PERIODIC REVIEW REPORT

DECEMBER 14, 2018 TO APRIL 14, 2020 QUEEN CITY LANDING SITE (BCP SITE No. C915304)

BUFFALO, NEW YORK

June 2020 0424-020-001

Prepared for:

Queen City Landing LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

In association with:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635

PERIODIC REVIEW REPORT

December 14, 2018 to April 14, 2020 Queen City Landing (C915304)

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	1
	1.2	Remedial History	
	1.3	Compliance	
	1.4	Recommendations	
2.0	SITE	E OVERVIEW	6
3.0	REM	MEDY PERFORMANCE	7
4.0	SITE	E MANAGEMENT PLAN	8
	4.1	Institutional and Engineering Control (IC/EC) Plan	
		4.1.1 Institutional Controls (ICs)	8
		4.1.2 Engineering Controls (ECs)	
	4.2	Excavation Work Plan	
		4.2.1 Site Redevelopment Activities	
		4.2.2 Exported Materials	
		4.2.3 Imported Materials	
		4.2.4 Monitoring Well Replacement	
	4.3	Post-Remediation Media Monitoring and Sampling	10
	4.4	Annual Inspection and Certification Program	
	4.5	Operation, Monitoring and Maintenance Plan	
5.0	Con	NCLUSIONS AND RECOMMENDATIONS	15
6.0	DEC	CLARATION/LIMITATION	16
7.0	REF	FERENCES	17

PERIODIC REVIEW REPORT

December 14, 2018 to April 14, 2020 Queen City Landing (C915304) Table of Contents

TABLES

Table 1 Groundwater Sample Results Summary

FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Site Cover System Map
Figure 4	Post Remedial Sampling Locations and Groundwater Quality Exceedances

APPENDICIES

Appendix A	Institutional & Engineering Controls Certification Form
Appendix B	Photographic Log
Appendix C	Corrective Measures Work Plan
Appendix D	Groundwater Well Installation Log, Sampling Information, and Laboratory Report

1.0 Introduction

Benchmark Environmental Engineering and Science, PLLC (Benchmark), in association with TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR) to summarize the post-remedial status of the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Queen City Landing Site, Site No. C915304, located in the City of Buffalo, Erie County, New York (see Figures 1 and 2).

This PRR has been prepared in accordance with the NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010; Ref. 1) and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been prepared for the Site. This PRR and the associated IC/EC Form (see Appendix A) have been completed for the post-remedial period from December 14, 2018 to April 14, 2020.

1.1 Site Background

Queen City Landing, LLC (QCL) entered into a Brownfield Cleanup Agreement (BCA) with NYSDEC on June 29, 2016, to investigate and remediate the approximate ± 7.75 -acre Site which is identified as the eastern portion (7.24 acres) of 975 Fuhrmann Boulevard (SBL No. 132.06-1-1.1) and 1005 Fuhrmann Boulevard (0.48 acres; SBL No. 132.06-1-1.2), in the City of Buffalo, County of Erie, New York. BCP site activities were performed in accordance with BCA Index#C915304-06-16.

The Site is identified as the eastern portion of Section 132.06 Block 1, Lot 1.1 (975 Fuhrmann Boulevard, 7.24 acres) and Section 132.06 Block 1, Lot 1.2 (1005 Fuhrmann Boulevard, 0.48 acres) on the Erie County Tax Map. The Site is an approximately ±7.72-acres and is bounded by commercial property used for boat storage to the north, Lake Erie/Small boat Harbor to the south, Fuhrmann Boulevard to the east, and vacant land/Lake Erie to the west (see Figure 2).

The Site was the former Freezer Queen facility and operated as a manufacturer and warehouse of frozen foods for approximately 75 years, until food operations ceased in 2004. QCL purchased the property in November 2007. The Site is scheduled for redevelopment as a mixed residential and commercial use. The former structures associated with the

Freezer Queen operations have been demolished and the Site remediated to a Track 4 Restricted Residential cleanup to prepare for redevelopment activities.

1.2 Remedial History

Three (3) buildings were formerly present on the Site associated with Freezer Queen operations: a large 6-story masonry manufacturing building, a 1-story administration building, and a small 1-story guard house. ACM abatement activities were completed within the three (3) buildings, as necessary, in accordance with 12 NYCRR Part 56 and approved variance (16-0083) between July and October 2016 followed by building demolition which was completed in January 2017.

The majority of the large 6-story masonry manufacturing building was processed on-site and stockpiled for reuse as backfill under the cover system. However, an approximate 8-foot by 8-foot piece of the western exterior wall contained painted graffiti. It was removed and sent to Waste Management's Chaffee Landfill for non-hazardous disposal. Other waste streams from the demolition of the three (3) buildings consisted of friable ACM, non-friable ACM, and non-hazardous C&D debris. Steel and other metals were taken off-site for recycling. The stockpiled material from the 6-story building was screened on-site for reuse in accordance with the Crushed Concrete Management Plan (Ref. 2, CCMP) and associated CCMP Addendum (Ref. 3). Approximately 4,705 tons of concrete fines generated from screening the processed concrete stockpiles were taken to the Tonawanda Landfill for non-hazardous disposal.

The steel above ground storage tanks associated with the former wastewater treatment system on the northern portion of the Site were also decommissioned. ACM abatement was completed on the insulation associated with the tanks and they were sent offsite for recycling.

A Remedial Investigation (RI) was completed in accordance with a NYSDEC-approved Remedial Investigation/Interim Remedial Measures/Alternative Analysis Work Plan (RI/IRM/AA WP, Ref. 4) by C&S Engineers (C&S) between January 2016 and January 2017. The RI included the performance of a geophysical survey, and the sampling of surface soil/fill, subsurface soil/fill material, native soil, groundwater, and outdoor air. The urban fill at the Site was found to contain concentrations of certain SVOCs and metals above the

restricted-residential soil cleanup objectives (RRSCOs) while the concentrations in the underlying construction fill and native soils were generally below the soil cleanup objectives (SCOs). Impacts to groundwater were minimal (low-level VOCs, SVOC and metals) and the outdoor air samples did not identify a concern.

In September 2017 and December 2017, additional investigation activities were completed at the request of NYSDEC to address data validation issues associated with VOC data generated from the initial RI activities and to delineate areas where elevated SVOCs and metals were present. The additional work was done by Benchmark. The delineation work was done under an NYSDEC-approved Additional Hotspot Sampling & Soil Disposal Work Plan (Ref. 5) and were documented in the RI Report (Ref. 6).

An IRM was completed at the Site from August 2017 through November 2017. Prior to starting the IRM activities, Benchmark requested a deviation in the confirmatory sampling plan identified in the RI/IRM/AA WP. Benchmark requested to analyze the confirmation sidewall and bottom of excavation samples for Target Compound List (TCL) volatile organic compounds (VOCs) and NYSDEC Part 375 List semi-volatile organic compounds (SVOCs) rather than the full list of parameters (VOCs, SVOCs, metals, PCBs and pesticides) identified in the RI/IRM/AA WP. This deviation was approved by NYSDEC in an email dated October 6, 2017. The IRM activities were documented in an IRM Report (Ref. 7) submitted and approved by NYSDEC.

The IRM activities involved the removal of three (3) underground storage tanks (USTs) (approximately 5,000-gallons each in size) and approximately 4,956-tons of petroleum-impacted soil/fill which was taken to the Tonawanda Landfill in Tonawanda, New York for non-hazardous disposal.

Once the analytical results indicated that the petroleum-impacts had been removed, the excavation was backfilled. The excavation backfill consisted of the on-site crushed concrete screened in accordance with CCMP Addendum and clay soil imported from an off-site source (Quaker Crossing in Orchard Park, New York). A NYSDEC Request to Import was submitted for the Quaker Crossing soil along with the required analytical testing which was approved for import to the Site by NYSDEC via email on October 3, 2017.

Based on the findings of the RI and completed IRM, an Alternatives Analysis Report (AAR, Ref. 8) was completed. The AAR outlined the Remedial Action Objectives (RAOs) and required remedial activities to be completed to achieve a Track 4 Restricted-Residential

Use cleanup. The remedial actions described in the AAR, Decision Document (Ref. 9) and Remedial Action Work Plan (RAWP, Ref. 10) were as follows:

- Removal and proper landfill disposal of the polycyclic aromatic hydrocarbon-(PAH) impacted soil/fill present in the vicinity of RI sample Boundary-SS2.
- Removal and proper landfill disposal of the soil/fill stockpile present in the vicinity of RI sample F6.
- Removal and proper landfill disposal of petroleum-impacted soil/fill present in the vicinity of RI sample D7.
- Backfilling the excavations with material that met the requirements of 6NYCRR
 Part 375-6.7(d) or otherwise NYSDEC-approved material (e.g., crushed concrete greater than ½-inch after on-site screening of the former masonry building).
- Preparation and implementation of a Site Management Plan (SMP, Ref. 11).
- Filing an Environmental Easement (EE) with Erie County, which was done on August 30, 2017.

The RAWP also identified the following site-specific cleanup criteria established for the remedial actions:

- Arsenic 24 mg/kg;
- Lead 1,000 mg/kg;
- Chromium 1,500 mg/kg; and
- Manganese 10,000 mg/kg.

A total of 674 tons of additional petroleum-, PAH-, and metal-impacted soil/fill were removed and disposed of off-site at the Tonawanda Landfill.

To meet the final grades of the redevelopment plan, the Site grades were raised across the majority of the Site using:

- the on-site processed and screened concrete (greater than 1/8-inch in size);
- existing soil/fill from the northern, southern, and eastern areas that were excavated along the perimeter of the Site to allow 2-feet of the compliant soil cover system to be installed;
- existing soil/fill from the installation of the concrete walkway and retaining wall along the southern portion of the Site; or

• imported soil/fill material meeting the requirements of 6NYCRR Part 375-6.7(d) approved by NYSDEC.

The cover system that was installed was DER-10 compliant material which consisted of a minimum of 2-foot soil/stone cover system across most of the Site with a concrete walking path and stabilizing retaining wall (to stabilize fill remaining at depth and protect from erosion and/or sidewall collapse) along the southern portion of the Site. A demarcation layer (e.g., orange plastic netting) was installed beneath the cover system that was designed to meet the existing Site grades along the northern and eastern boundaries of the Site. Figure 3 identities the current cover system for the Site.

The remedial action and cover system installation work were completed between August and October 2018 and documented in the NYSDEC-approved Final Engineering Report (FER, Ref. 12).

1.3 Compliance

The Site is vacant and is still awaiting redevelopment. A portion of the cover system has been damaged by above average high-water levels and associated wave action from Lake Erie/Small Boat Harbor during the past PRR period and needs repair in a few locations along the southern portion of the Site (see Appendix C).

1.4 Recommendations

We recommend that the Corrective Measures Work Plan (CMWP; Appendix C) be implemented to address the damage to the cover system in the southern portions of the Site due to the above average high-water levels and associated wave action from Lake Erie/Small Boat Harbor. The work required to repair the damaged cover system and any redevelopment activities to be conducted at a future date, will be completed in accordance with the SMP and the SMP be updated to include the redevelopment/cover system changes once they are completed. At this time, it is unknown when the redevelopment activities will occur, but they will be document in the associated PRR reporting period.

2.0 SITE OVERVIEW

The Site was remediated under the BCP (as discussed in Section 1.2). The remediated property is subject to a comprehensive, site-wide SMP which identifies requirements for monitoring and maintenance of engineering and institutional controls, post-remedial media (groundwater) monitoring and sampling, and procedures for post-remedial excavation and related activities.

No redevelopment activities have occurred at the Site within the December 14, 2018 to April 14, 2020 reporting period. However, there has been some damage to the cover system due to above average high-water levels and associated wave action of Lake Erie/Small Boat Harbor at Site that need repair. The cover system repairs will be addressed in accordance with a NYSDEC-approved CMWP (see Appendix C). We note that the Site is currently vacant and secured from public access by a chain link fence.

The areas surrounding the Site have not changed.

3.0 REMEDY PERFORMANCE

A post-remedial site inspection and groundwater monitoring event were completed at the Site as required by the SMP. The site inspection involving a walk-over of the Site covered by this PRR was performed to visually observe and document the use of the Site for restricted residential, commercial, and/or industrial use, confirm absence of site groundwater use, inspect the cover system integrity, and verify conformance with other requirements under the SMP. The groundwater monitoring event involved sampling four (4) monitoring wells (MW-1, MW-4, MW-6 and MW-7) for VOCs, SVOCs and metals as further discussed in Sections 4.2.4 and 4.3.

The site inspection completed during this reporting period indicates that the cover system for the Site has been partly damaged by above average high-water levels and associated wave action of Lake Erie/Small Boat Harbor and will need repair. A CMWP has been prepared and included in Appendix C.

The Site is current vacant and secured from public access by a chain link fence. Except for the locations of cover system damage in the southern portion of the Site, the reminder of the Site is in compliance and functioning as intended in accordance with the SMP.

The results of the groundwater sampling, as further discussed in Section 4.3, indicate a decrease in the VOC, SVOCs and metals contaminant concentrations detected in the groundwater since completing the IRM and remedial actions completed prior to issuance of the COC.

The completed IC/EC Certification forms and site photographs are included in Appendices A and B, respectively.

4.0 SITE MANAGEMENT PLAN

A site-wide SMP was prepared for the Site and approved by the Department in November 2018. Key components of the SMP are described below.

4.1 Institutional and Engineering Control (IC/EC) Plan

Since remaining contaminated soil/fill exists beneath the site, Institutional Controls and Engineering Controls (IC/ECs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all IC/ECs at the Site. At the time of the site inspection, the Site is compliant with all institutional control requirements. Due to the damage to the cover system from the above average high-water levels and associated wave action of Lake Erie/Small Boat Harbor, the cover system will need some repair. A CMWP has been prepared and included in Appendix C.

4.1.1 Institutional Controls (ICs)

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may be used for restricted residential; commercial, industrial uses, subject to local zoning laws;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the New York State Department of Health or the Erie Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- Operation, maintenance, monitoring, inspection, and reporting of the soil cover system shall be performed as defined in the SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- Vegetable gardens and farming on the property are prohibited.

4.1.2 Engineering Controls (ECs)

Engineering controls at the Site include:

• Cover System – Exposure to remaining contamination in soil/fill at the Site is prevented by a final cover system placed over the site. This cover system is comprised of a minimum of 24 inches of clean vegetated soil (with demarcation layer), asphalt pavement, concrete-covered sidewalks, concrete retaining wall, or crushed stone. The cover system must be maintained in compliance with the SMP.

4.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the NYSDEC-approved SMP for the Site. The EWP provides guidelines for the management of soil/fill material during intrusive actives. Future intrusive work that will penetrate the cover or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system, will be performed in compliance with the EWP.

4.2.1 Site Redevelopment Activities

No redevelopment activities occurred during the past reporting period and the Site is currently vacant and secured by a chain-link fence.

4.2.2 Exported Materials

No materials were exported from the Site during the past reporting period.

4.2.3 Imported Materials

No materials were imported to the Site during the past reporting period.

4.2.4 Monitoring Well Replacement

The SMP required post-remedial groundwater sampling at four (4) monitoring wells locations, MW-1, MW-4, MW-6 and MW-7. This groundwater sampling is discussed in more detail in Section 4.3 below. Two (2) monitoring wells, MW-1 and MW-7, were damaged during cover system installation in 2018 and were replaced with 1-inch diameter monitoring wells on March 31, 2020. The two (2) replacement monitoring wells (MW-1R and MW-7R) were installed in the vicinity of the former wells via direct push methodologies using a disposable blind point and 3-inch diameter casing to drill down to the required depths and install the wells. MW-1R was installed to a depth of approximately 16 feet below ground surface (fbgs), similar to MW-1, and the final grade in this area of the Site did not change. MW-7R was installed to a depth of approximately 20 fbgs, as the grade in this area of the Site was raised approximately 7 feet and the depth of MW-7 was about 13 fbgs.

No soil/fill from the drilling locations were brought to the surface to install the wells. The boreholes were created with the bind point and casing to the designated depths. The Community Air Monitoring Program (CAMP) of the SMP was implemented during the drilling. A graph of the CAMP data (particulate and total volatile organics) collected during the well installation is included in Appendix D.

