
Periodic Review Report 2022-2023

MAIN AND EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

April 2023 0239-023-001

Prepared For: SCRE Mid-City, LLC

PERIODIC REVIEW REPORT

MAIN AND EAST BALCOM STREET SITE BCP SITE No. C915306

BUFFALO, NEW YORK

April 2023 0239-021-001

Prepared for:

SCRE Mid-City, LLC

Prepared By:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

PERIODIC REVIEW REPORT

Main and East Balcom Street Site BCP Site No. C915306

Table of Contents

1.0	INT	RODUCTION	 1
	1.1	Site Background	
	1.2	Remedial History	
	1.3	Compliance	2
	1.4	Recommendations	2
2.0	Siti	E OVERVIEW	
_,,	0111		
3.0	REM	MEDY PERFORMANCE	4
4.0	C T'T'T	E MANAGEMENT PLAN	
4.0			
	4.1	Monitoring and Sampling Plan	
		4.1.1 Long-Term Groundwater Monitoring and Sampling Plan	
	4.2	Excavation Work Plan	
	4.3	Engineering and Institutional Control Requirements and Compliance	
		4.3.1 Institutional Controls	
		4.3.2 Engineering Controls	
5.0	Con	NCLUSIONS AND RECOMMENDATIONS	8
- • •	J J J		
6.0	DEC	CLARATION/LIMITATION	9
		•	

PERIODIC REVIEW REPORT

Main and East Balcom Street Site BCP Site No. C915306

TABLES

Table 1	Summary of Groundwater Elevations
Table 2	Summary of Groundwater Analytical Results
	FIGURES
Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Cover System Layout
Figure 4A	Groundwater Network and Isopotential Map (October 2022)
Figure 4B	Groundwater Network and Isopotential Map (March 2023)
	APPENDICES
Appendix A	NYSDEC Certification Form
Appendix B	Site Photolog
Appendix C	Data Usability Summary Reports (DUSR)
Appendix D	Groundwater Sampling Logs
Appendix E	Laboratory Analytical Data Reports

1.0 Introduction

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR), on behalf of SCRE Mid-City, LLC to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915306, located in the City of Buffalo, Erie County, New York (Site; see Figures 1 and 2).

This PRR has been prepared for the Main and East Balcom Street Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspection forms have been completed for the March 23, 2022 to March 23, 2023 reporting period.

1.1 Site Background

The Site consists of one parcel, identified as 1661 Main Street, totaling 0.993-acres, located in the City of Buffalo, Erie County, New York. The Site is currently improved with a six-story building and concrete patio; asphalt parking lots along Main Street and East Balcom Street; concrete sidewalks; and associated landscaped areas (see Figures 1 and 2).

Prior to remediation and redevelopment, the Site was used for warehouse-storage and trucking, filling station(s), commercial-retail (bakery), and residential.

1.2 Remedial History

After acceptance into the NYS BCP on October 21, 2016, a Remedial Investigation/Interim Remedial Measures (RI/IRM) Work Plan and supplemental work plans were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of one (1) exterior Underground Storage Tank (UST), one (1) interior Aboveground Storage Tank (AST) and appurtenant piping; excavation of petroleum, PAH, and metals impacted soils; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the excavation and off-site disposal of impacted soil/fill with post-excavation confirmatory sampling; supplemental

indoor air and subslab Soil Vapor Intrusion (SVI) and groundwater assessments; and construction of a Site-wide cover system.

The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2019. The NYSDEC issued a Certificate of Completion (COC) for the Site on December 24, 2019.

1.3 Compliance

An annual site inspection of the exterior cover system was completed during the reporting period, and the Site is in compliance with the SMP. The completed IC/EC form is included in Appendix A and a Site photo log is included in Appendix B.

1.4 Recommendations

Based on the post-remedial monitoring and analytical results for the Site, the following recommendations are provided:

- Modification of groundwater sampling frequency to annual.
- Modification of reporting to triennial (once every three (3) years).
- Removal of MW-1 from future groundwater sampling events and decommissioning of the well.

2.0 SITE OVERVIEW

Previous investigations identified environmental contamination on-Site that required remediation. BCP investigations and remediation were completed between 2017 and 2019.

The remedial activities included:

- Excavation, cleaning, and removal of one (1) exterior UST and appurtenant piping with confirmatory sampling and analysis;
- Cleaning and removal of one (1) interior AST and appurtenant piping with confirmatory sampling and analysis;
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs) with confirmatory sampling and analysis.
- Construction and maintenance of a cover system consisting of the existing building, concrete, and asphalt pavement; and minimum 24-inches soil cover of approved clean material placed on top of a demarcation layer, to prevent human exposure to remaining soil/fill exceeding RRSCOs.
- Placement of an environmental easement to (1) implement, maintain, and monitor Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the Site to Restricted Residential, Commercial, or Industrial uses only.

Remedial activities were completed in September 2019. The FER and SMP for the Site were approved by the Department in December 2019. The COC was issued for the Site on December 24, 2019.

3.0 REMEDY PERFORMANCE

Post-remedial inspections and groundwater monitoring have been completed at the Site during the reporting period.

Groundwater sample analytical results are summarized on Table 1, with representative groundwater network and isopotential maps shown on Figures 4A and 4B for the associated sampling events. Data Usability Summary Reports (DUSRs) are provided in Appendix C. Groundwater monitoring and sampling logs are provided in Appendix D. Laboratory analytical data reports are provided electronically in Appendix E.

Groundwater results continue to show decreasing concentrations for the majority of residual constituents detected, indicating natural attenuation/degradation is ongoing. MW-1, MW-2, MW-3R, and MW-5 results are all below GWQS, with only 1,2-DCA slightly exceeding its GWQS at MW-6, and results continue to show decreasing trends at MW-4 with only three (3) constituents slightly above their respective GWQS (see Table 2).

MW-1 and MW-2 were installed during the RI as upgradient wells and laboratory analytical results have been below GWQS during all sampling events. Based on the location of MW-1 within the asphalt parking lot, we recommend that MW-1 be removed and decommissioned to avoid a potential surface contaminant migration due to an automobile accident or release in the parking lot. MW-2 will remain as an upgradient well.

Additionally, the Site has completed five (5) rounds of groundwater sampling in accordance with the approved Site Management Plan. Based on the continued decreasing trend of groundwater results, it is recommended to reduce the groundwater sampling frequency from semi-annual to annual (1x per year).

Annual site inspection was completed on March 6, 2023, and the cover system is being maintained in accordance with the approved SMP.

The completed IC/EC Certification form and site photographs are included in Appendix A and Appendix B, respectively.

4.0 SITE MANAGEMENT PLAN

The SMP for the Site was approved by the Department in December 2019. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, a Monitoring and Sampling Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

4.1 Monitoring and Sampling Plan

The Monitoring and Sampling Plan consists of two major components, including the Post-Remediation Monitoring and Sampling Plan and the Annual Inspection & Certification Program.

4.1.1 Long-Term Groundwater Monitoring and Sampling Plan

Groundwater monitoring and sampling is to be performed semi-annually as outlined in the Department-approved SMP. A total of six (6) monitoring wells are to be sampled and analyzed for VOCs during each sampling event. Groundwater sampling logs are provided in Appendix D.

It should be noted that, based on long-term analytical results, we recommend sampling frequency be reduced to annual and removal of MW-1 from the sampling protocol thus reducing the number of total monitoring wells to five (5).

Groundwater elevations and analytical results are summarized on Table 1 and Table 2, respectively. Laboratory analytical data reports are provided electronically in Appendix E.

4.1.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.

- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

Site inspection was completed on March 6, 2023, during the reporting period. Minor surface cracks were noted in the basement concrete floor (as previously noted), no exposure concerns related to cover.

The property is being used in accordance with the Restricted Residential Use (mixed use commercial and residential), with surface parking, concrete walkways, and landscaped areas. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the site inspection.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the most recent Site inspection is included in Appendix B.

4.2 Excavation Work Plan

An EWP was included in the Department-approved SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive activities.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

4.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

4.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and nonpotable purposes is prohibited without water quality treatment as determined by the NYSDOH;
- Land-Use Restriction: The controlled property may be used for restricted residential, commercial and/or industrial use; and
- Implementation of the SMP.

4.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Cover System The cover system, including buildings, concrete sidewalks, asphalt, and landscaped vegetated areas are being maintained in compliance with the SMP.

At the time of the site inspection, the Site was compliant with the engineering and institutional control requirements.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

The Site was in general compliance with the SMP.

Recommendations:

Based on the post-remedial monitoring and analytical results for the Site, the following recommendations are provided:

- Modification of groundwater sampling frequency to annual (once per year).
- Modification of reporting to triennial (once every three (3) years).
- Removal of MW-1 from future groundwater sampling events and decommissioning of the well.

6.0 DECLARATION/LIMITATION

TurnKey personnel conducted the annual site inspections for the Main and East Balcom Street Site (BCP Site No. C915306), located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to SCRE.

This report has been prepared for the exclusive use of SCRE. The contents of this report are limited to information available at the time of the site inspections. The findings herein may be relied upon only at the discretion of SCRE. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey.

TABLES

TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS PERIODIC REVIEW REPORT MAIN & EAST BALCOM STREET SITE (BCP SITE NO. C915306) BUFFALO, NEW YORK

Location	Date of	TOR Elevation	DT (fbT(Groundwater Elevation (feet)					
200411011	Survey	(feet) ¹	Sample Date							
		(ieet)	10/28/2022	3/6/2023	10/28/2022	3/6/2023				
MW-1	09/27/2019	54.89	11.20	9.45	43.69	45.44				
MW-2	09/27/2019	55.68	12.74	10.37	42.94	45.31				
MW-3R	09/27/2019	57.22	15.87	14.61	41.35	42.61				
MW-4	09/27/2019	55.97	14.51	13.14	41.46	42.83				
MW-5	09/27/2019	57.70	15.96	14.19	41.74	43.51				
MW-6	07/12/2019	56.71	15.11	13.61	41.60	43.10				

Notes:

- 1. All elevations are feet relative to the rim elevation 56.45 feet of the sanitary manhole located in the center of East Balcom Street, established by others.
- 2. DTW based on water levels collected by TurnKey on 10/28/2022 and 3/6/2023.

