<u>Environmental</u> Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

July 16, 2021

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203

Re: **Periodic Review Report – April 2021–Revised; DEC Site #C915312** Pierce Arrow Business Center, 155-157 Chandler Street, Buffalo, New York

Dear Ms. Kuczka:

In accordance with the Site Management Plan (NYSDEC Site Number: C915312), Section 7.2 Periodic Review Report, NYSDEC's March 15, 2021 letter to Mr. Rocco Termini regarding the preparation and submittal of a Site Management Periodic Review Report and IC/EC Certification, and your July 7, 2021 email to me requesting specific revisions to the original 2021 PRR, please find attached a revised Periodic Review Report that includes the appropriate certifications and the 2020-2021 Routine Progress Report.

If you have comments or questions regarding the contents of these documents, please contact me directly.

Very truly yours, ENVIRONMENTAL ADVANTAGE, INC.

Marked anne

C. Mark Hanna, CHMM President

Attachments

cc: R. Termini

J. Rothschild

S. Selmer (NYSDOH)

01101\ CY2020-2021\Pierce Arrow Busines Center - BCP #C915312 - PRR 2020-2021 - 071621 Final rv1

Periodic Review Report

Pierce Arrow Business Center

155-157 Chandler Street Buffalo, New York 14203

NYSDEC Site Number: C915312

Prepared by: Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

Revised July 16, 2021 May 26, 2021

TABLE OF CONTENTS

1.0		SITE OVERVIEW
1.	1	Site Summary1
1.	2	Site Remedial History1
1.:	3	Institutional and Engineering Controls3
1.4	4	Monitoring and Sampling Requirements5
2.0	S	ITE INSPECTION AND MONITORING RESULTS
2.	1	Site Inspection5
2.	1	Indoor Air Sampling Result7
2.3	3	Ground Water Monitoring and Sampling8
2.3	3	Data Usability Summary9
2.	5	Electronic Data Deliverables10
2.	6	Certification Status
3.0	С	ORRECTIVE ACTION WORK PLAN
4.0	0	VERALL PRR CONCLUSIONS AND RECOMENDATIONS

Appendices

Appendix A	Figures
Appendix B	Site-Wide Inspections and Field notes
Appendix C	Tables
Appendix D	Laboratory Analytical Results
Appendix E	Data Usability Summary Reports
Appendix F	EQuIS Data Submittal Confirmations
Appendix G	Institutional Controls/Engineering Controls Certification

1.0 SITE OVERVIEW

1.1 Site Summary

The Pierce Arrow Business Center Property ("Site") is an approximately 2.35 acre property located at 155-157 Chandler Street in the City of Buffalo, Erie County, New York. The Site location and boundaries are provided in Figure 1, located in Appendix A. The Site consists of an approximate 65,000-square foot building, 22,000-square foot courtyard within the central area of the building and an approximate 0.39 acre parking lot area. The Site is zoned D-C Flex Commercial, which permits Residential, Retail and Service, and Light Industrial uses. The neighborhood surrounding the Site primarily includes light industrial, commercial, and residential properties.

1.2 <u>Site Remedial History</u>

The Site building was originally constructed in 1907 and utilized as a factory occupied by Linde Air Products until the early-1950s. Bell Aircraft Corp. occupied the Site in the early-to-mid 1950s, which was then purchased by Donald Rosen in 1958, who utilized the property for G & R Machinery (machine shop). The Site was purchased by Ontario Equipment Co. in 2005, and by R&M Leasing, LLC in February 2017.