4.3 Post-Remediation Media Monitoring and Sampling

Four (4) monitoring wells were sampled MW-1R, MW-4, MW-6 and MW-7R (see Figure 4) as part of the post-remedial media monitoring and sampling requirements of the SMP. The four (4) wells were sampled for Target Compound List (TCL) VOCs, Part 375 List SVOCs and Part 375 List metals. The results of the groundwater samples are summarized on Table 1 and the laboratory report is included in Appendix D. Table 1 also includes the historic sample results from these four (4) locations from 2016 and 2017, which represent pre-remedial conditions, for comparative purposes. The results of the sampling are discussed below by location.

MW-1/-1R:

<u>VOCs</u>: Benzene was detected at this location above its respective groundwater quality standard (GWQS) and the total VOC concentrations ranged from approximately 5 to 8 micrograms per liter (ug/l). In the 2020 post-remedial sample, benzene was detected below its respective GWQS and the total VOC concentrations were less than 1 ug/l, and 80% decrease from 2016 results.

<u>SVOCs</u>: Six (6) SVOCs were detected in both the 2017 and 2020 groundwater sampling events with concentrations exceeding their respective GWQS. The total SVOC concentrations in 2017 were approximately 11.5 ug/l and 5.4 ug/l in 2020, a decrease of about 53%.

Metals: Manganese was the only metal detected above its respective GWQS in the 2020 event and compared to the 2016 and 2017 events, the concentrations of other metals detected have also decreased.

MW-4:

<u>VOCs</u>: No VOCs were detected above method detection limits in the 2020 sampling event nor the historic sampling events

<u>SVOCs</u>: Six (6) SVOCs were detected in both the 2017 and 2020 groundwater sampling events with concentrations exceeding their respective GWQS. The total SVOC concentrations in 2017 were approximately 4 ug/l and 0.4 ug/l in 2020, a decrease of about 90%.

<u>Metals</u>: No metal analytes were detected above their respective GWQS in the 2020 sampling event.

MW-6:

<u>VOCs</u>: No VOCs were detected above method detection limits in the 2020 sampling event. Historic sample results were also below their respective GWQS at this location.

<u>SVOCs</u>: Five (5) SVOCs were detected above their GWQS, which is a slight increase from the 2017; however, the total SVOC concentrations detected have decreased about 70% from 1.3 ug/l (2017) to 0.4 ug/l (2020).

Metals: No metal analytes were detected above their respective GWQS in the 2020 sampling event.

MW-7/-7R:

<u>VOCs</u>: No VOCs were detected above their respective GWQS in the 2020 sampling event. Historically, methyl tert butyl ether (MTBE) and naphthalene have been detected above their respective GWQS and the total VOCs detected in the 2020 sampling event have decreased approximately 88% from the 2017 sampling event.

<u>SVOCs</u>: Seven (7) SVOCs were detected above their GWQS, which is a slight increase from the 2017; however, the total SVOC concentrations detected have decreased about 43% from 30 ug/l (2017) to 17 ug/l (2020).

<u>Metals</u>: No metal analytes were detected above their respective GWQS in the 2020 sampling event.

The results of the 2020 post-remediation groundwater sampling indicate there has been an improvement in the groundwater quality at the Site since the IRM and remedial action have been completed. No VOCs were detected above their respective GWQS in the four (4) sample locations. Except for manganese at MW-1R, no metals analytes were detected above their respective GWQS. Although SVOCs were detected above their respective GWQS in the four (4) sample locations, total SVOC concentrations (which were 30 ug/l or less prior to the remedial activities) have decreased between 43% (MW-7R) and 90% (MW-4). The presence of SVOCs in groundwater is not uncommon due to the amount of fill material underlying the Site from historic import activities completed to raise grades in outer harbor area and not uncommon at other sites surrounding QCL.

As stated in Table 7 of Section 7 of the SMP, groundwater monitoring will be "subject to evaluation after year 1". Based on the favorable results of the 2020 groundwater sampling, QCL requests that the annual groundwater sampling requirements of the SMP be terminated.

4.4 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines requirements for certifying and attesting that the institutional controls and engineering controls employed on the Site are unchanged from the original design and/or previous certification. The Annual Certification includes a Site Inspection and completion of the NYSDEC's IC/EC Certification Form. The Site inspection is intended to verify that:

- the IC/ECs are in place, effective, performing as designed,
- nothing has occurred that would impair the ability of the controls to protect the public health and environment,
- nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls, and
- access is available to the Site to evaluate continued maintenance of such controls.

Inspection of the Site was conducted by Mr. Christopher Boron, P.G. of TurnKey Environmental Restoration, LLC on March 31, 2020, a Qualified Environmental Professional (QEP) per 6NYCRR Part 375.12. At the time of the inspection, no redevelopment activities had occurred, and the Site is vacant. Existing cover system (see Figure 3) in the southern portion of the Site needs repair in a few areas due to damage from above average high-water levels and associated wave action of Lake Erie/Small Boat Harbor. Repairs to the cover system (as outlined in the CMWP in Appendix C) and any future redevelopment activities that disturb the existing cover system are subject to the NYSDEC-approved SMP.

No observable indication of intrusive activities that disturbed subsurface soil/fill were noted during the Site inspection beyond those described in Section 4.2.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photographic log of the Site inspection is included in Appendix B. The CMWP is included in Appendix C and information from the monitoring well installation and groundwater sampling are included in Appendix D.

4.5 Operation, Monitoring and Maintenance Plan

The remedy for the Site does not rely on any mechanical systems such as sub-slab depressurization or soil vapor extraction, to protect public health and the environment. Therefore, an Operation and Maintenance Plan is not required.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions for this reporting period and recommendations for the next reporting period are as follows:

- No redevelopment activities occurred during the past reporting period and the
 Site is currently vacant. The existing cover system in the southern portion of
 the Site has been damaged by above average high-water levels and associated
 wave action of Lake Erie/Small Boat Harbor and requires repair. The repairs
 will be competed as outlined in the CMWP. The remaining portions of the
 cover systems are performing as intended.
- Implementation of the CMWP to repair the cover system and future redevelopment activities involving cover system modification or import/export of soil or stone materials will be subject to the SMP. In areas subject to redevelopment, Site access will be restricted via construction fencing and will be limited to authorized construction personnel.
- Groundwater sampling performed during the reporting period, as required by the SMP, indicates that there has been an improvement in the groundwater quality at the Site since the IRM and remedial action have been completed. No VOCs were detected above their respective GWQS. Except for manganese at MW-1R, no metals analytes were detected above their respective GWQS. SVOCs were detected above their respective GWQS in the four (4) sample locations, al be it at very low concentrations. The total SVOC concentrations (which were 30 ug/l or less prior to the remedial activities) have decreased between 43% (MW-7R) and 90% (MW-4). The presence of SVOCs in groundwater is not uncommon due to the amount of fill material present underlying the Site from historic import activities completed to raise grades in outer harbor area and not uncommon at other sites surrounding QCL.

The following modifications are recommended for the Site:

- The cover system modifications outlined in the CMWP should be implemented.
- Groundwater monitoring is "subject to evaluation after year 1", as stated in Table 7 of Section 7 of the SMP. Based on the favorable results of the 2020 groundwater sampling, QCL requests that the annual groundwater sampling requirements of the SMP be terminated.

6.0 DECLARATION/LIMITATION

Personnel under direct supervision of Benchmark conducted the annual site inspection for BCP Site No. C915304, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to Queen City Landing, LLC by Benchmark.

This report has been prepared for the exclusive use of the Queen City Landing, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Queen City Landing, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark.

7.0 REFERENCES

- 1. New York State Department of Environmental Conservation. *DER-10; Technical Guidance for Site Investigation and Remediation*. May 2010.
- 2. C&S Engineers, Inc. Crushed Concrete Management Plan, Queen City Landing, Eastern Parcel, BCP Site No. C915304. March 1, 2017.
- 3. Benchmark Environmental Engineering and Sciences, PLLC. Queen City Landing (BCP Site: C915304), Crushed Concrete Management Plan Addendum. August 3, 2017.
- 4. C&S Engineers, Inc. Remedial Investigation/Interim Remedial Measures/Alternatives Analysis Work Plan, Queen City Landing, 1005 Fuhrmann Blvd (SBL: 132.06-1-1.2) and a Portion of 975 Fuhrmann Blvd (SBL: 132.06-1-1.1), City of Buffalo, Erie County, New York, Site No. C915304. December 2016.
- 5. Benchmark Environmental Engineering and Science, PLLC. Additional Hotspot Sampling & Soil Disposal Work Plan, Queen City Landing Site, BCP Site No. C915304. December 7, 2017.
- 6. Benchmark Environmental Engineering and Science, PLLC. Queen City Landing, BCP Site No. C915304, Revised Remedial Investigation Submittal. January 26, 2018.
- 7. Benchmark Environmental Engineering and Science, PLLC. Interim Remedial Measure Report, Petroleum Contamination Cleanup, Queen City Landing Site BCP Site No. C915304, 975 and 1005 Fuhrmann Boulevard, Buffalo, New York. January 25, 2018.
- 8. Benchmark Environmental Engineering and Science, PLLC. Alternative Analysis Report, Queen City Landing Site, Buffalo, New York, BCP Site No. C915304. May 2018.
- 9. New York State Department of Environmental Conservation. Decision Document, Queen City Landing, Brownfield Cleanup Program, Buffalo, Erie County, Site No. C915304. June 2018.
- 10. Benchmark Environmental Engineering and Science, PLLC. Queen City Landing (BCP Site: C915304), Remedial Action Work Plan. July 20, 2018.
- 11. Benchmark Environmental Engineering and Science. Site Management Plan, Queen City Landing Site, Erie County, Buffalo, New York, NYSDEC Site No. C9152304. November 2018.
- 12. Benchmark Environmental Engineering and Science. Final Engineering Report, Queen City Landing Site, Buffalo, New York, NYSDEC Site No. C9152304. December 2018.

TABLES

TABLE 6

SUMMARY OF REMEDIAL INVESTIGATION GROUNDWATER SAMPLE ANALYTICAL RESULTS

SITE MANAGEMENT PLAN

QUEEN CITY LANDING SITE BUFFALO, NEW YORK

PARAMETER 1	GWQS ²	MW-1	MW-1	MW-1R ³	MW-4	MW-	1	MW-4	MW-6	MW-6		MW-6		MW-7		MW-7	MW-7R ³	
	"	2/7/2017	3/30/2016	4/3/2020	2/7/2017	3/31/20	16	4/3/2020	2/7/2017	3/30/2016		4/3/2020		2/7/2017		3/30/2016	4/3/2020	4
Volatile Organic Compounds (VOCs) - u	•																	_
2-Butanone (MEK)	50	ND	ND ND	ND	ND	ND		ND	ND	ND		ND		ND	.	ND		
Acetone	50	ND 4.2	ND 1.05	ND 0.74	ND ND	ND ND		ND ND	3 J ND	J ND ND		ND		1.7 ND	J	ND ND	1.5	
Benzene Cyclohexane	1 	ND	1.95 ND	0.74 ND	ND ND	ND ND		ND ND	ND ND	ND ND		ND ND		ND ND		ND ND		-
Dichlorodifluoromethane (Freon-12)	5	ND ND	ND ND	ND ND	ND	ND		ND ND	ND	ND ND		ND ND		ND ND		ND		-
Methyl acetate	<u>J</u>	ND	ND ND	ND	ND	ND		ND ND	ND	ND ND		ND		ND		ND		+
Methyl tert butyl ether (MTBE)	10	0.95	J ND	ND	ND	ND		ND ND	ND	ND ND		ND		39		20.7	3.1	-
Methylcyclohexane		ND	ND ND	ND	ND	ND		ND	ND	ND ND		ND		ND ND		ND ND	0.1	-
Naphthalene	10	ND	6.04	ND	ND	ND		ND	ND	4.56	J	ND		ND		29.5		\neg
Total VOCs		5.15	7.99	0.74	0	0		0	3	4.56		0		40.7		50.2	4.6	
Semi-Volatile Organic Compounds (SV	OCs) - ug/l						<u> </u>			<u> </u>								
Acenaphthene	20	0.99	ND	0.17	0.35	ND		ND	0.3	ND		0.05	J	9.3		ND	5.8	\neg
Acenaphthylene	-	0.07	J ND	0.02 J	0.05	J ND		ND	ND	ND		ND		0.22		ND	0.13	
Anthracene	50	0.17	J ND	0.17	0.2	ND		0.01	0.09	J ND		0.02	J	1.1		ND	0.45	\Box
Benzo(a)anthracene	0.002	0.1	J ND	0.38	0.12	J ND		0.04		J ND		0.02	J	0.07	J	ND	0.07	,
Benzo(a)pyrene	MDL	0.08	J ND	0.32	0.1	J ND		0.03		ND		0.02	J	ND		ND	0.05	,
Benzo(b)fluoranthene	0.002	0.12	J ND	0.44	0.13	J ND		0.04		ND		0.03	J	0.05	J	ND	0.06	,
Benzo(ghi)perylene	-	0.07	J ND	0.2	0.08	J ND		0.02		ND		ND		ND		ND	0.04	
Benzo(k)fluoranthene	0.002	0.04	J ND	0.16	0.05	J ND		0.02	_	ND		0.01	J	ND		ND	0.03	
Chrysene	0.002	0.11	J ND	0.33	0.12	J ND		0.03		ND		0.02	J	0.07	J	ND	0.06	
Dibenzo(a,h)anthracene		ND	ND ND	0.06 J	ND	ND		ND	ND	ND ND		ND		ND ND		ND	0.02	
Dibenzofuran	0.0000007	ND	ND ND	ND	ND	ND		ND	ND	ND ND		ND		ND		ND	2.1	4
Fluoranthene	50 50	0.39 0.94	ND ND	0.82 0.19	0.48	ND ND		0.06 C	0.17	J ND J ND		0.05 ND	J	2.1 6.9		ND ND	1.1 3.5	_
Fluorene	0.002	0.94	J ND	0.19	0.3					J ND ND	-	ND ND		ND		ND ND	0.05	_
Indeno(1,2,3-cd)pyrene 2-Methylnapthalene	0.002	0.07	J ND ND	ND	0.08	J ND		0.02 ND	ND ND	ND ND		ND		0.13	J	ND ND	ND	٠,
Naphthalene	10	5.8	ND ND	0.37	0.13	ND ND		ND ND	0.19	J ND		ND		1.9	J	ND	0.96	+
Phenanthrene	50	1.4	ND ND	0.88	1	ND		0.05		J ND		0.04	J	7		ND	1.6	-
Pyrene	50	0.29	ND ND	0.66	0.37	ND		0.05		ND ND		0.11		1.3		ND	0.69	-
Total SVOCs		11.45	0	5.4	3.95	0		0.37	1.26	0		0.37		30.14		0	16.71	_
otal Metals - ug/l				411													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Aluminum		278	NT	NT	133	NT		NT	51.4	NT	T	NT		782	Т	NT	NT	\neg
Antimony	3	ND	NT	NT	ND	NT		NT	ND	NT		NT		ND		NT	NT	_
Arsenic	25	4.11	ND	1.92	2.46	ND		1.1	1.53	ND		0.74		1.34		16.8	J- 1.23	\neg
Barium	1000	395.8	270 J-		123.3	138		42.23	53.12	55.2	J-	71.83		36.1		ND	33.28	_
Cadmium	5	0.09	J ND	0.07 J	ND	ND		ND	ND	ND		ND		ND		ND	ND	
Calcium		149000	NT	NT	132000	NT		NT	64300	NT		NT		51200		NT	NT	
Hexavalent Chromium	50	NT	NT	NT	NT	NT		NT	ND	NT		NT		NT		NT	NT	
Chromium	50	1.66	ND	0.83 J	0.38	J ND		0.69		J ND		0.79	J	1.48		ND	0.36	
Cobalt	-	0.31	J NT	NT	0.43	J NT		NT	ND	NT		NT		0.71		NT	NT	
Copper	200	8.07	16.2 J-		12.95	ND		5.73	0.51	ND	\bot	2.31		2.77		ND	0.75	
Iron	300	8800	NT	NT	2340	NT		NT	268	NT	1	NT	⊢.	1370		NT	NT	_
Cyanide	200	3	J NT	4 J	ND 44.6	NT		ND 4.60	5	NT 7.04	1.	4	J	3	J	NT OO 4	ND ND	+
Lead	25 35000	17.85 48300	18.4 J- NT	15.98 NT	11.6 25600	41.9 NT		4.63 NT	0.58 9150	J 7.21 NT	J-	4.42 NT		9.47 15400		20.4	J- 9.82 NT	+
Magnesium											+					NT 51		_
Manganese Mercury	300 0.7	253 ND	625 J- ND	639.1 0.11 J	385.5 ND	318 ND		40.29 ND	127.2 ND	131 ND	J-	188.6 ND	\vdash	51.39 ND	+	51 ND	J- 44.17 ND	+
Nickel	100	2.21	ND ND	2.61	1.41	J ND		1.36		J ND	+	0.89	J	2.56	+	ND ND	0.76	+
Potassium		11600	NT	NT NT	4270	J ND		NT NT	6880	J ND	+	NT		9720		NT	NT	+
Selenium	10	ND	ND ND	ND	ND	ND		ND	ND	ND	1 1	ND		ND		ND	ND	+
Sodium	20000	49800	NT	NT	24600	NT		NT	254000	NT	1 1	NT		74300		NT	ND	+
Vanadium		ND	NT	NT	ND	NT		NT	2.24	J NT		NT		2.9	J	NT	NT	\top
Zinc	2000	22.63	50.9 J-		8.85	J 55.1	J	4.31		ND	1 1	6.67	J	14.23		ND	9	\top
Polychlorinated biphenyls (PCBs) - ug/l			· · · · · · · · · · · · · · · · · · ·			1 1		*		· · ·	•				• •		· · ·	
Total PCBs		ND	ND	NS	ND	ND		NS	ND	ND	T	NS		ND	T	ND	NS	\top
Pesticides and Herbicides - ug/l			.,,,			.,			1									

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)

 3. Monitoring wells MW-1 and MW-7 could not be located and likely damaged during cover system installation. MW-1R and MW-7R are replacement wells installed within the same general area.