Defintions:

TOR = Top of riser DTW = Depth to water fb = feet below

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

			Sample Location								
Parameters ¹	Class GA GWQS ²	MW-1									
		10/23/17	6/27/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23			
Volatile Organic Compounds (VOCs) - ug/L											
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND			
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND			
Acetone	50	5.2	ND	ND	1.8 J	ND	ND	ND			
Benzene	1	ND	ND	ND	ND	ND	ND	ND			
Cyclohexane		ND	ND	ND	ND	ND	ND	ND			
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND			
Cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND			
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND			
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND			
Toluene	5	ND	ND	ND	ND	ND	ND	ND			
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND			
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND			
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND			

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

= Result exceeds GWQS.

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

		Sample Location										
Parameters ¹	Class GA GWQS ²		MW-2									
		10/23/17	8/29/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23				
Volatile Organic Compounds (VOCs) - ug/L												
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND				
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND				
1,2-Dichloroethane	0.6	0.14 J	ND	ND	ND	ND	ND	ND				
Acetone	50	2 J	ND	ND	3.5 J	ND	ND	ND				
Benzene	1	0.53	0.16 J	ND	ND	ND	ND	ND				
Cyclohexane		ND	ND	ND	ND	ND	ND	ND				
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND				
Cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND				
Xylene (total)	5	0.88 J	ND	ND	ND	ND	ND	ND				
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND				
Toluene	5	ND	ND	ND	ND	ND	ND	ND				
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND				
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND				
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND				

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

= Result exceeds GWQS.

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

			Sample Location									
Parameters ¹	Class GA GWQS ²	MW-3			MW-3R							
		11/16/17	2/11/18	6/27/19	9/3/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23		
Volatile Organic Compounds (VOCs) - ug/L												
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Butanone	50	360 NJ	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Acetone	50	51	4.5 J	ND	7.1	ND	1.9 J	ND	ND	ND		
Benzene	1	ND	ND	ND	0.47 J	ND	ND	ND	ND	ND		
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Cis-1,2-Dichloroethene	5	2.5 J	ND	ND	ND	ND	ND	ND	ND	ND		
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
p-lsopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	5	ND	ND	ND	0.83	ND	ND	ND	ND	ND		
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethene	5	30	10	6.1	7.5	0.86	0.8	0.41 J	0.54	0.47 J		
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND		

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

= Result exceeds GWQS.

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

					Sample	Location				
Parameters ¹	Class GA GWQS ²	MW-4								
		11/16/17	2/12/18	6/27/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23	
olatile Organic Compounds (VOCs) - ug/L										
1,1-Dichloroethene	5	0.27 J	ND	0.17 J	0.17 J	0.26 J	0.20 J	0.18 J	ND	
2-Butanone	50	ND	13	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	0.6	0.18 J	0.16 J	ND	0.13 J	0.45 J	0.72	0.69	0.78	
Acetone	50	3.1 J	93	ND	ND	2.5 J	ND	ND	ND	
Benzene	1	3.4	1.9	1.3	1.4	1.3	0.81	0.57	0.48 J	
Cyclohexane		0.64 J	0.29 J	1.2 J	ND	0.34 J	0.29 J	ND	ND	
Methylcyclohexane	-	0.49 J	ND	0.4 J	ND	ND	ND	ND	ND	
Cis-1,2-Dichloroethene	5	39	21	4.2	9.6	11	5.6	6	4.5	
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethene	5	100	58	13	24	25	15	14	9.8	
Trichloroethene	5	17	8	7.1	8.5	8	4.6	3.6	3.1	
Vinyl Chloride	2	6.9	2.5	0.48 J	1.9	2.8	3	2.3	2.7	

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

BOLD = Result exceeds GWQS.

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

					Sample	Location				
Parameters ¹	Class GA GWQS ²	MW-5								
		2/12/18	6/27/19	9/3/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23	
Volatile Organic Compounds (VOCs) - ug/L	olatile Organic Compounds (VOCs) - ug/L									
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	
Acetone	50	9	1.5 J	7.2 J	ND	3.1 J	ND	ND	ND	
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	
Cis-1,2-Dichloroethene	5	5.2	ND	ND	1.6 J	2.0 J	3	1.6 J	0.92 J	
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	
p-Isopropyltoluene	5	ND	ND	2	ND	ND	ND	ND	ND	
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Vinyl Chloride	2	0.5 J	ND	0.13 J	0.16 J	0.25 J	0.25 J	0.27 J	0.17 J	

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

BOLD = Result exceeds GWQS.

PERIODIC REVIEW REPORT MAIN EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

		Sample Location								
Parameters ¹	Class GA GWQS ²	MW/G								
		6/27/19	5/6/21	10/13/21	3/22/22	10/28/22	3/6/23			
Volatile Organic Compounds (VOCs) - ug/L										
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND			
2-Butanone	50	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	0.6	0.27 J	2.5	3.4	2.7	3.3	2			
Acetone	50	8	ND	ND	ND	ND	ND			
Benzene	1	ND	ND	ND	ND	ND	ND			
Cyclohexane		ND	ND	ND	ND	ND	ND			
Methylcyclohexane		ND	ND	ND	ND	ND	ND			
Cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND			
Xylene (total)	5	ND	ND	ND	ND	ND	ND			
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND			
Toluene	5	ND	ND	ND	ND	ND	ND			
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND			
Trichloroethene	5	2.5	0.89	0.96	0.77	0.8	1.1			
Vinyl Chloride	2	0.31 J	0.83 J	0.75 J	0.63 J	0.18 J	0.82 J			

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

Qualifiers:

- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.
- J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

BOLD = Result exceeds GWQS.

FIGURES

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0239-021-001

DATE: APRIL 2023

DRAFTED BY: CMS

SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT

MAIN & EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK PREPARED FOR

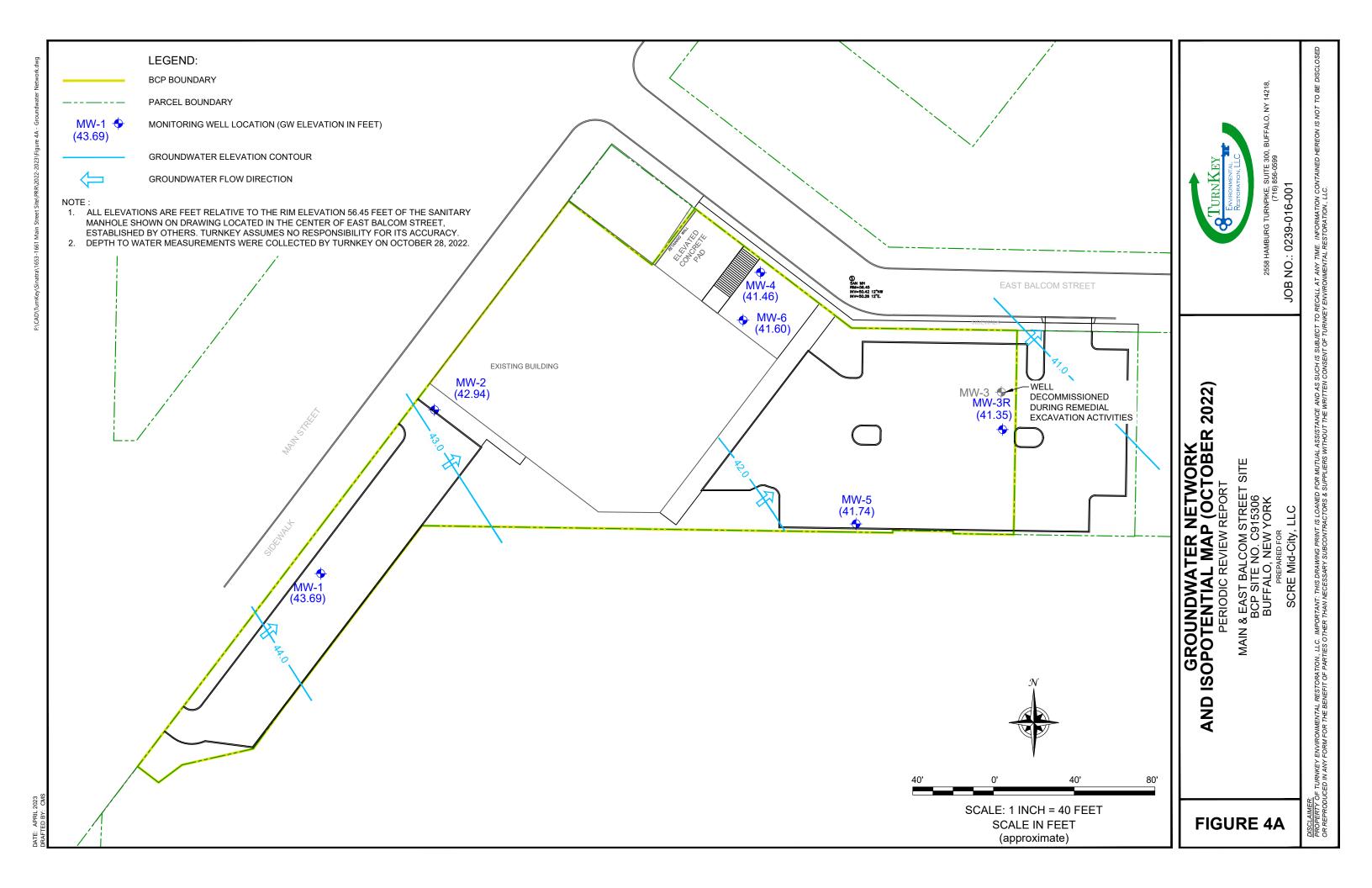
SCRE Mid-City, LLC

DISCLAIMER.

