20 09:34	11/13/20 07:28	CCI
PCB-1221	ND		0.52	0.18	ug/L		11/11/20 09:34	11/13/20 07:28	•
PCB-1232	ND		0.52	0.18	ug/L		11/11/20 09:34	11/13/20 07:28	
PCB-1242	ND		0.52	0.18	ug/L		11/11/20 09:34	11/13/20 07:28	•
PCB-1248	ND		0.52	0.18	ug/L		11/11/20 09:34	11/13/20 07:28	
PCB-1254	ND		0.52	0.26	ug/L		11/11/20 09:34	11/13/20 07:28	
PCB-1260)MO	LOT	0.52	0.26	ug/L		11/11/20 09:34	11/13/20 07:28	CCI
PCB-1262	ND		0.52	0.26	ug/L		11/11/20 09:34	11/13/20 07:28	•
PCB-1268	ND		0.52	0.26	ug/L		11/11/20 09:34	11/13/20 07:28	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene (Surr)	99		39 - 121				11/11/20 09:34	11/13/20 07:28	
Tetrachloro-m-xylene (Surr)	114		39 - 121				11/11/20 09:34		•
DCB Decachlorobiphenyl (Surr)	50		19 - 120				11/11/20 09:34	11/13/20 07:28	
OCB Decachlorobiphenyl (Surr)	58		19 - 120				11/11/20 09:34	11/13/20 07:28	1
Method: 6010C - Metals (ICF	•								
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Aluminum	0.28		0.20	0.060	_			11/13/20 19:11	,
Antimony	ND		0.020	0.0068	_			11/13/20 19:11	,
Arsenic	ND	,	0.015	0.0056			11/11/20 12:42		
Barium	0.27	^	0.0020	0.00070	-		11/11/20 12:42	11/13/20 19:11	,
Beryllium	ND		0.0020	0.00030	Ŭ		11/11/20 12:42	11/13/20 19:11	,
Cadmium	ND		0.0020	0.00050			11/11/20 12:42		
Calcium	209		0.50		mg/L		11/11/20 12:42		1
Chromium	0.0011	J	0.0040	0.0010	Ŭ		11/11/20 12:42		1
Cobalt	ND		0.0040	0.00063	mg/L		11/11/20 12:42	11/13/20 19:11	1
		_	0.010	0.0010	"		44144100 10 1-	11110100 10 11	

Eurofins TestAmerica, Buffalo

11/11/20 12:42 11/13/20 19:11

11/11/20 12:42 11/13/20 19:11

11/11/20 12:42 11/13/20 19:11

11/11/20 12:42 11/13/20 19:11

0.010

0.050

0.010

0.20

0.0061 J

7.5

0.012

57.5

0.0016 mg/L

0.019 mg/L

0.0030 mg/L

0.043 mg/L

1

1

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-106

Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15 Matrix: Water

Date Received: 11/06/20 11:30

Method: 6010C - Metals (ICP) (Continued)							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	2.0	0.0030	0.00040	mg/L		11/11/20 12:42	11/13/20 19:11	1
Nickel	ND	0.010	0.0013	mg/L		11/11/20 12:42	11/13/20 19:11	1
Potassium	10	0.50	0.10	mg/L		11/11/20 12:42	11/13/20 19:11	1
Selenium	ND	0.025	0.0087	mg/L		11/11/20 12:42	11/13/20 19:11	1
Silver	ND	0.0060	0.0017	mg/L		11/11/20 12:42	11/13/20 19:11	1
Sodium	79.6	1.0	0.32	mg/L		11/11/20 12:42	11/13/20 19:11	1
Thallium	ND	0.020	0.010	mg/L		11/11/20 12:42	11/13/20 19:11	1
Vanadium	ND	0.0050	0.0015	mg/L		11/11/20 12:42	11/13/20 19:11	1
Zinc	0.025	0.010	0.0015	mg/L		11/11/20 12:42	11/13/20 19:11	1
Method: 7470A - Mercury (CVA	A)							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012	mg/L		11/16/20 13:25	11/16/20 16:54	1

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5

Date Collected: 11/05/20 12:00 Date Received: 11/06/20 11:30 **Matrix: Waste**

Analyte	Result Qualifier	RL	MDL Unit	Đ	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	40000	11000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2,2-Tetrachloroethane	ND	40000	6500 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2-Trichloroethane	ND	40000	8400 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2-Trichloro-1,2,2-trifluoroethane	₩ UJ	40000	20000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1-Dichloroethane	ND	40000	12000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1-Dichloroethene	ND	40000	14000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2,4-Trichlorobenzene	ND	40000	15000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dibromo-3-Chloropropane	ND	40000	20000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichlorobenzene	ND	40000	10000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichloroethane	ND	40000	16000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichloropropane	ND	40000	6500 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,3-Dichlorobenzene	ND	40000	11000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,4-Dichlorobenzene	₩Đ	40000	5600 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
2-Butanone (MEK)	ND	200000	120000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
2-Hexanone	ND	200000	82000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
4-Methyl-2-pentanone (MIBK)	₩Đ	200000	13000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Acetone	ND	200000	160000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Benzene	1500000	40000	7600 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromodichloromethane	NÐ	40000	8000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromoform	ND	40000	20000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromomethane	ND	40000	8800 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Carbon disulfide	₩ WI	40000	18000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Carbon tetrachloride	JAN ALJ	40000	10000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chlorobenzene	ND	40000	5300 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Dibromochloromethane	NÐ	40000	19000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloroethane	ND	40000	8300 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloroform	ND	40000	27000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloromethane	ND	40000	9500 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
cis-1,2-Dichloroethene	ND	40000	11000 ug/Kg		11/17/20 14:20	11/19/20 12:00	400
cis-1,3-Dichloropropene	ND	40000	9500 ug/Kg		11/17/20 14:20	11/19/20 12:00	400

Eurofins TestAmerica, Buffalo

Page 40 of 3614

NON-AQUEOUS PHASE LIQUID (NAPL)

Project: NYSDEC 31 Tonawanda St- Off- Site #C915332,

31 Tonawanda, New York

Laboratory: Eurofins Environment Testing TestAmerica, Amherst, NY

Sample Delivery Group: 480-165255-1

Fraction: Organic
Matrix: Solid
Report Date: 7/24/2020

This data usability summary report is based upon a review of analytical data generated for surface water and waste samples. The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The samples were analyzed for volatile organic compounds, semivolatile organic compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Fortified Blank Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Shawne M. Rodgers President

> July 24, 2020 Date

1.0 DATA COMPLETENESS

The NYSDEC ASP Category B deliverable data were provided by the laboratory.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody documentation was complete.

The samples were received in acceptable condition.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following volatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. The nondetect result is marked "UJ" to indicate that it is an estimate.

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-515121/3 (Laboratory ID N1007.D)	Carbon Disulfide	-21.7	1660-MW-7-DNAPL

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for the compound. The nondetect result is marked "UI" to indicate that it is an estimate.

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-514651/3 (Laboratory ID Y0281426.D)	Pentachlorophenol	20.5	BSA-SW1

The continuing calibration precision criterion (the percent difference between initial and continuing CFs \leq 15 percent) was exceeded for the polychlorinated biphenyls continuing calibration standards presented in Table 2. This indicates a lack of instrument stability for these analytes. The results for polychlorinated biphenyls for associated samples are considered quantitative estimates. Nondetect results are marked "UJ".

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

No compounds were detected in the associated laboratory method blanks.

Trip blanks and field blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

Sample 1660-MW-7-DNAPL was analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Sample 1660-MW-7-DNAPL was analyzed for polychlorinated biphenyls at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 QUANTITATION/REPORTING LIMITS

Sample 1660-MW-7-DNAPL was analyzed for volatile organic compounds at a 2000-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. Reporting limits (RLs) are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for this sample.

Sample 1660-MW-7-DNAPL was analyzed for semivolatile organic compounds at a 200-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these

samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for this sample.

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
V 1 (1 0	M : 100/00 #T : M : 1 1 6 F 1 : 1 C I': 1
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid
	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid
	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid
1 1	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St- Off- Site #C915332 Surface Water and Waste Sampling Test America Job ID 480-165255-1

Analyses Performed

Sample ID	Lab ID		Collection Date	Matrix	VOC	SVOC	PCB
BSA-SW1	480-165255	4	1/15/2020	Surface Water	X	X	X
1660-MW-7-DNAPL	480-165255	2	1/15/2020	Waste	Χ	Χ	X

Table 2 Polychlorinated Biphenyls Continuing Calibrations Exceeding Precision Criteria

Calibration Standard	Analyte	%Difference	Associated Samples
File ID CCVIS 480- 514702/5\7_64-126.D (GC Column:ZB-5)	Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1260 Aroclor 1260 Aroclor 1260	1 2 3 23.30 4 5 1 2 3 23.30	1660-MW-7-DNAPL
	Aroclor 1260 Aroclor 1260	4 5	
File ID CCVIS 480- 514702/5\7_64-126.D (GC Column:ZB-35)	Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1260 Aroclor 1260	1 2 20.7 3 4 5 1 2 21.1	1660-MW-7-DNAPL
	Aroclor 1260	4	
	Aroclor 1260	5	

Table 2 Polychlorinated Biphenyls Continuing Calibrations Exceeding Precision Criteria

Calibration Standard	Analyte	%D	Difference	Associated Samples
	Aroclor 1232	1	21.6	
	Aroclor 1232	2		
	Aroclor 1232	3	33.4	1660-MW-7-DNAPL
E:la ID CCVIC 490	Aroclor 1232	4		
File ID CCVIS 480-	Aroclor 1232	5	21.6	
514702/7\7_64-128.D (GC Column:ZB-5)				
Column:Zb-5)	Aroclor 1262	1		
	Aroclor 1262	2		
	Aroclor 1262	3	35.40	
	Aroclor 1262	4		
	Aroclor 1262	5	22.3	
	Aroclor 1232	1		
	Aroclor 1232	2	32.2	
	Aroclor 1232	3	25.9	1660-MW-7-DNAPL
THE TO COLUMN 100	Aroclor 1232		38.400	
File ID CCVIS 480-	Aroclor 1232	5	22.3	
514702/7\7_64-128.D (GC				
Column:ZB-35)	Aroclor 1262	1 4	6.9000	
	Aroclor 1262	2	61.4	
	Aroclor 1262	3	64.40	
	Aroclor 1262	4		
	Aroclor 1262	5	26.9	
	Aroclor 1248	1 4	.6.9000	
File ID CCVIS 480-	Aroclor 1248	2	61.4	
514702/11\7_64-132.D	Aroclor 1248		64.40	1660-MW-7-DNAPL
(GC Column:ZB-35)	Aroclor 1248	4		
(22 00141141122 00)	Aroclor 1248	5	26.9	

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: 1660-MW-7-DNAPL

Lab Sample ID: 480-165255-2 Date Collected: 01/15/20 11:00 **Matrix: Waste**

Date Received: 01/16/20 12:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	440000		200000	54000	ug/Kg		01/23/20 13:34	01/28/20 12:34	2000
1,1,2,2-Tetrachloroethane	ND		200000	32000	ug/Kg		01/23/20 13:34	01/28/20 12:34	2000
1,1,2-Trichloroethane	ND		200000	41000	ug/Kg		01/23/20 13:34	01/28/20 12:34	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		200000	98000	ug/Kg		01/23/20 13:34	01/28/20 12:34	2000
1,1-Dichloroethane	77000	J	200000	60000			01/23/20 13:34	01/28/20 12:34	2000
1,1-Dichloroethene	ND		200000	68000			01/23/20 13:34	01/28/20 12:34	2000
1,2,4-Trichlorobenzene	ND		200000	74000			01/23/20 13:34	01/28/20 12:34	2000
1,2-Dibromo-3-Chloropropane	ND		200000	98000			01/23/20 13:34	01/28/20 12:34	2000
1,2-Dichlorobenzene	ND		200000	50000				01/28/20 12:34	2000
1,2-Dichloroethane	ND		200000	80000			01/23/20 13:34	01/28/20 12:34	2000
1,2-Dichloropropane	ND		200000	32000			01/23/20 13:34	01/28/20 12:34	2000
1,3-Dichlorobenzene	ND		200000	52000				01/28/20 12:34	2000
1,4-Dichlorobenzene	ND		200000	27000				01/28/20 12:34	2000
2-Butanone (MEK)	ND		980000	580000				01/28/20 12:34	2000
2-Hexanone	ND		980000	400000			01/23/20 13:34		2000
4-Methyl-2-pentanone (MIBK)	ND		980000	63000				01/28/20 12:34	2000
Acetone	ND		980000	800000				01/28/20 12:34	2000
Benzene	220000		200000	37000			01/23/20 13:34		2000
Bromodichloromethane	ND		200000	39000				01/28/20 12:34	2000
Bromoform	ND		200000	98000				01/28/20 12:34	2000
Bromomethane	ND		200000	43000			01/23/20 13:34		2000
Carbon disulfide		UJ	200000	89000				01/28/20 12:34	2000
Carbon tetrachloride	ND	as	200000	50000				01/28/20 12:34	2000
Chlorobenzene	ND		200000	26000				01/28/20 12:34	2000
Dibromochloromethane	ND		200000	95000				01/28/20 12:34	2000
Chloroethane	ND		200000	41000				01/28/20 12:34	2000
Chloroform	ND		200000	130000				01/28/20 12:34	2000
Chloromethane	ND		200000	47000				01/28/20 12:34	2000
cis-1,2-Dichloroethene	5800000		200000	54000				01/28/20 12:34	2000
cis-1,3-Dichloropropene	ND		200000	47000				01/28/20 12:34	2000
Cyclohexane	ND		200000	43000				01/28/20 12:34	2000
Dichlorodifluoromethane	ND		200000	85000			01/23/20 13:34		2000
	1800000		200000	57000			01/23/20 13:34		2000
Ethylbenzene 1,2-Dibromoethane	ND		200000	34000				01/28/20 12:34	2000
sopropylbenzene			200000	29000				01/28/20 12:34	2000
Sopropylbenzene Methyl acetate	33000 ND	J	980000	93000				01/28/20 12:34	2000
Methyl tert-butyl ether	ND		200000	74000				01/28/20 12:34	2000
Methylcyclohexane	ND ND		200000	92000				01/28/20 12:34	2000
• •	ND ND		200000	39000				01/28/20 12:34	2000
Methylene Chloride								01/28/20 12:34	2000
Styrene Cotrachloroothono	400000		200000	47000					
Tetrachloroethene	ND		200000 200000	26000				01/28/20 12:34	2000
Foluene	470000			52000				01/28/20 12:34	2000
rans-1,2-Dichloroethene	ND		200000	46000				01/28/20 12:34	2000
rans-1,3-Dichloropropene	ND		200000	19000				01/28/20 12:34	2000
Trichloroethene	890000		200000	54000				01/28/20 12:34	2000
Frichlorofluoromethane	ND		200000	92000				01/28/20 12:34	2000
Vinyl chloride Kylenes, Total	ND 1500000		200000 390000	66000 110000				01/28/20 12:34 01/28/20 12:34	2000 2000

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: 1660-MW-7-DNAPL

Lab Sample ID: 480-165255-2 Date Collected: 01/15/20 11:00

Matrix: Waste Date Received: 01/16/20 12:28

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	50 - 149	01/23/20 13:34	01/28/20 12:34	2000
1,2-Dichloroethane-d4 (Surr)	97	53 - 146	01/23/20 13:34 (01/28/20 12:34	2000
4-Bromofluorobenzene (Surr)	102	49 - 148	01/23/20 13:34 (01/28/20 12:34	2000
Dibromofluoromethane (Surr)	94	60 - 140	01/23/20 13:34 (01/28/20 12:34	2000

Analyte	ile Organic Compounds Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	4000000 J	7800000		0 0			01/23/20 20:43	20
bis (2-chloroisopropyl) ether	ND	7800000	1600000				01/23/20 20:43	20
2,4,5-Trichlorophenol	ND	7800000	2100000			01/22/20 15:06	01/23/20 20:43	20
2,4,6-Trichlorophenol	ND	7800000	1600000			01/22/20 15:06	01/23/20 20:43	20
2,4-Dichlorophenol	ND	7800000	830000			01/22/20 15:06	01/23/20 20:43	20
2,4-Dimethylphenol	ND	7800000	1900000			01/22/20 15:06	01/23/20 20:43	20
2,4-Dinitrophenol	ND	77000000	36000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2,4-Dinitrotoluene	ND	7800000	1600000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2,6-Dinitrotoluene	ND	7800000	920000			01/22/20 15:06	01/23/20 20:43	20
2-Chloronaphthalene	ND	7800000	1300000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2-Chlorophenol	ND	7800000	1400000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2-Methylphenol	ND	7800000	920000			01/22/20 15:06	01/23/20 20:43	20
2-Methylnaphthalene	32000000	7800000	1600000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2-Nitroaniline	ND	15000000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
2-Nitrophenol	ND	7800000	2200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
3,3'-Dichlorobenzidine	ND	15000000	9200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
3-Nitroaniline	ND 📝	15000000	2200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4,6-Dinitro-2-methylphenol	ND	15000000	7800000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Bromophenyl phenyl ether	ND	7800000	1100000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Chloro-3-methylphenol	ND	7800000	1900000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Chloroaniline	ND	7800000	1900000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Chlorophenyl phenyl ether	ND	7800000	970000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Methylphenol	ND	15000000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Nitroaniline	ND	15000000	4100000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
4-Nitrophenol	ND	15000000	5500000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Acenaphthene	2900000 J	7800000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Acenaphthylene	8200000	7800000	1000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Acetophenone	ND	7800000	1100000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Anthracene	5900000 J	7800000	1900000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Atrazine	ND	7800000	2700000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Benzaldehyde	ND	7800000	6200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Benzo[a]anthracene	3700000 J	7800000	780000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Benzo[a]pyrene	3300000 J	7800000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Benzo[b]fluoranthene	2500000 J	7800000	1200000			01/22/20 15:06	01/23/20 20:43	20
Benzo[g,h,i]perylene	1300000 J	7800000	830000			01/22/20 15:06	01/23/20 20:43	20
Benzo[k]fluoranthene	ND	7800000	1000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Bis(2-chloroethoxy)methane	ND	7800000	1700000			01/22/20 15:06	01/23/20 20:43	20
Bis(2-chloroethyl)ether	ND	7800000	1000000			01/22/20 15:06	01/23/20 20:43	20
Bis(2-ethylhexyl) phthalate	ND	7800000	2700000				01/23/20 20:43	20
Butyl benzyl phthalate	ND	7800000	1300000				01/23/20 20:43	20
Caprolactam	ND	7800000	2400000				01/23/20 20:43	20
Carbazole	ND	7800000	920000				01/23/20 20:43	20
Chrysene	2900000 J	7800000	1800000				01/23/20 20:43	20

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: 1660-MW-7-DNAPL Lab Sample ID: 480-165255-2

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		7800000	1400000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Di-n-butyl phthalate	ND		7800000	1300000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Di-n-octyl phthalate	ND		7800000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Dibenzofuran	ND		7800000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Diethyl phthalate	ND		7800000	1000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Dimethyl phthalate	ND		7800000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Fluoranthene	6000000	J	7800000	830000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Fluorene	5500000	J	7800000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Hexachlorobenzene	ND		7800000	1100000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Hexachlorobutadiene	ND		7800000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Hexachlorocyclopentadiene	ND		7800000	1100000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Hexachloroethane	ND		7800000	1000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Indeno[1,2,3-cd]pyrene	ND		7800000	970000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Isophorone	ND		7800000	1700000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
N-Nitrosodi-n-propylamine	ND		7800000	1300000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
N-Nitrosodiphenylamine	ND		7800000	6400000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Naphthalene	50000000		7800000	1000000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Nitrobenzene	ND		7800000	880000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Pentachlorophenol	ND		15000000	7800000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Phenanthrene	22000000		7800000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Phenol	ND		7800000	1200000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Pyrene	13000000		7800000	920000	ug/Kg		01/22/20 15:06	01/23/20 20:43	20
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)		X	53 - 120				01/22/20 15:06	01/23/20 20:43	20
Phenol-d5 (Surr)	0	X	54 - 120				01/22/20 15:06	01/23/20 20:43	20
p-Terphenyl-d14 (Surr)		X	79 - 130				01/22/20 15:06	01/23/20 20:43	20
2,4,6-Tribromophenol (Surr)	0	X	54 - 120				01/22/20 15:06	01/23/20 20:43	20
2-Fluorobiphenyl (Surr)	97		60 - 120				01/22/20 15:06	01/23/20 20:43	20
2-Fluorophenol (Surr)	0	X	52 - 120				01/22/20 15:06	01/23/20 20:43	20
Method: 8082A - Polychlorii		/Is (PCBs)	by Gas Chi	omatoar	aphy				
Analyto	D 14			_				Analyzed	Dil Fa
		Qualifier	RL	MDL		D	Prepared	-	
PCB-1016		Qualifier UJ	RL 83	MDL 16	mg/Kg	D	01/22/20 15:10	01/23/20 16:40	CCH 2
PCB-1016	ND ND	นั้ว	RL	MDL 16 16	mg/Kg mg/Kg	D	01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40	CC# 2
PCB-1016 PCB-1221 PCB-1232	ND ND		RL 83 83 83	MDL 16 16 16	mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CC# 2
PCB-1016 PCB-1221 PCB-1232	ND ND ND	นั้ว	RL 83 83	MDL 16 16 16 16	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CH 2 CH 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242	ND ND	นั้ว	RL 83 83 83	MDL 16 16 16 16	mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CH 2 CH 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	ир жу ор ор ор ор	UJ UJ W	RL 83 83 83 83	MDL 16 16 16 16	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CC# 2 CC# 2 CC# 2 CC# 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	AP ND ND ND ND ND ND ND	UJ U	83 83 83 83 83 83	MDL 16 16 16 16 16 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	AP ND ND ND ND ND ND ND	UJ UJ W	RL 83 83 83 83 83 83 83	MDL 16 16 16 16 16 3.9 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	AP ND ND ND ND ND ND ND	UJ U	RL 83 83 83 83 83 83 83	MDL 16 16 16 16 3.9 3.9 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CCH 2 CCH 2 CCH 2 CCH 2 CCH 2 CCH 2
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268	ND ND ND ND ND ND ND	UJ UJ UJ UJ Qualifier	RL 83 83 83 83 83 83 83 83	MDL 16 16 16 16 3.9 3.9 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D_	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	CH 2 CH 2 CH 2 CH 2
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268 Surrogate Tetrachloro-m-xylene (Surr)	ND ND ND ND ND ND ND	UJ U	83 83 83 83 83 83 83 83 83 83	MDL 16 16 16 16 3.9 3.9 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10 01/22/20 15:10	01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40 01/23/20 16:40	2 CH

SMIL 71/917*080* **Project:** NYSDEC 31 Tonawanda St. - OffSite C915299A **Laboratory:** Eurofins Environmental Testing -Test America

Job No: 480-175853-1 **Fraction:** Organic

Matrix: Aqueous and Solid

Report Date: 1/22/2021

This data usability summary report is based upon a review of analytical data generated for groundwater and DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds, semivolatile organic compounds, pesticide compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

For the volatile and semivolatile fraction determined by Gas Chromatography/Mass Spectrometry, library searches were performed to "tentatively identify" chromatographic peaks whose characteristics did not match those of targeted compounds. Library searches were performed for up to ten volatile and twenty semivolatile extraneous peaks.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound Milos

Shawne M. Rodgers President

January 22, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed the following missing items or issues:

Continuing calibration criterion was not met for methoxychlor, heptachlor, and 4, 4'-DDT for standards CCV 480-569484/5 and CCV 480-569484/7. There was no mention in the case narrative.

Continuing calibration criterion was not met for aroclor 1016 for standards CCV 480-558765-1. There was no mention in the case narrative.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

The semivolatile organic compound results for sample MW-100 should be considered biased low quantitative estimates, and may be higher than reported. The sample was extracted 4-days outside of the method 7-day method hold time. Because the sample was extracted outside of the holding time, chemical or biological degradation may have occurred. Positive results for semivolatile organic compounds for the samples have been marked with "J" qualifiers to indicate that they are quantitative estimates. Reporting limits (RLs) have been marked "UJ".

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following volatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. The nondetect results for these compounds have been marked "UJ" to indicate that they are quantitative estimates.

Calibration Standard	Compound	%Difference	Associated Samples
CCV 480-559861/3 (File ID N7433.D)	1,1,2-Trichloro-1,2,2- trifluoroethane Carbon Disulfide Carbon Tetrachloride Methylcyclohexane	28.0 22.1 22.3 25.3	MW-100 DNAPL

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ". Sample MW-100 was qualified previously due to holing times.

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-560544/3 (Laboratory ID V3148308.D)	Bis(2-Chloroisopropyl) ether Hexachlorobutadiene	-44.4 26.4	MW-100 DNAPL
CCV 480-559179/3 (Laboratory ID W10010932.D)	4-Nitrophenol	21.0	MW-8R, MW-103, MW-106
CCV 480-560162/3 (Laboratory ID W10011114.D)	Bis(2-Chloroisopropyl) ether Hexachlorobutadiene	-31.3 21.8	MW-100

The continuing calibration precision criterion (the percent difference between initial and continuing relative response factors (RRF) \leq 15 percent) was exceeded for the following pesticide continuing calibration standard. This indicates a lack of instrument stability for this analyte. Results for the compounds should be considered quantitative estimates. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-569484/5	Hepatchlor	24.8	MW-8R, MW-106
(File ID 25_40-267.D)	4,4'-DDT	28.5	
(Column ID RTX CLP-	Methoxychlor	35.0	
I)			
CCV 480-558484/7	Toxaphene 1	34.6	MW-8R, MW-106
(Column ID RTX CLP-	Toxaphene 2	30.1	
II)			

Table 2 presents polychlorinated biphenyls calibration standards that exceeded the precision criterion (the percent difference between initial and continuing CFs \leq 20 percent). This indicates a lack of instrument stability for these analytes. The results for polychlorinated biphenyls for associated samples are considered quantitative estimates. There were no positive results for the analytes. Nondetect results for the samples are marked "UJ" to indicate that they are estimates.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following pesticide compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (μg/L)	Associated Samples
MB 480-558262/1- A	4,4'-DDT Endrin Aldehyde gamma-BHC	0.0291 J 0.0272 J 0.00893 J	MW-8R, MW-100, MW-103, MW- 106
MB 480-559856/1- A	delta-BHC	0.154 J	MW-100 DNAPL

The blank results were less than the reporting limit. The following positive results reported for these compounds are also less than the RL and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for uncommon contaminants, that are less than or equal to the associated blank

contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

Compound	Qualified Results
gamma-BHC	MW-8R, MW-103

Field and equipment blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

Samples MW-100 and MW-100 DNAPL were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Samples MW-100 and MW-100 DNAPL were analyzed for pesticide compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 SUMMARIES OF MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the semivolatile laboratory control sample (LCS)/ laboratory control sample duplicate (LCSD) results that did not meet the indicated acceptance limits:

Compound	LCS (480-559859/2-A) %REC	LCSD (480-559859/3-A) %REC	QC Limits
Atrazine	133	129	60-127
Benzo(g,h,i) perylene		150	45-145
Dibenz (a,h) anthracene	135	137	54-132
Hexachlorobenzene		127	60-120
Hexachlorobutadiene	124	122	45-120
Indeno (1,2,3-cd) pyrene	136	143	56-124

The high recoveries for the above compounds suggest inefficiencies with the extraction/analytical processes. Sample MW-100 DNAPL is associated with the unacceptable LCS/LCSD. Positive results for the compounds should be considered biased high quantitative estimates, and may be higher than reported. The positive results are marked "J".

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

The following pesticide compounds were reported by the laboratory at concentrations less than the RL. Poor precision was observed for these compounds on the dual chromatographic columns used for sample analysis (greater than 50 % difference between results). The laboratory for

reporting purposes used the higher concentration for these compounds. The positive pesticide results should be considered non-detected at the quantitation limit. The results have been replaced with the RL and marked "U".

Sample	Affected Compound
MW-100 DNAPL	4,4′-DDT

For the following samples, a lack of precision (greater than 25 % difference between results) was observed for this analyte on the dual chromatographic columns used for sample analysis. The laboratory for reporting purposes used the higher concentration for these compounds. The result has been marked with "J" qualifiers to indicate that it is a quantitative estimate.

Sample	Affected Compound
MW-8R	gamma-BHC
MW-106	gamma-BHC, heptachlor, 4,4'-DDT

Sample MW-100 DNAPL for volatile organic compound analyses was collected in accordance with protocols specified by SW-846 method 5035. The sample was then analyzed for volatile organic compounds according to medium level protocols. The RLs for the nondetect volatile compounds for the sample are elevated by its medium level protocol dilution factor for compounds that were not detected. The elevated RLs should be noted when assessing the data.

The samples presented below were analyzed volatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-8R	1000
MW-100	200
MW-103	20.0
MW-106	20.0
MW-100	100
DNAPL	

The samples presented below were analyzed semivolatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	50.0
MW-100	100
DNAPL	

The samples presented below were analyzed pesticide compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	100
MW-100	10.0
DNAPL	

MW-100 DNAPL was analyzed for polychlorinated biphenyls at a ten-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for the sample.

Sample MW-100 DNAPL was re-analyzed at a 1000-fold dilution for volatile organic compounds. The reanalysis was performed because the response for ethylbenzene exceeded the linear range of the GC/MS instrument for the initial analysis. The affected result was reported from the dilution analysis. All other results have been reported from the initial analysis.

The samples presented below were re-analyzed at dilutions for semivolatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
MW-8R	200	2-Methylnaphthalene, Acenaphthene,
		Acenaphthylene, Naphthaleme
MW-100	200	2-Methylnaphthalene, Acenaphthene,
		Phenanthrene
MW-103	5.0	Acenaphthene, Phenanthrene
MW-106	5.0	Acenaphthene, Phenanthrene

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

As required by USEPA protocol, all volatile and semivolatiles TICs have been reported with "J" qualifiers to indicate that they are quantitative estimates. EDQ has reported only those TIC results that have not been determined to be laboratory or field artifacts, and where possible has grouped TIC of similar classification.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Pesticide Compounds	Method 8081B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17853-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW7471B	D1429
MW-8R	480-177853-1	11/5/2020	Groundwater	×	X	×	X	X	X		
MW-100	480-177853-2	11/5/2020	${\color{red} Groundwater}$	X	X	X	X	X	X		
MW-103	480-177853-3	11/5/2020	${\color{red} Groundwater}$	X	X	X	X	X	X		
MW-106	480-177853-4	11/5/2020	Groundwater	X	X	X	X	X	X		
MW-100 DNAPL	480-177853-5	11/5/2020	DNAPL	X	Χ	X	X	X	Χ	X	X

 Table 2
 Polychlorinated Biphenyls Continuing Calibrations Exceeding the Precision Criterion

Calibration Standard	Analyte	%D	Difference	Associated Samples
	Aroclor 1016	1	28.4	
	Aroclor 1016	2	23.9	
	Aroclor 1016	3	26.9	
	Aroclor 1016	4	24.2	
CCV 480-558765/59 File	Aroclor 1016	5	28.4	
ID 7_83-043.D (GC				MW-8R, MW-100, MW-103, MW-106
Column: ZB-5)				1V1 VV - OIX, 1V1 VV - 100, 1V1 VV - 100
	Aroclor 1260	1		
	Aroclor 1260	2	25.1	
	Aroclor 1260	3		
	Aroclor 1260	4	23.1	
	Aroclor 1260	5	28.7	
	Aroclor 1016	1	33.0	
	Aroclor 1016	2		
	Aroclor 1016	3		
	Aroclor 1016	4		
CCV 480-558765/59 File	Aroclor 1016	5		
ID 7_83-043.D (GC				MALOD MAL 100 MAL 102 MAL 107
Column: ZB-35)				MW-8R, MW-100, MW-103, MW-106
	Aroclor 1260	1	24.7	
	Aroclor 1260	2	26.3	
	Aroclor 1260	3	25.3	
	Aroclor 1260	4	27.0	
	Aroclor 1260	5	25.7	

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A

Laboratory: Eurofins Test America

Job No: 480-175853-1 Fraction: Inorganic

Matrix: Aqueous and Solid

Report Date: 1/22/2021

This data usability summary report is based upon a review of analytical data generated for groundwater and DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample was analyzed for total metals and specific gravity. Sample analyses were performed in accordance with the procedures outlined in the methods referenced at the end of this report.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "ICP-AES Data Validation", HW-2a, revision 15, December 2012. The quality control requirements specified in the analysis methods and associated acceptance criteria were also used to evaluate the data. The parameters presented on the following page were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/ Sample Receipt
- X Holding Times
- X Initial and Continuing Calibrations
- X ICP Interference Check Sample Results
- X Laboratory and Field Blank Analysis Results
- X Matrix Spike Recoveries and Reproducibility
- X Laboratory Duplicate Analysis Results
- X ICP Serial Dilution Results
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Qualitative Identification
- X Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Spux MA

Shawne M. Rodgers President

January 22, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

4.0

All criteria were met. No qualifiers were applied. *INITIAL AND CONTINUING CALIBRATIONS*

All criteria were met. No qualifiers were applied.

5.0 ICP INTERFERENCE CHECK SAMPLE RESULTS

Barium was detected in interference check standard (ICS) A 480-559254/8 at a concentration of 0.0071 mg/L, which is greater than twice the reporting limit. Samples MW-8R, MW-100, MW-103, and MW-106 were associated with the unacceptable ICS. The data package case narrative indicated that barium may have been present as an impurity in the standard solution. Barium results for the samples were all significantly greater than RL. Qualification was unnecessary.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following inorganic analytes were detected in the laboratory preparation blanks, and/or calibration blanks. The positive blank results were less than their respective reporting limits (RLs). Results for the

associated samples were greater than the RL. Qualification was unnecessary.

Blank	Analyte	Concentration (mg/L)	Associated Samples
MB 480-559736/1-A, mg/Kg	Calcium	3.77 J	MW-100 DNAPL
CCB 480-559258/18	Potassium	0.117 J	MW-8R, MW-100

No field or equipment blanks were submitted for this job number. This should be noted when assessing the data.

7.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

All criteria were met. No qualifiers were applied.

8.0 LABORATORY DUPLICATE RESULTS

Laboratory duplicate precision was evaluated using the MS/MSD analysis results as discussed above in Section 7.0, Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility.

9.0 ICP SERIAL DILUTION RESULTS

All criteria were met. No qualifiers were applied.

10.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted with this job number.

11.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 REPORTING LIMITS

As required by USEPA protocol, all analytes, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Metals	Method 6010C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Mercury	Method 7470B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Specific Gravity	Method D1429-87, ASTM

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17853-1

Analyses Performed

Sample ID	Lab ID	Collection Dat	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW7471B	D1429
MW-8R	480-177853-1	11/5/2020	Groundwater	×	X	×	X	X	X		
MW-100	480-177853-2	11/5/2020	${\color{red} Groundwater}$	X	X	X	X	X	X		
MW-103	480-177853-3	11/5/2020	${\color{red} Groundwater}$	X	X	X	X	X	X		
MW-106	480-177853-4	11/5/2020	Groundwater	X	X	X	X	X	X		
MW-100 DNAPL	480-177853-5	11/5/2020	DNAPL	X	Χ	X	X	X	Χ	X	X

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-106

Lab Sample ID: 480-177853-4

Date Collected: 11/05/20 15:15
Date Received: 11/06/20 11:30

Matrix: Water

Method: 6010C - Metals (ICP)	(Continued)						
Analyte	Result Qualifier	RL	MDL Unit	Đ	Prepared	Analyzed	Dil Fac
Manganese	2.0	0.0030	0.00040 mg/L		11/11/20 12:42	11/13/20 19:11	4
Nickel	ND	0.010	0.0013 mg/L		11/11/20 12:42	11/13/20 19:11	4
Potassium	10	0.50	0.10 mg/L		11/11/20 12:42	11/13/20 19:11	4
Selenium	ND	0.025	0.0087 mg/L		11/11/20 12:42	11/13/20 19:11	4
Silver	ND	0.0060	0.0017 mg/L		11/11/20 12:42	11/13/20 19:11	4
Sodium	79.6	1.0	0.32 mg/L		11/11/20 12:42	11/13/20 19:11	4
Thallium	ND	0.020	0.010 mg/L		11/11/20 12:42	11/13/20 19:11	4
Vanadium	ND	0.0050	0.0015 mg/L		11/11/20 12:42	11/13/20 19:11	4
Zinc	0.025	0.010	0.0015 mg/L		11/11/20 12:42	11/13/20 19:11	4
- Method: 7470A - Mercury (CV	AA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012 mg/L		11/16/20 13:25	11/16/20 16:54	4

Client Sample ID: MW-100 DNAPL

Date Collected: 11/05/20 12:00

Date Received: 11/06/20 11:30

Lab Sample ID: 480-177853-5

Matrix: Waste

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		40000	11000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2,2-Tetrachloroethane	ND		40000	6500	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2-Trichloroethane	ND		40000	8400	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	UJ	40000	20000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1-Dichloroethane	ND		40000	12000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,1-Dichloroethene	ND		40000	14000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2,4-Trichlorobenzene	ND		40000	15000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dibromo-3-Chloropropane	ND		40000	20000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichlorobenzene	ND		40000	10000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichloroethane	ND		40000	16000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dichloropropane	ND		40000	6500	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,3-Dichlorobenzene	ND		40000	11000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,4-Dichlorobenzene	ND		40000	5600	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
2-Butanone (MEK)	ND		200000	120000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
2-Hexanone	ND		200000	82000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
4-Methyl-2-pentanone (MIBK)	ND		200000	13000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Acetone	ND		200000	160000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Benzene	1500000		40000	7600	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromodichloromethane	ND		40000	8000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromoform	ND		40000	20000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Bromomethane	ND		40000	8800	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Carbon disulfide	NA	WI	40000	18000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Carbon tetrachloride	ME	4J	40000	10000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chlorobenzene	ND		40000	5300	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Dibromochloromethane	ND		40000	19000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloroethane	ND		40000	8300	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloroform	ND		40000	27000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Chloromethane	ND		40000	9500	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
cis-1,2-Dichloroethene	ND		40000	11000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
cis-1,3-Dichloropropene	ND		40000	9500	ug/Kg		11/17/20 14:20	11/19/20 12:00	400

Eurofins TestAmerica, Buffalo

Page 40 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5

Date Collected: 11/05/20 12:00 **Matrix: Waste** Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		40000	8800	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Dichlorodifluoromethane	ND		40000	17000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Ethylbenzene	♦ - 5200000	E	40000	12000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
1,2-Dibromoethane	ND		40000	7000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Isopropylbenzene	150000		40000	6000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Methyl acetate	ND		200000	19000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Methyl tert-butyl ether	ND		40000	15000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Methylcyclohexane) DWC	ω	40000	19000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Methylene Chloride	ND		40000	7900	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Styrene	360000		40000	9600	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Tetrachloroethene	ND		40000	5400	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Toluene	3200000		40000	11000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
trans-1,2-Dichloroethene	ND		40000	9400	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
trans-1,3-Dichloropropene	ND		40000	3900	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Trichloroethene	ND		40000	11000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Trichlorofluoromethane	ND		40000	19000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Vinyl chloride	ND		40000	13000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Xylenes, Total	3500000		80000	22000	ug/Kg		11/17/20 14:20	11/19/20 12:00	400
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		50 - 149				11/17/20 14:20	11/19/20 12:00	400
1,2-Dichloroethane-d4 (Surr)	101		53 - 146				11/17/20 14:20	11/19/20 12:00	400
4-Bromofluorobenzene (Surr)	103		49 - 148		. 1		11/17/20 14:20	11/19/20 12:00	400

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Dibromofluoromethane (Surr)

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	Н	100000	28000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,1,2,2-Tetrachloroethane	ND	Н	100000	16000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,1,2-Trichloroethane	ND	Н	100000	21000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	Н	100000	50000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,1-Dichloroethane	ND	Н	100000	31000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,1-Dichloroethene	ND	Н	100000	34000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,2,4-Trichlorobenzene	ND	Н	100000	38000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,2-Dibromo-3-Chloropropane	ND	Н	100000	50000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,2-Dichlorobenzene	ND	Н	100000	25000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,2-Dichloroethane	ND	Н	100000	41000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,2-Dichloropropane	ND	Н	100000	16000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,3-Dichlorobenzene	ND	Н	100000	27000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
1,4-Dichlorobenzene	ND	Н	100000	14000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
2-Butanone (MEK)	ND	Н	500000	300000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
2-Hexanone	ND	Н	500000	200000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
4-Methyl-2-pentanone (MIBK)	ND	Н	500000	32000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Acetone	ND	Н	500000	410000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Benzene	2000000	н	100000	19000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Bromodichloromethane	ND	Н	100000	20000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Bromoform	ND	Н	100000	50000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Bromomethane	ND	Н	100000	22000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Carbon disulfide	ND	Н	100000	45000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Carbon tetrachloride	ND	Н	100000	25000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000

Eurofins TestAmerica, Buffalo

11/17/20 14:20 11/19/20 12:00

400

Page 41 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5 Date Collected: 11/05/20 12:00 **Matrix: Waste**

Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND	Н	100000	13000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Dibromochloromethane	ND	Н	100000	48000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Chloroethane	ND	Н	100000	21000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Chloroform	ND	Н	100000	68000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Chloromethane	ND	Н	100000	24000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
cis-1,2-Dichloroethene	ND	Н	100000	27000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
cis-1,3-Dichloropropene	ND	Н	100000	24000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Cyclohexane	ND	Н	100000	22000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Dichlorodifluoromethane	ND	H	100000	43000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Ethylbenzene	6500000	M	100000	29000	ug/Kg		11/17/20 14:20	11/23/20 05:56	H 1000
1,2-Dibromoethane	ND	Н	100000	17000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Isopropylbenzene	190000	H	100000	15000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Methyl acetate	ND	Н	500000	47000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Methyl tert-butyl ether	ND	Н	100000	38000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Methylcyclohexane	ND	Н	100000	47000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Methylene Chloride	ND	Н	100000	20000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Styrene	450000	Н	100000	24000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Tetrachloroethene	ND	Н	100000	13000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Toluene	4100000	H	100000	27000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
trans-1,2-Dichloroethene	ND	Н	100000	24000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
trans-1,3-Dichloropropene	ND	Н	100000	9800	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Trichloroethene	ND	Н	100000	28000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Trichlorofluoromethane	ND	Н	100000	47000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Vinyl chloride	ND	Н	100000	33000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Xylenes, Total	4400000	Н	200000	55000	ug/Kg		11/17/20 14:20	11/23/20 05:56	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		50 - 149				11/17/20 14:20	11/23/20 05:56	1000
1,2-Dichloroethane-d4 (Surr)	106		53 - 146				11/17/20 14:20	11/23/20 05:56	1000
4-Bromofluorobenzene (Surr)	105		49 - 148		,		11/17/20 14:20	11/23/20 05:56	1000
Dibromofluoromethane (Surr)	104		60 - 140	Don	al .		11/17/20 14:20	11/23/20 05:56	1000

Method: 8270D - Semivolatile (Organic Compounds ((GC/MS)	
--------------------------------	---------------------	---------	--

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	5200000	3600000	540000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
bis (2-chloroisopropyl) ether	MCeJ	3600000	730000	ug/Kg		11/19/20 07:09	11/24/20 01:14	CC/ [100
2,4,5-Trichlorophenol	ND	3600000	990000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,4,6-Trichlorophenol	ND	3600000	730000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,4-Dichlorophenol	ND	3600000	390000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,4-Dimethylphenol	ND	3600000	880000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,4-Dinitrophenol	ND	36000000	17000000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,4-Dinitrotoluene	ND	3600000	750000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2,6-Dinitrotoluene	ND	3600000	430000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Chloronaphthalene	ND	3600000	600000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Chlorophenol	ND	3600000	660000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Methylphenol	ND	3600000	430000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Methylnaphthalene	41000000	3600000	730000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Nitroaniline	ND	7100000	540000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
2-Nitrophenol	ND	3600000	1000000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100
3,3'-Dichlorobenzidine	ND	7100000	4300000	ug/Kg		11/19/20 07:09	11/24/20 01:14	100

Eurofins TestAmerica, Buffalo

Page 42 of 3614

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5

Date Collected: 11/05/20 12:00 **Matrix: Waste** Date Received: 11/06/20 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3-Nitroaniline	ND		7100000	1000000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4,6-Dinitro-2-methylphenol	ND		7100000	3600000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Bromophenyl phenyl ether	ND		3600000	510000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Chloro-3-methylphenol	ND		3600000	900000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Chloroaniline	ND		3600000	900000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Chlorophenyl phenyl ether	ND		3600000	450000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Methylphenol	ND		7100000	430000	ug/Kg		11/19/20 07:09	11/24/20 01:14	10
4-Nitroaniline	ND		7100000	1900000			11/19/20 07:09	11/24/20 01:14	10
4-Nitrophenol	ND		7100000	2600000			11/19/20 07:09	11/24/20 01:14	10
Acenaphthene	4500000		3600000	540000			11/19/20 07:09	11/24/20 01:14	10
Acenaphthylene	14000000		3600000	470000			11/19/20 07:09	11/24/20 01:14	10
Acetophenone	ND		3600000	490000			11/19/20 07:09	11/24/20 01:14	10
Anthracene	7700000		3600000	900000			11/19/20 07:09	11/24/20 01:14	10
Atrazine	ND /	<i>F</i>	3600000	1300000			11/19/20 07:09	11/24/20 01:14	10
Benzaldehyde	ND '		3600000	2900000			11/19/20 07:09	11/24/20 01:14	10
Benzo[a]anthracene	3900000		3600000	360000			11/19/20 07:09	11/24/20 01:14	10
Benzo[a]pyrene	4500000		3600000	540000			11/19/20 07:09	11/24/20 01:14	10
Benzo[b]fluoranthene	2200000	J	3600000	580000			11/19/20 07:09	11/24/20 01:14	10
Benzo[g,h,i]perylene		J/	3600000	390000			11/19/20 07:09	11/24/20 01:14	10
Benzo[k]fluoranthene	1200000	•	3600000	470000			11/19/20 07:09	11/24/20 01:14	10
Bis(2-chloroethoxy)methane	ND		3600000	770000			11/19/20 07:09	11/24/20 01:14	10
Bis(2-chloroethyl)ether	ND		3600000	470000			11/19/20 07:09	11/24/20 01:14	10
Bis(2-ethylhexyl) phthalate	ND		3600000	1200000			11/19/20 07:09	11/24/20 01:14	10
Butyl benzyl phthalate	ND		3600000	600000			11/19/20 07:09	11/24/20 01:14	10
Caprolactam	ND		3600000	1100000			11/19/20 07:09	11/24/20 01:14	10
Carbazole	ND		3600000	430000			11/19/20 07:09	11/24/20 01:14	10
Chrysene	3400000	1	3600000	810000			11/19/20 07:09	11/24/20 01:14	10
Dibenz(a,h)anthracene	ND ,		3600000	640000			11/19/20 07:09	11/24/20 01:14	10
Di-n-butyl phthalate	ND ND	<i>(</i>	3600000	620000			11/19/20 07:09	11/24/20 01:14	10
Di-n-octyl phthalate	ND		3600000	430000			11/19/20 07:09	11/24/20 01:14	10
Dibenzofuran	1400000	1	3600000	430000			11/19/20 07:09	11/24/20 01:14	10
Diethyl phthalate	ND	3	3600000	470000			11/19/20 07:09	11/24/20 01:14	10
Dimethyl phthalate	ND		3600000	430000				11/24/20 01:14	10
* *	8100000		3600000	390000				11/24/20 01:14	10
Fluoranthene Fluorene	7800000		3600000	430000			11/19/20 07:09		10
Hexachlorobenzene	ND ,	,	3600000	490000				11/24/20 01:14	10
Hexachlorobutadiene		rUJ	3600000	540000				11/24/20 01:14	
	ر طور ND	/40	3600000	490000				11/24/20 01:14	COA
Hexachlorocyclopentadiene Hexachloroethane									10
	ND	. 1	3600000	470000				11/24/20 01:14	10
Indeno[1,2,3-cd]pyrene		J/*	3600000	450000				11/24/20 01:14	10
Isophorone	ND		3600000	770000				11/24/20 01:14	10
N-Nitrosodi-n-propylamine	ND		3600000	620000				11/24/20 01:14	10
N-Nitrosodiphenylamine	ND		3600000	3000000				11/24/20 01:14	10
Naphthalene	71000000		3600000	470000				11/24/20 01:14	10
Nitrobenzene	ND		3600000	410000				11/24/20 01:14	10
Pentachlorophenol	ND		7100000	3600000				11/24/20 01:14	10
Phenanthrene	27000000		3600000	540000				11/24/20 01:14	10
Phenol	ND		3600000	560000 430000			11/19/20 07:09	11/24/20 01:14 11/24/20 01:14	10

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5 Date Collected: 11/05/20 12:00

Matrix: Waste

Date Received: 11/06/20 11:30

Tetrachloro-m-xylene

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/19/20 07:09	11/24/20 01:14	100
Phenol-d5 (Surr)	0	X	54 - 120				11/19/20 07:09	11/24/20 01:14	100
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/19/20 07:09	11/24/20 01:14	100
2,4,6-Tribromophenol (Surr)	0	X	54 - 120				11/19/20 07:09	11/24/20 01:14	100
2-Fluorobiphenyl (Surr)	105		60 - 120				11/19/20 07:09	11/24/20 01:14	100
2-Fluorophenol (Surr)	0	X	52 - 120				11/19/20 07:09	11/24/20 01:14	100
Method: 8081B - Organoc	hlorine Pesticid	les (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		3.8	0.75	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
4,4'-DDE	, ND		3.8	1.1	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
4,4'-DDT	3,8 17	XU	3.8	0.85	mg/Kg		11/19/20 07:03	11/20/20 11:32	AC 10
Aldrin	ND	,	3.8	0.39	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
alpha-BHC	ND		3.8	0.69	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
cis-Chlordane	ND		3.8	1.9	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
beta-BHC	ND		3.8	2.8	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
delta-BHC	ND		3.8	0.51	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Dieldrin	ND		3.8	0.92	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endosulfan I	ND		3.8	0.82	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endosulfan II	ND		3.8	0.69	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endosulfan sulfate	ND		3.8	0.72	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endrin	ND		3.8	1.2	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endrin aldehyde	ND		3.8	0.98	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Endrin ketone	ND		3.8	0.92	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
gamma-BHC (Lindane)	ND		3.8	2.8	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
trans-Chlordane	ND		3.8	0.53	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Heptachlor	ND		3.8	0.60	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Heptachlor epoxide	ND		3.8	1.0	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Methoxychlor	3.7	J	3.8	1.0	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Toxaphene	ND		38	22	mg/Kg		11/19/20 07:03	11/20/20 11:32	10
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120				11/19/20 07:03	11/20/20 11:32	10
DCB Decachlorobiphenyl	0	X	45 - 120				11/19/20 07:03	11/20/20 11:32	10
Tetrachloro-m-xylene	90		30 - 124				11/19/20 07:03	11/20/20 11:32	10

Method: 8082A	- Polychlorinated	Biphenvls (PCBs)	hy Gas	Chromatography

90

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	33	6.5	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1221	ND	33	6.5	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1232	ND	33	6.5	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1242	ND	33	6.5	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1248	ND	33	6.5	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1254	ND	33	1.6	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1260	ND	33	1.6	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1262	ND	33	1.6	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
PCB-1268	ND	33	1.6	mg/Kg		11/19/20 07:13	11/19/20 23:02	10
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	99	60 - 154				11/19/20 07:13	11/19/20 23:02	10

30 - 124

Eurofins TestAmerica, Buffalo

11/19/20 07:03 11/20/20 11:32

Page 44 of 3614

10

Client: New York State D.E.C. Job ID: 480-177853-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 DNAPL

Lab Sample ID: 480-177853-5

Date Collected: 11/05/20 12:00 **Matrix: Waste** Date Received: 11/06/20 11:30

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Tetrachloro-m-xylene (Surr)	90		60 - 154	11/19/20 07:13	3 11/19/20 23:02	10
	DCB Decachlorobiphenyl (Surr)	118		65 - 174	11/19/20 07:13	3 11/19/20 23:02	10
Į	DCB Decachlorobiphenyl (Surr)	148		65 - 174	11/19/20 07:13	3 11/19/20 23:02	10

DCB Decacniorobipnenyi (Surr)	148		05 - 174				11/19/20 07:13	11/19/20 23:02	70
Method: 6010C - Metals (ICP)	Dooult	O lifi	DI	MDI	11		Duamanad	Anahmad	Dil Faa
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	23.9		9.9		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Antimony	ND		14.9		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Arsenic	0.93	/	2.0		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Barium	0.58	X	0.50		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Beryllium	ND		0.20	0.028	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Cadmium	ND	4	0.20	0.030	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Calcium	105	B	49.6	3.3	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Chromium	0.25	J	0.50	0.20	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Cobalt	ND		0.50	0.050	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Copper	0.52	J	0.99	0.21	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Iron	39.7		9.9	3.5	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Lead	0.64	J	0.99	0.24	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Magnesium	34.4		19.8	0.92	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Manganese	0.78		0.20	0.032	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Nickel	ND		5.0	0.23	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Potassium	ND		29.8	19.8	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Selenium	ND		4.0	0.40	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Silver	ND		0.60	0.20	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Sodium	ND		139	12.9	mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Thallium	ND		6.0		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Vanadium	0.50		0.50		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Zinc	0.89	J	2.0		mg/Kg		11/19/20 09:19	11/19/20 19:35	1
Method: 7471B - Mercury (CV/	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	<u> </u>	0.023	0.0093	mg/Kg		11/17/20 16:31	11/17/20 19:58	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.023	0.0093	mg/Kg		11/17/20 16:31	11/17/20 19:58	1
_									

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Gravity	1.0275		0.1000	0.1000	g/mL			11/18/20 14:00	1

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A

Laboratory: Eurofins Test America

Job No: 480-177477-1 Fraction: Inorganic Matrix: Solid Report Date: 1/23/2021

This data usability summary report is based upon a review of analytical data generated for DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample was analyzed for total metals and specific gravity. Sample analyses were performed in accordance with the procedures outlined in the methods referenced at the end of this report.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "ICP-AES Data Validation", HW-2a, revision 15, December 2012. The quality control requirements specified in the analysis methods and associated acceptance criteria were also used to evaluate the data. The parameters presented on the following page were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/ Sample Receipt
- X Holding Times
- X Initial and Continuing Calibrations
- X ICP Interference Check Sample Results
- X Laboratory and Field Blank Analysis Results
 - Matrix Spike Recoveries and Reproducibility
 - Laboratory Duplicate Analysis Results
 - ICP Serial Dilution Results
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Qualitative Identification
- X Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound Milos

Shawne M. Rodgers President

January 23, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

4.0

All criteria were met. No qualifiers were applied.

INITIAL AND CONTINUING CALIBRATIONS

All criteria were met. No qualifiers were applied.

5.0 ICP INTERFERENCE CHECK SAMPLE RESULTS

Barium was detected in interference check standard (ICS) A 480-559254/8 at a concentration of 0.0066 mg/L, which is greater than twice the reporting limit. Samples MW-5R, MW-8, and MW-100 were associated with the unacceptable ICS. The data package case narrative indicated that barium may have been present as an impurity in the standard solution. Barium results for the samples were all significantly greater than reporting limit (RL). Qualification was unnecessary.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following inorganic analytes were detected in the laboratory preparation blanks, and/or calibration blanks. The positive blank results were less than their respective reporting limits (RLs). Positive results for

the associated samples were greater than the RL. Qualification was unnecessary.

Blank	Analyte	Concentration (mg/L)	Associated Samples
MB 480-561333/1-A, mg/Kg	Calcium Manganese	4.16 J 0.0406 J	MW-5R, MW-8, MW-100
CCB 480-561608/88	Manganese Molybdenum	0.000040 J 0.00435 J	MW-5R, MW-8, MW-100

No field or equipment blanks were submitted for this job number. This should be noted when assessing the data.

7.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

8.0 LABORATORY DUPLICATE RESULTS

Laboratory duplicate precision was evaluated using the MS/MSD analysis results as discussed above in Section 7.0, Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility.

9.0 ICP SERIAL DILUTION RESULTS

The laboratory did not select a site sample to perform ICP serial dilution analyses. Therefore, the associated sample data could not be evaluated based on this parameter. This should be noted when assessing the sample data.

10.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted with this job number.

11.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 REPORTING LIMITS

As required by USEPA protocol, all analytes, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Metals	Method 6010C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Mercury	Method 7470B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Specific Gravity	Method D1429-87, ASTM

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17747-1

Analyses Performed

Sample ID	Lab ID	Collection Date	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7471B	D1429
MW-5R	480-177477-1	10/28/2020	DNAPL	Х	Х	Х	Х	Х	Х	Х
MW-8	480-177477-2	10/29/2020	DNAPL	X	X	X	X	X	X	X
MW-100	480-177477-3	10/29/2020	DNAPL	X	X	X	X	X	X	X

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A **Laboratory:** Eurofins Environmental Testing -Test America

Job No: 480-177477-1

Fraction: Organic
Matrix: Solid
Report Date: 1/23/2021

This data usability summary report is based upon a review of analytical data generated for DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds, semivolatile organic compounds, pesticide compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

For the volatile and semivolatile fraction determined by Gas Chromatography/Mass Spectrometry, library searches were performed to "tentatively identify" chromatographic peaks whose characteristics did not match those of targeted compounds. Library searches were performed for up to ten volatile and twenty semivolatile extraneous peaks.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sour MA

Shawne M. Rodgers President

January 23, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed the no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

The volatile organic compound results for samples MW-5R, MW-8, and MW-100 should be considered biased low quantitative estimates, and may be higher than reported. The samples were analyzed 5 to 6 days outside of the method 14-day method hold time. Because the samples were analyzed outside of the holding time, chemical or biological degradation may have occurred. Results for volatile organic compounds for the samples have been marked with "J" qualifiers to indicate that they are biased quantitative estimates. Reporting limits (RLs) have been marked "UJ".

The semivolatile organic compound results for samples MW-5R, MW-8, and MW-100 should be considered biased low quantitative estimates, and may be higher than reported. The sample was extracted six to seven days outside of the method 14-day method hold time. Because the samples were extracted outside of the holding time, chemical or biological degradation may have occurred. Positive results for semivolatile organic compounds for the samples have been marked with "J" qualifiers to indicate that they are quantitative estimates. RLs have been marked "UJ".

The pesticide compound results for samples MW-5R, MW-8, and MW-100 should be considered biased low quantitative estimates, and may be higher than reported. The samples were extracted six to seven days outside of the method 14-day method hold time. Because the sample was extracted outside of the holding time, chemical or biological degradation

may have occurred. Positive results for pesticide compounds for the samples have been marked with "J" qualifiers to indicate that they are quantitative estimates. RLs have been marked "UJ".

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. Results for the compounds are considered quantitative estimates. The samples were qualified previously due to holding times.

Calibration Standard	Analyte	%Difference	Associated Samples
CCV 480-560544/3 (Laboratory ID V3148308.D)	Bis(2-Chloroisopropyl) ether Hexachlorobutadiene	-44.4 26.4	MW-5R, MW-8, MW-100

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following pesticide compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (μg/L)	Associated Samples
MB 480-559856/1- A	delta-BHC	0.154 J	All Samples

The blank results were less than the reporting limit. The following positive results reported for these compounds are also less than the RL

and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for uncommon contaminants, that are less than or equal to the associated blank contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

Compound	Qualified Results
delta-BHC	MW-8

Field and equipment blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

High recoveries were obtained for the surrogate compounds for the polychlorinated biphenyl analyses of the following samples. The laboratory did not re-extract the samples to confirm the unacceptable recoveries. The results were nondetect. Qualification was unnecessary.

Sample	Surrogate Compound	Column
MW-8	Decachlorobiphenyl	Both

Samples MW-5R, MW-8, and MW-100 were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Sample MW-5R was analyzed for pesticide compounds at a dilution that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Samples MW-5R and MW-100 were analyzed for polychlorinated biphenyls at dilutions that did not allow for the determination of whether

the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 SUMMARIES OF MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the volatile laboratory control sample (LCS) results that did not meet the indicated acceptance limits:

Compound	LCS (480 559511/21-A) %REC	QC Limits
2-Butanone	192	54-149

The high recovery indicates inefficiencies with the sample analytical process. Positive results for the compound are biased high quantitative estimates and may be lower than reported. All samples are associated with the LCS. The 2-butanone results for the samples are nondetect. Qualification was unnecessary.

The following table summarizes the semivolatile LCS/ laboratory control sample duplicate (LCSD) results that did not meet the indicated acceptance limits:

Compound	LCS (480-559859/2-A) %REC	LCSD (480-559859/3-A) %REC	QC Limits
Atrazine	133	129	60-127
Benzo(g,h,i) perylene		150	45-145
Dibenz (a,h) anthracene	135	137	54-132
Hexachlorobenzene		127	60-120
Hexachlorobutadiene	124	122	45-120
Indeno (1,2,3-cd) pyrene	136	143	56-124

The high recoveries for the above compounds suggest inefficiencies with the extraction/analytical processes. All samples were associated with the unacceptable LCS/LCSD. Positive results for the compounds should be considered biased high quantitative estimates, and may be higher than reported. The results were qualified previously due to holding times.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

The following pesticide compounds were reported by the laboratory at concentrations less than the RL. Poor precision was observed for these compounds on the dual chromatographic columns used for sample analysis (greater than 50 % difference between results). The laboratory for reporting purposes used the higher concentration for these compounds. The positive pesticide results should be considered nondetect at the RL. The results have been replaced with the RL and marked "U".

Sample	Affected Compound
MW-5R	4,4'-DDT

Samples MW-5R and MW-100 for volatile organic compound analyses were collected in accordance with protocols specified by SW-846 method 5035. The sample was then analyzed for volatile organic compounds according to medium level protocols. The RLs for the nondetect volatile compounds for the sample are elevated by its medium level protocol dilution factor for compounds that were not detected. The elevated RLs should be noted when assessing the data.

The samples presented below were analyzed semivolatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-5R	100
MW-8	20.0
MW-100	100

Sample MW-5R was analyzed pesticide compounds at a ten-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for the sample.

The following samples were analyzed at dilutions for polychlorinated biphenyls. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for the samples.

