REMEDIAL INVESTIGATION REPORT

FOR

19 NORTH STREET CITY OF BUFFALO, ERIE COUNTY, NEW YORK NYSDEC SITE No. C915303

Prepared by:

C&S ENGINEERS, INC.

141 ELM STREET, SUITE 100 BUFFALO, NEW YORK 14203

Prepared on Behalf of:

23 NORTH STREET, LLC.

4508 MAIN STREET AMHERST, NEW YORK 14226

TABLE OF CONTENTS

INTRODUCTION	V
EXECUTIVE SUMMARY	VI
ES 1. SITE SETTING	VI
A. PHYSICAL SETTING	VI
B. SUBSURFACE SETTING	VI
ES 2. REMEDIAL INVESTIGATION	VI
REMEDIAL INVESTIGATION	1
1.1 PROJECT BACKGROUND	1
1.1.1 SITE DESCRIPTION	1
1.1.2 SITE HISTORY	1
1.1.3 Previous Investigations	1
1.2 METHODOLOGY	3
1.2.1 SOIL CHARACTERIZATION	3
1.2.2 GROUNDWATER CHARACTERIZATION1.2.3 QUALITY ASSURANCE/QUALITY CONTROL PROGRAM	6 7
1.3 FINDINGS	7
1.3.1 GEOLOGY AND HYDROGEOLOGY	7
1.3.2 FIELD OBSERVATIONS	8
1.3.3 ANALYTICAL RESULTS	8
1.3.4 CONTAMINANT ASSESSMENT	13
1.3.5 QA/QC/DUSR	18
1.4 CONCLUSIONS AND RECOMMENDATIONS	18
FIGURES	
Figure 1-1Site Locati	íON
Figure 1-2Project Area and Site Boundar	IES
FIGURE 1-3SAMPLING GRID AND SAMPLING LOCATION	NS
FIGURE 1-4GROUNDWATER MONITORING WELL LOCATIONS AND CONTOU	JRS
FIGURE 1-5 SURFACE SOIL SAMPLING LOCATIONS AND RESUI	
FIGURE 1-6FILL SAMPLE LOCATIONS AND RESUI	
FIGURE 1-7	
FIGURE 1-8	TS

July 2017 Page ii

TABLES

Table 1-1 Remedial Investigation Soil sampling Plan
TABLE 1-2REMEDIAL INVESTIGATION SURFACE SOIL ANALYTICAL RESULTS
TABLE 1-3REMEDIAL INVESTIGATION FILL SOIL ANALYTICAL RESULTS
Table 1-4Remedial Investigation Native Soil Analytical
RESULTS (TO BE USED AS CONFIRMATORY SAMPLE RESULTS)
Table 1-6Remedial Investigation Groundwater Analytical Results
APPENDICES
APPENDIX A
APPENDIX BGROUNDWATER CONSTRUCTION AND SAMPLING LOGS
Appendix CDUSR

July 2017 Page iii

ACRONYM LIST

BCP BROWNFIELD CLEANUP PROGRAM

DUSR DATA USABILITY AND SUMMARY REPORT

IRM INTERIM REMEDIAL MEASURES
NAPLS NON-AQUEOUS PHASE LIQUIDS

NYSDEC NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

PCBs POLYCHLORINATED BIPHENYLS
PID PHOTO-IONIZATION DETECTOR

PPM PARTS PER MILLION

RAOS REMEDIAL ACTION OBJECTIVES

RI REMEDIAL INVESTIGATION
SCO SOIL CLEANUP OBJECTIVES

SITE 19 NORTH STREET BUFFALO, NEW YORK SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

TAL TARGET ANALYTE LIST
TCL TARGET COMPOUND LIST

USEPA UNITED STATE ENVIRONMENTAL PROTECTION AGENCY

VOC VOLATILE ORGANIC COMPOUNDS

QAQC QUALITY ASSURANCE QUALITY CONTROL

INTRODUCTION

C&S Engineers, Inc. (C&S) has prepared this Remedial Investigation (RI) Report on behalf of the applicant to the Brownfield Cleanup Program (BCP), 23 North Street, LLC (hereafter known as "Applicant"), for the remediation and redevelopment of 19 North Street in the City of Buffalo, New York (the "Site").

On January 19, 2016, the Applicant submitted a BCP Application to remediate the Site at 19 North Street in the City of Buffalo, New York. Investigative actions covered under the RI included the entire 0.5-acre Site, which formerly occupied two addresses: 23 North Street and 19 North Street, Buffalo, New York.

Initial limited sampling indicated the presence of urban fill with contaminant concentrations in excess of the New York State Department of Environmental Conservation's (NYSDEC's) Soil Cleanup Objectives (SCOs). The NYSDEC used these results to approve the Site's entrance into the BCP.

In response to the findings of the limited characterization, C&S prepared an RI Work Plan to describe the proposed approach to more thoroughly assess site contaminant conditions. The RI was implemented to further evaluate the extent of the contaminated fill material. The intent of this RI Report is to present the results of the investigation.

EXECUTIVE SUMMARY

ES 1. Site Setting

a. Physical Setting

The BCP Site is located within an urban developed area just north of downtown Buffalo, New York. Development at the Site first occurred in the mid-1800s, which consisted of residential dwellings that were later turned into a radio station and tower in the mid-1900s. Currently, the generally flat Site fronts to North Street and is primarily vacant, except for a small surface parking lot in the eastern portion of the Site. The Site is currently zoned as a general commercial district and classified as commercial land use. The surrounding parcels are a mix of commercial, residential, and transit station zoning districts with commercial, residential, and community service land uses.

The Site is the location of the planned infill development of a four-story apartment building that will occupy almost the entirety of the Site. The first floor of the building will contain an indoor parking garage for the building tenants.

b. Subsurface Setting

The Site contains urban fill with thicknesses ranging up to approximately 13 feet. Urban fill is defined as material coming from anthropogenic sources and re-worked to build a site to a defined grade. The urban fill material at the Site contains brick, wood, gravel, crushed coal and cinders, sand, and clay. Underlying the urban fill are native soils which are generally comprised of the following: fine, brown, silty sand; a fine, brown sand; and a brown, silty clay. A layer of brown, varve clay was observed at 24 to 25 feet below ground surface throughout the Site where investigations reached that depth.

Groundwater was observed to be approximately 16 feet below grade. The groundwater flow direction is generally to the east northeast with minor variations in direction between the southern and northern halves of the Site.

After review of NYSDEC data, it was determined that the Site is not underlain by any mapped principal or primary aquifers. Groundwater at and in the vicinity of the Site is not used for public drinking water supply as the City of Buffalo has imposed a City-wide ban on the use of groundwater for drinking water supply.

ES 2. Remedial Investigation

The RI for the Site consisted of the advancement of soil borings to characterize urban fill, imported backfill materials, and underlying native soils, the collection of surface samples at the Site, and the installation of groundwater wells to characterize groundwater conditions at the Site.

ES2.1 Surface Soil

Four surface soil samples were collected during this investigation. No volatile organic compounds (VOCs) or polychlorinated biphenyls (PCBs) were detected in the surface soil samples. Semi-volatile organic compounds (SVOCs), primarily polycyclic aromatic

hydrocarbons (PAHs), exceeding the Industrial Use SCOs, Commercial Use SCOs, Restricted Residential Use SCOs, Residential Use SCOs, and Unrestricted Use SCOs were detected in surface soils on the Site. The pesticides DDE and DDT and metals nickel and zinc were detected in the surface soils at concentrations above Unrestricted Use SCOs but below the Restricted Residential Use SCOs.

ES2.2 Urban Fill and Imported Backfill

A total of 15 fill samples were collected during this investigation. Eight fill samples were taken inside the former building footprint of the imported backfill. Seven fill samples were taken outside the former building footprint of urban fill. No VOCs and PCBs were detected at concentrations exceeding Unrestricted Use SCOs. SVOCs, primarily PAHs, exceeding Restricted Residential Use SCOs, Residential Use SCOs, and Unrestricted Use SCOs were detected in the fill samples outside the former building footprint. While SVOCs were detected in the imported backfill samples inside the former building footprint, no concentrations were detected above Unrestricted Use SCOs. Imported backfill samples inside the former building footprint contained DDE, DDT, and DDD at concentrations exceeding Unrestricted Use SCOs. Metals detected in the fill samples above Unrestricted Use SCOs, but below Restricted Residential Use SCOs, include zinc, selenium, mercury, and lead.

ES2.3 Native Soil

A total of 41 native samples were collected during this portion of the RI, which included 35 native samples, three duplicate samples, and three additional soil samples from within an area in the northeastern corner of the Site. No VOCs, SVOCs, PCBs, pesticides or metals were detected at concentrations exceeding Unrestricted Use SCOs.

ES2.4 Groundwater

The first groundwater sampling event took place in September 2016. Five groundwater samples, which includes a duplicate, were collected from the four newly installed 2-inch monitoring wells.

During the first sampling event, three VOCs were detected above Ambient Water Quality Guidance and Standards (AWQGS) and guidance in one well, MW-2-A3. No SVOCs or PCBs were detected during the first sampling event. Additionally, pesticides, dieldrin and endrin, were detected at concentrations above AWQGS in one well. Iron, magnesium and sodium were detected at concentrations above AWQGS in each of the three wells sample for metals. While manganese was also detected in each well, it was detected at a concentration that exceeds AWQGS in only one well.

The second sampling event took place in January 2017. During the second sampling event, no VOCs, SVOCs, or pesticides were detected at concentrations above AWQGS in any of the wells. Sodium was detected at concentrations above AWQGS in each well, magnesium and iron concentrations exceeded AWQGS in two wells, and manganese was detected at a concentration above AWQGS in only one well, MW-2-A3.

July 2017 Page vii

REMEDIAL INVESTIGATION

1.1 Project Background

1.1.1 Site Description

The Site is the location of a planned infill development of a four-story apartment building that will occupy a majority of the Site. The first floor of the building will contain an indoor parking garage for the building tenants. Currently, the Site is vacant with a small, paved parking area in the eastern portion of the Site. The Site fronts to North Street and is currently zoned as general commercial district and classified as a commercial land use.

The surrounding parcels are a mix of commercial, residential, and transit station zoning districts, and a mix of commercial, residential, and community service land uses.

Figure 1-1 shows the location of the Site and **Figure 1-2** shows the immediate project area and site boundaries.

1.1.2 Site History

A 2006 Phase I Environmental Site Assessment (ESA) indicated that the Brownfield Cleanup Program (BCP) Site was occupied by residential dwellings in the late 1800s. By 1951, the residence at 23 North Street had become a radio station. By 1981, the residence at 19 North Street had been removed and replaced with a radio tower.

Following a fire at the structure formerly located on the Site, the Applicant demolished the structure and placed imported backfill within the footprint of the former structure. Approximately 720 cubic yards of structural fill was sourced from excavations completed by Swimco Pools of Lockport, New York at residential properties and delivered to the Site via dump trucks. During monitoring of the backfilling progress, there were no visual or olfactory signs of contamination in the soil.

A limited subsurface soil investigation confirmed that urban fill was historically used at the Site. Urban fill was typically used throughout the City of Buffalo when bringing properties to grade during excavation and construction.

1.1.3 Previous Investigations

Limited site characterization efforts were conducted to preliminarily assess contaminant concentrations at the Site. Site characterization efforts were documented in a 2006 Phase I Environmental Site Assessment, a June 2015 Additional Soil Sampling Report, and a November 2015 Additional Soil Sampling Report. These previous environmental reports were included as appendices to the Remedial Investigation (RI) Work Plan and BCP Application.

As part of this work, C&S conducted two preliminary sampling programs to characterize soil conditions at the BCP Site. The June 2015 characterization program consisted of the sampling and analysis of five subsurface soil samples. Each soil sample was analyzed for volatile organic compounds (VOCs) using EPA Method 8260C, semivolatile organic compounds (SVOCs) using EPA Method 8270D, and metals using EPA Method 6010. The subsequent November

2015 characterization program consisted of excavation of five test pits within the Site at depths of approximately four to seven feet below grade. The program consisted of sampling and analysis of six fill samples. Each soil sample was analyzed for VOCs, SVOCs and metals using the same methods as previous investigation.

The limited site characterization efforts identified urban fill material throughout the Site. Site soils were found to consist of up to eight feet of urban fill. Based on investigation results, the known contaminants of concern in the urban fill included SVOCs and metals such as arsenic, lead, mercury, and zinc. All the fill sampled during the investigations contained at least one contaminant at concentrations that exceeded Unrestricted Use Soil Cleanup Objectives (SCOs) and many of those contained at least one contaminant at concentrations that exceeded Restricted Residential Use SCOs. Restricted Residential Use SCOs are the guidance for properties to be used for apartments or other high density residential developments. Restricted Residential Use SCOs were exceeded in seven of the eleven total subsurface soil samples including both subsurface sampling events.

During the June 2015 investigation, lead, mercury and zinc were detected at concentrations exceeding Unrestricted Use SCOs. Lead and indeno(1,2,3-cd)pyrene were detected at concentrations that exceeded Restricted Residential Use SCOs in select samples. During the November 2015 investigation, lead, mercury, zinc, arsenic, 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD were detected at concentrations exceeding Unrestricted Use SCOs. Contaminants detected at concentrations exceeding Residential Use SCOs included SVOCs, benzo(k)fluoranthene and chrysene. Contaminants detected at concentrations exceeding Restricted Residential Use SCOs included mercury, lead, indeno(1,2,3-cd)pyrene, benzo(a)anthracene, and benzo(b)fluoranthene. Additionally, benzo(a)pyrene was detected at a concentration exceeding Industrial Use SCOs. No other analytes were detected at concentrations that exceeded the SCOs.

Analyte concentrations varied across the Site which indicated that the source of contamination in fill samples is the variable nature of the urban fill material with no discrete source located on-site or off-site.

1.1.4 Remedial Investigation Objectives, Scope, and Rationale

The objectives of the RI were to further characterize contamination at the Site, evaluate contaminant impacts to soil and groundwater, and identify and evaluate appropriate remedial actions necessary to redevelop the Site. The investigation work included evaluating the magnitude and extent of contaminant impacts, conducting a qualitative exposure assessment for actual or potential exposures to contaminants at the Site and/or emanating from the Site, and producing data that supports the development of an acceptable RI Report.

The scope of the RI was based on information previously gathered regarding historical operations conducted at the Site, the results of the limited site characterization, and the project objectives. The RI included the following:

- Soil Evaluation This task consisted of four primary elements: surface soils, urban fill, imported backfill, and underlying native soils.
 - The surface soil was characterized to identify if contamination exists at the surface of the Site.

- The urban fill was characterized to identify the extent and magnitude of contamination within the fill. This material was also the subject of waste characterization sampling because subsequent remedial activities will likely include the excavation and off-site disposal of urban fill.
- The imported backfill used to backfill the basement of the former on-site structure was characterized.
- The underlying native soils were characterized to determine the depth of impacts from the overlying urban fill and the depths at which remedial efforts may be terminated.
- Groundwater Evaluation Subsequent to completing the above tasks, groundwater
 monitoring wells were installed on-site to evaluate if the on-site urban soil has impacted
 groundwater quality.

The RI activities were completed in general accordance with NYSDEC Division of Environmental Remediation: Technical Guidance for Site Investigation and Remediation dated May 2010 (DER-10).

1.2 Methodology

The RI supplemented the existing, limited site characterization information through the advancement of soil borings, installation of monitoring wells, and collection and analysis of soil and groundwater samples. The investigative methods described below closely follow the RI Work Plan with one minor exception: based on a review of current NYSDEC guidance and communications with the laboratory and the NYSDEC, the analytical program utilized the NYSDEC's Part 375 analyte list rather than USEPA's Target Compound/Analyte Lists for VOCs, SVOCs, pesticides, and metals. The reasons for the modification were to maintain compliance with the NYSDEC's guidance; to have the ability to compare all generated analytical results with NYSDEC guidance values; and to generate analytical results for all analytes within those analyte suites for which NYSDEC has Part 375 SCOs.

1.2.1 Soil Characterization

Surface Soil Collection

Four surface soil samples were collected from within the footprint of the former structure from zero to two inches, below the vegetative cover, as shown on **Figure 1-3**. The samples were collected with a stainless steel spoon or from the advancement of a direct push soil borings. The samples were collected and analyzed for the following:

- VOCs
- SVOCs
- Pesticides
- Polychlorinated biphenyls (PCBs)
- Metals
- Total mercury
- Total cyanide

• Hexavalent chromium (from one of four samples)

Boring Advancement

Soil borings were advanced across the Site to facilitate the characterization of native material and the different fill materials. To ensure complete coverage of the Site, a 30-foot by 30-foot grid was established across the Site, as shown on **Figure 1-3**, resulting in 24 grid locations. From the borings, fill and native soil samples were collected to document Site conditions. Exploration locations were located using a GPS.

Each boring location was continuously sampled in four-foot intervals using a one-inch by four-foot steel sampling tube fitted with a disposable acetate liner. All non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

Soils from the borings were screened in the field for visible impairment, olfactory indications of impairment, evidence of non-aqueous phase liquids (NAPLs), and/or indication of detectable VOCs with a photoionization detector (PID), collectively referred to as "evidence of impairment" and the results were recorded on boring logs.

Soil boring logs were prepared and include soil description, PID readings, etc. The boring logs are included in **Appendix A**.

Fill Sampling

Fill samples were collected from the borings based on evidence of impairment and to provide characterization across the Site. In eight of the 24 grids, one urban fill sample was collected and analyzed for the following:

- VOCs
- SVOCs
- Pesticides
- PCBs
- Metals
- Total mercury
- Total cyanide
- Hexavalent chromium (from three of eight samples)

Additionally, three samples were collected from the urban fill for waste disposal characteristics. The waste characterization analysis included:

- Toxicity Characteristic Leaching Procedure (TCLP) VOCs
- TCLP SVOCs
- TCLP pesticides/herbicides
- PCBs
- TCLP metals
- Reactivity
- Corrosivity
- Ignitability

Native Soil Sampling

Native soil was visually assessed and sampled in each of the 24 grid locations. In order to assess the impact of fill on the underlying native soil, a soil sample was collected from the top two feet of native material in each grid location. In eight grid locations, an additional native soil sample was taken at a depth of 15 feet below grade. The native soil samples were analyzed for the following:

- VOCs
- SVOCs
- Pesticides
- PCBs
- Metals
- Total mercury
- Total cyanide
- Hexavalent chromium (from 11 of 33 samples)

In addition to collecting samples at the top of the native material, three additional samples were collected at one-foot intervals below the first native soil sample. These deeper samples were submitted to the laboratory, but held until the uppermost native soil sample was analyzed. If any analytes exceeded the respective SCOs, the next deeper sample was analyzed for only those compounds that exceeded an SCO. If the concentrations in that sample also exceeded the SCOs, the next lower sample was also analyzed and the results compared to the SCOs. When necessary, this process was repeated for the third sample. The intent of this sampling scheme was to identify the depth of remedial investigation and to use the sampling results as confirmatory sample results during the subsequent remedial activities.

During the first round of analysis, three native soil samples (locations A1, C1, and B4) did not meet the Unrestricted Use SCOs. In accordance with the sampling plan described above, the samples collected immediately below samples were analyzed for the specific analytes detected at slightly elevated concentrations in A1 and C1. Sample volume was not available for additional analysis in location B4. During IRM site preparation, the final native samples that met SCOs were collected in A1 and B4.

Former Structure Soil Boring Program

Four additional soil borings were advanced within the footprint of the former structure to assess the nature of the imported backfill used following the recent demolition. Each direct-push soil boring was advanced into the water table, to 16 feet below grade, or at the discretion of the project geologist. Exploration locations were located with a GPS.

Soils from these borings were continuously assessed for visible or olfactory indications of impairment, and/or indication of detectable VOCs with a PID. Positive indications from any of these screening methods are collectively referred to as "evidence of impairment."

Soil boring logs were completed and included soil description, PID readings, etc. The boring logs are included in **Appendix A**.

Four imported backfill samples were collected from the borings and analyzed for the following:

- VOCs
- SVOCs
- Pesticides
- PCBs
- Metals
- Total mercury
- Total cyanide
- Hexavalent chromium (from two of the four samples)

1.2.2 Groundwater Characterization

To characterize groundwater conditions at the Site, four monitoring wells were installed and sampled. The wells were distributed across the Site, as shown in **Figure 1-4.**

The overburden wells were constructed to straddle the water table. Each well was completed with 5 to 10 feet of 2-inch Schedule 40 0.010-slot well screen connected to an appropriate length of schedule 40 PVC well riser to complete the well. The annulus was sand packed with quartz sand to approximately one to two feet above the screened section and one to two feet of bentonite chips or pellets above the sand. The remaining annulus was grouted to ground surface.

Following installation, the monitoring wells were developed through the removal of up to ten well volumes using a submersible pump.

Groundwater sampling followed well development and was conducted using low-flow purging and sampling techniques. Before purging the well, water levels were measured using an electric water level sounder capable of measuring to the 0.01-foot accuracy. Bladder pumps using manufacturer-specified tubing were used for purging and sampling groundwater. Calibration, purging, and sampling procedures were performed as specified by the USEPA for low-flow sampling. Decontamination was conducted after each well was sampled to reduce the likelihood of cross contamination. Calibration times, purging volumes, water levels and field measurements were recorded in a field log and are included in **Appendix B**.

The groundwater samples were analyzed for the following analytes:

- VOCs
- TCL SVOCs
- TCL pesticides
- PCBs
- TAL metals
- Total mercury
- Total cyanide
- Hexavalent chromium (from two of four samples only)

Well development, and purge fluids were allowed to infiltrate the ground surface of the Site in the vicinity of each soil sampling location.

A second round of groundwater sampling was performed in January 2017. The second round of groundwater samples were analyzed for the same analytes as in the first round using the same protocols.

1.2.3 Quality Assurance/Quality Control Program

Table 1-1 summarizes the sampling program described in the sections above. Additionally, Quality Assurance/Quality Control (QA/QC) samples were collected based on the following minimum number of samples per media type:

- Soil samples (excluding waste characteristic samples)
 - Blind duplicate 5%
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) 5%
- Groundwater samples
 - Trip blank 1 per shipment
 - Blind Duplicate 5%
 - o Matrix Spike/Matrix Spike Duplicate (MS/MSD) 5%

Paradigm Environmental Services, Inc., and Alpha Analytical, Inc., both NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratories, performed the analytical testing. The laboratory results for the samples were reported in a Category B deliverables package to facilitate validation of the data, and a third party validator reviewed the laboratory data to prepare a Data Usability Summary Report (DUSR). The validator evaluated the analytical results for the field samples and quality assurance/quality control samples and compare the findings to USEPA guidance to determine the accuracy and validity of the results. The DUSRs are attached as **Appendix C**.

A summary of the RI activities was submitted to the NYSDEC as monthly progress reports and will be included in the Final Engineering Report. All data submitted to the NYSDEC was and will be in approved electronic data deliverable (EDD) format.

1.3 Findings

1.3.1 Geology and Hydrogeology

1.3.1.1 Site Geology

The following geologic information is based on observations made during the 2015 limited site investigation and the 2016 RI.

The Site contains urban fill with thicknesses approximately ranging from one to 13 feet. Urban fill is defined as material coming from anthropogenic sources re-worked to build a site to a defined grade. The urban fill material at the Site contains:

- Dark sand
- Clay
- Brick
- Gravel
- Crushed coal/cinders

Underlying the urban fill are native soils which are comprised of fine, brown, silty sand; a fine, brown sand; and a brown silty clay. A layer of brown varve clay was observed at 24 to 25 feet below ground surface throughout the Site where investigations reached that depth.

1.3.1.2 Site Hydrogeology

The principal groundwater bearing zone beneath the Site is located between 16 and 24 feet below grade. Groundwater beneath the Site generally flows towards the east-northeast. More specifically, groundwater in the southern portion of the Site appears to flow entirely to the northeast. However, groundwater in the northern portion of the Site appears to flow more easterly. Flow in this zone may be cut off or affected by a basement/foundation for the adjacent building. Therefore, MW-1-C4 is down-gradient from MW-2-A3 despite their special relationship and general groundwater flows at the Site. **Figure 1-4** presents groundwater contours at the site.

After review of NYSDEC data, it was determined that the Site is not underlain by any mapped principal or primary aquifers. Groundwater at and in the vicinity of the Site is not used for public drinking water supply as the City of Buffalo has imposed a City-wide ban on the use of groundwater for drinking water supply.

1.3.2 Field Observations

Throughout the majority of the Site, the fill material appeared to be did not exhibit evidence of contamination. Except for the northeastern corner of the Site, no staining, odors, or elevated PID measurements were recorded.

During the boring program, an area with nuisance characteristics was observed in the northeastern corner of the Site. The native soil in this area was comprised of wet to saturated, grey, medium-grained sand with areas of dark grey staining. This was accompanied by a petroleum-like odor and PID readings up to 1,179 parts per million (ppm). The staining was observed at depths ranging from 11 to 24 feet, with the general thickness of stained material being three to six feet. Additional samples were collected and submitted to the laboratory to characterize the material and to delineate an area of concern if the analytical showed exceedances of the SCOs. As discussed below, no exceedances of the SCOs were identified in the stained soils.

1.3.3 Analytical Results

The following sections summarize and discuss the analytical results generated during the RI. Surface soil, fill, native soil, and groundwater samples were collected for laboratory analysis to determine the magnitude and extent of potential contamination occurring in various media at the Site. A summary of the Phase I RI sampling program, including the number and type of QA/QC samples, is presented in **Table 1-1**.

This data is compared with the Standards Criteria and Guidance values (SCGs) applicable to each medium sampled, and include:

- Soil/Fill: NYSDEC's 6NYCRR Part 375 Environmental Remediation Programs: Part 375-6.8: Unrestricted, Residential, Restricted Residential, Commercial and Industrial Use Soil Cleanup Objectives; and
- Groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values, and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Consistent with NYSDEC guidelines, the ASP Category B deliverables are not presented as appendices to the RI Report. The data has been transmitted electronically to the NYSDEC in a format consistent with the Electronic Data Deliverable (EDD) Manual. The associated Data Suability Summary Reports (DUSRs) will be included in **Appendix C**.

1.3.2.1 Soil

1.3.2.1.1 Surface Soil

Four surface soil samples were collected within the footprint of the former structure during this investigation. The analytical results are summarized in **Table 1-2**, and **Figure 1-5** shows the sampling locations and results.

VOCs

There were no VOCs detected in the surface soil.

SVOCs

SVOCs were detected in all four surface soil samples. While all samples contained multiple compounds, primarily polycyclic aromatic hydrocarbons (PAHs), two of the four samples contained various PAHs at concentrations that exceeded Unrestricted Use, Residential Use, Restricted Residential Use, Commercial Use and Industrial Use SCOs. Benzo(a)pyrene was detected in one sample at concentrations above Industrial Use SCOs and an additional sample at concentrations above Commercial Use SCOs. Benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in both samples at concentrations above Restricted Residential Use. Chrysene and benzo(k)fluoranthene were detected in both samples at concentrations either above Unrestricted Use or Residential Use SCOs, but below Restricted Residential Use SCOs. The concentrations of SVOCs in the remaining two soil samples were below Unrestricted Use SCOs.

PCBs

There were no PCBs detected in the surface soil.

Pesticides

Pesticides were detected in all four surface soil samples. Two pesticides were detected at concentrations exceeding Unrestricted Use SCOs in three of the four surface soil samples. 4,4'–DDT and 4,4'–DDE were detected exceeding Unrestricted Use SCOs. All concentrations of pesticides were detected below Residential Use SCOs.

Metals

Several metals were detected in each of the four surface soil samples. Two samples contained metal concentrations detected above Unrestricted Use SCOs, which included zinc in both samples and nickel in one sample. All concentrations of metals were detected below Residential Use SCOs.

1.3.2.1.2 Urban Fill and Imported Backfill

Fifteen total fill samples within the BCP Site were collected during this investigation. Eight fill samples were taken inside the building footprint of the imported backfill. Seven fill samples were taken outside the building footprint of urban fill. The analytical results are summarized in **Table 3. Figure 1-6** shows the sampling locations and results.

VOCs

No VOCs were detected in the imported backfill samples inside the building footprint. Limited VOCs were detected in two of the seven urban fill samples; however, no VOCs were detected above Unrestricted Use SCOs.

SVOCs

SVOCs, primarily PAHs, were present in six of the eight imported backfill samples; however, no SVOCs were detected above Unrestricted Use SCOs.

PAHs were also detected in four of the seven urban fill samples outside of the former structure footprint. In one sample, benzo(k)fluoranthene was detected at a concentration exceeding Unrestricted Use SCOs, chrysene was detected at a concentration exceeding Residential Use SCOs, and benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene were detected at concentrations exceeding Restricted Residential Use SCOs.

PCBs

No PCBs were detected in the imported backfill samples inside the building footprint and no PCBs were detected in the urban fill samples outside the building footprint.

Pesticides

One or more pesticides were detected in four of the eight fill samples inside the building footprint. Pesticides with concentrations exceeding Unrestricted Use SCOs were detected in two of the eight imported fill samples and included 4,4'-DDE, 4,4'-DDT, and 4,4'-DDD. The concentrations did not exceed Residential Use SCOs.

No pesticides were detected at concentrations exceeding Unrestricted Use SCOs in the urban fill.

Metals

Several metals were detected in the eight imported backfill samples inside the building footprint. Metals lead, mercury, and zinc were detected at concentrations exceeding Unrestricted Use SCOs but not exceeding Residential Use SCOs in three of the eight samples.

Several metals were detected in all seven urban fill samples outside the building footprint. Metals including lead, mercury, and selenium were detected at concentrations exceeding Unrestricted Use SCOs, but not exceeding Residential Use SCOs, in four of the seven samples.

1.3.2.1.3 *Native Soil*

A total of 41 native samples were collected during this portion of the investigation. These included 35 native samples, three duplicate samples, and three soil samples from the area with nuisance characteristics in the northeastern portion of the Site. Two of the native samples were only analyzed for a single metal to determine the extent of impact in the native material based on the original native sample. In addition, three samples collected from an area with evidence of impairment were only sampled for VOCs and SVOCs, at the direction of the NYSDEC. The analytical results for native material are summarized in **Table 1-4**. **Figure 1-7** shows the sampling locations and results.

VOCs

One or more VOCs were detected in 14 of the 37 native soil samples analyzed for VOCs. However, all concentrations were below Unrestricted Use SCOs. Low level VOCs were detected in the area of nuisance characteristics in the northeastern corner of the Site. All VOC concentrations were below Unrestricted Use SCOs.

SVOCs

One or more SVOCs, primarily PAHs, were detected in two of the 37 native soil samples analyzed for SVOCs. However, no samples contained SVOCs at concentrations exceeding Unrestricted Use SCOs.

PCBs

There were no PCBs detected in the native soil samples.

Pesticides

One or more pesticides was detected in seven of 35 samples analyzed for pesticides. All pesticide concentrations were below Unrestricted Use SCOs, except for in sample B4-10-11ft. Sample B4-10-11ft contained 4'4-DDE, 4'4-DDD, and 4'4-DDT at concentrations marginally above Unrestricted Use SCOs. The next one-foot interval sample was analyzed for these pesticides only. The sample, B4-11-11.5ft, did not contain detectable concentrations of those pesticides.

Metals

Multiple metals were detected in all 39 native soil samples analyzed for metals. Initially, in 22 of the 24 grid locations, all metals concentrations were below the Unrestricted Use SCOs. In the two remaining areas:

• Sample A1-5-6ft contained silver at a concentration slightly above Unrestricted Use SCOs. Consequently, the next one-foot interval sample was analyzed for silver only. This sample, A1-6-7ft, also contained a concentration of silver slightly above

Unrestricted Use SCOs. The next one-foot interval sample was analyzed, A1-7-7.5ft, and did not contain a detectable concentration of silver.

• Sample C1-8-9ft contained a concentration of zinc above Unrestricted Use SCOs while the zinc concentration in the underlying sample (C1-9-10ft) was below Unrestricted Use SCOs.

Therefore, metals were below Unrestricted Use SCOs in all grid locations.

1.3.2.2 Groundwater

The first groundwater sampling event took place in September 2016. Five groundwater samples, which include a duplicate, were collected from the four newly installed 2-inch monitoring wells at the Site. One monitoring well did not produce enough volume for a complete analysis, therefore, MW-2-A3 was only sampled for VOCs.

The second sampling event took place in January 2017. Five groundwater samples, which included one duplicate, were collected from the four monitoring wells at the Site. MW-2-A3 was able to produce enough volume for complete sampling analysis during this sampling event.

The analytical results for the groundwater samples are summarized in **Table 1-5** and the locations and results of sampling at the monitoring wells are depicted on **Figure 1-8**.

VOCs

During the first sampling event, 1,2,4-Trimethylbenze, 1,3,5-Trimethylbenzene and p-Isopropyltoluene were detected above Ambient Water Quality Guidance and Standards (AWQGS) and effluent groundwater standards in one well, MW-2-A3. However, no VOCs were detected in any of the four monitoring wells during the second sampling event.

SVOCs

No SVOCs were detected during the first sampling event. Naphthalene was detected in MW-2-A3 at a low concentration, below the AWQGS during the second event.

PCBs

No PCBs were detected during either sampling events.

Pesticides

During the first sampling event, pesticides such as 4,4-DDD, dieldrin, endrin, endrin ketone, and heptachlor were detected in one well, MW-1-C4. Dieldrin and endrin were detected at concentrations above AWQGS. No other wells contained detectable concentrations of pesticides. No pesticides were detected during the second sampling event.

Metals

During the first sampling event, iron, magnesium, and sodium were detected at concentrations above AWQGS in each of the three wells. While manganese was also detected in each well, it was detected at a concentration that exceeds AWQGS in only one well.

During the second groundwater sampling event, sodium was detected at concentrations above AWQGS in each well. Magnesium concentrations exceeded AWQGS in MW-1-C4 and MW-2-A3. Iron concentrations exceeded AWQGS in MW-2-A3 and MW-4-F2. Manganese was detected at a concentration above AWQGS in one well, MW-2-A3.

1.3.4 Contaminant Assessment

1.3.3.1 Nature, Extent, and Source of Contamination

Surface Soil

No VOCs or PCBs were detected in the surface soil sampling.

SVOCs, primarily PAHs, exceeding the Industrial Use SCOs, Commercial Use SCOs, Restricted Residential Use SCOs, Residential Use SCOs, and Unrestricted Use SCOs were detected in surface soil on the Site. The presence of these PAHs is likely related to the urban setting of the source of material. PAHs are often the results of the incomplete combustion of hydrocarbons and other organic material and are commonly encountered in urban soils. Based on their ubiquity in urban settings, the relatively low concentrations (albeit above the SCOs) and lack of petroleum impacts in the surface soils, the presence of SVOCs in the surface soils at the Site does not suggest a release of petroleum at the Site.

The pesticides DDE and DDT were detected in the surface soils at concentrations above Unrestricted Use SCOs, but not exceeding Residential Use SCOs. These pesticides were used in a variety of settings and were widely dispersed prior to being banned in 1972. Based on the source of the imported backfill (residential properties) and the relatively low concentrations (albeit above the Unrestricted Use SCOs), the presence of pesticides in the surface soils at the Site is likely related to the broad application of these compounds rather than a specific release.

Nickel and zinc were detected in the surface soils at concentrations above Unrestricted Use SCOs, but not exceeding Residential Use SCOs. Metals such as nickel and zinc are often detected in urban soils at concentrations similar to those detected at the Site. The presence of these contaminants may be related to such urban impacts or to the nature of the source of the background concentrations in the areas from which the imported backfill was excavated.

Fill

Fill material is present across the Site, from the surface to depths up to 13 feet. Staining, odors, and elevated PID measurements were not detected within the fill material, with the exception of the northeastern corner of the Site.

During the boring program, an area with petroleum nuisance characteristics was observed in the northeastern corner of the Site. The native soil in this area was comprised of wet to saturated, grey, medium-grained sand with areas of dark grey staining. This was accompanied by a petroleum-like odor and elevated PID measurements. The staining was observed at depths ranging from 11 to 24 feet, with the general thickness of stained material being three to six feet. Additional samples were collected and submitted to the laboratory to characterize the material and to delineate an area of concern if the analytical showed exceedances of the SCOs. As discussed above, no exceedances of the SCOs were identified in the stained soils. The source of these observations may be from a historical auto repair shop with a gasoline tank to the east of

the Site, or a pipe and sheet metal shop located to the northeast of the Site. Additionally, the property adjacent to the east was an auto garage.

VOCs and PCBs were not detected at concentrations above the Unrestricted Use SCOs in the fill materials.

Several PAHs were detected exceeding Unrestricted Use, Residential Use and Restricted Residential Use SCOs in one urban fill sample from outside the building footprint. Additionally, a number of SVOCs were detected in the fill samples collected during the 2015 site investigations, including benzo(a)pyrene at concentrations above the Industrial Use SCOs in two samples. The presence of these contaminants is likely related to the use of urban fill and the urban setting of the Site. While SVOCs were detected in the imported backfill samples inside the building footprint, no concentrations were detected above Unrestricted Use SCOs.

Pesticides were detected at concentrations exceeding Unrestricted Use SCOs but not exceeding Residential Use in two of the imported backfill samples. As with the surface soil samples, these pesticides were used in a variety of settings and were widely dispersed prior to being banned in 1972. Based on the source of the imported backfill (residential properties) and the relatively low concentrations (albeit above the Unrestricted Use SCOs), the presence of pesticides in the imported fill at the Site is likely related to the broad application of these compounds rather than a specific release.

During the RI, metals detected in the urban fill and imported backfill samples at concentrations above Unrestricted Use SCOs, but below Restricted Residential Use SCOs, include zinc, selenium, mercury, and lead. Mercury, lead, and zinc were also detected in the urban fill at concentrations above the Unrestricted, Residential, and/or Restricted Residential SCOs in urban fill samples collected in 2015. These metals are ubiquitous in urban settings and the presence of these contaminants at these concentrations is therefore likely related to the urban setting of the Site.

Native Material

No VOCs or SVOCs were detected at concentrations exceeding Unrestricted Use SCOs. No PCBs were detected. The pesticides DDE, DDT, and DDD were detected marginally above Unrestricted Use SCOs and well below Residential Use SCOs in one sample taken at a depth of ten to eleven feet. However, those concentrations of those pesticides were not detected in the sample taken at a depth of 11 to 11.5 feet. Metals are also detected marginally above Unrestricted Use SCOs in the two samples of the native soil.

The source of these metals in the native materials is likely due to the presence of fill immediately overlaying the native material.

Groundwater

Although VOCs were detected in one sample collected during the first round of groundwater sampling, the second sample collected from that location did not contain any VOCs. Although the detection of these compounds during the first round occurred in the well installed within the stained soil in the northeastern corner of the Site, the soil sample collected from this location did not contain the VOCs detected. Additionally, the lack of these compounds in the second sample suggests that VOCs are not a concern in the groundwater at the Site.

During the first sampling event, the pesticides dieldrin and endrin were detected at concentrations exceeding AWQGS in MW-1-C4. These compounds were not detected in the urban fill sample collected at this location, nor were detected at concentrations above the Unrestricted Use SCOs in any of the fill samples collected at the Site. No pesticides were detected in the groundwater samples during the second round of sampling, suggesting that previous results may have been associated with turbidity, as pesticides tend to adhere to soil particles. Therefore, pesticides in groundwater do not appear to pose a concern at the Site.

Magnesium, manganese and sodium were detected at concentrations exceeding AWQGS in three wells samples for metals during the first sampling event. Sodium remained present in concentrations exceeding AWQGS in each well during the second sampling event, whereas magnesium was only detected in concentrations exceeding AWQGS in two wells and manganese only appeared with a concentration above AWQGS in one well. These parameters are commonly encountered in uncontaminated, natural environments and do not appear to be associated with the urban fill on the Site.

1.3.3.2 Contaminant Fate and Transport

The probable fate and transport of contaminants detected on the Site is a function of the properties of the individual contaminants and available pathways for the contaminants to migrate. The Site is currently a vacant property with a small surface parking lot. The planned future use of the Site is for development of a four-story apartment building. The degree to which, as well as the route by which, contaminants migrate is dependent on the physical characteristics of the site and the type and distribution of contaminants. The following sections discuss the probable fate and transport of contaminants in the different types of media at the Site.

Contaminants of concern detected in the surface soils and subsurface fill occurring on the Site include PAHs, pesticides, and metals.

The PAHs detected in the fill are characterized by low solubilities and high octanol-water partition coefficients, and, therefore, have a tendency to adsorb onto soil particles. In addition, these compounds have relatively low vapor pressures and are expected to remain in a solid or liquid state and undergo degradation via naturally occurring microbes. Due to the low solubility, these contaminants are not expected to impact groundwater quality or migrate substantially into the subsurface soil or where already present in subsurface, into native. This is supported by the lack of these compounds in the on-site groundwater.

The pesticides and metals detected in surface and subsurface fill also have low solubility and have strongly adsorbed to the soil. Additionally, metal and pesticides do not degrade quickly. Therefore, the contaminants in the surface and subsurface soil are relatively immobile, but will persist in the environment. This is supported by the lack of concentrations of these contaminants in the groundwater sample. Additionally, given the lack of an on-site source, and the time frame since the last use of the detected pesticides, further mobility or impacts not observed during this RI are not likely.

As discussed above, contaminants are generally absent in the native soils and any elevated concentrations of contaminants in the native soil is associated with the overlying fill material rather than the native material itself. Therefore, impacts to native soil do not appear to pose a concern at the Site.

The detection of certain VOCs and pesticides in the first round of groundwater sampling was not corroborated during the second round of groundwater sampling. Additionally, the relatively low concentrations of the detected compounds and the lack of these compounds at elevated concentrations in on-site fill suggests that VOCs and pesticides do not pose a significant concern relative to groundwater at the Site. Additionally, the metals detected in the groundwater at the Site are likely indicative of background concentrations rather than being associated with the fill at the Site. Additionally, the detected metals are often related to aesthetics of drinking water rather than contaminant issues. Lastly, the City of Buffalo has imposed a ban on the use of groundwater as a drinking water supply.

1.3.3.3 Evaluation of Potential Receptors

The Site is located in an area that is characterized by commercial uses and urban residential properties. A small parking garage and auto body repair shop are located to the east, an apartment and commercial building to the south, an apartment building with a surface parking lot to the west, and religious and residential uses to the north of the Site. The surrounding area is serviced by the municipal water supply system from the City of Buffalo.

The Site is currently a vacant property with a small, surface parking area in the eastern portion of the Site. The former structure on the Site was demolished and the Site was backfilled. Previous to the demolition, the Site had been utilized as residential, and later a radio station and tower. Access to the Site is currently available from the sidewalk on North Street. Access to the Site is granted for permitted parking for an adjacent residential structure. There is fencing partially enclosing the Site to the north and west.

Under current conditions, potential human receptors include persons working, trespassing, or parking on the Site; persons living and working in the area surrounding the Site; and persons involved in utility work on and adjacent to the Site. In addition, potential environmental receptors include wildlife living on or moving through the Site (e.g., rodents, birds, etc.).

The planned future use of the Site is a four-story apartment building. The first floor of the building will contain an indoor parking garage for tenants.

1.3.3.4 Potential Exposure Pathways

Surface Soil

Under the current use, persons living and working in the vicinity of the Site, persons utilizing the Site for parking and/or persons trespassing on the Site could be exposed to SVOCs (primarily PAHs), pesticides, and metals in the surface soil via inhalation of airborne particles, incidental ingestion of, or dermal contact with the contaminated media.

Construction workers, site visitors and persons living, working and traveling through the area near the Site could be exposed to the SVOCs, pesticides, and metals in the surface soil during excavation of the surface fill in connection with site redevelopment. Potential exposure routes for these receptors include inhalation of contaminated dust and incidental ingestion of, and/or dermal contact with the contaminated soil/fill. However, the use of appropriate personal protective equipment, dust suppression techniques and personal/air monitoring; and the development and implementation of a Health and Safety Plan would greatly minimize any risk of exposure during this stage of the project.

No complete exposure pathways to the chemical contaminants in the surface soil have been identified in connection with the post-redevelopment period.

Subsurface Fill

The presence of elevated concentrations of SVOCs, pesticides, and metals in subsurface fill is not interpreted to represent a human or environmental exposure risk because no complete exposure pathways were identified under the current use scenario for the Site. This is a function of the subsurface disposition of the contamination, which effectively minimizes the potential for the incidental ingestion of, or dermal contact with the contaminated media. These factors also reduce the potential for the emission of particulates that could pose an exposure risk via inhalation. This applies to all receptors.

During excavation of the contaminated fill in connection with site redevelopment activities, environmental receptors, construction workers, site visitors and persons living, working and traveling through the Site could be exposed to low level SVOCs, pesticides, and metals in the subsurface fill. Potential exposure routes for these receptors include inhalation of contaminated dust and incidental ingestion of and/or dermal contact with the contaminated fill. However, the use of appropriate personal protective equipment, dust suppression techniques and personal/air monitoring, and the development of a Health and Safety would minimize the risk of exposure during this stage of the project.

No complete exposure pathways to the chemical contaminants in the subsurface soil have been identified in connection with the post-redevelopment period.

Groundwater

There is a ban on groundwater use as a public drinking water supply in the City of Buffalo; therefore, no groundwater in the vicinity of the Site is utilized as a source of potable water. Therefore, no human exposure via ingestion of contaminated groundwater is likely.

1.3.3.5 Qualitative Human and Fish/Wildlife Resources Exposure Assessment

The Site is currently a vacant property with a small, surface parking lot in an urban area with limited wildlife exposure. Humans living, working or parking near or on the Site would be potentially exposed to contamination in the surface soils.

The Site and surrounding area within one-quarter mile of the site consists of urban land that is not proximate to a surface water body, wetland or other ecologically significant area. A review of information concerning endangered and threatened species in Erie County, available via the NYSDEC Environmental Resource Mapper indicated that no threatened or endangered species or rare plants were identified on or near the Site according to the State's data bases. Furthermore, the site is not located in or substantially contiguous to a Critical Environmental Area designated pursuant to Article 8 or the ECL and 6 NYCRR 617, nor are any state or federally designated wetlands located on or adjacent to the Site.

Based upon the information summarized above, there are no ecological resources present on or in the vicinity of the site and, consequently, no fish and wildlife resource impacts have been identified.

Groundwater is not used for drinking water (prohibited in the City of Buffalo) and therefore there is no exposure risk through ingestion. In addition, the depth of the groundwater (greater than 16 feet below grade) reasonably precludes human contact.

1.3.5 QA/QC/DUSR

Quality control samples were collected from the samples to characterize the contamination and document the RI activities. The RI Work Plan stated that a minimum of 5% of the samples would be collected for duplicate samples and Matrix Spike/Matrix Spike Duplicates (MS/MSD) at a 5% allocation as well. QA/QC samples were not collected nor analyzed for the waste characterization sampling.

During the RI activities, 57 soil samples were collected, therefore, nine QAQC samples were taken including three blind duplicates, three Matrix Spikes and three Matrix Spike Duplicates; meeting the 5% criteria. Four groundwater samples were taken with one blind duplicate, one MS/MSD and one trip blank; also meeting the 5% criteria.

Third-party data consultants, Data Validation Services and Environmental Data Usability, prepared the Data Usability and Summary Reports (DUSRs) as required in the RI/IRM Work Plan. The DUSRs are included as **Appendix C.** The following items were reviewed:

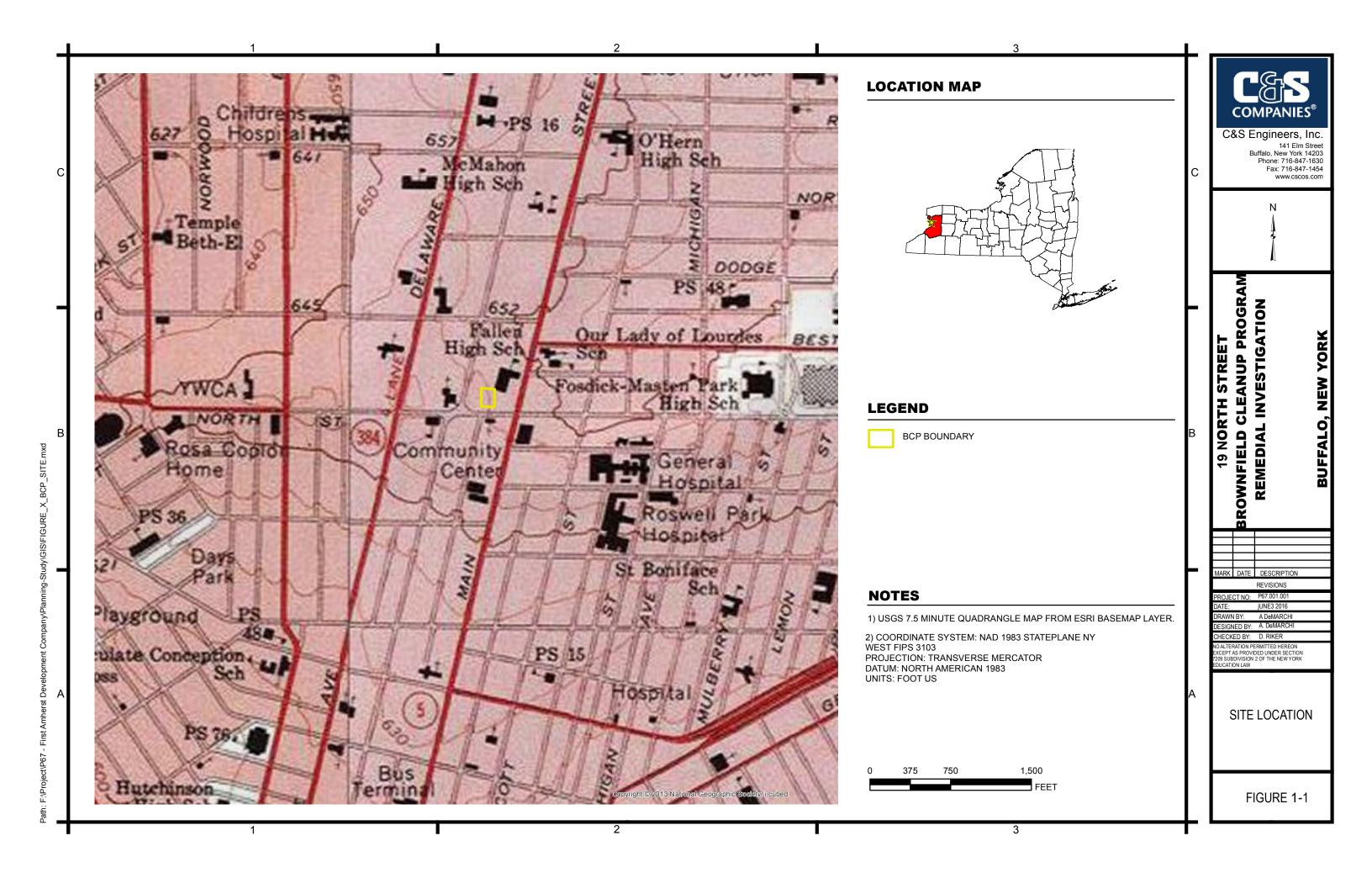
- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate Standard Recoveries
- Matrix Spike Recoveries. Duplicate Recoveries
- Blind Field Duplicate Correlations
- Preparation/calibration Blanks
- Laboratory Control Samples (LCSs)
- Calibration/Low Level Standards
- ICP Serial Dilution
- Instrument MDLs
- Sample Result Verification

1.4 Conclusions and Recommendations

Based on the findings of this RI, Remedial Action Objectives (RAOs) have been developed for various media at the Site. The following RAOs were developed:

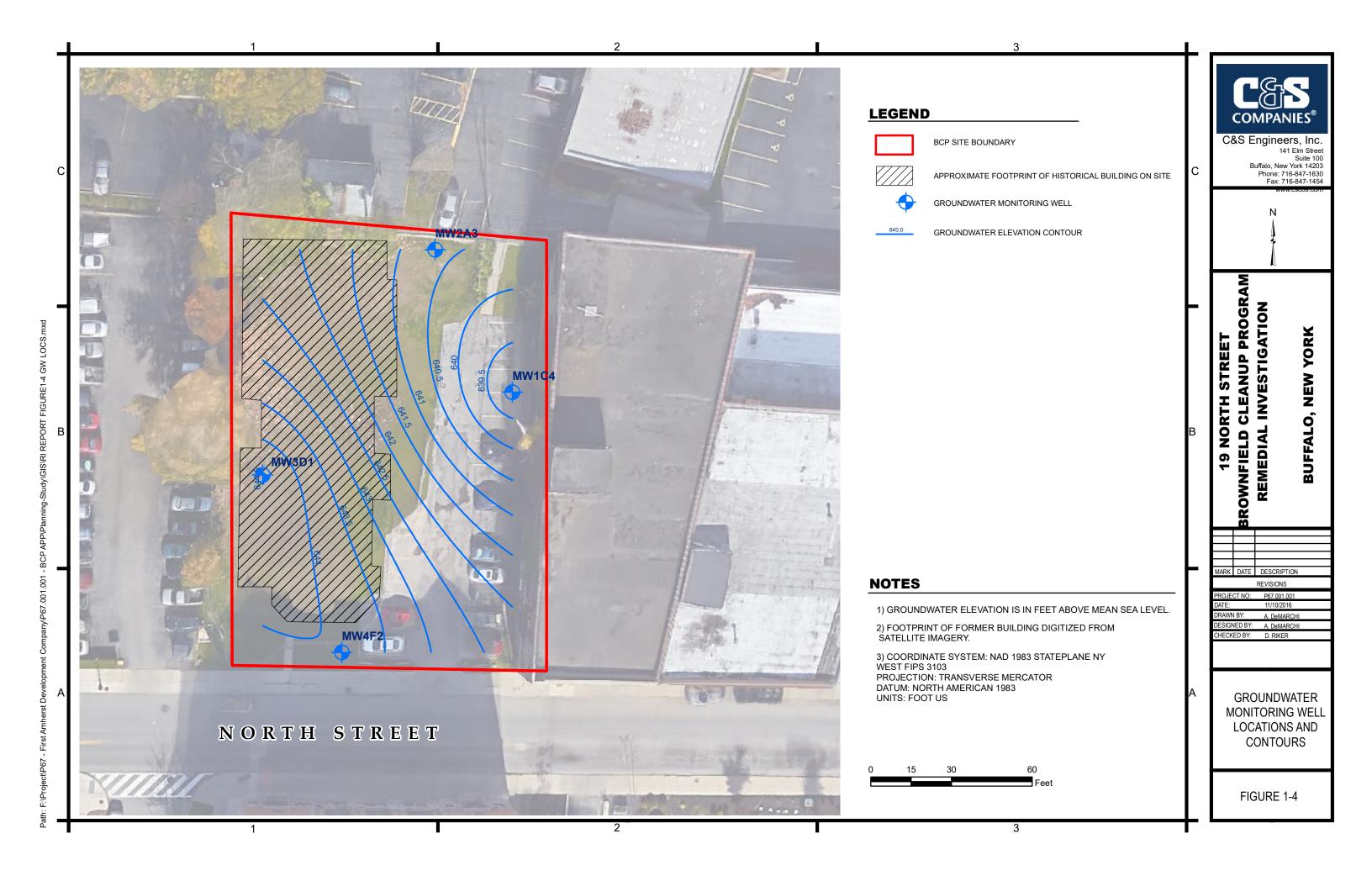
Soil

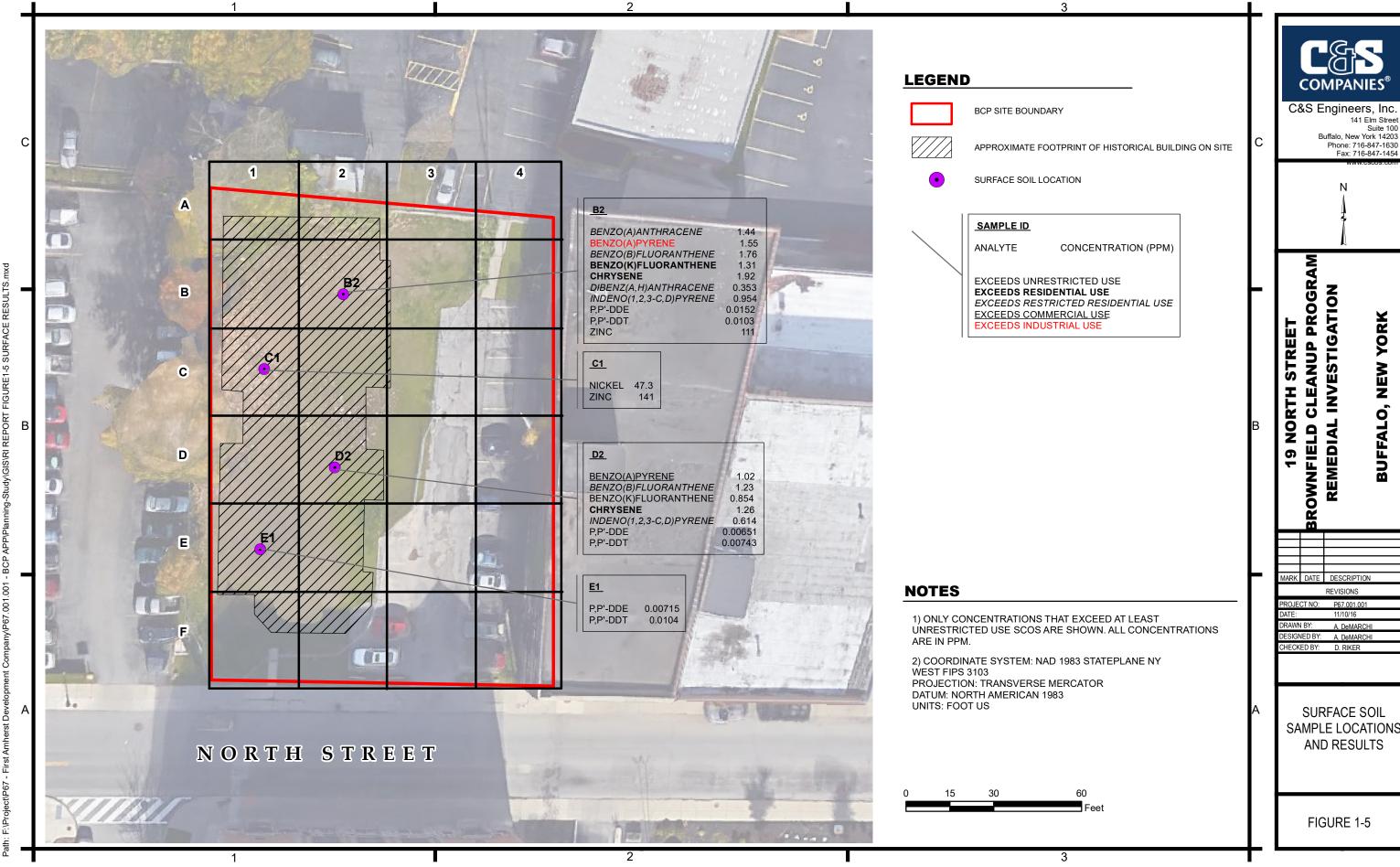
- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation exposure to contaminants volatilizing from soil.

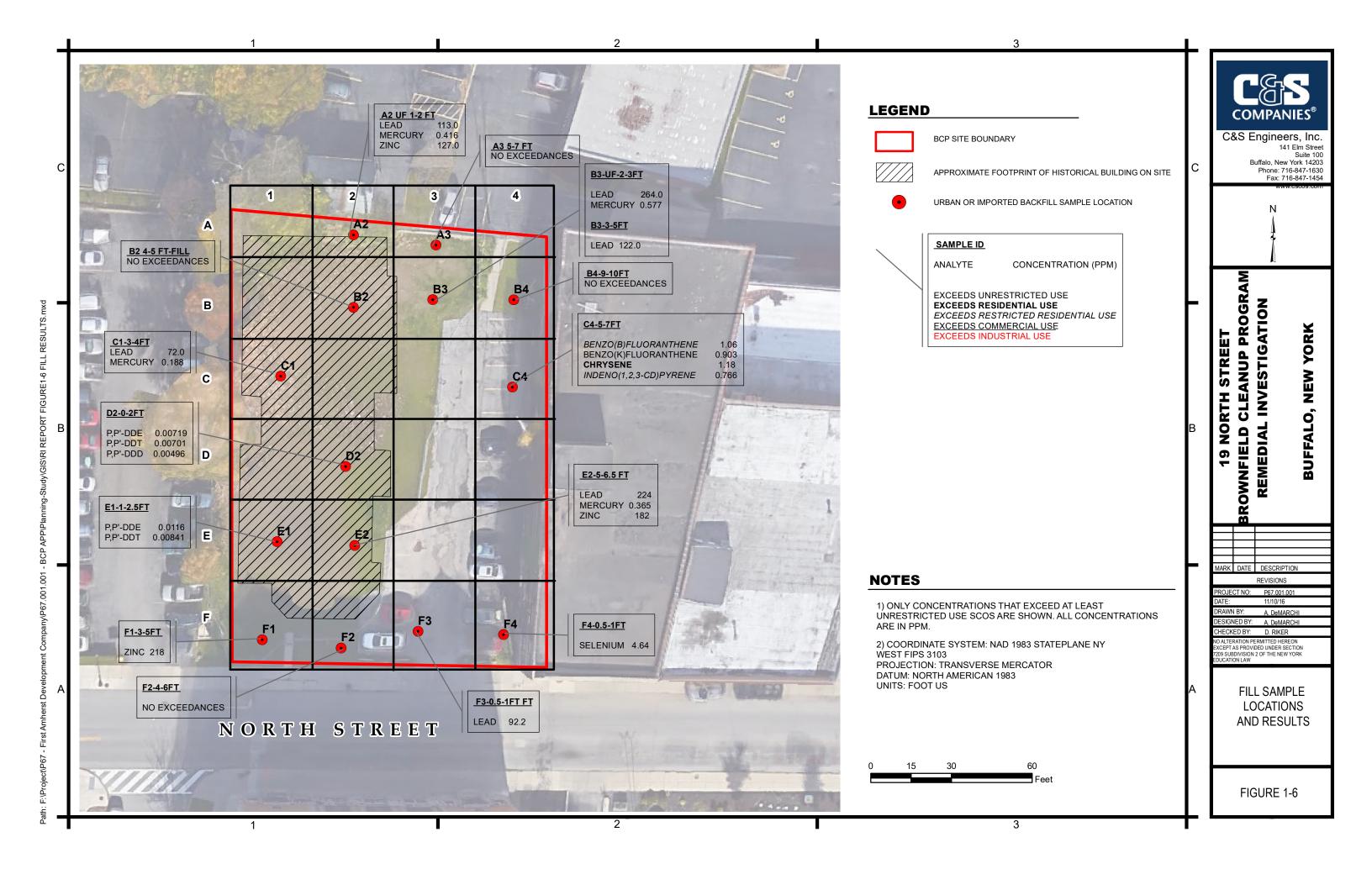

• Prevent migration of contaminants that would result in groundwater contamination.

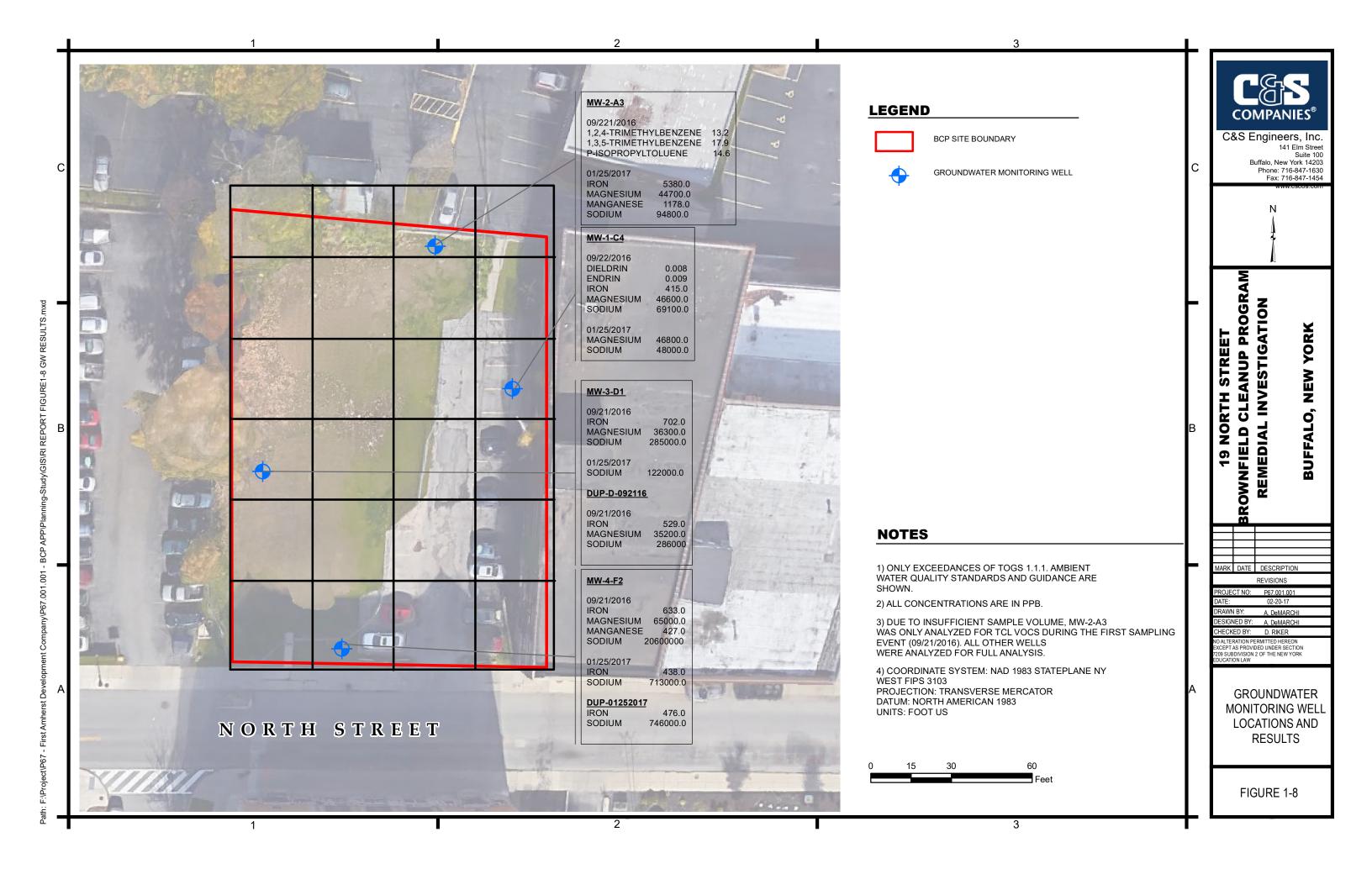
Groundwater

• Prevent the discharge of contaminants to the groundwater.


An Interim Remedial Measures Work Plan (IRM WP) was prepared following the RI to present the planned interim remedial steps that will be implemented at the Site to address the fill and soil contamination. Based on information collected during this RI, the recommendation remedial action at the Site calls for the removal and re-use or proper disposal of approximately 6,000 cubic yards of contaminated material from the Site. Following the performance of the IRMs, an IRM Report, Alternatives Analysis Report (AAR), and draft Final Engineering Report (FER) will be submitted to the NYSDEC. The FER will affirm that the remedial activities have achieved the Remedial Action Objectives (RAOs).







SAMPLE LOCATIONS

TABLES

Task	Location	Number of Samples	Lab Analysis		
Surface Soil Samples	Former Structure Footprint	4	SVOCs and pesticides, PCBs, TAL Metals, Cyanide, Hex Chromium (Subset only - 1 sample)		
Urban Fill Samples	30-foot by 30-foot grid	8	VOCs, SVOCs and pesticides, PCBs, TAL Metals, Cyanide, Hex Chromium (subset only - 3 samples)		
Orban Fili Samples	Site-wide	3	TCLP VOCs, TCLP SVOCs, TCLP pesticides/herbicides, TCLP metals, PCBs, reactivity, corrosivity, ignitability		
Native Soil Samples	30-foot by 30-foot grid	35	VOCs, SVOCs and pesticides, PCBs, TAL Metals, Cyanide, Hex Chromium (subset only-11 samples)		
Imported Backfill Samples	Former Structure Footprint	4	VOCs, SVOCs and pesticides, PCBs, TAL Metals, Cyanide, Hex Chromium (subset only - 2 samples)		
Groundwater Samples	Site-wide	8 (Two Events)	TCL VOCs, SVOCs and pesticides, PCBs, TAL Metals, Cyanide, Hex Chromium (subset only - 4 samples)		

Field Sample ID Sample Depth (Inch) Date Sampled	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use	B2 Surface 0 - 2 08/30/2016	C1 Surface 0 - 2 08/31/2016	D2 Surface 0 - 2 08/30/2016	E1 Surface 0 - 2 08/30/2016
Volatile Organic Compounds									
1,1,1-Trichloroethane	0.68	100	100	500	1000	ND	ND	ND	ND
1,1-Dichloroethane 1,1-Dichloroethene	0.27 0.33	19 100	26 100	240 500	480 1000	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	1.1	100	100	500	1000	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND
Cis-1,2-Dichloroethylene	0.25	59	100	500	1000	ND	ND	ND	ND
Trans-1,2-Dichloroethene	0.19	100	100	500	1000	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	17	49	280	560	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	9.8	13	130	250	ND	ND	ND	ND
1,4-Dioxane (P-Dioxane)	0.1	9.8	13	130	250	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	ND	ND	ND	ND
Benzene N-Butylbenzene	0.06 12	2.9 100	4.8 100	44 500	89 1000	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	0.76	1.4	2.4	22	44	ND	ND	ND	ND
Chlorobenzene	1.1	100	100	500	1000	ND	ND	ND	ND
Chloroform	0.37	10	49	350	700	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	ND	ND	ND
Hexachlorobenzene	0.33	0.41	1.2	6	12	ND	ND	ND	ND
Tert-Butyl Methyl Ether	0.93	62	100	500	1000	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND	ND	ND	ND
N-Propylbenzene	3.9	100	100	500	1000	ND	ND	ND	ND
Sec-Butylbenzene	11	100	100	500	1000	ND	ND	ND	ND
Tetrachloroethylene (PCE) Toluene	1.3 0.7	5.5 100	19 100	150 500	300 1000	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)	0.7 0.47	100 10	100 21	200	400	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene (Mesityle	8.4	47	52 52	190	380	ND	ND	ND	ND
Vinyl Chloride	0.02	0.21	0.9	13	27	ND	ND	ND	ND
trans-Chlordane	- 	0.54	-	-		ND	0.00205 J		ND
Semi-Volatile Organic Compounds	s								
Acenaphthene	20	100	100	500	1000	ND	ND	ND	ND
Acenaphthylene	100	100	100	500	1000	ND	ND	ND	ND
Anthracene	100	100	100	500	1000	0.371	ND	0.225 J	
Benzo(A)Anthracene	1	1	1	5.6	11	1.44	0.411	0.924	0.383
Benzo(A)Pyrene	1	1	1	1	1.1	1.55	0.455	1.02	0.45
Benzo(B)Fluoranthene	1	1	1	5.6	11	1.76	0.556	1.23	0.492
Benzo(G,H,I)Perylene	100	100	100	500	1000	1.17	0.4	0.777	0.377
Benzo(K)Fluoranthene	0.8 1	1 1	3.9 3.9	56 56	110 110	1.31 1.92	0.382 0.544	0.854 1.26	0.434 0.554
Chrysene Dibenz(A,H)Anthracene	0.33	0.33	0.33	0.56	1.1	0.353	0.344 ND	0.247 J	0.554 ND
Fluoranthene	100	100	100	500	1000	3.57	1.02	2.34	1.07
Fluorene	30	100	100	500	1000	ND	ND	ND	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	5.6	11	0.954	0.292 J	0.614	0.28 J
Naphthalene	12	100	100	500	1000	ND	ND	ND	ND
2-Methylphenol (O-Cresol)	0.33	100	100	500	1000	ND	ND	ND	ND
Pentachlorophenol	0.8	2.4	6.7	6.7	55	ND	ND	ND	ND
Phenanthrene	100	100	100	500	1000	1.82	0.498	1.28	0.53
Phenol	0.33	100	100	500	1000	ND	ND	ND	ND
Pyrene	100	100	100	500	1000	3.21	0.854	2.04	0.985
Pesticides P.P'-DDE	0.0033	1.8	8.9	62	120	0.0152	0.00318	0.00651	0.00715
P.P'-DDT	0.0033	1.7	7.9	47	94	0.0132	0.00318 0.00206 J		0.0104
P,P'-DDD	0.0033	2.6	13	92	180	ND	ND	ND	PL ND
Aldrin	0.005	0.019	0.097	0.68	1.4	ND	0.00167 J		ND
Alpha Bhc (Alpha Hexachlorocycl	0.02	0.097	0.48	3.4	6.8	ND	ND	ND	ND
Beta Bhc (Beta Hexachlorocycloh	0.036	0.072	0.36	3	14	ND	ND	ND	ND
cis-Chlordane	0.094	0.91	4.2	24	47	0.000952	JPL 0.00351 P	0.00517	0.00692
Delta BHC (Delta Hexachlorocyclo	0.04	100	100	500	1000	0.00281	PL ND	0.00335	PL 0.00416 PL
Dibenzofuran	7	14	59	350	1000	ND	ND	ND	ND
Dieldrin	0.005	0.039	0.2	1.4	2.8	ND	ND	ND	ND
Alpha Endosulfan	2.4	4.8	24	200	920	ND	ND	ND	ND
Beta Endosulfan	2.4	4.8	24	200	920	ND	ND	ND	ND
Endosulfan Sulfate	2.4	4.8	24	200	920	ND	ND	ND	ND ND
Endrin Heptachlor	0.014 0.042	2.2 0.42	11 2.1	89 15	410 29	ND ND	ND ND	ND ND	ND ND
Gamma Bhc (Lindane)	0.042	0.42	2.1 1.3	9.2	23	ND ND	ND	ND ND	ND ND
PCBs	V.1	0.20	2.0			110	145	140	
PCB-1016 (Aroclor 1016)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1254 (Aroclor 1254)	0.1	1	1	1	25	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)	0.1	1	1	1	25 25	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)	0.1	1 1	1 1	1 1	25 25	ND ND	ND ND	ND ND	ND ND
PCB-1268 (Aroclor 1268) Total Metals	0.1	<u> </u>	<u> </u>	1	25	טא	טאו	IND	טווו
Arsenic	13	16	16	16	16	2.80	3.40	2.53	3.62
Barium	350	350	400	400	10000	78.3	84.6	85.0	87.5
Beryllium	7.2	14	72	590	2700	0.622	0.512	0.548	0.601
Cadmium	2.5	2.5	4.3	9.3	60	0.599		и 0.454	0.539
Chromium, Hexavalent	1	22	110	400	800	ND	NA	NA	NA
Chromium, Total	30	36	180	1500	6800	16.9	29.4	15.3	18.1
Copper	50	270	270	270	10000	20.4	23.3 E		18.8
Cyanide	27	27	27	27	10000	ND	0.318 J		ND
Lead	63	400	400	1000	3900	38.6		OM 24.9	59.9
Manganese	1600	2000	2000	10000	10000	423	390	947	441
Mercury	0.2	0.8	0.8	2.8	5.7	0.0655	0.0602	0.0555	0.0144
Nickel	30	140	310	310	10000	17.2		DM 15.2	18.4
Selenium Silver	4 2	36 36	180 180	1500 1500	6800 6800	0.342 J ND	1.78 D	0.997 ND	ND ND
Zinc	2 109	2200	10000	10000	10000	111	141	83.9	97.9
							- /-		

Notes:

ND Not Detected

NA Not Analyzed
J Estimated value. Estimated between the quantatation limit and half the quantatation limit

Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above relative percent difference limit

M Matrix spike recoveries outside QC limits. Matric bias indicated.

P Concentration differs by more than 40% between the primary and secondary analytical columns

L Laboratory Control Sample recovery outside accepted QC Limits

Field Sample ID Sample Depth

	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use
Volatile Organic Compounds	030	030	Nesidential ose	030	030
1,2-Dichlorobenzene	1.1	100	100	500	1000
1,3-Dichlorobenzene	2.4	17	49	280	560
1,4-Dichlorobenzene	1.8	9.8	13	130	250
Chlorobenzene	1.1	100	100	500	1000
Ethylbenzene	1	30	41	390	780
Methylene Chloride	0.05	51	100	500	1000
Tetrachloroethylene (PCE)	1.3	5.5	19	150	300
Semi-Volatile Organic Compounds					
Anthracene	100	100	100	500	1000
Benzo(A)Anthracene	1	1	1	5.6	11
Benzo(A)Pyrene	1	1	1	1	1.1
Benzo(B)Fluoranthene	1	1	1	5.6	11
Benzo(G,H,I)Perylene	100	100	100	500	1000
Benzo(K)Fluoranthene	0.8	1	3.9	56	110
Chrysene	1	1	3.9	56	110
Dibenz(A,H)Anthracene	0.33	0.33	0.33	0.56	1.1
Fluoranthene	100	100	100	500	1000
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	5.6	11
Phenanthrene	100	100	100	500	1000
Pyrene	100	100	100	500	1000
Pesticides					
P,P'-DDE	0.0033	1.8	8.9	62	120
P,P'-DDT	0.0033	1.7	7.9	47	94
P,P'-DDD	0.0033	2.6	13	92	180
Aldrin	0.005	0.019	0.097	0.68	1.4
Alpha Bhc (Alpha Hexachlorocyclohe)	0.02	0.097	0.48	3.4	6.8
cis-Chlordane	0.094	0.91	4.2	24	47
trans-Chlordane		0.54			
Dieldrin	0.005	0.039	0.2	1.4	2.8
Total Metals					
Arsenic	13	16	16	16	16
Barium	350	350	400	400	10000
Beryllium	7.20	14	72	590	2700
Cadmium	2.50	2.50	4.30	9.30	60
Chromium, Total	30	36	180	1500	6800
Copper	50	270	270	270	10000
Cyanide	27	27	27	27	10000
Lead	63	400	400	1000	3900
Manganese	1600	2000	2000	10000	10000
Mercury	0.18	0.81	0.81	2.80	5.70
Nickel	30	140	310	310	10000
Selenium	3.9	36	180	1500	6800
Silver	2	36	180	1500	6800
Zinc	109	2200	10000	10000	10000

Notes:

All units are mg/kg

ND Not Detected

Blank space Not Analyzed

J Estimated value. Estimated between the quantatation limit and half the quantatation limit

D Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above relative percent difference limit

M Matrix spike recoveries outside QC limits. Matric bias indicated.