Brownfield Cleanup Agreement (BCA Index No. C915312-02-17) was executed on April 24, 2017 for the Site, which identified the property as Site # C915312 with the New York State Department of Environmental Conservation (NYSDEC) under the Brownfield Cleanup Program (BCP). Hazard Evaluations Inc. (HEI), in association with Schenne & Associates (S&A), completed remedial investigation (RI) activities, as well as interim remedial measure (IRM) activities, in accordance with an RI/IRM Work Plan, which was approved by NYSDEC on April 20, 2017. The RI and IRM work was done concurrently, with additional investigation or IRM work completed, as needed. A series of IRM work tasks were performed at the Site in order to remediate the on-Site concerns, which included the following:

Courtyard Area:

- Asbestos containing materials (ACMs) were identified within the courtyard area which resulted in the need to remove the top two inches of soil. A composite characterization sample was collected for landfill disposal. Test results identified PCBs at a concentration of 53 parts per million (ppm), which prompted further IRM work within the courtyard area.
- ACMs soils, which were identified by AMD Environmental, the Owner's representative, were excavated and disposed off-Site as PCBs-containing soil. The soils were disposed at a Waste Management facility in Emelle, Alabama.
- After the courtyard was deemed as ACMs free, additional soil excavations were completed under the guidance of HEI. Soil containing over 50 ppm of PCBs was excavated from the courtyard area and disposed off-Site.
- Additional materials removal was completed from the courtyard area, which included the following:

- Brick was generated from pavers that were present within the courtyard. Concrete was generated from former pad areas, as well as from foundations within the courtyard area. The brick and concrete materials were disposed off-Site at a Waste Management facility in Chaffee, New York.
- Further soil excavations were completed, generally to depths of 2 to 3 feet below original grade, into the native underlying clay soils. Soils that contained PCBs below 50 ppm, but over the Restricted Residential Use Soil Cleanup Objective (RRUSCO) standard of 1 ppm, were excavated and disposed at a Waste Management facility in Chaffee, New York.
- One 2,000-gallon gasoline underground storage tank (UST) was located within the courtyard area. The tank was uncovered and approximately 150 gallons of a gasoline/water mixture were pumped from the tank. Upon removal, the steel tank was cleaned and crushed for recycling at the Niagara Metals LLC scrap yard. A limited amount of impacted soil was present on the bottom and northern sidewall. The impacted soil was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Three drainage structures or "pits" were also identified within the courtyard area. Each drainage structure was excavated and any associated impacted soil was removed and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Historical records identified the potential for a 10,000-gallon above ground storage tank (AST) vault to be present near the former boiler room. During the removal of a concrete pad, the vault area was discovered under the concrete pad. Once the concrete was removed, the vault was found to be filled with brick and sand.
 - A sample of the sand material was analyzed for PCBs, which indicated a PCBs-concentration over 50 ppm. The sand and brick materials were subsequently removed from the vault and the materials were disposed off-Site at a Waste Management facility in Emelle, Alabama.
 - A concrete footer was located within the vault, measuring approximately 18-inches wide and extending over four feet. The vault had a concrete floor/base that was approximately six inches thick. Due to the vault's proximity to the chimney, the vault footer was required to remain in place, as removal would risk compromising the structural stability of the chimney foundation.
- Sidewall and bottom samples were collected from the UST excavation area, former vault area, and the drainage structure or "pit" areas. Additionally, confirmatory soil samples were selected from the bottom of the excavation which occurred in the courtyard area. Soil sample results did not identify impacts above the RRUSCO.

Parking Lot Area:

 Due to the presence of metals and SVOCs within the fill material, the three to four feet of fill material within the parking lot area was scheduled for removal during the IRM work. Initial waste characterization samples identified portions of the parking lot at concentrations deemed as hazardous due to characteristic of lead toxicity. Additional delineation work was completed to evaluate areas with lead impacts.

- The lead soils were stabilized on-Site using the MAECTITE[®] stabilization process, a proprietary process completed by Sevenson Environmental. The stabilization process bound the lead, preventing further leaching. As such, the soil was able to be disposed as non-hazardous soil.
- The parking lot area was then excavated to a depth of three to four feet below grade to the underlying native clay soils. Approximately 2,200 tons of soil were excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Confirmatory soil samples were collected from the sidewall and bottom of the excavation within the parking lot area. Analytical test results did not identify compounds above RRUSCO.