:\CAD\TurnKey\Sinatra\1653-1661 Main Street Site\PRR\2022-2023\Figure 1 - Site Location and Vicinity

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

SITE PLAN (AERIAL)


PERIODIC REVIEW REPORT

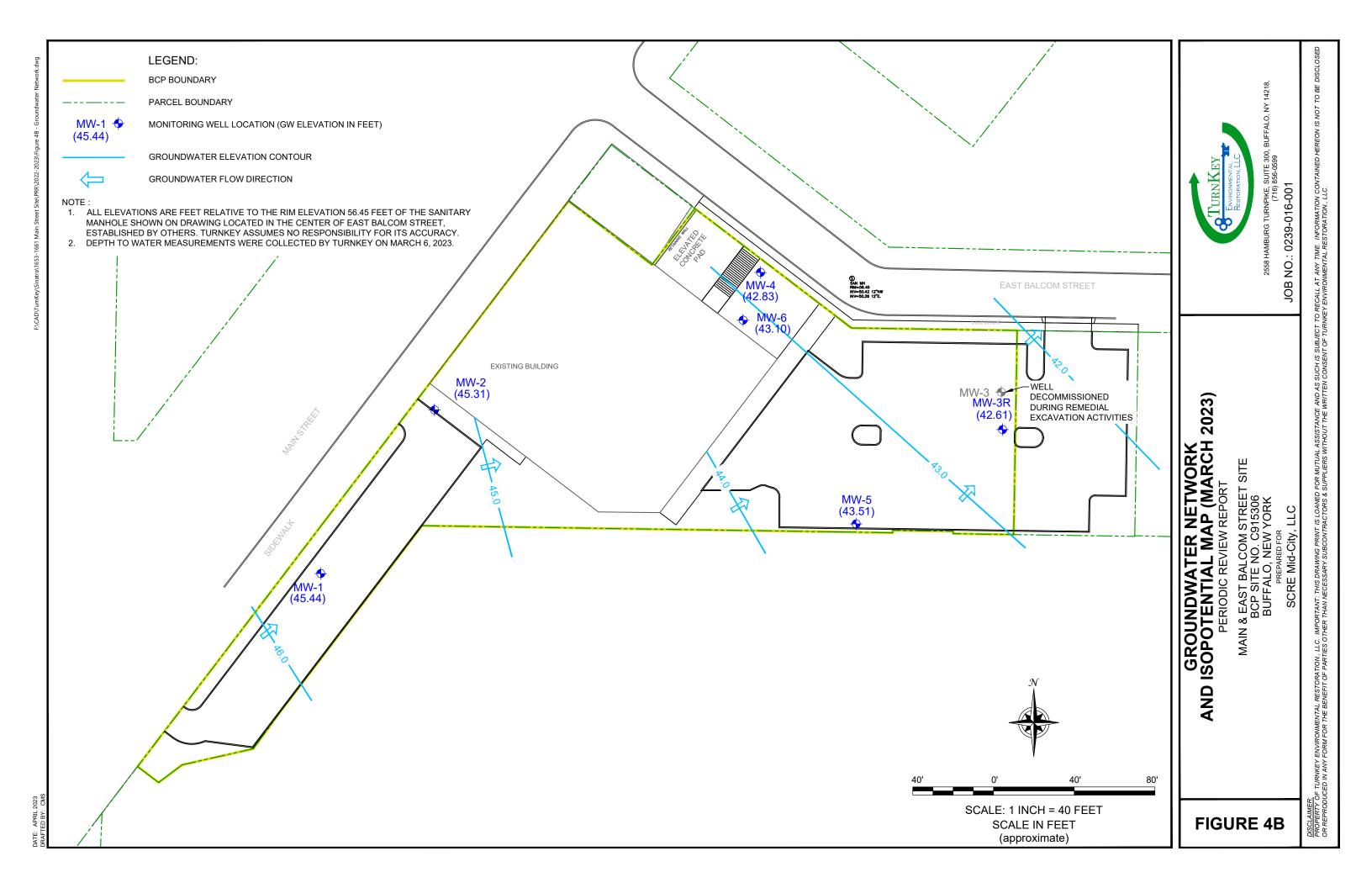

PREPARED FOR SCRE MId-City, LLC

FIGURE 2

DISCLAIMER:
PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE
DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

JOB NO.: 0239-021-001

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

		Site Details	Box 1				
Site No.	C915306						
Site Name	Main and East Balco	om Street Site					
Site Address City/Town: County: Erie Site Acreag		Zip Code: 14209					
Reporting P	eriod: March 23, 202	2 to March 23, 2023					
			YES NO				
1. Is the in	formation above corre	ect?	\checkmark				
If NO, ir	clude handwritten abo	ove or on a separate sheet.					
	ne or all of the site pro amendment during th	operty been sold, subdivided, merged, on Reporting Period?	or undergone a				
	re been any change o YCRR 375-1.11(d))?	f use at the site during this Reporting F	Period				
	ny federal, state, and/o the property during th	or local permits (e.g., building, discharg nis Reporting Period?	e) been issued				
		estions 2 thru 4, include documentation previously submitted with this ce					
5. Is the si	te currently undergoin	g development?					
			Box 2				
			YES NO				
	urrent site use consist ed-Residential, Comm	ent with the use(s) listed below? nercial, and Industrial	\checkmark				
7. Are all I	Cs in place and function	oning as designed?					
IF	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A Corrective	e Measures Work Plan	n must be submitted along with this fo	rm to address these issues.				
Signature of	Owner. Remedial Part	y or Designated Representative	Date				

				Box 2	Δ		
				DOX 2			
0	Has any now information royagle	d that assumptions made in the Qua	alitativa Evaceura	YES	NO		
0.	Assessment regarding offsite cor		antative Exposure		\checkmark		
		on 8, include documentation or evoreviously submitted with this cer					
9.	•	tative Exposure Assessment still val sment must be certified every five y		\checkmark			
	If you analysed NO to avoid	o O the Deviedie Deview Devent w	at in almala an				
If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.							
SITE	NO. C915306			Вох	c 3		
	Description of Institutional Cont	rols					
Parce	-	. 010	Institutional Contro	<u> </u>			
	-	d City, LLC	Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan				
Prohib	pition against use of groundwater v	without treatment					
Semi	sion for SVI evaluation of occupied -Annual monitoring of groundwate pliance with excavation plan						
				Вох	(4		
ı	Description of Engineering Conf	trols					
Parcel Engineering Control							
Portion of 100.24-4-14.1							
Cover System Site cover system							
OILE C	Over System						

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	A corrective incusures work i fair must be submitted along with this form to address these issues.
_	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915306

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Micholas A.	Sinetra	_ at	1661	Moin	,			
print nar	ne		print	business a	address			
am certifying as	Owner			_	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.								
Signature of Owner, Rendering Certificati		r Designat	ted Repr	esentative	Date			

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

am certifying as a Qualified Environmental Professional for the (Owner or Remedial Party) Signature of Qualified Environmental Professional, for Stamp the Owner or Remedial Party Rendering Certification (Required for PE)

INSPECTOR'S DAILY REPORT

	Page / of /									
CONTRACTOR:	JOB NO.:									
CLIENT SCRE- Mid City Apris.	6 March 202									
man to Selliam Street Street	AY: Su M Tu W Th F Sa									
WEATHER: (2337) Wheat TEMP:	FART: END: 1145									
WORK PERFORMED:										
2023 Sity Inspertun										
- Balcom pulky lot - condition	evid									
- Mun parking let - condition good - Gu suphy - 1st Floor - Computed Use - gers I										
						-Businet - Storgee + Indoor day onna Licraely server us helpre - no eigs sure is				
	-									
W- Muh	QA PERSONNEL:									
W- WWW	SIGNATURE:									

APPENDIX B

SITE PHOTO LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 4:

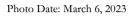

Photo 1: Cover system in northeastern portion of Site (looking east).

Photo 2: Transformer located along the eastern side of the southern Site boundary (looking southwest).

Photo 3: Cover system and MW-3R in northeastern portion of Site (looking north).

Photo 4: Fence and gate system located along the eastern portion of the northern Site boundary (looking east).

Main and East Balcom Street Site BCP Site No. C915306

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

Photo 5: Soil cover system and hardscape along the Main Street Site boundary (looking northeast).

Photo 6: Soil cover along the southwest side of the building (looking east).

Photo 7: Hardscape along the northwest side of the building adjacent to Main Street (looking north).

Photo 8: Groundwater monitoring well MW-1 located within the southwest portion of the Site adjacent to Main

Street (looking south).

Main and East Balcom Street Site BCP Site No. C915306

Photo Date: March 6, 2023

SITE PHOTOGRAPHS

Photo 9:

Photo 10:

Photo 12:

Photo 9: First floor interior entrance to the existing building looking west towards Main Street.

Photo 10: First floor interior space of the existing building looking east away from Main Street.

Photo 11: Basement interior space of the existing building.

Photo 12: Basement interior space of the existing building.

Main and East Balcom Street Site BCP Site No. C915306

Photo Date: March 6, 2023

SITE PHOTOGRAPHS

Photo 13:

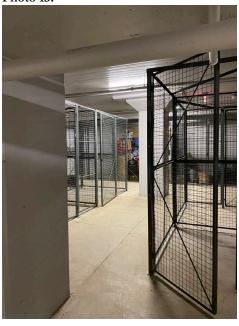


Photo 14:

Photo 13: Basement interior space of the existing building.

Photo 14: Interior dog park located in the basement of the existing building.

APPENDIX C

DATA USABILITY SUMMARY REPORTS (DUSR)

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

March 24, 2023

Chad Schuster Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Suite 300 Buffalo, NY 14218

RE: Validation of the Main and East Balcom Street Site Analytical Laboratory Data Data Usability Summary Report (DUSR) Alpha Analytical SDG Nos. L2260595 and L2311607

Dear Mr. Schuster:

Review has been completed for the data packages generated by Alpha Analytical that pertain to samples collected in events of 10/28/22 and 03/06/23 at the Main and East Balcom Street site. In each event, six aqueous samples were processed for TCL and 6 NYCRR Part 375 CP-51 volatiles by USEPA SW846 method 8260D.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents and the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Method/Preparation Blanks
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, the results for the samples are usable either as reported or with minor qualification, with the exception that results for 1,4-dioxane are rejected and not usable due to limitations of the methodology.

Data completeness, precision, representativeness, reproducibility, and comparability are acceptable. No evaluations for the effects of matrix on accuracy and precision were performed. The field duplicate evaluation performed for a site sample in March 2022 showed good correlations.

Validation data qualifier definitions and client sample identifications are attached to this text. Also included with this report are the laboratory EDDs with recommended qualifiers/edits applied in red.

Chain-of-Custody/Sample Receipt

Collection times on the custody form were reversed for two samples, and the issue was resolved at sample receipt.

TCL and CP-51 Volatile Analyses by EPA 8260D

The results for 1,4-dioxane in the samples are rejected due to low response inherent in the methodology. Other calibration standards show responses within validation action levels, with the exception of that for bromomethane (24%D) in the continuing calibration associated with the samples collected in the October event. The result for that analyte in those samples have been qualified as estimated in value, with a low bias.

Surrogate and internal standard recoveries are compliant.