P Concentration differs by more than 40% between the primary and secondary analytical columns

Laboratory Control Sample recovery outside accepted QC Limits

61.6 36.0 42.0 63.0 70.0 127 42.6 21.3 0.332 0.306 0.291 0.486 0.504 0.231 J 0.338 0.257 0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND ND ND ND ND ND ND ND	A2 UF 1-2 ft 1 - 2 08/31/2016	B2 4-5 ft - Fill 4 - 5 08/30/2016	C1 3-4 ft 3 - 4 08/31/2016	D2 0-2 ft 0 - 2 08/30/2016	E1 1-2.5 ft 1 - 2.5 08/30/2016	E2-5-6.5 ft 5 - 6.5 09/01/2016	F1-3-5 ft 3 - 5 09/01/2016	F2-4-6 ft 4 - 6 09/01/2016
NO	ND	ND	ND	ND	ND	ND	ND	ND
ND								
ND								
ND								
ND								
ND								
O.944								
O.829	0.403	ND	ND	ND	ND	ND	ND	ND
O.829	0.944	ND	ND	0.188 J	ND	0.307 J	0.155 J	ND
0.481 ND ND ND ND 0.167 J ND ND 0.734 ND	0.829	ND	ND	0.184 J	ND	0.264 J		ND
0.481 ND ND ND ND 0.167 J ND ND 0.734 ND	0.755	ND	ND	0.21 J	0.19 J	0.271 J	ND	ND
O.949	0.481	ND	ND	ND	ND	0.167 J	ND	ND
ND	0.734	ND	ND	ND	ND	0.22 J	ND	ND
2.07	0.949	ND	ND	0.215 J	0.2 J	0.344	ND	ND
0.388	ND	ND	ND	ND	ND	ND	ND	ND
1.48	2.07	0.175 J	ND	0.457	0.378	0.684	0.281 J	ND
1.78	0.388	ND	ND	ND	ND	ND	ND	ND
0.00202 J ND ND 0.00719 0.0116 P ND ND ND ND ND ND ND 0.00841 ND ND ND ND ND ND ND ND ND ND ND ND ND 0.00311 JP ND ND </td <td>1.48</td> <td>ND</td> <td>ND</td> <td>0.174 J</td> <td>ND</td> <td>0.495</td> <td>0.265 J</td> <td>ND</td>	1.48	ND	ND	0.174 J	ND	0.495	0.265 J	ND
ND	1.78	0.179 J	ND	0.428	0.34	0.586	0.259 J	ND
ND	0.00202 J	ND	ND			P ND	ND	ND
0.00311 JP ND ND <t< td=""><td></td><td>ND</td><td>ND</td><td>0.00701</td><td></td><td></td><td></td><td>ND</td></t<>		ND	ND	0.00701				ND
ND								
ND ND ND 0.0213 0.0164 ND 0.00209 J ND ND ND ND 0.0132 PL 0.00961 PL ND ND ND ND ND ND ND ND 0.000816 JPL ND ND ND ND 3.72 1.80 2.88 2.90 3.23 2.91 2.07 1.50 61.6 36.0 42.0 63.0 70.0 127 42.6 21.3 0.332 0.306 0.291 0.486 0.504 0.231 J 0.338 0.257 0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND								
ND								
ND								
3.72 1.80 2.88 2.90 3.23 2.91 2.07 1.50 61.6 36.0 42.0 63.0 70.0 127 42.6 21.3 0.332 0.306 0.291 0.486 0.504 0.231 J 0.338 0.257 0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND ND ND ND ND ND								
61.6 36.0 42.0 63.0 70.0 127 42.6 21.3 0.332 0.306 0.291 0.486 0.504 0.231 J 0.338 0.257 0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND ND ND ND ND ND ND ND	ND	ND	ND	ND	0.000816	JPL ND	ND	ND
0.332 0.306 0.291 0.486 0.504 0.231 J 0.338 0.257 0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.0446 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND ND ND ND ND ND ND								1.50
0.336 0.237 J 0.260 0.544 0.535 0.466 0.735 0.283 10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.0446 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND								
10.3 8.08 8.27 14.9 20.3 8.18 8.56 7.54 16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.0440 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND ND ND ND ND ND ND								
16.3 9.31 13.6 17.1 18.1 20.9 16.7 10.6 0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.300 J ND ND ND ND 0.541 0.278 J ND 113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND								
113 38.7 72.0 23.3 19.3 224 54.9 14.1 292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.0440 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND 1.47 0.618 0.770 ND ND ND ND ND ND ND ND ND								
292 302 310 385 440 255 436 326 0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.044 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND 1.47 0.618 0.770 ND ND ND ND ND ND ND								
0.416 0.0853 0.188 0.0550 0.0317 0.365 0.134 0.0440 9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND 1.47 0.618 0.770 ND ND ND ND ND ND ND ND								
9.28 7.01 7.43 16.1 17.2 7.04 7.31 6.31 0.897 ND 0.558 0.716 ND 1.47 0.618 0.770 ND ND ND ND ND ND ND ND								
0.897 ND 0.558 0.716 ND 1.47 0.618 0.770 ND								
ND ND 0.326 J ND ND ND ND ND								
127 48.2 80.4 76.4 61.8 182 218 53.8	127		80.4					53.8

Page 1 of 2

Field Sample ID Sample Depth

Date Sampled	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use
Volatile Organic Compounds	USE	Use	Residential Ose	Ose	Ose
1,2-Dichlorobenzene	1.1	100	100	500	1000
1,3-Dichlorobenzene	2.4	17	49	280	560
1,4-Dichlorobenzene	1.8	9.8	13	130	250
Chlorobenzene	1.1	100	100	500	1000
Ethylbenzene	1	30	41	390	780
Methylene Chloride	0.05	51	100	500	1000
Tetrachloroethylene (PCE)	1.3	5.5	19	150	300
Semi-Volatile Organic Compounds					
Anthracene	100	100	100	500	1000
Benzo(A)Anthracene	1	1	1	5.6	11
Benzo(A)Pyrene	1	1	1	1	1.1
Benzo(B)Fluoranthene	1	1	1	5.6	11
Benzo(G,H,I)Perylene	100	100	100	500	1000
Benzo(K)Fluoranthene	0.8	1	3.9	56	110
Chrysene	1	1	3.9	56	110
Dibenz(A,H)Anthracene	0.33	0.33	0.33	0.56	1.1
Fluoranthene	100	100	100	500	1000
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	5.6	11
Phenanthrene	100	100	100	500	1000
Pyrene	100	100	100	500	1000
Pesticides	0.0022	1.0	0.0	62	420
P,P'-DDE	0.0033	1.8	8.9	62 47	120 94
P,P'-DDT P,P'-DDD	0.0033 0.0033	1.7 2.6	7.9 13	47 92	180
Aldrin	0.005	0.019	0.097	92 0.68	1.4
Alpha Bhc (Alpha Hexachlorocyclohe		0.019	0.48	3.4	6.8
cis-Chlordane	0.02	0.91	4.2	3. 4 24	47
trans-Chlordane	0.034	0.54	4.2	24	47
Dieldrin	0.005	0.039	0.2	1.4	2.8
Total Metals	0.003	0.033	0.2	1.7	2.0
Arsenic	13	16	16	16	16
Barium	350	350	400	400	10000
Beryllium	7.20	14	72	590	2700
Cadmium	2.50	2.50	4.30	9.30	60
Chromium, Total	30	36	180	1500	6800
Copper	50	270	270	270	10000
Cyanide	27	27	27	27	10000
Lead	63	400	400	1000	3900
Manganese	1600	2000	2000	10000	10000
Mercury	0.18	0.81	0.81	2.80	5.70
Nickel	30	140	310	310	10000
Selenium	3.9	36	180	1500	6800
Silver	2	36	180	1500	6800
Zinc	109	2200	10000	10000	10000

Notes:

All units are mg/kg

ND Not Detected

Blank space Not Analyzed

J Estimated value. Estimated between the quantatation limit and half the quantatation limit

D Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above relative percent difference limit

M Matrix spike recoveries outside QC limits. Matric bias indicated.

P Concentration differs by more than 40% between the primary and secondary analytical columns

L Laboratory Control Sample recovery outside accepted QC Limits

		Urban Fill Sample	s outside building foo	tprint		
A3 5-7 ft 5 - 7 08/31/2016	B3 3-5 ft 3 - 5 08/30/2016	B3 UF 2-3 ft 2 - 3 08/30/2016	C4 5-7 ft 5 - 7 08/30/2016	F3-0.5-1 ft 0.5 - 1 08/29/2016	F4-0.5-1 ft 0.5 - 1 08/29/2016	B4 9-10 ft 9 - 10 08/30/2016
ND	ND	ND	ND	ND	ND	ND UM
ND	ND	ND	ND	ND	ND	ND UM
ND	ND	ND	ND	ND	ND	ND UM
ND	ND	ND	ND	ND	ND	ND UM
ND	ND	ND	0.00245 J	ND	ND	ND UM
ND	0.00833 J	ND	0.00783 J	ND	ND	ND
ND	ND	ND	0.00470	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	0.726	ND	0.268 J	ND
ND	ND	ND	0.923	ND	0.396	ND
ND	ND	ND	1.06	ND	0.469	ND
ND	ND	ND	0.832	ND	0.646	ND
ND	ND	ND	0.903	ND	0.376	ND
ND	ND	ND	1.18	ND	0.44	ND
ND	ND	ND	0.25 J		ND	ND
ND	ND	0.163 J	1.99	0.194 J	0.595	ND
ND	ND	ND	0.766	ND	0.404	ND
ND	ND	ND	0.909	ND	0.2 J	ND
ND	ND	ND	1.78	0.16 J	0.541 N	
				0.20		
ND	ND	ND	0.00102	JPL ND	ND	ND
ND	ND	ND	ND	ND	0.00210 J	ND
ND	ND	ND	ND	ND	ND	ND
0.00216 J	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	0.00342 P	ND
ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
0.957	2.35	2.82	2.90	5.15	2.41	1.16
45.9	48.1	339	48.2	45.3	45.9	51.8
0.415	0.299	0.379	0.357	0.280	1.04	0.403
ND	0.230 J	0.396	0.320	0.387	0.567	0.345
10.8	7.72	10.2	8.96	7.83	7.66	13.0
8.19	12.5	16.6	11.6	13.3	9.17	9.03
ND	ND	ND	ND	ND	ND	ND ND
12.3	122	264	40.1	92.2	59.7	21.2
364	148	264	328	363	497	520 DM
0.0123	0.145	0.577	0.172	0.0940	0.0288	0.0696
9.03	6.91	7.81	8.69	6.77	5.77	9.20
0.507 J	ND	0.322 J	1.02	0.846	4.64	ND
ND	ND	ND	ND	ND	0.350 J	ND
58.1	84.3	103	60.8	80.0	1.70 J	76.3
50.1	07.0	103	00.0	00.0	1.,0	, 0.0

Page 2 of 2

				44 E C C	44676		AS S 5 44 C	NEW TORK	40 5 7 6	5115.5	40 44 45 St (NI 11)	4 4 0 40 C	54 5 6 6
Field Sample ID				A1 5-6 ft	A1 6-7 ft	A1 7-7.5 ft	A2 9.5-11 ft	DUP A	A3 5-7 ft	DUP B	A3 14-15 ft (Native)	A4 9-10 ft	B1-5-6 ft
Sample Depth (FEET)				5 - 6	6-7	7-7.5	9.5 - 11	9.5 - 11	5 - 7	5 - 7	14 - 15	9 - 10	5 - 6
Date Sampled	Unrestricted	Residential	Restricted	08/31/2016	08/31/2016	06/09/2017	08/31/2016	08/31/2016	08/31/2016	08/31/2016	08/31/2016	08/30/2016	09/01/2016
	Use	Use	Residential use										
/olatile Organic Compounds													
Acetone	0.05	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	ND			ND	ND	ND	ND	ND	ND	ND
N-Propylbenzene	3.9	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Sec-Butylbenzene	11	100	100	ND			ND	ND	ND	ND	ND	ND	ND
l,3,5-Trimethylbenzene	8.4	47	52	ND			ND	ND	ND	ND	ND	ND	ND
emi-Volatile Organic Compound													
Benzo(A)Anthracene	1	1	1	ND			ND	ND	ND	ND	ND	ND	ND
Benzo(A)Pyrene	1	1	1	ND			ND	ND	ND	ND	ND	ND	ND
Benzo(B)Fluoranthene	1	1	1	ND			ND	ND	ND	ND	ND	ND	ND
Benzo(G,H,I)Perylene	100	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Benzo(K)Fluoranthene	0.8	1	3.9	ND			ND	ND	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	ND			ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	ND			ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	100	ND			ND	ND	ND	ND	ND	ND	ND
Pesticides	0.000	1.0		4.5			0.00075	NID	415	A I D		ND	200
P,P'-DDE	0.0033	1.8	8.9	ND			0.00275 J		ND	ND	ND	ND	ND
P,P'-DDT	0.0033	1.7	7.9	ND			ND	ND	ND	ND	ND	ND	ND
P,P'-DDD	0.0033	2.6	13	ND	I.D.		ND 0.00075	ND D	ND D	ND	ND 2 22252	ND	ND
Aldrin	0.005	0.019	0.097	0.00248 .	JP		0.00275 J			ND	0.00250 J	ND	ND
cis-Chlordane	0.094	0.91	4.2	ND			ND	ND	ND	ND	ND	ND	ND
trans-Chlordane		0.54		ND			ND	ND	ND	ND	ND	ND	ND
PCBs Total PCBS	0.1	1	1	ND			ND	ND	ND	ND	ND	ND	ND
	0.1	1	1	ND			ND	ND	ND	ND	ND	ND	ND
Total Metals													
Arsenic	4.2	1.6	1.5	4.40			1.26	4.47	0.057	4.75	0.002	2.44	2.20
	13	16	16	1.18			1.26	1.47	0.957	1.75	0.993	2.11	2.30
	350	350	400	111			27.1	27.8	45.9	95.3	15.7	74.7	112
Beryllium	350 7.20	350 14	400 72	111 0.735			27.1 0.208 J	27.8 0.221 J	45.9 0.415	95.3 0.568	15.7 0.144 J	74.7 0.596	112 0.871
Beryllium	350	350	400	111			27.1	27.8	45.9	95.3	15.7	74.7	112
Beryllium Cadmium	350 7.20	350 14	400 72	111 0.735			27.1 0.208 J	27.8 0.221 J	45.9 0.415	95.3 0.568	15.7 0.144 J	74.7 0.596	112 0.871
Beryllium Cadmium Chromium, Hexavalent	350 7.20 2.50	350 14 2.50 22	400 72 4.30	111 0.735 0.342 ND			27.1 0.208 J 0.253 J	27.8 0.221 J 0.289	45.9 0.415 ND	95.3 0.568 0.413	15.7 0.144 J 0.220 J	74.7 0.596 0.397 ND	112 0.871 0.451 ND
Beryllium Cadmium Chromium, Hexavalent Chromium, Total	350 7.20 2.50 1 30	350 14 2.50 22 36	400 72 4.30 110 180	111 0.735 0.342 ND 21.3			27.1 0.208 J 0.253 J 7.51	27.8 0.221 J 0.289 7.64	45.9 0.415 ND 10.8	95.3 0.568 0.413 14.5	15.7 0.144 J 0.220 J 4.90	74.7 0.596 0.397 ND 15.6	112 0.871 0.451 ND 22.2
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper	350 7.20 2.50 1 30 50	350 14 2.50 22 36 270	400 72 4.30 110 180 270	111 0.735 0.342 ND 21.3 19.2			27.1 0.208 J 0.253 J 7.51 8.07	27.8 0.221 J 0.289 7.64 8.37	45.9 0.415 ND 10.8 8.19	95.3 0.568 0.413 14.5 15.1	15.7 0.144 J 0.220 J 4.90 7.15	74.7 0.596 0.397 ND 15.6 14.2	112 0.871 0.451 ND 22.2 18.7
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide	350 7.20 2.50 1 30 50 27	350 14 2.50 22 36 270 27	400 72 4.30 110 180 270 27	111 0.735 0.342 ND 21.3 19.2			27.1 0.208 J 0.253 J 7.51 8.07	27.8 0.221 J 0.289 7.64 8.37	45.9 0.415 ND 10.8 8.19	95.3 0.568 0.413 14.5 15.1 ND	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J	74.7 0.596 0.397 ND 15.6 14.2	112 0.871 0.451 ND 22.2 18.7 0.244
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead	350 7.20 2.50 1 30 50 27 63	350 14 2.50 22 36 270 27 400	400 72 4.30 110 180 270 27 400	111 0.735 0.342 ND 21.3 19.2 ND			27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93	27.8 0.221 J 0.289 7.64 8.37 ND 12.3	45.9 0.415 ND 10.8 8.19 ND 12.3	95.3 0.568 0.413 14.5 15.1 ND 12.3	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0	112 0.871 0.451 ND 22.2 18.7 0.244 13.7
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead Manganese	350 7.20 2.50 1 30 50 27 63 1600	350 14 2.50 22 36 270 27 400 2000	400 72 4.30 110 180 270 27 400 2000	111 0.735 0.342 ND 21.3 19.2 ND 14.1 455			27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93 287	27.8 0.221 J 0.289 7.64 8.37 ND 12.3 303	45.9 0.415 ND 10.8 8.19 ND 12.3 364	95.3 0.568 0.413 14.5 15.1 ND 12.3 461	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51 251	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0 348	112 0.871 0.451 ND 22.2 18.7 0.244 13.7 340
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead Manganese Mercury	350 7.20 2.50 1 30 50 27 63 1600 0.18	350 14 2.50 22 36 270 27 400 2000 0.81	400 72 4.30 110 180 270 27 400 2000 0.81	111 0.735 0.342 ND 21.3 19.2 ND 14.1 455 0.0166			27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93 287 0.0105	27.8 0.221 J 0.289 7.64 8.37 ND 12.3 303 0.0144	45.9 0.415 ND 10.8 8.19 ND 12.3 364 0.0123	95.3 0.568 0.413 14.5 15.1 ND 12.3 461 0.0348	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51 251 0.00639 J	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0 348 0.0249	112 0.871 0.451 ND 22.2 18.7 0.244 13.7 340 0.0350
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead Manganese Mercury	350 7.20 2.50 1 30 50 27 63 1600	350 14 2.50 22 36 270 27 400 2000	400 72 4.30 110 180 270 27 400 2000	111 0.735 0.342 ND 21.3 19.2 ND 14.1 455			27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93 287	27.8 0.221 J 0.289 7.64 8.37 ND 12.3 303	45.9 0.415 ND 10.8 8.19 ND 12.3 364	95.3 0.568 0.413 14.5 15.1 ND 12.3 461	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51 251	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0 348	112 0.871 0.451 ND 22.2 18.7 0.244 13.7 340
Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead Manganese Mercury Nickel	350 7.20 2.50 1 30 50 27 63 1600 0.18	350 14 2.50 22 36 270 27 400 2000 0.81	400 72 4.30 110 180 270 27 400 2000 0.81	111 0.735 0.342 ND 21.3 19.2 ND 14.1 455 0.0166			27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93 287 0.0105	27.8 0.221 J 0.289 7.64 8.37 ND 12.3 303 0.0144	45.9 0.415 ND 10.8 8.19 ND 12.3 364 0.0123	95.3 0.568 0.413 14.5 15.1 ND 12.3 461 0.0348	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51 251 0.00639 J	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0 348 0.0249	112 0.871 0.451 ND 22.2 18.7 0.244 13.7 340 0.0350
Barium Beryllium Cadmium Chromium, Hexavalent Chromium, Total Copper Cyanide Lead Manganese Mercury Nickel Selenium Silver	350 7.20 2.50 1 30 50 27 63 1600 0.18 30	350 14 2.50 22 36 270 27 400 2000 0.81 140	400 72 4.30 110 180 270 27 400 2000 0.81 310	111 0.735 0.342 ND 21.3 19.2 ND 14.1 455 0.0166 22.5	2.14	ND	27.1 0.208 J 0.253 J 7.51 8.07 ND 9.93 287 0.0105 5.84	27.8 0.221 J 0.289 7.64 8.37 ND 12.3 303 0.0144 6.07	45.9 0.415 ND 10.8 8.19 ND 12.3 364 0.0123 9.03	95.3 0.568 0.413 14.5 15.1 ND 12.3 461 0.0348 16.3	15.7 0.144 J 0.220 J 4.90 7.15 0.295 J 7.51 251 0.00639 J 4.75	74.7 0.596 0.397 ND 15.6 14.2 ND 13.0 348 0.0249 17.7	112 0.871 0.451 ND 22.2 18.7 0.244 13.7 340 0.0350 24.2

Notes: All units are mg/kg
ND Not Detected

Blank space Not Analyzed

J Estimated value. Estimated between the

quantatation limit and half the quantatation limit

D Sample,

M Matrix spike recoveries outside QC limits. Matric bias indicated.

P Concentration differs by more than 40% between the primary and secondary analytical columns

L Laboratory Control Sample recovery outside accepted QC Limits

Only analytes detected in at least one sample are shown

Field Sample ID													
ricia sampic ib				B1-15 ft	B2 5-6 ft (Native)	B3 6-7 ft	B4 10-11 ft	B4 11-11.5 ft	C1 8-9 ft	C1 9-10 ft	C2-13-14.5 ft	C3 9-10 ft	C4 7-8 ft
ample Depth (FEET)				14 - 15	5 - 6	6 - 7	10 - 11	11-11.5	8 - 9	9 - 10	13 - 14.5	9 - 10	7 - 8
ate Sampled	Unrestricted	Residential	Restricted	09/01/2016	08/30/2016	08/30/2016	08/30/2016	06/09/2017	08/31/2016	08/31/2016	09/01/2016	08/30/2016	08/30/2016
	Use	Use	Residential use										
olatile Organic Compounds													
cetone	0.05	100	100	ND	ND	ND	ND		ND		0.0126 J	ND	ND
1ethylene Chloride	0.05	51	100	ND	ND	ND	0.00779 J		ND		ND	0.00581 J	0.00696
I-Propylbenzene	3.9	100	100	ND	ND	ND	ND		ND		ND	ND	ND
ec-Butylbenzene	11	100	100	ND	ND	ND	ND		ND		ND	ND	ND
,3,5-Trimethylbenzene	8.4	47	52	ND	ND	ND	ND		ND		ND	ND	ND
emi-Volatile Organic Compounds													
enzo(A)Anthracene	1	1	1	ND	ND	ND	0.269 J		ND		ND	ND	ND
enzo(A)Pyrene	1	1	1	ND	ND	ND	0.277 J		ND		ND	ND	ND
enzo(B)Fluoranthene	1	1	1	ND	ND	ND	0.33 J		ND		ND	ND	ND
enzo(G,H,I)Perylene	100	100	100	ND	ND	ND	0.211 J		ND		ND	ND	ND
enzo(K)Fluoranthene	0.8	1	3.9	ND	ND	ND	0.249 J		ND		ND	ND	ND
hrysene	1	1	3.9	ND	ND	ND	0.332 J		ND		ND	ND	ND
luoranthene	100	100	100	ND	ND	ND	0.683		ND		ND	ND	ND
ndeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	ND	ND	ND	0.188 J		ND		ND	ND	ND
laphthalene	12	100	100	ND	ND	ND	ND		ND		ND	ND	ND
henanthrene	100	100	100	ND	ND	ND	0.317 J		ND		ND	ND	ND
yrene	100	100	100	ND	ND	ND	0.543		ND		ND	ND	ND
esticides													
,P'-DDE	0.0033	1.8	8.9	ND	ND	ND	0.0662	ND	ND		ND	ND	ND
,P'-DDT	0.0033	1.7	7.9	ND	ND	ND	0.06	ND	ND		ND	ND	ND
,P'-DDD	0.0033	2.6	13	ND	ND	ND	0.0263	ND	ND		ND	ND	ND
ldrin	0.005	0.019	0.097	ND	ND	ND	ND		ND		ND	ND	ND
is-Chlordane	0.094	0.91	4.2	ND	ND	ND	ND		ND		ND	ND	ND
rans-Chlordane		0.54		ND	ND	ND	ND		ND		ND	ND	ND
CBs	- 1			1.5	N.D.	1.5	115	110	200		115	NID	110
otal PCBS	0.1	1	1	ND	ND	ND	ND	ND	ND		ND	ND	ND
otal Metals						2 - 22							
rsenic	13	16	16	0.668	1.57	0.560		PΜ	0.634		0.379 J	1.47	2.63
arium	350	350	400	19.7	77.0	45.6	101 N	1	101		13.7	49.7	33.6
eryllium	7.20	14	72	0.159 J	0.672	0.349	0.673 N	1	0.722		ND	0.382	0.319
admium	2.50	2.50	4.30	0.231 J	0.346	0.175 J	0.280 J	М	0.556		0.367 N	И 0.273 J	0.481
hromium, Hexavalent	1	22	110				ND					ND	
hromium, Total	30	36	180	5.22	16.4	10.9	18.7		22.3		4.24	11.4	8.62
opper	50	270	270	6.95	14.5	4.21	14.0		28.7		7.90	10.5	8.93
yanide	27	27	27	ND	ND	ND	ND		ND		ND	ND	3.55
								NA .					20.4
ead	63	400	400	7.58	10.8	12.5		PM	13.3		7.42	13.1	20.1
langanese	1600	2000	2000	223	251	91.1		1	506			Л 278	536
lercury	0.18	0.81	0.81	ND	0.0258	0.0173	0.0526		0.0363		0.00442 J	0.0157	0.0430
	30	140	310	4.69	15.8	7.81	19.2 N	1	23.3		3.49	10.8	8.15
ickel			400	1 00	ND	ND	ND.	IN A	1.40		0.000 [ND	1 77
	3.90	36	180	1.09	NU	ND	ND	IM	1.40		0.989	ND	1.77
lickel Gelenium Gilver	3.90 2	36 36	180 180	1.09 ND	ND	ND	ND ND	VIVI	0.461 J		0.989 L	ND ND	0.790

Field Sample ID				D1-9.5-11.5 ft	D1-15-16 ft	D2 10-11 ft	D3 5.5-7.5 ft	D3 5.5-7.5 (Duplicate	e C) D4-8-9 ft	D4-15 ft	E1 11-12 ft	E2-14-15 ft	E2-9-10 ft
Sample Depth (FEET) Date Sampled	Unrestricted Use	Residential Use	Restricted Residential use	9.5 - 11 09/01/2016	15 - 16 09/01/2016	10 - 11 08/30/2016	5.5 - 7.5 08/30/2016	5.5 - 7.5 08/30/2016	8 - 9 08/29/2016	14 - 15 08/29/2016	11 - 12 08/30/2016	14 - 15 09/01/2016	9 - 10 09/01/2016
Volatile Organic Compounds	0.05	100	400	2	0.0007	4.50	4.5	ALD.	N.D.	110	110	0.0427	
Acetone	0.05	100	100	ND	0.0207 J	ND	ND	ND	ND	ND	ND	0.0127 J	ND
Methylene Chloride	0.05	51	100	ND	ND	0.00650 J	0.00632 J	0.00611	J ND	ND	0.00653 J	ND	ND
N-Propylbenzene	3.9	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sec-Butylbenzene	11	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	47	52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-Volatile Organic Compou		4	4	A 1 D	ND	ALD.	4.10	ALD	ND	ALD.	115	ND	A10
Benzo(A)Anthracene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(A)Pyrene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(B)Fluoranthene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(G,H,I)Perylene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(K)Fluoranthene	0.8	1	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides	2 2 2 2 2	1.0		110	NS	ND	115	1.0	A I D	ND	NB	A10	A I D
P,P'-DDE	0.0033	1.8	8.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P,P'-DDT	0.0033	1.7	7.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P,P'-DDD	0.0033	2.6	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0.005	0.019	0.097	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-Chlordane	0.094	0.91	4.2	ND	ND	ND	ND	ND	ND	ND	0.00366	ND	ND
trans-Chlordane		0.54		ND	ND	ND	ND	ND	ND	ND	0.00472 P	L ND	ND
PCBs	- 1	_							NIS				
Total PCBS	0.1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Metals													
Arsenic	13	16	16	0.916	0.933	ND	0.672	1.78	2.18	0.736	0.847	0.320 J	0.310
Barium	350	350	400	22.2	11.9	28.4	28.5	41.8	53.1	20.0	21.7	9.16	27.3
Beryllium	7.20	14	72	0.203	ND	0.210 J	0.271 J	0.374	0.440	0.224 J	0.179 J	0.127 J	0.231
Cadmium	2.50	2.50	4.30	0.222	JM 0.233 J	0.305	0.229 J	0.229	J 0.378	0.212	0.164 J	0.256	0.207
Chromium, Hexavalent	1	22	110	ND					ND			ND	
Chromium, Total	30	36	180	6.53	3.78	6.14	7.69	10.9	13.2	6.96	5.95	3.83	6.97
Copper	50	270	270	8.63	6.46	9.18	4.57	8.09	9.19	7.89	8.47	6.54	4.18
Cyanide	27	27	27		UM 0.393 J	ND	ND	ND	ND		ND	ND	0.289
Lead	63	400	400	8.54	6.27	9.29	12.8	10.6	9.39	9.83	16.4	6.21	6.02
Manganese	1600	2000	2000	260	198	425	169	252	222	178	223	172	159
Mercury	0.18	0.81	0.81	0.00554	ND	0.00759 J	0.0639	0.0418	0.0223	0.00482 J	0.00450 J	0.00651 J	0.0183
, Nickel	30	140	310	5.71	3.48	5.65	5.60	9.92	12.8	5.39	5.13	3.12	5.80
Selenium	3.90	36	180		D ND	ND	ND	ND	0.520 J	0.287 J	ND	0.380 J	0.537
Silver	2	36	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc					19.9	67.9	57.8	85.8	64.6	63.6	45.6	34.1	62.3

						19 NORTH STREE	I BUFFALO, NEW	IUKK					
Field Sample ID				E3-12-13 ft	E4-1-2 ft	F1-9-10 ft	F1-15 ft	F2-9-10 ft	F3-1.0-2.5 ft	F3-15 ft	F4-1-2.5 ft	A3 22-23 ft	A4-22-23 ft
Sample Depth (FEET)				12 - 13	1 - 2	9 - 10	15 - 16	9 - 10	1 - 2.5	14 - 15	1 - 2.5	22 - 23	22 - 23
Date Sampled	Unrestricted	Residential	Restricted	08/29/2016	08/29/2016	09/01/2016	09/01/2016	09/01/2016	08/29/2016	08/29/2016	08/29/2016	08/31/2016	09/02/2016
Dute Jumpled	Use	Use	Residential use	00, 23, 2010	00,23,2010	03/01/2010	03,01,2010	03,01,2010	00, 23, 2010	00, 23, 2010	00, 23, 2010	00,01,2010	03,02,2010
Volatile Organic Compounds	030	- CSC	nesideritiai ase										
Acetone	0.05	100	100	ND	ND	0.0141 J	0.0155 J	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
N-Propylbenzene	3.9	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.449
Sec-Butylbenzene	11	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.229
1,3,5-Trimethylbenzene	8.4	47	52	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.98
Semi-Volatile Organic Compo		.,	32	IVD	NB	110	ND	ND	IVD	IVD	ND	ND	1.50
Benzo(A)Anthracene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(A)Pyrene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(B)Fluoranthene	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(G,H,I)Perylene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(K)Fluoranthene	0.8	1	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.207
Phenanthrene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides	100	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P,P'-DDE	0.0033	1.8	8.9	ND	ND	ND	ND	ND	ND	ND	ND		
P,P'-DDT	0.0033	1.7	7.9	ND	ND	ND	ND	ND	ND	ND	ND		
P,P'-DDD	0.0033	2.6	7.9 13										
•	0.005		0.097	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Aldrin cis-Chlordane		0.019											
	0.094	0.91 0.54	4.2	ND	ND	ND	ND	ND	ND	ND	ND		
trans-Chlordane PCBs		0.54		ND	ND	ND	ND	ND	ND	ND	ND		
Total PCBS	0.1	1	1	ND	ND	ND	ND	ND	ND	ND	ND		
	0.1	1	1	ND	ND	ND	ND	ND	ND	ND	ND		
Total Metals													
Arsenic	13	16	16	1.25	1.71	1.10	0.839	1.05	1.50	1.52	2.13		
Barium	350	350	400	31.2	31.7	15.9	25.3	29.5	18.6	16.6	28.4		
Beryllium	7.20	14	72	0.28 5 J	0.272	0.145 J	0.206 J	0.230 .	J 0.212 J	0.167	J 0.284		
Cadmium	2.50	2.50	4.30	0.377	0.307	0.228 J	0.276 J	0.176 .	0.351	0.405	0.390		
Chromium, Hexavalent	1	22	110				IM	ND					
Chromium, Total	30	36	180	8.39	7.63	4.81	6.84	6.59	6.31	5.92	7.99		
•	50	270	270	12.0	9.58	6.84	8.89	6.32	8.54	10.3	7.69		
Copper								0.52					
Cyanide	27	27	27	ND	ND	ND	ND		ND	ND	ND		
Lead	63	400	400	11.4	19.7	8.40	7.31	9.31	10.2	6.45	13.1		
Manganese	1600	2000	2000	274	309	263	237	125	316	236	338		
Mercury	0.18	0.81	0.81	0.0119	0.133	0.00799 J	0.0137	0.0139	0.0163	0.00912	0.0446		
Nickel	30	140	310	8.11	6.58	3.95	6.26	6.24	6.84	5.95	6.64		
Selenium	3.90	36	180	1.37	0.527	J 0.409 J	1.12	0.754	0.359 J	0.852	0.902		
Silver	2	36	180	ND	ND	ND	ND	ND	ND	ND	ND		
Zinc	109	2200	10000	72.8	96.4	39.5	44.8	68.6	70.4	53.5	74.8		

Field Sample ID				B3-A 22-23 ft
Sample Depth (FEET)			_	22 - 23
Date Sampled	Unrestricted	Residential	Restricted	08/31/2016
V-1-11-0	Use	Use	Residential use	
Volatile Organic Compounds	0.05	100	100	ND
Acetone	0.05	100	100	ND
Methylene Chloride	0.05	51 100	100	ND 2.00
N-Propylbenzene	3.9	100	100	2.08
Sec-Butylbenzene	11	100	100	1.74
1,3,5-Trimethylbenzene	8.4	47	52	7.36
Semi-Volatile Organic Compound		1	1	ND
Benzo(A)Anthracene	1	1	1	ND
Benzo(A)Pyrene	1 1	1 1	1	ND ND
Benzo(B)Fluoranthene	100	100	1 100	ND
Benzo(G,H,I)Perylene		100		
Benzo(K)Fluoranthene	0.8		3.9	ND
Chrysene	1	1	3.9	ND
Fluoranthene	100	100	100	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	ND
Naphthalene	12	100	100	ND
Phenanthrene Brance	100	100	100	ND
Pyrene	100	100	100	ND
Pesticides	0.0022	1.0	0.0	
P,P'-DDE	0.0033	1.8	8.9	
P,P'-DDT P,P'-DDD	0.0033	1.7	7.9 13	
Aldrin	0.0033 0.005	2.6 0.019	0.097	
cis-Chlordane		0.019	4.2	
trans-Chlordane	0.094	0.54	4.2	
PCBs		0.54		
Total PCBS	0.1	1	1	
Total Metals	0.1		T	
	42	4.6	4.0	
Arsenic	13	16	16	
Barium	350	350	400	
Beryllium	7.20	14	72	
Cadmium	2.50	2.50	4.30	
Chromium, Hexavalent	1	22	110	
Chromium, Total	30	36	180	
Copper	50	270	270	
Cyanide	27	27	27	
-	63	400	400	
Lead				
Manganese	1600	2000	2000	
Mercury	0.18	0.81	0.81	
Nickel	30	140	310	
Selenium	3.90	36	180	
Silver	2	36	180	
Zinc	109	2200	10000	

Page 5 of 5

TABLE 1-5 - GROUNDWATER SAMPLE RESULTS 19 NORTH STREET REMEDIAL INVESTIGATION 19 NORTH STREET, BUFFALO, NEW YORK

Field Sample ID Date Sampled	NY-AWQS (TOGS 1.1.1)	MW-1-C4-092216 09/22/2016	MW-1-C4-01252017 01/25/2017	MW-2-A3-092116 09/21/2016	MW-2-A3-01252017 01/25/2017	MW-3-D1-092116 09/21/2016	DUP-D-092116 09/21/2016	MW-3-D1-01252017 01/25/2017	MW-4-F2-092116 09/21/2016	MW-4-F2-01252017 01/25/2017	DUP-01252017 01/25/2017
Volatile Organic Compounds											
1,2,4-Trimethylbenzene	5	ND	ND	13.2 J	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	17.9 J	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	14.6 J	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	14.8 J	ND	ND	ND	ND	ND	ND	ND
Semi-Volatile Organic Compounds											
Naphthalene	10	ND	ND	-	0.100 J	ND	ND	ND	ND	ND	ND
Pesticides											
4,4-DDD	0.3	0.007	ND	-	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.004	0.008	ND	-	ND	ND	ND	ND	ND	ND	ND
Endrin	0	0.009	ND	-	ND	ND	ND	ND	ND	ND	ND
Endrin Ketone	5	0.008	ND	-	ND	ND	ND	ND	ND	ND	ND
Heptachlor	0.04	0.008	ND	-	ND	ND	ND	ND	ND	ND	ND
TAL Metals											
Antimony	3	ND	ND	-	ND	ND	ND	0.7 J	ND	ND	ND
Arsenic	25	ND	0.7	-	2.1	ND	ND	ND	ND	0.7	0.5
Barium	1000	93.3 J	101.5	-	71.0	169.0	166.0	90.1	337.0	133.3	134.4
Cadmium	5	ND	0.1 J	-	ND	ND	ND	ND	ND	0.2 J	0.2
Chromium, Total	50	ND	1.1	-	0.3 J	ND	ND	0.5 J	6.8 J	3.0	1.7
Copper	200	ND	1.1	-	ND	ND	ND	0.5 J	ND	2.0	1.7
Cyanide	200	ND	ND	-	ND	ND	ND	ND	ND	7.0	5.0
Iron	300	415.0	289.0	=	5380.0	702.0	529.0	40.0 J	633.0	438.0	476.0
Lead	25	ND	0.7 J	-	0.8 J	ND	ND	ND	ND	1.3	1.0
Magnesium	35000	46600.0	46800.0	-	44700.0	36300.0	35200.0	20600.0	65000.0	28500.0	28200.0
Manganese	300	36.0	14.8	-	1178.0	45.0	27.7	2.1	427.0	19.8	20.1
Nickel	100	ND	0.7 J	-	1.4 J	ND	ND	ND	ND	1.3 J	1.4 J
Selenium	10	ND	6.0	-	5.0	ND	ND	3.0 J	ND	6.0	8.0
Sodium	20000	69100.0	48000.0	-	94800.0	285000.0	286000.0	122000.0	2060000.0	713000.0	746000.0
Zinc	2000	ND	7.2 J	-	11.2	ND	ND	ND	ND	12.7	8.9 J

Notes:

All units are ug/l or ppb.

ND - The compound was not detected

Qualifier J - Estimated value. Estimated between the quantation limit and half the quantation limit

" - " - analyte or group of analytes not tested for due to extremely limited well volume

APPENDIX A SOIL BORING LOGS

1			T	141 Elm S					В	oring No.		4 1
	_((lew York 14203 6-847-1630		BORING LO	3	s	heet 1 of:		1
C	OMP.	AN	IES	Fax: 716-8					Pre	oject No.:	P67.	001.002
Proje	ct Nan	ie:	19 North Sti		edial Investigation				Surfa	ace Elev.:		
L		_			lo New York					Datum:	GROUNE	SURFACI
		$\overline{}$	23 North Sti	reet, LLC	*	1				tart Date:		31/16
Drill	ing Fir	_	The second secon			A STATE OF THE PARTY OF THE PAR	John (NYEG)		00.000	ish Date:		31/16
	Grou		ile Drilling:	Depth 17	08/31/16		geoprobe 7220	Rock Core:	- 1	nspector:		SH
Ref			Removal:	17	08/31/16	Casing: Sampler:		Other:		Undist:		
			Removal:			Hammer:		Other.		-		
				No. of blo	ws to drive sample		ımmer falling 30" ASTI	л И D-1586, Standa	rd Penetr	ation Test)		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine	m		DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - litt	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-v	COMMEN alue, recov e, core run recovered	ery, relative , RQD, %
		П		0-24"	dark brown, clay	and gravel FILI	., little churt,		0.0 ppm	START 14	39	
1					concrete pieces		,			30" Recov	ered	
				24-30"	red brown claye	SILT, tree root			0.0 ppm			
2	-	╽┟								Top of nat grade	ive soil - 2	feet below
3										grade		
_		[
4	-											
5												
				0-56"	red brown CLAY	, high plasticity			0.0 ppm	63" Recov	ered	
6				56-63"	red brown, fine S	<u>SILT</u>			0.0 ppm			
7												
8										-,		
9		-				×						
10		╽┟										
				0-6"	brown, wet SILT	with some imbe	dded gravel		0.0 ppm	58" recove	red	
11				6-58"	tannish brown, v	vet, fine SAND			0.0 ppm			
40												
12		╽├										
13												
14		[
15		-										
ı				0-24"	tan, fine SAND, v	vet to saturated			0.0 nnm	58" Recov	ered	
16				24-36"	tan, fine SILT wit		ed gravel		0.0 ppm	500		
				36-58"	wet, fine SAND				0.0 ppm			
17	. 🔟	-								1		
18		-										
19												e e
20												
				0-17"	tannish brown S	ILT and CLAY			0.0 ppm	58" recove	red	
21				17-29"	tan silty CLAY				0.0 ppm			
				29-42"	tan SILT				0.0 ppm			
22				42-58"	tannish brown C	LAY, dense/har	<u>d</u>		0.0 ppm			
23										Sample:		Time:
										A1-5-6ft		1505
24		[A1-6-7ft		1515
	1											

				141 Elm St						В	oring No.	<u> </u>	.2
	$=$ \bigcirc				ew York 14203 6-847-1630	"	BORING LO	IG		s	heet 1 of:		1
CC	OMP/	AN	IES	Fax: 716-8	47-1454					Pro	oject No.:	P67.0	01.002
Proje	ct Nam	e:		www.cscos.c	edial Investigation						ace Elev.:		ē
		\rightarrow	19 North Str								Datum:	GROUND	SURFACE
	Clie	nt:	23 North Str	eet, LLC						s	tart Date:	8/3	1/16
Drilli	ing Fir	n:	NYEG			Driller:	John (NYEG)			Fin	ish Date:	8/3	1/16
	Grou	ıdw	ater	Depth	Date & Time	Drill Rig:	geoprobe 7220			I.	nspector:	8	SH
		Whi	le Drilling:	r		Casing:		Roc	k Core:		Undist:		
			Removal:	÷		Sampler:		Other:					
Af	ter Cas	sing	Removal:			Hammer:							
			(N I	No. of blov	ws to drive sample	r 12" w/140 lb. ha	mmer falling 30" AS	IM D-158	6, Standa	ird Penetr		COMMENT	.0
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S		DESCRIPTION - Gravel, C - Clay, cly	- clayey	s - som I - litt	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-va moistur	e, core run, recovered	ery, relative RQD, %
				0-6"	topsoil						START 91		
1		╽┟		6-29"	FILL - dark sand					0.0 ppm	53" Recov	erea	
2		lŀ		29-53"	red brown, silty	SAND, WITH Trac	e ciay, moist				Top of nat	ive soil - 2 f	eet 5 inche
			0								below grad		200 0 1110116
3											Join grad		
	1												
4													
	1					,					100		
5		[
				0-6"	red brown, silty		<u>moist</u>				60" Recov	ered	
6		╽┟		6-52"	red brown, silty								
7		╽┟		52-63"	red brown, silty	SAND, Wet							
7	-	╽┟				*							
8		╽┟											
	1							27					
9													
												-	8
10		╽┟									0.011		
		-		0-60"	light brown, silty	/ SAND, wet					60" recove	ered	
11		-											
12		H								,			
12		1 1											
13													
					16.	*	А.						
14													
		[
15								<u> </u>					
16					end of boring at	15 feet							
16	-				end or boring at	13 leet							
17													
.,	1				(-	_	-						
18													
	1												
19		[1			
							-						
20	-												
21									-		Sample:		Time:
۷1	1										A2-1-2ft		912
22											A2-9.5-11	ft	933
	1										DUP		1000
23											A2-11-12f		935
											A2-12-13f		950
24		[A2-13-14f	<u>t</u>	955

	(-		C&S Eng	gineers, Inc.	_			В	oring No.	A2	
L	_@				ew York 14203 6-847-1630	E	BORING LO	3	Si	heet 1 of:	1	
CC	OMP/	AN	IES	Fax: 716-8	47-1454	,			Pro	ject No.:	P67.001.002	
Projec	t Nam	e:	19 North Str	eet Reme	dial Investigation				Surfa	ce Elev.:		
L	ocatio	n:	19 North Str	eet Buffal	o New York					Datum:	GROUND SURFA	ACE
	Clier	ıt:	23 North Str	eet, LLC				*	S	tart Date:	9/2/16	
Drilli	ng Firi	n:	NYEG			Driller:	John (NYEG)		Fin	ish Date:	9/2/16	
	Groui	ıdw	ater	Depth	Date & Time	Drill Rig:	geoprobe 7220		lı	spector:	SH	
		Whi	le Drilling:			Casing:		Rock Core:		Undist:		
			Removal:			Sampler:		Other:				
Afi	ter Cas	sing	Removal:			Hammer:	f III - OOII AOTI	1 D 4500 Ot	ud Danatu	ation Toot		-
		П	(N I	No. of blov	ws to drive sample	r 12" W/140 lb. na	ammer falling 30" ASTI	VI D-1586, Standa	ard Peneur		COMMENTS	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		-	DESCRIPTION - Gravel, C - Clay, cly -	s - sor I - lit	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-vanda) moistur	alue, recovery, rela e, core run, RQD, recovered)	
		П									over from 15-25ft	
1					See A2 log					START 11	12	
2												
3												
								1				
4												
		╽┟										
5		╽┟										
6		╽┟			See A2 log							
-0		╽┟			See AZ log							
7												
8												
9												
10												
11					See A2 log							
12												
40								<i>(</i> 0)				
13												
14												
							at a					
15			9									
	1	[0-12"	brown, fine SILT		l, trace rock		No PID	59" Recov	ered	
16				12-20"	brown, fine SAN							
17				20-24" 24-43"	brown, coarse S brown, fine SAN		nse					
17				43-59"	brown, hard SAN							
18						2.0116						
19					-							
20				0-19"	alayay CU T 4	o araya!			0.4 nnm	48" Recov	vered	
21				0-19" 19-27"	brown, fine SAN				0.4 ppm 0.5 ppm		0,00	
۷.				27-40"	brown, fine SAN		wet, trace silt			Sample:	Time:	:
22				40-48"	brown, fine SAN					No Samp	<u>les</u>	
	,						·					
23		[
	l	[
24												

	- @			141 Elm S					В	oring No.	A3	
	_((ew York 14203 6-847-1630		BORING LO	G	s	heet 1 of:	1	
C	OMP.	AN	IES	Fax: 716-8	47-1454					oject No.:	P67.001.002	-
Proie	ct Nan	1e:		www.cscos.	edial Investigation					ace Elev.:		
		$\overline{}$	19 North Str							Datum:	GROUND SURFA	CE
		_	23 North Str						S	tart Date:	8/31/16	
Drill		_	NYEG			Driller:	John (NYEG)		Fin	ish Date:	8/31/16	
	Grou	_		Depth	Date & Time		geoprobe 7220		- I	nspector:	SH	
		Whi	ile Drilling:	21 feet		Casing:		Rock Core:		Undist:		
Bef	ore Ca	sing	Removal:			Sampler:		Other: Well to 2	24 feet, so	creen 24 to	14 ft	
A	fter Ca	sing	Removal:			Hammer:						
			(N I	No. of blo	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" AST	И D-1586, Standa	rd Penetr	ation Test)		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION - Gravel, C - Clay, cly - G	s - som I - litt	nd - 35-50% ne - 20-35% le - 10-20% nce - 0-10%	(e.g., N-va	COMMENTS alue, recovery, relat e, core run, RQD, % recovered)	
				0-12"	<u>topsoil</u>					START 93		
1	-			12-14"	black rock					30" Recov	ered	
_				14-17"	concrete fragme							
2	1			17-22"	silty SAND with		oots, brick pieces					
3				22-30"	FILL - DIOWN, SA	na with black S	ous, brick pieces			7		
<u> </u>	1						v					
4												
	1											
5										,		
		70		0-18"	red brown, claye	y SILT, native	×			60" Recov	ered	
6				18-40"	red brown CLAY					Top of nati	ive 6 feet below gra	ade
				40-60"	red brown CLAY	, grades to brow	vn silty CLAY					
7												
_												
8							7					
9		1					,					
9		1 -										
10		F										
10		1 -		0-60"	tan, fine SAND, o	clean				60" Recov	ered	
11												
	1	11				8						
12												
	1				s .	v						
13												
				F								
14		╽┟										
15		-								-		
15	6231655	1										
16					NO RECOVERY							
	1			,	,						·	
17												
		[-			-				
18		[
19	4											
00							9					-
20	-	-		0-12"	slug				77 nnm	60" Recov	ered	
21		-		12-36"		AND, dark stain	ng, petroleum smell		35 ppm		J. 30	
۷۱	1			36-60"	grey tan, mediur		ped oledin sineli			Sample:	Time:	
22				30 30	g. of tany modius	3,			PP.11	A3-5-7ft	1054	
				*	,					DUP	1054	
23										A3-7-8ft	1100	
		1 [A3-8-9ft	1103	
24	1									A3-9-10ft	1107	
						25.5		5		A3-14-15f		
25					end of boring at	25 feet				A3-22-23f	<u>t</u> 1124	

1	T C		-	141 Elm St	gineers, Inc. treet ew York 14203		BORING L	00			В	oring No.	1	A 4
C		AN	I.E.C.		6-847-1630	· •	DOKING L	.OG	ı			heet 1 of:	DOZ	1
Project	ct Nan	10.	of the State of	www.cscos.c								oject No.: ace Elev.:	P67.	001.002
_			19 North Str								Ouric	Datum:	GROUNE	SURFACE
16		$\overline{}$	23 North Str							a	S	tart Date:	8/3	31/16
Drilli	_	_	NYEG				John (NYEG)	-				ish Date:		31/16
	Grou		ile Drilling:	Depth	Date & Time	Drill Rig: Casing:	geoprobe 7220		Poc	k Core:	- 11	nspector: Undist:		SH
Befo			Removal:			Sampler:			Other:	N Oore.		ondist.		
			g Removal:			Hammer:	,							
		ТТ	(N I	No. of blow	ws to drive sample	r 12" w/140 lb. ha	mmer falling 30" A	ASTM	D-1586	s, Standar	d Penetr		00111151	T0
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		•	DESCRIPTION - Gravel, C - Clay,	cly - cla	ayey	s - some I - little t - trae	I - 35-50% e - 20-35% e - 10-20% ce - 0-10%	(e.g., N-v moistur	e, core rur recovere	very, relativen, RQD, %
				0-7"	topsoil		-1					START 11 24" Recov		
1		$ \cdot $		7-18" 18-24"	FILL - dark brow						0.0 ppm		ereu	
3						·							ive 1 foot 6	3 inches bel
4									(
E														
5		$ \cdot $		0-16"	dark brown, SAN	ID with dark spo	ots, dry				0.0 ppm	30" Recov	ered	Ú.
6				16-30"	red brown, silty	CLAY, tough, lit	tle moist				0.0 ppm			
7	ş.													
8														
9														
10			4	0.01							0.0	55" recove	and d	
11				0-2" 2-15"	slug red brown, silty	CLAY, trace san	d with dark spot		J*		0.0 ppm	55 Tecove	ereu	
				15-38"	red brown CLAY	, tough					0.0 ppm			
12				38-55"	red brown, silty	SAND, moist				,	0.0 ppm			
13														
14														
16					end of boring at	15 feet								
17	_													
18			ž.						/	8				
19														
20														
21				X _k		1						<u>Sample:</u> <u>A4-9-10ft</u>		Time: 1141
22												A4-10-111		1146
23	597											<u>A4-11-121</u> <u>A4-12-131</u>	=	1150 1154
24														
	1													

	7	3	3	141 Elm S					В	oring No.	A4
	_((Щ			ew York 14203 6-847-1630	l t	BORING LO	خ	S	heet 1 of:	1
C	OMF	ΊΑΝ	IIES	Fax: 716-8					Pro	oject No.:	P67.001.002
roje	ct Na	ne:	19 North St		edial Investigation					ace Elev.:	
L	ocati	on:	19 North St	reet Buffal	lo New York					Datum:	GROUND SURFA
	Clie	ent:	23 North St	reet, LLC					S	tart Date:	9/2/16
Drilli	ing Fi	rm:	NYEG			Driller:	John (NYEG)		Fin	ish Date:	9/2/16
	Grou	ındı	water	Depth	Date & Time	Drill Rig:	geoprobe 7220		I.	nspector:	AD
		Wh	ile Drilling:			Casing:		Rock Core:		Undist:	
			g Removal:			Sampler:		Other:			
Af	ter Ca	sin	g Removal:			Hammer:					
-		_	(N	No. of blo	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" AST	/ D-1586, Standa	rd Penetr		
Depth (ft)	Sample	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION - Gravel, C - Clay, cly - c	s - som I - litt	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-va	COMMENTS alue, recovery, relat e, core run, RQD, % recovered)
		T								START 91	0
1					See A4 log					70 degrees	s F and Sunny
							3				
2	-			-							
3				-							
J	1			-							
4			-								
	1										
5											
	1							2			
6					See A4 log						
7	1										
0				-			(8)				
8	-										
9											
	1										
10											
	1										
11					See A4 log						
12											
13	-										
11											
14	1						P				
15											
	1			0-12"	slug					62" Recov	ered
16				12-31"	brown, fine SAN	D, dry					
				31-43"	grey, coarse SAI	ND, moist		headspace 2.1 -			
17	1			43-54"	light brown, fine				2.3 peak		
				54-62"	grey, medium to	coarse SAND, r	<u>noist</u>		3.2 peak		
18	-										
10											
19	1										
20				-							
	1			0-8"	grey, medium to	coarse SAND			4.3 ppm	62" Recov	ered
21				8-14"	black grey, coars				om @ 18"		
	1			14-21"	silty CALY with i	mbedded rock		62 pp	om @ 23"	Sample:	Time:
22				21-32"	wet to saturated		AND			A4-23-24f	t 945
				32-48"	brown, fine SAN			88	32.4 peak		
23	100000000	534		48-62"	brown, fine SAN	<u>D</u>			4.0 ppm		
0.1							* ,				
24				-							
	1	1			and of having at						

-	g g	7		141 Elm St	gineers, Inc. reet ew York 14203		BORING LO)C		В	oring No.	B1
	_0	4	HEC	Phone: 716	6-847-1630	"	DORING LC	JG		S	heet 1 of:	1
C	OMP	AN	The second second second	Fax: 716-8-						Pro	oject No.:	P67.001.002
Proje	ct Nan	ne:	19 North Str	eet Reme	dial Investigation					Surfa	ace Elev.:	
		$\overline{}$	19 North Str								Datum:	GROUND SURFA
	Clie	nt:	23 North Str	eet. LLC						S	tart Date:	9/1/16
Drilli			NYEG	,		Driller:	John (NYEG)			Fir	ish Date:	9/1/16
	Grou	_		Depth	Date & Time		geoprobe 7220				nspector:	AD
			ile Drilling:	2000		Casing:	5	Roc	k Core:		Undist:	
Refe			g Removal:			Sampler:		Other:			· · · · · · ·	
			g Removal:			Hammer:		Other.				
	ter ou	Jing		No. of blov	vs to drive sample		mmer falling 30" AS	TM D-158	6. Standa	rd Penetr	ation Test)	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine	1	MATERIAL	DESCRIPTION - Gravel, C - Clay, cly		a - ar s - som I - litt	nd - 35-50% ne - 20-35% lle - 10-20% ace - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relat e, core run, RQD, % recovered)
		П			silty clay topsoil						START 84	
1		[rock, rock @34"					s F and Sunny
				36-38"	red brown CLAY	<u>', moist</u>				0.1 ppm	37" Recov	ered
2												
											Top of nat	ive 8 inches below g
3												
,												
4												
_		1										
5				0-18"	red brown CLAY	/ trans amall <0	E" rook			0.1 nnm	62" Recov	orod
6		1			brown, moist Sli		3 70CK			0.0 ppm		ered
0					red brown, CLA					0.0 ppm		
7		1			moist silt, some					0.0 ppm		
				30-02	moist siit, some	<u>OLA I</u>				о.о ррпп		
8												
9												
		1								-		
10		11										
				0-9"	brown, silty CLA	Y, moist				0.0 ppm	62" recove	ered
11					brown, fine SILT					0.0 ppm		
				187								
12												
13		[
14												
15		1										
16					end of boring at	15 feet			, i			
17												
17												
18											160	
10												
19												
,5												
20		1										
21									16		Sample:	headsp
											B1-5-6ft	2.0
22											B1-6-7ft	1.3
											B1-7-8ft	2.3
23											B1-8-9ft	0.2
											<u>B1-15ft</u>	0.5
24												
							,					
25	l	1 [

		1		141 Elm St	gineers, Inc.		DODING LOG	•	В	oring No.	E	32
	$ \bigcirc$	L	150	Phone: 716	ew York 14203 6-847-1630	"	BORING LO	,	\$1	heet 1 of:		1
C	OMP/	M	ES	Fax: 716-8	47-1454				Pro	ject No.:	P67.0	01.002
Proje	ct Nam	e: 1			dial Investigation				Surfa	ce Elev.:		
L	.ocatio	n: 1	19 North Str	eet Buffal	o New York		3)			Datum:	GROUND	SURFACE
	Clier	nt: 2	23 North Str	eet, LLC					S	tart Date:		
Drilli	ing Firi	n:	NYEG			Driller:	John (NYEG)	-	Fin	ish Date:		
	Grou	ndw	ater	Depth	Date & Time	Drill Rig:	geoprobe 7220		lr	spector:		SH
		Nhii	le Drilling:			Casing:		Rock Core:		Undist:		
Bef	ore Cas	sing	Removal:			Sampler:		Other:				
At	ter Cas	sing	Removal:			Hammer:						
			1 N)	No. of blo	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" AST	/I D-1586, Standa	rd Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		-	. DESCRIPTION - Gravel, C - Clay, cly - c	s - som I - litt	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-va	commenature, recover, core run	ery, relative , RQD, %
				0-4"	topsoil		\			126 ppm		
1				4-11"	dark brown, CLA	Y, clean till				Concrete h	it so move	d 3 ft
		╽┟		11-36"	FILL, dark sand	with gravel and	<u>brick</u>			east		
2		-								38" Recove	erea	
•		-										
3	-	-										
4		-						5				
-		-										
5		╽┝										
-		╽┟		0-7"	brown, SAND				0.0 ppm	57" Recov	ered	
6				7-34"	silty SAND with	some brown cla	Y		0.0 ppm	Top of nati	ve 6 feet b	elow grade
				34-57"	brown CLAY		A		0.0 ppm			
7												
		l L										
8												
^		lŀ										
9		╽├										
10		╽├										
10	1	Ιŀ		0-8"	red brown, silty	CLAY			0.0 ppm	60" recove	red	
11				8-17"	brown light, silty		<u>ıd</u>		0.0 ppm			14
				17-60"	brown light, silty	/ SAND			0.0 ppm			
12												
13	1	╽┟					1					
		-										
14	1	-										
15		-										
,,,	1											
16					end of boring at	15 feet						
	1											•
17												
18	4											
40		-										
19	-											
20		-				*	T.					
20	1	-										
21								*		Sample:		time:
	1									B2 surfac	<u>e</u>	1408
22										B2-4-5FT		1415
	1									<u>B2-5-6FT</u>		1437
23										<u>B2-6-7FT</u>		1448
		[B2-7-8FT		1455
	1	Ιl								<u>B2-8-9FT</u>		1456
24	1				7					1		

	Ç			141 Elm St					В	oring No.	E	33
	_@				ew York 14203 6-847-1630		BORING LO	غ ا	S	heet 1 of:		1
C	OMP.	٩N	IES	Fax: 716-8	47-1454				Pro	oject No.:	P67.0	001.002
Proje	ct Nam	e:	19 North Str	eet Reme	edial Investigation				Surfa	ce Elev.:		
		_			o New York					Datum:	GROUNE	SURFACE
	Clie	nt:	23 North Str	eet, LLC			,		S	tart Date:	8/3	31/16
Drilli	ing Fir	n:	NYEG			Driller:	John (NYEG)		Fin	ish Date:	8/3	31/16
	Grou	ıdw	ater	Depth	Date & Time	Drill Rig:	geoprobe 7220		li	nspector:		SH
		Whi	le Drilling:	*		Casing:		Rock Core:		Undist:		
Bef	ore Ca	sing	Removal:			Sampler:		Other:				
At	ter Ca	sing	Removal:			Hammer:						
			(N I	No. of blov	ws to drive sample	er 12" w/140 lb. ha	mmer falling 30" ASTN	и D-1586, Standa	ard Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		-	DESCRIPTION ravel, C - Clay, cly - claye	a - and - s - some - l - little - t - trace	20-35% 10-20% - 0-10%	(e.g., N-va		ery, relativ
		П		0-5"	topsoil .				0.1 ppm			
1	1			5-13"	gravel, asphalt					36" Recove	ered	
0		-		13-36"	dark sandy FILL	., brick, concrete	and gravel		0.1 ppm			
2		-										
3		-										
J		-										
4												
•												
5		lt										
	000000000000000			0-4"	dark sandy FILL	., brick, concrete	and gravel		0.1 ppm	51" Recove	ered	
6				4-6"	brown coarse sa	and, moist, conta	aining dark spots		0.1 ppm	1		
				6-27"	light brown silty				0.1 ppm			
7		╽┟		27-35"	hard red-brown				0.1 ppm			
		-		35-43"	red brown silty				0.1 ppm			
8		-		43-51"	hard red-brown	CLAY			0.1 ppm			
9		╽┟										
		-										
10												
		lt		0-4"	slug				31 ppm	46" recove	red	
11				4-46"	moist, red-brow	n, silty CLAY			136 ppm			
					red-brown chan		vn with depth					
12		╽┟			material similar	to A3						
		╽┟										
13		-										
14		-										
14		-										
15		-										
16					end of boring at	t 15 feet						
17												
18	1											
19		-										
20	1											·
20	1									,		
21										Sample:		time:
	1									B3 UF 2-3	<u>ft</u>	1327
22										B3 3-5 FT		1330
	1									<u>B3 6-7 FT</u>		1336
23										<u>B3 7-8FT</u>		1352
										B3 8-9 FT		1354
24		1 -								<u>B3-13-15 I</u>	<u>-1</u>	1357
27	1											

	Ç			141 Elm S				-	В	oring No.	В	3 - A
U	$ \bigcirc$				ew York 14203 6-847-1630	6	BORING LO	خ	S	heet 1 of:		1
C	OMP.	AN	IES	Fax: 716-8	47-1454				Pro	oject No.:	P67.	001.002
roje	ct Nan	ie:			edial Investigation				Surfa	ace Elev.:		
I	ocatio	n:	19 North Str	eet Buffal	o New York			2		Datum:	GROUNI	SURFAC
	Clie	nt:	23 North Str	eet, LLC			,		S	tart Date:	8/	31/16
Drill	ing Fir	m:	NYEG			Driller:	John (NYEG)	×	Fin	ish Date:	8/	31/16
el calcon	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	geoprobe 7220		II.	nspector:		SH
		Wh	ile Drilling:			Casing:		Rock Core:	8	Undist:		
Bef	ore Ca	sing	g Removal:			Sampler:	-	Other:				
A	ter Ca	sing	g Removal:			Hammer:						
			(N	No. of blo	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" ASTN	/I D-1586, Standa	ard Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine			DESCRIPTION - Gravel, C - Clay, cly - c	s - sor I - lit	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-v moistur	e, core rur recovere	very, relativ n, RQD, %
				0-3"	topsoil					START 13		
1	1			3-10"	FILL - dark sand	with clay concr	ete		U.U ppm	15" Recov	ered	
2				10-14"	coal pieces	anarata aubb	•		0.4 nnm			
2	1			14-15"	FILL - crushed c	Oncrete SUDDAS	<u> </u>		0.4 ppm			
3												
<u> </u>	1			-			1					
4												
	1											
5												
	1			0-22"	red brown, silty	SAND with trace	e clay		0.0 ppm	60" Recov	ered	
6		[22-37"	red brown, silty					Top of nat	ive 6 feet	below grad
				37-60"	fine, sandy SILT,	, trace rounded	<u>gravel</u>		0.0 ppm			
7												
8	-	$ \cdot $						(4)				
9												
3	1	H				0						
10			1									
	1	H		0-3"	slug				0.6 ppm	58" recove	ered	
11		11		3-12"	red brown, SILT			-	0.0 ppm			
		11		12-58"	tan, fine SAND, o	<u>clean</u>			0.0 ppm			
12							9					
										-		
13												
14	-			-								
15												
13	1			0-12"	slug					52" Recov	ered	
16				12-18"	tan, fine SAND				0.0 ppm			
. 5	1			18-40"	clayey SILT with	trace gravel, gr	ay @19 ft		0.0 ppm			
17				40-52"	gray, fine SAND,				112 ppm			
	1											
18												
19	-											
20				-	(2)							
20	1			0-10"	slug		,			53" Recov	rered	
21	-			10-42"	grey SAND, trace	e gravel, petrole	um odor smells	1179 ppn	n - 135.1 h	neadspace		
-1	1			42-53"			ND, trace gravel, wate			Sample:		Time:
22				1.2 55	at 22-23 ft		,			B3-A-22-2	23ft	1426
	S-1											
23								14				
							i e					
24												
					and of having at							

1		7	2	141 Elm St		F	ODING LOG		В	oring No.	B4
	_((Щ.		Buffalo, Ne Phone: 716	ew York 14203 6-847-1630		BORING LO	خ	S	heet 1 of:	1
C	OMP	AN		Fax: 716-8					Pr	oject No.:	P67.001.002
Proje	ct Nar	ne:			dial Investigation				Surf	ace Elev.:	
L	.ocati	on:	19 North Str	eet Buffal	o New York					Datum:	GROUND SURFACE
			23 North Str	eet, LLC		•				tart Date:	8/30/16
Drilli	ing Fil	m:	NYEG				John (NYEG)			nish Date:	8/30/16
	Grou			Depth	Date & Time		geoprobe 7220		Section Control of the Control of th	nspector:	SH
			ile Drilling:	26 ft		Casing:		Rock Core	:	Undist:	
			g Removal:		-	Sampler:		Other:			
Af	ter Ca	sing	g Removal:	No of blac		Hammer:	mmer falling 30" ASTN	AD 1506 Stone	lard Danati	otion Toot	
	Γ	ТТ	(14	No. of blov	ws to drive sample	1 12 W/140 ID. 11a	ininiei iailing 30 A3 Th	7 D-1360, Stant	iaiu relieli		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine			DESCRIPTION - Gravel, C - Clay, cly - c	s - so -	and - 35-50% ome - 20-35% little - 10-20% trace - 0-10%	(e.g., N-v moistui	alue, recovery, relative re, core run, RQD, % recovered)
		П		1-8"	<u>topsoil</u>					START 10	
1	1			8-12"		with pieces of v	vood, trace glass, bri	ck,	0.0 ppm	36" Recov	rered
				40.00"	and concrete		116		0.0		
2	-			12-36"	FILL - dark brow	n, medium grair	siity sand, dry		0.0 ppm		
3					· · · · · · · · · · · · · · · · · · ·				v v		
3	1		1								
4											
	1					ĸ					
5										J	
	1			0-12"	FILL - dark brow	n, sand with roo	k chunk, brick and g	ravel <u>,</u>	0.0 ppm	23" Recov	rered
6					<u>moist</u>))			
				12-23"	brown, silty CLA	<u>IY</u>		(4)	0.0 ppm	Top of nat	ive 7 feet below grade
7					*						
0											
8	-										
9											
											9
10					×				3		
				0-12"	dark brown, silty	CLAY, moist			0.0 ppm	45" Recov	rered
11				12-18"	dark brown, silty	CLAY			0.0 ppm		
				18-45"	red brown, CLA	Y, hard, moist	7		0.0 ppm		
12								5			
40									-		
13											
14											
17			lio.								
15					*						
				0-8"	red brown, CLA	<u>Y</u>				58" Recov	rered
16				8-58"	light brown, silty	/ SAND			0.0 ppm		
				2 1							
17	1										
, .						_2					
18	1				i.					-	
19											
13	1										
20											
	1			-							
21					end of boring at	20 feet				Sample:	
	1								-	B4-9-10F	T
22										B4-10-11	
										MSMSD	_
23	-									B4-12-14.	
24				-						B4-14.5-1 B4-15.5-1	
24	1									7-13.3-1	<u>0.0</u>
25				-							

		h.	-	C&S En	gineers, Inc.				В	oring No.	(C1
	_@			Buffalo, No	ew York 14203	E	BORING LO	3	s	heet 1 of:		1
C	OMP	AN	IES	Fax: 716-8						oject No.:	P67	001.002
Proje	ct Nan	16.		www.cscos.c	dial Investigation	L				ace Elev.:		
		$\overline{}$	19 North Str							Datum:	GROUNE	SURFACE
			23 North Str		9 11011 10111				s	tart Date:		31/16
Drill		_	NYEG			Driller:	John (NYEG)		Fir	ish Date:	8/3	31/16
	Grou	-		Depth	Date & Time		geoprobe 7220		1.	nspector:		SH
		Whi	ile Drilling:			Casing:		Rock Core:		Undist:		
Bef	ore Ca	sing	Removal:			Sampler:		Other:				
At	fter Ca	sing	Removal:			Hammer:						
			(N	No. of blow	ws to drive sample	r 12" w/140 lb. ha	mmer falling 30" ASTN	/ D-1586, Standa	rd Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S		DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - liti	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-v moistur	e, core run recovered	ery, relative , RQD, %
				0-12"	topsoil					START 81		
1	-			12-24"	FILL - dark sand				0.0 ppm	Refusal at		d
2				24-41"	FILL - red brown	sanu With dark	apota, prick			east 3.7 ft After cond		went
	1									down easi		
3										in surface	*	9
										Refusal at	6 ft, move	d 3 ft
4										south		
				1	9					41" Recov	ered	
5		1								0011 17	1	
•		1		0-29"	FILL with brick of		and			60" Recov	ered ive 8 feet 5	5 inches
6	1	1 -		29-38" 38-60"	red brown, silty					below gra) IIICHES
7		1 1		30-00	rea brown, sitty	SAND				bolow gra	30	
<u> </u>	1	H										
8		Ιİ										
9												
10				0.40"	fine CAND again	as to fine avoin				50" Recov	orod	
11		1		0-18" 18-50"	fine SAND, coars					30 Recov	ereu	
				10-50	iigiit brown, iiiic	CAND, WCC						
12		1										
		1 [
13		[
14	-											
15												
13	1											
16					end of boring at	15 feet						
	1											
17	1		6		-						1	
18	-											
19										-		
19	1											
20												
	1											
21									ъ.	Sample:		Time:
										C1 Surfac	<u>:e</u>	823
22	1									C1-3-4ft		900
										C1-3-4ft I	<u>lex</u>	911
23	1									C1-8-9ft C1-9-10ft		900
24	1									C1-10-11		905
	1									C1-11-12		908
25	1	1										

	1 @	in (141 Elm S					В	oring No.	(C2
	_((ew York 14203 6-847-1630	E	BORING LO	G	S	heet 1 of:		1
C	OMP.	AN	IES	Fax: 716-8	47-1454					ject No.:	P67.0	001.002
Proie	ct Nan	ie:	19 North Str	www.cscos. eet Reme	edial Investigation					ce Elev.:		
		$\overline{}$			lo New York					Datum:	GROUNE	SURFACE
	Clie	nt:	23 North Str	eet, LLC					s	tart Date:	9/	1/16
Drilli	ng Fir	m:	NYEG			Driller:	John (NYEG)		Fin	ish Date:	9/	1/16
	Grou			Depth	Date & Time	Drill Rig:	geoprobe 7220		- II	spector:		AD
		Whi	ile Drilling:			Casing:		Rock Core:		Undist:		
Befo	ore Ca	sing	Removal:			Sampler:		Other:				
Af	ter Ca	sing	Removal:			Hammer:						
			1 N)	No. of blo	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" AST	M D-1586, Standa	rd Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION - Gravel, C - Clay, cly -	s - som I - litt	id - 35-50% ie - 20-35% le - 10-20% ice - 0-10%	(e.g., N-va		rery, relative , RQD, %
		П		0-10"	topsoil and gras					START 91		
1				10-51"	FILL - clay and to					52" Recove	ered	
				51-52"	FILL - stained ma	aterial, silt, brici	k, and coal		0.0 ppm			
2												
2												
3								e:		-		
4		lŀ										
									AC.			
5		lŀ										
		lt		0-5"	beds of light bro	wn fine SAND a	nd dark brown silty	CLAY	0.1 ppm	62" Recove	ered	× .
6				5-22"	grey, rock, coars	se SAND			0.0 ppm			
				22-45"	brown CLAY, de				0.0 ppm			
7				45-62"	light brown and	red brown, SILT			0.0 ppm			
8		H										
9		1 }										
9		H										
10		Ιŀ	-									
		1		0-5"	brown, CLAY, de	ense			0.1 ppm	57" Recov	ered	
11		11		5-38"	grey, crushed st	one and concre	te with SILT, moist			Possible b	uilding fou	ndation
		1 [38-57"	brown, fine SAN	<u>'D</u>			0.1 ppm			
12		1 [\
							*					
13		1										
4.4												
14		-										
15		1										
10				0-5"	slug				0.0 ppm	62" Recov	ered	
16		l l		5-13"	light brown, SIL	T, moist			0.1 ppm			
				13-38"	light brown, SAI				0.1 ppm			D
17				38-62"	light brown, SAI	ND with rounded	l stones, moist		0.1 ppm			
18	1											
40												
19	1											
										v		
20	1			0-18"	brown, SILT, sat	turated			0.1 ppm	62" Recov	ered	
20		1		18-39"	SILT, brown, sat				0.0 ppm			
				39-62"	brown, CLAY, de					Sample:		headspac
20				39-62								
				39-62						C2-WC		2.0
21				39-62						(comp fro		
21				39-62						(comp fro	<u>5ft</u>	1.7
21 22 23				39-02						(comp fro C2-13-14. (+MS/MSL	<u>5ft</u> D)	1.7
21				39-02						(comp fro	5ft)) 5.5ft	

	1 @		-	141 Elm St					В	oring No.	C3
	_@				ew York 14203 6-847-1630		BORING LOC	3	S	heet 1 of:	1
CC	OMP	AN	IES	Fax: 716-8	47-1454				Pro	oject No.:	P67.001.002
Projec	ct Nan	ne:			dial Investigation				Surfa	ace Elev.:	
· L	ocatio	on:	19 North Str	eet Buffal	o New York					Datum:	GROUND SURFACE
			23 North Str	eet, LLC						tart Date:	
Drilli		- W.	NYEG				John (NYEG)			ish Date:	
-	Grou		ile Drilling:	Depth	Date & Time	Drill Rig: Casing:	geoprobe 7220	Rock Core:	, , , , , , , , , , , , , , , , , , ,	nspector: Undist:	
Refe			g Removal:			Sampler:		Other:		Ollaist.	
			g Removal:			Hammer:					0
			(N I	No. of blow	ws to drive sample	r 12" w/140 lb. ha	mmer falling 30" ASTN	/ D-1586, Standa	ard Penetr	ation Test)	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S		DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - liti	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative re, core run, RQD, % recovered)
				0-6"	topsoil					START 12 29" Recov	
1			-	6-14" 14-29"	FILL - gravel sub				0.1 ppm 0.0 ppm	29 Recov	reled
2				14-25	TILL - dark cours	oc dana with the	on opoto, moior		ото рртп		
3											
4											
-										1	
5											
				0-6"	FILL - brown coa	rse sand with c	oncrete pieces			45" Recov	vered
6				6-7" 7-12"	gravel	o cand with co	ne clay, glass, concre	ata and	0.0 ppm	Top of nat	tive 7 feet below grade
7				7-12	dark spots	se sand with soi	ne ciay, giass, concre	ste, anu	о.о ррпп	TOP OF HAI	tive / leet below grade
				12-15"	red brown, sand	y CLAY			0.0 ppm		
8				15-26"	red brown, CLA				0.0 ppm		
				26-28"	red brown, silty				0.0 ppm 0.0 ppm		
9				28-33" 33-40"	red brown, CLA)				0.0 ppm		
10				40-45"	red brown, CLA		\\		0.0 ppm		
			1	0-6"	<u>slug</u>					50" Recov	vered
11				6-15"	red brown, CLA				0.0 ppm 0.0 ppm		
12				15-21" 21-50"	silty CLAY with s		D. moist		0.0 ppm		
				2.00			,		-		
13											
14								2			
15								,			
16					end of boring at	15 feet					
17											
			· ·								
18								,	7		
19											*
"											
20											
0.4											
21			,"			1				Sample:	
22		8			W.			*		C3-9-10F	
										C3-10.5-1	
23										C3-12.5-1 C3-14-15	
24										55-14-15	
25											