Under Building Area:

- The Site was on a fast track for Site development. As such, HEI worked with the Site Owner to investigate and evaluate specific areas under the building proposed for future water and/or sewer lines. Additionally, sub-slab soil samples were collected and if impacts were identified, the soil was excavated. Concrete samples were also collected to determine if PCBs were present.
- During RI work, specific areas of impact were identified. For each area, the soil surrounding the area was excavated and sidewall and bottom samples were collected, which did not exhibit further exceedances. Soil from under the building was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- PCBs were identified within the concrete floor at various locations, specifically in the southwestern corner of the structure. The concrete was subsequently removed and disposed off-Site at a Waste Management facility in Chaffee, New York. Confirmatory samples were collected from the adjoining concrete floor, which did not identify any PCBs concentrations above RRUSCO.

A Certificate of Completion was issued for the Site on December 27, 2017.

1.3 Institutional and Engineering Controls

Since remaining contamination exists at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) were required to protect human health and the environment, which include the following:

Institutional Controls:

- The property may be used for restricted residential, commercial, and/or industrial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;

- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 1, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

Engineering Controls:

- Four (4) Sub-Slab Depressurization (SSD) systems were installed in the southwestern portion of the Site, in proximity to SS-3/IA-3 and SS-4/IA-4 sample locations. The system objectives and performance goals include the following elements:
 - Reduce and maintain indoor air concentrations to levels below the NYSDOH Soil Vapor Guidance Document Matrix A;
 - Maintain a minimum of 0.25 inches of water column in the four SSD systems, measured in the exhaust piping manometer located 5-feet above the finished floor, to prevent vapors from entering the indoor air of the building while also releasing the trapped vapor beneath the slab; and
 - Demonstrate system effectiveness while maintaining continuous operation of the SSDS, with no significant non-operating time.

The SSD systems were installed in November 2017, with a system start date of November 8, 2017. SSD system locations within the building are identified in Figure 2, provided in Appendix A. The four (4) mitigation fans are individually monitored with a dedicated (air-flow) alarm system, which is mounted to the system pipe to alert users of a low or no flow condition. Each fan also includes an interior mounted manometer installed at eye level to provide a visual indication to the tenants that the system is operating. In the event that a fan loses power or vacuum an audible alarm with a blinking LED light will notify the tenant of the no air flow condition. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued operation is technically impracticable or not feasible.

1.4 Monitoring and Sampling Requirements

The Monitoring and Sampling Plan described the measures for evaluating the overall performance and effectiveness of the remedy. The Monitoring Plan includes the following:

- Site-wide inspection performed a minimum of once per year, as noted in SMP.
- Evaluate the potential for soil vapor intrusion for any buildings developed on the Site, including provisions for mitigation of any impacts identified.
- Monitoring of the four (4) SSD systems including the following:
 - Annual visual inspection of the complete system conducted during each monitoring event. SSD system components are to be monitored including, but not limited to, vacuum blower and general system piping.
 - Annual indoor air sampling to assess the effectiveness of the four (4) SSD systems. The SSD system locations are shown in Figure 2 (Appendix A).
- Annual sampling and analysis of groundwater at one existing monitoring well (MW-3) for VOCs, using USEPA Method 8260 TCL. The monitoring well location is identified in Figure 3.

2.0 SITE INSPECTION AND MONITORING RESULTS

2.1 <u>Site Inspections</u>

On December 11, 2020, EA completed a Site-wide inspection and collected annual indoor air samples at locations IA-1 through IA-6 to assure the SSD systems were operating properly as designed. Additionally, annual sampling and analysis of groundwater was also performed at MW-3 on December 10, 2020, as required in the SMP, and is described in Section 2.3 below. Copies of the Site-wide inspection report and field notes are included in Appendix B. The following was noted during the SSD system inspection:

- The flow alarm "flow vane" of SSDS-4 did not appear to be operating properly at the time of the inspection. EA replaced the flow vane and the alarm then appeared to be operating properly.
- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.

 EA collected air sample canisters at six indoor locations and one outdoor location and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2 below.

Based on the findings of the December 2020 indoor air sampling event, EA completed a follow-up SSD system inspection and collected additional indoor air samples on February 18, 2021 at location IA-6 in an attempt to verify previously detected concentrations of TCE during the December 2020 event. The following was noted during this February inspection:

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.
- EA collected one air sample canister and one duplicate air sample canister at location IA-6 and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2 below.