Sample	Dilution Factor
MW-5R	20.00
MW-100	10.0

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

As required by USEPA protocol, all volatile and semivolatiles TICs have been reported with "J" qualifiers to indicate that they are quantitative estimates. EDQ has reported only those TIC results that have not been determined to be laboratory or field artifacts, and where possible has grouped TIC of similar classification.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Pesticide Compounds	Method 8081B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St. - OffSite C915299A Eurofins Environment Test America Job Number 480-17747-1

Analyses Performed

Sample ID	Lab ID	Collection Date	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7471B	D1429
MW-5R	480-177477-1	10/28/2020	DNAPL	Х	Х	Х	Х	Х	Х	Х
MW-8	480-177477-2	10/29/2020	DNAPL	X	X	X	X	X	X	X
MW-100	480-177477-3	10/29/2020	DNAPL	X	X	X	Χ	X	X	Χ

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste Date Received: 11/03/20 12:57

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND A WJ	100	28	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,1,2,2-Tetrachloroethane	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND M	100	50	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,1,2-Trichloroethane	ND M	100	21	ug/Kg		11/17/20 14:20	11/22/20 18:46	
I,1-Dichloroethane	ND H	100	31	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,1-Dichloroethene	ND H	100	35	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,2,4-Trichlorobenzene	ND 🖟	100	38	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,2,4-Trimethylbenzene	230 H J	100	28	ug/Kg		11/17/20 14:20	11/22/20 18:46	
I,2-Dibromo-3-Chloropropane	ND H W	100	50	ug/Kg		11/17/20 14:20	11/22/20 18:46	
,2-Dibromoethane	ND 🖟 📗	100	17	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,2-Dichlorobenzene	ND M	100	25	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,2-Dichloroethane	ND H	100	41	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,2-Dichloropropane	ND A	100	16	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,3,5-Trimethylbenzene	71 J <i>V</i>	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,3-Dichlorobenzene	ND HUJ	100	27	ug/Kg		11/17/20 14:20	11/22/20 18:46	
1,4-Dichlorobenzene	ND /	100	14	ug/Kg		11/17/20 14:20	11/22/20 18:46	
2-Butanone (MEK)	ND MY	500		ug/Kg		11/17/20 14:20	11/22/20 18:46	
2-Hexanone	ND 🖟	500		ug/Kg		11/17/20 14:20	11/22/20 18:46	
-Methyl-2-pentanone (MIBK)	ND A	500		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Acetone	ND A	500		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Benzene	ND N	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Bromodichloromethane	ND M	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Bromoform	ND N	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Bromomethane	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Carbon disulfide	ND M	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Carbon tetrachloride	ND M	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Chlorobenzene	ND M	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Chloroethane	ND X	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Chloroform	ND M	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Chloromethane	7.1	100		ug/Kg ug/Kg		11/17/20 14:20	11/22/20 18:46	
cis-1,2-Dichloroethene		100				11/17/20 14:20	11/22/20 18:46	
•	/			ug/Kg				
sis-1,3-Dichloropropene	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Cyclohexane	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Dibromochloromethane	ND H	100		ug/Kg			11/22/20 18:46	
Dichlorodifluoromethane	ND H	100		ug/Kg			11/22/20 18:46	
Ethylbenzene	390 N J	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
sopropylbenzene	ND HUS	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Methyl acetate	ND H	500		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Methyl tert-butyl ether	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Methylcyclohexane	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Methylene Chloride	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
n-Butylbenzene	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
N-Propylbenzene	ND A	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
ec-Butylbenzene	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Styrene	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
ert-Butylbenzene	ND /H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Tetrachloroethene	ND H	100		ug/Kg		11/17/20 14:20	11/22/20 18:46	
Toluene	120 HJ ND HUJ	100	27	ug/Kg		11/17/20 14:20	11/22/20 18:46	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Dibromofluoromethane (Surr)

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste Date Received: 11/03/20 12:57

Analyte		Qualifier	RL		MDL	Unit		Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND	AW	100		9.8	ug/Kg		11/17/20 14:20	11/22/20 18:46	1
Trichloroethene	ND	y 1	100		28	ug/Kg		11/17/20 14:20	11/22/20 18:46	1
Trichlorofluoromethane	ND	H	100		47	ug/Kg		11/17/20 14:20	11/22/20 18:46	1
Vinyl chloride	ND	, N	100		33	ug/Kg		11/17/20 14:20	11/22/20 18:46	1
Xylenes, Total	320	ИJ	200		55	ug/Kg		11/17/20 14:20	11/22/20 18:46	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
Benzene, 1-propynyl-	1500	THIN	ug/Kg		11.	19	673-32-	11/17/20 14:20	11/22/20 18:46	1
2,4-Dimethylstyrene	770	THIN	ug/Kg		11.	55	2234-20-0	11/17/20 14:20	11/22/20 18:46	1
1H-Indene, 1-methyl-	1800	T/HJ N	ug/Kg		12.	32	767-59-9	11/17/20 14:20	11/22/20 18:46	1
Naphthalene	12000	# HIJN	ug/Kg		12.	73	91-20-3	3 11/17/20 14:20	11/22/20 18:46	1
Naphthalene, 2-methyl-	6200	t HIJ N	ug/Kg		13.	63	91-57-6	11/17/20 14:20	11/22/20 18:46	1
Naphthalene, 1-methyl-	3300	t/JN	ug/Kg		13.	78	90-12-0	11/17/20 14:20	11/22/20 18:46	1
Naphthalene, 2,6-dimethyl-	1100	THIN	ug/Kg		14.	44	581-42-0	11/17/20 14:20	11/22/20 18:46	1
Naphthalene, 2,7-dimethyl-	1900	T/HJN	ug/Kg		14.	57	582-16-	11/17/20 14:20	11/22/20 18:46	1
Naphthalene, 1,6-dimethyl-	820	TH) N	ug/Kg		14.	76	575-43-9	11/17/20 14:20	11/22/20 18:46	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		50 - 149					11/17/20 14:20	11/22/20 18:46	1
1,2-Dichloroethane-d4 (Surr)	109		53 - 146					11/17/20 14:20	11/22/20 18:46	1
4-Bromofluorobenzene (Surr)	98		49 - 148					11/17/20 14:20	11/22/20 18:46	1

60 - 140

103

Analyte	Result Qua	alifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND H	UST	3600000	990000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,4,6-Trichlorophenol	ND A	Ĭ	3600000	730000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,4-Dichlorophenol	ND A	1	3600000	390000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,4-Dimethylphenol	ND H,		3600000	880000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,4-Dinitrophenol	ND M	1	36000000	17000000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,4-Dinitrotoluene	ND A	1	3600000	750000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2,6-Dinitrotoluene	ND H		3600000	430000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Chloronaphthalene	ND H	1	3600000	600000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Chlorophenol	ND H	1_	3600000	660000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Methylnaphthalene	46000000 H	J,	3600000	730000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Methylphenol	ND H	はて	3600000	430000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Nitroaniline	ND ∯	1	7100000	540000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
2-Nitrophenol	ND A		3600000	1000000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
3,3'-Dichlorobenzidine	ND A		7100000	4300000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
3-Nitroaniline	ND H	1	7100000	1000000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4,6-Dinitro-2-methylphenol	ND H		7100000	3600000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Bromophenyl phenyl ether	ND H		3600000	510000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Chloro-3-methylphenol	ND A	1	3600000	900000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Chloroaniline	ND A	1	3600000	900000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Chlorophenyl phenyl ether	ND 'H	1	3600000	450000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Methylphenol	ND H		7100000	430000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Nitroaniline	ND A		7100000	1900000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
4-Nitrophenol	ND A		7100000	2600000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
Acenaphthene	4300000 H	J_	3600000	540000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100
Acenaphthylene	15000000 H	J	3600000	470000	ug/Kg		11/19/20 07:09	11/23/20 23:59	100

Eurofins TestAmerica, Buffalo

11/17/20 14:20 11/22/20 18:46

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste Date Received: 11/03/20 12:57

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetophenone	ND	N, UST	3600000	490000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Anthracene	8500000	K J+	3600000	900000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Atrazine	ND	1 ust	3600000	1300000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzaldehyde	ND	y us	3600000	2900000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzo[a]anthracene	4500000	15	3600000	360000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzo[a]pyrene	5200000	M J	3600000	540000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzo[b]fluoranthene	3400000	J H	3600000	580000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzo[g,h,i]perylene	2600000	J H/*	3600000	390000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Benzo[k]fluoranthene	ND	Y W	3600000	470000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Biphenyl	5500000	W 3-	3600000	540000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
bis (2-chloroisopropyl) ether	ND	$\chi \nu_{\rm j}$	3600000	730000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Bis(2-chloroethoxy)methane	ND	A	3600000	770000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Bis(2-chloroethyl)ether	ND	´⊬	3600000	470000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Bis(2-ethylhexyl) phthalate	ND	H/	3600000	1200000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Butyl benzyl phthalate	ND	4	3600000	600000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Caprolactam	ND	[/ .]	3600000	1100000			11/19/20 07:09	11/23/20 23:59	10
Carbazole	ND	∀	3600000	430000			11/19/20 07:09	11/23/20 23:59	10
Chrysene	3500000	JH	3600000	810000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Dibenz(a,h)anthracene	ND	H* 177	3600000	640000	ug/Kg		11/19/20 07:09	11/23/20 23:59	10
Dibenzofuran	ND	2	3600000	430000			11/19/20 07:09	11/23/20 23:59	10
Diethyl phthalate	ND	H	3600000	470000			11/19/20 07:09	11/23/20 23:59	10
Dimethyl phthalate	ND	₩	3600000	430000			11/19/20 07:09	11/23/20 23:59	10
Di-n-butyl phthalate	ND	¥. \	3600000	620000			11/19/20 07:09	11/23/20 23:59	10
Di-n-octyl phthalate	ND	1	3600000	430000			11/19/20 07:09	11/23/20 23:59	10
Fluoranthene	9300000	75	3600000	390000			11/19/20 07:09	11/23/20 23:59	10
Fluorene	9100000	\(\)	3600000	430000			11/19/20 07:09	11/23/20 23:59	10
Hexachlorobenzene	ND	H*UJ	3600000	490000			11/19/20 07:09	11/23/20 23:59	10
Hexachlorobutadiene	ND	/ *	3600000	540000			11/19/20 07:09	11/23/20 23:59	10
Hexachlorocyclopentadiene	ND	\mathcal{A}	3600000	490000			11/19/20 07:09	11/23/20 23:59	10
Hexachloroethane	ND		3600000	470000			11/19/20 07:09	11/23/20 23:59	10
Indeno[1,2,3-cd]pyrene	1600000	J #/*	3600000	450000			11/19/20 07:09	11/23/20 23:59	10
Isophorone	ND	n UJ	3600000	770000			11/19/20 07:09	11/23/20 23:59	10
Naphthalene	7000000	15	3600000	470000			11/19/20 07:09	11/23/20 23:59	10
Nitrobenzene	ND	Jul J	3600000	410000			11/19/20 07:09	11/23/20 23:59	10
N-Nitrosodi-n-propylamine	ND	\mathcal{L}	3600000	620000			11/19/20 07:09	11/23/20 23:59	10
N-Nitrosodiphenylamine	ND	A.	3600000	3000000	ug/Kg			11/23/20 23:59	10
Pentachlorophenol	ND	· /	7100000	3600000			11/19/20 07:09	11/23/20 23:59	10
Phenanthrene	30000000		3600000	540000			11/19/20 07:09	11/23/20 23:59	10
Phenol	ND	JUJ	3600000	560000					10
Pyrene	16000000	'//	3600000	430000				11/23/20 23:59	10
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Ethylbenzene	6900000	• /	ug/Kg	3	.97	100-41-4	11/19/20 07:09	11/23/20 23:59	10
p-Xylene	4300000	//,	ug/Kg	4	.10	106-42-3	11/19/20 07:09	11/23/20 23:59	10
Benzene, ethenylmethyl-	9100000	HIJN	ug/Kg	5	.64 2	25013-15-4	11/19/20 07:09	11/23/20 23:59	10
Indene	12000000	THJN	ug/Kg	6	.16	95-13-6	11/19/20 07:09	11/23/20 23:59	10
Benzene, 1-butynyl-	5200000	T/HJ N	ug/Kg	7	'.11	622-76-4	11/19/20 07:09	11/23/20 23:59	10
1H-Indene, 1-methyl-	4200000	THIJN	ug/Kg		.14		11/19/20 07:09	11/23/20 23:59	10
Benzocycloheptatriene	30000000		ug/Kg		.36			11/23/20 23:59	10
Naphthalene, 1-ethyl-	5700000	//	ug/Kg		.91		11/19/20 07:09		10

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste

Date Received: 11/03/20 12:57

Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Naphthalene, 1,6-dimethyl-	13000000	TAJN	ug/Kg		8.98	575-43-9	11/19/20 07:09	11/23/20 23:59	100
Naphthalene, 2,3-dimethyl-	14000000	THUN	ug/Kg		9.07	581-40-8	11/19/20 07:09	11/23/20 23:59	100
Naphthalene, 2,6-dimethyl-	7600000	THIN	ug/Kg		9.10	581-42-0	11/19/20 07:09	11/23/20 23:59	100
Naphthalene, 2-ethenyl-	5900000	A AJN	ug/Kg		9.15	827-54-3	11/19/20 07:09	11/23/20 23:59	100
Naphthalene, 2,7-dimethyl-	6900000	A,JN	ug/Kg		9.20	582-16-1	11/19/20 07:09	11/23/20 23:59	100
Naphthalene, 1,4,6-trimethyl-	4700000	+ HJN	ug/Kg		9.72	2131-42-2	11/19/20 07:09	11/23/20 23:59	100
Inknown	6100000	A A J	ug/Kg		9.83		11/19/20 07:09	11/23/20 23:59	100
Inknown	4000000	THI	ug/Kg		10.68		11/19/20 07:09	11/23/20 23:59	100
Phenanthrene, 1-methyl-	6700000	T PyJN	ug/Kg		11.56	832-69-9	11/19/20 07:09	11/23/20 23:59	100
Anthracene, 2-methyl-	7400000	T/H/JN	ug/Kg		11.59	613-12-7	11/19/20 07:09	11/23/20 23:59	100
Jnknown	10000000	T/HJJ	ug/Kg		11.66		11/19/20 07:09	11/23/20 23:59	100
Jnknown	4200000	THI	ug/Kg		12.07		11/19/20 07:09	11/23/20 23:59	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	0	X	53 - 120				11/19/20 07:09	11/23/20 23:59	100
Phenol-d5 (Surr)	0	X	54 - 120				11/19/20 07:09	11/23/20 23:59	100
p-Terphenyl-d14 (Surr)	0	X	79 - 130				11/19/20 07:09	11/23/20 23:59	100
2,4,6-Tribromophenol (Surr)	0	X	54 - 120				11/19/20 07:09	11/23/20 23:59	100
2-Fluorobiphenyl (Surr)	108		60 - 120				11/19/20 07:09	11/23/20 23:59	100
2-Fluorophenol (Surr)	0	X	52 - 120				11/19/20 07:09	11/23/20 23:59	100
Method: 8081B - Organochlo	rine Pesticid	es (GC)							
Analyte		Qualifier	RL		MDL Ur	nit D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	H.US	3.8		0.75 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
4,4'-DDE	ND	A	3.8		1.1 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
4,4'-DDT	3.8 11	3H()	3.8		0.85 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	2C 10
Aldrin	ND	MUS	3.8		0.39 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
alpha-BHC	ND	Ά,	3.8		0.69 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
cis-Chlordane	ND	<i>P</i> ₁	3.8		1.9 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
beta-BHC	ND	₩,	3.8		2.8 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
delta-BHC	ND	⊬,	3.8		0.51 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Dieldrin	ND	⊬.	3.8		0.92 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endosulfan I	ND	4	3.8		0.82 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endosulfan II	ND	[]	3.8		0.69 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endosulfan sulfate	ND	H_{J}	3.8		0.72 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endrin	ND	A)	3.8		1.2 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endrin aldehyde	ND	A,	3.8		0.98 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Endrin ketone	ND	M,	3.8		0.92 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
gamma-BHC (Lindane)	ND	N	3.8		2.8 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
trans-Chlordane	0.80	JH'	3.8		0.53 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Heptachlor	ND	\mathcal{M}	3.8		0.60 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Heptachlor epoxide	ND	1	3.8		1.0 mg	g/Kg	11/19/20 07:03	11/20/20 10:33	10
Methoxychlor	3.4	J/A	3.8		1.0 mg		11/19/20 07:03	11/20/20 10:33	10
Toxaphene	ND	AW	38		22 mg		11/19/20 07:03	11/20/20 10:33	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120				11/19/20 07:03	11/20/20 10:33	10
DCB Decachlorobiphenyl	0	X	45 - 120				11/19/20 07:03	11/20/20 10:33	10
Tetrachloro-m-xylene	81		30 - 124				11/19/20 07:03	11/20/20 10:33	10
Tetrachloro-m-xylene	98		30 - 124				11/10/20 07:03	11/20/20 10:33	10

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Analyte

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Result Qualifier

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste Date Received: 11/03/20 12:57

MDL Unit

D

Prepared

Analyzed

Dil Fac

j		-			•	_		,a.,	
PCB-1016	ND		77	15	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1221	ND		77	15	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1232	ND		77	15	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1242	ND		77	15	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1248	ND		77	15	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1254	ND		77	3.6	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1260	ND		77	3.6	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1262	ND		77	3.6	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
PCB-1268	ND		77	3.6	mg/Kg		11/09/20 07:17	11/10/20 13:26	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	163	X	60 - 154				11/09/20 07:17	11/10/20 13:26	20
Tetrachloro-m-xylene (Surr)	128		60 - 154				11/09/20 07:17	11/10/20 13:26	20
DCB Decachlorobiphenyl (Surr)	880	X	65 - 174				11/09/20 07:17	11/10/20 13:26	20
DCB Decachlorobiphenyl (Surr)	100		65 - 174				11/09/20 07:17	11/10/20 13:26	20
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	39.3		10.3	4.5	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Antimony	ND		15.4	0.41	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Arsenic	1.5	J,	2.1	0.41	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Barium	0.50	1\v	0.51	0.11	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Beryllium	ND		0.21	0.029	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Cadmium	ND		0.21	0.031	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Calcium	267	≱	51.3	3.4	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Chromium	0.26	J	0.51	0.21	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Cobalt	ND		0.51	0.051	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Copper	0.82	J	1.0	0.22	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Iron	101		10.3	3.6	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Lead	0.39	J	1.0	0.25	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Lithium	ND		5.1	0.51	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Magnesium	102	,	20.5	0.95	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Manganese	1.6	ø	0.21	0.033	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Molybdenum	ND	,	1.0	0.13	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Nickel	ND		5.1	0.24	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Potassium	ND		30.8	20.5	mg/Kg			12/02/20 01:25	1
Selenium	ND		4.1		mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Silver	ND		0.62		mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Sodium	ND	/	144		mg/Kg			12/02/20 01:25	1
Strontium	0.64	<i>f</i>	0.51		mg/Kg			12/02/20 01:25	1
Thallium	ND		6.2		mg/Kg			12/02/20 01:25	1
Tin	0.82	J	2.1		mg/Kg			12/02/20 01:25	1
Titanium	3.6		0.51		mg/Kg			12/02/20 01:25	1
Vanadium	0.72		0.51		mg/Kg			12/02/20 01:25	1
Zinc	0.89	J	2.1	0.66	mg/Kg		12/01/20 10:56	12/02/20 01:25	1
Method: 7471B - Mercury (CVA	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.053		mg/Kg			11/25/20 19:10	

Eurofins TestAmerica, Buffalo

Page 17 of 1729

12/03/2020

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-177477-1

Date Collected: 10/28/20 12:00 Matrix: Waste

Date Received: 11/03/20 12:57

General Chemistry							
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Specific Gravity	0.9887	0.1000	0.1000 g/mL			11/18/20 14:00	1

Client Sample ID: MW-8 Lab Sample ID: 480-177477-2

Date Collected: 10/29/20 08:30 Matrix: Waste

Date Received: 11/03/20 12:57

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND A, IN	99	27	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,1,2,2-Tetrachloroethane	ND M	99	16	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND A,	99	49	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,1,2-Trichloroethane	ND A	99	21	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,1-Dichloroethane	ND /A,	99	30	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,1-Dichloroethene	ND M	99	34	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2,4-Trichlorobenzene	ND H	99	37	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2,4-Trimethylbenzene	ND M	99	28	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2-Dibromo-3-Chloropropane	ND H*	99	49	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2-Dibromoethane	ND H	99	17	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2-Dichlorobenzene	ND H	99	25	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2-Dichloroethane	ND 🖟	99	40	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,2-Dichloropropane	ND H	99	16	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,3,5-Trimethylbenzene	ND H	99	30	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,3-Dichlorobenzene	ND H	99	26	ug/Kg		11/17/20 14:20	11/22/20 19:09	
1,4-Dichlorobenzene	ND M	99	14	ug/Kg		11/17/20 14:20	11/22/20 19:09	
2-Butanone (MEK)	ND 'H' * */1	490	290	ug/Kg		11/17/20 14:20	11/22/20 19:09	
2-Hexanone	ND /*/	490	200	ug/Kg		11/17/20 14:20	11/22/20 19:09	
I-Methyl-2-pentanone (MIBK)	ND 🖟	490	32	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Acetone	ND */	490	410	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Benzene	ND H	99	19	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Bromodichloromethane	ND M	99	20	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Bromoform	ND H	99	49	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Bromomethane	ND H	99	22	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Carbon disulfide	ND H	99	45	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Carbon tetrachloride	ND H	99	25	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Chlorobenzene	ND H	99	13	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Chloroethane	ND 7	99	21	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Chloroform	ND H	99	68	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Chloromethane	ND H	99	23	ug/Kg		11/17/20 14:20	11/22/20 19:09	
cis-1,2-Dichloroethene	ND M	99	27	ug/Kg		11/17/20 14:20	11/22/20 19:09	
cis-1,3-Dichloropropene	ND H	99	24	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Cyclohexane	ND H	99	22	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Dibromochloromethane	ND H	99	48	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Dichlorodifluoromethane	ND /	99	43	ug/Kg		11/17/20 14:20	11/22/20 19:09	
Ethylbenzene	ND A	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	
sopropylbenzene	ND M	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	
Methyl acetate	ND H	490		ug/Kg		11/17/20 14:20	11/22/20 19:09	
Methyl tert-butyl ether	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	
Methylcyclohexane	ND A	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	
Methylene Chloride	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	
n-Butylbenzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:09	

Eurofins TestAmerica, Buffalo

Page 18 of 1729

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

2-Nitrophenol

3-Nitroaniline

3,3'-Dichlorobenzidine

4,6-Dinitro-2-methylphenol

Client Sample ID: MW-8 Lab Sample ID: 480-177477-2

Date Collected: 10/29/20 08:30 Date Received: 11/03/20 12:57 Matrix: Waste

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ND	y UJ	99	26	ug/Ko]	11/17/20 14:20	11/22/20 19:09	
ND	H	99	36	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	′⊬	99	24	ug/Kg	J	11/17/20 14:20	11/22/20 19:09	
ND	, M	99	27	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	Ή	99	13	ug/Kg	J	11/17/20 14:20	11/22/20 19:09	
32	ر ا _ل الا	99	26	ug/Kg	J	11/17/20 14:20	11/22/20 19:09	
ND	AUJ	99	23	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	И	99	9.7	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	' ⊬	99	27	ug/Kg	J	11/17/20 14:20	11/22/20 19:09	
ND	/ _H / (99	46	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	₩.	99	33	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
ND	 	200	55	ug/Kg]	11/17/20 14:20	11/22/20 19:09	
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
2200	7 HJ	ug/Kg	11	.42		11/17/20 14:20	11/22/20 19:09	
5400	7 HJ	ug/Kg	11.	.55		11/17/20 14:20	11/22/20 19:09	
1100	√y1 J	ug/Kg	11.	.67		11/17/20 14:20	11/22/20 19:09	
5200	THIN	ug/Kg	11	.84 1		11/17/20 14:20	11/22/20 19:09	
3500	T/HJ N	ug/Kg	12	.15	26472-00-4	11/17/20 14:20	11/22/20 19:09	
1600	1/HJ	ug/Kg	12	.25		11/17/20 14:20	11/22/20 19:09	
4300	f HJ	ug/Kg	12	.50		11/17/20 14:20	11/22/20 19:09	
1900	A/HJ	ug/Kg	12	.62		11/17/20 14:20	11/22/20 19:09	
1300	1 /₩ J	ug/Kg	12	.88		11/17/20 14:20	11/22/20 19:09	
1100	T/H J	ug/Kg	13	.14		11/17/20 14:20	11/22/20 19:09	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
99		50 - 149				11/17/20 14:20	11/22/20 19:09	
96		53 - 146				11/17/20 14:20	11/22/20 19:09	
99		49 - 148				11/17/20 14:20	11/22/20 19:09	
93		60 - 140				11/17/20 14:20	11/22/20 19:09	
_	-	. ,	MDI	Unit	D	Propared	Analyzod	Dil F
						<u> </u>		ם ווכ
				0 0	,			
	Z							:
	./ _}							
	7							:
	<i>\</i> ;							:
	~~							
				-				
	₹							
	なばら							2
ND ND	7, 5	780000 1500000	92000 120000			11/19/20 07:09 11/19/20 07:09	11/24/20 00:24 11/24/20 00:24	:
	Result	Result Qualifier ND H	Result Qualifier RL ND 1 99 99 ND 1 100 1 1 100 1 1 1 1	ND	Result Qualifier RL MDL Unit 99 36 ug/Kg ND M 99 36 ug/Kg ND M 99 24 ug/Kg ND M 99 27 ug/Kg ND M 99 27 ug/Kg ND M 99 27 ug/Kg ND M 99 23 ug/Kg ND M 99 27 ug/Kg ND M 99 33 ug/Kg 11.55 ug/Kg 11.55 ug/Kg 11.67 11.67 11.67 12.00 11.84 11.67	Result Qualifier RL MDL Unit D	Result Qualifier RL	Result Qualifier RL MDL Unit D Propared Analyzed

Eurofins TestAmerica, Buffalo

11/19/20 07:09 11/24/20 00:24

11/19/20 07:09 11/24/20 00:24

11/19/20 07:09 11/24/20 00:24

11/19/20 07:09 11/24/20 00:24

Page 19 of 1729

780000

1500000

1500000

1500000

220000 ug/Kg

920000 ug/Kg

220000 ug/Kg

780000 ug/Kg

20

20

20

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-177477-2

Date Collected: 10/29/20 08:30 Matrix: Waste

Date Received: 11/03/20 12:57

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Bromophenyl phenyl ether	ND A US	780000	110000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Chloro-3-methylphenol	ND H	780000	190000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Chloroaniline	ND H	780000	190000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Chlorophenyl phenyl ether	ND H	780000	97000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Methylphenol	ND H	1500000	92000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Nitroaniline	ND H	1500000	410000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
4-Nitrophenol	ND H	1500000	550000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Acenaphthene	200000 JH.	780000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Acenaphthylene	600000 J H	780000	100000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Acetophenone	ND HUJ	780000	110000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Anthracene	200000 11/	780000	190000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Atrazine	ND H*103	780000	270000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzaldehyde	ND H W	780000	620000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzo[a]anthracene	210000 J M	780000	78000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzo[a]pyrene	210000 J M	780000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzo[b]fluoranthene	120000 J H	780000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzo[g,h,i]perylene	120000 J H/*	780000	83000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Benzo[k]fluoranthene	ND A UD	780000	100000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Biphenyl	200000 J M	780000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
bis (2-chloroisopropyl) ether	ND M. WJ	780000	160000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Bis(2-chloroethoxy)methane	ND M,	780000	170000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Bis(2-chloroethyl)ether	ND A	780000	100000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Bis(2-ethylhexyl) phthalate	ND A	780000	270000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Butyl benzyl phthalate	ND /H/	780000	130000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Caprolactam	ND A	780000	240000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Carbazole	ND A	780000	92000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Chrysene	ND AV	780000	180000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Dibenz(a,h)anthracene	ND AZ	780000	140000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Dibenzofuran	ND H	780000	92000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Diethyl phthalate	ND #	780000	100000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Dimethyl phthalate	ND H	780000	92000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Di-n-butyl phthalate	ND H	780000	130000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2
Di-n-octyl phthalate	ND A	780000				11/19/20 07:09	11/24/20 00:24	2
* *				ug/Kg				2
Fluoranthene	380000 J H	780000	83000				11/24/20 00:24 11/24/20 00:24	
Fluorene	360000 J VI	780000	92000					2
Hexachlorobenzene	(/ 1	780000	110000				11/24/20 00:24	2
Hexachlorobutadiene	ND H*	780000	120000				11/24/20 00:24	2
Hexachlorocyclopentadiene	ND H	780000	110000				11/24/20 00:24	2
Hexachloroethane	ND H	780000	100000				11/24/20 00:24	2
Indeno[1,2,3-cd]pyrene	ND **	780000	97000				11/24/20 00:24	2
Isophorone	ND X	780000					11/24/20 00:24	2
Naphthalene	2600000 H UJ	780000		0 0			11/24/20 00:24	2
Nitrobenzene	71	780000	88000				11/24/20 00:24	2
N-Nitrosodi-n-propylamine	ND H	780000	130000				11/24/20 00:24	2
N-Nitrosodiphenylamine	ND H	780000	640000				11/24/20 00:24	2
Pentachlorophenol	ND H	1500000	780000				11/24/20 00:24	2
Phenanthrene	1300000 H	780000	120000				11/24/20 00:24	2
Phenol	ND 'A UD	780000	120000				11/24/20 00:24	2
Pyrene	660000 J M	780000	92000	ug/Kg		11/19/20 07:09	11/24/20 00:24	2

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-177477-2

Date Collected: 10/29/20 08:30 Matrix: Waste

Date Received: 11/03/20 12:57

Tentatively Identified Compound	Est. Result	. ,	Unit	D	I	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fa
Benzocycloheptatriene	1100000	TAJN	ug/Kg	_	8.	36	264-09-5	11/19/20 07:09	11/24/20 00:24	4
Naphthalene, 2,7-dimethyl-	620000	AJIN	ug/Kg		9.	07	582-16-1	11/19/20 07:09	11/24/20 00:24	4
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
Nitrobenzene-d5 (Surr)	89		53 - 120					11/19/20 07:09	11/24/20 00:24	
Phenol-d5 (Surr)	80		54 - 120					11/19/20 07:09	11/24/20 00:24	
p-Terphenyl-d14 (Surr)	117		79 - 130					11/19/20 07:09	11/24/20 00:24	
2,4,6-Tribromophenol (Surr)	0	X	54 - 120					11/19/20 07:09	11/24/20 00:24	
2-Fluorobiphenyl (Surr)	115		60 - 120					11/19/20 07:09	11/24/20 00:24	
2-Fluorophenol (Surr)	0	X	52 - 120					11/19/20 07:09	11/24/20 00:24	
Method: 8081B - Organochl	orine Pesticid	es (GC)								
Analyte	Result	Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
4,4'-DDD	ND	H, 43	0.38		0.075	mg/Kg		11/19/20 07:03	11/20/20 10:52	
4,4'-DDE	ND	A,	0.38		0.11	mg/Kg		11/19/20 07:03	11/20/20 10:52	
4,4'-DDT	ND	A,	0.38		0.085	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Aldrin	ND	Μ,	0.38		0.039	mg/Kg		11/19/20 07:03	11/20/20 10:52	
alpha-BHC	ND	\forall	0.38		0.069	mg/Kg		11/19/20 07:03	11/20/20 10:52	
cis-Chlordane	ND	\forall	0.38		0.19	mg/Kg		11/19/20 07:03	11/20/20 10:52	
beta-BHC	ND	H. I.	0.38		0.28	mg/Kg		11/19/20 07:03	11/20/20 10:52	4
delta-BHC	0.38 2089	XXXU	0.38		0.051	mg/Kg		11/19/20 07:03	11/20/20 10:52	MI
Dieldrin	ND	H. WJ	0.38		0.092	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endosulfan I	ND	∀ 1	0.38		0.082	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endosulfan II	ND	\mathcal{H}	0.38		0.069	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endosulfan sulfate	ND	H \	0.38		0.072	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endrin	ND	4	0.38		0.12	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endrin aldehyde	ND	9 \	0.38		0.098	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Endrin ketone	ND	4	0.38		0.092	mg/Kg		11/19/20 07:03	11/20/20 10:52	
gamma-BHC (Lindane)	ND	4	0.38		0.28	mg/Kg		11/19/20 07:03	11/20/20 10:52	
trans-Chlordane	ND	()	0.38		0.053	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Heptachlor	ND	4)	0.38		0.060	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Heptachlor epoxide	ND	4	0.38		0.10	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Methoxychlor	ND	4	0.38		0.10	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Toxaphene	ND	1 / 1	3.8		2.2	mg/Kg		11/19/20 07:03	11/20/20 10:52	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
DCB Decachlorobiphenyl	129	X	45 - 120					11/19/20 07:03	11/20/20 10:52	
DCB Decachlorobiphenyl	140	X	45 - 120					11/19/20 07:03	11/20/20 10:52	
Tetrachloro-m-xylene	107		30 - 124					11/19/20 07:03	11/20/20 10:52	
Tetrachloro-m-xylene	77		30 - 124					11/19/20 07:03	11/20/20 10:52	

Method: 8082A - Polychlo	orinated Biphenyls (PCBs) by	y Gas Chro	matogr	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	3.1	0.61	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1221	ND	3.1	0.61	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1232	ND	3.1	0.61	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1242	ND	3.1	0.61	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1248	ND	3.1	0.61	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1254	ND	3.1	0.15	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1260	ND	3.1	0.15	mg/Kg		11/09/20 07:17	11/10/20 13:39	1
PCB-1262	ND	3.1	0.15	mg/Kg		11/09/20 07:17	11/10/20 13:39	1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-177477-2

Date Collected: 10/29/20 08:30

Date Received: 11/03/20 12:57

Matrix: Waste

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1268	ND		3.1	0.15	mg/Kg		11/09/20 07:17	11/10/20 13:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene (Surr)	111		60 - 154				11/09/20 07:17	11/10/20 13:39	
Tetrachloro-m-xylene (Surr)	102		60 - 154				11/09/20 07:17	11/10/20 13:39	
DCB Decachlorobiphenyl (Surr)	447	X	65 - 174				11/09/20 07:17	11/10/20 13:39	
DCB Decachlorobiphenyl (Surr)	106		65 - 174				11/09/20 07:17	11/10/20 13:39	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	5.9	J	10.3	4.6	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Antimony	ND		15.5	0.41	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Arsenic	ND	,	2.1	0.41	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Barium	0.28	1 \	0.52	0.11	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Beryllium	ND		0.21	0.029	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Cadmium	ND		0.21	0.031	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Calcium	277	ø	51.7	3.4	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Chromium	ND	•	0.52	0.21	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Cobalt	ND		0.52	0.052	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Copper	ND		1.0	0.22	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Iron	ND		10.3	3.6	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Lead	ND		1.0	0.25	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Lithium	ND		5.2	0.52	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Magnesium	80.1		20.7	0.96	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Manganese	0.63	ø	0.21	0.033	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Molybdenum	ND		1.0	0.13	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Nickel	ND		5.2	0.24	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Potassium	ND		31.0	20.7	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Selenium	ND		4.1	0.41	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Silver	ND		0.62	0.21	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Sodium	380		145	13.4	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Strontium	4.9		0.52	0.044	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Thallium	ND	•	6.2	0.31	mg/Kg		12/01/20 10:56	12/02/20 01:29	
Tin	ND		2.1		mg/Kg		12/01/20 10:56	12/02/20 01:29	
Titanium	0.12	J	0.52		mg/Kg		12/01/20 10:56	12/02/20 01:29	
Vanadium	ND		0.52		mg/Kg			12/02/20 01:29	
Zinc	ND		2.1		mg/Kg		12/01/20 10:56	12/02/20 01:29	
Method: 7471B - Mercury (CV	/AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.020	0.0081	mg/Kg		11/25/20 15:09	11/25/20 19:11	-
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Specific Gravity	1.0013		0.1000	0.1000	a/ml			11/18/20 14:00	

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177477-3

Date Collected: 10/29/20 11:35 Matrix: Waste

Date Received: 11/03/20 12:57

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND A (J	99	28	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,1,2,2-Tetrachloroethane	ND A	99	16	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND M	99	50	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,1,2-Trichloroethane	ND A	99	21	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,1-Dichloroethane	ND M	99	31	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,1-Dichloroethene	ND 'H'	99	34	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2,4-Trichlorobenzene	ND M	99	38	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2,4-Trimethylbenzene	77 J.H	99	28	ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2-Dibromo-3-Chloropropane	ND HUJ	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2-Dibromoethane	ND H, I	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2-Dichlorobenzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2-Dichloroethane	ND (/	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,2-Dichloropropane	ND 1	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,3,5-Trimethylbenzene	68 J N	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
1,3-Dichlorobenzene	ND HULL	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
.4-Dichlorobenzene	ND M	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
2-Butanone (MEK)	ND A	500		ug/Kg		11/17/20 14:20	11/22/20 19:33	
2-Hexanone	ND H	500		ug/Kg		11/17/20 14:20	11/22/20 19:33	
l-Methyl-2-pentanone (MIBK)	ND /H	500		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Acetone	ND H	500		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Benzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Gromodichloromethane	ND M	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Bromoform	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Bromomethane	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Carbon disulfide	ND 4	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Carbon tetrachloride	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Chlorobenzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Chloroethane	ND /H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Chloroform	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Chloromethane	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
is-1,2-Dichloroethene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
sis-1,3-Dichloropropene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Cyclohexane	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Dibromochloromethane	ND M	99		ug/Kg			11/22/20 19:33	
Dichlorodifluoromethane	ND H	99		ug/Kg ug/Kg			11/22/20 19:33	
Ethylbenzene	ND H	99		ug/Kg ug/Kg		11/17/20 14:20	11/22/20 19:33	
	ND A	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
sopropylbenzene	ND H	500				11/17/20 14:20	11/22/20 19:33	
Methyl acetate	ND H	99		ug/Kg ug/Kg		11/17/20 14:20	11/22/20 19:33	
Methyl tert-butyl ether	ND H	99				11/17/20 14:20	11/22/20 19:33	
Methylope Chloride	// /			ug/Kg				
Methylene Chloride	ND M	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
-Butylbenzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
I-Propylbenzene	31 J H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
ec-Butylbenzene	ND H WJ	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Styrene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
ert-Butylbenzene	ND H	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Tetrachloroethene	ND Y	99		ug/Kg		11/17/20 14:20	11/22/20 19:33	
Toluene rans-1,2-Dichloroethene	ND A	99		ug/Kg ug/Kg			11/22/20 19:33 11/22/20 19:33	

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177477-3

Date Collected: 10/29/20 11:35

Date Received: 11/03/20 12:57

Matrix: Waste

Analyte	Result	Qualifier	RL		MDL	Uni	t D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND	H 45	99		9.8	ug/l	Kg —	11/17/20 14:20	11/22/20 19:33	1
Trichloroethene	ND	<i>i</i> /	99		28	ug/l	Kg	11/17/20 14:20	11/22/20 19:33	1
Trichlorofluoromethane	ND	H	99		47	ug/l	Kg	11/17/20 14:20	11/22/20 19:33	1
Vinyl chloride	ND	′⊬. \	99		33	ug/l	Kg	11/17/20 14:20	11/22/20 19:33	1
Xylenes, Total	ND	eg	200		55	ug/l	Kg	11/17/20 14:20	11/22/20 19:33	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1700	TAJ	ug/Kg		10.	92		11/17/20 14:20	11/22/20 19:33	1
The second isomer	9400	TAJN	ug/Kg		11.	20	1000222-21-	11/17/20 14:20	11/22/20 19:33	1
tricyclopentadiene		/,					1			
Unknown	4600	T/H J	ug/Kg		11.	42		11/17/20 14:20	11/22/20 19:33	1
4,7-Methano-1H-indene,	7500	THIN	ug/Kg		11.	56	26472-00-4	11/17/20 14:20	11/22/20 19:33	1
3a,4,7,7a-tetrahydrodimethyl-	10000	1.00			44	0.4	00470 00 4	44/47/00 44:00	44/00/00 40:00	
4,7-Methano-1H-indene, 3a,4,7,7a-tetrahydrodimethyl-	10000	THIN	ug/Kg		11.	84	26472-00-4	11/17/20 14:20	11/22/20 19:33	1
1,2,4a,4b,7,8,8a,8b-Octahydrobiphen	9500	1 HJN	ug/Kg		12.	15	1000193-45-	11/17/20 14:20	11/22/20 19:33	1
ylene							6			
Unknown	2200	7HJ	ug/Kg		12.	25		11/17/20 14:20	11/22/20 19:33	1
Unknown	3700	THI	ug/Kg		12.	50		11/17/20 14:20	11/22/20 19:33	1
Unknown	3100	THI	ug/Kg		12.	70		11/17/20 14:20	11/22/20 19:33	1
Unknown	3900	THYS	ug/Kg		12.	88		11/17/20 14:20	11/22/20 19:33	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		50 - 149					11/17/20 14:20	11/22/20 19:33	1
1,2-Dichloroethane-d4 (Surr)	94		53 - 146					11/17/20 14:20	11/22/20 19:33	1
4-Bromofluorobenzene (Surr)	100		49 - 148					11/17/20 14:20	11/22/20 19:33	1
Dibromofluoromethane (Surr)	89		60 - 140					11/17/20 14:20	11/22/20 19:33	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND A US	430000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,4,6-Trichlorophenol	ND M	430000	85000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,4-Dichlorophenol	ND H	430000	45000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,4-Dimethylphenol	ND A	430000	100000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,4-Dinitrophenol	ND A	4200000	2000000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,4-Dinitrotoluene	ND A	430000	88000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2,6-Dinitrotoluene	ND A	430000	50000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Chloronaphthalene	ND A	430000	70000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Chlorophenol	ND H	430000	78000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Methylnaphthalene	310000 JA	430000	85000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Methylphenol	ND A UJ	430000	50000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Nitroaniline	ND A	830000	63000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
2-Nitrophenol	ND H	430000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
3,3'-Dichlorobenzidine	ND A	830000	500000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
3-Nitroaniline	ND H	830000	120000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4,6-Dinitro-2-methylphenol	ND H	830000	430000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4-Bromophenyl phenyl ether	ND H	430000	60000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4-Chloro-3-methylphenol	ND /A,	430000	110000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4-Chloroaniline	ND /	430000	110000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4-Chlorophenyl phenyl ether	ND M	430000	53000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10
4-Methylphenol	ND N	830000	50000	ug/Kg		11/19/20 07:09	11/24/20 00:49	10

Eurofins TestAmerica, Buffalo

Page 24 of 1729

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177477-3

Date Collected: 10/29/20 11:35

Date Received: 11/03/20 12:57

Matrix: Waste

Analyte	Result	Qualifier	RL	MI	OL Unit	D	Prepared	Analyzed	Dil Fa
4-Nitroaniline	ND	لنها به	830000	2200	00 ug/Ko]	11/19/20 07:09	11/24/20 00:49	1
4-Nitrophenol	ND	\mathcal{A}	830000	3000	00 ug/Kg	3	11/19/20 07:09	11/24/20 00:49	1
Acenaphthene	ND	A .	430000	630	00 ug/Ko	3	11/19/20 07:09	11/24/20 00:49	1
Acenaphthylene	130000	JH/	430000	550	00 ug/Kg	3	11/19/20 07:09	11/24/20 00:49	1
Acetophenone	ND	14J	430000	580	00 ug/Ko	3	11/19/20 07:09	11/24/20 00:49	1
Anthracene	ND	⊬ \	430000	1100	00 ug/Ko	3	11/19/20 07:09	11/24/20 00:49	1
Atrazine	ND	⊬*	430000	1500	00 ug/Kg)	11/19/20 07:09	11/24/20 00:49	1
Benzaldehyde	ND	4y	430000	3400	00 ug/Kg]	11/19/20 07:09	11/24/20 00:49	1
Benzo[a]anthracene	ND	$H_{\mathbf{y}}$	430000	430	00 ug/Kg]	11/19/20 07:09	11/24/20 00:49	1
Benzo[a]pyrene	ND	H	430000	630	00 ug/Kg)	11/19/20 07:09	11/24/20 00:49	1
Benzo[b]fluoranthene	ND	4/	430000	680	00 ug/Kg]	11/19/20 07:09	11/24/20 00:49	1
Benzo[g,h,i]perylene	ND	/ +/* \	430000	450	00 ug/Kg	3	11/19/20 07:09	11/24/20 00:49	1
Benzo[k]fluoranthene	ND	<i>H</i>	430000	550	00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Biphenyl	ND.	/ _H /	430000	630	00 ug/Kg	3	11/19/20 07:09	11/24/20 00:49	1
bis (2-chloroisopropyl) ether	ND	/4/	430000	850	00 ug/Kg]	11/19/20 07:09	11/24/20 00:49	1
Bis(2-chloroethoxy)methane	ND	4,	430000	900	00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Bis(2-chloroethyl)ether	ND	A_{ν}	430000	550	00 ug/Kg	1	11/19/20 07:09	11/24/20 00:49	1
Bis(2-ethylhexyl) phthalate	ND	Ά,	430000	1500	00 ug/Kg	1	11/19/20 07:09	11/24/20 00:49	1
Butyl benzyl phthalate	ND	V	430000	700	00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Caprolactam	ND	\mathcal{A}	430000	1300			11/19/20 07:09	11/24/20 00:49	1
Carbazole	ND	\mathcal{U}	430000	500			11/19/20 07:09	11/24/20 00:49	1
Chrysene		(H)	430000	950			11/19/20 07:09	11/24/20 00:49	1
Dibenz(a,h)anthracene	ND	A+	430000	750			11/19/20 07:09	11/24/20 00:49	1
Dibenzofuran	ND	`⊬/	430000	500			11/19/20 07:09	11/24/20 00:49	1
Diethyl phthalate	ND	. / / 1	430000	550			11/19/20 07:09	11/24/20 00:49	10
Dimethyl phthalate	ND	7/	430000	500			11/19/20 07:09	11/24/20 00:49	1
Di-n-butyl phthalate	ND	Z) (430000	730			11/19/20 07:09	11/24/20 00:49	1
Di-n-octyl phthalate	ND	Z 1	430000	500			11/19/20 07:09	11/24/20 00:49	······································
Fluoranthene	73000	.λ.',	430000	450			11/19/20 07:09	11/24/20 00:49	1
Fluorene	75000	ŭ	430000	500			11/19/20 07:09	11/24/20 00:49	1
Hexachlorobenzene	ND	"/ W	430000	580			11/19/20 07:09	11/24/20 00:49	
Hexachlorobutadiene	ND	Z/*	430000	630			11/19/20 07:09	11/24/20 00:49	1
Hexachlorocyclopentadiene	ND	Z,	430000	580			11/19/20 07:09	11/24/20 00:49	1
Hexachloroethane	ND	'Z) -	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	·····'
Indeno[1,2,3-cd]pyrene	ND	1 / _*	430000		00 ug/Kg 00 ug/Kg			11/24/20 00:49	1
	ND	7/	430000		00 ug/Kg 00 ug/Kg			11/24/20 00:49	1
Isophorone		7 1					11/19/20 07:09		
Naphthalene	550000	<i>た</i> は こ	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Nitrobenzene	ND	'Z Y	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
N-Nitrosodi-n-propylamine	ND	7, 1	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
N-Nitrosodiphenylamine	ND	クー	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Pentachlorophenol	ND	M	830000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Phenanthrene	280000	JA	430000		00 ug/Kg		11/19/20 07:09	11/24/20 00:49	1
Phenol Pyrene	ND 130000	J M	430000 430000		00 ug/Kզ 00 ug/Kզ		11/19/20 07:09 11/19/20 07:09	11/24/20 00:49 11/24/20 00:49	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None	P	ug/Kg				11/19/20 07:09	11/24/20 00:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-177477-3

Date Collected: 10/29/20 11:35 Matrix: Waste

Date Received: 11/03/20 12:57

Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5 (Surr)	58		54 - 120				11/19/20 07:09	11/24/20 00:49	10
p-Terphenyl-d14 (Surr)	86		79 - 130				11/19/20 07:09	11/24/20 00:49	10
2,4,6-Tribromophenol (Surr)	79		54 - 120				11/19/20 07:09	11/24/20 00:49	10
2-Fluorobiphenyl (Surr)	83		60 - 120				11/19/20 07:09	11/24/20 00:49	10
2-Fluorophenol (Surr)	59		52 - 120				11/19/20 07:09	11/24/20 00:49	10
Method: 8081B - Organoc	hlorine Pesticides	s (GC)							
Analyte	Result Q	` '	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND P	, us	0.26	0.051	mg/Kg		11/19/20 07:03	11/20/20 11:12	1
4,4'-DDE	ND /	<u> </u>	0.26	0.074	mg/Kg		11/19/20 07:03	11/20/20 11:12	1
4,4'-DDT	ND A	ί, Ι	0.26	0.058	mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Aldrin	ND H	/,	0.26	0.027	mg/Kg		11/19/20 07:03	11/20/20 11:12	1
alpha-BHC	ND A	ĺ	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
cis-Chlordane	ND H	/	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
beta-BHC	ND H	7	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
delta-BHC	ND (H	<i>y</i> \	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Dieldrin	ND (H	1	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endosulfan I	ND A	(0.26	0.056	mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endosulfan II	ND M	6	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endosulfan sulfate	ND ¥	(,	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endrin	ND A	,	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endrin aldehyde	ND A	ί, Ι	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Endrin ketone	ND H	/,	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
gamma-BHC (Lindane)	ND H	/	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
trans-Chlordane	ND H)	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Heptachlor	ND A	1	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Heptachlor epoxide	ND H	<u> </u>	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Methoxychlor	ND /	/	0.26		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Toxaphene	ND H	/ I	2.6		mg/Kg		11/19/20 07:03	11/20/20 11:12	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	91		45 - 120				11/19/20 07:03	11/20/20 11:12	1
DCB Decachlorobiphenyl	133 X	(45 - 120				11/19/20 07:03	11/20/20 11:12	1
Tetrachloro-m-xylene	82		30 - 124				11/19/20 07:03	11/20/20 11:12	1
Tetrachloro-m-xylene	55		30 - 124				11/19/20 07:03	11/20/20 11:12	1
Method: 8082A - Polychlo	rinated Biphenyls	s (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result Q	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1221	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1232	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1242	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10

7 ti laily to	rtoouit	addillioi			01110	_	opa.ca	7 111 all y 20 a	Dii 1 40
PCB-1016	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1221	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1232	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1242	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1248	ND		42	8.2	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1254	ND		42	2.0	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1260	ND		42	2.0	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1262	ND		42	2.0	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
PCB-1268	ND		42	2.0	mg/Kg		11/09/20 07:17	11/10/20 13:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	154		60 - 154				11/09/20 07:17	11/10/20 13:51	10

Eurofins TestAmerica, Buffalo

Page 26 of 1729

Client: New York State D.E.C. Job ID: 480-177477-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Surrogate

Thallium

Titanium

Vanadium

Tin

Zinc

Client Sample ID: MW-100 Lab Sample ID: 480-177477-3

Limits

Date Collected: 10/29/20 11:35 Matrix: Waste Date Received: 11/03/20 12:57

Prepared

Analyzed

Dil Fac

1

1

1

1

%Recovery Qualifier

ND'

ND

ND

ND

ND

Tetrachloro-m-xylene (Surr)	131		60 - 154				11/09/20 07:17	11/10/20 13:51	10
DCB Decachlorobiphenyl (Surr)	998	X	65 - 174				11/09/20 07:17	11/10/20 13:51	10
DCB Decachlorobiphenyl (Surr)	142		65 - 174				11/09/20 07:17	11/10/20 13:51	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		9.7	4.3	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Antimony	ND		14.6	0.39	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Arsenic	ND	1	1.9	0.39	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Barium	0.28	J	0.49	0.11	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Beryllium	ND	/	0.19	0.027	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Cadmium	ND	ı	0.19	0.029	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Calcium	169	ß	48.6	3.2	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Chromium	ND	/	0.49	0.19	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Cobalt	ND		0.49	0.049	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Copper	ND		0.97	0.20	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Iron	ND		9.7	3.4	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Lead	ND		0.97	0.23	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Lithium	ND		4.9	0.49	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Magnesium	166		19.4	0.90	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Manganese	0.20	ø	0.19	0.031	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Molybdenum	ND	/	0.97	0.13	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Nickel	ND		4.9	0.22	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Potassium	ND		29.2	19.4	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Selenium	ND		3.9	0.39	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Silver	ND		0.58	0.19	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Sodium	174		136	12.6	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
Strontium	8.4		0.49	0.042	mg/Kg		12/01/20 10:56	12/02/20 01:32	1
		/							

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.021	0.0084	mg/Kg		11/25/20 15:09	11/25/20 19:13	1

5.8

1.9

0.49

0.49

1.9

0.29 mg/Kg

0.42 mg/Kg

0.078 mg/Kg

0.11 mg/Kg

0.62 mg/Kg

General Chemistry Analyte	Result Q	ualifier	RL R	L Unit	D	Prepared	Analyzed	Dil Fac
Specific Gravity	1.0017	0.10	0.100	0 g/mL			11/18/20 14:00	1

12/01/20 10:56 12/02/20 01:32

12/01/20 10:56 12/02/20 01:32

12/01/20 10:56 12/02/20 01:32

12/01/20 10:56 12/02/20 01:32

12/01/20 10:56 12/02/20 01:32

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A **Laboratory:** Eurofins Environmental Testing -Test America

Job No: 480-180232-1

Fraction: Organic
Matrix: Solid
Report Date: 3/18/2021

This data usability summary report is based upon a review of analytical data generated for DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds, semivolatile organic compounds, pesticide compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Sound MA

Shawne M. Rodgers President

March 18, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues:

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing relative response factors (RRF) \leq 20 percent) was exceeded for the following pesticide continuing calibration standard. This indicates a lack of instrument stability for this analyte. Results for the compounds should be considered quantitative estimates. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-566895/6 (File ID 25_42-311.D) (Column ID RTX CLP- I)	4,4'-DDT Methoxychlor	24.5 24.0	MW-100, MW-8, MW-5R
CCVIS 480-566895/6 (File ID 25_42-311.D) (Column ID RTX CLP- II)	4,4'-DDT Methoxychlor	22.7 29.9	MW-100, MW-8, MW-5R

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following volatile organic compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (mg/Kg)	Associated Samples
MB 566690/2-A	Methylene Chloride	54.5 J	All Samples

The blank result was less than the reporting limit (RL). The positive results reported for this compound are also less than the RL and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for common contaminants, that are less than or equal to the associated blank contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

The following pesticide compounds were detected in associated laboratory method blanks.

Blank	Compound	Concentration (mg/Kg)	Associated Samples
MB 566814/1-A	4,4'-DDT	0.145 J	All Samples

The blank results were less than the RL. The following positive results reported for this compound are also less than the RL and require qualification. The possibility of false positive exists for the samples. USEPA protocol requires positive results for uncommon contaminants, that are less than or equal to the associated blank contamination RL to be considered qualitatively invalid. They have been replaced with the RL and marked "U".

Field and equipment blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

All samples were analyzed for were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

All samples were analyzed for pesticide compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

All samples were analyzed for polychlorinated biphenyls at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 SUMMARIES OF MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

The following pesticide compounds were reported by the laboratory at concentrations less than the RL. Poor precision was observed for these compounds on the dual chromatographic columns used for sample analysis (greater than 50 % difference between results). The laboratory for reporting purposes used the higher concentration for these compounds. The positive pesticide results should be considered nondetect at the RL. The results have been replaced with the RL and marked "U".

Sample	Affected Compound
MW-8	Methoxychlor

For the following samples, a lack of precision (greater than 25 % difference between results) was observed for this analyte on the dual chromatographic columns used for sample analysis. The laboratory for reporting purposes used the higher concentration for these compounds. The result has been marked with "J" qualifiers to indicate that it is a quantitative estimate.

Sample	Affected Compound	
MW-5R	Methoxychlor	

The samples presented below were analyzed volatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	400
MW-8	200
MW-5R	200

The samples presented below were analyzed semivolatile organic compounds at dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

Sample	Dilution Factor
MW-100	20.0
MW-8	20.0
MW-5R	20.0

All samples were analyzed pesticide compounds at twenty-fold dilutions. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

The following samples were analyzed at dilutions for polychlorinated biphenyls. The dilution analyses were performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for these samples.

The samples presented below were re-analyzed at dilutions for volatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
MW-100	1000	Ethylbenzene
MW-5R	500	cis-1,2-Dichloroethene

The samples presented below were re-analyzed at dilutions for semivolatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
MW-100	100	2-Methylnaphthalene, Phenanthrene, Naphthalene
MW-8	100	2-Methylnaphthalene, Phenanthrene, Naphthalene
MW-5R	100	2-Methylnaphthalene, Phenanthrene, Naphthalene

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

As required by USEPA protocol, all volatile and semivolatiles TICs have been reported with "J" qualifiers to indicate that they are quantitative estimates. EDQ has reported only those TIC results that have not been determined to be laboratory or field artifacts, and where possible has grouped TIC of similar classification.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Pesticide Compounds	Method 8081B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013

Table 1 Data Usability Summary Report
NYSDEC 31 Tonawanda St. - OffSite C915299A
DNAPL Sampling
Eurofins Environment Test America Job Number 480-180232-1

Analyses Performed

Sample ID	Lab ID	Collection Date	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW9012	D1429
MW-100	480-180232-1	1/14/2021	Product	X	Χ	X	Χ	X	X	X	Х
MW-8	480-180232-2	1/14/2021	Product	X	X	X	X	X	X	X	X
MW-5R	480-180232-3	1/14/2021	Product	X	X	X	X	X	X	X	X

Project: NYSDEC 31 Tonawanda St. - OffSite C915299A

Laboratory: Eurofins Test America

Job No: 480-180232-1 Fraction: Inorganic Matrix: Solid Report Date: 3/18/2021

This data usability summary report is based upon a review of analytical data generated for DNAPL samples. New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format data packages were provided by the laboratory.

The sample was analyzed for total metals, cyanide, and specific gravity. Sample analyses were performed in accordance with the procedures outlined in the methods referenced at the end of this report.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the following USEPA Region II "ICP-AES Data Validation", HW-2a, revision 15, December 2012. The quality control requirements specified in the analysis methods and associated acceptance criteria were also used to evaluate the data. The parameters presented on the following page were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/ Sample Receipt
- X Holding Times
- X Initial and Continuing Calibrations
- X ICP Interference Check Sample Results
- X Laboratory and Field Blank Analysis Results
 - Matrix Spike Recoveries and Reproducibility
 - Laboratory Duplicate Analysis Results
 - ICP Serial Dilution Results
 - Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Qualitative Identification
- X Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Spun Milas

Shawne M. Rodgers President

March 18, 2021

1.0 DATA COMPLETENESS

The data deliverables provided by the laboratory were New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP) Category B format.

A completeness review of the data package revealed no missing items or issues.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody was complete. No problems were noted at sample receipt.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INITIAL AND CONTINUING CALIBRATIONS

Unacceptable recoveries were obtained for the continuing calibration verification (CCV) standards presented below. The unacceptable recovery indicates enhanced sensitivity of the ICP instrument. All samples were associated with the standards. The antimony results for the samples are greater than the RL. Qualification is unnecessary.

RL Standard	Analytes	%Rec
CCV 480-567264/45	Antimony	111

5.0 ICP INTERFERENCE CHECK SAMPLE RESULTS

Barium was detected in interference check standard (ICS) A 480-567264/8 at a concentration of 0.0130 mg/L, which is greater than twice the detection limit. Samples MW-8, MW-5R, and MW-100 were associated with the unacceptable ICS. The data package case narrative indicated that

barium may have been present as an impurity in the standard solution. Barium positive results for the samples were all significantly greater than the ICS A level. Qualification was unnecessary.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

The following inorganic analytes were detected in the laboratory preparation blanks, and/or calibration blanks. The positive blank results were less than their respective reporting limits (RLs). Results for the associated samples were greater than the RL. Qualification was unnecessary.

Blank	Analyte	Concentration (mg/L)	Associated Samples
MB 480-566911/1-A,	Aluminum	5.55 J	MW-8, MW-5R, MW-100
mg/Kg	Calcium	3.35 J	
	Iron	5.58 J	
	Magnesium	1.00 J	
	Manganese	0.0469 J	
COD 400 F/F0/A/A/	V	0.000070.1	MIN O MIN ED MIN 100
CCB 480-567264/46	Manganese	0.000970 J	MW-8, MW-5R, MW-100

No field or equipment blanks were submitted for this job number. This should be noted when assessing the data.

7.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

8.0 LABORATORY DUPLICATE RESULTS

Laboratory duplicate precision was evaluated using the MS/MSD analysis results as discussed above in Section 7.0, Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility.

9.0 ICP SERIAL DILUTION RESULTS

The laboratory did not select a site sample to perform ICP serial dilution analyses. Therefore, the associated sample data could not be evaluated based on this parameter. This should be noted when assessing the sample data.

10.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted with this job number.

11.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 REPORTING LIMITS

As required by USEPA protocol, all analytes, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Metals	Method 6010C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Mercury	Method 7471B, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA, IVB, and V, October 2013
Specific Gravity	Method D1429-87, ASTM

Table 1 Data Usability Summary Report
NYSDEC 31 Tonawanda St. - OffSite C915299A
DNAPL Sampling
Eurofins Environment Test America Job Number 480-180232-1

Analyses Performed

Sample ID	Lab ID	Collection Date	Matrix	SW8260C	SW8270D	SW8081B	SW8082A	SW6010C	SW7470A	SW9012	D1429
MW-100	480-180232-1	1/14/2021	Product	X	Χ	X	X	X	X	X	Х
MW-8	480-180232-2	1/14/2021	Product	X	X	X	X	X	X	X	X
MW-5R	480-180232-3	1/14/2021	Product	X	X	X	X	X	X	X	Χ

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 Matrix: Waste Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		40000	11000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,1,2,2-Tetrachloroethane	ND		40000	6500	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,1,2-Trichloroethane	ND		40000	8400	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,1,2-Trichloro-1,2,2-trifluoroethand	e ND		40000	20000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,1-Dichloroethane	ND		40000	12000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,1-Dichloroethene	ND		40000	14000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,2,4-Trichlorobenzene	ND		40000	15000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
1,2-Dibromo-3-Chloropropane	ND		40000	20000			01/20/21 09:44	01/21/21 15:32	400
1,2-Dichlorobenzene	ND		40000	10000			01/20/21 09:44	01/21/21 15:32	400
1,2-Dichloroethane	ND		40000	16000			01/20/21 09:44	01/21/21 15:32	400
1,2-Dichloropropane	ND		40000		ug/Kg			01/21/21 15:32	400
1,3-Dichlorobenzene	ND		40000		ug/Kg			01/21/21 15:32	400
1,4-Dichlorobenzene	ND		40000		ug/Kg			01/21/21 15:32	400
2-Butanone (MEK)	ND		200000	120000				01/21/21 15:32	400
2-Hexanone	ND		200000	82000				01/21/21 15:32	400
4-Methyl-2-pentanone (MIBK)	ND		200000	13000				01/21/21 15:32	400
Acetone	ND		200000	160000				01/21/21 15:32	400
Benzene	1000000		40000		ug/Kg			01/21/21 15:32	400
Bromodichloromethane	ND		40000		ug/Kg			01/21/21 15:32	400
Bromoform	ND ND		40000	20000				01/21/21 15:32	400
Bromomethane	ND ND		40000					01/21/21 15:32	400
Carbon disulfide					ug/Kg				
	ND ND		40000	18000				01/21/21 15:32	400
Carbon tetrachloride			40000	10000				01/21/21 15:32	400
Chlorobenzene	ND		40000		ug/Kg			01/21/21 15:32	400
Dibromochloromethane	ND		40000	19000				01/21/21 15:32	400
Chloroethane	ND		40000		ug/Kg			01/21/21 15:32	400
Chloroform	ND		40000	27000				01/21/21 15:32	400
Chloromethane	ND		40000		ug/Kg			01/21/21 15:32	400
cis-1,2-Dichloroethene	ND		40000		ug/Kg			01/21/21 15:32	400
cis-1,3-Dichloropropene	ND		40000		ug/Kg			01/21/21 15:32	400
Cyclohexane	ND		40000		ug/Kg			01/21/21 15:32	400
Dichlorodifluoromethane	ND		40000	17000				01/21/21 15:32	400
Ethylbenzene	6300000		40000	12000			01/20/21 09:44	01/21/21 15:32	400
1,2-Dibromoethane	ND	•	40000		ug/Kg			01/21/21 15:32	400
Isopropylbenzene	330000		40000		ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Methyl acetate	ND		200000	19000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Methyl tert-butyl ether	ND		40000	15000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Methylcyclohexane	. ND		40000	19000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Methylene Chloride	40000 21800	7 <u>8</u>	40000	7900	ug/Kg		01/20/21 09:44	01/21/21 15:32	MBADO
Styrene	ND		40000	9600	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Tetrachloroethene	ND		40000	5400	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Toluene	840000		40000	11000	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
trans-1,2-Dichloroethene	ND		40000	9400	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
trans-1,3-Dichloropropene	ND		40000	3900	ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Trichloroethene	ND		40000		ug/Kg		01/20/21 09:44	01/21/21 15:32	400
Trichlorofluoromethane	ND		40000	19000			01/20/21 09:44	01/21/21 15:32	400
Vinyl chloride	ND		40000	13000				01/21/21 15:32	400
Xylenes, Total	4000000		80000	22000				01/21/21 15:32	400

* Report from dilution

Full TestAmerica, Buffalo 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 Matrix: Waste Date Received: 01/14/21 15:45

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	50 - 149	01/20/21 09:44	01/21/21 15:32	400
1,2-Dichloroethane-d4 (Surr)	100	53 - 146	01/20/21 09:44	01/21/21 15:32	400
4-Bromofluorobenzene (Surr)	97	49 - 148	01/20/21 09:44	01/21/21 15:32	400
Dibromofluoromethane (Surr)	97	60 - 140	01/20/21 09:44	01/21/21 15:32	400

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100000	28000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,1,2,2-Tetrachloroethane	ND	100000	16000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,1,2-Trichloroethane	ND	100000	21000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100000	50000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,1-Dichloroethane	ND	100000	31000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,1-Dichloroethene	ND	100000	35000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2,4-Trichlorobenzene	ND	100000	38000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2-Dibromo-3-Chloropropane	ND	100000	50000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2-Dichlorobenzene	ND	100000	26000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2-Dichloroethane	ND	100000	41000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2-Dichloropropane	ND	100000	16000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,3-Dichlorobenzene	ND	100000	27000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,4-Dichlorobenzene	ND	100000	14000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
2-Butanone (MEK)	ND	500000	300000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
2-Hexanone	ND	500000	210000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
4-Methyl-2-pentanone (MIBK)	ND	500000	32000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Acetone	ND	500000	410000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Benzene	940000	100000	19000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Bromodichloromethane	ND	100000	20000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Bromoform	ND	100000	50000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Bromomethane	ND	100000	22000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Carbon disulfide	ND	100000	46000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Carbon tetrachloride	ND	100000	26000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Chlorobenzene	ND	100000	13000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Dibromochloromethane	ND	100000	48000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Chloroethane	ND	100000	21000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Chloroform	ND	100000	69000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Chloromethane	ND	100000	24000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
cis-1,2-Dichloroethene	ND	100000	28000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
cis-1,3-Dichloropropene	ND	100000	24000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Cyclohexane	ND	100000	22000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Dichlorodifluoromethane	ND	100000	44000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Ethylbenzene	6400000	100000	29000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
1,2-Dibromoethane	ND	100000	18000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Isopropylbenzene	330000	100000	15000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Methyl acetate	ND	500000	48000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Methyl tert-butyl ether	ND	100000	38000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Methylcyclohexane	ND	100000	47000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Methylene Chloride	ND	100000	20000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Styrene	ND	100000	24000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Tetrachloroethene	ND	100000	13000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Toluene	830000	100000	27000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
trans-1,2-Dichloroethene	ND	100000	24000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000

Signature 10 to 10

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 **Matrix: Waste** Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		100000	9800	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Trichloroethene	ND		100000	28000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Trichlorofluoromethane	ND		100000	47000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Vinyl chloride	ND		100000	34000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Xylenes, Total	4200000		200000	55000	ug/Kg		01/20/21 09:44	01/24/21 17:42	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		50 - 149				01/20/21 09:44	01/24/21 17:42	1000
1,2-Dichloroethane-d4 (Surr)	103		53 - 146				01/20/21 09:44	01/24/21 17:42	1000
4-Bromofluorobenzene (Surr)	102		49 - 148				01/20/21 09:44	01/24/21 17:42	1000
Dibromofluoromethane (Surr)	101		60 - 140				01/20/21 09:44	01/24/21 17:42	1000

Dibromofluoromethane (Surr)	101		60 - 140				01/20/21 09:44	01/24/21 17:42	1000
Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	` ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	5800000		730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
bis (2-chloroisopropyl) ether	ND		730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4,5-Trichlorophenol	ND		730000	200000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4,6-Trichlorophenol	ND		730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4-Dichlorophenol	ND		730000	77000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4-Dimethylphenol	ND		730000	180000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4-Dinitrophenol	ND		7100000	3400000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,4-Dinitrotoluene	ND		730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2,6-Dinitrotoluene	ND		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Chloronaphthalene	ND		730000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Chlorophenol	ND		730000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Methylphenol	ND		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Methylnaphthalene	-39000000	₩	730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Nitroaniline	ND		1400000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
2-Nitrophenol	ND		730000	210000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
3,3'-Dichlorobenzidine	ND		1400000	860000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
3-Nitroaniline	ND		1400000	200000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4,6-Dinitro-2-methylphenol	ND		1400000	730000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Bromophenyl phenyl ether	ND		730000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Chloro-3-methylphenol	ND		730000	180000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Chloroaniline	ND		730000	180000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Chlorophenyl phenyl ether	ND		730000	90000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Methylphenol	ND		1400000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Nitroaniline	ND		1400000	380000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
4-Nitrophenol	ND		1400000	510000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Acenaphthene	13000000		730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Acenaphthylene	6800000		730000	94000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Acetophenone	ND		730000	99000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Anthracene	8400000		730000	180000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Atrazine	ND		730000	250000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Benzaldehyde	ND		730000	580000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Benzo[a]anthracene	4500000		730000	73000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Benzo[a]pyrene	4900000		730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Benzo[b]fluoranthene	2700000		730000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Benzo[g,h,i]perylene	2000000		730000	77000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
			700000	0.4000	0.7		04/04/04 07 04	04/00/04 00 00	0.0