 Definitions:

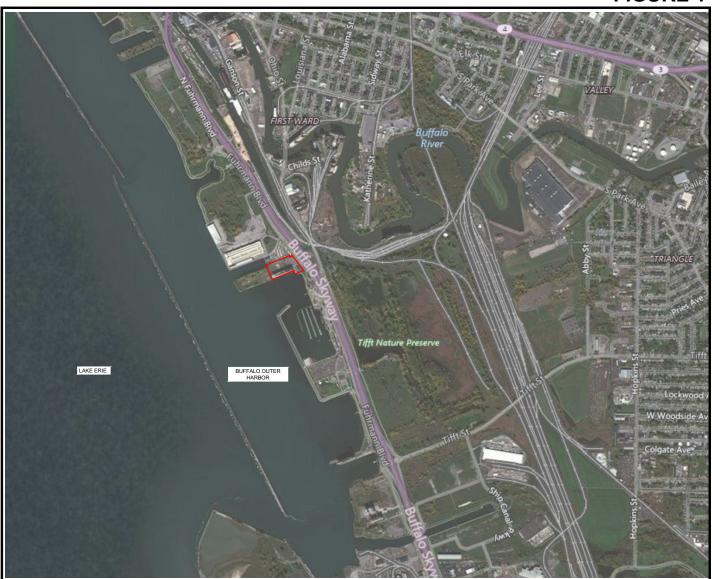
 ND = Parameter not detected above laboratory detection limit.

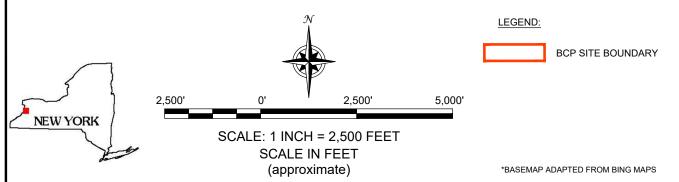
 NT = Parameter was not analyzed for.

 "--" So value available for the parameter; Parameter not analysed for.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 J+ = Analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.


 Bold


 Result exceeds GWQS.

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0599

PROJECT NO.: 0424-020-001

DATE: MAY 2020 DRAFTED BY: RFL

SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT

BROWNFIELD CLEANUP PROGRAM QUEEN CITY LANDING SITE (BCP SITE NO. 915304) BUFFALO, NEW YORK

PREPARED FOR

QUEEN CITY LANDING, LLC

DISCLAIMER.

PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

LEGEND:

BCP SITE BOUNDARY

NOTES: 1. AERIAL IMAGE FROM GOOGLE EARTH PRO 2018.

JOB NO.: 0424-020-001

SCALE: 1 INCH = 150 FEET SCALE IN FEET (approximate)

FIGURE 2

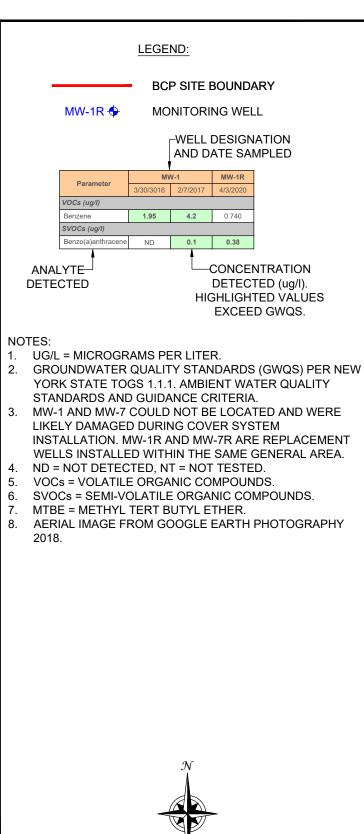
AND I INSTITUTIONAL AI LOCATIONS

EXISTING

ASPHALT

ENGINEERING COVER SYSTEM IN REVIEW REPORT ONS - CO

BENCHMARK

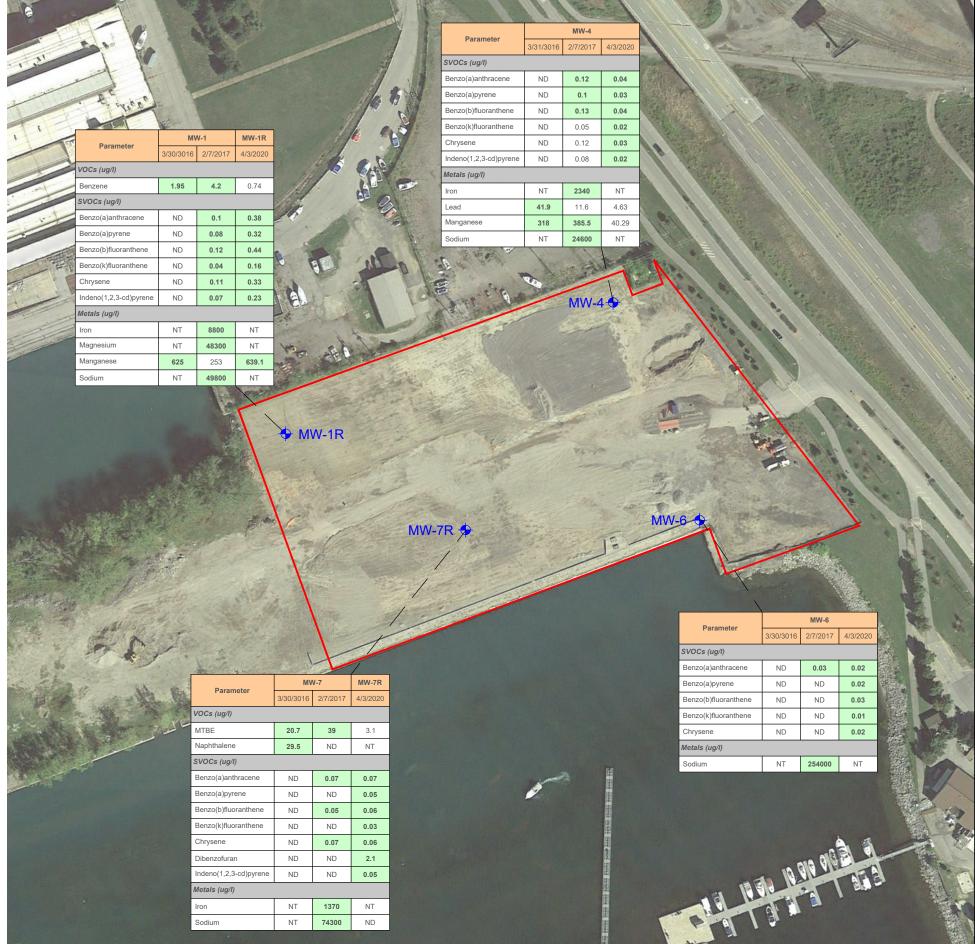

₹ 🔊

JOB NO.: 0424-020-001

BROWNFIELD CLEANUP PROGRAM QUEEN CITY LANDING SITE (BCP SITE NO. C915304) BUFFALO, NEW YORK

FIGURE 3

QUEEN CITY LANDING, LLC



SCALE: 1 INCH = 150 FEET

SCALE IN FEET

(approximate)

300'

AND EXCEEDANCES PORT LOCATIONS GROUNDWATER (REMEDIAL POST

BENCHMARK

< 👁

JOB NO.: 0424-020-001

COUNDWATER QUALITY I
PERIODIC REVIEW REF
BROWNFIELD CLEANUP PF
QUEEN CITY LANDING SITE (BCP SI
BUFFALO, NEW YOR

FIGURE 4

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORMS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	ite No. C91	15304	Site Deta	ails		Box 1		
Si	ite Name Queen	City Landing						
C	ite Address: 975 a ity/Town: Buffalo ounty:Erie ite Acreage: 7.750	and 1005 Fuhrmann Bo	oulevard	Zip Code: 14203				
R	eporting Period: [December 14, 2018 to A	April 14, 2	020				
						YES	NO	
1.	Is the information	on above correct?				X		
	If NO, include h	andwritten above or or	n a separa	te sheet.				
2.		of the site property be ment during this Repor			or undergone a		X	
3.	Has there been (see 6NYCRR 3	any change of use at t 375-1.11(d))?	the site du	ring this Reporting	Period		X	
4.		al, state, and/or local p perty during this Repor			ge) been issued		X	
		d YES to questions 2 ation has been previo						
5.	Is the site curre	ntly undergoing develo	pment?				X	
						Box 2		
	6 3					YES	NO	
6.		te use consistent with t dential, Commercial, a				X		
7.	Are all ICs/ECs	in place and functioning	ng as desi	gned?			X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A	Corrective Measu	ıres Work Plan must b	e submitte	ed along with this f	orm to address th	hese iss	ues.	
	MAS	na			3-31-2	207.0	>	
S	gnature of Owner,	Remedial Party or Design	gnated Re _l	presentative	Date			

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid?		
	(The Qualitative Exposure Assessment must be certified every five years)		
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C915304	Box	· 3

Description of Institutional Controls

Institutional Control Parcel Owner

Queen City Landing, LLC 132.06-1-1.1

Ground Water Use Restriction

Landuse Restriction Site Management Plan

Monitoring Plan

Soil Management Plan

IC/EC Plan

- . Prohibition of use of groundwater.
- . Restricted Residential Use.
- . Soil Vapor Intrusion Evaluation for any future structures.
- . Groundwater monitoring.
- . Soil Management or Excavation Work Plan for any future intrusive work.

Queen City Landing, LLC 132.06-1-1.2

> Soil Management Plan Ground Water Use Restriction

Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- . Prohibition of use of groundwater.
- . Restricted Residential Use.
- . Soil Vapor Intrusion Evaluation for any future structures.
- . Groundwater monitoring.
- . Soil Management or Excavation Work Plan for any future intrusive work.

Box 4

Description of Engineering Controls

Engineering Control Parcel

132.06-1-1.1

Cover System Monitoring Wells

. Maintenance of the cover system.

132.06-1-1.2

Cover System Monitoring Wells

. Maintenance of the cover system.

	Вс	ox 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	I
	b) to the best of my knowledge and belief, the work and conclusions described in this certific are in accordance with the requirements of the site remedial program, and generally accepted and programs practices; and the information presented in accurate and compare.	
	engineering practices; and the information presented is accurate and compete. YES NO)
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	itional
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	d
	(b) nothing has occurred that would impair the ability of such Control, to protect public healt the environment;	h and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, th mechanism remains valid and sufficient for its intended purpose established in the documen	

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

YES

Date

NO

IC CERTIFICATIONS SITE NO. C915304

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1	at ,
print name	print business address
am certifying as	(Owner or Remedial Part
for the Site named in the Site Detail	Section of this form.
Signature of Owner, Remedial Party Rendering Certification	or Designated Representative Date

IC/EC CERTIF	FICATIONS	
Professional En	ngineer Signature	Box 7
certify that all information in Boxes 4 and 5 are true unishable as a Class "A" misdemeanor, pursuant to		
at		,
print name	print business address	·
am certifying as a Professional Engineer for the	(Owner or Reme	edial Party)
Signature of Professional Engineer, for the Owner o Remedial Party, Rendering Certification	r Stamp (Required for PE)	 Date

APPENDIX B

PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

- Photo 1: Stone and vegetated cover system along eastern property boundary, looking north.
- Photo 2: Vegetated cover system along eastern property boundary, looking south.
- Photo 3: Vegetated cover system along the northern property boundary and stone cover system in the central portion of the Site.
- Photo 4: Stone cover system in the central portion of the Site looking west.

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

- Photo 5: Erosional rill in the southeastern portion of the Site that needs to be repairing. Created by water ponding in the central portion of the Site during high water levels, looking northeast.
- Photo 6: Erosion of soil cover along the southern portion of the Site on the north side of concrete retaining wall that needs to be repaired. Erosion caused by high water levels and associated wave action, looking east.
- Photo 7: No. 6 surge stone displaced from along the southern property boundary in need of repair caused by high water levels and associated wave action, looking south.
- Photo 8: Soil cover erosion on the south side of the concrete walkway from high water levels and associated wave action that needs to be repaired, looking east.

APPENDIX C

CORRECTIVE MEASURES WORK PLAN

June 12, 2020

Ms. Megan Kuczka Environmental Program Specialist NYSDEC Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203

Re: Corrective Measures Work Plan for Queen City Landing Brownfield Cleanup Program Site (No. 915304) Periodic Review Report Certifying Period December 14, 2018 to April 14, 2020

Hello Ms. Kuczka:

On behalf of our client, Queen City Landing, Inc. (QCL), Benchmark Environmental Engineering & Science, PLLC (Benchmark) has prepared this Corrective Measures Work Plan (CMWP) for the QCL Brownfield Cleanup Program Site (No. 915304) located at 975 and 1005 Fuhrmann Boulevard, in Buffalo, New York.

On March 31, 2020, Christopher Boron, P.G., a Qualified Environmental Professional (QEP) per 6NYCRR Part 375.12, completed a site inspection of the QCL Site as part of the Periodic Review Report (PRR) certifying period of December 14, 2018 and April 14, 2020. This is the 1st PRR reporting period for the Site since receiving its Certificate of Completion on December 14, 2018.

During the site inspection, it was observed that the cover system (engineering control for the Track 4 restricted-residential use cleanup) has been damaged by high-water levels and associated wave action from Lake Erie/Small Boat Harbor along the southern portion of the Site during the certifying period. In addition, one portion of the cover appears to have eroded due to surface water runoff. Attachment 1 contains photographs from the March 31st site visit which show the damaged areas. The locations of these areas are further identified on the aerial photograph of the Site also included in Attachment 1.

Lake Erie water elevations are monitored at several stations, the closest station to the Site is the Buffalo, NY Station ID: 9063020 (Gauging Station). It is located approximately 10,000 feet north of the Site at the Coast Guard Station located at the mouth of the Buffalo River. Water elevations have been monitored at this station since 1918. The average water elevation is 571.39 feet based on the International Great Lakes Datum of 1985 (IGLD). The maximum water level elevation of the lake in 2019 was 574.61. This data can be found here: https://www.glerl.noaa.gov/data/dashboard/GLD_HTML5.html

Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkees.com

The southern portion of the Site is primarily the windward side of the Site (southwesterly prevailing wind) and receives the wave action from Lake Erie. This, coupled with the increase in water elevation, has damaged some areas of the cover system in the southern portion of the Site and need repair. The remaining portions of the Site cover system are compliant and functioning as designed.