Based on the findings of the February 2021 indoor air sampling event, EA completed a follow-up SSD system inspection and collected additional follow-up indoor air samples on March 31, 2021 at location IA-6 to address previously detected concentrations of TCE during the December 2020 and February 2021 events. The following was noted during the inspection:

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.
- A ceiling exhaust fan had been installed within the hallway on March 26, 2021 in an attempt to better ventilate sampling location IA-6.
- EA collected one air sample canister and one duplicate air sample canister at location IA-6 and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2 below.

2.2 Indoor Air Sampling Results

Annual indoor air sampling is required to assess the effectiveness of the four (4) SSD systems. The SSD system locations, along with indoor air sampling locations, are included on Figure 2 (Appendix A). Six indoor air and one outdoor air samples were collected on December 11, 2020 at locations as shown on Figure 2. The samples were collected over an 8-hour period and were submitted for VOCs analysis via USEPA method TO-15.

During the current monitoring period (2020-2021), EA collected annual indoor air samples at locations IA-1 through IA-6 on December 11, 2020 to assure the SSD systems were operating properly as designed. Indoor air analytical results are summarized on Tables 1 through 4 located in Appendix C and the laboratory reports are included in Appendix D. As shown on Table 4, up to 17 VOCs were detected within the six indoor air samples and one outdoor air sample. Most compounds were detected at concentrations below their respective NYSDOH indoor air guideline values and USEPA commercial indoor and outdoor air background levels. However, the following results were noted:

- Ethanol was detected in all six indoor air samples collected from locations IA-1 through IA-6, exhibiting concentrations above its respective commercial indoor air background levels. Ethanol was not detected in the outdoor air sample OA-1 (121120).
- Ethyl acetate was detected in five of the six indoor air samples collected from locations IA-1 through IA-5, exhibiting concentrations above its respective commercial indoor air background levels. Ethyl acetate was not detected in the outdoor air sample OA-1 (121120).
- Tetrachloroethene (PCE) was detected in five of the six indoor air samples, ranging in concentration from 0.156 ug/m³ to 1.0 ug/m³, all of which were well below its respective commercial indoor air background level of 15.9 ug/m³ and NYSDOH guideline value of 30 ug/m³.
- TCE was detected in five of the six indoor air samples collected. At sample locations IA-1, IA-2, IA-4, and IA-5, TCE concentrations ranged from 0.478 ug/m³ to 0.801ug/m³, all of which were below their respective commercial background level of 4.2 ug/m³ and NYSDOH indoor air guideline value of 2 ug/m³. At sample location IA-6, the concentration of TCE was detected at 2.96 ug/m³, which exceeded its respective NYSDOH Indoor Air guideline value of 2 ug/m³.

As described above, due to the elevated detection of TCE at sample location IA-6 in December 2020, EA collected additional indoor air samples at location IA-6 on February 18, 2021, identified as IA-6 (021821). Indoor air analytical results are summarized in Appendix D. The following results were noted, and historical conditions are discussed:

The February 2021 indoor air testing results identified that the concentration of TCE remained the same at 2.96 ug/m^3 , which still exceeded the NYSDOH Indoor Air guideline value of 2 ug/m^3 .

With respect to this specific sampling location (IA-6), during the remedial design phase completed in September 2017, soil vapor intrusion samples were collected within the vicinity of the IA-6 location (approximately ± 10-feet from the current IA-6 location). This original monitoring event was conducted within an open floor space as no interior construction has been initiated in this part of the structure. For this original event, TCE was detected at a concentration of 0.64 ug/m³ in the indoor air sample collected (below the NYSDOH Indoor Air guideline value of 2 ug/m³); however, TCE was not detected in the associated sub-slab sample collected. Remedial investigation records for this general area of the building also indicate that TCE was not detected in the former concrete floor slab.