* Report from delution

1500000

Benzo[k]fluoranthene

Emplins TestAmerica, Buffalo 3/17/2027 01/31/2021

01/21/21 07:21 01/22/21 20:09

730000

94000 ug/Kg

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 Matrix: Waste Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	ND		730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Bis(2-chloroethyl)ether	ND		730000	94000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Bis(2-ethylhexyl) phthalate	ND		730000	250000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Butyl benzyl phthalate	ND		730000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Caprolactam	ND		730000	220000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Carbazole	110000	J	730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Chrysene	3900000		730000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Dibenz(a,h)anthracene	440000	J	730000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Di-n-butyl phthalate	ND		730000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Di-n-octyl phthalate	ND		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Dibenzofuran	1300000		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Diethyl phthalate	ND		730000	94000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Dimethyl phthalate	ND		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Fluoranthene	7800000		730000	77000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Fluorene	7900000		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Hexachlorobenzene	ND		730000	99000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Hexachlorobutadiene	ND		730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Hexachlorocyclopentadiene	ND		730000	99000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Hexachloroethane	ND		730000	94000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Indeno[1,2,3-cd]pyrene	1400000		730000	90000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Isophorone	ND		730000	150000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
N-Nitrosodi-n-propylamine	ND		730000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
N-Nitrosodiphenylamine	ND		730000	590000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Naphthalene	<u>61000000</u>	 🏚	730000	94000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Nitrobenzene	ND		730000	81000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Pentachlorophenol	ND		1400000	730000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Phenanthrene	26000000	-	730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Phenol	ND	/ /	730000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Pyrene	15000000		730000	86000	ug/Kg		01/21/21 07:21	01/22/21 20:09	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	88		53 - 120				01/21/21 07:21	01/22/21 20:09	20
Phenol-d5 (Surr)	98		54 ₋ 120					01/22/21 20:09	20
p-Terphenyl-d14 (Surr)	120		79 - 130				01/21/21 07:21	01/22/21 20:09	20
2,4,6-Tribromophenol (Surr)	110		54 - 120					01/22/21 20:09	20
2-Fluorobiphenyl (Surr)	93		60 - 120				01/21/21 07:21	01/22/21 20:09	20
2-Fluorophenol (Surr)	100		52 - 120				01/21/21 07:21	01/22/21 20:09	20

Analyte	Result	Qualifier I	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	5300000	36000	540000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
bis (2-chloroisopropyl) ether	ND	36000	730000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4,5-Trichlorophenol	ND	36000	990000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4,6-Trichlorophenol	ND	36000	730000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4-Dichlorophenol	ND	36000	390000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4-Dimethylphenol	ND	36000	000088 00	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4-Dinitrophenol	ND	360000	00 17000000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,4-Dinitrotoluene	ND	36000	750000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2,6-Dinitrotoluene	ND	36000	00 430000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100
2-Chloronaphthalene	ND	36000	00 600000	ug/Kg		01/21/21 07:21	01/25/21 11:10	100

A Report from dilution

Surofins TestAmerica, Buffalo 317/2021 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 Matrix: Waste Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	ND		3600000	660000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
2-Methylphenol	ND		3600000	430000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
2-Methylnaphthalene	42000000		3600000	730000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
2-Nitroaniline	ND		7100000	540000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
2-Nitrophenol	ND		3600000	1000000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
3,3'-Dichlorobenzidine	ND		7100000	4300000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
3-Nitroaniline	ND		7100000	1000000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
4,6-Dinitro-2-methylphenol	ND		7100000	3600000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
4-Bromophenyl phenyl ether	ND		3600000	510000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
4-Chloro-3-methylphenol	ND		3600000	900000			01/21/21 07:21	01/25/21 11:10	10
4-Chloroaniline	ND		3600000	900000			01/21/21 07:21	01/25/21 11:10	10
4-Chlorophenyl phenyl ether	ND		3600000	450000			01/21/21 07:21	01/25/21 11:10	10
4-Methylphenol	ND		7100000	430000			01/21/21 07:21	01/25/21 11:10	10
4-Nitroaniline	ND		7100000	1900000			01/21/21 07:21	01/25/21 11:10	10
4-Nitrophenol	ND		7100000	2600000			01/21/21 07:21	01/25/21 11:10	10
Acenaphthene	13000000		3600000	540000			01/21/21 07:21	01/25/21 11:10	10
Acenaphthylene	6400000		3600000	470000			01/21/21 07:21	01/25/21 11:10	10
Acetophenone	ND		3600000	490000			01/21/21 07:21	01/25/21 11:10	10
Anthracene	8100000		3600000	900000				01/25/21 11:10	10
Atrazine	ND		3600000	1300000				01/25/21 11:10	10
Benzaldehyde	ND		3600000	2900000				01/25/21 11:10	10
Benzo[a]anthracene	4400000		3600000	360000				01/25/21 11:10	10
Benzo[a]pyrene	4500000		3600000	540000				01/25/21 11:10	10
Benzo[b]fluoranthene	2700000	1	3600000	580000				01/25/21 11:10	10
Benzo[g,h,i]perylene	1700000		3600000	390000				01/25/21 11:10	10
Benzo[k]fluoranthene	1300000		3600000	470000				01/25/21 11:10	10
Bis(2-chloroethoxy)methane	ND		3600000	770000				01/25/21 11:10	10
Bis(2-chloroethyl)ether	ND		3600000	470000				01/25/21 11:10	10
Bis(2-ethylhexyl) phthalate	ND		3600000	1200000				01/25/21 11:10	10
Butyl benzyl phthalate	ND		3600000	600000				01/25/21 11:10	10
Caprolactam	ND ND		3600000	1100000				01/25/21 11:10	10
Carbazole	ND		3600000	430000				01/25/21 11:10	10
			3600000	810000				01/25/21 11:10	10
Chrysene	3700000 ND		3600000	640000				01/25/21 11:10	10
Dibenz(a,h)anthracene	ND ND		3600000	620000				01/25/21 11:10	10
Di-n-butyl phthalate Di-n-octyl phthalate				430000				01/25/21 11:10	
* .	ND		3600000					01/25/21 11:10	10
Dibenzofuran	1000000	J	3600000	430000					10
Diethyl phthalate	ND		3600000	470000				01/25/21 11:10	10
Dimethyl phthalate	ND		3600000	430000				01/25/21 11:10	10
Fluoranthene	7700000		3600000	390000				01/25/21 11:10	10
Fluorene	7500000		3600000	430000				01/25/21 11:10	10
Hexachlorobenzene	ND		3600000	490000				01/25/21 11:10	10
Hexachlorobutadiene	ND		3600000	540000				01/25/21 11:10	10
Hexachlorocyclopentadiene	ND		3600000	490000				01/25/21 11:10	10
Hexachloroethane	ND		3600000	470000				01/25/21 11:10	10
Indeno[1,2,3-cd]pyrene	1300000	J	3600000	450000				01/25/21 11:10	10
Isophorone	ND		3600000	770000				01/25/21 11:10	10
N-Nitrosodi-n-propylamine	ND		3600000	620000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Naphthalene 🗫	74000000		3600000	470000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Nitrobenzene	ND		3600000	410000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Pentachlorophenol	ND		7100000	3600000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Phenanthrene 🔼	28000000		3600000	540000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Phenol	ND		3600000	560000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Pyrene	15000000		3600000	430000	ug/Kg		01/21/21 07:21	01/25/21 11:10	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	0	S1-	53 - 120				01/21/21 07:21	01/25/21 11:10	10
Phenol-d5 (Surr)	0	S1-	54 - 120				01/21/21 07:21	01/25/21 11:10	10
p-Terphenyl-d14 (Surr)	111		79 - 130				01/21/21 07:21	01/25/21 11:10	10
2,4,6-Tribromophenol (Surr)	0	S1-	54 - 120				01/21/21 07:21	01/25/21 11:10	10
2-Fluorobiphenyl (Surr)	0	S1-	60 - 120				01/21/21 07:21	01/25/21 11:10	10
2-Fluorophenol (Surr)	0	S1-	52 - 120				01/21/21 07:21	01/25/21 11:10	10
Method: 8081B - Organoc	hlorine Pesticio	les (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4,4'-DDD	ND		7.1	1.4	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
4,4'-DDE	ND		7.1	2.0	mg/Kg			01/21/21 15:34	. 2
4,4'-DDT	7.1 2.1	√ ₹ ()	7.1	1.6	mg/Kg		01/21/21 07:18	01/21/21 15:34	MB22
Aldrin	ND	- -	7.1	0.73	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
alpha-BHC	ND		7.1	1.3	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
cis-Chlordane	ND		7.1	3.6	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
beta-BHC	ND		7.1	5.1	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
delta-BHC	ND		7.1	0.94	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Dieldrin	ND		7.1	1.7	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endosulfan I	ND		7.1	1.5	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endosulfan II	ND		7.1	1.3	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endosulfan sulfate	ND		7.1	1.3	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endrin	ND		7.1	2.3	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endrin aldehyde	ND		7.1	1.8	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Endrin ketone	ND		7.1	1.7	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
gamma-BHC (Lindane)	ND		7.1	5.1	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
trans-Chlordane	ND		7.1	0.99	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Heptachlor	ND		7.1	1.1	mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Heptachlor epoxide	ND		7.1		mg/Kg		01/21/21 07:18	01/21/21 15:34	2
Methoxychlor	4.5	J	7.1		mg/Kg			01/21/21 15:34	2
Toxaphene	ND		71		mg/Kg			01/21/21 15:34	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl		S1-	45 - 120					01/21/21 15:34	2
DCB Decachlorobiphenyl	0	S1-	45 - 120				01/21/21 07:18	01/21/21 15:34	2
Tetrachloro-m-xylene	0	S1-	30 - 124				01/21/21 07:18	01/21/21 15:34	2
Tetrachloro-m-xylene		S1-	30 - 124				01/21/21 07:18	01/21/21 15:34	2

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND		56	11	mg/Kg		01/21/21 07:14	01/21/21 23:02	20	
PCB-1221	ND		56	11	mg/Kg		01/21/21 07:14	01/21/21 23:02	20	
PCB-1232	ND		56	11	mg/Kg		01/21/21 07:14	01/21/21 23:02	20	

Eurofins Test/America, Buffalo 31/71/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-100 Lab Sample ID: 480-180232-1

Date Collected: 01/14/21 11:30 Matrix: Waste Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1242	ND		56	11	mg/Kg		01/21/21 07:14	01/21/21 23:02	2
PCB-1248	ND		56	11	mg/Kg		01/21/21 07:14	01/21/21 23:02	2
PCB-1254	ND		56		mg/Kg		01/21/21 07:14	01/21/21 23:02	2
PCB-1260	ND		56		mg/Kg		01/21/21 07:14	01/21/21 23:02	20
PCB-1262	ND		56		mg/Kg		01/21/21 07:14	01/21/21 23:02	20
PCB-1268	ND		56		mg/Kg		01/21/21 07:14	01/21/21 23:02	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene (Surr)	131		60 - 154				01/21/21 07:14	01/21/21 23:02	2
Tetrachloro-m-xylene (Surr)	104		60 - 154				01/21/21 07:14	01/21/21 23:02	2
DCB Decachlorobiphenyl (Surr)	180	S1+	65 - 174				01/21/21 07:14	01/21/21 23:02	2
DCB Decachlorobiphenyl (Surr)	89		65 - 174				01/21/21 07:14	01/21/21 23:02	2
Method: 6010C - Metals (ICF	•								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	35.5		9.9	4.3	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Antimony	ND	/	14.8		mg/Kg		01/22/21 15:09	01/26/21 02:12	
Arsenic	1.3	J	2.0	0.40	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Barium	0.77	194	0.49	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Beryllium	ND		0.20	0.028	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Cadmium	ND		0.20	0.030	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Calcium	205	B	49.4	3.3	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Chromium	0.36	J	0.49	0.20	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Cobalt	ND		0.49	0.049	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Copper	0.88	J	0.99	0.21	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Iron	65.3	×	9.9	3.5	mg/Kg		01/22/21 15:09	01/27/21 17:24	
Lead	1.2	-	0.99	0.24	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Magnesium	72.1	×	19.8	0.92	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Manganese	1.5	₽/	0.20	0.032	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Nickel	ND		4.9	0.23	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Potassium	21.4	J	29.6	19.8	mg/Kg		01/22/21 15:09	01/26/21 22:04	
Selenium	ND		4.0		mg/Kg		01/22/21 15:09	01/26/21 02:12	
Silver	ND		0.59		mg/Kg		01/22/21 15:09	01/26/21 02:12	
Sodium	16.2	J	138		mg/Kg		01/22/21 15:09	01/26/21 22:04	
Thallium	ND		5.9		mg/Kg		01/22/21 15:09	01/26/21 02:12	
Vanadium	0.55		0.49	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:12	
Zinc	1.2	J	2.0		mg/Kg			01/26/21 02:12	
Method: 7471B - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.058	0.023	mg/Kg		01/26/21 12:01	01/26/21 14:38	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cyanide, Total	ND		0.95	0.46	mg/Kg	_	01/25/21 22:10	01/26/21 22:17	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Specific Gravity	1.0408		0.1000	0.1000	a/mL			01/22/21 17:52	

31402

Eurofins TestAmerica, Buffalo

Page 21 of 2661

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-180232-2

Date Collected: 01/14/21 12:45

Date Received: 01/14/21 15:45

Matrix: Waste

Method: 8260C - Volatile O Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	92000	20000	5500	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,1,2,2-Tetrachloroethane	ND	20000	3200	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,1,2-Trichloroethane	ND	20000	4200	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,1,2-Trichloro-1,2,2-trifluoroethane	e ND	20000	9900	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,1-Dichloroethane	21000	20000		ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,1-Dichloroethene	15000 J	20000		ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,2,4-Trichlorobenzene	ND	20000		ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,2-Dibromo-3-Chloropropane	ND	20000		ug/Kg			01/21/21 15:55	20
1.2-Dichlorobenzene	ND	20000		ug/Kg			01/21/21 15:55	20
1,2-Dichloroethane	ND	20000		ug/Kg			01/21/21 15:55	20
1,2-Dichloropropane	ND	20000		ug/Kg			01/21/21 15:55	20
1,3-Dichlorobenzene	ND	20000		ug/Kg			01/21/21 15:55	20
1,4-Dichlorobenzene	ND	20000		ug/Kg			01/21/21 15:55	20
2-Butanone (MEK)	ND	99000	59000				01/21/21 15:55	20
2-Hexanone	ND	99000	41000				01/21/21 15:55	20
	ND	99000		ug/Kg			01/21/21 15:55	20
4-Methyl-2-pentanone (MIBK)	ND ND							20
Acetone		99000	81000				01/21/21 15:55	
Benzene	83000	20000		ug/Kg			01/21/21 15:55	20
Bromodichloromethane	ND	20000		ug/Kg			01/21/21 15:55	20
Bromoform	ND	20000		ug/Kg			01/21/21 15:55	20
Bromomethane	ND	20000		ug/Kg			01/21/21 15:55	20
Carbon disulfide	ND	20000		ug/Kg			01/21/21 15:55	20
Carbon tetrachloride	ND	20000		ug/Kg			01/21/21 15:55	20
Chlorobenzene	ND	20000		ug/Kg			01/21/21 15:55	20
Dibromochloromethane	ND	20000		ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Chloroethane	ND	20000		ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Chloroform	ND	20000	14000	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Chloromethane	ND	20000	4700	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
cis-1,2-Dichloroethene	1700000	20000	5500	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
cis-1,3-Dichloropropene	ND	20000	4700	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Cyclohexane	ND	20000	4400	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Dichlorodifluoromethane	ND	20000	8600	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Ethylbenzene	900000	20000	5800	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
1,2-Dibromoethane	ND	20000	3500	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Isopropylbenzene	20000	20000	3000	ug/Kg		01/20/21 09:44	01/21/21 15:55	20
Methyl acetate	ND	99000		ug/Kg			01/21/21 15:55	20
Methyl tert-butyl ether	ND	20000		ug/Kg			01/21/21 15:55	20
Methylcyclohexane	ND	20000		ug/Kg			01/21/21 15:55	20
Methylene Chloride				ug/Kg			01/21/21 15:55	
Styrene	140000	20000		ug/Kg			01/21/21 15:55	د عرب 20
Tetrachloroethene	ND	20000		ug/Kg			01/21/21 15:55	20
Toluene	220000	20000		ug/Kg			01/21/21 15:55	20
trans-1,2-Dichloroethene	ND	20000		ug/Kg			01/21/21 15:55	20
·	ND ND						01/21/21 15:55	20
trans-1,3-Dichloropropene		20000		ug/Kg				
Trichloroethene Trichlorofluoromethene	ND	20000		ug/Kg			01/21/21 15:55	20
Trichlorofluoromethane	ND	20000		ug/Kg			01/21/21 15:55	20
Vinyl chloride Xylenes, Total	39000 670000	20000 40000	11000	ug/Kg			01/21/21 15:55 01/21/21 15:55	20 20

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-180232-2

Date Collected: 01/14/21 12:45

Date Received: 01/14/21 15:45

Matrix: Waste

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106	50 - 149	01/20/21 09:44 0	1/21/21 15:55	200
1,2-Dichloroethane-d4 (Surr)	101	53 - 146	01/20/21 09:44 0	1/21/21 15:55	200
4-Bromofluorobenzene (Surr)	103	49 - 148	01/20/21 09:44 0	1/21/21 15:55	200
Dibromofluoromethane (Surr)	97	60 - 140	01/20/21 09:44 0	1/21/21 15:55	200

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	6800000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
bis (2-chloroisopropyl) ether	ND		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4,5-Trichlorophenol	ND		780000	210000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4,6-Trichlorophenol	ND		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4-Dichlorophenol	ND		780000	83000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4-Dimethylphenol	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4-Dinitrophenol	ND		7700000	3600000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,4-Dinitrotoluene	530000	J	780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2,6-Dinitrotoluene	ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Chloronaphthalene	ND		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Chlorophenol	ND		780000	140000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Methylphenol	ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Methylnaphthalene	-46000000		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Nitroaniline	ND	*	1500000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
2-Nitrophenol	ND		780000	220000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
3,3'-Dichlorobenzidine	ND		1500000	920000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
3-Nitroaniline	ND		1500000	220000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4,6-Dinitro-2-methylphenol	ND		1500000	780000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Bromophenyl phenyl ether	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Chloro-3-methylphenol	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Chloroaniline	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Chlorophenyl phenyl ether	ND		780000	97000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Methylphenol	ND		1500000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Nitroaniline	ND		1500000	410000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
4-Nitrophenol	ND		1500000	550000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Acenaphthene	5500000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Acenaphthylene	14000000		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Acetophenone	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Anthracene	9600000		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Atrazine	ND		780000	270000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Benzaldehyde	ND		780000	620000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Benzo[a]anthracene	5400000		780000	78000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Benzo[a]pyrene	5500000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Benzo[b]fluoranthene	3100000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Benzo[g,h,i]perylene	2300000		780000	83000			01/21/21 07:21	01/22/21 20:33	2
Benzo[k]fluoranthene	1400000		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:33	2
Bis(2-chloroethoxy)methane	ND		780000	170000				01/22/21 20:33	2
Bis(2-chloroethyl)ether	ND		780000	100000				01/22/21 20:33	2
Bis(2-ethylhexyl) phthalate	ND		780000	270000				01/22/21 20:33	2
Butyl benzyl phthalate	ND		780000	130000				01/22/21 20:33	2
Caprolactam	ND		780000	240000				01/22/21 20:33	2
Carbazole	110000	J	780000	92000				01/22/21 20:33	2
Chrysene	4300000	. .	780000	180000				01/22/21 20:33	2

Eyrotins TestAmerica, Buffalo 3/7/202 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-180232-2

Date Collected: 01/14/21 12:45

Date Received: 01/14/21 15:45

Matrix: Waste

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	550000	J	780000	140000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Di-n-butyl phthalate	ND		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Di-n-octyl phthalate	ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Dibenzofuran	1600000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Diethyl phthalate	ND		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Dimethyl phthalate	ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Fluoranthene	9000000		780000	83000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Fluorene	9900000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Hexachlorobenzene	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Hexachlorobutadiene	ND		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Hexachlorocyclopentadiene	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Hexachloroethane	ND		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Indeno[1,2,3-cd]pyrene	1500000		780000	97000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Isophorone	ND		780000	170000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
N-Nitrosodi-n-propylamine	ND		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
N-Nitrosodiphenylamine	ND	_	780000	640000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Naphthalene	-65000000	₽፟፟፟ጷ	780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Nitrobenzene	ND		780000	88000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Pentachlorophenol	ND		1500000	780000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Phenanthrene	30000000	- *	780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Phenol	ND		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Pyrene	18000000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:33	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	108		53 - 120				01/21/21 07:21	01/22/21 20:33	20
DI 1.15.(0)	101	04:	E 4 400				04/04/04 07 04	04/00/04 00 00	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	108		53 - 120	01/21/21 07:21	01/22/21 20:33	20
Phenol-d5 (Surr)	121	S1+	54 - 120	01/21/21 07:21	01/22/21 20:33	20
p-Terphenyl-d14 (Surr)	128		79 - 130	01/21/21 07:21	01/22/21 20:33	20
2,4,6-Tribromophenol (Surr)	128	S1+	54 - 120	01/21/21 07:21	01/22/21 20:33	20
2-Fluorobiphenyl (Surr)	98		60 - 120	01/21/21 07:21	01/22/21 20:33	20
2-Fluorophenol (Surr)	104		52 - 120	01/21/21 07:21	01/22/21 20:33	20

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	6500000	3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
bis (2-chloroisopropyl) ether	ND	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4,5-Trichlorophenol	ND	3900000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4,6-Trichlorophenol	ND	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4-Dichlorophenol	ND	3900000	420000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4-Dimethylphenol	ND	3900000	950000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4-Dinitrophenol	ND	38000000	18000000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,4-Dinitrotoluene	ND	3900000	810000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2,6-Dinitrotoluene	ND	3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Chloronaphthalene	ND	3900000	650000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Chlorophenol	ND	3900000	720000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Methylphenol	ND	3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Methylnaphthalene	52000000	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Nitroaniline	ND	7600000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
2-Nitrophenol	ND	3900000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
3,3'-Dichlorobenzidine	ND	7600000	4600000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100
3-Nitroaniline	ND	7600000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:34	100

* Report from dilution

Euranias TestAmerica, Buffalo 3/7/20201/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-180232-2

Date Collected: 01/14/21 12:45

Date Received: 01/14/21 15:45

Matrix: Waste

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	ND		7600000	3900000			01/21/21 07:21	01/25/21 11:34	10
4-Bromophenyl phenyl ether	ND		3900000	550000				01/25/21 11:34	10
4-Chloro-3-methylphenol	ND		3900000	970000				01/25/21 11:34	10
4-Chloroaniline	ND		3900000	970000				01/25/21 11:34	10
4-Chlorophenyl phenyl ether	ND		3900000	480000			01/21/21 07:21	01/25/21 11:34	10
4-Methylphenol	ND		7600000	460000			01/21/21 07:21	01/25/21 11:34	10
4-Nitroaniline	ND		7600000	2100000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
4-Nitrophenol	ND		7600000	2700000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Acenaphthene	5200000		3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Acenaphthylene	14000000		3900000	510000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Acetophenone	ND		3900000	530000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Anthracene	9400000		3900000	970000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Atrazine	ND		3900000	1400000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Benzaldehyde	ND		3900000	3100000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Benzo[a]anthracene	5300000		3900000	390000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Benzo[a]pyrene	5400000		3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Benzo[b]fluoranthene	2800000	J	3900000	620000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Benzo[g,h,i]perylene	2300000		3900000	420000			01/21/21 07:21	01/25/21 11:34	10
Benzo[k]fluoranthene	1400000		3900000	510000			01/21/21 07:21	01/25/21 11:34	10
Bis(2-chloroethoxy)methane	ND	<u> </u>	3900000	830000			01/21/21 07:21	01/25/21 11:34	10
Bis(2-chloroethyl)ether	ND		3900000	510000				01/25/21 11:34	10
Bis(2-ethylhexyl) phthalate	ND		3900000	1300000	0 0			01/25/21 11:34	10
Butyl benzyl phthalate	ND		3900000	650000				01/25/21 11:34	10
Caprolactam	ND		3900000	1200000				01/25/21 11:34	10
Carbazole	ND		3900000	460000				01/25/21 11:34	10
	4600000		3900000	880000				01/25/21 11:34	10
Chrysene Dibenz(a,h)anthracene	4800000 ND		3900000	690000				01/25/21 11:34	10
Di-n-butyl phthalate	ND ND		3900000	670000				01/25/21 11:34	10
	ND		3900000	460000				01/25/21 11:34	10
Di-n-octyl phthalate									
Dibenzofuran	1300000	J	3900000	460000				01/25/21 11:34	10
Diethyl phthalate	ND		3900000	510000				01/25/21 11:34	10
Dimethyl phthalate	ND		3900000	460000				01/25/21 11:34	10
Fluoranthene	9400000		3900000	420000				01/25/21 11:34	10
Fluorene	10000000		3900000	460000				01/25/21 11:34	10
Hexachlorobenzene	ND		3900000	530000				01/25/21 11:34	10
Hexachlorobutadiene	ND		3900000	580000				01/25/21 11:34	10
Hexachlorocyclopentadiene	ND		3900000	530000				01/25/21 11:34	10
Hexachloroethane	ND		3900000	510000				01/25/21 11:34	10
ndeno[1,2,3-cd]pyrene	1400000	J	3900000	480000				01/25/21 11:34	10
sophorone	ND		3900000	830000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
N-Nitrosodi-n-propylamine	ND		3900000	670000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
N-Nitrosodiphenylamine	ND		3900000	3200000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Naphthalene	81000000		3900000	510000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Nitrobenzene	ND		3900000	440000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Pentachlorophenol _.	ND		7600000	3900000	ug/Kg		01/21/21 07:21	01/25/21 11:34	10
Phenanthrene	34000000		3900000	580000			01/21/21 07:21	01/25/21 11:34	10
Phenol	ND		3900000	600000				01/25/21 11:34	10
Pyrene	19000000		3900000	460000				01/25/21 11:34	10

Eurofins TestAmerica, Buffalo 317/07/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8 Lab Sample ID: 480-180232-2

Date Collected: 01/14/21 12:45
Date Received: 01/14/21 15:45

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	0	S1-	53 - 120	01/21/21 07:21	01/25/21 11:34	100
Phenol-d5 (Surr)	0	S1-	54 - 120	01/21/21 07:21	01/25/21 11:34	100
p-Terphenyl-d14 (Surr)	133	S1+	79 - 130	01/21/21 07:21	01/25/21 11:34	100
2,4,6-Tribromophenol (Surr)	0	S1-	54 - 120	01/21/21 07:21	01/25/21 11:34	100
2-Fluorobiphenyl (Surr)	5	S1-	60 - 120	01/21/21 07:21	01/25/21 11:34	100
2-Fluorophenol (Surr)	0	S1-	52 - 120	01/21/21 07:21	01/25/21 11:34	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		7.7	1.5	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
4,4'-DDE	ND		7.7	2.2	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
4,4'-DDT	7.7 20	¥⁄≧ U	7.7	1.7	mg/Kg		01/21/21 07:18	01/21/21 15:54	MB /20
Aldrin	ND		7.7	0.78	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
alpha-BHC	ND		7.7	1.4	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
cis-Chlordane	ND		7.7	3.8	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
beta-BHC	ND		7.7	5.5	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
delta-BHC	ND		7.7	1.0	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Dieldrin	ND		7.7	1.8	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endosulfan I	ND		7.7	1.6	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endosulfan II	ND		7.7	1.4	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endosulfan sulfate	ND		7.7	1.4	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endrin	ND		7.7	2.5	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endrin aldehyde	ND		7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Endrin ketone	ND		7.7	1.8	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
gamma-BHC (Lindane)	ND		7.7	5.5	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
trans-Chlordane	ND		7.7	1.1	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Heptachlor	ND		7.7	1.2	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Heptachlor epoxide	ND		7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 15:54	20
Methoxychlor	1.7 44	X U	7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 15:54	21 20
Toxaphene	ND	-	77	45	mg/Kg			01/21/21 15:54	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	S1-	45 - 120	01/21/21 07:18	01/21/21 15:54	20
DCB Decachlorobiphenyl	0	S1-	45 - 120	01/21/21 07:18	01/21/21 15:54	20
Tetrachloro-m-xylene	0	S1-	30 - 124	01/21/21 07:18	01/21/21 15:54	20
Tetrachloro-m-xylene	0	S1-	30 - 124	01/21/21 07:18	01/21/21 15:54	20

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		77	15	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1221	ND		77	15	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1232	ND		77	15	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1242	ND		77	15	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1248	ND		77	15	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1254	ND		77	3.6	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1260	ND		77	3.6	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1262	ND		77	3.6	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
PCB-1268	ND		77	3.6	mg/Kg		01/21/21 07:14	01/21/21 23:15	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xvlene (Surr)	145		60 - 154				01/21/21 07:14	01/21/21 23:15	20

Strofins TestAmerica, Buffalo 01/31/2021

Matrix: Waste

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-8

Lab Sample ID: 480-180232-2

Matrix: Waste

Date Collected: 01/14/21 12:45 Date Received: 01/14/21 15:45

Method: 6010C - Metals (ICP)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Tetrachloro-m-xylene (Surr)	104		60 - 154	01/21/21 07:14	01/21/21 23:15	20
	DCB Decachlorobiphenyl (Surr)	171		65 - 174	01/21/21 07:14	01/21/21 23:15	20
Į	DCB Decachlorobiphenyl (Surr)	92		65 - 174	01/21/21 07:14	01/21/21 23:15	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10.1	4.5	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Antimony	ND	14	15.2	0.41	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Arsenic	0.83	J	2.0	0.41	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Barium	ND	14	0.51	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Beryllium	ND	//	0.20	0.028	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Cadmium	ND		0.20	0.030	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Calcium	50.7 5.4	120	50.7	3.3	mg/Kg		01/22/21 15:09	01/26/21 02:16	MBL
Chromium	ND ND	•	0.51	0.20	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Cobalt	ND		0.51	0.051	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Copper	0.56	J	1.0	0.21	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Iron	ND		10.1	3.5	mg/Kg		01/22/21 15:09	01/27/21 17:28	1
Lead	0.29	J	1.0	0.24	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Magnesium	ND		20.3	0.94	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Manganese	0.20 0.15	U BLL	0.20	0.032	mg/Kg		01/22/21 15:09	01/26/21 02:16	CCB
Nickel	ND		5.1	0.23	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Potassium	ND		30.4	20.3	mg/Kg		01/22/21 15:09	01/26/21 22:08	1
Selenium	ND		4.1	0.41	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Silver	ND		0.61	0.20	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Sodium	ND		142	13.2	mg/Kg		01/22/21 15:09	01/26/21 22:08	1
Thallium	ND		6.1	0.30	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Vanadium	0.24	J	0.51	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:16	1
Zinc	ND		2.0	0.65	mg/Kg		01/22/21 15:09	01/26/21 02:16	1

Method: /4/1B - Mercury (CVAA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.055	0.022	mg/Kg		01/26/21 12:01	01/26/21 14:39	1
General Chemistry									

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Cyanide, Total	ND		0.97	0.47	mg/Kg		01/25/21 22:10	01/26/21 22:18	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Specific Gravity	1.0460		0.1000	0.1000	g/mL			01/22/21 17:52	1	

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	200000		20000	5500	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,1,2,2-Tetrachloroethane	ND		20000	3200	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,1,2-Trichloroethane	ND		20000	4200	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20000	9900	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,1-Dichloroethane	26000		20000	6100	ug/Kg		01/20/21 09:44	01/21/21 16:18	200

Edifins Test/merica, Buffalo 317/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	28000		20000	6800	ug/Kg		01/20/21 09:44	01/21/21 16:18	20
1,2,4-Trichlorobenzene	ND		20000	7500	ug/Kg		01/20/21 09:44	01/21/21 16:18	20
1,2-Dibromo-3-Chloropropane	ND		20000	9900	ug/Kg		01/20/21 09:44	01/21/21 16:18	20
1,2-Dichlorobenzene	ND		20000	5000	ug/Kg		01/20/21 09:44	01/21/21 16:18	20
1,2-Dichloroethane	ND		20000	8100	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,2-Dichloropropane	ND		20000	3200	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,3-Dichlorobenzene	ND		20000	5300	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
1,4-Dichlorobenzene	ND		20000	2800	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
2-Butanone (MEK)	ND		99000	59000	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
2-Hexanone	ND		99000	41000	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
4-Methyl-2-pentanone (MIBK)	ND		99000	6300	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Acetone	ND		99000	81000	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Benzene	130000		20000	3800	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Bromodichloromethane	ND		20000	4000	ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Bromoform	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Bromomethane	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	20
Carbon disulfide	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Carbon tetrachloride	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Chlorobenzene	ND		20000				01/20/21 09:44	01/21/21 16:18	20
Dibromochloromethane	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	20
Chloroethane	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	20
Chloroform	ND		20000	14000	0 0			01/21/21 16:18	20
Chloromethane	ND		20000		ug/Kg			01/21/21 16:18	200
cis-1,2-Dichloroethene	3200000	E	20000					01/21/21 16:18	200
cis-1,3-Dichloropropene	ND	_	20000					01/21/21 16:18	200
Cyclohexane	ND		20000		ug/Kg			01/21/21 16:18	200
Dichlorodifluoromethane	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	20
Ethylbenzene	1000000		20000				01/20/21 09:44	01/21/21 16:18	200
1,2-Dibromoethane	ND		20000		ug/Kg		01/20/21 09:44	01/21/21 16:18	200
Isopropylbenzene	18000	J	20000		ug/Kg			01/21/21 16:18	200
Methyl acetate	ND		99000		ug/Kg			01/21/21 16:18	200
Methyl tert-butyl ether	ND		20000		ug/Kg			01/21/21 16:18	200
Methylcyclohexane	ND		20000		ug/Kg			01/21/21 16:18	200
Methylene Chloride		JE U	20000		ug/Kg			01/21/21 16:18	MR201
Styrene	260000	. • . •	20000		ug/Kg			01/21/21 16:18	20
Tetrachloroethene	ND		20000		ug/Kg			01/21/21 16:18	200
Toluene	290000		20000		ug/Kg			01/21/21 16:18	200
trans-1,2-Dichloroethene	ND		20000		ug/Kg			01/21/21 16:18	200
trans-1,3-Dichloropropene	ND		20000		ug/Kg			01/21/21 16:18	200
Trichloroethene	510000		20000		ug/Kg			01/21/21 16:18	200
Trichlorofluoromethane	ND		20000		ug/Kg			01/21/21 16:18	200
Vinyl chloride	49000		20000		ug/Kg			01/21/21 16:18	20
Xylenes, Total	850000		40000	11000				01/21/21 16:18	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	103		50 - 149				01/20/21 09:44	01/21/21 16:18	20
1,2-Dichloroethane-d4 (Surr)	102		53 - 146				01/20/21 09:44	01/21/21 16:18	20
4-Bromofluorobenzene (Surr)	102		49 - 148				01/20/21 09:44	01/21/21 16:18	20

prepat from dilution

Edifins TestAmerica, Buffalo 317/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

Method: 8260C - Volatile Orga Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	220000		49000	14000				01/26/21 14:28	50
1,1,2,2-Tetrachloroethane	ND		49000		ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,1,2-Trichloroethane	ND		49000	10000			01/20/21 09:44	01/26/21 14:28	50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		49000	25000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,1-Dichloroethane	25000	J	49000	15000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,1-Dichloroethene	ND		49000	17000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,2,4-Trichlorobenzene	ND		49000	19000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,2-Dibromo-3-Chloropropane	ND		49000	25000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,2-Dichlorobenzene	ND		49000	13000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,2-Dichloroethane	ND		49000	20000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,2-Dichloropropane	ND		49000	8000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,3-Dichlorobenzene	ND		49000	13000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
1,4-Dichlorobenzene	ND		49000	6900	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
2-Butanone (MEK)	ND		250000	150000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
2-Hexanone	ND		250000	100000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
4-Methyl-2-pentanone (MIBK)	ND		250000	16000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
Acetone	ND		250000	200000			01/20/21 09:44	01/26/21 14:28	50
Benzene	120000		49000		ug/Kg		01/20/21 09:44	01/26/21 14:28	50
Bromodichloromethane	ND		49000		ug/Kg		01/20/21 09:44	01/26/21 14:28	50
Bromoform	ND		49000	25000				01/26/21 14:28	50
Bromomethane	ND		49000	11000				01/26/21 14:28	50
Carbon disulfide	ND		49000	22000				01/26/21 14:28	50
Carbon tetrachloride	ND		49000	13000				01/26/21 14:28	50
Chlorobenzene	ND		49000		ug/Kg			01/26/21 14:28	50
Dibromochloromethane	ND		49000	24000				01/26/21 14:28	50
Chloroethane	ND		49000	10000				01/26/21 14:28	50
Chloroform	ND		49000	34000				01/26/21 14:28	50
Chloromethane	ND		49000	12000				01/26/21 14:28	50
cis-1,2-Dichloroethene	2500000		49000	14000				01/26/21 14:28	50
cis-1,3-Dichloropropene	ND		49000	12000				01/26/21 14:28	50
Cyclohexane	ND		49000	11000				01/26/21 14:28	50
Dichlorodifluoromethane	ND		49000					01/26/21 14:28	50
				22000					
Ethylbenzene	980000		49000	14000	ug/Kg ug/Kg			01/26/21 14:28	50
1,2-Dibromoethane	ND		49000					01/26/21 14:28	50
Isopropylbenzene	19000	J	49000		ug/Kg			01/26/21 14:28	50
Methyl acetate	ND		250000	24000				01/26/21 14:28	50
Methyl tert-butyl ether	ND		49000	19000			01/20/21 09:44		50
Methylcyclohexane	ND		49000	23000				01/26/21 14:28	50
Methylene Chloride	ND		49000		ug/Kg			01/26/21 14:28	50
Styrene	230000		49000	12000			01/20/21 09:44		50
Tetrachloroethene	ND		49000		ug/Kg			01/26/21 14:28	50
Toluene	270000		49000	13000				01/26/21 14:28	50
trans-1,2-Dichloroethene	ND		49000	12000			01/20/21 09:44		50
trans-1,3-Dichloropropene	ND		49000		ug/Kg			01/26/21 14:28	50
Trichloroethene	450000		49000	14000				01/26/21 14:28	50
Trichlorofluoromethane	ND		49000	23000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
Vinyl chloride	35000	J	49000	17000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50
Xylenes, Total	830000		99000	27000	ug/Kg		01/20/21 09:44	01/26/21 14:28	50

Eurofine/TestAmerica, Buffalo 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	50 - 149	01/20/21 09:44 0	1/26/21 14:28	500
1,2-Dichloroethane-d4 (Surr)	99	53 - 146	01/20/21 09:44 0	1/26/21 14:28	500
4-Bromofluorobenzene (Surr)	98	49 - 148	01/20/21 09:44 0	1/26/21 14:28	500
Dibromofluoromethane (Surr)	97	60 - 140	01/20/21 09:44 0	1/26/21 14:28	500

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	6300000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
bis (2-chloroisopropyl) ether	ND		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4,5-Trichlorophenol	ND		780000	210000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4,6-Trichlorophenol	ND		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4-Dichlorophenol	ND		780000	83000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4-Dimethylphenol	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4-Dinitrophenol	ND		7700000	3600000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,4-Dinitrotoluene	ND		780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2,6-Dinitrotoluene	ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Chloronaphthalene	ND		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Chlorophenol	ND		780000	140000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Methylphenol	ND	۸	780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Methylnaphthalene	43000000	EX	780000	160000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Nitroaniline	ND		1500000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
2-Nitrophenol	ND		780000	220000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
3,3'-Dichlorobenzidine	ND		1500000	920000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
3-Nitroaniline	ND		1500000	220000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4,6-Dinitro-2-methylphenol	ND		1500000	780000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
1-Bromophenyl phenyl ether	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Chloro-3-methylphenol	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Chloroaniline	ND		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Chlorophenyl phenyl ether	ND		780000	97000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Methylphenol	ND		1500000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Nitroaniline	ND		1500000	410000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
4-Nitrophenol	ND		1500000	550000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Acenaphthene	4300000		780000	120000			01/21/21 07:21	01/22/21 20:57	20
Acenaphthylene	14000000		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Acetophenone	ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Anthracene	8400000		780000	190000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Atrazine	ND		780000	270000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Benzaldehyde	ND		780000	620000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Benzo[a]anthracene	4900000		780000	78000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Benzo[a]pyrene	4800000		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
Benzo[b]fluoranthene	3000000		780000	120000			01/21/21 07:21	01/22/21 20:57	20
Benzo[g,h,i]perylene	2100000		780000	83000			01/21/21 07:21	01/22/21 20:57	20
Benzo[k]fluoranthene	960000		780000	100000			01/21/21 07:21	01/22/21 20:57	20
Bis(2-chloroethoxy)methane	ND		780000	170000			01/21/21 07:21	01/22/21 20:57	20
Bis(2-chloroethyl)ether	ND		780000	100000			01/21/21 07:21	01/22/21 20:57	20
Bis(2-ethylhexyl) phthalate	ND		780000	270000			01/21/21 07:21	01/22/21 20:57	20
Butyl benzyl phthalate	ND		780000	130000				01/22/21 20:57	20
Caprolactam	ND		780000	240000				01/22/21 20:57	20
Carbazole	110000	J	780000	92000				01/22/21 20:57	20
Chrysene	3700000		780000	180000				01/22/21 20:57	20

Sulofins TestAmerica, Buffalo 317/202/ 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

480000 ND	J	780000	1.10000					
ND			140000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
1600000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
8200000		780000	83000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
8900000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	110000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
1400000		780000	97000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	170000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	130000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	640000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
62000000	- 	780000	100000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	88000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		1500000	780000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
28900000	₽	780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
ND		780000	120000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
16000000		780000	92000	ug/Kg		01/21/21 07:21	01/22/21 20:57	20
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	1600000 ND ND 8200000 8900000 ND ND 1400000 ND ND ND ND ND ND ND ND ND ND ND ND ND	1600000 ND ND 8200000 8900000 ND ND ND ND 1400000 ND ND ND ND ND ND ND ND N	1600000 780000 ND 780000 ND 780000 8200000 780000 8900000 780000 ND 780000	1600000 780000 92000 ND 780000 100000 8200000 780000 92000 8200000 780000 92000 8900000 780000 92000 ND 780000 110000 ND 780000 120000 ND 780000 100000 ND 780000 170000 ND 780000 170000 ND 780000 170000 ND 780000 130000 ND 780000 640000 ND 780000 640000 ND 780000 780000 780000 ND 780000 100000 ND 780000 100000 ND 780000 100000 ND 780000 120000 ND 780000 780000 ND 780000 120000 ND 780000 120000 ND 780000 120000 ND 780000 120000 ND 780000 92000	1600000 780000 92000 ug/Kg ND 780000 100000 ug/Kg ND 780000 92000 ug/Kg 8200000 780000 83000 ug/Kg 8900000 780000 92000 ug/Kg ND 780000 110000 ug/Kg ND 780000 120000 ug/Kg ND 780000 120000 ug/Kg ND 780000 100000 ug/Kg ND 780000 100000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 130000 ug/Kg ND 780000 640000 ug/Kg ND 780000 640000 ug/Kg ND 780000 100000 ug/Kg ND 780000 100000 ug/Kg ND 780000 100000 ug/Kg ND 780000 120000 ug/Kg	1600000 780000 92000 ug/Kg ND 780000 100000 ug/Kg ND 780000 92000 ug/Kg 8200000 780000 83000 ug/Kg 8900000 780000 92000 ug/Kg ND 780000 110000 ug/Kg ND 780000 120000 ug/Kg ND 780000 120000 ug/Kg ND 780000 100000 ug/Kg ND 780000 100000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 170000 ug/Kg ND 780000 130000 ug/Kg ND 780000 640000 ug/Kg ND 780000 640000 ug/Kg ND 780000 88000 ug/Kg ND 780000 88000 ug/Kg ND 780000 780000 ug/Kg ND 780000 120000 ug/Kg	1600000 780000 92000 ug/Kg 01/21/21 07:21 ND 780000 100000 ug/Kg 01/21/21 07:21 ND 780000 92000 ug/Kg 01/21/21 07:21 8200000 780000 83000 ug/Kg 01/21/21 07:21 8900000 780000 92000 ug/Kg 01/21/21 07:21 ND 780000 110000 ug/Kg 01/21/21 07:21 ND 780000 110000 ug/Kg 01/21/21 07:21 ND 780000 120000 ug/Kg 01/21/21 07:21 ND 780000 110000 ug/Kg 01/21/21 07:21 ND 780000 100000 ug/Kg 01/21/21 07:21 ND 780000 100000 ug/Kg 01/21/21 07:21 ND 780000 170000 ug/Kg 01/21/21 07:21 ND 780000 170000 ug/Kg 01/21/21 07:21 ND 780000 130000 ug/Kg 01/21/21 07:21 ND 780000 130000 ug/Kg 01/21/21 07:21 ND 780000 130000 ug/Kg 01/21/21 07:21 ND 780000 100000 ug/Kg 01/21/21 07:21 ND 780000 120000 ug/Kg 01/21/21 07:21	1600000 780000 92000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 100000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 92000 ug/Kg 01/21/21 07:21 01/22/21 20:57 8200000 780000 83000 ug/Kg 01/21/21 07:21 01/22/21 20:57 8900000 780000 92000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 110000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 120000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 120000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 110000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 100000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 100000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 170000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 170000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 130000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 130000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 130000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 640000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 640000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 100000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 88000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 780000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 100000 ug/Kg 01/21/21 07:21 01/22/21 20:57 ND 780000 120000 ug/Kg 01/21/21 07:21 01/22/21 20:57

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	92		53 - 120	01/21/21 07:21	01/22/21 20:57	20
Phenol-d5 (Surr)	91		54 - 120	01/21/21 07:21	01/22/21 20:57	20
p-Terphenyl-d14 (Surr)	115		79 - 130	01/21/21 07:21	01/22/21 20:57	20
2,4,6-Tribromophenol (Surr)	107		54 - 120	01/21/21 07:21	01/22/21 20:57	20
2-Fluorobiphenyl (Surr)	92		60 - 120	01/21/21 07:21	01/22/21 20:57	20
2-Fluorophenol (Surr)	115		52 - 120	01/21/21 07:21	01/22/21 20:57	20

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	5600000	3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
bis (2-chloroisopropyl) ether	ND	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4,5-Trichlorophenol	ND	3900000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4,6-Trichlorophenol	ND	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4-Dichlorophenol	ND	3900000	420000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4-Dimethylphenol	ND	3900000	950000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4-Dinitrophenol	ND	38000000	18000000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,4-Dinitrotoluene	ND	3900000	810000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2,6-Dinitrotoluene	ND	3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Chloronaphthalene	ND	3900000	650000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Chlorophenol	ND	3900000	720000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Methylphenol	ND	3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Methylnaphthalene	47000000	3900000	780000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Nitroaniline	ND	7600000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
2-Nitrophenol	ND	3900000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
3,3'-Dichlorobenzidine	ND	7600000	4600000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
3-Nitroaniline	ND	7600000	1100000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100

* Report from dilution

Explorins TestAmerica, Buffalo 2/7/2021 01/31/2021

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 Matrix: Waste Date Received: 01/14/21 15:45

Method: 8270D - Semivolat Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	ND		7600000	3900000			01/21/21 07:21	01/25/21 11:59	100
4-Bromophenyl phenyl ether	ND		3900000	550000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Chloro-3-methylphenol	ND		3900000	970000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Chloroaniline	ND		3900000	970000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Chlorophenyl phenyl ether	ND		3900000	480000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Methylphenol	ND		7600000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Nitroaniline	ND		7600000	2100000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
4-Nitrophenol	ND		7600000	2700000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Acenaphthene	4200000		3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Acenaphthylene	14000000		3900000	510000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Acetophenone	ND		3900000	530000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Anthracene	8500000		3900000	970000			01/21/21 07:21	01/25/21 11:59	100
Atrazine	ND		3900000	1400000	0 0			01/25/21 11:59	100
Benzaldehyde	ND		3900000	3100000				01/25/21 11:59	100
Benzo[a]anthracene	4500000		3900000	390000				01/25/21 11:59	100
Benzo[a]pyrene	4600000		3900000	580000	0 0			01/25/21 11:59	100
Benzo[b]fluoranthene	2600000		3900000	620000				01/25/21 11:59	100
Benzo[g,h,i]perylene	2000000		3900000	420000				01/25/21 11:59	100
Benzo[k]fluoranthene	1200000		3900000	510000	0 0			01/25/21 11:59	100
Bis(2-chloroethoxy)methane	ND		3900000	830000				01/25/21 11:59	100
	ND ND		3900000	510000				01/25/21 11:59	100
Bis(2-chloroethyl)ether	ND ND				0 0				
Bis(2-ethylhexyl) phthalate			3900000	1300000				01/25/21 11:59	100
Butyl benzyl phthalate	ND		3900000	650000				01/25/21 11:59	100
Caprolactam	ND		3900000	1200000	0 0			01/25/21 11:59	100
Carbazole	ND		3900000	460000				01/25/21 11:59	100
Chrysene	3600000	J	3900000	880000				01/25/21 11:59	100
Dibenz(a,h)anthracene	ND		3900000	690000				01/25/21 11:59	100
Di-n-butyl phthalate	ND		3900000	670000			01/21/21 07:21	01/25/21 11:59	100
Di-n-octyl phthalate	ND		3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Dibenzofuran	1300000	J	3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Diethyl phthalate	ND		3900000	510000			01/21/21 07:21	01/25/21 11:59	100
Dimethyl phthalate	ND		3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Fluoranthene	8400000		3900000	420000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Fluorene	8700000		3900000	460000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Hexachlorobenzene	ND		3900000	530000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Hexachlorobutadiene	ND		3900000	580000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Hexachlorocyclopentadiene	ND		3900000	530000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Hexachloroethane	ND		3900000	510000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Indeno[1,2,3-cd]pyrene	1200000	J	3900000	480000	ug/Kg		01/21/21 07:21	01/25/21 11:59	100
Isophorone	ND		3900000	830000			01/21/21 07:21	01/25/21 11:59	100
N-Nitrosodi-n-propylamine	ND		3900000	670000			01/21/21 07:21	01/25/21 11:59	100
N-Nitrosodipheny <u>l</u> amine	ND		3900000	3200000				01/25/21 11:59	100
Naphthalene ***	75000000		3900000	510000				01/25/21 11:59	100
Nitrobenzene	ND		3900000	440000				01/25/21 11:59	100
Pentachlorophenol	ND		7600000	3900000				01/25/21 11:59	100
Phenanthrene	3000000		3900000	580000				01/25/21 11:59	100
Phenanthrene 1775 Phenol	30000000 ND		3900000	600000				01/25/21 11:59	100
Pyrene	16000000		3900000	460000				01/25/21 11:59	100

my Report

Eurofins TestAmerical Buffalo

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Tetrachloro-m-xylene (Surr)

Client Sample ID: MW-5R Lab Sample ID: 480-180232-3

Date Collected: 01/14/21 14:00 **Matrix: Waste**

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)		S1-	53 - 120					01/25/21 11:59	100
Phenol-d5 (Surr)	0	S1-	54 - 120					01/25/21 11:59	100
p-Terphenyl-d14 (Surr)	105	07-	79 ₋ 130					01/25/21 11:59	100
2,4,6-Tribromophenol (Surr)		S1-	54 - 120					01/25/21 11:59	100
2-Fluorobiphenyl (Surr)	0		60 - 120					01/25/21 11:59	100
2-Fluorophenol (Surr)	-	S1-	52 - 120					01/25/21 11:59	100
			02-720				01121121 01.21	01120121111.00	700
Method: 8081B - Organoc			Б.	MDI	1114	_	Dunnand	A I I	D!! E-
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		7.7		mg/Kg			01/21/21 16:13	20
4,4'-DDE	ND		7.7		mg/Kg			01/21/21 16:13	he, 20
4,4'-DDT	7.7 2/3	¥¥ U	7.7		mg/Kg			01/21/21 16:13	
Aldrin	ND		7.7		mg/Kg			01/21/21 16:13	20
alpha-BHC	ND		7.7		mg/Kg			01/21/21 16:13	20
cis-Chlordane	ND		7.7		mg/Kg			01/21/21 16:13	20
beta-BHC	ND		7.7	5.5	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
delta-BHC	ND		7.7		mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Dieldrin	ND		7.7	1.8	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endosulfan I	ND		7.7	1.6	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endosulfan II	ND		7.7		mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endosulfan sulfate	ND		7.7	1.4	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endrin	ND		7.7	2.5	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endrin aldehyde	ND		7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Endrin ketone	ND		7.7	1.8	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
gamma-BHC (Lindane)	ND		7.7	5.5	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
rans-Chlordane	ND		7.7	1.1	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Heptachlor	ND		7.7	1.2	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Heptachlor epoxide	ND		7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Methoxychlor	4.5	J	7.7	2.0	mg/Kg		01/21/21 07:18	01/21/21 16:13	C 20
Toxaphene	ND		77	45	mg/Kg		01/21/21 07:18	01/21/21 16:13	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		S1-	45 - 120				01/21/21 07:18	01/21/21 16:13	20
DCB Decachlorobiphenyl	0	S1-	45 - 120				01/21/21 07:18	01/21/21 16:13	20
Tetrachloro-m-xylene	123		30 - 124				01/21/21 07:18	01/21/21 16:13	20
Tetrachloro-m-xylene	113		30 - 124				01/21/21 07:18	01/21/21 16:13	20
Method: 8082A - Polychlo	rinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		36	7.0	mg/Kg			01/21/21 23:27	10
PCB-1221	ND		36		mg/Kg		01/21/21 07:14	01/21/21 23:27	10
PCB-1232	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1242	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1248	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1254	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1260	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1262	ND		36		mg/Kg			01/21/21 23:27	10
PCB-1268	ND		36		mg/Kg			01/21/21 23:27	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate Tetrophlare m vulane (Surr)	/ortecovery	Quantitie	60 151				01/01/01 07:14		ווע מווע

Eurofins TestAmerica, Buffalo 01/31/2021

01/21/21 07:14 01/21/21 23:27

60 - 154

152

Client: New York State D.E.C. Job ID: 480-180232-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: MW-5R

Lab Sample ID: 480-180232-3

Matrix: Waste

Date Collected: 01/14/21 14:00 Date Received: 01/14/21 15:45

Analyte

Specific Gravity

Method: 8082A - Polychlorinated	District and other in	(DOD - \ I	- 0 0	Maria 4 1-		/ C 4! IV
I Mothod: XIIX7// - Pol//chioringtod	RIDDONNIE	IDIBEIN	/ I = 2 C I	nromatograph	\/	// Antiniiaai
I MELITOU. OUOZA - FUTVCITIOTITIALEU	DIDITELLATE	IT CD31 D1	v Gas C	, i ii UiiiatUui abii	v	i Continueu i

Result Qualifier

1.0435

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	98		60 - 154	01/21/21 07:14	01/21/21 23:27	10
DCB Decachlorobiphenyl (Surr)	144		65 - 174	01/21/21 07:14	01/21/21 23:27	10
DCB Decachlorobiphenyl (Surr)	83		65 - 174	01/21/21 07:14	01/21/21 23:27	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	11.8	Z -	9.8	4.3	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Antimony	ND	/	14.7	0.39	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Arsenic	0.86	J	2.0	0.39	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Barium	0.23	J 1/6/	0.49	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Beryllium	ND	,,	0.20	0.027	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Cadmium	ND		0.20	0.029	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Calcium	111	×	49.0	3.2	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Chromium	ND		0.49	0.20	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Cobalt	ND		0.49	0.049	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Copper	0.49	J	0.98	0.21	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Iron	43.7	₽⁄	9.8	3.4	mg/Kg		01/22/21 15:09	01/28/21 15:49	1
Lead	0.26	J	0.98	0.24	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Magnesium	38.5	×	19.6	0.91	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Manganese	0.72	P/	0.20	0.031	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Nickel	ND	/	4.9	0.23	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Potassium	ND		29.4	19.6	mg/Kg		01/22/21 15:09	01/26/21 22:12	1
Selenium	ND		3.9	0.39	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Silver	ND		0.59	0.20	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Sodium	20.9	J	137	12.7	mg/Kg		01/22/21 15:09	01/26/21 22:12	1
Thallium	ND		5.9	0.29	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Vanadium	0.21	J	0.49	0.11	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Zinc	1.3	J	2.0	0.63	mg/Kg		01/22/21 15:09	01/26/21 02:20	1
Method: 7471B - Mercury (CVAA	.)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.057	0.023	mg/Kg		01/26/21 12:01	01/26/21 14:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.95	0.46	mg/Kg		01/25/21 22:10	01/26/21 22:20	1

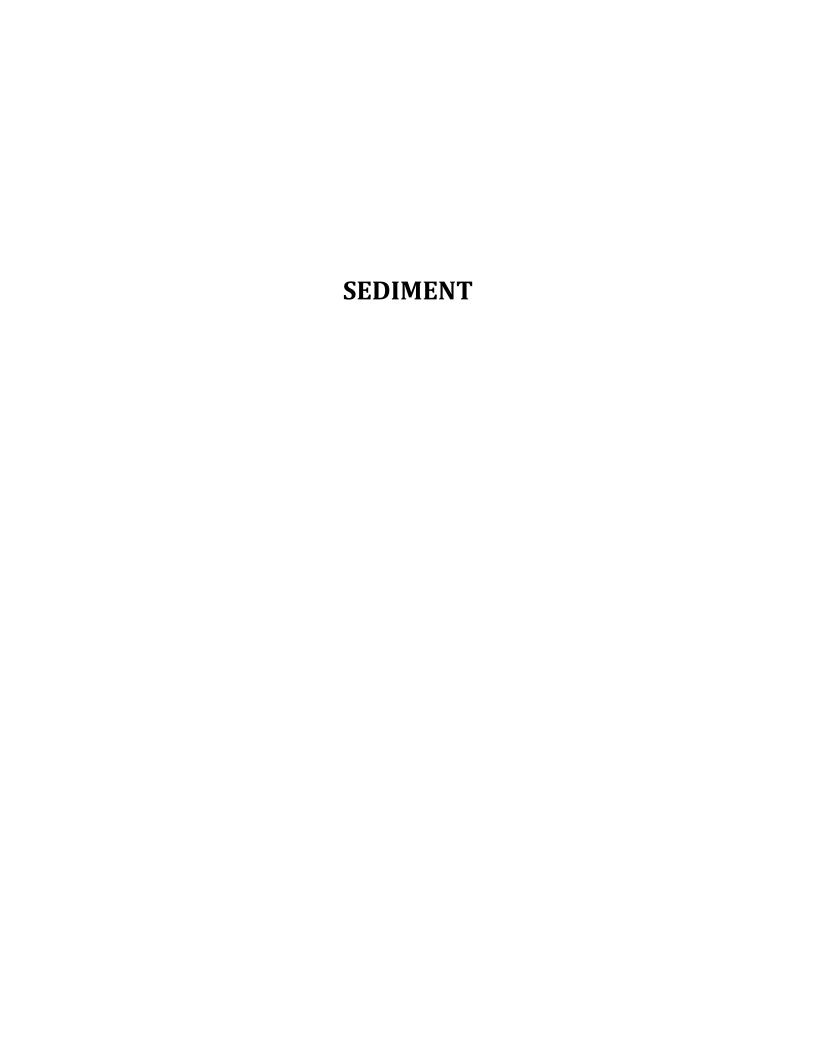
3/17/202/

Dil Fac

Analyzed

01/22/21 17:52

RL


0.1000

RL Unit

0.1000 g/mL

D

Prepared

Project: NYSDEC 31 Tonawanda St- Off- Site #C915332,

31 Tonawanda, New York

Laboratory: Eurofins Environment Testing TestAmerica, Amherst, NY

Sample Delivery Group: 480-165259-1

Fraction: Organic
Matrix: Sediment
Report Date: 7/19/2020

This data usability summary report is based upon a review of analytical data generated for sediment samples. One field duplicate sample was submitted with the samples for this Sample Delivery Group. The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The samples were analyzed for volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, and total organic carbon. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Fortified Blank Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Shawne M. Rodgers President

> July 19, 2020 Date

1.0 DATA COMPLETENESS

The NYSDEC ASP Category B deliverable data were provided by the laboratory.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody documentation was complete.

The samples were received in acceptable condition.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following volatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. Positive results for these compounds have been marked with "J" qualifiers to indicate that they are quantitative estimates. Nondetect results are marked "UJ".

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 180- 305300/2 (Laboratory ID 3012902.D)	Bromomethane Chloroethane Trichlorofluoromethane Acetone 2-Butanone	27.9 36.4 26.5 -21.7 -28.2	BSA-SED2
CCVIS 180-305295/2 (Laboratory ID 4012902.D)	Chloroethane Dichlorofluoromethane Cyclohexane Carbon Tetrachloride 1,2-Dibromo-3- Chloropropane	-26.8 -21.7 23.5 21.1 -23.6	BSA-SED1

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

No compounds were detected in the associated laboratory method blank.

Trip blanks and field blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

The results for polychlorinated biphenyls for the following samples should be considered quantitative estimates. Extremely high (>150%) recoveries were obtained for the surrogate compounds for the polychlorinated biphenyl analysis of these samples. The case narrative indicated that the presence of matrix interference was evident. Reextraction and reanalysis was not performed. Positive results have been marked "J" to indicate that they are estimates. Nondetect results have been marked "UJ".

Sample	Surrogate Compound	Column
BSA-SED1	Tetrachloro-m-xylene Decachlorobiphenyl	Both
BSA-SED2	Tetrachloro-m-xylene Decachlorobiphenyl	RTX-CLP2 Both

The samples were analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the volatile laboratory control sample (LCS) results that did not meet the indicated acceptance limits:

Compound	LCS (180-305295/3)	QC Limits
	%REC	
Methyl tert-butyl ether	57	60-122

The unacceptable recovery for the above compound suggests inefficiencies with the analytical processes. Results for the compound are considered

biased low quantitative estimates and may be higher than reported. Sample BSA-SED1 was associated with the unacceptable LC. The methyl tert-butyl ether result for this sample is a nondetect and marked "UJ".

The following table summarizes the semivolatile LCS results that did not meet the indicated acceptance limits:

Compound	LCS	QC
	(180-305295/3) %REC	Limits
Benzaldehyde	3	10-100

The unacceptable recovery for the compound suggests inefficiencies with the extraction/analytical processes. All samples were associated with the unacceptable LCS. Nondetect results for benzaldehyde for associated samples have been rejected and are considered suspect. The nondetect results are marked "R".

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 QUANTITATION/REPORTING LIMITS

The following samples were analyzed at dilutions for semivolatile organic compounds. The dilution analyses were performed because of suspected high concentrations of target compounds and/or interferences. RLs are elevated by the dilution factor have resulted for those compounds that were not detected. This should be noted when assessing the data.

Sample	Dilution Factor
BSA-SED1	50.0
BSA-SED2	50.0

The following samples were analyzed at dilutions for semivolatile organic compounds. The dilution analyses were performed because of suspected high concentrations of target compounds and/or interferences. RLs are elevated by the dilution factor have resulted for those compounds that were not detected. This should be noted when assessing the data.