Blanks show no contamination, and holding times were met.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Attachments: Validation Data Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Identification Summary

Project Name: MAIN & EAST BALCOM ST. SITE

Lab Number: L2260595 Project Number: Report Date: 11/11/22 T0239-021-001

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2260595-01	MW-1	WATER	BUFFALO, NY	10/28/22 13:04	10/28/22
L2260595-02	MW-2	WATER	BUFFALO, NY	10/28/22 12:30	10/28/22
L2260595-03	MW-3R	WATER	BUFFALO, NY	10/28/22 10:01	10/28/22
L2260595-04	MW-4	WATER	BUFFALO, NY	10/28/22 11:15	10/28/22
L2260595-05	MW-5	WATER	BUFFALO, NY	10/28/22 10:34	10/28/22
L2260595-06	MW-6	WATER	BUFFALO, NY	10/28/22 11:44	10/28/22

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

 Lab Number:
 L2311607

 Report Date:
 03/09/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2311607-01	MW-1	WATER	BUFFALO, NY	03/06/23 12:55	03/06/23
L2311607-02	MW-2	WATER	BUFFALO, NY	03/06/23 13:40	03/06/23
L2311607-03	MW-3R	WATER	BUFFALO, NY	03/06/23 09:58	03/06/23
L2311607-04	MW-4	WATER	BUFFALO, NY	03/06/23 12:11	03/06/23
L2311607-05	MW-5	WATER	BUFFALO, NY	03/06/23 10:40	03/06/23
L2311607-06	MW-6	WATER	BUFFALO, NY	03/06/23 11:24	03/06/23

APPENDIX D

GROUNDWATER SAMPLING LOGS

Project Name: MAN 4 BALCOM

Location: 1

Date: 1/29/27
Project No.: 50239-021-00 Field Team: CS

Well N	No. MW-	312	Diameter (in	nches): 2		Sample Date / Time: 10/28/22 [33]				
Product E	Depth (fbTOR):		Water Colu	Water Column (ft): 4.46 DTW when sampled: 18.73						
DTW (sta	atic) (fbTOR):	5.87				le Purge & Sample				
Total Dep	oth (fbTOR): 2	0.33	Total Volum	ne Purged (gal):	2.18	Purge Meth	od: BAILLE	L		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
939	o Initial	-	7.06	15.1	1308	20.1	2.03	209	CLEAN, NO	
945	1 16.72	0.75	7.16	15.3	1206	104	1.66	81	ODOR	
950	2 18-05	1.50	7.21	14.9	1226	258	3.22	94		
954	3 18.71	2.25	7.21	14.7	1211	207	3.27	95		
	4							1		
	5							7		
	6									
	7									
	8									
	9									
	10									
Sample Information:						?: ?:				
100	s1 18.73	2.50	721	14.3	1208	347	3.39	181	CLOUPY, NO	
1006	S2 18, 23	2.75	7.21	14.4	1205	246		71	ODOR	

Well No	o. MW-5	5	Diameter (in			Sample Date	e / Time: (3	28/22	1034		
Product De	pth (fbTOR):		Water Colur	mn (ft): 4	34	DTW when sampled: 6, 95					
DTW (statio) (fbTOR):	5.96	One Well Vo	One Well Volume (gal): 0.71 Purpose: Development Sample			Purge & Sample				
Total Depth	(fbTOR):	20.30	Total Volum	e Purged (gal):	2.12	Purge Metho	od: BAILER	j,			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
00	o Initial		7.21	14.0	7648	90.2	.85	-4	CLEAR NO		
1020	1 17.06	0.75	7.21	14-1	8952	149	2.08	-20	ODOR		
1024	2 17.76	1.50	7.26	13.9	9917	66.4	2.08	-38			
1228	3 17.32	2.25	7.28	14.0	10340	38.7	2.29	-48			
2	4										
	5										
	6										
	7										
	8										
	9										
	10										
Sample I	nformation:										
034	S1 1.95	2.50	7.29	13.3	9787	82.5	1.98	-51	CLEAR NO		
1038	52 6.51	2.75	7.28	12.6	10520	44.7	2.12	-58	DOUK		

REMARKS:					
Note: All water level measurements are in feet, distance from top of riser.					

Volume Calculation

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

Stabilization Criteria					
Parameter	Criteria				
pН	± 0.1 unit				
SC	± 3%				
Turbidity	± 10%				
DO	± 0.3 mg/L				
ORP	± 10 mV				

PREPARED BY:

CS

Project Name: MAIN BALCOM Location:

Date: Project No.: 80239-021 - 001 Field Team:

Well N	0. MW- 4	1	Diameter (ir	nches): 2 h		Sample Dat	e / Time: [7]	28/2	1115				
Product De	epth (fbTOR):		Water Colu	mn (ft): 5 ·	59	DTW when sampled: 15,19							
DTW (stat	DTW (static) (fbTOR): 4.5			One Well Volume (gal): 0.91			Developmen		e Purge & Sample				
Total Dept	h (fbTOR): 25	2. 10	Total Volum	e Purged (gal):	2.73	Purge Metho	od: BALUX	2					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor				
1052	o Initial	_	7.12	13.2	1875	63.4	2.31	-26	CLEAR NO				
1105	1 14.82		7.20	13.6	2269	35.7	1.94	-78	ODOR				
1109	2 (5.0)	2	7.25	13.9	2326	38.7	1.65	-83					
illi	3 15.17	3	7.32	14.2	2388	120		-85					
	4												
	5												
	6												
	7												
	8												
	9												
	10												
Sample	Information:												
1115	s1 5. 9	3.25	7.32	13.9	2466	77.4	2.30	-89					
1117	S2 15.05	3.50	7.33	14.6	2379	65.7	1.84	-87					

Well No	o. MW-6		Diameter (ir	nches): 2"		Compression Finance			1144		
Product De	pth (fbTOR):		Water Colu	Water Column (ft): 5.57 DTW when sampled: 5.95			12				
DTW (statio		5.11	One Well V	olume (gal):	0.91	Purpose:	Development		Purge & Sample		
Total Depth	(fbTOR): 2	0.68	Total Volum	ne Purged (gal):	2.7-2	Purge Metho	od: BALLET		V		
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Арреагапсе & Odor		
1130	o Initial	1	7.13	15.0	3454	30.5	0.99	-57	CLEAK		
1133	15.86	1	7.14	15.5	4008	199	1.57	-64	VERY FAMI		
1138	2 15.91	2	7.16	15.4	4360	189	1.95	-65	opore		
1141	3 6.01	3	719	15.6	4435	199	1.68	-70			
	4										
	5										
	6										
	7										
	В										
	9										
	10										
Sample I	nformation:										
1144	S1 15.95	3.25	7.19	14.9	4396	135		-66			
1147	52 15.92	3.50	718	15.6	4422	110		-68			

REMARKS:	Volume	Volume Calculation		
	Diam	Vol. (g/ft)		
	12	0.041		
	2"	0.163		
	4"	0.653		
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469		

Stabilization Criteria Parameter Criteria pН ± 0.1 unit SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

PREPARED BY: CS

Project Name: MAIN 4 BALCOM

Location:

Project No.: 3=239-=21-331 Field Team: CS

Well N	o. MW -2	-	Diameter (ir	nches): 2"		Sample Dat	e / Time: 12	30 10	28/22	
Product De	Product Depth (fbTOR): DTW (static) (fbTOR): 12-74			Water Column (ft): 5-83 One Well Volume (gal): 144			DTW when sampled: 13.75			
DTW (stati							Development	Sample	Purge & Sample	
Total Depti	n (fbTOR): 2	.57	Total Volum	e Purged (gal):	4.32	Purge Meth	od: BAILEX			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1206	o Initial	-	7.77	14.9	1883	52.7	1.91	26	CLEAR NO	
1215	15.4	1.5	7.36	14.7	2504	106	2.20	-32	ODOR	
1220	2 4.44	3.0	7.39	15.1	3452	108	2.40	-49		
1225	3 14.49	4.5	7.40	15.4	4016	74.9	2.39	-5		
	4									
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information:									
1236	s1 (3.75	4.75	7.40	15.3	4777	51.6	2.13	-49		
1235	82 (3.5)	5.00	7.40	5.7	4731	40.9		-49		

Well N	10. MW-(Diameter (in	nches): 2	4	Sample Date	e / Time: lo	28/72	1304			
Product D	epth (fbTOR):		Water Column (ft): 8-95			DTW when sampled: 15,65			DTW when sampled: 15, 65			
DTW (sta	tic) (fbTOR):	.20	One Well V	olume (gal):	46	Purpose:	Development	Sample	Purge & Sample			
Total Dep	th (fbTOR): 2	0.15	Total Volum	e Purged (gal):	4.38	Purge Metho	od: BALL	L				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
1245	o Initial		7.08	15.8	3613	31.9	0.66	-194	(LEAR			
1250	1 14.82	1.5	7.08	15.9	3974	78.7	1.21	-240	OPCIANIC			
1255	2 15.85	3.0	7.09	U.D	4903	97.9	1.46	-196	ODOR			
1258	3 (6.21	4.5	7.14	15.9	5033	98.0	1.65	-180				
	4	À:										
	5											
	6											
	7											
	8											
	9											
	10											
Sample	Information:											
1304	S1 15.65	4.75	7.17	15.8	5058	87.1	2.19	-162				
1310	s2 5.77	5.00	7.19	15.8	505十	58.9	1.47	-157				
								Stab	ilization Criteria			

REMARKS:						
Note: All water level meas	surements are in feet, distance from top of riser.					

Volume Calculation					
Diam.	Vol. (g/ft)				
1"	0.041				
2"	0.163				
4"	0.653				
6"	1.469				

Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

Z	
$\overline{}$	
\simeq	
E	
~	
\geq	١
2	
œ	
\overline{C}	
\sim	
느	
_	
_	
\vdash	
O	
ш	
=	
べ	
Ų	
M.	