QCL would like to repair the cover system in the areas that were damaged. Attachment 2 contains Figure 7 - As-Built Cover System drawing from the Final Engineering Report. It identifies the type of cover systems present at the Site. The areas of the Site cover system that are in need of repair are identified by areas (Area 1 through Area 6). The materials used in these areas will generally be replaced with a few exceptions that will be better suited for the respective area that has been damaged. The following table identifies the six (6) areas with the current cover system material and proposed replacement material(s).

Area	Current Cover System Material	Proposed Replacement Material				
Alea	Current Cover System Material	(to Restore Minimum 2' Cover over Demarcation)				
1	No. 6 surge stone and	No. 6 surge stone, vegetated soil, concrete and				
	vegetated soil	large limestone block on the bank areas.				
2	Vegetated soil cover	Poly liner and No. 6 Surge stone to mitigate				
		further erosion attributable to surface water				
		runoff.				
3	Vegetated soil cover	Asphalt cover on the north and south sides of the				
		concrete walkway.				
4	Vegetated soil cover	The concrete retaining wall will be extended				
		approximately 20 feet to the southeast. Asphalt				
		cover will be placed on the south side of the				
		retaining wall and the vegetated soil cover will be				
		replaced on the north side of the retaining wall.				
5	Vegetated soil cover	Vegetated soil cover.				
6	Vegetated soil cover	Vegetated soil cover.				

The corrective measures described in this work plan will be implemented in accordance with the existing Site Management Plan¹ (SMP), specifically the Excavation Work Plan (Appendix D of the SMP). We anticipate that following sections of the EWP may be applicable during the implementation of the corrective measures:

Section D-1 – Notification

Section D-3 – Soil Staging Method

Section D-7 – Material Reuse On-Site

Section D-9 – Cover System Restoration

Section D-10 – Backfill from Off-Site Sources

Section D-11 – Stormwater Pollution Prevention

Section D-13 – Community Air Monitoring Plan

Section D-15 – Dust Control

The cover system repair work will be completed by the end of the July 2020. NYSDEC approval of the CMWP, will serve as the 15-day notice required by Section D-1 of the SMP EWP. NYSDEC will also be provided 7-days' notice prior to the actual start of field work to repair the cover system.

Once the corrective measures are complete, the SMP cover system drawing will be updated to reflect the changes that have been implemented.

Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

Christopher Boron, P.G.

Sr. Project Manager

J. Walia (NYSDEC – Region 9)

G. Buchheit Jr. (QCL)

C. Slater, Esq. (Slater Law)

File: 0424-020-002

ec:

Thomas H. Forbes, P.E. Principal Engineer

¹ "Site Management Plan, Queen City Landing, NYSDEC Sire No. C915304, Buffalo, New York." Prepared by Benchmark Environmental Engineering and Science, PLLC. November 2018.

ATTACHMENT 1

PHOTOGRAPHS OF DAMAGED COVER SYSTEM

Photo 1

The area between the walkway and retaining wall was formerly covered with topsoil. Area now contains crushed stone that has washed out from under the walkway, broken concrete, and debris which has been washed up from the lake.

Photo 2

The area between the walkway and retaining wall was formerly covered with topsoil. Area now contains crushed stone that has washed out from under the walkway, broken concrete and debris which has been washed up from the lake. Looking east.

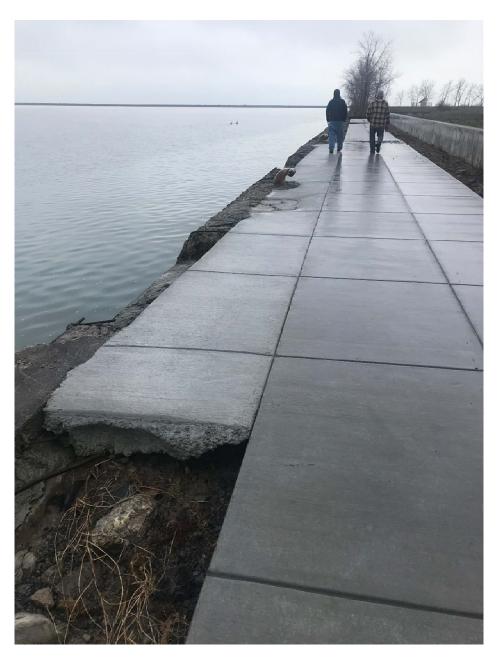


Photo 3

Approx. 60-foot length along sea wall where concrete was used rather than soil due to low spots on the sea wall which would not hold back soil. Looking west.

Photo 4

This area is located at the southwest end of BCP Site limits. Cover system has been eroded. Looking east.

Photo 5

Area of former soil cover west of the concrete area shown in Photo 3. Area now contains crushed stone that has washed out from under the walkway, broken concrete and debris which has been washed up from the lake. Looking east.

Photo 6

The area between the walkway and retaining wall was formerly covered with topsoil. Area now contains broken concrete and debris which has been washed up from the lake. Looking east.

Photo 7

Cover system erosion has occurred in this area. Area of water ponding is to the north and is draining back to the east end of the retaining wall/sea wall at the lake. Looking northeast.

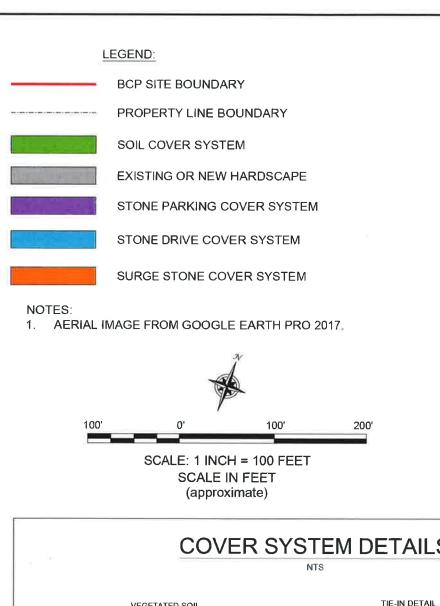
Photo 8

Erosion north (behind) of the retaining wall. This is the location where a break in the wall was installed for eventual handicap access. Looking east.

Photo 9

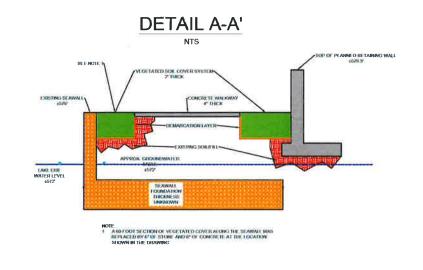
No. 6 surge stone was placed along the southern boundary of the Site near the southeast corner. It was placed against the hardscape (cemented aggregate and large limestone blocks) that were present at the fence line and to the south. The wave action has pushed the No. 6 stone away from the placement area. Looking south.

Photo 10


Former placement area for No. 6 stone along southern boundary. Close up of Photo 9, looking south.

ATTACHMENT 2

AREAS OF DAMAGED COVER SYSTEM TO BE REPAIRED



STONE DRIVE EXISTING ASPHALT Area 4 Area 5 Area 6 RETAINING WALL CONCRETE WALKWAY CONCRETE STATIMAX Area 2 NO. 6 SURGE Area 3 STONE CONCRETE COVER SEE DETAIL A-A'

COVER SYSTEM DETAILS TIE-IN DETAIL VEGETATED SOIL COVER SYSTEM DETAIL NTS PROPERTY LINE SOIL COVER 24" DEC-APPROVED COVER MATERIALS **GROUND SURFACE** PRIOR TO COVER INSTALLATION CUT GROUND TO ACCOMMODATE COVER SYSTEM EXISTING ASPHALT DRIVE COVER SYSTEM SURGE STONE COVER SYSTEM DETAIL NTS STONE COVER AND PARKING SYSTEM DETAIL DETAIL SURGE STONE VARIES 12" MIN NYSDEC APPROVED SOIL COVER 24" MIN M-SHUSORARI

DEMARCATION LAYER

Area 1

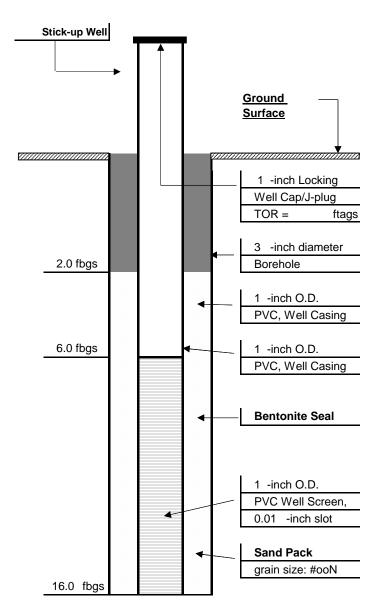
COVER SYSTEM AS-BUILT

QUEEN CITY LANDING SITE BCP SITE NO. C915304 BUFFALO, NEW YORK PREPARED FOR QUEEN CITY LANDING, LLC FINAL ENGINEERING REPORT

JOB NO.: 0424-017-001

FIGURE 7

APPENDIX D


GROUNDWATER WELL INSTALLATION & SAMPLING INFORMATION

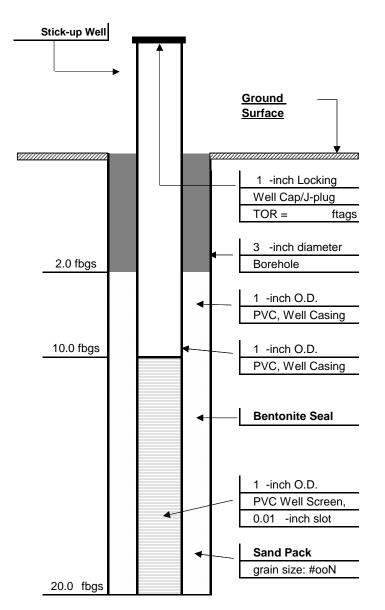
STICK-UP MONITORING WELL COMPLETION DETAIL

Project Name:Monitoring Well ReplacementWELL NUMBER:MW-1RClient:Queen City LandingDate Installed:03/21/20Location:Buffalo NYProject Number:B0424-020-002-002

Driller Information							
Company: Trec Environmental							
Driller: Jim A.							
Helper: NA							
Drill Ria Type: Geoprobe 54LT							

Well Information	
Land Surface Elevation:	fmsl (approximate)
Drilling Method: Direct Push	
Soil Sample Collection Method: NA	
Drilling Fluid: NA	
Fluid Loss During Drilling: NA	gallons (approximate)

Material of Well Construction
Casing: PVC
Screen: PVC
Sump: none
Sand Pack: #oon
Annular Seal: medium bentonite chips

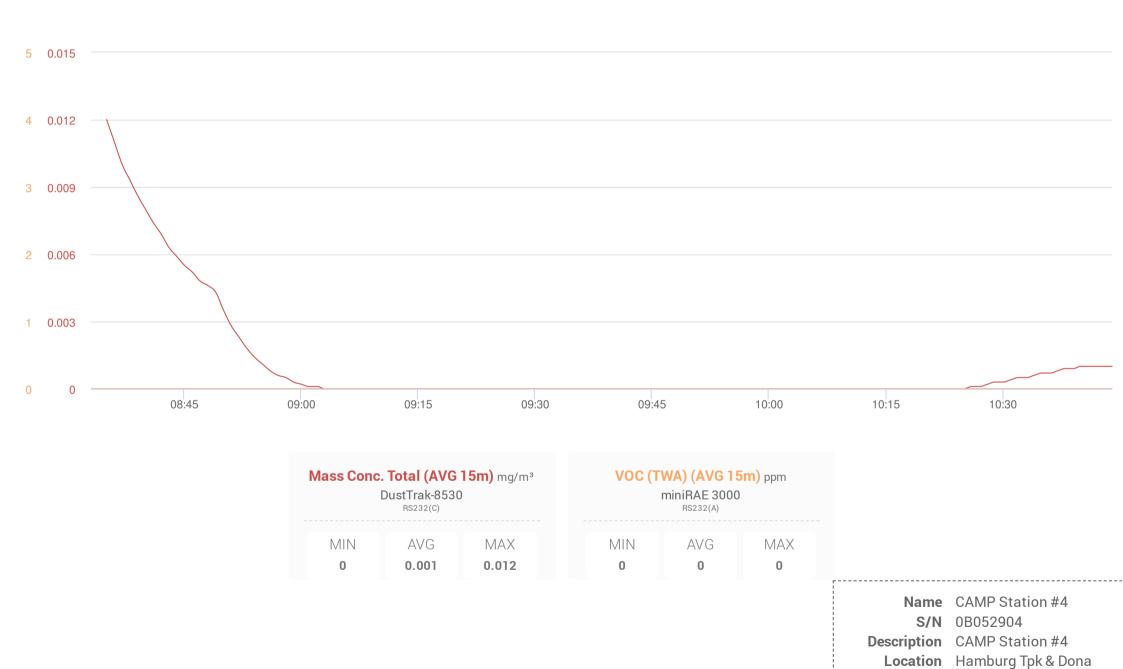

Comments:			saturated thickness: SWL - stickup = -1.40 fbgs
Total Depth =	17.03	fbTOR	Total Depth - SWL = 17.03 feet
stick-up =	1.4	feet	
Total Depth =	15.63	fbgs	

PREPARED BY: TAB DATE: 04/29/30

STICK-UP MONITORING WELL COMPLETION DETAIL

Project Name:Monitoring Well ReplacementWELL NUMBER:MW-7RClient:Queen City LandingDate Installed:03/21/20Location:Buffalo NYProject Number:B0424-020-002-002

<u>Driller Information</u>							
Company: Trec Environmental							
Driller: Jim A.							
Helper: NA							
Drill Rig Type: Geoprobe 54LT							


Well Information	
Land Surface Elevation:	fmsl (approximate)
Drilling Method: Direct Push	
Soil Sample Collection Method: NA	
Drilling Fluid: NA	
Fluid Loss During Drilling: NA	gallons (approximate)

Material of W	ell Construction
Casing: PVC	
Screen: PVC	
Sump: none	
Sand Pack:	#oon
Annular Seal:	medium bentonite chips

Comments:			saturated thickness: SWL - stickup = -1.80 fbgs
Total Depth =	21.88	fbTOR	Total Depth - SWL = 21.88 feet
stick-up =	1.8	feet	
Total Depth =	20.08	fbgs	

PREPARED BY: TAB DATE: 04/29/30

Tue, 31st of Mar 2020, 8:00:00 – 15:00:00 (GMT-05:00) Eastern Time (US & Canada)

Street, Lackawanna, NY

14218, USA

© Netronix 2020

EQUIPMENT CALIBRATION LOG

Project Name: Queen		1. \.				Date:	4/1/20		
Project No.: 30424-0		1am	7			Date.	411150		
Client: Queencity	Tarky			(4)		Instrumer	nt Source:	вм 🗌	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBE	ER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron L Company	6213516 6243084			4.00	3.96	4.0
pH meter	units	315	Ultra Meter 6P	6212375	k	THS	7.00	7.07	7.6
The state of the s				6243003			10.01	10.0-7	10.0
							10 NTU verification	10. %	10.0
V	NET.		Hach 2100P or	06120C020523 (P)	1727E-15		< 0.4		
Turbidity meter	NTU	le se	2100Q Turbidimeter	13120C030432 (Q)		T.13	20		
	1	115	Turbialificter	17110C062619 (Q)		1200	100 800		
Sp. Cond. meter	uS mS	BIT	Myron L Company Ultra Meter 6P	6213516		T43	<u>}_</u> 000 ms @ 25 °C	7.996	7,000
☐ PID	ppm		MinRAE 2000				open air zero		MIBK response
	FF						ppm Iso. Gas		factor = 1.0
☐ Dissolved Oxygen	ppm		HACH Model HQ30d	080700023281 100500041867 140200100319			100% Satuartion		
☐ Particulate meter	mg/m ³						zero air		
Radiation Meter	uR/H						background area	73	
ADDITIONAL REMARKS	:					1			
PREPARED BY:	3			DATE:	4/1	20			