Upon the installation of the four separate Sub-Slab Depressurization Systems (SSDS-1 through SSDS-4) in the south-western area of the structure, other monitoring points than IA-6 were selected and continue to be used annually (IA-1 through IA-5). All five of these locations are positioned to monitor the effectiveness of the existing SSD Systems' operation. IA-6 was selected strictly as a background location inside the structure prior to the interior building wall construction based on the one-time detection of TCE in the original indoor air monitoring. This location is a considerable distance from any of the four operating SSD systems. Throughout the SMP indoor air monitoring period through the February monitoring event, this location was in an unventilated pass-through building entrance hallway containing mailboxes and is not permanently occupied.

Due to the recent elevated detections of TCE at sample location IA-6, EA recommended that this hallway be ventilated. On March 26, 2021, the Site owner had a ceiling exhaust fan with an exterior exhaust installed within the hallway to better ventilate this area. Following the installation, as described above, EA collected a third indoor air sample from location IA-6 on March 31, 2021, identified as IA-6 (033121). In these analytical results, TCE was detected in this sample at a concentration of 14 ug/m³, which again exceeds the NYSDOH Indoor Air guideline value of 2 ug/m³. Due to this third consecutive exceedance of TCE, but also in consideration of the historical conditions known for this area of the building, EA is currently investigating the area within which sample location IA-6 is collected to determine if a simple practical solution can be identified for implementation. Given the current conditions, EA does not recommend that this situation warrants being addressed as a corrective action.

2.3 Ground Water Monitoring and Sampling

Annual sampling and analysis of groundwater at the one existing monitoring well, identified as MW-3, was performed as required by the SMP. Groundwater samples were collected on December 10, 2020 for VOCs analysis via USEPA

Method 8260 TCL (total compound list). The monitoring well is identified in Figure 3. Prior to sample collection, the static groundwater level and total well depth were measured. The monitoring well depth was measured at 17.9 feet below ground surface and groundwater levels were recorded at 1.8 feet below ground surface. During well purging activities, field measurements of pH, specific conductivity, temperature, and turbidity were recorded. Once the parameters stabilized, EA collected the groundwater using low flow sampling techniques.

Groundwater analytical test results are summarized on Tables 5 and 6, provided in Appendix C. VOCs were not detected at concentrations exceeding their respective Class GA criteria for the annual sampling event. The laboratory analytical reports are included in Appendix D.

2.4 Data Usability Summary

The analytical data from the indoor air and groundwater samples collected from December 2020 through March 2021 were submitted for independent review, as required by NYSDEC. Vali-Data of WNY, LLC, located in West Falls, New York, completed the data usability summary reports (DUSRs). The DUSRs are provided in Appendix E and were prepared using guidance from the USEPA Region 2 Validation Standard Operating Procedures, USEPA National Functional Guidelines for Data Review, and professional judgement. Indoor air and groundwater samples were collected as described above and were evaluated as described below:

Groundwater Samples – Alpha Lab Sample L2055160:

The results for one groundwater sample and one blind duplicate were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

 VOCs data are acceptable for use except where qualified in MS/MSD, initial calibration, and continuing calibration.

Indoor Air Samples December 2020 – Alpha Lab Sample L2055692:

The results for six indoor air samples, one blind duplicate, and one outdoor air samples were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in laboratory control samples;
- All results were recorded to the reporting limits; and
- Samples IA-5 (121120) and IA-4 (121120) were diluted due to high target analyte concentrations in the TO-15 analysis.

Indoor Air Samples February 2021 – Alpha Lab Sample L2108109:

The results for one indoor air sample and one blind duplicate sample were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in laboratory control samples and initial calibration; and
- All results were recorded to the reporting limits.

Indoor Air Samples March 2021 – Alpha Lab Sample L2116174:

The results for one indoor air sample and one blind duplicate sample were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in laboratory control samples; and
- All results were recorded to the reporting limits.