Project Name: MAIN + BALCON Project No.: 80231-021-00]

Client: SIMATINA

口のよ

Date: 10/10/12

STANDARD Instrument Source: CAL. BY

SETTINGS

POST CAL. READING

SERIAL NUMBER

MAKE/MODEL

TIME

UNITS

METER TYPE

Rental

BM

6213516 6243084 6212375	6243003 6223973	

Myron L Company Ultra Meter 6P

900

X pH meter

units

00.7	10.01	10 NTU verification	
8			
		200	

(0.0kg

9.53

< 0.4

100 20

800

7.3

7.00

4. 30

4.00

1	10
9	89


06120C020523 (P)

Hach 2100P or

Turbidimeter 2100Q

106 | UTN

Turbidity meter

6213516

6243084

Myron L Company Ultra Meter 6P

900

Sp. Cond. meter

uS m

2669

7000 ms @ 25°C

6243003

6223973

6212375

MIBK response factor = 1.0

080700023281

HACH Model HQ30d

35

mdd

Dissolved Oxygen

×

mg/m₃

Particulate meter

uR/H

Radiation Meter

MinRAE 2000

ppm

品

100% Satuartion

100500041867 140200100319

96.8% 20pe

1,00)

ppm Iso, Gas

open air zero

background area

zero air

DATE: (9/8/22

Parameter

pH SC

Turbidity

DO

ORP

Criteria ± 0.1 unit

± 3%

± 10%

± 0.3 mg/L

± 10 mV

Project Name: MAIN & BALCOM

Location: BUFFNO, NY

Date: 3/6/23
Project No.: 80239-022-001 Field Team: CS

Well N	0. MW-1		Diameter (ir	nches): 2 "		Sample Dat	e/Time: 3/	6/23		
	epth (fbTOR):		Water Column (ft): 10 € 8			DTW when sampled:				
DTW (stat	ic) (fbTOR): 9.	45	One Well V	olume (gal):		Purpose:	Development	Purge & Sample		
Total Dept	h (fbTOR): 20	. 13		ne Purged (gal):		Purge Meth	od: BAILEV	L		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1236	o Initial	1770-	7.99	10.9	1106	23.9	8.18	-60	CLEAR NO OPE	
1240	1245	1.75	7.57	11.5	1175	154	5.08	-27		
1244	21440	3.50	237	11.7	662	210	4.92	-4		
1252	3 1541	5,25	7.23	12-0	1889	231	3.16	3		
	4		•							
	5									
	6									
	7									
	В									
	9									
	10									
Sample	Information									
1255	s1 1459	5.50	227	12.2	1974	188	2.42	-3		
7258	S2 1350	5.25	7.29	12.2	27.14	198	2.18	-12		

Well N	10. MW-Z		Diameter (i	inches): 2	•	Sample Da	te / Time: 3/	1/23	
	egth (fbTOR):		Water Colu	umn (ft):	4	DTW when			ν
DTW (stat	tic) (fbTOR):	10.37	One Well \	/olume (gal):	.82	Purpose: [Developmen	t Samp	le Purge & Sample
Total Dept	th (fQTOR):	21.53	Total Volum	me Purged (gal)	5.46	Purge Meth	od: BAILE	_	
Time	Water Level (bTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1320	o Initial	1 -	7.39	11.7	2636	Hoch	2.54	3	3LICHT TUP
1325	1373	1-2	7.36	11.7	7840	85.7	3.80	16	NO ODOR
1329	2 1380	4	2.33	11.7	3251	83.2	3.54	8	DRANCE TH
1334	3 1427		7.33	12-0	37-04	71.8	3.15	-6	2) BTM of
	4								BAILER
	5								
	6								
	7								
	8								
	9								
	10			ļ					
	Information		7 7 7 7	T. a	7.1.11				
1340	s1 1270	6.25	7.33	12.2	4141	47.4	2.39	-17	
1345	s2 1212	6.56	7.34	12.0	1160	40.0	2-83	-15	

REMARKS:	Volume	Volume Calculation		
	Diam.	Vol. (g/ft)		
	1"	0.041		
	2"	0.163		
	4"	0.653		
Note: All measurements are in feet, distance from top of riser.	6"	1.469		

(8

PREPARED BY:

Project Name: MAIN & BALCON

Location: BUFFMD, NY

Date: 3(c(23
Project No.: 30239 - 022 - 00) Field Team: (5

Well N	0. MU-3R		Diameter (ir	nches): Ž		Sample Dat	e / Time: 3(123	
Product De	epth (fbTOR):		Water Colu			DTW when sampled:			
DTW (stat	c) (fbTOR):	. 61	One Well V	olume (gal): 🔏	1.93				Purge & Sample
Total Dept	Total Depth (fbTOR): 20-33			e Purged (gal):	2.80	Purge Meth	od BAILER		,
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
940	o Initial		6.55	12.1	1283	38.8	3.03	179	CLEAN, NO
945	1 16.96	1. 00	7.09	12.2	1149	731	2.18	139	DOR
960	2 18-36	2.00	7.13	11.9	1155	509	2.58	95	CCOLDY
955	3 18.85	3,00	7.19	11.8	1155	311	2.21	100	8
	4				WAS T				
	5								
	6								
	7								
	В								
	9								
	10								
Sample	Information:								
958	S1 1865	3.25	7.19	11.8	1158	188	2.30	96	
1003	S2 834	3.50	7.27	11.6	1165	212	3.17	84	

Well N	No. MW+4		Diameter (in	nches): 2		Sample Date	te / Time:			
Product C	Depth (fbTOR):		Water Column (ft): 6.99			DTW when sampled:				
DTW (sta	itic) (fbTOR): 13	5~14	One Well V	One Well Volume (gal):			ole X Purge & Sample			
Total Dep	oth (fbTOR): 🕼	20.13	Total Volume Purged (gal): 3,42			Purge Meth	Purge Method: BALLER			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1142	o Initial	_	2.55	10.4	2034	250	(l)	-54	CLEAR NO ODOR	
1146	1 15,01	1.25	7.22	10-1	2424	168	2-53	-8	TRACE SUSPHI	
1153	2 15/06	2.50	219	10.6	2535	74.4	2.33	-37	PARTUES	
1205	3 1555	3.75	7.34	9.1	2555	64.1	2.85	-49		
	4 1407									
	5	411								
	6									
	7									
	8									
	9									
	10									
Sample	Information						100		2	
1211	S1 1389	14	7.30	10.0	2575	26.4	2.12	-50		
1214	S2 1356	4.25	7.30	1016	2593	33.1	2.47	-52		

REMARKS:			

Volume Calculation Diam. Vol. (g/ft) 0.041 2" 0.163 4" 0.653 1.469

Stabilization Criteria					
Parameter	Criteria				
pН	± 0.1 unit				
SC	± 3%				
Turbidity	± 10%				
DO	± 0.3 mg/L				
ORP	± 10 mV				

PREPARED BY: S

Project Name: MAIH & BALC m

Location: Buffels, MY

Project No.: 80239-022-001 Field Team: C9

Well No.Mw~5			Diameter (inches): 2°			Sample Date / Time: 3(6/23			
Product E	Depth (fbTOR):		Water Colu	Vater Column (ft): 6 0		DTW when sampled:			
	itic) (fbTOR): 14		One Well Volume (gal): 2.99			Purpose: [Purpose: Development Sample Purge & Sample		
Total Dep	oth (fbTOR): 20	29		ne Purged (gal):		Purge Method: BAILER			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1627	o Initial		7.28	11.7	1776	52.7	8,25	91	CLEAR NO OF
1030	15.89	1	7.20	12.0	3076	783	4.89	91	CLOUDY
1034	2 16.80	2	7.14	12.1	5663	567	3.33	D	
1037	3 16.75	3	7.21	12.4	6691	467	2.7-8	-36	
	4								
	5								
	6								
	7								
	В								
	9								
	10								
Sample	Information:								_
1040	S1 16.50	3,25	7.25	12.0	2533	416	2.48	-40	
1044	s2 16.25	3.50	7.25	12.3	7334	371	2.19	-47	

Well I	No. MW-6		Diameter (ir	nches): 2		Sample Date / Time: 3 6 23 DTW when sampled: Purpose: Development Sample Purge & Sample			
Product I	Depth (fbTOR):		Water Colu	mn (ft): 8. 2	L				
DTW (sta	atic) (fbTOR):	261	One Well V		.31				
Total Dep	oth (fbTOR): 21	·6 7	Total Volume Purged (gal): 3.94			Purge Method: BALLE			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
0011	₀ Initial		7.39	11.5	5155	124	1.19	-55	CLEAR NO
1105	115.32	1,50	7.19	12.2	7999	936	1.35		opor
1110	2 15.76	3	7.18	12.4	3606	846	1:44	-62	CLOUDY SLIG
1119	3 4.31	4.50	7.20	11.5	3519	472	1.80	-64	OKANUS TINT
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:								V
1124	51 4.01	4.75	7.19	12.1	3761	686	1.17	-64	
1126	52 1399	5.00	7.18	12.0	3526	928	1.47	-66	

REMARKS: Note: All measurements are in feet, distance from top of riser.

Volume C	Calculation
Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0,653
6"	1.469

Stabilizati	on Criteria
Parameter	Criteria
рН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

PROJECT INFORMATION:

Project Name: MAIN & BALLON Project No.: \$0239-022-001 Client:

HAIN & BALON Date: SELON DATE:
--

EQUIPMENT CALIBRATION LOG

Client:					Instrument Source:	t Source:	BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
y pH meter	units	olb	Myron L Company Ultra Meter 6P	6213516	න	4.00	7.00	
				6243003		10.01	(0.00)	
			Hach 2100P or	06120C020523 (P)		10 NTU verification <0.4	19.01	
Turbidity meter	NTO	NTU 925	2100Q	13120C030432 (Q) 🔀	8	20		
,			l urbidimeter	17110C062619 (Q))	100		
X Sp. Cond. meter	Sm	9 16	Myron L Company Ultra Meter 6P	6213516	S	700 ms @ 25°C	æct.	
			T A CL			open air zero		MIBK response
	ppm		MILITAE 2000			ppm Iso. Gas		factor = 1.0
Dissolved Oviven	800	915	FOEOTI PEON HOVE	080700023281			1,001	
	<u></u>	3		100500041867	Ø	100% Satuartion	9	
				140200100319			107.1 29e	
☐ Particulate meter	mg/m ₃					zero air		
Radiation Meter	uR/H					background area		

ADDITIONAL REMARKS: PREPARED BY: CS

DATE: 3/4/23

APPENDIX E

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2260595

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Nate Munley
Phone: (716) 856-0599

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

Report Date: 11/11/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2260595 **Report Date:** 11/11/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2260595-01	MW-1	WATER	BUFFALO, NY	10/28/22 13:04	10/28/22
L2260595-02	MW-2	WATER	BUFFALO, NY	10/28/22 12:30	10/28/22
L2260595-03	MW-3R	WATER	BUFFALO, NY	10/28/22 10:01	10/28/22
L2260595-04	MW-4	WATER	BUFFALO, NY	10/28/22 11:15	10/28/22
L2260595-05	MW-5	WATER	BUFFALO, NY	10/28/22 10:34	10/28/22
L2260595-06	MW-6	WATER	BUFFALO, NY	10/28/22 11:44	10/28/22

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2260595

Lab Number:

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001 **Report Date:** 11/11/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2260595-01: The collection date and time on the chain of custody was 28-OCT-22 12:30; however, the collection date/time on the container label was 28-OCT-22 13:04. At the client's request, the collection date/time is reported as 28-OCT-22 13:04.