Sample	Dilution Factor
BSA-SED1	10.0
BSA-SED2	10.0

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid Wastes", SW-846, third edition, Promulgated Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and V, October 2013
Total Organic Carbon	Lloyd Kahn

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St- Off- Site #C915332 Sediment Sampling Test America Job ID 480-165259-1

Analyses Performed

Sample ID	Lab ID		Collection Date	Matrix	VOC	SVOC	РСВ	TOC
 BSA-SED1	480-165259	3	1/15/2020	Sediment	Χ	X	X	Х
BSA-SED2	480-165259	4	1/15/2020	Sediment	X	Χ	X	Χ

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED1 Lab Sample ID: 480-165259-3

Date Collected: 01/15/20 12:35 Matrix: Sediment

Date Received: 01/16/20 12:28

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	57.6	0.1	0.1 %			01/29/20 15:16	1

Client Sample ID: BSA-SED1 Lab Sample ID: 480-165259-3

Date Collected: 01/15/20 12:35

Date Received: 01/16/20 12:28

Matrix: Sediment
Percent Solids: 42.4

Method: 8260C - Volatile Orgar ^{Analyte}	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND	59	30	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,1,2,2-Tetrachloroethane	ND	59	35	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	59	22	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,1,2-Trichloroethane	ND	59	28	ug/Kg	₽	01/29/20 10:36	01/29/20 12:37	1
1,1-Dichloroethane	ND	59	21	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,1-Dichloroethene	ND	59	34	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	_1
1,2-Dibromo-3-Chloropropane	MOUNT	59	36	ug/Kg	₽	01/29/20 10:36	01/29/20 12:37	CC4
1,2-Dichlorobenzene	ND	59	24	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,2-Dichloroethane	ND	59	17	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,2-Dichloropropane	ND	59	29	ug/Kg	*	01/29/20 10:36	01/29/20 12:37	1
1,2,4-Trichlorobenzene	ND	59	44	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,3-Dichlorobenzene	ND	59	19	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
1,4-Dichlorobenzene	ND	59		ug/Kg		01/29/20 10:36	01/29/20 12:37	1
2-Butanone (MEK)	ND	59	34	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
2-Hexanone	ND	59	49	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
4-Methyl-2-pentanone (MIBK)	ND	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:36	01/29/20 12:37	1
Acetone	ND	240		ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Benzene	ND	59		ug/Kg	₩	01/29/20 10:36	01/29/20 12:37	1
Bromoform	ND	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:36	01/29/20 12:37	1
Bromomethane	ND	59		ug/Kg	₩	01/29/20 10:36	01/29/20 12:37	1
Carbon disulfide	ND	59	35	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Carbon tetrachloride	MW	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:36	01/29/20 12:37	COH
Chlorobenzene	ND	59		ug/Kg	☼	01/29/20 10:36		1
Dibromochloromethane	ND	59		ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Chloroform	ND	59		ug/Kg		01/29/20 10:36	01/29/20 12:37	1
Chloromethane	ND _	59		ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Chloroethane	ND UT	59		ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	CCLI
cis-1,2-Dichloroethene	ND	59		ug/Kg		01/29/20 10:36		1
cis-1,3-Dichloropropene	ND	59		ug/Kg	≎	01/29/20 10:36	01/29/20 12:37	1
Bromodichloromethane	ND	59		ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Dichlorodifluoromethane	MALT	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:36	01/29/20 12:37	CC11
Ethylbenzene	660	59		ug/Kg	☼	01/29/20 10:36		1
1,2-Dibromoethane	ND	59		ug/Kg	☼	01/29/20 10:36		1
Cyclohexane	NOUL	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·		01/29/20 12:37	CCH1
sopropylbenzene	110	59		ug/Kg		01/29/20 10:36		1
Methyl acetate	ND	290		ug/Kg		01/29/20 10:36		1
Methyl tert-butyl ether	NO WJ	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:36		B
Methylcyclohexane	ND	59		ug/Kg	☼		01/29/20 12:37	1
Methylene Chloride	53 J	59		ug/Kg		01/29/20 10:36		1
Styrene	ND	59		ug/Kg	· · · · · · · · · · · · · · · · · · ·		01/29/20 12:37	······································
Tetrachloroethene	ND	59		ug/Kg	₽		01/29/20 12:37	1
Foluene	39 J	59 59		ug/Kg ug/Kg		01/29/20 10:36		1

Eurofins TestAmerica, Buffalo

Page 13 of 1049

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED1 Lab Sample ID: 480-165259-3

 Date Collected: 01/15/20 12:35
 Matrix: Sediment

 Date Received: 01/16/20 12:28
 Percent Solids: 42.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		59	30	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
trans-1,3-Dichloropropene	ND		59	20	ug/Kg	₩.	01/29/20 10:36	01/29/20 12:37	1
Trichloroethene	ND		59	18	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Trichlorofluoromethane	ND		59	17	ug/Kg	₽	01/29/20 10:36	01/29/20 12:37	1
Vinyl chloride	ND		59	43	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Xylenes, Total	700		120	51	ug/Kg	☼	01/29/20 10:36	01/29/20 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		71 - 114				01/29/20 10:36	01/29/20 12:37	1
4-Bromofluorobenzene (Surr)	103		74 - 114				01/29/20 10:36	01/29/20 12:37	1
Dibromofluoromethane (Surr)	98		76 - 116				01/29/20 10:36	01/29/20 12:37	1
Toluene-d8 (Surr)	95		85 - 125				01/29/20 10:36	01/29/20 12:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	790000		16000	4600	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Acenaphthylene	700000		16000	3500	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Anthracene	1000000		16000	4100	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Benzo[a]anthracene	790000		16000	3000	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Benzo[a]pyrene	710000		16000	3400	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Benzo[b]fluoranthene	360000		16000	3900	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Benzo[g,h,i]perylene	350000		16000	3400	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Benzo[k]fluoranthene	160000		16000	4700	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Bis(2-chloroethyl)ether	ND		16000	2900	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Bis(2-chloroethoxy)methane	ND		78000	3800	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
2,2'-oxybis[1-chloropropane]	ND		16000	5900	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Bis(2-ethylhexyl) phthalate	ND		780000	84000	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
4-Bromophenyl phenyl ether	ND		78000	5600	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Butyl benzyl phthalate	ND		78000	55000	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
4-Chloroaniline	ND		78000	2600	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
2-Chloronaphthalene	ND		16000	3600	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
4-Chlorophenyl phenyl ether	ND		78000	4800	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Chrysene	570000		16000	3100	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Dibenz(a,h)anthracene	86000		16000	3500	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Dibenzofuran	130000		78000	3500	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Di-n-butyl phthalate	ND		78000	35000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
3,3'-Dichlorobenzidine	ND		78000	74000	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
Diethyl phthalate	ND		78000	28000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Dimethyl phthalate	ND		78000	2900	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
2,4-Dinitrotoluene	ND		78000	3900	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
2,6-Dinitrotoluene	ND		78000	4900	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Di-n-octyl phthalate	ND		78000	46000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Fluoranthene	1300000		16000	4200	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
Fluorene	800000		16000	3100	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Hexachlorobenzene	ND		16000	5700	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Hexachlorobutadiene	ND		16000	4600	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Hexachlorocyclopentadiene	ND		78000	8100	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Hexachloroethane	ND		78000	4100	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
Indeno[1,2,3-cd]pyrene	240000		16000	3200	ug/Kg	ф.	01/29/20 10:34	01/31/20 21:31	50
Isophorone	ND		78000	4000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

PCB-1248

PCB-1254

PCB-1260

PCB-1262

PCB-1268

Client Sample ID: BSA-SED1 Lab Sample ID: 480-165259-3

Date Collected: 01/15/20 12:35 **Matrix: Sediment** Date Received: 01/16/20 12:28 Percent Solids: 42.4

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued) Result Qualifier

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	1900000		16000	3800	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
Naphthalene	870000		16000	3100	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
2-Nitroaniline	ND		400000	36000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
3-Nitroaniline	ND		400000	20000	ug/Kg	≎	01/29/20 10:34	01/31/20 21:31	50
4-Nitroaniline	ND		400000	3800	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Nitrobenzene	ND		160000	29000	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
N-Nitrosodi-n-propylamine	ND		16000	5400	ug/Kg	≎	01/29/20 10:34	01/31/20 21:31	50
N-Nitrosodiphenylamine	ND		78000	26000	ug/Kg	*	01/29/20 10:34	01/31/20 21:31	50
Phenanthrene	2600000		16000	4200	ug/Kg	≎	01/29/20 10:34	01/31/20 21:31	50
Pyrene	2700000		16000	3700	ug/Kg	≎	01/29/20 10:34	01/31/20 21:31	50
Carbazole	ND		16000	3700	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
Acetophenone	ND		160000	4300	ug/Kg	₽	01/29/20 10:34	01/31/20 21:31	50
Atrazine	ND		160000	35000	ug/Kg	₩	01/29/20 10:34	01/31/20 21:31	50
Benzaldehyde	ŊĐ	*R	160000	9800	ug/Kg		01/29/20 10:34	01/31/20 21:31	B 50
1,1'-Biphenyl	300000	/-	78000	3300	ug/Kg	₩		01/31/20 21:31	50
Caprolactam	ND		400000	52000	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
4-Chloro-3-methylphenol	ND		78000	3700	ug/Kg		01/29/20 10:34	01/31/20 21:31	50
2-Chlorophenol	ND		78000	3700	ug/Kg	≎	01/29/20 10:34	01/31/20 21:31	50
2-Methylphenol	ND		78000	23000	ug/Kg	₽		01/31/20 21:31	50
Methylphenol, 3 & 4	ND		78000	23000	ug/Kg	· · · · · · · · · · · · · · · · · · ·		01/31/20 21:31	50
2,4-Dichlorophenol	ND		16000	6100	ug/Kg	☼	01/29/20 10:34	01/31/20 21:31	50
2,4-Dimethylphenol	ND		78000	4900	ug/Kg	₽		01/31/20 21:31	50
2,4-Dinitrophenol	ND		780000	210000	ug/Kg	· · · · · · · · · · · · · · · · · · ·		01/31/20 21:31	50
4,6-Dinitro-2-methylphenol	ND		400000	140000	ug/Kg	₽		01/31/20 21:31	50
2-Nitrophenol	ND		78000		ug/Kg	⇔		01/31/20 21:31	50
4-Nitrophenol	ND		400000		ug/Kg	· · · · · · · · · · · · · · · · · · ·		01/31/20 21:31	50
Pentachlorophenol	ND		400000	130000	ug/Kg	⇔		01/31/20 21:31	50
Phenol	ND		78000	24000	ug/Kg	₽		01/31/20 21:31	50
2,4,5-Trichlorophenol	ND		78000		ug/Kg	 ф	01/29/20 10:34	01/31/20 21:31	50
2,4,6-Trichlorophenol	ND		78000		ug/Kg	₩		01/31/20 21:31	50
					0 0				
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	0	X D	37 - 107				01/29/20 10:34	01/31/20 21:31	50
2-Fluorophenol (Surr)	0	XD	38 - 106				01/29/20 10:34	01/31/20 21:31	50
2,4,6-Tribromophenol (Surr)	0	XD	22 - 116				01/29/20 10:34	01/31/20 21:31	50
Nitrobenzene-d5 (Surr)	0	ΧD	41 - 112				01/29/20 10:34	01/31/20 21:31	50
Phenol-d5 (Surr)	0	XD	40 - 110				01/29/20 10:34	01/31/20 21:31	50
Terphenyl-d14 (Surr)	0	XD	32 - 115				01/29/20 10:34	01/31/20 21:31	50
Method: 8082A - Polychlor		/IS (PCBs) Qualifier		MD	Unit	Б	Dronovod	Anglerad	Dil Fa-
Analyte PCB-1016		UZ Qualifier	RL 34	MDL	ug/Kg	— D	Prepared 01/20/20 10:43	Analyzed 01/30/20 14:10	Dil Fac
		ا				₩			N .
PCB-1221	ND ND		34		ug/Kg			01/30/20 14:10	10
PCB-1232	ND		34		ug/Kg			01/30/20 14:10	10
PCB-1242	ND		34	4.9	ug/Kg	₽	01/29/20 10:43	01/30/20 14:10	10

Eurofins TestAmerica, Buffalo

© 01/29/20 10:43 01/30/20 14:10

☼ 01/29/20 10:43 01/30/20 14:10

© 01/29/20 10:43 01/30/20 14:10

© 01/29/20 10:43 01/30/20 14:10

© 01/29/20 10:43 01/30/20 14:10

34

34

34

34

34

8.1 ug/Kg 10 ug/Kg

9.6 ug/Kg

12 ug/Kg

4.5 ug/Kg

ND

ND

310

ND

ND

10

10

10

10

10

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED1 Lab Sample ID: 480-165259-3

Date Collected: 01/15/20 12:35

Date Received: 01/16/20 12:28

Matrix: Sediment
Percent Solids: 42.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	421	pΧ	20 - 150	01/29/20 10:43	01/30/20 14:10	10
DCB Decachlorobiphenyl (Surr)	793	X	20 - 150	01/29/20 10:43	01/30/20 14:10	10
Tetrachloro-m-xylene (Surr)	579	X	20 - 138	01/29/20 10:43	01/30/20 14:10	10
Tetrachloro-m-xylene (Surr)	621	X	20 - 138	01/29/20 10:43	01/30/20 14:10	10

General Chemistry							
Analyte	Result Qualifier	RL	MDL (Unit D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	211000	2360	1760 r	mg/Kg		01/29/20 13:55	1

Client Sample ID: BSA-SED2

Lab Sample ID: 480-165259-4

Date Collected: 01/15/20 12:56

Matrix: Sediment

Date Collected: 01/15/20 12:56 Date Received: 01/16/20 12:28

General ChemistryAnalyteResult QualifierRL RL UnitD PreparedAnalyzed Analyzed Dil Fac 0.1Percent Moisture54.10.10.1%0.10.1/29/20 15:161

Client Sample ID: BSA-SED2 Lab Sample ID: 480-165259-4

Date Collected: 01/15/20 12:56

Date Received: 01/16/20 12:28

Matrix: Sediment
Percent Solids: 45.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		11	5.5	ug/Kg	₩	01/29/20 10:26	01/29/20 12:08	1
1,1,2,2-Tetrachloroethane	ND		11	6.5	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		11	4.2	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,1,2-Trichloroethane	ND		11	5.2	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
1,1-Dichloroethane	ND		11	3.9	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,1-Dichloroethene	ND		11	6.2	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,2-Dibromo-3-Chloropropane	ND		11	6.7	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
1,2-Dichlorobenzene	ND		11	4.4	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,2-Dichloroethane	ND		11	3.2	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
1,2-Dichloropropane	ND		11	5.3	ug/Kg	φ.	01/29/20 10:26	01/29/20 12:08	1
1,2,4-Trichlorobenzene	ND		11	8.1	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
1,3-Dichlorobenzene	ND		11	3.5	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,4-Dichlorobenzene	ND	_	11	2.2	ug/Kg	\$	01/29/20 10:26	01/29/20 12:08	1
2-Butanone (MEK)	DAD.	UJ	11	6.3	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	CCU
2-Hexanone	ND	00-	11	9.1	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
4-Methyl-2-pentanone (MIBK)	ND		11	4.0	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Acetone	ж	W	44	6.9	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	CCL1
Benzene	ND		11	4.3	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Bromoform	ND		11	5.7	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Bromomethane	DAD _Q	иJ	11	9.8	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	CC41
Carbon disulfide	ND		11	6.6	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Carbon tetrachloride	ND		11	7.2	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Chlorobenzene	ND		11	3.4	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Dibromochloromethane	ND		11	5.2	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Chloroform	ND		11	4.6	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Chloromethane	ND		11	8.4	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Chloroethane	NG.	ut	11	5.6	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	OCH 1
cis-1,2-Dichloroethene	ND		11	3.4	ug/Kg	· · · · · · · · · · · · · · · · · · ·	01/29/20 10:26	01/29/20 12:08	1

Eurofins TestAmerica, Buffalo

Page 16 of 1049

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED2 Lab Sample ID: 480-165259-4

Date Collected: 01/15/20 12:56 Matrix: Sediment
Date Received: 01/16/20 12:28 Percent Solids: 45.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		11	3.5	ug/Kg	₩	01/29/20 10:26	01/29/20 12:08	1
Bromodichloromethane	ND		11	5.1	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Dichlorodifluoromethane	ND		11	6.4	ug/Kg	φ.	01/29/20 10:26	01/29/20 12:08	1
Ethylbenzene	ND		11	4.7	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
1,2-Dibromoethane	ND		11	5.9	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Cyclohexane	ND		11	2.7	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Isopropylbenzene	ND		11	5.0	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Methyl acetate	ND		54	13	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Methyl tert-butyl ether	ND		11	8.0	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1.
Methylcyclohexane	ND		11	4.6	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Methylene Chloride	12		11	8.4	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Styrene	ND		11	2.9	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
Tetrachloroethene	ND		11	4.4	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Toluene	ND		11	3.7	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
trans-1,2-Dichloroethene	ND		11	5.5	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	1
trans-1,3-Dichloropropene	ND		11	3.8	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Trichloroethene	ND		11	3.3	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	.1
Trichlorofluoromethane	ME	IN .	11	3.2	ug/Kg	₽	01/29/20 10:26	01/29/20 12:08	CCH
Vinyl chloride	ND		11	8.0	ug/Kg	☼	01/29/20 10:26	01/29/20 12:08	1
Xylenes, Total	ND		22	9.4	ug/Kg	₩	01/29/20 10:26	01/29/20 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		71 - 114				01/29/20 10:26	01/29/20 12:08	1
4-Bromofluorobenzene (Surr)	84		74 - 114				01/29/20 10:26	01/29/20 12:08	1
Dibromofluoromethane (Surr)	108		76 - 116				01/29/20 10:26	01/29/20 12:08	1
Toluene-d8 (Surr)	107		85 - 125				01/29/20 10:26	01/29/20 12:08	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	6300	1100	310	ug/Kg	₩	01/29/20 10:34	01/31/20 21:58	50
Acenaphthylene	32000	1100	240	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Anthracene	19000	1100	280	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Benzo[a]anthracene	48000	1100	210	ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	50
Benzo[a]pyrene	50000	1100	240	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Benzo[b]fluoranthene	33000	1100	270	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Benzo[g,h,i]perylene	30000	1100	240	ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	50
Benzo[k]fluoranthene	8900	1100	330	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Bis(2-chloroethyl)ether	ND	1100	200	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Bis(2-chloroethoxy)methane	ND	5400	260	ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	50
2,2'-oxybis[1-chloropropane]	ND	1100	410	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Bis(2-ethylhexyl) phthalate	ND	54000	5800	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
4-Bromophenyl phenyl ether	ND	5400	380	ug/Kg	\$	01/29/20 10:34	01/31/20 21:58	50
Butyl benzyl phthalate	ND	5400	3800	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
4-Chloroaniline	ND	5400	180	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
2-Chloronaphthalene	ND	1100	250	ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	50
4-Chlorophenyl phenyl ether	ND	5400	330	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Chrysene	38000	1100	210	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Dibenz(a,h)anthracene	6900	1100	240	ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	50
Dibenzofuran	850 J	5400	240	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50
Di-n-butyl phthalate	ND	5400	2400	ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	50

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED2

Lab Sample ID: 480-165259-4 Date Collected: 01/15/20 12:56 **Matrix: Sediment** Date Received: 01/16/20 12:28 Percent Solids: 45.9

Analyte	olatile Organic Comp Result Qualif		MDL	•	D	Prepared	Analyzed	Dil Fa
3,3'-Dichlorobenzidine	ND ND	5400		ug/Kg			01/31/20 21:58	5
Diethyl phthalate	ND	5400		ug/Kg		01/29/20 10:34	01/31/20 21:58	5
Dimethyl phthalate	ND	5400		ug/Kg	☼	01/29/20 10:34	01/31/20 21:58	5
2,4-Dinitrotoluene	ND	5400		ug/Kg		01/29/20 10:34	01/31/20 21:58	5
2.6-Dinitrotoluene	ND	5400		ug/Kg	₽	01/29/20 10:34	01/31/20 21:58	5
Di-n-octyl phthalate	ND	5400		ug/Kg	₽		01/31/20 21:58	5
Fluoranthene	57000	1100		ug/Kg			01/31/20 21:58	5
Fluorene	8000	1100		ug/Kg	₽		01/31/20 21:58	5
Hexachlorobenzene	ND	1100		ug/Kg	₽		01/31/20 21:58	5
Hexachlorobutadiene	ND	1100		ug/Kg			01/31/20 21:58	5
Hexachlorocyclopentadiene	ND	5400		ug/Kg	₩		01/31/20 21:58	5
Hexachloroethane	ND	5400		ug/Kg	₩		01/31/20 21:58	5
Indeno[1,2,3-cd]pyrene	21000	1100		ug/Kg			01/31/20 21:58	5
Isophorone	ND	5400		ug/Kg	₩		01/31/20 21:58	5
•	2500	1100		ug/Kg	₩		01/31/20 21:58	5
2-Methylnaphthalene Naphthalene	2500 1500	1100		ug/Kg ug/Kg			01/31/20 21:58	5
2-Nitroaniline	ND	28000		ug/Kg	☼		01/31/20 21:58	5
3-Nitroaniline	ND	28000		ug/Kg ug/Kg			01/31/20 21:58	5
4-Nitroaniline	ND	28000		ug/Kg			01/31/20 21:58	5
Nitrobenzene	ND ND	11000		ug/Kg ug/Kg	~ ☆		01/31/20 21:58	5
N-Nitrosodi-n-propylamine	ND ND	1100		ug/Kg ug/Kg	~ ☆		01/31/20 21:58	5
	ND	5400		ug/Kg			01/31/20 21:58	5 5
N-Nitrosodiphenylamine		1100			≎			
Phenanthrene	36000	1100		ug/Kg	≎		01/31/20 21:58	5 5
Pyrene	120000			ug/Kg			01/31/20 21:58	
Carbazole	520 J	1100		ug/Kg			01/31/20 21:58	5
Acetophenone	ND	11000		ug/Kg	‡		01/31/20 21:58	5
Atrazine	ND	11000		ug/Kg			01/31/20 21:58	5
Benzaldehyde	MP*R	11000		ug/Kg	3.F.		01/31/20 21:58	_
1,1'-Biphenyl	1100 J	5400		ug/Kg			01/31/20 21:58	5
Caprolactam	ND	28000		ug/Kg	بن. 		01/31/20 21:58	5
4-Chloro-3-methylphenol	ND	5400		ug/Kg	±.		01/31/20 21:58	5
2-Chlorophenol	ND	5400		ug/Kg	Ψ.		01/31/20 21:58	5
2-Methylphenol	ND	5400		ug/Kg	:Q: 		01/31/20 21:58	5
Methylphenol, 3 & 4	ND	5400		ug/Kg	:D:		01/31/20 21:58	5
2,4-Dichlorophenol	ND	1100		ug/Kg	\$		01/31/20 21:58	5
2,4-Dimethylphenol	ND	5400		ug/Kg			01/31/20 21:58	5
2,4-Dinitrophenol	ND	54000	15000		₽		01/31/20 21:58	5
4,6-Dinitro-2-methylphenol	ND	28000	9400		☼		01/31/20 21:58	5
2-Nitrophenol	ND	5400		ug/Kg		01/29/20 10:34	01/31/20 21:58	5
4-Nitrophenol	ND	28000	3800		☼		01/31/20 21:58	5
Pentachlorophenol	ND	28000	8800		☼	01/29/20 10:34	01/31/20 21:58	5
Phenol	ND	5400	1600				01/31/20 21:58	5
2,4,5-Trichlorophenol	ND	5400		ug/Kg	₩		01/31/20 21:58	5
2,4,6-Trichlorophenol	ND	5400	300	ug/Kg	₩	01/29/20 10:34	01/31/20 21:58	5
Surrogate	%Recovery Qualif	ier Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)		37 - 107				01/29/20 10:34		5
2-Fluorophenol (Surr)	0 X D	38 - 106				01/29/20 10:34	01/31/20 21:58	5
2,4,6-Tribromophenol (Surr)	0 X D	22 - 116					01/31/20 21:58	5
Nitrobenzene-d5 (Surr)	0 X D	41 - 112					01/31/20 21:58	5

Eurofins TestAmerica, Buffalo

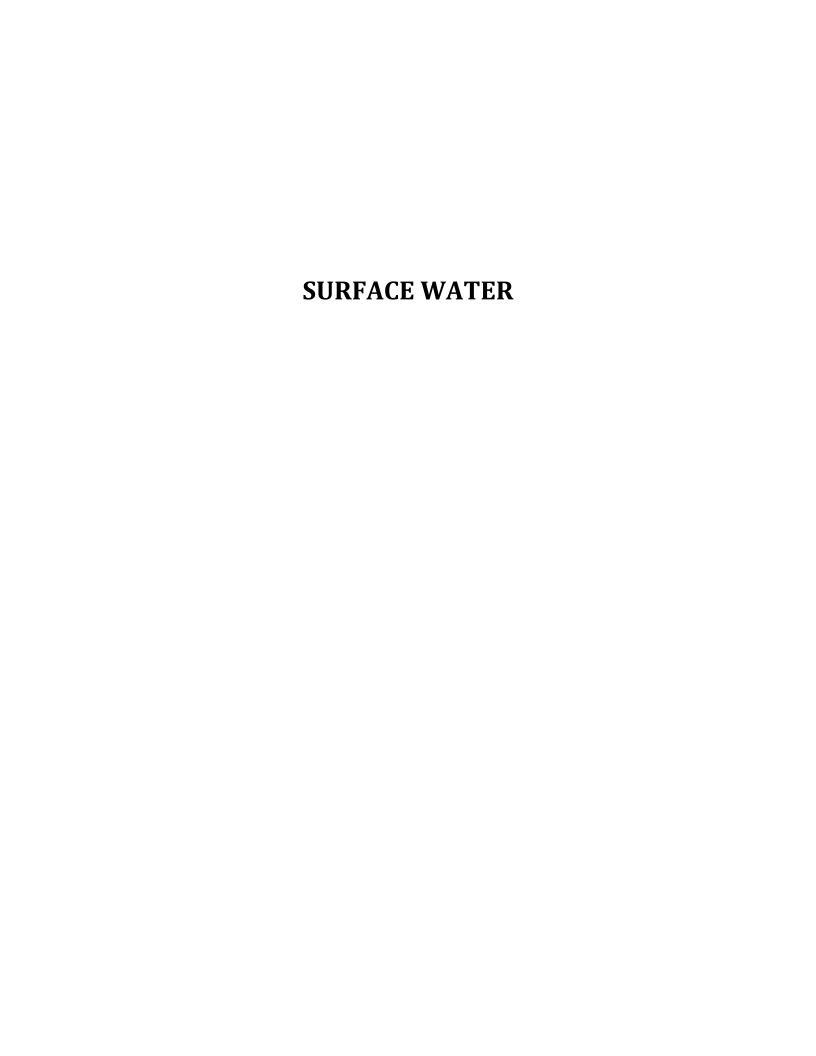
Client: New York State D.E.C. Job ID: 480-165259-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SED2

Lab Sample ID: 480-165259-4 Date Collected: 01/15/20 12:56 **Matrix: Sediment** Date Received: 01/16/20 12:28 Percent Solids: 45.9

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)


Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5 (Surr)	0	XD	40 - 110	01/29/20 10:34	01/31/20 21:58	50
Terphenyl-d14 (Surr)	0	XD	32 - 115	01/29/20 10:34	01/31/20 21:58	50

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND TUS	14	4.4	ug/Kg	<u> </u>	01/29/20 10:43	01/30/20 14:28	SSH1
PCB-1221	ND	14	4.9	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1232	ND	14	3.3	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1242	ND	14	2.0	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1248	ND	14	3.3	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1254	ND _	14	4.1	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1260	170	14	3.9	ug/Kg	₩.	01/29/20 10:43	01/30/20 14:28	1
PCB-1262	$_{ND}$ $_{ND}^{ND}$	14	4.8	ug/Kg	☼	01/29/20 10:43	01/30/20 14:28	1
PCB-1268	ND I	14	1.8	ug/Kg	≎	01/29/20 10:43	01/30/20 14:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	97	p	20 - 150	01/29/20 10:43	01/30/20 14:28	10
DCB Decachlorobiphenyl (Surr)	406	X	20 - 150	01/29/20 10:43	01/30/20 14:28	10
Tetrachloro-m-xylene (Surr)	163	X	20 - 138	01/29/20 10:43	01/30/20 14:28	10
Tetrachloro-m-xylene (Surr)	175	X	20 - 138	01/29/20 10:43	01/30/20 14:28	10

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	82100		2180	1620	mg/Kg	‡		01/29/20 14:06	1

Project: NYSDEC 31 Tonawanda St- Off- Site #C915332,

31 Tonawanda, New York

Laboratory: Eurofins Environment Testing TestAmerica, Amherst, NY

Sample Delivery Group: 480-165255-1

Fraction: Organic
Matrix: Solid
Report Date: 7/24/2020

This data usability summary report is based upon a review of analytical data generated for surface water and waste samples. The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The samples were analyzed for volatile organic compounds, semivolatile organic compounds, and polychlorinated biphenyls. The sample analyses were performed in accordance with the procedures referenced at the end of this report.

All sample analyses have undergone an analytical validation review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the "National Functional Guidelines for Organic Superfund Methods Data Review", USEPA January 2017. Region II references this guidance for validation requirements. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
- X Surrogate Compound Recoveries
 - Summaries of Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
 - Field Duplicate Analysis Results
- X Laboratory Fortified Blank Results
- X Internal Standard Performance
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Shawne M. Rodgers President

> July 24, 2020 Date

1.0 DATA COMPLETENESS

The NYSDEC ASP Category B deliverable data were provided by the laboratory.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody documentation was complete.

The samples were received in acceptable condition.

3.0 HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following volatile continuing calibration standards. This indicates a lack of instrument stability for these compounds. The nondetect result is marked "UJ" to indicate that it is an estimate.

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-515121/3 (Laboratory ID N1007.D)	Carbon Disulfide	-21.7	1660-MW-7-DNAPL

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 20 percent) was exceeded for the following semivolatile continuing calibration standards. This indicates a lack of instrument stability for the compound. The nondetect result is marked "UI" to indicate that it is an estimate.

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 480-514651/3 (Laboratory ID Y0281426.D)	Pentachlorophenol	20.5	BSA-SW1

The continuing calibration precision criterion (the percent difference between initial and continuing CFs \leq 15 percent) was exceeded for the polychlorinated biphenyls continuing calibration standards presented in Table 2. This indicates a lack of instrument stability for these analytes. The results for polychlorinated biphenyls for associated samples are considered quantitative estimates. Nondetect results are marked "UJ".

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

No compounds were detected in the associated laboratory method blanks.

Trip blanks and field blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

Sample 1660-MW-7-DNAPL was analyzed for semivolatile organic compounds at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

Sample 1660-MW-7-DNAPL was analyzed for polychlorinated biphenyls at dilutions that did not allow for the determination of whether the unacceptable recoveries were due to matrix interferences and/or extraction/analytical processes. This should be noted when assessing the data.

8.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

The laboratory did not select a site sample to perform matrix spike/ matrix spike duplicate analyses. Therefore, the associated sample data could not be evaluated based on these parameters. This should be noted when assessing the sample data.

9.0 FIELD DUPLICATE RESULTS

Field duplicate samples were not submitted for this job number.

10.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

12.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

13.0 QUANTITATION/REPORTING LIMITS

Sample 1660-MW-7-DNAPL was analyzed for volatile organic compounds at a 2000-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. Reporting limits (RLs) are elevated by the dilution factor for these samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for this sample.

Sample 1660-MW-7-DNAPL was analyzed for semivolatile organic compounds at a 200-fold dilution. The dilution analysis was performed because of the suspected presence of high levels of target compounds and/or interferences. RLs are elevated by the dilution factor for these

samples for target compounds that were not detected. The elevated RLs should be noted when assessing the data for this sample.

As required by USEPA protocol, all compounds, which were qualitatively identified at concentrations below their respective RLs, have been marked with "J" qualifiers to indicate that they are quantitative estimates.

METHODOLOGY REFERENCES

Analysis	Reference
V 1 (1 0	M d 100000 #T (M d 1 6 F 1 c 6 l d
Volatile Organic Compounds	Method 8260C, "Test Methods for Evaluating Solid
	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013
Semivolatile Organic Compounds	Method 8270D, "Test Methods for Evaluating Solid
	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013
Polychlorinated Biphenyls	Method 8082A, "Test Methods for Evaluating Solid
1 1	Wastes", SW-846, third edition, Promulgated
	Updates I, II, IIA, IIB, III, IIIA, IIIB, IVA and IVB, and
	V, October 2013

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St- Off- Site #C915332 Surface Water and Waste Sampling Test America Job ID 480-165255-1

Analyses Performed

Sample ID	Lab ID		Collection Date	Matrix	VOC	SVOC	PCB
BSA-SW1	480-165255	1	1/15/2020	Surface Water	X	X	X
1660-MW-7-DNAPL	480-165255	2	1/15/2020	Waste	X	X	X

Table 2 Polychlorinated Biphenyls Continuing Calibrations Exceeding Precision Criteria

Calibration Standard	Analyte	%Difference	Associated Samples
File ID CCVIS 480- 514951/5\7_64-178.D (GC Column:ZB-5)	Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1016 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260	1 -20.9 2 3 4 5 -27.8 1 2 3 4 5	BSA-SW1
File ID CCVIS 480- 514951/7\7_64-180.D (GC Column:ZB-5)	Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1262 Aroclor 1262 Aroclor 1262 Aroclor 1262 Aroclor 1262	1 2 3 31.0 4 5 1 2 2 3 26.50 4 5	BSA-SW1

Table 2 Polychlorinated Biphenyls Continuing Calibrations Exceeding Precision Criteria

Calibration Standard	Analyte	%	Difference	Associated Samples	
File ID CCVIS 480- 514951/7\7_64-180.D (GC Column:ZB-35)	Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1232 Aroclor 1262 Aroclor 1262 Aroclor 1262 Aroclor 1262 Aroclor 1262	1 2 3 4 5 1 2 3 4 5	34.2 28.6 41.7 50.2 67.5 70.3	BSA-SW1	
File ID CCVIS 480- 514951/11\7_64-184.D (GC Column:ZB-35)	Aroclor 1248 Aroclor 1248 Aroclor 1248 Aroclor 1248 Aroclor 1248	1 2 3 4 5	34.1 21.1 28.9 31.7 31.0	BSA-SW1	

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SW1

Date Received: 01/16/20 12:28

Lab Sample ID: 480-165255-1 Date Collected: 01/15/20 12:09

Matrix: Water

Analyte	ic Compounds by GC/ Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L		•	01/22/20 11:42	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			01/22/20 11:42	
1,1,2-Trichloroethane	ND	1.0		ug/L			01/22/20 11:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			01/22/20 11:42	
1,1-Dichloroethane	ND	1.0		ug/L			01/22/20 11:42	
1,1-Dichloroethene	ND	1.0		ug/L			01/22/20 11:42	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			01/22/20 11:42	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			01/22/20 11:42	
1,2-Dichlorobenzene	ND	1.0		ug/L			01/22/20 11:42	
1,2-Dichloroethane	ND	1.0		ug/L			01/22/20 11:42	
1,2-Dichloropropane	ND	1.0		ug/L			01/22/20 11:42	
1,3-Dichlorobenzene	ND	1.0		ug/L			01/22/20 11:42	
1,4-Dichlorobenzene	ND	1.0		ug/L			01/22/20 11:42	
2-Butanone (MEK)	ND	10		ug/L			01/22/20 11:42	
2-Hexanone	ND	5.0		ug/L			01/22/20 11:42	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			01/22/20 11:42	
Acetone	ND	10		ug/L			01/22/20 11:42	
Benzene	ND	1.0		ug/L			01/22/20 11:42	
Bromodichloromethane	ND	1.0		ug/L			01/22/20 11:42	
Bromoform	ND ND	1.0		ug/L ug/L			01/22/20 11:42	
Bromomethane	ND ND	1.0		ug/L ug/L			01/22/20 11:42	
Carbon disulfide	ND	1.0		ug/L ug/L			01/22/20 11:42	
	ND ND			ug/L ug/L			01/22/20 11:42	
Carbon tetrachloride	ND ND	1.0		-			01/22/20 11:42	
Chlorobenzene		1.0		ug/L				
Dibromochloromethane	ND	1.0		ug/L			01/22/20 11:42	
Chloroethane	ND	1.0		ug/L			01/22/20 11:42	
Chloroform	ND /	1.0		ug/L			01/22/20 11:42	
Chloromethane	ND /	1.0		ug/L			01/22/20 11:42	
cis-1,2-Dichloroethene	2.8 √	1.0		ug/L			01/22/20 11:42	
cis-1,3-Dichloropropene	ND	1.0		ug/L			01/22/20 11:42	
Cyclohexane	ND	1.0		ug/L			01/22/20 11:42	
Dichlorodifluoromethane	ND	1.0		ug/L			01/22/20 11:42	
Ethylbenzene	ND	1.0		ug/L			01/22/20 11:42	
1,2-Dibromoethane	ND	1.0		ug/L			01/22/20 11:42	
Isopropylbenzene	ND	1.0		ug/L			01/22/20 11:42	
Methyl acetate	ND	2.5		ug/L			01/22/20 11:42	
Methyl tert-butyl ether	ND	1.0		ug/L			01/22/20 11:42	
Methylcyclohexane	ND	1.0		ug/L			01/22/20 11:42	
Methylene Chloride	ND	1.0		ug/L			01/22/20 11:42	
Styrene	ND	1.0	0.73	ug/L			01/22/20 11:42	
Tetrachloroethene	ND	1.0		ug/L			01/22/20 11:42	
Гoluene	ND	1.0		ug/L			01/22/20 11:42	
rans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			01/22/20 11:42	
rans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			01/22/20 11:42	
Trichloroethene	ND	1.0	0.46	ug/L			01/22/20 11:42	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			01/22/20 11:42	
Vinyl chloride	ND	1.0		ug/L			01/22/20 11:42	
Xylenes, Total	ND	2.0		ug/L			01/22/20 11:42	

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SW1

Date Collected: 01/15/20 12:09 Date Received: 01/16/20 12:28 Lab Sample ID: 480-165255-1

Matrix: Water

Surrogate	%Recovery Qualif	ier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120	01/22/20 11:42	1
1,2-Dichloroethane-d4 (Surr)	90	77 - 120	01/22/20 11:42	1
4-Bromofluorobenzene (Surr)	98	73 - 120	01/22/20 11:42	1
Dibromofluoromethane (Surr)	102	75 - 123	01/22/20 11:42	1

Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Biphenyl	ND -	5.0		•		01/21/20 15:15	01/23/20 15:06	
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4-Dinitrophenol	ND	10	2.2	ug/L		01/21/20 15:15	01/23/20 15:06	
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		01/21/20 15:15	01/23/20 15:06	
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Chloronaphthalene	ND	5.0	0.46	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Chlorophenol	ND	5.0	0.53	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Methylphenol	ND	5.0	0.40	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Methylnaphthalene	ND	5.0	0.60	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Nitroaniline	ND	10	0.42	ug/L		01/21/20 15:15	01/23/20 15:06	
2-Nitrophenol	ND	5.0	0.48	ug/L		01/21/20 15:15	01/23/20 15:06	
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		01/21/20 15:15	01/23/20 15:06	
3-Nitroaniline	ND	10	0.48	ug/L		01/21/20 15:15	01/23/20 15:06	
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Chloroaniline	ND	5.0	0.59	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Methylphenol	ND	10	0.36	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Nitroaniline	ND	10	0.25	ug/L		01/21/20 15:15	01/23/20 15:06	
4-Nitrophenol	ND	10	1.5	ug/L		01/21/20 15:15	01/23/20 15:06	
Acenaphthene	ND	5.0	0.41	ug/L		01/21/20 15:15	01/23/20 15:06	
Acenaphthylene	ND	5.0	0.38	ug/L		01/21/20 15:15	01/23/20 15:06	
Acetophenone	ND	5.0	0.54	ug/L		01/21/20 15:15	01/23/20 15:06	
Anthracene	ND	5.0	0.28	ug/L		01/21/20 15:15	01/23/20 15:06	
Atrazine	ND	5.0	0.46	ug/L		01/21/20 15:15	01/23/20 15:06	
Benzaldehyde	ND	5.0	0.27	ug/L		01/21/20 15:15	01/23/20 15:06	
Benzo[a]anthracene	ND	5.0	0.36	ug/L		01/21/20 15:15	01/23/20 15:06	
Benzo[a]pyrene	ND	5.0	0.47	ug/L		01/21/20 15:15	01/23/20 15:06	
Benzo[b]fluoranthene	ND	5.0		ug/L		01/21/20 15:15	01/23/20 15:06	
Benzo[g,h,i]perylene	ND	5.0		ug/L		01/21/20 15:15	01/23/20 15:06	
Benzo[k]fluoranthene	ND	5.0		ug/L		01/21/20 15:15	01/23/20 15:06	
Bis(2-chloroethoxy)methane	ND	5.0		ug/L			01/23/20 15:06	
Bis(2-chloroethyl)ether	ND	5.0		ug/L			01/23/20 15:06	
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L			01/23/20 15:06	
Butyl benzyl phthalate	ND	5.0		ug/L			01/23/20 15:06	
Caprolactam	ND	5.0		ug/L			01/23/20 15:06	
Carbazole	ND	5.0		ug/L			01/23/20 15:06	
Chrysene	ND	5.0		ug/L			01/23/20 15:06	

Client: New York State D.E.C. Job ID: 480-165255-1

Project/Site: 31 Tonawanda St. - OffSite C915299A

Client Sample ID: BSA-SW1 Lab Sample ID: 480-165255-1

Date Collected: 01/15/20 12:09

Date Received: 01/16/20 12:28

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		01/21/20 15:15	01/23/20 15:06	
Di-n-butyl phthalate	ND		5.0	0.31	ug/L		01/21/20 15:15	01/23/20 15:06	
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		01/21/20 15:15	01/23/20 15:06	
Dibenzofuran	ND		10	0.51	ug/L		01/21/20 15:15	01/23/20 15:06	
Diethyl phthalate	ND		5.0	0.22	ug/L		01/21/20 15:15	01/23/20 15:06	
Dimethyl phthalate	ND		5.0	0.36	ug/L		01/21/20 15:15	01/23/20 15:06	
Fluoranthene	ND		5.0	0.40	ug/L		01/21/20 15:15	01/23/20 15:06	
Fluorene	ND		5.0	0.36	ug/L		01/21/20 15:15	01/23/20 15:06	
Hexachlorobenzene	ND		5.0	0.51	ug/L		01/21/20 15:15	01/23/20 15:06	
Hexachlorobutadiene	ND		5.0	0.68	ug/L		01/21/20 15:15	01/23/20 15:06	
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		01/21/20 15:15	01/23/20 15:06	
Hexachloroethane	ND		5.0	0.59	ug/L		01/21/20 15:15	01/23/20 15:06	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		01/21/20 15:15	01/23/20 15:06	
Isophorone	ND		5.0	0.43	ug/L		01/21/20 15:15	01/23/20 15:06	
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		01/21/20 15:15	01/23/20 15:06	
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		01/21/20 15:15	01/23/20 15:06	
Naphthalene	ND		5.0	0.76	ug/L		01/21/20 15:15	01/23/20 15:06	
Nitrobenzene	ND	· · · · · · · · · · · · · · · · · · ·	5.0	0.29	ug/L		01/21/20 15:15	01/23/20 15:06	
Pentachlorophenol	, אאל,	W	10	2.2	ug/L		01/21/20 15:15	01/23/20 15:06	CCH
Phenanthrene	ND		5.0	0.44	ug/L		01/21/20 15:15	01/23/20 15:06	
Phenol	ND		5.0	0.39	ug/L		01/21/20 15:15	01/23/20 15:06	
Pyrene	0.67	J	5.0	0.34	ug/L		01/21/20 15:15	01/23/20 15:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	97		46 - 120				01/21/20 15:15	01/23/20 15:06	
Phenol-d5 (Surr)	47		22 - 120				01/21/20 15:15	01/23/20 15:06	
p-Terphenyl-d14 (Surr)	94		60 - 148				01/21/20 15:15	01/23/20 15:06	
2,4,6-Tribromophenol (Surr)	95		41 - 120				01/21/20 15:15	01/23/20 15:06	
2-Fluorobiphenyl (Surr)	97		48 - 120				01/21/20 15:15	01/23/20 15:06	
2-Fluorophenol (Surr)	65		35 - 120				01/21/20 15:15	01/23/20 15:06	
Method: 8082A - Polychlorii	nated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
PCB-1016) yrd	W	0.50		ug/L			01/27/20 16:27	CCL
PCB-1221	ND	1.1	0.50	0.18	•			01/27/20 16:27	An
PCB-1232		UJ	0.50	0.18				01/27/20 16:27	CCH
PCB-1242	ND		0.50	0.18				01/27/20 16:27	
	NP	W	0.50		ug/L			01/27/20 16:27	CCI
	<i>y</i> -		0.50	0.25	ug/L			01/27/20 16:27	
PCB-1248	ND		0.50						
PCB-1248 PCB-1254	ND ND		0.50	0.25				01/27/20 16:27	4
PCB-1248 PCB-1254 PCB-1260	ND ND	W		0.25	ug/L ug/L			01/27/20 16:27 01/27/20 16:27	CCH
PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND ND	W	0.50	0.25 0.25			01/24/20 15:11		CCH
PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268 Surrogate	ND ND		0.50 0.50	0.25 0.25	ug/L		01/24/20 15:11	01/27/20 16:27	
PCB-1248 PCB-1254 PCB-1260 PCB-1262 PCB-1268	ND ND ND		0.50 0.50 0.50	0.25 0.25	ug/L		01/24/20 15:11 01/24/20 15:11 Prepared	01/27/20 16:27 01/27/20 16:27	CH Dil Fa

Quality Assessment Data Usability Summary Report

			RemVēr Project #2020GE39
			Client Project # <u>0901816-02-840</u>
Site:	31 Tonawanda St., Off-site Buffalo, NY	Site #:	C915299A
Client:	NYSDEC via GES, Inc.	Site Owner:	-N/A-
Sample [Delivery Groups (SDGs) See Tab	ole #1	
Sample	☑ Drinking water ☑ Groundwa		ırface water
Matrix:	│ ⊠ Soil ☐ Sediment	∐ Aiı	ſ
wattix.	☐ Biota (tissue, type:)	☐ Ot	her:

Introduction

Groundwater & Environmental Services (GES) contracted RemVer to perform a data quality assessment (DQA) on analytical laboratory data of groundwater samples. Eurofins/Test America (E/TA) reported the data in separate Sample Delivery Groups (SDGs, see Table 1). Table 2 provides a cross-list of the samples associated with each SDG.

A DQA is an evaluation of the performance of analytical procedures and quality of the resulting data. Following the requirements of the New York State Department of Environmental Conservation (NYSDEC) Data Usability Summary Report (DUSR) guidelines for an Analytical Services Protocol (ASP) Category B Data Deliverable, RemVer prepared a separate DQA/DUSR sub-report for each SDG, evaluating the performance of the analytical procedures and the quality of the resulting data. Each sub-report includes a narrative discussion of qualified sample, a DQA Detail Worksheet, and a Non-Conformance Summary Worksheet describing the final reported qualification flags applied to the data during the DQA. Additionally, one validated EXCEL electronic data deliverable (EDD) is included with this deliverable for each SDG discussed herein.

Intended Use of Data Under Review

NYSDEC contracted GES to perform an off-site monitoring event at the referenced site. The monitoring event's (September 2020) purpose was to collect soil. surface water. and drinking water data regarding two classes of analytes: volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).

Significant Data Usability Issues

RemVer rejected no results and the data are acceptable for use. Certain results may have flagged analytes indicating non-detection or quality issues arising from sample handling, laboratory accuracy, or precision issues. Please refer to the individual SDG report and the respective Data Usability Narrative section of the DUSR sub-report for further detail.

Reported Methods Method 1311 TCLP ☐ Method TO-13A PAHs (air) Method 1312 SPLP Method TO-14A / -15 VOCs (air, summa) () Method 6010A, B & C / 6020 Trace Metals Method TO-17 VOCs (air, sorbent) Method 7000 Metals ☐ Method 537 PFCs via SPE & LC/MS-MS Method 7196 Hexavalent Chromium (other: ☐ Volatile Petroleum Hydrocarbons (VPH) Method Extractable Petroleum Hydrocarbons (EPH) Method 7470A or 7471 Mercury Method 8021 Volatile Organic Compounds (VOCs) GC Other Methods: Method 8081B or 608 Pesticides ☑ Method 5030 Purge & Trap ☐ Method 8082 or ☐ 608 PCBs ☑ Method 5030A_H Purge & Trap, closed, Hi Method 8151 Chlorinated Herbicides ☑ Method 5030A_L Purge & Trap, closed, Lo ☑ Method 3550C Ultrasonic Extraction Method 8260C VOCs GC/MS Method 8270D Semi-VOCs (sVOCs) GC/MS &/or SIM-ID ☑ Method Percent Moisture Method 9010/9012/9014 Cyanides () **Quality Control Requirements Summary** □ Duplicate Other Field QC: Field notes regarding sampling Matrix Spike [MS] / Matrix Spike Duplicate [MSD] Special QAPP Requirements: ___ Trip Blanks (as appropriate) Equipment, Method, &/or Rinsate Blank

Table 1. Sample Data Group (SDG) List

CDC 400 #	# Commiss	# Dlamks	# Duna Camula Data		Methods		Matrix	
SDG 480-#	# Samples	# Blanks	# Dups	Sample Date	VOCs	SVOCs	Matrix	
175104	4			09/14/2020	X	X	Soil & Surface Water	
175253	3	_	_	09/15-16/2020	Х	Х	Soil	
175318	1	_	_	09/17/2020	Х	_	Drinking Water	
175394	3	_	_	09/17/2020	Χ	Χ	Soil	

Table 2. Sample List

Count	SDG480-#	Sample #	Sample Name	Sample Date	Received
1		#–1	RI-MW-5-R-A	09/14/20 14:00	09/14/20 15:50
2	175104	#–2	RI-MW-5-R-B	09/14/20 14:20	09/14/20 15:50
3	173104	#–3	RI-MW-3	09/14/20 13:00	09/14/20 15:50
4		#–4	31-SW-1	09/14/20 12:05	09/14/20 15:50
5		#–1	1675-MW-1	09/15/20 12:25	09/16/20 17:00
6	175253	#–2	1660-SB-1	09/16/20 13:00	09/16/20 17:00
7		#–3	1660-MW-8	09/16/20 14:45	09/16/20 17:00
8	175318	#–1	DW-1	09/17/20 08:30	09/17/20 16:30
9		#–1	SB-100	09/17/20 09:35	09/17/20 15:15
10	175394	#–2	SB-103	09/17/20 11:15	09/17/20 15:15
11		#–3	SB-106	09/17/20 13:00	09/17/20 15:15

NOTE: EB = Equipment Blank

Dup = Duplicate

RemVer

References

- NYSDEC, 2010, Technical Guidance for Site Investigation and Remediation, "DER-10," Division of Environmental Remediation: Albany, NY, May, 232p
- NYSDEC, 2010, Guidance for Data Deliverables and the Development of Data Usability Summary Reports. Appendix 2B IN Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation: Albany, NY, May, 232p
- USEPA, 2008, Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-48, USEPA-540-R-08-01, Office of Superfund Remediation and Technology Innovation: Washington, DC, June, 225p
- USEPA, 2010, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-51, USEPA-540-R-10-011, Office of Superfund Remediation and Technology Innovation: Washington, DC, January, 110p
- USEPA, 2012, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, http://www.epa.gov/epawaste/hazard/testmethods/ Online Revision: Current sw846/online/index.htm, accessed April 2012

Attachments

- 1. Qualifier Flags
- 2. Data Usability Reviewer Biography
- 3. DUSR Sub-Report for SDG #480-175104
- 4. DUSR Sub-Report for SDG #480-175253
- 5. DUSR Sub-Report for SDG #480-175318
- 6. DUSR Sub-Report for SDG #480-175394

NOTE: If Client requests, each DUSR Sub-Report includes validated EDD attached hereto (Excel File Name Format: SDG-# EquaNysdec-V.xls)

KATrat

Revised: 11/10/2020

Prepared by: Kurt A. Frantzen, PhD

November 10, 2020

GES PO #1113284-1100

Attachment 1. Qualifier Flags

Qualifier	Quality Implication
0–9	Use with Co-eluting Congeners
Α	Tentatively Identified Compound (TIC) suspected to be an aldol condensation product
B EB	An analyte identified in method blank (B), aqueous equipment (EB), rinsate (RB), trip (TB), or bottle blanks (BB)
TB BB	used to assess field contamination associated with soil or sediment samples mandates these qualifiers for only
RB	soil and sediment sample results.
BH/BL	Analyte detected in Blank at level >10X/5-10X that of the Sample
D	Sample analysis from dilution of original sample
E	Analyte concentration exceeds calibration range
HT	Holding time violation
J	Analyte positively identified at a numerical value that is the approximate concentration of the analyte in the sample
J +	Sample likely to have a high bias
J –	Sample likely to have a low bias
	Analyte not detected above the sample quantitation limit; the associated quantitation limit is approximate and
UJ	may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the
	analyte in the sample
N	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative
	identification."
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated
	numerical value represents its approximate concentration.
	Sample result rejected due to serious deficiency in ability to analyze sample and meet quality control criteria;
R	the presence or absence of the analyte cannot be confirmed. This qualifier also may apply when more than
	one sample result is generated for a target analyte (<i>i.e.</i> , dilutions or re-analyses), the most technically acceptable result is considered acceptable.
	Use professional judgment based on data use. It usually has an "M" with it, which indicates that a manual
	check should be made if the data that are qualified with the "P" are important to the data user. In addition, "PM"
P	also means a decision is necessary from the Project Manager (or a delegate) concerning the need for further
	review of the data (see below).
	A manual review of the raw data is recommended to determine if the defect affects data use, as in "R" above.
	This review should include consideration of potential affects that could result from using the "P" qualified data.
	For example, in the case of holding-time exceedance, the Project Manager or delegate can decide to use the
PM	data with no qualification when analytes of interest are known not to be adversely affected by holding-time
	exceedances. Another example is the case where soil sample duplicate analyses for metals exceed the
	precision criteria; because this is likely due to sample non-homogeneity rather than contract laboratory error,
	then the manager or delegate must decide how to use the data.
U	Analyte analyzed for, but not detected above the sample's reported quantitation limit

Attachment 2. Data Usability Reviewer: Kurt A. Frantzen, PhD

Experience

2013-Present d/b/a RemVēr Owner **AECC** Senior EHS Consultant 2014-2019 2011-2012 RemVer. Inc. President 2006-2011 Kleinfelder Senior Principal Scientist 2005 Kleinfelder Principal Scientist, Part-Time/On Call 2004-2006 d/b/a Environmental Risk Group Owner 2004-2006 RemVer, Inc., Larchmont, NY Founder, President VHB. Inc. 1999-2004 **ERM Director & Associate** 1997-1998 GEI Consultants, Inc. Senior Project Manager 1992-1997 Ecology and Environment, Inc. **Technical Chief** 1991-1992 EA Engineering, Science, & Technology, Inc. Project Manager III 1990-1991 Ecology and Environment, Inc. Technical Group Manager 1986-1990 Ecology and Environment, Inc. Senior Environmental Scientist

Education

Am Cancer Soc. Post-Doctoral Fellow, U Washington 1985-1986

PhD—Life Sci. / Biochem, NU—Lincoln 1985 MS—Plant Pathology, Kansas State Univ. 1980 BS—Biology, NU—Omaha 1978

Other

- CERCLA & RCRA experience, as well as DOD (Air Force & Army) & DOE (INEL)
- NE Regional Experience—NY BCP; Mass MCP; & various sites in CT, RI & NH
- National Experience: NE, SE, Gulf & West Coast, Mid-west, Inter-mountain, California, Alaska
- International: Germany, Israel, Kuwait, Australia
- Selected Publications
 - Using Risk Appraisals to Manage Environmentally Impaired Properties, 2000, VHB Site Works, Report 108
 - o Risk-Based Analysis for Environmental Managers, 2001, CRC/Lewis
 - o Chapter 7 Risk Assessment, Managing Hazardous Materials, 2002 & 2009, IHMM
 - o Chapter 22 Cleanup Goals, Brownfields Law & Practice, 2004-Present, Lexis/Nexis
 - Use of Risk Assessment in Risk Management of Contaminated Sites, 2008, ITRC
- 60 Conference Papers & Invited Professional Presentations
 - o 1999-2019, Visiting Lecturer, Brownfields Program, Harvard Graduate School of Design
 - o 2010-2013, Invited Lecturer, Pace University Law School
 - 2014-2015, Adjunct Professor, Pace University Law School

Attachment 3. Data Usability Sub-Report for SDG #480-175104

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes	\boxtimes			
Field meteorological data				No review required under QAPP
Associated sampling location and plan included		\boxtimes		See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs		\boxtimes		
Any corrective action (CA) reports		\boxtimes		If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables		\boxtimes		None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175104)

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	□ Duplicate results
☐ Data Package Summary Forms	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	□ Chromatograms
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?						
Laboratory Report	Laboratory Report Complete (Y/N) Comments					
480-175104	Υ	No				

Sample Preservation Requirements & Holding Times Met?							
Laboratory Report	Hold Times (Y/N)	Preservation (Y/N)	Exception Comment				
480-175104	Y N	Y N	None #-4 collected in unpreserved vial & analyzed beyond hold time limits				

	Do the QC data fall within the protocol required limits and specifications?								
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175104									
The r	The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.								

Were the data generated using established and agreed upon analytical protocols?					
Laboratory Report Protocols (Y/N) Exception Comment					
480-175104	Υ	No			

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?					
Laboratory Report	Confirmation (Y/N)	Exception Comment			
480-175104	Υ	No			

Were correct data qualifiers used and are they consistent with the most current guidance?					
Laboratory Report Qualifiers (Y/N) Comment					
480-175104	Υ	The laboratory generally applied appropriate qualifiers.			

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report QC Exceedances Documented (Y/N) Comment				
480-175104	Y Data qualifications were applied as described below			

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 14, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175104 (dated 25-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175104—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/14/2020 @ 15:50 PM (designated as SDG-#480-175104). The temperature of the cooler(s) at receipt were 3.1°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with one exception:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH 7.0 s.u.) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 was decanted (removal of soil-water) prior to preparation (ultrasonic extraction). RemVer set no flag.

RemVer

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH was 7.0) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—If VOC analyte concentrations were below 200 μg/kg the laboratory set a "vs" flag because the result may be biased low due to sample collection not following Method 5035A-L low-level specifications. Therefore, RemVer set a UJ- or J- flag, as appropriate.
- Method 8260C—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8270D—Sample #-1 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Sample #-2 was diluted to bring the target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8270D—Batch 549994 recovery was beyond control limits (in both straight and diluted runs) for 2,4,6-Tribromophenol (surrogate) but impacted only Sample #-1. RemVer flagged the SVOC results in as UJ or J, as appropriate.

Blank Evaluation

SDG #480-175104 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with no exception(s).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175104.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Sample #-1 required a dilution due to physical characteristics, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175104. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175104

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	All Others	No Comment
	Х	_	Χ	2,4,6-Tribromophenol	Flag UJ or J
#-1	X	_	_	2-Fluorophenol, Nitrobenzene-d5, & Phenol-d5	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	Not Run, See LCS
SVOC (8270)	_	_	-			Not Run, See LCS

FIELD DUPLICATES RPDs	QC Source	Soil Water RPD > 50% RPD > 20%		Compounds	Notes			
None	None	_	_	<u> </u>	None			
None	None	_	_	_	None			
LAB DUPLICATES								
All Methods	Batch	N/A	_	As listed	No Comment			
Reasonable Confidence Achieved								
Abbreviations: RL = Reporting Limit								

DQA Non-Conformance Summary Worksheet for SDG #480-175104

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
	Any	MDL>result <rdl< td=""><td>ı</td><td>ı</td><td></td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	ı	ı		Validator Flag UJ Interpreted Flag U
All	Any	Calibration (E)	Calibration (E) >Range, Flag if >RL		f>RL	Flag JE
	Any VOC	Lab vs-flag due to non-Low-Level Sampling	I	-	Lo	Flag UJ– or J–
#-4	All	Holding & Preservation	Out of compliance		Flag H UJ or H J	
#-1 & -2	VOCs	Dilution	ı	1	_	Flag D
#-1 & -2	SVOCs	Dilution		_	_	Flag D
#-1	SVOC	CCV	<lcl <br="">>UCL</lcl>		_	Flag UJ or J
#-1	SVOC	Surrogate / Dilution	<lcl <br="">>UCL</lcl>	>	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 4. Data Usability Sub-Report for SDG #480-175253

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables		\boxtimes		None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-1752)

 ☐ Contract Lab Sample Information Sheets ☐ Data Package Summary Forms ☐ Chain-of-Custody (COC) Forms ☐ Test Results (no tentatively identified compounds [TICs]) ☐ Calibration standards 	 Spike recoveries Duplicate results Confirmation (lab check/QC) samples Internal standard area & retention time summary Chromatograms Raw data files
	1 <u>—</u>

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?						
Laboratory Report Complete (Y/N) Comments						
480-175253	Υ	No				

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment						
480-175253	Υ	Υ	None			

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175253									\square
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.									

Were the data generated using established and agreed upon analytical protocols?				
Laboratory Report	Protocols (Y/N)	Exception Comment		
480-175253	Υ	No		

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?				
Laboratory Report	Confirmation (Y/N)	Exception Comment		
480-175253	Υ	No		

Were correct data qualifiers used and are they consistent with the most current guidance?				
Laboratory Report	Qualifiers (Y/N)	Comment		
480-175253	Υ	The laboratory generally applied appropriate qualifiers.		

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?			
Laboratory Report	QC Exceedances Documented (Y/N)	Comment	
480-175253	Υ	Data qualifications were applied as described below	

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 15 – September 16, 2016. RemVēr no issues in the provided documentation.

<u>Laboratory Report Inspection</u>

E/TA produced an SDG report #480-175253 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175253—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/16/2020 @ 17:00 PM (designated as SDG-#480-175253). The temperature of the cooler(s) at receipt were 4.7°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis.

<u>Analysis</u>

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the RL, then then a "UJ" flag was set to indicate a qualified non-detection.
- If an SVOC analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, -2, and -3 were analyzed using medium level soil analysis and diluted due to the abundance of target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-2 and #-3 were diluted due to color and appearance and to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and forced surrogate recoveries below their calibration range. RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes.

Blank Evaluation

SDG #480-175253 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

<u>Laboratory Control Samples (LCS)</u>

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175253.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Samples #-2 and -3 required dilution due to physical characteristics and target analyte abundance, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175253 were within normal control limits.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175253

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	All	No Comment
SVOC (8270)	_	_	_	All	No Comment
#-2 & #-3	Χ	X	1	Various Surrogates	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	-	_	_	_	_	None
SVOC (8270)	_	_	_	#-1	_	No Comment
_	_		1	1	_	_

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes		
None	None	N/A	_	As listed	None		
None	None	N/A	_	_	_		
LAB DUPLICATES							
All Methods	Batch	N/A	_	As listed	No Comment		
Reasonable Confidence Achieved							
Abbreviations: RL = Reporting Limit							

DQA Non-Conformance Summary Worksheet for SDG #480-175253

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
All	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	SVOCs	Calibration (E)	on (E) >Range, Flag if >RL		f>RL	Flag JE
	VOCs	Dilution	_		Flag D	
#-2 & -3	SVOCs	Dilution				Flag D
#-2 & 3	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 5. Data Usability Sub-Report for SDG #480-175318

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included		\boxtimes		See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

<u> Lab Report Contents (</u>	<u>(Test America SDG Reports: #480-175318)</u>

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	□ Duplicate results
☑ Data Package Summary Forms	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
☑ Calibration standards	Raw data files
	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?						
Laboratory Report	Comments					
480-175318	Υ	No				

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment						
480-175318	Υ	Υ	None			

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data									
SDG	1	2	3	4	5	6	7	8	9
480-175318									\boxtimes
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.									

Were the data generated using established and agreed upon analytical protocols?					
Laboratory Report	Laboratory Report Protocols (Y/N) Exception Comment				
480-175318	Υ	No			

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?				
Laboratory Report	Confirmation (Y/N)	Exception Comment		
480-175318	Υ	No		

Were correct data qualifiers used and are they consistent with the most current guidance?				
Laboratory Report Qualifiers (Y/N) Comment				
480-175318	Υ	The laboratory generally applied appropriate qualifiers.		

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?			
Laboratory Report QC Exceedances Documented (Y/N) Comment			
480-175318	Υ	Data qualifications were applied as described below	

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175318 (dated 29-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175318—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/17/2020 @ 16:30 PM (designated as SDG-#480-175318). The temperature of the cooler(s) at receipt were 3.9°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for VOCs.

Analysis

The laboratory reported no analytical issues associated with the analytical runs.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

Method 8260C—Batch 550761 CCV recovery was above the upper control limit (>UCL) for Cyclohexane in all samples but was not detected. RemVer flagged the results in all samples as UJ+ or J+, as appropriate.

Blank Evaluation

SDG #480-175318 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175318.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria. Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs for all analyses met the QA criteria in SDG 480-175318.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175318

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
_	_	_	

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
_	_	_	_	_	_

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	-	_	No Comment
_	_	_		_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
_	_	_	_	_	_	_

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes	
None	None	N/A	_	As listed	None	
None	None	N/A	_	_	_	
LAB DUPLICATES						
All Methods	Batch	N/A	_	As listed	No Comment	
Reasonable Confidence Achieved						
Abbreviations: RL = Reporting Limit						

DQA Non-Conformance Summary Worksheet for SDG #480-175318

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
All	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	Cyclohexane	CCV	>UCL	_	Hi	Flag UJ+ or J+
	_	_	_	_	_	_
_	_	_	_	_	_	_

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 6. Data Usability Sub-Report for SDG #480-175394

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports		\boxtimes		If so, CA documentation of results required.
Any deviation from methods noted? If so, explain		\boxtimes		None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175394)

SDG Narrative	Spike recoveries
	Duplicate results
□ Data Package Summary Forms □ Data Package Summary F	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?							
Laboratory Report	Comments						
480-175394	Υ	No					

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment						
480-175394	Υ	Υ	None			

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	(6) spike re	coveries, (7,) replicate a	nalyses, (8)	laboratory of	controls, (9)	and sample	data	
SDG	1	2	3	4	5	6	7	8	9
480-175394					\boxtimes			\boxtimes	\square
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.									

Were the data generated using established and agreed upon analytical protocols?							
Laboratory Report Protocols (Y/N) Exception Comment							
480-175394	Υ	No					

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?						
Laboratory Report Confirmation (Y/N) Exception Comment						
480-175394	Υ	No				

Were correct data qualifiers used and are they consistent with the most current guidance?					
Laboratory Report Qualifiers (Y/N) Comment					
480-175394	Υ	The laboratory generally applied appropriate qualifiers.			

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?					
Laboratory Report QC Exceedances Documented (Y/N)		Comment			
480-175394	Υ	Data qualifications were applied as described below			

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175394 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175394—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received coolers with samples on 9/17/2020 @ 15:15 PM (designated as SDG-#480-175394). The temperature of the cooler(s) at receipt were 3.0 and 3.2°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 which had a sample volume different from the standard procedure for preparation (ultrasonic extraction). This had an impact to reporting limits (RLs).

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, #-2, and #-3 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8260C—Sample #-3 was analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-1, #-2, and #-3 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and also forced surrogate recoveries below their calibration range. RemVer set a "D" flag for all VOCs in these samples.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8260C—Batch 550866 CCV recovery was beyond control limits (<LCL or >UCL) for 4-Nitrophenol in all samples but was not detected. RemVer flagged the results in all samples as UJ, as appropriate.

Blank Evaluation

SDG #480-175394 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with the following exception(s):

Method 8260—analyte Methylene Chloride was detected in the MB (Batch #550876 / 551207) above the RDL and was flagged as a "B J" result in sample's with detections as a method blank detection. While it appears to only impact Sample #-3, sample non-detections were flagged as "UJ B."

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175394 with the following exception(s):

 Method 8260—Batch 551207 spike recover for Methylene Chloride was beyond the upper control limit (>UCL) with high bias due to laboratory contamination. RemVer set either a UJ+ or J+ flag, as appropriate in all samples.

RemVer

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria, except for:

- Method 8270D: Samples #-1 and -3 required dilution due to physical characteristics, which
 not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery
 analysis. RemVer flagged the results as UJ or J as appropriate.
- Method 8270D: Samples #-1 and -2 required dilution due to target analyte abundance impacting RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175394. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175394

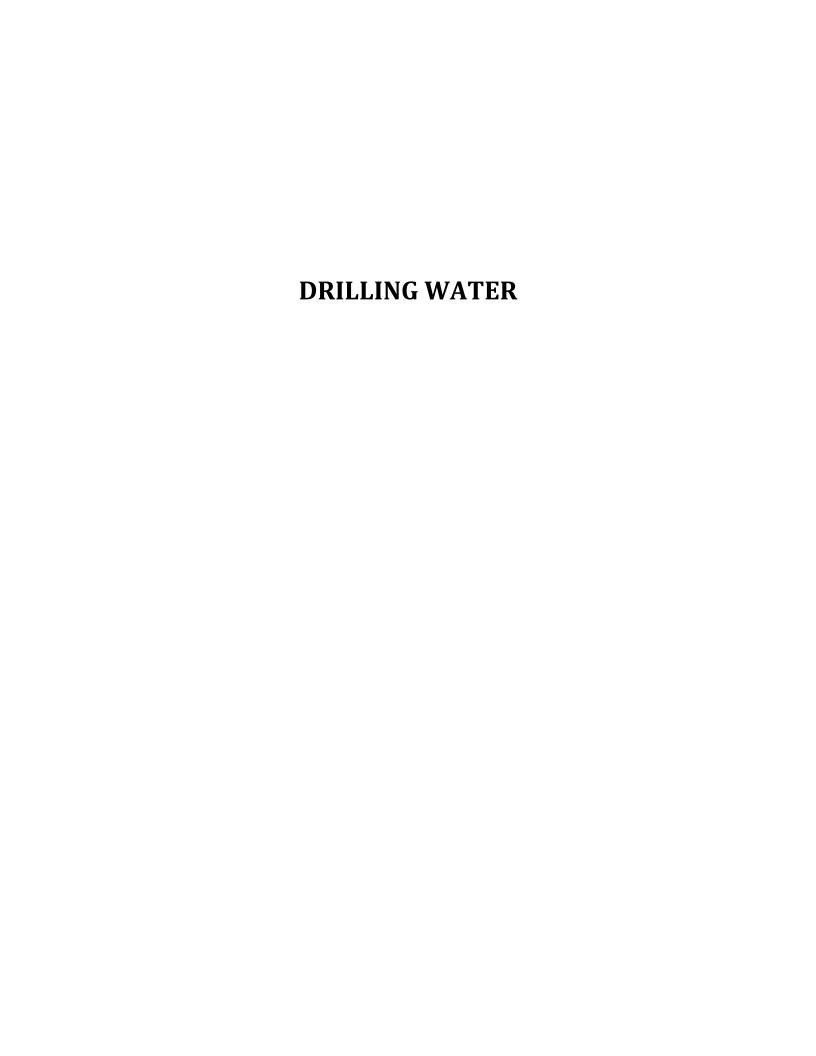
BLANKS	>RL? Compounds		Notes
VOC (8260)	_	_	No Comment
All Samples	X	Methylene Chloride	Flag BJ or UJ B
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
All	_	_	Х	Methylene Chloride	Flag UJ+ / J+
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	Х	X	_	Various Surrogates	Flag UJ or J
_	_	_	_	_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
SVOC (8270)	_		1		1	None

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes			
None	None	N/A —		As listed	None			
None	None	N/A	_	_	_			
LAB DUPLICATES								
All Methods	Batch	N/A	_	As listed	No Comment			
Reasonable Confidence Achieved								
Abbreviations: RL = Reporting Limit								


DQA Non-Conformance Summary Worksheet for SDG #480-175394

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD T		ery % RPD † High or Low Bias ‡		Comments	
	Any	Analyte Non-detect				Flag U			
	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U			
	Any	Calibration (E)	Calibration (E) >Range, Flag if >RL		Flag JE				
All	4-Nitrophenol	CCV	<lcl <br="">>UCL</lcl>	_	Hi/Lo	Flag UJ or J			
	VOC & SVOC	Dilution	_			Flag D			
	Methylene Chloride	LCS	>UCL	_	HI	Flag UJ+ or J+			
	Methylene Chloride	Blank	_	_	_	Flag BJ or UJ B			
	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J			
#1	VOVs & SVOCs	Sample Volume		Flag UJ or J					

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Quality Assessment Data Usability Summary Report

			RemVēr Project #2020GE39
			Client Project # <u>0901816-02-840</u>
Site:	31 Tonawanda St., Off-site Buffalo, NY	Site #:	C915299A
Client:	NYSDEC via GES, Inc.	Site Owner:	-N/A-
Sample [Delivery Groups (SDGs) See Tab	ole #1	
Sample	☑ Drinking water ☑ Groundwa		ırface water
Matrix:	│ ⊠ Soil ☐ Sediment	∐ Aiı	ſ
wattix.	☐ Biota (tissue, type:)	☐ Ot	her:

Introduction

Groundwater & Environmental Services (GES) contracted RemVer to perform a data quality assessment (DQA) on analytical laboratory data of groundwater samples. Eurofins/Test America (E/TA) reported the data in separate Sample Delivery Groups (SDGs, see Table 1). Table 2 provides a cross-list of the samples associated with each SDG.