	Ç	'n	9	141 Elm St					В	oring No.	С3-А
	\mathbb{C}			Buffalo, Ne Phone: 716	ew York 14203 S-847-1630	6	BORING LOC	3	SI	heet 1 of:	1
CC	OMP.	AN	IIES	Fax: 716-8	47-1454				Pro	ject No.:	P67.001.002
Projec	et Nan	ie:		eet Reme	dial Investigation				Surfa	ce Elev.:	
			19 North Str							Datum:	GROUND SURFACE
		_	23 North Str						S	tart Date:	
Drilli			NYEG			Driller:	John (NYEG)		Fin	ish Date:	
	Grou	-	The second secon	Depth	Date & Time	A STATE OF THE PARTY OF THE PAR	geoprobe 7220		lr	spector:	
-			ile Drilling:	Берил	Date a Time	Casing:	3,,	Rock Core:		Undist:	
Befo			g Removal:			Sampler:		Other:			
			g Removal:			Hammer:					
- 711	ici Oa	3111		No. of blov	vs to drive sample		nmmer falling 30" ASTN	// D-1586. Standa	rd Penetr	ation Test	
$\overline{}$		Т					<u> </u>				COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine			DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - liti	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%		alue, recovery, relative re, core run, RQD, % recovered)
					0.001						
1					See C3 log						
2											
3											
4											
5											
6					See C3 log						
7											
8											
9					4	9					
10				×							,
11					See C3 log						
12											
13											
14							,	1			
15											3
				0-60"	brown, fine SAN	D, trace silt, we	<u>t</u>	peal	k 0.4 ppm	62" Recov	vered
16				60-62"	brown, fine SAN	D, some silt		peal	k 0.4 ppm		
17	1				(Water Saturated	d 32-59" <u>)</u>					
18	<u>+</u>										
19						0					
25											
20				0.40"	limbs bussess -1	MAN CAND		nc-	k 0 1 nnm	62" Page	vered
				0-12"	light brown, clay	yey SAND, Wet		pea	k 0.4 ppm	62" Reco	vereu
21	1			12-24" 24-30"	clayey SAND with	th rock		nea	k 0 4 nnm	Sample:	Time:
22				30-40"	red brown, medi			pea	ĸ o. 4 ppili	No Samp	
22	1			40-55"	coarse SAND, so		,	nea	k 0.4 ppm		
23				55-62"	brown, CLAY, ha					No odors	š
	1			00-02	DIOWII, OLA I, III	<u> u</u>		Pou	ррпп		•
24				-							
<u> </u>	1			-							

	T C			141 Elm St	gineers, Inc. reet w York 14203		BORING LOC	2		oring No.	C4
C		AN	WE'C	Phone: 716	i-847-1630		DOKING LOC	"	S	heet 1 of:	1
			1.00	Fax: 716-84 www.cscos.c	om					oject No.:	P67.001.002
		\rightarrow			dial Investigation				Surfa	ace Elev.:	
L	ocatio	n:	19 North Str	eet Buffalo	New York					Datum:	GROUND SURFA
		_	23 North Str	eet, LLC						tart Date:	8/30/16
Drilli	ng Fir	m:	NYEG				John (NYEG)			ish Date:	8/30/16
	Grou			Depth	Date & Time		geoprobe 7220		- 11	nspector:	
			ile Drilling:	22 feet	8/30 @ 845am	Casing:		Rock Core:		Undist:	
			g Removal:			Sampler:		Other: well bot	tom -24 ft,	sand to 12	2 ft. benonite -
Af	ter Ca	sing	g Removal:			Hammer:		10 ft to surface	and Danata	estion Toot)	
			(N I	No. of blov	vs to drive sample	r 12" w/140 lb. ha	mmer falling 30" ASTN	/ D-1586, Standa	ard Penetr		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine		-	DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - litt	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-v	ralue, recovery, relate, core run, RQD, % recovered)
	_	Н		0-10"	asphalt, gravel s	uhhase			0.0 mm	START 74	
1		Н		10-25"			s, medium grain, som	ne brick		25" Recov	
<u> </u>	1	H		10 20	and concrete pie		-,,,,,,				
2		H									
	1			1							
3											
	1										-
4											r
5							14				
				0-17"	FILL - brick, con					46" Recov	vered
6				17-20"	FILL - concrete r				0.0 ppm		
		1		20-28"	red brown, silty		-1		0.0 ppm		
7		1		28-36" 36-46"	red brown, silty		<u>ciay</u>		0.0 ppm 0.0 ppm		
8		H		30-40	red brown, silty	CLAT IIIOISI			о.о ррпп		
0											
9										(
		1 1							×		
10											
				0-8"	slug				0.0 ppm	52" Recov	/ered
11			7	8-18"	red brown, silty				0.0 ppm		
	1			18-52"	red brown, silty	SAND, little moi	<u>st</u>		0.0 ppm		
12		П									
		П									
13	1	П									
											,
14		П									
15											
	1			0-8"	dark brown. med	dium grain SANI	with trace concrete		0.0 ppm	60" Recov	vered
10				-	and brick			1			
16				0.401	red brown silty \$	SAND			0.0 ppm		
				8-13"						1	
				13-20"	sandy CLAY				0.0 ppm		
16	-				medium grain S		concrete, brick, and g	<u>ıravel</u>	0.0 ppm		,
16				13-20"				<u>qravel</u>			
16 17	-			13-20" 20-41"	medium grain S			<u>gravel</u>	0.0 ppm		
16 17	-			13-20" 20-41"	medium grain S			<u>gravel</u>	0.0 ppm		
16 17 18 19				13-20" 20-41"	medium grain S			<u>gravel</u>	0.0 ppm		
16 17 18				13-20" 20-41" 41-60"	medium grain S. light brown, med	dium grain SAN	D, some brick		0.0 ppm 0.0 ppm		roved.
16 17 18 19 20				13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Recov	vered
16 17 18 19				13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d light brown, med	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Recov	
16 17 18 19 20 21				13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Reco	vered Time:
16 17 18 19 20	₩			13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d light brown, med	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Recov Sample: C4-5-7ft	Time:
16 17 18 19 20 21 22	<u></u>			13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d light brown, med	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Reco	Time:
16 17 18 19 20 21	<u>\P</u>			13-20" 20-41" 41-60"	medium grain S. light brown, med medium grain, d light brown, med	dium grain SANi lark SAND with i	D, some brick orick and concrete, di		0.0 ppm 0.0 ppm	58" Recov Sample: C4-5-7ft C4-5-7ft I	Time:

ſ				141 Elm St	gineers, Inc. treet ew York 14203		BORING LO	G	В	oring No.	C4-A	
CC		AN	100		6-847-1630		SORING LO	G		heet 1 of:	1	-
Dunia	4 1/			www.cscos.c						oject No.:	P67.001.002	2
		_	19 North Str						Surre	Datum:	GROUND SURF	FACE
		\rightarrow	23 North Str		O IVEW TOIK	(A			S	tart Date:	9/2/16	7.02
Drilli	ng Firi			001, 220		Driller:	John (NYEG)		Fin	ish Date:	9/2/16	
	Grou			Depth	Date & Time	With the second	geoprobe 7220		lı	spector:		
	1	Whi	le Drilling:	22 feet	8/30 @ 845am	Casing:	J.	Rock Core:		Undist:		
			Removal:			Sampler:		Other: well bott	om -24 ft,	sand to 12	2 ft. benonite -	
Af	ter Cas	sing	Removal:			Hammer:	1 III - 00 II A O T	10 ft to surface	and Davis ato	-4: T4\		
		П	(N I	No. of blov	ws to drive samplei	r 12" W/140 lb. na	ammer falling 30" AST	M D-1586, Standa	ra Penetr		COMMENTS	10.40.00
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		-	DESCRIPTION - Gravel, C - Clay, cly -	s - som I - littl	d - 35-50% le - 20-35% le - 10-20% ace - 0-10%	(e.g., N-v	alue, recovery, re e, core run, RQD, recovered)	
_		Н								START 94	15	
1												
		[See C4 log						, ,	
2												
3												
J								<u>`</u>				
4												
	191		3.0		e e							
5												
6							- 1					-
6		╽┟			See C4 log							
7					<u> </u>							
8					180							
•												
9		╽┟										
10		╽┟				<u> </u>						
11												
40					0 - 044				-			
12					See C4 log							
13		╽┟										
		lt			* 3							
14						2						
15				0-22"	brown, fine SILT	moiet trace re	ock		1.1 ppm			
16				22-28"	brown grey, GRA				2.0 ppm		1	
				28-32"	brown CLAY							
17				32-62"	brown and red b	rown SAND, co	arse to medium graiı	<u>1</u>	0.4 ppm			
											,	
18			1			4						
19								3				
20												
				0-12"			, wet, very slight odo	<u>or</u>	0.4 ppm		-	
21				12-16"	brown, fine SAN		rof		0.1 ppm		Time	Δ.
22				16-36" 36-40"	brown, medium		eı			Sample: No Samp		с .
	1			40-60"	brown, fine SAN		ist		0.3 ppm			
23				60-62"	brown, varve CL		į		0.4 ppm			
	1											
	1	ΙÍ										
24	1	1 1										

1	Q			141 Elm S		-	BORING LO	3	В	oring No.		D1
	_0		15.C	Phone: 716	ew York 14203 6-847-1630	"	BORING LO	3	S	heet 1 of:		1
CC)MP	AN	The second secon	Fax: 716-8		9			Pro	ject No.:	P67.	001.002
roje	t Nam	e:	19 North Str	eet Reme	edial Investigation			,	Surfa	ce Elev.:		4
L	ocatio	n:	19 North Str	eet Buffal	o New York					Datum:	GROUNI	O SURFAC
	Clie	nt:	23 North Str	eet, LLC					S	tart Date:		
Drilli	ng Firi	n:	NYEG			Driller:	John (NYEG)		Fin	ish Date:		
	Grou	ndw	/ater	Depth	Date & Time	Drill Rig:	geoprobe 7220		lı	spector:		
		Whi	ile Drilling:			Casing:		Rock Core:		Undist:		
Befo	re Cas	sing	Removal:			Sampler:		Other:				
Af	ter Ca	sing	Removal:			Hammer:						
		_	(N I	No. of blo	ws to drive sampler	r 12" w/140 lb. ha	ammer falling 30" ASTI	M D-1586, Standa	rd Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			. DESCRIPTION - Gravel, C - Clay, cly - c	s - son I - litt	nd - 35-50% ne - 20-35% de - 10-20% ace - 0-10%	(e.g., N-v		very, relativ
		Н		0-5"	topsoil and grass	s				START 10		,
1				5-19"	FILL- CLAY, brow		dded rock piece			20" Recov	(10 St	
·				19-20"	FILL - SILT, brow		•					
2												
3					*		\					
4												
5				0-19"	FILL - clay with r	rook briok woo	du dobris root	× .		56" Recov	vered	
6		╽┟		19-26"	red silt and brow		dy depris, root	-		Top of nat		eet 7 inch
0		╽┟		26-39"	red yellow brown		ed and wet			below gra		0007 111011
7		╽┟		39-52"	red brown, CLA		a dira irot			John Gra		
				52-56"	brown SILT	<u>,</u>						
8												
9												
10												
				0-7"	brown SILT with	rock, wet				62" Recov	ered	
11				7-60"	light brown, fine							
				60-62"	brown grey, SAN	ID and rock, dry	<u> </u>					
12												
13												
14												
15												
				0-1"	slug					62" Recov	vered	
16				1-9"	brown, medium	grain SAND and	I GRAVEL					
				9-14"	red brown CLAY	<u> </u>						
17				14-15"	multicolor, coars							
		[15-21"	brown, fine SAN							
18				21-45"	brown, fine to m							
19		$ \cdot $		45-62"	brown, fine SAN	D, moist to wet						
20				0-11"	brown and red, o	coarse to mediu	m grain SAND, wet			62" Recov	/ered	
21				11-62"	varve CLAY			h		Sample:		Time:
									2.2	D1-9.5-11		1117
	1									Hex + MS		
22	1											1101
										D1-11.5-1		1121
22									1.9	D1-12.5-1	3.5ft	1123
									1.9 2.2		3.5ft 4.5ft	

	T C			141 Elm St		r	DODING LOA		В	oring No.	D2	
	$=$ \bigcirc				ew York 14203 6-847-1630	l t	BORING LO	5	S	heet 1 of:	1	
C	OMP	AN	IES	Fax: 716-8	47-1454		· · · · · · · · · · · · · · · · · · ·	P	Pro	oject No.:	P67.001.0	02
Proje	ct Nan	ne:			dial Investigation				Surfa	ace Elev.:		
L	.ocatio	on:	19 North Str	eet Buffal	o New York					Datum:	GROUND SUF	RFACE
		_	23 North Str	eet, LLC						tart Date:		
Drill		_	NYEG				John (NYEG)			ish Date:		
	Grou		(Depth	Date & Time		geoprobe 7220	Rock Core:		nspector: Undist:		
Dof			ile Drilling: Removal:			Casing: Sampler:		Other:		Unaist:		
			Removal:			Hammer:		Other.				
	ter oa	Sing		No. of blov	Iws to drive sample		I ammer falling 30" ASTN	<u>I</u> И D-1586, Standa	rd Penetr	ation Test)		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n	MATERIAL	DESCRIPTION - Gravel, C - Clay, cly - c	a - ar s - son I - litt	nd - 35-50% ne - 20-35% lle - 10-20% ace - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, re, core run, RQI recovered)	
		П		0-24"	FILL - dark brow		<u>cks</u>			START 14		
1				24-34"	FILL - dark brow					36" Recov	rered	
2				34-36"	FILL - gravel and	<u>r concrete</u>			0.1 ppm			
3												
4												
5												
	1			0-10"	FILL - concrete a					45" Recov		
6				10-23"	brown, medium						ive soil 5 feet 10) inche
7				23-45"	light brown, med	dium grain SANI	<u>D</u>		0.1 ppm	below grad	de	
8												
9												
10				0-9"	slug, brown, silt	y sand, dry			0.0 ppm	57" Recov	rered	
11				9-12"	slug, gravel and				0.0 ppm			
12				12-57"	red brown, medi				0.0 ppm 0.0 ppm			
13												
14									×			
15						\					i i	
16					end of boring at	<u>15 feet</u>			i			
17												
18												
19												
20												
21	-									Sample:		ne:
22	-									D2 SURF D2-0-2 F1		
23										D2-10-11		
0.4				-						D2-11-12 D2-12-13		
24	1			-						D2-12-13 D2-13-14		
25										l		

### Sheet 1 of Page 1 No. 1 Page 1 No. 2 Page 2 Page 2 Page 2 Page 2 Page 2 Page 3	f	■ g	<u>, </u>		141 Elm St					В	oring No.	D3
Project Name: 19 North Streek Remodal Investigation Surface Elev.		_((U.S.C.	Phone: 716	6-847-1630	l t	BORING LO	خ	S	heet 1 of:	1
Location: 19 Month Street Buffalo New York					www.cscos.c	com						P67.001.002
Cition: 23 North Stock, Lt.C			$\overline{}$							Surfa		
Deliting Firm: NYES	L			N 140 - 11 G TO 2 2000 - CO - CO		o New York					200 0000-00-00-00-00	GROUND SURFACE
Depth Date & Time Drill Risk Copyright Date & Time Drill Risk	Drilli				eet, LLC		Driller	John (NYFG)				,
White Drillings	Dillil	-			Depth	Date & Time						
Recovered Reco			Wh	ile Drilling:	-	9	Casing:		Rock Core:		Undist:	
N									Other:			
Barrier Barr	Af	ter Ca	sing		la of blac	us to drive comple		mmor folling 20" ASTN	4 D 1586 Standa	ard Denetr	ation Test)	
1	Depth (ft)	Sample No.	Symbol	Blows on Sampler	c - coarse m - medium	1	MATERIAL	DESCRIPTION	a - ar s - son I - litt	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
9-17" FILL - gravel, brick, concrete chunks 0.0 ppm 0-6" FILL - brick, concrete, and gravel 0.0 ppm 39" Recovered 6-22" Illahter brown, medium grain sity SAND, wet 22-27" red brown, sity CLAY, dense 0.0 ppm below grade 0.0 ppm below grade 0.0 ppm 10 0-55" Illahter brown, medium grain sity SAND, wet 0.0 ppm 11 12 13 14 15 16 end of boring at 15 feet 17 18 19 20 21 22 23 24			П									
2 3 4 5 6 6 7 FILL - brick, concrete, and gravel	1							unks			17" Recov	rerea
3 4 5 5 6 6 9-6" FILL- brick, concrete, and gravel 0.0 ppm 39' Recovered 0.0 ppm 6-22" lighter brown, medium grain sithy SAND, wet 0.0 ppm 70 of native 5 feet 6 inches 22-27" red brown, sithy CLAY, dense 0.0 ppm 90 below grade 0.0 ppm 100 100 ppm	2			-	5-17	rill - gravei, bri	on, concrete Ch	umo	<u> </u>	J.J ppill		
1		1										
10 10 10 10 10 10 10 10	3											
10 10 10 10 10 10 10 10	4							E				-
0-6" FILL - brick, concrete, and gravel 0.0 ppm 39" Recovered 6-22" lighter brown, medium grain silty SAND, wet 0.0 ppm Top of native 5 feet 8 inches 22-27" red brown, silty CLAV, dense 0.0 ppm below grade 0.0 ppm 100										To .		
6 - 22" lighter brown, medium grain silty SAND, wet	5											
22-27" red brown, silty CLAY, dense												
7 27-39" lighter brown, medium grain SAND, wet 0.0 ppm	6							y SAND, Wet				
9 10 0-58" light brown, medium grained SAND, wet 0.0 ppm 58" Recovered 0.0 ppm 12 13 14 14 15 16 16 17 18 18 19 20 21 22 23 24 24 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	7							ND, wet			J	,
9 10 0-58" light brown, medium grained SAND, wet 0.0 ppm 58" Recovered 0.0 ppm 12 13 14 14 15 16 16 17 18 18 19 20 21 22 23 24 24 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19												
10	8									-		
10	9											
11												et .
11	10				-		/			0.0	FOIL D	d
12 13 14 15 16 end of boring at 15 feet 17 18 19 20 21 22 23 24	44				0-58"		dium grained SA	ND, wet			58" Recov	/ered
13		1				(Wettest 0-1 It)				о.о ррпп		
13 14 15 16 17 18 19 20 21 22 23 24	12											
14												•
15	13	1										Ý.
15	14											
17 18 19 20 21 22 23 24		1										
17 18 19 20 21 21 22 23 24	15											
18	16					end of boring at	15 feet		9			,
19	17											
20	18											
21	19	,									*	
22	20											
22 D3-5.5-7.5 DUP 23 D3-7.5-9.5 D3-10.5-11.5	21											200
23 D3-7.5-9.5 D3-10.5-11.5	22										D3-5.5-7.	
24	23								*		D3-7.5-9.	
	24										D3-10.5-1	<u>11.5</u>
25		1										

	- (c			141 Elm St					В	oring No.	D4
	_@	I			ew York 14203 6-847-1630		BORING LO	3	s	heet 1 of:	1
C	OMP.	AN		Fax: 716-8					Pro	oject No.:	P67.001.002
		$\overline{}$			dial Investigation				Surfa	ace Elev.:	
L		\rightarrow			o New York				—	Datum: tart Date:	GROUND SURFA
Drilli		_	23 North Str NYEG	eet, LLC		Drillor	John (NYEG)			ish Date:	8/29/16
Dillil	Grou	_		Depth	Date & Time		geoprobe 7220			nspector:	5,25,10
			le Drilling:			Casing:		Rock Cor	e:	Undist:	
			Removal:			Sampler:		Other:			
Af	ter Ca	sing	Removal:			Hammer:	mmer falling 30" ASTI	AD 4506 Ctor	adard Danati	ention Toot)	
_		ТТ	(1/ 1	NO. OF BIO	ws to drive sample	12 W/140 ID. 118	ammer failing 50 AST				COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		•	DESCRIPTION - Gravel, C - Clay, cly - 6	s -	- and - 35-50% some - 20-35% - little - 10-20% - trace - 0-10%	(e.g., N-v	alue, recovery, relati e, core run, RQD, % recovered)
		П		0-12"	asphalt, gravel s					START 14	
1				12-29"	FILL - dark, med	ium grained san	d with spots of dark	trace silt	0.1 ppm	29" Recov	rered
2					-						
3											
,						*					
4											
5		11									
	1			0-9"	FILL - medium g	rain sand, dry				34" Recov	
6		$ \cdot $		9-11" 11-24"	gravel FILL brown, silty SAN	ID dny		1		l op of nat below gra	tive 5 feet 9 inches
7		$\ \cdot\ $		24-29"	brown, SAND wi		oist			below gra	
	1			29-34"	red brown, CLA						
8	en en en en en										
9											
		of a mountain									0
10											
				1-12"	brown, silty SAN		ned, moist			49" Recov	vered
11		0000		12-49"	red brown, sand	y SIL I , moist			0.0 ppm		
12											
13	-	1 -									
14		1									
	1	(
15											
16					end of boring at	15 feet					
	1										
17											
10											
18			3800								
19							· · · · · · · · · · · · · · · · · · ·				
20	-										
21								8			
	1									Sample:	Time:
22	-									D4-8-9ft D4-Hex-8	-9ft
23										D4-Hex-8	
20	1									D4-10-11	
24	-									<u>D4-15ft</u>	
	1	1									

		<u></u>	•		141 Elm St		. 1	POPING LOG		В	oring No.	E1
C	_((Ų	4	EC	Phone: 716	ew York 14203 6-847-1630		BORING LO	.	S	heet 1 of:	1
	IMC				Fax: 716-8 www.cscos.c	com			/		oject No.:	P67.001.002
				9 North Str	eet Reme	dial Investigation		9		Surfa	ace Elev.:	
L	ocat	ion.	: 1	9 North Str	eet Buffal	o New York			-		Datum:	GROUND SURFAC
			_	3 North Str	eet, LLC						tart Date:	8/30/16
Drilli	_		_	IYEG			The second secon	John (NYEG)			ish Date:	8/30/16
	Gro				Depth	Date & Time		geoprobe 7220	D. d. C.		nspector:	`
				e Drilling:			Casing:		Rock Core:		Undist:	
				Removal:			Sampler: Hammer:		Otner:			
Ai	ter C	asıı	ng	Removal:	No. of blox	ws to drive sample		I ammer falling 30" ASTN	I M D-1586, Standa	rd Penetr	ation Test	\
Depth (ft)	Sample	Symbol	001110	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n	MATERIAL	. DESCRIPTION - Gravel, C - Clay, cly - c	a - an s - som I - litt	d - 35-50% de - 20-35% de - 10-20% de - 0-10%	(e.g., N-v	COMMENTS ralue, recovery, relativere, core run, RQD, % recovered)
			T		0-18"	Topsoil - light br	own soil, sandy	<u>′</u>			START 14	
1					18-19"	FILL - rock piece					29" Recov	vered
			L		19-29"	FILL - mix of san	d silt and clay,	brown, moist, some i	mbedded rock p	<u>ieces</u>		
2			-									
3			F						6			
4			L									
5			H	2				*				
					0-10"	slug, gravel and	<u>rock</u>				48" Recov	
6					10-26"	dark brown, med					Top of nat	tive soil 5 feet below g
7			-		26-48"	light brown, med	lium grained SA	AND with silt		w.		
	1								}			
8			F	1								
9			F									
10			F								ACII Deser	d
11			\vdash		0-7" 7-46"	slug, gravel, roc		<u>e</u>			46" Recov	/ered
			\vdash		7-40	iigiit bi owii, siity	GAND					
12			F									
13	90		ŀ				,					
14			F									·
									0			
15	-		-		0-8"	light brown, silty	SAND with trac	ce clav			48" Recov	vered
16					8-18"	light colored, co	arse SAND with					
17			F		15-48"	silty SAND, coar	se, wet					
18			F									
											2	
19	1											
20	-		-									
21	-	74	F			end of boring at	20 feet	S.			Sample:	Time:
22			F								E1 SURF	ACE
23			+								E1-1-2.5F E1-11-12	<u>FT</u>
											E1-12-13	
24	1		F					17			E1-13-14 E1-14-15	
25			-		-							

Location Clien Drilling Firm Groun L Before Cas	ne: on: ent: rm: undv	19 North Sti 19 North Sti 23 North Sti NYEG water iile Drilling: g Removal: g Removal: (N	Phone: 716-8 www.cscos.geet Reme reet Buffal reet, LLC Depth	dial Investigation o New York Date & Time ws to drive sample	Driller: Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock		Rock Core: Other: I D-1586, Standa a - ar s - so	Pro Surfa Si Fin II		P67.0 GROUND 9/1 9/1 A	
### Droject Nam	me: on: ent: rm: undv Wh asing	19 North Sti 19 North Sti 23 North Sti NYEG water iile Drilling: g Removal: g Removal: (N	www.cscs.cet Remered Buffal reet, LLC Depth No. of blov c - coarse m - medium f - fine	dial Investigation o New York Date & Time ws to drive sample S FILL - dark brow	Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	geoprobe 7220 ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	Surfa Si Fin II ard Penetr	Datum: tart Date: ish Date: nspector: Undist: ation Test)	GROUND 9/1 9/1 A	SURFACE 1/16 1/16 AD
Location Client	on: ent: rm: undv Wh asing	19 North Str 23 North Str NYEG water nile Drilling: g Removal: (N	reet Reme reet Buffal reet, LLC Depth No. of blov c - coarse m - mediun f - fine	Date & Time ws to drive sample But a drive sample	Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	geoprobe 7220 ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	Si Fin It	Datum: tart Date: ish Date: nspector: Undist: ation Test)	9/1 9/1 A	1/16 1/16 AD
Client	ent: rm: undv Wh asing	23 North Str NYEG water nile Drilling: g Removal: g Removal:	Depth No. of blov c - coarse m - medium f - fine	Date & Time ws to drive sample S FILL - dark brow	Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	geoprobe 7220 ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	Fin	tart Date: ish Date: nspector: Undist: ation Test)	9/1 9/1 A	1/16 1/16 AD
### Prilling Firm Groun Name N	rm: undv Wh asing	NYEG water hile Drilling: g Removal: g Removal: (N	No. of blov	ws to drive sample S FILL - dark brow	Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	geoprobe 7220 ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	Fin	ish Date: nspector: Undist: ation Test)	9/1 A	1/16 AD
Srour Name	undv Wh asing	water nile Drilling: g Removal: g Removal: (N	c - coarse m - mediun f - fine	ws to drive sample S FILL - dark brow	Drill Rig: Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	geoprobe 7220 ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	ard Penetr	undist: ation Test)	COMMENT	AD
### Page 10	Wh asing asing	nile Drilling: g Removal: g Removal: (N	c - coarse m - mediun f - fine	ws to drive sample S FILL - dark brow	Casing: Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	ard Penetr	Undist:	COMMENT	<u>s</u>
Refore Case	asin _i	g Removal: g Removal: (N	c - coarse m - mediun f - fine	n S <u>FILL - dark brow</u>	Sampler: Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	ammer falling 30" ASTN	Other: 1 D-1586, Standa a - ar s - son	nd - 35-50%	ation Test)	COMMENT	
After Case (1) 1	sin	g Removal: (N	c - coarse m - mediun f - fine	n S <u>FILL - dark brow</u>	Hammer: r 12" w/140 lb. ha MATERIAL - Sand, \$ - Silt, G n clay with rock	ammer falling 30" ASTN	∄ D-1586, Standa a - ar s - son	nd - 35-50%		COMMENT	
1 2 3 4 5 6 7 8 9 10 11 1 12 13 14 15 16 17 17	T	(N	c - coarse m - mediun f - fine	n S <u>FILL - dark brow</u>	MATERIAL - Sand, \$ - Silt, G	ammer falling 30" ASTN	a - ar s - son	nd - 35-50%		COMMENT	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Symbol		c - coarse m - mediun f - fine	n S <u>FILL - dark brow</u>	MATERIAL - Sand, \$ - Silt, G	_ DESCRIPTION	a - ar s - son	nd - 35-50%		COMMENT	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Symbol	Blows on Sampler per 6"	m - mediun f - fine	S FILL - dark brow	- Sand, \$ - Silt, G	-	s - son				
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17			0-62"			the second secon	clayey t - tra	lle - 10-20% ace - 0-10%	moistur	e, core run, recovered	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17				with dark clay ne	ar them	k and trace tree pieces	<u>s</u>	0.1 ppm	START 13		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17					sar unem		1		80 degree 62" Recov	s F and Sur	ıny
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17									62" Recov	erea	
4 5 6 7 8 9 10 11 12 13 14 15 16 17											
4 5 6 7 8 9 10 11 12 13 14 15 16 17			1								
5 6 7 8 9 10 11 12 13 14 15 16 17						ſ					
6 7 8 9 10 11 12 13 14 15 16 17				×							
6 7 8 9 10 11 12 13 14 15 16 17											
7 8 9 10 11 12 13 14 15 16 17											
7 8 9 10 11 12 13 14 15 16 17	BE .		0-8"	FILL - light brow					50" Recov	ered	
8 9 10 11 12 13 14 15 16 17			8-16"			ice brick, some coars	e sana	0.1 ppm 0.1 ppm			
8 9 10 11 12 13 14 15 16 17			16-29" 29-34"	brown, fine silty dark brown, silty				0.1 ppm			
9 10 11 12 13 14 15 16 17			34-50"	light brown, fine				0.1 ppm			
10			0.00	ingite 21 contra to the							
10											
11											
11											
12 13 14 15 16 17			0-12"	light brown, silty	CAND			0 ppm			
12 13 14 15 16 17			12-50"			D with some silt		-	50" recove	ered	
13 14 15 16 17			12-30	ngin brown, mee	nam gram OAN	D With Some Six		о ррии	00 100011	-10-0	
14 15 16 17						· ·					
14 15 16 17								u u	8		
15 16 17											
15 16 17							/				
16											
16											
17											
17			1	end of boring at	15 feet	>	y				
										2	
18		-									
18											*
1			-				3				
19							<u><</u>				
19											
20											
21							h		Sample:		Time:
					,				E2-5-6.5ft		1412
22			-						E2-9-10ft E2-10-111		1416 1418
22			-						E2-10-111		1418
23		1	-						E2-11-121		1423
24	٠		1						E2-14-15		1425
	0										

	Ç			141 Elm St	ineers, Inc.			В	oring No.	E3	
COMPANI			UEC	Phone: 716	lew York 14203 6-847-1630	BORING LOG				heet 1 of:	1
				Fax: 716-847-1454 www.cscos.com						oject No.:	P67.001.002
Project Name: 19 North Street Remedial Inve										ace Elev.:	GROUND SURFACE
Location: 19 North Street Buffalo New Yo					lo New York	N York				Datum: tart Date:	8/29/16
Client: 23 North Street, LLC						Dvilley, John (NVEG)				ish Date:	8/29/16
Drilli	Drilling Firm: NYE			Donath	Data 6 Times	Driller: John (NYEG) Drill Rig: geoprobe 7220				nspector:	8/29/10 SH
			le Drilling:	Depth	Date & Time	Casing: 5 ft liner Rock Core:		-	Undist:	OIT	
Pofe			Removal:			Sampler:	3 it line	Other:		Ulluist.	
			Removal:			Hammer:		Other:			
				No. of blo	ws to drive sample		ammer falling 30" AS	TM D-1586, Stan	dard Peneti	ation Test)	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S	- Sand, \$ - Silt, G	DESCRIPTION - Gravel, C - Clay, cly	s - s -	and - 35-50% ome - 20-35% little - 10-20% trace - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
				0-10"	asphalt and grav					START 13	
1				10-28"	URBAN FILL, bri		2		0.1 ppm 0.1 ppm	30" Recov	ered
2				28-30"	yellow, SAND, di	y materiai			o. r ppm		
2				1							
3		1 1				2					
-											
4											
5											
_				1-13"	brick, concrete					28" Recov	ered
6				13-28"	brown, fine silty	sand, little mois	<u>st</u>		0.0 ppm		
7		1 }									
		1 1									
8		1									
9											
10				0.401	1.1.1	4-				56" Recov	rorod
44				0-12" 12-18"	brick and concre					56 Recov	erea
11		1 }		18-22"	brown, silty CLA brick pieces	11				possible b	uilding foundation
12		1 1		22-42"	red brown, silty	SAND. trace cla	v			possilio a	ananig rearran
				42-56"	brown, fine SAN		-				
13								Y.			
14							0				
,_											
15				0-16"	slug					57" Recov	rered
16				16-57"	siug brown, medium	grained SAND 1	wet			3, 1,600	5,54
10				10.07	zieni, mediam	a. aoa onno,					
17											
1	1										
18											
19	1			,,,*	3						
20											
20	1			-							
21					end of boring at	20 feet		,			
	1				-	*				Sample:	Time:
22]									E3-12-131	
										E3-13-14	
23	1									E3-14-15	
			-							E3-15-16	<u>T</u>
0.4											
24	-			-							

1	T C			141 Elm St		F	DODING LO			В	oring No.	E4	
	_@				ew York 14203 6-847-1630		BORING LO)G		SI	neet 1 of:	1	
C	OMP/	M	A STATE OF THE PARTY OF THE PAR	Fax: 716-8						Pro	ject No.:	P67.001	.002
Proje	ct Nam	e:			dial Investigation		-			Surfa	ce Elev.:		
L	ocatio	n:	19 North Str	eet Buffal	o New York						Datum:	GROUND SU	JRFACE
	Clie	nt: 2	23 North Str	eet, LLC						S	tart Date:	8/29/1	6
Drilli	ing Firi	n: l	NYEG				John (NYEG)			Fin	ish Date:	8/29/1	6
	Grou	ıdw	ater	Depth	Date & Time		geoprobe 7220			Astronom Publication	spector:		
			le Drilling:			Casing:	5 ft liner		k Core:		Undist:		
			Removal:			Sampler:		Other:					
At	ter Cas	sing	Removal:	N 6 -	to deine consider	Hammer:	mmer falling 30" AS	TM D 450	C Ctandara	Donote	otion Toot)		
	1	Т	(17 1	NO. OI DIO	ws to drive sample	r 12 W/140 lb. Ha	aminer faming 50 AS	11VI D-130	o, Standard	reneu		COMMENTS	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine		•	DESCRIPTION - Gravel, C - Clay, cly	- clayey	s - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., N-v	alue, recovery e, core run, Ro recovered)	
				0-11"	asphalt and gra						START 14		
1	100000000000000000000000000000000000000			11-16"	red brown, silty						30" Recov	ered	
				16-30"	brown, sandy SI	<u>LT</u>			().1 ppm	T ()		
2											Top of nat grade	ive soil 11 inch	ies below
3		-									grade		
3		-	-										
4													
<u> </u>	1												
5													
				0-4"	<u>slug</u>						42" Recov	ered	
6				4-11"	brown, medium		<u>dry</u>).1 ppm			
_				11-21"	dark brown, silty).1 ppm			
7		-		21-36" 36-42"	lighter brown, si					0.1 ppm 0.1 ppm			
8		lŀ		30-42	rea brown, CLA	r, moisi				л ррш			
	1	-											
9													
	1												
10													
		-		0-10"	slug						32" Recov	ered	
11		-		10-28"	red brown, sand					0.1 ppm 0.0 ppm			
12		H		28-32"	rea brown, CLA	r, moist				o.o ppm			
12	1	╽┟											
13		lŀ											
	1												
14													
15	-												
16		-			end of boring at	15 feet							
16	1	-			end of borning at	10 1661							
17				-									
	1												
18													
19	1												
20		-											
20	1			-									
21													
	1										Sample:	Т	ime:
22											E4-1-2ft		
	1		1								E4-2-3ft		
23		[E4-5.5-6.5		
	-										E4-6.5-7.5	<u>oft</u>	
24	1	Ιŀ					34						
27	1												

		-		C&S Eng	gineers, Inc.					В	oring No.		F1
	_@	JI.			ew York 14203	E	BORING L	OC	3	Si	heet 1 of:		1
C	OMP	AN	IIF2	Fax: 716-8	47-1454					Pro	oject No.:	P67.	001.002
Proje	ct Nar	ne:	19 North Str	eet Reme	dial Investigation				I.	Surfa	ce Elev.:		
L			19 North Str		o New York						Datum:	GROUNI	SURFACE
			23 North Str	eet, LLC							tart Date:		
Drilli			NYEG				John (NYEG)	-			ish Date:	1	
	Grou		water	Depth	Date & Time	Casing:	geoprobe 7220		Rock Core:	11	nspector: Undist:		
Pof	oro Co		ile Drilling: g Removal:			Sampler:	5 jt liner	-	Other:		Onaist.		
			g Removal:			Hammer:		-	other.				
		-		No. of blov	ws to drive sample		mmer falling 30" A	ASTM	1 D-1586, Standa	rd Penetr	ation Test)		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine			DESCRIPTION - Gravel, C - Clay, o	cly - c	s - son I - litt	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N-v		very, relative n, RQD, %
		T		0-10"	topsoil and gras	<u>s</u>					START 14		
1				10-54"	FILL - medium g	rain sand, brow	n, with rock and i	trace	brick, moist	0.0 ppm	80 degree		
2											54" Recov	rered	
3													
4													
5													
					FILL - medium s			trace	e brick pieces		62" Recov		
6	-				dark brown, fine		<u>, dry</u>				Top of nat below gra		eet 4 inches
7				45-52" 52-62"	brown, SILT, dry					0.0 ppm	below gra	ue	
	1			32-02	brown, oil i, dry	to moist				от рр			
8													
9													
10													
				0-1"	slug	OU T				0.0 ppm 0.0 ppm	62" Recov	ered	
11				1-62"	red brown, fine S	<u>SIL I</u>				0.0 ppm			
12													
13			,									a .	
14							`						
15													~
16					end of boring at	15 feet							
17				7									
18					9								
19							8		,				
20													
21										· ·	Cample		hoodona
22											Sample: F1-3-5ft (+Hex)	headspa
	1		1								F1-9-10ft		1.5
23											F1-10-11	<u>t</u>	1.5
	1										F1-11-12	_	1.4
24	4							0			F1-12-13	<u>t</u>	0.4
	1										<u>F1-15ft</u>		0.4

1			9	141 Elm S	gineers, Inc. treet ew York 14203		BORING LO	G		oring No.		F2
C	OMP	AN	15.0		6-847-1630	•	JOKING LO	O		heet 1 of:	D07	1
			A 11. 15 A	www.cscos.						oject No.: ace Elev.:	P6/.	.001.002
			19 North Str 19 North Str						Suria	Datum:	GROUNI	D SURFAC
		_	23 North Str		O New Tork				s	tart Date:		/1/16
Drilli		\rightarrow	NYEG	ect, LLO		Driller:	John (NYEG)			ish Date:		/1/16
	Grou	-		Depth	Date & Time	The second secon	geoprobe 7220		li li	nspector:		
		Whi	ile Drilling:	•		Casing:	5 ft liner	Rock Core:		Undist:		
Bef	ore Ca	sing	Removal:			Sampler:		Other:	•			5
Af	ter Ca	sing	g Removal:			Hammer:						1
		_	(N I	No. of blo	ws to drive sampler	r 12" w/140 lb. ha	mmer falling 30" AS	M D-1586, Stand	ard Penetr			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine		-	DESCRIPTION - Gravel, C - Clay, cly	s - so I - li	and - 35-50% me - 20-35% ttle - 10-20% race - 0-10%	(e.g., N-v		very, relati n, RQD, %
_		H		0-5"	topsoil				0.0 ppm	START 1	500	
1		H		5-28"	FILL - brown, me	dium sand with	rock pieces		0.1 ppm	28" Recov	vered	
2												
3												
4					,							
5								,	-			
		li		0-5"	red brown, fine S	SAND and SILT			0.1 ppm	62" Recov	vered	
6				5-62"			SAND, wet to satura	<u>ted</u>	0.1 ppm			
7					coarse, wet sand	I @ 62"						
8												
9												
10				0-16"	brown, medium	cand with rock	nincae		0.1 ppm	45" Recov	vered	
11				16-29"	dense, hard CLA		Neces		0.1 ppm	10 110001	70100	
•		1		29-45"	red brown, fine S				0.1 ppm			
12												
13												
14												
15				0-5"	red brown, silty	SAND, trace cla	V	<u> </u>	0.1 ppm	40" Recov	vered	
16				5-40"	red brown, silty		-		0.0 ppm			
17												
18					· ·							
19												
20				0-24"	brown, coarse S	AND wet			0.0 nnm	62" Recov	vered	
21			· · · · · · · · · · · · · · · · · · ·	24-62"	hard, dense CLA				0.0 ppm		. 51 0 4	headspa
22			*							F2-4-6ft		0.7
22	1								5	F2-9-10ft	(+ Hex)	0.8
	1									F2-10-11		8.0
23				1								
23	1									F2-11-12 F2-12-13		1.6 0.8

end of boring at 25 feet

-		7,		141 Elm St				2	В	oring No.	F3
	_((Buffalo, Ne Phone: 716	ew York 14203 3-847-1630	l E	BORING LO	ف	S	heet 1 of:	1
	OMP		IE2	Fax: 716-8- www.cscos.c	47-1454 com					oject No.:	P67.001.002
		_			dial Investigation				Surfa	ace Elev.:	CDOLIND CLIDEACE
			19 North Str 23 North Str		o New York				9	Datum: tart Date:	GROUND SURFACE 8/29/16
Drill		_	NYEG	eet, LLC		Driller:	John (NYEG)			ish Date:	8/29/16
	Grou	-	Court Consultation Consultation	Depth	Date & Time		geoprobe 7220		l	nspector:	NW
			ile Drilling:			Casing:	5 ft liner	Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
A	ter Ca	sıng	Removal:	No. of blov	vs to drive sample	Hammer:	 ammer falling 30" ASTI	│ M D-1586. Standa	rd Penetr	ation Test)	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine	s	MATERIAL	DESCRIPTION - Gravel, C - Clay, cly -	a - ar s - som l - litt	nd - 35-50% ne - 20-35% le - 10-20% ace - 0-10%	(e.g., N-va moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
ı				0"-4" 4"-8"	blacktop				0.1 ppm	START 12 33" Recov	
1	1			4 -8 8"-60"	red brown, verv	fine SAND, silt,	and a little clay, dam	p			ve soil 8 inches below
2										grade	
•						1					
3	1				18						
4	4								9		
_											
5	1			5'-7'	red brown, CLA	/. some silt. ver	y fine sand, damp		0.1 ppm	37" Recov	ered
6				7'-10'			SILT, little clay, damp		0.5 ppm		
_											
7	1										
8											
9										-	
9								·			
10						4					
11				10'-16'	red brown, very	fine SAND and S	SILT, little clay, damp	<u>!</u>	0.1 ppm	34" Recov	ered
12											
13											
14					,						
15											
16				15'-16'	medium brown,	nne SAND, som	e siit, moist		0.1 ppm		
17					end of boring at	16 feet					
18	-										
19											
20											
21										Sample:	Time:
22	-									F3-0.5-1F F3-1-2.5 F	<u>r</u>
23	-								Ŋ	F3-3.5-4.5 F3-5.5-6.5	FT
24	32								1	F3-15FT	
25											

Project Name: 19 North Street Remodula Investigation	1				141 Elm St					В	oring No.	F4
Project Name: 19 North Street Regulation Surface Ellev:		_@					"	BORING LO	G	s	heet 1 of:	1
Martin Surface Removal North Stret Removal North North Stret Stret	CC	OMP.	AN	IES	Fax: 716-8-	47-1454				Pr	oject No.:	P67.001.002
Description	Proje	ct Nan	ne:	19 North Str	eet Reme	dial Investigation				Surf	ace Elev.:	
Drilling Firm: NYEO Depth Date & Time Drilling: Segretary Drilling: Segretary Depth Date & Time Drilling: Segretary Depth Drilling: Segretary Depth Date & Time Drilling: Segretary Drilling: Depth Drilling: Dept			$\overline{}$								Datum:	GROUND SURFA
Sample S		Clie	nt:	23 North Str	eet, LLC					S	tart Date:	8/29/16
While Drilling:	Drilli	ng Fir	m:	NYEG			Driller:	John (NYEG)		Fir	nish Date:	8/29/16
Sampler Other		Grou	ndv	/ater	Depth	Date & Time				1	nspector:	NW
After Casting Removals			Wh	ile Drilling:			Casing:	5 ft liner	Rock Core:		Undist:	
No. of blows to drive sampler 12" w140 ib. hammer falling 30" ASTM D-1586, Standard Panetration Test)	Befo	ore Ca	sing	Removal:					Other:			
Sample S	Af	ter Ca	sing									
Blows on Material Description S. Sample			_	(N I	No. of blov	ws to drive sample	r 12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Standa	rd Peneti		
1	Depth (ft)	Sample No.	Symbol	Sampler	m - medium f - fine	S		•	s - som I - litt	ie - 20-35% le - 10-20%	(e.g., N-v moistur	alue, recovery, relate, core run, RQD, % recovered)
8.5"-28" red brown, very fine SAND and Sil.T, little clay, damp Top of native soil 8.5 inch below grade 18" red brown, very fine SAND and Sil.T, moist to wet 18" red brown, very fine SAND and Sil.T, trace clay 24-34" red brown, very fine SAND and Sil.T, trace clay 24-34" red brown, very fine SAND and Sil.T, trace clay 0"-47" red brown, very fine SAND and Sil.T, trace clay, moist to 34" Recovered 47" Recovered 55 attracted 47" Recovered 56 and of boring at 15 feet 77 and of boring at 15 feet 78 attracted 79 and of boring at 15 feet 70 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 78 attracted 79 attracted 79 attracted 79 attracted 79 attracted 70 attracted 70 attracted 71 attracted 71 attracted 72 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 78 attracted 79 attracted 79 attracted 70 attracted 70 attracted 70 attracted 71 attracted 71 attracted 71 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 78 attracted 79 attracted 79 attracted 70 attracted 70 attracted 70 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 78 attracted 79 attracted 70 attracted 70 attracted 70 attracted 70 attracted 71 attracted 71 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 77 attracted 78 attracted 79 attracted 70 attracted 70 attracted 70 attracted 71 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 attracted 76 attracted 77 attracted 77 attracted 77 attracted 77 attracted 78 attracted 79 attracted 70 attracted 70 attracted 70 attracted 70 attracted 71 attracted 71 attracted 71 attracted 72 attracted 73 attracted 74 attracted 75 a										0.2 nnm		
Top of native soil 8.5 inch below grade 18" red brown, very fine SAND and SiLT, moist to wet 18"-24" red brown, very fine SAND and SiLT, trace clay 18" red brown, very fine SAND and SiLT, trace clay 10 0"-47" red brown, very fine SAND and SiLT, trace clay, moist to 47" Recovered 11 saturated 11 saturated 12 saturated 18 end of boring at 15 feet 19 conditions at 15 feet 19 conditions at 15 feet 20 conditions at 15 feet 21 sample: Tile F4-0.5-FT F4-1.2.5 F4-1.2.6 F4-1.2.6 F4-3.5-1.0	1		1 1				fine CAND and	CII T little elev dem	n			rered
below grade	2				o.5"-28"	rea prown, very	IIIIE SAND ANG S	oı⊾ı, ınde ciay, dam	<u> </u>	ı.ı ppın		ive soil 8.5 inches
18" red brown, very fine SAND and Sil.T, moist to wet 34" Recovered 18"-24" red brown, very fine SAND and Sil.T, trace clay 24-34" red brown, very fine SAND and Sil.T, trace clay											1 '	
18" red brown, very fine SAND and SILT, moist to wet 18"-24" red brown, very fine SAND and SILT, trace clay 24-34" red brown, very fine SAND and SILT, trace clay 10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to saturated 11 12 13 14 15 16	3					0					January State	
18" red brown, very fine SAND and Sil.T, moist to wet 18"-24" red brown, very fine SAND and Sil.T, trace clay 24-34" red brown, very fine SAND and Sil.T, trace clay 10 11 11 12 13 14 15 16 end of boring at 15 feet 21 22 23 34" Recovered 34" Recovered 47" Recovered 58						7	·		e e			
18" red brown, very fine SAND and Sil.T, moist to wet 34" Recovered	4											
18" red brown, very fine SAND and Sil. T, trace clay		1										
18"-24" red brown, Very fine SAND and SILT, trace clay	5					, ,						
24-34" red brown, very fine SAND and Sil.T. trace clay 10 0"-47" red brown, very fine SAND and Sil.T. trace clay, moist to 31 12 13 14 15 16 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3ample: Til 4-4-5-FT 4-4-1-2.5 4-4-1-2.5 4-4-5-5-7.0								SILT, moist to wet			34" Recov	vered
7 8 9 10 0 0"-47" red brown, very fine SAND and SiLT, trace clay, moist to 47" Recovered 11	6											
8 9 10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to 47" Recovered 11 12 13 14 15 16 end of boring at 15 feet 17 18 19 20 21 22 23 3 5Ample: Till F4-1.5-1.5 F4-3.5-4.5 F4-3.5-4.5 F4-3.5-4.5 F4-5.5-7.0					24-34"	red brown, very	fine SAND and S	SILT, trace clay				
9 10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to	7											
9 10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to	0											
10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to 3aturated	8	-										
10 0"-47" red brown, very fine SAND and SILT, trace clay, moist to 3aturated	0											
11 0"-47" red brown, very fine SAND and SILT, trace clay, moist to 47" Recovered		1						, , , , , , , , , , , , , , , , , , , ,				
11 Saturated S	10		11									
12 13 14 15 16 end of boring at 15 feet 17 18 19 20 21 22 23 33 44 54-12.5 74-3.5-4.5 74-5.5-7.0					0"-47"	red brown, very	fine SAND and	SILT, trace clay, mo	st to		47" Recov	vered
13 14 15 16 16 17 18 19 20 21 22 23	11		11			saturated						
13												
14	12			,								
14												
15 16 17 18 19 20 21 22 23 23 24 25 26 27 27 28 29 29 20 20 20 21 20 21 21 22 23 24 25 26 27 27 28 29 20 20 20 21 20 21 20 21 20 21 20 21 20 21 21 22 23 24 25 26 27 28 28 29 29 20 20 20 20 21 20 21 20 21 20 21 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	13											
15 16 17 18 19 20 21 22 23 23 24 25 26 27 27 28 29 29 20 20 20 21 20 21 21 22 23 24 25 26 27 27 28 29 20 20 20 20 21 20 21 21 22 23 24 25 26 27 28 28 29 20 20 20 21 20 21 20 21 20 21 20 21 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	4.4											
16 end of boring at 15 feet	14	1										
16	15							,				
17 18 19 20 21 21 22 23 3 54-3-5-7.0	10	1					5					
17 18 19 20 21 22 23 5Ample: Tin F4-0.5-1FT F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	16					end of boring at	15 feet					
18 19 20 21 21 22 23 3 54-3-5-7.0		1					27					
20 21 22 23 54-5-7.0	17								-			
20 21 22 23 23 24 25 25 25 25 25 25 26 26 27 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29												
20 21 22 23 24 25 26 26 26 26 26 26 26	18											
20 21 22 2												
21 Sample: Till 22 F4-0.5-1FT F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	19	-						[A]			-	
21 22 23 23 24 25 26 27 28 29 29 20 20 20 21 21 22 23 24 25 26 26 27 28 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	20											
22 Sample: Till F4-0.5-1FT F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	20	1			-							
22 Sample: Till F4-0.5-1FT F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	21											
22 F4-0.5-1FT F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	۷1	1									Sample:	Time:
23 F4-1-2.5 F4-3.5-4.5 F4-5.5-7.0	22			×								
F4-5.5-7.0		1										
	23										_	
1 24											F4-5.5-7.	0
	24	1						1				
25												-

C&S Engineers, Inc.

499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

BORING LOG GENERAL INFORMATION & KEY

Casing, Sampling and Other Equipment

Rock Cores H.S.A: Hollow Stem Auger (record I.D.) Wire Line I.D. S.S.A: Solid Stem Auger (record O.D.) Standard I.D. Steel: Hollow Steel Flush Joint Casing (recorded I.D.) EW / EX 1-13/32" AW / AX 1-25/32" AQ 1-1/8" Open: Open Hole / No Casing (record I.D.) BW / BX 2-7/32" BQ 1-1/2" S.S.: Split Spoon (record I.D.) NQ 1-31/32" Hammer: Auto - Automatic, Manual - Manual (rope & cat-head) NW / NX 2-27/32" Undist: Tube - Shelby, Oste - Osteberg (record I.D. & length) HW / HX 2-25/32" HQ 2-5/8"

Symbol Legend & Abbreviations **Abbreviations** Color W.O.R. - Weight of Rods br - brown Split Spoon W.O.H. - Weight of Rods & Hammer rd - red Sample N - Standard Penetration Test N-value gr - gray N.W.E. - No Water Encountered grn - green Rock Core do - ditto (same as above) blk - black wht - white Rec - Recovery Undisturbed RQD - Rock Quality Designation Sample PP - Pocket Penetrometer Tor - Torvane

Description of Soil Density

Relative Soil Density determined while advancing the soil boring by using ASTM Method D-1586, Standard Penetration Test N-Value. The N-Value is calculated by adding the hammer blow counts of the 2nd and 3rd sampling intervals together for driving a 2" O.D. sampler with a 140 lb. hammer falling 30' -OR-- by obtaining Pocket Penetrometer or Torvane Readings.

Cour	Course Grained Soils			<u>Fin</u>	ne Grained Soils	3	
Greater that	n half the material larger	N-Value		Undrained She	ar Strength (q _u)		Relative Density
than No. 200) Sieve (sand and gravel)	in-value	psi	psf	tsf or kg/cm ²	kN/m ²	Relative Delisity
N-Value	Relative Density	< 2	< 2.5	< 375	< 0.2	< 20	Very Soft
< 4	Very Loose	2 to 4	2.5 - 5	375 - 750	0.20 - 0.40	20 - 40	Soft
4 to 10	Loose	5 to 8	5 -10	750 - 1,500	0.40 - 0.75	40 - 75	Firm -or- Medium Stiff
11 to 30	Medium Dense	9 to 15	10 - 20	1,500 - 3,000	0.75 - 1.50	75 - 150	Stiff
31 to 50	Dense	16 to 30	20 - 40	3,000 - 6,000	1.50 - 3.00	150 - 300	Very Stiff
> 50	Very Dense	> 30	> 40	> 6,000	> 3	> 3,000	Hard

Description of Soil Type

Material	Grain Size	Material	Grain Size	Material	Grain Size	Material	Grain Size	
Boulder	> 8"	Gra	avel	5	Sand	Silt & Clay	< #200	
Cobble	8" - 3"	Course	3" - 1-1/2"	Course	#4 - #10	Note: # indicate	s U.S. Standa	ard Sieve
		Medium	1-1/2" - 3/4"	Medium	#10 - #40	with size	shown.	
		Fine	3/4" - #4	Fine	#40 - #200			

Bed Rock Classification Terms & Field Test / Field Observation

Term	Field Test / Field Observation	Rock Mass Classific	cation based on RQD
	Hardness	RQD	Rock Mass Quality
Soft	Can be Scratched by Fingernail	< 25%	very poor
Medium Hard	Easily Scratched by Pen Knife or Nail	25% - 50%	poor
Hard	Difficultly Scratched by Pen Knife or Nail	50% - 75%	fair
Very Hard	Cannot be Scratched by Pen Knife or Nail	75% - 90%	good
	Weathering	90% - 100%	excellent
Van Waathard	December of a second se		

Bedding (Natural Breaks in Rock Layers)										
Sound	material within joints, etc.)									
Weathered	iron staining, core recovery, clay seams, amount of									
Very Weathered	Based on observations (e.g., amount of disintegration,									

 Σ of pieces ≥ 4" RQD = total length of run

Laminated < 1 inch Thinly Bedded 1 inch to 4 inches Bedded 4 inches to 12 inches Thickly Bedded 12 inches to 36 inches Massive > 36 inches

ASTM Method D-6032, Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Cores

APPENDIX B

GROUNDWATER MONITORING WELL CONSTRUCTION AND SAMPLING LOGS

T G	-	C&S Engineers, Inc.		ROUND				Well No.	MW3-D1
		S	OBS	ERVAT	ION W	ELL	F	Project No.:	P67.001.002
COMPAN	IIES	□a □31 □□□□□667 □□□.cscos.com	CON	STRUC	TION L	.OG		rface Elev.:	
Project Name:								Datum:	□ROUND SUR□ACE
Location:								Start Date:	□/1/16
Client:							F	inish Date:	□/1/16
Drilling Firm:				Driller:				Inspector:	AD
l _		0.0' Top Protective Ca	sing	Drill Rig:				Casing:	
		0.0' Top of Riser		Notes:					nellod olcolsiilciioll
				Near W. Pr	•	⊥me⊞od a∟	da⊡o⊞er □		
		Strace ac Maera X So C Sorre X Ceme Ge o Te Sorre Co cre e 4.25" Bore Hole Diameter Well Diameter x PC Stattess Siee	□ro□□		C rown dwys	tor Magazin	romont Date		
		<u>□ac⊞Matera</u> □		(Groundwa		ement Data		
	×	X SomCommos				Depth to		Tide	
			7	Date	Time	Water	Elevation		
l O		Ceme III e II o II e		□/1/2016	130 PM	17□			
		Co⊡cre.e							
		Depth To:							
		9.0' Top of Seal							
		Sea⊡Ma@ra□							
		X De lo le Cups/Pe							
		□e□o□Ē S⊞rr□							
		Ceme I/De Io IIe	□ro□□						
		_							
		11.0' Top of Filter Pa	ack						
									
		14.0' Top of Screen							
		Scree SoSe							
		010 🖽							
		01 🗆							
		X 020 III							
		02□ Ⅲ							
		□□□er Materta□							
		00 Sa⊡d Pac□							
		0 Sa ⊑d Pac □							
		X 1 Sa ⊡d Pac □							
		2 Sa ⊑d Pac⊟							
		3 Sa⊡d Pac⊟							
		□ Sa ⊡d Pac □							
		24.0' Bottom of Scre	en						
		24.0' Bottom of Bore	Hole						

T G.	J	C&S Engineers, Inc.		ROUND				Well No.	MW4-F2
		S_rac_se_ Ne □ □or □ 13212 P_o □e □31 □□□□□ 2000	OBS	ERVAT	ION W	ELL	F	Project No.:	P67.001.002
COMPAN	IES	□a □ 31 □ □ □ 667 □ □ .cscos.com	CON	STRUC	TION L	_OG		rface Elev.:	
Project Name:								Datum:	□ROUND SUR□ACE
Location:								Start Date:	□/1/16
Client:							F	inish Date:	□/2/16
Drilling Firm:				Driller:				Inspector:	AD
l _		0.0' Top Protective Ca	sing	Drill Rig:				Casing:	
1 1,		0.0' Top of Riser		Notes:					ne llod o lco ls lilc llo
		0'-0" Ground Surface		Near Road	de Euphile.	neou al	da⊡o⊞er □		
		Srace ac Maera X So C S e o e S rr X Ceme //e o e Co cree	□ro □□						
		Well Diameter e_Maera x P_C Samess See							
		<u>□ac□⊞Maērā</u> □		(Groundwa		ement Data		
		X SomCommos				Depth to		Tide	
				Date	Time	Water	Elevation	Status	
			□ro□□	□/1/2016	□[30	17□			
		Co⊡cre.e							
		Depth To:							
		9.0' Top of Seal							
		Sea⊡Ma@ra□							
		X De Do De Cops/Pe	ēs						
		Ceme IIIe Io IIe	□ro□□						
		I —							
		11.0' Top of Filter Pa	ack						
		14.0' Top of Screen							
		14.0' Top of Screen							
		Scree □ S o □ S □ e							
		010 🖽							
		01 🗆 🖽							
		X 020 □							
		02□ Ⅲ							
		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □							
		00 Sa⊡d Pac□							
		0 Sa⊡d Pac□							
		X 1 Sa ⊡d Pac □							
		2 Sa ⊡d Pac □							
		3 Sa ⊡d Pac □							
		☐ Sa ☐d Pac ☐	non.						
		24.0' Bottom of Screen							
			. 1010						

	College Collis and.			ROUND				Well No.	MW1-C4
	2	S⊡rac⊡se□ Ne□ □or□ 13212 P□o□e□31□□□□□2000	OBS	ERVAT	ION W	ELL	F	Project No.:	P67.001.002
COMPANI	ES	□a □□31 □□□□□□667	CON	STRUC	TION I	OG		rface Elev.:	1 07.001.002
Project Name:		□□□.cscos.com					- Ou	Datum:	□ROUND SUR□ACE
Location:								Start Date:	□/1/16
Client:								inish Date:	□/2/16
Drilling Firm:				Driller:			,	Inspector:	AD
Dinning Firm.		0.0' Top Protective Cas	sina	Drill Rig:			<u> </u>	Casing:	٨٥
		0.0' Top of Riser	Silig		Inro⊟de des	scribilio o lo		-	ne lod o co sircio
1 1	$\neg t$	op er ruee.		Notes:	de le lopme	⊒∟me⊞od a□	d a⊞o≣er □	⊒orma⊒o⊒⊒.	iomod o coo come o mo
1				In parking	lot, near eas				
1 11		0'-0" Ground Surface		J 3	,				
		S_race □ac □□□Ma era	ā□						
	•	X So C							
	X	□e□o□Tē S∏rr□							
		X Ceme III e Io I ie	□ro□□						
		Co □cre 🖻							
		4.25" Bore Hole Diamete	er						
		2" Well Diameter							
		_ eMa era □							
		x PDC							
		Samess See							
		_acMa.erā			Groundwa	ter Measur	ement Data	a	
		X So C			l	Depth to		Tide	
				Date	Time	Water	Elevation	Status	İ
			ro□□	Date	111110	Water	Licvation	Otatus	
		Co Cre e							
		Depth To:							İ
		10.0' Top of Seal							
		Sea⊡Ma⊡era□							İ
		X ce o e Cops/Pe	ēs						İ
		Ceme □//□e □o □ □e □	□ro□□						İ
									İ
		12.0' Top of Filter Pa	ack						İ
		· ·							
		14.0' Top of Screen							
		<u> </u>							
		Scree ☐ S o ☐ S ☐ e							
		010 Ш							
		01 □ Ⅲ							İ
		X 020 □							İ
		02□ ⊞							
		<u>□⊞er Ma era</u> □							
		00 Sa⊡d Pac⊟							
		0 Sa⊡d Pac⊟							
		X 1 Sa⊡d Pac⊟							
		2 Sa ⊡d Pac □							
		3 Sa⊡d Pac⊟							
		□ Sa □d Pac □							
		24.0' Bottom of Scre	en						
	-	24.0' Bottom of Bore							
		· · · · · · · · · · · · · · · · · · ·	-						

		C&S Engineers, Inc.		ROUND				Well No.	MW2-A3
		S⊡rac⊡se□ Ne□ □or□ 13212 P□o□e□31□□□□□2000	OBS	ERVAT	ION W	ELL	F	Project No.:	P67.001.002
COMPANIE	S	□a □ 31 □ □ □ 667 □ □ □ .cscos.com	CON	STRUC	TION L	.OG		rface Elev.:	
Project Name:								Datum:	□ROUND SUR□ACE
Location:								Start Date:	□/1/16
Client:							F	inish Date:	□/2/16
Drilling Firm:				Driller:				Inspector:	AD
		0.0' Top Protective Ca	sing	Drill Rig:				Casing:	
l l⊢	_	0.0' Top of Riser		Notes:	pro de des	scripilio o o o	_ser□a _o □ □	ellocalo lln	ne IIod o Ico Is II Ic IIo II
		0'-0" Ground Surface		Near north			d a⊡o⊞er □ s inside area		characteristics in
		Strace ac Maera X Solicions eloce Sirro X Ceme Joe o e Cocrete 4.25" Bore Hole Diamete	□ro □□						
		2" Well Diameter e Maera x PC Samess See							
	×,	<u>□ac□⊞Ma@ra</u> □		•	Groundwa		ement Data		
		X SomComics		D	_	Depth to		Tide	
			∃ro∏□	Date	Time	Water	Elevation	Status	
	\Diamond	Cocrete							
		Correre							
		Depth To:							
		9.0' Top of Seal							
		Sea⊡Ma@ra□							
_		X cecone Cops/Pe							
_									
_			□ro□□						
_									
		11.0' Top of Filter Pa	ack						
<u> </u>		14.0' Top of Screen							
		Scree So S e							
		010 🖽							
		01 🗆 🖽							
		X 020 III							
		02□ □□							
		OO Sa d Pac OO Sa d Pac OO Sa d Pac OO Sa d Pac OO Sa d Pac OO OO SA d Pac OO OO OO OO OO OO OO OO OO OO OO OO OO							

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6 Client Name: DNR+h S+
Site Name: DNR+K S+
Project No.: PLOT
Field Staff: DNU MONTH

WELL DATA

				 =			
Date		7/20/16	9/22/16				
Well Number		mwilly	7)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Diameter (inches)		2.					
Total Sounded Depth (feet)	6.44 877	2-4					
Static Water Level (feet)		20,4	20:35				
H ₂ O Column (feet)		3,6					
Pump Intake (feet)							
Well Volume (gallons)		0-936	,				
Amount to Evacuate (gallons)		2.8					
Amount Evacuated (gallons)		3					

FIELD READINGS

Date	Stabilization	9/22/16						
Time	Criteria	8:34	8:40	8:45	."			
pH (Std. Units)	+/-0.1	10.56	10-16	10.08	E en		-	
Conductivity (mS/cm)	3%	1.85	1.63	1.57				
Turbidity (NTU)	10%	587	577	176				
D.O. (mg/L)	10%	9.15	7.80	7.21v		5		
Temperature (°C) (°F)	3%	16.22	14.66	14.53		7		
ORP ³ (mV)	+/-10 mv	-64	-63	-101V				
Appearance		ST	SŤ	ST				
Free Product (Yes/No)	93.01.0000000			•				
Odor								
Comments			0.5ga	l Igal				

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Metals Sampled at 41 ntu

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume (gal/l.f.)

Well Sampling Field Data Sheet

Client Name:	23NORTHS	37.	
Site Name:	19 NORH	SF	
Project No.:	PIOT	``	
Field Staff:	codu M	artin	
-		•	

Anojow flaw, no nester in well after development.

(yest enough to bail for vocs

FIELD READINGS

Date	Stabilization				
Time	Criteria				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)	THE CONTRACT OF				
Odor					
Comments					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field York 14203 447-1630 Well Sampling Field Data Sheet

Well Casing Unit Volume
(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Client Name: 23 NoRth St
Site Name: 19 NoRth St
Project No.: PGF
Field Staff: Cody Martin

| Well Number | WW3-TV | WW3-T

FIELD READINGS

Date	Stabilization	9/2	21/1	6	→						Λ.						٦
Time	Criteria	14;	27	1	121	14	31	14	:33	17	47	4					
pH (Std. Units)	+/-0.1	10	-16	9	57		33	9	27	19	1.1	1/		T-			
Conductivity (mS/cm)	3%	2.	16	2.	ŽĪ	2.	4/2	Ź.	,52		2	5	,	 ┪	75	Ž.	
Turbidity (NTU)	10%	50	40	4	77	3	15	2	05	1	12	77		 T			
D.O. (mg/L)	10%	4	06	2.	89	7	/2	1	971		7	12		 T			
Temperature (°C) (°F)	3%	t7	.0	115	.75	15	.5/	15	5.4	1	Ţē		ZL	T		14	
ORP ³ (mV)	+/-10 mv	-//	9	-/	カラ	-	03	-11	27	-	-9	8	7	T			.00
Appearance	1.271.0.00000000000000000000000000000000	5	Ť	5	T	-	デ		57	T	5	7	1	T			
Free Product (Yes/No)		,	7				7		- (1				T			
Odor					,												
Comments				10	gal	li	599	12	2ga,	1,2	3		•	-1	······································	4.	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Compled metals

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630

www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.173" = 0.384" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field **Data Sheet**

Client Name: 23 NORTH ST Site Name: Project No.: Field Staff:

	WELL DATA	
Date	9/21/16	
Well Number	MN4-F2	
Diameter (inches)	2	
Total Sounded Depth (feet)	22.45	
Static Water Level (feet)	110.4. 14.4	
H ₂ O Column (feet)	1004	
Pump Intake (feet)		
Well Volume (gallons)	1.573	
Amount to Evacuate (gallons)	54.719	
Amount Evacuated (galions)	5	

FIELD READINGS Date Stabilization Time Criteria pH (Std. Units) +/-0.1 Conductivity (mS/cm) 3% Turbidity (NTU) 10% D.O. (mg/L) 10% Temperature (°C) (°F) 3% ORP³(mV) +/-10 mv Appearance Free Product (Yes/No) Odor Comments

> C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Metals Sampleal act 92 ntu

Client: C & S Sample ID: MW3D1
Field Technician(s): Zeck Robsen Sample Matrix: Government
Serial_No:02011716:57 () Grab () Composite
Sampling Method: Low Flow Dedicated: Y/N
Sampling Method: Low Flow Dedicated: Y/N Multi-phased/Layered: ()Yes (x)No If yes: ()Light ()Heavy
Sampling Data (Field Measurements):
Time Temp(⁰C) pH (St Cond. Turb. Other. (Other. (Other. 1340 13.2 1.03 1.42 4.52 141.0 2.35 1345 13.2 7.64 1.42 4.95 144.0 2.47 1350 13.2 7.64 1.42 4.97 146.8 2.43
Field Equipment Check: Calibrated & Cleaned
Weather Conditions and Well Observations:
Weather @ time of sampling: Overcoss 36°F
Sample Characteristics:
Comments and General Observations:
Depth to water Level = 15.0++ Depth to well Bottom = 22.0++ Quell in Good condition) Stonding water in between well & Casille Casille MS/MSD Taken (bailed out)
* MSIMSD Taken (Gried out)
Field Tech Certification: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocols. Date: 12517 Technician: Jahr J. MicCompany: AAL

Client: C4 S Sample ID: MW2A3 Field Technician(s): Zack Robson Sample Matrix: Grown wetter						
Field Technician(s): Zack Robson Sample Matrix: Grown wetter						
Serial_No:02011716:57 () Grab () Composite						
Sampling Method: Dedicated: Y(N) Multi-phased/Layered: ()Yes ()No If yes: ()Light ()Heavy						
Multi-phased/Layered: ()Yes ()No If yes: ()Light ()Heavy						
Sampling Data (Field Measurements):						
Time Temp(°C) pH (St Cond. Turb. Other. (Other. (Umhos/cm) (NTU) ORP) VO) mg/L						
1200 13.3 6.87 1.75 32.1 -1.7 4.38 1205 13.3 6.87 1.75 19.9 -3.6 4.14 1210 13.2 6.87 1.75 18.8 -4.7 4.16						
Field Equipment Check:						
Sample Characteristics: Sligntly cloudy (unite)						
Comments and General Observations: Depth to water Level = 1997 Depth to well Bottom = 20.65 (Well in Good Condition) Missing Bits for well cores						
Field Tech Certification: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocols. Date: 12517 Technician: July J.M. Company: AAC						

Client: C & S		San	nple ID: M	WICH	_
Field Technician(s): Zack	Rabisan				
		()	Grab ()	Serial_N Composite	o:02011716:5
Sampling Method: Low	Flow	Dedicated	: Y/N		
Sampling Method: Low Multi-phased/Layered:	ED ()	Yes (☑)No	If ves: ()	light ()Hea	M/M
Sampling Data (Field Meas		• • • •	, , , , , ,	8 ()	•,
Time Temp(ºC)	pH (St	Cond.	Turb.	Other. (Other. (
1010 13.6	Units)	(Umhos/cm)	(NTU) 15.4	ORP)mv	DO Ingil
1015 13.5	693	1.43	16.3	314,1	1.32
1020 13.5	6.93	1.43	15.8	317.5	1.27
Weather Conditions and Weather @ time of sampling Sample Characteristics:	g: Over		36°F		
Comments and General Obs	servations:				
hto Water Level: h to Well Bolton (Well in G	= 23.	15 f.t			
Field Tech Certification: I ce applicable EPA, State and Sit Date:	te-Specific pro	opling procedure otocols. Janua J. Rud	,		n all

Client: Sample ID: MWHFA								
Field Technician(s): Zac &	Robism Sample Matrix: Grown wester							
Serial_No:02011716:57 () Grab () Composite								
Sampling Method: Low Flow Dedicated: Y/N								
Sampling Method: Dedicated: Y/N Dedicated: Y/N Multi-phased/Layered: ()Yes ()No If yes: ()Light ()Heavy								
Sampling Data (Field Measurements):								
Time Temp(ºC) p	OH (St Cond. Turb. Other. (Other. (Units) (Umhos/cm) (NTU)							
1530 130	7.20 4.03 38.2 263.0 4.89							
	7.20 4.04 36.9 263.9 4.87							
1540 13.0	7.20 4.03 37.8 265.7 4.88							
Field Equipment Check:	ated & 36° Cleaned							
Weather Conditions and Well	ll Observations:							
Weather @ time of sampling:_	Overeast 36°F							
Sample Characteristics:	lightly (lovaly (white)							
Comments and General Obser	ervations:							
Depth to work	on of well agod) * Blind Dup Tak							
(cendities	(condition of well apod) * Blind Dup Taken							
Field Tech Certification: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocols.								
	Technician: 30 Miles Company: AAC							

APPENDIX C
DATA USABILITY SUMMARY REPORTS

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

April 1, 2017

Alayna DeMarchi C&S Companies 141 Elm St # 100 Buffalo, NY 14203

RE: 19 North Street Site Analytical Data Validation

Data Usability Summary Report (DUSR)

Paradigm SDG Nos. 163749, 163786, 163810, 163934, 1640905, and 164131/138

Alpha Analytical SDG No. L1702517

Dear Ms. De Marchi:

Review has been completed for the analytical data packages noted above, generated by Paradigm Environmental Services and Alpha Analytical Laboratories and that pertain to samples collected between 08/29/16 and 01/25/17 at the 19 North Street site. Thirty five soil samples and four field duplicates were processed for TCL and 6 NYCRR Part 375 volatiles, TCL semivolatiles, TCL pesticides, Aroclor PCBs, Part 375 metals, and total cyanide; ten of those samples were also processed for hexavalent chromium. Seven aqueous samples and two field duplicates were processed for TCL and 6 NYCRR Part 375 volatiles, TCL semivolatiles, TCL pesticides, Aroclor PCBs, TAL metals, and total cyanide; five of those samples and the field duplicates were also processed for hexavalent chromium. One aqueous sample was processed for TCL and Part 375 volatiles. One soil sample was processed for TCL pesticides, one soil for silver, and one soil for zinc. Hexavalent chromium analyses and some of the pesticide analyses are subcontracted to Alpha Analytical. Data pertaining to TCLP analyses did not undergo validation review. Analytical methodologies are those of the USEPA SW846.

The data packages submitted by the laboratory contain full deliverables for validation, and this DUSR is generated from review of the summary form and raw data documentation. The data have been reviewed for application of validation qualifiers, using guidance from the USEPA validation guidance documents. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration/Trip Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes

- * Calibration Standards
- * Instrument IDLs
- * Sample Result Verification

The data review includes evaluation of the specific items noted in The NYS DER-10 Appendix B section 2.0 (c). The items listed above that show deficiencies are discussed within the text of this narrative. The laboratory QC forms illustrating the excursions can be found within the laboratory data packages.

In summary, analyses were conducted in compliance with the required analytical protocols. Most sample results are usable either as reported or with minor qualification/edit. The following concerns are noted:

- 1,4-Dioxane is rejected in all samples due to methodology limitations
- Results for pesticides in one sample are rejected due to an apparent matrix effect
- The metals' evaluation for the soil matrix effect on analyte recovery is incomplete. There may be an unstated bias to detected element concentrations.
- The evaluation of the reliability of metals' reporting limits is incomplete

Data completeness, accuracy, precision, representativeness, sensitivity, and the analytical method comparability are acceptable.

The sample identification summaries are attached to this text. Also included with the report are validation qualifier definitions and laboratory EQuIS results files that are annotated to reflect the qualifications recommended within this report.

The following text discusses quality issues of concern.

Chain-of-Custody/Sample Receipt

The Paradigm custody forms do not include fields to denote preservation. The preparation/ analysis logs for volatile, metals, and total cyanide processing do not include the pHs of the samples. The login form states that the pHs were acceptable, presumably for the metals and cyanide fractions (volatiles must be checked at sample analysis). Volatile samples were processed within the holding time for unpreserved samples. No qualification is made.

The Paradigm custody forms do not include a field for the final relinquish entries, so are incomplete in that regard.

The year was not entered onto the collection dates or any relinquish/receipt entries except the final receipt entries on the custody forms for samples reported in SDG 163749, 163786, and 163810.

Scratchouts should have been dated and initialed.

Blind Duplicate Evaluations

The blind field duplicates were collected at locations D3 5.5-7.5 ft, A2-9.5-11.5 ft, A3 5-7 ft, and D3 5.5-7.5 FT, MW-3-D1-092116, and MW-4-F2-01252107. The correlations are within validation guidelines, with the following exceptions, results for which are qualified as estimated in the indicated parent sample and its duplicate:

- arsenic, barium, copper, nickel, and zinc in D3 5.5-7.5 ft and A3 5-7 ft
- chromium in MW-4-F2-01252017

Volatile Analyses by EPA 8260C

The laboratory provided single containers for soil collection. The NYSDEC Sampling Guidelines and Protocols Manual requires that a separate container be collected for the volatile fraction. A portion of the sample volume was not apportioned to a separate container for volatile processing at the laboratory. The ten samples and two field duplicates reported in SDG 163810 were processed after the total cyanide analysis, and the results for the volatile analytes in those samples have therefore been qualified as estimated in value.

F4-0.5-1 ft exhibited low recoveries for a surrogate standard and an internal standard. Results for that sample are therefore qualified as estimated, with a low bias. Similarly, the results for C4 5-7 ft are qualified as estimated due to low surrogate recovery.