GROUNDWATER FIELD FORM

Project Name: Date: 4/12 C

Location: Bull Project No.: Boy24-02-0- Field Team:

Well N	o. WW_	18	Diameter (inches):			Sample Date / Time: DTW when sampled:				
Product De	pth (fbTOR): -	-								
DTW (static) (fbTOR): 7.39 Total Depth (fbTOR): 1.96			One Well Vo	olume (gal): 🧳	3.39	Purpose:	Development	☐ Sample	☐ Purge & Sample	
			Total Volume Purged (gal):			Purge Meth	od: Builc			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP (NTU) (mg/L) (mV)			Appearance & Odor	
912	o Initial	70.25	7.04	9,7	1316	21020		-10	See No ode	
918	17.40	0.5	7.44	15	1303	1.1	-	17	11	
924	2 7.38	1.0	7.31	7.1	1467	11	_	24	17	
920	37,33	1.5	7.21	7.9	1396	15	santing.	2)	17	
937	4 7.38	2.0	725	7.1	1435	Le	Beac	41.	k)	
944	5770	2.5	7.28	73	1427	17	May (51	11	
954	07.38	3.0	7.24	8.1	1440	(1		53	17	
1000	77,33	3.5	7.23	7.9	1386	8,4	_	55	11	
	8									
	9									
	10									
Sample	Information:				,					
	S1									
	S2							2		

Well No	o. MW-7	-12	Diameter (inches):			Sample Date / Time:				
Product De	pth (fbTOR):	٠	Water Column (ft): 13.0)			DTW when sampled:				
DTW (statio	c) (fbTOR): 8	.87	One Well Volume (gal):			Purpose:	Development	☐ Sample	☐ Purge & Sample	
Total Depth (fbTOR): 21,88			Total Volum	e Purged (gal):	5.0	Purge Metho	od:			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1013	o Initial	70.25	8,52	8,9	720.3	4,000	No.	5	See No OL	
1020	18.88	0,5	8,80	9.6	714.0	*11	سند	-40	4	
1026	28.88	1,0	8.82	9,7	727.1	13.	**	-79	1)	
1032	3 8.88	1.5	8.37	9.4	723.0	41	Pers	-80	47	
1037	4 5.88	2.0	8.74	9,8	741.7	8,1	1	-96	t/	
1044	58.88	2.5	8,74	10.0	724.2	\$ _{1,} ¢;	- m	-90	1/	
1051	68,88	3,0	8.74	10.1	720.1.	M	-	-105	1/	
1057	78.8V	3.5	8.77	9.6	727.0	[5	ě	-71	11	
1102	88.88	4,0	8,79	9.5	726.0	å.*	10	-100	11	
1106	98.38	7	8-25	9.0	734.7	Į(Hey	-83	1)	
WII	10 8,88	5.0	8.79	9,5	732.2	17	14.75	-108	· ·	
Sample I	nformation:									
	S1									
	52									

REMARKS:	Volume	Calculation	Parameter	Criteria		
NO. THE RESIDENCE OF THE PROPERTY OF THE PROPE	Diam.	Vol. (g/ft)	pН	± 0.1 unit		
	1"	0.041	SC	± 3%		
	2"	0.163	Turbidity	± 10%		
	4"	0.653	DO	± 0.3 mg/L		
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV		

PREPARED BY:

TAB

Groundwater Field Form.xls GWFF - BM

EQUIPMENT CALIBRATION LOG

Project Name: Question Project No.: 30424-	(1)	late			Date:	4/3/20		
Client: Quench	(m)	200			Instrumer	nt Source:	вм 🔲	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
2			Myron L Company	6213516		4.00	3.97	4.0
pH meter	units	8:15	Ultra Meter 6P	6212375	T4-3	7.00	7.01	2.0
				6243003		10.01	9.97	10.0
						10 NTU verification	10.4	10.0
Turbiditu matar	NTU	815	Hach 2100P or 2100Q	06120C020523 (P) 13120C030432 (Q)	TAB	< 0.4		
Turbidity meter	NIO	0 1 -	Turbidimeter	13120C030432 (Q) 17110C062619 (Q)		20 100		
				17 1100002013 (Q) ==		800		
Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516	TA3	<u>→ 001</u> mS @ 25 °C	7,000	7000
	_			0223973 —		open air zero		MIBK response
☐ PID	ppm		MinRAE 2000			ppm Iso. Gas	11	factor = 1.0
Dissolved Oxygen	р́рт	GK	HACH Model HQ30d	080700023281	TAB	100% Satuartion	126	100% 5/me
☐ Particulate meter	mg/m³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS	3:							
PREPARED BY: TACK				DATE: 4/3/2	D.			

GROUNDWATER FIELD FORM

Project Name: Queencd www. Date: 4/3/20
Location: Bulldo Project No.: 80424-020-002 Field Team: TAB

Well No	. h-7	R	Diameter (in	ches):	ll .	Sample Date	e / Time: 🦠	13/2	5
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	12.79	DTW when	sampled:	_	
DTW (statio) (fbTOR): 8	.96	One Well Volume (gal): 0.52			Purpose: Development Sample vurge & Sam			Øurge & Sample
Total Depth	(fbTOR): 21	68	Total Volum	e Purged (gal):		Purge Metho	od: Low	Flow 1	Derock Sic
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1114	o Initial	70.25	8,93	9.4	659.9	81016	2.44	-26	July N. oh
1117	1	0.50	9,07	9.5	655.7	186	2.18	-34	"
1120	2 ¬	0,25	8.90	9,7	6826	228	3.22	-97	11
1125	3 —	1.0	8,83	9,2	686.9	151	2.29	-114	11
1129	4 —	1.25	8.80	9.7	689.9	80.0	2.10	-117	"/
1133	5 _	1.50	8.79	9.8	691.3	64.3	2.33	-132	SL //
N	7								
	8								
	9								
	10								
Sample I	nformation:								
11360	S1 -	625	8.78	9.5	695.2	35.1	2.24	-132	der 11
1147	S2	2.0	8.21	9.5	400.1	22.3		-115	11

Well No	. Mhr.	-6	Diameter (in	ches):) 1/	Sample Date	e / Time: 4	3 20	W 11
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	2.8%	DTW when	sampled:		
DTW (static) (fbTOR): 7	40	One Well Vo	olume (gal):	209	Purpose:	Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR):	20.28	Total Volum	e Purged (gal):		Purge Metho	od: Lo-	Flow	Per-ship
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1278	o Initial	7025	8,19	10.0	1283	140	2,79	3	FEEL No of
1221	16.41	0.50	8.14	9,7	1191	145	2,40	-47-	11
1234	2 6-41	1.0	8,10	9.4	1182	123	2,43	-62	17
1237	3 6.41	1.5	8.11	9.8	1178	46.7	3.19	-52	SLTub 11
100	4		Gen		1500	10.1			
	5								
	6								
	7				S 10.				
	8								
	9								
	10								
Sample I	nformation:								
1241	81 4	2,0	8,12	9.1	1134	312	2,30	-55	16
125	52 6,41	2.25	8.13	9.0	1133	27.1	2.69	-45	11

•			Stabilizatio	n Criteria
REMARKS:	Volume	Calculation	Parameter	Criteria
	Diam.	Vol. (g/ft)	pН	± 0.1 unit
	1"	0.041	sc	± 3%
	2"	0.163	Turbidity	± 10%
	4"	0.653	DO	± 0.3 mg/L
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV

PREPARED BY:

TAB

GROUNDWATER FIELD FORM

Project Name: Date: t//3/20
Location: Project No.: 30 4124-020-007 Field Team: 743

Well No	o. Mu -	4	Diameter (in	iches): 2	vi.	Sample Date	e / Time:	1/3/20	920
Product De	pth (faTOR):	<u> </u>	Water Colur	nn (ft):	9,88	DTW when	sampled:	1047	
DTW (statio		n.4n	One Well Vo	olume (gal):	1.61	Purpose:	Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR): Z	0.25	Total Volum	e Purged (gal):	2,0	Purge Metho	od: Loi	· Flo	in Peralle
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SÇ (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
903	o Initial	40:25	8,40	7.6	555.0	255	3.91	96	Tahid No cha
9.05	110.47	025	729	79	5349	134	2.14	98	11
9.09	2 10.47	0.50	7.74	ファ	C43. 2	63.0	7.05	47.47	1/
913	3 10.42	1.0	7.74	7.4	342.9	48,2	7.01	102	- //
9116	4 10 4-2	1.	7.73	7.7	5-65.2	39.9	3.05	206	10
	5							X	
	6								
	7								
	8								
	9								
	10								
Sample	Information:								
920	51/04.7	2.0	7.65	7.4	576.1	27.7	2.83	106	1/
954	S2 1047	3.0	7.76	8.7	607.9	10.6	2.75	117	11

Well No	. MW-	18	Diameter (in	ches): 7	ч	Sample Dat	e / Time: 4	13/20	920
Product Dep	oth (fbTOR): 🖚	*	Water Column (ft): 8.79			DTW when	sampled:		-
DTW (static) (fbTOR):	41/	One Well Vo	olume (gal):	6.36	Purpose:] Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR):	.26	Total Volum	e Purged (gal):	128	Purge Metho	od: Ou	Flow	Periodile
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1019	o Initial	(0.25	7.64	8.8	1371	21000	0.64	-119	Brungel No (
1021	1 —	0.50	7.46	8.4	1404	391	2.06	-65	11
1024	2	0.75	7.31	8.2	1398	114	3.07	-+3	el Turk. & N. a.
1027	3	1.0	7.30	8.0	1407	47.4	2.49	-51	Mu No day
	4								
	5								
	6	9-9-							
	7			#					
	8								
	9								
	10		-						
Sample I	nformation:	EW.	·			•			
11231	S1 —	1.25	7.28	8.1	1412	50.2	2.63	-49	10
1047	S2 -	1.<0	7.79	8.1	1415	14.3	2.54	-47-	11

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

6" 1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

T43

ANALYTICAL REPORT

Lab Number: L2014566

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Report Date: 04/10/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

 Lab Number:
 L2014566

 Report Date:
 04/10/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2014566-01	MW-1R	WATER	BUFFALO, NY	04/03/20 10:31	04/03/20
L2014566-02	MW-4	WATER	BUFFALO, NY	04/03/20 09:20	04/03/20
L2014566-03	BLIND DUP	WATER	BUFFALO, NY	04/03/20 07:00	04/03/20
L2014566-04	MW-6	WATER	BUFFALO, NY	04/03/20 12:41	04/03/20
L2014566-05	MW-7R	WATER	BUFFALO, NY	04/03/20 11:36	04/03/20
L2014566-06	TRIP BLANK	WATER	BUFFALO, NY	04/03/20 00:00	04/03/20

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2014566-06: The analyses performed were specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/10/20

Melissa Sturgis Melissa Sturgis

ANALYTICAL

ORGANICS

VOLATILES

L2014566

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Lab Number:

Report Date: 04/10/20

Lab ID: L2014566-01

Client ID: MW-1R

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/08/20 17:15

Analyst: AJK Date Collected: 04/03/20 10:31 Date Received: 04/03/20 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.74		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: QUEEN CITY LANDING **Lab Number:** L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-01 Date Collected: 04/03/20 10:31

Client ID: MW-1R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Kesuit	Qualifier	Ullita	NL.	MIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	102	70-130	

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

Report Date: 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-02

Client ID: MW-4

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/08/20 17:41

Analyst: AJK

Date Collected:	04/03/20 09:20
Date Received:	04/03/20
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: QUEEN CITY LANDING **Lab Number:** L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-02 Date Collected: 04/03/20 09:20

Client ID: MW-4 Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

- urumetei			• • • •			
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
n-Butylbenzene	ND	ug/l	2.5	0.70	1	
sec-Butylbenzene	ND	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1	
n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

04/03/20 07:00

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Lab Number: L2014566

Report Date: 04/10/20

Lab ID: L2014566-03

Client ID: BLIND DUP Sample Location: BUFFALO, NY

Date Received: 04/03/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/20 18:06

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: QUEEN CITY LANDING **Lab Number:** L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-03 Date Collected: 04/03/20 07:00

Client ID: BLIND DUP Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether	ND ND ND ND		ug/l	2.5		
1,4-Dichlorobenzene Methyl tert butyl ether	ND		ug/l	2.5		
Methyl tert butyl ether			•		0.70	1
	ND		ug/l	2.5	0.70	1
. I W. I			ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
sopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	99	70-130	

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Report Date: 04/10/20

Lab ID: L2014566-04

Client ID: MW-6

Sample Location: BUFFALO, NY

Date Received: Field Prep:

Date Collected:

Lab Number:

04/03/20 12:41 04/03/20 Not Specified

L2014566

Sample Depth:							
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 04/08/20 18:31 AJK						
Parameter Volatile Organics by	GC/MS - Westboroug	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/NG - Westbolou	yn Lab					

Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.17 1<	Methylene chloride	ND	ug/l	2.5	0.70	1	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichiorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichlorofluormethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 <	1,1-Dichloroethane	ND	ug/l	2.5	0.70	1	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND	ug/l	2.5	0.70	1	
ND	Carbon tetrachloride	ND	ug/l	0.50	0.13	1	
1,1,2-Trichloroethane ND	1,2-Dichloropropane	ND	ug/l	1.0	0.14	1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Eromodichloromethane ND ug/l 0.50 0.19 1 Eromodichloromethane ND ug/l 0.50 0.16 1 Eromodichloropropene ND ug/l 0.50 0.16 1 Eromoform ND ug/l 0.50 0.16 1 Eromoform ND ug/l 0.50 0.14 1 Eromoform ND ug/l 0.50 0.17 1 Eromoform ND ug/l 0.50 0.17 1 Eromoform ND ug/l 0.50 0.17 1 Eromoform ND ug/l 0.50 0.16 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 0.50 0.70 1	Dibromochloromethane	ND	ug/l	0.50	0.15	1	
ND	1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1	
ND	Tetrachloroethene	ND	ug/l	0.50	0.18	1	
1,2-Dichloroethane ND	Chlorobenzene	ND	ug/l	2.5	0.70	1	
1,1,1-Trichloroethane	Trichlorofluoromethane	ND	ug/l	2.5	0.70	1	
ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	1,2-Dichloroethane	ND	ug/l	0.50	0.13	1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 <t< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td><td></td></t<>	1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 1	Bromodichloromethane	ND	ug/l	0.50	0.19	1	
ND	trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1	
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1	
ND	Bromoform	ND	ug/l	2.0	0.65	1	
Toluene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Benzene	ND	ug/l	0.50	0.16	1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Toluene	ND	ug/l	2.5	0.70	1	
ND	Ethylbenzene	ND	ug/l	2.5	0.70	1	
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloromethane	ND	ug/l	2.5	0.70	1	
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromomethane	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Vinyl chloride	ND	ug/l	1.0	0.07	1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloroethane	ND	ug/l	2.5	0.70	1	
Trichloroethene ND ug/l 0.50 0.18 1	1,1-Dichloroethene	ND	ug/l	0.50	0.17	1	
-9-	trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	ND	ug/l	0.50	0.18	1	
	1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-04 Date Collected: 04/03/20 12:41

Client ID: MW-6 Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Kesuit	Qualifier	Ullita	NL.	MIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

04/03/20 11:36

Not Specified

04/03/20

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Lab Number: L2014566

Report Date: 04/10/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2014566-05

Client ID: L2014566-05

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/20 19:23

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: QUEEN CITY LANDING **Lab Number:** L2014566

Result

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-05 Date Collected: 04/03/20 11:36

Client ID: MW-7R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

Parameter	Result	Qualifier	Ullita	KL.	MIDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	3.1		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	1.5	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	102	70-130	

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Lab Number: L2014566

Report Date: 04/10/20

Lab ID: L2014566-06

Client ID: TRIP BLANK

Field Prep:

Date Collected:

04/03/20 00:00

Sample Location:

BUFFALO, NY

Date Received: 04/03/20 Not Specified

Sample Depth:

Analytical Date:

Matrix: Water

Analytical Method:

1,8260C

04/08/20 18:57

Analyst: AJK

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-06 Date Collected: 04/03/20 00:00