L2260595-02: The collection date and time on the chain of custody was 28-OCT-22 13:04; however, the collection date/time on the container label was 28-OCT-22 12:30. At the client's request, the collection date/time is reported as 28-OCT-22 12:30.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 11/11/22

ORGANICS

VOLATILES

L2260595

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Lab Number:

Report Date: 11/11/22

Lab ID: L2260595-01 Date Collected: 10/28/22 13:04

Client ID: Date Received: MW-1

10/28/22 Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/08/22 01:05

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID: L2260595-01 Date Collected: 10/28/22 13:04

Client ID: MW-1 Date Received: 10/28/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptano Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130)
Toluene-d8	97	70-130)
4-Bromofluorobenzene	92	70-130)
Dibromofluoromethane	101	70-130)

L2260595

10/28/22 12:30

Not Specified

10/28/22

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 11/11/22

Lab ID:

L2260595-02

Client ID: MW-2

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/08/22 01:31

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID: L2260595-02 Date Collected: 10/28/22 12:30

Client ID: MW-2 Date Received: 10/28/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Result	Qualifier	Jillo	NL	WIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND	1	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ı	ug/l	2.5	0.70	1
p/m-Xylene	ND	ı	ug/l	2.5	0.70	1
o-Xylene	ND	ı	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ı	ug/l	2.5	0.70	1
Styrene	ND	ı	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ı	ug/l	5.0	1.0	1
Acetone	ND	ı	ug/l	5.0	1.5	1
Carbon disulfide	ND	ı	ug/l	5.0	1.0	1
2-Butanone	ND	ı	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ı	ug/l	5.0	1.0	1
2-Hexanone	ND	ı	ug/l	5.0	1.0	1
Bromochloromethane	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ı	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ı	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ı	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ı	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
Methyl Acetate	ND	ı	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND	ı	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	1	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	102	70-130	

L2260595

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Lab Number:

Report Date: 11/11/22

 Lab ID:
 L2260595-03
 Date Collected:
 10/28/22 10:01

 Client ID:
 MW-3R
 Date Received:
 10/28/22

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 11/08/22 01:57

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.54		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID:L2260595-03Date Collected:10/28/22 10:01Client ID:MW-3RDate Received:10/28/22Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	101		70-130	

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Report Date: 11/11/22

Lab ID: L2260595-04

Client ID: MW-4

Sample Location: BUFFALO, NY Date Received: Field Prep:

Lab Number:

Date Collected:

10/28/22 11:15 10/28/22 Not Specified

Dilution Factor

L2260595

Sample Depth:

Parameter

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/08/22 02:23

Analyst: MJV

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	0.69		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.57		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	2.3		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.18	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	14		ug/l	2.5	0.70	1	
Trichloroethene	3.6		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Qualifier

Result

Units

RL

MDL

MDL

Dilution Factor

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID: L2260595-04 Date Collected: 10/28/22 11:15

Client ID: MW-4 Date Received: 10/28/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Kesuit	Qualifier	Ullita	NL	WIDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.0		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	102	70-130	

L2260595

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Lab Number:

Report Date: 11/11/22

Lab ID: L2260595-05 Date Collected: 10/28/22 10:34

Client ID: Date Received: 10/28/22 MW-5 Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/08/22 02:49

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.27	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID: L2260595-05 Date Collected: 10/28/22 10:34

Client ID: MW-5 Date Received: 10/28/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Result	Qualifier	Ullita	NL.	MIDE	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	1.6	J	ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	103	70-130	

10/28/22 11:44

Not Specified

10/28/22

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

SAMPLE RESULTS

Lab Number: L2260595

Report Date: 11/11/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2260595-06 Client ID: MW-6

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/08/22 03:15

Analyst: MJV

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Volatile Organics by GC/MS - Wes	stborough Lab					
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichlorofluoromethane ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.13 1 Romodichloromethane ND ug/l 0.50 0.13 1 Romodichloromethane ND ug/l 0.50 0.16 1 Romodichloromethane ND ug/l 0.50 0.14 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methylene chloride	ND		ug/l	2.5	0.70	1
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1.2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1.1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromoform ND ug/l 0.50 0.19 1 Bromoformethane ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.16 1	1,1-Dichloroethane	ND		-	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1 1,1,2-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1,1,1-Trichloroethane ND ug/l 0.50 0.16 1 1,1-Trichloroethane ND ug/l 0.50 0.16 1 1,1-Trichloroethane ND ug/l 0.50 0.16 1 1,1-Trichloroethane ND ug/l 0.50 0.70 1 1 1,1-Trichloroethane ND ug/l 0.50 0.70 1 1 1,1-Trichloroethane ND ug/l 0.50 0.70 1 1 1,1-Trichloroethane ND ug/l 0.50 0.17 1 1 1,1-Trichloroethane ND ug/l 0.50 0.18 1 1 1,1-Tric	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
ND	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
ND	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND	1,2-Dichloroethane	3.3		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.18 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 0.50 0.18	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
ND	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.18 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Tichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.17 1 Trichloroethene ND ug/l 0.50 0.18 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.18 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.18 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
ND	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride 0.18 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Vinyl chloride	0.18	J	ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 0.80 ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene 0.80 ug/l 0.50 0.18 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
-9-	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	0.80		ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

SAMPLE RESULTS

Lab ID: L2260595-06 Date Collected: 10/28/22 11:44

Client ID: MW-6 Date Received: 10/28/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	100	70-130	

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/07/22 20:45

Analyst: AJK

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1709550-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/07/22 20:45

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-06	Batch:	WG1709550-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: MAIN & EAST BALCOM ST. SITE Lab Number: L2260595

Project Number: T0239-021-001 **Report Date:** 11/11/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/07/22 20:45

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1709550-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	101		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	94		70-130		
Dibromofluoromethane	100		70-130		

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2260595

Report Date: 11/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W	G1709550-3 WG1709550-4		
Methylene chloride	90		94	70-130	4	20
1,1-Dichloroethane	95		98	70-130	3	20
Chloroform	93		95	70-130	2	20
Carbon tetrachloride	94		100	63-132	6	20
1,2-Dichloropropane	96		99	70-130	3	20
Dibromochloromethane	96		100	63-130	4	20
1,1,2-Trichloroethane	90		93	70-130	3	20
Tetrachloroethene	100		110	70-130	10	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	90		96	62-150	6	20
1,2-Dichloroethane	99		100	70-130	1	20
1,1,1-Trichloroethane	95		99	67-130	4	20
Bromodichloromethane	94		97	67-130	3	20
trans-1,3-Dichloropropene	92		97	70-130	5	20
cis-1,3-Dichloropropene	95		96	70-130	1	20
Bromoform	94		96	54-136	2	20
1,1,2,2-Tetrachloroethane	94		98	67-130	4	20
Benzene	97		100	70-130	3	20
Toluene	97		100	70-130	3	20
Ethylbenzene	96		100	70-130	4	20
Chloromethane	85		90	64-130	6	20
Bromomethane	75		83	39-139	10	20
Vinyl chloride	98		100	55-140	2	20

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2260595

Report Date: 11/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W0	G1709550-3 WG1709550-4		
Chloroethane	130		120	55-138	8	20
1,1-Dichloroethene	88		94	61-145	7	20
trans-1,2-Dichloroethene	96		99	70-130	3	20
Trichloroethene	89		92	70-130	3	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	90		94	63-130	4	20
p/m-Xylene	100		105	70-130	5	20
o-Xylene	100		100	70-130	0	20
cis-1,2-Dichloroethene	95		99	70-130	4	20
Styrene	100		100	70-130	0	20
Dichlorodifluoromethane	94		100	36-147	6	20
Acetone	83		89	58-148	7	20
Carbon disulfide	65		69	51-130	6	20
2-Butanone	87		84	63-138	4	20
4-Methyl-2-pentanone	81		83	59-130	2	20
2-Hexanone	83		88	57-130	6	20
Bromochloromethane	100		100	70-130	0	20
1,2-Dibromoethane	99		100	70-130	1	20
n-Butylbenzene	97		100	53-136	3	20
sec-Butylbenzene	96		100	70-130	4	20
1,2-Dibromo-3-chloropropane	88		90	41-144	2	20

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2260595

Report Date: 11/11/22

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1709550-3	WG1709550-4			
Isopropylbenzene	94			99		70-130	5		20
p-Isopropyltoluene	98			100		70-130	2		20
n-Propylbenzene	95			100		69-130	5		20
1,2,3-Trichlorobenzene	100			100		70-130	0		20
1,2,4-Trichlorobenzene	99			100		70-130	1		20
1,3,5-Trimethylbenzene	95			98		64-130	3		20
1,2,4-Trimethylbenzene	95			98		70-130	3		20
Methyl Acetate	80			81		70-130	1		20
Cyclohexane	84			90		70-130	7		20
1,4-Dioxane	104			108		56-162	4		20
Freon-113	96			100		70-130	4		20
Methyl cyclohexane	88			95		70-130	8		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	_
1,2-Dichloroethane-d4	103	103	70-130	
Toluene-d8	98	99	70-130	
4-Bromofluorobenzene	89	90	70-130	
Dibromofluoromethane	100	100	70-130	

Serial_No:11112213:31 *Lab Number:* L2260595

Project Name: MAIN & EAST BALCOM ST. SITE

Project Number: T0239-021-001 **Report Date:** 11/11/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L2260595-01A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-01B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-01C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-02A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-02B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-02C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-03A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-03B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-03C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-04A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-04B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-04C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-05A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-05B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-05C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-06A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-06B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2260595-06C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: MAIN & EAST BALCOM ST. SITE L2260595 **Project Number:**

T0239-021-001 **Report Date:** 11/11/22

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:MAIN & EAST BALCOM ST. SITELab Number:L2260595Project Number:T0239-021-001Report Date:11/11/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Project Name:MAIN & EAST BALCOM ST. SITELab Number:L2260595Project Number:T0239-021-001Report Date:11/11/22