2.5 <u>Electronic Data Deliverables</u>

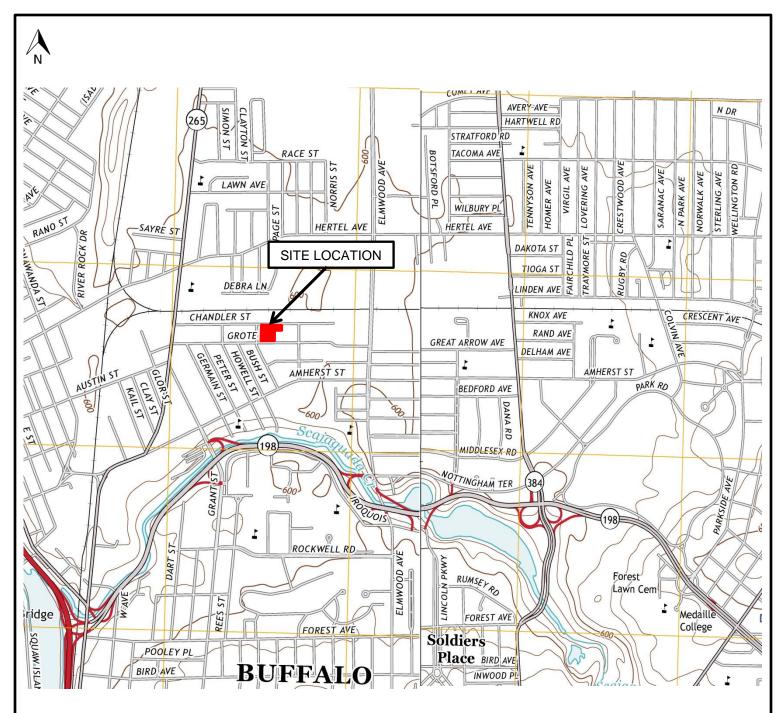
As per NYSDEC, all aforementioned data were submitted electronically to the NYSDEC EQuIS system. Confirmation emails of successful data submission are provided in Appendix F.

2.6 <u>Certification Status</u>

The completed Institutional and Engineering Controls Certification Form is included in Appendix G. **Please Note**: It is EA's opinion that the four SSD Systems are operating as designed and that the presence of TCE in the indoor air samples at location IA-6 is not associated with the operation of those systems. As indicated above is Section 2.2, the TCE exceedances issue identified at IA-6 sample location is being investigated to determine if a practical, long term solution can be implemented during the CY 2021-2022 monitoring and reporting period. All investigation activities and a description of the solution as applied will be addressed in correspondence with the NYSDEC and summarized in the CY 2021-2022 PRR.