Client ID: TRIP BLANK Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/20 10:49

Analyst: PD

arameter	Result	Qualifier Un	ts	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s)	01-06	Batch:	WG1359463-5
Methylene chloride	ND	uį	g/l	2.5	0.70
1,1-Dichloroethane	ND	uį	g/l	2.5	0.70
Chloroform	ND	uį	g/l	2.5	0.70
Carbon tetrachloride	ND	uį	g/l	0.50	0.13
1,2-Dichloropropane	ND	uį	g/l	1.0	0.14
Dibromochloromethane	ND	uį	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	uį	g/l	1.5	0.50
Tetrachloroethene	ND	uį	g/l	0.50	0.18
Chlorobenzene	ND	uį	g/l	2.5	0.70
Trichlorofluoromethane	ND	uį	g/l	2.5	0.70
1,2-Dichloroethane	ND	uį	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	uį	g/l	2.5	0.70
Bromodichloromethane	ND	uį	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	uį	g/I	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	uį	g/l	0.50	0.17
Benzene	ND	uį	g/l	0.50	0.16
Toluene	ND	uį	g/l	2.5	0.70
Ethylbenzene	ND	uį	g/l	2.5	0.70
Chloromethane	ND	uį	g/l	2.5	0.70
Bromomethane	0.72	J u	g/l	2.5	0.70
Vinyl chloride	ND	u	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18
1,2-Dichlorobenzene	ND	u	g/l	2.5	0.70
1,3-Dichlorobenzene	ND	u	g/l	2.5	0.70

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/20 10:49

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-06 Batch:	WG1359463-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/20 10:49

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1359463-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 101 70-130 102 70-130 Toluene-d8 4-Bromofluorobenzene 104 70-130 Dibromofluoromethane 103 70-130

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-06 Batch: V	VG1359463-	3 WG1359463-4		
Methylene chloride	93		91		70-130	2	20
1,1-Dichloroethane	95		96		70-130	1	20
Chloroform	92		93		70-130	1	20
Carbon tetrachloride	87		90		63-132	3	20
1,2-Dichloropropane	97		95		70-130	2	20
Dibromochloromethane	92		93		63-130	1	20
1,1,2-Trichloroethane	94		92		70-130	2	20
Tetrachloroethene	88		87		70-130	1	20
Chlorobenzene	95		94		75-130	1	20
Trichlorofluoromethane	83		85		62-150	2	20
1,2-Dichloroethane	95		94		70-130	1	20
1,1,1-Trichloroethane	88		88		67-130	0	20
Bromodichloromethane	96		96		67-130	0	20
trans-1,3-Dichloropropene	97		95		70-130	2	20
cis-1,3-Dichloropropene	99		99		70-130	0	20
Bromoform	100		96		54-136	4	20
1,1,2,2-Tetrachloroethane	95		94		67-130	1	20
Benzene	99		100		70-130	1	20
Toluene	95		91		70-130	4	20
Ethylbenzene	92		91		70-130	1	20
Chloromethane	110		110		64-130	0	20
Bromomethane	170	Q	160	Q	39-139	6	20
Vinyl chloride	100		96		55-140	4	20

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

Chloroethane 94 93 55-138 1 20 1,1-Dichloroethane 94 89 70-130 5 20 Trichloroethane 99 95 70-130 4 20 1,3-Dichlorobenzene 96 96 96 70-130 2 20 1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl ether 94 95 70-130 1 20 mix-Xylene 99 95 95 70-130 0 20 mix-Xylene 99 95 95 95 70-130 0 20 mix-Xylene 99 95 95 95 70-130 1 20 mix-Xylene 99 99 91 91 91 91 91 91 70-130 1 20 mix-Xylene 99 92 98 98 57-130 4 20 mix-Xylene 99 92 98 98 57-130 4 20 mix-Xylene 99 92 98 99 91 91 91 70-130 0 20 mix-Xylene 99 92 98 99 91 70-130 1 20 mix-Xylene 99 92 98 99 91 70-130 1 20 mix-Xylene 99 91 91 91 70-130 0 20 mix-Xylene 90 90 90 90 90 90 90 90 90 90 90 90 90	arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
1,1-Dichloroethene	olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1359463-3	WG1359463-4		
trans-1,2-Dichloroethene 94 89 70-130 5 20 Trichloroethene 99 95 70-130 4 20 1,2-Dichlorobenzene 96 96 96 70-130 0 20 1,3-Dichlorobenzene 97 95 70-130 2 20 1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl ether 94 95 63-130 1 20 Methyl tert butyl ether 94 95 63-130 1 20 p/m-Xylene 90 90 90 70-130 0 20 c-Xylene 95 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 0 20 Styrene 95 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 <td>Chloroethane</td> <td>94</td> <td></td> <td>93</td> <td></td> <td>55-138</td> <td>1</td> <td>20</td>	Chloroethane	94		93		55-138	1	20
Trichloroethene 99 95 70-130 4 20 1,2-Dichlorobenzene 96 96 96 70-130 0 20 1,3-Dichlorobenzene 97 95 70-130 2 20 1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl either 94 95 63-130 1 20 Methyl tert butyl either 99 90 70-130 0 20 p/m-Xylene 90 90 70-130 0 20 o-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 0 20 Styrene 95 95 70-130 0 20 Styrene 95 95 70-130 0 20 Dichlorodiffuoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 <td>1,1-Dichloroethene</td> <td>85</td> <td></td> <td>84</td> <td></td> <td>61-145</td> <td>1</td> <td>20</td>	1,1-Dichloroethene	85		84		61-145	1	20
1,2-Dichlorobenzene 96 96 70-130 0 20 1,3-Dichlorobenzene 97 95 70-130 2 20 1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl ether 94 95 63-130 1 20 p/m-Xylene 90 90 70-130 0 20 c-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 95 70-130 0 20 Styrene 95 95 96 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20	trans-1,2-Dichloroethene	94		89		70-130	5	20
1,3-Dichlorobenzene 97 95 70-130 2 20 1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl ether 94 95 63-130 1 20 p/m-Xylene 90 90 70-130 0 20 o-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 0 20 1,2-Dibro	Trichloroethene	99		95		70-130	4	20
1,4-Dichlorobenzene 96 95 70-130 1 20 Methyl tert butyl ether 94 95 63-130 1 20 p/m-Xylene 90 90 70-130 0 20 o-Xylene 95 95 96 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 91 53-136 2 20	1,2-Dichlorobenzene	96		96		70-130	0	20
Methyl tert butyl ether 94 95 63-130 1 20 p/m-Xylene 90 90 70-130 0 20 c-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 91 53-136 2 20	1,3-Dichlorobenzene	97		95		70-130	2	20
p/m-Xylene 90 90 70-130 0 20 o-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 91 53-136 2 20 sec-Butylbenzene 91 91 91 53-136 2 20 <td>1,4-Dichlorobenzene</td> <td>96</td> <td></td> <td>95</td> <td></td> <td>70-130</td> <td>1</td> <td>20</td>	1,4-Dichlorobenzene	96		95		70-130	1	20
o-Xylene 95 95 70-130 0 20 cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 91 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Methyl tert butyl ether	94		95		63-130	1	20
cis-1,2-Dichloroethene 99 93 70-130 6 20 Styrene 95 95 70-130 0 20 Dichlorodiffuoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	p/m-Xylene	90		90		70-130	0	20
Styrene 95 95 70-130 0 20 Dichlorodiffuoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	o-Xylene	95		95		70-130	0	20
Dichlorodifluoromethane 90 91 36-147 1 20 Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	cis-1,2-Dichloroethene	99		93		70-130	6	20
Acetone 100 90 58-148 11 20 Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Styrene	95		95		70-130	0	20
Carbon disulfide 88 87 51-130 1 20 2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Dichlorodifluoromethane	90		91		36-147	1	20
2-Butanone 97 95 63-138 2 20 4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Acetone	100		90		58-148	11	20
4-Methyl-2-pentanone 94 88 59-130 7 20 2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Carbon disulfide	88		87		51-130	1	20
2-Hexanone 92 88 57-130 4 20 Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	2-Butanone	97		95		63-138	2	20
Bromochloromethane 97 96 70-130 1 20 1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	4-Methyl-2-pentanone	94		88		59-130	7	20
1,2-Dibromoethane 91 91 70-130 0 20 n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	2-Hexanone	92		88		57-130	4	20
n-Butylbenzene 89 91 53-136 2 20 sec-Butylbenzene 91 91 70-130 0 20	Bromochloromethane	97		96		70-130	1	20
sec-Butylbenzene 91 91 70-130 0 20	1,2-Dibromoethane	91		91		70-130	0	20
	n-Butylbenzene	89		91		53-136	2	20
1,2-Dibromo-3-chloropropane 82 89 41-144 8 20	sec-Butylbenzene	91		91		70-130	0	20
	1,2-Dibromo-3-chloropropane	82		89		41-144	8	20

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1359463-3	WG1359463-4			
Isopropylbenzene	93			95		70-130	2		20
p-Isopropyltoluene	92			94		70-130	2		20
n-Propylbenzene	93			92		69-130	1		20
1,2,3-Trichlorobenzene	83			91		70-130	9		20
1,2,4-Trichlorobenzene	89			92		70-130	3		20
1,3,5-Trimethylbenzene	96			94		64-130	2		20
1,2,4-Trimethylbenzene	94			96		70-130	2		20
Methyl Acetate	96			89		70-130	8		20
Cyclohexane	80			78		70-130	3		20
1,4-Dioxane	102			100		56-162	2		20
Freon-113	78			81		70-130	4		20
Methyl cyclohexane	80			82		70-130	2		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	97	107	70-130
Toluene-d8	99	101	70-130
4-Bromofluorobenzene	102	104	70-130
Dibromofluoromethane	101	101	70-130

Project Name:QUEEN CITY LANDINGProject Number:B0424-020-002-002

Lab Number:

L2014566

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4	Westborough La	ab Asso	ciated sample(s): 01-06	QC	Batch ID:	WG13594	163-6 WG135	9463-7	QC Sample	: L201	4566-02	Client ID:
Methylene chloride	ND	10	10	100			10	100		70-130	0		20
1,1-Dichloroethane	ND	10	11	110			11	110		70-130	0		20
Chloroform	ND	10	10	100			10	100		70-130	0		20
Carbon tetrachloride	ND	10	12	120			11	110		63-132	9		20
1,2-Dichloropropane	ND	10	10	100			10	100		70-130	0		20
Dibromochloromethane	ND	10	9.8	98			10	100		63-130	2		20
1,1,2-Trichloroethane	ND	10	9.8	98			10	100		70-130	2		20
Tetrachloroethene	ND	10	10	100			9.8	98		70-130	2		20
Chlorobenzene	ND	10	10	100			10	100		75-130	0		20
Frichlorofluoromethane	ND	10	11	110			11	110		62-150	0		20
1,2-Dichloroethane	ND	10	10	100			11	110		70-130	10		20
,1,1-Trichloroethane	ND	10	11	110			11	110		67-130	0		20
Bromodichloromethane	ND	10	10	100			11	110		67-130	10		20
rans-1,3-Dichloropropene	ND	10	9.6	96			10	100		70-130	4		20
sis-1,3-Dichloropropene	ND	10	9.9	99			10	100		70-130	1		20
Bromoform	ND	10	9.4	94			9.9	99		54-136	5		20
1,1,2,2-Tetrachloroethane	ND	10	9.3	93			9.9	99		67-130	6		20
Benzene	ND	10	11	110			11	110		70-130	0		20
Γoluene	ND	10	11	110			10	100		70-130	10		20
Ethylbenzene	ND	10	10	100			10	100		70-130	0		20
Chloromethane	ND	10	12	120			12	120		64-130	0		20
Bromomethane	ND	10	3.4	34		Q	4.1	41		39-139	19		20
/inyl chloride	ND	10	11	110			11	110		55-140	0		20

Project Name: QUEEN CITY LANDING Project Number: B0424-020-002-002

Lab Number: Report Date: L2014566

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-4	S - Westborough I	₋ab Asso	ciated sample(s): 01-06 QC	Batch ID: WG135	9463-6 WG135	9463-7	QC Sample	e: L2014	1566-02	Client ID:
Chloroethane	ND	10	11	110	12	120		55-138	9		20
1,1-Dichloroethene	ND	10	11	110	11	110		61-145	0		20
trans-1,2-Dichloroethene	ND	10	10	100	11	110		70-130	10		20
Trichloroethene	ND	10	11	110	11	110		70-130	0		20
1,2-Dichlorobenzene	ND	10	9.9	99	9.7	97		70-130	2		20
1,3-Dichlorobenzene	ND	10	10	100	10	100		70-130	0		20
1,4-Dichlorobenzene	ND	10	10	100	9.8	98		70-130	2		20
Methyl tert butyl ether	ND	10	10	100	10	100		63-130	0		20
o/m-Xylene	ND	20	21	105	20	100		70-130	5		20
o-Xylene	ND	20	22	110	20	100		70-130	10		20
cis-1,2-Dichloroethene	ND	10	10	100	11	110		70-130	10		20
Styrene	ND	20	20	100	20	100		70-130	0		20
Dichlorodifluoromethane	ND	10	12	120	11	110		36-147	9		20
Acetone	ND	10	11	110	11	110		58-148	0		20
Carbon disulfide	ND	10	9.9	99	10	100		51-130	1		20
2-Butanone	ND	10	9.4	94	9.8	98		63-138	4		20
4-Methyl-2-pentanone	ND	10	9.1	91	9.6	96		59-130	5		20
2-Hexanone	ND	10	9.5	95	10	100		57-130	5		20
Bromochloromethane	ND	10	10	100	11	110		70-130	10		20
1,2-Dibromoethane	ND	10	9.6	96	9.8	98		70-130	2		20
n-Butylbenzene	ND	10	10	100	9.9	99		53-136	1		20
sec-Butylbenzene	ND	10	10	100	9.7	97		70-130	3		20
1,2-Dibromo-3-chloropropane	ND	10	9.1	91	8.6	86		41-144	6		20

Project Name:QUEEN CITY LANDINGProject Number:B0424-020-002-002

Lab Number:

L2014566

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	' Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4	Westborough	Lab Assoc	iated sample(s): 01-06 Q0	C Batch ID:	WG13594	163-6 WG135	9463-7	QC Sample	: L2014	1566-02	Client ID:
Isopropylbenzene	ND	10	10	100		10	100		70-130	0		20
p-Isopropyltoluene	ND	10	10	100		10	100		70-130	0		20
n-Propylbenzene	ND	10	10	100		9.8	98		69-130	2		20
1,2,3-Trichlorobenzene	ND	10	8.6	86		9.5	95		70-130	10		20
1,2,4-Trichlorobenzene	ND	10	9.0	90		9.7	97		70-130	7		20
1,3,5-Trimethylbenzene	ND	10	10	100		10	100		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	10	100		9.9	99		70-130	1		20
Methyl Acetate	ND	10	8.5	85		8.9	89		70-130	5		20
Cyclohexane	ND	10	10	100		9.7J	97		70-130	3		20
1,4-Dioxane	ND	500	480	96		550	110		56-162	14		20
Freon-113	ND	10	9.9	99		9.6	96		70-130	3		20
Methyl cyclohexane	ND	10	9.9J	99		9.6J	96		70-130	3		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	102	114	70-130
4-Bromofluorobenzene	101	100	70-130
Dibromofluoromethane	101	102	70-130
Toluene-d8	101	98	70-130

SEMIVOLATILES

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: Date Collected: 04/03/20 10:31

Client ID: MW-1R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/08/20 08:23

Analytical Method: 1,8270D Extraction Date: 04/08/20 08:23
Analytical Date: 04/09/20 06:39

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Dibenzofuran	ND		ug/l	2.0	0.50	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1

% Recovery	Qualifier Criteria
58	21-120
54	10-120
67	23-120
58	15-120
65	10-120
72	41-149
	54 67 58 65

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

SAMPLE RESULTS

Report Date: 04/10/20

Lab Number:

Date Collected:

Lab ID: L2014566-01

Client ID: MW-1R

Field Prep:

04/03/20 10:31

L2014566

Sample Location: BUFFALO, NY Date Received: 04/03/20 Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 04/09/20 16:58