The detection of n-butylbenzene in B3-A 22-23 ft is qualified as tentative in identification and estimated in value due to mass spectral quality.

Matrix spike/duplicate evaluations of MW-4-F2-092116, B4 9-10 ft, B4 10-11 ft, and MW-3-D1-01252017 show acceptable recoveries and correlations, with the following exceptions, results for which are qualified as estimated in the indicated parent sample:

		Outlying %
Parent Sample	<u>Analyte</u>	<u>Recoveries</u>
B4 9-10 ft	1,2-dichlorobenzene	50.7,45.9
	1,3-dichlorobenzene	52.3, 48.2
	1,4-dichlorobenzene	49.5,45.2
	chlorobenzene	74.8,70.7
	ethylbenzene	81.5,79.1
B4 10-11 ft	1,2-dichlorobenzene	69.4, 63.9
	1,3-dichlorobenzene	68.4, 63.0
	1,4-dichlorobenzene	65.1, 59.9

Only a portion of the analytes was evaluated in the matrix spikes and LCSs. The protocol requires that all target analytes be evaluated.

Due to very low response factors inherent in the methodology, the results for 1,4-dioxane in the samples are rejected and not usable. Other calibration standards showed acceptable responses, with the following exceptions, results for which are qualified as estimated in the indicated associated samples:

- acetone and bromoform (22&D to 44%D) in samples C1 Surface, C1 3-4 ft, C1 8-9 ft, A2 UF 1-2 ft, A2 9.5-11 FT, DUP A, A3 5-7 ft, DUP B, A3 14-15 ft (native), and A1 5-6 ft
- acetone (47%D) in samples A3 22-23 ft and B3-A 22-23 ft
- bromomethane (21%D) in all samples reported in SDG 4131-01
- bromomethane and bromoform (21%D and 55%D) in the Trip Blank

TCL Semivolatiles by EPA 8270D (Full Scan and SIM)

Due to low surrogate standard recoveries, the results for F4-1.0-2.5 ft, E1 11-12 ft, A3 5-7 ft, A1 5-6 ft, and A3 14-15 ft (native) have been qualified as estimated in value, with a low bias. Similarly, the phenolic analytes in F3-1.0-2.5 ft have been qualified as estimated due to low acidic surrogate recoveries in that sample.

Internal standard recoveries are compliant with analytical protocol requirements. Blanks show no contamination. Calibration standard responses are within validation guidelines.

Matrix spike/duplicate evaluations of MW-4-F2-092116, F4-0.5-1 ft, B4 9-10 ft, B4 10-11 ft, A2-9.5-11 ft, and MW-3-D1-01252017 show acceptable recoveries and correlations, with the following exceptions, results for which are qualified as estimated in the indicated parent samples:

		Outlying %	Outlying
Parent Sample	Analyte	Recoveries	%RPD
B4 9-10 ft	1,2,4-trichlorobenzene	22.6,27.0	
	1,4-dichlorobenzene	14.9,19.2	25.3
B4 10-11 ft	1,2,4-trichlorobenzene	20.7,24.3	
	1,4-dichlorobenzene	15.2,14.4	
	2-chlorophenol	31.0	39.5
	4-chloro-3-methylphenol	40.3	45.2
	acenaphthene	36.0	47.5
	n-nitro-di-n-propylamine	30.5	40.0
	phenol	32.9	52.4
A2 9.5-11 ft	1,2,4-trichlorobenzene	32.8,33.0	
	1,4-dichlorobenzene	28.0, 26.5	
	2-chlorophenol	40.6,39.2	
	phenol	42.8,41.4	

Only eleven of the analytes were evaluated in the matrix spikes and LCSs. The protocol requires that all target analytes be evaluated.

TCL Pesticide and Aroclor PCBs by EPA 8081B and 8082A

Due to surrogate recovery below 10%, the results for the pesticides in D4-15 ft and Aroclors in D3 5.5-7.5 ft, are rejected and not usable. It is noted that the field duplicate of D3 5.5-7.5 ft did not show that same failure, and the results for that duplicate are usable as reported, and may be representative of that location.

Dual column quantitative correlations were elevated for many of the pesticide detections. These are indicative of matrix interferences that can cause false positives or elevated quantitative values. Those analytes showing elevated correlations have been qualified as either estimated in value, tentative in identification, or edited to non-detection, depending on the degree of variance.

The laboratory utilizes a non-compliant low recovery acceptance range limit of only 10% for all of the pesticide surrogate standards and the LCS and MS target analytes, and for the PCB surrogate standards. The laboratory should be using in-house limits generated according to protocol requirements (or 70% to 130% while determining those limits). Although the protocols allow low recoveries, section 9.6.11 of governing method 8000B requires that they be reasonable. LCSs have no matrix to cause a

low recovery effect, and a processing effect is suspected as the cause of the large statistical variance. It is also noted that the duplicate correlation limits are very high (greater than 100%RPD for pesticides and 69% for Aroclors). This is much greater than typical matrix effects, and reflects large inconsistencies in processing.

The Aroclor 1016/1260 matrix spikes of MW-4-F2-092116, B4 9-10 ft, B4 10-11 ft, and MW-3-D1-01252017, and pesticide matrix spikes of MW-3-D1-01252017 show recoveries and duplicate correlations that are within validation guidelines/laboratory limits. The Aroclor LCS and matrix spikes are processed with mixtures 1016 and 1260, but reported as combined results/recoveries.

The matrix spikes of B4 10-11 FT show recoveries below 10% for 4,4'-DDE and 4,4'-DDT, and low recoveries for endosulfan sulfate (20% and 22%). The results for those analytes in the parent have been qualified as estimated in value.

One of the pesticide matrix spikes of MW-4-F2-092116 shows acceptable recoveries, and one shows elevated recoveries for all analytes. The duplicate correlations are therefore highly elevated at approximately 90%RPD. The same variance is evident in the surrogate recoveries of those spikes. An extract specific anomaly is suspected.

Holding times were met, and blanks show no contamination. Calibration standards are compliant.

The dual column quantitative QC summary form for sample F4-0.5-1.0 lists an incorrect sample ID.

TAL Metals Analyses by EPA 6010C, 6020A, 7470B, and 7471A

The analytical protocol requires that serial dilution evaluations be performed in order to determine if matrix interferences inhibit analyte recovery and produce a bias to reported results. Although the laboratory processed those dilutions, evaluations were not performed on the data, and the laboratory declined to provide the required QC summary forms when requested. Therefore, qualification of the data for this parameter has not been performed. The raw data are available and the appropriate form generation and qualification can be performed at a later date. The qualifications would apply to the detected analyte concentrations in the parent sample undergoing the evaluation. A low bias is typically indicated for outlying correlations.

The low level reporting limit standards required of the protocol were processed, but the required summary form showing the recoveries was not provided, even upon request. The raw data show detected concentrations, but the theoretical values are not known. Notations on the worksheet that indicate outliers (qualitatively) were reviewed during this validation procedure. Based on those notations, the results for selenium in the aqueous samples collected 09/21/16 have been qualified as estimated in value. Those evaluation summary forms can be provided by the laboratory at a later date.

The detection of antimony in MW-3-D1-012517 is considered external contamination and is edited to non-detection, due to presence in the associated method blank.

Matrix spike/laboratory duplicate evaluations were performed on Part 375 or TAL metals on MW-4-F2-092116, D4-15 ft, B4 9-10 ft, B4 10-11 ft, MW-3-D1-01252017, and C1 Surface, and for silver on A1 6-7 ft. The parent samples listed below show recoveries and/or correlations that are outside the validation guidelines, the results for which have been qualified as estimated in value in the indicated parent samples:

		Outlying %	Outlying
Parent Sample	Element	Recoveries	%RPD
MW-4-F2-092116	thallium	34	96
	potassium	163	
	mercury	40	
B4 10-11 ft	arsenic	73.0	
	barium	74.3	
	beryllium	71.7	
	lead	72.7	
	nickel	72.1	
	selenium	73.6	
C1 Surface	cadmium	73.7	
	lead	71.7	
	nickel	71.8	

Total Cyanide and Hexavalent Chromium Analyses

Review was conducted for method compliance, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All associated with validation samples were found acceptable unless noted specifically within this text.

The matrix spike/duplicate evaluations were performed for hexavalent chromium in MW1-C4-092216, MW-4-F2-092116, D4-8-9FT, C4 5-7FT, MW-3-D1-01252017, and C1(3-4"), and for total cyanide on B4 9-10 ft, MW-3-D1-01282017, and B4 10-11 ft. They show acceptable accuracy and precision.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

.

Att: Validation Qualified Definitions

Sample Identifications Oualified Client EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
 - R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs

3749-01

BATCH COMPLETE:

8/30/2016

LAB PROJ

LAB PROJECT #: 163749

DATE DUE: 9/28/2016

CLIENT:

C&S Companies

PROTOCOL: SW846

PROJECT NAME: 1 North Street

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
				SAMPLED	REC'D
163749-01	F3-0.5-1 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN		8/30/2016
163749-02	F3-1.0-2.5 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
163749-03	F3-15 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN		8/30/2016
163749-04	F4-0.5-1 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
163749-05	F4-1.0-2.5 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
163749-06	E3-12-13 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
163749-07	E4-1-2 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
163749-08	D4-8-9 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN,Cr+6	8/29/2016	8/30/2016
163749-09	D4-15 ft	Soil	VOA,SVOA,PEST,PCB,P375Mets,TCN	8/29/2016	8/30/2016
			Many camples on UOLD and Park		
	 		Many samples on HOLD per client		
		 	See COC for details	+	
					
	_				
	-	 			
	_	$\vdash \vdash \vdash$			
		 			
					
		 			
PROVIDE AND ADDRESS OF THE PROPERTY OF THE PRO		-			
	1				

3786-01

LAB PROJECT #: 163786

CLIENT:

C&S Companies

PROJECT NAME: 19 North Street

BATCH COMPLETE:

8/31/2016

DATE DUE: 9/29/2016

PROTOCOL: SW846

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
				SAMPLED	REC'D
163786-01	E1 Surface	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-02	E1 1-2.5 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-03	E1 11-12 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-04	A4 9-10 ft	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
163786-05	B2 Surface	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
163786-06	B2 4-5 ft-fill	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-07	B2 5-6 ft (native)	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-08	B3 UF 2-3 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-09 A	B3 3-5 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN,Cr+6*	8/30/2016	8/31/2016
163786-10	B3 6-7 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-11	B4 9-10 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-12 QC	B4 10-11 ft	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
163786-13	C3 9-10 ft	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
163786-14	D2 Surface	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-15	D2 0-2 ft	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
163786-16	D2 10-11 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-17	D3 5.5-7.5 ft	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-18	D3 5.5-7.5 Duplicate	Soil	P375 VOA,SVOA,PCB,Mets,TCN	8/30/2016	8/31/2016
163786-19	C4 5-7 ft	Soil	P375-VOA,SVOA,PCB,Mets,TCN,Cr+6(sub)	8/30/2016	8/31/2016
			*=Full TCLP,PCB,pH,lgn,Reactivity		
			(Cr+6/Reactivity=sub)		
			A=TCLP 八学Herbicides		
				-	
			3		

3810-01

BATCH COMPLETE:

9/1/2016

LAB PROJECT #: 163810

DATE DUE: 10/1/2016

CLIENT: C&S Companies

PROTOCOL: SW846

PROJECT NAME: 19 North Street

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
163010 01	C1 Surface	Soil	DOZE VOA CVOA DCD. Doct Moto TCN	8/31/2016	9/1/2016
163810-01 163810-02	C1 Surface C1 3-4 ft	Soil	P375 VOA,SVOA,PCB, Pest,Mets,TCN P375VOA,SVOA,PCB, Pest,Mets,TCN,Cr+6	8/31/2016	9/1/2016
	C1 8-9 ft	Soil	P375 VOA,SVOA,PCB, Pest,Mets,TCN	8/31/2016	9/1/2016
163810-03	A2 UF 1-2 ft	Soil		8/31/2016	9/1/2016
163810-04			P375 VOA, SVOA, PCB, Post Moto TCN	8/31/2016	9/1/2016
163810-05	A2 9.5-11 ft	Soil Soil	P375 VOA, SVOA, PCB, Pest, Mets, TCN	8/31/2016	9/1/2016
163810-06	DUP A		P375 VOA,SVOA,PCB, Pest,Mets,TCN		
163810-07	A3 5-7 ft	Soil	P375 VOA, SVOA, PCB, Pest, Mets, TCN	8/31/2016	9/1/2016
163810-08	DUP B	Soil	P375 VOA,SVOA,PCB, Pest,Mets,TCN	8/31/2016	9/1/2016
163810-09	A3 14-15 ft (native)	Soil	P375 VOA,SVOA,PCB, Pest,Mets,TCN	8/31/2016	9/1/2016
163810-10	A3 22-23 ft	Soil	VOA,SVOA	8/31/2016	9/1/2016
163810-11 A	A3 4-5 ft (waste)	Soil	Full TCLP,PCB,pH,Ign,TCLP Herb,React,Cr+6	8/31/2016	9/1/2016
163810-12	B3-A 22-23 ft	Soil	VOA,SVOA	8/31/2016	9/1/2016
163810-13	A1 5-6 ft	Soil	P375VOA,SVOA,PCB, Pest,Mets,TCN,Cr+6	8/31/2016	9/1/2016
					<u> </u>
			A=TCLP	<u> </u>	
				ļ	
					<u> </u>
					1

3934-01

BATCH COMPLETE:

9/12/16-taken off Hold

LAB PROJECT #: 193934 CLIENT: **C&S** Companies

DATE DUE: 10/10/2016 PROTOCOL: SW846

PROJECT NAME: 19 North St.

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
163934-01	C1 9-10 ft	Soil	Zn	8/31/2016	9/1/2016
163934-01	A1 6-7 ft	Soil	Ag	8/31/2016	9/1/2016
103934-02	AI 0-7 IL	3011	ng .	0/31/2010	3/1/2010
					
					<u> </u>
		-			
					-
	-				
		_		_	
	-				
	-				-
					
					<u> </u>
	-				
	_				<u> </u>
					ļ
	<u> </u>				
					_

4131-01

LAB PROJECT #: 164131-4138

CLIENT:

C&S Companies

BATCH COMPLETE:

9/22/2016

DATE DUE: 10/22/2016

PROTOCOL: SW846

PROJECT NAME:	19 North Street
---------------	-----------------

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
164131-01 QC	MW-4-F2-092116	WG	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/21/2016	9/22/2016
164131-02	MW-3-D1-092116	WG	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/21/2016	9/22/2016
164131-03	DUP-D-092116	WG	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/21/2016	9/22/2016
164131-04	MW-2-A3-092116	WG	P375-VOA	9/21/2016	9/22/2016
164138-01	MW-1-C4-092216	WG	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/22/2016	9/22/2016
				ļ	
				 	_

Project Name: Not Specified Project Number: Not Specified

 Lab Number:
 L1629861

 Report Date:
 09/28/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1629861-01	E1 SURFACE	SOIL	Not Specified	08/30/16 15:02	09/21/16
L1629861-02	E1 1-2.5 FT	SOIL	Not Specified	08/30/16 15:15	09/21/16
L1629861-03	E1 11-12 FT	SOIL	Not Specified	08/30/16 16:05	09/21/16
L1629861-04	A4 9-10 FT	SOIL	Not Specified	08/30/16 11:41	09/21/16
L1629861-05	B2 SURFACE	SOIL	Not Specified	08/30/16 14:08	09/21/16
L1629861-06	B2 4-5 FT - FILL	SOIL	Not Specified	08/30/16 14:15	09/21/16
L1629861-07	B2 5-6 FT (NATIVE)	SOIL	Not Specified	08/30/16 14:37	09/21/16
L1629861-08	B3 UF 2-3 FT	SOIL	Not Specified	08/30/16 13:37	09/21/16
L1629861-09	B3 3-5 FT	SOIL	Not Specified	08/30/16 13:30	09/21/16
L1629861-10	B3 6-7 FT	SOIL	Not Specified	08/30/16 13:36	09/21/16
L1629861-11	B4 9-10 FT	SOIL	Not Specified	08/30/16 11:13	09/21/16
L1629861-12	B4 10-11 FT	SOIL	Not Specified	08/30/16 11:21	09/21/16
L1629861-13	C3 9-10 FT	SOIL	Not Specified	08/30/16 12:42	09/21/16
L1629861-14	D2 SURFACE	SOIL	Not Specified	08/30/16 14:27	09/21/16
L1629861-15	D2 0-2 FT	SOIL	Not Specified	08/30/16 14:55	09/21/16
L1629861-16	D2 10-11 FT	SOIL	Not Specified	08/30/16 15:24	09/21/16
L1629861-17	D3 5.5-7.5 FT	SOIL	Not Specified	08/30/16 12:15	09/21/16
L1629861-18	D3 5.5-7.5 FT DUPLICATE	SOIL	Not Specified	08/30/16 12:15	09/21/16
L1629861-19	C4 5-7 FT	SOIL	Not Specified	08/30/16 08:07	09/21/16
L1629861-20	C4 7-8 FT	SOIL	Not Specified	08/30/16 08:10	09/21/16

Project Name: NORTH STREET-GROUNDWATER SAMP.

Project Number: Not Specified

Lab Number: L1702517 **Report Date:** 02/22/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1702517-01	MW-1-C4-01252017	WATER	BUFFALO, NY	01/25/17 10:25	01/25/17
L1702517-02	MW-2-A3-01252017	WATER	BUFFALO, NY	01/25/17 12:15	01/25/17
L1702517-03	MW-3-D1-01252017	WATER	BUFFALO, NY	01/25/17 13:55	01/25/17
L1702517-04	MW-4-F2-01252017	WATER	BUFFALO, NY	01/25/17 15:45	01/25/17
L1702517-05	BLIND DUP-01252017	WATER	BUFFALO, NY	01/25/17 00:00	01/25/17
L1702517-06	TRIP BLANK	WATER	BUFFALO, NY	01/25/17 00:00	01/25/17

DATA USABILITY SUMMARY REPORT (DUSR)

19 North Street Buffalo, NY NYSDEC BCP# C 916303

SDG: 3832-01

16 Soil Samples

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203

May 2017

Table of Contents

		Page No.				
REVIEWE	R'S NARRATIVE					
1.0 SUI	MMARY	1				
2.0 INT	RODUCTION	1				
3.0 SAM	SAMPLE AND ANALYSIS SUMMARY					
4.0 GU	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA					
5.0 DA	TA VALIDATION QUALIFIERS	3				
6.0 RES	.0 RESULTS OF THE DATA REVIEW					
7.0 TO	TAL USABLE DATA	4				
APPENDI APPENDI APPENDI	X B Laboratory QC Documentation					
Tables						
Table 4-1 Table 4-2	Data Validation Guidance Documents Quality Control Criteria for Validating Laboratory Analytic	cal Data				
Summaries	s of Validated Results					
Table 6-1	VOCs					
Table 6-2	SVOCs					
Table 6-3	Pesticides					
Table 6-4	PCBs					
Table 6-5	Metals					
Table 6-6	TCN					
Table 6-7	Herbicides					
Table 6-8	Hexavalent Chromium					
Table 6-9	Misc. Waste Characterization Analytes					

REVIEWER'S NARRATIVE SDG 3832-01

The data associated with this Sample Delivery Group (SDG) 3832-01, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Muchael K. Perry

Date: 5/10/17

Chemist

1.0 SUMMARY

SITE:

19 North Street

Buffalo, NY

SAMPLING DATE:

August 30 - September 2, 2016

SAMPLE TYPE:

16 soil samples

LABORATORY:

Paradigm Environmental Services, Inc.

Rochester, NY

SDG No.:

3832-01

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for sixteen soil samples collected on August 30 - September 2, 2016. These samples were analyzed for some or all of the Part 375 volatile organic compounds, semi-volatile organic compounds, pesticides, polychlorinated biphenyls (PCBs), TAL metals, TCN, herbicides, and hexavalent chromium. In addition, one sample was analyzed for the full waste characterization.

All laboratory analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG 3832-01. The herbicides, hexavalent chromium, cyanide reactivity and sulfide reactivity analyses were performed by ALPHA Analytical, Westborough, MA and analyzed as SDG L1627717. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

TABLE 4-1 DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance
VOCs	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.
	USEPA, 2008, Statement of Work for Organic Analysis of Low/Medium Concentration of Volatile Organic Compounds SOM01.2; SOP HW-33, Rev. 2.
SVOCs	USEPA, 2007, Statement of Work for Organic Analysis of Low/Medium Concentration of Semivolatile Organic Compounds SOM01.2; SOP HW-35, Rev. 1.
Pesticides/PCBs	USEPA, 2006, CLP Organics Data Review and Preliminary Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14, Part C.
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING
LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg Sample Condition Holding Time System Monitoring Compounds Lab Control Sample Matrix Spikes Blanks Instrument Tuning Internal Standards Initial Calibration Continuing Calibration Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Condition Holding Time Surrogate Recoveries Lab Control Sample Matrix Spikes Blanks Instrument Tuning Internal Standards Initial Calibration Continuing Calibration Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Condition Holding Time Surrogate Recoveries Matrix Spikes Blanks Instrument Calibration & Verification Analyte ID Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Condition Holding Time Initial/Continuing Calibration CRDL Standards Blanks Interference Check Sample Spike Recoveries Lab Duplicate Lab Control Sample ICP Serial Dilutions Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Condition Holding Times Calibration Lab Control Samples Blanks Spike Recoveries Lab Duplicates	Completeness of Pkg Sample Condition Holding Time Canister Certification Lab Control Sample Instrument Tuning Blanks Initial Calibration & System Performance Daily Calibration Field Duplicate

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any ± value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".

JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-9. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 3832-01, sixteen samples were analyzed and results were reported for 2667 analytes. Fifteen results were rejected. Even though some results were flagged with a "J" as estimated, all other results (99%) are considered usable. See the summary table for the analyses that have been rejected and the associated QC reasons.

NOTES: (1) The data package for SDG 3832-01 contained no laboratory QC data for the serial dilutions of metals (Form VIII). The laboratory director was contacted regarding the deficiency. He stated that no serial dilutions were analyzed with this data package. Therefore, no evaluation of the serial dilution results were performed by this data reviewer and no data were qualified as a result.

(2) As noted by the laboratory, the soil samples were not collected following SW846 5035A protocol. This adds an element of uncertainty to the analytical results for volatile organic analytes (VOAs). Although not specifically indicated on the final data sheets with a "J" flag, the VOA analytical results should be considered estimated, but usable.

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
All samples	1,4-Dioxane	R - Reject	Initial Calibration RRF < 0.005 (0.004)	All results are unusable
All samples	4-Methyl-2-pentanone Acetone	UJ non-detect J detects	CCV > 20%	Results are estimated

Table 6-2 SVOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
C2-13-14.5 ft	All Analytes	UJ non-detect J detects	Surrogate recoveries for: S1, S2, S3, and S4 < QC limit	Results may be biased low
All samples	Atrazine	UJ non-detects	3 point ICAL	All samples non-detect
A4-22-23 ft	Indeno(1,2,3-cd)pyrene	UJ non-detect J detects	CCV > 20%	Results are estimated

Table 6-3 Pesticides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

Table 6-4 PCBs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
All samples	All analytes	none	Closing CCV > 25 %	Samples re-analyzed to confirm data.

Table 6-5 TAL Metals

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
All samples	All	none	No CRDL Std	No evaluation can be made
All samples	Cadmium Manganese	UJ non-detect J detects	MS % < 75 %	Results may be biased low
All samples	Selenium	J Detects	RPD > 35 %	Detected results are estimated
All samples	Copper	J detects 10X MB	Detected in method blank (1.26 mg/Mg)	Detected results <12.6 mg/Kg are estimated

Table 6-6 TCN

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
All samples	TCN	J Detects	LCS Rec. > 115%	Results are estimated
All samples	TCN	UJ non-detect J detects	MS % < 80 %	Results are estimated

SDG 3832-01

Table 6-7 Herbicides

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

Table 6-8 Hexavalent Chromium

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
All samples	CR+6	J detects	RPD > 25 %	No data affected

Table 6-9 Misc. Waste Characterization Analyses

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

ACRONYMS

BSP Blank Spike

CCAL Continuing Calibration

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CRDL Contract Required Detection Limit

CRQL Contract Required Quantitation Limit

%D Percent Difference

ICAL Initial Calibration

ICB Initial Calibration Blank

IS Internal Standard

LCS Laboratory Control Sample

MS/MSD Matrix Spike/Matrix Spike Duplicate

QA Quality Assurance

QC Quality Control

%R Percent recovery

RPD Relative Percent Difference

RRF Relative Response Factor

%RSD Percent Relative Standard Deviation

TAL Target Analyte List (metals)

TCL Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 163832-3845-3892 PROJECT NAME: 19 North St.

SDG: 3832-01 CLIENT: C & S Companies

Thirty-three soil samples were collected by the client on 09/01 and 09/02/2016 and received at the Paradigm laboratory on 09/02 and 09/06/2016. Most of the samples were put on hold per the client (see the Chains of Custody for specifics). Fifteen of the samples were submitted for analysis. Additionally, a sample from a previous submission was taken off hold per the client on 09/08/2016 and added to this submission number as 163892. Container and holding times were acceptable at time of receipt; the samples were received at 4-6° Centigrade and were on ice. The samples were submitted with the Chains-of-Custody requesting the Part 375 and TCLP lists for VOCs, SVOCs, PCBs and Pesticides, Hexavalent Chromium, and Herbicides, Total Cyanide, Reactivity, Ignitability, Corrosivity as pH, and Metals. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES AND SEMIVOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

VOLATILES

Soil samples were not sampled per EPA method 5035A compliance rules. Thus, an extra note has been added to all VOC reports.

Holding times were met for all samples.

The surrogate recoveries for the samples and QC samples were within QC limits.

Site specific QC was requested and analyzed on samples C2-13-14.5 ft and D1-9.5-11.5 ft. All Matrix Spikes and Matrix Spike Duplicates were within QC limits, except 1,2-, 1,3-, and 1,4-Dichlorobenzenes on the second mentioned sample. They have been flagged with an "M" on the sample report and an "*" on the QC Summary Table accordingly. Matrix interference is suspected with all outliers. The Laboratory Control Samples recovered within acceptance limits.

The method blanks were free from contamination within the reportable ranges.

The instrument tunes passed all criteria.

The internal standards areas and retention times were within acceptance limits for the samples and the associated QC.

All data for the initial calibration was within acceptance limits. Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

All continuing calibration data was within acceptance limits, except 4-Methyl-2-pentanone was out low in CCV 9/7. For the low outlier, an additional 1ppb standard was analyzed and included to show adequate sensitivity in order to report Non-Detects for this compound. All samples associated with this outlier were Non-Detect for these compounds.

SEMI-VOLATILES

Holding times were met for all samples.

Between one and four surrogate recoveries were outside limits low for sample C2-13-14.5 ft and the MS and MSD for A4-22-23 ft.(see the QC Summary Table for specifics). Outliers have been flagged with an "*" on the QC Summary Report and the sample report accordingly. Matrix Interference is suspected.

Site specific QC was requested and analyzed on samples C2-13-14.5 ft and D1-9.5-11.5 ft and also on sample A4-22-23 ft. Numerous Matrix Spikes and Matrix Spike Duplicates were outside QC limits and have been flagged with an "M" on the sample reports and an "*" on the QC Summary Tables accordingly (see these reports for specifics). Matrix interference is suspected with all outliers. The Laboratory Control Samples recovered within acceptance limits.

The method blanks were free from contamination within the reportable ranges.

The instrument tunes passed all criteria.

The internal standards areas and retention times were within acceptance ranges.

All data for the initial calibrations was within acceptance limits. Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

All continuing calibration data was within acceptance limits, except and Atrazine was out low in CCVs 09/08 PM, 09/09AM, and 09/12. Additionally, Hexachlorocyclopentadiene was out low in CCV 09/09AM. These low outliers were assessed for adequate sensitivity at the reporting limit by a 10ppm standard. This is usable for determination of "Non-Detects" only. As the associated samples were Non-Detect for these compounds, the results were deemed usable and no further action was required.

PESTICIDES AND PCBS

Holding times were met for all samples.

The surrogate recoveries for the samples and the associated QC were within acceptable limits.

Site specific QC was requested and analyzed on samples C2-13-14.5 ft and D1-9.5-11.5 ft. All Matrix Spike and Matrix Spike Duplicate Samples and the Laboratory Control Samples recovered within acceptance limits for all compounds.

For Pesticides, for sample B1-5-6 ft, the extract required a Copper clean-up to address possible Sulfur interferences. An additional method blank has been reported for this reason. The method blanks were free from contamination within the reportable ranges.

The internal standards areas and retention times were within acceptance ranges for the Pesticides.

All data for the initial calibrations were within acceptance limits. The internal acceptance criteria for the initial calibrations was 0.990 or better for each peak.

All continuing calibration data was within acceptable QC limits, except the closing CCV for PCBs for the 9/14 run failed low and the CCVs for the 9/12 run failed high. Regarding the low CCV, it was rerun and showed improvement verifying Matrix Interference. As the samples associated with this CCV were QC samples and were compliant, the run was determined to be usable and no further action was required. Regarding the high CCVs, only samples that were Non-Detect for all requested analytes were reported from this run.

For all Pesticide hits, a Form 10 including Percent Difference has been included. Column confirmations above 40% difference have been flagged with a "P" on the sample reports and an "*" on the Form 10 indicating matrix interference. The reported result is always the lower of the two results.

METALS

ICP-AES interelement and background corrections were applied. Raw data was not generated before application of background corrections.

Holding times were met for all samples.

Site specific QC was requested and analyzed on samples C2-13-14.5 ft and D1-9.5-11.5 ft for all requested metals and, additionally, analyzed on samples C2-WC and C4-7-8 ft for Mercury only. Any of the requested metals that were outside QC limits for the Matrix Spike Recoveries and/or the Sample Duplicate Percent Differences and have been flagged with an "M" and /or "D" on the results page and a "*" on the QC summary report. As there were outliers, Post Digest Spikes were analyzed accordingly. The raw data for these QC samples has been supplied on the attached ICP analytical worksheets, labeled as "PS". There are no data qualifiers or QC forms associated with the post digest spikes. Matrix interference is suspected with these outliers. The Laboratory Control Samples recovered within acceptable limits. All LCS % differences were within acceptance limits.

The method blanks were free from contamination within the reportable ranges, except Blk 09/03 soil had a Copper result of 1.36 mg/Kg. Any of the associated samples with a Copper result of less than ten times this value have been flagged with a "B" accordingly.

All data for the initial calibrations was within acceptance limits.

All continuing calibrations data was within acceptance limits, except Zinc for run ID 090716c was out slightly high. It has been flagged with a "*" on the QC Summary Table accordingly. Only QC samples were reported from the run.

INORGANICS-Total Cyanide, Flashpoint, pH, Percent Moisture

Holding times were met for all samples.

Site specific QC was requested and analyzed on samples C2-13-14.5 ft and D1-9.5-11.5 ft and, also, on sample C4-7-8ft. The Spike Recovery for D1-9.5-11.5ft was out high and the Spike Recovery for C4-7-8ft was out low. Outliers have been flagged with an "M" on the samples reports and an "*" on the QC Summary Tables accordingly. Matrix Interference is suspected. All RPDs were within QC limits. The Laboratory Control Samples recovered within acceptable limits.

All Initial and Continuing Blanks and the Method Blank were free from contamination within acceptance limits.

All Initial and Continuing calibrations were within acceptance limits.

SUB-CONTRACTED ANALYSES

Herbicides by method 8151B, Hexavalent Chromium by EPA method 7196, and Reactivity by method 7.3 were subcontracted to Alpha Analytical of Westborough, MA. Their report is provided in its entirety as a separate entity after the Paradigm Environmental Services, Inc. report. A separate case narrative addressing the above parameters is included with their report.

(signed) Rougesteger-President (date) 12/1/2016

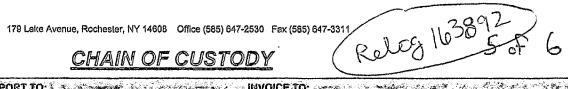
SDG#: 3832-01

CLIENT:

LAB PROJECT #: 163832-3845-3892

.1 #: 163832-3845-3892 C&S Companies

PROJECT NAME: 19 North Street


BATCH COMPLETE:

9/6/2016

DATE DUE: 10/6/2016

PROTOCOL: SW846

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
				Sampled	REC'D
163832-01	B1-5-6 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/1/2016	9/2/2016
163832-02	B1-15 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-03 A	C2-WC	Soil	FULL TCLP, WASTE CHAR.	9/1/2016	9/2/2016
163832-04 QC	C2-13-14.5	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-05 QC	D1-9.5-11.5 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/1/2016	9/2/2016
163832-06	D1-15-16 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-07	E2-5-6.5 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-08	E2-9-10 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-09	E2-14-15 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/1/2016	9/2/2016
163832-10	F1-3-5 ft	Soil		9/1/2016	9/2/2016
163832-11	F1-9-10 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN,Cr+6	9/1/2016	9/2/2016
163832-12	F1-15 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-13	F2-4-6 ft	Soil	P375-VOA,SVOA,PEST,PCB,METS,TCN	9/1/2016	9/2/2016
163832-14	F2-9-10 ft	Soil	P375-VOA,SVOA,PEST,PGB,METS,TCN,Cr+6	9/1/2016	9/2/2016
163845-01	A4-22-23 ft	Soil	Part 375 VOA,SVOA	9/2/2016	9/6/2016
163892-01 *	C4 7-8 ft	Soil	P375-VOA,SVOA,PCB,METS,TCN	8/30/2016	8/31/2016
			MANY SAMPLES ON HOLD-SEE COC FOR		<u> </u>
			SPECIFICS		
			A=TCLP		
			*=OFF HOLD 9/8		

PLANDAGE GOVERNMENT OF THE REPORT TO:	
CLIENT: CLIENT: SAMPE ADDRESS: ADDRESS:	LAB PROJECT ID [6 3786
CITY: C STATE: ZIP CITY: STATE:	ZIP: Quotation #:
PHONE: PHONE:	Email:
PROJECT REFERENCE ATTN:	Net I Milit
Matrix Codes:	2 - Soil SD - Solid WP - Wipe QL - Oll
NQ - Non-Aqueous Liquid WG - Groundwater WW - Wastewater SL	- Sludge PT - Paint CK - Caulk AR - Air
REQUESTED ANALYSIS	Market and the state of the sta
DATE COLLECTED TIME COLLECTED TIME COLLECTED SAMPLE IDENTIFIER SAMPLE IDENTIFIER M C A O M T T B A R E I S O R	REMARKS PARADIGM LAB SAMPLE NUMBER
8/30 334 X DQ 13-14 ft 50 1 1 1 1 1	HOLD rels 09/8/1
\$(215 X D3 S.5-7.5 ft	17
1215 X D3 5.5-7.5 DUPLICATE)	18
1215 X D37.5-9.5+10 1	HOLD
1220 03 9.5-10.5 ft	HOLD
03 10.5 - N.5 ft	- HOLD
801 645-7++	19
80 C4 7-8 ft	-HOLD SEEMS 01
8500 CH - 8-9-1	HOLD
820 CH a-10 ft - 1 1 1 1 1 1	HOLD
Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply.	5:00p
Sampled By Pate/Time	Total Cost:
Standard 5 day None Required None Required Standard 5 day	S:00p
10 day Batch QC Basic EDD Rand listed By Date/Time	· · · · · · · · · · · · · · · · · · ·
Rush 3 day Category A NYSDEC EDD Rebayed By Date/Time	
Rush 2 day Category B	/16 14:54
Rush 1 day Received @ Lab By Date/Time	e
Other Other Other DD Diplome indicate date needed: Other EDD Diplome indicate EDD needed: By signing this form, client agrees to Paradigm	Terms and Conditions (reverse).

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

182

CHAIN OF CUSTODY

PAR	XIDIIG		7	CHENT: ADDRESS: ADDRESS: PHONE:	SENO JEIM JO SO SU	Tense Indi Sw IE/UV 163	WS reet V 24	170 170	ADDRESS CATY: PHONE:	Sa		EVOICE STAT		ZIP:		Quota	13°	AB PROJI	ECT ID		
PROJECT	referi	ENCE	1	TTN:	in Bike	y _			ATTN:							Ld	nk	<u>er C</u>).CS	20C	rap
MOAY	n Sh	reet	-		queous Liquid on-Aqueous Liquid			iroundwat		WW	- Drinkin I - Wasts	water		SO - Soil SL - Sluc	ge	SD - Sol PT - Pai	nt	WP - Wip CK - Cau	ik A	L - Oil R - Air	
DATE COLLECTED	COLLECTED	C O M P O S I T E	G R A B	A4-7	BAMPLE IDENTIFII			M C A O O T R E I S	CONTAINERS OF	\$ \$70°CS	(UEST)		ALYSIS				Marks	15		ARADIGM LAI GAMPLE NUIABER	
Turnaround Availabilit		nt upon la		Report Support	olements fees may apply.		1	1	درس	J	<u>مر</u>	M	m C	1/2	1161.	3 <i>0</i> Z)		!_		_ _
Standard 5 day 10 day Rush 3 day		None Ro Batch Qu Category	C		None Required Basic EDD NYSDEC EDD		Relinqu	od By MQ uished B	5		1d	M	Date/Tin Date/Tin	12/	16	/se	Tot	al Cost:			
Rush 2 day Rush 1 day Other Other		Category Other	/B	ge needred:	COLOR Indicate EDD of			2 / 2 ed @ Lat	-	6 // 6 1, clien	(// tagree		Date/Tin	ie	// ¿ sand Co	S	P.J. (Tever	;			
<u> </u>												ria G	Troy ho	und Se		ional pa			e condi	tions.	

CHAIN OF CHETODY

A PARADIG VE

4	: }							UNA										·	,			
DAR	. គាក់	V		y **\	1812 481					**************************************		· · · · · in	VOICE	TO:		C. Howai	in the same	1863 V	1.46	对某事	Keipt Lare	
		##		CLIENT: ADDRESS:	<u>()</u>	Sin	moer	zinc		CLIENT:	Ga	ne		·		·····	_		LAB PRO			
					<u> </u>	TEIL	<u>Merilla</u>	क्षेष्ठ	ايتيو	CITY:	>; 		STATE	,	ZIP:					}-		
				SI YII	<u> </u>	<u> </u>		حراثا	03	PHONE:			SIAIL	•	4-11"		Quota		#; 			_
****				PHONE;-	<u>716</u>	<u>-847-</u>	<u>080</u>										Email	l: !\ .	1	o		
PROJEC	T REFER			ATTN: (ar	, Rika	5			ATTN:								州水	W.	y CS	COSic	10(1
19 NO	reth	<u></u>	,	•	IQ - Noi	n-Aqueous Liq		WA - Wa WG - Gr	oundwat	<u>हर</u>	ww	Drinking Wastev	Water vater	8	ı - Soli ı - Slud	ge	SD - So PT - Pa		WP - W CK - C		OL - Oil AR - Air	
egy, playerese, Ptg.	en en en en en en en en en en en en en e		4.8	17 2 1 2	198	Harry Sales Control		Section A	<u> </u>	\\\\	√RE(UESTE	D ANA	LYSIS	(< ≥ 2) 27 T						vision Kills	1
DATE COLLECTED	TIME COLLECTED	C O M P O S 1 T E	G R A B			Sample (DEN'	THER		M C O D E S X	NUMBER OF	MCC 300C	IN Metals				Full	TCLP C history	YCA /	svoA /m ek lab 009/2	ord, Ign ends/A eds (16	FARADIGM LAB SAMPLE NUMBER	Keach
11/10	6910		X	B1-	<u>5-le</u>	ff			2	50	XX	XX	XX	X							01	
1 1 1	415		X	B1-	6-7	f4_			-		XX	XX	XX			j	tour	>]
·	920		X	B1-	7-8.	f+			B		XX	XX	XX			J	told	>]
	922		X	B1-	8-9	<u>f</u> +			1		XX	XX	XX			<i>;</i> }	HOLL	>		,]
	925		X	<u>131-</u>	15-C	ļ					XX	XX	XX								60]
	1015	×		<u>Č2</u>	- [J	<u> </u>			2					XL_		ABIT	CLP ex	ctract.	cpa/2	ارر	03A]
	IOKO		×	CZ	- 13	-14.5			2		XX	XX	<u> XXX</u>			m	s m	SD			04]
	1022	ļ	X	C2	-14	1.5-15	.5				XX	XX	XX			L	tou"	S]
	1025		X	02	-15	-5-16	5		7750		XX	XX	XX				HOL	<u>5</u>]
V	1028		X	C2	-16	5-17.	<u> </u>			1	XX	XX	X X			+	to/	0]
Turnaroun Avallabi		nt upon la				lements ees may appl	/.		<u></u>				•		Hex Sen	cr, R + dire	eachint ctly fo	5, 7 5 Sw	TCLP +	lerbicia GP 9/	65 2/16	- ∏
Standard 5 day	X	None R	equired	[None Require	□	Sample	XX	Op.	la ,		Mi.	Date/Time	////	0 16	:00	— т	otal Cost:			
10 day		Batch Q	C	Ĺ		Basic EDD	<u> </u>	Relingu	Ished/B	У	_///		1	Date/Time	1.		_	_				
Rush 3 day		Categor	yА			NYSDEC EDI	· X			\simeq	为学			-9//	116		60	_	=		7	*
Rush 2 day		Categor	уВ	Ì	刘		(100	Receive	1	R			9	Datel Time	16	<i>!</i> .3	ر 3		l.I.F.			٠.
Rush 1 day	 _			,		MACAIC	LIVIU .	-	ed @ La	-	- / -			Date/Time)							
Other picase indicate date need		Other	legte seele	ge necded:		Owher EDD					9/a/ m. clion		/0 ; =(l'arm	and Ca	nditions	a (mar				
verso liferetta dele 1660		bicasa ma	backi	ege necued:		hisose artifette Ef	o rigidado.	Dy Sig	muse u	ا ال	at, chell	cagive:	ral سه د مهرين:	auigiii	erm: Ed.	GP 9/	naitions 3 /16 ional n	s (reve	ersej.			
								CC 345	· ~ ~	> c4	11/11/10	C1 17	່ປິ່ ີ້	1000	\ \(\sigma_{\ell} \)	ac addii	ากกลไท	ana fr	יר בשחיו	ala cone	ittiane	

∞

CHAIN OF CUSTODY

			- 1 M	REPORT TO:			INVOICE TO:	The second of	Horse with a King	en maria de la compania de la compania de la compania de la compania de la compania de la compania de la compa	
	AUNGN	VI:	CLIENT:		* ***	CLIENT:	Same			LAB PROJECT I	D
		1	ADDRESS:			ADDRESS:			163	832	
			CITY:	STATE:	ZIP	CITY:	STATE:	ZiP:	Quotation		
	1.44 - 17 Th 17 Th 17 Th		PHONE:	STANK TO		PHONE:		·	Email: ,		
PROJEC	T REFERE	NCE	ATTN:			ATTN:		· · · · · · · · · · · · · · · · · · ·	dak	wec:	3cos.cen
1 -	Stre	•	NG - N	lqueous Liquid Ion-Aqueous Liquid	WA - Water WG - Groundwa		DW - Drinking Water WW - Wastewater	SO - Soll SL - Siudge	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - Oil AR - Air
recording a	e le u mes		Was the second second	Marie Control Control	A Augusta V V	<u> </u>	REQUESTED ANALYS	SIS (magazine)	with the last of the	er en en en en en en en en en en en en en	EIC MODERN THE TALKS. S.
DATE COLLECTED	TIME COLLECTED	C O M P G R A B I T E	Į.	Sample identifier	M C O D R E S	CONTAINERS NUMBER OF	2	j j	Pour E	315	PARADIGM LAB SAMPLE NUMBER
9/1/10	1117			11.564	50	4	XXXXXXX		nsimsd		ల5
/ 1/	1.121		961-11.5	噻-125年			XIXIXIXIXIVI'		HOLD		
l	1/23	×	4 DI- 12	5-13.564		4	M X X X X X X X X		HOUS	· · · · · · · · · · · · · · · · · · ·	
4	1175		JD1-13	5-14564			XXXXXX		HOLD		
7	11210		161-15	-Mofs	V		XXXXXXXX			· · · · · · · · · · · · · · · · · · ·	06
	1412	7	7-5	1056			WYXXX T				67
- 	14/10		0 620	10(1							68
1 1	1418		1 2 1			1 1 1			HOLD		 CC
	49	- 	N 2 3 1	<u>- n</u> ゴフ		1		- 			
\forall	U23		1 E2-12	<u>-13</u>					HDLD	>	
Turnaroun	7		Report Sup	plements] -						
Availabil	lity contingen	t upon lab a	pproval; additiona	il fees may apply.							
tandard 5 day		None Requi	red	None Required	Sampled By	lan	1 DOM Date	Time ON	16 16:0	otal Cost:	
0 day		Batch QC		Basic EDD	Relinquished F	1	Date/	Time /	7	•	
lush 3 day		Category A		NYSDEC EDD X	Received By	<u></u>		Time (16 16-6	S.L.F.	 -
lush 2 day		Category B	K			13.	L q	1 1 4	3:30	`.l	
lush 1 day				LOCUS ELM	Received @ La	no By	Date/	Time	<u>, , , , , , , , , , , , , , , , , , , </u>	L	
Oliner lease Indicate date needd		Other please indicate (package needed:	Other EDD please indicate EDD needed :	By signing t	his form	, client agrees to Paradi	gm Terms and (Conditions (rev	erse).	

See additional page for sample conditions.

တ

CHAIN OF CUSTODY

PAR	A DIGN	ye.	CLIENT:	REPORT TO:		CLIENT:			ro: 🏸	British Are	y significant ki	e design	
100	T		ADDRESS:	jane		IADDRESS	Same				1/2	LAB PROJECT I	,D
		8	CITY:	STATE:	ZIP	CITY:	••	STATE:	ZIP:		Quotation	832	
		? '	PHONE:	0(7)2,		PHONE:	A		·			#: 	
			ATTN:			ATTN:					Email:	ra co	ine con
	TREFERE				· · · · · · · · · · · · · · · · · · ·						Clike	1000	205 CON
100/4	h Str		NQ - NO	queous Liquid on-Aqueous Liquid	WA - Water WG - Groundwa		WW - V	rinking Water Vastewater	SO - So SL - Sid	udge	SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - Oil AR - Air
Const. She of the Const.	Villa Borr C		3(4) (3) (4) (5) (4) (4) (4)				REQUI	STED ANA	LYSIS 🚲	96 - 1964 9 		1 (A. 14)	N THAT SOME THE
DATE COLLECTED	TIME COLLECTED	C G R A B T G		Sample identifier	M C O D E S X		500'S	222		Fa	REMARK 3	15	PARADIGM LAB SAMPLE NUMBER
911/16	1425	\ <u>\</u>	E2-1	4-15-64	50	, 2		111)					09
'/ //	1444	X	F1-3	-574		2							10
	1446	<u> </u>	PIO	1-10 ff		z							ul
	1447	<u> </u>	Pi-1	0-119-						th			
	1450		1 Pi-	11-124						H	DLD		
	1451		FI-1	2-1344						H	OLD		
	1463	<u> </u>	H-15	fr			111						12
	1514		F2-4	10ft		1							13
	1515	<u> </u>	F2-0	7-10f+		. 2							14
\forall	1517	X	F2-1	0-11-9-		1	<u> </u>			1	HOLD.		
Turnaround		l upon lab ano	Report Supp	olements fees may apply.	m				٠	V		Γ	
					Sampled By	ß	1	DNO	at//Time	11.20		Total Cost:	
tandard 5 day		None Required		None Required		wa	h	RINO	h (1/1/16	o loa	2	
0 day		Batch QC		Basic EDD	Relinguished	Ву 🎸	1111	D	ate/Time	17	0 16:0 16:0		
ush 3 day		Category A		NYSDEC EDD (- Jel	る タ			-91	11/6	16.0	D _	
ush 2 day		Category B	Ø		Received By	Pa	01	D 2	ate/Time	6	13130	P.I.F.	
ush 1 day			•	Drus Elm	Received @ L	ab By		D	ate/Time			L	
ither ease indicate dale needed	1	Other please indicate pack	rege needed:	Other EDD Dieded :	By signing t	his for	n, client a	grees to Para	adigm Tern	ns and Cor	ıditions (rev	erse).	

See additional page for sample conditions.

CHAIN OF CUSTODY

PAIE	Ante	M			REPORT TO:			- 	n (16		INVO	CE TO	200 g (4		en all single	SIX * * VOLUME	Long Asses
				CLIENT: ADDRESS!				JENT: DRESS:	S	ame						LAB PROJECT	ib
		I		CITY: (STATE:	ZIP		TY:			s	TATE:	ZIP:			832	
				PHONE:	OTATE.			ONE;					W		Quotation	1 #: 	
				ATTN:				TN:						<u>-</u>	Email:		
	CT REFER	ENCE		-1-1											da	Keno Cs	x08 con
Non				NQ - N	queous Liquid on-Aqueous Liquid	WA - Water WG - Groun	ndwater		w	W - W	nking Wa astewater		SO - So SL - Siu		SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - Oil AR - Air
The state of the state of	ુલેએલું કે કું ક મ ્યોન	-			STATE OF THE PARTY	S CONTROL CONTROL			€ RE	QUE	STED.	WALY	SIS		Stage Harter A		K CAMBERTA
DATE COLLECTED	TIME	C O M P O S I T E	6 R A B		SAMPLE IDENTIFIER	T R	CODES	CONTAINERS	\$ 2C	662	100 100	Hex Cr		4	DA 374	5	PARADIGM LAB SAMPLE NUMBER
911/16	1518		X	F2-1	1-12.fx	5	0	1	XII	V	1/\/	7			HOLD	•	
9/1/10	1520		X	FZ-1	2-13ft	S	0		XV	λ	XN	XIII			HOLD		
				•											,		
· · · · · · · · · · · · · · · · · · ·									_ _						·····	****	
											.						
							_										
· · · · · · · · · · · · · · · · · · ·										-		_ _			····		
										4-4	_ _						
					***************************************					-		_ _	_ _				
	<u> </u>	<u></u>															
Turnaroun	nd Time	T	·	Report Supp	olements] _											
Availab	ility continger	nt upon l			fees may apply.		4										
tandard 5 day		None R	equired		None Required	Sampled 8) (Jan.			Ja)	Date	Time	9/1	16 16a	Total Cost:	
0 day		Batch Q	C		Basic EDD	Rèlinquish	EC BY	1	71	77/		Date	Time	7	7	J	
ush 3 day		Categor	уА		NYSDEC EDD 🔀	$\bigcup \mathcal{U}$		~9	15/	/_		-	•	9///	16 16:	<i>6</i>)	ì
ush 2 day		Categor	уВ	K		Received/B	3y /	} 		7		Date	Time	1	3:30	P.I.F.	
ush 1 day				`	LOCAR EIM	Received @	Lab E	Зу				Date	Time		<u> </u>	Ĺ	,
ther		Other			Other EDD EM			_	_								
ease Indicate date neco	ded:	please indi	icale packe	ge needed:	please indicate EDD needed :	By signin	ig this	form	, clie	nt agr	rees to	Paradi	gm Term	s and Co	onditions (rev	rerse).	
													S	ee addi	itional nage	for sample co	nditione

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.48	ug/Kg		9/7/2016 17:33
1,1,2,2-Tetrachloroethane	< 4.48	ug/Kg		9/7/2016 17:33
1,1,2-Trichloroethane	< 4.48	ug/Kg		9/7/2016 17:33
1,1-Dichloroethane	< 4.48	ug/Kg		9/7/2016 17:33
1,1-Dichloroethene	< 4.48	ug/Kg		9/7/2016 17:33
1,2,3-Trichlorobenzene	< 11.2	ug/Kg		9/7/2016 17:33
1,2,4-Trichlorobenzene	< 11.2	ug/Kg		9/7/2016 17:33
1,2,4-Trimethylbenzene	< 4.48	ug/Kg		9/7/2016 17:33
1,2-Dibromo-3-Chloropropane	< 22.4	ug/Kg		9/7/2016 17:33
1,2-Dibromoethane	< 4.48	ug/Kg		9/7/2016 17:33
1,2-Dichlorobenzene	< 4.48	ug/Kg		9/7/2016 17:33
1,2-Dichloroethane	< 4.48	ug/Kg		9/7/2016 17:33
1,2-Dichloropropane	< 4.48	ug/Kg		9/7/2016 17:33
1,3,5-Trimethylbenzene	< 4.48	ug/Kg		9/7/2016 17:33
1,3-Dichlorobenzene	< 4.48	ug/Kg		9/7/2016 17:33
1,4-Dichlorobenzene	< 4.48	ug/Kg		9/7/2016 17:33
1,4-dioxane	<44.8 R	ug/Kg		9/7/2016 17:33
2-Butanone	< 22.4	ug/Kg		9/7/2016 17:33
2-Hexanone	< 11.2	ug/Kg		9/7/2016 17:33
4-Methyl-2-pentanone	<11.2 UJ	ug/Kg		9/7/2016 17:33
Acetone	<22.4 UJ	ug/Kg		9/7/2016 17:33
Benzene	< 4.48	ug/Kg		9/7/2016 17:33
Bromochloromethane	< 11.2	ug/Kg		9/7/2016 17:33
Bromodichloromethane	< 4.48	ug/Kg		9/7/2016 17:33
Bromoform	< 11.2	ug/Kg		9/7/2016 17:33
Bromomethane	< 4.48	ug/Kg		9/7/2016 17:33
Carbon disulfide	< 4.48	ug/Kg		9/7/2016 17:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	B1-5-6 ft				
Lab Sample ID:	163832-01			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 4.48	ug/Kg		9/7/2016 17:33
Chlorobenzene		< 4.48	ug/Kg		9/7/2016 17:33
Chloroethane		< 4.48	ug/Kg		9/7/2016 17:33
Chloroform		< 4.48	ug/Kg		9/7/2016 17:33
Chloromethane		< 4.48	ug/Kg		9/7/2016 17:33
cis-1,2-Dichloroethene		< 4.48	ug/Kg		9/7/2016 17:33
cis-1,3-Dichloropropene	!	< 4.48	ug/Kg		9/7/2016 17:33
Cyclohexane		< 22.4	ug/Kg		9/7/2016 17:33
Dibromochloromethane		< 4.48	ug/Kg		9/7/2016 17:33
Dichlorodifluoromethan	e	< 4.48	ug/Kg		9/7/2016 17:33
Ethylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
Freon 113		< 4.48	ug/Kg		9/7/2016 17:33
Isopropylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
m,p-Xylene		< 4.48	ug/Kg		9/7/2016 17:33
Methyl acetate		< 4.48	ug/Kg		9/7/2016 17:33
Methyl tert-butyl Ether		< 4.48	ug/Kg		9/7/2016 17:33
Methylcyclohexane		< 4.48	ug/Kg		9/7/2016 17:33
Methylene chloride		< 11.2	ug/Kg		9/7/2016 17:33
Naphthalene		< 11.2	ug/Kg		9/7/2016 17:33
n-Butylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
n-Propylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
o-Xylene		< 4.48	ug/Kg		9/7/2016 17:33
p-lsopropyltoluene		< 4.48	ug/Kg		9/7/2016 17:33
sec-Butylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
Styrene		< 11.2	ug/Kg		9/7/2016 17:33
tert-Butylbenzene		< 4.48	ug/Kg		9/7/2016 17:33
Tetrachloroethene		< 4.48	ug/Kg		9/7/2016 17:33
Toluene		< 4.48	ug/Kg		9/7/2016 17:33
trans-1,2-Dichloroethen	e	< 4.48	ug/Kg		9/7/2016 17:33
trans-1,3-Dichloroprope	ne	< 4.48	ug/Kg		9/7/2016 17:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Date Sampled:

Outliers

9/1/2016

Matrix:

Soil

Date Received:

9/2/2016

9/7/2016

Trichloroethene	
Trichlorofluoromethane	
Vinyl chloride	

ug/Kg < 4.48 ug/Kg < 4.48

9/7/2016 17:33 9/7/2016 17:33

Toluene-D8

Surrogate

< 4.48 ug/Kg

Percent Recovery

9/7/2016 17:33 **Date Analyzed**

17:33

1,2-Dichloroethane-d4
4-Bromofluorobenzene
Pentafluorobenzene

104 81.3 - 124 95.3 80 - 117 97.8 88.3 - 111 78 - 123 101

Limits

9/7/2016 17:33 9/7/2016 17:33 9/7/2016 17:33

Method Reference(s):

EPA 8260C EPA 5035

Data File:

x35144.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.53	ug/Kg		9/7/2016 17:57
1,1,2,2-Tetrachloroethane	< 4.53	ug/Kg		9/7/2016 17:57
1,1,2-Trichloroethane	< 4.53	ug/Kg		9/7/2016 17:57
1,1-Dichloroethane	< 4.53	ug/Kg		9/7/2016 17:57
1,1-Dichloroethene	< 4.53	ug/Kg		9/7/2016 17:57
1,2,3-Trichlorobenzene	< 11.3	ug/Kg		9/7/2016 17:57
1,2,4-Trichlorobenzene	< 11.3	ug/Kg		9/7/2016 17:57
1,2,4-Trimethylbenzene	< 4.53	ug/Kg		9/7/2016 17:57
1,2-Dibromo-3-Chloropropane	< 22.6	ug/Kg		9/7/2016 17:57
1,2-Dibromoethane	< 4.53	ug/Kg		9/7/2016 17:57
1,2-Dichlorobenzene	< 4.53	ug/Kg		9/7/2016 17:57
1,2-Dichloroethane	< 4.53	ug/Kg		9/7/2016 17:57
1,2-Dichloropropane	< 4.53	ug/Kg		9/7/2016 17:57
1,3,5-Trimethylbenzene	< 4.53	ug/Kg		9/7/2016 17:57
1,3-Dichlorobenzene	< 4.53	ug/Kg		9/7/2016 17:57
1,4-Dichlorobenzene	< 4.53	ug/Kg		9/7/2016 17:57
1,4-dioxane	< 45.3 R	ug/Kg		9/7/2016 17:57
2-Butanone	< 22.6	ug/Kg		9/7/2016 17:57
2-Hexanone	< 11.3	ug/Kg		9/7/2016 17:57
4-Methyl-2-pentanone	<11.3 ひょ	ug/Kg		9/7/2016 17:57
Acetone	<22.6 UJ	ug/Kg		9/7/2016 17:57
Benzene	< 4.53	ug/Kg		9/7/2016 17:57
Bromochloromethane	< 11.3	ug/Kg		9/7/2016 17:57
Bromodichloromethane	< 4.53	ug/Kg		9/7/2016 17:57
Bromoform	< 11.3	ug/Kg		9/7/2016 17:57
Bromomethane	< 4.53	ug/Kg		9/7/2016 17:57
Carbon disulfide	< 4.53	ug/Kg		9/7/2016 17:57

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	B1-15 ft				
Lab Sample ID:	163832-02			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
	3011			Date Necesveu.	
Carbon Tetrachloride		< 4.53	ug/Kg		9/7/2016 17:57
Chlorobenzene		< 4.53	ug/Kg		9/7/2016 17:57
Chloroethane		< 4.53	ug/Kg		9/7/2016 17:57
Chloroform		< 4.53	ug/Kg		9/7/2016 17:57
Chloromethane		< 4.53	ug/Kg		9/7/2016 17:57
cis-1,2-Dichloroethene		< 4.53	ug/Kg		9/7/2016 17:57
cis-1,3-Dichloropropen	e	< 4.53	ug/Kg		9/7/2016 17:57
Cyclohexane		< 22.6	ug/Kg		9/7/2016 17:57
Dibromochloromethane	9	< 4.53	ug/Kg		9/7/2016 17:57
Dichlorodifluorometha	ne	< 4.53	ug/Kg		9/7/2016 17:57
Ethylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
Freon 113		< 4.53	ug/Kg		9/7/2016 17:57
Isopropylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
m,p-Xylene		< 4.53	ug/Kg		9/7/2016 17:57
Methyl acetate		< 4.53	ug/Kg		9/7/2016 17:57
Methyl tert-butyl Ether		< 4.53	ug/Kg		9/7/2016 17:57
Methylcyclohexane		< 4.53	ug/Kg		9/7/2016 17:57
Methylene chloride		< 11.3	ug/Kg		9/7/2016 17:57
Naphthalene		< 11.3	ug/Kg		9/7/2016 17:57
n-Butylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
n-Propylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
o-Xylene		< 4.53	ug/Kg		9/7/2016 17:57
p-Isopropyltoluene		< 4.53	ug/Kg		9/7/2016 17:57
sec-Butylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
Styrene		< 11.3	ug/Kg		9/7/2016 17:57
tert-Butylbenzene		< 4.53	ug/Kg		9/7/2016 17:57
Tetrachloroethene		< 4.53	ug/Kg		9/7/2016 17:57
Toluene		< 4.53	ug/Kg		9/7/2016 17:57
trans-1,2-Dichloroethen	ie	< 4.53	ug/Kg		9/7/2016 17:57
trans-1,3-Dichloroprope		< 4.53	ug/Kg		9/7/2016 17:57

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

< 4.53

Date Received:

Outliers

9/2/2016 9/7/2016 17:57

Trichlorofluoromethane

Trichloroethene

< 4.53

ug/Kg

ug/Kg

9/7/2016 17:57

Vinyl chloride

< 4.53

ug/Kg

9/7/2016 17:57 **Date Analyzed**

Surrogate 1,2-Dichloroethane-d4 4-Bromofluorobenzene Percent Recovery Limits 107 81.3 - 124

80 - 117

9/7/2016 17:57 9/7/2016 17:57

Pentafluorobenzene Toluene-D8

96.4 96.2 88.3 - 111 78 - 123 98.4

9/7/2016 17:57 9/7/2016 17:57

Method Reference(s):

EPA 8260C

Data File:

EPA 5035 x35145.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03A

Matrix:

TCLP Extract

Date Sampled: Date Received:

9/1/2016 9/2/2016

TCLP Volatile Organics

Analyte	Result	Units	Regulatory Limit	Qualifier	Date Analy	zed
1,1-Dichloroethene	< 20.0	ug/L	700		9/7/2016	16:21
1,2-Dichloroethane	< 20.0	ug/L	500		9/7/2016	16:21
2-Butanone	< 100	ug/L	200000		9/7/2016	16:21
Benzene	< 20.0	ug/L	500		9/7/2016	16:21
Carbon Tetrachloride	< 20.0	ug/L	500		9/7/2016	16:21
Chlorobenzene	< 20.0	ug/L	100000		9/7/2016	16:21
Chloroform	< 20.0	ug/L	6000		9/7/2016	16:21
Tetrachloroethene	< 20.0	ug/L	700		9/7/2016	16:21
Trichloroethene	< 20.0	ug/L	500		9/7/2016	16:21
Vinyl chloride	< 20.0	ug/L	200		9/7/2016	16:21
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		99,9	86 - 116		9/7/2016	16:21
4-Bromofluorobenzene		95.2	82.2 - 113		9/7/2016	16:21
Pentafluorobenzene		99.2	90.9 - 110		9/7/2016	16:21
Toluene-D8		102	90.8 - 109		9/7/2016	16:21

Method Reference(s):

EPA 8260C

EPA 1311 / 5030C

Data File:

x35141.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Volatile Organics

Result	Units	Qualifier	Date Analyzed
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 9.01	ug/Kg		9/8/2016 15:45
< 9.01	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 18.0	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
<36.1 R	ug/Kg		9/8/2016 15:45
< 18.0	ug/Kg		9/8/2016 15:45
< 9.01	ug/Kg		9/8/2016 15:45
< 9.01 UJ	ug/Kg		9/8/2016 15:45
12.6 J	ug/Kg	j	9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 9.01	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 9.01	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
< 3.61	ug/Kg		9/8/2016 15:45
	<3.61 <3.61 <3.61 <3.61 <9.01 <9.01 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <3.61 <9.01 <3.61 <9.01 <3.61 <9.01 <3.61 <9.01 <3.61	< 3.61	<pre><3.61</pre>

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MAP 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Ab Sample ID: 163832-04 Date Sampled: 9/1/2016 Patrix: Soil Date Received: 9/2/2016 Patrix: Soil Date Received: 9/2/2016 Patrix: Soil Date Received: 9/2/2016 Patrix: 9/8/2016 Patrix: 9/	Sample Identifier:	C2-13-14.5 ft			The state of the s	
Matrix: Soil Date Received: 9/2/2016 Carbon Tetrachloride < 3.61 ug/Kg 9/8/2016 15 Chlorobenzene < 3.61 ug/Kg 9/8/2016 15 Chloroethane < 3.61 ug/Kg 9/8/2016 15 Chloromethane < 3.61 ug/Kg 9/8/2016 15 Chloromethane < 3.61 ug/Kg 9/8/2016 15 cis-1,2-Dichloropropene < 3.61 ug/Kg 9/8/2016 15 Cyclohexane < 18.0 ug/Kg 9/8/2016 15 Cyclohexane < 18.0 ug/Kg 9/8/2016 15 Dichlorodifluoromethane < 3.61 ug/Kg 9/8/2016 15 Dichlorodifluoromethane < 3.61 ug/Kg 9/8/2016 15 Ethylbenzene < 3.61 ug/Kg 9/8/2016 15 Ethylbenzene < 3.61 ug/Kg 9/8/2016 15 Inp-Xylene < 3.61 ug/Kg 9/8/2016 15 Methyl certab	^				Date Sampled	9/1/2016
Carbon Tetrachloride	Matrix:				•	• •
Chlorobenzene	Carbon Tetrachloride		< 3.61	ng/Kg	100	
Chloroethane						• •
Chloroform <3.6.1 ug/Kg 9/8/2016 15: Chloromethane <3.6.1 ug/Kg 9/8/2016 15: cis-1,2-Dichloroethene <3.6.1 ug/Kg 9/8/2016 15: cis-1,3-Dichloropropene <3.6.1 ug/Kg 9/8/2016 15: Cyclohexane <18.0 ug/Kg 9/8/2016 15: Dibromochloromethane <3.6.1 ug/Kg 9/8/2016 15: Dichlorodifluoromethane <3.6.1 ug/Kg 9/8/2016 15: Ethylbenzene <3.6.1 ug/Kg 9/8/2016 15: Ethylbenzene <3.6.1 ug/Kg 9/8/2016 15: Spropylbenzene <3.6.1 ug/Kg 9/8/2016 15: mp-Xylene <3.6.1 ug/Kg 9/8/2016 15: mp-Xylene <3.6.1 ug/Kg 9/8/2016 15: Methyl acetate <3.6.1 ug/Kg 9/8/2016 15: Methyl acetate <3.6.1 ug/Kg 9/8/2016 15: Methyl cetate <3.6.1 ug/Kg 9/8/2016 15: Methylcyclohexane <3.6.1 ug/Kg 9/8/2016 15: Methylene chloride <9.0.1 ug/Kg 9/8/2016 15: Naphthalene <9.0.1 ug/Kg 9/8/2016 15: n-Butylbenzene <3.6.1 ug/Kg 9/8/2016 15: n-Butylbenzene <3.6.1 ug/Kg 9/8/2016 15: n-Propylbenzene <3.6.1 ug/Kg 9/8/2016 15: Naphthalene <9.0.1 ug/Kg 9/8/2016 15: n-Butylbenzene <3.6.1 ug/Kg 9/8/2016 15: Sec-Butylbenzene <3.6.1 ug/Kg 9/8/2016 15: c-Xylene <3.6.1 ug/Kg 9/8/2016 15: Styrene <9.0.1 ug/Kg 9/8/2016 15: Styrene <9.0.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: Ctrachloroethene <3.6.1 ug/Kg 9/8/2016 15: C				_		
Chloromethane						* *
cis-1,2-Dichloroethene	Chloromethane					7 -
cis-1,3-Dichloropropene	cis-1,2-Dichloroethene					• •
Cyclohexane < 18.0						
Dibromochloromethane < 3.61						- 1
Dichlorodifluoromethane < 3.61	-			_		
Ethylbenzene < 3.61	Dichlorodifluoromethane	:				· ·
Freon 113 < 3.61	Ethylbenzene		< 3.61			, ,
Sopropylbenzene <3.61	Freon 113		< 3.61			
m.p-Xylene < 3.61	lsopropylbenzene		< 3.61			· ·
Methyl acetate < 3.61	m,p-Xylene		< 3.61			- ,
Methyl tert-butyl Ether < 3.61	Methyl acetate		< 3.61			
Methylcyclohexane <3.61	Methyl tert-butyl Ether		< 3.61	ug/Kg		9/8/2016 15:4
Naphthalene < 9.01	Methylcyclohexane		< 3.61	ug/Kg		9/8/2016 15:4
n-Butylbenzene < 3.61	Methylene chloride		< 9.01	ug/Kg		9/8/2016 15:4
n-Propylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Xylene <3.61 ug/Kg 9/8/2016 15:20 c-Xylene <3.61 ug/Kg 9/8/2016 15:20 c-Xylene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-Butylbenzene <3.61 ug/Kg 9/8/2016 15:20 c-But	Naphthalene		< 9.01	ug/Kg		9/8/2016 15:4
o-Xylene < 3.61	n-Butylbenzene		< 3.61	ug/Kg		9/8/2016 15:4
o-Xylene < 3.61	n-Propylbenzene		< 3.61	ug/Kg		9/8/2016 15:4
sec-Butylbenzene < 3.61	o-Xylene		< 3.61	ug/Kg		9/8/2016 15:4
Styrene < 9.01	p-lsopropyltoluene		< 3.61	ug/Kg		9/8/2016 15:4
tert-Butylbenzene <3.61 ug/Kg 9/8/2016 15:4 Tetrachloroethene <3.61 ug/Kg 9/8/2016 15:4 Toluene <3.61 ug/Kg 9/8/2016 15:4 trans-1,2-Dichloroethene <3.61 ug/Kg 9/8/2016 15:4	sec-Butylbenzene		< 3.61	ug/Kg		9/8/2016 15:4
Tetrachloroethene < 3.61	Styrene		< 9.01	ug/Kg		9/8/2016 15:4
Toluene <3.61 ug/Kg 9/8/2016 15:4 traus-1,2-Dichloroethene <3.61 ug/Kg 9/8/2016 15:4	tert-Butylbenzene		< 3.61	ug/Kg		9/8/2016 15:4
trans-1,2-Dichloroethene < 3.61 ug/Kg 9/8/2016 15:4	Tetrachloroethene		< 3.61	ug/Kg		9/8/2016 15:4
79,4000 200	Toluene		< 3.61	ug/Kg		9/8/2016 15:4
trans-1,3-Dichloropropene < 3.61 ug/Kg 9/8/2016 15:4	trans-1,2-Dichloroethene		< 3.61	ug/Kg		9/8/2016 15:4
	trans-1,3-Dichloropropen	e	< 3.61	ug/Kg		9/8/2016 15:4

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Date Sampled:

9/1/2016

Soil

Date Received:

Qutliers

9/2/2016

Matrix: Trichloroethene

< 3.61

ug/Kg ug/Kg

9/8/2016 15:45 9/8/2016 15:45

Trichlorofluoromethane Vinyl chloride

Toluene-D8

< 3.61 < 3.61

ug/Kg

Percent Recovery

97.8

9/8/2016 15:45 Date Analyzed

Microgate	
1,2-Dichloroethane-d4	
4-Bromofluorobenzene	
Pentafluorohenzene	

107 81.3 - 124 94.3 80 - 117 98.2 88.3 - 111

Limits

78 - 123

9/8/2016 15:45 9/8/2016 15:45 9/8/2016 15:45

15:45

9/8/2016

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35180.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Volatile Organics

<u>Analyte</u>	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.90	ug/Kg		9/7/2016 18:21
1,1,2,2-Tetrachloroethane	< 3.90	ug/Kg		9/7/2016 18:21
1,1,2-Trichloroethane	< 3.90	ug/Kg		9/7/2016 18:21
1,1-Dichloroethane	< 3.90	ug/Kg		9/7/2016 18:21
1,1-Dichloroethene	< 3.90	ug/Kg	\$	9/7/2016 18:21
1,2,3-Trichlorobenzene	< 9.75	ug/Kg		9/7/2016 18:21
1,2,4-Trichlorobenzene	< 9.75	ug/Kg		9/7/2016 18:21
1,2,4-Trimethylbenzene	< 3.90	ug/Kg		9/7/2016 18:21
1,2-Dibromo-3-Chloropropane	< 19.5	ug/Kg		9/7/2016 18:21
1,2-Dibromoethane	< 3.90	ug/Kg		9/7/2016 18:21
1,2-Dichlorobenzene	< 3.90	ug/Kg	M	9/7/2016 18:21
1,2-Dichloroethane	< 3.90	ug/Kg		9/7/2016 18:21
1,2-Dichloropropane	< 3.90	ug/Kg		9/7/2016 18:21
1,3,5-Trimethylbenzene	< 3.90	ug/Kg		9/7/2016 18:21
1,3-Dichlorobenzene	< 3.90	ug/Kg	M	9/7/2016 18:21
1,4-Dichlorobenzene	< 3.90	ug/Kg	М	9/7/2016 18:21
1,4-dioxane	<39.0 R	ug/Kg		9/7/2016 18:21
2-Butanone	< 19.5	ug/Kg		9/7/2016 18:21
2-Hexanone	< 9.75	ug/Kg		9/7/2016 18:21
4-Methyl-2-pentanone	< 9.75 UJ	ug/Kg		9/7/2016 18:21
Acetone	<19.5 NJ	ug/Kg		9/7/2016 18:21
Benzene	< 3.90	ug/Kg		9/7/2016 18:21
Bromochloromethane	< 9.75	ug/Kg		9/7/2016 18:21
Bromodichloromethane	< 3.90	ug/Kg		9/7/2016 18:21
Bromoform	< 9.75	ug/Kg		9/7/2016 18:21
Bromomethane	< 3.90	ug/Kg		9/7/2016 18:21
Carbon disulfide	< 3.90	ug/Kg		9/7/2016 18:21

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	D1-9.5-11.5 ft				
Lab Sample ID:	163832-05			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.90	ug/Kg		9/7/2016 18:2:
Chlorobenzene		< 3.90	ug/Kg		9/7/2016 18:2:
Chloroethane		< 3.90	ug/Kg		9/7/2016 18:2:
Chloroform		< 3.90	ug/Kg		9/7/2016 18:2:
Chloromethane		< 3.90	ug/Kg		9/7/2016 18:23
cis-1,2-Dichloroethene		< 3.90	ug/Kg		9/7/2016 18:21
cis-1,3-Dichloropropene		< 3.90	ug/Kg		9/7/2016 18:21
Cyclohexane		< 19.5	ug/Kg		9/7/2016 18:21
Dibromochloromethane		< 3.90	ug/Kg		9/7/2016 18:21
Dichlorodifluoromethane	:	< 3.90	ug/Kg		9/7/2016 18:21
Ethylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
Freon 113		< 3.90	ug/Kg		9/7/2016 18:21
lsopropylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
m,p-Xylene		< 3.90	ug/Kg		9/7/2016 18:21
Methyl acetate		< 3.90	ug/Kg		9/7/2016 18:21
Methyl tert-butyl Ether		< 3.90	ug/Kg		9/7/2016 18:21
Methylcyclohexane		< 3.90	ug/Kg		9/7/2016 18:21
Methylene chloride		< 9.75	ug/Kg		9/7/2016 18:21
Naphthalene		< 9.75	ug/Kg .		9/7/2016 18:21
n-Butylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
n-Propylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
o-Xylene		< 3.90	ug/Kg		9/7/2016 18:21
p-lsopropyltoluene		< 3.90	ug/Kg		9/7/2016 18:21
sec-Butylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
Styrene		< 9.75	ug/Kg		9/7/2016 18:21
tert-Butylbenzene		< 3.90	ug/Kg		9/7/2016 18:21
Tetrachloroethene		< 3.90	ug/Kg		9/7/2016 18:21
Toluene		< 3.90	ug/Kg		9/7/2016 18:21
trans-1,2-Dichloroethene		< 3.90	ug/Kg		9/7/2016 18:21
trans-1,3-Dichloropropen	e	< 3.90	ug/Kg		9/7/2016 18:21

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Date Sampled: 9/1/2016

Matrix:

Soil

Date Received: 9/2/2016

				- AKOCOET CEG	7,2,2010	
Trichloroethene	< 3.90	ug/Kg			9/7/201	6 18:21
Trichlorofluoromethane	< 3.90	ug/Kg			9/7/2010	5 18:21
Vinyl chloride	< 3.90	ug/Kg			9/7/2010	5 18:21
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Anal	vzed
1,2-Dichloroethane-d4		107	81.3 - 124		9/7/2016	18:21
4-Bromofluorobenzene		93.4	80 - 117		9/7/2016	18:21
Pentafluorobenzene		94.9	88.3 - 111		9/7/2016	18:21
Toluene-D8		99.0	78 - 123		9/7/2016	18:21

Method Reference(s):