A DQA is an evaluation of the performance of analytical procedures and quality of the resulting data. Following the requirements of the New York State Department of Environmental Conservation (NYSDEC) Data Usability Summary Report (DUSR) guidelines for an Analytical Services Protocol (ASP) Category B Data Deliverable, RemVer prepared a separate DQA/DUSR sub-report for each SDG, evaluating the performance of the analytical procedures and the quality of the resulting data. Each sub-report includes a narrative discussion of qualified sample, a DQA Detail Worksheet, and a Non-Conformance Summary Worksheet describing the final reported qualification flags applied to the data during the DQA. Additionally, one validated EXCEL electronic data deliverable (EDD) is included with this deliverable for each SDG discussed herein.

Intended Use of Data Under Review

NYSDEC contracted GES to perform an off-site monitoring event at the referenced site. The monitoring event's (September 2020) purpose was to collect soil. surface water. and drinking water data regarding two classes of analytes: volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).

Significant Data Usability Issues

RemVer rejected no results and the data are acceptable for use. Certain results may have flagged analytes indicating non-detection or quality issues arising from sample handling, laboratory accuracy, or precision issues. Please refer to the individual SDG report and the respective Data Usability Narrative section of the DUSR sub-report for further detail.

Reported Methods	
 Method 1311 TCLP Method 1312 SPLP Method 6010A, B & C / 6020 Trace Metals Method 7000 Metals Method 7196 Hexavalent Chromium (other:) Method 7470A or 7471 Mercury Method 8021 Volatile Organic Compounds (VOCs) GC Method 8081B or ☐ 608 Pesticides Method 8082 or ☐ 608 PCBs Method 8151 Chlorinated Herbicides Method 8260C VOCs GC/MS Method 8270D Semi-VOCs (sVOCs) GC/MS &/or SIM-ID Method 9010/9012/9014 Cyanides () 	Method TO-13A PAHs (air) Method TO-14A / -15 VOCs (air, summa) () Method TO-17 VOCs (air, sorbent) Method 537 PFCs via SPE & LC/MS-MS Volatile Petroleum Hydrocarbons (VPH) Method Extractable Petroleum Hydrocarbons (EPH) Other Methods: Method 5030 Purge & Trap Method 5030A_H Purge & Trap, closed, Hi Method 5030A_L Purge & Trap, closed, Lo Method 3550C Ultrasonic Extraction Method Percent Moisture
Quality Control Requirements Sum ☐ Duplicate ☐ Matrix Spike [MS] / Matrix Spike Duplicate [MSD] ☐ Trip Blanks (as appropriate) ☐ Equipment, Method, &/or Rinsate Blank	mary ☐ Other Field QC: Field notes regarding sampling ☐ Special QAPP Requirements:

Table 1. Sample Data Group (SDG) List

CDC 400 #	# Commiss	# Dlamks	#Duna Cample Data		Metl	nods	Matrice
SDG 480-#	# Samples	# Blanks	# Dups	Sample Date	VOCs	SVOCs	Matrix
175104	4	_	_	09/14/2020	Х	Х	Soil & Surface Water
175253	3	_	_	09/15-16/2020	Х	Х	Soil
175318	1			09/17/2020	X		Drinking Water
175394	3	_	_	09/17/2020	Χ	Χ	Soil

Table 2. Sample List

Count	SDG480-#	Sample #	Sample Name	Sample Date	Received
1		#–1	RI-MW-5-R-A	09/14/20 14:00	09/14/20 15:50
2	175104	#–2	RI-MW-5-R-B	09/14/20 14:20	09/14/20 15:50
3	173104	#–3	RI-MW-3	09/14/20 13:00	09/14/20 15:50
4		#–4	31-SW-1	09/14/20 12:05	09/14/20 15:50
5		#–1	1675-MW-1	09/15/20 12:25	09/16/20 17:00
6	175253	#–2	1660-SB-1	09/16/20 13:00	09/16/20 17:00
7		#–3	1660-MW-8	09/16/20 14:45	09/16/20 17:00
8	175318	#–1	DW-1	09/17/20 08:30	09/17/20 16:30
9		#–1	SB-100	09/17/20 09:35	09/17/20 15:15
10	175394	#–2	SB-103	09/17/20 11:15	09/17/20 15:15
11		#–3	SB-106	09/17/20 13:00	09/17/20 15:15

NOTE: EB = Equipment Blank

Dup = Duplicate

RemVer

References

- NYSDEC, 2010, Technical Guidance for Site Investigation and Remediation, "DER-10," Division of Environmental Remediation: Albany, NY, May, 232p
- NYSDEC, 2010, Guidance for Data Deliverables and the Development of Data Usability Summary Reports. Appendix 2B IN Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation: Albany, NY, May, 232p
- USEPA, 2008, Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-48, USEPA-540-R-08-01, Office of Superfund Remediation and Technology Innovation: Washington, DC, June, 225p
- USEPA, 2010, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-51, USEPA-540-R-10-011, Office of Superfund Remediation and Technology Innovation: Washington, DC, January, 110p
- USEPA, 2012, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, http://www.epa.gov/epawaste/hazard/testmethods/ Online Revision: Current sw846/online/index.htm, accessed April 2012

Attachments

- 1. Qualifier Flags
- 2. Data Usability Reviewer Biography
- 3. DUSR Sub-Report for SDG #480-175104
- 4. DUSR Sub-Report for SDG #480-175253
- 5. DUSR Sub-Report for SDG #480-175318
- 6. DUSR Sub-Report for SDG #480-175394

NOTE: If Client requests, each DUSR Sub-Report includes validated EDD attached hereto (Excel File Name Format: SDG-# EquaNysdec-V.xls)

KATrat

Revised: 11/10/2020

Prepared by: Kurt A. Frantzen, PhD

November 10, 2020

GES PO #1113284-1100

Attachment 1. Qualifier Flags

Qualifier	Quality Implication						
0–9	Use with Co-eluting Congeners						
Α	Tentatively Identified Compound (TIC) suspected to be an aldol condensation product						
B EB	An analyte identified in method blank (B), aqueous equipment (EB), rinsate (RB), trip (TB), or bottle blanks (BB)						
TB BB	used to assess field contamination associated with soil or sediment samples mandates these qualifiers for only						
RB	soil and sediment sample results.						
BH/BL	Analyte detected in Blank at level >10X/5-10X that of the Sample						
D	Sample analysis from dilution of original sample						
E	Analyte concentration exceeds calibration range						
HT	Holding time violation						
J	Analyte positively identified at a numerical value that is the approximate concentration of the analyte in the sample						
J +	Sample likely to have a high bias						
J –	Sample likely to have a low bias						
	Analyte not detected above the sample quantitation limit; the associated quantitation limit is approximate and						
UJ	may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the						
	analyte in the sample						
N	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative						
	identification."						
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated						
	numerical value represents its approximate concentration.						
	Sample result rejected due to serious deficiency in ability to analyze sample and meet quality control criteria;						
R	the presence or absence of the analyte cannot be confirmed. This qualifier also may apply when more than						
	one sample result is generated for a target analyte (<i>i.e.</i> , dilutions or re-analyses), the most technically acceptable result is considered acceptable.						
	Use professional judgment based on data use. It usually has an "M" with it, which indicates that a manual						
	check should be made if the data that are qualified with the "P" are important to the data user. In addition, "PM"						
P	also means a decision is necessary from the Project Manager (or a delegate) concerning the need for further						
	review of the data (see below).						
	A manual review of the raw data is recommended to determine if the defect affects data use, as in "R" above.						
	This review should include consideration of potential affects that could result from using the "P" qualified data.						
	For example, in the case of holding-time exceedance, the Project Manager or delegate can decide to use the						
PM data with no qualification when analytes of interest are known not to be adversely affected by ho							
	exceedances. Another example is the case where soil sample duplicate analyses for metals exceed the						
	precision criteria; because this is likely due to sample non-homogeneity rather than contract laboratory error,						
	then the manager or delegate must decide how to use the data.						
U	Analyte analyzed for, but not detected above the sample's reported quantitation limit						

Attachment 2. Data Usability Reviewer: Kurt A. Frantzen, PhD

Experience

2013-Present d/b/a RemVēr Owner **AECC** Senior EHS Consultant 2014-2019 2011-2012 RemVer. Inc. President 2006-2011 Kleinfelder Senior Principal Scientist 2005 Kleinfelder Principal Scientist, Part-Time/On Call 2004-2006 d/b/a Environmental Risk Group Owner 2004-2006 RemVer, Inc., Larchmont, NY Founder, President VHB. Inc. 1999-2004 **ERM Director & Associate** 1997-1998 GEI Consultants, Inc. Senior Project Manager 1992-1997 Ecology and Environment, Inc. **Technical Chief** 1991-1992 EA Engineering, Science, & Technology, Inc. Project Manager III 1990-1991 Ecology and Environment, Inc. Technical Group Manager 1986-1990 Ecology and Environment, Inc. Senior Environmental Scientist

Education

Am Cancer Soc. Post-Doctoral Fellow, U Washington 1985-1986

PhD—Life Sci. / Biochem, NU—Lincoln 1985 MS—Plant Pathology, Kansas State Univ. 1980 BS—Biology, NU—Omaha 1978

Other

- CERCLA & RCRA experience, as well as DOD (Air Force & Army) & DOE (INEL)
- NE Regional Experience—NY BCP; Mass MCP; & various sites in CT, RI & NH
- National Experience: NE, SE, Gulf & West Coast, Mid-west, Inter-mountain, California, Alaska
- International: Germany, Israel, Kuwait, Australia
- Selected Publications
 - Using Risk Appraisals to Manage Environmentally Impaired Properties, 2000, VHB Site Works, Report 108
 - o Risk-Based Analysis for Environmental Managers, 2001, CRC/Lewis
 - o Chapter 7 Risk Assessment, Managing Hazardous Materials, 2002 & 2009, IHMM
 - o Chapter 22 Cleanup Goals, Brownfields Law & Practice, 2004-Present, Lexis/Nexis
 - Use of Risk Assessment in Risk Management of Contaminated Sites, 2008, ITRC
- 60 Conference Papers & Invited Professional Presentations
 - o 1999-2019, Visiting Lecturer, Brownfields Program, Harvard Graduate School of Design
 - o 2010-2013, Invited Lecturer, Pace University Law School
 - 2014-2015, Adjunct Professor, Pace University Law School

Attachment 3. Data Usability Sub-Report for SDG #480-175104

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes	\boxtimes			
Field meteorological data				No review required under QAPP
Associated sampling location and plan included		\boxtimes		See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs		\boxtimes		
Any corrective action (CA) reports		\boxtimes		If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables		\boxtimes		None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175104)

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	□ Duplicate results
□ Data Package Summary Forms □ Data Package Summary F	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	□ Chromatograms
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?							
Laboratory Report	Laboratory Report Complete (Y/N) Comments						
480-175104	Υ	No					

Sample Preservation Requirements & Holding Times Met?							
Laboratory Report	Hold Times (Y/N)	Preservation (Y/N)	Exception Comment				
480-175104	Y N	Y N	None #-4 collected in unpreserved vial & analyzed beyond hold time limits				

	Do the QC data fall within the protocol required limits and specifications?								
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175104									
The r	The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.								

Were the data generated using established and agreed upon analytical protocols?						
Laboratory Report Protocols (Y/N) Exception Comment						
480-175104	480-175104 Y					

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?				
Laboratory Report	Confirmation (Y/N)	Exception Comment		
480-175104	Υ	No		

Were correct data qualifiers used and are they consistent with the most current guidance?				
Laboratory Report	Qualifiers (Y/N)	Comment		
480-175104	Υ	The laboratory generally applied appropriate qualifiers.		

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?			
Laboratory Report QC Exceedances Documented (Y/N) Comment			
480-175104	Υ	Data qualifications were applied as described below	

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 14, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175104 (dated 25-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175104—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/14/2020 @ 15:50 PM (designated as SDG-#480-175104). The temperature of the cooler(s) at receipt were 3.1°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with one exception:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH 7.0 s.u.) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 was decanted (removal of soil-water) prior to preparation (ultrasonic extraction). RemVer set no flag.

RemVer

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than:

• The surface water sample (#-4) was collected in an unpreserved vial (sample pH was 7.0) and analyzed using methods for a preserved sample. The analysis was beyond the 7-day hold time limit for an unpreserved sample but within the 14-day limit for a preserved sample. Therefore, RemVer set a "H" flag for all VOCs in this sample, and these results received flagging as estimates (either UJ or J, as appropriate).

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—If VOC analyte concentrations were below 200 μg/kg the laboratory set a "vs" flag because the result may be biased low due to sample collection not following Method 5035A-L low-level specifications. Therefore, RemVer set a UJ- or J- flag, as appropriate.
- Method 8260C—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8270D—Sample #-1 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Sample #-2 was diluted to bring the target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8270D—Batch 549994 recovery was beyond control limits (in both straight and diluted runs) for 2,4,6-Tribromophenol (surrogate) but impacted only Sample #-1. RemVer flagged the SVOC results in as UJ or J, as appropriate.

Blank Evaluation

SDG #480-175104 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with no exception(s).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175104.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Sample #-1 required a dilution due to physical characteristics, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175104. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175104

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
SVOC (8270)	_	_	No Comment

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	_	_	_	All Others	No Comment
	Х	_	Χ	2,4,6-Tribromophenol	Flag UJ or J
#-1	X	_	_	2-Fluorophenol, Nitrobenzene-d5, & Phenol-d5	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	Not Run, See LCS
SVOC (8270)	_	_	-			Not Run, See LCS

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes	
None	None	_	_	<u> </u>	None	
None	None	_	_	_	None	
LAB DUPLICATES						
All Methods	Batch	N/A	_	As listed	No Comment	
Reasonable Confidence Achieved						
Abbreviations: RL = Reporting Limit						

DQA Non-Conformance Summary Worksheet for SDG #480-175104

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Analyte Non-	detect		Flag U
	Any	MDL>result <rdl< td=""><td>ı</td><td>ı</td><td></td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	ı	ı		Validator Flag UJ Interpreted Flag U
All	Any	Calibration (E)	>R	ange, Flag i	f>RL	Flag JE
	Any VOC	Lab vs-flag due to non-Low-Level Sampling	I	-	Lo	Flag UJ– or J–
#-4	All	Holding & Preservation	Out of compliance		Flag H UJ or H J	
#-1 & -2	VOCs	Dilution	ı	1	_	Flag D
#-1 & -2	SVOCs	Dilution		_	_	Flag D
#-1	SVOC	CCV	<lcl <br="">>UCL</lcl>		_	Flag UJ or J
#-1	SVOC	Surrogate / Dilution	<lcl <br="">>UCL</lcl>	>	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 4. Data Usability Sub-Report for SDG #480-175253

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables		\boxtimes		None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-1752)

 ☐ Contract Lab Sample Information Sheets ☐ Data Package Summary Forms ☐ Chain-of-Custody (COC) Forms ☐ Test Results (no tentatively identified compounds [TICs]) ☐ Calibration standards 	 Spike recoveries Duplicate results Confirmation (lab check/QC) samples Internal standard area & retention time summary Chromatograms Raw data files
	1 <u>—</u>

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?							
Laboratory Report Complete (Y/N) Comments							
480-175253	Υ	No					

Sample Preservation Requirements & Holding Times Met?							
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment							
480-175253	Υ	Υ	None				

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175253									\square
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.									

Were the data generated using established and agreed upon analytical protocols?								
Laboratory Report	Laboratory Report Protocols (Y/N) Exception Comment							
480-175253	Υ	No						

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?							
Laboratory Report Confirmation (Y/N) Exception Comment							
480-175253	Υ	No					

Were correct data qualifiers used and are they consistent with the most current guidance?						
Laboratory Report Qualifiers (Y/N) Comment						
480-175253	Υ	The laboratory generally applied appropriate qualifiers.				

1	Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report	QC Exceedances Documented (Y/N)	Comment			
480-175253					

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 15 – September 16, 2016. RemVer no issues in the provided documentation.

<u>Laboratory Report Inspection</u>

E/TA produced an SDG report #480-175253 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175253—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/16/2020 @ 17:00 PM (designated as SDG-#480-175253). The temperature of the cooler(s) at receipt were 4.7°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis.

<u>Analysis</u>

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the RL, then then a "UJ" flag was set to indicate a qualified non-detection.
- If an SVOC analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, -2, and -3 were analyzed using medium level soil analysis and diluted due to the abundance of target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-2 and #-3 were diluted due to color and appearance and to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and forced surrogate recoveries below their calibration range. RemVer set a "D" flag.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes.

Blank Evaluation

SDG #480-175253 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

<u>Laboratory Control Samples (LCS)</u>

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175253.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria.

 Method 8270D: Samples #-2 and -3 required dilution due to physical characteristics and target analyte abundance, which not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175253 were within normal control limits.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175253

BLANKS	>RL?	Compounds	Notes	
VOC (8260)	_	_	No Comment	
SVOC (8270)	_	_	No Comment	

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	<u> </u>	No Comment
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	All	No Comment
SVOC (8270)	_	_	_	All	No Comment
#-2 & #-3	Χ	X	1	Various Surrogates	Flag UJ or J

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
SVOC (8270)	_	_	_	#-1	_	No Comment
_	_		1	1	1	

FIELD DUPLICATES RPDs	QC Source	Soil Water RPD > 50% RPD > 20%		Compounds	Notes			
None	None	N/A	_	As listed	None			
None	None	N/A	_	_	_			
LAB DUPLICATES								
All Methods	Batch	N/A	_	As listed	No Comment			
Reasonable Confidence Achieved								
Abbreviations: RL = Reporting Limit								

DQA Non-Conformance Summary Worksheet for SDG #480-175253

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any	Analyte Non-detect				Flag U
All	Any	MDL>result <rdl< td=""><td>_</td><td colspan="2" rowspan="2"></td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_			Validator Flag UJ Interpreted Flag U
	SVOCs	Calibration (E)	>R			Flag JE
	VOCs	Dilution	_		Flag D	
#-2 & -3	SVOCs	Dilution	_		Flag D	
#-2 & 3	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Attachment 5. Data Usability Sub-Report for SDG #480-175318

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes	\boxtimes			
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports				If so, CA documentation of results required.
Any deviation from methods noted? If so, explain				None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

<u> Lab Report Contents (</u>	<u>(Test America SDG Reports: #480-175318)</u>

SDG Narrative	Spike recoveries
Contract Lab Sample Information Sheets	□ Duplicate results
☑ Data Package Summary Forms	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
☑ Calibration standards	Raw data files
	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?					
Laboratory Report Complete (Y/N) Comments					
480-175318	Υ	No			

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report	Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment					
480-175318	Υ	Υ	None			

Do the QC data fall within the protocol required limits and specifications?							
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate						
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data						
SDG	SDG 1 2 3 4 5 6 7 8 9						
480-175318							
The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.							

Were the data generated using established and agreed upon analytical protocols?						
Laboratory Report Protocols (Y/N) Exception Comment						
480-175318	Υ	No				

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?					
Laboratory Report Confirmation (Y/N) Exception Comment					
480-175318	Υ	No			

Were correct data qualifiers used and are they consistent with the most current guidance?						
Laboratory Report	Laboratory Report Qualifiers (Y/N) Comment					
480-175318 Y The laboratory generally applied appropriate qualifiers.						

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report QC Exceedances Documented (Y/N) Comment				
480-175318	Y Data qualifications were applied as described below			

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175318 (dated 29-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175318—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received a cooler with samples on 9/17/2020 @ 16:30 PM (designated as SDG-#480-175318). The temperature of the cooler(s) at receipt were 3.9°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for VOCs.

Analysis

The laboratory reported no analytical issues associated with the analytical runs.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted above. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

Method 8260C—Batch 550761 CCV recovery was above the upper control limit (>UCL) for Cyclohexane in all samples but was not detected. RemVer flagged the results in all samples as UJ+ or J+, as appropriate.

Blank Evaluation

SDG #480-175318 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits).

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175318.

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria. Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

The matrix spike/matrix spike duplicate (MS/MSD) runs for all analyses met the QA criteria in SDG 480-175318.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

DQA Detail Worksheet for SDG #480-175318

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
_	_	_	_

LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
_	_	_	_	_	_

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	-	_	No Comment
_	_	_		_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
_	_	_	1		1	

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes			
None	None	N/A	_	As listed	None			
None	None	N/A	_	_	_			
LAB DUPLICATES								
All Methods	All Methods Batch		_	As listed	No Comment			
Reasonable Confidence Achieved								
Abbreviations: RL = Reporting Limit								

DQA Non-Conformance Summary Worksheet for SDG #480-175318

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any		Flag U			
All	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	Cyclohexane	CCV	>UCL	_	Hi	Flag UJ+ or J+
	_	_	_	_		_
_	_	_	_	_	_	_

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

RemVēr

Attachment 6. Data Usability Sub-Report for SDG #480-175394

Detailed Quality Review

Field Notes Review

	Υ	N	NA	COMMENTS
Sampling notes				
Field meteorological data				No review required under QAPP
Associated sampling location and plan included				See RAP/QAPP
Associated drilling logs available, reviewed				No review required under QAPP
Identification of QC samples in notes				Sample IDs
Sampling instrument decontamination records				No review required under QAPP
Sampling instrument calibration logs				No review required under QAPP
Chain of custody included				With analytical report
Notes include communication logs				
Any corrective action (CA) reports		\boxtimes		If so, CA documentation of results required.
Any deviation from methods noted? If so, explain		\boxtimes		None
Any electronic data deliverables				None
Sampling Report (by Field Team Leader)	\boxtimes			Field Notes

Lab Report Contents (Test America SDG Reports: #480-175394)

SDG Narrative	Spike recoveries
	Duplicate results
□ Data Package Summary Forms □ Data Package Summary F	Confirmation (lab check/QC) samples
Chain-of-Custody (COC) Forms	
☐ Test Results (no tentatively identified compounds [TICs])	
□ Calibration standards	Raw data files
Surrogate recoveries	Other specific information
⊠ Blank results	

Is the data package complete as defined under the requirements for the NYSDEC ASP Category B?							
Laboratory Report	Complete (Y/N)	Comments					
480-175394	Υ	No					

Sample Preservation Requirements & Holding Times Met?						
Laboratory Report Hold Times (Y/N) Preservation (Y/N) Exception Comment						
480-175394	Υ	Υ	None			

Do the QC data fall within the protocol required limits and specifications?									
(1) blanks, (2)	(1) blanks, (2) instrument tunings, (3) calibration standards, (4) calibration verifications, (5) surrogate								
recoveries/ISD,	recoveries/ISD, (6) spike recoveries, (7) replicate analyses, (8) laboratory controls, (9) and sample data								
SDG	1	2	3	4	5	6	7	8	9
480-175394					\boxtimes			\boxtimes	
The r	The narrative section, below, discusses these deficiencies in detail, see Attachment 1 as well.								

Were the data generated using established and agreed upon analytical protocols?							
Laboratory Report	Laboratory Report Protocols (Y/N) Exception Comment						
480-175394	Υ	No					

Do the raw data confirm the results provided in the data summary sheets and quality control verification forms?							
Laboratory Report	Laboratory Report Confirmation (Y/N)						
480-175394	Υ	No					

Were correct data qualifiers used and are they consistent with the most current guidance?					
Laboratory Report Qualifiers (Y/N) Comment					
480-175394	Υ	The laboratory generally applied appropriate qualifiers.			

Were quality control (QC) exceedances specifically noted in this DUSR and the corresponding QC summary sheets from the data packages referenced?				
Laboratory Report QC Exceedances Documented (Y/N) Comment				
480-175394	Data qualifications were applied as described below			

Data Quality and Usability Narrative

Field Notes Inspection

The samples came from a collection event September 17, 2020. RemVer no issues in the provided documentation.

Laboratory Report Inspection

E/TA produced an SDG report #480-175394 (dated 30-Sep-20). The SDG report had the required data and information.

Chain of Custody (COC) Evaluation

NYSDEC/GES produced a COC for the referenced fieldwork: SDG: #480-175394—single, one-page COC. The laboratory noted no issues at the time of acceptance.

Sample Preservation & Holding Time Evaluation

Laboratory received coolers with samples on 9/17/2020 @ 15:15 PM (designated as SDG-#480-175394). The temperature of the cooler(s) at receipt were 3.0 and 3.2°C. The samples arrived in good condition, properly preserved, and where necessary under ice. Holding times and preservation requirements were met with no exception.

Sample Preparation

The laboratory reported no issues associated with sample preparation for either VOC or SVOC analysis, other than Sample #-1 which had a sample volume different from the standard procedure for preparation (ultrasonic extraction). This had an impact to reporting limits (RLs).

Analysis

The laboratory reported no analytical issues associated with the analytical runs other than what is discussed below.

Detection Limits

Analytical detection limits (DLs) were acceptable for all analytes causing no QA issues other than those noted below:

RemVer

- If an analyte was below the method detection limit (MDL), then a "U" flag was set to indicate non-detection (undetected).
- If an analyte was above the MDL but below the reporting limit (RL), then then a "UJ" flag was set to indicate a qualified non-detection.
- If an analyte was above the RL and beyond the upper limit for an analyte the laboratory set an "E" flag. RemVer set a "JE" flag to indicate an estimated detection.
- Method 8260C—Samples #-1, #-2, and #-3 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in these samples.
- Method 8260C—Sample #-3 was analyzed using medium level soil analysis and diluted due to the abundance of non-target analytes. The lab reported elevated limits (RLs). RemVer set a "D" flag for all VOCs in the sample.
- Method 8270D—Samples #-1, #-2, and #-3 was diluted due to color, appearance, and viscosity. The lab reported elevated limits (RLs). RemVer set a "D" flag.
- Method 8270D—Samples #-1 and #-2 were diluted to bring target analyte concentrations within calibration range. The lab reported elevated limits (RLs) and also forced surrogate recoveries below their calibration range. RemVer set a "D" flag for all VOCs in these samples.

Calibration Standards and Continuing Calibration Verification (CCV)

Calibration standards (external or internal) were acceptable for all analytes other than that noted below. CCVs were acceptable in the SDG for all methods and analytes, with the following exceptions:

 Method 8260C—Batch 550866 CCV recovery was beyond control limits (<LCL or >UCL) for 4-Nitrophenol in all samples but was not detected. RemVer flagged the results in all samples as UJ, as appropriate.

Blank Evaluation

SDG #480-175394 had Method Blanks (MBs) for each method. The MBs were acceptable (no analytes greater than the reported detection limits) with the following exception(s):

Method 8260—analyte Methylene Chloride was detected in the MB (Batch #550876 / 551207) above the RDL and was flagged as a "B J" result in sample's with detections as a method blank detection. While it appears to only impact Sample #-3, sample non-detections were flagged as "UJ B."

Laboratory Control Samples (LCS)

The various method LCS' (LCS & LCS duplicates [LCSD]) were within the acceptable control ranges and relative percent differences (RPDs) for their particular analyses in SDG 480-175394 with the following exception(s):

 Method 8260—Batch 551207 spike recover for Methylene Chloride was beyond the upper control limit (>UCL) with high bias due to laboratory contamination. RemVer set either a UJ+ or J+ flag, as appropriate in all samples.

RemVer

Surrogates and Isotope Dilution

Surrogates added to a sample allow testing of preparatory and instrument behavior resulting in recoveries within appropriate method ranges for the analytes. Surrogates behaved in this SDG within acceptable performance criteria, except for:

- Method 8270D: Samples #-1 and -3 required dilution due to physical characteristics, which
 not only impacted RLs but surrogate recoveries as well, resulting in inaccurate recovery
 analysis. RemVer flagged the results as UJ or J as appropriate.
- Method 8270D: Samples #-1 and -2 required dilution due to target analyte abundance impacting RLs but surrogate recoveries as well, resulting in inaccurate recovery analysis. RemVer flagged the results as UJ or J as appropriate.

Isotope Dilution Analyte (IDA) was not performed for any analysis reported in this SDG.

Site-Specific Matrix Spikes and Matrix Spike Duplicates

There were no matrix spike/matrix spike duplicate (MS/MSD) runs reported for the analyses in SDG 480-175394. QA/QC decisions were based upon the LCS results.

Duplicates

The analytical Method Duplicates met their RPD performance criteria.

GES did not submit a field replicate sample for this SDG.

Tentatively Identified Compounds (TICs)

This SDG had no analysis of TICs.

Sample Result and Usability Evaluation

Due to sample issues or laboratory performance certain results were qualified; however, the data are usable. No data received an R (rejected) flag.

RemVēr

DQA Detail Worksheet for SDG #480-175394

BLANKS	>RL?	Compounds	Notes
VOC (8260)	_	_	No Comment
All Samples	X	Methylene Chloride	Flag BJ or UJ B
SVOC (8270)	_	_	No Comment

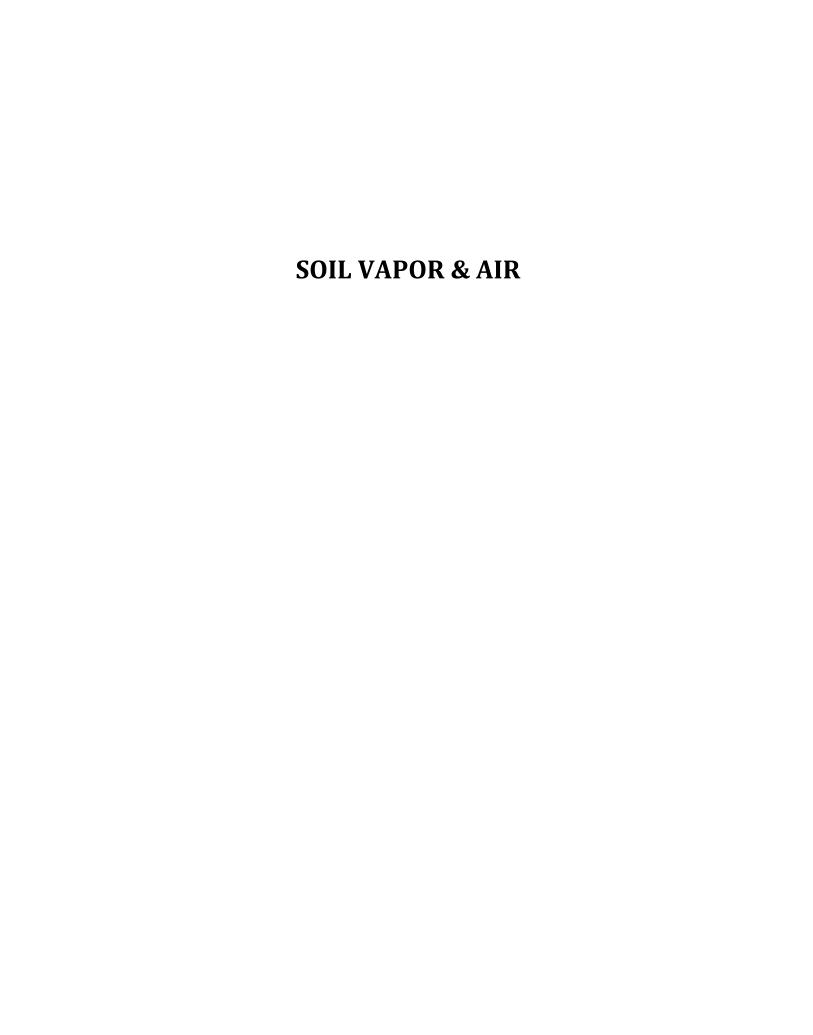
LCS	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
All	_	_	Х	Methylene Chloride	Flag UJ+ / J+
SVOC (8270)	_	_	_	_	No Comment

SURROGATE/IDA	SV <10%	> 10% & < LCL	>UCL	Compound(s)	Notes
VOC (8260)	_	_	_	_	No Comment
SVOC (8270)	Х	X	_	Various Surrogates	Flag UJ or J
_	_	_	_	_	_

MS/MSDs	SV <10%	Low Bias > 10% & < LCL	High Bias >UCL	QC Source	RPDs	Notes
VOC (8260)	_	_	_	_	_	None
SVOC (8270)	_		1		1	None

FIELD DUPLICATES RPDs	QC Source	Soil RPD > 50%	Water RPD > 20%	Compounds	Notes	
None	None	N/A —		As listed	None	
None	None	N/A	_	_	_	
LAB DUPLICATES						
All Methods	Batch	N/A	_	As listed	No Comment	
Reasonable Confidence Achieved						
Abbreviations: RL = Reporting Limit						

RemVēr


DQA Non-Conformance Summary Worksheet for SDG #480-175394

Only Flagged Results Shown Below

Sample Number(s)	Compound(s)	QC Non- Conformance	% Recovery	% RPD †	High or Low Bias ‡	Comments
	Any	Analyte Non-detect			Flag U	
	Any	MDL>result <rdl< td=""><td>_</td><td>_</td><td>_</td><td>Validator Flag UJ Interpreted Flag U</td></rdl<>	_	_	_	Validator Flag UJ Interpreted Flag U
	Any	Calibration (E)	Calibration (E) >Range, Flag if >RL			Flag JE
All	4-Nitrophenol	CCV	<lcl <br="">>UCL</lcl>	_	Hi/Lo	Flag UJ or J
	VOC & SVOC	Dilution —		Flag D		
	Methylene Chloride	LCS	>UCL	_	HI	Flag UJ+ or J+
	Methylene Chloride	Blank	_	_	_	Flag BJ or UJ B
	SVOCs	Surrogates	<lcl< td=""><td>_</td><td>_</td><td>Flag UJ or J</td></lcl<>	_	_	Flag UJ or J
#1	VOVs & SVOCs	Sample Volume		RLs impacte	ed	Flag UJ or J

Notes: † RPD—Relative Percent Difference

[‡] Bias High—Reported result may be lower, Reporting Limit (RL) is acceptable as reported. Bias Low—Reported results may be higher, RL may be higher than reported.

Project: NYSDEC 31 Tonawanda St- Off- Site #C915332,

31 Tonawanda, New York

Laboratory: Eurofins Environment Testing TestAmerica, Knoxville, TN

Sample Delivery Group: 140-18650-1

Fraction: Organic

Matrix: Indoor/ Outdoor Air

Report Date: 7/19/2020

This data usability summary report is based upon a review of analytical data generated for indoor and outdoor air samples. One field duplicate sample was submitted with the samples for this Sample Delivery Group. The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds. The sample analyses were performed in accordance with the procedures outlined in EPA Method TO-15 "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", Second Edition, EPA/625/R-96/010b, January 1999.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the USEPA Region II "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15", SOP No. HW-31, revision 6, September 2016. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Sample Integrity/Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
 - Surrogate Compound Recoveries
 - Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
- X Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Canister Certification
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Shawne M. Rodgers President

July 19, 2020

1.0 DATA COMPLETENESS

The NYSDEC ASP Category B deliverable data were provided by the laboratory.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The label for sample RM2-A did not present the identification. The laboratory logged in the sample using the identification on the chain of custody.

The samples were received in acceptable condition.

3.0 SAMPLE INTEGRITY/HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

All criteria were met. No qualifiers were applied.

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

No compounds were detected in the associated laboratory method blank.

Trip blanks and field blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

This parameter is not applicable to the analyses completed.

8.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

This parameter is not applicable to the analyses completed.

9.0 FIELD DUPLICATE RESULTS

Duplicate samples RM10-SS and DUP-032020 were submitted to the laboratory to evaluate sampling and analytical precision for those organic compounds determined to be present. Results for these duplicate samples are presented in Table 2. Volatile organic compounds 1, 1, 1-trichloroethane, 1, 1-dichloroethane, 1, 1-dichloroethane, dichlorodifluoromethane, and ethanol results for the duplicate samples exceeded a relative percent difference criterion of 50 %. Based on professional judgement, use of the higher concentrations reported for the compounds are recommended.

10.0 LABORATORY CONTROL SAMPLE RESULTS

All criteria were met. No qualifiers were applied.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

12.0 CANISTER CERTIFICATION

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

The following samples were analyzed at dilutions for volatile organic compounds. The dilution analyses were performed because of suspected

high concentrations of target compounds and/or interferences. RLs are elevated by the dilution factor have resulted for those compounds that were not detected. This should be noted when assessing the data.

Sample	Dilution Factor
RM10-SS	4.05
DUP-032020	3.08

The samples presented below were re-analyzed at dilutions for volatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
RM2-A	10.0	Ethanol
RM1-SS	10.0	Ethanol
RM10-SS	45.45	1,1,1-Trichloroethane, 1,1- Dichloroethane, 1,1-Dichloroethene,
		Dichlorodifluoromethane, Ethanol
LOB-1SS	10.0	1,1-Dichloroethene,
		Dichlorodifluoromethane, Ethanol
LOB-1A	10.0	Ethanol
RM10-A	10.0	Ethanol

METHODOLOGY REFERENCES

Analysis	Reference
Volatile Organic Compounds	Method TO-15, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", Second Edition, EPA/625/R-96/010b, January 1999

Table 1 Data Usability Summary Report NYSDEC 31 Tonawanda St- Off- Site #C915332 31 Tonawanda, New York Indoor/ Outdoor Air Sampling Test America Job ID 140-18650-1

Analyses Performed

Sample ID	Lab ID		Collection Date	Matrix	VOC	
RM2-A	140-18650	1	3/20/2020	Soil Vapor	Х	
RM1-SS	140-18650	2	3/20/2020	Soil Vapor	Χ	
RM10-SS	140-18650	3	3/20/2020	Soil Vapor	Χ	
DUP-032020	140-18650	4	3/20/2020	Soil Vapor	Χ	
LOB-1SS	140-18650	5	3/20/2020	Soil Vapor	Χ	
LOB-1A	140-18650	6	3/20/2020	Soil Vapor	Χ	
RM10-A	140-18650	7	3/20/2020	Soil Vapor	X	

Table 2 Field Duplicate Sample Results for Organic Analyses Soil Vapor Samples RM10-SS and DUP-032020

Compound	Sample Result (µg/m³)	Field Duplicate Result (µg/m³)	RPD	
1,1,1-Trichloroethane	24000	370	194	*
1,1,2-Trichloroethane	0.72	ND	NC	
1,1-Dichloroethane	580	95	144	*
1,1-Dichloroethene	290	51	140	*
1,2,4-Trichlorobenzene	2	ND	NC	
1,2-Dichloroethane	1.5	ND	NC	
1,3,5-Trimethylbenzene	0.9	ND	NC	
1,4-Dichlorobenzene	2.5	ND	NC	
2-Butanone (MEK)	6.1	ND	NC	
4-Methyl-2-pentanone (MIBK)	1.3	ND	NC	
Benzene	1.7	ND	NC	
Carbon tetrachloride	0.7	ND	NC	
Chloroethane	1.2	ND	NC	
Chloroform	2.6	ND	NC	
Chloromethane	1.6	ND	NC	
Cyclohexane	2.4	ND	NC	
Dichlorodifluoromethane	6900	1100	145	*
Ethylbenzene	8.5	ND	NC	
Ethanol	1000	370	92	*
Hexane	11	ND	NC	
Naphthalene	1.5	ND	NC	
Styrene	5.5	ND	NC	
Tetrachloroethene	2.3	ND	NC	
Toluene	4	ND	NC	
Trichloroethene	1.6	ND	NC	
Trichlorofluoromethane	6.4	ND	NC	
cis-1,2-Dichloroethene	0.61	ND	NC	
m&p-Xylene	26	ND	NC	
o-Xylene	10	ND	NC	
trans-1,2-Dichloroethene	3.9	ND	NC	
t-Butyl alcohol	3.3	ND	NC	

^{*} The field duplicate precision criterion was exceeded for this compound.

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM2-A

Date Collected: 03/20/20 16:10

Lab Sample ID: 140-18650-1

Matrix: Air

Date Collected: 03/20/20 16:10 Date Received: 03/23/20 09:45

Method: TO 15 LL - Volatile (Analyte	Result Qualifi	er RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.40	0.080	ppb v/v	-	03/25/20 16:10	
1,1,2,2-Tetrachloroethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,1,2-Trichloroethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,1,2-Trichlorotrifluoroethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,1-Dichloroethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,1-Dichloroethene	ND	0.040	ppb v/v		03/25/20 16:10	
1,2,4-Trichlorobenzene	ND	0.080	ppb v/v		03/25/20 16:10	
1,2,4-Trimethylbenzene	0.30	0.080	ppb v/v		03/25/20 16:10	
1,2-Dibromoethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,2-Dichlorobenzene	ND	0.080	ppb v/v		03/25/20 16:10	
1,2-Dichloroethane	0.10	0.080	ppb v/v		03/25/20 16:10	
1,2-Dichloropropane	ND	0.080	ppb v/v		03/25/20 16:10	
1,2-Dichlorotetrafluoroethane	ND	0.080	ppb v/v		03/25/20 16:10	
1,3,5-Trimethylbenzene	ND	0.080	ppb v/v		03/25/20 16:10	
1,3-Dichlorobenzene	ND	0.080	ppb v/v		03/25/20 16:10	
,,4-Dichlorobenzene	ND	0.080	ppb v/v		03/25/20 16:10	
I,4-Dioxane	ND	0.20	ppb v/v		03/25/20 16:10	
2,2,4-Trimethylpentane	ND	0.20	ppb v/v		03/25/20 16:10	
2-Butanone	1.0	0.32	ppb v/v		03/25/20 16:10	
-Methyl-2-pentanone (MIBK)	ND	0.20	ppb v/v		03/25/20 16:10	
Benzene	0.13	0.080	ppb v/v		03/25/20 16:10	
Benzyl chloride	ND	0.16	ppb v/v		03/25/20 16:10	
Bromodichloromethane	ND	0.080	ppb v/v		03/25/20 16:10	
Bromoform	ND	0.080	ppb v/v		03/25/20 16:10	
Bromomethane	ND	0.080	ppb v/v		03/25/20 16:10	
Carbon tetrachloride	0.081	0.032	ppb v/v		03/25/20 16:10	
Chlorobenzene	ND	0.080	ppb v/v		03/25/20 16:10	
Chloroethane	ND	0.080			03/25/20 16:10	
Chloroform	ND	0.080	ppb v/v ppb v/v		03/25/20 16:10	
	0.91	0.000	ppb v/v		03/25/20 16:10	
Chloromethane cis-1,2-Dichloroethene	ND		<mark></mark>			
,		0.040	ppb v/v		03/25/20 16:10	
is-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 16:10	
Cyclohexane	ND	0.20	ppb v/v		03/25/20 16:10	
Dibromochloromethane	ND	0.080	ppb v/v		03/25/20 16:10	
Dichlorodifluoromethane	0.76	0.080	ppb v/v		03/25/20 16:10	
thanol	- 380 - E -	2.0	ppb v/v		03/25/20 16:10	
Ethylbenzene	0.097	0.080	ppb v/v		03/25/20 16:10	
lexachlorobutadiene	ND	0.080	ppb v/v		03/25/20 16:10	
lexane	ND	0.20	ppb v/v		03/25/20 16:10	
Methyl tert-butyl ether	ND	0.16	ppb v/v		03/25/20 16:10	
Methylene Chloride	ND	0.40	ppb v/v		03/25/20 16:10	
n-Xylene & p-Xylene	0.41	0.080	ppb v/v		03/25/20 16:10	
Naphthalene	0.52	0.20	ppb v/v		03/25/20 16:10	
o-Xylene	0.20	0.080	ppb v/v		03/25/20 16:10	
Styrene	0.78	0.080	ppb v/v		03/25/20 16:10	
-Butyl alcohol	ND	0.32	ppb v/v		03/25/20 16:10	
Tetrachloroethene	0.15	0.080	ppb v/v		03/25/20 16:10	•
Toluene	0.39	0.12	ppb v/v		03/25/20 16:10	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM2-A Lab Sample ID: 140-18650-1

Date Collected: 03/20/20 16:10 Date Received: 03/23/20 09:45

Matrix:	Ai

Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND	0.080	ppb v/v			03/25/20 16:10	
trans-1,3-Dichloropropene	ND	0.080	ppb v/v			03/25/20 16:10	
Trichloroethene	ND	0.036	ppb v/v			03/25/20 16:10	
Trichlorofluoromethane	0.40	0.080	ppb v/v			03/25/20 16:10	
Vinyl chloride	ND	0.040	ppb v/v			03/25/20 16:10	•
Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2.2	0.44	ug/m3			03/25/20 16:10	•
1,1,2,2-Tetrachloroethane	ND	0.55	ug/m3			03/25/20 16:10	•
1,1,2-Trichloroethane	ND	0.44	ug/m3			03/25/20 16:10	
1,1,2-Trichlorotrifluoroethane	ND	0.61	ug/m3			03/25/20 16:10	•
1,1-Dichloroethane	ND	0.32	ug/m3			03/25/20 16:10	•
1,1-Dichloroethene	ND	0.16	ug/m3			03/25/20 16:10	•
1,2,4-Trichlorobenzene	ND	0.59	ug/m3			03/25/20 16:10	•
1,2,4-Trimethylbenzene	1.5	0.39	ug/m3			03/25/20 16:10	•
1,2-Dibromoethane	ND	0.61	ug/m3			03/25/20 16:10	•
1,2-Dichlorobenzene	ND	0.48	ug/m3			03/25/20 16:10	
1,2-Dichloroethane	0.41	0.32	ug/m3			03/25/20 16:10	
1,2-Dichloropropane	ND	0.37	ug/m3			03/25/20 16:10	
1,2-Dichlorotetrafluoroethane	ND	0.56	ug/m3			03/25/20 16:10	
1,3,5-Trimethylbenzene	ND	0.39	ug/m3			03/25/20 16:10	•
1,3-Dichlorobenzene	ND	0.48	ug/m3			03/25/20 16:10	
1,4-Dichlorobenzene	ND	0.48	ug/m3			03/25/20 16:10	
1,4-Dioxane	ND	0.72	ug/m3			03/25/20 16:10	
2,2,4-Trimethylpentane	ND	0.93	ug/m3			03/25/20 16:10	
2-Butanone	3.0	0.94	ug/m3			03/25/20 16:10	· · · · · · · · ·
4-Methyl-2-pentanone (MIBK)	ND	0.82	ug/m3			03/25/20 16:10	
Benzene	0.41	0.26	ug/m3			03/25/20 16:10	
Benzyl chloride	ND	0.83	ug/m3			03/25/20 16:10	• • • • • • • •
Bromodichloromethane	ND	0.54	ug/m3			03/25/20 16:10	
Bromoform	ND	0.83	ug/m3			03/25/20 16:10	
Bromomethane	ND	0.31	ug/m3			03/25/20 16:10	· · · · · · · .
Carbon tetrachloride	0.51	0.20	ug/m3			03/25/20 16:10	
Chlorobenzene	ND	0.37	ug/m3			03/25/20 16:10	
Chloroethane	ND	0.21	ug/m3			03/25/20 16:10	,
Chloroform	ND	0.39	ug/m3			03/25/20 16:10	
Chloromethane	1.9	0.41	ug/m3			03/25/20 16:10	
cis-1,2-Dichloroethene	ND	0.16	ug/m3			03/25/20 16:10	
cis-1,3-Dichloropropene	ND	0.36	ug/m3			03/25/20 16:10	
Cyclohexane	ND	0.69	ug/m3			03/25/20 16:10	
Dibromochloromethane	ND	0.68	ug/m3			03/25/20 16:10	
Dichlorodifluoromethane	3.8	0.40	ug/m3			03/25/20 16:10	
Ethanol	- 720 €		ug/m3			03/25/20 16:10	
Ethylbenzene	0.42	0.35	ug/m3			03/25/20 16:10	· · · · · .
Hexachlorobutadiene	ND	0.85	ug/m3			03/25/20 16:10	
Hexane	ND	0.70	ug/m3			03/25/20 16:10	
Methyl tert-butyl ether	ND	0.58	ug/m3			03/25/20 16:10	,
Methylene Chloride	ND ND	1.4	ug/m3			03/25/20 16:10	
m-Xylene & p-Xylene	1.8	0.35	ug/m3			03/25/20 16:10	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM2-A Lab

Date Collected: 03/20/20 16:10 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18650-1

Matrix: Air	

Analyte	Result Qualif	ier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Naphthalene	2.7	1.0	ug/m3		03/25/20 16:10	1
o-Xylene	0.86	0.35	ug/m3		03/25/20 16:10	1
Styrene	3.3	0.34	ug/m3		03/25/20 16:10	1
t-Butyl alcohol	ND	0.97	ug/m3		03/25/20 16:10	1
Tetrachloroethene	1.1	0.54	ug/m3		03/25/20 16:10	1
Toluene	1.5	0.45	ug/m3		03/25/20 16:10	1
trans-1,2-Dichloroethene	ND	0.32	ug/m3		03/25/20 16:10	1
trans-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 16:10	1
Trichloroethene	ND	0.19	ug/m3		03/25/20 16:10	1
Trichlorofluoromethane	2.3	0.45	ug/m3		03/25/20 16:10	1
Vinyl chloride	ND	0.10	ug/m3		03/25/20 16:10	1
Surrogate	%Recovery Qualif	ier Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	60 - 140		-	03/25/20 16:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	610	p	20		ppb v/v			03/26/20 17:32	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1100	p p	38		ug/m3			03/26/20 17:32	1
Surrogate	%Recovery	Qualifier	Limits		k. 1		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	67	-	60 - 140		JME -	7		03/26/20 17:32	1

Client Sample ID: RM1-SS

Date Collected: 03/20/20 16:12 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18650-2

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.78	0.080	ppb v/v			03/25/20 17:08	1
1,1,2,2-Tetrachloroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,1,2-Trichloroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,1,2-Trichlorotrifluoroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,1-Dichloroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,1-Dichloroethene	ND	0.040	ppb v/v			03/25/20 17:08	1
1,2,4-Trichlorobenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2,4-Trimethylbenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2-Dibromoethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2-Dichloroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2-Dichloropropane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,2-Dichlorotetrafluoroethane	ND	0.080	ppb v/v			03/25/20 17:08	1
1,3,5-Trimethylbenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,3-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,4-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 17:08	1
1,4-Dioxane	0.25	0.20	ppb v/v			03/25/20 17:08	1
2,2,4-Trimethylpentane	0.28	0.20	ppb v/v			03/25/20 17:08	1

Eurofins TestAmerica, Knoxville

04/03/2020

Page 15 of 729

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM1-SS

Lab Sample ID: 140-18650-2 Date Collected: 03/20/20 16:12

Matrix: Air

Date Received: 03/23/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
2-Butanone	4.3	0.32	ppb v/v		03/25/20 17:08	
4-Methyl-2-pentanone (MIBK)	0.38	0.20	ppb v/v		03/25/20 17:08	
Benzene	0.28	0.080	ppb v/v		03/25/20 17:08	
Benzyl chloride	ND	0.16	ppb v/v		03/25/20 17:08	1
Bromodichloromethane	ND	0.080	ppb v/v		03/25/20 17:08	1
Bromoform	ND	0.080	ppb v/v		03/25/20 17:08	1
Bromomethane	ND	0.080	ppb v/v		03/25/20 17:08	1
Carbon tetrachloride	0.087	0.032	ppb v/v		03/25/20 17:08	1
Chlorobenzene	ND	0.080	ppb v/v		03/25/20 17:08	1
Chloroethane	ND	0.080	ppb v/v		03/25/20 17:08	1
Chloroform	ND	0.080	ppb v/v		03/25/20 17:08	1
Chloromethane	0.52	0.20	ppb v/v		03/25/20 17:08	1
cis-1,2-Dichloroethene	ND	0.040	ppb v/v		03/25/20 17:08	1
cis-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 17:08	1
Cyclohexane	0.32	0.20	ppb v/v		03/25/20 17:08	1
Dibromochloromethane	ND	0.080	ppb v/v		03/25/20 17:08	1
Dichlorodifluoromethane	0.45	0.080	ppb v/v		03/25/20 17:08	1
Ethanol	-360 - E−	2.0	ppb v/v		03/25/20 17:08	1
Ethylbenzene	0.18	0.080	ppb v/v		03/25/20 17:08	1
Hexachlorobutadiene	ND	0.080	ppb v/v		03/25/20 17:08	1
Hexane	1.2	0.20	ppb v/v		03/25/20 17:08	1
Methyl tert-butyl ether	ND	0.16	ppb v/v		03/25/20 17:08	1
Methylene Chloride	ND	0.40	ppb v/v		03/25/20 17:08	-
m-Xylene & p-Xylene	0.41	0.080	ppb v/v		03/25/20 17:08	-
Naphthalene	ND	0.20	ppb v/v		03/25/20 17:08	
o-Xylene	0.14	0.080	ppb v/v		03/25/20 17:08	,
Styrene	0.20	0.080	ppb v/v		03/25/20 17:08	
t-Butyl alcohol	5.3	0.32	ppb v/v		03/25/20 17:08	
Tetrachloroethene	0.15	0.080	ppb v/v		03/25/20 17:08	
Toluene	2.3	0.12	ppb v/v		03/25/20 17:08	
trans-1,2-Dichloroethene	ND	0.080	ppb v/v		03/25/20 17:08	
trans-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 17:08	
Trichloroethene	0.11	0.036	ppb v/v		03/25/20 17:08	
Trichlorofluoromethane		0.080	ppb v/v		03/25/20 17:08	
Vinyl chloride	0.45 ND	0.040	ppb v/v		03/25/20 17:08	
Analyte	Result Qualifier	0.040 RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	4.3	0.44	ug/m3		03/25/20 17:08	- Dill ac
1,1,2,2-Tetrachloroethane	ND	0.55	ug/m3		03/25/20 17:08	
1,1,2-Trichloroethane	ND	0.44	ug/m3		03/25/20 17:08	,
1,1,2-Trichlorotrifluoroethane	ND	0.61	ug/m3		03/25/20 17:08	
1,1-Dichloroethane	ND ND	0.32	ug/m3		03/25/20 17:08	
1,1-Dichloroethene	ND ND	0.16	ug/m3		03/25/20 17:08	
1,2,4-Trichlorobenzene	ND ND	0.59	ug/m3		03/25/20 17:08	1
1,2,4-Trimethylbenzene	ND	0.39	ug/m3		03/25/20 17:08	1
1,2-Dibromoethane	ND	0.61	ug/m3		03/25/20 17:08	1
1,2-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 17:08	1
1,2-Dichloroethane	ND	0.32	ug/m3		03/25/20 17:08	1
1,2-Dichloropropane	ND	0.37	ug/m3		03/25/20 17:08	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM1-SS

Lab Sample ID: 140-18650-2 Date Collected: 03/20/20 16:12

Matrix: Air

Date Received: 03/23/20 09:45

4-Bromofluorobenzene (Surr)	101	60 - 140		Fiepaieu	03/25/20 17:08	DII Fac
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	0.10	ug/m3		03/25/20 17:08	1
Trichlorofluoromethane	2.5	0.45	ug/m3		03/25/20 17:08	1
Trichloroethene	0.60	0.19	ug/m3		03/25/20 17:08	1
trans-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 17:08	1
trans-1,2-Dichloroethene	ND	0.32	ug/m3		03/25/20 17:08	1
Toluene	8.7	0.45	ug/m3		03/25/20 17:08	1
Tetrachloroethene	1.0	0.54	ug/m3		03/25/20 17:08	1
t-Butyl alcohol	16	0.97	ug/m3		03/25/20 17:08	1
Styrene	0.84	0.34	ug/m3		03/25/20 17:08	1
o-Xylene	0.61	0.35	ug/m3		03/25/20 17:08	1
Naphthalene	ND	1.0	ug/m3		03/25/20 17:08	
m-Xylene & p-Xylene	1.8	0.35	ug/m3		03/25/20 17:08	1
Methylene Chloride	ND	1.4	ug/m3		03/25/20 17:08	1
Methyl tert-butyl ether	ND	0.58	ug/m3		03/25/20 17:08	1
Hexane	4.2	0.70	ug/m3		03/25/20 17:08	1
Hexachlorobutadiene	ND	0.85	ug/m3		03/25/20 17:08	1
Ethylbenzene	-030 L 0.78	0.35	ug/m3		03/25/20 17:08	· · · · · · · · · · · · · · · · · · ·
Ethanol	-690 E -	3.8	ug/m3		03/25/20 17:08	1
Dichlorodifluoromethane	2.2	0.40	ug/m3		03/25/20 17:08	1
Dibromochloromethane	ND	0.68	ug/m3		03/25/20 17:08	· · · · · · · · · · · · · · · · · · ·
Cyclohexane	1.1	0.69	ug/m3		03/25/20 17:08	1
cis-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 17:08	1
cis-1,2-Dichloroethene	ND	0.16	ug/m3		03/25/20 17:08	········· 1
Chloromethane	1.1	0.41	ug/m3		03/25/20 17:08	1
Chloroform	ND ND	0.39	ug/m3		03/25/20 17:08	1
Chloroethane	ND	0.37	ug/m3		03/25/20 17:08	
Carbon tetrachloride Chlorobenzene	0.55 ND	0.20	ug/m3 ug/m3		03/25/20 17:08	1
		0.20	ug/m3		03/25/20 17:08	1
Bromomethane	ND	0.63	ug/m3		03/25/20 17:08	
Bromodichloromethane Bromoform	ND ND	0.54 0.83	ug/m3		03/25/20 17:08 03/25/20 17:08	1
Benzyl chloride	ND	0.83	ug/m3		03/25/20 17:08	1
Benzene	0.89	0.26	ug/m3		03/25/20 17:08	1
4-Methyl-2-pentanone (MIBK)	1.6	0.82	ug/m3		03/25/20 17:08	1
2-Butanone	13	0.94	ug/m3		03/25/20 17:08	1
2,2,4-Trimethylpentane	1.3	0.93	ug/m3		03/25/20 17:08	1
1,4-Dioxane	0.90	0.72	ug/m3		03/25/20 17:08	1
1,4-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 17:08	1
1,3-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 17:08	1
1,3,5-Trimethylbenzene	ND	0.39	ug/m3		03/25/20 17:08	1
1,2-Dichlorotetrafluoroethane	ND	0.56	ug/m3		03/25/20 17:08	1

Method: TO 15 LL - Volatile Or	ganic Com	pounds in	Ambient A	ir, Low C	oncen	tration (G	C/MS) - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	660	y	20		ppb v/v			03/26/20 18:19	1

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM1-SS

Lab Sample ID: 140-18650-2 Date Collected: 03/20/20 16:12

Matrix: Air

Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Analyte Ethanol	Result 1200	Qualifier	RL 38	MDL	Unit ug/m3	<u>D</u>	Prepared	Analyzed 03/26/20 18:19	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits 60 - 140				Prepared	Analyzed 03/26/20 18:19	Dil Fac

Client Sample ID: RM10-SS Lab Sample ID: 140-18650-3 Matrix: Air

Date Collected: 03/20/20 16:15 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	180 	0.080	ppb v/v	_	03/25/20 18:09	1
1,1,2,2-Tetrachloroethane	ND	0.080	ppb v/v		03/25/20 18:09	1
1,1,2-Trichloroethane	ND	0.080	ppb v/v		03/25/20 18:09	1
1,1,2-Trichlorotrifluoroethane	0.094	0.080	ppb v/v		03/25/20 18:09	1
1,1-Dichloroethane	110 - E	0.080	ppb v/v		03/25/20 18:09	1
1,1-Dichloroethene	67 E	0.040	ppb v/v		03/25/20 18:09	1
1,2,4-Trichlorobenzene	ND	0.080	ppb v/v		03/25/20 18:09	1
1,2,4-Trimethylbenzene	0.40	0.080	ppb v/v		03/25/20 18:09	1
1,2-Dibromoethane	ND	0.080	ppb v/v		03/25/20 18:09	1
1,2-Dichlorobenzene	ND	0.080	ppb v/v		03/25/20 18:09	1
1,2-Dichloroethane	0.38	0.080	ppb v/v		03/25/20 18:09	1
1,2-Dichloropropane	ND	0.080	ppb v/v		03/25/20 18:09	1
1,2-Dichlorotetrafluoroethane	ND	0.080	ppb v/v		03/25/20 18:09	1
1,3,5-Trimethylbenzene	0.18 CI	0.080	ppb v/v		03/25/20 18:09	1
1,3-Dichlorobenzene	ND	0.080	ppb v/v		03/25/20 18:09	1
1,4-Dichlorobenzene	0.41	0.080	ppb v/v		03/25/20 18:09	1
1,4-Dioxane	ND	0.20	ppb v/v		03/25/20 18:09	1
2,2,4-Trimethylpentane	ND	0.20	ppb v/v		03/25/20 18:09	1
2-Butanone	2.1	0.32	ppb v/v		03/25/20 18:09	1
4-Methyl-2-pentanone (MIBK)	0.31	0.20	ppb v/v		03/25/20 18:09	1
Benzene	0.53	0.080	ppb v/v		03/25/20 18:09	1
Benzyl chloride	ND	0.16	ppb v/v		03/25/20 18:09	1
Bromodichloromethane	ND	0.080	ppb v/v		03/25/20 18:09	1
Bromoform	ND	0.080	ppb v/v		03/25/20 18:09	1
Bromomethane	ND	0.080	ppb v/v		03/25/20 18:09	1
Carbon tetrachloride	0.11	0.032	ppb v/v		03/25/20 18:09	1
Chlorobenzene	ND	0.080	ppb v/v		03/25/20 18:09	1
Chloroethane	0.46	0.080	ppb v/v		03/25/20 18:09	1
Chloroform	0.53	0.080	ppb v/v		03/25/20 18:09	1
Chloromethane	0.77	0.20	ppb v/v		03/25/20 18:09	1
cis-1,2-Dichloroethene	0.15	0.040	ppb v/v		03/25/20 18:09	1
cis-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 18:09	1
Cyclohexane	0.71	0.20	ppb v/v		03/25/20 18:09	1
Dibromochloromethane	ND	0.080	ppb v/v		03/25/20 18:09	1
Dichlorodifluoromethane	130 -E	0.080	ppb v/v		03/25/20 18:09	1
Ethanol	-430 E	2.0	ppb v/v		03/25/20 18:09	1
Ethylbenzene	2.0	0.080	ppb v/v		03/25/20 18:09	1
Hexachlorobutadiene	ND	0.080	ppb v/v		03/25/20 18:09	1

04/03/2020

Page 18 of 729

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM10-SS

Lab Sample ID: 140-18650-3 Date Collected: 03/20/20 16:15

Matrix: Air

Date Received: 03/23/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Hexane	3.0	0.20	ppb v/v		03/25/20 18:09	
Methyl tert-butyl ether	ND	0.16	ppb v/v		03/25/20 18:09	
Methylene Chloride	ND	0.40	ppb v/v		03/25/20 18:09	1
m-Xylene & p-Xylene	6.0	0.080	ppb v/v		03/25/20 18:09	1
Naphthalene	0.28	0.20	ppb v/v		03/25/20 18:09	
o-Xylene	2.3	0.080	ppb v/v		03/25/20 18:09	•
Styrene	1.3	0.080	ppb v/v		03/25/20 18:09	•
t-Butyl alcohol	1.1	0.32	ppb v/v		03/25/20 18:09	
Tetrachloroethene	0.33	0.080	ppb v/v		03/25/20 18:09	
Toluene	1.1	0.12	ppb v/v		03/25/20 18:09	
trans-1,2-Dichloroethene	0.97	0.080	ppb v/v		03/25/20 18:09	
trans-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 18:09	
Trichloroethene	0.29	0.036	ppb v/v		03/25/20 18:09	
Trichlorofluoromethane	1.1	0.080	ppb v/v		03/25/20 18:09	1
Vinyl chloride	ND	0.040	ppb v/v		03/25/20 18:09	
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1000 E	0.44	ug/m3		03/25/20 18:09	
1,1,2,2-Tetrachloroethane	ND	0.55	ug/m3		03/25/20 18:09	
1,1,2-Trichloroethane	ND	0.44	ug/m3		03/25/20 18:09	
1,1,2-Trichlorotrifluoroethane	0.72	0.61	ug/m3		03/25/20 18:09	
1,1-Dichloroethane	4 30 E	0.32	ug/m3		03/25/20 18:09	
1.1-Dichloroethene	270 E	0.16	ug/m3		03/25/20 18:09	
1,2,4-Trichlorobenzene	ND	0.59	ug/m3		03/25/20 18:09	· · · · · · .
1,2,4-Trimethylbenzene	2.0	0.39	ug/m3		03/25/20 18:09	
1,2-Dibromoethane	ND	0.61	ug/m3		03/25/20 18:09	
1,2-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 18:09	
1,2-Dichloroethane	1.5	0.32	ug/m3		03/25/20 18:09	
1,2-Dichloropropane	ND	0.37	ug/m3		03/25/20 18:09	
1,2-Dichlorotetrafluoroethane	ND	0.56	ug/m3		03/25/20 18:09	
1,3,5-Trimethylbenzene	0.90 🗷	0.39	ug/m3		03/25/20 18:09	
1,3-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 18:09	
1,4-Dichlorobenzene	2.5	0.48	ug/m3		03/25/20 18:09	
1,4-Dioxane	ND	0.72	ug/m3		03/25/20 18:09	
2,2,4-Trimethylpentane	ND	0.93	ug/m3		03/25/20 18:09	
2-Butanone	6.1	0.94	ug/m3		03/25/20 18:09	
4-Methyl-2-pentanone (MIBK)	1.3	0.82	ug/m3		03/25/20 18:09	
Benzene	1.7	0.26	ug/m3		03/25/20 18:09	
Benzyl chloride	ND	0.83	ug/m3		03/25/20 18:09	
Bromodichloromethane	ND	0.54	ug/m3		03/25/20 18:09	
Bromoform	ND	0.83	ug/m3		03/25/20 18:09	
Bromomethane	ND	0.31	ug/m3		03/25/20 18:09	
Carbon tetrachloride	0.69	0.20	ug/m3		03/25/20 18:09	
Chlorobenzene	ND	0.37	ug/m3		03/25/20 18:09	
Chloroethane	1.2	0.21	ug/m3		03/25/20 18:09	
Chloroform	2.6	0.39	ug/m3		03/25/20 18:09	
Chloromethane	1.6	0.41	ug/m3		03/25/20 18:09	
cis-1,2-Dichloroethene	0.61	0.16	ug/m3		03/25/20 18:09	
cis-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 18:09	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM10-SS