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:MAIN & EAST BALCOM ST. SITELab Number:L2260595Project Number:T0239-021-001Report Date:11/11/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag	e of		Date Rec' in Lab	d	10	129	122	ALPHA Job#
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables					Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: MAIN			37. 5	UE		ASP-A			ASP-E	3	Same as Client Info
1700. 300-030-3133	1704. 300-622-3200	Project Location: Bu	FEALO, N	4				EQuIS (1 F	File)		EQuis	(4 File)	PO#
Client Information		Project # To239	-021-0	01				Other		-			
Client: TRANKE	7	(Use Project name as P					Regu	latory Requ	iiremen	nt	-37	-	Disposal Site Information
Address: 2558	HEMBURG TEPR	Project Manager: NAT		EY.				NY TOGS		П	NY Par	1 375	Please identify below location of
PAFALO, 1	14 14218	ALPHAQuote #:		/			15	AWQ Standa	ards	П	NY CP	-51	applicable disposal facilities.
Phone: 716-85		Turn-Around Time		The same of	Contract Con	1	i	NY Restricte	d Use	П	Other		Disposal Facility:
Fax:	- 1/	Standar	N N	Due Date			1 1	NY Unrestric					□ NJ X NY
	Dbm-He.c.m	Rush (only if pre approve		# of Days	33		IH	NYC Sewer					
The same of the sa	peen previously analyze	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is	-,	# Of Days	١.		ANA		Discriary	ge.			Other:
	c requirements/comm						-	LYSIS	1		_		Sample Filtration
Other project specific	o requirements/comm	ents.					185		1 1				Done
	CAT	3							1 1				Lab to do Preservation
Please specify Metals		64.1					6		ΙI				Lab to do
r lease specify metals	O IAL.						3		1 1				
							+						(Please Specify below)
ALPHA Lab ID	Sar	mple ID	Colle	ection	Sample	Sampler's	7						
(Lab Use Only)			Date	Time	Matrix	Initials	12						Sample Specific Comments
60595 01	MW-1		10/28/22	1230	ARUA	CS	X						
20	MW-2			1304			X						
703	MW-32			1001			X						
704	MW-4			1115			X		\Box			\neg	
705	MW-5			1034			V						
706	MW-L		V	1144	4		ż		\vdash			\neg	
				1101	<u> </u>		_		\vdash		\rightarrow	_	
L. P. LOUIS SHOP							\vdash		\vdash	\neg	\rightarrow	_	
	11						\vdash		\vdash		-	_	
			1					_	\vdash	-	-	_	
Preservative Code:	Container Code	Masthara: Cartification N	I=- MAD25					_	\vdash	-	-	-	
A = None	r - riasuc	Westboro: Certification N			Cor	tainer Type	V				- 1		Please print clearly, legibly
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification N	io: MA015						_	_	_	_	and completely. Samples control to logged in and
D = H ₂ SO ₄	G = Glass				l F	reservative	B						turnaround time clock will n
	B = Bacteria Cup C = Cube												start until any ambiguities a
	O = Other	A Relinquighed		Date/		0	Receiv	ed By:			Date/T	ime	resolved. BY EXECUTING
$H = Na_2S_2O_3$	E = Encore	Cheb Mollin		10/28/22	1415	1/3	11	-4PC_		10/	28/2	2014:1	THIS COC, THE CLIENT HAS READ AND AGREES
VE = ZII ADNAOH	D = BOD Bottle	107	70	10/2010	2 14:15	9				10)	296	0040	TO BE BOUND BY ALPHA
O = Other		0								,_,_		150	TERMS & CONDITIONS.
orm No: 01-25 HC (rev. 30							_		\rightarrow				(See reverse side.)

ANALYTICAL REPORT

Lab Number: L2311607

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Nate Munley
Phone: (716) 856-0599

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

Report Date: 03/09/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

 Lab Number:
 L2311607

 Report Date:
 03/09/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2311607-01	MW-1	WATER	BUFFALO, NY	03/06/23 12:55	03/06/23
L2311607-02	MW-2	WATER	BUFFALO, NY	03/06/23 13:40	03/06/23
L2311607-03	MW-3R	WATER	BUFFALO, NY	03/06/23 09:58	03/06/23
L2311607-04	MW-4	WATER	BUFFALO, NY	03/06/23 12:11	03/06/23
L2311607-05	MW-5	WATER	BUFFALO, NY	03/06/23 10:40	03/06/23
L2311607-06	MW-6	WATER	BUFFALO, NY	03/06/23 11:24	03/06/23

L2311607

Lab Number:

Project Name: MAIN & BALCOM ST SITE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: MAIN & BALCOM ST SITE Lab Number: L2311607

Project Number: B0239-022-001 **Report Date:** 03/09/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/09/23

ORGANICS

VOLATILES

03/06/23 12:55

Not Specified

03/06/23

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

Lab Number: L2311607

Report Date: 03/09/23

Date Collected:

Date Received:

Field Prep:

Lab ID: L2311607-01 Client ID: MW-1

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/08/23 13:31

Analyst: KJD

		Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

MDL

L2311607

Dilution Factor

Project Name: MAIN & BALCOM ST SITE Lab Number:

Result

Project Number: B0239-022-001 **Report Date:** 03/09/23

SAMPLE RESULTS

Lab ID: L2311607-01 Date Collected: 03/06/23 12:55

Client ID: MW-1 Date Received: 03/06/23 Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

Parameter	Result	Qualifier	Jillo	NL	WIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND	1	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ı	ug/l	2.5	0.70	1
p/m-Xylene	ND	1	ug/l	2.5	0.70	1
o-Xylene	ND	ı	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ı	ug/l	2.5	0.70	1
Styrene	ND	ı	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ı	ug/l	5.0	1.0	1
Acetone	ND	ı	ug/l	5.0	1.5	1
Carbon disulfide	ND	ı	ug/l	5.0	1.0	1
2-Butanone	ND	ı	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ı	ug/l	5.0	1.0	1
2-Hexanone	ND	ı	ug/l	5.0	1.0	1
Bromochloromethane	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ı	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ı	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ı	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ı	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
Methyl Acetate	ND	ı	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND	ı	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	1	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	114	70-130	
4-Bromofluorobenzene	129	70-130	
Dibromofluoromethane	91	70-130	

L2311607

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

Report Date: 03/09/23

Lab Number:

Lab ID: L2311607-02

Client ID: MW-2

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/08/23 13:57

Analyst: KJD

Date Collected:	03/06/23 13:40
Date Received:	03/06/23
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

L2311607

Project Name: Lab Number: MAIN & BALCOM ST SITE

Project Number: Report Date: B0239-022-001 03/09/23

SAMPLE RESULTS

Lab ID: Date Collected: 03/06/23 13:40 L2311607-02

Date Received: Client ID: 03/06/23 MW-2 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

1,3-Dichlorobenzene	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1
1,4-Dichlorobenzene ND ug/l Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l c-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l lsopropyltenzene ND ug/l lsopropyltouene ND ug/l n-Propyltenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70	1 1 1
1,4-Dichlorobenzene ND ug/l Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene	2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70	1 1 1
Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropyltenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70	1
p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 5.0	0.70 0.70	1
cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l 1sopropyltenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 5.0	0.70	
Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 5.0		
Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	0.70	1
Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l p-Isopropylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l		0.70	1
Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l		1.5	1
4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.9	1
Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
Isopropylbenzene	2.5	0.70	1
p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l	2.5	0.70	1
	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l	2.5	0.70	1
Methyl Acetate ND ug/l	2.0	0.23	1
Cyclohexane ND ug/l		0.27	1
1,4-Dioxane ND ug/l	10	61.	1
Freon-113 ND ug/l	10 250	0.70	1
Methyl cyclohexane ND ug/l			1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	115	70-130	
4-Bromofluorobenzene	128	70-130	
Dibromofluoromethane	89	70-130	

L2311607

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

Report Date: 03/09/23

Lab Number:

Lab ID: L2311607-03

Client ID: MW-3R

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/08/23 14:23

Analyst: **KJD**

Date Collected:	03/06/23 09:58
Date Received:	03/06/23
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.47	J	ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

MDL

L2311607

Dilution Factor

Project Name: Lab Number: MAIN & BALCOM ST SITE

Result

Project Number: Report Date: B0239-022-001 03/09/23

SAMPLE RESULTS

Lab ID: Date Collected: 03/06/23 09:58 L2311607-03

Date Received: Client ID: 03/06/23 MW-3R Sample Location: BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

Parameter	Result	Qualifier	Jillo	NL	WIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND	1	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ı	ug/l	2.5	0.70	1
p/m-Xylene	ND	1	ug/l	2.5	0.70	1
o-Xylene	ND	ı	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ı	ug/l	2.5	0.70	1
Styrene	ND	ı	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ı	ug/l	5.0	1.0	1
Acetone	ND	ı	ug/l	5.0	1.5	1
Carbon disulfide	ND	ı	ug/l	5.0	1.0	1
2-Butanone	ND	ı	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ı	ug/l	5.0	1.0	1
2-Hexanone	ND	ı	ug/l	5.0	1.0	1
Bromochloromethane	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ı	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ı	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ı	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ı	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ı	ug/l	2.5	0.70	1
Methyl Acetate	ND	ı	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND	ı	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	1	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	115	70-130	
4-Bromofluorobenzene	128	70-130	
Dibromofluoromethane	90	70-130	

L2311607

03/06/23 12:11

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

Report Date: 03/09/23

Lab Number:

Date Collected:

Lab ID: L2311607-04

Client ID: MW-4

Sample Location: BUFFALO, NY Date Received: 03/06/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/08/23 14:49

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.78		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.48	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.7		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	9.8		ug/l	2.5	0.70	1
Trichloroethene	3.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

L2311607

Dilution Factor

Project Name: Lab Number: MAIN & BALCOM ST SITE

Result

Project Number: Report Date: B0239-022-001 03/09/23

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2311607-04 Date Collected: 03/06/23 12:11

Date Received: Client ID: 03/06/23 MW-4 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter

Parameter	Result	Qualifier	Ullita	KL	WIDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.5		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	127	70-130	
Dibromofluoromethane	91	70-130	

L2311607

03/06/23 10:40

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

03/03/23

Report Date: 03/09/23

Lab Number:

Date Collected:

Lab ID: L2311607-05

Client ID: MW-5

Sample Location: BUFFALO, NY

Date Received: 03/06/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/08/23 15:15

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.17	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2311607