EPA 8260C

BPA 5035

Data File:

x35146.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.16	ug/Kg		9/7/2016 18:45
1,1,2,2-Tetrachloroethane	< 4.16	ug/Kg		9/7/2016 18:45
1,1,2-Trichloroethane	< 4.16	ug/Kg		9/7/2016 18:45
1,1-Dichloroethane	< 4.16	ug/Kg		9/7/2016 18:45
1,1-Dichloroethene	< 4.16	ug/Kg		9/7/2016 18:45
1,2,3-Trichlorobenzene	< 10.4	ug/Kg		9/7/2016 18:45
1,2,4-Trichlorobenzene	< 10.4	ug/Kg		9/7/2016 18:45
1,2,4-Trimethylbenzene	< 4.16	ug/Kg		9/7/2016 18:45
1,2-Dibromo-3-Chloropropane	< 20.8	ug/Kg		9/7/2016 18:45
1,2-Dibromoethane	< 4.16	ug/Kg		9/7/2016 18:45
1,2-Dichlorobenzene	< 4.16	ug/Kg		9/7/2016 18:45
1,2-Dichloroethane	< 4.16	ug/Kg		9/7/2016 18:45
1,2-Dichloropropane	< 4.16	ug/Kg		9/7/2016 18:45
1,3,5-Trimethylbenzene	< 4.16	ug/Kg		9/7/2016 18:45
1,3-Dichlorobenzene	< 4.16	ug/Kg		9/7/2016 18:45
1,4-Dichlorobenzene	< 4.16	ug/Kg		9/7/2016 18:45
1,4-dioxane	<418 R	ug/Kg		9/7/2016 18:45
2-Butanone	< 20.8	ug/Kg		9/7/2016 18:45
2-Hexanone	< 10.4	ug/Kg		9/7/2016 18:45
4-Methyl-2-pentanone	<10.4 UJ	ug/Kg		9/7/2016 18:45
Acetone	20.7 🏅	ug/Kg	J	9/7/2016 18:45
Benzene	< 4.16	ug/Kg		9/7/2016 18:45
Bromochloromethane	< 10.4	ug/Kg		9/7/2016 18:45
Bromodichloromethane	< 4,16	ug/Kg		9/7/2016 18:45
Bromoform	< 10.4	ug/Kg		9/7/2016 18:45
Bromomethane	< 4.16	ug/Kg		9/7/2016 18:45
Carbon disulfide	< 4.16	ug/Kg		9/7/2016 18:45

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

WKb. 2/1/12

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	D1-15-16 ft				
Lab Sample ID:	163832-06			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 4.16	ug/Kg		9/7/2016 18:4
Chlorobenzene		< 4.16	ug/Kg		9/7/2016 18:4
Chloroethane		< 4.16	ug/Kg		9/7/2016 18:4!
Chloroform		< 4.16	ug/Kg		9/7/2016 18:4
Chloromethane		< 4.16	ug/Kg		9/7/2016 18:45
cis-1,2-Dichloroethene		< 4.16	ug/Kg		9/7/2016 18:45
cis-1,3-Dichloropropene		< 4.16	ug/Kg		9/7/2016 18:45
Cyclohexane		< 20.8	ug/Kg		9/7/2016 18:45
Dibromochloromethane		< 4.16	ug/Kg		9/7/2016 18:45
Dichlorodifluoromethane	:	< 4.16	ug/Kg		9/7/2016 18:45
Ethylbenzene		< 4.16	ug/Kg	·	9/7/2016 18:45
Freon 113		< 4.16	ug/Kg		9/7/2016 18:45
Isopropylbenzene		< 4.16	ug/Kg		9/7/2016 18:45
m,p-Xylene		< 4.16	ug/Kg		9/7/2016 18:45
Methyl acetate		< 4.16	ug/Kg		9/7/2016 18:45
Methyl tert-butyl Ether		< 4.16	ug/Kg		9/7/2016 18:45
Methylcyclohexane		< 4.16	ug/Kg		9/7/2016 18:45
Methylene chloride		< 10.4	ug/Kg		9/7/2016 18:45
Naphthalene		< 10.4	ug/Kg		9/7/2016 18:45
n-Butylbenzene		< 4.16	ug/Kg		9/7/2016 18:45
n-Propylbenzene		< 4.16	ug/Kg		9/7/2016 18:45
o-Xylene		< 4.16	ug/Kg		9/7/2016 18:45
p-Isopropyltoluene		< 4.16	ug/Kg		9/7/2016 18:45
sec-Butylbenzene		< 4.16	ug/Kg		9/7/2016 18:45
Styrene		< 10.4	ug/Kg		9/7/2016 18:45
tert-Butylbenzene		< 4.16	ug/Kg		9/7/2016 18:45
Tetrachloroethene		< 4.16	ug/Kg		9/7/2016 18:45
Toluene		< 4.16	ug/Kg		9/7/2016 18:45
trans-1,2-Dichloroethene		< 4.16	ug/Kg		9/7/2016 18:45
trans-1,3-Dichloropropen	e	< 4.16	ug/Kg		9/7/2016 18:45
~ .					• •

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

1-36464 224	SOM			Dav	C MCCCAYCU.	7/2/2010	
Trichloroethene		< 4.16	ug/Kg			9/7/201	6 18:45
Trichlorofluoror	nethane	< 4.16	ug/Kg			9/7/201	6 18:45
Vinyl chloride		< 4.16	ug/Kg			9/7/201	6 18:45
Surrogate		Perce	nt Recovery	Limits	Outliers	Date Anal	yzed
1,2-Dichloroetha	ine-d4		108	81.3 - 124		9/7/2016	18:45
4-Bromofluorob	enzene		94.5	80 - 117		9/7/2016	18:45
Pentafluorobenz	ene		97.5	88.3 - 111		9/7/2016	18:45
Toluene-D8			99.4	78 - 123		9/7/2016	18:45

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35147.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Soil

Matrix:

Da

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.24	ug/Kg		9/7/2016 19:09
1,1,2,2-Tetrachloroethane	< 4.24	ug/Kg		9/7/2016 19:09
1,1,2-Trichloroethane	< 4.24	ug/Kg		9/7/2016 19:09
1,1-Dichloroethane	< 4.24	ug/Kg		9/7/2016 19:09
1,1-Dichloroethene	< 4.24	ug/Kg		9/7/2016 19:09
1,2,3-Trichlorobenzene	< 10.6	ug/Kg		9/7/2016 19:09
1,2,4-Trichlorobenzene	< 10.6	ug/Kg		9/7/2016 19:09
1,2,4-Trimethylbenzene	< 4.24	ug/Kg		9/7/2016 19:09
1,2-Dibromo-3-Chloropropane	< 21.2	ug/Kg		9/7/2016 19:09
1,2-Dibromoethane	< 4.24	ug/Kg		9/7/2016 19:09
1,2-Dichlorobenzene	< 4.24	ug/Kg		9/7/2016 19:09
1,2-Dichloroethane	< 4.24	ug/Kg		9/7/2016 19:09
1,2-Dichloropropane	< 4.24	ug/Kg		9/7/2016 19:09
1,3,5-Trimethylbenzene	< 4.24	ug/Kg		9/7/2016 19:09
1,3-Dichlorobenzene	< 4.24	ug/Kg		9/7/2016 19:09
1,4-Dichlorobenzene	< 4.24	ug/Kg		9/7/2016 19:09
1,4-dioxane	< 12.4 R	ug/Kg		9/7/2016 19:09
2-Butanone	< 21.2	ug/Kg		9/7/2016 19:09
2-Hexanone	< 10.6	ug/Kg		9/7/2016 19:09
4-Methyl-2-pentanone	<10.6 UJ	ug/Kg		9/7/2016 19:09
Acetone	<21.2 WJ	ug/Kg		9/7/2016 19:09
Benzene	< 4.24	ug/Kg		9/7/2016 19:09
Bromochloromethane	< 10.6	ug/Kg		9/7/2016 19:09
Bromodichloromethane	< 4.24	ug/Kg		9/7/2016 19:09
Bromoform	< 10.6	ug/Kg		9/7/2016 19:09
Bromomethane	< 4.24	ug/Kg		9/7/2016 19:09
Carbon disulfide	< 4.24	ug/Kg		9/7/2016 19:09

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

med 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	E2-5-6.5 ft				
Lab Sample ID:	163832-07			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 4.24	ug/Kg		9/7/2016 19:09
Chlorobenzene		< 4.24	ug/Kg		9/7/2016 19:09
Chloroethane		< 4.24	ug/Kg		9/7/2016 19:09
Chloroform		< 4.24	ug/Kg		9/7/2016 19:09
Chloromethane		< 4.24	ug/Kg		9/7/2016 19:09
cis-1,2-Dichloroethene		< 4.24	ug/Kg		9/7/2016 19:09
cis-1,3-Dichloropropene		< 4.24	ug/Kg		9/7/2016 19:09
Cyclohexane		< 21.2	ug/Kg		9/7/2016 19:09
Dibromochloromethane		< 4.24	ug/Kg		9/7/2016 19:09
Dichlorodifluoromethan	е	< 4.24	ug/Kg		9/7/2016 19:09
Ethylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
Freon 113		< 4.24	ug/Kg		9/7/2016 19:09
lsopropylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
m,p-Xylene		< 4.24	ug/Kg		9/7/2016 19:09
Methyl acetate		< 4.24	ug/Kg		9/7/2016 19:09
Methyl tert-butyl Ether		< 4.24	ug/Kg		9/7/2016 19:09
Methylcyclohexane		< 4.24	ug/Kg		9/7/2016 19:09
Methylene chloride		< 10.6	ug/Kg		9/7/2016 19:09
Naphthalene		< 10.6	ug/Kg		9/7/2016 19:09
n-Butylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
n-Propylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
o-Xylene		< 4.24	ug/Kg		9/7/2016 19:09
p-Isopropyltoluene		< 4.24	ug/Kg		9/7/2016 19:09
sec-Butylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
Styrene		< 10.6	ug/Kg		9/7/2016 19:09
tert-Butylbenzene		< 4.24	ug/Kg		9/7/2016 19:09
Tetrachloroethene		< 4.24	ug/Kg		9/7/2016 19:09
Toluene		< 4.24	ug/Kg		9/7/2016 19:09
trans-1,2-Dichloroethene		< 4.24	ug/Kg		9/7/2016 19:09
trans-1,3-Dichloropropen	e	< 4.24	ug/Kg		9/7/2016 19:09

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Date Sampled: 9/

9/1/2016

Matrix:

Soil

Date Received:

9/2/2016

Mau IX: 5011			Dat	e veceiven:	7/4/4010	
Trichloroethene	< 4,24	ug/Kg			9/7/201	5 19:09
Trichlorofluoromethane	< 4.24	ug/Kg			9/7/201	5 19:09
Vinyl chloride	< 4.24	ug/Kg			9/7/201	5 19:09
Surrogate	Perce	ent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		112	81.3 - 124		9/7/2016	19:09
4-Bromofluorobenzene		85.9	80 - 117		9/7/2016	19:09
Pentafluorobenzene		95.3	88.3 - 111		9/7/2016	19:09
Toluene-D8		98.5	78 - 123		9/7/2016	19:09

Method Reference(s):

BPA 8260C

EPA 5035

Data File:

x35148.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.42	ug/Kg		9/7/2016 19:33
1,1,2,2-Tetrachloroethane	< 3.42	ug/Kg		9/7/2016 19:33
1,1,2-Trichloroethane	< 3.42	ug/Kg		9/7/2016 19:33
1,1-Dichloroethane	< 3.42	ug/Kg		9/7/2016 19:33
1,1-Dichloroethene	< 3.42	ug/Kg		9/7/2016 19:33
1,2,3-Trichlorobenzene	< 8.55	ug/Kg		9/7/2016 19:33
1,2,4-Trichlorobenzene	< 8.55	ug/Kg		9/7/2016 19:33
1,2,4-Trimethylbenzene	< 3.42	ug/Kg		9/7/2016 19:33
1,2-Dibromo-3-Chloropropane	< 17.1	ug/Kg		9/7/2016 19:33
1,2-Dibromoethane	< 3.42	ug/Kg		9/7/2016 19:33
1,2-Dichlorobenzene	< 3.42	ug/Kg		9/7/2016 19:33
1,2-Dichloroethane	< 3.42	ug/Kg		9/7/2016 19:33
1,2-Dichloropropane	< 3.42	ug/Kg		9/7/2016 19:33
1,3,5-Trimethylbenzene	< 3.42	ug/Kg		9/7/2016 19:33
1,3-Dichlorobenzene	< 3.42	ug/Kg		9/7/2016 19:33
1,4-Dichlorobenzene	< 3.42	ug/Kg		9/7/2016 19:33
1,4-dioxane	<34.2 iR	ug/Kg		9/7/2016 19:33
2-Butanone	< 17.1	ug/Kg		9/7/2016 19:33
2-Hexanone	< 8.55	ug/Kg		9/7/2016 19:33
4-Methyl-2-pentanone	< 8.55 WJ	ug/Kg		9/7/2016 19:33
Acetone	<17.1 UJ	ug/Kg		9/7/2016 19:33
Benzene	< 3.42	ug/Kg		9/7/2016 19:33
Bromochloromethane	< 8.55	ug/Kg		9/7/2016 19:33
Bromodichloromethane	< 3.42	ug/Kg		9/7/2016 19:33
Bromoform	< 8.55	ug/Kg		9/7/2016 19:33
Bromomethane	< 3.42	ug/Kg		9/7/2016 19:33
Carbon disulfide	< 3.42	ug/Kg		9/7/2016 19:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	E2-9-10 ft				
Lab Sample ID:	163832-08			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.42	ug/Kg		9/7/2016 19:33
Chlorobenzene		< 3.42	ug/Kg		9/7/2016 19:33
Chloroethane		< 3.42	ug/Kg		9/7/2016 19:33
Chloroform		< 3.42	ug/Kg		9/7/2016 19:33
Chloromethane		< 3.42	ug/Kg		9/7/2016 19:33
cis-1,2-Dichloroethene		< 3.42	ug/Kg		9/7/2016 19:33
cis-1,3-Dichloropropene		< 3.42	ug/Kg		9/7/2016 19:33
Cyclohexane		< 17.1	ug/Kg		9/7/2016 19:33
Dibromochloromethane		< 3.42	ug/Kg		9/7/2016 19:33
Dichlorodifluoromethane	2	< 3.42	ug/Kg		9/7/2016 19:33
Ethylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
Freon 113		< 3.42	ug/Kg		9/7/2016 19:33
lsopropylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
m,p-Xylene		< 3.42	ug/Kg		9/7/2016 19:33
Methyl acetate		< 3.42	ug/Kg		9/7/2016 19:33
Methyl tert-butyl Ether		< 3.42	ug/Kg		9/7/2016 19:33
Methylcyclohexane		< 3.42	ug/Kg		9/7/2016 19:33
Methylene chloride		< 8.55	ug/Kg		9/7/2016 19:33
Naphthalene		< 8.55	ug/Kg		9/7/2016 19:33
n-Butylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
n-Propylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
o-Xylene	•	< 3.42	ug/Kg		9/7/2016 19:33
p-Isopropyltoluene		< 3.42	ug/Kg		9/7/2016 19:33
sec-Butylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
Styrene		< 8.55	ug/Kg		9/7/2016 19:33
tert-Butylbenzene		< 3.42	ug/Kg		9/7/2016 19:33
Tetrachloroethene		< 3.42	ug/Kg		9/7/2016 19:33
Toluene		< 3.42	ug/Kg		9/7/2016 19:33
trans-1,2-Dichloroethene		< 3.42	ug/Kg		9/7/2016 19:33
trans-1,3-Dichloropropen	e	< 3.42	ug/Kg		9/7/2016 19:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	E2-9-10 ft						
Lab Sample ID:	163832-08			Dat	te Sampled:	9/1/2016	
Matrix:	Soil			Dat	e Received:	9/2/2016	
Trichloroethene	the state of the s	< 3.42	ug/Kg			9/7/2016	19:33
Trichlorofluoromethan	ne	< 3.42	ug/Kg			9/7/2016	19:33
Vinyl chloride		< 3.42	ug/Kg			9/7/2016	19:33
Surrogate		Perce	nt Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4	•		109	81.3 - 124		9/7/2016	19:33
4-Bromofluorobenzene	e		93.5	80 - 117		9/7/2016	19:33
Pentafluorobenzene			97.4	88.3 - 111		9/7/2016	19:33
Toluene-D8			101	78 - 123		9/7/2016	19:33

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35149.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled: 9,

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.39	ug/Kg		9/7/2016 19:57
1,1,2,2-Tetrachloroethane	< 3.39	ug/Kg		9/7/2016 19:57
1,1,2-Trichloroethane	< 3.39	ug/Kg		9/7/2016 19:57
1,1-Dichloroethane	< 3.39	ug/Kg		9/7/2016 19:57
1,1-Dichloroethene	< 3.39	ug/Kg		9/7/2016 19:57
1,2,3-Trichlorobenzene	< 8.48	ug/Kg		9/7/2016 19:57
1,2,4-Trichlorobenzene	< 8.48	ug/Kg		9/7/2016 19:57
1,2,4-Trimethylbenzene	< 3.39	ug/Kg		9/7/2016 19:57
1,2-Dibromo-3-Chloropropane	< 17.0	ug/Kg		9/7/2016 19:57
1,2-Dibromoethane	< 3.39	ug/Kg		9/7/2016 19:57
1,2-Dichlorobenzene	< 3.39	ug/Kg		9/7/2016 19:57
1,2-Dichloroethane	< 3.39	ug/Kg		9/7/2016 19:57
1,2-Dichloropropane	< 3.39	ug/Kg		9/7/2016 19:57
1,3,5-Trimethylbenzene	< 3.39	ug/Kg		9/7/2016 19:57
1,3-Dichlorobenzene	< 3.39	ug/Kg		9/7/2016 19:57
1,4-Dichlorobenzene	< 3.39	ug/Kg		9/7/2016 19:57
1,4-dioxane	<33.9 R	ug/Kg		9/7/2016 19:57
2-Butanone	< 17.0	ug/Kg		9/7/2016 19:57
2-Hexanone	< 8.48	ug/Kg		9/7/2016 19:57
4-Methyl-2-pentanone	< 8.48 い ゴ	ug/Kg		9/7/2016 19:57
Acetone	12.7 5	ug/Kg	j	9/7/2016 19:57
Benzene	< 3.39	ug/Kg		9/7/2016 19:57
Bromochloromethane	< 8.48	ug/Kg		9/7/2016 19:57
Bromodichloromethane	< 3.39	ug/Kg		9/7/2016 19:57
Bromoform	< 8.48	ug/Kg		9/7/2016 19:57
Bromomethane	< 3.39	ug/Kg		9/7/2016 19:57
Carbon disulfide	< 3.39	ug/Kg		9/7/2016 19:57

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MAP 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	E2-14-15 ft				
Lab Sample ID:	163832-09			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.39	ug/Kg		9/7/2016 19:57
Chlorobenzene		< 3.39	ug/Kg		9/7/2016 19:57
Chloroethane		< 3.39	ug/Kg		9/7/2016 19:57
Chloroform		< 3.39	ug/Kg		9/7/2016 19:57
Chloromethane		< 3.39	ug/Kg		9/7/2016 19:57
cis-1,2-Dichloroethene		< 3.39	ug/Kg		9/7/2016 19:57
cis-1,3-Dichloropropene		< 3.39	ug/Kg		9/7/2016 19:57
Cyclohexane		< 17.0	ug/Kg		9/7/2016 19:57
Dibromochloromethane		< 3.39	ug/Kg		9/7/2016 19:57
Dichlorodifluoromethan	e	< 3.39	ug/Kg		9/7/2016 19:57
Ethylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
Freon 113		< 3.39	ug/Kg		9/7/2016 19:57
Isopropylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
m,p-Xylene		< 3.39	ug/Kg		9/7/2016 19:57
Methyl acetate		< 3.39	ug/Kg		9/7/2016 19:57
Methyl tert-butyl Ether		< 3.39	ug/Kg		9/7/2016 19:57
Methylcyclohexane		< 3.39	ug/Kg		9/7/2016 19:57
Methylene chloride		< 8.48	ug/Kg		9/7/2016 19:57
Naphthalene		< 8.48	ug/Kg		9/7/2016 19:57
n-Butylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
n-Propylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
o-Xylene		< 3.39	ug/Kg		9/7/2016 19:57
p-Isopropyltoluene		< 3.39	ug/Kg		9/7/2016 19:57
sec-Butylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
Styrene		< 8.48	ug/Kg		9/7/2016 19:57
tert-Butylbenzene		< 3.39	ug/Kg		9/7/2016 19:57
Tetrachloroethene		< 3.39	ug/Kg		9/7/2016 19:57
Toluene		< 3.39	ug/Kg		9/7/2016 19:57
trans-1,2-Dichloroethene	:	< 3,39	ug/Kg		9/7/2016 19:57
trans-1,3-Dichloroproper	ne	< 3.39	ug/Kg		9/7/2016 19:57

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Date Sampled:

9/1/2016

Matrix:

Soil

Date Received:

9/2/2016

Trichloroethene	< 3.39	ug/Kg			9/7/201	6 19:57
Trichlorofluoromethane	< 3.39	ug/Kg			9/7/201	6 19:57
Vinyl chloride	< 3,39	ug/Kg			9/7/201	6 19:57
Surrogate	Percer	Percent Recovery		Outliers	Date Anal	yzed
1,2-Dichloroethane-d4		110			9/7/2016	19:57
4-Bromofluorobenzene		91.3			9/7/2016	19:57
Pentafluorobenzene		94.1	88.3 - 111		9/7/2016	19:57
Toluene-D8		98.0	78 - 123		9/7/2016	19:57

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35150.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Volatile Organics

ŭ				
Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.33	ug/Kg		9/7/2016 20:21
1,1,2,2-Tetrachloroethane	< 3.33	ug/Kg		9/7/2016 20:21
1,1,2-Trichloroethane	< 3.33	ug/Kg		9/7/2016 20:21
1,1-Dichloroethane	< 3.33	ug/Kg		9/7/2016 20:21
1,1-Dichloroethene	< 3.33	ug/Kg		9/7/2016 20:21
1,2,3-Trichlorobenzene	< 8.31	ug/Kg		9/7/2016 20:21
1,2,4-Trichlorobenzene	< 8.31	ug/Kg		9/7/2016 20:21
1,2,4-Trimethylbenzene	< 3.33	ug/Kg	,	9/7/2016 20:21
1,2-Dibromo-3-Chloropropane	< 16.6	ug/Kg		9/7/2016 20:21
1,2-Dibromoethane	< 3.33	ug/Kg		9/7/2016 20:21
1,2-Dichlorobenzene	< 3.33	ug/Kg		9/7/2016 20:21
1,2-Dichloroethane	< 3.33	ug/Kg		9/7/2016 20:21
1,2-Dichloropropane	< 3.33	ug/Kg		9/7/2016 20:21
1,3,5-Trimethylbenzene	< 3.33	ug/Kg		9/7/2016 20:21
1,3-Dichlorobenzene	< 3,33	ug/Kg		9/7/2016 20:21
1,4-Dichlorobenzene	< 3.33	ug/Kg		9/7/2016 20:21
1,4-dioxane	<33.5 R	ug/Kg		9/7/2016 20:21
2-Butanone	< 16.6	ug/Kg		9/7/2016 20:21
2-Hexanone	< 8.31	ug/Kg		9/7/2016 20:21
4-Methyl-2-pentanone	<8.31 VJ	ug/Kg		9/7/2016 20:21
Acetone	<16.6 นวี	ug/Kg		9/7/2016 20:21
Benzene	< 3.33	ug/Kg		9/7/2016 20:21
Bromochloromethane	< 8.31	ug/Kg		9/7/2016 20:21
Bromodichloromethane	< 3.33	ug/Kg		9/7/2016 20:21
Bromoform	< 8.31	ug/Kg		9/7/2016 20:21
Bromomethane	< 3.33	ug/Kg		9/7/2016 20:21
Carbon disulfide	< 3.33	ug/Kg		9/7/2016 20:21

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F1-3-5 ft				
Lab Sample ID:	163832-10			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.33	ug/Kg		9/7/2016 20:
Chlorobenzene		< 3.33	ug/Kg		9/7/2016 20:
Chloroethane		< 3.33	ug/Kg		9/7/2016 20:
Chloroform		< 3.33	ug/Kg		9/7/2016 20:
Chloromethane		< 3.33	ug/Kg		9/7/2016 20:
cis-1,2-Dichloroethene		< 3.33	ug/Kg		9/7/2016 20:
cis-1,3-Dichloropropene		< 3.33	ug/Kg		9/7/2016 20:
Cyclohexane		< 16.6	ug/Kg		9/7/2016 20:
Dibromochloromethane		< 3.33	ug/Kg		9/7/2016 20:
Dichlorodifluoromethane	9	< 3.33	ug/Kg		9/7/2016 20:3
Ethylbenzene		< 3.33	ug/Kg	•	9/7/2016 20:2
Freon 113		< 3,33	ug/Kg		9/7/2016 20:2
Isopropylbenzene		< 3.33	ug/Kg		9/7/2016 20:2
m,p-Xylene		< 3.33	ug/Kg		9/7/2016 20:2
Methyl acetate		< 3.33	ug/Kg		9/7/2016 20:2
Methyl tert-butyl Ether		< 3.33	ug/Kg		9/7/2016 20:2
Methylcyclohexane		< 3.33	ug/Kg		9/7/2016 20:2
Methylene chloride		< 8.31	ug/Kg		9/7/2016 20:2
Naphthalene		< 8.31	ug/Kg		9/7/2016 20:2
n-Butylbenzene		< 3.33	ug/Kg		9/7/2016 20:2
n-Propylbenzene		< 3.33	ug/Kg		9/7/2016 20:2
o-Xylene		< 3.33	ug/Kg		9/7/2016 20:2
p-Isopropyltoluene		< 3.33	ug/Kg		9/7/2016 20:2
sec-Butylbenzene		< 3.33	ug/Kg		9/7/2016 20:2
Styrene		< 8.31	ug/Kg		9/7/2016 20:2
tert-Butylbenzene		< 3.33	ug/Kg		9/7/2016 20:2
Tetrachloroethene		< 3.33	ug/Kg		9/7/2016 20:2
Toluene		< 3.33	ug/Kg		9/7/2016 20:2
trans-1,2-Dichloroethene		< 3.33	ug/Kg		9/7/2016 20:2
trans-1,3-Dichloropropen	e	< 3.33	ug/Kg		9/7/2016 20:2
			-		

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix: Soil **Date Sampled:** 9/1/2016

Date Received: 9/2/2016

					7, -, -, -, -, -, -, -, -, -, -, -, -, -,	
Trichloroethene	< 3.33	ug/Kg			9/7/2016	20:21
Trichlorofluoromethane	< 3.33	ug/Kg			9/7/2016	20:21
Vinyl chloride	< 3.33	ug/Kg			9/7/2016	20:21
Surrogate	Perce	Percent Recovery		Outliers	Date Analyzed	
1,2-Dichloroethane-d4		111			9/7/2016	20:21
4-Bromofluorobenzene		87.3			9/7/2016	20:21
Pentafluorobenzene		95.6			9/7/2016	20:21
Toluene-D8		98.2	78 - 123		9/7/2016	20:21

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35151.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Matrix:

Soil

Date Sampled: 9

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.92	ug/Kg		9/7/2016 20:45
1,1,2,2-Tetrachloroethane	< 3.92	ug/Kg		9/7/2016 20:45
1,1,2-Trichloroethane	< 3.92	ug/Kg		9/7/2016 20:45
1,1-Dichloroethane	< 3.92	ug/Kg		9/7/2016 20:45
1,1-Dichloroethene	< 3.92	ug/Kg		9/7/2016 20:45
1,2,3-Trichlorobenzene	< 9.81	ug/Kg		9/7/2016 20:45
1,2,4-Trichlorobenzene	< 9.81	ug/Kg		9/7/2016 20:45
1,2,4-Trimethylbenzene	< 3.92	ug/Kg		9/7/2016 20:45
1,2-Dibromo-3-Chloropropane	< 19.6	ug/Kg		9/7/2016 20:45
1,2-Dibromoethane	< 3.92	ug/Kg		9/7/2016 20:45
1,2-Dichlorobenzene	< 3.92	ug/Kg		9/7/2016 20:45
1,2-Dichloroethane	< 3.92	ug/Kg		9/7/2016 20:45
1,2-Dichloropropane	< 3.92	ug/Kg		9/7/2016 20:45
1,3,5-Trimethylbenzene	< 3.92	ug/Kg		9/7/2016 20:45
1,3-Dichlorobenzene	< 3.92	ug/Kg		9/7/2016 20:45
1,4-Dichlorobenzene	< 3.92	ug/Kg		9/7/2016 20:45
1,4-dioxane	<39.2 j.	ug/Kg		9/7/2016 20:45
2-Butanone	< 19.6	ug/Kg		9/7/2016 20:45
2-Hexanone	< 9.81	ug/Kg		9/7/2016 20:45
4-Methyl-2-pentanone	< 9.81 UJ	ug/Kg		9/7/2016 20:45
Acetone	14.1 J	ug/Kg	J	9/7/2016 20:45
Benzene	< 3.92	ug/Kg		9/7/2016 20:45
Bromochloromethane	< 9.81	ug/Kg		9/7/2016 20:45
Bromodichloromethane	< 3.92	ug/Kg		9/7/2016 20:45
Bromoform	< 9.81	ug/Kg		9/7/2016 20:45
Bromomethane	< 3.92	ug/Kg		9/7/2016 20:45
Carbon disulfide	< 3.92	ug/Kg		9/7/2016 20:45

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MXP5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F1-9-10 ft				
Lab Sample ID:	163832-11			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.92	ug/Kg		9/7/2016 20:45
Chlorobenzene		< 3.92	ug/Kg		9/7/2016 20:45
Chloroethane		< 3.92	ug/Kg		9/7/2016 20:45
Chloroform		< 3.92	ug/Kg		9/7/2016 20:45
Chloromethane		< 3.92	ug/Kg		9/7/2016 20:45
cis-1,2-Dichloroethene		< 3.92	ug/Kg		9/7/2016 20:45
cis-1,3-Dichloropropene		< 3.92	ug/Kg		9/7/2016 20:45
Cyclohexane		< 19.6	ug/Kg		9/7/2016 20:45
Dibromochloromethane		< 3.92	ug/Kg		9/7/2016 20:45
Dichlorodifluoromethan	9	< 3.92	ug/Kg		9/7/2016 20:45
Ethylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
Freon 113		< 3.92	ug/Kg		9/7/2016 20:45
lsopropylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
m,p-Xylene		< 3.92	ug/Kg		9/7/2016 20:45
Methyl acetate		< 3.92	ug/Kg		9/7/2016 20:45
Methyl tert-butyl Ether		< 3.92	ug/Kg		9/7/2016 20:45
Methylcyclohexane		< 3.92	ug/Kg		9/7/2016 20:45
Methylene chloride		< 9.81	ug/Kg		9/7/2016 20:45
Naphthalene		< 9.81	ug/Kg		9/7/2016 20:45
n-Butylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
n-Propylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
o-Xylene		< 3.92	ug/Kg		9/7/2016 20:45
p-Isopropyltoluene		< 3.92	ug/Kg		9/7/2016 20:45
sec-Butylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
Styrene		< 9.81	ug/Kg		9/7/2016 20:45
tert-Butylbenzene		< 3.92	ug/Kg		9/7/2016 20:45
Tetrachloroethene		< 3.92	ug/Kg		9/7/2016 20:45
Toluene		< 3.92	ug/Kg		9/7/2016 20:45
trans-1,2-Dichloroethene		< 3.92	ug/Kg		9/7/2016 20:45
trans-1,3-Dichloropropen	e	< 3.92	ug/Kg		9/7/2016 20:45

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

· · · · · · · · · · · · · · · · · · ·						
Trichloroethene	< 3.92	ug/Kg			9/7/201	6 20:45
Trichlorofluoromethane	< 3.92	ug/Kg			9/7/201	6 20:45
Vinyl chloride	< 3.92	ug/Kg			9/7/201	6 20:45
Surrogate	Percent Recovery		Limits	Outliers	Date Anal	yzed
1,2-Dichloroethane-d4		109		-	9/7/2016	20:45
4-Bromofluorobenzene		92.4			9/7/2016	20:45
Pentafluorobenzene		93.5			9/7/2016	20:45
Toluene-D8		97.9	78 - 123		9/7/2016	20:45

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35152.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.68	ug/Kg		9/7/2016 21:09
1,1,2,2-Tetrachloroethane	< 3.68	ug/Kg		9/7/2016 21:09
1,1,2-Trichloroethane	< 3.68	ug/Kg		9/7/2016 21:09
1,1-Dichloroethane	< 3.68	ug/Kg		9/7/2016 21:09
1,1-Dichloroethene	< 3.68	ug/Kg		9/7/2016 21:09
1,2,3-Trichlorobenzene	< 9.21	ug/Kg		9/7/2016 21:09
1,2,4-Trichlorobenzene	< 9.21	ug/Kg		9/7/2016 21:09
1,2,4-Trimethylbenzene	< 3.68	ug/Kg		9/7/2016 21:09
1,2-Dibromo-3-Chloropropane	< 18.4	ug/Kg		9/7/2016 21:09
1,2-Dibromoethane	< 3.68	ug/Kg		9/7/2016 21:09
1,2-Dichlorobenzene	< 3.68	ug/Kg		9/7/2016 21:09
1,2-Dichloroethane	< 3.68	ug/Kg		9/7/2016 21:09
1,2-Dichloropropane	< 3.68	ug/Kg		9/7/2016 21:09
1,3,5-Trimethylbenzene	< 3.68	ug/Kg		9/7/2016 21:09
1,3-Dichlorobenzene	< 3.68	ug/Kg		9/7/2016 21:09
1,4-Dichlorobenzene	< 3.68	ug/Kg	•	9/7/2016 21:09
1,4-dioxane	<38.8 R	ug/Kg		9/7/2016 21:09
2-Butanone	< 18.4	ug/Kg		9/7/2016 21:09
2-Hexanone	< 9.21	ug/Kg		9/7/2016 21:09
4-Methyl-2-pentanone	< 9.21 UJ	ug/Kg		9/7/2016 21:09
Acetone	15.5 T	ug/Kg	J	9/7/2016 21:09
Benzene	< 3.68	ug/Kg		9/7/2016 21:09
Bromochloromethane	< 9.21	ug/Kg		9/7/2016 21:09
Bromodichloromethane	< 3.68	ug/Kg		9/7/2016 21:09
Bromoform	< 9.21	ug/Kg		9/7/2016 21:09
Bromomethane	< 3.68	ug/Kg		9/7/2016 21:09
Carbon disulfide	< 3.68	ug/Kg		9/7/2016 21:09

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F1-15 ft				
Lab Sample ID:	163832-12			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride	· , · , , . ,	< 3.68	ug/Kg		9/7/2016 21:09
Chlorobenzene		< 3.68	ug/Kg		9/7/2016 21:09
Chloroethane		< 3.68	ug/Kg		9/7/2016 21:09
Chloroform		< 3.68	ug/Kg		9/7/2016 21:09
Chloromethane		< 3.68	ug/Kg		9/7/2016 21:09
cis-1,2-Dichloroethene		< 3.68	ug/Kg		9/7/2016 21:09
cis-1,3-Dichloropropene		< 3.68	ug/Kg		9/7/2016 21:09
Cyclohexane		< 18.4	ug/Kg		9/7/2016 21:09
Dibromochloromethane		< 3.68	ug/Kg		9/7/2016 21:09
Dichlorodifluoromethane	•	< 3.68	ug/Kg		9/7/2016 21:09
Ethylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
Freon 113		< 3.68	ug/Kg		9/7/2016 21:09
lsopropylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
m,p-Xylene		< 3.68	ug/Kg		9/7/2016 21:09
Methyl acetate		< 3.68	ug/Kg		9/7/2016 21:09
Methyl tert-butyl Ether		< 3.68	ug/Kg		9/7/2016 21:09
Methylcyclohexane		< 3.68	ug/Kg		9/7/2016 21:09
Methylene chloride		< 9.21	ug/Kg		9/7/2016 21:09
Naphthalene		< 9.21	ug/Kg		9/7/2016 21:09
n-Butylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
n-Propylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
o-Xylene		< 3.68	ug/Kg		9/7/2016 21:09
p-Isopropyltoluene	•	< 3.68	ug/Kg		9/7/2016 21:09
sec-Butylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
Styrene		< 9.21	ug/Kg		9/7/2016 21:09
tert-Butylbenzene		< 3.68	ug/Kg		9/7/2016 21:09
Tetrachloroethene		< 3.68	ug/Kg		9/7/2016 21:09
Toluene		< 3.68	ug/Kg		9/7/2016 21:09
trans-1,2-Dichloroethene		< 3.68	ug/Kg		9/7/2016 21:09
trans-1,3-Dichloropropen	e	< 3.68	ug/Kg		9/7/2016 21:09

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F1-15 ft
Lab Sample ID:	163832-12
Matrix:	Soil

Date Sampled: 9/1/2016

Matrix:	Soil			Dat	e Received:	9/2/2016	
Trichloroethene		< 3.68	ug/Kg			9/7/2010	6 21:09
Trichlorofluorometha	ane	< 3.68	ug/Kg			9/7/2016	6 21:09
Vinyl chloride		< 3.68	ug/Kg			9/7/2016	6 21:09
Surrogate		Percent Recovery		Limits	Outliers	Date Anal	yzed
1,2-Dichloroethane-d	4	111		81.3 - 124		9/7/2016	21:09
4-Bromofluorobenze	ne	91.5		80 - 117		9/7/2016	21:09
Pentafluorobenzene			94.0	88.3 - 111		9/7/2016	21:09
Toluene-D8			98.1	78 - 123		9/7/2016	21:09

Method Reference(s):

EPA 8260C

Data File:

EPA 5035 x35153.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Data Analysed
1,1,1-Trichloroethane	< 3.40		Quantier	Date Analyzed
1,1,2,2-Tetrachloroethane	< 3.40	ug/Kg		9/7/2016 21:33
1,1,2-Trichloroethane		ug/Kg		9/7/2016 21:33
	< 3.40	ug/Kg		9/7/2016 21:33
1,1-Dichloroethane	< 3.40	ug/Kg		9/7/2016 21:33
1,1-Dichloroethene	< 3.40	ug/Kg		9/7/2016 21:33
1,2,3-Trichlorobenzene	< 8.51	ug/Kg		9/7/2016 21:33
1,2,4-Trichlorobenzene	< 8.51	ug/Kg		9/7/2016 21:33
1,2,4-Trimethylbenzene	< 3.40	ug/Kg		9/7/2016 21:33
1,2-Dibromo-3-Chloropropane	< 17.0	ug/Kg		9/7/2016 21:33
1,2-Dibromoethane	< 3.40	ug/Kg		9/7/2016 21:33
1,2-Dichlorobenzene	< 3.40	ug/Kg		9/7/2016 21:33
1,2-Dichloroethane	< 3.40	ug/Kg		9/7/2016 21:33
1,2-Dichloropropane	< 3.40	ug/Kg		9/7/2016 21:33
1,3,5-Trimethylbenzene	< 3.40	ug/Kg		9/7/2016 21:33
1,3-Dichlorobenzene	< 3.40	ug/Kg		9/7/2016 21:33
1,4-Dichlorobenzene	< 3.40	ug/Kg		9/7/2016 21:33
1,4-dioxane	<34.0 iR	ug/Kg		9/7/2016 21:33
2-Butanone .	< 17.0	ug/Kg		9/7/2016 21:33
2-Hexanone	< 8.51	ug/Kg		9/7/2016 21:33
4-Methyl-2-pentanone	< 8.51 WJ	ug/Kg		9/7/2016 21:33
Acetone	<17.0 UJ	ug/Kg		9/7/2016 21:33
Benzene	< 3.40	ug/Kg		9/7/2016 21:33
Bromochloromethane	< 8.51	ug/Kg		9/7/2016 21:33
Bromodichloromethane	< 3.40	ug/Kg		9/7/2016 21:33
Bromoform	< 8.51	ug/Kg		9/7/2016 21:33
Bromomethane	< 3.40	ug/Kg		9/7/2016 21:33
Carbon disulfide	< 3.40	ug/Kg		9/7/2016 21:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F2-4-6 ft				
Lab Sample ID:	163832-13			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
Carbon Tetrachloride		< 3.40	ug/Kg		9/7/2016 21:33
Chlorobenzene		< 3.40	ug/Kg		9/7/2016 21:33
Chloroethane		< 3.40	ug/Kg		9/7/2016 21:33
Chloroform		< 3.40	ug/Kg		9/7/2016 21:33
Chloromethane		< 3.40	ug/Kg		9/7/2016 21:33
cis-1,2-Dichloroethene		< 3.40	ug/Kg		9/7/2016 21:33
cis-1,3-Dichloropropene	•	< 3.40	ug/Kg		9/7/2016 21:33
Cyclohexane		< 17.0	ug/Kg		9/7/2016 21:33
Dibromochloromethane		< 3.40	ug/Kg		9/7/2016 21:33
Dichlorodifluoromethan	e	< 3.40	ug/Kg		9/7/2016 21:33
Ethylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
Freon 113		< 3.40	ug/Kg		9/7/2016 21:33
Isopropylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
m,p-Xylene		< 3.40	ug/Kg		9/7/2016 21:33
Methyl acetate		< 3.40	ug/Kg		9/7/2016 21:33
Methyl tert-butyl Ether		< 3.40	ug/Kg		9/7/2016 21:33
Methylcyclohexane		< 3.40	ug/Kg		9/7/2016 21:33
Methylene chloride		< 8.51	ug/Kg		9/7/2016 21:33
Naphthalene		< 8.51	ug/Kg		9/7/2016 21:33
n-Butylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
n-Propylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
o-Xylene		< 3.40	ug/Kg		9/7/2016 21:33
p-Isopropyltoluene		< 3.40	ug/Kg		9/7/2016 21:33
sec-Butylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
Styrene		< 8.51	ug/Kg		9/7/2016 21:33
tert-Butylbenzene		< 3.40	ug/Kg		9/7/2016 21:33
Tetrachloroethene		< 3.40	ug/Kg		9/7/2016 21:33
Toluene		< 3.40	ug/Kg		9/7/2016 21:33
trans-1,2-Dichloroethene		< 3.40	ug/Kg		9/7/2016 21:33
trans-1,3-Dichloroproper	ie	< 3.40	ug/Kg		9/7/2016 21:33

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

Matrix:

163832-13

Soil

Date Sampled:

9/1/2016

Sı

<3.40 ug/Kg

Percent Recovery

112

99.6

Date Received:

Qutliers

9/2/2016

Trichloroethene Trichlorofluoromethane

< 3.40

ug/Kg

9/7/2016 21:33

9/7/2016 21:33

Vinyl chloride

< 3.40 ug/Kg

9/7/2016 21:33 Date Analyzed

Surrogate
1,2-Dichloroethane-d4
4-Bromofluorobenzene
Pentafluorobenzene

91.7 93.6

80 - 117 88.3 - 111

78 - 123

Limits

81.3 - 124

9/7/2016 21:33 9/7/2016 21:33

21:33

21:33

9/7/2016

9/7/2016

Toluene-D8

Method Reference(s):

BPA 8260C

Data File:

EPA 5035 x35154.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled: 9/1/2016

9/2/2016

Date Received:

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.12	ug/Kg		9/7/2016 21:57
1,1,2,2-Tetrachloroethane	< 4.12	ug/Kg		9/7/2016 21:57
1,1,2-Trichloroethane	< 4.12	ug/Kg		9/7/2016 21:57
1,1-Dichloroethane	< 4.12	ug/Kg		9/7/2016 21:57
1,1-Dichloroethene	< 4.12	ug/Kg		9/7/2016 21:57
1,2,3-Trichlorobenzene	< 10.3	ug/Kg		9/7/2016 21:57
1,2,4-Trichlorobenzene	< 10.3	ug/Kg		9/7/2016 21:57
1,2,4-Trimethylbenzene	< 4.12	ug/Kg		9/7/2016 21:57
1,2-Dibromo-3-Chloropropane	< 20.6	ug/Kg		9/7/2016 21:57
1,2-Dibromoethane	< 4.12	ug/Kg		9/7/2016 21:57
1,2-Dichlorobenzene	< 4.12	ug/Kg		9/7/2016 21:57
1,2-Dichloroethane	< 4.12	ug/Kg		9/7/2016 21:57
1,2-Dichloropropane	< 4.12	ug/Kg		9/7/2016 21:57
1,3,5-Trimethylbenzene	< 4.12	ug/Kg		9/7/2016 21:57
1,3-Dichlorobenzene	< 4.12	ug/Kg		9/7/2016 21:57
1,4-Dichlorobenzene	< 4.12	ug/Kg		9/7/2016 21:57
1,4-dioxane	<412 R	ug/Kg		9/7/2016 21:57
2-Butanone	< 20.6	ug/Kg		9/7/2016 21:57
2-Hexanone	< 10.3	ug/Kg		9/7/2016 21:57
4-Methyl-2-pentanone	<10.3 UJ	ug/Kg		9/7/2016 21:57
Acetone	<20.6 US	ug/Kg		9/7/2016 21:57
Benzene	< 4.12	ug/Kg		9/7/2016 21:57
Bromochloromethane	< 10.3	ug/Kg		9/7/2016 21:57
Bromodichloromethane	< 4.12	ug/Kg		9/7/2016 21:57
Bromoform	< 10.3	ug/Kg		9/7/2016 21:57
Bromomethane	< 4.12	ug/Kg		9/7/2016 21:57
Carbon disulfide	< 4.12	ug/Kg		9/7/2016 21:57

Client:

C&S Companies

Project Reference:

19 North Street

Matrix: Soil Date Received: 9/2/ Carbon Tetrachloride < 4.12 ug/Kg 9 Chlorobenzene < 4.12 ug/Kg 9 Chloroethane < 4.12 ug/Kg 9 Chloromethane < 4.12 ug/Kg 9 Chloromethane < 4.12 ug/Kg 9 cis-1,2-Dichloroethene < 4.12 ug/Kg 9 cis-1,3-Dichloropropene < 4.12 ug/Kg 9 Cyclohexane < 20.6 ug/Kg 9 Dibromochloromethane < 4.12 ug/Kg 9 Dichlorodifluoromethane < 4.12 ug/Kg 9 Ethylbenzene < 4.12 ug/Kg 9 Freon 113 < 4.12 ug/Kg 9 isopropylbenzene < 4.12 ug/Kg 9 m,p-Xylene < 4.12 ug/Kg 9 Methyl tetr-butyl Ether < 4.12 ug/Kg 9 Methylcyclohexane < 4.12 ug/Kg 9 <t< th=""><th>Sample Identifier:</th><th>F2-9-10 ft</th><th></th><th></th><th></th><th></th></t<>	Sample Identifier:	F2-9-10 ft				
Carbon Tetrachloride < 4.12 ug/Kg 9 Chlorobenzene < 4.12 ug/Kg 9 Chloroethane < 4.12 ug/Kg 9 Chloroform < 4.12 ug/Kg 9 Chloromethane < 4.12 ug/Kg 9 cis-1,2-Dichloroethene < 4.12 ug/Kg 9 cis-1,3-Dichloropropene < 4.12 ug/Kg 9 Cyclohexane < 20.6 ug/Kg 9 Dibromochloromethane < 4.12 ug/Kg 9 Dichlorodifluoromethane < 4.12 ug/Kg 9 Ethylbenzene < 4.12 ug/Kg 9 Freon 113 < 4.12 ug/Kg 9 isopropylbenzene < 4.12 ug/Kg 9 m,p-Xylene < 4.12 ug/Kg 9 Methyl tert-butyl Ether < 4.12 ug/Kg 9 Methylcyclohexane < 4.12 ug/Kg 9 Methylene chloride < 10.3 ug/Kg 9	•	163832-14			Date Sampled:	9/1/2016
Chlorobenzene	Matrix:	Soil			Date Received:	9/2/2016
Chloroethane	Carbon Tetrachloride		< 4.12	ug/Kg		9/7/2016 21:5
Chloroform	Chlorobenzene		< 4.12	ug/Kg		9/7/2016 21:5
Chloromethane	Chloroethane		< 4.12	ug/Kg		9/7/2016 21:5
cis-1,2-Dichloroethene < 4.12	Chloroform		< 4.12	ug/Kg		9/7/2016 21:5
cis-1,3-Dichloropropene < 4.12	Chloromethane		< 4.12	ug/Kg		9/7/2016 21:5
Cyclohexane < 20.6	cis-1,2-Dichloroethene		< 4.12	ug/Kg		9/7/2016 21:5
Dibromochloromethane < 4.12	cis-1,3-Dichloropropene	:	< 4.12	ug/Kg		9/7/2016 21:5
Dichlorodifluoromethane < 4.12	Cyclohexane		< 20.6	ug/Kg		9/7/2016 21:5
Ethylbenzene	Dibromochloromethane		< 4.12	ug/Kg		9/7/2016 21:5
Freon 113 < 4.12	Dichlorodifluoromethan	e	< 4.12	ug/Kg		9/7/2016 21:5
Isopropylbenzene	Ethylbenzene		< 4.12	ug/Kg		9/7/2016 21:5
m,p-Xylene < 4.12	Freon 113		< 4.12	ug/Kg		9/7/2016 21:5
Methyl acetate < 4.12	Isopropylbenzene		< 4.12	ug/Kg		9/7/2016 21:5
Methyl tert-butyl Ether < 4.12	m,p-Xylene		< 4.12	ug/Kg		9/7/2016 21:5
Methylcyclohexane < 4.12	Methyl acetate		< 4.12	ug/Kg		9/7/2016 21:5
Methylene chloride <10.3	Methyl tert-butyl Ether		< 4.12	ug/Kg		9/7/2016 21:5
Naphthalene < 10.3	Methylcyclohexane		< 4.12	ug/Kg		9/7/2016 21:5
n-Butylbenzene < 4.12	Methylene chloride		< 10.3	ug/Kg		9/7/2016 21:5
n-Propylbenzene < 4.12	Naphthalene		< 10.3	ug/Kg		9/7/2016 21:5
o-Xylene < 4.12	n-Butylbenzene		< 4.12	ug/Kg		9/7/2016 21:5
p-Isopropyltoluene < 4.12	n-Propylbenzene		< 4.12	ug/Kg		9/7/2016 21:5
sec-Butylbenzene < 4.12	o-Xylene		< 4.12	ug/Kg		9/7/2016 21:5
Styrene < 10.3 ug/Kg 9/ tert-Butylbenzene < 4.12	p-Isopropyltoluene		< 4.12	ug/Kg		9/7/2016 21:5
tert-Butylbenzene < 4.12	sec-Butylbenzene		< 4.12	ug/Kg		9/7/2016 21:5
Tetrachloroethene < 4.12 ug/Kg 9/ Toluene < 4.12 ug/Kg 9/	Styrene		< 10.3	ug/Kg		9/7/2016 21:5
Toluene <4.12 ug/Kg 9/	tert-Butylbenzene		< 4.12	ug/Kg		9/7/2016 21:53
7	Tetrachloroethene		< 4.12	ug/Kg		9/7/2016 21:53
trans-1,2-Dichloroethene < 4.12 ug/Kg 9/	Toluene		< 4.12	ug/Kg		9/7/2016 21:53
•	trans-1,2-Dichloroethene		< 4.12	ug/Kg		9/7/2016 21:53
trans-1,3-Dichloropropene <4.12 ug/Kg 9/	trans-1,3-Dichloroproper	ıe	< 4.12	ug/Kg		9/7/2016 21:57

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix: Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Trichloroethene < 4.12 ug/Kg 9/7/2016 21:57 Trichlorofluoromethane < 4.12 ug/Kg 9/7/2016 21:57 Vinyl chloride < 4.12 ug/Kg 9/7/2016 21:57 Surrogate Percent Recovery Outliers **Date Analyzed** Limits 1,2-Dichloroethane-d4 111 81.3 - 124 9/7/2016 21:57 4-Bromofluorobenzene 91.1 80 - 117 9/7/2016 21:57 Pentafluorobenzene 88.3 - 111 9/7/2016 94.1 21:57 Toluene-D8 99.3 78 - 123 9/7/2016 21:57

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35155.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

North Street

Sample Identifier:

A4-22-23 ft

Lab Sample ID:

163845-01

Matrix:

Soil

Date Sampled: 9/2/2016 **Date Received:** 9/6/2016

Volatile Organics

<u>Analyte</u>	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 137	ug/Kg		9/9/2016 18:05
1,1,2,2-Tetrachloroethane	< 137	ug/Kg		9/9/2016 18:05
1,1,2-Trichloroethane	< 137	ug/Kg		9/9/2016 18:05
1,1-Dichloroethane	< 137	ug/Kg		9/9/2016 18:05
1,1-Dichloroethene	< 137	ug/Kg		9/9/2016 18:05
1,2,3-Trichlorobenzene	< 342	ug/Kg		9/9/2016 18:05
1,2,4-Trichlorobenzene	< 342	ug/Kg		9/9/2016 18:05
1,2,4-Trimethylbenzene	3550	ug/Kg		9/9/2016 18:05
1,2-Dibromo-3-Chloropropane	< 685	ug/Kg		9/9/2016 18:05
1,2-Dibromoethane	< 137	ug/Kg		9/9/2016 18:05
1,2-Dichlorobenzene	< 137	ug/Kg		9/9/2016 18:05
1,2-Dichloroethane	< 137	ug/Kg		9/9/2016 18:05
1,2-Dichloropropane	< 137	ug/Kg		9/9/2016 18:05
1,3,5-Trimethylbenzene	1980	ug/Kg		9/9/2016 18:05
1,3-Dichlorobenzene	< 137	ug/Kg		9/9/2016 18:05
1,4-Dichlorobenzene	< 137	ug/Kg		9/9/2016 18:05
1,4-dioxane	<1370 R	ug/Kg		9/9/2016 18:05
2-Butanone	< 685	ug/Kg		9/9/2016 18:05
2-Hexanone	< 342	ug/Kg		9/9/2016 18:05
4-Methyl-2-pentanone	<342 <i>い</i> ゴ	ug/Kg		9/9/2016 18:05
Acetone	< 685 V/J	ug/Kg		9/9/2016 18:05
Benzene	< 137	ug/Kg		9/9/2016 18:05
Bromochloromethane	< 342	ug/Kg		9/9/2016 18:05
Bromodichloromethane	< 137	ug/Kg		9/9/2016 18:05
Bromoform	< 342	ug/Kg		9/9/2016 18:05
Bromomethane	<137	ug/Kg		9/9/2016 18:05
Carbon disulfide	< 137	ug/Kg		9/9/2016 18:05

Client:

C&S Companies

Project Reference:

North Street

Toject Reference.	Mortin Street		······································		
Sample Identifier:	A4-22-23 ft				
Lab Sample ID:	163845-01			Date Sampled:	9/2/2016
Matrix:	Soil			Date Received:	9/6/2016
Carbon Tetrachloride		< 137	ug/Kg		9/9/2016 18:05
Chlorobenzene		< 137	ug/Kg		9/9/2016 18:05
Chloroethane		< 137	ug/Kg		9/9/2016 18:05
Chloroform		< 137	ug/Kg		9/9/2016 18:05
Chloromethane		< 137	ug/Kg		9/9/2016 18:05
cis-1,2-Dichloroethene		< 137	ug/Kg		9/9/2016 18:05
cis-1,3-Dichloropropene		< 137	ug/Kg		9/9/2016 18:05
Cyclohexane		< 685	ug/Kg		9/9/2016 18:05
Dibromochloromethane		< 137	ug/Kg		9/9/2016 18:05
Dichlorodifluoromethan	e ·	< 137	ug/Kg		9/9/2016 18:05
Ethylbenzene		< 137	ug/Kg		9/9/2016 18:05
Freon 113		< 137	ug/Kg		9/9/2016 18:05
Isopropylbenzene		291	ug/Kg		9/9/2016 18:05
m,p-Xylene		385	ug/Kg		9/9/2016 18:05
Methyl acetate		< 137	ug/Kg		9/9/2016 18:05
Methyl tert-butyl Ether		< 137	ug/Kg		9/9/2016 18:05
Methylcyclohexane		9850	ug/Kg		9/9/2016 18:05
Methylene chloride	·	< 342	ug/Kg		9/9/2016 18:05
Naphthalene		207	ug/Kg		9/9/2016 18:05
n-Butylbenzene		423	ug/Kg		9/9/2016 18:05
n-Propylbenzene		449	ug/Kg		9/9/2016 18:05
o-Xylene		98.3	ug/Kg		9/9/2016 18:05
p-Isopropyltoluene		264	ug/Kg		9/9/2016 18:05
sec-Butylbenzene		229	ug/Kg		9/9/2016 18:05
Styrene		< 342	ug/Kg		9/9/2016 18:05
tert-Butylbenzene		<137	ug/Kg		9/9/2016 18:05
Tetrachloroethene		<137	ug/Kg		9/9/2016 18:05
Toluene		< 137	ug/Kg		9/9/2016 18:05
trans-1,2-Dichloroethene		< 137	ug/Kg		9/9/2016 18:05
trans-1,3-Dichloropropen	ie	< 137	ug/Kg		9/9/2016 18:05
					• •

Client:

C&S Companies

Project Reference:

North Street

Sample Identifier:

A4-22-23 ft

Lab Sample ID:

163845-01

Soil

Date Sampled: 9/2/2016

Matrix:	Soil			Dat	e Received:	9/6/2016	
Trichloroethene		< 137	ug/Kg			9/9/2016	18:05
Trichlorofluoromethan	e	< 137	ug/Kg			9/9/2016	18:05
Vinyl chloride		< 137	ug/Kg			9/9/2016	18:05
<u>Surrogate</u>		Perce	nt Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			110	81.3 - 124		9/9/2016	18:05
4-Bromofluorobenzene			104	80 - 117		9/9/2016	18:05
Pentafluorobenzene			104	88.3 - 111		9/9/2016	18:05
Toluene-D8			106	78 - 123		9/9/2016	18:05

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35241.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C47-8ft

Lab Sample ID:

163892-01

Matrix:

Soil

Date Sampled: 8/30/2016

Date Received: 9/8/2016

Volatile Organics

Analyte	Result	Units	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.47	ug/Kg		9/9/2016 15:20
1,1,2,2-Tetrachloroethane	< 4.47	ug/Kg		9/9/2016 15:20
1,1,2-Trichloroethane	< 4.47	ug/Kg		9/9/2016 15:20
1,1-Dichloroethane	< 4.47	ug/Kg		9/9/2016 15:20
1,1-Dichloroethene	< 4.47	ug/Kg		9/9/2016 15:20
1,2,3-Trichlorobenzene	< 11.2	ug/Kg		9/9/2016 15:20
1,2,4-Trichlorobenzene	< 11.2	ug/Kg		9/9/2016 15:20
1,2,4-Trimethylbenzene	< 4.47	ug/Kg		9/9/2016 15:20
1,2-Dibromo-3-Chloropropane	< 22.4	ug/Kg		9/9/2016 15:20
1,2-Dibromoethane	< 4.47	ug/Kg		9/9/2016 15:20
1,2-Dichlorobenzene	< 4.47	ug/Kg		9/9/2016 15:20
1,2-Dichloroethane	< 4.47	ug/Kg		9/9/2016 15:20
1,2-Dichloropropane	< 4.47	ug/Kg		9/9/2016 15:20
1,3,5-Trimethylbenzene	< 4.47	ug/Kg		9/9/2016 15:20
1,3-Dichlorobenzene	< 4.47	ug/Kg		9/9/2016 15:20
1,4-Dichlorobenzene	< 4.47	ug/Kg		9/9/2016 15:20
1,4-dioxane	< 44.7 R	ug/Kg		9/9/2016 15:20
2-Butanone	< 22.4	ug/Kg		9/9/2016 15:20
2-Hexanone	< 11.2	ug/Kg		9/9/2016 15:20
4-Methyl-2-pentanone	<11.2 UJ	ug/Kg		9/9/2016 15:20
Acetone	< 22.4 NS	ug/Kg		9/9/2016 15:20
Benzene	< 4.47	ug/Kg		9/9/2016 15:20
Bromochloromethane	< 11.2	ug/Kg		9/9/2016 15:20
Bromodichloromethane	< 4.47	ug/Kg		9/9/2016 15:20
Bromoform	< 11.2	ug/Kg		9/9/2016 15:20
Bromomethane	< 4.47	ug/Kg		9/9/2016 15:20
Carbon disulfide	< 4.47	ug/Kg		9/9/2016 15:20

Client:

C&S Companies

Project Reference:

19 North Street

Project Reference:	TA NOLUI Stree	Ł			·
Sample Identifier:	C4 7-8 ft				
Lab Sample ID:	163892-01			Date Sampled:	8/30/2016
Matrix:	Soil			Date Received:	9/8/2016
Carbon Tetrachloride		< 4.47	ug/Kg		9/9/2016 15:2
Chlorobenzene		< 4.47	ug/Kg		9/9/2016 15:2
Chloroethane		< 4.47	ug/Kg		9/9/2016 15:2
Chloroform		< 4.47	ug/Kg		9/9/2016 15:2
Chloromethane		< 4.47	ug/Kg		9/9/2016 15:2
cis-1,2-Dichloroethene		< 4.47	ug/Kg		9/9/2016 15:2
cis-1,3-Dichloropropene		< 4.47	ug/Kg		9/9/2016 15:2
Cyclohexane		< 22.4	ug/Kg		9/9/2016 15:2
Dibromochloromethane		< 4.47	ug/Kg		9/9/2016 15:2
Dichlorodifluoromethane	e	< 4.47	ug/Kg		9/9/2016 15:2
Ethylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
Freon 113		< 4.47	ug/Kg		9/9/2016 15:2
Isopropylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
m,p-Xylene		< 4.47	ug/Kg		9/9/2016 15:2
Methyl acetate		< 4.47	ug/Kg		9/9/2016 15:2
Methyl tert-butyl Ether		< 4.47	ug/Kg		9/9/2016 15:2
Methylcyclohexane		< 4,47	ug/Kg		9/9/2016 15:2
Methylene chloride		6.96	ug/Kg)	9/9/2016 15:2
Naphthalene		< 11.2	ug/Kg		9/9/2016 15:2
n-Butylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
n-Propylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
o-Xylene		< 4.47	ug/Kg		9/9/2016 15:2
p-Isopropyltoluene		< 4.47	ug/Kg		9/9/2016 15:2
sec-Butylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
Styrene		< 11.2	ug/Kg		9/9/2016 15:2
tert-Butylbenzene		< 4.47	ug/Kg		9/9/2016 15:2
Tetrachloroethene		< 4.47	ug/Kg		9/9/2016 15:20
Toluene		< 4.47	ug/Kg		9/9/2016 15:20
trans-1,2-Dichloroethene		< 4.47	ug/Kg		9/9/2016 15:20
trans-1,3-Dichloropropen	ıe	< 4.47	ug/Kg		9/9/2016 15:20
					-

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C47-8 ft

Lab Sample ID:

163892-01

Date Sampled:

8/30/2016

Matrix:

Soil

Date Received:

9/8/2016

Trichloroethene	< 4.47	ug/Kg
Trichlorofluoromethane	< 4.47	ug/Kg
Vinyl chloride	< 4.47	ug/Kg

9/9/2016	15:20					
9/9/2016	15:20					
Date Analyzed						
9/9/2016	15:20					

9/9/2016 15:20

Surrogate	Percent Recovery	Limits	Outliers	Date Anal	yzed
1,2-Dichloroethane-d4	109	81.3 - 124		9/9/2016	15:20
4-Bromofluorobenzene	88.8	80 - 117		9/9/2016	15:20
Pentafluorobenzene	96.1	88.3 - 111		9/9/2016	15:20
Toluene-D8	96.5	78 - 123		9/9/2016	15:20

Method Reference(s):

EPA 8260C

EPA 5035

Data File:

x35234.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled: 9/

9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 344	ug/Kg		9/8/2016 19:29
1,2,4,5-Tetrachlorobenzene	< 344	ug/Kg		9/8/2016 19:29
1,2,4-Trichlorobenzene	< 344	ug/Kg		9/8/2016 19:29
1,2-Dichlorobenzene	< 344	ug/Kg		9/8/2016 19:29
1,3-Dichlorobenzene	< 344	ug/Kg		9/8/2016 19:29
1,4-Dichlorobenzene	< 344	ug/Kg		9/8/2016 19:29
2,2-Oxybis (1-chloropropane)	< 344	ug/Kg		9/8/2016 19:29
2,3,4,6-Tetrachlorophenol	< 344	ug/Kg		9/8/2016 19:29
2,4,5-Trichlorophenol	< 689	ug/Kg		9/8/2016 19:29
2,4,6-Trichlorophenol	< 344	ug/Kg		9/8/2016 19:29
2,4-Dichlorophenol	< 344	ug/Kg		9/8/2016 19:29
2,4-Dimethylphenol	< 344	ug/Kg		9/8/2016 19:29
2,4-Dinitrophenol	< 689	ug/Kg		9/8/2016 19:29
2,4-Dinitrotoluene	< 344	ug/Kg		9/8/2016 19:29
2,6-Dinitrotoluene	< 344	ug/Kg		9/8/2016 19:29
2-Chloronaphthalene	< 344	ug/Kg		9/8/2016 19:29
2-Chlorophenol	< 344	ug/Kg		9/8/2016 19:29
2-Methylnapthalene	< 344	ug/Kg		9/8/2016 19:29
2-Methylphenol	< 344	ug/Kg		9/8/2016 19:29
2-Nitroaniline	< 689	ug/Kg		9/8/2016 19:29
2-Nitrophenol	< 344	ug/Kg		9/8/2016 19:29
3&4-Methylphenol	< 344	ug/Kg		9/8/2016 19:29
3,3'-Dichlorobenzidine	< 344	ug/Kg		9/8/2016 19:29
3-Nitroaniline	< 689	ug/Kg		9/8/2016 19:29
4,6-Dinitro-2-methylphenol	< 689	ug/Kg		9/8/2016 19:29
4-Bromophenyl phenyl ether	< 344	ug/Kg		9/8/2016 19:29
4-Chloro-3-methylphenol	< 344	ug/Kg		9/8/2016 19:29

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	B1-5-6 ft				
Lab Sample ID:	163832-01			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 344	ug/Kg		9/8/2016 19
4-Chlorophenyl phenyl ether		< 344	ug/Kg	,	9/8/2016 19
4-Nitroaniline		< 689	ug/Kg		9/8/2016 19:
4-Nitrophenol		< 689	ug/Kg		9/8/2016 19:
Acenaphthene		< 344	ug/Kg		9/8/2016 19:
Acenaphthylene		< 344	ug/Kg		9/8/2016 19:
Acetophenone		< 344	ug/Kg		9/8/2016 19:
Anthracene		< 344	ug/Kg	•	9/8/2016 19:
Atrazine		< 344 WJ	ug/Kg		9/8/2016 19:
Benzaldehyde		< 344	ug/Kg		9/8/2016 19:
Benzo (a) anthracene		< 344	ug/Kg	•	9/8/2016 19:
Вепzo (а) ругепе		< 344	ug/Kg		9/8/2016 19:
Benzo (b) fluoranthene		< 344	ug/Kg		9/8/2016 19:
Benzo (g,h,i) perylene		< 344	ug/Kg		9/8/2016 19:
Benzo (k) fluoranthene		< 344	ug/Kg		9/8/2016 19:
Bis (2-chloroethoxy) methane		< 344	ug/Kg		9/8/2016 19:
Bis (2-chloroethyl) ether		< 344	ug/Kg		9/8/2016 19:
Bis (2-ethylhexyl) phthalate		< 344	ug/Kg		9/8/2016 19:
Butylbenzylphthalate		< 344	ug/Kg		9/8/2016 19:
Caprolactam		< 344	ug/Kg		9/8/2016 19:
Carbazole		< 344	ug/Kg		9/8/2016 19:
Chrysene		< 344	ug/Kg		9/8/2016 19:
Dibenz (a,h) anthracene		< 344	ug/Kg		9/8/2016 19:
Dibenzofuran		< 344	ug/Kg		9/8/2016 19:
Diethyl phthalate		< 344	ug/Kg		9/8/2016 19:
Dimethyl phthalate		< 689	ug/Kg		9/8/2016 19:
Di-n-butyl phthalate		< 344	ug/Kg		9/8/2016 19:
Di-n-octylphthalate		< 344	ug/Kg		9/8/2016 19:
Fluoranthene		< 344	ug/Kg		9/8/2016 19:
Fluorene		< 344	ug/Kg		9/8/2016 19:

Client:

C&S Companies

Project Reference:	19 North Street	t					
Sample Identifier:	B1-5-6 ft						
Lab Sample ID:	163832-01			Dat	te Sampled:	9/1/2016	
Matrix:	Soil			Dat	e Received:	9/2/2016	
Hexachlorobenzene	•	< 344	ug/Kg			9/8/2016	19:29
Hexachlorobutadiene		< 344	ug/Kg			9/8/2016	19:29
Hexachlorocyclopentad	iene	< 344	ug/Kg			9/8/2016	19:29
Hexachloroethane		< 344	ug/Kg			9/8/2016	19:29
Indeno (1,2,3-cd) pyren	e	< 344	ug/Kg			9/8/2016	19:29
Isophorone		< 344	ug/Kg			9/8/2016	19:29
Naphthalene		< 344	ug/Kg			9/8/2016	19:29
Nitrobenzene		< 344	ug/Kg			9/8/2016	19:29
N-Nitroso-di-n-propylai	nine	< 344	ug/Kg			9/8/2016	19:29
N-Nitrosodiphenylamin	e	< 344	ug/Kg			9/8/2016	19:29
Pentachlorophenol		< 689	ug/Kg			9/8/2016	19:29
Phenanthrene		< 344	ug/Kg			9/8/2016	19:29
Phenol		< 344	ug/Kg			9/8/2016	19:29
Pyrene		< 344	ug/Kg			9/8/2016	19:29
Surrogate		Perce	ent Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			73.9	34.1 - 104		9/8/2016	19:29
2-Fluorobiphenyl			54.0	36.4 - 95.1		9/8/2016	19:29
2-Fluorophenol			47.1	35 - 84.1		9/8/2016	19:29
Nitrobenzene-d5			47.3	36.3 - 82.2		9/8/2016	19:29
Phenol-d5			54.7	38.5 - 88.8		9/8/2016	19:29
Terphenyl-d14			80.6	54.9 - 114		9/8/2016	19:29

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

9/8/2016 B13944.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

	-			
Analyte.	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 327	ug/Kg		9/8/2016 19:58
1,2,4,5-Tetrachlorobenzene	< 327	ug/Kg		9/8/2016 19:58
1,2,4-Trichlorobenzene	< 327	ug/Kg		9/8/2016 19:58
1,2-Dichlorobenzene	< 327	ug/Kg		9/8/2016 19:58
1,3-Dichlorobenzene	< 327	ug/Kg		9/8/2016 19:58
1,4-Dichlorobenzene	< 327	ug/Kg		9/8/2016 19:58
2,2-0xybis (1-chloropropane)	< 327	ug/Kg		9/8/2016 19:58
2,3,4,6-Tetrachlorophenol	< 327	ug/Kg		9/8/2016 19:58
2,4,5-Trichlorophenol	< 655	ug/Kg		9/8/2016 19:58
2,4,6-Trichlorophenol	< 327	ug/Kg		9/8/2016 19:58
2,4-Dichlorophenol	< 327	ug/Kg		9/8/2016 19:58
2,4-Dimethylphenol	< 327	ug/Kg		9/8/2016 19:58
2,4-Dinitrophenol	< 655	ug/Kg		9/8/2016 19:58
2,4-Dinitrotoluene	< 327	ug/Kg		9/8/2016 19:58
2,6-Dinitrotoluene	< 327	ug/Kg		9/8/2016 19:58
2-Chloronaphthalene	< 327	ug/Kg		9/8/2016 19:58
2-Chlorophenol	< 327	ug/Kg		9/8/2016 19:58
2-Methylnapthalene	< 327	ug/Kg		9/8/2016 19:58
2-Methylphenol	< 327	ug/Kg		9/8/2016 19:58
2-Nitroaniline	< 655	ug/Kg		9/8/2016 19:58
2-Nitrophenol	< 327	ug/Kg		9/8/2016 19:58
3&4-Methylphenol	< 327	ug/Kg		9/8/2016 19:58
3,3'-Dichlorobenzidine	< 327	ug/Kg		9/8/2016 19:58
3-Nitroaniline	< 655	ug/Kg		9/8/2016 19:58
4,6-Dinitro-2-methylphenol	< 655	ug/Kg		9/8/2016 19:58
4-Bromophenyl phenyl ether	< 327	ug/Kg		9/8/2016 19:58
4-Chloro-3-methylphenol	< 327	ug/Kg		9/8/2016 19:58

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	B1-15 ft				
Lab Sample ID:	163832-02			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 327	ug/Kg		9/8/2016 19:58
4-Chlorophenyl pheny	l ether	<327	ug/Kg		9/8/2016 19:58
4-Nitroaniline		< 655	ug/Kg		9/8/2016 19:58
4-Nitrophenol		< 655	ug/Kg		9/8/2016 19:58
Acenaphthene		< 327	ug/Kg		9/8/2016 19:58
Acenaphthylene		< 327	ug/Kg		9/8/2016 19:58
Acetophenone		< 327	ug/Kg		9/8/2016 19:58
Anthracene		< 327	ug/Kg		9/8/2016 19:58
Atrazine		< 327	MJ ug/Kg		9/8/2016 19:58
Benzaldehyde		< 327	ug/Kg		9/8/2016 19:58
Benzo (a) anthracene		< 327	ug/Kg		9/8/2016 19:58
Benzo (a) pyrene		< 327	ug/Kg		9/8/2016 19:58
Benzo (b) fluoranthene	!	< 327	ug/Kg		9/8/2016 19:58
Benzo (g,h,i) perylene		< 327	ug/Kg		9/8/2016 19:58
Benzo (k) fluoranthene		< 327	ug/Kg		9/8/2016 19:58
Bis (2-chloroethoxy) m	ethane	< 327	ug/Kg		9/8/2016 19:58
Bis (2-chloroethyl) ethe	er	< 327	ug/Kg		9/8/2016 19:58
Bis (2-ethylhexyl) phth	alate	< 327	ug/Kg		9/8/2016 19:58
Butylbenzylphthalate		< 327	ug/Kg		9/8/2016 19:58
Caprolactam		< 327	ug/Kg		9/8/2016 19:58
Carbazole		< 327	ug/Kg		9/8/2016 19:58
Chrysene		< 327	ug/Kg		9/8/2016 19:58
Dibenz (a,h) anthracene	2	< 327	ug/Kg		9/8/2016 19:58
Dibenzofuran		< 327	ug/Kg		9/8/2016 19:58
Diethyl phthalate		< 327	ug/Kg		9/8/2016 19:58
Dimethyl phthalate		< 655	ug/Kg		9/8/2016 19:58
Di-n-butyl phthalate		< 327	ug/Kg		9/8/2016 19:58
Di-n-octylphthalate		<327	ug/Kg		9/8/2016 19:58
Fluoranthene		<327	ug/Kg		9/8/2016 19:58
Fluorene		<327	ug/Kg		9/8/2016 19:58
					, ,

Client:

C&S Companies

Project Reference:

19 North Street

roject Reference.	17 1101 (11 30 6)						
Sample Identifier:	B1-15 ft						
Lab Sample ID:	163832-02			Da	ate Sampled:	9/1/2016	
Matrix:	Soil			Da	ite Received:	9/2/2016	
Hexachlorobenzene		< 327	ug/Kg			9/8/2016	19:58
Hexachlorobutadiene		< 327	ug/Kg			9/8/2016	19:58
Hexachlorocyclopenta	diene	< 327	ug/Kg			9/8/2016	19:58
Hexachloroethane		< 327	ug/Kg			9/8/2016	19:58
Indeno (1,2,3-cd) pyre	ne	< 327	ug/Kg			9/8/2016	19:58
Isophorone		< 327	ug/Kg			9/8/2016	19:58
Naphthalene		< 327	ug/Kg			9/8/2016	19:58
Nitrobenzene		< 327	ug/Kg			9/8/2016	19:58
N-Nitroso-di-n-propyl	amine	< 327	ug/Kg			9/8/2016	19:58
N-Nitrosodiphenylami	ne	< 327	ug/Kg			9/8/2016	19:58
Pentachlorophenol		< 655	ug/Kg			9/8/2016	19:58
Phenanthrene		< 327	ug/Kg			9/8/2016	19:58
Phenol		< 327	ug/Kg			9/8/2016	19:58
Pyrene		< 327	ug/Kg			9/8/2016	19:58
Surrogate		Perce	ent Recovery	Limits	Outliers	Date Analyz	æd
2,4,6-Tribromophenol			64.0	34.1 - 104		9/8/2016	19:58
2-Fluorobiphenyl			60,9	36.4 - 95.1		9/8/2016	19:58
2-Fluorophenol			50.6	35 - 84.1		9/8/2016	19:58
Nitrobenzene-d5			51.4	36.3 - 82.2		9/8/2016	19:58
Phenol-d5			55.0	38.5 - 88.8		9/8/2016	19:58
Terphenyl-d14			82.3	54.9 - 114		9/8/2016	19:58
						-	

Method Reference(s):

EPA 8270D

Preparation Date:

BPA 3550C

Data File:

9/8/2016 B13945.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03A

Matrix:

TCLP Extract

Date Sampled: 9/1/2016

Date Received: 9/2/2016

TCLP Semi-Volatile Organics

Analyte	Result	Units	Regulatory Limit	Qualifier	Date Analyz	zed
1,4-Dichlorobenzene	< 40.0	ug/L	7500		9/8/2016	06:44
2,4,5-Trichlorophenol	< 80.0	ug/L	400000		9/8/2016	06:44
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		9/8/2016	06:44
2,4-Dinitrotoluene	< 40.0	ug/L	130		9/8/2016	06:44
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		9/8/2016	06:44
Hexachlorobenzene	< 40.0	ug/L	130		9/8/2016	06:44
Hexachlorobutadiene	< 40.0	ug/L	500		9/8/2016	06:44
Hexachloroethane	< 40.0	ug/L	3000		9/8/2016	06:44
Nitrobenzene	< 40.0	ug/L	2000		9/8/2016	06:44
Pentachlorophenol	< 80.0	ug/L	100000		9/8/2016	06:44
Pyridîne	< 40.0	ug/L	5000		9/8/2016	06:44
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analyz	æd
2,4,6-Tribromophenol		93.7	42.2 - 115		9/8/2016	06:44
2-Fluorobiphenyl		95.1	41.5 - 97.8		9/8/2016	06:44
2-Fluorophenol		69.4	13.4 - 95.4		9/8/2016	06:44
Nitrobenzene-d5		83.9	48 - 97.5		9/8/2016	06:44
Phenol-d5		66.8	10 - 95.4		9/8/2016	06:44
Terphenyl-d14		99.1	55.2 - 109		9/8/2016	06:44

Method Reference(s):

EPA 8270D

EPA 1311 / 3510C

Preparation Date: Data File:

9/6/2016

B13923.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

•			
Result	Units	Qualifier	Date Analyzed
<323 UJ	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg	М	9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg	M	9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 646	ug/Kg		9/9/2016 11:31
< 323	ug/Kg	M	9/9/2016 11:31
< 323	ug/Kg	M	9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 646	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg	М	9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 646	ug/Kg		9/9/2016 11:31
< 323	ug/Kg	М	9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
< 646	ug/Kg		9/9/2016 11:31
< 646	ug/Kg		9/9/2016 11:31
< 323	ug/Kg		9/9/2016 11:31
<323	ug/Kg	M	9/9/2016 11:31
	<323 UAS <323 <323 <323 <323 <323 <646 <323 <323 <646 <323 <323 <323 <323 <323 <323 <323 <32	< 323	<pre><323</pre>

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MW 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

oject itelet ente.	17 North Street	l-					
Sample Identifier:	C2-13-14.5 ft						
Lab Sample ID:	163832-04				Date Sampled:	9/1/2016	
Matrix:	Soil				Date Received		
4-Chloroaniline		< 323	WJ	ug/Kg		9/9/2016 1	11:3
4-Chlorophenyl phenyl	ether	< 323	ĩ	ug/Kg		9/9/2016 1	11:3
4-Nitroaniline		< 646		ug/Kg		9/9/2016 1	11:3
4-Nitrophenol		< 646		ug/Kg		9/9/2016 1	11:3
Acenaphthene		< 323		ug/Kg		9/9/2016 1	11:3
Acenaphthylene		< 323	1	ug/Kg		9/9/2016 1	11:3
Acetophenone		< 323	- 1	ug/Kg		9/9/2016 1	11:3
Anthracene		< 323	1	ug/Kg		9/9/2016 1	11:
Atrazine		< 323		ug/Kg		9/9/2016 1	11:3
Benzaldehyde		< 323		ug/Kg		9/9/2016 1	11::
Benzo (a) anthracene		< 323		ug/Kg		9/9/2016 1	11:3
Benzo (a) pyrene		< 323		ug/Kg	•	9/9/2016 1	11:1
Benzo (b) fluoranthene		< 323		ug/Kg		9/9/2016 1	1::
Benzo (g,b,i) perylene		< 323	-	ug/Kg		9/9/2016 1	11:3
Benzo (k) fluoranthene		< 323		ug/Kg		9/9/2016 1	1:
Bis (2-chloroethoxy) me	ethane	< 323	-	ug/Kg		9/9/2016 1	1::
Bis (2-chloroethyl) ethe	r	< 323		ug/Kg		9/9/2016 1	1:3
Bis (2-ethylhexyl) phtha	late	< 323		ug/Kg		9/9/2016 1	1::
Butylbenzylphthalate		< 323		ug/Kg		9/9/2016 1	1:3
Caprolactam		< 323		ug/Kg		9/9/2016 1	1:3
Carbazole		< 323	1	ug/Kg		9/9/2016 1	1:3
Chrysene		< 323	1	ug/Kg		9/9/2016 1	1:3
Dibenz (a,h) anthracene		< 323		ug/Kg		9/9/2016 1	1:3
Dibenzofuran		< 323		ug/Kg		9/9/2016 1	1:3
Diethyl phthalate		< 323	1	ug/Kg		9/9/2016 1	1:3
Dimethyl phthalate		< 646		ug/Kg		9/9/2016 1	1:3
Di-n-butyl phthalate		< 323	1	ug/Kg		9/9/2016 1	1:3
Di-n-octylphthalate		< 323		ug/Kg		9/9/2016 1:	1:3
Fluoranthene		< 323		ug/Kg		9/9/2016 1	1:3
Fluorene		< 323	1	ug/Kg		9/9/2016 1:	

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MXP 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier: Lab Sample ID:

C2-13-14.5 ft

163832-04

Date Sampled: 9/1/2016

Matrix: Soil			Dat	te Received:	9/2/2016	
Hexachlorobenzene	< 323	US ug/Kg			9/9/2016	11:31
Hexachlorobutadiene	< 323	l ug/Kg			9/9/2016	11:31
Hexachlorocyclopentadiene	< 323	ug/Kg			9/9/2016	11:31
Hexachloroethane	< 323	ug/Kg			9/9/2016	11:31
Indeno (1,2,3-cd) pyrene	< 323	ug/Kg			9/9/2016	11:31
Isophorone	< 323	ug/Kg			9/9/2016	11:31
Naphthalene	< 323	ug/Kg			9/9/2016	11:31
Nitrobenzene	< 323	ug/Kg			9/9/2016	11:31
N-Nitroso-di-n-propylamine	< 323	ug/Kg		M	9/9/2016	11:31
N-Nitrosodiphenylamine	< 323	ug/Kg			9/9/2016	11:31
Pentachlorophenol	< 646	ug/Kg			9/9/2016	11:31
Phenanthrene	< 323	ug/Kg			9/9/2016	11:31
Phenol	< 323	ug/Kg		M	9/9/2016	11:31
Pyrene	< 323	IJ ug/Kg			9/9/2016	11:31
Surrogate	Perc	ent Recovery	Limits	Outliers	Date Analy	zed
2,4,6-Tribromophenol		39,4	34.1 - 104	•	9/9/2016	11:31
2-Fluorobiphenyl		33.5	36.4 - 95.1	*	9/9/2016	11:31
2-Fluorophenol		27.6	35 - 84.1	*	9/9/2016	11:31
Nitrobenzene-d5		28.8	36.3 - 82.2	*	9/9/2016	11:31
Phenol-d5		28.4	38.5 - 88.8	*	9/9/2016	11:31

58.4

54.9 - 114

Method Reference(s):

EPA 8270D

EPA 3550C

Preparation Date:

9/8/2016

Data File:

Terphenyl-d14

B13977.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

11:31

9/9/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 334	ug/Kg		9/8/2016 21:55
1,2,4,5-Tetrachlorobenzene	< 334	ug/Kg		9/8/2016 21:55
1,2,4-Trichlorobenzene	< 334	ug/Kg	М	9/8/2016 21:55
1,2-Dichlorobenzene	< 334	ug/Kg		9/8/2016 21:55
1,3-Dichlorobenzene	< 334	ug/Kg		9/8/2016 21:55
1,4-Dichlorobenzene	< 334	ug/Kg	M	9/8/2016 21:55
2,2-0xybis (1-chloropropane)	< 334	ug/Kg		9/8/2016 21:55
2,3,4,6-Tetrachlorophenol	< 334	ug/Kg		9/8/2016 21:55
2,4,5-Trichlorophenol	< 668	ug/Kg		9/8/2016 21:55
2,4,6-Trichlorophenol	< 334	ug/Kg		9/8/2016 21:55
2,4-Dichlorophenol	< 334	ug/Kg		9/8/2016 21:55
2,4-Dimethylphenol	< 334	ug/Kg		9/8/2016 21:55
2,4-Dinitrophenol	< 668	ug/Kg		9/8/2016 21:55
2,4-Dinitrotoluene	< 334	ug/Kg		9/8/2016 21:55
2,6-Dinitrotoluene	< 334	ug/Kg		9/8/2016 21:55
2-Chloronaphthalene	< 334	ug/Kg		9/8/2016 21:55
2-Chlorophenol	< 334	ug/Kg		9/8/2016 21:55
2-Methylnapthalene	< 334	ug/Kg		9/8/2016 21:55
2-Methylphenol	< 334	ug/Kg		9/8/2016 21:55
2-Nitroaniline	< 668	ug/Kg		9/8/2016 21:55
2-Nitrophenol	< 334	ug/Kg		9/8/2016 21:55
3&4-Methylphenol	< 334	ug/Kg		9/8/2016 21:55
3,3'-Dichlorobenzidine	< 334	ug/Kg		9/8/2016 21:55
3-Nitroaniline	< 668	ug/Kg		9/8/2016 21:55
4,6-Dinitro-2-methylphenol	< 668	ug/Kg		9/8/2016 21:55
4-Bromophenyl phenyl ether	< 334	ug/Kg		9/8/2016 21:55
4-Chloro-3-methylphenol	< 334	ug/Kg		9/8/2016 21:55

Client:

C&S Companies

Project Reference:

19 North Street

### Date Sample ID: 163832-05 ### Date Received: 9/1/2016 ### Date Received: 9/2/2016 ### Date Received: 9/2/2016 ### Date Received: 9/2/2016 ### Date Received: 9/2/2016 ### Date Received: 9/8/2016 21: 4-Chlorophenyl phenyl ether	i vjett Reference:	19 North Street				
### Acthoroaniline	Sample Identifier:	D1-9.5-11.5 ft				
### Achloroaniline	Lab Sample ID:	163832-05			Date Sampled:	9/1/2016
4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 668 ug/Kg 9/8/2016 21: 4-Nitrophenol 668 ug/Kg 9/8/2016 21: Acenaphthene 334 ug/Kg 9/8/2016 21: Acetophenone 334 ug/Kg 9/8/2016 21: Acetophenone 334 ug/Kg 9/8/2016 21: Anthracene 334 ug/Kg 9/8/2016 21: Benzaldehyde 334 ug/Kg 9/8/2016 21: Benzo (a) anthracene 334 ug/Kg 9/8/2016 21: Benzo (b) fluoranthene 334 ug/Kg 9/8/2016 21: Benzo (b) fluoranthene 334 ug/Kg 9/8/2016 21: Benzo (k) fluoranthene 334 ug/Kg 9/8/2016 21: Benzo (k) fluoranthene 334 ug/Kg 9/8/2016 21: Bis (2-chloroethoxy) methane 334 ug/Kg 9/8/2016 21: Bis (2-chloroethyl) ether 334 ug/Kg 9/8/2016 21: Bis (2-chlylhexyl) phthalate 334 ug/Kg 9/8/2016 21: Butylbenzylphthalate 334 ug/Kg 9/8/2016 21: Carbazole 334 ug/Kg 9/8/2016 21: Dibenz (a,b) anthracene 334 ug/Kg 9/8/2016 21: Dibenzofuran 334 ug/Kg 9/8/2016 21: Dibenzofuran 334 ug/Kg 9/8/2016 21: Dibenzofuran 334 ug/Kg 9/8/2016 21: Dibenzofuran 334 ug/Kg 9/8/2016 21: Di-n-butyl phthalate 334 ug/Kg 9/8/2016 21:	Matrix:	Soil			Date Received:	- "
4-Nitroaniline	4-Chloroaniline		< 334	ug/Kg		9/8/2016 21:5
4-Nitrophenol	4-Chlorophenyl phenyl	l ether	< 334	ug/Kg		9/8/2016 21:5
Acenaphthene	4-Nitroaniline		< 668	ug/Kg		9/8/2016 21:5
Acenaphthylene	4-Nitrophenol		< 668	ug/Kg		9/8/2016 21:5
Acetophenone	Acenaphthene		< 334	ug/Kg		9/8/2016 21:5
Anthracene	Acenaphthylene		< 334	ug/Kg		9/8/2016 21:5
Atrazine	Acetophenone		< 334	ug/Kg		9/8/2016 21:5
Benzaldehyde	Anthracene		< 334	ug/Kg		9/8/2016 21:5
Benzo (a) anthracene	Atrazine		<334 NJ	ug/Kg		9/8/2016 21:5
Benzo (a) pyrene	Benzaldehyde		< 334	ug/Kg		9/8/2016 21:5
Benzo (b) fluoranthene <334	Benzo (a) anthracene		< 334	ug/Kg		9/8/2016 21:5
Benzo (g,h,i) perylene	Benzo (a) pyrene		< 334	ug/Kg		9/8/2016 21:5
Benzo (k) fluoranthene	Benzo (b) fluoranthene		< 334	ug/Kg		9/8/2016 21:5
Bis (2-chloroethoxy) methane	Benzo (g,h,i) perylene		< 334	ug/Kg		9/8/2016 21:5
Bis (2-chloroethyl) ether <334	Benzo (k) fluoranthene		< 334	ug/Kg		9/8/2016 21:5
Bis (2-ethylhexyl) phthalate <334	Bis (2-chloroethoxy) m	ethane	< 334	ug/Kg		9/8/2016 21:5
Butylbenzylphthalate <334	Bis (2-chloroethyl) ethe	er	< 334	ug/Kg		9/8/2016 21:5
Butylbenzylphthalate <334	Bis (2-ethylhexyl) phtha	alate	< 334	ug/Kg		9/8/2016 21:5
Carbazole <334	Butylbenzylphthalate		< 334	ug/Kg		9/8/2016 21:5
Chrysene <334	Caprolactam		< 334	ug/Kg		9/8/2016 21:5
Dibenz (a,h) anthracene <334	Carbazole		< 334	ug/Kg		9/8/2016 21:5
Dibenzofuran <334	Chrysene		<334	ug/Kg		9/8/2016 21:5
Diethyl phthalate <334	Dibenz (a,h) anthracene	:	< 334	ug/Kg		9/8/2016 21:5
Diethyl phthalate <334	Dibenzofuran		< 334	ug/Kg		9/8/2016 21:5
Di-n-butyl phthalate <334	Diethyl phthalate		< 334	ug/Kg		9/8/2016 21:5
Di-n-octylphthalate <334	Dimethyl phthalate		< 668	ug/Kg		9/8/2016 21:5
Fluoranthene <334 ug/Kg 9/8/2016 21:5	Di-n-butyl phthalate		< 334	ug/Kg		9/8/2016 21:5
Fluoranthene <334 ug/Kg 9/8/2016 21:5	Di-n-octylphthalate		< 334	ug/Kg		9/8/2016 21:5:
Fluorene <334 ug/Kg 9/8/2016 21:5	Fluoranthene		< 334	ug/Kg		9/8/2016 21:55
	Fluorene		< 334	ug/Kg		9/8/2016 21:55

Client:

C&S Companies

Project Reference:	19 North Street						
Sample Identifier:	D1-9.5-11.5 ft						
Lab Sample ID:	163832-05			Da	te Sampled:	9/1/2016	
Matrix:	Soil			Da	te Received:	9/2/2016	
Hexachlorobenzene		< 334	ug/Kg			9/8/2016	21:55
Hexachlorobutadiene		< 334	ug/Kg			9/8/2016	21:55
Hexachlorocyclopentad	liene	< 334	ug/Kg			9/8/2016	21:55
Hexachloroethane		< 334	ug/Kg			9/8/2016	21:55
Indeno (1,2,3-cd) pyren	le	< 334	ug/Kg			9/8/2016	21:55
Isophorone		< 334	ug/Kg			9/8/2016	21:55
Naphthalene		< 334	ug/Kg			9/8/2016	21:55
Nitrobenzene		< 334	ug/Kg			9/8/2016	21:55
N-Nitroso-di-n-propyla	mine	< 334	ug/Kg			9/8/2016	21:55
N-Nitrosodiphenylamin	te	< 334	ug/Kg			9/8/2016	21:55
Pentachlorophenol		< 668	ug/Kg			9/8/2016	21:55
Phenanthrene		< 334	ug/Kg			9/8/2016	21:55
Phenol		< 334	ug/Kg			9/8/2016	21:55
Pyrene		< 334	ug/Kg			9/8/2016	21:55
Surrogate		Per	cent Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			48.3	34.1 - 104		9/8/2016	21:55
2-Fluorobiphenyl			47.6	36.4 - 95.1		9/8/2016	21:55
2-Fluorophenol			40.7	35 - 84.1		9/8/2016	21:55
Nitrobenzene-d5			42.1	36.3 - 82.2		9/8/2016	21:55
Phenol-d5			43.2	38.5 - 88.8		9/8/2016	21:55
Terphenyl-d14			69.7	54.9 - 114		9/8/2016	21:55

Method Reference(s):

EPA 8270D

EPA 3550C

Preparation Date:

9/8/2016

Data File:

B13949.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled: 9/1

9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 317	ug/Kg		9/8/2016 23:23
1,2,4,5-Tetrachlorobenzene	< 317	ug/Kg		9/8/2016 23:23
1,2,4-Trichlorobenzene	< 317	ug/Kg		9/8/2016 23:23
1,2-Dichlorobenzene	< 317	ug/Kg		9/8/2016 23:23
1,3-Dichlorobenzene	< 317	ug/Kg		9/8/2016 23:23
1,4-Dichlorobenzene	< 317	ug/Kg		9/8/2016 23:23
2,2-0xybis (1-chloropropane)	< 317	ug/Kg		9/8/2016 23:23
2,3,4,6-Tetrachlorophenol	< 317	ug/Kg		9/8/2016 23:23
2,4,5-Trichlorophenol	< 635	ug/Kg		9/8/2016 23:23
2,4,6-Trichlorophenol	< 317	ug/Kg		9/8/2016 23:23
2,4-Dichlorophenol	< 317	ug/Kg		9/8/2016 23:23
2,4-Dimethylphenol	< 317	ug/Kg		9/8/2016 23:23
2,4-Dinitrophenol	< 635	ug/Kg		9/8/2016 23:23
2,4-Dinitrotoluene	< 317	ug/Kg		9/8/2016 23:23
2,6-Dinitrotoluene	< 317	ug/Kg		9/8/2016 23:23
2-Chloronaphthalene	< 317	ug/Kg	•	9/8/2016 23:23
2-Chlorophenol	< 317	ug/Kg		9/8/2016 23:23
2-Methylnapthalene	< 317	ug/Kg		9/8/2016 23:23
2-Methylphenol	< 317	ug/Kg		9/8/2016 23:23
2-Nitroaniline	< 635	ug/Kg		9/8/2016 23:23
2-Nitrophenol	< 317	ug/Kg		9/8/2016 23:23
3&4-Methylphenol	< 317	ug/Kg		9/8/2016 23:23
3,3'-Dichlorobenzidine	< 317	ug/Kg		9/8/2016 23:23
3-Nitroaniline	< 635	ug/Kg		9/8/2016 23:23
4,6-Dinitro-2-methylphenol	< 635	ug/Kg		9/8/2016 23:23
4-Bromophenyl phenyl ether	< 317	ug/Kg		9/8/2016 23:23
4-Chloro-3-methylphenol	< 317	ug/Kg		9/8/2016 23:23

Client:

C&S Companies

Project Reference:

19 North Street

TOJECE MEMORITARE.	17 1101 01 30 66	. L			
Sample Identifier:	D1-15-16 ft				
Lab Sample ID:	163832-06			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 317	ug/Kg		9/8/2016 23:23
4-Chlorophenyl pheny	l ether	< 317	ug/Kg		9/8/2016 23:23
4-Nitroaniline		< 635	ug/Kg		9/8/2016 23:23
4-Nitrophenol		< 635	ug/Kg		9/8/2016 23:23
Acenaphthene		< 317	ug/Kg		9/8/2016 23:23
Acenaphthylene		< 317	ug/Kg		9/8/2016 23:23
Acetophenone		< 317	ug/Kg		9/8/2016 23:23
Anthracene		< 317	ug/Kg		9/8/2016 23:23
Atrazine		<317 UJ	ug/Kg		9/8/2016 23:23
Benzaldehyde		< 317	ug/Kg		9/8/2016 23:23
Benzo (a) anthracene		< 317	ug/Kg		9/8/2016 23:23
Benzo (a) pyrene		< 317	ug/Kg		9/8/2016 23:23
Benzo (b) fluoranthen	9	< 317	ug/Kg		9/8/2016 23:23
Benzo (g,h,i) perylene		< 317	ug/Kg		9/8/2016 23:23
Benzo (k) fluoranthene	9	< 317	ug/Kg		9/8/2016 23:23
Bis (2-chloroethoxy) n	ethane	< 317	ug/Kg		9/8/2016 23:23
Bis (2-chloroethyl) eth	er	< 317	ug/Kg		9/8/2016 23:23
Bis (2-ethylhexyl) phth	alate	< 317	ug/Kg		9/8/2016 23:23
Butylbenzylphthalate		< 317	ug/Kg		9/8/2016 23:23
Caprolactam		< 317	ug/Kg		9/8/2016 23:23
Carbazole		< 317	ug/Kg		9/8/2016 23:23
Chrysene		< 317	ug/Kg		9/8/2016 23:23
Dibenz (a,h) anthracen	e	< 317	ug/Kg	·	9/8/2016 23:23
Dibenzofuran		<317	ug/Kg		9/8/2016 23:23
Diethyl phthalate		< 317	ug/Kg		9/8/2016 23:23
Dimethyl phthalate		< 635	ug/Kg		9/8/2016 23:23
Di-n-butyl phthalate		<317	ug/Kg		9/8/2016 23:23
Di-n-octylphthalate		<317	ug/Kg		9/8/2016 23:23
Fluoranthene		< 317	ug/Kg		9/8/2016 23:23
Fluorene		< 317	ug/Kg		9/8/2016 23:23

Client:

C&S Companies

Project Reference:

19 North Street

roject Reference:	19 North Stree	[
Sample Identifier:	D1-15-16 ft						
Lab Sample ID:	163832-06			Da	ate Sampled:	9/1/2016	
Matrix:	Soil			Da	ate Received:	9/2/2016	
Hexachlorobenzene		< 317	ug/Kg			9/8/2016	23:2
Hexachlorobutadiene		< 317	ug/Kg			9/8/2016	23:2
Hexachlorocyclopentadi	ene	< 317	ug/Kg			9/8/2016	23:2
Hexachloroethane		< 317	ug/Kg			9/8/2016	23:23
Indeno (1,2,3-cd) pyrene	!	< 317	ug/Kg			9/8/2016	23:23
Isophorone		< 317	ug/Kg			9/8/2016	23:23
Naphthalene		< 317	ug/Kg			9/8/2016	23:23
Nitrobenzene		< 317	ug/Kg			9/8/2016	23:23
N-Nitroso-di-n-propylam	iine	< 317	ug/Kg			9/8/2016	23:23
N-Nitrosodiphenylamine	!	< 317	ug/Kg			9/8/2016	23:23
Pentachlorophenol		< 635	ug/Kg			9/8/2016	23:23
Phenanthrene		< 317	ug/Kg			9/8/2016	23:23
Phenol		< 317	ug/Kg			9/8/2016	23:23
Pyrene		< 317	ug/Kg			9/8/2016	23:23
Surrogate		Perc	ent Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			58.3	34.1 - 104		9/8/2016	23:23
2-Fluorobiphenyl			55.0	36.4 - 95.1		9/8/2016	23:23
2-Fluorophenol			47.9	35 - 84.1		9/8/2016	23:23
Nitrobenzene-d5			48.2	36.3 - 82.2		9/8/2016	23:23
Phenol-d5			51.9	38.5 - 88.8		9/8/2016	23:23
Terphenyl-d14			85.6	54.9 - 114		9/8/2016	23:23

Method Reference(s):

EPA 8270D

Preparation Date:

BPA 3550C

Data File:

9/8/2016 B13952.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix:

Soil

Date Sampled: 9/1,

Date Received:

9/1/2016 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 324	ug/Kg		9/9/2016 06:11
1,2,4,5-Tetrachlorobenzene	< 324	ug/Kg		9/9/2016 06:11
1,2,4-Trichlorobenzene	< 324	ug/Kg		9/9/2016 06:11
1,2-Dichlorobenzene	< 324	ug/Kg		9/9/2016 06:11
1,3-Dichlorobenzene	< 324	ug/Kg		9/9/2016 06:11
1,4-Dichlorobenzene	< 324	ug/Kg		9/9/2016 06:11
2,2-0xybis (1-chloropropane)	< 324	ug/Kg		9/9/2016 06:11
2,3,4,6-Tetrachlorophenol	< 324	ug/Kg		9/9/2016 06:11
2,4,5-Trichlorophenol	< 649	ug/Kg		9/9/2016 06:11
2,4,6-Trichlorophenol	< 324	ug/Kg		9/9/2016 06:11
2,4-Dichlorophenol	< 324	ug/Kg		9/9/2016 06:11
2,4-Dimethylphenol	< 324	ug/Kg		9/9/2016 06:11
2,4-Dinitrophenol	< 649	ug/Kg		9/9/2016 06:11
2,4-Dinitrotoluene	< 324	ug/Kg		9/9/2016 06:11
2,6-Dinitrotoluene	< 324	ug/Kg		9/9/2016 06:11
2-Chloronaphthalene	< 324	ug/Kg		9/9/2016 06:11
2-Chlorophenol	< 324	ug/Kg		9/9/2016 06:11
2-Methylnapthalene	< 324	ug/Kg		9/9/2016 06:11
2-Methylphenol	< 324	ug/Kg		9/9/2016 06:11
2-Nitroaniline	< 649	ug/Kg		9/9/2016 06:11
2-Nitrophenol	< 324	ug/Kg		9/9/2016 06:11
3&4-Methylphenol	< 324	ug/Kg		9/9/2016 06:11
3,3'-Dichlorobenzidine	< 324	ug/Kg		9/9/2016 06:11
3-Nitroaniline	< 649	ug/Kg		9/9/2016 06:11
4,6-Dinitro-2-methylphenol	< 649	ug/Kg		9/9/2016 06:11
4-Bromophenyl phenyl ether	< 324	ug/Kg		9/9/2016 06:11
4-Chloro-3-methylphenol	< 324	ug/Kg		9/9/2016 06:11

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier: Lab Sample ID:	E2-5-6.5 ft 163832-07			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 324	ug/Kg		9/9/2016 06:11
4-Chlorophenyl pheny	l ether	< 324	ug/Kg		9/9/2016 06:11
4-Nitroaniline		< 649	ug/Kg		9/9/2016 06:13
4-Nitrophenol		< 649	ug/Kg		9/9/2016 06:11
Acenaphthene		< 324	ug/Kg		9/9/2016 06:11
Acenaphthylene		< 324	ug/Kg		9/9/2016 06:11
Acetophenone		< 324	ug/Kg		9/9/2016 06:11
Anthracene		< 324	ug/Kg		9/9/2016 06:11
Atrazine		< 324 \ \J	ug/Kg		9/9/2016 06:11
Benzaldehyde		< 324	ug/Kg		9/9/2016 06:11
Benzo (a) anthracene		307	ug/Kg	j	9/9/2016 06:11
Benzo (a) pyrene		264	ug/Kg	J	9/9/2016 06:11
Benzo (b) fluoranthene	2	271	ug/Kg	J	9/9/2016 06:11
Benzo (g,h,i) perylene		167	ug/Kg	}	9/9/2016 06:11
Benzo (k) fluoranthene	2	220	ug/Kg	j	9/9/2016 06:11
Bis (2-chloroethoxy) m	ethane	< 324	ug/Kg		9/9/2016 06:11
Bis (2-chloroethyl) eth	er	< 324	ug/Kg		9/9/2016 06:11
Bis (2-ethylhexyl) phth	alate	< 324	ug/Kg		9/9/2016 06:11
Butylbenzylphthalate		< 324	ug/Kg		9/9/2016 06:11
Caprolactam		< 324	ug/Kg	•	9/9/2016 06:11
Carbazole		< 324	ug/Kg		9/9/2016 06:11
Chrysene		344	ug/Kg		9/9/2016 06:11
Dibenz (a,h) anthracene	e	< 324	ug/Kg		9/9/2016 06:11
Dibenzofuran		< 324	ug/Kg		9/9/2016 06:11
Diethyl phthalate		< 324	ug/Kg		9/9/2016 06:11
Dimethyl phthalate		< 649	ug/Kg		9/9/2016 06:11
Di-n-butyl phthalate		< 324	ug/Kg		9/9/2016 06:11
Di-n-octylphthalate		< 324	ug/Kg		9/9/2016 06:11
Fluoranthene		684	ug/Kg		9/9/2016 06:11
Fluorene		< 324	ug/Kg		9/9/2016 06:11

Client:

C&S Companies

Project Reference:

19 North Street

Project keierence:	19 North Stree	et 					
Sample Identifier:	E2-5-6.5 ft				•		
Lab Sample ID:	163832-07			Da	te Sampled:	9/1/2016	
Matrix:	Soil			Da	te Received:	9/2/2016	
Hexachlorobenzene		< 324	ug/Kg			9/9/2016	06:11
Hexachlorobutadiene		< 324	ug/Kg			9/9/2016	06:11
Hexachlorocyclopenta	diene	< 324	ug/Kg			9/9/2016	06:11
Hexachloroethane		< 324	ug/Kg			9/9/2016	06:11
Indeno (1,2,3-cd) pyre	ne	< 324	ug/Kg			9/9/2016	06:11
Isophorone		< 324	ug/Kg			9/9/2016	06:11
Naphthalene		< 324	ug/Kg			9/9/2016	06:11
Nitrobenzene		< 324	ug/Kg			9/9/2016	06:11
N-Nitroso-di-n-propyl	amine	< 324	ug/Kg			9/9/2016	06:11
N-Nitrosodiphenylami	ne	< 324	ug/Kg			9/9/2016	06:11
Pentachlorophenol		< 649	ug/Kg			9/9/2016	06:11
Phenanthrene		495	ug/Kg			9/9/2016	06:11
Phenol		< 324	ug/Kg			9/9/2016	06:11
. Pyrene		586	ug/Kg			9/9/2016	06:11
Surrogate		Perce	ent Recovery	Limits	Qutliers	Date Analyz	zed
2,4,6-Tribromophenol			84.1	34.1 - 104		9/9/2016	06:11
2-Fluorobiphenyl			67.8	36.4 - 95.1		9/9/2016	06:11
2-Fluorophenol			51.3	35 - 84.1		9/9/2016	06:11
Nitrobenzene-d5			53.8	36.3 - 82.2		9/9/2016	06:11
Phenol-d5			56.2	38.5 - 88.8		9/9/2016	06:11
Terphenyl-d14			85.4	54.9 - 114		9/9/2016	06:11

Method Reference(s):

EPA 8270D

BPA:

Preparation Date:

EPA 3550C 9/8/2016

Data File:

B13966.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled: 9

9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analy	zed
1,1-Biphenyl	< 338	ug/Kg		9/9/2016	06:40
1,2,4,5-Tetrachlorobenzene	< 338	ug/Kg		9/9/2016	06:40
1,2,4-Trichlorobenzene	<338	ug/Kg		9/9/2016	06:40
1,2-Dichlorobenzene	< 338	ug/Kg		9/9/2016	06:40
1,3-Dichlorobenzene	<338	ug/Kg		9/9/2016	06:40
1,4-Dichlorobenzene	<338	ug/Kg		9/9/2016	06:40
2,2-Oxybis (1-chloropropane)	< 338	ug/Kg		9/9/2016	06:40
2,3,4,6-Tetrachlorophenol	<338	ug/Kg		9/9/2016	06:40
2,4,5-Trichlorophenol	< 676	ug/Kg		9/9/2016	06:40
2,4,6-Trichlorophenol	< 338	ug/Kg		9/9/2016	06:40
2,4-Dichlorophenol	< 338	ug/Kg		9/9/2016	06:40
2,4-Dimethylphenol	< 338	ug/Kg		9/9/2016	06:40
2,4-Dinitrophenol	< 676	ug/Kg		9/9/2016	06:40
2,4-Dinitrotoluene	< 338	ug/Kg		9/9/2016	06:40
2,6-Dinitrotoluene	< 338	ug/Kg		9/9/2016	06:40
2-Chloronaphthalene	< 338	ug/Kg .		9/9/2016	06:40
2-Chlorophenol	< 338	ug/Kg		9/9/2016	06:40
2-Methylnapthalene	< 338	ug/Kg		9/9/2016	06:40
2-Methylphenol	< 338	ug/Kg	-	9/9/2016	06:40
2-Nitroaniline	< 676	ug/Kg		9/9/2016	06:40
2-Nitrophenol	< 338	ug/Kg		9/9/2016	06:40
3&4-Methylphenol	< 338	ug/Kg		9/9/2016	06:40
3,3'-Dichlorobenzidine	<338	ug/Kg		9/9/2016	06:40
3-Nitroaniline	< 676	ug/Kg		9/9/2016	06:40
4,6-Dinitro-2-methylphenol	< 676	ug/Kg		9/9/2016	06:40
4-Bromophenyl phenyl ether	<338	ug/Kg		9/9/2016	06:40
4-Chloro-3-methylphenol	< 338	ug/Kg		9/9/2016	06:40

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	E2-9-10 ft				
Lab Sample ID:	163832-08			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 338	ug/Kg		9/9/2016 06:40
4-Chlorophenyl phenyl	l ether	< 338	ug/Kg		9/9/2016 06:40
4-Nitroaniline		< 676	ug/Kg		9/9/2016 06:40
4-Nitrophenol		< 676	ug/Kg		9/9/2016 06:40
Acenaphthene		< 338	ug/Kg		9/9/2016 06:40
Acenaphthylene		< 338	ug/Kg		9/9/2016 06:40
Acetophenone		< 338	ug/Kg		9/9/2016 06:40
Anthracene		< 338	ug/Kg		9/9/2016 06:40
Atrazine		<338 NJ	ug/Kg		9/9/2016 06:40
Benzaldehyde		< 338	ug/Kg		9/9/2016 06:40
Benzo (a) anthracene		< 338	ug/Kg		9/9/2016 06:40
Benzo (a) pyrene		< 338	ug/Kg		9/9/2016 06:40
Benzo (b) fluoranthene	•	< 338	ug/Kg		9/9/2016 06:40
Benzo (g,h,i) perylene		< 338	ug/Kg		9/9/2016 06:40
Benzo (k) fluoranthene		< 338	ug/Kg		9/9/2016 06:40
Bis (2-chloroethoxy) m	ethane	< 338	ug/Kg		9/9/2016 06:40
Bis (2-chloroethyl) ethe	er	< 338	ug/Kg		9/9/2016 06:40
Bis (2-ethylhexyl) phth:	alate	< 338	ug/Kg		9/9/2016 06:40
Butylbenzylphthalate		< 338	ug/Kg		9/9/2016 06:40
Caprolactam		< 338	ug/Kg		9/9/2016 06:40
Carbazole		<338	ug/Kg		9/9/2016 06:40
Chrysene		< 338	ug/Kg		9/9/2016 06:40
Dibenz (a,h) anthracene	•	< 338	ug/Kg		9/9/2016 06:40
Dibenzofuran		< 338	ug/Kg		9/9/2016 06:40
Diethyl phthalate		< 338	ug/Kg		9/9/2016 06:40
Dimethyl phthalate		< 676	ug/Kg		9/9/2016 06:40
Di-n-butyl phthalate		< 338	ug/Kg		9/9/2016 06:40
Di-n-octylphthalate		< 338	ug/Kg		9/9/2016 06:40
Fluoranthene		< 338	ug/Kg		9/9/2016 06:40
Fluorene		< 338	ug/Kg		9/9/2016 06:40

Client:

C&S Companies

10 Month Ct

Project Reference:	19 North Stree	t					
Sample Identifier:	E2-9-10 ft						
Lab Sample ID:	163832-08			Dat	e Sampled:	9/1/2016	
Matrix:	Soil			Dat	e Received:	9/2/2016	
Hexachlorobenzene		<338	ug/Kg			9/9/2016	06:40
Hexachlorobutadiene		< 338	ug/Kg			9/9/2016	06:40
Hexachlorocyclopenta	diene	< 338	ug/Kg			9/9/2016	06:40
Hexachloroethane		< 338	ug/Kg			9/9/2016	06:40
Indeno (1,2,3-cd) pyre	ne	<338	ug/Kg			9/9/2016	06:40
Isophorone		< 338	ug/Kg			9/9/2016	06:40
Naphthalene		< 338	ug/Kg			9/9/2016	06:40
Nitrobenzene		< 338	ug/Kg			9/9/2016	06:40
N-Nitroso-di-n-propyla	amine	< 338	ug/Kg			9/9/2016	06:40
N-Nitrosodiphenylami	ne	< 338	ug/Kg			9/9/2016	06:40
Pentachlorophenol		< 676	ug/Kg			9/9/2016	06:40
Phenanthrene		< 338	ug/Kg			9/9/2016	06:40
Phenol		< 338	ug/Kg			9/9/2016	06:40
Pyrene		< 338	ug/Kg			9/9/2016	06:40
Surrogate		Per	cent Recovery	Limits	Outliers	Date Analyz	æd
2,4,6-Tribromophenol			58.3	34.1 - 104		9/9/2016	06:40
2-Fluorobiphenyl			52.7	36.4 - 95.1		9/9/2016	06:40
2-Fluorophenol			48.4	35 - 84.1		9/9/2016	06:40
Nitrobenzene-d5			48.8	36.3 - 82.2		9/9/2016	06:40
Phenol-d5			53.1	38.5 - 88.8		9/9/2016	06:40

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

Terphenyl-d14

9/8/2016

B13967.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

86.2

54.9 - 114

9/9/2016

06:40

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled: 9/1

9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 302	ug/Kg		9/9/2016 07:09
1,2,4,5-Tetrachlorobenzene	< 302	ug/Kg		9/9/2016 07:09
1,2,4-Trichlorobenzene	< 302	ug/Kg		9/9/2016 07:09
1,2-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:09
1,3-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:09
1,4-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:09
2,2-0xybis (1-chloropropane)	< 302	ug/Kg		9/9/2016 07:09
2,3,4,6-Tetrachlorophenol	< 302	ug/Kg		9/9/2016 07:09
2,4,5-Trichlorophenol	< 604	ug/Kg		9/9/2016 07:09
2,4,6-Trichlorophenol	< 302	ug/Kg		9/9/2016 07:09
2,4-Dichlorophenol	< 302	ug/Kg		9/9/2016 07:09
2,4-Dimethylphenol	< 302	ug/Kg		9/9/2016 07:09
2,4-Dinitrophenol	< 604	ug/Kg		9/9/2016 07:09
2,4-Dinitrotoluene	< 302	ug/Kg		9/9/2016 07:09
2,6-Dinitrotoluene	< 302	ug/Kg		9/9/2016 07:09
2-Chloronaphthalene	< 302	ug/Kg		9/9/2016 07:09
2-Chlorophenol	< 302	ug/Kg		9/9/2016 07:09
2-Methylnapthalene	< 302	ug/Kg		9/9/2016 07:09
2-Methylphenol	< 302	ug/Kg		9/9/2016 07:09
2-Nitroaniline	< 604	ug/Kg		9/9/2016 07:09
2-Nitrophenol	< 302	ug/Kg		9/9/2016 07:09
3&4-Methylphenol	< 302	ug/Kg		9/9/2016 07:09
3,3'-Dichlorobenzidine	< 302	ug/Kg		9/9/2016 07:09
3-Nitroaniline	< 604	ug/Kg		9/9/2016 07:09
4,6-Dinitro-2-methylphenol	< 604	ug/Kg		9/9/2016 07:09
4-Bromophenyl phenyl ether	< 302	ug/Kg		9/9/2016 07:09
4-Chloro-3-methylphenol	< 302	ug/Kg		9/9/2016 07:09

Client:

C&S Companies

Project Reference:

19 North Street

r roject neierence;	15 North Sue	≓L 			
Sample Identifier:	E2-14-15 ft				
Lab Sample ID:	163832-09			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 302	ug/Kg		9/9/2016 07:09
4-Chlorophenyl pheny	l ether	< 302	ug/Kg		9/9/2016 07:09
4-Nitroaniline		< 604	ug/Kg		9/9/2016 07:09
4-Nitrophenol		< 604	ug/Kg		9/9/2016 07:09
Acenaphthene		< 302	ug/Kg		9/9/2016 07:09
Acenaphthylene		< 302	ug/Kg		9/9/2016 07:09
Acetophenone		< 302	ug/Kg		9/9/2016 07:09
Anthracene		< 302	ug/Kg		9/9/2016 07:09
Atrazine		<302 MJ	ug/Kg		9/9/2016 07:09
Benzaldehyde		< 302	ug/Kg		9/9/2016 07:09
Benzo (a) anthracene		< 302	ug/Kg		9/9/2016 07:09
Benzo (a) pyrene		< 302	ug/Kg		9/9/2016 07:09
Benzo (b) fluoranthene	2	< 302	ug/Kg		9/9/2016 07:09
Benzo (g,h,i) perylene		< 302	ug/Kg		9/9/2016 07:09
Benzo (k) fluoranthene	2	< 302	ug/Kg		9/9/2016 07:09
Bis (2-chloroethoxy) m	ethane	< 302	ug/Kg		9/9/2016 07:09
Bis (2-chloroethyl) eth	er	< 302	ug/Kg		9/9/2016 07:09
Bis (2-ethylhexyl) phth	alate	< 302	ug/Kg		9/9/2016 07:09
Butylbenzylphthalate		< 302	ug/Kg		9/9/2016 07:09
Caprolactam	•	< 302	ug/Kg		9/9/2016 07:09
Carbazole		< 302	ug/Kg		9/9/2016 07:09
Chrysene		< 302	ug/Kg		9/9/2016 07:09
Dibenz (a,h) anthracen	е	< 302	ug/Kg		9/9/2016 07:09
Dibenzofuran		< 302	ug/Kg		9/9/2016 07:09
Diethyl phthalate		< 302	ug/Kg		9/9/2016 07:09
Dimethyl phthalate		< 604	ug/Kg		9/9/2016 07:09
Di-n-butyl phthalate		< 302	ug/Kg		9/9/2016 07:09
Di-n-octylphthalate		< 302	ug/Kg		9/9/2016 07:09
Fluoranthene		< 302	ug/Kg		9/9/2016 07:09
Fluorene		< 302	ug/Kg		9/9/2016 07:09

Client:

C&S Companies

Project Reference:	19 North Stree	t					
Sample Identifier:	E2-14-15 ft						
Lab Sample ID:	163832-09			Dat	te Sampled:	9/1/2016	
Matrix:	Soil			Dat	te Received:	9/2/2016	
Hexachlorobenzene		< 302	ug/Kg			9/9/2016	07:09
Hexachlorobutadiene		< 302	ug/Kg			9/9/2016	07:09
Hexachlorocyclopenta	adiene	< 302	ug/Kg			9/9/2016	07:09
Hexachloroethane		< 302	ug/Kg			9/9/2016	07:09
Indeno (1,2,3-cd) pyra	ene	< 302	ug/Kg			9/9/2016	07:09
Isophorone		< 302	ug/Kg			9/9/2016	07:09
Naphthalene		< 302	ug/Kg			9/9/2016	07:09
Nitrobenzene		< 302	ug/Kg			9/9/2016	07:09
N-Nitroso-di-n-propyl	amine	< 302	ug/Kg			9/9/2016	
N-Nitrosodiphenylam	ine	< 302	ug/Kg			9/9/2016	
Pentachlorophenol		< 604	ug/Kg			9/9/2016	
Phenanthrene		< 302	ug/Kg			9/9/2016	07:09
Phenol		< 302	ug/Kg			9/9/2016	07:09
Pyrene		< 302	ug/Kg			9/9/2016	
Surrogate		Perc	ent Recovery	Limits	Outliers	Date Analyz	
2,4,6-Tribromophenol			51.4	34.1 - 104		9/9/2016	07:09
2-Fluorobiphenyl			59.6	36.4 - 95.1		9/9/2016	07:09
2-Fluorophenol			47.1	35 - 84.1		9/9/2016	07:09
Nitrobenzene-d5			52.1	36.3 - 82.2		9/9/2016	07:09
Phenol-d5			52.9	38.5 - 88.8		9/9/2016	07:09
Terphenyl-d14			84.4	54.9 - 114		9/9/2016	07:09

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

9/8/2016 B13968.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides

additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 302	ug/Kg		9/9/2016 07:38
1,2,4,5-Tetrachlorobenzene	< 302	ug/Kg		9/9/2016 07:38
1,2,4-Trichlorobenzene	< 302	ug/Kg		9/9/2016 07:38
1,2-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:38
1,3-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:38
1,4-Dichlorobenzene	< 302	ug/Kg		9/9/2016 07:38
2,2-0xybis (1-chloropropane)	< 302	ug/Kg		9/9/2016 07:38
2,3,4,6-Tetrachlorophenol	< 302	ug/Kg	•	9/9/2016 07:38
2,4,5-Trichlorophenol	< 603	ug/Kg		9/9/2016 07:38
2,4,6-Trichlorophenol	< 302	ug/Kg		9/9/2016 07:38
2,4-Dichlorophenol	< 302	ug/Kg		9/9/2016 07:38
2,4-Dimethylphenol	< 302	ug/Kg		9/9/2016 07:38
2,4-Dinitrophenol	< 603	ug/Kg		9/9/2016 07:38
2,4-Dinitrotoluene	< 302	ug/Kg		9/9/2016 07:38
2,6-Dinitrotoluene	< 302	ug/Kg		9/9/2016 07:38
2-Chloronaphthalene	< 302	ug/Kg		9/9/2016 07:38
2-Chlorophenol	< 302	ug/Kg		9/9/2016 07:38
2-Methylnapthalene	< 302	ug/Kg		9/9/2016 07:38
2-Methylphenol	< 302	ug/Kg		9/9/2016 07:38
2-Nitroaniline	. < 603	ug/Kg		9/9/2016 07:38
2-Nitrophenol	< 302	ug/Kg		9/9/2016 07:38
3&4-Methylphenol	< 302	ug/Kg		9/9/2016 07:38
3,3'-Dichlorobenzidine	< 302	ug/Kg		9/9/2016 07:38
3-Nitroaniline	< 603	ug/Kg		9/9/2016 07:38
4,6-Dinitro-2-methylphenol	< 603	ug/Kg		9/9/2016 07:38
4-Bromophenyl phenyl ether	< 302	ug/Kg		9/9/2016 07:38
4-Chloro-3-methylphenol	< 302	ug/Kg		9/9/2016 07:38

Client:

C&S Companies

Project Reference:

19 North Street

Cample 13 15°	P4 0 F A	T-140.25**			
Sample Identifier:	F1-3-5 ft			<u>.</u>	
Lab Sample ID:	163832-10			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 302	ug/Kg		9/9/2016 07:38
4-Chlorophenyl phenyl	ether	< 302	ug/Kg		9/9/2016 07:38
4-Nitroaniline		< 603	ug/Kg		9/9/2016 07:38
4-Nitrophenol		< 603	ug/Kg		9/9/2016 07:38
Acenaphthene	•	< 302	ug/Kg		9/9/2016 07:38
Acenaphthylene		< 302	ug/Kg		9/9/2016 07:38
Acetophenone		< 302	ug/Kg		9/9/2016 07:38
Anthracene		< 302	ug/Kg		9/9/2016. 07:38
Atrazine		<302 UJ	ug/Kg		9/9/2016 07:38
Benzaldehyde		< 302	ug/Kg		9/9/2016 07:38
Benzo (a) anthracene		155	ug/Kg	J	9/9/2016 07:38
Benzo (a) pyrene		< 302	ug/Kg		9/9/2016 07:38
Benzo (b) fluoranthene		< 302	ug/Kg		9/9/2016 07:38
Benzo (g,h,i) perylene		< 302	ug/Kg		9/9/2016 07:38
Benzo (k) fluoranthene		< 302	ug/Kg		9/9/2016 07:38
Bis (2-chloroethoxy) me	ethane	< 302	ug/Kg		9/9/2016 07:38
Bis (2-chloroethyl) ethe	r	< 302	ug/Kg		9/9/2016 07:38
Bis (2-ethylhexyl) phtha	alate	< 302	ug/Kg		9/9/2016 07:38
Butylbenzylphthalate		< 302	ug/Kg		9/9/2016 07:38
Caprolactam		< 302	ug/Kg		9/9/2016 07:38
Carbazole		< 302	ug/Kg		9/9/2016 07:38
Chrysene		< 302	ug/Kg		9/9/2016 07:38
Dibenz (a,h) anthracene	!	< 302	ug/Kg		9/9/2016 07:38
Dibenzofuran		< 302	ug/Kg		9/9/2016 07:38
Diethyl phthalate		< 302	ug/Kg		9/9/2016 07:38
Dimethyl phthalate		< 603	ug/Kg		9/9/2016 07:38
Di-n-butyl phthalate		< 302	ug/Kg		9/9/2016 07:38
Di-n-octylphthalate		< 302	ug/Kg		9/9/2016 07:38
Fluoranthene		281	ug/Kg	j	9/9/2016 07:38
Fluorene		< 302	ug/Kg		9/9/2016 07:38

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MXP5/6/17

Client:

C&S Companies

Project Reference:	19 North Stree	t 					
Sample Identifier:	F1-3-5 ft						
Lab Sample ID:	163832-10			Dat	e Sampled:	9/1/2016	
Matrix:	Soil			Dat	e Received:	9/2/2016	
Hexachlorobenzene		< 302	ug/Kg			9/9/2016	07:38
Hexachlorobutadiene		< 302	ug/Kg			9/9/2016	07:38
Hexachlorocyclopentad	iene	< 302	ug/Kg			9/9/2016	07:38
Hexachloroethane		< 302	ug/Kg			9/9/2016	07:38
Indeno (1,2,3-cd) pyren	e	< 302	ug/Kg			9/9/2016	07:38
Isophorone		< 302	ug/Kg			9/9/2016	07:38
Naphthalene		< 302	ug/Kg			9/9/2016	07:38
Nitrobenzene		< 302	ug/Kg			9/9/2016	07:38
N-Nitroso-di-n-propylar	nine	< 302	ug/Kg			9/9/2016	07:38
N-Nitrosodiphenylamin	е	< 302	ug/Kg			9/9/2016	07:38
Pentachlorophenol		< 603	ug/Kg			9/9/2016	07:38
Phenanthrene		265	ug/Kg		J	9/9/2016	07:38
Phenol		< 302	ug/Kg			9/9/2016	07:38
Pyrene		259	ug/Kg		J	9/9/2016	07:38
Surrogate		Perce	ent Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			69.9	34.1 - 104		9/9/2016	07:38
2-Fluorobiphenyl			50.9	36.4 - 95.1		9/9/2016	07:38
2-Fluorophenol			40.4	35 - 84.1		9/9/2016	07:38
Nitrobenzene-d5			43.5	36.3 - 82.2		9/9/2016	07:38
Phenol-d5		•	44.1	38.5 - 88.8		9/9/2016	07:38
Terphenyl-d14			78.3	54.9 - 114		9/9/2016	07:38

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

9/8/2016 B13969.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

emi-voludie Digames (Acia/Dase	: Menting)			
Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 320	ug/Kg		9/9/2016 08:07
1,2,4,5-Tetrachlorobenzene	< 320	ug/Kg		9/9/2016 08:07
1,2,4-Trichlorobenzene	< 320	ug/Kg		9/9/2016 08:07
1,2-Dichlorobenzene	< 320	ug/Kg		9/9/2016 08:07
1,3-Dichlorobenzene	< 320	ug/Kg		9/9/2016 08:07
1,4-Dichlorobenzene	< 320	ug/Kg		9/9/2016 08:07
2,2-Oxybis (1-chloropropane)	< 320	ug/Kg		9/9/2016 08:07
2,3,4,6-Tetrachlorophenol	< 320	ug/Kg		9/9/2016 08:07
2,4,5-Trichlorophenol	< 639	ug/Kg		9/9/2016 08:07
2,4,6-Trichlorophenol	< 320	ug/Kg		9/9/2016 08:07
2,4-Dichlorophenol	< 320	ug/Kg		9/9/2016 08:07
2,4-Dimethylphenol	< 320	ug/Kg		9/9/2016 08:07
2,4-Dinitrophenol	< 639	ug/Kg		9/9/2016 08:07
2,4-Dinitrotoluene	< 320	ug/Kg		9/9/2016 08:07
2,6-Dinitrotoluene	< 320	u g/ Kg		9/9/2016 08:07
2-Chloronaphthalene	< 320	ug/Kg		9/9/2016 08:07
2-Chlorophenol	< 320	ug/Kg		9/9/2016 08:07
2-Methylnapthalene	< 320	ug/Kg		9/9/2016 08:07
2-Methylphenol	< 320	ug/Kg		9/9/2016 08:07
2-Nitroaniline	< 639	ug/Kg		9/9/2016 08:07
2-Nitrophenol	< 320	ug/Kg		9/9/2016 08:07
3&4-Methylphenol	< 320	ug/Kg		9/9/2016 08:07
3,3'-Dichlorobenzidine	< 320	ug/Kg		9/9/2016 08:07
3-Nitroaniline	< 639	ug/Kg		9/9/2016 08:07
4,6-Dinitro-2-methylphenol	< 639	ug/Kg	•	9/9/2016 08:07
4-Bromophenyl phenyl ether	< 320	ug/Kg		9/9/2016 08:07
4-Chloro-3-methylphenol	< 320	ug/Kg		9/9/2016 08:07

Client:

C&S Companies

Project Reference:

19 North Street

Project Reference:	19 North Stree	et			
Sample Identifier:	F1-9-10 ft				
Lab Sample ID:	163832-11			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 320	ug/Kg		9/9/2016 08:07
4-Chlorophenyl pheny	l ether	< 320	ug/Kg		9/9/2016 08:07
4-Nitroaniline		< 639	ug/Kg		9/9/2016 08:07
4-Nitrophenol		< 639	ug/Kg		9/9/2016 08:07
Acenaphthene		< 320	ug/Kg		9/9/2016 08:07
Acenaphthylene		< 320	ug/Kg		9/9/2016 08:07
Acetophenone		< 320	ug/Kg		9/9/2016 08:07
Anthracene		< 320	ug/Kg		9/9/2016 08:07
Atrazine		<320 い ゴ	ug/Kg		9/9/2016 08:07
Benzaldehyde		< 320	ug/Kg		9/9/2016 08:07
Benzo (a) anthracene		< 320	ug/Kg		9/9/2016 08:07
Benzo (a) pyrene		< 320	ug/Kg		9/9/2016 08:07
Benzo (b) fluoranthene	2	< 320	ug/Kg		9/9/2016 08:07
Benzo (g,h,i) perylene		< 320	ug/Kg		9/9/2016 08:07
Benzo (k) fluoranthene	?	< 320	ug/Kg		9/9/2016 08:07
Bis (2-chloroethoxy) m	ethane	< 320	ug/Kg		9/9/2016 08:07
Bis (2-chloroethyl) eth	er	< 320	ug/Kg		9/9/2016 08:07
Bis (2-ethylhexyl) phth	alate	< 320	ug/Kg		9/9/2016 08:07
Butylbenzylphthalate		< 320	ug/Kg		9/9/2016 08:07
Caprolactam		< 320	ug/Kg		9/9/2016 08:07
Carbazole		< 320	ug/Kg		9/9/2016 08:07
Chrysene		< 320	ug/Kg		9/9/2016 08:07
Dibenz (a,h) anthracen	e	< 320	ug/Kg		9/9/2016 08:07
Dibenzofuran		< 320	ug/Kg		9/9/2016 08:07
Diethyl phthalate		< 320	ug/Kg		9/9/2016 08:07
Dimethyl phthalate		< 639	ug/Kg		9/9/2016 08:07
Di-n-butyl phthalate		< 320	ug/Kg		9/9/2016 08:07
Di-n-octylphthalate		< 320	ug/Kg		9/9/2016 08:07
Fluoranthene		< 320	ug/Kg		9/9/2016 08:07

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 320

MAP 5/6/17

9/9/2016 08:07

Fluorene

Client:

C&S Companies

Project Reference:

19 North Street

Project Reference:	19 North Stree	t					
Sample Identifier:	F1-9-10 ft						
Lab Sample ID:	163832-11			Dat	te Sampled:	9/1/2016	
Matrix:	Soil			Dat	te Received:	9/2/2016	
Hexachlorobenzene		< 320	ug/Kg			9/9/2016	08:07
Hexachlorobutadiene		< 320	ug/Kg			9/9/2016	08:07
Hexachlorocyclopentac	liene	< 320	ug/Kg			9/9/2016	08:07
Hexachloroethane		< 320	ug/Kg			9/9/2016	08:07
Indeno (1,2,3-cd) pyrer	1e	< 320	ug/Kg			9/9/2016	08:07
Isophorone		< 320	ug/Kg			9/9/2016	08:07
Naphthalene		< 320	ug/Kg			9/9/2016	08:07
Nitrobenzene		< 320	ug/Kg			9/9/2016	08:07
N-Nitroso-di-n-propyla	mine	< 320	ug/Kg			9/9/2016	08:07
N-Nitrosodiphenylamir	ne	< 320	ug/Kg			9/9/2016	08:07
Pentachlorophenol		< 639	ug/Kg			9/9/2016	08:07
Phenanthrene		< 320	ug/Kg			9/9/2016	08:07
Phenol		< 320	ug/Kg			9/9/2016	08:07
Pyrene		< 320	ug/Kg			9/9/2016	08:07
Surrogate		Perce	ent Recovery	Limits	Outliers	Date Analyz	ted
2,4,6-Tribromophenol			65.6	34.1 - 104		9/9/2016	08:07
2-Fluorobiphenyl			50.8	36.4 - 95.1		9/9/2016	08:07
2-Fluorophenol			45.3	35 - 84.1		9/9/2016	08:07
Nitrobenzene-d5			46.1	36.3 - 82.2		9/9/2016	08:07
Phenol-d5			48.2	38.5 - 88.8		9/9/2016	08:07
				•			

54.9 - 114

9/9/2016

08:07

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

Terphenyl-d14

9/8/2016 B13970.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

88.6

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

	Anal <u>yte</u>	Result	Units	Qualifier	Date Analy	zed
	1,1-Biphenyl	< 316	ug/Kg		9/9/2016	08:37
	1,2,4,5-Tetrachlorobenzene	<316	ug/Kg		9/9/2016	08:37
	1,2,4-Trichlorobenzene	< 316	ug/Kg		9/9/2016	08:37
	1,2-Dichlorobenzene	<316	ug/Kg		9/9/2016	08:37
	1,3-Dichlorobenzene	< 316	ug/Kg		9/9/2016	08:37
	1,4-Dichlorobenzene	<316	ug/Kg		9/9/2016	08:37
	2,2-Oxybis (1-chloropropane)	< 316	ug/Kg		9/9/2016	08:37
	2,3,4,6-Tetrachlorophenol	< 316	ug/Kg		9/9/2016	08:37
	2,4,5-Trichlorophenol	< 632	ug/Kg		9/9/2016	08:37
	2,4,6-Trichlorophenol	< 316	ug/Kg		9/9/2016	08:37
	2,4-Dichlorophenol	< 316	ug/Kg		9/9/2016	08:37
	2,4-Dimethylphenol	< 316	ug/Kg		9/9/2016	08:37
	2,4-Dinitrophenol	< 632	ug/Kg		9/9/2016	08:37
	2,4-Dinitrotoluene	< 316	ug/Kg		9/9/2016	08:37
	2,6-Dinitrotoluene	< 316	ug/Kg		9/9/2016	08:37
	2-Chloronaphthalene	< 316	ug/Kg		9/9/2016	08:37
	2-Chlorophenol	<316	ug/Kg		9/9/2016	08:37
	2-Methylnapthalene	< 316	ug/Kg		9/9/2016	08:37
	2-Methylphenol	<316	ug/Kg		9/9/2016	08:37
	2-Nitroaniline	< 632	ug/Kg		9/9/2016	08:37
	2-Nitrophenol	<316	ug/Kg		9/9/2016	08:37
-	3&4-Methylphenol	< 316	ug/Kg		9/9/2016	08:37
	3,3'-Dichlorobenzidine	< 316	ug/Kg		9/9/2016	08:37
	3-Nitroaniline	< 632	ug/Kg		9/9/2016	08:37
	4,6-Dinitro-2-methylphenol	< 632	ug/Kg		9/9/2016	08:37
	4-Bromophenyl phenyl ether	< 316	ug/Kg		9/9/2016	08:37
	4-Chloro-3-methylphenol	< 316	ug/Kg		9/9/2016	08:37

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F1-15 ft				
Lab Sample ID:	163832-12			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 316	ug/Kg		9/9/2016 08:37
4-Chlorophenyl pheny	l ether	<316	ug/Kg		9/9/2016 08:37
4-Nitroaniline		< 632	ug/Kg		9/9/2016 08:37
4-Nitrophenol		< 632	ug/Kg		9/9/2016 08:37
Acenaphthene		<316	ug/Kg		9/9/2016 08:37
Acenaphthylene		<316	ug/Kg		9/9/2016 08:37
Acetophenone		<316	ug/Kg		9/9/2016 08:37
Anthracene		<316	ug/Kg		9/9/2016 08:37
Atrazine		<316 US	ug/Kg		9/9/2016 08:37
Benzaldehyde		<316	ug/Kg		9/9/2016 08:37
Benzo (a) anthracene		<316	ug/Kg		9/9/2016 08:37
Benzo (a) pyrene		< 316	ug/Kg		9/9/2016 08:37
Benzo (b) fluoranthene	•	< 316	ug/Kg		9/9/2016 08:37
Benzo (g,h,i) perylene		<316	ug/Kg		9/9/2016 08:37
Benzo (k) fluoranthene	!	<316	ug/Kg		9/9/2016 08:37
Bis (2-chloroethoxy) m	ethane	< 316	ug/Kg		9/9/2016 08:37
Bis (2-chloroethyl) ethe	er	< 316	ug/Kg		9/9/2016 08:37
Bis (2-ethylhexyl) phth	alate	<316	ug/Kg		9/9/2016 08:37
Butylbenzylphthalate		< 316	ug/Kg		9/9/2016 08:37
Caprolactam		< 316	ug/Kg		9/9/2016 08:37
Carbazole		< 316	ug/Kg		9/9/2016 08:37
Chrysene		< 316	ug/Kg		9/9/2016 08:37
Dibenz (a,h) anthracene	2	<316	ug/Kg		9/9/2016 08:37
Dibenzofuran		<316	ug/Kg		9/9/2016 08:37
Diethyl phthalate		< 316	ug/Kg		9/9/2016 08:37
Dimethyl phthalate		< 632	ug/Kg		9/9/2016 08:37
Di-n-butyl phthalate		<316	ug/Kg		9/9/2016 08:37
Di-n-octylphthalate		<316	ug/Kg		9/9/2016 08:37
Fluoranthene		<316	ug/Kg		9/9/2016 08:37
Fluorene		<316	ug/Kg		9/9/2016 08:37

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MAP 5/2/17

Client:

C&S Companies

Project Reference:

19 North Street

rroject Keierence:	Ta Moran 2016	Σ.					
Sample Identifier:	F1-15 ft						
Lab Sample ID:	163832-12			Da	ate Sampled:	9/1/2016	
Matrix:	Soil			Da	ate Received:	9/2/2016	
Hexachlorobenzene		< 316	ug/Kg			9/9/2016	08:37
Hexachlorobutadiene		<316	ug/Kg			9/9/2016	08:37
Hexachlorocyclopenta	diene	<316	ug/Kg			9/9/2016	08:37
Hexachloroethane		<316	ug/Kg			9/9/2016	08:37
Indeno (1,2,3-cd) pyre	ne	<316	ug/Kg			9/9/2016	08:37
Isophorone		< 316	ug/Kg			9/9/2016	08:37
Naphthalene		< 316	ug/Kg			9/9/2016	08:37
Nitrobenzene		< 316	ug/Kg			9/9/2016	08:37
N-Nitroso-di-n-propyl	amine	< 316	ug/Kg			9/9/2016	08:37
N-Nitrosodiphenylami	ne	< 316	ug/Kg			9/9/2016	08:37
Pentachlorophenol		< 632	ug/Kg			9/9/2016	08:37
Phenanthrene		< 316	ug/Kg			9/9/2016	08:37
Phenol		<316	ug/Kg			9/9/2016	08:37
Pyrene		< 316	ug/Kg			9/9/2016	08:37
Surrogate		Perce	ent Recovery	Limits	Outliers	Date Analyz	æd
2,4,6-Tribromophenol			50.4	34.1 - 104		9/9/2016	08:37
2-Fluorobiphenyl			40.5	36.4 - 95.1		9/9/2016	08:37
2-Fluorophenol			37.4	35 - 84.1		9/9/2016	08:37
Nitrobenzene-d5			36.6	36.3 - 82.2		9/9/2016	08:37
Phenol-d5			40.7	38.5 - 88.8		9/9/2016	08:37
Terphenyl-d14			80.6	54.9 - 114		9/9/2016	08:37

Method Reference(s):

EPA 8270D

BPA 355

Preparation Date:

EPA 3550C 9/8/2016

Data File:

B13971.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 300	ug/Kg		9/9/2016 09:06
1,2,4,5-Tetrachlorobenzene	< 300	ug/Kg		9/9/2016 09:06
1,2,4-Trichlorobenzene	< 300	ug/Kg		9/9/2016 09:06
1,2-Dichlorobenzene	< 300	ug/Kg		9/9/2016 09:06
1,3-Dichlorobenzene	< 300	ug/Kg		9/9/2016 09:06
1,4-Dichlorobenzene	< 300	ug/Kg		9/9/2016 09:06
2,2-0xybis (1-chloropropane)	< 300	ug/Kg		9/9/2016 09:06
2,3,4,6-Tetrachlorophenol	< 300	ug/Kg		9/9/2016 09:06
2,4,5-Trichlorophenol	< 599	ug/Kg		9/9/2016 09:06
2,4,6-Trichlorophenol	< 300	ug/Kg		9/9/2016 09:06
2,4-Dichlorophenol	< 300	ug/Kg		9/9/2016 09:06
2,4-Dimethylphenol	< 300	ug/Kg		9/9/2016 09:06
2,4-Dinitrophenol	< 599	ug/Kg		9/9/2016 09:06
2,4-Dinitrotoluene	< 300	ug/Kg		9/9/2016 09:06
2,6-Dinitrotoluene	< 300	ug/Kg		9/9/2016 09:06
2-Chloronaphthalene	< 300	ug/Kg		9/9/2016 09:06
2-Chlorophenol	< 300	ug/Kg		9/9/2016 09:06
2-Methylnapthalene	< 300	ug/Kg		9/9/2016 09:06
2-Methylphenol	< 300	ug/Kg		9/9/2016 09:06
2-Nitroaniline	< 599	ug/Kg		9/9/2016 09:06
2-Nitrophenol	< 300	ug/Kg		9/9/2016 09:06
. 3&4-Methylphenol	< 300	ug/Kg		9/9/2016 09:06
3,3'-Dichlorobenzidine	< 300	ug/Kg		9/9/2016 09:06
3-Nitroaniline	< 599	ug/Kg		9/9/2016 09:06
4,6-Dinitro-2-methylphenol	< 599	ug/Kg		9/9/2016 09:06
4-Bromophenyl phenyl ether	< 300	ug/Kg		9/9/2016 09:06
4-Chloro-3-methylphenol	< 300	ug/Kg		9/9/2016 09:06

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F2-4-6 ft				
Lab Sample ID:	163832-13			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		< 300	ug/Kg		9/9/2016 09:06
4-Chlorophenyl pheny	l ether	< 300	ug/Kg		9/9/2016 09:06
4-Nitroaniline		< 599	ug/Kg		9/9/2016 09:06
4-Nitrophenol		< 599	ug/Kg		9/9/2016 09:06
Acenaphthene		< 300	ug/Kg		9/9/2016 09:06
Acenaphthylene		< 300	ug/Kg		9/9/2016 09:06
Acetophenone		< 300	ug/Kg		9/9/2016 09:06
Anthracene		< 300	ug/Kg		9/9/2016 09:06
Atrazine		<300 VJ	ug/Kg		9/9/2016 09:06
Benzaldehyde		< 300	ug/Kg		9/9/2016 09:06
Benzo (a) anthracene		< 300	ug/Kg		9/9/2016 09:06
Benzo (a) pyrene		< 300	ug/Kg		9/9/2016 09:06
Benzo (b) fluoranthene	•	< 300	ug/Kg		9/9/2016 09:06
Benzo (g,h,i) perylene		< 300	ug/Kg		9/9/2016 09:06
Benzo (k) fluoranthene	•	< 300	ug/Kg		9/9/2016 09:06
Bis (2-chloroethoxy) m	ethane	< 300	ug/Kg		9/9/2016 09:06
Bis (2-chloroethyl) eth	er	< 300	ug/Kg		9/9/2016 09:06
Bis (2-ethylhexyl) phth	alate	< 300	ug/Kg		9/9/2016 09:06
Butylbenzylphthalate		< 300	ug/Kg		9/9/2016 09:06
Caprolactam		< 300	ug/Kg		9/9/2016 09:06
Carbazole		< 300	ug/Kg		9/9/2016 09:06
Chrysene		< 300	ug/Kg		9/9/2016 09:06
Dibenz (a,h) anthracene	a	< 300	ug/Kg		9/9/2016 09:06
Dibenzofuran		< 300	ug/Kg		9/9/2016 09:06
Diethyl phthalate		< 300	ug/Kg		9/9/2016 09:06
Dimethyl phthalate		< 599	ug/Kg		9/9/2016 09:06
Di-n-butyl phthalate		< 300	ug/Kg		9/9/2016 09:06
Di-n-octylphthalate		< 300	ug/Kg		9/9/2016 09:06
Fluoranthene		< 300	ug/Kg		9/9/2016 09:06
Fluorene		< 300	ug/Kg		9/9/2016 09:06

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

map 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F2-4-6 ft						
Lab Sample ID:	163832-13			I	ate Sampled:	9/1/2016	
Matrix:	Soil			T.	ate Received:	9/2/2016	
Hexachlorobenzene		< 300	ug/Kg			9/9/2016	09:06
Hexachlorobutadiene		< 300	ug/Kg			9/9/2016	09:06
Hexachlorocyclopentad	iene	< 300	ug/Kg			9/9/2016	09:06
Hexachloroethane		< 300	ug/Kg			9/9/2016	09:06
Indeno (1,2,3-cd) pyren	е	< 300	ug/Kg			9/9/2016	09:06
lsophorone		< 300	ug/Kg			9/9/2016	09:06
Naphthalene		< 300	ug/Kg			9/9/2016	09:06
Nitrobenzene		< 300	ug/Kg			9/9/2016	09:06
N-Nitroso-di-n-propylar	nine	< 300	ug/Kg			9/9/2016	09:06
N-Nitrosodiphenylamin	2	< 300	ug/Kg			9/9/2016	09:06
Pentachlorophenol		< 59 9	ug/Kg			9/9/2016	09:06
Phenanthrene		< 300	ug/Kg			9/9/2016	09:06
Phenol		< 300	ug/Kg			9/9/2016	09:06
Pyrene		< 300	ug/Kg			9/9/2016	09:06
Surrogate		Perce	nt Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			67.5	34.1 - 104		9/9/2016	09:06
2-Fluorobiphenyl			48.1	36.4 - 95.3	L	9/9/2016	09:06
2-Fluorophenol			43.3	35 - 84.3	L	9/9/2016	09:06
Nitrobenzene-d5			44.2	36.3 - 82.2	?	9/9/2016	09:06
Phenol-d5			46.8	38.5 - 88.8	}	9/9/2016	09:06
Terphenyl-d14			91.4	54.9 - 114		9/9/2016	09:06

Method Reference(s):

EPA 8270D

EPA 3550C

Preparation Date:

9/8/2016

Data File:

B13972.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 313	ug/Kg		9/9/2016 09:35
1,2,4,5-Tetrachlorobenzene	< 313	ug/Kg		9/9/2016 09:35
1,2,4-Trichlorobenzene	< 313	ug/Kg		9/9/2016 09:35
1,2-Dichlorobenzene	< 313	ug/Kg		9/9/2016 09:35
1,3-Dichlorobenzene	< 313	ug/Kg		9/9/2016 09:35
1,4-Dichlorobenzene	< 313	ug/Kg		9/9/2016 09:35
2,2-Oxybis (1-chloropropane)	< 313	ug/Kg		9/9/2016 09:35
2,3,4,6-Tetrachlorophenol	< 313	ug/Kg		9/9/2016 09:35
2,4,5-Trichlorophenol	< 625	ug/Kg		9/9/2016 09:35
2,4,6-Trichlorophenol	< 313	ug/Kg		9/9/2016 09:35
2,4-Dichlorophenol	< 313	ug/Kg		9/9/2016 09:35
2,4-Dimethylphenol	< 313	ug/Kg		9/9/2016 09:35
2,4-Dinitrophenol	< 625	ug/Kg		9/9/2016 09:35
2,4-Dinitrotoluene	< 313	ug/Kg		9/9/2016 09:35
2,6-Dinitrotoluene	< 313	ug/Kg		9/9/2016 09:35
2-Chloronaphthalene	< 313	ug/Kg		9/9/2016 09:35
2-Chlorophenol	<313	ug/Kg 🥆		9/9/2016 09:35
2-Methylnapthalene	<313	ug/Kg		9/9/2016 09:35
2-Methylphenol	< 313	ug/Kg		9/9/2016 09:35
2-Nitroaniline	< 625	ug/Kg		9/9/2016 09:35
2-Nitrophenol	< 313	ug/Kg		9/9/2016 09:35
3&4-Methylphenol	< 313	ug/Kg		9/9/2016 09:35
3,3'-Dichlorobenzidine	< 313	ug/Kg		9/9/2016 09:35
3-Nitroaniline	< 625	ug/Kg		9/9/2016 09:35
4,6-Dinitro-2-methylphenol	< 625	ug/Kg		9/9/2016 09:35
4-Bromophenyl phenyl ether	< 313	ug/Kg		9/9/2016 09:35
4-Chloro-3-methylphenol	< 313	ug/Kg		9/9/2016 09:35

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F2-9-10 ft				
Lab Sample ID:	163832-14			Date Sampled:	9/1/2016
Matrix:	Soil			Date Received:	9/2/2016
4-Chloroaniline		<313	ug/Kg		9/9/2016 09:35
4-Chlorophenyl phenyl	ether	< 313	ug/Kg		9/9/2016 09:35
4-Nitroaniline		< 625	ug/Kg		9/9/2016 09:35
4-Nitrophenol		< 625	ug/Kg		9/9/2016 09:35
Acenaphthene		< 313	ug/Kg		9/9/2016 09:35
Acenaphthylene		< 313	ug/Kg		9/9/2016 09:35
Acetophenone		< 313	ug/Kg		9/9/2016 09:35
Anthracene		< 313	ug/Kg		9/9/2016 09:35
Atrazine		<313 W.	ug/Kg		9/9/2016 09:35
Benzaldehyde		< 313	ug/Kg		9/9/2016 09:35
Benzo (a) anthracene		< 313	ug/Kg		9/9/2016 09:35
Benzo (a) pyrene		< 313	ug/Kg		9/9/2016 09:35
Benzo (b) fluoranthene		< 313	ug/Kg		9/9/2016 09:35
Benzo (g,h,i) perylene		< 313	ug/Kg		9/9/2016 09:35
Benzo (k) fluoranthene		< 313	ug/Kg		9/9/2016 09:35
Bis (2-chloroethoxy) me	ethane	< 313	ug/Kg		9/9/2016 09:35
Bis (2-chloroethyl) ethe	er	< 313	ug/Kg		9/9/2016 09:35
Bis (2-ethylhexyl) phtha	alate	< 313	ug/Kg		9/9/2016 09:35
Butylbenzylphthalate		< 313	ug/Kg		9/9/2016 09:35
Caprolactam		< 313	ug/Kg		9/9/2016 09:35
Carbazole		< 313	ug/Kg		9/9/2016 09:35
Chrysene		< 313	ug/Kg		9/9/2016 09:35
Dibenz (a,h) anthracene	•	< 313	ug/Kg		9/9/2016 09:35
Dibenzofuran		<313	ug/Kg		9/9/2016 09:35
Diethyl phthalate		< 313	ug/Kg		9/9/2016 09:35
Dimethyl phthalate		< 625	ug/Kg		9/9/2016 09:35
Di-n-butyl phthalate		< 313	ug/Kg		9/9/2016 09:35
Di-n-octylphthalate		< 313	ug/Kg		9/9/2016 09:35
Fluoranthene		<313	ug/Kg		9/9/2016 09:35
Fluorene		< 313	ug/Kg		9/9/2016 09:35

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MXP 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	F2-9-10 ft						
Lab Sample ID:	163832-14			Da	te Sampled:	9/1/2016	
Matrix:	Soil			Da	te Received:	9/2/2016	
Hexachlorobenzene		< 313	ug/Kg			9/9/2016	09:35
Hexachlorobutadiene		< 313	ug/Kg			9/9/2016	09:35
Hexachlorocyclopentad	iene	< 313	ug/Kg			9/9/2016	09:35
Hexachloroethane		< 313	ug/Kg			9/9/2016	09:35
Indeno (1,2,3-cd) pyren	e	< 313	ug/Kg			9/9/2016	
Isophorone		<313	ug/Kg			9/9/2016	09:35
Naphthalene		< 313	ug/Kg			9/9/2016	
Nitrobenzene		< 313	ug/Kg			9/9/2016	
N-Nitroso-di-n-propyla	mine	< 313	ug/Kg			9/9/2016	
N-Nitrosodiphenylamin	e	<313	ug/Kg			9/9/2016	09:35
Pentachlorophenol		< 625	ug/Kg			9/9/2016	09:35
Phenanthrene		< 313	ug/Kg			9/9/2016	09:35
Phenol		< 313	ug/Kg			9/9/2016	09:35
Pyrene		< 313	ug/Kg			9/9/2016	
Surrogate		Per	cent Recovery	Limits	<u>Qutliers</u>	Date Analy	
2,4,6-Tribromophenol			45.1	34.1 - 104		9/9/2016	09:35
2-Fluorobiphenyl			39.9	36.4 - 95.1		9/9/2016	09:35
2-Fluorophenol			42.9	35 - 84.1		9/9/2016	09:35
Nitrobenzene-d5			39.9	36.3 - 82.2		9/9/2016	09:35
Phenol-d5			47.3	38.5 - 88.8		9/9/2016	09:35
Terphenyl-d14			72.5	54.9 - 114		9/9/2016	09:35
Method Reference	(s): EPA 8270D EPA 3550C			-		•	

Preparation Date: 9/8/2016

Data File: B13973.D

Client:

C&S Companies

Project Reference:

North Street

Sample Identifier:

A4-22-23 ft

Lab Sample ID:

163845-01

Matrix:

Soil

Date Sampled: 9/2/2016

Date Received:

9/6/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analy	zed
1,1-Biphenyl	< 327	ug/Kg		9/10/2016	02:03
1,2,4,5-Tetrachlorobenzene	< 327	ug/Kg		9/10/2016	02:03
1,2,4-Trichlorobenzene	< 327	ug/Kg	M	9/10/2016	02:03
1,2-Dichlorobenzene	< 327	ug/Kg		9/10/2016	02:03
1,3-Dichlorobenzene	< 327	ug/Kg		9/10/2016	02:03
1,4-Dichlorobenzene	< 327	ug/Kg	М	9/10/2016	02:03
2,2-0xybis (1-chloropropane)	< 327	ug/Kg		9/10/2016	02:03
2,3,4,6-Tetrachlorophenol	< 327	ug/Kg		9/10/2016	02:03
2,4,5-Trichlorophenol	< 655	ug/Kg		9/10/2016	02:03
2,4,6-Trichlorophenol	< 327	ug/Kg		9/10/2016	02:03
2,4-Dichlorophenol	< 327	ug/Kg	М	9/10/2016	02:03
2,4-Dimethylphenol	< 327	ug/Kg		9/10/2016	02:03
2,4-Dinitrophenol	< 655	ug/Kg		9/10/2016	02:03
2,4-Dinitrotoluene	< 327	ug/Kg		9/10/2016	02:03
2,6-Dinitrotoluene	< 327	ug/Kg		9/10/2016	02:03
2-Chloronaphthalene	< 327	ug/Kg		9/10/2016	02:03
2-Chlorophenol	< 327	ug/Kg	М	9/10/2016	02:03
2-Methylnapthalene	< 327	ug/Kg		9/10/2016	02:03
2-Methylphenol	< 327	ug/Kg		9/10/2016	02:03
2-Nitroaniline	< 655	ug/Kg		9/10/2016	02:03
2-Nitrophenol	< 327	ug/Kg	М	9/10/2016	02:03
3&4-Methylphenol	< 327	ug/Kg		9/10/2016	02:03
3,3'-Dichlorobenzidine	<327	ug/Kg		9/10/2016	02:03
3-Nitroaniline	< 655	ug/Kg		9/10/2016	02:03
4,6-Dinitro-2-methylphenol	< 655	ug/Kg		9/10/2016	02:03
4-Bromophenyl phenyl ether	< 327	ug/Kg		9/10/2016	02:03
4-Chloro-3-methylphenol	< 327	ug/Kg		9/10/2016	02:03

Client:

C&S Companies

Project Reference:

North Street

Sample Identifier:	A4-22-23 ft				
Lab Sample ID:	163845-01			Date Sampled:	9/2/2016
Matrix:	Soil			Date Received:	9/6/2016
4-Chloroaniline		<327	ug/Kg		9/10/2016 02:03
4-Chlorophenyl pheny	l ether	< 327	ug/Kg		9/10/2016 02:03
4-Nitroaniline		< 655	ug/Kg		9/10/2016 02:03
4-Nitrophenol		< 655	ug/Kg		9/10/2016 02:03
Acenaphthene		< 327	ug/Kg		9/10/2016 02:03
Acenaphthylene		< 327	ug/Kg		9/10/2016 02:03
Acetophenone		< 327	ug/Kg		9/10/2016 02:03
Anthracene		< 327	ug/Kg		9/10/2016 02:03
Atrazine		<327 WJ	ug/Kg		9/10/2016 02:03
Benzaldehyde		< 327	ug/Kg		9/10/2016 02:03
Benzo (a) anthracene		< 327	ug/Kg		9/10/2016 02:03
Benzo (a) pyrene		<327	ug/Kg		9/10/2016 02:03
Benzo (b) fluoranthene	•	< 327	ug/Kg		9/10/2016 02:03
Benzo (g,h,i) perylene		< 327	ug/Kg		9/10/2016 02:03
Benzo (k) fluoranthene		< 327	ug/Kg		9/10/2016 02:03
Bis (2-chloroethoxy) m	ethane	< 327	ug/Kg		9/10/2016 02:03
Bis (2-chloroethyl) ethe	er	< 327	ug/Kg		9/10/2016 02:03
Bis (2-ethylhexyl) phth	alate	< 327	ug/Kg		9/10/2016 02:03
Butylbenzylphthalate		< 327	ug/Kg		9/10/2016 02:03
Caprolactam		< 327	ug/Kg		9/10/2016 02:03
Carbazole		< 327	ug/Kg		9/10/2016 02:03
Chrysene		< 327	ug/Kg		9/10/2016 02:03
Dibenz (a,h) anthracene	2	< 327	ug/Kg		9/10/2016 02:03
Dibenzofuran		< 327	ug/Kg		9/10/2016 02:03
Diethyl phthalate		< 327	ug/Kg		9/10/2016 02:03
Dimethyl phthalate		< 655	ug/Kg		9/10/2016 02:03
Di-n-butyl phthalate		< 327	ug/Kg		9/10/2016 02:03
Di-n-octylphthalate		< 327	ug/Kg		9/10/2016 02:03
Fluoranthene		< 327	ug/Kg		9/10/2016 02:03
Fluorene		< 327	ug/Kg		9/10/2016 02:03

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MAKE 5/6/17

Client:

C&S Companies

Project Reference:	North Street						
Sample Identifier:	A4-22-23 ft						
Lab Sample ID:	163845-01			Dat	e Sampled:	9/2/2016	
Matrix:	Soil			Dat	e Received:	9/6/2016	
Hexachlorobenzene		<327	ug/Kg			9/10/2016	02:03
Hexachlorobutadiene		< 327	ug/Kg			9/10/2016	02:03
Hexachlorocyclopenta	ıdiene	< 327	ug/Kg			9/10/2016	02:03
Hexachloroethane		< 327	_ ug/Kg			9/10/2016	02:03
Indeno (1,2,3-cd) pyre	ene	<327 ك	△ ug/Kg	•		9/10/2016	02:03
Isophorone		< 327	ug/Kg			9/10/2016	02:03
Naphthalene		< 327	ug/Kg			9/10/2016	02:03
Nitrobenzene		< 327	ug/Kg			9/10/2016	02:03
N-Nitroso-di-n-propyl	amine	< 327	ug/Kg			9/10/2016	02:03
N-Nitrosodiphenylam	ine	< 327	ug/Kg			9/10/2016	02:03
Pentachlorophenol		< 655	ug/Kg			9/10/2016	02:03
Phenanthrene		< 327	ug/Kg			9/10/2016	02:03
Phenol		< 327	ug/Kg		M	9/10/2016	02:03
Pyrene		< 327	ug/Kg			9/10/2016	02:03
Surrogate		Perce	nt Recovery	Limits	Outliers	Date Analyz	zed
2,4,6-Tribromophenol			66.6	34.1 - 104		9/10/2016	02:03
2-Fluorobiphenyl			43.8	36.4 - 95.1		9/10/2016	02:03
2-Fluorophenol			37.9	35 - 84.1		9/10/2016	02:03
Nitrobenzene-d5			36.5	36.3 - 82.2		9/10/2016	02:03
Phenol-d5			39.9	38.5 - 88.8		9/10/2016	02:03
Terphenyl-d14			83.3	54.9 - 114		9/10/2016	02:03

Method Reference(s):

EPA 8270D EPA 3550C

Preparation Date: Data File:

9/9/2016 B14003.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C4 7-8 ft

Lab Sample ID:

163892-01

Matrix:

Soil

Date Sampled: 8/3

8/30/2016

Date Received: 9/8/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	Units	Qualifier	Date Analyzed
1,1-Biphenyl	< 326	ug/Kg		9/12/2016 15:06
1,2,4,5-Tetrachlorobenzene	< 326	ug/Kg		9/12/2016 15:06
1,2,4-Trichlorobenzene	< 326	ug/Kg		9/12/2016 15:06
1,2-Dichlorobenzene	<326	ug/Kg		9/12/2016 15:06
1,3-Dichlorobenzene	< 326	ug/Kg		9/12/2016 15:06
1,4-Dichlorobenzene	< 326	ug/Kg		9/12/2016 15:06
2,2-Oxybis (1-chloropropane)	< 326	ug/Kg		9/12/2016 15:06
2,3,4,6-Tetrachlorophenol	< 326	ug/Kg		9/12/2016 15:06
2,4,5-Trichlorophenol	< 651	ug/Kg		9/12/2016 15:06
2,4,6-Trichlorophenol	< 326	ug/Kg		9/12/2016 15:06
2,4-Dichlorophenol	< 326	ug/Kg		9/12/2016 15:06
2,4-Dimethylphenol	< 326	ug/Kg		9/12/2016 15:06
2,4-Dinitrophenol	< 651	ug/Kg		9/12/2016 15:06
2,4-Dînitrotoluene	< 326	ug/Kg		9/12/2016 15:06
2,6-Dinitrotoluene	< 326	ug/Kg		9/12/2016 15:06
2-Chloronaphthalene	< 326	ug/Kg		9/12/2016 15:06
2-Chlorophenol	< 326	ug/Kg		9/12/2016 15:06
2-Methylnapthalene	< 326	ug/Kg		9/12/2016 15:06
2-Methylphenol	< 326	ug/Kg		9/12/2016 15:06
2-Nitroaniline	< 651	ug/Kg		9/12/2016 15:06
2-Nitrophenol	< 326	ug/Kg		9/12/2016 15:06
3&4-Methylphenol	< 326	ug/Kg		9/12/2016 15:06
3,3'-Dichlorobenzidine	< 326	ug/Kg		9/12/2016 15:06
3-Nitroaniline	< 651	ug/Kg		9/12/2016 15:06
4,6-Dinitro-2-methylphenol	< 651	ug/Kg		9/12/2016 15:06
4-Bromophenyl phenyl ether	< 326	ug/Kg		9/12/2016 15:06
4-Chloro-3-methylphenol	< 326	ug/Kg		9/12/2016 15:06

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:	C4 7-8 ft		,			
Lab Sample ID:	163892-01			Date Sampled:	8/30/2016	
Matrix:	Soil			Date Received:	9/8/2016	
4-Chloroaniline		< 326	ug/Kg		9/12/2016	15:00
4-Chlorophenyl pheny	l ether	< 326	ug/Kg		9/12/2016	15:0
4-Nitroaniline		< 651	ug/Kg		9/12/2016	15:06
4-Nitrophenol		< 651	ug/Kg		9/12/2016	15:06
Acenaphthene		< 326	ug/Kg		9/12/2016	
Acenaphthylene		< 326	ug/Kg		9/12/2016	15:06
Acetophenone		< 326	ug/Kg		9/12/2016	15:06
Anthracene		< 326	ug/Kg		9/12/2016	
Atrazine		<326 NJ	ug/Kg		9/12/2016	
Benzaldehyde		< 326	ug/Kg		9/12/2016	
Benzo (a) anthracene		< 326	ug/Kg		9/12/2016	
Benzo (a) pyrene		< 326	ug/Kg		9/12/2016	15:06
Benzo (b) fluoranthene	•	< 326	ug/Kg		9/12/2016	15:06
Benzo (g,h,i) perylene		< 326	ug/Kg		9/12/2016	15:06
Benzo (k) fluoranthene	:	< 326	ug/Kg		9/12/2016	15:06
Bis (2-chloroethoxy) m	ethane	< 326	ug/Kg		9/12/2016	15:06
Bis (2-chloroethyl) ethe	er	< 326	ug/Kg	•	9/12/2016	15:06
Bis (2-ethylhexyl) phth	alate	< 326	ug/Kg		9/12/2016	15:06
Butylbenzylphthalate		< 326	ug/Kg		9/12/2016	
Caprolactam		< 326	ug/Kg		9/12/2016	15:06
Carbazole		< 326	ug/Kg		9/12/2016	15:06
Chrysene		< 326	ug/Kg		9/12/2016	15:06
Dibenz (a,h) anthracene	9	< 326	ug/Kg		9/12/2016	
Dibenzofuran		< 326	ug/Kg		9/12/2016	15:06
Diethyl phthalate		< 326	ug/Kg		9/12/2016	15:06
Dimethyl phthalate		< 651	ug/Kg		9/12/2016	
Di-n-butyl phthalate		< 326	ug/Kg		9/12/2016	
Di-n-octylphthalate		< 326	ug/Kg		9/12/2016	
Fluoranthene		< 326	ug/Kg		9/12/2016	
Fluorene		< 326	ug/Kg		9/12/2016	

Client:

C&S Companies

Project Reference:

19 North Street

Project Reference:	19 North Stree	et					
Sample Identifier:	C4 7-8 ft						
Lab Sample ID:	163892-01			Da	te Sampled:	8/30/2016	
Matrix:	Soil			Da	te Received:	9/8/2016	
Hexachlorobenzene		< 326	ug/Kg			9/12/2016	15:06
Hexachlorobutadiene		< 326	ug/Kg			9/12/2016	15:06
Hexachlorocyclopentad	iene	< 326	ug/Kg			9/12/2016	
Hexachloroethane		< 326	ug/Kg			9/12/2016	
Indeno (1,2,3-cd) pyren	e	< 326	ug/Kg			9/12/2016	
Isophorone		< 326	ug/Kg			9/12/2016	
Naphthalene		< 326	ug/Kg			9/12/2016	
Nitrobenzene		< 326	ug/Kg			9/12/2016	
N-Nitroso-di-n-propylar	nine	< 326	ug/Kg			9/12/2016	
N-Nitrosodiphenylamin	е	< 326	ug/Kg			9/12/2016	15:06
Pentachlorophenol		< 651	ug/Kg			9/12/2016	
Phenanthrene		< 326	ug/Kg			9/12/2016	
Phenol		< 326	ug/Kg			9/12/2016	
Pyrene		< 326	ug/Kg			9/12/2016	
Surrogate		Perce	entRecovery	Limits	Outliers	Date Analy	
2,4,6-Tribromophenol			67.1	34.1 - 104		9/12/2016	15:06
2-Fluorobiphenyl			47.3	36.4 - 95.1		9/12/2016	15:06
2-Fluorophenol			41.4	35 - 84.1		9/12/2016	15:06
Nitrobenzene-d5			39.1	36.3 - 82.2		9/12/2016	15:06
Phenol-d5			43.7	38.5 - 88.8		9/12/2016	15:06
Terphenyl-d14			92.8	54.9 - 114		9/12/2016	15:06

Method Reference(s):

EPA 8270D

Preparation Date:

EPA 3550C

Data File:

9/9/2016 B14028.D

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled: 9/1/2016 Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	yzed
4,4-DDD	< 3.37	ug/Kg			9/9/2016	5 17:46
4,4-DDE	< 3.37	ug/Kg			9/9/2016	5 17:46
4,4-DDT	< 3.37	ug/Kg			9/9/2016	5 17:46
Aldrin	< 3.37	ug/Kg			9/9/2016	5 17:46
alpha-BHC	< 3.37	ug/Kg			9/9/2016	17:46
beta-BHC	< 3.37	ug/Kg			9/9/2016	17:46
cis-Chlordane	< 3.37	ug/Kg			9/9/2016	17:46
delta-BHC	< 3.37	ug/Kg			9/9/2016	5 17:46
Dieldrin	< 3.37	ug/Kg			9/9/2016	17:46
Endosulfan I	< 3.37	ug/Kg			9/9/2016	17:46
Endosulfan II	< 3.37	ug/Kg			9/9/2016	17:46
Endosulfan Sulfate	< 3.37	ug/Kg			9/9/2016	17:46
Endrin	< 3.37	ug/Kg			9/9/2016	17:46
Endrin Aldehyde	< 3.37	ug/Kg			9/9/2016	17:46
Endrin Ketone	< 3.37	ug/Kg			9/9/2016	17:46
gamma-BHC (Lindane)	< 3.37	ug/Kg			9/9/2016	17:46
Heptachlor	< 3.37	ug/Kg			9/9/2016	17:46
Heptachlor Epoxide	< 3.37	ug/Kg			9/9/2016	17:46
Methoxychlor	< 3.37	ug/Kg			9/9/2016	17:46
Toxaphene	< 33.7	ug/Kg			9/9/2016	17:46
trans-Chlordane	< 3.37	ug/Kg			9/9/2016	17:46
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		38.3	10.2 - 141		9/9/2016	17:46
Tetrachloro-m-xylene (1)		18.8	10 - 93		9/9/2016	17:46

Method Reference(s):

EPA 8081B EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	vzed
4,4-DDD	< 3.12	ug/Kg			9/8/2016	5 19:23
4,4-DDE	< 3.12	ug/Kg			9/8/2016	5 19:23
4,4-DDT	< 3.12	ug/Kg			9/8/2016	5 19:23
Aldrin	< 3.12	ug/Kg			9/8/2016	5 19:23
alpha-BHC	< 3.12	ug/Kg			9/8/2016	5 19:23
beta-BHC	< 3.12	ug/Kg			9/8/2016	5 19:23
cis-Chlordane	< 3.12	ug/Kg			9/8/2016	5 19:23
delta-BHC	< 3.12	ug/Kg			9/8/2016	19:23
Dieldrin	< 3.12	ug/Kg			9/8/2016	5 19:23
Endosulfan I	< 3.12	ug/Kg			9/8/2016	5 19:23
Endosulfan II	< 3.12	ug/Kg			9/8/2016	5 19:23
Endosulfan Sulfate	< 3.12	ug/Kg			9/8/2016	19:23
Endrin	< 3.12	ug/Kg			9/8/2016	19:23
Endrin Aldehyde	< 3.12	ug/Kg			9/8/2016	19:23
Endrin Ketone	< 3.12	ug/Kg			9/8/2016	19:23
gamma-BHC (Lindane)	< 3.12	ug/Kg			9/8/2016	19:23
Heptachlor	< 3.12	ug/Kg			9/8/2016	19:23
Heptachlor Epoxide	< 3.12	ug/Kg			9/8/2016	19:23
Methoxychlor	< 3.12	ug/Kg			9/8/2016	19:23
Toxaphene	< 31.2	ug/Kg			9/8/2016	19:23
trans-Chlordane	< 3.12	ug/Kg			9/8/2016	19:23
<u>Surrogate</u>	Perce	ent Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		29.9	10.2 - 141		9/8/2016	19:23
Tetrachloro-m-xylene (1)		12.8	10 - 93		9/8/2016	19:23

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03A

Matrix:

TCLP Extract

Date Sampled: 9/3

9/1/2016

Date Received: 9/2/2016

TCLP Pesticides

Analyte	Result	Units	Regulatory Limit	Qualifier	Date Analy	zed
Chlordane	< 1.00	ug/L	30		9/8/2016	18:10
Endrin	< 1.00	ug/L	20		9/8/2016	18:10
gamma-BHC (Lindane)	< 1.00	ug/L	400		9/8/2016	18:10
Heptachlor	< 1.00	ug/L	8	•	9/8/2016	18:10
Heptachlor Epoxide	< 1.00	ug/L	8		9/8/2016	18:10
Methoxychlor	< 1.00	ug/L	10000		9/8/2016	18:10
Toxaphene	< 10.0	ug/L	500		9/8/2016	18:10
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		72.1	18.7 - 134		9/8/2016	18:10
Tetrachloro-m-xylene (1)		75.9	10 - 109		9/8/2016	18:10

Method Reference(s):

EPA 8081B

EPA 1311 / 3510C

Preparation Date:

9/6/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled: 9/1/2

Date Received:

9/1/2016 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units	•	Qualifier	Date Analy	zed
4,4-DDD	< 2.95	ug/Kg			9/9/2016	18:00
4,4-DDE	< 2.95	ug/Kg			9/9/2016	18:00
4,4-DDT	< 2.95	ug/Kg			9/9/2016	18:00
Aldrin	< 2.95	ug/Kg			9/9/2016	18:00
alpha-BHC	< 2.95	ug/Kg			9/9/2016	18:00
beta-BHC	< 2.95	ug/Kg			9/9/2016	18:00
cis-Chlordane	< 2.95	ug/Kg			9/9/2016	18:00
delta-BHC	< 2.95	ug/Kg			9/9/2016	18:00
Dieldrin	< 2.95	ug/Kg			9/9/2016	18:00
Endosulfan I	< 2.95	ug/Kg			9/9/2016	18:00
Endosulfan II	< 2.95	ug/Kg			9/9/2016	18:00
Endosulfan Sulfate	< 2.95	ug/Kg			9/9/2016	18:00
Endrin	< 2.95	ug/Kg			9/9/2016	18:00
Endrin Aldehyde	< 2.95	ug/Kg			9/9/2016	18:00
Endrin Ketone	< 2,95	ug/Kg			9/9/2016	18:00
gamma-BHC (Lindane)	< 2.95	ug/Kg			9/9/2016	18:00
Heptachlor	< 2.95	ug/Kg			9/9/2016	18:00
Heptachlor Epoxide	< 2.95	ug/Kg			9/9/2016	18:00
Methoxychlor	< 2.95	ug/Kg			9/9/2016	18:00
Toxaphene	< 29.5	ug/Kg			9/9/2016	18:00
trans-Chlordane	< 2,95	ug/Kg			9/9/2016	18:00
Surrogate	Percen	t Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)	4	48.8	10.2 - 141		9/9/2016	18:00
Tetrachloro-m-xylene (1)	3	31.4	10 - 93		9/9/2016	18:00

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Date Sampled:

9/1/2016

Matrix:

Soil

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 3.13	ug/Kg			9/9/2016	18:44
4,4-DDE	< 3.13	ug/Kg			9/9/2016	18:44
4,4-DDT	< 3.13	ug/Kg			9/9/2016	18:44
Aldrin	< 3.13	ug/Kg			9/9/2016	18:44
alpha-BHC	< 3.13	ug/Kg			9/9/2016	18:44
beta-BHC	< 3.13	ug/Kg			9/9/2016	18:44
cis-Chlordane	< 3.13	ug/Kg			9/9/2016	18:44
delta-BHC	< 3.13	ug/Kg			9/9/2016	18:44
Dieldrin	< 3.13	ug/Kg			9/9/2016	18:44
Endosulfan I	< 3.13	ug/Kg			9/9/2016	18:44
Endosulfan II	< 3.13	ug/Kg			9/9/2016	18:44
Endosulfan Sulfate	< 3.13	ug/Kg			9/9/2016	18:44
Endrin	< 3.13	ug/Kg			9/9/2016	18:44
Endrin Aldehyde	< 3.13	ug/Kg			9/9/2016	18:44
Endrin Ketone	< 3.13	ug/Kg			9/9/2016	18:44
gamma-BHC (Lindane)	< 3,13	ug/Kg			9/9/2016	18:44
Heptachlor	< 3.13	ug/Kg			9/9/2016	18:44
Heptachlor Epoxide	< 3.13	ug/Kg			9/9/2016	18:44
Methoxychlor	< 3.13	ug/Kg			9/9/2016	18:44
Toxaphene	·<31.3	ug/Kg			9/9/2016	18:44
trans-Chlordane	< 3.13	ug/Kg			9/9/2016	18:44
Surrogate	Perce	nt Recovery	Limits	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)		54.6	10.2 - 141		9/9/2016	18:44
Tetrachloro-m-xylene (1)		34.9	10 - 93		9/9/2016	18:44

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled: 9/1/2

9/1/2016

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 2.90	ug/Kg			9/9/2016	5 19:27
4,4-DDE	< 2.90	ug/Kg			9/9/2016	5 19:27
4,4-DDT	< 2.90	ug/Kg			9/9/2016	19:27
Aldrin	< 2.90	ug/Kg			9/9/2016	19:27
alpha-BHC	< 2.90	ug/Kg			9/9/2016	5 19:27
beta-BHC	< 2.90	ug/Kg			9/9/2016	19:27
cis-Chlordane	< 2.90	ug/Kg			9/9/2016	19:27
delta-BHC	< 2.90	ug/Kg			9/9/2016	19:27
Dieldrin	< 2.90	ug/Kg			9/9/2016	19:27
Endosulfan I	< 2.90	ug/Kg			9/9/2016	19:27
Endosulfan II	< 2.90	ug/Kg			9/9/2016	19:27
Endosulfan Sulfate	< 2.90	ug/Kg			9/9/2016	19:27
Endrin	< 2.90	ug/Kg			9/9/2016	19:27
Endrin Aldehyde	< 2.90	ug/Kg			9/9/2016	19:27
Endrin Ketone	< 2.90	ug/Kg			9/9/2016	19:27
gamma-BHC (Lindane)	< 2.90	ug/Kg			9/9/2016	19:27
Heptachlor	< 2.90	ug/Kg			9/9/2016	19:27
Heptachlor Epoxide	< 2.90	ug/Kg			9/9/2016	19:27
Methoxychlor .	< 2.90	ug/Kg		•	9/9/2016	19:27
Toxaphene	< 29.0	ug/Kg			9/9/2016	19:27
trans-Chlordane	< 2.90	ug/Kg			9/9/2016	19:27
Surrogate	Perc	ent Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		56.6	10.2 - 141		9/9/2016	19:27
Tetrachloro-m-xylene (1)		31.9	10 - 93		9/9/2016	19:27

Method Reference(s):

EPA 8081B

BPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 3.24	ug/Kg			9/9/2016	19:42
4,4-DDE	< 3.24	ug/Kg			9/9/2016	19:42
4,4-DDT	< 3.24	ug/Kg			9/9/2016	19:42
Aldrin	< 3.24	ug/Kg			9/9/2016	19:42
alpha-BHC	< 3.24	ug/Kg			9/9/2016	19:42
beta-BHC	< 3.24	ug/Kg			9/9/2016	19:42
cis-Chlordane	< 3.24	ug/Kg			9/9/2016	19:42
delta-BHC	< 3.24	ug/Kg			9/9/2016	19:42
Dieldrin	< 3.24	ug/Kg			9/9/2016	19:42
Endosulfan I	< 3.24	ug/Kg			9/9/2016	19:42
Endosulfan II	< 3.24	ug/Kg			9/9/2016	19:42
Endosulfan Sulfate	< 3.24	ug/Kg			9/9/2016	19:42
Endrin	< 3.24	ug/Kg			9/9/2016	19:42
Endrin Aldehyde	< 3.24	ug/Kg			9/9/2016	19:42
Endrin Ketone	< 3.24	ug/Kg			9/9/2016	19:42
gamma-BHC (Lindane)	< 3.24	ug/Kg			9/9/2016	19:42
Heptachlor	< 3.24	ug/Kg			9/9/2016	19:42
Heptachlor Epoxide	< 3.24	ug/Kg			9/9/2016	19:42
Methoxychlor	< 3.24	ug/Kg			9/9/2016	19:42
Toxaphene	< 32.4	ug/Kg			9/9/2016	19:42
trans-Chlordane	< 3.24	ug/Kg			9/9/2016	19:42
Surrogate	Percent	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl (1)	3	3.3	10.2 - 141		9/9/2016	19:42
Tetrachloro-m-xylene (1)	1	7.8	10 - 93		9/9/2016	19:42

Method Reference(s):

EPA 8081B EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled: Date Received: 9/1/2016 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 3.13	ug/Kg			9/9/2016	19:56
4,4-DDE	< 3.13	ug/Kg			9/9/2016	19:56
4,4-DDT	< 3.13	ug/Kg			9/9/2016	19:56
Aldrin	< 3.13	ug/Kg			9/9/2016	19:56
alpha-BHC	< 3.13	ug/Kg			9/9/2016	19:56
beta-BHC	< 3.13	ug/Kg			9/9/2016	19:56
cis-Chlordane	< 3.13	ug/Kg			9/9/2016	19:56
delta-BHC	< 3.13	ug/Kg			9/9/2016	19:56
Dieldrin	< 3.13	ug/Kg			9/9/2016	19:56
Endosulfan I	< 3.13	ug/Kg			9/9/2016	19:56
Endosulfan II	< 3.13	ug/Kg			9/9/2016	19:56
Endosulfan Sulfate	< 3.13	ug/Kg			9/9/2016	19:56
Endrin	< 3.13	ug/Kg			9/9/2016	19:56
Endrin Aldehyde	< 3.13	ug/Kg			9/9/2016	19:56
Endrin Ketone	< 3.13	ug/Kg			9/9/2016	19:56
gamma-BHC (Lindane)	< 3.13	ug/Kg			9/9/2016	19:56
Heptachlor	< 3.13	ug/Kg			9/9/2016	19:56
Heptachlor Epoxide	< 3.13	ug/Kg			9/9/2016	19:56
Methoxychlor	< 3.13	ug/Kg			9/9/2016	19:56
Toxaphene	< 31.3	ug/Kg			9/9/2016	19:56
trans-Chlordane	< 3.13	ug/Kg			9/9/2016	19:56
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		61.1	10.2 - 141		9/9/2016	19:56
Tetrachloro-m-xylene (1)		39.7	10 - 93		9/9/2016	19:56

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled: 9

9/1/2016

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 3.01	ug/Kg			9/9/2016	20:11
4,4-DDE	< 3.01	ug/Kg			9/9/2016	20:11
4,4-DDT	< 3.01	ug/Kg			9/9/2016	20:11
Aldrin	< 3.01	ug/Kg			9/9/2016	20:11
alpha-BHC	< 3.01	ug/Kg			9/9/2016	20:11
beta-BHC	< 3.01	ug/Kg			9/9/2016	20:11
cis-Chlordane	< 3.01	ug/Kg			9/9/2016	20:11
delta-BHC	< 3.01	ug/Kg			9/9/2016	20:11
Dieldrin	< 3.01	ug/Kg			9/9/2016	20:11
Endosulfan I	< 3.01	ug/Kg			9/9/2016	20:11
Endosulfan II	< 3.01	ug/Kg			9/9/2016	20:11
Endosulfan Sulfate	< 3.01	ug/Kg			9/9/2016	20:11
Endrin	< 3.01	ug/Kg			9/9/2016	20:11
Endrin Aldehyde	< 3.01	ug/Kg			9/9/2016	20:11
Endrin Ketone	< 3.01	ug/Kg			9/9/2016	20:11
gamma-BHC (Lindane)	< 3.01	ug/Kg			9/9/2016	20:11
Heptachlor	< 3.01	ug/Kg			9/9/2016	20:11
Heptachlor Epoxide	< 3.01	ug/Kg			9/9/2016	20:11
Methoxychlor	< 3.01	ug/Kg	•		9/9/2016	20:11
Toxaphene	< 30.1	ug/Kg			9/9/2016	20:11
trans-Chlordane	< 3.01	ug/Kg			9/9/2016	20:11
Surrogate	Percen	ıt Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl (1)	!	67.3	10.2 - 141		9/9/2016	20:11
Tetrachloro-m-xylene (1)		46.9	10 - 93		9/9/2016	20:11

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Chlorinated Pesticides

Analyte	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 2.98	ug/Kg			9/9/2016	20:25
4,4-DDE	< 2.98	ug/Kg			9/9/2016	20:25
4,4-DDT	< 2.98	ug/Kg			9/9/2016	20:25
Aldrin	< 2.98	ug/Kg			9/9/2016	20:25
alpha-BHC	< 2.98	ug/Kg			9/9/2016	20:25
beta-BHC	< 2.98	ug/Kg			9/9/2016	20:25
cis-Chlordane	2.09	ug/Kg		J	9/9/2016	20:25
delta-BHC	< 2.98	ug/Kg			9/9/2016	20:25
Dieldrin	< 2.98	ug/Kg			9/9/2016	20:25
Endosulfan I	< 2.98	ug/Kg			9/9/2016	20:25
Endosulfan II	< 2.98	ug/Kg			9/9/2016	20:25
Endosulfan Sulfate	< 2.98	ug/Kg			9/9/2016	20:25
Endrin	< 2.98	ug/Kg			9/9/2016	20:25
Endrin Aldehyde	< 2.98	ug/Kg			9/9/2016	20:25
Endrin Ketone	< 2.98	ug/Kg			9/9/2016	20:25
gamma-BHC (Lindane)	< 2.98	ug/Kg			9/9/2016	20:25
Heptachlor	< 2.98	ug/Kg			9/9/2016	20:25
Heptachlor Epoxide	< 2.98	ug/Kg			9/9/2016	20:25
Methoxychlor	2.59	ug/Kg		J	9/9/2016	20:25
Toxaphene	< 29.8	ug/Kg			9/9/2016	20:25
trans-Chlordane	< 2.98	ug/Kg			9/9/2016	20:25
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		60.3	10.2 - 141		9/9/2016	20:25
Tetrachloro-m-xylene (1)		39.7	10 - 93		9/9/2016	20:25

Method Reference(s):

EPA 8081B

Preparation Date:

EPA 3550C 9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Date Sampled: 9/1/2016

Matrix:

Soil

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 3.07	ug/Kg			9/9/2016	20:39
4,4-DDE	< 3.07	ug/Kg			9/9/2016	20:39
4,4-DDT	< 3.07	ug/Kg			9/9/2016	20:39
Aldrin	< 3.07	ug/Kg			9/9/2016	20:39
alpha-BHC	< 3.07	ug/Kg			9/9/2016	20:39
beta-BHC	< 3.07	ug/Kg			9/9/2016	20:39
cis-Chlordane	< 3.07	ug/Kg			9/9/2016	20:39
delta-BHC	< 3.07	ug/Kg			9/9/2016	20:39
Dieldrin	< 3.07	ug/Kg			9/9/2016	20:39
Endosulfan l	< 3.07	ug/Kg			9/9/2016	20:39
Endosulfan II	< 3.07	ug/Kg			9/9/2016	20:39
Endosulfan Sulfate	< 3.07	ug/Kg			9/9/2016	20:39
Endrin	< 3.07	ug/Kg			9/9/2016	20:39
Endrin Aldehyde	< 3.07	ug/Kg			9/9/2016	20:39
Endrin Ketone	< 3.07	ug/Kg			9/9/2016	20:39
gamma-BHC (Lindane)	< 3.07	ug/Kg			9/9/2016	20:39
Heptachlor	< 3.07	ug/Kg			9/9/2016	20:39
Heptachlor Epoxide	< 3.07	ug/Kg			9/9/2016	20:39
Methoxychlor	< 3.07	ug/Kg			9/9/2016	20:39
Toxaphene	< 30.7	ug/Kg			9/9/2016	20:39
trans-Chlordane	< 3.07	ug/Kg			9/9/2016	20:39
Surrogate	Perce	ent Recovery	Limits	<u>Outliers</u>	Date Analy	
Decachlorobiphenyl (1)		67.2	10.2 - 141		9/9/2016	20:39
Tetrachloro-m-xylene (1)		47.7	10 - 93		9/9/2016	20:39

Method Reference(s):

EPA 8081B

EPA 3550C **Preparation Date:**

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled: Date Received: 9/1/2016

9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 3.11	ug/Kg			9/9/2016	20:54
4,4-DDE	< 3.11	ug/Kg			9/9/2016	20:54
4,4-DDT	< 3.11	ug/Kg			9/9/2016	20:54
Aldrin	< 3.11	ug/Kg			9/9/2016	20:54
alpha-BHC	< 3.11	ug/Kg			9/9/2016	20:54
beta-BHC	< 3.11	ug/Kg			9/9/2016	20:54
cis-Chlordane	< 3.11	ug/Kg			9/9/2016	20:54
delta-BHC	< 3.11	ug/Kg			9/9/2016	20:54
Dieldrin	< 3.11	ug/Kg			9/9/2016	20:54
Endosulfan I	< 3.11	ug/Kg			9/9/2016	20:54
Endosulfan II	< 3.11	ug/Kg			9/9/2016	20:54
Endosulfan Sulfate	< 3.11	ug/Kg			9/9/2016	20:54
Endrin	< 3.11	ug/Kg			9/9/2016	20:54
Endrin Aldehyde	< 3.11	ug/Kg			9/9/2016	20:54
Endrin Ketone	< 3.11	ug/Kg			9/9/2016	20:54
gamma-BHC (Lindane)	< 3.11	ug/Kg			9/9/2016	20:54
Heptachlor	< 3.11	ug/Kg			9/9/2016	20:54
Heptachlor Epoxide	< 3.11	ug/Kg			9/9/2016	20:54
Methoxychlor	< 3.11	ug/Kg			9/9/2016	20:54
Toxaphene	< 31.1	ug/Kg			9/9/2016	20:54
trans-Chlordane	< 3.11	ug/Kg			9/9/2016	20:54
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		69.5	10.2 - 141		9/9/2016	20:54
Tetrachloro-m-xylene (1)		19.5	10 - 93		9/9/2016	20:54

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 2,98	ug/Kg			9/9/2016	21:08
4,4-DDE	< 2.98	ug/Kg			9/9/2016	21:08
4,4-DDT	< 2.98	ug/Kg			9/9/2016	21:08
Aldrin	< 2.98	ug/Kg			9/9/2016	21:08
alpha-BHC	< 2.98	ug/Kg			9/9/2016	21:08
beta-BHC	< 2.98	ug/Kg			9/9/2016	21:08
cis-Chlordane	< 2.98	ug/Kg			9/9/2016	21:08
delta-BHC	< 2.98	ug/Kg			9/9/2016	21:08
Dieldrin	< 2.98	ug/Kg			9/9/2016	21:08
Endosulfan I	< 2.98	ug/Kg			9/9/2016	21:08
Endosulfan II	< 2.98	ug/Kg			9/9/2016	21:08
Endosulfan Sulfate	< 2.98	ug/Kg			9/9/2016	21:08
Endrin	< 2.98	ug/Kg			9/9/2016	21:08
Endrin Aldehyde	< 2.98	ug/Kg			9/9/2016	21:08
Endrin Ketone	< 2.98	ug/Kg			9/9/2016	21:08
gamma-BHC (Lindane)	< 2.98	ug/Kg			9/9/2016	21:08
Heptachlor	< 2.98	ug/Kg			9/9/2016	21:08
Heptachlor Epoxide	< 2.98	ug/Kg			9/9/2016	21:08
Methoxychlor	< 2.98	ug/Kg			9/9/2016	21:08
Toxaphene	< 29.8	ug/Kg			9/9/2016	21:08
trans-Chlordane	< 2.98	ug/Kg			9/9/2016	21:08
Surrogate	Perce	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		41.3	10.2 - 141		9/9/2016	21:08
Tetrachloro-m-xylene (1)		31.0	10 - 93		9/9/2016	21:08

Method Reference(s):

EPA 8081B

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

Chlorinated Pesticides

Analyte	Result	Units		Qualifier	Date Analy	zed
4,4-DDD	< 2.92	ug/Kg			9/9/2016	5 21:23
4,4-DDE	< 2.92	ug/Kg			9/9/2016	5 21:23
4,4-DDT	< 2.92	ug/Kg			9/9/2016	5 21:23
Aldrin	< 2.92	ug/Kg			9/9/2016	5 21:23
alpha-BHC	< 2.92	ug/Kg			9/9/2016	5 21:23
beta-BHC	< 2.92	ug/Kg			9/9/2016	5 21:23
cis-Chlordane	< 2,92	ug/Kg			9/9/2016	5 21:23
delta-BHC	< 2.92	ug/Kg			9/9/2016	5 21:23
Dieldrin	< 2.92	ug/Kg			9/9/2016	21:23
Endosulfan I	< 2.92	ug/Kg			9/9/2016	21:23
Endosulfan II	< 2.92	ug/Kg			9/9/2016	21:23
Endosulfan Sulfate	< 2.92	ug/Kg			9/9/2016	5 21:23
Endrin	< 2.92	ug/Kg			9/9/2016	21:23
Endrin Aldehyde	< 2.92	ug/Kg			9/9/2016	21:23
Endrin Ketone	< 2.92	ug/Kg			9/9/2016	21:23
gamma-BHC (Lindane)	< 2.92	ug/Kg			9/9/2016	21:23
Heptachlor	< 2.92	ug/Kg			9/9/2016	21:23
Heptachlor Epoxide	< 2.92	ug/Kg			9/9/2016	21:23
Methoxychlor	< 2.92	ug/Kg			9/9/2016	21:23
Toxaphene	< 29.2	ug/Kg			9/9/2016	21:23
trans-Chlordane	< 2.92	ug/Kg			9/9/2016	21:23
Surrogate	Perce	nt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		54.9	10.2 - 141		9/9/2016	21:23
Tetrachloro-m-xylene (1)	•	35.5	10 - 93		9/9/2016	21:23

Method Reference(s):

EPA 8081B

BPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Matrix:

Result	Units		Qualifier	Date Analy	zed
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
< 0.0337	mg/Kg			9/12/2016	14:26
Percent	Recovery	Limits	Outliers	Date Analy	zed
33	1.8	10 - 146		9/12/2016	14:26
20).2	10 - 141		9/12/2016	14:26
	<0.0337 <0.0337 <0.0337 <0.0337 <0.0337 <0.0337 <0.0337 <0.0337 <0.0337 <percent.< td=""><td><0.0337 mg/Kg <0.0337 mg/Kg</td><td><0.0337 mg/Kg <0.0337 mg/Kg Limits 31.8 10 - 146</td><td><0.0337 mg/Kg <0.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg</td><td>< 0.0337</td> mg/Kg 9/12/2016 < 0.0337</percent.<>	<0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg	<0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg Limits 31.8 10 - 146	<0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <0.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg <10.0337 mg/Kg	< 0.0337

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1221	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1232	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1242	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1248	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1254	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1260	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1262	< 0.0312	mg/Kg			9/12/2016	14:50
PCB-1268	< 0.0312	mg/Kg			9/12/2016	14:50
Surrogate	Percent	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl	32	2.8	10 - 146		9/12/2016	14:50
Tetrachloro-m-xylene	19	9.5	10 - 141		9/12/2016	14:50

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1221	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1232	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1242	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1248	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1254	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1260	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1262	< 0.0320	mg/Kg			9/12/2016	15:13
PCB-1268	< 0.0320	mg/Kg			9/12/2016	15:13
Surrogate	Percent	Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	4	3.6	10 - 146		9/12/2016	15:13
Tetrachloro-m-xylene	3	2.1	10 - 141		9/12/2016	15:13

 ${\bf Method\ Reference (s):}$

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1221	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1232	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1242	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1248	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1254	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1260	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1262	< 0.0295	mg/Kg			9/12/2016	15:38
PCB-1268	< 0.0295	mg/Kg			9/12/2016	15:38
Surrogate	Percent	Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	8	1.4	10 - 146		9/12/2016	15:38
Tetrachloro-m-xylene	3	7.9	10 - 141		9/12/2016	15:38

 $Method\ Reference(s);$

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled: 9/1

9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1221	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1232	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1242	< 0.0313	mg/Kg			9/12/2016	16:48
· PCB-1248	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1254	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1260	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1262	< 0.0313	mg/Kg			9/12/2016	16:48
PCB-1268	< 0.0313	mg/Kg			9/12/2016	16:48
Surrogate	Percent	Recovery	Limits	Outliers	Date Analy:	zed
Decachlorobiphenyl	7.	2,3	10 - 146		9/12/2016	16:48
Tetrachloro-m-xylene	4	7.7	10 - 141		9/12/2016	16:48

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1221	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1232	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1242	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1248	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1254	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1260	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1262	< 0.0290	mg/Kg			9/12/2016	17:58
PCB-1268	< 0.0290	mg/Kg			9/12/2016	17:58
Surrogate	Percent	Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	7	9.0	10 - 146		9/12/2016	17:58
Tetrachloro-m-xylene	4	5.2	10 - 141		9/12/2016	17:58

 $Method\ Reference(s):$

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix: Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1221	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1232	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1242	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1248	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1254	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1260	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1262	< 0.0324	mg/Kg			9/12/2016	18:22
PCB-1268	< 0.0324	mg/Kg			9/12/2016	18:22
Surrogate	Percent	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl	38	3.3	10 - 146		9/12/2016	18:22
Tetrachloro-m-xylene	25	5.5	10 - 141		9/12/2016	18:22

 ${\bf Method\ Reference (s):}$

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled: 9/1/2016

9/2/2016

Date Received:

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1221	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1232	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1242	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1248	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1254	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1260	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1262	< 0.0313	mg/Kg			9/12/2016	18:45
PCB-1268	< 0.0313	mg/Kg			9/12/2016	18:45
Surrogate	Percent l	Recovery	Limits	Outliers	Date Analyz	æd
Decachlorobiphenyl	83	.6	10 - 146	ç	9/12/2016	18:45
Tetrachloro-m-xylene	49	.0	10 - 141	Ġ	9/12/2016	18:45

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1221	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1232	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1242	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1248	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1254	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1260	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1262	< 0.0301	mg/Kg			9/12/2016	19:08
PCB-1268	< 0.0301	mg/Kg			9/12/2016	19:08
Surrogate	Percent	Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	8	5.6	10 - 146		9/12/2016	19:08
Tetrachloro-m-xylene	5	2.0	10 - 141		9/12/2016	19:08

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

50

Date Sampled: 9/1/2016

Soil

Date Received: 9/2/2016

PCBs

Matrix:

Analyte	Result	Units		Qualifier	Date Anal	yzed
PCB-1016	< 0.0298	mg/Kg			9/12/2010	6 19:32
PCB-1221	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1232	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1242	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1248	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1254	< 0.0298	mg/Kg	•		9/12/2016	5 19:32
PCB-1260	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1262	< 0.0298	mg/Kg			9/12/2016	5 19:32
PCB-1268	< 0.0298	mg/Kg			9/12/2016	5 19:32
Surrogate	Percent	t.Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	7	4.0	10 - 146		9/12/2016	19:32
Tetrachloro-m-xylene	4	8.4	10 - 141		9/12/2016	19:32

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Matrix:

Soil

Date Sampled: 9/1/2016

9/2/2016

Date Received:

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1221	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1232	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1242	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1248	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1254	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1260	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1262	< 0.0307	mg/Kg			9/12/2016	19:55
PCB-1268	< 0.0307	mg/Kg			9/12/2016	19:55
Surrogate	Percenti	Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl	92	.2	10 - 146		9/12/2016	19:55
Tetrachloro-m-xylene	57	.0	10 - 141		9/12/2016	19:55

Method Reference(s):

EPA 8082A

· EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBs

Matrix:

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1221	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1232	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1242	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1248	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1254	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1260	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1262	< 0.0311	mg/Kg			9/12/2016	20:18
PCB-1268	< 0.0311	mg/Kg			9/12/2016	20:18
Surrogate	Percent	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl	8	5.9	10 - 146		9/12/2016	20:18
Tetrachloro-m-xylene	23	8.7	10 - 141		9/12/2016	20:18

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

PCBS

Matrix:

Analyte	Result	Units		Qualifier	Date Analyz	zed
PCB-1016	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1221	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1232	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1242	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1248	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1254	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1260	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1262	< 0.0298	mg/Kg			9/12/2016	20:41
PCB-1268	< 0.0298	mg/Kg			9/12/2016	20:41
Surrogate	Percent !	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl	57	.4	10 - 146		9/12/2016	20:41
Tetrachloro-m-xylene	38	3.0	10 - 141		9/12/2016	20:41

Method Reference(s):

EPA 8082A

BPA 3

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Soil

Date Sampled: 9/1/2016 **Date Received:** 9/2/2016

PCBs

Matrix:

Analyte	Result	Units		Qualifier	Date Analyz	zed
PCB-1016	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1221	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1232	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1242	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1248	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1254	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1260	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1262	< 0.0292	mg/Kg			9/12/2016	21:05
PCB-1268	< 0.0292	mg/Kg			9/12/2016	21:05
Surrogate	Percent !	Recovery	Limits	Outliers	Date Analyz	æd
Decachlorobiphenyl	7 2	.5	10 - 146		9/12/2016	21:05
Tetrachloro-m-xylene	48	3.4	10 - 141		9/12/2016	21:05

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C47-8ft

Lab Sample ID:

163892-01

Matrix:

Soil

Date Sampled: 8/30/2016

Date Received: 9/8/2016

PCBs

Analyte	Result	Units		Qualifier	Date Analy	zed
PCB-1016	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1221	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1232	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1242	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1248	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1254	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1260	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1262	< 0.0329	mg/Kg			9/14/2016	10:17
PCB-1268	< 0.0329	mg/Kg			9/14/2016	10:17
Surrogate	Percent	Recovery	Limits	Outliers	Date Analyz	zed
Decachlorobiphenyl	65	5.1	10 - 146		9/14/2016	10:17
Tetrachloro-m-xylene	23	3.9	10 - 141		9/14/2016	10:17

Method Reference(s):

EPA 8082A

EPA 3550C

Preparation Date:

9/12/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

<u>Metals</u>

Analyte	Result	Units	Qualifier	Date Analyzed
Arsenic	2.30	mg/Kg		9/8/2016 21:26
Barium	112	mg/Kg		9/8/2016 21:26
Beryllium	0.871	mg/Kg		9/8/2016 21:26
Cadmium	0.451 J	mg/Kg		9/8/2016 21:26
Chromium	22.2	mg/Kg		9/8/2016 21:26
Copper	18.7	mg/Kg		9/8/2016 21:26
Lead	13.7	mg/Kg		9/8/2016 21:26
Manganese	340 T	mg/Kg		9/8/2016 21:26
Nickel	24.2	mg/Kg		9/8/2016 21:26
Selenium	1.82 J	mg/Kg		9/12/2016 13:43
Silver	< 0.560	mg/Kg		9/8/2016 21:26
Zinc	94.8	mg/Kg		9/8/2016 21:26

Method Reference(s):

EPA 6010C

Preparation Date:

EPA 3050B

Data File:

9/3/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result 0.0350

Units mg/Kg Qualifier

Date Analyzed

9/8/2016 12:38

Method Reference(s):

Preparation Date:

Data File:

EPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

<u>Metals</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	<u>Date Analyzed</u>
Arsenic	0.668	mg/Kg		9/8/2016 21:30
Barium	19.7	mg/Kg		9/8/2016 21:30
Beryllium	0.159	mg/Kg	J	9/8/2016 21:30
Cadmium	0.231 J	mg/Kg	J	9/8/2016 21:30
Chromium	5.22	mg/Kg		9/8/2016 21:30
Copper	6.95 J	mg/Kg	В	9/8/2016 21:30
Lead	7.58	mg/Kg		9/8/2016 21:30
Manganese	223 J	mg/Kg		9/8/2016 21:30
Nickel	4.69	mg/Kg		9/8/2016 21:30
Selenium	1.09 J	mg/Kg		9/12/2016 13:47
Silver	< 0.563	mg/Kg		9/8/2016 21:30
Zinc	45.4	mg/Kg		9/8/2016 21:30

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

Data File:

9/3/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result < 0.00821 Units mg/Kg Qualifier

Date Analyzed

9/8/2016 12:48

Method Reference(s): **Preparation Date:**

Data File:

EPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03A

Matrix:

TCLP Extract

Date Sampled:

Date Received:

9/1/2016 9/2/2016

TCLP RCRA Metals (ICP)

Analyte	Result	Units	Regulatory Limit	Qualifier	Date Analyz	zed
Arsenic	< 0.100	mg/L	5		9/9/2016	23:32
Barium	0.674	mg/L	100		9/9/2016	23:32
Cadmium	< 0.0250	mg/L	1		9/9/2016	23:32
Chromium	< 0.0500	mg/L	5		9/9/2016	23:32
Lead	< 0.100	mg/L	5.		9/9/2016	23:32
Selenium	< 0.100	mg/L	1		9/9/2016	23:32
Silver	< 0.0500	mg/L	5		9/9/2016	23:32

Method Reference(s):

EPA 6010C

EPA 1311 / 3005A

Preparation Date:

Data File:

9/8/2016 090916c

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03A

Matrix:

TCLP Extract

Date Sampled:

9/1/2016

Date Received: 9/2/2016

TCLP Mercury

Analyte

Mercury

Result < 0.00200 Units mg/L

Regulatory Limit Qualifier

Date Analyzed

9/9/2016 11:38

0.2

Method Reference(s):

EPA 7470A

EPA 1311

Preparation Date:

Data File:

9/8/2016 Hg160909A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Date Sampled: 9/1/2016

Matrix:

Soil

Date Received: 9/2/2016

Metals

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	0.379	mg/Kg	J	9/8/2016 21:34
Barium	13.7	mg/Kg		9/8/2016 21:34
Beryllium	< 0.275	mg/Kg		9/8/2016 21:34
Cadmium	0.367 J	mg/Kg	M	9/8/2016 21:34
Chromium	4.24	mg/Kg		9/8/2016 21:34
Copper	7.90 J	mg/Kg	В	9/8/2016 21:34
Lead	7.42	mg/Kg		9/8/2016 21:34
Manganese	205 J	mg/Kg	M	9/8/2016 21:34
Nickel	3.49	mg/Kg		9/8/2016 21:34
Selenium	0.989 J	mg/Kg	D	9/12/2016 13:51
Silver	< 0.549	mg/Kg		9/8/2016 21:34
Zinc	36.5	mg/Kg		9/8/2016 21:34

Method Reference(s):

EPA 6010C

Preparation Date:

EPA 3050B

Data File:

9/3/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Mercury

Analyte

Mercury

Result 0.00442 Units mg/Kg Qualifier J

Date Analyzed

9/8/2016 12:52

Method Reference(s):

Preparation Date: Data File:

EPA 7471B 9/7/2016

Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Metals

Analyte	Result	Units	Qualifier	Date Analyzed
Arsenic	0.916	mg/Kg		9/9/2016 00:41
Barium	22.2	mg/Kg		9/9/2016 00:41
Beryllium	0.203	mg/Kg	J	9/9/2016 00:41
Cadmium	0.222 J	mg/Kg	JM	9/9/2016 00:41
Chromium	6.53	mg/Kg		9/9/2016 00:41
Copper	8.63 J	mg/Kg		9/9/2016 00:41
Lead	8.54	mg/Kg		9/9/2016 00:41
Manganese	260 J	mg/Kg		9/9/2016 00:41
Nickel	5.71	mg/Kg		9/9/2016 00:41
Selenium	1.23 J	mg/Kg	D	9/12/2016 14:05
Silver	< 0.579	mg/Kg		9/9/2016 00:41
Zinc	49.4	mg/Kg		9/9/2016 00:41

Method Reference(s):

EPA 6010C

Preparation Date:

EPA 3050B

Data File:

9/7/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Mercury

Analyte

Mercury

Result 0.00554

Units

Qualifier J

Date Analyzed 9/8/2016 13:02

mg/Kg

Method Reference(s): Preparation Date:

Data File:

EPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled:

Date Received: 9/2/2016

9/1/2016

Metals

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
Arsenic	0.933	mg/Kg		9/9/2016 17:5	7
Barium	11.9	mg/Kg		9/8/2016 22:0	5
Beryllium	< 0.265	mg/Kg		9/8/2016 22:0	5
Cadmium	0.233 J	mg/Kg	J	9/8/2016 22:0	5
Chromium	3.78	mg/Kg		9/8/2016 22:0	5
Copper	6.46 J	mg/Kg	В	9/8/2016 22:0	5
Lead	6.27	mg/Kg		9/8/2016 22:0	5
Manganese	198 T	mg/Kg		9/8/2016 22:0	5
Nickel	3.48	mg/Kg		9/8/2016 22:0	5
Selenium	< 0.530	mg/Kg		9/12/2016 14:1	8
Silver	< 0.530	mg/Kg		9/8/2016 22:0	5
Zinc	19.9	mg/Kg		9/8/2016 22:0	5

Method Reference(s):

EPA 6010C

Preparation Date:

EPA 3050B

9/3/2016

Data File:

090916c

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-15-16 ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Result

< 0.00862

Units mg/Kg Qualifier

Date Analyzed

9/8/2016 13:12

Mercury

EPA 7471B 9/7/2016 Hg160908A

Method Reference(s): Preparation Date: Data File:

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix:

Soil

Date Sampled:

Date Received:

9/1/2016

9/2/2016

Metals

Result	Units	Qualifier	Date Analyzed
2.91	mg/Kg		9/8/2016 22:09
127	mg/Kg		9/8/2016 22:09
0.231	mg/Kg	J	9/8/2016 22:09
0.466 J	mg/Kg		9/8/2016 22:09
8.18	mg/Kg		9/8/2016 22:09
20.9	mg/Kg		9/8/2016 22:09
224	mg/Kg		9/8/2016 22:09
255 J	mg/Kg		9/8/2016 22:09
7.04	mg/Kg		9/8/2016 22:09
1.47 J	mg/Kg		9/12/2016 14:22
< 0.544	mg/Kg		9/8/2016 22:09
182	mg/Kg		9/8/2016 22:09
	2.91 127 0.231 0.466 J 8.18 20.9 224 255 J 7.04 1.47 J <0.544	2.91 mg/Kg 127 mg/Kg 0.231 mg/Kg 0.466 \(\mathcal{T} \) mg/Kg 8.18 mg/Kg 20.9 mg/Kg 224 mg/Kg 255 \(\mathcal{T} \) mg/Kg 7.04 mg/Kg 1.47 \(\mathcal{T} \) mg/Kg < 0.544 mg/Kg	2.91 mg/Kg 127 mg/Kg 0.231 mg/Kg 0.466 \(\mathcal{T} \) mg/Kg 8.18 mg/Kg 20.9 mg/Kg 224 mg/Kg 255 \(\mathcal{T} \) mg/Kg 7.04 mg/Kg 1.47 \(\mathcal{T} \) mg/Kg < 0.544 mg/Kg

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

Data File:

9/3/2016 090816Ъ

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result

0.365

Units mg/Kg Qualifier

Date Analyzed 9/8/2016 13:15

Method Reference(s): **Preparation Date:**

EPA 7471B 9/7/2016 Hg160908A

Data File:

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Metals

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.310	mg/Kg	J	9/8/2016 22:14
Barium	27.3	mg/Kg		9/8/2016 22:14
Beryllium	0.231	mg/Kg	J	9/8/2016 22:14
Cadmium	0.207 J	mg/Kg	J	9/8/2016 22:14
Chromium	6.97	mg/Kg		9/8/2016 22:14
Copper	4.18 J	mg/Kg	В	9/8/2016 22:14
Lead	6.02	mg/Kg		9/8/2016 22:14
Manganese	159 J	mg/Kg		9/8/2016 22:14
Nickel	5.80	mg/Kg		9/8/2016 22:14
Selenium	0.537 5	mg/Kg	J	9/12/2016 18:01
Silver	< 0.584	mg/Kg		9/8/2016 22:14
Zinc	62.3	mg/Kg		9/8/2016 22:14

Method Reference(s):

EPA 6010C **EPA 3050B**

Preparation Date:

Data File:

9/3/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result 0.0183

Units mg/Kg Qualifier

Date Analyzed 9/8/2016 13:18

Method Reference(s): Preparation Date: Data File:

BPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled: 9,

9/1/2016

Date Received: 9/2/2016

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.320	mg/Kg	J	9/8/2016 22:18
Barium	9.16	mg/Kg		9/8/2016 22:18
Beryllium	0.127	mg/Kg	J	9/8/2016 22:18
Cadmium	0.256 ゴ	mg/Kg		9/8/2016 22:18
Chromium	3.83	mg/Kg		9/8/2016 22:18
Copper	6.54 J	mg/Kg	В	9/8/2016 22:18
Lead	6.21	mg/Kg		9/8/2016 22:18
Manganese	172 ナ	mg/Kg		9/8/2016 22:18
Nickel	3.12	mg/Kg		9/8/2016 22:18
Selenium	0.380 T	mg/Kg	J	9/12/2016 18:05
Silver	< 0.507	mg/Kg		9/8/2016 22:18
Zinc	34.1	mg/Kg		9/8/2016 22:18

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

9/3/2016

Data File:

9/3/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result

0.00651

Units mg/Kg Qualifier J **Date Analyzed** 9/8/2016 13:28

Method Reference(s):
Preparation Date:

Preparation Date: Data File: EPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Metals

Analyte	Result	Units	Qualifier	Date Analyz	æd
Arsenic	2.07	mg/Kg		9/8/2016	22:22
Barium	42.6	mg/Kg		9/8/2016	22:22
Beryllium	0.338	mg/Kg		9/8/2016	22:22
Cadmium	0.735 J	mg/Kg		9/8/2016	22:22
Chromium	8.56	mg/Kg		9/8/2016	22:22
Copper	16.7	mg/Kg		9/8/2016	22:22
Lead	54.9	mg/Kg		9/8/2016	22:22
Manganese	436 J	mg/Kg		9/8/2016	22:22
Nickel	7.31	mg/Kg		9/8/2016	22:22
Selenium	0.618 J	mg/Kg		9/12/2016	18:10
Silver	< 0.507	mg/Kg		9/8/2016	22:22
Zinc	218	mg/Kg		9/8/2016	22:22

Method Reference(s):

EPA 6010C EPA 3050B

Preparation Date:

Data File:

9/3/2016 090816Ъ

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Result

Units

Qualifier

Date Analyzed

Mercury

0.134

mg/Kg

9/8/2016 13:32

Method Reference(s): Preparation Date: Data File: EPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Date Sampled: 9/1/2016

Matrix: Soil

Date Received: 9/2/2016

<u>Metals</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	1.10	mg/Kg		9/8/2016 22:27
Barium	15.9	mg/Kg		9/8/2016 22:27
Beryllium	0.145	mg/Kg	J	9/8/2016 22:27
Cadmium	0.228 J	mg/Kg	J	9/8/2016 22:27
Chromium	4.81	mg/Kg		9/8/2016 22:27
Copper	6.84 J	mg/Kg	В	9/8/2016 22:27
Lead	8.40	mg/Kg		9/8/2016 22:27
Manganese	263 J	mg/Kg		9/8/2016 22:27
Nickel	3.95	mg/Kg		9/8/2016 22:27
Selenium	0.409 J	mg/Kg	J	9/12/2016 18:14
Silver	< 0.538	mg/Kg		9/8/2016 22:27
Zînc	39.5	mg/Kg		9/8/2016 22:27

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

9/3/2016

Data File:

090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-9-10 ft

Lab Sample ID:

163832-11

Date Sampled:

9/1/2016

Matrix:

Soil

Date Received: 9/2/2016

Mercury

Analyte

Result

Units

Qualifier

Date Analyzed

Mercury

0.00799

mg/Kg

J

9/8/2016 13:35

Method Reference(s): **Preparation Date:**

EPA 7471B 9/7/2016 Hg160908A

Data File:

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

<u>Metals</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.839	mg/Kg		9/8/2016 22:31
Barium	25.3	mg/Kg		9/8/2016 22:31
Beryllium	0.206	mg/Kg	J	9/8/2016 22:31
Cadmium	0.276 J	mg/Kg	J	9/8/2016 22:31
Chromium	6.84	mg/Kg		9/8/2016 22:31
Copper	8.89 J	mg/Kg	В	9/8/2016 22:31
Lead	7,31	mg/Kg		9/8/2016 22:31
Manganese	237 J	mg/Kg		9/8/2016 22:31
Nickel	6.26	mg/Kg		9/8/2016 22:31
Selenium	1.12 J	mg/Kg		9/12/2016 18:19
Silver	< 0.553	mg/Kg		9/8/2016 22:31
Zinc	44.8	mg/Kg		9/8/2016 22:31

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

9/3/2016

Data File:

090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Result

Units

Qualifier

Date Analyzed

Mercury

0.0137

mg/Kg

9/8/2016 13:38

Method Reference(s):

EPA 7471B 9/7/2016 Hg160908A

Preparation Date: Data File:

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled: 9/

9/1/2016

Date Received: 9/2/2016

<u>Metals</u>

Analyte	Result	Units	Qualifier	Date Analyz	æd
Arsenic	1.50	mg/Kg		9/9/2016	18:36
Barium	21.3	mg/Kg		9/9/2016	01:12
Beryllium	0.257	mg/Kg		9/9/2016	01:12
Cadmium	0.283 ブ	mg/Kg		9/9/2016	01:12
Chromium	7.54	mg/Kg		9/9/2016	01:12
Copper	10.6 J	mg/Kg		9/9/2016	01:12
Lead	14.1	mg/Kg		9/9/2016	01:12
Manganese	326 J	mg/Kg		9/9/2016	01:12
Nickel	6.31	mg/Kg		9/9/2016	01:12
Selenium	0.770 J	mg/Kg		9/12/2016	18:23
Silver	< 0.503	mg/Kg		9/9/2016	01:12
Zinc	53.8	mg/Kg		9/9/2016	01:12

Method Reference(s):

EPA 6010C

Preparation Date:

EPA 3050B

Preparation I Data File: 9/7/2016 090916c

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Mercury

Result 0.0446 Units mg/Kg Qualifier

Date Analyzed

9/8/2016 13:42

Method Reference(s):

Preparation Date: Data File: RPA 7471B 9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled: 9/1/2016

Date Received: 9/2/2016

Metals

Analyte	Result	Units	Qualifier	Date Analyzed
Arsenic	1.05	mg/Kg		9/9/2016 01:16
Barium	29.5	mg/Kg		9/9/2016 01:16
Beryllium	0.230	mg/Kg	J	9/9/2016 01:16
Cadmium	0.176 J	mg/Kg	J	9/9/2016 01:16
Chromium	6.59	mg/Kg		9/9/2016 01:16
Copper	6.32 J	mg/Kg		9/9/2016 01:16
Lead	9.31	mg/Kg		9/9/2016 01:16
Manganese	125 J	mg/Kg		9/9/2016 01:16
Nickel	6.24	mg/Kg		9/9/2016 01:16
Selenium	0.754 J	mg/Kg		9/12/2016 18:27
Silver	< 0.493	mg/Kg		9/9/2016 01:16
Zinc	68.6	mg/Kg		9/9/2016 01:16

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date: Data File: 9/7/2016 090816b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Mercury

Analyte

Result 0.0139 Units mg/Kg Qualifier

Date Analyzed

9/8/2016 13:45

Mercury

EPA 7471B

Preparation Date: Data File:

Method Reference(s):

9/7/2016 Hg160908A

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C4 7-8 ft

Lab Sample ID:

163892-01

Matrix:

Soil

Date Sampled:

8/30/2016

Date Received: 9/8/2016

Metals

Result	Units	Qualifier	Date Analyzed	
2.63	mg/Kg		9/15/2016 15:09	9
33.6	mg/Kg		9/12/2016 20:07	7
0.319	mg/Kg		9/12/2016 20:07	7
0.481 J	mg/Kg		9/12/2016 20:03	7
8.62	mg/Kg		9/12/2016 20:03	7
8.93 J	mg/Kg		9/12/2016 20:07	7
20.1	mg/Kg		9/15/2016 15:09	€
536 J	mg/Kg		9/12/2016 20:07	7
8.15	mg/Kg		9/12/2016 20:07	7
1.77 J	mg/Kg		9/15/2016 15:09	}
0.790	mg/Kg		9/12/2016 20:07	7
77.2	mg/Kg		9/12/2016 20:03	7
	2.63 33.6 0.319 0.481 J 8.62 8.93 J 20.1 536 J 8.15 1.77 J 0.790	2.63 mg/Kg 33.6 mg/Kg 0.319 mg/Kg 0.481 J mg/Kg 8.62 mg/Kg 8.93 J mg/Kg 20.1 mg/Kg 536 J mg/Kg 8.15 mg/Kg 1.77 J mg/Kg 0.790 mg/Kg	2.63 mg/Kg 33.6 mg/Kg 0.319 mg/Kg 0.481 J mg/Kg 8.62 mg/Kg 8.93 J mg/Kg 20.1 mg/Kg 536 J mg/Kg 8.15 mg/Kg 1.77 J mg/Kg 0.790 mg/Kg	2.63 mg/Kg 9/15/2016 15:09 33.6 mg/Kg 9/12/2016 20:07 0.319 mg/Kg 9/12/2016 20:07 0.481 J mg/Kg 9/12/2016 20:07 8.62 mg/Kg 9/12/2016 20:07 8.93 J mg/Kg 9/12/2016 20:07 20.1 mg/Kg 9/15/2016 15:09 536 J mg/Kg 9/12/2016 20:07 8.15 mg/Kg 9/12/2016 20:07 1.77 J mg/Kg 9/15/2016 15:09 0.790 mg/Kg 9/12/2016 20:07

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

Data File:

9/9/2016 091516b

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C47-8 ft

Lab Sample ID:

163892-01

Matrix:

Soil

Date Sampled:

8/30/2016

Date Received:

9/8/2016

<u>Mercury</u>

Analyte Mercury Result 0.0430 Units mg/Kg Qualifier

Date Analyzed

9/9/2016 17:12

Method Reference(s): **Preparation Date:** Data File:

EPA 7471B 9/9/2016 Hg160909B

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-5-6 ft

Lab Sample ID:

163832-01

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

<u>Units</u>

Qualifier

Date Analyzed

Cyanide, Total

0.244 J

mg/Kg

J

9/8/2016

Method Reference(s): Preparation Date: EPA 9014 9/6/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

B1-15 ft

Lab Sample ID:

163832-02

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

< 0.459 W mg/Kg

9/8/2016

Method Reference(s): Preparation Date: EPA 9014 9/6/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

Cyanide, Total

C2-13-14.5 ft

Lab Sample ID:

163832-04

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

<u>Units</u>

Qualifier

Date Analyzed

< 0.548 WS mg/Kg

9/8/2016

Method Reference(s): Preparation Date: EPA 9014 9/6/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

D1-9.5-11.5 ft

Lab Sample ID:

163832-05

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier М

Date Analyzed

9/12/2016

Cyanide, Total

< 0.391 VJ mg/Kg

Method Reference(s): Preparation Date:

EPA 9014 9/8/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

Cyanide, Total

D1-15-16ft

Lab Sample ID:

163832-06

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result 0.393

Units mg/Kg Qualifier)

Date Analyzed

9/8/2016

Method Reference(s): Preparation Date:

EPA 9014 9/6/2016

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

Cyanide, Total

E2-5-6.5 ft

Lab Sample ID:

163832-07

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result 0.541 J Units mg/Kg Qualifier

Date Analyzed

9/8/2016

Method Reference(s): **Preparation Date:**

EPA 9014

9/6/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

E2-9-10 ft

Lab Sample ID:

163832-08

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

0.289

mg/Kg

I

j

9/8/2016

Method Reference(s):

EPA 9014

Preparation Date: 9/6/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

Cyanide, Total

E2-14-15 ft

Lab Sample ID:

163832-09

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

.

< 0.512 UJ mg/Kg

Units

Qualifier

Date Analyzed

9/8/2016

Method Reference(s): Preparation Date: EPA 9014 9/6/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-3-5 ft

Lab Sample ID:

163832-10

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

0.278 J

mg/Kg

J

9/8/2016

Method Reference(s): Preparation Date:

EPA 9014

9/6/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

Cyanide, Total

F1-9-10 ft

Lab Sample ID:

163832-11

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

< 0.528 **AJ** mg/Kg

9/8/2016

Method Reference(s): **Preparation Date:**

EPA 9014 9/6/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MED 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F1-15 ft

Lab Sample ID:

163832-12

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

< 0.411 WT mg/Kg

9/12/2016

Method Reference(s): Preparation Date: EPA 9014 9/8/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-4-6 ft

Lab Sample ID:

163832-13

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

< 0.370

mg/Kg

9/12/2016

Method Reference(s): Preparation Date: EPA 9014 9/8/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

MXP 5/6/17

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

F2-9-10 ft

Lab Sample ID:

163832-14

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

Total Cyanide

Analyte

Result

<u>Units</u>

Qualifier

Date Analyzed

Cyanide, Total

< 0.396 WJ

mg/Kg

9/12/2016

Method Reference(s): Preparation Date: EPA 9014 9/8/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C47-8ft

Lab Sample ID:

163892-01

Date Sampled:

8/30/2016

Matrix:

Soil

Date Received: 9/8/2016

Total Cyanide

Analyte

Result

Units

Qualifier

Date Analyzed

Cyanide, Total

0.360 J

mg/Kg

IM

9/13/2016

Method Reference(s): Preparation Date:

EPA 9014 9/12/2016

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received: 9/2/2016

Flash Point

Analyte

Result

Units C Qualifier

Date Analyzed

9/7/2016

Flash Point, Celsius >70.0

Method Reference(s): EPA 1010A

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:

C&S Companies

Project Reference:

19 North Street

Sample Identifier:

C2-WC

Lab Sample ID:

163832-03

Matrix:

Soil

Date Sampled:

9/1/2016

Date Received:

9/2/2016

pН

Analyte pH Result

Units

Qualifier

Date Analyzed


9.17 @ 21.5 C S.U.