Lab Sample ID: 140-18650-3 Date Collected: 03/20/20 16:15

Matrix: Air

Date Received: 03/23/20 09:45 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Cyclohexane	2.4	0.69	ug/m3		03/25/20 18:09	1
Dibromochloromethane	ND	0.68	ug/m3		03/25/20 18:09	1
Dichlorodifluoromethane	650 E	0.40	ug/m3		03/25/20 18:09	1
Ethanol	_ 810 E	3.8	ug/m3		03/25/20 18:09	1
Ethylbenzene	8.5	0.35	ug/m3		03/25/20 18:09	1
Hexachlorobutadiene	ND	0.85	ug/m3		03/25/20 18:09	1
Hexane	11	0.70	ug/m3		03/25/20 18:09	1
Methyl tert-butyl ether	ND	0.58	ug/m3		03/25/20 18:09	1
Methylene Chloride	ND	1.4	ug/m3		03/25/20 18:09	1
m-Xylene & p-Xylene	26	0.35	ug/m3		03/25/20 18:09	1
Naphthalene	1.5	1.0	ug/m3		03/25/20 18:09	1
o-Xylene	10	0.35	ug/m3		03/25/20 18:09	1
Styrene	5.5	0.34	ug/m3		03/25/20 18:09	1
t-Butyl alcohol	3.3	0.97	ug/m3		03/25/20 18:09	1
Tetrachloroethene	2.3	0.54	ug/m3		03/25/20 18:09	1
Toluene	4.0	0.45	ug/m3		03/25/20 18:09	1
trans-1,2-Dichloroethene	3.9	0.32	ug/m3		03/25/20 18:09	1
trans-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 18:09	1
Trichloroethene	1.6	0.19	ug/m3		03/25/20 18:09	1
Trichlorofluoromethane	6.4	0.45	ug/m3		03/25/20 18:09	1
Vinyl chloride	ND	0.10	ug/m3		03/25/20 18:09	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105	60 - 140			03/25/20 18:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	440	<u>P</u> .	15		ppb v/v			03/27/20 19:53	4.05
1,1-Dichloroethane	140	ø	15		ppb v/v			03/27/20 19:53	4.05
1,1-Dichloroethene	74	' Ø'	7.4		ppb v/v			03/27/20 19:53	4.05
Dichlorodifluoromethane	1400	7 .	15		ppb v/v			03/27/20 19:53	4.05
Ethanol	550	ø	370		ppb v/v			03/27/20 19:53	4.05
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2400	Ø	80		ug/m3			03/27/20 19:53	4.05
1,1-Dichloroethane	580	′ ø	60		ug/m3			03/27/20 19:53	4.05
1,1-Dichloroethene	290	7	29		ug/m3			03/27/20 19:53	4.05
Dichlorodifluoromethane	6900		73		ug/m3			03/27/20 19:53	4.05
Ethanol	1000	' P'	690		ug/m3			03/27/20 19:53	4.05
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		60 - 140			-		03/27/20 19:53	4.05

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-032020

Date Received: 03/23/20 09:45

Lab Sample ID: 140-18650-4 Date Collected: 03/20/20 16:16

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	_ D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	68	4.0	ppb v/v			03/26/20 07:34	
1,1,2,2-Tetrachloroethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,1,2-Trichloroethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,1,2-Trichlorotrifluoroethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,1-Dichloroethane	24	4.0	ppb v/v			03/26/20 07:34	
1,1-Dichloroethene	13	2.0	ppb v/v			03/26/20 07:34	
1,2,4-Trichlorobenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,2,4-Trimethylbenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,2-Dibromoethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,2-Dichlorobenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,2-Dichloroethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,2-Dichloropropane	ND	4.0	ppb v/v			03/26/20 07:34	
1,2-Dichlorotetrafluoroethane	ND	4.0	ppb v/v			03/26/20 07:34	
1,3,5-Trimethylbenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,3-Dichlorobenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,4-Dichlorobenzene	ND	4.0	ppb v/v			03/26/20 07:34	
1,4-Dioxane	ND	10	ppb v/v			03/26/20 07:34	
2,2,4-Trimethylpentane	ND	10	ppb v/v			03/26/20 07:34	
2-Butanone	ND	16	ppb v/v			03/26/20 07:34	
l-Methyl-2-pentanone (MIBK)	ND	10	ppb v/v			03/26/20 07:34	
Benzene	ND	4.0	ppb v/v			03/26/20 07:34	
Benzyl chloride	ND	8.0	ppb v/v			03/26/20 07:34	
Bromodichloromethane	ND	4.0	ppb v/v			03/26/20 07:34	
Bromoform	ND	4.0	ppb v/v			03/26/20 07:34	
Bromomethane	ND	4.0	ppb v/v			03/26/20 07:34	
Carbon tetrachloride	ND	1.6	ppb v/v			03/26/20 07:34	
Chlorobenzene	ND	4.0	ppb v/v			03/26/20 07:34	
Chloroethane	ND	4.0	ppb v/v			03/26/20 07:34	
Chloroform	ND	4.0	ppb v/v			03/26/20 07:34	
Chloromethane	ND	10	ppb v/v			03/26/20 07:34	
cis-1,2-Dichloroethene	ND	2.0	ppb v/v			03/26/20 07:34	
cis-1,3-Dichloropropene	ND	4.0	ppb v/v			03/26/20 07:34	
Cyclohexane	ND	10	ppb v/v			03/26/20 07:34	
Dibromochloromethane	ND	4.0	ppb v/v			03/26/20 07:34	
Dichlorodifluoromethane	220	4.0	ppb v/v			03/26/20 07:34	
Ethanol	190	100	ppb v/v			03/26/20 07:34	
Ethylbenzene	ND	4.0	ppb v/v			03/26/20 07:34	
Hexachlorobutadiene	ND	4.0	ppb v/v			03/26/20 07:34	
Hexane	ND	10	ppb v/v			03/26/20 07:34	
Methyl tert-butyl ether	ND	8.0	ppb v/v			03/26/20 07:34	
Methylene Chloride	ND	20	ppb v/v			03/26/20 07:34	
n-Xylene & p-Xylene	ND	4.0	ppb v/v			03/26/20 07:34	
Naphthalene	ND	10	ppb v/v			03/26/20 07:34	
•	ND ND					03/26/20 07:34	
-Xylene		4.0	ppb v/v			03/26/20 07:34	
Styrene	ND.	4.0	ppb v/v				
-Butyl alcohol	ND ND	16	ppb v/v			03/26/20 07:34	
Tetrachloroethene Toluene	ND ND	4.0 6.0	ppb v/v ppb v/v			03/26/20 07:34 03/26/20 07:34	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-032020

Lab Sample ID: 140-18650-4 Date Collected: 03/20/20 16:16

Matrix: Air

Date Received: 03/23/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
trans-1,2-Dichloroethene	ND	4.0	ppb v/v		03/26/20 07:34	
trans-1,3-Dichloropropene	ND	4.0	ppb v/v		03/26/20 07:34	•
Trichloroethene	ND	1.8	ppb v/v		03/26/20 07:34	
Trichlorofluoromethane	ND	4.0	ppb v/v		03/26/20 07:34	
Vinyl chloride	ND	2.0	ppb v/v		03/26/20 07:34	•
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	370	22	ug/m3	<u> </u>	03/26/20 07:34	
1,1,2,2-Tetrachloroethane	ND	27	ug/m3		03/26/20 07:34	
1,1,2-Trichloroethane	ND	22	ug/m3		03/26/20 07:34	
1,1,2-Trichlorotrifluoroethane	ND	31	ug/m3		03/26/20 07:34	
1,1-Dichloroethane	95	16	ug/m3		03/26/20 07:34	
1,1-Dichloroethene	51	7.9	ug/m3		03/26/20 07:34	
1,2,4-Trichlorobenzene	ND	30	ug/m3		03/26/20 07:34	
1,2,4-Trimethylbenzene	ND	20	ug/m3		03/26/20 07:34	
1,2-Dibromoethane	ND	31	ug/m3		03/26/20 07:34	
1,2-Dichlorobenzene	ND	24	ug/m3		03/26/20 07:34	•
1,2-Dichloroethane	ND	16	ug/m3		03/26/20 07:34	
1,2-Dichloropropane	ND	18	ug/m3		03/26/20 07:34	
1,2-Dichlorotetrafluoroethane	ND	28	ug/m3		03/26/20 07:34	
1,3,5-Trimethylbenzene	ND	20	ug/m3		03/26/20 07:34	•
1,3-Dichlorobenzene	ND	24	ug/m3		03/26/20 07:34	•
1,4-Dichlorobenzene	ND	24	ug/m3		03/26/20 07:34	
1,4-Dioxane	ND	36	ug/m3		03/26/20 07:34	•
2,2,4-Trimethylpentane	ND	47	ug/m3		03/26/20 07:34	
2-Butanone	ND	47	ug/m3		03/26/20 07:34	
4-Methyl-2-pentanone (MIBK)	ND	41	ug/m3		03/26/20 07:34	
Benzene	ND	13	ug/m3		03/26/20 07:34	•
Benzyl chloride	ND	41	ug/m3		03/26/20 07:34	
Bromodichloromethane	ND	27	ug/m3		03/26/20 07:34	•
Bromoform	ND	41	ug/m3		03/26/20 07:34	•
Bromomethane	ND	16	ug/m3		03/26/20 07:34	
Carbon tetrachloride	ND	10	ug/m3		03/26/20 07:34	•
Chlorobenzene	ND	18	ug/m3		03/26/20 07:34	•
Chloroethane	ND	11	ug/m3		03/26/20 07:34	
Chloroform	ND	20	ug/m3		03/26/20 07:34	•
Chloromethane	ND	21	ug/m3		03/26/20 07:34	•
cis-1,2-Dichloroethene	ND	7.9	ug/m3		03/26/20 07:34	
cis-1,3-Dichloropropene	ND	18	ug/m3		03/26/20 07:34	
Cyclohexane	ND	34	ug/m3		03/26/20 07:34	
Dibromochloromethane	ND	34	ug/m3		03/26/20 07:34	
Dichlorodifluoromethane	1100	20	ug/m3		03/26/20 07:34	•
Ethanol	370	190	ug/m3		03/26/20 07:34	•
Ethylbenzene	ND	17	ug/m3		03/26/20 07:34	
Hexachlorobutadiene	ND	43	ug/m3		03/26/20 07:34	
Hexane	ND	35	ug/m3		03/26/20 07:34	
Methyl tert-butyl ether	ND	29	ug/m3		03/26/20 07:34	
Methylene Chloride	ND	69	ug/m3		03/26/20 07:34	
m-Xylene & p-Xylene	ND	17	ug/m3		03/26/20 07:34	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-032020

Lab Sample ID: 140-18650-4 Date Collected: 03/20/20 16:16

Matrix: Air

Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Org	anic C	Compo	ounds	in Ambient Air, Lo	ow Concentra	tion (GC/MS)	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		52		ug/m3			03/26/20 07:34	1
o-Xylene	ND		17		ug/m3			03/26/20 07:34	1
Styrene	ND		17		ug/m3			03/26/20 07:34	1
t-Butyl alcohol	ND		49		ug/m3			03/26/20 07:34	1
Tetrachloroethene	ND		27		ug/m3			03/26/20 07:34	1
Toluene	ND		23		ug/m3			03/26/20 07:34	1
trans-1,2-Dichloroethene	ND		16		ug/m3			03/26/20 07:34	1
trans-1,3-Dichloropropene	ND		18		ug/m3			03/26/20 07:34	1
Trichloroethene	ND		9.7		ug/m3			03/26/20 07:34	1
Trichlorofluoromethane	ND		22		ug/m3			03/26/20 07:34	1
Vinyl chloride	ND		5.1		ug/m3			03/26/20 07:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		60 - 140			-		03/26/20 07:34	1

Client Sample ID: LOB-1SS Lab Sample ID: 140-18650-5

Date Collected: 03/20/20 16:19 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	15	0.080	ppb v/v			03/25/20 20:02	1
1,1,2,2-Tetrachloroethane	ND	0.080	ppb v/v			03/25/20 20:02	1
1,1,2-Trichloroethane	ND	0.080	ppb v/v			03/25/20 20:02	1
1,1,2-Trichlorotrifluoroethane	0.23	0.080	ppb v/v			03/25/20 20:02	1
1,1-Dichloroethane	13	0.080	ppb v/v			03/25/20 20:02	1
1,1-Dichloroethene	-24 €	0.040	ppb v/v			03/25/20 20:02	1
1,2,4-Trichlorobenzene	ND	0.080	ppb v/v			03/25/20 20:02	1
1,2,4-Trimethylbenzene	0.11	0.080	ppb v/v			03/25/20 20:02	1
1,2-Dibromoethane	ND	0.080	ppb v/v			03/25/20 20:02	1
1,2-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 20:02	1
1,2-Dichloroethane	0.31	0.080	ppb v/v			03/25/20 20:02	1
1,2-Dichloropropane	ND	0.080	ppb v/v			03/25/20 20:02	1
1,2-Dichlorotetrafluoroethane	ND	0.080	ppb v/v			03/25/20 20:02	1
1,3,5-Trimethylbenzene	ND	0.080	ppb v/v			03/25/20 20:02	1
1,3-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 20:02	1
1,4-Dichlorobenzene	ND	0.080	ppb v/v			03/25/20 20:02	1
1,4-Dioxane	ND	0.20	ppb v/v			03/25/20 20:02	1
2,2,4-Trimethylpentane	ND	0.20	ppb v/v			03/25/20 20:02	1
2-Butanone	1.1	0.32	ppb v/v			03/25/20 20:02	1
4-Methyl-2-pentanone (MIBK)	0.50	0.20	ppb v/v			03/25/20 20:02	1
Benzene	0.37	0.080	ppb v/v			03/25/20 20:02	1
Benzyl chloride	ND	0.16	ppb v/v			03/25/20 20:02	1
Bromodichloromethane	ND	0.080	ppb v/v			03/25/20 20:02	1
Bromoform	ND	0.080	ppb v/v			03/25/20 20:02	1
Bromomethane	ND	0.080	ppb v/v			03/25/20 20:02	1
Carbon tetrachloride	0.095	0.032	ppb v/v			03/25/20 20:02	1
Chlorobenzene	0.083	0.080	ppb v/v			03/25/20 20:02	1

Page 23 of 729 04/03/2020

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: LOB-1SS

Lab Sample ID: 140-18650-5

Matrix: Air

Date Collected: 03/20/20 16:19 Date Received: 03/23/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Chloroethane	0.27	0.080	ppb v/v		03/25/20 20:02	
Chloroform	0.26	0.080	ppb v/v		03/25/20 20:02	
Chloromethane	0.54	0.20	ppb v/v		03/25/20 20:02	
cis-1,2-Dichloroethene	ND	0.040	ppb v/v		03/25/20 20:02	
cis-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 20:02	
Cyclohexane	ND	0.20	ppb v/v		03/25/20 20:02	
Dibromochloromethane	ND	0.080	ppb v/v		03/25/20 20:02	
Dichlorodifluoromethane	<u>_18−</u> ₽	0.080	ppb v/v		03/25/20 20:02	
Ethanol	320 E	2.0	ppb v/v		03/25/20 20:02	
Ethylbenzene	1.2	0.080	ppb v/v		03/25/20 20:02	
Hexachlorobutadiene	ND	0.080	ppb v/v		03/25/20 20:02	
Hexane	0.53	0.20	ppb v/v		03/25/20 20:02	
Methyl tert-butyl ether	1.4	0.16	ppb v/v		03/25/20 20:02	
Methylene Chloride	ND	0.40	ppb v/v		03/25/20 20:02	
m-Xylene & p-Xylene	2.7	0.080	ppb v/v		03/25/20 20:02	
Naphthalene	ND	0.20	ppb v/v		03/25/20 20:02	
o-Xylene	0.87	0.080	ppb v/v		03/25/20 20:02	
Styrene	0.17	0.080	ppb v/v		03/25/20 20:02	
t-Butyl alcohol	2.9	0.32	ppb v/v		03/25/20 20:02	
Tetrachloroethene	0.30	0.080	ppb v/v		03/25/20 20:02	
Toluene	0.72	0.12	ppb v/v		03/25/20 20:02	
rans-1,2-Dichloroethene	ND	0.080	ppb v/v		03/25/20 20:02	
trans-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 20:02	
Trichloroethene	0.21	0.036	ppb v/v		03/25/20 20:02	
Trichlorofluoromethane	0.47	0.080	ppb v/v		03/25/20 20:02	
Vinyl chloride	ND	0.040	ppb v/v		03/25/20 20:02	
-			• •			
Analyte	Result Qualifier	RL 0.44	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	80 ND		ug/m3		03/25/20 20:02	
1,1,2,2-Tetrachloroethane	ND	0.55	ug/m3		03/25/20 20:02	
1,1,2-Trichloroethane	ND	0.44	ug/m3		03/25/20 20:02	
1,1,2-Trichlorotrifluoroethane	1.8	0.61	ug/m3		03/25/20 20:02	
1,1-Dichloroethane	53	0.32	ug/m3		03/25/20 20:02	
1,1-Dichloroethene	_ 94_E	0.16	ug/m3		03/25/20 20:02	
1,2,4-Trichlorobenzene	ND	0.59	ug/m3		03/25/20 20:02	
1,2,4-Trimethylbenzene	0.53	0.39	ug/m3		03/25/20 20:02	
1,2-Dibromoethane	ND	0.61	ug/m3		03/25/20 20:02	
1,2-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 20:02	
1,2-Dichloroethane	1.2	0.32	ug/m3		03/25/20 20:02	
1,2-Dichloropropane	ND	0.37	ug/m3		03/25/20 20:02	
1,2-Dichlorotetrafluoroethane	ND	0.56	ug/m3		03/25/20 20:02	
1,3,5-Trimethylbenzene	ND	0.39	ug/m3		03/25/20 20:02	
1,3-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 20:02	
1,4-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 20:02	
1,4-Dioxane	ND	0.72	ug/m3		03/25/20 20:02	
2,2,4-Trimethylpentane	ND	0.93	ug/m3		03/25/20 20:02	
2-Butanone	3.4	0.94	ug/m3		03/25/20 20:02	
4-Methyl-2-pentanone (MIBK)	2.1	0.82	ug/m3		03/25/20 20:02	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: LOB-1SS

Lab Sample ID: 140-18650-5 Date Collected: 03/20/20 16:19

Matrix: Air

Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzyl chloride	ND	0.83	ug/m3		03/25/20 20:02	1
Bromodichloromethane	ND	0.54	ug/m3		03/25/20 20:02	1
Bromoform	ND	0.83	ug/m3		03/25/20 20:02	1
Bromomethane	ND	0.31	ug/m3		03/25/20 20:02	1
Carbon tetrachloride	0.60	0.20	ug/m3		03/25/20 20:02	1
Chlorobenzene	0.38	0.37	ug/m3		03/25/20 20:02	1
Chloroethane	0.72	0.21	ug/m3		03/25/20 20:02	1
Chloroform	1.3	0.39	ug/m3		03/25/20 20:02	1
Chloromethane	1.1	0.41	ug/m3		03/25/20 20:02	1
cis-1,2-Dichloroethene	ND	0.16	ug/m3		03/25/20 20:02	1
cis-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 20:02	1
Cyclohexane	ND	0.69	ug/m3		03/25/20 20:02	1
Dibromochloromethane	ND	0.68	ug/m3		03/25/20 20:02	1
Dichlorodifluoromethane	- 87 - ₽	0.40	ug/m3		03/25/20 20:02	1
Ethanol	-610 E	3.8	ug/m3		03/25/20 20:02	1
Ethylbenzene	5.1	0.35	ug/m3		03/25/20 20:02	1
Hexachlorobutadiene	ND	0.85	ug/m3		03/25/20 20:02	1
Hexane	1.9	0.70	ug/m3		03/25/20 20:02	1
Methyl tert-butyl ether	5.0	0.58	ug/m3		03/25/20 20:02	1
Methylene Chloride	ND	1.4	ug/m3		03/25/20 20:02	1
m-Xylene & p-Xylene	12	0.35	ug/m3		03/25/20 20:02	1
Naphthalene	ND	1.0	ug/m3		03/25/20 20:02	1
o-Xylene	3.8	0.35	ug/m3		03/25/20 20:02	1
Styrene	0.74	0.34	ug/m3		03/25/20 20:02	1
t-Butyl alcohol	8.8	0.97	ug/m3		03/25/20 20:02	1
Tetrachloroethene	2.1	0.54	ug/m3		03/25/20 20:02	1
Toluene	2.7	0.45	ug/m3		03/25/20 20:02	1
trans-1,2-Dichloroethene	ND	0.32	ug/m3		03/25/20 20:02	1
trans-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 20:02	1
Trichloroethene	1.1	0.19	ug/m3		03/25/20 20:02	1
Trichlorofluoromethane	2.7	0.45	ug/m3		03/25/20 20:02	1
Vinyl chloride	ND	0.10	ug/m3		03/25/20 20:02	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	60 - 140			03/25/20 20:02	1

Method: TO 15 LL - Volatile	Organic Com	pounds in	Ambient Air	, Low C	oncentra	tion (G	SC/MS) - DL	_	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	31	<u>A</u>	0.40		ppb v/v			03/26/20 19:55	1
Dichlorodifluoromethane	31	′ <u>/</u> ,	0.80		ppb v/v			03/26/20 19:55	1
Ethanol	560	/	20		ppb v/v			03/26/20 19:55	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	120	Ø,	1.6		ug/m3	 .		03/26/20 19:55	1
Dichlorodifluoromethane	150	′≱)	4.0		ug/m3			03/26/20 19:55	1
Ethanol	1000	'p /	38		ug/m3			03/26/20 19:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		60 - 140			•		03/26/20 19:55	1

WIN 115/00/ Eurofins TestAmerica, Knoxville

Page 25 of 729

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: LOB-1A Lab Sample ID: 140-18650-6

Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
5.1	0.080	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	•
ND	0.080	ppb v/v			03/25/20 21:00	•
ND	0.080	ppb v/v			03/25/20 21:00	· · · · · · · · ·
0.95	0.080	ppb v/v			03/25/20 21:00	
0.39	0.040	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	· · · · · · · · ·
0.31	0.080	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	•
0.39	0.080	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	
ND	0.080	ppb v/v			03/25/20 21:00	
0.094	0.080	• •			03/25/20 21:00	
		• •				
						· · · · · · .
		• •				
		• •				
		• •				
		• •				
		• •				
		• •				
						· · · · · .
		• •				
		• •				
						
		• •				
,		• •				
////_/////////////////////////						
						•
		• •				,
						•
		• • • • • • • • • • • • • • • • • • • •				,
		• • •				•
						•
						•
		ppb v/v				•
ND		ppb v/v			03/25/20 21:00	
0.63	0.080	ppb v/v			03/25/20 21:00	
0.28	0.20	ppb v/v			03/25/20 21:00	
0.23	0.080	ppb v/v			03/25/20 21:00	•
1.2	0.080	ppb v/v			03/25/20 21:00	
0.72	0.32	ppb v/v			03/25/20 21:00	
0.22	0.080	ppb v/v			03/25/20 21:00	•
0.82	0.12	ppb v/v			03/25/20 21:00	
	5.1 ND ND ND ND 0.95 0.39 ND 0.31 ND	5.1 0.080 ND 0.080 ND 0.080 ND 0.080 ND 0.080 ND 0.080 0.95 0.080 0.39 0.040 ND 0.080 ND 0.08	5.1 0.080 ppb v/v ND 0.080 ppb v/v ND 0.080 ppb v/v ND 0.080 ppb v/v 0.95 0.080 ppb v/v 0.33 0.040 ppb v/v ND 0.080 ppb v/v	S.1	5.1 0.080 ppb v/v ND 0.080 ppb v/v 0.95 0.080 ppb v/v 0.39 0.040 ppb v/v ND 0.080 ppb v/v ND 0.20 ppb v/v ND 0.20 ppb v/v ND 0.20 ppb v/v ND 0.080 ppb v/v	5.1 0.080 ppb v/v 03/25/20 21:00 ND 0.080 ppb v/v 03/25/20 21:00 ND 0.080 ppb v/v 03/25/20 21:00 ND 0.080 ppb v/v 03/25/20 21:00 0.95 0.080 ppb v/v 03/25/20 21:00 0.39 0.040 ppb v/v 03/25/20 21:00 ND 0.080 ppb v/v 03/25/20 21:00

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: LOB-1A Lab Sample ID: 140-18650-6

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.080		ppb v/v			03/25/20 21:00	•
Trichloroethene	0.26		0.036		ppb v/v			03/25/20 21:00	
Trichlorofluoromethane	0.53		0.080		ppb v/v			03/25/20 21:00	•
Vinyl chloride	ND		0.040		ppb v/v			03/25/20 21:00	•
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	28		0.44		ug/m3			03/25/20 21:00	•
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3			03/25/20 21:00	•
1,1,2-Trichloroethane	ND		0.44		ug/m3			03/25/20 21:00	•
1,1,2-Trichlorotrifluoroethane	ND		0.61		ug/m3			03/25/20 21:00	
1,1-Dichloroethane	3.8		0.32		ug/m3			03/25/20 21:00	•
1,1-Dichloroethene	1.6		0.16		ug/m3			03/25/20 21:00	•
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			03/25/20 21:00	•
1,2,4-Trimethylbenzene	1.5		0.39		ug/m3			03/25/20 21:00	•
1,2-Dibromoethane	ND		0.61		ug/m3			03/25/20 21:00	
1,2-Dichlorobenzene	ND		0.48		ug/m3			03/25/20 21:00	
1,2-Dichloroethane	1.6		0.32		ug/m3			03/25/20 21:00	
1,2-Dichloropropane	ND		0.37		ug/m3			03/25/20 21:00	
1,2-Dichlorotetrafluoroethane	ND		0.56		ug/m3			03/25/20 21:00	
1,3,5-Trimethylbenzene	0.46		0.39		ug/m3			03/25/20 21:00	
1,3-Dichlorobenzene	ND		0.48		ug/m3			03/25/20 21:00	
1,4-Dichlorobenzene	ND		0.48		ug/m3			03/25/20 21:00	
1,4-Dioxane	ND		0.72		ug/m3			03/25/20 21:00	
2,2,4-Trimethylpentane	ND		0.93		ug/m3			03/25/20 21:00	
2-Butanone	3.9		0.94		ug/m3			03/25/20 21:00	· · · · · · .
4-Methyl-2-pentanone (MIBK)	ND		0.82		ug/m3			03/25/20 21:00	
Benzene	1.2		0.26		ug/m3			03/25/20 21:00	
Benzyl chloride	ND		0.83		ug/m3			03/25/20 21:00	
Bromodichloromethane	ND		0.54		ug/m3			03/25/20 21:00	
Bromoform	ND		0.83		ug/m3			03/25/20 21:00	
Bromomethane	ND		0.31		ug/m3			03/25/20 21:00	
Carbon tetrachloride	0.55		0.20		ug/m3			03/25/20 21:00	
Chlorobenzene	ND		0.20		ug/m3			03/25/20 21:00	
Chloroethane	ND		0.37		ug/m3			03/25/20 21:00	,
Chloroform	1.5		0.21		•			03/25/20 21:00	
		<u>~</u> /			ug/m3				,
Chloromethane	2.7	9 ¹	0.41		ug/m3			03/25/20 21:00	
cis-1,2-Dichloroethene	ND ND		0.16		ug/m3			03/25/20 21:00	•
cis-1,3-Dichloropropene	ND ND		0.36 0.69		ug/m3			03/25/20 21:00	•
Cyclohexane					ug/m3			03/25/20 21:00	
Dibromochloromethane	ND		0.68		ug/m3			03/25/20 21:00	
Dichlorodifluoromethane	2.2	_	0.40		ug/m3			03/25/20 21:00	•
Ethanol	-1 200	-E	3.8		ug/m3			03/25/20 21:00	
Ethylbenzene	0.62		0.35		ug/m3			03/25/20 21:00	•
Hexachlorobutadiene	ND		0.85		ug/m3			03/25/20 21:00	•
Hexane	ND		0.70		ug/m3			03/25/20 21:00	
Methyl tert-butyl ether	ND		0.58		ug/m3			03/25/20 21:00	•
Methylene Chloride	ND		1.4		ug/m3			03/25/20 21:00	•
m-Xylene & p-Xylene	2.8		0.35		ug/m3			03/25/20 21:00	
Naphthalene	1.5		1.0		ug/m3			03/25/20 21:00	•

Client: New York State D.E.C.

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: LOB-1A

Lab Sample ID: 140-18650-6

Lab Sample ID: 140-18650-7

Matrix: Air

Date Collected: 03/20/20 16:20 Date Received: 03/23/20 09:45 Matrix: Air

Job ID: 140-18650-1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Styrene	5.0	0.34	ug/m3			03/25/20 21:00	1
t-Butyl alcohol	2.2	0.97	ug/m3			03/25/20 21:00	1
Tetrachloroethene	1.5	0.54	ug/m3			03/25/20 21:00	1
Toluene	3.1	0.45	ug/m3			03/25/20 21:00	1
trans-1,2-Dichloroethene	ND	0.32	ug/m3			03/25/20 21:00	1
trans-1,3-Dichloropropene	ND	0.36	ug/m3			03/25/20 21:00	1
Trichloroethene	1.4	0.19	ug/m3			03/25/20 21:00	1
Trichlorofluoromethane	3.0	0.45	ug/m3			03/25/20 21:00	1
Vinyl chloride	ND	0.10	ug/m3			03/25/20 21:00	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	60 - 140				03/25/20 21:00	1

Method: TO 15 LL - Volatile	Organic Comp	oounds in	Ambient Air,	Low C	oncentra	tion (G	C/MS) - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1600	ø	40		ppb v/v			03/26/20 20:43	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	3000	7	75		ug/m3			03/26/20 20:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	67		60 - 140		31/2/2/	10ZX		03/26/20 20:43	1

Client Sample ID: RM10-A
Date Collected: 03/20/20 16:22

Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	7.2	0.080		ppb v/v			03/25/20 21:59	1
1,1,2,2-Tetrachloroethane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,1,2-Trichloroethane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,1,2-Trichlorotrifluoroethane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,1-Dichloroethane	1.2	0.080		ppb v/v			03/25/20 21:59	1
1,1-Dichloroethene	0.48	0.040		ppb v/v			03/25/20 21:59	1
1,2,4-Trichlorobenzene	ND	0.080		ppb v/v			03/25/20 21:59	1
1,2,4-Trimethylbenzene	0.43	0.080		ppb v/v			03/25/20 21:59	1
1,2-Dibromoethane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,2-Dichlorobenzene	ND	0.080		ppb v/v			03/25/20 21:59	1
1,2-Dichloroethane	0.52	0.080		ppb v/v			03/25/20 21:59	1
1,2-Dichloropropane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,2-Dichlorotetrafluoroethane	ND	0.080		ppb v/v			03/25/20 21:59	1
1,3,5-Trimethylbenzene	0.11	0.080		ppb v/v			03/25/20 21:59	1
1,3-Dichlorobenzene	ND	0.080		ppb v/v			03/25/20 21:59	1
1,4-Dichlorobenzene	0.79	0.080		ppb v/v			03/25/20 21:59	1
1,4-Dioxane	ND	0.20		ppb v/v			03/25/20 21:59	1
2,2,4-Trimethylpentane	ND	0.20		ppb v/v			03/25/20 21:59	1
2-Butanone	1.3	0.32		ppb v/v			03/25/20 21:59	1
4-Methyl-2-pentanone (MIBK)	ND	0.20		ppb v/v			03/25/20 21:59	1
Benzene	0.54	0.080		ppb v/v			03/25/20 21:59	1

Page 28 of 729

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM10-A Lab Sample ID: 140-18650-7

Date Collected: 03/20/20 16:22 Matrix: Air Date Received: 03/23/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Benzyl chloride		0.16	ppb v/v		03/25/20 21:59	
Bromodichloromethane	ND	0.080	ppb v/v		03/25/20 21:59	
Bromoform	ND	0.080	ppb v/v		03/25/20 21:59	
Bromomethane	ND	0.080	ppb v/v		03/25/20 21:59	
Carbon tetrachloride	0.083	0.032	ppb v/v		03/25/20 21:59	
Chlorobenzene	ND	0.080	ppb v/v		03/25/20 21:59	
Chloroethane	ND	0.080	ppb v/v		03/25/20 21:59	
Chloroform	0.37	0.080	ppb v/v		03/25/20 21:59	
Chloromethane	1.2	0.20	ppb v/v		03/25/20 21:59	
cis-1,2-Dichloroethene	ND	0.040	ppb v/v		03/25/20 21:59	
cis-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 21:59	
Cyclohexane	ND	0.20	ppb v/v		03/25/20 21:59	
Dibromochloromethane	ND	0.080	ppb v/v		03/25/20 21:59	
Dichlorodifluoromethane	0.78	0.080	ppb v/v		03/25/20 21:59	
Ethanol	760 E	2.0	ppb v/v		03/25/20 21:59	
Ethylbenzene	0.19	0.080	ppb v/v		03/25/20 21:59	
Hexachlorobutadiene	ND	0.080	ppb v/v		03/25/20 21:59	
Hexane	ND	0.20	ppb v/v		03/25/20 21:59	
Methyl tert-butyl ether	ND	0.16	ppb v/v		03/25/20 21:59	
Methylene Chloride	ND	0.40	ppb v/v		03/25/20 21:59	
m-Xylene & p-Xylene	0.87	0.080	ppb v/v		03/25/20 21:59	
Naphthalene	0.28	0.20	ppb v/v		03/25/20 21:59	
o-Xylene	0.29	0.080	ppb v/v		03/25/20 21:59	
Styrene	1.8	0.080	ppb v/v		03/25/20 21:59	
t-Butyl alcohol	0.71	0.32	ppb v/v		03/25/20 21:59	
Tetrachloroethene	0.29	0.080	ppb v/v		03/25/20 21:59	
Toluene	1.1	0.12	ppb v/v		03/25/20 21:59	
trans-1,2-Dichloroethene	ND	0.080	ppb v/v		03/25/20 21:59	
trans-1,3-Dichloropropene	ND	0.080	ppb v/v		03/25/20 21:59	
Trichloroethene	0.34	0.036	ppb v/v		03/25/20 21:59	
Trichlorofluoromethane	0.64	0.080	ppb v/v		03/25/20 21:59	
Vinyl chloride	ND	0.040	ppb v/v		03/25/20 21:59	
			• • •			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	39	0.44	ug/m3		03/25/20 21:59	
1,1,2,2-Tetrachloroethane	ND	0.55	ug/m3		03/25/20 21:59	
1,1,2-Trichloroethane	ND	0.44	ug/m3		03/25/20 21:59	
1,1,2-Trichlorotrifluoroethane	ND	0.61	ug/m3		03/25/20 21:59	
1,1-Dichloroethane	4.9	0.32	ug/m3		03/25/20 21:59	
1,1-Dichloroethene	1.9	0.16	ug/m3		03/25/20 21:59	
1,2,4-Trichlorobenzene	ND	0.59	ug/m3		03/25/20 21:59	
1,2,4-Trimethylbenzene	2.1	0.39	ug/m3		03/25/20 21:59	
1,2-Dibromoethane	ND	0.61	ug/m3		03/25/20 21:59	
1,2-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 21:59	
1,2-Dichloroethane	2.1	0.32	ug/m3		03/25/20 21:59	
1,2-Dichloropropane	ND	0.37	ug/m3		03/25/20 21:59	
1,2-Dichlorotetrafluoroethane	ND	0.56	ug/m3		03/25/20 21:59	
1,3,5-Trimethylbenzene	0.54	0.39	ug/m3		03/25/20 21:59	
1,3-Dichlorobenzene	ND	0.48	ug/m3		03/25/20 21:59	

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM10-A

Date Collected: 03/20/20 16:22

Lab Sample ID: 140-18650-7

Matrix: Air

Date Collected: 03/20/20 16:22 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	4.7	0.48	ug/m3		03/25/20 21:59	•
1,4-Dioxane	ND	0.72	ug/m3		03/25/20 21:59	
2,2,4-Trimethylpentane	ND	0.93	ug/m3		03/25/20 21:59	•
2-Butanone	3.8	0.94	ug/m3		03/25/20 21:59	
4-Methyl-2-pentanone (MIBK)	ND	0.82	ug/m3		03/25/20 21:59	•
Benzene	1.7	0.26	ug/m3		03/25/20 21:59	•
Benzyl chloride	ND	0.83	ug/m3		03/25/20 21:59	
Bromodichloromethane	ND	0.54	ug/m3		03/25/20 21:59	
Bromoform	ND	0.83	ug/m3		03/25/20 21:59	
Bromomethane	ND	0.31	ug/m3		03/25/20 21:59	
Carbon tetrachloride	0.52	0.20	ug/m3		03/25/20 21:59	•
Chlorobenzene	ND	0.37	ug/m3		03/25/20 21:59	•
Chloroethane	ND	0.21	ug/m3		03/25/20 21:59	
Chloroform	1.8	0.39	ug/m3		03/25/20 21:59	•
Chloromethane	2.5	0.41	ug/m3		03/25/20 21:59	•
cis-1,2-Dichloroethene	ND	0.16	ug/m3		03/25/20 21:59	
cis-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 21:59	•
Cyclohexane	ND	0.69	ug/m3		03/25/20 21:59	•
Dibromochloromethane	ND	0.68	ug/m3		03/25/20 21:59	
Dichlorodifluoromethane	3.9	0.40	ug/m3		03/25/20 21:59	•
Ethanol	-1400 E	3.8	ug/m3		03/25/20 21:59	•
Ethylbenzene	0.83	0.35	ug/m3		03/25/20 21:59	
Hexachlorobutadiene	ND	0.85	ug/m3		03/25/20 21:59	•
Hexane	ND	0.70	ug/m3		03/25/20 21:59	•
Methyl tert-butyl ether	ND	0.58	ug/m3		03/25/20 21:59	
Methylene Chloride	ND	1.4	ug/m3		03/25/20 21:59	•
m-Xylene & p-Xylene	3.8	0.35	ug/m3		03/25/20 21:59	•
Naphthalene	1.5	1.0	ug/m3		03/25/20 21:59	
o-Xylene	1.3	0.35	ug/m3		03/25/20 21:59	•
Styrene	7.7	0.34	ug/m3		03/25/20 21:59	
t-Butyl alcohol	2.1	0.97	ug/m3		03/25/20 21:59	
Tetrachloroethene	2.0	0.54	ug/m3		03/25/20 21:59	
Toluene	4.1	0.45	ug/m3		03/25/20 21:59	
trans-1,2-Dichloroethene	ND	0.32	ug/m3		03/25/20 21:59	• • • • • • • •
trans-1,3-Dichloropropene	ND	0.36	ug/m3		03/25/20 21:59	
Trichloroethene	1.8	0.19	ug/m3		03/25/20 21:59	
Trichlorofluoromethane	3.6	0.45	ug/m3		03/25/20 21:59	
Vinyl chloride	ND	0.10	ug/m3		03/25/20 21:59	•
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fa

Method: TO 15 LL - Volatile O	Organic Compounds in Ambient Air, Low Concentration (GC/MS) - DL							•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	2000	<u> </u>	91		ppb v/v			03/27/20 20:37	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	3700	<u>b</u> –	170		ug/m3			03/27/20 20:37	1

Eurofins TestAmerica, Knoxville

04/03/2020

Client: New York State D.E.C. Job ID: 140-18650-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM10-A Lab Sample ID: 140-18650-7

Date Collected: 03/20/20 16:22 Date Received: 03/23/20 09:45

Sample Container: Summa Canister 6L

 Surrogate
 %Recovery 4-Bromofluorobenzene (Surr)
 Qualifier 500 - 140
 Limits 600 - 140
 Prepared 703/27/20 20:37
 Analyzed 703/27/20 20:37
 Dil Fac 703/27/20 20:37

Matrix: Air

Project: NYSDEC 31 Tonawanda St- Off- Site #C915332,

31 Tonawanda, New York

Laboratory: Eurofins Environment Testing TestAmerica, Knoxville, TN

Sample Delivery Group: 140-18908-1

Fraction: Organic

Matrix: Indoor/ Outdoor Air

Report Date: 7/19/2020

This data usability summary report is based upon a review of analytical data generated for indoor and outdoor air samples. One field duplicate sample was submitted with the samples for this Sample Delivery Group. The sample locations, laboratory identification numbers, sample collection dates, sample matrix, and analyses performed are presented in Table 1.

The sample was analyzed for volatile organic compounds. The sample analyses were performed in accordance with the procedures outlined in EPA Method TO-15 "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", Second Edition, EPA/625/R-96/010b, January 1999.

All sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. Results have been validated or qualified according to general guidance provided in the USEPA Region II "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15", SOP No. HW-31, revision 6, September 2016. The quality control requirements specified in the analysis method and associated acceptance criteria were also used to evaluate the data. The following parameters were evaluated.

- X Data Completeness
- X Chain of Custody Documentation/Sample Receipt
- X Sample Integrity/Holding Times
- X Instrument Performance
- X Initial and Continuing Calibrations
- X Laboratory and Field Blank Analysis Results
 - Surrogate Compound Recoveries
 - Matrix Spike/Matrix Spike Duplicate Recoveries and Reproducibility
- X Field Duplicate Analysis Results
- X Laboratory Control Sample Results
- X Internal Standard Performance
- X Canister Certification
- X Qualitative Identification
- X Quantitation/Reporting Limits

X - Denotes parameter evaluated.

It is recommended that the data only be used according to the qualifiers presented, and discussed in this report. All other data should be considered qualitatively and quantitatively valid as reported by the laboratory, based on the items evaluated.

Report Approved By:

Saudi Milos

Shawne M. Rodgers President

July 19, 2020

Date

The NYSDEC ASP Category B deliverable data were provided by the laboratory.

2.0 CHAIN OF CUSTODY DOCUMENTATION/SAMPLE RECEIPT

The chain of custody documentation was complete.

The samples were received in acceptable condition.

3.0 SAMPLE INTEGRITY/HOLDING TIMES

All criteria were met. No qualifiers were applied.

4.0 INSTRUMENT PERFORMANCE

All criteria were met. No qualifiers were applied.

5.0 INITIAL AND CONTINUING CALIBRATIONS

The continuing calibration precision criterion (the percent difference between initial and continuing RRFs \leq 30 percent) was exceeded for the following continuing calibration standards. This indicates a lack of instrument stability for these compounds. The nondetect results for these compounds not previously qualified from the associated initial calibration in the samples have been marked "UJ" to indicate that they are quantitative estimates.

Calibration Standard	Analyte	%Difference	Associated Samples
CCVIS 140-39252/2 (File ID GCCVD24.D)	Chloromethane 1,2,4-Trichlorobenzene Hexachlorobutadiene	30.9 -31.8 -30.5	RM 8-SS, RM 8-A, DUP-042020, HALL 1-SS, HALL 1-A, RM 5-SS, GRG 1-SS, OFC 2-SS, OFC 2-A Air 04
CCVIS 140-39254/7 (File ID RCCVD27A.D)	Dichlorodifluoromethane 1,2- Dichlorotetrafluoroethane Benzyl chloride	61.7 142.9 34.3	RM 6-SS, RM 6-A, RM 12-SS, UTL 1-SS

6.0 LABORATORY AND FIELD BLANK ANALYSIS RESULTS

No compounds were detected in the associated laboratory method blank.

Trip blanks and field blanks were not submitted with the samples. This should be noted when assessing the data.

7.0 SURROGATE COMPOUNDS

This parameter is not applicable to the analyses completed.

8.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES AND REPRODUCIBILITY

This parameter is not applicable to the analyses completed.

9.0 FIELD DUPLICATE RESULTS

Duplicate samples RM 6-A and DUP-042020 were submitted to the laboratory to evaluate sampling and analytical precision for those organic compounds determined to be present. Results for these duplicate samples are presented in Table 2. The results for trichlorofluoromethane for the duplicate samples exceeded a relative percent difference criterion of 50 %. Based on professional judgement, use of the higher concentration reported for the compound is recommended.

10.0 LABORATORY CONTROL SAMPLE RESULTS

The following table summarizes the volatile laboratory control sample (LCS) results that did not meet the indicated acceptance limits:

Compound	LCS (140-39254/1007) %REC	QC Limits
1,2-Dichlorotetrafluoroethane	243	60-140
Benzyl chloride	134	70-130
Dichlorodifluoromethane	162	60-140

The unacceptable recoveries for the above compounds suggest inefficiencies with the analytical processes. Samples RM 6-SS, RM 6-A, RM 12-SS, and UTL 1-SS were associated with the unacceptable LCS. The results for the compounds were qualified previously due to calibrations.

11.0 INTERNAL STANDARD PERFORMANCE

All criteria were met. No qualifiers were applied.

12.0 CANISTER CERTIFICATION

All criteria were met. No qualifiers were applied.

13.0 QUALITATIVE IDENTIFICATION

All criteria were met. No qualifiers were applied.

14.0 QUANTITATION/REPORTING LIMITS

Table 3 presents samples analyzed at dilutions for volatile organic compounds. The dilution analyses were performed because of suspected high concentrations of target compounds and/or interferences. RLs are elevated by the dilution factor have resulted for those compounds that were not detected. This should be noted when assessing the data.

The samples presented below were re-analyzed at dilutions for volatile organic compounds. The samples were re-analyzed because the responses for compounds exceeded the linear range of the GC/ MS instrument. The results for these compounds have been reported from the dilution analyses. All other results are reported from the initial analyses.

Sample	Dilution Factor	Results Exceeding the Linear Range
RM 8-SS	33.9	1,1,1-Trichloroethane, Ethanol
RM 6-SS	8322.36	Trichlorofluoromethane
HALL 1-SS	25.0	Ethanol
RM 5-SS	25.0	Ethanol
RM 12A	12.5	Ethanol
UTL 1-A	25.0	Ethanol
GRG 1-SS	25.0	Ethanol
OFC 2-SS	25.0	Ethanol

METHODOLOGY REFERENCES

Analysis	Reference			
Volatile Organic Compounds	Method TO-15, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", Second Edition, EPA/625/R-96/010b, January 1999			

Table 1 Data Usability Summary Report
NYSDEC 31 Tonawanda St- Off- Site #C915332
31 Tonawanda, New York
Indoor/ Outdoor Air Sampling
Test America Job ID 140-18908-1

Analyses Performed

Sample ID	Lab ID		Collection Date	Matrix	VOC	
RM 8-SS	140-18908	1	4/20/2020	Soil Vapor	X	-
RM 8-A	140-18908	2	4/20/2020	Soil Vapor	Χ	
RM 6-SS	140-18908	3	4/20/2020	Soil Vapor	Χ	
RM 6-A	140-18908	4	4/20/2020	Soil Vapor	Χ	
DUP-042020	140-18908	5	4/20/2020	Soil Vapor	Χ	
HALL 1-SS	140-18908	6	4/20/2020	Soil Vapor	Χ	
OUT 1-A	140-18908	7	4/20/2020	Soil Vapor	Χ	
HALL 1-A	140-18908	8	4/20/2020	Soil Vapor	X	
RM 5-SS	140-18908	9	4/20/2020	Soil Vapor	X	
RM 12-SS	140-18908	10	4/20/2020	Soil Vapor	X	
RM 12A	140-18908	11	4/20/2020	Soil Vapor	X	
UTL 1-SS	140-18908	12	4/20/2020	Soil Vapor	X	
UTL 1-A	140-18908	13	4/20/2020	Soil Vapor	X	
GRG 1-SS	140-18908	14	4/20/2020	Soil Vapor	X	
OFC 2-SS	140-18908	15	4/20/2020	Soil Vapor	X	
OFC 2-A Air 04	140-18908	16	4/20/2020	Soil Vapor	X	

Table 2 Field Duplicate Sample Results for Organic Analyses
Indoor/ Outdoor Air Samples RM6-A and DUP-042020

0 Compound	Sample Field Duplicate Result (μ g/m³) Result (μ g/m³)		RPD	
	RM6-A	DUP-042020		
1,1,1-Trichloroethane	44	46	4	
Ethanol	1700	1600	6	
Trichlorofluoromethane	1400	34	191	*

The field duplicate precision criterion was exceeded for this compound.

Sample ID	DF	
RM 8-SS	21.175	
RM 8-A	16.66667	
RM 6-SS	5427	
RM 6-A	25.0	
DUP-042020	25.0	
HALL 1-SS	10.0	
OUT 1-A	0.671141	
HALL 1-A	10.0	
RM 5-SS	10.0	
RM 12-SS	127.125	
RM 12A	10.0	
UTL 1-SS	140	
UTL 1-A	10.0	
GRG 1-SS	10.0	
OFC 2-SS	10.0	
OFC 2-A Air 04	10.0	

Data Validation Qualifier Code Glossary

- J The positive result reported for this analyte is a quantitative estimate.
- J+ The positive result reported for this analyte is a quantitative estimate, but may be biased high.
- J- The positive result reported for this analyte is a quantitative estimate, but may be biased low.
- $\boldsymbol{U}\,$ $\,$ This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- N This analyte has been "tentatively" identified. The numeric value represents its approximate concentration.
- Y This analyte coelutes with another target compound on the two chromatographic columns used for analysis.
- R The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

Other Codes:

- ND There were no positive results for this analytical fraction.
- NA This parameter is not applicable to this sample.
- NR This analysis parameter was not required for this sample.

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 8-SS

Lab Sample ID: 140-18908-1

Matrix: Air

Date Collected: 04/20/20 15:35 Date Received: 04/21/20 09:50

Method: TO 15 LL - Volatile (Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	-170-E	0.68	ppb v/v	 · _ ·	04/24/20 11:32	3.39
1,1,2,2-Tetrachloroethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,1,2-Trichloroethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,1,2-Trichlorotrifluoroethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,1-Dichloroethane	9.0	0.68	ppb v/v		04/24/20 11:32	3.39
1,1-Dichloroethene	0.73	0.34	ppb v/v		04/24/20 11:32	3.39
1,2,4-Trichlorobenzene	MD UJ	0.68	ppb v/v		04/24/20 11:32	
1,2,4-Trimethylbenzene	ND ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,2-Dibromoethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,2-Dichlorobenzene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,2-Dichloroethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,2-Dichloropropane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,2-Dichlorotetrafluoroethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,3,5-Trimethylbenzene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,3-Dichlorobenzene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,4-Dichlorobenzene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
1,4-Dioxane	ND	1.7	ppb v/v		04/24/20 11:32	3.39
2,2,4-Trimethylpentane	ND	1.7	ppb v/v		04/24/20 11:32	3.39
2-Butanone	ND	2.7	ppb v/v		04/24/20 11:32	3.39
4-Methyl-2-pentanone (MIBK)	ND	1.7	ppb v/v		04/24/20 11:32	3.39
Benzene	2.0	0.68	ppb v/v		04/24/20 11:32	3.39
Benzyl chloride	ND	1.4	ppb v/v		04/24/20 11:32	3.39
Bromodichloromethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Bromoform	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Bromomethane	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Carbon tetrachloride	ND	0.27	ppb v/v		04/24/20 11:32	3.39
Chlorobenzene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Chloroethane	ND	0.68			04/24/20 11:32	3.39
Chloroform	ND ND	0.68	ppb v/v		04/24/20 11:32	3.39
	MOUT	1.7	ppb v/v		04/24/20 11:32	3.35 10 10 20
Chloromethane			ppb v/v		04/24/20 11:32	
cis-1,2-Dichloroethene	ND ND	0.34 0.68	ppb v/v			3.39
cis-1,3-Dichloropropene	ND		ppb v/v		04/24/20 11:32	3.39
Cyclohexane	3.9	1.7	ppb v/v		04/24/20 11:32 04/24/20 11:32	3.39
Dibromochloromethane	ND	0.68	ppb v/v			3.39
Dichlorodifluoromethane	33	0.68	ppb v/v		04/24/20 11:32	3.39
Ethanol	-860-E	17	ppb v/v		04/24/20 11:32	3.39
Ethylbenzene	ND ///	0.68	ppb v/v		04/24/20 11:32	3.39
Hexachlorobutadiene	JUS UT	0.68	ppb v/v		04/24/20 11:32	
Hexane	8.4	1.7	ppb v/v		04/24/20 11:32	3.39
Methyl tert-butyl ether	ND	1.4	ppb v/v		04/24/20 11:32	3.39
Methylene Chloride	ND	3.4	ppb v/v		04/24/20 11:32	3.39
m-Xylene & p-Xylene	1.2	0.68	ppb v/v		04/24/20 11:32	3.39
Naphthalene	ND	1.7	ppb v/v		04/24/20 11:32	3.39
o-Xylene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Styrene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
t-Butyl alcohol	3.8	2.7	ppb v/v		04/24/20 11:32	3.39
Tetrachloroethene	ND	0.68	ppb v/v		04/24/20 11:32	3.39
Toluene	3.4	1.0	ppb v/v		04/24/20 11:32	3.39

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 8-SS

Lab Sample ID: 140-18908-1 Date Collected: 04/20/20 15:35

Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND ND	0.68	ppb v/v			04/24/20 11:32	3.3
trans-1,3-Dichloropropene	ND	0.68	ppb v/v			04/24/20 11:32	3.39
Trichloroethene	0.45	0.31	ppb v/v			04/24/20 11:32	3.39
Trichlorofluoromethane	ND	0.68	ppb v/v			04/24/20 11:32	3.39
Vinyl chloride	ND	0.34	ppb v/v			04/24/20 11:32	3.39
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	-900 E	3.7	ug/m3			04/24/20 11:32	3.39
1,1,2,2-Tetrachloroethane	ND	4.7	ug/m3			04/24/20 11:32	3.39
1,1,2-Trichloroethane	ND	3.7	ug/m3			04/24/20 11:32	3.39
1,1,2-Trichlorotrifluoroethane	ND	5.2	ug/m3			04/24/20 11:32	3.39
1,1-Dichloroethane	37	2.7	ug/m3			04/24/20 11:32	3.39
1,1-Dichloroethene	2.9	1.3	ug/m3			04/24/20 11:32	3.39
1,2,4-Trichlorobenzene	MUT	5.0	ug/m3			04/24/20 11:32	ICH 3.39
1,2,4-Trimethylbenzene	ND	3.3	ug/m3			04/24/20 11:32	3.39
1,2-Dibromoethane	ND	5.2	ug/m3			04/24/20 11:32	3.39
1,2-Dichlorobenzene	ND	4.1	ug/m3			04/24/20 11:32	3.39
1,2-Dichloroethane	ND	2.7	ug/m3			04/24/20 11:32	3.39
1,2-Dichloropropane	ND	3.1	ug/m3			04/24/20 11:32	3.39
1,2-Dichlorotetrafluoroethane	ND	4.7	ug/m3			04/24/20 11:32	3.39
1,3,5-Trimethylbenzene	ND	3.3	ug/m3			04/24/20 11:32	3.39
1,3-Dichlorobenzene	ND	4.1	ug/m3			04/24/20 11:32	3.39
1,4-Dichlorobenzene	ND	4.1	ug/m3			04/24/20 11:32	3.39
1,4-Dioxane	ND	6.1	ug/m3			04/24/20 11:32	3.39
2,2,4-Trimethylpentane	ND	7.9	ug/m3			04/24/20 11:32	3.39
2-Butanone	ND	8.0	ug/m3			04/24/20 11:32	3.39
4-Methyl-2-pentanone (MIBK)	ND	6.9	ug/m3			04/24/20 11:32	3.39
Benzene	6.3	2.2	ug/m3			04/24/20 11:32	3.39
Benzyl chloride	ND	7.0	ug/m3			04/24/20 11:32	3.39
Bromodichloromethane	ND	4.5	ug/m3			04/24/20 11:32	3.39
Bromoform	ND	7.0	ug/m3			04/24/20 11:32	3.39
Bromomethane	ND	2.6	ug/m3			04/24/20 11:32	3.39
Carbon tetrachloride	ND	1.7	ug/m3			04/24/20 11:32	3.39
Chlorobenzene	ND	3.1	ug/m3			04/24/20 11:32	3.39
Chloroethane	ND	1.8	ug/m3			04/24/20 11:32	3.39
Chloroform	ND, T	3.3	ug/m3			04/24/20 11:32	3.39
Chloromethane	NECO	3.5	ug/m3			04/24/20 11:32	CCH39
cis-1,2-Dichloroethene	ND	1.3	ug/m3			04/24/20 11:32	3.39
cis-1,3-Dichloropropene	ND	3.1	ug/m3			04/24/20 11:32	3.39
Cyclohexane	13	5.8	ug/m3			04/24/20 11:32	3.39
Dibromochloromethane	ND	5.8	ug/m3			04/24/20 11:32	3.39
Dichlorodifluoromethane	160	3.4	ug/m3			04/24/20 11:32	3.39
Ethanol	-1600 - E∕	32	ug/m3			04/24/20 11:32	3.39
Ethylbenzene	ND, _	2.9	ug/m3			04/24/20 11:32	3.39
Hexachlorobutadiene	MOUS	7.2	ug/m3			04/24/20 11:32	CC (3:39
Hexane	29	6.0	ug/m3			04/24/20 11:32	3.39
Methyl tert-butyl ether	ND	4.9	ug/m3			04/24/20 11:32	3.39
Methylene Chloride	ND	12	ug/m3			04/24/20 11:32	3.39
m-Xylene & p-Xylene	5.1	2.9	ug/m3			04/24/20 11:32	3.39

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 8-SS

Lab Sample ID: 140-18908-1 Date Collected: 04/20/20 15:35

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic	Compounds in Ambient Air, Low	Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		8.9		ug/m3			04/24/20 11:32	3.39
o-Xylene	ND		2.9		ug/m3			04/24/20 11:32	3.39
Styrene	ND		2.9		ug/m3			04/24/20 11:32	3.39
t-Butyl alcohol	12		8.2		ug/m3			04/24/20 11:32	3.39
Tetrachloroethene	ND		4.6		ug/m3			04/24/20 11:32	3.39
Toluene	13		3.8		ug/m3			04/24/20 11:32	3.39
trans-1,2-Dichloroethene	ND		2.7		ug/m3			04/24/20 11:32	3.39
trans-1,3-Dichloropropene	ND		3.1		ug/m3			04/24/20 11:32	3.39
Trichloroethene	2.4		1.6		ug/m3			04/24/20 11:32	3.39
Trichlorofluoromethane	ND		3.8		ug/m3			04/24/20 11:32	3.39
Vinyl chloride	ND		0.87		ug/m3			04/24/20 11:32	3.39
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		60 - 140			-		04/24/20 11:32	3.39

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	170	5	2.7		ppb v/v			04/27/20 13:51	3.39
Ethanol	770 7	Y	68		ppb v/v			04/27/20 13:51	3.39
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	920	3,	15		ug/m3			04/27/20 13:51	3.39
Ethanol	1500 🔎		130		ug/m3			04/27/20 13:51	3.39
Surrogate	%Recovery G	Qualifier	Limits		JUL,	nst6	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		60 - 140		2,116	12000 -		04/27/20 13:51	3.39

Lab Sample ID: 140-18908-2 Client Sample ID: RM 8-A Matrix: Air

Date Collected: 04/20/20 15:30 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	4.8	1.3	ppb v/v			04/24/20 12:16	1
1,1,2,2-Tetrachloroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,1,2-Trichloroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,1,2-Trichlorotrifluoroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,1-Dichloroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,1-Dichloroethene	ND	0.67	ppb v/v			04/24/20 12:16	1
1,2,4-Trichlorobenzene	MELLI	1.3	ppb v/v			04/24/20 12:16	aCH 1
1,2,4-Trimethylbenzene	ND	1.3	ppb v/v			04/24/20 12:16	1
1,2-Dibromoethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,2-Dichlorobenzene	ND	1.3	ppb v/v			04/24/20 12:16	1
1,2-Dichloroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,2-Dichloropropane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,2-Dichlorotetrafluoroethane	ND	1.3	ppb v/v			04/24/20 12:16	1
1,3,5-Trimethylbenzene	ND	1.3	ppb v/v			04/24/20 12:16	1
1,3-Dichlorobenzene	ND	1.3	ppb v/v			04/24/20 12:16	1
1,4-Dichlorobenzene	ND	1.3	ppb v/v			04/24/20 12:16	1

Page 14 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 8-A

Lab Sample ID: 140-18908-2 Date Collected: 04/20/20 15:30

Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND ND	3.3	ppb v/v		04/24/20 12:16	1
2,2,4-Trimethylpentane	ND	3.3	ppb v/v		04/24/20 12:16	1
2-Butanone	ND	5.3	ppb v/v		04/24/20 12:16	1
4-Methyl-2-pentanone (MIBK)	ND	3.3	ppb v/v		04/24/20 12:16	1
Benzene	ND	1.3	ppb v/v		04/24/20 12:16	1
Benzyl chloride	ND	2.7	ppb v/v		04/24/20 12:16	1
Bromodichloromethane	ND	1.3	ppb v/v		04/24/20 12:16	1
Bromoform	ND	1.3	ppb v/v		04/24/20 12:16	1
Bromomethane	ND	1.3	ppb v/v		04/24/20 12:16	1
Carbon tetrachloride	ND	0.53	ppb v/v		04/24/20 12:16	1
Chlorobenzene	ND	1.3	ppb v/v		04/24/20 12:16	1
Chloroethane	ND	1.3	ppb v/v		04/24/20 12:16	1
Chloroform	ND 🗩	1.3	ppb v/v		04/24/20 12:16	1
Chloromethane	NECO	3.3	ppb v/v		04/24/20 12:16	CCH_1
cis-1,2-Dichloroethene	ND	0.67	ppb v/v		04/24/20 12:16	1
cis-1,3-Dichloropropene	ND	1.3	ppb v/v		04/24/20 12:16	1
Cyclohexane	ND	3.3	ppb v/v		04/24/20 12:16	1
Dibromochloromethane	ND	1.3	ppb v/v		04/24/20 12:16	1
Dichlorodifluoromethane	ND	1.3	ppb v/v		04/24/20 12:16	1
Ethanol	550	33	ppb v/v		04/24/20 12:16	1
Ethylbenzene	ND	1.3	ppb v/v		04/24/20 12:16	1
Hexachlorobutadiene	MELAJ	1.3	ppb v/v		04/24/20 12:16	CC L
Hexane	ND	3.3	ppb v/v		04/24/20 12:16	1
Methyl tert-butyl ether	ND	2.7	ppb v/v		04/24/20 12:16	1
Methylene Chloride	ND	6.7	ppb v/v		04/24/20 12:16	1
m-Xylene & p-Xylene	ND	1.3	ppb v/v		04/24/20 12:16	1
Naphthalene	ND	3.3	ppb v/v		04/24/20 12:16	1
o-Xylene	ND	1.3	ppb v/v		04/24/20 12:16	1
Styrene	ND	1.3	ppb v/v		04/24/20 12:16	1
t-Butyl alcohol	ND	5.3	ppb v/v		04/24/20 12:16	1
Tetrachloroethene	ND	1.3	ppb v/v		04/24/20 12:16	1
Toluene	ND	2.0	ppb v/v		04/24/20 12:16	1
trans-1,2-Dichloroethene	ND	1.3	ppb v/v		04/24/20 12:16	1
trans-1,3-Dichloropropene	ND	1.3	ppb v/v		04/24/20 12:16	1
Trichloroethene	ND	0.60	ppb v/v		04/24/20 12:16	1
Trichlorofluoromethane	9.7	1.3	ppb v/v		04/24/20 12:16	1
Vinyl chloride	ND	0.67	ppb v/v		04/24/20 12:16	1
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	26	7.3	ug/m3		04/24/20 12:16	1
1,1,2,2-Tetrachloroethane	ND	9.2	ug/m3		04/24/20 12:16	1
1,1,2-Trichloroethane	ND	7.3	ug/m3		04/24/20 12:16	1
1,1,2-Trichlorotrifluoroethane	ND	10	ug/m3		04/24/20 12:16	1
1,1-Dichloroethane	ND	5.4	ug/m3		04/24/20 12:16	1
1,1-Dichloroethene	ND	2.6	ug/m3		04/24/20 12:16	1
1,2,4-Trichlorobenzene	MEUJ	9.9	ug/m3		04/24/20 12:16	CCHI
1,2,4-Trimethylbenzene	ND	6.6	ug/m3		04/24/20 12:16	1
1,2-Dibromoethane	ND	10	ug/m3		04/24/20 12:16	1
1,2-Dichlorobenzene	ND	8.0	ug/m3		04/24/20 12:16	1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 8-A