Project Name: Lab Number: MAIN & BALCOM ST SITE

Project Number: Report Date: B0239-022-001 03/09/23

SAMPLE RESULTS

Lab ID: L2311607-05 Date Collected: 03/06/23 10:40

Date Received: Client ID: 03/06/23 MW-5 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough	h Lab					
1.3-Dichlorobenzene	ND					
	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
o/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.92	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
sopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	114	70-130	
4-Bromofluorobenzene	127	70-130	
Dibromofluoromethane	91	70-130	

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

SAMPLE RESULTS

Lab Number: L2311607

Report Date: 03/09/23

Lab ID: L2311607-06 Date Collected: 03/06/23 11:24

Client ID: Date Received: 03/06/23 MW-6

Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/08/23 15:41

Analyst: KJD

Volatile Organics by GC/MS - Westborougl	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	2.0		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.82	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2311607

Project Name: Lab Number: MAIN & BALCOM ST SITE

Project Number: Report Date: B0239-022-001 03/09/23

SAMPLE RESULTS

Lab ID: L2311607-06 Date Collected: 03/06/23 11:24

Date Received: Client ID: 03/06/23 MW-6 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

1,3-Dichlorobenzene	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1
1,4-Dichlorobenzene ND ug/l Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l c-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l lsopropyltenzene ND ug/l lsopropyltouene ND ug/l n-Propyltenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70	1 1 1
1,4-Dichlorobenzene ND ug/l Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene	2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70	1 1 1
Methyl tert butyl ether ND ug/l p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropyltenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70	1
p/m-Xylene ND ug/l o-Xylene ND ug/l cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 2.5 5.0	0.70 0.70	1
cis-1,2-Dichloroethene ND ug/l Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l 1sopropyltenzene ND ug/l n-Propylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 2.5 5.0	0.70	
Styrene ND ug/l Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5 5.0		
Dichlorodifluoromethane ND ug/l Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	0.70	1
Acetone ND ug/l Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l p-Isopropylbenzene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l		0.70	1
Carbon disulfide ND ug/l 2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
2-Butanone ND ug/l 4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l		1.5	1
4-Methyl-2-pentanone ND ug/l 2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l lsopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
2-Hexanone ND ug/l Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.9	1
Bromochloromethane ND ug/l 1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l Isopropylbenzene ND ug/l p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
Isopropylbenzene	2.5	0.70	1
p-Isopropyltoluene ND ug/l n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l	2.5	0.70	1
	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l	2.5	0.70	1
	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l	2.5	0.70	1
Methyl Acetate ND ug/l	2.0	0.23	1
Cyclohexane ND ug/l		0.27	1
1,4-Dioxane ND ug/l	10	61.	1
Freon-113 ND ug/l	10 250	0.70	1
Methyl cyclohexane ND ug/l			1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	114	70-130	
4-Bromofluorobenzene	126	70-130	
Dibromofluoromethane	91	70-130	

Project Name: MAIN & BALCOM ST SITE Lab Number: L2311607

Project Number: B0239-022-001 **Report Date:** 03/09/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/08/23 09:11

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-06 Batch:	WG1752885-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: MAIN & BALCOM ST SITE Lab Number: L2311607

Project Number: B0239-022-001 **Report Date:** 03/09/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/08/23 09:11

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1752885-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: MAIN & BALCOM ST SITE Lab Number: L2311607

Project Number: B0239-022-001 **Report Date:** 03/09/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/08/23 09:11

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1752885-5

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
1,2-Dichloroethane-d4	124	70-130
Toluene-d8	112	70-130
4-Bromofluorobenzene	115	70-130
Dibromofluoromethane	98	70-130

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

Lab Number: L2311607

Report Date: 03/09/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - V	Westborough Lab Associated	sample(s):	01-06 Batch: \	WG1752885-3	WG1752885-4				
Methylene chloride	96		97		70-130	1		20	
1,1-Dichloroethane	110		110		70-130	0		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	100		110		63-132	10		20	
1,2-Dichloropropane	110		110		70-130	0		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	110		120		70-130	9		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		100		75-130	0		20	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	120		120		70-130	0		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	100		100		67-130	0		20	
trans-1,3-Dichloropropene	130		130		70-130	0		20	
cis-1,3-Dichloropropene	100		110		70-130	10		20	
Bromoform	100		100		54-136	0		20	
1,1,2,2-Tetrachloroethane	110		120		67-130	9		20	
Benzene	100		100		70-130	0		20	
Toluene	110		110		70-130	0		20	
Ethylbenzene	110		110		70-130	0		20	
Chloromethane	110		130		64-130	17		20	
Bromomethane	94		100		39-139	6		20	
Vinyl chloride	120		140		55-140	15		20	

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

Lab Number: L2311607

Report Date: 03/09/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1752885-3	WG1752885-4			
Chloroethane	120		120		55-138	0	20	
1,1-Dichloroethene	100		110		61-145	10	20	
trans-1,2-Dichloroethene	96		96		70-130	0	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	110		110		63-130	0	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	110		110		70-130	0	20	
cis-1,2-Dichloroethene	97		98		70-130	1	20	
Styrene	105		110		70-130	5	20	
Dichlorodifluoromethane	100		110		36-147	10	20	
Acetone	96		85		58-148	12	20	
Carbon disulfide	100		110		51-130	10	20	
2-Butanone	100		99		63-138	1	20	
4-Methyl-2-pentanone	120		130		59-130	8	20	
2-Hexanone	110		110		57-130	0	20	
Bromochloromethane	93		92		70-130	1	20	
1,2-Dibromoethane	110		110		70-130	0	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	100		110		70-130	10	20	
1,2-Dibromo-3-chloropropane	99		99		41-144	0	20	

Project Name: MAIN & BALCOM ST SITE

Project Number: B0239-022-001

Lab Number: L2311607

Report Date: 03/09/23

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1752885-3	WG1752885-4			
Isopropylbenzene	100			110		70-130	10		20
p-Isopropyltoluene	110			110		70-130	0		20
n-Propylbenzene	110			110		69-130	0		20
1,2,3-Trichlorobenzene	110			110		70-130	0		20
1,2,4-Trichlorobenzene	100			100		70-130	0		20
1,3,5-Trimethylbenzene	100			110		64-130	10		20
1,2,4-Trimethylbenzene	110			110		70-130	0		20
Methyl Acetate	100			110		70-130	10		20
Cyclohexane	110			110		70-130	0		20
1,4-Dioxane	106			124		56-162	16		20
Freon-113	100			100		70-130	0		20
Methyl cyclohexane	100			100		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	123	122	70-130
Toluene-d8	110	111	70-130
4-Bromofluorobenzene	111	112	70-130
Dibromofluoromethane	97	96	70-130

Project Name: MAIN & BALCOM ST SITE

Lab Number: L2311607

Project Number: B0239-022-001 **Report Date:** 03/09/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН		Pres	Seal	Date/Time	Analysis(*)
L2311607-01A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-01B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-01C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-02A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-02B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-02C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-03A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-03B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-03C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-04A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-04B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-04C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-05A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-05B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-05C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-06A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-06B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2311607-06C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)

Project Name:MAIN & BALCOM ST SITELab Number:L2311607Project Number:B0239-022-001Report Date:03/09/23

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:MAIN & BALCOM ST SITELab Number:L2311607Project Number:B0239-022-001Report Date:03/09/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Project Name:MAIN & BALCOM ST SITELab Number:L2311607Project Number:B0239-022-001Report Date:03/09/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:MAIN & BALCOM ST SITELab Number:L2311607Project Number:B0239-022-001Report Date:03/09/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

Pre-Qualtrax Document ID: 08-113

ID No.:17873

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Διρна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page ! o	e of		Date Rec	'd	3/1/23			ALPHA Job#		
Westborough, MA 0158		Project Info wells					Dollar			0 1	100	NAME OF TAXABLE PARTY.	L2311607		
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-622-9300	Project Information	LSALCON			STORY.	The state of the s	ASP-A			ASP-B		Billing Information		
FAX: 508-698-9193	FAX: 508-822-3288	Project Name: MAIN		31 31	16		+=		Ella				Same as Client Info		
Client Information	MATERIAL SPRINGERS	Project # Bo239 -		_			EQuIS (1 File) EQuIS (4 File)					(4 File)	PO#		
Client: TURN 1487	CALL OF		700				Other Regulatory Requirement						Discoul City Information	and the	
		(Use Project name as Project #)					minimiza		Jireme	-	NIV Flori	075	Disposal Site Information		
	AMBURL TEPK		roject Manager: NATE MUNLEY					NY TOGS AWQ Stand	and a		NY Part		Please identify below location applicable disposal facilities.	of	
Phone: 7-16-856	NY 14218	THE RESERVE OF THE PARTY OF THE	LPHAQuote #:				_ =	NY Restrict		-	NY CP-	01			
Fax:	-0347	The second secon	Turn-Around Time							-	Other		Disposal Facility:		
	7 h		Standard Due Date:						cted Us				□ NJ MA		
	Dbm-He.com								Discha	rge			Other:	100	
	been previously analyze fic requirements/comm						ANAL	YSIS	_				Sample Filtration	_	
Please specify Meta	ls or TAL.	5 5					CP-51 Vocs						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	a l B o	
ALPHA Lab ID	1.50		Coll	ection	Sample	Sampler's	1 1						(reads spearly scion)	1	
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	与						Sample Specific Comments	- 100	
11407-01	I-WM		3/4/23	1255	ARUA	cs	X		_	-	\neg	\neg		e 3	
-02	MW-Z		1	1340	1	-5	×		1	Н	_	\neg		3	
-03	MW-32			958	+		x		\vdash		-	_		3	
-04	MW-4			1211	+		x	_	\vdash		_			3	
70.5	MV-5			1040	+		x	_			-			3	
-06	MW-6		-	1124	1	1	×	_	\vdash	\vdash	_	_			
	1		-	11.		-	1	_	\vdash		+	_		3	
				_	1		\vdash		\vdash		\rightarrow	_		+	
				_	-	-	+	-	\vdash			_		+	
							\vdash		-		_	_		+	
Preservative Code: A = None B = HCI						tainer Type	V						Please print clearly, legil and completely. Sample		
C = HNO ₃ D = H ₂ SO ₄ E = NaOH	= H ₂ SO ₄							В					not be logged in and turnaround time clock will n start until any ambiguities a		
F = MeOH	C = Cube	Relinquished	Receive	ed By:			Date/T	ime	resolved. BY EXECUTIN	NG					
G = NaHSO ₄		Joseph Filo	6 .	3/6/23	1548	Condidan					15.48 0030	THE COO THE CHIEF			
Form No: 01-25 HC (rev. :	30-Sept-2013)												(See reverse side.)		