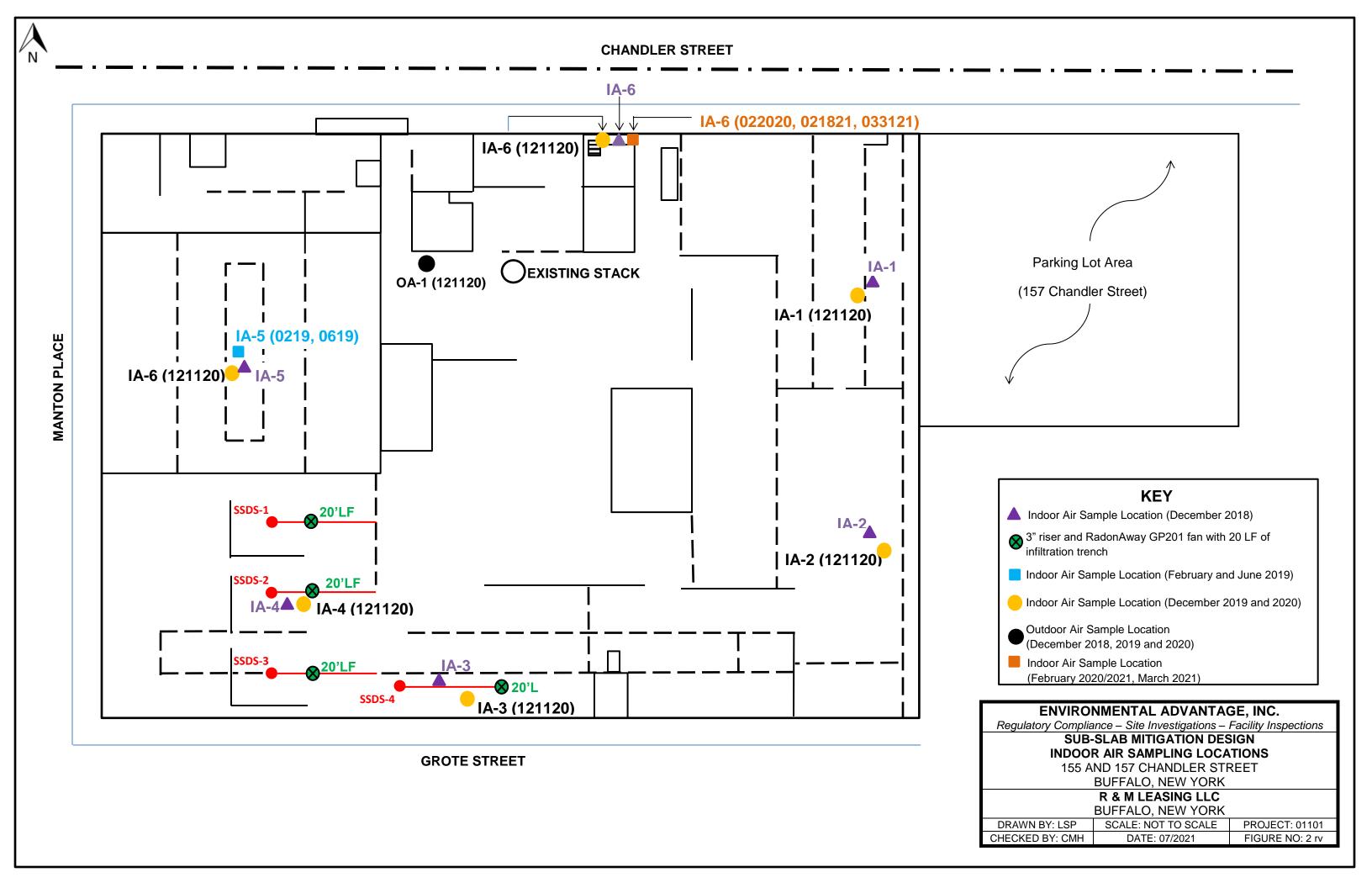
3.0 CORRECTIVE ACTION WORK PLAN

Although there was an exceedance of TCE within the indoor air at IA-6 sample location, the four (4) SSD systems continue to function properly as designed. These SSD systems will be tested if, in the course of the system lifetime, significant changes are made to the system, and the system must be restarted. The SSD systems will be inspected and maintained at least annually. Additional inspections and/or sampling may occur when a suspected failure of the SSD system has been reported or an emergency occurs. The Operation & Maintenance Plan (O&M Plan) describes the measures necessary to operate, monitor and maintain the existing SSD systems and includes procedures for routine operation, shutdown, general maintenance and monitoring requirements, and record keeping. The O&M Plan is fully in place, with no deficiencies in compliance.

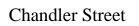

It should be noted that the TCE exceedance at IA-6 sample location is being actively investigated. In consideration of the historical conditions known for this area of the building, and given the current conditions, EA does not recommend that this