Lab Sample ID: 140-18908-2

Date Collected: 04/20/20 15:30 Matrix: Air Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Analyte	Result Qualifier	RL	MDL Unit	D`	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	5.4	ug/m3			04/24/20 12:16	
1,2-Dichloropropane	ND	6.2	ug/m3			04/24/20 12:16	•
1,2-Dichlorotetrafluoroethane	ND	9.3	ug/m3			04/24/20 12:16	
1,3,5-Trimethylbenzene	ND	6.6	ug/m3			04/24/20 12:16	•
1,3-Dichlorobenzene	ND	8.0	ug/m3			04/24/20 12:16	•
1,4-Dichlorobenzene	ND	8.0	ug/m3			04/24/20 12:16	
1,4-Dioxane	ND	12	ug/m3			04/24/20 12:16	
2,2,4-Trimethylpentane	ND	16	ug/m3			04/24/20 12:16	•
2-Butanone	ND	16	ug/m3			04/24/20 12:16	
4-Methyl-2-pentanone (MIBK)	ND	14	ug/m3			04/24/20 12:16	
Benzene	ND	4.3	ug/m3			04/24/20 12:16	
Benzyl chloride	ND	14	ug/m3			04/24/20 12:16	•
Bromodichloromethane	ND	8.9	ug/m3			04/24/20 12:16	
Bromoform	ND	14	ug/m3			04/24/20 12:16	
Bromomethane	ND	5.2	ug/m3			04/24/20 12:16	• • • • • • • •
Carbon tetrachloride	ND	3.4	ug/m3			04/24/20 12:16	
Chlorobenzene	ND	6.1	ug/m3			04/24/20 12:16	
Chloroethane	ND	3.5	ug/m3			04/24/20 12:16	• • • • • • • •
Chloroform	ND	6.5	ug/m3			04/24/20 12:16	
Chloromethane	DIE LAŪ	6.9	ug/m3			04/24/20 12:16	CCH.
cis-1,2-Dichloroethene	ND	2.6	ug/m3			04/24/20 12:16	
cis-1,3-Dichloropropene	ND	6.1	ug/m3			04/24/20 12:16	
Cyclohexane	ND	11	ug/m3			04/24/20 12:16	
Dibromochloromethane	ND	11	ug/m3			04/24/20 12:16	
Dichlorodifluoromethane	ND	6.6	ug/m3			04/24/20 12:16	
Ethanol	1000	63	ug/m3			04/24/20 12:16	
Ethylbenzene	ND _	5.8	ug/m3			04/24/20 12:16	· · · · · · · ·
Hexachlorobutadiene	ME CUT	14	ug/m3			04/24/20 12:16	01
Hexane	ND	12	ug/m3			04/24/20 12:16	
Methyl tert-butyl ether	ND	9.6	ug/m3			04/24/20 12:16	•
Methylene Chloride	ND	23	ug/m3			04/24/20 12:16	
m-Xylene & p-Xylene	ND	5.8	ug/m3			04/24/20 12:16	
Naphthalene	ND	17	ug/m3			04/24/20 12:16	•
o-Xylene	ND	5.8	ug/m3			04/24/20 12:16	
Styrene	ND	5.7	ug/m3			04/24/20 12:16	
t-Butyl alcohol	ND	16	ug/m3			04/24/20 12:16	
Tetrachloroethene	ND	9.0	ug/m3			04/24/20 12:16	
Toluene	ND	7.5	ug/m3			04/24/20 12:16	
trans-1,2-Dichloroethene	ND	5.3	ug/m3			04/24/20 12:16	•
trans-1,3-Dichloropropene	ND	6.1	ug/m3			04/24/20 12:16	
Trichloroethene	ND	3.2	ug/m3			04/24/20 12:16	
Trichlorofluoromethane	54	7.5	ug/m3			04/24/20 12:16	· · · · · · · · ·
Vinyl chloride	ND	1.7	ug/m3			04/24/20 12:16	
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93	60 - 140		_		04/24/20 12:16	-

Eurofins TestAmerica, Knoxville

Page 16 of 758

04/30/2020

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 6-SS

Date Collected: 04/20/20 15:40 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-3

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D Pre	pared Analyzed	Dil Fac
I,1,1-Trichloroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,1,2,2-Tetrachloroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,1,2-Trichloroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,1,2-Trichlorotrifluoroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,1-Dichloroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,1-Dichloroethene	ND	220	ppb v/v		04/27/20 14:38	108.54
1,2,4-Trichlorobenzene	ND	430	ppb v/v		04/27/20 14:38	108.54
,2,4-Trimethylbenzene	ND	430	ppb v/v		04/27/20 14:38	108.54
1,2-Dibromoethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,2-Dichlorobenzene	ND	430	ppb v/v		04/27/20 14:38	108.54
1,2-Dichloroethane	ND	430	ppb v/v		04/27/20 14:38	108.54
1,2-Dichloropropane	ND.	430	ppb v/v		04/27/20 14:38	108.54
1,2-Dichlorotetrafluoroethane	MILIT	430	ppb v/v		04/27/20 14:38	108.54 (
1,3,5-Trimethylbenzene	ND ND	430	ppb v/v		04/27/20 14:38	
1,3-Dichlorobenzene	ND	430	ppb v/v		04/27/20 14:38	
,4-Dichlorobenzene	ND	430	ppb v/v		04/27/20 14:38	108.54
1,4-Dioxane	ND	1100	ppb v/v		04/27/20 14:38	108.54
2,2,4-Trimethylpentane	ND	1100	ppb v/v		04/27/20 14:38	
2-Butanone	ND	1700	ppb v/v		04/27/20 14:38	
1-Methyl-2-pentanone (MIBK)	ND	1100	ppb v/v		04/27/20 14:38	
Benzene	ND	430	ppb v/v		04/27/20 14:38	
Benzyl chloride	W/W	870	ppb v/v		04/27/20 14:38	108.54
Bromodichloromethane	ND ND	430	ppb v/v		04/27/20 14:38	
Bromoform	ND	430	ppb v/v		04/27/20 14:38	
Bromomethane	ND	430	ppb v/v		04/27/20 14:38	108.54
Carbon tetrachloride	ND	170	ppb v/v		04/27/20 14:38	
Chlorobenzene	ND	430	ppb v/v		04/27/20 14:38	
Chloroethane	ND	430	ppb v/v		04/27/20 14:38	
Chloroform	ND	430	ppb v/v		04/27/20 14:38	
Chloromethane	ND	1100	ppb v/v		04/27/20 14:38	
cis-1,2-Dichloroethene	ND	220	ppb v/v		04/27/20 14:38	
sis-1,3-Dichloropropene	ND	430	ppb v/v		04/27/20 14:38	
Cyclohexane	ND	1100	ppb v/v		04/27/20 14:38	
Dibromochloromethane	ND	430	ppb v/v		04/27/20 14:38	
Dichlorodifluoromethane	Me flot	430	ppb v/v		04/27/20 14:38	-3
Ethanol	ND	11000	ppb v/v		04/27/20 14:38	_
Ethylbenzene	ND	430	ppb v/v		04/27/20 14:38	
Hexachlorobutadiene	ND	430	ppb v/v		04/27/20 14:38	
Hexane	ND	1100	ppb v/v		04/27/20 14:38	
Methyl tert-butyl ether	ND	870	ppb v/v		04/27/20 14:38	
Methylene Chloride	ND	2200	ppb v/v		04/27/20 14:38	
m-Xylene & p-Xylene	ND	430	ppb v/v		04/27/20 14:38	
Naphthalene	ND	1100	ppb v/v		04/27/20 14:38	
o-Xylene	ND	430	ppb v/v		04/27/20 14:38	
Styrene	ND	430	ppb v/v		04/27/20 14:38	
-Butyl alcohol	ND	1700	ppb v/v		04/27/20 14:38	
Fetrachloroethene	ND	430	ppb v/v		04/27/20 14:38	
Toluene	ND	650	ppb v/v		04/27/20 14:38	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 6-SS

Lab Sample ID: 140-18908-3 Date Collected: 04/20/20 15:40

Matrix: Air

Date Received: 04/21/20 09:50

Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
rans-1,2-Dichloroethene	ND		430		ppb v/v			04/27/20 14:38	108.54
ans-1,3-Dichloropropene	ND		430		ppb v/v			04/27/20 14:38	108.54
richloroethene	ND		200		ppb v/v			04/27/20 14:38	108.54
richlorofluoromethane	-560000	- E-	430		ppb v/v			04/27/20 14:38	108.54
'inyl chloride	ND		220		ppb v/v			04/27/20 14:38	108.54
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND		2400		ug/m3			04/27/20 14:38	108.54
1,2,2-Tetrachloroethane	ND		3000		ug/m3			04/27/20 14:38	108.54
,1,2-Trichloroethane	ND		2400		ug/m3			04/27/20 14:38	108.54
1,2-Trichlorotrifluoroethane	ND		3300		ug/m3			04/27/20 14:38	108.54
,1-Dichloroethane	ND		1800		ug/m3			04/27/20 14:38	108.54
1-Dichloroethene	ND		860		ug/m3			04/27/20 14:38	108.54
2,4-Trichlorobenzene	ND		3200		ug/m3			04/27/20 14:38	108.54
2,4-Trimethylbenzene	ND		2100		ug/m3			04/27/20 14:38	108.54
2-Dibromoethane	ND		3300		ug/m3			04/27/20 14:38	108.54
,2-Dichlorobenzene	ND		2600		ug/m3			04/27/20 14:38	108.54
,2-Dichloroethane	ND		1800		ug/m3			04/27/20 14:38	108.54
.2-Dichloropropane	ND		2000		ug/m3			04/27/20 14:38	108.54
,2-Dichlorotetrafluoroethane	NE	+ UT	3000		ug/m3			04/27/20 14:38	108.5
3,5-Trimethylbenzene	ND	,	2100		ug/m3			04/27/20 14:38	108.54
3-Dichlorobenzene	ND		2600		ug/m3			04/27/20 14:38	108.54
4-Dichlorobenzene	ND		2600		ug/m3			04/27/20 14:38	108.54
4-Dioxane	ND		3900		ug/m3			04/27/20 14:38	108.54
2,4-Trimethylpentane	ND		5100		ug/m3			04/27/20 14:38	108.54
-Butanone	ND		5100		ug/m3			04/27/20 14:38	108.54
-Methyl-2-pentanone (MIBK)	ND		4400		ug/m3			04/27/20 14:38	108.54
enzene	ND		1400		ug/m3			04/27/20 14:38	108.54
enzyl chloride	NE	HIT	4500		ug/m3			04/27/20 14:38	108.54
romodichloromethane	ND.	<i>)</i>	2900		ug/m3			04/27/20 14:38	108.54
romoform	ND		4500		ug/m3			04/27/20 14:38	108.54
romomethane	ND		1700		ug/m3			04/27/20 14:38	108.54
arbon tetrachloride	ND		1100		ug/m3			04/27/20 14:38	108.54
Chlorobenzene	ND		2000		ug/m3			04/27/20 14:38	108.54
hloroethane	ND		1100		ug/m3			04/27/20 14:38	108.54
Chloroform	ND		2100		ug/m3			04/27/20 14:38	108.54
hloromethane	ND		2200		ug/m3			04/27/20 14:38	108.54
s-1,2-Dichloroethene	ND		860		ug/m3			04/27/20 14:38	108.54
s-1,3-Dichloropropene	ND		2000		ug/m3			04/27/20 14:38	108.54
yclohexane	ND		3700		ug/m3			04/27/20 14:38	108.54
ibromochloromethane	ND		3700		ug/m3			04/27/20 14:38	108.54
ichlorodifluoromethane	NE NE	//IT	2100		ug/m3			04/27/20 14:38	108.54
thanol	ND	, and	20000		ug/m3			04/27/20 14:38	108.54
thylbenzene	ND		1900		ug/m3			04/27/20 14:38	108.54
exachlorobutadiene	ND		4600		ug/m3			04/27/20 14:38	108.54
exactiorobutagiene	ND ND		3800		-			04/27/20 14:38	108.54
					ug/m3			04/27/20 14:38	108.54
lethyl tert-butyl ether	ND		3100 7500		ug/m3				
lethylene Chloride n-Xylene & p-Xylene	ND ND		7500 1900		ug/m3 ug/m3			04/27/20 14:38 04/27/20 14:38	108.54 108.54

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 6-SS

Lab Sample ID: 140-18908-3

Date Collected: 04/20/20 15:40 **Matrix: Air** Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifi	er RL	MDL Unit	D Prepare	d Analyzed	Dil Fac
Naphthalene	ND	5700	ug/m3		04/27/20 14:38	108.54
o-Xylene	ND	1900	ug/m3		04/27/20 14:38	108.54
Styrene	ND	1800	ug/m3		04/27/20 14:38	108.54
t-Butyl alcohol	ND	5300	ug/m3		04/27/20 14:38	108.54
Tetrachloroethene	ND	2900	ug/m3		04/27/20 14:38	108.54
Toluene	ND	2500	ug/m3		04/27/20 14:38	108.54
trans-1,2-Dichloroethene	ND	1700	ug/m3		04/27/20 14:38	108.54
trans-1,3-Dichloropropene	ND	2000	ug/m3		04/27/20 14:38	108.54
Trichloroethene	ND	1000	ug/m3		04/27/20 14:38	108.54
Trichlorofluoromethane	-3200000 E	2400	ug/m3		04/27/20 14:38	108.54
Vinyl chloride	ND	550	ug/m3		04/27/20 14:38	108.54
Surrogate	%Recovery Qualif	ier Limits		Prepare	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84	60 - 140			04/27/20 14:38	108.54

Method: TO 15 LL - Volatile Organic Compounds in Amb	pient Air, Low Concentration (GC/MS) - DL
--	---

Analyte	Result	Qualifier	RL	MDL	Unit	D.	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	380000	<u>/</u>	33000		ppb v/v			04/28/20 14:05	8322.36
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	2100000	p	190000		ug/m3			04/28/20 14:05	8322.36
Surrogate	%Recovery	Qualifier	Limits		hm.		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140		AMN.	1115/20	26	04/28/20 14:05	8322.36

Client Sample ID: RM 6-A

Date Collected: 04/20/20 16:20 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-4

Matrix: Air

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	8.0	2.0	ppb v/v			04/27/20 15:26	1
1,1,2,2-Tetrachloroethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,1,2-Trichloroethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,1,2-Trichlorotrifluoroethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,1-Dichloroethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,1-Dichloroethene	ND	1.0	ppb v/v			04/27/20 15:26	1
1,2,4-Trichlorobenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,2,4-Trimethylbenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,2-Dibromoethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,2-Dichlorobenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,2-Dichloroethane	ND	2.0	ppb v/v			04/27/20 15:26	1
1,2-Dichloropropane	ND	2.0	ppb v/v			04/27/20 15:26	. 1
1,2-Dichlorotetrafluoroethane	NO HIS	2.0	ppb v/v			04/27/20 15:26	У Щ 1
1,3,5-Trimethylbenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,3-Dichlorobenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,4-Dichlorobenzene	ND	2.0	ppb v/v			04/27/20 15:26	1
1,4-Dioxane	ND	5.0	ppb v/v			04/27/20 15:26	1
2,2,4-Trimethylpentane	ND	5.0	ppb v/v			04/27/20 15:26	1

Page 19 of 758 04/30/2020

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 6-A

Lab Sample ID: 140-18908-4

Date Collected: 04/20/20 16:20 Matrix: Air Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
2-Butanone	ND ND	8.0	ppb v/v		04/27/20 15:26	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ppb v/v		04/27/20 15:26	
Benzene	ND	2.0	ppb v/v		04/27/20 15:26	
Benzyl chloride	NO/UJ	4.0	ppb v/v		04/27/20 15:26	CLH
Bromodichloromethane	ND	2.0	ppb v/v		04/27/20 15:26	
Bromoform	ND	2.0	ppb v/v		04/27/20 15:26	
Bromomethane	ND	2.0	ppb v/v		04/27/20 15:26	
Carbon tetrachloride	ND	0.80	ppb v/v		04/27/20 15:26	•
Chlorobenzene	ND	2.0	ppb v/v		04/27/20 15:26	•
Chloroethane	ND	2.0	ppb v/v		04/27/20 15:26	
Chloroform	ND	2.0	ppb v/v		04/27/20 15:26	
Chloromethane	ND	5.0	ppb v/v		04/27/20 15:26	
cis-1,2-Dichloroethene	ND	1.0	ppb v/v		04/27/20 15:26	
cis-1,3-Dichloropropene	ND	2.0	ppb v/v		04/27/20 15:26	
Cyclohexane	ND	5.0	ppb v/v		04/27/20 15:26	
Dibromochloromethane	ND	2.0	ppb v/v		04/27/20 15:26	
Dichlorodifluoromethane	NE 14J	2.0	ppb v/v		04/27/20 15:26	еан .
Ethanol	920	50	ppb v/v		04/27/20 15:26	
Ethylbenzene	ND	2.0	ppb v/v		04/27/20 15:26	
Hexachlorobutadiene	ND	2.0	ppb v/v		04/27/20 15:26	
Hexane	ND	5.0	ppb v/v		04/27/20 15:26	
Methyl tert-butyl ether	ND	4.0	ppb v/v		04/27/20 15:26	
Methylene Chloride	ND	10	ppb v/v		04/27/20 15:26	
m-Xylene & p-Xylene	ND	2.0	ppb v/v		04/27/20 15:26	
Naphthalene	ND	5.0	ppb v/v		04/27/20 15:26	
o-Xylene	ND	2.0	ppb v/v		04/27/20 15:26	
Styrene	ND	2.0	ppb v/v		04/27/20 15:26	
t-Butyl alcohol	ND	8.0	ppb v/v		04/27/20 15:26	
Tetrachloroethene	ND	2.0	ppb v/v		04/27/20 15:26	
Toluene	ND	3.0	ppb v/v		04/27/20 15:26	
trans-1,2-Dichloroethene	ND	2.0	ppb v/v		04/27/20 15:26	
trans-1,3-Dichloropropene	ND	2.0	ppb v/v		04/27/20 15:26	
Trichloroethene	ND	0.90	ppb v/v		04/27/20 15:26	
Trichlorofluoromethane	260	2.0	ppb v/v		04/27/20 15:26	
Vinyl chloride	ND	1.0	ppb v/v		04/27/20 15:26	
•				D D		
Analyte	Result Qualifier	RL _	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	44	11	ug/m3		04/27/20 15:26	
1,1,2,2-Tetrachloroethane	ND	14	ug/m3		04/27/20 15:26	•
1,1,2-Trichloroethane	ND	11	ug/m3		04/27/20 15:26	
1,1,2-Trichlorotrifluoroethane	ND	15	ug/m3		04/27/20 15:26	
1,1-Dichloroethane	ND	8.1	ug/m3		04/27/20 15:26	•
1,1-Dichloroethene	ND	4.0	ug/m3		04/27/20 15:26	
1,2,4-Trichlorobenzene	ND	15	ug/m3		04/27/20 15:26	
1,2,4-Trimethylbenzene	ND	9.8	ug/m3		04/27/20 15:26	
1,2-Dibromoethane	ND	15	ug/m3		04/27/20 15:26	
1,2-Dichlorobenzene	ND	12	ug/m3		04/27/20 15:26	•
1,2-Dichloroethane	ND	8.1	ug/m3		04/27/20 15:26	•
1,2-Dichloropropane	ND	9.2	ug/m3		04/27/20 15:26	•

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 6-A

Lab Sample ID: 140-18908-4 Date Collected: 04/20/20 16:20

Matrix: Air Date Received: 04/21/20 09:50

Analyte	Result Qual		MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorotetrafluoroethane	- July Tax	\int 14	ug/m3	_	04/27/20 15:26	oc.
1,3,5-Trimethylbenzene	ND	9.8	ug/m3		04/27/20 15:26	1
1,3-Dichlorobenzene	ND	12	ug/m3		04/27/20 15:26	1
1,4-Dichlorobenzene	ND	12	ug/m3		04/27/20 15:26	1
1,4-Dioxane	ND	18	ug/m3		04/27/20 15:26	1
2,2,4-Trimethylpentane	ND	23	ug/m3		04/27/20 15:26	1
2-Butanone	ND	24	ug/m3		04/27/20 15:26	1
4-Methyl-2-pentanone (MIBK)	ND	20	ug/m3		04/27/20 15:26	1
Benzene	ND ,	6.4	ug/m3		04/27/20 15:26	1
Benzyl chloride	NE / CO	\mathcal{J} 21	ug/m3		04/27/20 15:26	CH
Bromodichloromethane	ND^{\prime}	13	ug/m3		04/27/20 15:26	1
Bromoform	ND	21	ug/m3		04/27/20 15:26	1
Bromomethane	ND	7.8	ug/m3		04/27/20 15:26	1
Carbon tetrachloride	ND	5.0	ug/m3		04/27/20 15:26	1
Chlorobenzene	ND	9.2	ug/m3		04/27/20 15:26	1
Chloroethane	ND	5.3	ug/m3		04/27/20 15:26	1
Chloroform	ND	9.8	ug/m3		04/27/20 15:26	1
Chloromethane	ND	10	ug/m3		04/27/20 15:26	1
cis-1,2-Dichloroethene	ND	4.0	ug/m3		04/27/20 15:26	1
cis-1,3-Dichloropropene	ND	9.1	ug/m3		04/27/20 15:26	1
Cyclohexane	ND	17	ug/m3		04/27/20 15:26	1
Dibromochloromethane	ND .	17	ug/m3		04/27/20 15:26	1
Dichlorodifluoromethane	NE //N	9.9	ug/m3		04/27/20 15:26	CCH 1
Ethanol	1700	94	ug/m3		04/27/20 15:26	. 1
Ethylbenzene	ND	8.7	ug/m3		04/27/20 15:26	1
Hexachlorobutadiene	ND	21	ug/m3		04/27/20 15:26	1
Hexane	ND	18	ug/m3		04/27/20 15:26	1
Methyl tert-butyl ether	ND	14	ug/m3		04/27/20 15:26	1
Methylene Chloride	ND	35	ug/m3		04/27/20 15:26	1
m-Xylene & p-Xylene	ND	8.7	ug/m3		04/27/20 15:26	1
Naphthalene	ND	26	ug/m3		04/27/20 15:26	1
o-Xylene	ND	8.7	ug/m3		04/27/20 15:26	1
Styrene	ND	8.5	ug/m3		04/27/20 15:26	1
t-Butyl alcohol	ND	24	ug/m3		04/27/20 15:26	1
Tetrachloroethene	ND	14	ug/m3		04/27/20 15:26	1
Toluene	ND	11	ug/m3		04/27/20 15:26	1
trans-1,2-Dichloroethene	ND	7.9	ug/m3		04/27/20 15:26	1
trans-1,3-Dichloropropene	ND	9.1	ug/m3		04/27/20 15:26	1
Trichloroethene	ND	4.8	ug/m3		04/27/20 15:26	1
Trichlorofluoromethane	1400	11	ug/m3		04/27/20 15:26	1
Vinyl chloride	ND	2.6	ug/m3		04/27/20 15:26	1
Surrogate	%Recovery Qua	lifier Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	60 - 140			04/27/20 15:26	1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-042020

Date Collected: 04/20/20 16:20 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-5

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	8.4	2.0	ppb v/v		04/24/20 14:28	
1,1,2,2-Tetrachloroethane	ND	2.0	ppb v/v		04/24/20 14:28	•
1,1,2-Trichloroethane	ND	2.0	ppb v/v		04/24/20 14:28	
1,1,2-Trichlorotrifluoroethane	ND	2.0	ppb v/v		04/24/20 14:28	
1,1-Dichloroethane	ND	2.0	ppb v/v		04/24/20 14:28	•
1,1-Dichloroethene	ND _	1.0	ppb v/v		04/24/20 14:28	
1,2,4-Trichlorobenzene	WELDT	2.0	ppb v/v		04/24/20 14:28	CCH
1,2,4-Trimethylbenzene	ND	2.0	ppb v/v		04/24/20 14:28	•
1,2-Dibromoethane	ND	2.0	ppb v/v		04/24/20 14:28	•
1,2-Dichlorobenzene	ND	2.0	ppb v/v		04/24/20 14:28	
1,2-Dichloroethane	ND	2.0	ppb v/v		04/24/20 14:28	
1,2-Dichloropropane	ND	2.0	ppb v/v		04/24/20 14:28	
1,2-Dichlorotetrafluoroethane	ND	2.0	ppb v/v		04/24/20 14:28	
1,3,5-Trimethylbenzene	ND	2.0	ppb v/v		04/24/20 14:28	
1,3-Dichlorobenzene	ND	2.0	ppb v/v		04/24/20 14:28	
1,4-Dichlorobenzene	ND	2.0	ppb v/v		04/24/20 14:28	• • • • • • • •
1,4-Dioxane	ND	5.0	ppb v/v		04/24/20 14:28	
2,2,4-Trimethylpentane	ND	5.0	ppb v/v		04/24/20 14:28	
2-Butanone	ND	8.0	ppb v/v		04/24/20 14:28	
1-Methyl-2-pentanone (MIBK)	ND	5.0	ppb v/v		04/24/20 14:28	
Benzene	ND	2.0	ppb v/v		04/24/20 14:28	
Benzyl chloride	ND	4.0	ppb v/v		04/24/20 14:28	
Bromodichloromethane	ND	2.0	ppb v/v		04/24/20 14:28	
Bromoform	ND	2.0	ppb v/v		04/24/20 14:28	
Bromomethane	ND	2.0	ppb v/v		04/24/20 14:28	
Carbon tetrachloride	ND	0.80	ppb v/v		04/24/20 14:28	
Chlorobenzene	ND	2.0	ppb v/v		04/24/20 14:28	
Chloroethane	ND	2.0	ppb v/v		04/24/20 14:28	
Chloroform	ND _	2.0	ppb v/v		04/24/20 14:28	
Chloromethane	MY UT	5.0	ppb v/v		04/24/20 14:28	CCI
cis-1,2-Dichloroethene	ND	1.0	ppb v/v		04/24/20 14:28	· · · · · · · · · · · ·
cis-1,3-Dichloropropene	ND	2.0	ppb v/v		04/24/20 14:28	
Cyclohexane	ND	5.0	ppb v/v		04/24/20 14:28	
Dibromochloromethane	ND	2.0	ppb v/v		04/24/20 14:28	,
Dichlorodifluoromethane	ND	2.0	ppb v/v		04/24/20 14:28	
Ethanol	830	50	ppb v/v		04/24/20 14:28	
Ethylbenzene	ND	2.0	ppb v/v		04/24/20 14:28	,
Hexachlorobutadiene	W UT	2.0	ppb v/v		04/24/20 14:28	Œ
Hexane	ND	5.0	ppb v/v		04/24/20 14:28	
Methyl tert-butyl ether	ND	4.0	ppb v/v		04/24/20 14:28	
Methylene Chloride	ND	10	ppb v/v		04/24/20 14:28	
n-Xylene & p-Xylene	ND	2.0	ppb v/v		04/24/20 14:28	
Naphthalene	ND	5.0	ppb v/v		04/24/20 14:28	
o-Xylene	ND	2.0	ppb v/v		04/24/20 14:28	
Styrene	ND	2.0	ppb v/v		04/24/20 14:28	
t-Butyl alcohol	ND	8.0	ppb v/v		04/24/20 14:28	
Tetrachloroethene	ND	2.0	ppb v/v		04/24/20 14:28	
Toluene	ND	3.0	ppb v/v		04/24/20 14:28	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-042020

Date Collected: 04/20/20 16:20 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-5

Matrix: Air

Analyte trans-1,2-Dichloroethene	Result Qualifier ND	2.0	ppb v/v	— –	-	04/24/20 14:28	
	ND	2.0				04/24/20 14:28	
trans-1,3-Dichloropropene Trichloroethene			ppb v/v				
	ND	0.90	ppb v/v			04/24/20 14:28	
Trichlorofluoromethane	6.1 ND	2.0 1.0	ppb v/v			04/24/20 14:28 04/24/20 14:28	
Vinyl chloride			ppb v/v				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
I,1,1-Trichloroethane	46	11	ug/m3			04/24/20 14:28	
1,1,2,2-Tetrachloroethane	ND	14	ug/m3			04/24/20 14:28	
1,1,2-Trichloroethane	ND	11	ug/m3			04/24/20 14:28	
1,1,2-Trichlorotrifluoroethane	ND	15	ug/m3			04/24/20 14:28	
1,1-Dichloroethane	ND	8.1	ug/m3			04/24/20 14:28	
1,1-Dichloroethene	ND	4.0	ug/m3			04/24/20 14:28	
1,2,4-Trichlorobenzene	W/W	15	ug/m3			04/24/20 14:28	COL
1,2,4-Trimethylbenzene	ND	9.8	ug/m3			04/24/20 14:28	
1,2-Dibromoethane	ND	15	ug/m3			04/24/20 14:28	
1,2-Dichlorobenzene	ND	12	ug/m3			04/24/20 14:28	
1,2-Dichloroethane	ND	8.1	ug/m3			04/24/20 14:28	
1,2-Dichloropropane	ND	9.2	ug/m3			04/24/20 14:28	
1,2-Dichlorotetrafluoroethane	ND	14	ug/m3			04/24/20 14:28	
1,3,5-Trimethylbenzene	ND	9.8	ug/m3			04/24/20 14:28	
1,3-Dichlorobenzene	ND	12	ug/m3			04/24/20 14:28	
1,4-Dichlorobenzene	ND	12	ug/m3			04/24/20 14:28	
1,4-Dioxane	ND	18	ug/m3			04/24/20 14:28	
2,2,4-Trimethylpentane	ND	23	ug/m3			04/24/20 14:28	
2-Butanone	ND	24	ug/m3			04/24/20 14:28	
4-Methyl-2-pentanone (MIBK)	ND	20	ug/m3			04/24/20 14:28	
Benzene	ND	6.4	ug/m3			04/24/20 14:28	
Benzyl chloride	ND	21	ug/m3			04/24/20 14:28	
Bromodichloromethane	ND	13	ug/m3			04/24/20 14:28	
Bromoform	ND	21	ug/m3			04/24/20 14:28	
Bromomethane	ND	7.8	ug/m3			04/24/20 14:28	
Carbon tetrachloride	ND	5.0	ug/m3			04/24/20 14:28	
Chlorobenzene	ND	9.2	ug/m3			04/24/20 14:28	
Chloroethane	ND	5.3	ug/m3			04/24/20 14:28	
Chloroform	ND	9.8	ug/m3			04/24/20 14:28	
Chloromethane	on contraction of the contractio	10	ug/m3			04/24/20 14:28	CCL
cis-1,2-Dichloroethene	ND	4.0	ug/m3			04/24/20 14:28	
cis-1,3-Dichloropropene	ND	9.1	ug/m3			04/24/20 14:28	
Cyclohexane	ND	17	ug/m3			04/24/20 14:28	
Dibromochloromethane	ND	17	ug/m3			04/24/20 14:28	
Dichlorodifluoromethane	ND	9.9	ug/m3			04/24/20 14:28	
Ethanol	1600	94	ug/m3			04/24/20 14:28	
Ethylbenzene	ND	8.7	ug/m3			04/24/20 14:28	
Hexachlorobutadiene	ND //J	21	ug/m3			04/24/20 14:28	CCI
Hexane	ND ND	18	ug/m3			04/24/20 14:28	٠
Methyl tert-butyl ether	ND	14	ug/m3			04/24/20 14:28	
Methylene Chloride	ND ND	35	ug/m3			04/24/20 14:28	
m-Xylene & p-Xylene	ND ND	35 8.7	ug/m3			04/24/20 14:28	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: DUP-042020

Lab Sample ID: 140-18908-5

Matrix: Air

Date Collected: 04/20/20 16:20 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		26		ug/m3			04/24/20 14:28	1
o-Xylene	ND		8.7		ug/m3			04/24/20 14:28	1
Styrene	ND		8.5		ug/m3			04/24/20 14:28	1
t-Butyl alcohol	ND		24		ug/m3			04/24/20 14:28	1
Tetrachloroethene	ND		14		ug/m3			04/24/20 14:28	1
Toluene	ND		11		ug/m3			04/24/20 14:28	1
trans-1,2-Dichloroethene	ND		7.9		ug/m3			04/24/20 14:28	1
trans-1,3-Dichloropropene	ND		9.1		ug/m3			04/24/20 14:28	1
Trichloroethene	ND		4.8		ug/m3			04/24/20 14:28	1
Trichlorofluoromethane	34		11		ug/m3			04/24/20 14:28	1
Vinyl chloride	ND		2.6		ug/m3			04/24/20 14:28	1
Surrogate	%Recovery	Qualifier	Limits	S	1 n		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140	6	7115/202	<i>(</i>)		04/24/20 14:28	1

ND

Client Sample ID: HALL 1-SS

Date Collected: 04/20/20 16:50 Date Received: 04/21/20 09:50

Chlorobenzene

Lab Sample ID: 140-18908-6

Matrix: Air

Method: TO 15 LL - Volatile (Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	18	0.80	ppb v/v	<u> </u>	04/24/20 15:16	1
1,1,2,2-Tetrachloroethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,1,2-Trichloroethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,1-Dichloroethane	0.89	0.80	ppb v/v		04/24/20 15:16	1
1,1-Dichloroethene	0.64	0.40	ppb v/v		04/24/20 15:16	1
1,2,4-Trichlorobenzene	NECLI	0.80	ppb v/v		04/24/20 15:16	CCH1
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 15:16	1
1,2-Dibromoethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,2-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 15:16	1
1,2-Dichloroethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,2-Dichloropropane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v		04/24/20 15:16	1
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 15:16	1
1,3-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 15:16	1
1,4-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 15:16	1
1,4-Dioxane	ND	2.0	ppb v/v		04/24/20 15:16	1
2,2,4-Trimethylpentane	ND	2.0	ppb v/v		04/24/20 15:16	1
2-Butanone	3.2	3.2	ppb v/v		04/24/20 15:16	1
4-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v		04/24/20 15:16	1
Benzene	5.8	0.80	ppb v/v		04/24/20 15:16	1
Benzyl chloride	ND	1.6	ppb v/v		04/24/20 15:16	1
Bromodichloromethane	ND	0.80	ppb v/v		04/24/20 15:16	1
Bromoform	ND	0.80	ppb v/v		04/24/20 15:16	1
Bromomethane	ND	0.80	ppb v/v		04/24/20 15:16	1
Carbon tetrachloride	ND	0.32	ppb v/v		04/24/20 15:16	1

0.80

Eurofins TestAmerica, Knoxville

04/24/20 15:16

Page 24 of 758 04/30/2020

ppb v/v

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: HALL 1-SS

Lab Sample ID: 140-18908-6 Date Collected: 04/20/20 16:50

Matrix: Air

Date Received: 04/21/20 09:50 Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	ND	0.80		ppb v/v			04/24/20 15:16	
Chloroform	ND	0.80	1	ppb v/v			04/24/20 15:16	
Chloromethane	MCat	2.0	ı	ppb v/v			04/24/20 15:16	OCH
cis-1,2-Dichloroethene	ND	0.40		ppb v/v			04/24/20 15:16	
cis-1,3-Dichloropropene	ND	0.80	ı	ppb v/v			04/24/20 15:16	
Cyclohexane	5 5	2.0	1	ppb v/v			04/24/20 15:16	
Dibromochloromethane	ND	0.80	1	ppb v/v			04/24/20 15:16	
Dichlorodifluoromethane	0.90	0.80	1	ppb v/v			04/24/20 15:16	
Ethanol	-1000 E	20	1	ppb v/v			04/24/20 15:16	
Ethylbenzene	ND	0.80	1	ppb v/v			04/24/20 15:16	
Hexachlorobutadiene	MOLLY	0.80	1	ppb v/v			04/24/20 15:16	col
Hexane	61	2.0	ı	ppb v/v			04/24/20 15:16	
Methyl tert-butyl ether	ND	1.6		ppb v/v			04/24/20 15:16	
Methylene Chloride	ND	4.0	ı	ppb v/v			04/24/20 15:16	
m-Xylene & p-Xylene	ND	0.80		ppb v/v			04/24/20 15:16	
Naphthalene	ND	2.0		ppb v/v			04/24/20 15:16	
o-Xylene	ND	0.80		ppb v/v			04/24/20 15:16	
Styrene	ND	0.80		ppb v/v			04/24/20 15:16	
t-Butyl alcohol	5.3	3.2		ppb v/v			04/24/20 15:16	
Tetrachloroethene	ND	0.80		ppb v/v			04/24/20 15:16	
Toluene	1.9	1.2		ppb v/v			04/24/20 15:16	
trans-1,2-Dichloroethene	ND	0.80		ppb v/v			04/24/20 15:16	
trans-1,3-Dichloropropene	ND	0.80		ppb v/v			04/24/20 15:16	
Trichloroethene	0.39	0.36		ppb v/v			04/24/20 15:16	
Trichlorofluoromethane	5.8	0.80		ppb v/v			04/24/20 15:16	
Vinyl chloride	ND	0.40		ppb v/v			04/24/20 15:16	
Analyte	Result Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	96	4.4		ug/m3		•	04/24/20 15:16	
1,1,2,2-Tetrachloroethane	ND	5.5		ug/m3			04/24/20 15:16	
1,1,2-Trichloroethane	ND	4.4		ug/m3			04/24/20 15:16	
1,1,2-Trichlorotrifluoroethane	ND	6.1		ug/m3			04/24/20 15:16	
1,1-Dichloroethane	3.6	3.2		ug/m3			04/24/20 15:16	
1,1-Dichloroethene	2.6	1.6		ug/m3			04/24/20 15:16	
1,2,4-Trichlorobenzene	MOUT	5.9		ug/m3			04/24/20 15:16	CC4
1,2,4-Trimethylbenzene	ND	3.9		ug/m3			04/24/20 15:16	
1,2-Dibromoethane	ND	6.1		ug/m3			04/24/20 15:16	
1,2-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 15:16	
1,2-Dichloroethane	ND	3.2		ug/m3			04/24/20 15:16	
1,2-Dichloropropane	ND	3.7		ug/m3			04/24/20 15:16	
1,2-Dichlorotetrafluoroethane	ND	5.6		ug/m3			04/24/20 15:16	
1,3,5-Trimethylbenzene	ND	3.9		ug/m3			04/24/20 15:16	
1,3-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 15:16	
1,4-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 15:16	
1,4-Dioxane	ND	7.2		ug/m3			04/24/20 15:16	
2,2,4-Trimethylpentane	ND	9.3		ug/m3			04/24/20 15:16	
2-Butanone	9.4	9.4		ug/m3			04/24/20 15:16	
4-Methyl-2-pentanone (MIBK)	ND	8.2		ug/m3 ug/m3			04/24/20 15:16	
. monty 2 pontanone (Mibit)	18	2.6		ug/m3			04/24/20 15:16	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: HALL 1-SS

Lab Sample ID: 140-18908-6 Date Collected: 04/20/20 16:50

Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzyl chloride	ND —	8.3	ug/m3		04/24/20 15:16	1
Bromodichloromethane	ND	5.4	ug/m3		04/24/20 15:16	1
Bromoform	ND	8.3	ug/m3		04/24/20 15:16	1
Bromomethane	ND	3.1	ug/m3		04/24/20 15:16	1
Carbon tetrachloride	ND	2.0	ug/m3		04/24/20 15:16	1
Chlorobenzene	ND	3.7	ug/m3		04/24/20 15:16	1
Chloroethane	ND	2.1	ug/m3		04/24/20 15:16	1
Chloroform	ND	3.9	ug/m3		04/24/20 15:16	1
Chloromethane	MOUT	4.1	ug/m3		04/24/20 15:16	OCH 1
cis-1,2-Dichloroethene	ND	1.6	ug/m3		04/24/20 15:16	1
cis-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 15:16	1
Cyclohexane	190	6.9	ug/m3		04/24/20 15:16	1
Dibromochloromethane	ND	6.8	ug/m3		04/24/20 15:16	1
Dichlorodifluoromethane	4.4	4.0	ug/m3		04/24/20 15:16	1
Ethanol	1900 € `	38	ug/m3		04/24/20 15:16	1
Ethylbenzene	ND _	3.5	ug/m3		04/24/20 15:16	1
Hexachlorobutadiene	MOUS	8.5	ug/m3		04/24/20 15:16	CCL 1
Hexane	210	7.0	ug/m3		04/24/20 15:16	1
Methyl tert-butyl ether	ND	5.8	ug/m3		04/24/20 15:16	1
Methylene Chloride	ND	14	ug/m3		04/24/20 15:16	1
m-Xylene & p-Xylene	ND	3.5	ug/m3		04/24/20 15:16	1
Naphthalene	ND	10	ug/m3		04/24/20 15:16	1
o-Xylene	ND	3.5	ug/m3		04/24/20 15:16	1
Styrene	ND	3.4	ug/m3		04/24/20 15:16	1
t-Butyl alcohol	16	9.7	ug/m3		04/24/20 15:16	1
Tetrachloroethene	ND	5.4	ug/m3		04/24/20 15:16	1
Toluene	7.1	4.5	ug/m3		04/24/20 15:16	1
trans-1,2-Dichloroethene	ND	3.2	ug/m3		04/24/20 15:16	1
trans-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 15:16	1
Trichloroethene	2.1	1.9	ug/m3		04/24/20 15:16	1
Trichlorofluoromethane	33	4.5	ug/m3		04/24/20 15:16	1
Vinyl chloride	ND	1.0	ug/m3		04/24/20 15:16	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

Method: TO 15 LL - Volatile	Organic Com	pounds in	Ambient Air	, Low C	oncentra	tion (G	SC/MS) - DL	_	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1200	ø	50		ppb v/v			04/27/20 17:01	1
Analyte	Result	[/] Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	2200	Ø	94		ug/m3			04/27/20 17:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		60 - 140			•		04/27/20 17:01	1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OUT 1-A

Lab Sample ID: 140-18908-7 Date Collected: 04/20/20 16:45

Matrix: Air

Date Received: 04/21/20 09:50

Method: TO 15 LL - Volatile Analyte	Result Qualifier	RL	•	Prepared Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,1,2,2-Tetrachloroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,1,2-Trichloroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,1,2-Trichlorotrifluoroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,1-Dichloroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,1-Dichloroethene	ND	0.040	ppb v/v	04/28/20 13:13	1.4
1,2,4-Trichlorobenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2,4-Trimethylbenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2-Dibromoethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2-Dichlorobenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2-Dichloroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2-Dichloropropane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,2-Dichlorotetrafluoroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,3,5-Trimethylbenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,3-Dichlorobenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,4-Dichlorobenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
1,4-Dioxane	ND	0.20	ppb v/v	04/28/20 13:13	1.4
2,2,4-Trimethylpentane	ND	0.20	ppb v/v	04/28/20 13:13	1.4
2-Butanone	ND	0.32	ppb v/v	04/28/20 13:13	1.4
4-Methyl-2-pentanone (MIBK)	ND	0.20	ppb v/v	04/28/20 13:13	1.4
Benzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Benzyl chloride	ND	0.16	ppb v/v	04/28/20 13:13	1.4
Bromodichloromethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Bromoform	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Bromomethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Carbon tetrachloride	0.057	0.032	ppb v/v	04/28/20 13:13	1.4
Chlorobenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Chloroethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Chloroform	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Chloromethane	0.49	0.20	ppb v/v	04/28/20 13:13	1.4
cis-1,2-Dichloroethene	ND	0.040	ppb v/v	04/28/20 13:13	1.4
cis-1,3-Dichloropropene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Cyclohexane	ND	0.20	ppb v/v	04/28/20 13:13	1.4
Dibromochloromethane	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Dichlorodifluoromethane	0.22	0.080	ppb v/v	04/28/20 13:13	1.4
Ethanol	5.4	2.0	ppb v/v	04/28/20 13:13	1.4
Ethylbenzene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Hexachlorobutadiene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Hexane	ND	0.20	ppb v/v	04/28/20 13:13	1.4
Methyl tert-butyl ether	ND	0.16	ppb v/v	04/28/20 13:13	1.4
Methylene Chloride	ND	0.40	ppb v/v	04/28/20 13:13	1.4
m-Xylene & p-Xylene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Naphthalene	ND	0.20	ppb v/v	04/28/20 13:13	1.4
o-Xylene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Styrene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
t-Butyl alcohol	ND	0.32	ppb v/v	04/28/20 13:13	1.4
Tetrachloroethene	ND	0.080	ppb v/v	04/28/20 13:13	1.4
Toluene	ND	0.12	ppb v/v	04/28/20 13:13	1.4

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OUT 1-A

Lab Sample ID: 140-18908-7 Date Collected: 04/20/20 16:45

Matrix: Air

Date Received: 04/21/20 09:50

Analyte trans-1,2-Dichloroethene	Result	— — —	RL 0.080		Unit	D	Prepared	Analyzed 04/28/20 13:13	Dil Fac
					ppb v/v				
trans-1,3-Dichloropropene	ND		0.080		ppb v/v			04/28/20 13:13	1.49
Trichloroethene	ND		0.036		ppb v/v			04/28/20 13:13	1.49
Trichlorofluoromethane	0.22		0.080		ppb v/v			04/28/20 13:13	1.49
Vinyl chloride	ND		0.040		ppb v/v			04/28/20 13:13	1.49
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.44		ug/m3			04/28/20 13:13	1.49
1,1,2,2-Tetrachloroethane	ND		0.55		ug/m3			04/28/20 13:13	1.49
1,1,2-Trichloroethane	ND		0.44		ug/m3			04/28/20 13:13	1.49
1,1,2-Trichlorotrifluoroethane	ND		0.61		ug/m3			04/28/20 13:13	1.49
1,1-Dichloroethane	ND		0.32		ug/m3			04/28/20 13:13	1.49
1,1-Dichloroethene	ND		0.16		ug/m3			04/28/20 13:13	1.49
1,2,4-Trichlorobenzene	ND		0.59		ug/m3			04/28/20 13:13	1.49
1,2,4-Trimethylbenzene	ND		0.39		ug/m3			04/28/20 13:13	1.49
1,2-Dibromoethane	ND		0.61		ug/m3			04/28/20 13:13	1.49
1,2-Dichlorobenzene	ND		0.48		ug/m3			04/28/20 13:13	1.49
1,2-Dichloroethane	ND		0.32		ug/m3			04/28/20 13:13	1.49
1,2-Dichloropropane	ND		0.37		ug/m3			04/28/20 13:13	1.49
1,2-Dichlorotetrafluoroethane	ND		0.56		ug/m3			04/28/20 13:13	1.49
1,3,5-Trimethylbenzene	ND		0.39		ug/m3			04/28/20 13:13	1.49
1,3-Dichlorobenzene	ND		0.48		ug/m3			04/28/20 13:13	1.49
1,4-Dichlorobenzene	ND		0.48		ug/m3			04/28/20 13:13	1.49
1,4-Dioxane	ND		0.72		ug/m3			04/28/20 13:13	1.49
2,2,4-Trimethylpentane	ND		0.93		ug/m3			04/28/20 13:13	1.49
2-Butanone	ND		0.94		ug/m3			04/28/20 13:13	1.49
4-Methyl-2-pentanone (MIBK)	ND		0.82		ug/m3			04/28/20 13:13	1.49
Benzene	ND		0.26		ug/m3			04/28/20 13:13	1.49
Benzyl chloride	ND		0.83		ug/m3			04/28/20 13:13	1.49
Bromodichloromethane	ND		0.54		ug/m3			04/28/20 13:13	1.49
Bromoform	ND		0.83		ug/m3			04/28/20 13:13	1.49
Bromomethane	ND		0.31		ug/m3			04/28/20 13:13	1.49
Carbon tetrachloride	0.36		0.20		ug/m3			04/28/20 13:13	1.49
Chlorobenzene	ND		0.37		ug/m3			04/28/20 13:13	1.49
Chloroethane	ND		0.21		ug/m3			04/28/20 13:13	1.49
Chloroform	ND		0.39		ug/m3			04/28/20 13:13	1.49
Chloromethane	1.0		0.41		ug/m3			04/28/20 13:13	1.49
cis-1,2-Dichloroethene	ND		0.16		ug/m3			04/28/20 13:13	1.49
cis-1,3-Dichloropropene	ND		0.36		ug/m3			04/28/20 13:13	1.49
Cyclohexane	ND		0.69		ug/m3			04/28/20 13:13	1.49
Dibromochloromethane	ND		0.68		ug/m3			04/28/20 13:13	1.49
Dichlorodifluoromethane	1.1		0.40		ug/m3			04/28/20 13:13	1.49
Ethanol	10		3.8		ug/m3			04/28/20 13:13	1.49
Ethylbenzene	ND		0.35		ug/m3			04/28/20 13:13	1.49
Hexachlorobutadiene	ND		0.85		ug/m3			04/28/20 13:13	1.49
Hexane	ND		0.70		ug/m3			04/28/20 13:13	1.49
Methyl tert-butyl ether	ND		0.58		ug/m3			04/28/20 13:13	1.49
Methylene Chloride	ND		1.4		ug/m3			04/28/20 13:13	1.49
m-Xylene & p-Xylene	ND		0.35		ug/m3			04/28/20 13:13	1.49

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OUT 1-A

Lab Sample ID: 140-18908-7 Date Collected: 04/20/20 16:45

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Method: TO 15 LL -	Volatile Organic Compounds in A	mbient Air	, Low Concentra	tion (GC/MS) (Con	tinued)
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyz

Analyte	Result	Qualifier	RL	MDL	Unit	D [`]	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0		ug/m3			04/28/20 13:13	1.49
o-Xylene	ND		0.35		ug/m3			04/28/20 13:13	1.49
Styrene	ND		0.34		ug/m3			04/28/20 13:13	1.49
t-Butyl alcohol	ND		0.97		ug/m3			04/28/20 13:13	1.49
Tetrachloroethene	ND		0.54		ug/m3			04/28/20 13:13	1.49
Toluene	ND		0.45		ug/m3			04/28/20 13:13	1.49
trans-1,2-Dichloroethene	ND		0.32		ug/m3			04/28/20 13:13	1.49
trans-1,3-Dichloropropene	ND		0.36		ug/m3			04/28/20 13:13	1.49
Trichloroethene	ND		0.19		ug/m3			04/28/20 13:13	1.49
Trichlorofluoromethane	1.2		0.45		ug/m3			04/28/20 13:13	1.49
Vinyl chloride	ND		0.10		ug/m3			04/28/20 13:13	1.49
Surrogate	%Recovery	Qualifier	Limits	41	nL.		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		60 - 140	9	115/102/	ſ		04/28/20 13:13	1.49

Client Sample ID: HALL 1-A

Date Collected: 04/20/20 16:50 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-8

Matrix: Air

Method: 10 15 LL - Volatile Or	ganic Compounds in Ar	nbient Air,	Low Concentrat	tion (GC/MS)
Analuta	Decult Qualifier	DI	MDI IImia	D Dramar

Analyte	Result Qualifier	RL	MDL Unit	D [`]	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.3	0.80	ppb v/v			04/24/20 17:38	1
1,1,2,2-Tetrachloroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,1,2-Trichloroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,1-Dichloroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,1-Dichloroethene	ND	0.40	ppb v/v			04/24/20 17:38	1
1,2,4-Trichlorobenzene	NOCKT	0.80	ppb v/v			04/24/20 17:38	CCH1
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 17:38	1
1,2-Dibromoethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,2-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 17:38	1
1,2-Dichloroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,2-Dichloropropane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v			04/24/20 17:38	1
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 17:38	1
1,3-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 17:38	1
1,4-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 17:38	1
1,4-Dioxane	ND	2.0	ppb v/v			04/24/20 17:38	1
2,2,4-Trimethylpentane	ND	2.0	ppb v/v			04/24/20 17:38	1
2-Butanone	ND	3.2	ppb v/v			04/24/20 17:38	1
4-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v			04/24/20 17:38	1
Benzene	ND	0.80	ppb v/v			04/24/20 17:38	1
Benzyl chloride	ND	1.6	ppb v/v			04/24/20 17:38	1
Bromodichloromethane	ND	0.80	ppb v/v			04/24/20 17:38	1
Bromoform	ND	0.80	ppb v/v			04/24/20 17:38	1
Bromomethane	ND	0.80	ppb v/v			04/24/20 17:38	1
Carbon tetrachloride	ND	0.32	ppb v/v			04/24/20 17:38	1
Chlorobenzene	ND	0.80	ppb v/v			04/24/20 17:38	1

Eurofins TestAmerica, Knoxville

04/30/2020

Page 29 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: HALL 1-A

Date Collected: 04/20/20 16:50 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-8

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil F
Chloroethane	ND	0.80	ppb v/v		04/24/20 17:38	
Chloroform	ND	0.80	ppb v/v		04/24/20 17:38	a .
Chloromethane	NO Let	2.0	ppb v/v		04/24/20 17:38	Ċ0,
cis-1,2-Dichloroethene	ND	0.40	ppb v/v		04/24/20 17:38	
cis-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 17:38	
Cyclohexane	ND	2.0	ppb v/v		04/24/20 17:38	
Dibromochloromethane	ND	0.80	ppb v/v		04/24/20 17:38	
Dichlorodifluoromethane	1.1	0.80	ppb v/v		04/24/20 17:38	
Ethanol	590	20	ppb v/v		04/24/20 17:38	
Ethylbenzene	ND	0.80	ppb v/v		04/24/20 17:38	
Hexachlorobutadiene	MULT	0.80	ppb v/v		04/24/20 17:38	CC
Hexane	ND	2.0	ppb v/v		04/24/20 17:38	
Methyl tert-butyl ether	ND	1.6	ppb v/v		04/24/20 17:38	
Methylene Chloride	ND	4.0	ppb v/v		04/24/20 17:38	
n-Xylene & p-Xylene	ND	0.80	ppb v/v		04/24/20 17:38	
Naphthalene	ND	2.0	ppb v/v		04/24/20 17:38	
p-Xylene	ND	0.80	ppb v/v		04/24/20 17:38	
Styrene	0.85	0.80	ppb v/v		04/24/20 17:38	
·Butyl alcohol	ND	3.2	ppb v/v		04/24/20 17:38	
etrachloroethene	ND	0.80	ppb v/v		04/24/20 17:38	
oluene	ND	1.2	ppb v/v		04/24/20 17:38	
ans-1,2-Dichloroethene	ND	0.80	ppb v/v		04/24/20 17:38	
rans-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 17:38	
richloroethene	ND	0.36	ppb v/v		04/24/20 17:38	
		0.80	ppb v/v		04/24/20 17:38	
Trichlorofluoromethane	1.9 ND	0.60	ppb v/v		04/24/20 17:38	
/inyl chloride						
nalyte	Result Qualifier	RL —	MDL Unit	D Prepared	Analyzed	Dill
,1,1-Trichloroethane	29	4.4	ug/m3		04/24/20 17:38	
,1,2,2-Tetrachloroethane	ND	5.5	ug/m3		04/24/20 17:38	
,1,2-Trichloroethane	ND	4.4	ug/m3		04/24/20 17:38	
,1,2-Trichlorotrifluoroethane	ND	6.1	ug/m3		04/24/20 17:38	
,1-Dichloroethane	ND	3.2	ug/m3		04/24/20 17:38	
,1-Dichloroethene	ND ,	1.6	ug/m3		04/24/20 17:38	
,2,4-Trichlorobenzene	NOCIJ	5.9	ug/m3		04/24/20 17:38	
,2,4-Trimethylbenzene	ND	3.9	ug/m3		04/24/20 17:38	
,2-Dibromoethane	ND	6.1	ug/m3		04/24/20 17:38	
,2-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 17:38	
,2-Dichloroethane	ND	3.2	ug/m3		04/24/20 17:38	
,2-Dichloropropane	ND	3.7	ug/m3		04/24/20 17:38	
,2-Dichlorotetrafluoroethane	ND	5.6	ug/m3		04/24/20 17:38	
,3,5-Trimethylbenzene	ND	3.9	ug/m3		04/24/20 17:38	
,3-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 17:38	
,4-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 17:38	
,4-Dioxane	ND	7.2	ug/m3		04/24/20 17:38	
,2,4-Trimethylpentane	ND	9.3	ug/m3		04/24/20 17:38	
· ·						
-Butanone	ND	9.4	ug/m3		04/24/20 17:38	
-Butanone -Methyl-2-pentanone (MIBK)	ND ND	9.4 8.2	ug/m3 ug/m3		04/24/20 17:38	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: HALL 1-A

Lab Sample ID: 140-18908-8 Date Collected: 04/20/20 16:50

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit D	Prepared Analyzed	Dil Fac
Benzyl chloride	ND	8.3	ug/m3	04/24/20 17:38	1
Bromodichloromethane	ND	5.4	ug/m3	04/24/20 17:38	1
Bromoform	ND	8.3	ug/m3	04/24/20 17:38	1
Bromomethane	ND	3.1	ug/m3	04/24/20 17:38	1
Carbon tetrachloride	ND	2.0	ug/m3	04/24/20 17:38	1
Chlorobenzene	ND	3.7	ug/m3	04/24/20 17:38	1
Chloroethane	ND	2.1	ug/m3	04/24/20 17:38	1
Chloroform	ND	3.9	ug/m3	04/24/20 17:38	1
Chloromethane	MULT	4.1	ug/m3	04/24/20 17:38	<i>[][]</i> 1
cis-1,2-Dichloroethene	ND	1.6	ug/m3	04/24/20 17:38	1
cis-1,3-Dichloropropene	ND	3.6	ug/m3	04/24/20 17:38	1
Cyclohexane	ND	6.9	ug/m3	04/24/20 17:38	1
Dibromochloromethane	ND	6.8	ug/m3	04/24/20 17:38	1
Dichlorodifluoromethane	5.6	4.0	ug/m3	04/24/20 17:38	1
Ethanol	1100	38	ug/m3	04/24/20 17:38	1
Ethylbenzene	ND ,	3.5	ug/m3	04/24/20 17:38	1
Hexachlorobutadiene	W/N	8.5	ug/m3	04/24/20 17:38	ach 1
Hexane	ND	7.0	ug/m3	04/24/20 17:38	1
Methyl tert-butyl ether	ND	5.8	ug/m3	04/24/20 17:38	1
Methylene Chloride	ND	14	ug/m3	04/24/20 17:38	1
m-Xylene & p-Xylene	ND	3.5	ug/m3	04/24/20 17:38	1
Naphthalene	ND	10	ug/m3	04/24/20 17:38	1
o-Xylene	ND	3.5	ug/m3	04/24/20 17:38	1
Styrene	3.6	3.4	ug/m3	04/24/20 17:38	1
t-Butyl alcohol	ND	9.7	ug/m3	04/24/20 17:38	1
Tetrachloroethene	ND	5.4	ug/m3	04/24/20 17:38	1
Toluene	ND	4.5	ug/m3	04/24/20 17:38	1
trans-1,2-Dichloroethene	ND	3.2	ug/m3	04/24/20 17:38	1
trans-1,3-Dichloropropene	ND	3.6	ug/m3	04/24/20 17:38	1
Trichloroethene	ND	1.9	ug/m3	04/24/20 17:38	1
Trichlorofluoromethane	10	4.5	ug/m3	04/24/20 17:38	1
Vinyl chloride	ND	1.0	ug/m3	04/24/20 17:38	1
Surrogate	%Recovery Qualifier	Limits		Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94	60 - 140	SM/11517020	04/24/20 17:38	1

Client Sample ID: RM 5-SS

Date Collected: 04/20/20 17:00 Date Received: 04/21/20 09:50

Lab Sample ID: 140-18908-9 Matrix: Air

Sample Container: Summa Canister 6L

method: 10 15 LL - volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)								
	Analyte	Result Qua	alifier RL	MDL Uni	it D	Prepared	Analyzed	Dil Fac
	1,1,1-Trichloroethane	2.8	0.80	ppt) V/V		04/24/20 18:21	1
	1,1,2,2-Tetrachloroethane	ND	0.80	ppb	v/v		04/24/20 18:21	1
	1,1,2-Trichloroethane	ND	0.80	ppb	v/v		04/24/20 18:21	1
	1,1,2-Trichlorotrifluoroethane	ND	0.80	ppt	o v/v		04/24/20 18:21	1
	1,1-Dichloroethane	ND	0.80	ppt	v/v		04/24/20 18:21	1
	1,1-Dichloroethene	ND	0.40	ppt	v/v		04/24/20 18:21	1

Eurofins TestAmerica, Knoxville

04/30/2020

Page 31 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 5-SS

Lab Sample ID: 140-18908-9

Matrix: Air

Date Collected: 04/20/20 17:00 Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL _	MDL Unit	D Prepared	Analyzed	Dil F
I,2,4-Trichlorobenzene	MOUT	0.80	ppb v/v		04/24/20 18:21	C.
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 18:21	
1,2-Dibromoethane	ND	0.80	ppb v/v		04/24/20 18:21	
,2-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 18:21	
,2-Dichloroethane	ND	0.80	ppb v/v		04/24/20 18:21	
,2-Dichloropropane	ND	0.80	ppb v/v		04/24/20 18:21	
,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v		04/24/20 18:21	
,3,5-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 18:21	
,3-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 18:21	
,4-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 18:21	
,4-Dioxane	ND	2.0	ppb v/v		04/24/20 18:21	
2,2,4-Trimethylpentane	ND	2.0	ppb v/v		04/24/20 18:21	
2-Butanone	ND	3.2	ppb v/v		04/24/20 18:21	
-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v		04/24/20 18:21	
Benzene	ND	0.80	ppb v/v		04/24/20 18:21	
Benzyl chloride	ND	1.6	ppb v/v		04/24/20 18:21	
Bromodichloromethane	ND	0.80	ppb v/v		04/24/20 18:21	
Bromoform	ND	0.80	ppb v/v		04/24/20 18:21	
Bromomethane	ND	0.80	ppb v/v		04/24/20 18:21	
Carbon tetrachloride	ND	0.32	ppb v/v		04/24/20 18:21	
Chlorobenzene	ND	0.80	ppb v/v		04/24/20 18:21	
Chloroethane	ND	0.80	ppb v/v		04/24/20 18:21	
Chloroform	ND _	0.80	ppb v/v		04/24/20 18:21	
Chloromethane	DE SUI	2.0	ppb v/v		04/24/20 18:21	\mathcal{C}
is-1,2-Dichloroethene	ND	0.40	ppb v/v		04/24/20 18:21	
is-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 18:21	
Cyclohexane	ND	2.0	ppb v/v		04/24/20 18:21	
Dibromochloromethane	ND	0.80	ppb v/v		04/24/20 18:21	
Dichlorodifluoromethane	ND	0.80	ppb v/v		04/24/20 18:21	
Ethanol	~960 €	20	ppb v/v		04/24/20 18:21	
thylbenzene	ND .	0.80	ppb v/v		04/24/20 18:21	
lexachlorobutadiene	NOGT	0.80	ppb v/v		04/24/20 18:21	CC
lexane	ND	2.0	ppb v/v		04/24/20 18:21	
Nethyl tert-butyl ether	ND	1.6	ppb v/v		04/24/20 18:21	
Nethylene Chloride	ND	4.0	ppb v/v		04/24/20 18:21	
n-Xylene & p-Xylene	ND	0.80	ppb v/v		04/24/20 18:21	
laphthalene	ND	2.0	ppb v/v		04/24/20 18:21	
-Xylene	ND	0.80	ppb v/v		04/24/20 18:21	
tyrene	ND	0.80	ppb v/v		04/24/20 18:21	
Butyl alcohol	ND	3.2	ppb v/v		04/24/20 18:21	
etrachloroethene	ND	0.80	ppb v/v		04/24/20 18:21	
	1.4	1.2	ppb v/v		04/24/20 18:21	
oluene rans-1,2-Dichloroethene	1.4 ND	0.80			04/24/20 18:21	
,	ND ND	0.80	ppb v/v		04/24/20 18:21	
rans-1,3-Dichloropropene			ppb v/v			
richloroethene	ND	0.36	ppb v/v		04/24/20 18:21	
Trichlorofluoromethane Vinyl chloride	ND ND	0.80 0.40	ppb v/v ppb v/v		04/24/20 18:21 04/24/20 18:21	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 5-SS

Date Collected: 04/20/20 17:00 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-9

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	15	4.4	ug/m3			04/24/20 18:21	
1,1,2,2-Tetrachloroethane	ND	5.5	ug/m3			04/24/20 18:21	
,1,2-Trichloroethane	ND	4.4	ug/m3			04/24/20 18:21	
,1,2-Trichlorotrifluoroethane	ND	6.1	ug/m3			04/24/20 18:21	
1,1-Dichloroethane	ND	3.2	ug/m3			04/24/20 18:21	
1,1-Dichloroethene	ND .	1.6	ug/m3			04/24/20 18:21	
1,2,4-Trichlorobenzene	MOUT	5.9	ug/m3			04/24/20 18:21	CCH
1,2,4-Trimethylbenzene	ND	3.9	ug/m3			04/24/20 18:21	
1,2-Dibromoethane	ND	6.1	ug/m3			04/24/20 18:21	
1,2-Dichlorobenzene	ND	4.8	ug/m3			04/24/20 18:21	
,2-Dichloroethane	ND	3.2	ug/m3			04/24/20 18:21	
1,2-Dichloropropane	ND	3.7	ug/m3			04/24/20 18:21	
,2-Dichlorotetrafluoroethane	ND	5.6	ug/m3			04/24/20 18:21	
1,3,5-Trimethylbenzene	ND	3.9	ug/m3			04/24/20 18:21	
1,3-Dichlorobenzene	ND	4.8	ug/m3			04/24/20 18:21	
,4-Dichlorobenzene	ND	4.8	ug/m3			04/24/20 18:21	
,4-Dioxane	ND	7.2	ug/m3			04/24/20 18:21	
2,2,4-Trimethylpentane	ND	9.3	ug/m3			04/24/20 18:21	
-Butanone	ND	9.4	ug/m3			04/24/20 18:21	
-Methyl-2-pentanone (MIBK)	ND	8.2	ug/m3			04/24/20 18:21	
Benzene	ND	2.6	ug/m3			04/24/20 18:21	
enzyl chloride	ND	8.3	ug/m3			04/24/20 18:21	
romodichloromethane	ND	5.4	ug/m3			04/24/20 18:21	
romoform	ND	8.3	ug/m3			04/24/20 18:21	
romomethane	ND	3.1	ug/m3			04/24/20 18:21	
Carbon tetrachloride	ND	2.0	ug/m3			04/24/20 18:21	
Chlorobenzene	ND	3.7	ug/m3			04/24/20 18:21	
chloroethane	ND	2.1	ug/m3			04/24/20 18:21	
Chloroform	ND _	3.9	ug/m3			04/24/20 18:21	
Chloromethane	MG W	4.1	ug/m3			04/24/20 18:21	cct
is-1,2-Dichloroethene	ND	1.6	.			04/24/20 18:21	00/1
is-1,2-Dichloropropene	ND	3.6	ug/m3 ug/m3			04/24/20 18:21	
Syclohexane	ND ND		_			04/24/20 18:21	
		6.9	ug/m3				
Dibromochloromethane	ND ND	6.8	ug/m3			04/24/20 18:21	
Dichlorodifluoromethane	ND	4.0	ug/m3			04/24/20 18:21	
thanol	-1800 E	38	ug/m3			04/24/20 18:21	
thylbenzene	ND	3.5	ug/m3			04/24/20 18:21	10
lexachlorobutadiene	MUT	8.5	ug/m3			04/24/20 18:21	C
lexane	ND	7.0	ug/m3			04/24/20 18:21	
Methyl tert-butyl ether	ND	5.8	ug/m3			04/24/20 18:21	
lethylene Chloride	ND	14	ug/m3			04/24/20 18:21	
n-Xylene & p-Xylene	ND	3.5	ug/m3			04/24/20 18:21	
aphthalene	ND	10	ug/m3			04/24/20 18:21	
-Xylene	ND	3.5	ug/m3			04/24/20 18:21	
tyrene	ND	3.4	ug/m3			04/24/20 18:21	
Butyl alcohol	ND	9.7	ug/m3			04/24/20 18:21	
etrachloroethene	ND	5.4	ug/m3			04/24/20 18:21	
Foluene	5.4	4.5	ug/m3			04/24/20 18:21	
rans-1,2-Dichloroethene	ND	3.2	ug/m3			04/24/20 18:21	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 5-SS

Lab Sample ID: 140-18908-9 Date Collected: 04/20/20 17:00

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Or	ganic Compounds	in Ambient Air, Low Conce	entration (GC/MS) (Continu	ed)