Analyst: DV Extraction Method: EPA 3510C **Extraction Date:** 04/08/20 08:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	estborough La	ab				
Acenaphthene	0.17		ug/l	0.10	0.01	1
Fluoranthene	0.82		ug/l	0.10	0.02	1
Naphthalene	0.37		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.38		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.32		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.44		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.16		ug/l	0.10	0.01	1
Chrysene	0.33		ug/l	0.10	0.01	1
Acenaphthylene	0.02	J	ug/l	0.10	0.01	1
Anthracene	0.17		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.20		ug/l	0.10	0.01	1
Fluorene	0.19		ug/l	0.10	0.01	1
Phenanthrene	0.88		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.06	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.23		ug/l	0.10	0.01	1
Pyrene	0.66		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	62	21-120
Phenol-d6	56	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	89	10-120
4-Terphenyl-d14	108	41-149

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-02 Date Collected: 04/03/20 09:20

Client ID: MW-4 Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/08/20 08:23

Analytical Method: 1,8270D Extraction Date: 04/08/20 08
Analytical Date: 04/09/20 07:03

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Westborough Lab						
Dibenzofuran	ND		ug/l	2.0	0.50	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	

Acceptance very Qualifier Criteria
21-120
10-120
23-120
15-120
10-120
41-149

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-02 Date Collected: 04/03/20 09:20

Client ID: MW-4 Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/20 08:22
Analytical Date: 04/09/20 17:15

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.01	1
Fluoranthene	0.06	J	ug/l	0.10	0.02	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Chrysene	0.03	J	ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.01	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	0.05	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1
Pyrene	0.05	J	ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	42	21-120	
Phenol-d6	40	10-120	
Nitrobenzene-d5	54	23-120	
2-Fluorobiphenyl	55	15-120	
2,4,6-Tribromophenol	75	10-120	
4-Terphenyl-d14	94	41-149	

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-03 Date Collected: 04/03/20 07:00

Client ID: BLIND DUP Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 04/08/20 08:23

Analytical Date: 04/09/20 07:28

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Dibenzofuran	ND		ug/l	2.0	0.50	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	54	15-120
2,4,6-Tribromophenol	53	10-120
4-Terphenyl-d14	62	41-149

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

 Lab ID:
 L2014566-03
 Date Collected:
 04/03/20 07:00

 Client ID:
 BLIND DUP
 Date Received:
 04/03/20

Sample Location: BUFFALO, NY Date Received: 04/03/20

Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/20 08:22
Analytical Date: 04/09/20 17:32

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - V	Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
Fluoranthene	0.06	J	ug/l	0.10	0.02	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1	
Chrysene	0.03	J	ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	0.01	J	ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	0.05	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1	
Pyrene	0.05	J	ug/l	0.10	0.02	1	
Pentachlorophenol	ND		ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	57	21-120	
Phenol-d6	52	10-120	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	69	15-120	
2,4,6-Tribromophenol	73	10-120	
4-Terphenyl-d14	99	41-149	

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-04 Date Collected: 04/03/20 12:41

Client ID: MW-6 Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/08/20 08:23

Analytical Method: 1,8270D Extraction Date: 04/08/20 08:23
Analytical Date: 04/09/20 19:39

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	2.0	0.50	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	60	10-120
4-Terphenyl-d14	85	41-149

L2014566

Project Name: Lab Number: QUEEN CITY LANDING

Report Date: **Project Number:** B0424-020-002-002 04/10/20

SAMPLE RESULTS

Lab ID: Date Collected: 04/03/20 12:41 L2014566-04

Date Received: Client ID: 04/03/20 MW-6 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/08/20 08:22 1,8270D-SIM Analytical Method: Analytical Date: 04/09/20 17:49

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SI	Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.05	J	ug/l	0.10	0.01	1				
Fluoranthene	0.05	J	ug/l	0.10	0.02	1				
Naphthalene	ND		ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1				
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	1				
Chrysene	0.02	J	ug/l	0.10	0.01	1				
Acenaphthylene	ND		ug/l	0.10	0.01	1				
Anthracene	0.02	J	ug/l	0.10	0.01	1				
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1				
Fluorene	ND		ug/l	0.10	0.01	1				
Phenanthrene	0.04	J	ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1				
Pyrene	0.11		ug/l	0.10	0.02	1				
Pentachlorophenol	ND		ug/l	0.80	0.01	1				
Hexachlorobenzene	ND		ug/l	0.80	0.01	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	61	21-120	
Phenol-d6	54	10-120	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	72	15-120	
2,4,6-Tribromophenol	92	10-120	
4-Terphenyl-d14	103	41-149	

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-05 Date Collected: 04/03/20 11:36

Client ID: MW-7R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/08/20 08:23

Analytical Method: 1,8270D Extraction Date: 04/08/20 08:3
Analytical Date: 04/09/20 08:16

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Dibenzofuran	2.1		ug/l	2.0	0.50	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	51	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	58	41-149

Project Name: QUEEN CITY LANDING **Lab Number:** L2014566

Project Number: B0424-020-002-002 **Report Date:** 04/10/20

SAMPLE RESULTS

Lab ID: L2014566-05 Date Collected: 04/03/20 11:36

Client ID: MW-7R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/20 08:22
Analytical Date: 04/09/20 18:06

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-S	Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	5.8		ug/l	0.10	0.01	1				
Fluoranthene	1.1		ug/l	0.10	0.02	1				
Naphthalene	0.96		ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.07	J	ug/l	0.10	0.02	1				
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.06	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1				
Chrysene	0.06	J	ug/l	0.10	0.01	1				
Acenaphthylene	0.13		ug/l	0.10	0.01	1				
Anthracene	0.45		ug/l	0.10	0.01	1				
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.01	1				
Fluorene	3.5		ug/l	0.10	0.01	1				
Phenanthrene	1.6		ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	0.05	J	ug/l	0.10	0.01	1				
Pyrene	0.69		ug/l	0.10	0.02	1				
Pentachlorophenol	ND		ug/l	0.80	0.01	1				
Hexachlorobenzene	ND		ug/l	0.80	0.01	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	58	21-120	
Phenol-d6	52	10-120	
Nitrobenzene-d5	68	23-120	
2-Fluorobiphenyl	63	15-120	
2,4,6-Tribromophenol	78	10-120	
4-Terphenyl-d14	86	41-149	

04/07/20 15:48

Project Name: Lab Number: QUEEN CITY LANDING L2014566

Report Date: **Project Number:** B0424-020-002-002 04/10/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C Analytical Date: 04/08/20 06:05 **Extraction Date:**

Analyst: ALS

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-05	Batch:	WG1359056-1	
Dibenzofuran	ND		ug/l	2.0		0.50	
Phenol	ND		ug/l	5.0		0.57	
2-Methylphenol	ND		ug/l	5.0		0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48	

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	60	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	48	23-120
2-Fluorobiphenyl	47	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	59	41-149

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number:** Report Date: B0424-020-002-002 04/10/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/08/20 10:31

Analyst:

Extraction Method: EPA 3510C 04/07/20 15:50 **Extraction Date:** DV

arameter	Result	Qualifier Units	s RL	MDL	
emivolatile Organics by GC/N	/IS-SIM - Westbo	rough Lab for sa	ample(s): 01-05	Batch:	WG1359057-
Acenaphthene	ND	ug/	0.10	0.01	
Fluoranthene	ND	ug/	0.10	0.02	
Naphthalene	ND	ug/	0.10	0.05	
Benzo(a)anthracene	ND	ug/	0.10	0.02	
Benzo(a)pyrene	ND	ug/	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/	0.10	0.01	
Benzo(k)fluoranthene	ND	ug/	0.10	0.01	
Chrysene	ND	ug/	0.10	0.01	
Acenaphthylene	ND	ug/	0.10	0.01	
Anthracene	ND	ug/	0.10	0.01	
Benzo(ghi)perylene	ND	ug/	0.10	0.01	
Fluorene	ND	ug/	0.10	0.01	
Phenanthrene	ND	ug/	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND	ug/	0.10	0.01	
Pyrene	ND	ug/	0.10	0.02	
Pentachlorophenol	ND	ug/	0.80	0.01	
Hexachlorobenzene	ND	ug/	0.80	0.01	

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
O Flygraph and	F7	04.400
2-Fluorophenol	57	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	88	41-149

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number:

L2014566

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s)	: 01-05 Batc	h: WG13590	56-2 WG13590	56-3			
Dibenzofuran	77		69		40-140	11		30	
Phenol	66		58		12-110	13		30	
2-Methylphenol	71		64		30-130	10		30	
3-Methylphenol/4-Methylphenol	74		64		30-130	14		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	68	61	21-120
Phenol-d6	65	56	10-120
Nitrobenzene-d5	54	47	23-120
2-Fluorobiphenyl	52	48	15-120
2,4,6-Tribromophenol	92	81	10-120
4-Terphenyl-d14	59	54	41-149

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sampl	e(s): 01-05	Batch:	WG1359057-2	WG1359057-3		
Acenaphthene	78		64		40-140	20		40
Fluoranthene	82		63		40-140	26		40
Naphthalene	72		61		40-140	17		40
Benzo(a)anthracene	80		65		40-140	21		40
Benzo(a)pyrene	83		68		40-140	20		40
Benzo(b)fluoranthene	84		67		40-140	23		40
Benzo(k)fluoranthene	79		66		40-140	18		40
Chrysene	78		63		40-140	21		40
Acenaphthylene	72		56		40-140	25		40
Anthracene	80		63		40-140	24		40
Benzo(ghi)perylene	85		67		40-140	24		40
Fluorene	79		61		40-140	26		40
Phenanthrene	82		66		40-140	22		40
Dibenzo(a,h)anthracene	87		70		40-140	22		40
Indeno(1,2,3-cd)pyrene	91		73		40-140	22		40
Pyrene	81		63		40-140	25		40
Pentachlorophenol	67		47		40-140	35		40
Hexachlorobenzene	78		64		40-140	20		40

Lab Control Sample Analysis

Project Name: QUEEN CITY LANDING

Batch Quality Control

Lab Number: L2014566

Report Date:

04/10/20

RPD

Limits

Project Number: B0424-020-002-002

LCS LCSD %Recovery
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 Batch: WG1359057-2 WG1359057-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	63	54	21-120
Phenol-d6	55	50	10-120
Nitrobenzene-d5	78	66	23-120
2-Fluorobiphenyl	73	57	15-120
2,4,6-Tribromophenol	78	51	10-120
4-Terphenyl-d14	97	73	41-149

Project Name:QUEEN CITY LANDINGProject Number:B0424-020-002-002

Lab Number:

L2014566

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSE Qual Four		Recovery y Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/ID: MW-4	/MS - Westbor	ough Lab	Associated sar	mple(s): 01-05	QC Batch ID: W	G1359056-4 W	'G1359056-5 QC Sa	mple: L2	014566-02 Client
Dibenzofuran	ND	18.2	11	61	13	72	40-140	17	30
Phenol	ND	18.2	11	61	11	61	12-110	0	30
2-Methylphenol	ND	18.2	13	72	12	66	30-130	8	30
3-Methylphenol/4-Methylphenol	ND	18.2	13	72	13	72	30-130	0	30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
2,4,6-Tribromophenol	66	74	10-120	
2-Fluorobiphenyl	49	55	15-120	
2-Fluorophenol	60	61	21-120	
4-Terphenyl-d14	50	56	41-149	
Nitrobenzene-d5	63	62	23-120	
Phenol-d6	58	60	10-120	

Project Name:QUEEN CITY LANDINGProject Number:B0424-020-002-002

Lab Number:

L2014566

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	y RPD	RPD Qual Limits
	•					•			
Semivolatile Organics by Client ID: MW-4	GC/MS-SIM - Wes	stborough Lab	Associated	a sample(s): U1	-05 QC Batch IL	: WG1359057-4	WG1359057-5	QC Sam	ple: L2014566-02
Acenaphthene	ND	18.2	15	83	14	77	40-140	7	40
Fluoranthene	0.06J	18.2	15	83	14	77	40-140	7	40
Naphthalene	ND	18.2	13	72	13	72	40-140	0	40
Benzo(a)anthracene	0.04J	18.2	16	88	15	83	40-140	6	40
Benzo(a)pyrene	0.03J	18.2	17	94	16	88	40-140	6	40
Benzo(b)fluoranthene	0.04J	18.2	16	88	15	83	40-140	6	40
Benzo(k)fluoranthene	0.02J	18.2	15	83	14	77	40-140	7	40
Chrysene	0.03J	18.2	14	77	14	77	40-140	0	40
Acenaphthylene	ND	18.2	14	77	14	77	40-140	0	40
Anthracene	0.01J	18.2	15	83	14	77	40-140	7	40
Benzo(ghi)perylene	0.02J	18.2	17	94	16	88	40-140	6	40
Fluorene	ND	18.2	15	83	14	77	40-140	7	40
Phenanthrene	0.05J	18.2	15	83	14	77	40-140	7	40
Dibenzo(a,h)anthracene	ND	18.2	18	99	16	88	40-140	12	40
Indeno(1,2,3-cd)pyrene	0.02J	18.2	19	100	18	99	40-140	5	40
Pyrene	0.05J	18.2	15	83	14	77	40-140	7	40
Pentachlorophenol	ND	18.2	14	77	14	77	40-140	0	40
Hexachlorobenzene	ND	18.2	15	83	14	77	40-140	7	40

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	89	85	10-120
2-Fluorobiphenyl	70	70	15-120

Matrix Spike Analysis Batch Quality Control

Project Name: QUEEN CITY LANDING Project Number:

B0424-020-002-002

Lab Number:

L2014566

Report Date:

04/10/20

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG1359057-4 WG1359057-5 QC Sample: L2014566-02 Client ID: MW-4

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2-Fluorophenol	68	70	21-120
4-Terphenyl-d14	88	82	41-149
Nitrobenzene-d5	80	83	23-120
Phenol-d6	64	65	10-120

METALS

04/03/20 10:31

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

SAMPLE RESULTS

Lab ID: L2014566-01
Client ID: MW-1R
Sample Location: BUFFALO, NY

Date Received: 04/03/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00192		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Barium, Total	0.1726		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Cadmium, Total	0.00007	J	mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Chromium, Total	0.00083	J	mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Copper, Total	0.00455		mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Lead, Total	0.01598		mg/l	0.00100	0.00034	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Manganese, Total	0.6391		mg/l	0.00100	0.00044	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Mercury, Total	0.00011	J	mg/l	0.00020	0.00009	1	04/08/20 22:15	04/09/20 10:59	EPA 7470A	1,7470A	GD
Nickel, Total	0.00261		mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM
Zinc, Total	0.03149		mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 14:27	EPA 3005A	1,6020B	AM

04/03/20 09:20

Date Collected:

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number: Report Date:** B0424-020-002-002 04/10/20

SAMPLE RESULTS

L2014566-02 Lab ID:

Client ID: MW-4

Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00110		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Barium, Total	0.04223		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Chromium, Total	0.00069	J	mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Copper, Total	0.00573		mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Lead, Total	0.00463		mg/l	0.00100	0.00034	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Manganese, Total	0.04029		mg/l	0.00100	0.00044	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	04/08/20 22:15	04/09/20 10:23	EPA 7470A	1,7470A	GD
Nickel, Total	0.00136	J	mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM
Zinc, Total	0.00431	J	mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 12:33	EPA 3005A	1,6020B	AM

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

SAMPLE RESULTS

Lab ID:L2014566-03Date Collected:04/03/20 07:00Client ID:BLIND DUPDate Received:04/03/20Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00115		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Barium, Total	0.04133		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	АМ
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Chromium, Total	0.00083	J	mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Copper, Total	0.00719		mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Lead, Total	0.00642		mg/l	0.00100	0.00034	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Manganese, Total	0.04023		mg/l	0.00100	0.00044	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	04/08/20 22:15	04/09/20 11:01	EPA 7470A	1,7470A	GD
Nickel, Total	0.00141	J	mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM
Zinc, Total	0.00502	J	mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 14:31	EPA 3005A	1,6020B	AM

04/03/20 12:41

Date Collected:

Project Name: QUEEN CITY LANDING Lab Number: L2014566 **Project Number:** Report Date: B0424-020-002-002 04/10/20