9/6/2016 12:50

Method Reference(s):

EPA 9045D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Alpha Analytical

Laboratory Code: 11148

SDG Number: L1627717

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name:

19 NORTH STREET

Project Number:

19 NORTH ST

Lab Number:

L1627717

Report Date:

09/09/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

19 NORTH STREET

Project Number:

19 NORTH ST

Lab Number:

L1627717

Report Date:

09/09/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Chromium, Hexavalent

The WG930160-4/-5 MS/MSD RPD (27%), performed on L1627717-06, is above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Mclissa Cripps Melissa Cripps

Report Date: 09/09/16

Title: Technical Director/Representative

Project Name:

19 NORTH STREET

Project Number:

19 NORTH ST

Lab Number:

L1627717

Report Date:

09/09/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1627717-01	B1 - 5-6 FT	SOIL	Not Specified	09/01/16 09:10	09/01/16
L1627717-02	E2 - 14-15 FT	SOIL	Not Specified	09/01/16 14:25	09/01/16
L1627717-03	F1 - 3-5 FT	SOIL	Not Specified	09/01/16 14:44	09/01/16
L1627717-04	F1 - 9-10 FT	SOIL	Not Specified	09/01/16 14:46	09/01/16
L1627717-05	F2 - 9-10 FT	SOIL	Not Specified	09/01/16 15:15	09/01/16
L1627717-06	D1 - 9.5-11.5 FT	SOIL	Not Specified	09/01/16 11:17	09/01/16
L1627717-07	C2 - WC	SOIL	Not Specified	09/01/16 10:15	09/01/16

L1627717

CHAIN OF CUSTODY

							40 mm		************		•											•
D/M	allia Krie				REPORT TO				<u> </u>	·		ICE TO) :			li an no	ROJECT#:	16	I ICMT O	ROJECT	<u>.</u>	
, Co		Alva.	COMPANY	Parac	ligm Enviro	nmental		COMPAN		Sam	e					LAB P	KOJECI #:	١	LISN (I*)	(OJECT)	fi.	
			ADDRESS	179 L	ake Avenue	3		ADDRES	S:													
. N. N.		٠, ١	CITY:	Rochester	STATE	: NY ZIF	14608	CITY:				STA	TE:	ZII	₽;	TURNA	AROUND T	IME: (WO	RKING D	(YYS)		
سر .	Management of the same		PHONE:		FAX:			PHONE:			1	FAX:							STD			OTHER
ROJECT NAME/SITE	E NAME:		ATTN:	Toni	Denselve	مر ره		ATTN:	M	eridith	Dillm	nan					2		3 🔯	5		
10 10	1.1	(· \	COMMENT	s Pleas	e email resu	ilts to khan	sen@pa	aradigi	menv.c	com a	nd rep	orting	@para	digm	env.coi	n		<u> </u>	— (dimen)			
19 10	onth	Street	Ĭ					,				ANAL'		. –		Date	Due:					
			1				1	C		3069	1607	AIVAL	1313		······································							
		0					M	,, 0	Hexavalent Chrome	$\mathcal{K}_{\mathcal{L}}$												
		M P	G R				A	UT	[호] 3	1.73	`	ł					. Dien			140000		IPLE NUMBER
DATE	TIME	o s	A	SAM	PLE LOCATION/FI	ELDID	R	MAS	len	3-13	1 1					REMA	AKKS		PA	(ADIGNI	as san	ILCE NOMBEK
		i T	8				×	RE		1 2												
r		E						R	9	107											,	
9/1	9:10		V	B1-	5-6 ft	-	50		V) K	at	"B"					
	14/20		17		14-15 f		50	1	171						7							
	1444			1-1 -	3-5+		30		X	1	1				1							
			 _X	F1 -		F+	30	 	又	1-1-		_			$\overline{}$					\neg		
	1446	<u> </u>	 X					1 1		╅	\dashv				- -					_	-	
	15:15		<u> </u>	F2-	9-10		50	<u> </u>	14	+-+-		 	\vdash		100	c 1/	115		_	_	├─┼╴	
	1117		K	<u> </u>	9.5-11	5++	<u> </u>	al	14	1.,}-	-				1/1	S-N	1212	,,			┝╌├╌	
	10:15			<u> </u>	NIC		50		X X	17											┼╌┼╌	· · · · · · · · · · · · · · · · · · ·

TLAB USE C	NLY BEL	OW THIS L	INE**																			
Sample Condition	on: Per NELA	4C/ELAP 210/											1	/								
	Receipt Par				ompliance		Oli ofe	4,		0.4			al l	16								
Comments:	Container *	Type:		Υ	И	Samr	Clie'n	/	-//	-///- -		Dat	te/l/im/	7			T	otal Co	st:			
				·			/./			W_{Δ}			alile	1, ,	11	25						
	Preservat	tion:		Υ	И	Polin	guished i		¥-9	4/-	- The same of the	Dat	te/T/m#	1-12-					i			
Comments:				•		Kein		"),,	/ Y		, .	Ç		0	162	5						
	Holding T	'ime:		Y	N		4-			1	12	7.	te/Time					9.I.F.	Γ	 -		
Comments:				•		Rece	ived By	a./									,	44 .				
	Temperat	ture:		Y	И		ph.	[BA	<u>U</u>				114	0	110							
Comments:				. —		Rece	ived By		F			Da	te/Time									
	 																					

Received @ Lab By

Date/Time

Form 1 GC Organics

Lab Number : L1627717 : Paradigm Environmental Services Client Project Number : 19 NORTH ST **Project Name** : 19 NORTH STREET : 09/01/16 10:15 : L1627717-07 **Date Collected** Lab ID **Date Received** : 09/01/16 : C2 - WC **Client ID** Date Analyzed : 09/07/16 15:51 Sample Location **Date Extracted** : 09/06/16 Sample Matrix : SOIL **Dilution Factor** Analytical Method: 1,8151A : 1 Analyst : DM Lab File ID : 17160907-16 Instrument ID : PEST17 : 200 ml Sample Amount : STX-CLP1 GC Column Extraction Method: EPA 8151A : 5000 uL %Solids : NA Extract Volume Injection Volume : 1 uL : N GPC Cleanup Sulfur Cleanup : N

CAS NO.	Parameter	Results	RL	MDL	Qualifier
94-75-7	2,4-D	ND	0.025	0.001	U
93-72-1	2,4,5-TP (Silvex)	ND	0.005	0.001	U

Client : Paradigm Environmental Services Lab Number : L1627717

Project Name : 19 NORTH STREET Project Number : 19 NORTH ST
Lab ID : L1627717-01 Date Collected : 09/01/16 09:10

Client ID : B1 - 5-6 FT Date Received : 09/01/16

Sample Location : Date Analyzed : 09/09/16 10:29

Sample Location : Date Analyzed : 09/09/16 10:29
Sample Matrix : SOIL Dilution Factor : 1

Analytical Method : 1,7196A Analyst : AL/WR
Lab File ID : WG930160.csv Instrument ID : GENSYS10VI

Sample Amount : 2.5031g %Solids : 81
Digestion Method : EPA 3060A Date Digested : 09/08/16

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 18540-29-9
 Chromium, Hexavalent
 ND
 0.98
 0.20
 U

: L1627717 Client : Paradigm Environmental Services Lab Number Project Number : 19 NORTH ST **Project Name** : 19 NORTH STREET Lab ID : L1627717-02 Date Collected : 09/01/16 14:25 : E2 - 14-15 FT Date Received : 09/01/16 Client ID

Date Analyzed Sample Location : 09/09/16 10:30

Sample Matrix : SOIL **Dilution Factor** : 1 Analytical Method: 1,7196A **Analyst** : AL/WR

: GENSYS10VI Instrument ID Lab File ID : WG930160.csv %Solids : 91 Sample Amount : 2.4932g

Date Digested : 09/08/16 Digestion Method : EPA 3060A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
18540-29-9	Chromium, Hexavalent	ND	88.0	0.18	U	

Lab Number Client : Paradigm Environmental Services : L1627717 **Project Name** : 19 NORTH STREET Project Number : 19 NORTH ST Date Collected : 09/01/16 14:44 Lab ID : L1627717-03 Date Received Client ID : F1 - 3-5 FT : 09/01/16

Sample Location : Date Analyzed : 09/09/16 10:30

: SOIL Dilution Factor : 1 Sample Matrix

Analytical Method: 1,7196A Analyst : AL/WR : GENSYS10VI Instrument ID Lab File ID : WG930160.csv

%Solids : 92 Sample Amount : 2.4571g

: 09/08/16 Digestion Method: EPA 3060A Date Digested

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
18540-29-9	Chromium, Hexavalent	ND	0.87	0.17	U	

Client : Paradigm Environmental Services Lab Number : L1627717

Project Name : 19 NORTH STREET Project Number : 19 NORTH ST
Lab ID : L1627717-04 Date Collected : 09/01/16 14:46

Client ID : F1 - 9-10 FT Date Received : 09/01/16

Sample Location : Date Analyzed : 09/09/16 10:30

Sample Location : Date Analyzed : 09/09/16 10:30 Sample Matrix : SOIL Dilution Factor : 1

Analytical Method : 1,7196A Analyst : AL/WR
Lab File ID : WG930160.csv Instrument ID : GENSYS10VI

Sample Amount : 2.4989g %Solids : 78

Digestion Method : EPA 3060A Date Digested : 09/08/16

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
18540-29-9	Chromium, Hexavalent	ND	1.0	0.20	U	

Client : Paradigm Environmental Services Lab Number : L1627717 **Project Name** : 19 NORTH STREET Project Number : 19 NORTH ST Lab ID : L1627717-05 Date Collected : 09/01/16 15:15 **Client ID** : F2 - 9-10 FT Date Received : 09/01/16 Sample Location : Date Analyzed : 09/09/16 10:31

Dilution Factor Sample Matrix : SOIL : 1

Analytical Method: 1,7196A Analyst

: AL/WR Instrument ID : GENSYS10VI Lab File ID : WG930160.csv

%Solids Sample Amount : 2.521g : 91

Digestion Method : EPA 3060A Date Digested : 09/08/16

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
18540-29-9	Chromium, Hexavalent	ND	88.0	0.18	U	

: Paradigm Environmental Services : L1627717 Client Lab Number : 19 NORTH STREET Project Number : 19 NORTH ST **Project Name** Lab ID : L1627717-06 Date Collected : 09/01/16 11:17 **Client ID** : D1 - 9.5-11.5 FT Date Received : 09/01/16 : 09/09/16 10:31 Date Analyzed

Sample Location : Sample Matrix : SOIL **Dilution Factor** : 1

Analytical Method: 1,7196A Analyst : AL/WR : GENSYS10VI Instrument ID Lab File ID : WG930160.csv

%Solids : 88 Sample Amount : 2.4764g

Digestion Method : EPA 3060A Date Digested : 09/08/16

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
18540-29-9	Chromium, Hexavalent	ND	0.91	0.18	U	

: Paradigm Environmental Services Lab Number : L1627717 Client : 19 NORTH STREET Project Number : 19 NORTH ST Project Name Lab ID : L1627717-07 Date Collected : 09/01/16 10:15 Date Received : 09/01/16 **Client ID** : C2 - WC Date Analyzed : 09/07/16 22:28 Sample Location

Sample Matrix : SOIL Dilution Factor : 1
Analytical Method : 1,7.3 Analyst : TLH

Lab File ID : WG929671.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : NA
Digestion Method : Date Digested : 09/07/16

			mg/kg							
CAS NO.	Parameter	Results	RL	MDL	Qualifier					
57-12-5	Cyanide, Reactive	ND	10	10.	u					
					e a compression of the second contract of the					

: Paradigm Environmental Services : L1627717 Client Lab Number Project Number : 19 NORTH ST : 19 NORTH STREET **Project Name** Date Collected : 09/01/16 10:15 Lab ID : L1627717-07 Date Received : 09/01/16 **Client ID** : C2 - WC Date Analyzed : 09/07/16 23:20 Sample Location

Sample Matrix : SOIL Dilution Factor : 1
Analytical Method : 1,7.3 Analyst : TLH

Lab File ID : WG929672.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : NA
Digestion Method : Date Digested : 09/07/16

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
NONE	Sulfide, Reactive	ND	10	10.	U	

Appendix B

Laboratory
QC

Documentation

OC Report for Matrix Spike and Matrix Spike Duplicate

SDG #:

3832-01

Client:

C&S Companies

Lab Project ID: 163832

Project Reference:

19 North Street

Lab Sample ID:

163832-05

Sample Identifier:

D1-9.5-11.5 ft

Matrix:

Soil

Date Sampled: 9/1/2016
Date Received: 9/2/2016

Date Analyzed: 9/7/2016

Volatile Organics

	<u>Sample</u>	Result	<u>MS</u>	<u>MS</u>	MS %	<u>MSD</u>	<u>MSD</u>	MSD %	<u>% Rec.</u>	<u>MS</u>	MSD	<u>Relative</u>	RPD	<u>RPD</u>
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Added</u>	Result	Recovery	<u>Added</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outlier</u>	<u>Outlier</u>	% Diff.	<u>Limit</u>	<u>Outlier</u>
1,1,1-Trichloroethane	< 3.90	ug/Kg	107	117	108	103	111	107	80.4 - 121			1.28	23.3	
1,1,2,2-Tetrachloroethane	< 3.90	ug/Kg	107	114	106	103	107	104	67.8 - 133			2.15	24 ·	
1,1,2-Trichloroethane	< 3.90	ug/Kg	107	107	99.1	103	101	97.8	52.3 - 146			1.31	33	
1,1-Dichloroethane	< 3.90	ug/Kg	107	109	101	103	104	100	81.2 - 115			0.649	22.6	
1,1-Dichloroethene	< 3.90	ug/Kg	107	114	106	103	109	106	78.2 - 130			0.0882	24.4	
1,2-Dichlorobenzene	< 3.90	ug/Kg	107	84.7	78.8	103	80.0	77.4	78.4 - 117		*	1.73	15.6	
1,2-Dichloroethane	< 3.90	ug/Kg	107	116	108	103	109	106	79.4 - 123			2.03	29.6	
1,2-Dichloropropane	< 3.90	ug/Kg	107	105	98.1	103	100	97.0	79.8 - 114			1.12	19.8	
1,3-Dichlorobenzene	< 3.90	ug/Kg	107	82.4	76.7	103	76.9	74.4	75.6 - 114		*	2.97	16.8	
1,4-Dichlorobenzene	< 3.90	ug/Kg	107	78.5	73.0	103	73.8	71.5	77.2 - 111	*	*	2.11	16.5	
Benzene	< 3.90	ug/Kg		109	102	103	103	99.8	80 - 124			2.00	37.2	
Bromodichloromethane	< 3.90	ug/Kg		112	104	103	109	105	60.7 - 142			0.999	33.6	
Bromoform	< 9.75	ug/Kg		105	97.6	103	101	98.0	51.5 - 115			0.332	28.6	
Bromomethane	< 3.90	ug/Kg		106	99.0	103	107	103	56.2 - 158			4.22	15.5	
The American man de handly Application of the state of th	2													

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

```
Method Path : C:\msdchem\1\METHODS\
```

Method File: 160826.M

: 8260/624 Analysis

Last Update : Fri Aug 26 14:12:18 2016 Response Via : Initial Calibration

Calibration Files

1	=x3	4824.D 2 =x3482	5.D 3	=x34	826.D	4	=x3482'	7.D 5	=x3	4828.D	6 =x	34829.D	7	=x34830.I	D
	C	Compound	3	1. 2	2 :	3	4	5	6	7	Avg	%RSD			
1)	I	Fluorobenzene)								
2)		Dichlorodifluo	0.248	0.239 (0.256	0.257	0.243	0.237	0.230	0.244	4.06				
3)		Chloromethane	0.413	0.437	0.443	0.443	0.426	0.446	0.404	0.430	3.83				
4)		Vinyl chloride	0.260	0.290	0.294	0.310	0.297	0.309	0.283	0.292	5.87	.%_			
5)		Bromomethane Chloroethane	0.197	0.186	0.163	0.150	0.123	0.120		0.157	20.33	<i>e</i> T.			
6)		Chloroethane	0.150	0.164	0.161	0.161	0.130	0.125	0.124	0.145	12.45				
7)	P	Trichlorofluor	0.360	0.364	0.385	0.394	0.355	0.353	0.347	0.365	4.84				
8)		Ethyl ether	0.200	0.204	0.201	0.208	0.198	0.200	0.178	0.198	4.80				
9)		Freon 113	0.181	0.191	0.201	0.206	0.188	0.191	0.182	0.191	4.90				
10)		1,1-Dichloroet	0.344	0.360	0.374	0.388	0.355	0.358	0.343	0.360	4.43	. 75			
11)	P	Acetone	0.521	0.205	0.116	0.110	0.120	0.115		0.198	82.01				
12)		Isopropyl Alcohol	0.027	0.025	0.017	0.018	0.022	0.022	0 560	0.022	17.57 7.71				
13)		Carbon disulfide	0.484	0.512	0.562	0.602	0.566	0.596	0.568	0.555					
14)		Methyl acetate	0.182	0.233	0.184	0.193	0.218	0.219	0.740	0.133	5.12				
15)	P	Methylene chlo	0.235	0.229	0.219	0.223	0.210	0.227	0.201	0.220	15.25				
16)		Acrylonitrile tert-Butyl Alc	0.109	0.112	0.120	0.099	0.043	0.100	0.11.12	0.040	16.20				
17)	~	Methyl tert-bu	0.046	0.045	0.031	0.034	0.043	0.041	0 715	0.046	6.91				
18)		trans-1,2-Dich	0.744	0.713	0.707	0.750	0.657	0.005	0.715	0.745	11.03				
19)		trans-1,2-Dicn	0.392	0.364	0.409	0.410	0.444	0.342	0.420	0.400	4.13				
20)	ħ	1,1-Dichloroet	0.551	0.598	0.607	0.023	0.560	0.5//	0.572	0.507	8.59				
21)		Vinyl acetate	0.599	0.704	0.695	0.724	0./2/	0./41	0.023	0.022	6.66				
22)	_	2,2-Dichloropr		0.392	0.427	0.444	0.445	0.424	0.422	0.413	# 14.87				
23)		2-Butanone		0.059	0.042	0.043	0.047	0.044	0 200						
24)		cis-1,2-Dichlo	0.316	0.327	0.334	0.334	. 0.210	0.307	0.430	0.310	7.51				
25)		Bromochloromet	0.127	0.728	0.148	0.121	. 0.143	0.142	0.135	0.743	7.22				
26)		Chloroform	0.488	0.590	0.548	0.550	0.512	0.502	0.420	0.525					
27)		Pentafluoroben	0.507	0.502	0.505	0.516	0.49/	0.431	0.202	0.500					
28)		Tetrahydrofuran 1,1,1-Trichlor	0.104	0.127	0.106	0.113	0.135	0.123	0.003	0.176	6.33				
29)		1,1,1-Trichlor	0.379	0.412	0.449	0.46	0.430	0.434	0.423	0.422	6.9				
	Ð.	Cyclohexane	0.560	0.571	0.055	0.043	0.522	0.30/	0.550	0.550	3.00				
31)		1,2-Dichloroet	0.282	0.279	0.272	0.270	3 0.202	0.2/0	0.250	0.270					
32)		Carbon Tetrach	0.286	0.319	0.355	0.5/3	, 1.300	1 000	1 057	7 1 177	6.5				
33)		Benzene	1.200	1.247	1.245	1.41	J T.TOO	1.020	1.037		7.7				
34)		1,2-Dichloroet	0.452	0.273	0.458	0.46	J U.44/	0.430	0.401	. 0.21/	5.5				
35)		Trichloroethene		0.342	0.327	0.34	5 0.50%	0.302	0.25%	0.000	-1.0				
36)		tert-Butyl Ace		0 501	A	0 50	4 0 500	0 603	ו ה ביו	0- 50		9	1	~ ~~~	-
	P	Methylcyclohexane	≥ 0.484	0.504	0.568	0.00	4 0.526	0.523	: U UV:	2 0 003	17.3	i K+	<	J,003	
38)		1,4-Dioxane	∍ 0.484		0.002	0.00	± U.VU4	0.004	. 0.003	0.00					
		M Fri Aug 26 14:13								•			;	0.005 Page: 1/2	٠

* curve is not are of resinuse factors

8/26/16 13/3

Method Path : C:\msdchem\1\METHODS\

Method File: 160908.M

: 8260/624 Analysis Title

Last Update : Thu Sep 08 15:42:15 2016 Response Via : Initial Calibration

Calibration Files

=x35171b.D 2 =x35172.D 3 =x35173.D 4 =x35177.D=x35174.D 5 =x35175.D 6 =x35176.D 7

4-	=x	351/1D.D 2 =X351	.12.1	2 =2	.331/3.	.IJ 4±	=X35.	./4.1	5 =:	K.331/5.	: פע	=x351/6.D	,	=X351//.D
		Compound		1	2	3	4 .	5	6	7	Avg	%RSD		
						- 								
1)	I	Fluorobenzene				ISTI)							
2)	P	Dichlorodifluo	0.242	0.210	0.226	0.213	0.213	0.212	0.216	0.219	5.15			
3)	P													
	P	Chloromethane Vinyl chloride	0.317	0.297	0.338	0.319	0.320	0.320	0.324	0.319	3.80			
5)		Bromomethane	0.280	0.200	0.183	0.154	0.140	0.135	0.134	0.175	30.02	علا <u>ن</u>		
6)	P	Chloroethane	0.193	0.186	0.190	0.173	0.158	0.145	0.139	0.169	13.07			
	P	Trichlorofluor	0.388	0.374	0.401	0.383	0.375	0.368	0.363	0.379	3.38			
8)	-	Ethyl ether	0.223	0.230	0.256	0.231	0.234	0.226	0.218	0.231				
9)	₽	Freon 113	0.198	0.206	0.224	0.210	0.206	0.202	0.201	0.207	4.15			
10)		1,1-Dichloroet	0.409	0.402	0.444	0.419	0.412	0.402	0.400	0.412	3.79			
11)												<u> </u>		
12)		Isopropyl Alcohol		0.025	0.023	0.020	0.021	0.021	0.021	0.022	7.32	•		
13)	P	Carbon disulfide	0.540	0.519	0.630	0.617	0.628	0.624	0.634	0.599	8.02			
14)		Carbon disulfide Methyl acetate Methylene chlo	0.315	0.233	0.242	0.225	0.223	0.227	0.217	0.240	14.08			
15)		Methylene chlo	0.324	0.247	0.254	0.237	0.235	0.230	0.237	0.252	13.02			
16)		Acrylonitrile	0.126	0.126	0.129	0.117	0.117	0.116	0.118	0.121	4.53			
17)		tert-Butyl Alc	0.042	0.038	0.038	0.034	0.037	0.036	0.038	0.038	6.57			
18)		Methyl tert-bu												
19)		trans-1,2-Dich												
20)		1,1-Dichloroet												
21)		Vinvl acetate	0.713	0.656	0.741	0.729	0.751	0.733	0.737	0.723	4.39			
22)		Vinyl acetate 2,2-Dichloropr	0.365	0.372	0.440	0.438	0.442	0.433	0.441	0.419	8.25			
23)		2-Butanone	0.028	0.040	0.040	0.039	0.040	0.039	0.039	0.038	# 11.63			
24)		cis-1,2-Dichlo	0.323	0.312	0.340	0.325	0.318	0.307	0.307	0.319	3.69			
25)		Bromochloromet												
26)		Chloroform												
27)		Pentafluoroben												
28)		Tetrahydrofuran												
29)		1,1,1-Trichlor	0.409	0.403	0.461	0.451	0.453	0.448	0.456	0.440	5.38			
30)		Cyclohexane												
31)		1,2-Dichloroet												
32)		Carbon Tetrach												
33)		Benzene								1.179				
34)		1,2-Dichloroet												
35)		Trichloroethene	0.244	0 301	0.328	0.316	0.310	0.306	0 305	0.316	4.89			
36)		tert-Butyl Ace		J. J. J. L		0.020			~ · ~ ~ ~	0.000				
37)		Methylcyclohexane	0.526	0.495	0.566	0.535	0.535	0.527	0.522			^ ^	m	()()
38)		1,4-Dioxane	J. J.2.U	~						0.004		RFZ	. O. 1	005
, J		m f m me de adams				3.232	J. 230			-		V ~ .		10

160908.M Thu Sep 08 15:43:15 2016 73VOAV2

* curve is not and of response factors

2016

9/8/16 13/3

17:2095

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\160907\x35135.D

DataAcq Meth:8260RUN.M

Acq On : 7 Sep 2016 2:01 pm

Sample : 50ppb mega CC

Misc :

ALS Vial : 4 Sample Multiplier: 1

Ouant Time: Sep 07 14:17:14 2016

Ouant Method : C:\msdchem\1\METHODS\160826.M

Quant Title : 8260/624 Analysis

QLast Update : Fri Aug 26 14:45:45 2016

Response via : Initial Calibration

Integrator: RTE

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

9/7/1683

Maa	x. R	RF Dev : 20t Max. Ref. 1	ALCA : 200	°/				7/11. 012
		Compound	AvgRF	CCRF	%Dev A	rea% I)
1	 T	Fluorobenzene	1.000	1.000	0.0	110	0.00	
	Ď.	Dichlorodifluoromethane	0.244	0.226	7.4	97	0.00	
3		Chloromethane	0.430	0.418	2.8	104	0.00	
	P P	Vinyl chloride	0.292	0.313	-7.2	111	0.00	
5		Bromomethane	0.157	0.157	0.0	115	0.02	
	P	Chloroethane	0.145	0.166	-14.5	114	0.01	
	P	Trichlorofluoromethane	0.365	0.391	-7.1	109	0.01	
8		Ethyl ether	0.198	0.215	-8.6	114	0.00	
	P	Freon 113	0.191	0.213	-11.5	113	0.01	
10		1,1-Dichloroethene	0.360	0.398	-10_6	113	0.00	
11		Acetone	0.198	0.118	40.4#	<i>)</i> 117	0.00	> 20
12		Isopropyl Alcohol	0.022	0.018	18.2	107	0.00	
13	Ð	Carbon disulfide	0.556	0.631	-13.5	115	0.00	
14		Methyl acetate	0.195	0.187	4.1	106	0.00	
15		Methylene chloride	0.220	0.238	-8.2	117	0.00	
16		Acrylonitrile	0.118	0.099	16.1	110	0.00	
17		tert-Butyl Alcohol	0.040	0.032	20.0	109	0.00	
18	D	Methyl tert-butyl Ether	0.745	0.738	0.9	110	0.00	
19		trans-1,2-Dichloroethene	0.408	0.403	1.2	106	0.00	
20		1,1-Dichloroethane	0.587	0.632	-7.7	111	0.00	
21	_	Vinyl acetate	0.692	0.648	6.4	98	0.00	
22		2,2-Dichloropropane	0.413	0.458	-10.9	113	0.00	
23	Ð	2-Butanone	0.047	0.039#	17.0	100	0.00	
24		cis-1,2-Dichloroethene	0.316	0.329	-4.1	108	0.00	
25	•	Bromochloromethane	0.143	0.148	-3.5	108	0.00	
26	D	Chloroform	0.525	0.549	-4.6	110	0.00	
27		Pentafluorobenzene	0.500	0.490	2.0	104	0.00	
28	~	Tetrahydrofuran	0.112	0.102	8.9	99	0.00	
29	p	1,1,1-Trichloroethane	0.429	0.450	-4.9	107	0.00	
30		Cyclohexane	0.596	0.685	-14.9	116	0.00	
31		1,2-Dichloroethane-d4	0.276	0.269	2.5	106	0.00	
32		Carbon Tetrachloride	0.347	0.347	0.0	100	0.00	
33		Benzene	1.170	1.219	-4.2	110	0.00	
34		1,2-Dichloroethane	0.454	0.455	-0.2	109	0.00	
35		Trichloroethene	0.314	0.322	-2.5	109	0.00	
36	_	tert-Butyl Acetate	0.000	0.000	0.0	0#	0.00	
37	P	Methylcyclohexane	0.526	0.581	-10.5	113	0.00	
38	-	1,4-Dioxane	0.003	0.003	0.0	86	0.00	
39 1	TIN	Ethyl acetate	0.000	0.000	0.0	0#	0.00	
	P	1,2-Dichloropropane	0.345	0.354	-2.6	110	0.00	
41		Isobutyl alcohol	0.000	0.000	0.0	40	-0.06	
42		Dibromomethane	0.181	0.186	-2.8	110	0.00	
43	P	Bromodichloromethane	0.379	0.380	~0.3	104	0.00	_
44	_	2-Chloroethyl vinyl Ether	0.002	0.003	-50.0#	150	0.15	N
45	TTM	Isopropyl acetate	0.000	0.000	0.0	40	0.00	
46	-J.19	1,1-Dichloropropene	0.410	0.443	-8.0	111	0.00	
47	D	cis-1,3-Dichloropropene	0.471	0.498	-5.7	110	0.00	
T. 1	_	oro Tio promyorofineform			•			

Data File: C:\msdchem\1\DATA\160907\x35135.D

DataAcq Meth:8260RUN.M

: 7 Sep 2016 Acq On 2:01 pm Operator: Bill Brew Sample : 50ppb mega CC Inst : Instrument #1

Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Sep 07 14:17:14 2016

Quant Method : C:\msdchem\1\METHODS\160826.M

Quant Title : 8260/624 Analysis QLast Update : Fri Aug 26 14:45:45 2016 Response via : Initial Calibration

Integrator: RTE

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

				/' /				
_		Compound	AvgRF	CCRF	%Dev i	Area%)	Dev(min)	
48	P	4-Methyl-2-pentanone	0.173	0.133	23.1	97	0.00	7
49	S	Toluene-D8	0.932	0.958	2.8	111	0.00	
50	P	Toluene	1.334	1.327	0.5	108	0.00	
51	P	trans-1,3-Dichloropropene	0.434	0.452	-4.1	107	0.00	
52	P	1,1,2-Trichloroethane	0.295	0.272	7.8	106	0.00	
53		1,3-Dichloropropane	0.503	0.491	2.4	109	0.00	
54	P	Tetrachloroethene	0.365	0.373	-2.2	108	0.00	
55	P	2-Hexanone	0.321	0.263	18.1	100	0.00	
56	P	Dibromochloromethane	0.287	0.275	4.2	100	0.00	
57	P	1,2-Dibromoethane	0.291	0.286	1.7	108	0.00	
58	1	Chlorobenzene-d5	1.000	1.000	0.0	110	0.00	
59	P	Chlorobenzene	1.151	1.132	1.7	109	0.00	
60		1,1,1,2-Tetrachloroethane	0.372	0.360	3.2	103	0.00	
61	₽	Ethylbenzene	2.032	1.954	3.8	109	0.00	
62	P	m,p-Xylene	0.778	0.743	4.5	109	0.00	
63		o-Xylene	0.849	0.739	13.0	107	0.00	
64		Styrene	1.201	1.204	-0.2	109	0.00	
65		Bromoform	0.253	0.207	18.2	91	0.00	
66		Isopropylbenzene	1.981	2.046	-3.3	110	0.00	
67	_	1,2,3-Trichloropropane	0.159	0.145	8.8	106	0.00	
68	s	4-Bromofluorobenzene	0.521	0.532	-2.1	111	0.00	
69	_	Bromobenzene	0.539	0.516	4.3	106	0.00	
70	Ð	1,1,2,2-Tetrachloroethane	0.545	0.484	11.2	102	0.00	
71	~	n-Propylbenzene	2.459	2.454	0.2	108	0.00	
72		2-Chlorotoluene	0.496	0.483	2.6	108	0.00	
73		4-Chlorotoluene	0.512	0.506	1.2	107	0.00	
74		1,3,5-Trimethylbenzene	1.745	1.790	-2.6	111	0.00	
75		tert-Butylbenzene	0.414	0.420	-1.4	108	0.00	
76		1,2,4-Trimethylbenzene	1.925	1.882	2.2	110	0.00	
77		sec-Butylbenzene	2.245	2.320	-3.3	110	0.00	
78		p-Isopropyltoluene	1.959	2.030	-3.6	111	0.00	
79	1	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	108	0.00	
80		1,3-Dichlorobenzene	1.778	1.712	3.7	108	0.00	
81		1,4-Dichlorobenzene	1.840	1.701	7.6	108	0.00	
82	_	n-Butylbenzene	2.962	3.071	-3.7	108	0.00	
83	P	1,2-Dichlorobenzene	1.667	1.568	5.9	106	0.00	
	UN	Tetraethyllead	0.000	0.000	0.0	0#	0.00	
85		1,2-Dibromo-3-Chloropropane		0.158	18.6	92	0.00	
86		1,2,4-Trichlorobenzene	1.298	1.254	3.4	106	0.00	
B7	-	1,2,3-Trichlorobenzene	1.211	1.108	8.5	101	0.00	
88		Hexachlorobutadiene	0.780	0.761	2.4	107	0.00	
89		Naphthalene	2.687	2.418	10.0	98	0.00	

^{(#) =} Out of Range

SPCC's out = 1 CCC's out = 0

2D SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Paradigm Environmental Services

Lab Project #: 163832-3845-3892

QC Batch Number #: QC160908ABNS

Client Name: C&S Companies

Client Project #: N/A

Client Project Name: 19 North Street

SDG #: 3832-01

	S1	S2	S3	S 4	S5	S6	тот
SAMPLE NO.	2-FP	P-d5	NB-d5	2-FBP	2,4,6-TBP	TP-d14	оит
01 Blk1	50.0	53.4	52.2	57.8	61.7	97.8	0
02 LCS1	61.3	66.7	62.5	74.0	82.8	94.8	0
03 163832-01 B1-5-6 ft	47.1	54.7	47.3	54.0	73.9	80.6	0
04 163832-02 B1-15 ft	50.6	55.0	51.4	60,9	64.0	82.3	0
05 163832-04 C2-13-14.5 ft	27.6 *	28.4 *	28.8 *	33.5 *	39.4	58.4	4
06 163832-04MS	57.5	63.8	59.0	70.8	74.7	86.8	0
07 163832-04MSD	38.8	41.2	39.0	45.0	54.5	80.7	0
08 163832-05 D1-9.5-11.5 ft	40.7	43.2	42.1	47.6	48.3	69.7	0
09 163832-05MS	57.7	63.6	56.9	66.6	69.0	73.2	0
10 163832-05MSD	44.2	48.8	45.0	53.3	60.4	74.8	0
11 163832-06 D1-15-16 ft	47.9	51.9	48.2	55.0	58.3	85.6	0
12 163832-07 E2-5-6.5 ft	51.3	56.2	53.8	67.8	84.1	85.4	0
13 163832-08 E2-9-10 ft	48.4	53.1	48.8	52.7	58.3	86.2	0
14 163832-09 E2-14-15 ft	47.1	52.9	52.1	59.6	51.4	84.4	0
15 163832-10 F1-3-5 ft	40.4	44.1	43.5	50.9	69.9	78.3	0
16 163832-11 F1-9-10 ft	45.3	48.2	46.1	50.8	65.6	88.6	0
17 163832-12 F1-15 ft	37.4	40.7	36.6	40.5	50.4	80.6	0
18 163832-13 F2-4-6 ft	43.3	46.8	44.2	48.1	67.5	91.4	0
19 163832-14 F2-9-10 ft	42.9	47.3	39.9	39.9	45.1	72.5	0
20							

	QC LIMITS %
S1 (2-FP) =2-Fluorophenol	(35 - 84.1)
S2 (P-d5) = Phenol-d5	(38.5 - 88.8)
S3 (NB-d5) = Nitrobenzene-d5	(36.3 - 82.2)
S4 (2-FBP) = 2-Fluorobiphenyl	(36.4 - 95.1)
S5 (2,4,6-TBP) = 2,4,6-Tribromophenol	(34.1 - 104)
S6 (TP) = Terphenyl-d14	(54.9 - 114)

Notes: * Values outside of current required QC limits

D Surrogate diluted out

2D SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Paradigm Environmental Services Client Name: C&S Companies
Lab Project #: 163832-3845-3892 Client Project #: N/A

QC Batch Number #: QC160909ABNS Client Project Name: 19 North Street
SDG #: 3832-01

	S1	S2	S 3	S4	S5	S6	TO
SAMPLE NO.	2-FP	P-d5	NB-d5	2-FBP	2,4,6-TBP	TP-d14	ΟU
Blk1	57.9	61.4	59.6	72.5	87.3	100.0	0
LCS1	66.0	71.1	66.1	81.8	88.6	98.3	0
163845-01 A4-22-23 ft	37.9	39.9	36,5	43.8	66.6	83.3	0
163845-01MS	39.8	47.8	31.4 *	46.7	67.7	83.3	1
163845-01MSD	35.2	41.1	30.2 *	41.3	60.1	89.5	1
163892-01 C4 7-8 ft	41.4	43.7	39.1	47.3	67.1	92.8	0
							L
							<u> </u>
							<u> </u>
							<u> </u>
							<u> </u>
							<u></u>
Y	i i					İ	l

	QC LIMITS %
S1 (2-FP) =2-Fluorophenol	(35 - 84.1)
S2 (P-d5) = Phenol-d5	(38,5 - 88,8)
S3 (NB-d5) = Nitrobenzene-d5	(36.3 - 82.2)
S4 (2-FBP) = 2-Fluorobiphenyl	(36.4 - 95.1)
S5 (2,4,6-TBP) = 2,4,6-Tribromophenol	(34.1 - 104)
S6 (TP) = Terphenyl-d14	(54.9 - 114)

Notes: * Values outside of current required QC limits

D Surrogate diluted out

QC Report for Matrix Spike and Matrix Spike Duplicate

SDG #:

3832-01

Client:

C&S Companies

Lab Project ID:

163832

Project Reference:

19 North Street

Lab Sample ID:

163832-04 C2-13-14.5 ft Date Sampled: 9/1/2016 Date Received: 9/2/2016

Sample Identifier: Matrix:

Soil

Date Analyzed: 9/8/2016

Semi-Volatile Organics (Acid/Base Neutrals)

	<u>Sample</u>	<u>Result</u>	MS	MS	MS %	<u>MSD</u>	<u>MSD</u>	MSD %	<u>% Rec.</u>	MS	MSD	<u>Relative</u>	RPD	<u>RPD</u>
<u>Analyte</u>	Result	<u>Units</u>	<u>Added</u>	Result	Recovery	<u>Added</u>	Result	Recovery	<u>Limits</u>	Outlier	Outlier	% Diff.	Limit	<u>Outlier</u>
1,2,4-Trichlorobenzene	< 323	ug/Kg	1620	858	52.8	1630	547	33.5	38 - 79		*	44.9	24.7	*
1,4-Dichlorobenzene	< 323	ug/Kg	1620	803	49.5	1630	497	30.4	34.4 - 72.4		*	47.7	22.6	*
2,4-Dinitrotoluene	< 323	ug/Kg	1620	1250	76.9	1630	907	55.6	49.3 - 94.4			32.2	26.2	*
2-Chlorophenol	< 323	ug/Kg	2440	1510	61.9	2450	967	39.5	43.2 - 86.7	,	*	44.2	21.3	*
4-Chloro-3-methylphenol	< 323	ug/Kg	2440	1580	64.9	2450	1020	41.7	49.4 - 96		*	43.5	23.5	*
4-Nitrophenol	< 646	ug/Kg	2440	2080	85.3	2450	1700	69.2	40.9 - 108			20.8	27	
Acenaphthene	< 323	ug/Kg	1620	1130	69.5	1630	722	44.2	43.8 - 88.3			44.5	26.1	*
N-Nitroso-di-n-propylamine	< 323	ug/Kg	1620	1050	64.7	1630	642	39.3	40.6 - 85.5		*	48.7	27.2	*
Pentachlorophenol	< 646	ug/Kg	2440	1800	74.0	2450	1430	58.4	20.9 - 146			23.5	39.4	
Phenol	< 323	ug/Kg	2440	1550	63.7	2450	999	40.8	44.7 - 87.6		*	43.8	21.5	*
Pyrene	< 323	ug/Kg	1620	1310	80.5	1630	1180	72.1	57.1 - 104			11.0	26.6	

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

QC Report for Matrix Spike and Matrix Spike Duplicate

SDG#:

3832-01

Client:

C&S Companies

Lab Project ID:

163832

Project Reference:

19 North Street

Lab Sample ID:

163832-05

Date Sampled: 9/1/2016

Sample Identifier:

D1-9.5-11.5 ft

Date Received: 9/2/2016

Matrix:

Soil

Date Analyzed: 9/8/2016

Semi-Volatile Organics (Acid/Base Neutrals)

	<u>Sample</u>	<u>Result</u>	<u>MS</u>	MS	MS %	<u>MSD</u>	MSD	MSD %	<u>% Rec.</u>	MS	MSD	<u>Relative</u>	RPD	<u>RPD</u>
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Added</u>	Result	Recovery	<u>Added</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outlier</u>	<u>Outlier</u>	% Diff.	<u>Limit</u>	<u>Outlier</u>
1,2,4-Trichlorobenzene	< 334	ug/Kg	1650	801	48.5	1670	596	35.7	38 - 79		*	30.4	24.7	*
1,4-Dichlorobenzene	< 334	ug/Kg	1650	688	41.6	1670	483	28.9	34.4 - 72.4		*	36.1	22.6	*
2,4-Dinitrotoluene	< 334	ug/Kg	1650	1150	69.7	1670	1010	60.2	49.3 - 94.4			14.7	26.2	
2-Chlorophenol	< 334	ug/Kg	2480	1510	61.0	2510	1160	46.3	43.2 - 86.7			27.3	21.3	*
4-Chloro-3-methylphenol	< 334	ug/Kg	2480	1670	67.4	2510	1350	54.1	49.4 - 96			21.9	23.5	
4-Nitrophenol	< 668	ug/Kg	2480	1.690	68.4	2510	1660	66.1	40.9 - 108			3.36	27	
Acenaphthene	< 334	ug/Kg	1650	1100	66.4	1670	891	53.3	43.8 - 88.3			21.8	26.1	
N-Nitroso-di-n-propylamine	< 334	ug/Kg	1650	1050	63.5	1670	812	48.6	40.6 - 85.5			26.5	27.2	
Pentachlorophenol	< 668	ug/Kg	2480	1620	65.5	2510	1350	53.9	20.9 - 146			19.5	39.4	
Phenol	< 334	ug/Kg	2480	1610	65.0	2510	1220	48.7	44.7 - 87.6			28.6	21.5	*
Pyrene	< 334	ug/Kg	1650	1150	69.3	1670	1140	68.2	57.1 - 104			1.69	26.6	

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

QC Report for Matrix Spike and Matrix Spike Duplicate

SDG #:

3832-01

Client:

C&S Companies

Lab Project ID:

163845

Project Reference:

North Street

Lab Sample ID:

163845-01 A4-22-23 ft **Date Sampled:** 9/2/2016 **Date Received:** 9/6/2016

Sample Identifier: Matrix:

Soil

Date Analyzed: 9/10/2016

Semi-Volatile Organics (Acid/Base Neutrals)

	Sample	<u>Result</u>	<u>MS</u>	MS	MS %	<u>MSD</u>	<u>MSD</u>	MSD %	% Rec.	MS	<u>MSD</u>	<u>Relative</u>	RPD	<u>RPD</u>
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Added	Result	Recovery	<u>Added</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outlier</u>	<u>Outlier</u>	% Diff.	Limit	<u>Outlier</u>
1,2,4-Trichlorobenzene	< 327	ug/Kg	1650	659	39.9	1650	580	35.1	38 - 79		株	12.7	24.7	
1,4-Dichlorobenzene	< 327	ug/Kg	1650	561	34.0	1650	485	29.4	34.4 - 72.4	*	*	14.5	22.6	
2,4-Dinitrotoluene	< 327	ug/Kg	1650	1090	66.1	1650	933	56.5	49.3 - 94.4			15.7	26.2	
2-Chlorophenol	< 327	ug/Kg	2480	1300	52.6	2480	1030	41.4	43.2 - 86.7		*	23.8	21.3	*
4-Chloro-3-methylphenol	< 327	ug/Kg	2480	1540	62.4	2480	1250	50.7	49.4 - 96			20.7	23.5	
4-Nitrophenol	< 655	ug/Kg	2480	2260	91.3	2480	1980	79.8	40.9 - 108			13.4	27	
Acenaphthene	< 327	ug/Kg	1650	943	57.1	1650	797	48.3	43.8 - 88.3			16.8	26.1	
N-Nitroso-di-n-propylamine	< 327	ug/Kg	1650	866	52.5	1650	716	43.4	40.6 - 85.5			18.9	27.2	
Pentachlorophenol	< 655	ug/Kg	2480	2130	86.2	2480	1940	78.2	20.9 - 146			9.71	39.4	
Phenol	< 327	ug/Kg	2480	1370	55.3	2480	1070	43.3	44.7 - 87.6		*	24.2	21.5	*
Pyrene	< 327	ug/Kg	1650	1360	82.2	1650	1300	78.9	57.1 - 104			4.12	26.6	

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

£.															
	od	Path : C:\msdchem\	1\meth	ods\											
Meth		File : ABN160909.M													
38) F										0.154	7.24				
		1,2,4,5-Tetrac									4.01				
40) E	?	Biphenyl	0.833	0.807	0.801	0.808	0.794	0.756	0.736	0.791	4.23				
41) I		Acenaphthene-d10				ISTI)								
42) F		2-Chloronaphth	0.385	0.373	0.365	0.362	0.360	0.348	0.339	0.362#	4.24				
	M	Acenaphthene	1.185	1.164	1.138	1.174	1.144	1.121	1.100	1.146	2.62				
44) E	?	Acenaphthylene	1.821	1.779	1.755	1.818	1.804	1.684	1.676	1.763	3.45				
45) E	?	4-Chlorophenyl	0.613	0.589	0.596	0.610	0.597	0.566	0.560	0.590	3.44				
46) E		Dibenzofuran									2.07				
47) E		Diethyl phthalate									2.80				
48) E		Dimethyl phtha									2.97				
49) E	M	2,4-Dinitrophenol	0.069	0.097	0.147	0.176	0.185	0.179	0.193	0.149	32.29 X				
		2,4-Dinitrotol									3.38				
51) E		2,6-Dinitrotol									2.04				
52) E		Fluorene									3.00				
53) 8		2-Fluorobiphenyl									2.91				
54) E	?	Hexachlorocycl	0.160	0.192	0.241	0.2/1	0.295	0.292	0.265	0.245	20.99*				
55) E	ξ,	2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrophenol	0.332	0.3/9	0.390	0.407	0.407	0.411	0.420	0.395	5.99 5.29				
57) 1	5	4-Nitroaniline	0.300	0.310	0.334	0.340	0.240	0.333	0.330	0.334	6.25				
581 1	: DM	4-Nitrophenol	0.232	0.237	0.330	0.333	0.340	0.320	0.336	0.323	11.41				
59) 8	3	2,4,6-Tribromo	0.243	0.204	0.257	0.245	0.200	0.272	0.144	0.255	3.74				
		2,4,6-Trichlor									1.22				
61) 1	2	2,4,5-Trichlor	0.354	0.355	0.367	0.365	0.366	0.359	0.366	0.362					
62) F	•	2,3,4,6-Tetrac	0.300	0.291	0.305	0.292	0.286	0.281	0.282	0.201	3.13			2,	1
63) I		Atrazine	0.357	0.343	0.313			*****		0.337	6.56	3 12	t. CW	n by	
		***************************************							,		,	- V	t. cul	. T	11 /
64)	I.	Phenanthrene-d10											0.3 /	V	
65) I		4-Bromophenyl	0.207	0.208	0.203	0.207	0.206	0.200	0.198	0.204	1.88				
66) I		Di-n-butyl pht									3.00				
		4,6-Dinitro-2									22.70				
68) I		Fluoranthene									2.33'				
69) I		Hexachlorobenzene									0.59				
70) I		N-Nitrosodiphe									1.05				
	PM	Pentachlorophenol	0.100	0.106	0.123	0.119	0.123	0.123	0.133	0.118	9.66				
72) I	5	Anthracene Phenanthrene Carbazole	1.10/	1.102	1.109	1.155	1 1 4 2	1.155	1.13/	1.102	0.81				
73) I	ב	Phenanthrene	1.150	1.133	1.125	1.129	1.14/	1.111	1.120	1.131	1.18				
74) I	5	Benzo (a) anth	1.007	1 079	1 005	1.031	1 124	1 0/1	1.075	1.000	1.89 3.61				
75) 1	-	Belizo (a) allul	1.025	1.078	1.000	1.025	エ・エンボ	1.041	1.040	1.000	3.01				
76)	I	Chrysene-d12				IST	D	~~~~~							
77)		Benzidine		0.597							14.81				
78) 1	₽	Bis (2-ethylhe									4.67				
79) 1		Butylbenzylpht	0.578	0.596	0.637	0.640	0.651	0.627	0.639	0.624	4.28				
80) 1		Chrysene	1.104	1.111	1.100	1.094	1.089	1.050	1.051	1.086	2.29				
81)		3,3'-Dichlorob									3.53				
82)	PM	Pyrene	1.295	1.247	1.290	1.311	1.293	1.246	1.269	1.279	1.97				
														10	

Data File: C:\msdchem\1\data\160906\B13871.D

Acq On : 7 Sep 2016 2:19 am

Sample : CCV - 50ppm

Misc :

Operator : M.Miller

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Sep 07 07:04:29 2016

Quant Method: C:\msdchem\1\methods\ABN160819I.M

Quant Title :

QLast Update: Tue Sep 06 12:11:27 2016

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
47 P	Diethyl phthalate	1.332	1.497	-12.4 118 0.00
48 P	Dimethyl phthalate	1.319	1.477	-12.0 118 0.00
49 PM	2,4-Dinitrophenol	0.180	0.151	16.1 88 0.00
50 PM	2,4-Dinitrotoluene	0.410	0.464	-13.2 119 0.00
51 P	2,6-Dinitrotoluene	0.305	0.351	-15.1 121 0.00
52 P	Fluorene	1.363	1.526	-12.0 119 0.00
53 S	2-Fluorobiphenyl	1.338	1.497	-11.9 118 0.00
54 P	Hexachlorocyclopentadiene	0.324	0.172	(46.9#) 56 0.00
55 P	2-Nitroaniline	0.398	0.450	-13.1 122 0.00
56 P	3-Nitroaniline	0.342	0.385	-12.6 120 0.00
57 P		0.333	0.382	-14.7 122 0.00
58 PM	4-Nitrophenol	0.269	0.281	-4.5 107 0.00
59 S	2,4,6-Tribromophenol	0.165	0.183	-10.9 114 0.00
60 PM	2,4,6-Trichlorophenol	0.374	0.401	-7.2 113 0.00
61 P	2,4,5-Trichlorophenol	0.382	0.415	-8.6 115 0.00
62 P	2,3,4,6-Tetrachlorophenol	0.322	0.335	-4.0 108 0.00
63 P	Atrazine	0.344	0.192	44.2# 56 0.00
0 0 x	73CL CLLIIC	0.544	0,102	30 0.00
64 I	Phenanthrene-d10	1.000	1.000	0.0 116 0.00
65 P	4-Bromophenyl phenyl ether	0.214	0.207	3.3 113 0.00
66 P	Di-n-butyl phthalate	1.299	1.354	-4.2 122 0.00
67 PM	4,6-Dinitro-2-methylphenol	0.139	0.112	19.4 94 0.00
68 P	Fluoranthene	1.170	1.177	-0.6 119 0.00
69 P	Hexachlorobenzene	0.216	0.214	0.9 116 0.00
70 P	N-Nitrosodiphenylamine	0.663	0.665	-0.3 119 0.00
71 PM	Pentachlorophenol	0.138	0.130	5.8 106 0.00
72 P	Anthracene	1.134	1.135	-0.1 117 0.00
73 P	Phenanthrene	1.122	1.125	-0.3 118 0.00
74 P	Carbazole	1.041	1.066	-2.4 120 0.00
75 P	Benzo (a) anthracene	1.043	1.041	0.2 118 0.00
76 7	Ob	1 000	1 000	0.0.115
76 I	Chrysene-d12	1.000	1.000	0.0 115 0.00
77	Benzidine	0.595	0.523	12.1 112 0.00
78 P	Bis (2-ethylhexyl) phthalat	0.823	0.862	-4.7 122 0.00
79 P	Butylbenzylphthalate	0.618	0.649	-5.0 121 0.00
80 P	Chrysene	1.069	1.087	-1.7 116 0.00
81 P	3,3'-Dichlorobenzidine	0.416	0.447	-7.5 124 0.00
82 PM	Pyrene	1.290	1.323	-2.6 119 0.00
83 S	Terphenyl-d14	0.831	0.860	-3.5 120 0.00
84 I	Perylene-d12	1.000	1.000	0.0 117 0.00
85 P	Benzo (b) fluoranthene	1.306	1.260	3.5 112 0.00
86 P	Benzo (k) fluoranthene	1.218	1.303	-7.0 123 0.00
87 P	Benzo (g,h,i) perylene	0.983	0.980	0.3 117 0.00
88 P	Benzo (a) pyrene	1.186	1.191	-0.4 116 0.00
89 P	Dibenz (a,h) anthracene	1.005	0.985	2.0 114 0.00
90 P	Di-n-octylphthalate	1.709	1.733	-1.4 117 0.00
91 P	Indeno (1,2,3-cd) pyrene	0.353	0.355#	-0.6 122 0.00
	· · · · · · · · · · · · · · · · · · ·			

Data File: C:\msdchem\1\data\160907\B13913.D

Acq On : 8 Sep 2016 1:52 am

Sample : CCV - 50ppm

Misc

Operator : M.Miller

ALS Vial: 4 Sample Multiplier: 1

Quant Time: Sep 08 07:33:04 2016

Quant Method: C:\msdchem\1\methods\ABN160819J.M

Quant Title :

QLast Update : Wed Sep 07 13:21:43 2016

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
47 P	Diethyl phthalate	1.332	1.471	-10.4 118 0.00
48 P	Dimethyl phthalate	1.319	1.463	-10.9 120 0.00
49 PM	2,4-Dinitrophenol	0.180	0.075	58.3# 44# 0.00
50 PM	2,4-Dinitrotoluene	0.410	0.470	-14.6 123 0.00
51 P	2,6-Dinitrotoluene	0.305	0.342	-12.1 120 0.00
52 P	Fluorene	1.363	1.500	-10.1 119 0.00
53 S	2-Fluorobiphenyl	1.338	1.499	-12.0 121 0.00
54 P	Hexachlorocyclopentadiene	0.324	0.111	(65.7#) 37# 0.00
55 P	2-Nitroaniline	0.398	0.455	-14.3 125 0.00
56 P	3-Nitroaniline	0.342	0.392	-14.6 125 0.00
57 P	4-Nitroaniline	0.333	0.376	-12.9 122 0.00
58 PM	4-Nitrophenol	0.269	0.266	1.1 104 0.00
59 S	2,4,6-Tribromophenol	0.165	0.180	-9.1 115 0.00
60 PM	2,4,6-Trichlorophenol	0.374	0.397	-6.1 114 0.00
61 P	2,4,5-Trichlorophenol	0.382	0.409	-7.1 116 0.00
62 P	2,3,4,6-Tetrachlorophenol	0.322	0.322	0.0 106 0.00
63 P	Atrazine	0.344	0.176	48.8# 52 0.00
	ULTOSTHE	0.544	0.170	
64 I	Phenanthrene-d10	1.000	1.000	0.0 118 0.00
65 P	4-Bromophenyl phenyl ether	0.214	0.201	6.1 112 0.00
66 P	Di-n-butyl phthalate	1.299	1.337	<u>-2.9</u> 123 0.00
67 PM	4,6-Dinitro-2-methylphenol	0.139	0.063	(54.7#)54 0.01
68 P	Fluoranthene	1.170	1.198	$\frac{-2.4}{123}$ 0.00
69 P	Hexachlorobenzene	0.216	0.209	3.2 115 0.00
70 P	N-Nitrosodiphenylamine	0.663	0.659	0.6 120 0.00
71 PM	Pentachlorophenol	0.138	0.127	8.0 105 0.01
72 P	Anthracene	1.134	1.150	-1.4 121 0.00
73 P	Phenanthrene	1.122	1.113	0.8 119 0.00
74 P	Carbazole	1.041	1.096	-5.3 125 0.00
75 P	Benzo (a) anthracene	1.043	1.051	-0.8 122 0.00
76 I	Chrysene-d12	1.000	1.000	0.0 119 0.00
77	Benzidine	0.595	0.588	1.2 130 0.00
78 P	Bis (2-ethylhexyl) phthalat	0.823	0.858	-4.3 125 0.00
79 P	Butylbenzylphthalate	0.618	0.658	-6.5 127 0.00
80 P	Chrysene	1.069	1.093	-2.2 121 0.00
81 P	3,3'-Dichlorobenzidine	0.416	0.456	-9.6 130 0.00
82 PM	Pyrene	1.290	1.296	-0.5 120 0.00
83 S	Terphenyl-d14	0.831	0.849	-2.2 122 0.00
84 I	Perylene-d12	1.000	1.000	0.0 113 0.00
85 P	Benzo (b) fluoranthene	1.306	1.377	-5.4 118 0.00
86 P	Benzo (k) fluoranthene	1.218	1.231	-1.1 113 0.00
87 P	Benzo (g,h,i) perylene	0.983	0.965	1.8 112 0.00
88 P	Benzo (a) pyrene	1.186	1.166	1.7 110 0.00
89 P	Dibenz (a,h) anthracene	1.005	0.970	3.5 109 0.00
90 P	Di-n-octylphthalate	1.709	1.840	-7.7 121 0.00
91 P	Indeno (1,2,3-cd) pyrene	0.353	0.356#	-0.8 119 0.00
	· · · · · · · · · · · · · · · · · · ·			

Qata File: C:\msdchem\1\data\160908\B13934.D

Acq On : 8 Sep 2016 2:34 pm

Sample : CCV - 50ppm

Misc :

Operator : M.Miller

ALS Vial: 4 Sample Multiplier: 1

Quant Time: Sep 08 14:58:50 2016

Quant Method: C:\msdchem\1\methods\ABN160819k.M

Quant Title

QLast Update : Wed Sep 07 13:21:43 2016

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
47 P	Diethyl phthalate	1.332	1.475	-10.7 137 0.01
48 P	Dimethyl phthalate	1.319	1.455	-10.3 138 0.01
49 PM	2,4-Dinitrophenol	0.180	0.187	-3.9 128 0.01
50 PM	2,4-Dinitrotoluene	0.410	0.450	-9.8 137 0.01
51 P	2,6-Dinitrotoluene	0.305	0.337	-10.5 137 0.01
52 P	Fluorene	1.363	1.501	-10.1 138 0.00
53 S	2-Fluorobiphenyl	1.338	1.478	-10.5 138 0.01
54 P	Hexachlorocyclopentadiene	0.324	0.283	12.7 110 0.01
55 P	2-Nitroaniline	0.324	0.433	-8.8 138 0.01
56 P	3-Nitroaniline	0.342	0.433	-10.5 140 0.01
57 P	4-Nitroaniline	0.333	0.368	-10.5 139 0.01
58 PM	4-Nitrophenol	0.269	0.246	
59 S	2,4,6-Tribromophenol	0.165	0.240	
60 PM				
	2,4,6-Trichlorophenol	0.374	0.395	-5.6 132 0.00
61 P	2,4,5-Trichlorophenol	0.382	0.404	-5.8 133 0.01
62 P	2,3,4,6-Tetrachlorophenol	0.322	0.322	0.0 122 0.01
63 P	Atrazine	0.344	0.168	(51.2#)58 0.01
64 I	Phenanthrene-d10	1.000	1.000	0.0 133 0.01
65 P	4-Bromophenyl phenyl ether	0.214	0.208	2.8 129 0.01
66 P	Di-n-butyl phthalate	1.299	1.319	-1.5 136 0.01
67 PM	4,6-Dinitro-2-methylphenol	0.139	0.139	0.0 133 0.02
68 P	Fluoranthene	1.170	1.134	3.1 131 0.00
69 P	Hexachlorobenzene	0.216	0.208	3.7 129 0.00
70 P	N-Nitrosodiphenylamine	0.663	0.663	0.0 136 0.01
71 PM	Pentachlorophenol	0.138	0.123	10.9 115 0.01
72 P	Anthracene	1.134	1.143	-0.8 135 0.00
73 P	Phenanthrene	1.122	1.126	-0.4 135 0.01
74 P	Carbazole	1.041	1.056	-1.4 135 0.01
75 P	Benzo (a) anthracene	1.043	0.992	4.9 129 0.00
76 I	Chrysene-d12	1.000	1.000	0.0 127 0.00
77	Benzidine	0.595	0.460	
78 P				
70 F 79 P	Bis (2-ethylhexyl) phthalat	0.823	0.855	-3.9 133 0.00
80 P	Butylbenzylphthalate	0.618	0.643	-4.0 132 0.01
	Chrysene	1.069	1.083	-1.3 128 0.00
81 P	3,3'-Dichlorobenzidine	0.416	0.422	-1.4 129 0.00
82 PM	Pyrene	1.290	1.319	-2.2 131 0.00
83 S	Terphenyl-d14	0.831	0.830	0.1 128 0.01
84 I	Perylene-d12	1.000	1.000	0.0 132 0.01
85 P	Benzo (b) fluoranthene	1.306	1.304	0.2 130 0.01
86 P	Benzo (k) fluoranthene	1.218	1.198	1.6 128 0.01
87 P	Benzo (g,h,i) perylene	0.983	0.980	0.3 133 0.01
88 P	Benzo (a) pyrene	1.186	1.168	1.5 128 0.01
89 P	Dibenz (a,h) anthracene	1.005	0.997	0.8 130 0.01
90 P	Di-n-octylphthalate	1.709	1.707	0.1 130 0.01
91 P	Indeno (1,2,3-cd) pyrene	0.353	0.381#	-7.9 148 0.01

Data File: C:\msdchem\1\data\160908\B13961.D

Acq On : 9 Sep 2016 3:46 am

Sample : CCV - 50ppm

Misc

Operator : M.Miller

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Sep 09 06:57:53 2016

Quant Method: C:\msdchem\1\methods\ABN160819k.M

Quant Title :

QLast Update: Wed Sep 07 13:21:43 2016 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Dev Area%	Dev (min)
47 P	Diethyl phthalate	50.000	58.593	-17.2 120	0.00
48 P	Dimethyl phthalate	50.000	56.812	-13.6 117	0.00
49 PM	2,4-Dinitrophenol	50.000	46.281	7.4 100	0.00
50 PM	2,4-Dinitrotoluene	50.000	57.332	-14.7 118	0.00
51 P	2,6-Dinitrotoluene	50.000	56.413	-12.8 115	0.00
52 P	Fluorene	50.000	56.111	-12.2 116	0.00 0.00 See Risty on Ex NDS
53 S	2-Fluorobiphenyl	50.000	52.926	-5.9 109	0.00 / and or Courts
54 P	Hexachlorocyclopentadiene	50.000	39.155	21.7# 81	0.00 See Kisky of 20 100)
55 P	2-Nitroaniline	50.000	55.459	-10.9 116	0.00
56 P	3-Nitroaniline	50.000	55.949	-11.9 117	0.00
57 P	4-Nitroaniline	50.000	59.063	-18.1 122	0.00
58 PM	4-Nitrophenol	50.000	48.240	3.5 97	0.00
59 S	2,4,6-Tribromophenol	100.000		-5.4 106	0.00
60 PM	2,4,6-Trichlorophenol	50.000	51.081	-2.2 105	0.00
61 P	2,4,5-Trichlorophenol	50.000	51.759	-3.5 108	
62 P	2,3,4,6-Tetrachlorophenol	50.000	51.487	=3.0 104	0.00
63 P	Atrazine	50.000	25.208	(49.6#) 49	0.00 Cool L Stor OL to 100
					0.00 0.00 0.00 0.00 0.00 0.00
64 I	Phenanthrene-d10	40.000	40.000	0.0 117	0.00
65 P	4-Bromophenyl phenyl ether	50.000	46.817	6.4 110	0.00
66 P	Di-n-butyl phthalate	50.000	51.853	-3.7 122	0.00
67 PM	4,6-Dinitro-2-methylphenol	50.000	46.168	7.7 108	0.00
68 P	Fluoranthene	50.000	50.102	-0.2 119	0.00
69 P	Hexachlorobenzene	50.000	46.975	6.0 111	0.00
70 P	N-Nitrosodiphenylamine	50.000	49.641	0.7 118	0.00
71 PM	Pentachlorophenol	50.000	42.532	14.9 96	0.00
72 P	Anthracene	50.000	50.073	-0.1 118	0.00
73 P	Phenanthrene	50.000	48.705	2.6 116	0.00
74 P	Carbazole	50.000	51.297	-2.6 120	0.00
75 P	Benzo (a) anthracene	50.000	46.704	6.6 111	0.00
, , ,	251120 (4) 2114112 23414				
76 I	Chrysene-d12	40.000	40.000	0.0 108	0.00
77	Benzidine	50.000	41.711	16.6 100	0.00
78 P	Bis (2-ethylhexyl) phthalat		54.296	-8.6 119	0.00
79 P	Butylbenzylphthalate	50.000	55.335	-10.7 120	0.00
80 P	Chrysene	50.000	52.078	-4.2 112	0.00
81 P	3,3'-Dichlorobenzidine	50.000	51.629	-3.3 112	0.00
82 PM	Pyrene	50.000	53.763	-7.5 117	0.00
83 S	Terphenyl-d14	50.000	53.314	-6.6 117	0.00
84 I	Perylene-d12	40.000	40.000	0.0 107	0.00
85 P	Benzo (b) fluoranthene	50.000	47.522	5.0 101	0.00
86 P	Benzo (k) fluoranthene	50.000	53.744	-7.5 113	0.00
87 P	Benzo (g,h,i) perylene	50.000	49.672	0.7 107	0.00
88 P	Benzo (a) pyrene	50.000	49.740	0.5 105	0.00
89 P	Dibenz (a,h) anthracene	50.000	47.787	4.4 102	0.00
90 P	Di-n-octylphthalate	50.000	53.731	-7.5 114	0.00
91 P	Indeno (1,2,3-cd) pyrene	50.000	53.293	-6.6 119	0.00
	The same of the sa				

Data'File: C:\msdchem\1\data\160909\B13989.D

Acq On : 9 Sep 2016 7:16 pm Sample : 8270 ICAL 50 ppm

Misc :

Operator : M.Miller

ALS Vial: 8 Sample Multiplier: 1

Quant Time: Sep 10 09:25:12 2016

Quant Method: C:\msdchem\1\methods\ABN160909.M

Quant Title

QLast Update : Sat Sep 10 09:11:16 2016

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
47 P	Diethyl phthalate	1.307	1.297	0.8	100	0.00
48 P	Dimethyl phthalate	1.282	1.279	0.2	100	0.00
49 PM	2,4-Dinitrophenol	0.149	0.147	1.3	100	0.00
50 PM	2,4-Dinitrotoluene	0.405	0.408	-0.7	100	0.00
51 P	2,6-Dinitrotoluene	0.305	0.301	1.3	100	0.00
52 P	Fluorene	1.320	1.333	-1.0	100	0.00
53 S	2-Fluorobiphenyl	1.310	1.308	0.2	100	0.00
54 P	Hexachlorocyclopentadiene	0.245	0.241	1.6	100	0.00
55 P	2-Nitroaniline	0.395	0.390	1.3	100	0.00
56 P	3-Nitroaniline	0.334	0.334	0.0	100	0.00
57 P	4-Nitroaniline	0.323	0.336	-4.0	100	0.00
58 PM	4-Nitrophenol	0.253	0.208	17.8	88	0.00
59 S	2,4,6-Tribromophenol	0.152	0.153	-0.7	100	0.00
60 PM	2,4,6-Trichlorophenol	0.347	0.352	-1.4	100	0.00
61 P	2,4,5-Trichlorophenol	0.362	0.367	-1.4	100	0.00
62 P	2, 3, 4, 6-Tetrachlorophenol	0.291	0.305	-4.8	100	0.00
63 P	Atrazine	0.337	0.313	7.1	100	0.00
64 I	Phenanthrene-d10	1.000	1.000	0.0	100	0.00
65 P	4-Bromophenyl phenyl ether	0.204	0.203	0.5	100	0.00
66 P	Di-n-butyl phthalate	1.331	1.352	-1.6	100	0.00
67 PM	4,6-Dinitro-2-methylphenol	0.134	0.133	0.7	100	0.00
68 P	Fluoranthene	1.185	1.209	-2.0	100	0.00
69 P	Hexachlorobenzene	0.212	0.213	-0.5	100	0.00
70 P	N-Nitrosodiphenylamine	0.676	0.669	1.0	100	0.00
71 PM	Pentachlorophenol	0.118	0.123	-4.2	100	0.00
72 P	Anthracene	1.162	1.159	0.3	100	0.00
73 P	Phenanthrene	1,131	1.125	0.5	100	0.00
74 P	Carbazole	1.088	1.098	-0.9	100	0.00
75 P	Benzo (a) anthracene	1.063	1.085	-2.1	100	0.00
76 5	Charrens d12	1 000	1 000	0.0	100	0.00
76 I	Chrysene-d12	1.000 0.504	1.000 0.480	0.0 4.8	100	0.00
77	Benzidine				100	
78 P 79 P	Bis (2-ethylhexyl) phthalat	0.829 0.624	0.847 0.637	-2.2 -2.1	100	0.00 0.00
	Butylbenzylphthalate			-2.1	100	0.00
80 P	Chrysene	1.086	1.100			
81 P	3,3'-Dichlorobenzidine	0.392	0.406	-3.6	100	0.00
82 PM	Pyrene	1.279	1.290	-0.9	100	0.00
83 S	Terphenyl-d14	0.791	0.795	-0.5	100	0.00
84 I	Perylene-d12	1.000	1.000	0.0	100	0.00
85 P	Benzo (b) fluoranthene	1.254	1.201	4.2	100	0.00
86 P	Benzo (k) fluoranthene	1.120	1.179	-5.3	100	0.00
87 P	Benzo (g,h,i) perylene	1.017	1.007	1.0	100	0.00
88 P	Benzo (a) pyrene	1.136	1.153	-1.5	100	0.00
89 P	Dibenz (a, h) anthracene	0.987	0.977	1.0	100	0.00
90 P	Di-n-octylphthalate	1.591	1.614	-2.4	_100	0.00
91 P	Indeno (1,2,3-cd) pyrene	0.279	0.371#	F33.0#	237	0.00
	manage takan out blancer					

Data File: C:\msdchem\1\data\160912\B14024.D

: 12 Sep 2016 11:39 am Acq On

Sample : CCV-50ppm

Misc

Operator : J. Burdett

ALS Vial: 4 Sample Multiplier: 1

Quant Time: Sep 12 12:14:01 2016

Quant Method: C:\msdchem\1\methods\ABN160909.M

Quant Title :

QLast Update : Sat Sep 10 09:29:11 2016

Response via: Initial Calibration

0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min 20% Max. Rel. Area: 200% Min. RRF :

Max. RRF Dev: 20%

	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
47 P	Diethyl phthalate	1.307	1.484	-13.5	95	0.00
48 P	Dimethyl phthalate	1.282	1.457	-13.7	94	0.00
49 PM	2,4-Dinitrophenol	0.149	0.173	-16.1	97	0.00
50 PM	2,4-Dinitrotoluene	0.405	0.456	-12.6	92	0.00
51 P	2,6-Dinitrotoluene	0.305	0.338	-10.8	93	0.00
52 P	Fluorene	1.320	1.503	-13.9	93	0.00
53 S	2-Fluorobiphenyl	1.310	1.480	-13.0	93	0.00
54 P	Hexachlorocyclopentadiene	0.245	0.269	-9.8	92	0.00
55 P	2-Nitroaniline	0.395	0.446	-12.9	94	0.00
56 P	3-Nitroaniline	0.334	0.378	-13.2	94	0.00
57 P	4-Nitroaniline	0.323	0.362	-12.1	89	0.00
58 PM	4-Nitrophenol	0.253	0.265	-4.7	92	0.00
59 S	2,4,6-Tribromophenol	0.152	0.172	-13.2	92	0.00
60 PM	2,4,6-Trichlorophenol	0.347	0.398	-14.7	93	0.00
61 P	2,4,5-Trichlorophenol	0.362	0.414	-14.4	93	0.00
62 P	2, 3, 4, 6-Tetrachlorophenol	0.291	0.329	-13-1	89	0.00
63 P	Atrazine	0.337	0.139	58.8#)37#	
00 1	1102022110		0.205	00.0	<i>)</i>	0.00
64 I	Phenanthrene-d10	1.000	1.000	0.0	92	0.00
65 P	4-Bromophenyl phenyl ether	0.204	0.209	-2.5	95	0.00
66 P	Di-n-butyl phthalate	1.331	1.327	0.3	91	0.00
67 PM	4,6-Dinitro-2-methylphenol	0.134	0.133	0.7	92	0.00
68 P	Fluoranthene	1.185	1.181	0.3	90	0.00
69 P	Hexachlorobenzene	0.212	0.213	-0.5	93	0.00
70 P	N-Nitrosodiphenylamine	0.676	0.682	-0.9	94	0.00
71 PM	Pentachlorophenol	0.118	0.117	0.8	88	0.00
72 P	Anthracene	1.162	1.178	-1.4	94	0.00
73 P	Phenanthrene	1.131	1.146	-1.3	94	0.00
74 P	Carbazole	1.088	1.070	1.7	90	0.00
75 P	Benzo (a) anthracene	1.063	1.010	5.0	86	0.00
,	2020 (4, 4					
76 I	Chrysene-d12	1.000	1.000	0.0	84	0.00
77	Benzidine	0.504	0.428	15.1	75	0.00
78 P	Bis (2-ethylhexyl) phthalat	0.829	0.861	-3.9	85	0.00
79 P	Butylbenzylphthalate	0.624	0.642	-2.9	84	0.00
80 P	Chrysene	1.086	1.114	-2.6	85	0.00
81 P	3,3'-Dichlorobenzidine	0.392	0.428	-9.2	88	0.00
82 PM	Pyrene	1.279	1.375	-7.5	89	0.00
83 S	Terphenyl-d14	0.791	0.843	-6.6	89	0.00
04 =	Demilare dia	1 000	1 000	0.0	O A	0.00
84 I	Perylene-d12	1.000	1.000	0.0	84	0.00
85 P	Benzo (b) fluoranthene	1.254	1.199	4.4	84	0.00
86 P	Benzo (k) fluoranthene	1.120	1.215	-8.5	87	0.00
87 P	Benzo (g,h,i) perylene	1.017	1.046	-2.9	88	0.00
88 P	Benzo (a) pyrene	1.136	1.157	-1.8	85	0.00
89 P	Dibenz (a,h) anthracene	0.987	1.033	-4.7	89	0.00
90 P	Di-n-octylphthalate .	1.591	1.654	-4.0	87	0.00
91 P	Indeno (1,2,3-cd) pyrene	0.279	0.260#	6.8	81	0.00

7F PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: **Paradigm Environmental Services** Client Name: C&S Companies

Lab Project #: 163832-3845-3892

Client Project #: N/A

Client Project Name: 19 North Street

GC Column:

RTX-PCB

ID: (mm) 0.32

Initial Calibration File ID: P091016.M(9/10)

Detector:

ECD1 A

narrow bore

Date Analyzed: 9/14/2016

Time Analyzed: 02:04

File/LAB #: 160913B\PCB57898.D

CAL ID: 16/60 CCV 0.500

INDIVIDUAL			RT	WINDOW	AVERAGE			
COMPOUND	- 1	RT	FROM	то	CALC.	TARGET	AVERAGE	pass/
					AMT ng	AMT ng	%D	fail
PCB-1016	1	7.13	6.63	7.63				
	2	7.56	7.06	8.06				
	3	8.94	8.44	9.44	0.469	0.500	-6.3	pass
PCB-1260	1	11.26	10.76	11.76				
	2	11.81	11.31	12.31				
	3	12.94	12.44	13.44	0.365	0.500	(-27.0	∫ fail*

Note: Average % D with Acceptance window of +/- 20% used per 8082 method.

+/- 20% = Pass

^{* =} Outside QC limit-Matrix Interference suspected

Method Blank Report

Client:

C&S Companies

Project Reference:

19 North Street

Lab Project ID:

163832

SDG #:

3832-01

Matrix:

Soil

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyz	ed
Arsenic	< 0.495	mg/Kg		9/7/2016	20:48
Barium	<4.95	mg/Kg		9/7/2016	20:48
Beryllium	<0.248	mg/Kg		9/7/2016	20:48
Cadmium	<0.248 NJ	mg/Kg		9/7/2016	20:48
Chromium	<0.495	mg/Kg		9/7/2016	20:48
Copper	1.36	mg/Kg		9/7/2016	20:48
Lead	< 0.495	mg/Kg		9/7/2016	20:48
Manganese	<0.743 VJ	mg/Kg		9/7/2016	20:48
Nickel	<1.98	mg/Kg		9/7/2016	20:48
Selenium	< 0.495	mg/Kg		9/7/2016	20:48
Silver	< 0.495	mg/Kg		9/7/2016	20:48
Zinc	<2.97	mg/Kg		9/7/2016	20:48

Method Reference(s):

EPA 6010C EPA 3050B

Preparation Date: Data File: 9/3/2016

Data File: QC Batch ID: 090716c QC160903soil

QC Number:

1

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

SDG #:

3832-01

Client: <u>C&S Companies</u>

Lab Project ID: 163832

Project Reference:

19 North Street

Lab Sample ID:

163832-04

Date Sampled: 9/1/2016 Date Received: 9/2/2016

Sample Identifier: Matrix:

C2-13-14.5 ft

Soil

Metals

<u>Analyte</u> Arsenic	<u>Sample</u> <u>Results</u> 0.379	Result Units mg/Kg	Spike Added 135	Spike Result 112	Spike % Recovery 83.1	<u>% Rec</u> <u>Limits</u> 75 - 125	<u>Spike</u> Outliers	Duplicate Result <0.560	Relative % Difference NC	RPD Limit 20	RPD Outliers	<u>Date</u> <u>Analyzed</u> 9/8/2016
Barium	13.7	mg/Kg	135	126	83.3	75 - 125		13.6	0.550	20		9/8/2016
Beryllium	< 0.275	mg/Kg	27.0	21.6	80.0	75 - 125		<0.280	NC	20		9/8/2016
Cadmium	0.367	mg/Kg	53.9	40.6	74.6	75 - 125	林	0.318	14.2	20		9/8/2016
Chromium	4.24	mg/Kg	135	124	88.9	75 - 125		4.32	1.93	20		9/8/2016
Copper	7.90	mg/Kg	135	131	91.6	75 - 125		8.05	1.81	20		9/8/2016
Lead	7.42	mg/Kg	135	112	77.9	75 - 125		7.51	1.29	20		9/8/2016
Manganese	205	mg/Kg	53.9	241	(66.7)	75 - 125	幹	206	0.689	20		9/8/2016
Nickel	3.49	mg/Kg	270	219	79.9	75 - 125		3.47	0.651	20		9/8/2016
Selenium	0.989	mg/Kg	135	116	85.1	75 - 125		0.801	21.0	20	*	9/12/2016
Silver	< 0.549	mg/Kg	13.5	12.6	93.4	75 - 125		<0.560	NC	20		9/8/2016
Zinc	36.5	mg/Kg	135	171	99.9	75 - 125		41.7	13.2	20		9/8/2016

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Tuesday, September 13, 2016

SDG #:

3832-01

C&S Companies

Lab Project ID: 163832

Project Reference:

19 North Street

Lab Sample ID:

163832-05

Date Sampled: 9/1/2016

Sample Identifier:

D1-9.5-11.5 ft

Date Received: 9/2/2016

Matrix:

Soil

Metals

Client:

	<u>Sample</u>	Result	Spike	<u>Spike</u>	Spike %	% Rec	<u>Spike</u>	<u>Duplicate</u>	Relative %	RPD	RPD	<u>Date</u>
<u>Analyte</u>	<u>Results</u>	<u>Units</u>	<u>Added</u>	Result	Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Result</u>	<u>Difference</u>	<u>Limit</u>	<u>Outliers</u>	<u>Analyzed</u>
Arsenic	0.916	mg/Kg	143	112	77.8	<i>7</i> 5 - 125		0.786	15.3	20		9/9/2016
Barium	22.2	mg/Kg	143	142	83.3	75 - 125		21.4	3.31	20		9/9/2016
Beryllium	0.203	mg/Kg	28.7	22.3	76.9	75 - 125		0.193	NC	20		9/9/2016
Cadmium	0.222	mg/Kg	57.3	41.9	72.7	75 - 125	*	0.207	NC	20		9/9/2016
Chromium	6.53	mg/Kg	143	130	86.0	75 - 125		6.12	6.46	20		9/9/2016
Copper	8.63	mg/Kg	143	138	90.3	75 - 125		8.42	2.58	20		9/9/2016
Lead	8.54	mg/Kg	143	117	75.6	75 - 125		8.11	5.24	20		9/9/2016
Manganese	260	mg/Kg	57.3	321	107	75 - 125		254	2.34	20		9/9/2016
Nickel	5.71	mg/Kg	287	230	78.1	75 - 125		5.38	5.86	20		9/9/2016
Selenium	1.23	mg/Kg	143	119	82.5	75 - 125		0.574	72.6	20	*	9/12/2016
Silver	< 0.579	mg/Kg	14.3	12.9	90.3	75 - 125		<0.541	NC	20		9/9/2016
Zinc	49.4	mg/Kg	143	188	96.8	75 - 125		45.9	7.41	20		9/9/2016

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Tuesday, September 13, 2016

QC Report for Laboratory Control Sample

Client:

C&S Companies

Project Reference:

19 North Street

Lab Project ID:

163832

SDG #:

3832-01

Matrix:

Soil

Total Cyanide

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	% Rec	LCS	<u>Date</u>
<u>Analyte</u>	<u>Added</u>	<u>Units</u>	Result	Recovery	Limits	<u>Outliers</u>	<u>Analyzed</u>
Cyanide, Total	7.70	mg/Kg	10.3	134	85 - 115	*	9/12/2016

Method Reference(s):

EPA 9014

Preparation Date:

9/8/2016

QC Number:

٠,٠

QC Batch ID:

QC160912stcn

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

SDG #:

3832-01

C&S Companies

Lab Project ID: 163892

Project Reference:

Client:

19 North Street

Lab Sample ID:

163892-01

Date Sampled: 8/30/2016

Date Received: 9/8/2016

Sample Identifier: Matrix:

C4 7-8 ft

Soil

Total Cyanide

RPD **Spike** Spike Spike % Date Sample Result % Rec Spike Duplicate Relative % RPD Analyzed Analyte Limits Outliers **Difference** Limit Outliers Results Units Added Result Recovery Result 79.0 9/13/2016 Cyanide, Total mg/Kg 8.59 80 - 120 0.361 NC 20 0.360 10.4

Method Reference(s): Preparation Date:

EPA 9014

QC Batch ID:

9/12/2016 QC160913stcn

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Thursday, September 15, 2016

SDG #:

3832-01

Client:

C&S Companies

Lab Project ID: 163832

Project Reference:

19 North Street

Lab Sample ID:

163832-05

Date Sampled: 9/1/2016

Sample Identifier:

D1-9.5-11.5 ft

Date Received: 9/2/2016

Matrix:

Soil

Total Cyanide

<u>Spike</u> **Spike** % Rec Spike Duplicate Relative % RPD RPD Date Result Spike % <u>Sample</u> **Analyte** Results **Units** Added Result Limits **Outliers** Result Difference Limit Outliers **Analyzed** Recovery 9/12/2016 139 80 - 120 < 0.497 NC 20 Cyanide, Total 8.63 12.0 < 0.391 mg/Kg

Method Reference(s): Preparation Date: EPA 9014 9/8/2016

QC Batch ID:

QC160912stcn

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Tuesday, September 13, 2016

Form 5a **Matrix Spike**

Client Project Name : Paradigm Environmental Services

: 19 NORTH STREET

Client Sample ID : D1 - 9.5-11.5 FT Lab Sample ID

: L1627717-06

Matrix Spike Matrix Spike Dup : WG930160-5

: WG930160-4

Lab Number Project Number : L1627717 : 19 NORTH ST

Matrix

: SOIL

MS Analysis Date : 09/09/16 10:32

MSD Analysis Date: 09/09/16 10:32

	Sample	Matrix Spike Sample			Matrix Spike Duplicate					
		Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)			Limits	Limit
Chromium, Hexavalent	ND	903	840	93	1190	1100	92	(27 G	75-125	20

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).