Analyte	Result Qualifier	RL	MDL Unit	D [*]	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND ND	3.6	ug/m3			04/24/20 18:21	1
Trichloroethene	ND	1.9	ug/m3			04/24/20 18:21	1
Trichlorofluoromethane	ND	4.5	ug/m3			04/24/20 18:21	1
Vinyl chloride	ND	1.0	ug/m3			04/24/20 18:21	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	60 - 140		-		04/24/20 18:21	1

Method: TO 15 LL - Volatile Or	ganic Com	pounds in	Ambient A	ir, Low C	oncentra	ation (G	SC/MS) - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1000	Ø	50		ppb v/v			04/27/20 19:35	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1900	Ø	94		ug/m3			04/27/20 19:35	1

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		60 - 140

Lab Sample ID: 140-18908-10

04/27/20 19:35

Matrix: Air

Date Collected: 04/20/20 17:20 Date Received: 04/21/20 09:50

Client Sample ID: RM 12-SS

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result Qualifier	RL	MDL Unit	D`	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1100	10	ppb v/v			04/27/20 20:22	10.17
1,1,2,2-Tetrachloroethane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,1,2-Trichloroethane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,1,2-Trichlorotrifluoroethane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,1-Dichloroethane	82	10	ppb v/v			04/27/20 20:22	10.17
1,1-Dichloroethene	38	5.1	ppb v/v			04/27/20 20:22	10.17
1,2,4-Trichlorobenzene	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2,4-Trimethylbenzene	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2-Dibromoethane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2-Dichlorobenzene	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2-Dichloroethane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2-Dichloropropane	ND	10	ppb v/v			04/27/20 20:22	10.17
1,2-Dichlorotetrafluoroethane	NO /Cet	10	ppb v/v			04/27/20 20:22	CC10.17
1,3,5-Trimethylbenzene	ND/	10	ppb v/v			04/27/20 20:22	10.17
1,3-Dichlorobenzene	ND	10	ppb v/v			04/27/20 20:22	10.17
1,4-Dichlorobenzene	ND	10	ppb v/v			04/27/20 20:22	10.17
1,4-Dioxane	ND	25	ppb v/v			04/27/20 20:22	10.17
2,2,4-Trimethylpentane	ND	25	ppb v/v			04/27/20 20:22	10.17
2-Butanone	ND	41	ppb v/v			04/27/20 20:22	10.17
4-Methyl-2-pentanone (MIBK)	ND	25	ppb v/v			04/27/20 20:22	10.17
Benzene	ND	10	ppb v/v			04/27/20 20:22	10.17
Benzyl chloride	NO FUIT	20	ppb v/v			04/27/20 20:22	C.410.17
Bromodichloromethane	ND	10	ppb v/v			04/27/20 20:22	10.17
Bromoform	ND	10	ppb v/v			04/27/20 20:22	10.17
Bromomethane	ND	10	ppb v/v			04/27/20 20:22	10.17

Page 34 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 12-SS

Lab Sample ID: 140-18908-10 Date Collected: 04/20/20 17:20

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND ND	4.1	ppb v/v		04/27/20 20:22	10.17
Chlorobenzene	ND	10	ppb v/v		04/27/20 20:22	10.17
Chloroethane	ND	10	ppb v/v		04/27/20 20:22	10.17
Chloroform	ND	10	ppb v/v		04/27/20 20:22	10.17
Chloromethane	ND	25	ppb v/v		04/27/20 20:22	10.17
cis-1,2-Dichloroethene	ND	5.1	ppb v/v		04/27/20 20:22	10.1
cis-1,3-Dichloropropene	ND	10	ppb v/v		04/27/20 20:22	10.17
Cyclohexane	ND	25	ppb v/v		04/27/20 20:22	10.17
Dibromochloromethane	ND .	10	ppb v/v		04/27/20 20:22	10.17
Dichlorodifluoromethane	NR / CAT	10	ppb v/v		04/27/20 20:22	C//0.17
Ethanol	970	250	ppb v/v		04/27/20 20:22	10.17
Ethylbenzene	ND	10	ppb v/v		04/27/20 20:22	10.17
Hexachlorobutadiene	ND	10	ppb v/v		04/27/20 20:22	10.17
Hexane	ND	25	ppb v/v		04/27/20 20:22	10.17
Methyl tert-butyl ether	ND	20	ppb v/v		04/27/20 20:22	10.17
Methylene Chloride	ND	51	ppb v/v		04/27/20 20:22	10.1
m-Xylene & p-Xylene	ND	10	ppb v/v		04/27/20 20:22	10.1
Naphthalene	ND	25	ppb v/v		04/27/20 20:22	10.1
o-Xylene	ND	10	ppb v/v		04/27/20 20:22	10.1
Styrene	ND	10	ppb v/v		04/27/20 20:22	10.1
t-Butyl alcohol	ND	41	ppb v/v		04/27/20 20:22	10.1
Tetrachloroethene	ND	10	ppb v/v		04/27/20 20:22	10.1
Toluene	ND	15	ppb v/v		04/27/20 20:22	10.17
trans-1,2-Dichloroethene	ND	10	ppb v/v		04/27/20 20:22	10.17
trans-1,3-Dichloropropene	ND	10	ppb v/v		04/27/20 20:22	10.1
Trichloroethene	75	4.6	ppb v/v		04/27/20 20:22	10.1
Trichlorofluoromethane	ND	10	ppb v/v		04/27/20 20:22	10.1
Vinyl chloride	ND	5.1	ppb v/v		04/27/20 20:22	10.1
Analyte	Result Qualifier	RL	• •	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	6000 Quainlei	55	ug/m3	_ Frepareu	04/27/20 20:22	10.17
1.1.2.2-Tetrachloroethane	ND	70	ug/m3		04/27/20 20:22	10.17
1,1,2-Trichloroethane	ND	55	ug/m3		04/27/20 20:22	10.17
1,1,2-Trichlorotrifluoroethane	ND	78	ug/m3		04/27/20 20:22	10.1
			•			10.17
	220	11	ua/m2			10.17
	330	41	ug/m3		04/27/20 20:22	10 1
1,1-Dichloroethene	150	20	ug/m3		04/27/20 20:22	
1,1-Dichloroethene 1,2,4-Trichlorobenzene	150 ND	20 75	ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22	10.1
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	150 ND ND	20 75 50	ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane	150 ND ND ND	20 75 50 78	ug/m3 ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene	150 ND ND ND ND	20 75 50 78 61	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane	150 ND ND ND ND ND	20 75 50 78 61 41	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	ND	20 75 50 78 61 41 47	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane	ND	20 75 50 78 61 41 47	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene	ND N	20 75 50 78 61 41 47 71 50	ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.1 10.1 10.1 10.1 10.1 10.1 (1).1
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND N	20 75 50 78 61 41 47 71 50	ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17 10.17 10.17
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	150 ND	20 75 50 78 61 41 47 71 50 61	ug/m3		04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17 (1).17 10.17 10.17
1,1-Dichloroethane 1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Trimethylpentane	ND N	20 75 50 78 61 41 47 71 50	ug/m3		04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22 04/27/20 20:22	10.17 10.17 10.17 10.17 10.17 10.17 10.17 10.17 10.17

Matrix: Air

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 12-SS

Lab Sample ID: 140-18908-10 Date Collected: 04/20/20 17:20

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND ND	100	ug/m3	_	04/27/20 20:22	10.17
Benzene	ND ,	32	ug/m3		04/27/20 20:22	10.17
Benzyl chloride	M /UT	110	ug/m3		04/27/20 20:22	C19/17
Bromodichloromethane	ND	68	ug/m3		04/27/20 20:22	10.17
Bromoform	ND	110	ug/m3		04/27/20 20:22	10.17
Bromomethane	ND	39	ug/m3		04/27/20 20:22	10.17
Carbon tetrachloride	ND	26	ug/m3		04/27/20 20:22	10.17
Chlorobenzene	ND	47	ug/m3		04/27/20 20:22	10.17
Chloroethane	ND	27	ug/m3		04/27/20 20:22	10.17
Chloroform	ND	50	ug/m3		04/27/20 20:22	10.17
Chloromethane	ND	53	ug/m3		04/27/20 20:22	10.17
cis-1,2-Dichloroethene	ND	20	ug/m3		04/27/20 20:22	10.17
cis-1,3-Dichloropropene	ND	46	ug/m3		04/27/20 20:22	10.17
Cyclohexane	ND	88	ug/m3		04/27/20 20:22	10.17
Dibromochloromethane	ND	87	ug/m3		04/27/20 20:22	10.17
Dichlorodifluoromethane	ND/LEJ	50	ug/m3		04/27/20 20:22	Xf0.17
Ethanol	1800	480	ug/m3		04/27/20 20:22	10.17
Ethylbenzene	ND	44	ug/m3		04/27/20 20:22	10.17
Hexachlorobutadiene	ND	110	ug/m3		04/27/20 20:22	10.17
Hexane	ND	90	ug/m3		04/27/20 20:22	10.17
Methyl tert-butyl ether	ND	73	ug/m3		04/27/20 20:22	10.17
Methylene Chloride	ND	180	ug/m3		04/27/20 20:22	10.17
m-Xylene & p-Xylene	ND	44	ug/m3		04/27/20 20:22	10.17
Naphthalene	ND	130	ug/m3		04/27/20 20:22	10.17
o-Xylene	ND	44	ug/m3		04/27/20 20:22	10.17
Styrene	ND	43	ug/m3		04/27/20 20:22	10.17
t-Butyl alcohol	ND	120	ug/m3		04/27/20 20:22	10.17
Tetrachloroethene	ND	69	ug/m3		04/27/20 20:22	10.17
Toluene	ND	57	ug/m3		04/27/20 20:22	10.17
trans-1,2-Dichloroethene	ND	40	ug/m3		04/27/20 20:22	10.17
trans-1,3-Dichloropropene	ND	46	ug/m3		04/27/20 20:22	10.17
Trichloroethene	410	25	ug/m3		04/27/20 20:22	10.17
Trichlorofluoromethane	ND	57	ug/m3		04/27/20 20:22	10.17
Vinyl chloride	ND	13	ug/m3		04/27/20 20:22	10.17
Surrogate	%Recovery Qualifier	Limits	cm/L.	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85	60 - 140	7711417020		04/27/20 20:22	10.17

Client Sample ID: RM 12A

Date Collected: 04/20/20 17:15 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-11

Matrix: Air

Method: TO 15 LL - Volatile	Organic Compounds in A	Ambient Air	, Low Concentra	tion (G	SC/MS)		
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	12	0.80	ppb v/v			04/24/20 19:51	1
1,1,2,2-Tetrachloroethane	ND	0.80	ppb v/v			04/24/20 19:51	1
1,1,2-Trichloroethane	ND	0.80	ppb v/v			04/24/20 19:51	1
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v			04/24/20 19:51	1

Eurofins TestAmerica, Knoxville

04/30/2020

Page 36 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 12A

Lab Sample ID: 140-18908-11 Date Collected: 04/20/20 17:15

Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil
1,1-Dichloroethane	2.0	0.80	ppb v/v		04/24/20 19:51	
I,1-Dichloroethene	1.0	0.40	ppb v/v		04/24/20 19:51	
1,2,4-Trichlorobenzene	MULT	0.80	ppb v/v		04/24/20 19:51	00
I,2,4-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 19:51	
1,2-Dibromoethane	ND	0.80	ppb v/v		04/24/20 19:51	
1,2-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 19:51	
1,2-Dichloroethane	ND	0.80	ppb v/v		04/24/20 19:51	
1,2-Dichloropropane	ND	0.80	ppb v/v		04/24/20 19:51	
,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v		04/24/20 19:51	
,3,5-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 19:51	
,3-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 19:51	
,4-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 19:51	
,4-Dioxane	ND	2.0	ppb v/v		04/24/20 19:51	
2,2,4-Trimethylpentane	ND	2.0	ppb v/v		04/24/20 19:51	
-Butanone	ND	3.2	ppb v/v		04/24/20 19:51	
-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v		04/24/20 19:51	
Benzene	1.1	0.80	ppb v/v		04/24/20 19:51	
Benzyl chloride	ND	1.6	ppb v/v		04/24/20 19:51	
romodichloromethane	ND	0.80	ppb v/v		04/24/20 19:51	
Bromoform	ND	0.80	ppb v/v		04/24/20 19:51	
romomethane	ND	0.80	ppb v/v		04/24/20 19:51	
arbon tetrachloride	ND	0.32	ppb v/v		04/24/20 19:51	
Chlorobenzene	ND ND	0.32	• •			
			ppb v/v		04/24/20 19:51	
chloroethane	ND	0.80	ppb v/v		04/24/20 19:51	
chloroform	ND	0.80	ppb v/v		04/24/20 19:51	1
Chloromethane	2.0 T	2.0	ppb v/v		04/24/20 19:51	C
is-1,2-Dichloroethene	ND	0.40	ppb v/v		04/24/20 19:51	
is-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 19:51	
Cyclohexane	ND	2.0	ppb v/v		04/24/20 19:51	
Dibromochloromethane	ND	0.80	ppb v/v		04/24/20 19:51	
Dichlorodifluoromethane	1.3	0.80	ppb v/v		04/24/20 19:51	
thanol	_10 00 E	20	ppb v/v		04/24/20 19:51	
thylbenzene	ND	0.80	ppb v/v		04/24/20 19:51	
lexachlorobutadiene	DIE CIJ	0.80	ppb v/v		04/24/20 19:51	CO
lexane	ND	2.0	ppb v/v		04/24/20 19:51	
Methyl tert-butyl ether	ND	1.6	ppb v/v		04/24/20 19:51	
Methylene Chloride	ND	4.0	ppb v/v		04/24/20 19:51	
n-Xylene & p-Xylene	ND	0.80	ppb v/v		04/24/20 19:51	
laphthalene	ND	2.0	ppb v/v		04/24/20 19:51	
-Xylene	ND	0.80	ppb v/v		04/24/20 19:51	
Styrene	0.89	0.80	ppb v/v		04/24/20 19:51	
Butyl alcohol	ND	3.2	ppb v/v		04/24/20 19:51	
etrachloroethene	ND	0.80	ppb v/v		04/24/20 19:51	
oluene	ND	1.2	ppb v/v		04/24/20 19:51	
rans-1,2-Dichloroethene	ND	0.80	ppb v/v		04/24/20 19:51	
•						
rans-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 19:51	
Frichloroethene Frichlorofluoromethane	0.68 2.0	0.36 0.80	ppb v/v ppb v/v		04/24/20 19:51 04/24/20 19:51	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 12A

Lab Sample ID: 140-18908-11 Date Collected: 04/20/20 17:15

Matrix: Air

Date Received: 04/21/20 09:50

Analyte Vinyl chloride	Result Qualifier ND	RL 0.40		ppb v/v	— –	Prepared	Analyzed 04/24/20 19:51	Dil Fa
·				•	_			
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	67 ND	4.4		ug/m3			04/24/20 19:51	
1,1,2,2-Tetrachloroethane	ND	5.5		ug/m3			04/24/20 19:51	
1,1,2-Trichloroethane	ND	4.4		ug/m3			04/24/20 19:51	
1,1,2-Trichlorotrifluoroethane	ND	6.1		ug/m3			04/24/20 19:51	
1,1-Dichloroethane	8.2	3.2		ug/m3			04/24/20 19:51	
1,1-Dichloroethene	4.1	1.6		ug/m3			04/24/20 19:51	
1,2,4-Trichlorobenzene	MOUN	5.9		ug/m3			04/24/20 19:51	Call
1,2,4-Trimethylbenzene	ND	3.9		ug/m3			04/24/20 19:51	
1,2-Dibromoethane	ND	6.1		ug/m3			04/24/20 19:51	
1,2-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 19:51	
1,2-Dichloroethane	ND	3.2		ug/m3			04/24/20 19:51	
1,2-Dichloropropane	ND	3.7		ug/m3			04/24/20 19:51	
1,2-Dichlorotetrafluoroethane	ND	5.6		ug/m3			04/24/20 19:51	
1,3,5-Trimethylbenzene	ND	3.9		ug/m3			04/24/20 19:51	
1,3-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 19:51	
1,4-Dichlorobenzene	ND	4.8		ug/m3			04/24/20 19:51	
1,4-Dioxane	ND	7.2		ug/m3			04/24/20 19:51	
2,2,4-Trimethylpentane	ND	9.3		ug/m3			04/24/20 19:51	
2-Butanone	ND	9.4		ug/m3			04/24/20 19:51	
4-Methyl-2-pentanone (MIBK)	ND	8.2		ug/m3			04/24/20 19:51	
Benzene	3.5	2.6		ug/m3			04/24/20 19:51	
Benzyl chloride	ND	8.3		ug/m3			04/24/20 19:51	
Bromodichloromethane	ND	5.4		ug/m3			04/24/20 19:51	
Bromoform	ND	8.3		ug/m3			04/24/20 19:51	
Bromomethane	ND	3.1		ug/m3			04/24/20 19:51	
Carbon tetrachloride	ND	2.0		ug/m3			04/24/20 19:51	
Chlorobenzene	ND	3.7		ug/m3			04/24/20 19:51	
Chloroethane	ND	2.1		ug/m3			04/24/20 19:51	
Chloroform	ND	3.9		ug/m3			04/24/20 19:51	
Chloromethane	4.1 J	4.1		ug/m3			04/24/20 19:51	0041
cis-1,2-Dichloroethene	ND	1.6		ug/m3			04/24/20 19:51	<i></i>
cis-1,3-Dichloropropene	ND	3.6		ug/m3			04/24/20 19:51	
Cyclohexane	ND	6.9		ug/m3			04/24/20 19:51	
Dibromochloromethane	ND	6.8		ug/m3			04/24/20 19:51	
Dichlorodifluoromethane	6.4	4.0		ug/m3			04/24/20 19:51	
Ethanol	2000~ E⁻	38		ug/m3			04/24/20 19:51	
Ethylbenzene	ND _	3.5		ug/m3			04/24/20 19:51	
Hexachlorobutadiene	MOLAT	8.5		ug/m3			04/24/20 19:51	11.7
Hexane	ND	7.0		ug/m3			04/24/20 19:51	
Methyl tert-butyl ether	ND	5.8		ug/m3			04/24/20 19:51	
Methylene Chloride	ND	14		ug/m3			04/24/20 19:51	
m-Xylene & p-Xylene	ND ND	3.5		ug/m3			04/24/20 19:51	
Naphthalene	ND							
•	ND ND	10 3.5		ug/m3			04/24/20 19:51	
o-Xylene		3.5		ug/m3			04/24/20 19:51	
Styrene t-Butyl alcohol	3.8 ND	3.4 9.7		ug/m3 ug/m3			04/24/20 19:51 04/24/20 19:51	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: RM 12A

Lab Sample ID: 140-18908-11 Date Collected: 04/20/20 17:15

Matrix: Air

Dil Fac

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND ND	5.4	ug/m3		04/24/20 19:51	1
Toluene	ND	4.5	ug/m3		04/24/20 19:51	1
trans-1,2-Dichloroethene	ND	3.2	ug/m3		04/24/20 19:51	1
trans-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 19:51	1
Trichloroethene	3.7	1.9	ug/m3		04/24/20 19:51	1
Trichlorofluoromethane	11	4.5	ug/m3		04/24/20 19:51	1
Vinyl chloride	ND	1.0	ug/m3		04/24/20 19:51	1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	60 - 140		04/24/20 19:51	1

Method: 10 15 LL - Volatile 0	rganic Com	pounds ir	1 Ambient Air,	Low Concen	tration (G	iC/MS) - DL	
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed
Ethanol	1000	D	50	ppb v/v			04/27/20 21:09

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	2000	94	ug/m3			04/27/20 21:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared A	nalyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84	60 - 140	04/2	7/20 21:09	1

Client Sample ID: UTL 1-SS Lab Sample ID: 140-18908-12

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Pate Collected: 04/20/20 17:05	Matrix: Air
Note Bessived: 04/24/20 00:50	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1400	11	ppb v/v			04/27/20 21:56	11.2
1,1,2,2-Tetrachloroethane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,1,2-Trichloroethane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,1,2-Trichlorotrifluoroethane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,1-Dichloroethane	190	11	ppb v/v			04/27/20 21:56	11.2
1,1-Dichloroethene	70	5.6	ppb v/v			04/27/20 21:56	11.2
1,2,4-Trichlorobenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2,4-Trimethylbenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2-Dibromoethane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2-Dichlorobenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2-Dichloroethane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2-Dichloropropane	ND	11	ppb v/v			04/27/20 21:56	11.2
1,2-Dichlorotetrafluoroethane	ND *UJ	11	ppb v/v			04/27/20 21:56	CC 41.2
1,3,5-Trimethylbenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,3-Dichlorobenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,4-Dichlorobenzene	ND	11	ppb v/v			04/27/20 21:56	11.2
1,4-Dioxane	ND	28	ppb v/v			04/27/20 21:56	11.2
2,2,4-Trimethylpentane	ND	28	ppb v/v			04/27/20 21:56	11.2
2-Butanone	ND	45	ppb v/v			04/27/20 21:56	11.2
4-Methyl-2-pentanone (MIBK)	ND	28	ppb v/v			04/27/20 21:56	11.2
Benzene	ND .	11	ppb v/v			04/27/20 21:56	11.2
Benzyl chloride	NDU	22	ppb v/v			04/27/20 21:56	10 Ln 1.2

Eurofins TestAmerica, Knoxville

04/30/2020 Page 39 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: UTL 1-SS

Date Collected: 04/20/20 17:05 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-12

Matrix: Air

Method: TO 15 LL - Volatile (Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromodichloromethane	ND	11	ppb v/v		04/27/20 21:56	11.2
Bromoform	ND	11	ppb v/v		04/27/20 21:56	11.2
Bromomethane	ND	11	ppb v/v		04/27/20 21:56	11.2
Carbon tetrachloride	ND	4.5	ppb v/v		04/27/20 21:56	11.2
Chlorobenzene	ND	11	ppb v/v		04/27/20 21:56	11.2
Chloroethane	ND	11	ppb v/v		04/27/20 21:56	11.2
Chloroform	ND	11	ppb v/v		04/27/20 21:56	11.2
Chloromethane	ND	28	ppb v/v		04/27/20 21:56	11.2
cis-1,2-Dichloroethene	ND	5.6	ppb v/v		04/27/20 21:56	11.2
cis-1,3-Dichloropropene	ND	11	ppb v/v		04/27/20 21:56	11.2
Cyclohexane	ND	28	ppb v/v		04/27/20 21:56	11.2
Dibromochloromethane	ND	11	ppb v/v		04/27/20 21:56	11.2
Dichlorodifluoromethane	We tet	11	ppb v/v		04/27/20 21:56	
Ethanol	1200	280	ppb v/v		04/27/20 21:56	11.2
Ethylbenzene	ND	11	ppb v/v		04/27/20 21:56	11.2
Hexachlorobutadiene	ND	11	ppb v/v		04/27/20 21:56	11.2
Hexane	ND	28	ppb v/v		04/27/20 21:56	11.2
Methyl tert-butyl ether	ND	22	ppb v/v		04/27/20 21:56	11.2
Methylene Chloride	ND	56	ppb v/v		04/27/20 21:56	11.2
m-Xylene & p-Xylene	ND	11	ppb v/v		04/27/20 21:56	11.2
Naphthalene	ND	28	ppb v/v		04/27/20 21:56	11.2
o-Xylene	ND	11	ppb v/v		04/27/20 21:56	11.2
Styrene	ND ND	11	ppb v/v		04/27/20 21:56	11.2
t-Butyl alcohol	ND	45	ppb v/v		04/27/20 21:56	11.2
Tetrachloroethene	ND ND	11	ppb v/v		04/27/20 21:56	11.2
Toluene	ND ND	17	ppb v/v		04/27/20 21:56	11.2
trans-1,2-Dichloroethene	ND	11	ppb v/v		04/27/20 21:56	11.2
·	ND	11	ppb v/v		04/27/20 21:56	11.2
trans-1,3-Dichloropropene		5.0	• • •		04/27/20 21:56	11.2
Trichloroethene	27		ppb v/v			
Trichlorofluoromethane	ND	11	ppb v/v		04/27/20 21:56	11.2
Vinyl chloride	ND	5.6	ppb v/v		04/27/20 21:56	11.2
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	7500	61	ug/m3		04/27/20 21:56	11.2
1,1,2,2-Tetrachloroethane	ND	77	ug/m3		04/27/20 21:56	11.2
1,1,2-Trichloroethane	ND	61	ug/m3		04/27/20 21:56	11.2
1,1,2-Trichlorotrifluoroethane	ND	86	ug/m3		04/27/20 21:56	11.2
1,1-Dichloroethane	760	45	ug/m3		04/27/20 21:56	11.2
1,1-Dichloroethene	280	22	ug/m3		04/27/20 21:56	11.2
1,2,4-Trichlorobenzene	ND	83	ug/m3		04/27/20 21:56	11.2
1,2,4-Trimethylbenzene	ND	55	ug/m3		04/27/20 21:56	11.2
1,2-Dibromoethane	ND	86	ug/m3		04/27/20 21:56	11.2
1,2-Dichlorobenzene	ND	67	ug/m3		04/27/20 21:56	11.2
1,2-Dichloroethane	ND	45	ug/m3		04/27/20 21:56	11.2
1,2-Dichloropropane	ND .	52	ug/m3		04/27/20 21:56	11.2
1,2-Dichlorotetrafluoroethane	y tu	78	ug/m3		04/27/20 21:56	CC/111.2
1,3,5-Trimethylbenzene	ND W	55	ug/m3		04/27/20 21:56	11.2
1,3-Dichlorobenzene	ND	67	ug/m3		04/27/20 21:56	11.2
1,4-Dichlorobenzene	ND	67	ug/m3		04/27/20 21:56	11.2

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: UTL 1-SS

Lab Sample ID: 140-18908-12 Date Collected: 04/20/20 17:05

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND Qualific	100	ug/m3		04/27/20 21:56	11.2
2,2,4-Trimethylpentane	ND	130	ug/m3		04/27/20 21:56	11.2
2-Butanone	ND	130	ug/m3		04/27/20 21:56	11.2
4-Methyl-2-pentanone (MIBK)	ND	110	ug/m3		04/27/20 21:56	11.2
Benzene	ND	36	ug/m3		04/27/20 21:56	11.2
Benzyl chloride	NE / UT	120	ug/m3		04/27/20 21:56	CO4/11.2
Bromodichloromethane	ND	75	ug/m3		04/27/20 21:56	11.2
Bromoform	ND	120	ug/m3		04/27/20 21:56	11.2
Bromomethane	ND	43	ug/m3		04/27/20 21:56	11.2
Carbon tetrachloride	ND	28	ug/m3		04/27/20 21:56	11.2
Chlorobenzene	ND	52	ug/m3		04/27/20 21:56	11.2
Chloroethane	ND	30	ug/m3		04/27/20 21:56	11.2
Chloroform	ND	55	ug/m3		04/27/20 21:56	11.2
Chloromethane	ND	58	ug/m3		04/27/20 21:56	11.2
cis-1,2-Dichloroethene	ND	22	ug/m3		04/27/20 21:56	11.2
cis-1,3-Dichloropropene	ND	51	ug/m3		04/27/20 21:56	11.2
Cyclohexane	ND	96	ug/m3		04/27/20 21:56	11.2
Dibromochloromethane	ND	95	ug/m3		04/27/20 21:56	11.2
Dichlorodifluoromethane	M / WI	55	ug/m3		04/27/20 21:56/	1/1 JL 1.2
Ethanol	2200	530	ug/m3		04/27/20 21:56	11.2
Ethylbenzene	ND	49	ug/m3		04/27/20 21:56	11.2
Hexachlorobutadiene	ND	120	ug/m3		04/27/20 21:56	11.2
Hexane	ND	99	ug/m3		04/27/20 21:56	11.2
Methyl tert-butyl ether	ND	81	ug/m3		04/27/20 21:56	11.2
Methylene Chloride	ND	190	ug/m3		04/27/20 21:56	11.2
m-Xylene & p-Xylene	ND	49	ug/m3		04/27/20 21:56	11.2
Naphthalene	ND	150	ug/m3		04/27/20 21:56	11.2
o-Xylene	ND	49	ug/m3		04/27/20 21:56	11.2
Styrene	ND	48	ug/m3		04/27/20 21:56	11.2
t-Butyl alcohol	ND	140	ug/m3		04/27/20 21:56	11.2
Tetrachloroethene	ND	76	ug/m3		04/27/20 21:56	11.2
Toluene	ND	63	ug/m3		04/27/20 21:56	11.2
trans-1,2-Dichloroethene	ND	44	ug/m3		04/27/20 21:56	11.2
trans-1,3-Dichloropropene	ND	51	ug/m3		04/27/20 21:56	11.2
Trichloroethene	140	27	ug/m3		04/27/20 21:56	11.2
Trichlorofluoromethane	ND	63	ug/m3		04/27/20 21:56	11.2
Vinyl chloride	ND	14	ug/m3	1	04/27/20 21:56	11.2
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

Client Sample ID: UTL 1-A

Date Collected: 04/20/20 17:35 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-13 Matrix: Air

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) Result Qualifier RL MDL Unit Prepared Analyzed 1,1,1-Trichloroethane 12 0.80 04/24/20 21:26 ppb v/v

Eurofins TestAmerica, Knoxville

04/30/2020

Page 41 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: UTL 1-A

Lab Sample ID: 140-18908-13 Date Collected: 04/20/20 17:35

Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil I
1,1,2,2-Tetrachloroethane	ND ND	0.80	ppb v/v		04/24/20 21:26	
1,1,2-Trichloroethane	ND	0.80	ppb v/v		04/24/20 21:26	
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v		04/24/20 21:26	
I,1-Dichloroethane	2.0	0.80	ppb v/v		04/24/20 21:26	
1,1-Dichloroethene	1.1	0.40	ppb v/v		04/24/20 21:26	. 4.4.1
1,2,4-Trichlorobenzene	NOUT	0.80	ppb v/v		04/24/20 21:26	CCI
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 21:26	
1,2-Dibromoethane	ND	0.80	ppb v/v		04/24/20 21:26	
1,2-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 21:26	
1,2-Dichloroethane	ND	0.80	ppb v/v		04/24/20 21:26	
1,2-Dichloropropane	ND	0.80	ppb v/v		04/24/20 21:26	
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v		04/24/20 21:26	
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 21:26	
1,3-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 21:26	
I,4-Dichlorobenzene	0.85	0.80	ppb v/v		04/24/20 21:26	
I,4-Dioxane	ND	2.0	ppb v/v		04/24/20 21:26	
2,2,4-Trimethylpentane	ND	2.0	ppb v/v		04/24/20 21:26	
2-Butanone	ND	3.2	ppb v/v		04/24/20 21:26	
I-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v		04/24/20 21:26	
Benzene	1.0	0.80	ppb v/v		04/24/20 21:26	
Benzyl chloride	ND	1.6	ppb v/v		04/24/20 21:26	
Bromodichloromethane	ND	0.80	ppb v/v		04/24/20 21:26	
Bromoform	ND	0.80	ppb v/v		04/24/20 21:26	
Bromomethane	ND	0.80	ppb v/v		04/24/20 21:26	
Carbon tetrachloride	ND ND	0.32	ppb v/v		04/24/20 21:26	
Chlorobenzene	ND ND	0.32	• • • • • • • • • • • • • • • • • • • •			
			ppb v/v		04/24/20 21:26	
Chloroethane	ND ND	0.80	ppb v/v		04/24/20 21:26	
Chloroform	ND T	0.80	ppb v/v		04/24/20 21:26	11
Chloromethane	2.0 J	2.0	ppb v/v		04/24/20 21:26	CC.
cis-1,2-Dichloroethene	ND	0.40	ppb v/v		04/24/20 21:26	
cis-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 21:26	
Cyclohexane	ND	2.0	ppb v/v		04/24/20 21:26	
Dibromochloromethane	ND	0.80	ppb v/v		04/24/20 21:26	
Dichlorodifluoromethane	1.3	0.80	ppb v/v		04/24/20 21:26	
Ethanol	1100 €	20	ppb v/v		04/24/20 21:26	
Ethylbenzene	ND.	0.80	ppb v/v		04/24/20 21:26	40.
Hexachlorobutadiene	NELLI	0.80	ppb v/v		04/24/20 21:26	aci
Hexane	ND	2.0	ppb v/v		04/24/20 21:26	
Methyl tert-butyl ether	ND	1.6	ppb v/v		04/24/20 21:26	
Methylene Chloride	ND	4.0	ppb v/v		04/24/20 21:26	
n-Xylene & p-Xylene	ND	0.80	ppb v/v		04/24/20 21:26	
Naphthalene	ND	2.0	ppb v/v		04/24/20 21:26	
o-Xylene	ND	0.80	ppb v/v		04/24/20 21:26	
Styrene	0.81	0.80	ppb v/v		04/24/20 21:26	
-Butyl alcohol	ND	3.2	ppb v/v		04/24/20 21:26	
Fetrachloroethene	ND	0.80	ppb v/v		04/24/20 21:26	
Foluene	ND	1.2	ppb v/v		04/24/20 21:26	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: UTL 1-A

Lab Sample ID: 140-18908-13 Date Collected: 04/20/20 17:35 Matrix: Air

Date Received: 04/21/20 09:50

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
trans-1,3-Dichloropropene	ND		0.80		ppb v/v			04/24/20 21:26	
Trichloroethene	0.49		0.36		ppb v/v			04/24/20 21:26	
Trichlorofluoromethane	1.9		0.80		ppb v/v			04/24/20 21:26	
Vinyl chloride	ND		0.40		ppb v/v			04/24/20 21:26	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	67		4.4		ug/m3			04/24/20 21:26	
1,1,2,2-Tetrachloroethane	ND		5.5		ug/m3			04/24/20 21:26	
1,1,2-Trichloroethane	ND		4.4		ug/m3			04/24/20 21:26	
1,1,2-Trichlorotrifluoroethane	ND		6.1		ug/m3			04/24/20 21:26	
1,1-Dichloroethane	8.0		3.2		ug/m3			04/24/20 21:26	
1,1-Dichloroethene	4.2		1.6		ug/m3			04/24/20 21:26	
1,2,4-Trichlorobenzene	AND.	Les	5.9		ug/m3			04/24/20 21:26	COL
1,2,4-Trimethylbenzene	ND	_	3.9		ug/m3			04/24/20 21:26	
1,2-Dibromoethane	ND		6.1		ug/m3			04/24/20 21:26	
1,2-Dichlorobenzene	ND		4.8		ug/m3			04/24/20 21:26	
1,2-Dichloroethane	ND		3.2		ug/m3			04/24/20 21:26	
1,2-Dichloropropane	ND		3.7		ug/m3			04/24/20 21:26	
1,2-Dichlorotetrafluoroethane	ND		5.6		ug/m3			04/24/20 21:26	
1,3,5-Trimethylbenzene	ND		3.9		ug/m3			04/24/20 21:26	
1,3-Dichlorobenzene	ND		4.8		ug/m3			04/24/20 21:26	
1,4-Dichlorobenzene	5.1		4.8		ug/m3			04/24/20 21:26	
1,4-Dictiorobenzene 1,4-Dioxane	ND.		7.2		ug/m3			04/24/20 21:26	
2,2,4-Trimethylpentane	ND		9.3		ug/m3			04/24/20 21:26	
2-Butanone	ND		9.4		ug/m3			04/24/20 21:26	
4-Methyl-2-pentanone (MIBK)	ND		8.2		ug/m3			04/24/20 21:26	
Benzene	3.3		2.6		ug/m3			04/24/20 21:26	
Benzyl chloride	ND		8.3					04/24/20 21:26	
Bromodichloromethane	ND		5.4		ug/m3			04/24/20 21:26	
Bromoform	ND ND				ug/m3			04/24/20 21:26	
	ND		8.3		ug/m3			04/24/20 21:26	
Bromomethane Carbon tetrachloride	ND ND				ug/m3			04/24/20 21:26	
	ND ND		2.0		ug/m3			04/24/20 21:26	
Chlorobenzene			3.7		ug/m3				
Chloroethane	ND		2.1		ug/m3			04/24/20 21:26	
Chloroform	ND	-	3.9		ug/m3			04/24/20 21:26	00 1
Chloromethane	4.1		4.1		ug/m3			04/24/20 21:26	CG
cis-1,2-Dichloroethene	ND		1.6		ug/m3			04/24/20 21:26	
cis-1,3-Dichloropropene	ND		3.6		ug/m3			04/24/20 21:26	
Cyclohexane	ND		6.9		ug/m3			04/24/20 21:26	
Dibromochloromethane	ND		6.8		ug/m3			04/24/20 21:26	
Dichlorodifluoromethane	6.3		4.0		ug/m3			04/24/20 21:26	
Ethanol	-2000		38		ug/m3			04/24/20 21:26	
Ethylbenzene	ND	. , —	3.5		ug/m3			04/24/20 21:26	م ند
Hexachlorobutadiene	MA	W	8.5		ug/m3			04/24/20 21:26	a
Hexane	ND		7.0		ug/m3			04/24/20 21:26	
Methyl tert-butyl ether	ND		5.8		ug/m3			04/24/20 21:26	
Methylene Chloride	ND		14		ug/m3			04/24/20 21:26	
m-Xylene & p-Xylene	ND		3.5		ug/m3			04/24/20 21:26	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: UTL 1-A

Lab Sample ID: 140-18908-13

Date Collected: 04/20/20 17:35 Matrix: Air Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result C	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		3.5	ug/m	3		04/24/20 21:26	1
Styrene	3.5		3.4	ug/m	3		04/24/20 21:26	1
t-Butyl alcohol	ND		9.7	ug/m	3		04/24/20 21:26	1
Tetrachloroethene	ND		5.4	ug/m	3		04/24/20 21:26	1
Toluene	ND		4.5	ug/m	3		04/24/20 21:26	1
trans-1,2-Dichloroethene	ND		3.2	ug/m	3		04/24/20 21:26	1
trans-1,3-Dichloropropene	ND		3.6	ug/m	3		04/24/20 21:26	1
Trichloroethene	2.6		1.9	ug/m	3		04/24/20 21:26	1
Trichlorofluoromethane	10		4.5	ug/m	3		04/24/20 21:26	1
Vinyl chloride	ND		1.0	ug/m	3		04/24/20 21:26	1
Surrogate	%Recovery 0	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		60 - 140				04/24/20 21:26	1

Method: TO 15 LL - Volatile	Organic Compounds in	Ambient Air	, Low C	oncentra	tion (G	C/MS) - DL	_	
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1200	50		ppb v/v			04/27/20 22:44	1
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	2300	94		ug/m3			04/27/20 22:44	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85	60 - 140					04/27/20 22:44	1

Client Sample ID: GRG 1-SS

Date Collected: 04/20/20 17:50 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-14

Matrix: Air

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	39	0.80	ppb v/v			04/24/20 22:13	1
1,1,2,2-Tetrachloroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,1,2-Trichloroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,1-Dichloroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,1-Dichloroethene	ND	0.40	ppb v/v			04/24/20 22:13	1
1,2,4-Trichlorobenzene	NO UST	0.80	ppb v/v			04/24/20 22:13	CCH1
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
1,2-Dibromoethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,2-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
1,2-Dichloroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,2-Dichloropropane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
1,3-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
1,4-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
1,4-Dioxane	ND	2.0	ppb v/v			04/24/20 22:13	1
2,2,4-Trimethylpentane	ND	2.0	ppb v/v			04/24/20 22:13	1
2-Butanone	ND	3.2	ppb v/v			04/24/20 22:13	1

Eurofins TestAmerica, Knoxville

04/30/2020 Page 44 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: GRG 1-SS

Date Collected: 04/20/20 17:50 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-14

Matrix: Air

Analyte	Result Qualifier						
4-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v			04/24/20 22:13	1
Benzene	1.3	0.80	ppb v/v			04/24/20 22:13	1
Benzyl chloride	ND	1.6	ppb v/v			04/24/20 22:13	1
Bromodichloromethane	ND	0.80	ppb v/v			04/24/20 22:13	1
Bromoform	ND	0.80	ppb v/v			04/24/20 22:13	1
Bromomethane	ND	0.80	ppb v/v			04/24/20 22:13	1
Carbon tetrachloride	0.36	0.32	ppb v/v			04/24/20 22:13	1
Chlorobenzene	ND	0.80	ppb v/v			04/24/20 22:13	1
Chloroethane	ND	0.80	ppb v/v			04/24/20 22:13	1
Chloroform	ND	0.80	ppb v/v			04/24/20 22:13	1
Chloromethane	MO Cles	2.0	ppb v/v			04/24/20 22:13	CCH1
cis-1,2-Dichloroethene	ND	0.40	ppb v/v			04/24/20 22:13	1
cis-1,3-Dichloropropene	ND	0.80	ppb v/v			04/24/20 22:13	1
Cyclohexane	3.3	2.0	ppb v/v			04/24/20 22:13	1
Dibromochloromethane	ND	0.80	ppb v/v			04/24/20 22:13	1
Dichlorodifluoromethane	2.2	0.80	ppb v/v			04/24/20 22:13	1
Ethanol	-1100 E	20	ppb v/v			04/24/20 22:13	1
Ethylbenzene	ND _	0.80	ppb v/v			04/24/20 22:13	1
Hexachlorobutadiene	NP/N	0.80	ppb v/v			04/24/20 22:13	CCL
Hexane	7.9	2.0	ppb v/v			04/24/20 22:13	1
Methyl tert-butyl ether	ND	1.6	ppb v/v			04/24/20 22:13	1
Methylene Chloride	ND	4.0	ppb v/v			04/24/20 22:13	1
m-Xylene & p-Xylene	0.96	0.80	ppb v/v			04/24/20 22:13	1
Naphthalene	ND	2.0	ppb v/v			04/24/20 22:13	1
o-Xylene	ND	0.80	ppb v/v			04/24/20 22:13	1
Styrene	2.0	0.80	ppb v/v			04/24/20 22:13	1
t-Butyl alcohol	ND	3.2	ppb v/v			04/24/20 22:13	1
Tetrachloroethene	ND	0.80	ppb v/v			04/24/20 22:13	1
Toluene	2.5	1.2	ppb v/v			04/24/20 22:13	1
trans-1,2-Dichloroethene	ND	0.80	ppb v/v			04/24/20 22:13	1
trans-1,3-Dichloropropene	ND	0.80	ppb v/v			04/24/20 22:13	1
Trichloroethene	ND	0.36	ppb v/v			04/24/20 22:13	. 1
Trichlorofluoromethane	ND	0.80	ppb v/v			04/24/20 22:13	
Vinyl chloride	ND	0.40	ppb v/v			04/24/20 22:13	1
,					D		•
Analyte	Result Qualifier	RL	MDL Unit	U	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	210 ND	4.4	ug/m3			04/24/20 22:13	1
1,1,2,2-Tetrachloroethane	ND	5.5	ug/m3			04/24/20 22:13	1
1,1,2-Trichloroethane	ND	4.4	ug/m3			04/24/20 22:13	1
1,1,2-Trichlorotrifluoroethane	ND	6.1	ug/m3			04/24/20 22:13	1
1,1-Dichloroethane	ND	3.2	ug/m3			04/24/20 22:13	1
1,1-Dichloroethene	ND VIII	1.6	ug/m3			04/24/20 22:13	1 1
1,2,4-Trichlorobenzene	MOW	5.9	ug/m3			04/24/20 22:13	<i>ωσπ</i> 1
1,2,4-Trimethylbenzene	ND	3.9	ug/m3			04/24/20 22:13	1
1,2-Dibromoethane	ND	6.1	ug/m3			04/24/20 22:13	1
1,2-Dichlorobenzene	ND	4.8	ug/m3			04/24/20 22:13	1
1,2-Dichloroethane	ND	3.2	ug/m3			04/24/20 22:13	1
1,2-Dichloropropane	ND	3.7	ug/m3			04/24/20 22:13	1
1,2-Dichlorotetrafluoroethane	ND	5.6	ug/m3			04/24/20 22:13	1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: GRG 1-SS

Date Collected: 04/20/20 17:50 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-14

Matrix: Air

ND ND ND ND 11 ND 11 2900 E ND ND ND	3.7 2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0 38 3.5 8.5 7.0 5.8	ug/m3		04/24/20 22:13 04/24/20 22:13	1 2CH 1 1 1 1 1 1 1 1 1 1 1 1 1
ND ND ND 11 ND 11 2000 E ND WY W	2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0 38 3.5 8.5	ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 1 1 1 1
ND ND ND 11 ND 11 ND 11	2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0 38 3.5 8.5	ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 1 1 1 1
ND ND ND 11 ND 11 ND 11	2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0 38 3.5	ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 1 1 1 1
ND ND ND ND 11 ND 11	2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0 38	ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 2CH 1 1 1 1 1 1
ND ND ND ND 11 ND	2.1 3.9 4.1 1.6 3.6 6.9 6.8 4.0	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 2016 1 1 1 1 1
ND ND ND ND ND 11 ND	2.1 3.9 4.1 1.6 3.6 6.9 6.8	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 2CH 1 1 1 1
ND ND ND ND ND 11	2.1 3.9 4.1 1.6 3.6 6.9	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 1 2CH 1 1 1
ND ND ND ND	2.1 3.9 4.1 1.6 3.6	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 1 2CH ₁ 1 1
ND ND ND	2.1 3.9 4.1 1.6	ug/m3 ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 2CH 1
ND ND	2.1 3.9 4.1	ug/m3 ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13 04/24/20 22:13	1 CCH
ND ND	2.1 3.9	ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13	cc.H
ND ND	2.1 3.9	ug/m3 ug/m3		04/24/20 22:13 04/24/20 22:13	1 1 22 II
ND ND	2.1	ug/m3		04/24/20 22:13	1 1 1
					1
					
ND	3.7	ua/m3		N4/24/2N 22·13	
2.3	2.0	ug/m3		04/24/20 22:13	1
		=			1
					
		=			
		=			1
		.			
4.1	2.6	ug/m3		04/24/20 22:13	
ND	8.2	ug/m3		04/24/20 22:13	
ND	9.4	ug/m3		04/24/20 22:13	
ND	9.3	ug/m3		04/24/20 22:13	
ND	7.2	ug/m3		04/24/20 22:13	
ND	4.8	ug/m3		04/24/20 22:13	
					
		=			
	ND ND ND ND 4.1 ND ND ND ND ND ND	ND 4.8 ND 4.8 ND 7.2 ND 9.3 ND 9.4 ND 8.2 4.1 2.6 ND 8.3 ND 5.4 ND 8.3 ND 5.4 ND 8.3	ND 4.8 ug/m3 ND 4.8 ug/m3 ND 7.2 ug/m3 ND 9.3 ug/m3 ND 9.4 ug/m3 ND 8.2 ug/m3 4.1 2.6 ug/m3 ND 8.3 ug/m3 ND 5.4 ug/m3 ND 8.3 ug/m3 ND 8.3 ug/m3 ND 3.1 ug/m3	ND 4.8 ug/m3 ND 4.8 ug/m3 ND 7.2 ug/m3 ND 9.3 ug/m3 ND 9.4 ug/m3 ND 8.2 ug/m3 4.1 2.6 ug/m3 ND 8.3 ug/m3 ND 5.4 ug/m3 ND 8.3 ug/m3 ND 8.3 ug/m3 ND 3.1 ug/m3	ND 4.8 ug/m3 04/24/20 22:13 ND 4.8 ug/m3 04/24/20 22:13 ND 7.2 ug/m3 04/24/20 22:13 ND 9.3 ug/m3 04/24/20 22:13 ND 9.4 ug/m3 04/24/20 22:13 ND 8.2 ug/m3 04/24/20 22:13 4.1 2.6 ug/m3 04/24/20 22:13 ND 8.3 ug/m3 04/24/20 22:13 ND 5.4 ug/m3 04/24/20 22:13 ND 8.3 ug/m3 04/24/20 22:13 ND 8.3 ug/m3 04/24/20 22:13 ND 3.1 ug/m3 04/24/20 22:13

Method: TO 15 LL - Volatile O	rganic Com	pounds ir	n Ambient A	ir, Low C	oncentr	ation (G	SC/MS) - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1000	7	50		ppb v/v			04/27/20 23:31	1
Analyte	Result '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1900	ø	94		ug/m3			04/27/20 23:31	1

Eurofins TestAmerica, Knoxville 04/30/2020

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: GRG 1-SS

Lab Sample ID: 140-18908-14 Date Collected: 04/20/20 17:50

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83	60 - 140		04/27/20 23:31	1

Client Sample ID: OFC 2-SS

Lab Sample ID: 140-18908-15 Matrix: Air

Date Collected: 04/20/20 18:00 Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	10	0.80	ppb v/v			04/24/20 22:59	1
1,1,2,2-Tetrachloroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,1,2-Trichloroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,1,2-Trichlorotrifluoroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,1-Dichloroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,1-Dichloroethene	ND .	0.40	ppb v/v			04/24/20 22:59	4 4 11
1,2,4-Trichlorobenzene	W CUT	0.80	ppb v/v			04/24/20 22:59	WH.
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
1,2-Dibromoethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,2-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
1,2-Dichloroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,2-Dichloropropane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
1,3-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
1,4-Dichlorobenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
1,4-Dioxane	ND	2.0	ppb v/v			04/24/20 22:59	1
2,2,4-Trimethylpentane	ND	2.0	ppb v/v			04/24/20 22:59	1
2-Butanone	ND	3.2	ppb v/v			04/24/20 22:59	1
4-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v			04/24/20 22:59	1
Benzene	2.0	0.80	ppb v/v			04/24/20 22:59	1
Benzyl chloride	ND	1.6	ppb v/v			04/24/20 22:59	1
Bromodichloromethane	ND	0.80	ppb v/v			04/24/20 22:59	1
Bromoform	ND	0.80	ppb v/v			04/24/20 22:59	1
Bromomethane	ND	0.80	ppb v/v			04/24/20 22:59	1
Carbon tetrachloride	ND	0.32	ppb v/v			04/24/20 22:59	1
Chlorobenzene	ND	0.80	ppb v/v			04/24/20 22:59	1
Chloroethane	ND	0.80	ppb v/v			04/24/20 22:59	1
Chloroform	ND _	0.80	ppb v/v			04/24/20 22:59	1
Chloromethane	MP/LŪ	2.0	ppb v/v			04/24/20 22:59	CCUI
cis-1,2-Dichloroethene	ND	0.40	ppb v/v			04/24/20 22:59	
cis-1,3-Dichloropropene	ND	0.80	ppb v/v			04/24/20 22:59	1
Cyclohexane	3.3	2.0	ppb v/v			04/24/20 22:59	1
Dibromochloromethane	ND	0.80	ppb v/v			04/24/20 22:59	1
Dichlorodifluoromethane	2.3	0.80	ppb v/v			04/24/20 22:59	1
Ethanol	1100 E	20	ppb v/v			04/24/20 22:59	1
Ethylbenzene	ND _	0.80	ppb v/v			04/24/20 22:59	
Hexachlorobutadiene	NO UNT	0.80	ppb v/v			04/24/20 22:59	CCL
Hexane	7.3	2.0	ppb v/v			04/24/20 22:59	1
Methyl tert-butyl ether	ND	1.6	ppb v/v			04/24/20 22:59	1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OFC 2-SS

Date Received: 04/21/20 09:50

Lab Sample ID: 140-18908-15 Date Collected: 04/20/20 18:00

Matrix: Air

Analyte Mathydaga Chlorida		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Methylene Chloride	ND		4.0		ppb v/v			04/24/20 22:59	
m-Xylene & p-Xylene	0.95		0.80		ppb v/v			04/24/20 22:59	
Naphthalene	ND		2.0		ppb v/v			04/24/20 22:59	
o-Xylene	ND		0.80		ppb v/v			04/24/20 22:59	
Styrene	ND		0.80		ppb v/v			04/24/20 22:59	
t-Butyl alcohol	ND		3.2		ppb v/v			04/24/20 22:59	
Tetrachloroethene	ND		0.80		ppb v/v			04/24/20 22:59	
Toluene	2.2		1.2		ppb v/v			04/24/20 22:59	
trans-1,2-Dichloroethene	ND		0.80		ppb v/v			04/24/20 22:59	
trans-1,3-Dichloropropene	ND		0.80		ppb v/v			04/24/20 22:59	
Trichloroethene	ND		0.36		ppb v/v			04/24/20 22:59	
Trichlorofluoromethane	ND		0.80		ppb v/v			04/24/20 22:59	
Vinyl chloride	ND		0.40		ppb v/v			04/24/20 22:59	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	57		4.4		ug/m3		· · ·	04/24/20 22:59	-
1,1,2,2-Tetrachloroethane	ND		5.5		ug/m3			04/24/20 22:59	
1,1,2-Trichloroethane	ND		4.4		ug/m3			04/24/20 22:59	
1,1,2-Trichlorotrifluoroethane	ND		6.1		ug/m3			04/24/20 22:59	
1,1-Dichloroethane	ND		3.2		ug/m3			04/24/20 22:59	
1,1-Dichloroethene	ND		1.6		ug/m3			04/24/20 22:59	
1,2,4-Trichlorobenzene	שאל	11.T	5.9		ug/m3			04/24/20 22:59	CCH
1,2,4-Trichloroberizene) ط عر ND		3.9		ug/m3			04/24/20 22:59	W.
1,2-Dibromoethane	ND		6.1		ug/m3			04/24/20 22:59	
1,2-Dichlorobenzene	ND		4.8					04/24/20 22:59	
•	ND ND				ug/m3			04/24/20 22:59	
1,2-Dichloroethane	ND ND		3.2 3.7		ug/m3				
1,2-Dichloropropane					ug/m3			04/24/20 22:59	
1,2-Dichlorotetrafluoroethane	ND		5.6		ug/m3			04/24/20 22:59	
1,3,5-Trimethylbenzene	ND		3.9		ug/m3			04/24/20 22:59	
1,3-Dichlorobenzene	ND		4.8		ug/m3			04/24/20 22:59	
1,4-Dichlorobenzene	ND		4.8		ug/m3			04/24/20 22:59	
1,4-Dioxane	ND		7.2		ug/m3			04/24/20 22:59	
2,2,4-Trimethylpentane	ND		9.3		ug/m3			04/24/20 22:59	
2-Butanone	ND		9.4		ug/m3			04/24/20 22:59	
4-Methyl-2-pentanone (MIBK)	ND		8.2		ug/m3			04/24/20 22:59	
Benzene	6.4		2.6		ug/m3			04/24/20 22:59	
Benzyl chloride	ND		8.3		ug/m3			04/24/20 22:59	
Bromodichloromethane	ND		5.4		ug/m3			04/24/20 22:59	
Bromoform	ND		8.3		ug/m3			04/24/20 22:59	
Bromomethane	ND		3.1		ug/m3			04/24/20 22:59	
Carbon tetrachloride	ND		2.0		ug/m3			04/24/20 22:59	
Chlorobenzene	ND		3.7		ug/m3			04/24/20 22:59	
Chloroethane	ND		2.1		ug/m3			04/24/20 22:59	
Chloroform	ND		3.9		ug/m3			04/24/20 22:59	
Chloromethane	ME	715	4.1		ug/m3			04/24/20 22:59	CCII
cis-1,2-Dichloroethene	ND	· · · · · · · · · · · · · · · · · · ·	1.6		ug/m3			04/24/20 22:59	
cis-1,3-Dichloropropene	ND		3.6		ug/m3			04/24/20 22:59	
					5 -				
Cyclohexane	11		6.9		ug/m3			04/24/20 22:59	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OFC 2-SS

Lab Sample ID: 140-18908-15 Date Collected: 04/20/20 18:00

Matrix: Air

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	12	4.0	ug/m3		04/24/20 22:59	1
Ethanol	- 2200 E	38	ug/m3		04/24/20 22:59	1
Ethylbenzene	ND _	3.5	ug/m3		04/24/20 22:59	1
Hexachlorobutadiene	NO CUT	8.5	ug/m3		04/24/20 22:59	CCL_1
Hexane	26	7.0	ug/m3		04/24/20 22:59	1
Methyl tert-butyl ether	ND	5.8	ug/m3		04/24/20 22:59	1
Methylene Chloride	ND	14	ug/m3		04/24/20 22:59	1
m-Xylene & p-Xylene	4.1	3.5	ug/m3		04/24/20 22:59	1
Naphthalene	ND	10	ug/m3		04/24/20 22:59	1
o-Xylene	ND	3.5	ug/m3		04/24/20 22:59	1
Styrene	ND	3.4	ug/m3		04/24/20 22:59	1
t-Butyl alcohol	ND	9.7	ug/m3		04/24/20 22:59	1
Tetrachloroethene	ND	5.4	ug/m3		04/24/20 22:59	1
Toluene	8.2	4.5	ug/m3		04/24/20 22:59	1
trans-1,2-Dichloroethene	ND	3.2	ug/m3		04/24/20 22:59	1
trans-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 22:59	1
Trichloroethene	ND	1.9	ug/m3		04/24/20 22:59	1
Trichlorofluoromethane	ND	4.5	ug/m3		04/24/20 22:59	1
Vinyl chloride	ND	1.0	ug/m3		04/24/20 22:59	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	60 - 140			04/24/20 22:59	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	1200	P	50		ppb v/v			04/28/20 00:19	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	2200	Ø	94		ug/m3			04/28/20 00:19	1
Surrogate	%Recovery	Qualifier	Limits		.1		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		60 - 140			10		04/28/20 00:19	1

Client Sample ID: OFC 2-A Date Collected: 04/20/20 18:00

Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Lab Sample ID: 140-18908-16

Matrix: Air

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2.9	0.80		ppb v/v			04/24/20 23:44	1
1,1,2,2-Tetrachloroethane	ND	0.80		ppb v/v			04/24/20 23:44	1
1,1,2-Trichloroethane	ND	0.80		ppb v/v			04/24/20 23:44	1
1,1,2-Trichlorotrifluoroethane	ND	0.80		ppb v/v			04/24/20 23:44	1
1,1-Dichloroethane	ND	0.80		ppb v/v			04/24/20 23:44	1
1,1-Dichloroethene	ND	0.40		ppb v/v			04/24/20 23:44	1
1,2,4-Trichlorobenzene	NO WI	0.80		ppb v/v			04/24/20 23:44	CCH 1
1,2,4-Trimethylbenzene	ND	0.80		ppb v/v			04/24/20 23:44	1
1,2-Dibromoethane	ND	0.80		ppb v/v			04/24/20 23:44	1
1,2-Dichlorobenzene	ND	0.80		ppb v/v			04/24/20 23:44	1

04/30/2020

Page 49 of 758

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OFC 2-A

Lab Sample ID: 140-18908-16 Date Collected: 04/20/20 18:00 Matrix: Air

Date Received: 04/21/20 09:50

Analyte

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1,2,2-Tetrachloroethane

1,1,2-Trichlorotrifluoroethane

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile (Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichloroethane	ND	0.80	ppb v/v		04/24/20 23:44	
1,2-Dichloropropane	ND	0.80	ppb v/v		04/24/20 23:44	
1,2-Dichlorotetrafluoroethane	ND	0.80	ppb v/v		04/24/20 23:44	
1,3,5-Trimethylbenzene	ND	0.80	ppb v/v		04/24/20 23:44	
1,3-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 23:44	
1,4-Dichlorobenzene	ND	0.80	ppb v/v		04/24/20 23:44	
1,4-Dioxane	ND	2.0	ppb v/v		04/24/20 23:44	
2,2,4-Trimethylpentane	ND	2.0	ppb v/v		04/24/20 23:44	
2-Butanone	ND	3.2	ppb v/v		04/24/20 23:44	
4-Methyl-2-pentanone (MIBK)	ND	2.0	ppb v/v		04/24/20 23:44	
Benzene	ND	0.80	ppb v/v		04/24/20 23:44	
Benzyl chloride	ND	1.6	ppb v/v		04/24/20 23:44	
Bromodichloromethane	ND	0.80	ppb v/v		04/24/20 23:44	
Bromoform	ND	0.80	ppb v/v		04/24/20 23:44	
Bromomethane	ND	0.80	ppb v/v		04/24/20 23:44	
Carbon tetrachloride	ND	0.32	ppb v/v		04/24/20 23:44	
Chlorobenzene	ND	0.80	ppb v/v		04/24/20 23:44	
Chloroethane	ND	0.80	ppb v/v		04/24/20 23:44	
Chloroform	ND	0.80	ppb v/v		04/24/20 23:44	
Chloromethane	ME CUT	2.0	ppb v/v		04/24/20 23:44	CCH
cis-1,2-Dichloroethene	ND	0.40	ppb v/v		04/24/20 23:44	: .
cis-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 23:44	
Cyclohexane	ND	2.0	ppb v/v		04/24/20 23:44	
Dibromochloromethane	ND	0.80	ppb v/v		04/24/20 23:44	
Dichlorodifluoromethane	2.0	0.80	ppb v/v		04/24/20 23:44	
Ethanol	540	20	ppb v/v		04/24/20 23:44	
Ethylbenzene	ND _	0.80	ppb v/v		04/24/20 23:44	
Hexachlorobutadiene	ME UT	0.80	ppb v/v		04/24/20 23:44	CCZ
Hexane	ND	2.0	ppb v/v		04/24/20 23:44	
Methyl tert-butyl ether	ND	1.6	ppb v/v		04/24/20 23:44	
Methylene Chloride	ND	4.0	ppb v/v		04/24/20 23:44	
m-Xylene & p-Xylene	ND	0.80	ppb v/v		04/24/20 23:44	
Naphthalene	ND	2.0	ppb v/v		04/24/20 23:44	
o-Xylene	ND	0.80	ppb v/v		04/24/20 23:44	
Styrene	0.82	0.80	ppb v/v		04/24/20 23:44	
t-Butyl alcohol	ND	3.2	ppb v/v		04/24/20 23:44	
Tetrachloroethene	ND	0.80	ppb v/v		04/24/20 23:44	
Toluene	ND	1.2	ppb v/v		04/24/20 23:44	
trans-1,2-Dichloroethene	ND	0.80	ppb v/v		04/24/20 23:44	
trans-1,3-Dichloropropene	ND	0.80	ppb v/v		04/24/20 23:44	
Trichloroethene	ND	0.36	ppb v/v		04/24/20 23:44	
Trichlorofluoromethane	1.3	0.80	ppb v/v		04/24/20 23:44	
Vinyl chloride	ND	0.40	ppb v/v		04/24/20 23:44	
	.					

Eurofins TestAmerica, Knoxville

Analyzed

04/24/20 23:44

04/24/20 23:44

04/24/20 23:44

04/24/20 23:44

RL

4.4

5.5

4.4

6.1

MDL Unit

ug/m3

ug/m3

ug/m3

ug/m3

D

Prepared

Result Qualifier

16

ND

ND

ND

Dil Fac

1

1

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OFC 2-A

Lab Sample ID: 140-18908-16 Date Collected: 04/20/20 18:00 Matrix: Air

Date Received: 04/21/20 09:50

Analyte	Result Qualifier	RL _	MDL Unit	D Prepared	Analyzed	Dil F
1,1-Dichloroethane	ND	3.2	ug/m3		04/24/20 23:44	
1,1-Dichloroethene	ND T	1.6	ug/m3		04/24/20 23:44	- 10
1,2,4-Trichlorobenzene	MECAN	5.9	ug/m3		04/24/20 23:44	CCI
1,2,4-Trimethylbenzene	ND	3.9	ug/m3		04/24/20 23:44	
1,2-Dibromoethane	ND	6.1	ug/m3		04/24/20 23:44	
1,2-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 23:44	
1,2-Dichloroethane	ND	3.2	ug/m3		04/24/20 23:44	
1,2-Dichloropropane	ND	3.7	ug/m3		04/24/20 23:44	
1,2-Dichlorotetrafluoroethane	ND	5.6	ug/m3		04/24/20 23:44	
1,3,5-Trimethylbenzene	ND	3.9	ug/m3		04/24/20 23:44	
1,3-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 23:44	
,4-Dichlorobenzene	ND	4.8	ug/m3		04/24/20 23:44	
I,4-Dioxane	ND	7.2	ug/m3		04/24/20 23:44	
2,2,4-Trimethylpentane	ND	9.3	ug/m3		04/24/20 23:44	
2-Butanone	ND	9.4	ug/m3		04/24/20 23:44	
-Methyl-2-pentanone (MIBK)	ND	8.2	ug/m3		04/24/20 23:44	
Benzene	ND	2.6	ug/m3		04/24/20 23:44	
Benzyl chloride	ND	8.3	ug/m3		04/24/20 23:44	
Bromodichloromethane	ND	5.4	ug/m3		04/24/20 23:44	
Bromoform	ND	8.3	ug/m3		04/24/20 23:44	
romomethane	ND	3.1			04/24/20 23:44	
			ug/m3			
carbon tetrachloride	ND	2.0	ug/m3		04/24/20 23:44	
Chlorobenzene	ND	3.7	ug/m3		04/24/20 23:44	
Chloroethane	ND	2.1	ug/m3		04/24/20 23:44	
Chloroform	ND	3.9	ug/m3		04/24/20 23:44	- 4
Chloromethane	MOLEV	4.1	ug/m3		04/24/20 23:44	ac.
is-1,2-Dichloroethene	ND	1.6	ug/m3		04/24/20 23:44	
is-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 23:44	
Cyclohexane	ND	6.9	ug/m3		04/24/20 23:44	
Dibromochloromethane	ND	6.8	ug/m3		04/24/20 23:44	
Dichlorodifluoromethane	9.7	4.0	ug/m3		04/24/20 23:44	
Ethanol	1000	38	ug/m3		04/24/20 23:44	
Ethylbenzene	ND _	3.5	ug/m3		04/24/20 23:44	
Hexachlorobutadiene	NO UT	8.5	ug/m3		04/24/20 23:44	<i>Q</i> (
lexane	ND	7.0	ug/m3		04/24/20 23:44	
Methyl tert-butyl ether	ND	5.8	ug/m3		04/24/20 23:44	
Methylene Chloride	ND	14	ug/m3		04/24/20 23:44	
n-Xylene & p-Xylene	ND	3.5	ug/m3		04/24/20 23:44	
laphthalene	ND	10	ug/m3		04/24/20 23:44	
-Xylene	ND	3.5	ug/m3		04/24/20 23:44	
tyrene	3.5	3.4	ug/m3		04/24/20 23:44	
Butyl alcohol	ND	9.7	ug/m3		04/24/20 23:44	
etrachloroethene	ND	5.4	ug/m3		04/24/20 23:44	
			_		04/24/20 23:44	
oluene	ND.	4.5	ug/m3			
rans-1,2-Dichloroethene	ND	3.2	ug/m3		04/24/20 23:44	
rans-1,3-Dichloropropene	ND	3.6	ug/m3		04/24/20 23:44	
richloroethene richlorofluoromethane	ND	1.9 4.5	ug/m3		04/24/20 23:44 04/24/20 23:44	

Client: New York State D.E.C. Job ID: 140-18908-1

Project/Site: 31 Tonawanda St- Off- Site #C915332

Client Sample ID: OFC 2-A Lab Sample ID: 140-18908-16

Date Collected: 04/20/20 18:00 Date Received: 04/21/20 09:50

Sample Container: Summa Canister 6L

Matrix: Air

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		ug/m3			04/24/20 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		60 - 140				-	04/24/20 23:44	1