SAMPLE RESULTS

L2014566-04 Lab ID:

Client ID: MW-6

Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00074		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Barium, Total	0.07183		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Chromium, Total	0.00079	J	mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Copper, Total	0.00231		mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Lead, Total	0.00442		mg/l	0.00100	0.00034	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Manganese, Total	0.1886		mg/l	0.00100	0.00044	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	04/08/20 22:15	04/09/20 11:08	EPA 7470A	1,7470A	GD
Nickel, Total	0.00089	J	mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM
Zinc, Total	0.00667	J	mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 14:36	EPA 3005A	1,6020B	AM

04/03/20 11:36

Date Collected:

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

SAMPLE RESULTS

Lab ID: L2014566-05 Client ID: MW-7R

Client ID: MW-7R Date Received: 04/03/20 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00123		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Barium, Total	0.03328		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Chromium, Total	0.00036	J	mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Copper, Total	0.00075	J	mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Lead, Total	0.00982		mg/l	0.00100	0.00034	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Manganese, Total	0.04417		mg/l	0.00100	0.00044	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	04/08/20 22:15	04/09/20 11:27	EPA 7470A	1,7470A	GD
Nickel, Total	0.00076	J	mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
Zinc, Total	0.00900	J	mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 14:40	EPA 3005A	1,6020B	AM
·											

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qı	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sar	nple(s):	01-05 E	Batch: W0	3135870	00-1				-
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Barium, Total	ND		mg/l	0.00050	0.00017	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100	0.00017	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	. 1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Manganese, Total	0.00064	J	mg/l	0.00100	0.00044	. 1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Nickel, Total	ND		mg/l	0.00200	0.00055	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	04/06/20 19:25	04/07/20 12:24	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s):	01-05	Batch: Wo	G135870	01-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	04/08/20 22:15	04/09/20 10:18	3 1,7470A	GD

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: QUEEN CITY LANDING

Project Number: B0424-020-002-002

Lab Number: L2014566

Report Date: 04/10/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated samp	le(s): 01-05 Bat	ch: WG13	58700-2					
Arsenic, Total	82		-		80-120	-		
Barium, Total	104		-		80-120	-		
Beryllium, Total	112		-		80-120	-		
Cadmium, Total	109		-		80-120	-		
Chromium, Total	99		-		80-120	-		
Copper, Total	97		-		80-120	-		
Lead, Total	83		-		80-120	-		
Manganese, Total	100		-		80-120	-		
Nickel, Total	104		-		80-120	-		
Selenium, Total	91		-		80-120	-		
Silver, Total	99		-		80-120	-		
Zinc, Total	110		-		80-120	-		
otal Metals - Mansfield Lab Associated samp	e(s): 01-05 Bat	ch: WG13	58701-2					
Mercury, Total	110		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: QUEEN CITY LANDING **Project Number:** B0424-020-002-002

Lab Number:

L2014566

Report Date:

04/10/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bato	ch ID: WG135	8700-3 WG1358700	0-4 QC Sam	ple: L2014566-02	Clien	t ID: MW-4
Arsenic, Total	0.00110	0.12	0.09596	79	0.09534	78	75-125	1	20
Barium, Total	0.04223	2	2.115	104	2.194	108	75-125	4	20
Beryllium, Total	ND	0.05	0.05366	107	0.05194	104	75-125	3	20
Cadmium, Total	ND	0.051	0.05444	107	0.05919	116	75-125	8	20
Chromium, Total	0.00069J	0.2	0.1975	99	0.2017	101	75-125	2	20
Copper, Total	0.00573	0.25	0.2474	97	0.2515	98	75-125	2	20
Lead, Total	0.00463	0.51	0.4249	82	0.4667	91	75-125	9	20
Manganese, Total	0.04029	0.5	0.5510	102	0.5608	104	75-125	2	20
Nickel, Total	0.00136J	0.5	0.5253	105	0.5248	105	75-125	0	20
Selenium, Total	ND	0.12	0.107	89	0.127	106	75-125	17	20
Silver, Total	ND	0.05	0.04913	98	0.05092	102	75-125	4	20
Zinc, Total	0.00431J	0.5	0.5482	110	0.5782	116	75-125	5	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bato	ch ID: WG135	8701-3 WG1358701	I-4 QC Sam	ple: L2014566-02	Clien	t ID: MW-4
Mercury, Total	ND	0.005	0.00501	100	0.00510	102	75-125	2	20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: QUEEN CITY LANDING L2014566 Project Number: B0424-020-002-002

Report Date: 04/10/20

SAMPLE RESULTS

Lab ID: Date Collected: L2014566-01 04/03/20 10:31 Client ID: MW-1R Date Received: 04/03/20 Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lat)								
Cyanide, Total	0.004	J	mg/l	0.005	0.001	1	04/06/20 10:00	04/06/20 13:39	1,9010C/9012B	LH .

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number:** 04/10/20 B0424-020-002-002

Report Date:

SAMPLE RESULTS

Lab ID: L2014566-02 Date Collected: 04/03/20 09:20

04/03/20 Client ID: MW-4 Date Received:

Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	04/06/20 10:00	04/06/20 13:42	1,9010C/9012B	LH

Project Name: Lab Number: QUEEN CITY LANDING L2014566

Report Date: Project Number: 04/10/20 B0424-020-002-002

SAMPLE RESULTS

Lab ID: Date Collected: L2014566-03 04/03/20 07:00 Client ID: **BLIND DUP** Date Received: 04/03/20 Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	04/07/20 16:45	04/08/20 13:12	1,9010C/9012B	LH

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number:** 04/10/20

Report Date: B0424-020-002-002

SAMPLE RESULTS

Lab ID: L2014566-04 Date Collected: 04/03/20 12:41

Client ID: MW-6 Date Received: 04/03/20

Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Cyanide, Total	0.004	J	mg/l	0.005	0.001	1	04/06/20 10:00	04/06/20 13:46	1,9010C/9012B	LH

Project Name: Lab Number: QUEEN CITY LANDING L2014566

Report Date: Project Number: 04/10/20 B0424-020-002-002

SAMPLE RESULTS

Lab ID: Date Collected: L2014566-05 04/03/20 11:36

Client ID: MW-7R Date Received: 04/03/20 Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	04/06/20 10:00	04/06/20 13:47	1,9010C/9012B	B LH

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number:** B0424-020-002-002

Report Date: 04/10/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sa	mple(s): 01	-02,04-0	5 Batcl	h: WG135	8543-1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	04/06/20 10:00	04/06/20 13:24	1,9010C/9012	B LH
General Chemistry - V	Vestborough Lab for sa	mple(s): 03	Batch:	WG13	59062-1				
Cvanide, Total	ND	ma/l	0.005	0.001	1	04/07/20 16:45	04/08/20 13:05	1.9010C/9012	B LH

Lab Control Sample Analysis Batch Quality Control

Project Name: QUEEN CITY LANDING

B0424-020-002-002

Project Number:

DING Batch Quality Contr

Lab Number: L2014566

Report Date:

04/10/20

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	sociated sample(s)	: 01-02,04-05	5 Batch: W	/G1358543-2	WG1358543-3				
Cyanide, Total	100		104		85-115	4		20	
General Chemistry - Westborough Lab As	sociated sample(s)	: 03 Batch:	WG135906	2-2 WG1359	9062-3				
Cyanide, Total	85		96		85-115	12		20	

Matrix Spike Analysis Batch Quality Control

Project Name: QUEEN CITY LANDING **Project Number:** B0424-020-002-002

Lab Number:

L2014566

Report Date:

04/10/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD		PD mits
General Chemistry - Westborot ID: MW-4	ugh Lab Asso	ciated samp	le(s): 01-02	2,04-05 QC	Batch ID:	WG13585	43-4 WG13585	543-5 QC Samp	le: L2014	4566-02	Client
Cyanide, Total	ND	0.2	0.203	102		0.199	100	80-120	2		20
General Chemistry - Westborot Sample	ugh Lab Asso	ciated samp	le(s): 03	QC Batch ID:	WG1359	062-4 WG	1359062-5 QC	C Sample: L2014	624-01	Client ID	: MS
Cyanide, Total	ND	0.2	0.192	96		0.185	92	80-120	4		20

Lab Number: L2014566

Report Date: 04/10/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

QUEEN CITY LANDING

YES

Cooler Information

Project Name:

Cooler Custody Seal

Project Number: B0424-020-002-002

B Absent C Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2014566-01A	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-01B	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-01C	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-01D	Plastic 250ml HNO3 preserved	С	<2	<2	3.4	Υ	Absent		BA-6020T(180),SE-6020T(180),NI- 6020T(180),CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB-6020T(180),BE- 6020T(180),MN-6020T(180),AS- 6020T(180),AG-6020T(180),HG-T(28),CD- 6020T(180)
L2014566-01E	Plastic 250ml NaOH preserved	С	>12	>12	3.4	Υ	Absent		TCN-9010(14)
L2014566-01F	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-01G	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02A	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02A1	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02A2	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02B	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02B1	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02B2	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02C	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02C1	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02C2	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-02D	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Y	Absent		BA-6020T(180),SE-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28)

Lab Number: L2014566

Report Date: 04/10/20

Project Name: QUEEN CITY LANDINGProject Number: B0424-020-002-002

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2014566-02D1	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Y	Absent		BA-6020T(180),SE-6020T(180),NI- 6020T(180),CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180),MN-6020T(180),BE- 6020T(180),AS-6020T(180),AG- 6020T(180),CD-6020T(180),HG-T(28)
L2014566-02D2	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Y	Absent		BA-6020T(180),SE-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28)
L2014566-02E	Plastic 250ml NaOH preserved	В	>12	>12	5.6	Υ	Absent		TCN-9010(14)
L2014566-02E1	Plastic 250ml NaOH preserved	В	>12	>12	5.6	Υ	Absent		TCN-9010(14)
L2014566-02E2	Plastic 250ml NaOH preserved	В	>12	>12	5.6	Υ	Absent		TCN-9010(14)
L2014566-02F	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02F1	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02F2	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02G	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02G1	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-02G2	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-03A	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-03B	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-03C	Vial HCl preserved	В	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L2014566-03D	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Y	Absent		BA-6020T(180),SE-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T(180),HG-T(28),AG-6020T(180),CD-6020T(180)
L2014566-03E	Plastic 250ml NaOH preserved	В	>12	>12	5.6	Υ	Absent		TCN-9010(14)
L2014566-03F	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-03G	Amber 250ml unpreserved	В	7	7	5.6	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-04A	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-04B	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-04C	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2014566

Report Date: 04/10/20

Project Name: QUEEN CITY LANDINGProject Number: B0424-020-002-002

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2014566-04D	Plastic 250ml HNO3 preserved	С	<2	<2	3.4	Y	Absent		SE-6020T(180),BA-6020T(180),NI-6020T(180),CR-6020T(180),ZN-6020T(180),CU-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T(180),AG-6020T(180),HG-T(28),CD-6020T(180)
L2014566-04E	Plastic 250ml NaOH preserved	С	>12	>12	3.4	Υ	Absent		TCN-9010(14)
L2014566-04F	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-04G	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-05A	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-05B	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-05C	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-05D	Plastic 250ml HNO3 preserved	С	<2	<2	3.4	Y	Absent		SE-6020T(180),BA-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),HG-T(28),CD-6020T(180),AG-6020T(180)
L2014566-05E	Plastic 250ml NaOH preserved	С	>12	>12	3.4	Υ	Absent		TCN-9010(14)
L2014566-05F	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-05G	Amber 250ml unpreserved	С	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2014566-06A	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2014566-06B	Vial HCl preserved	С	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: QUEEN CITY LANDING L2014566 **Project Number:** B0424-020-002-002 **Report Date:** 04/10/20

GLOSSARY

Acronyms

EDL

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:QUEEN CITY LANDINGLab Number:L2014566Project Number:B0424-020-002-002Report Date:04/10/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: QUEEN CITY LANDING Lab Number: L2014566

Project Number: B0424-020-002-002 Report Date: 04/10/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 2/17/2020 10:46:05 AM

ID No.:17873

Revision 16

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Azobenzene, Azobenzene, Azobenzene, Azobenzene

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	05	Page / of	7		Date in l		ı	1141	20	L2014566			
Westborough, MA 01581	Mansfield, MA 02048	Project Information	Front of the	N - 12		PACE NA	Deliv	erable	2	223			Billing Information	uu	1000	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		0.1	1. 1.			Deliv	ASP-	311		ASP-	0	Same as Clier	nt Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: Que	70 17	Landin	~		┨			1-1	_		1 Company of the Company	IL IIIIO		
The second secon	and the state of	Project Location:	Where	10/			1 님		S (1 Fi	ie)	EQui	S (4 File)	PO#			
Client Information	NAME OF TAXABLE PARTY.	190		コスカーロモ	12-00	۷,		Other	Contraction of the last	DOM: DWA				No constant		
Client: Barchan		(Use Project name as Pr	oject#)				Regu	latory	Requi	rement		XIIII	Disposal Site Infor	mation		
Address: 2578 L	Enforce Proper	Project Manager: (1501	301.00				NY TO	GS		NY Pa	art 375	Please identify below			
Linken NY	14216	ALPHAQuote #:						AWQ	Standa	rds	NY C	P-51	applicable disposal fa	cilities.		
Phone: (7/6)	rex-83(5	Turn-Around Time						NY Re	stricted	Use	Other		Disposal Facility:			
Fax:		Standard		Due Date	:		1 🗆	NY Ur	restrict	ed Use			□ NJ □	NY		
Email: T. Buhsen	Ut Tulin 1/2. n	Rush (only if pre approved		# of Days	2.5		$I \sqcap$	NYCS	Sewer D)ischarge			Other:			
These samples have be	een previously analyz	ed by Alpha					ANALYSIS Sample Filtration								T	
Other project specific		The state of the s							_				1-		0	
						-	3	10	ETALS.				☐ Done ☐ Lab to do		a	
1		CAY	R				775	SHOC	1	7			Preservation		1	
Please specify Metals	or TAI	CAI	10				100	3	ξ				Lab to do		В	
Flease specify metals	OF TAL.						2	6	五	g					0	
							5	375	30	2			(Please Specify b	elow)	1	
ALPHA Lab ID	Sa	ample ID	Coll	ection	Sample	Sampler's	1	42	+	7						
(Lab Use Only)			Date	Time	Matrix	Initials	756	o.	8	12			Sample Specific Co	mments	е	
14564 OI	MW-IR		4/3/20	1031	1031 West THB				X	×					7	
20	mw-41	ins/msp)	1	920	1	1	3	X	X	X					21	
70	Blink Day	0		700			3	×	V	V					7	
no-	mw-6	5		1241			~	2		X	\neg				7	
705	MW-7R			1136	+		10	1	0	Û	_		1		4	
06		L.		1120	+		17	×	1	V	_				2	
	Trip Blu		-	-	+		10	-	_	-		 			95	
			-	-	-	-	-		-	-	_	-	+		⊢	
				-	-		-			-	_	-			\vdash	
					-		-				_	-			_	
	2-1-2-2-1	74					_	_								
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification N	lo: MA935		Cor	ntainer Type	101	Ø.	0	o		1 1	Please print clea	arly, legible	y	
B = HCI	A = Amber Glass	Mansfield: Certification N	lo: MA015			number 13pc		A	٢	T			and completely.		can	
	V = Vial				T .		1	_	_	E			not be logged in		5000	
	G = Glass B = Bacteria Cup				1 '	Preservative	13	A	C	E		1 1	turnaround time start until any a			
F = MeOH	C = Cube	Relinquished	Rv.	/ /Date	/Time		Rocoi	ved By			Date	e/Time	resolved. BY EX			
G - Harrooy	O = Other	JAM.	Dy.	U12/70		1	1/1/	7				-	THIS COC, THE			
11 - 14020203	E = Encore D = BOD Bottle	41329 1733 (-	Mr	5		20 173	HAS READ AN	D AGREES	S	
K/E = Zn Ac/NaOH O = Other		City Mr 4/3/70 1733						Modern & 4/4/170 00				40 0015				
STATE OF THE STATE			000										TERMS & CON (See reverse sid			
Form No: 01-25 HC (rev. 30	0-Sept-2013)	<i>P</i>									\mathcal{O}					