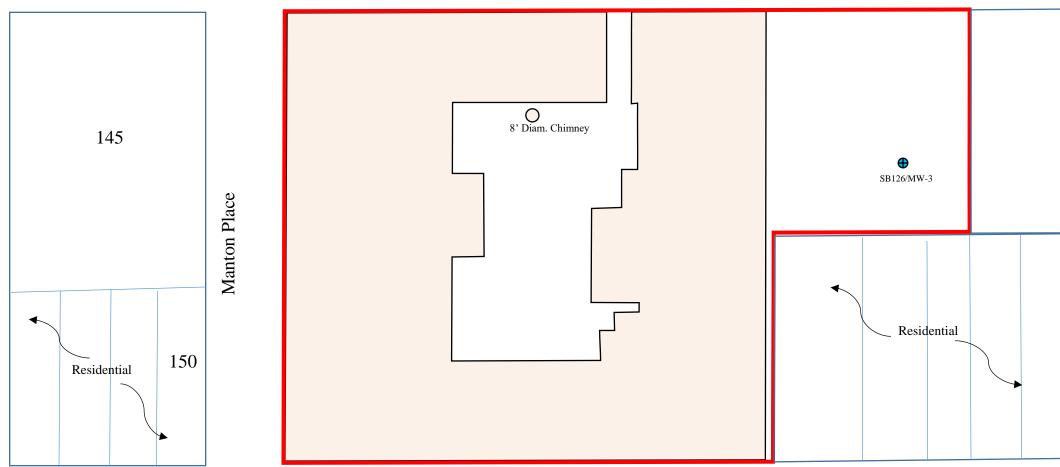
situation warrants being addressed as a corrective action. The NYSDEC and NYSDOH will be kept apprised of the on-going investigation results and will be notified once a practical, long-term solution is identified for implementation. No other changes to the SMP are recommended at this time. The annual Site-wide SSD system inspection and groundwater monitoring well sampling will be completed by December 2021.

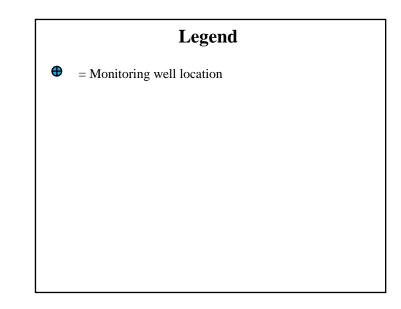
4.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

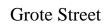

In general, all components of the Site Management Plan have been met during the current monitoring and reporting period. Although there were three consecutive exceedances of TCE within the indoor air at sample location IA-6, this situation does not appear to be related to the historical use of the building and is being investigated outside the SMP requirements. Based on the current status of the Site, the Site remedy is currently protective of public health and the environment, as the area of the exceedances is simply an isolated building entrance area. However, the requirements for Site closure have not yet been met, and no changes to the frequency of PRR submittals are recommended at this time. APPENDIX A

FIGURES




THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, BUFFALO NE & NW, NEW YORK 2013 QUADRANGLE


	NMENTAL ADVANTA		
Regulatory Complia	nce – Site Investigations –	Facility Inspections	
	SITE LOCATION MAP		
155	& 157 CHANDLER STRE	ET	
	BUFFALO, NEW YORK		
	R & M LEASING LLC		
BUFFALO, NEW YORK			
DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: 01101	
CHECKED BY: CMH	DATE: 04/2021	FIGURE NO: 1	



7	140	166	

260		
207		
1		
ENVIRO		GE, INC.
MONIT	ance – Site Investigations – ORING WELL LOCATIO and 157 CHANDLER ST	ON MAP
	BUFFALO, NEW YORK R & M LEASING LLC	
DRAWN BY: MB	BUFFALO, NEW YORK SCALE: 1" = 60'	PROJECT: 01101
HECKED BY: CMH	DATE: 05/2021	FIGURE NO: 3

APPENDIX B

SITE-WIDE INSPECTIONS AND FIELD NOTES

Site-Wide Inspection Form

Site: <u>155 Chandler Street</u> Buffalo, NY	Date:	12/11/2020	
--	-------	------------	--

Inspector: Eric Betzold Weather: 44°F Cloudy

General site conditions at the time of the inspection: <u>Normal operations, except the</u> western area is currently vacant.

Are site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection? <u>Yes.</u>

Do the implemented institutional controls continue to be protective of human health and the environment? <u>Yes.</u>

Is the site currently in compliance with requirements of the SMP and the Environmental Easement? <u>Yes.</u>

Are site records complete and up-to-date? <u>Yes.</u>

Are the implemented Engineering Controls (SSDS) operating in compliance with the requirements of the SMP? <u>Yes.</u>

SSDS Pressure Differential Readings:

- SSDS-1: <u>1.0"</u>
- SSDS-2: 1.0"
- SSDS-3: 1.5"

SSDS-4: 1.0"

Deficiencies Observed / Corrective Actions Required: <u>Replaced the SSDS-4 flow alarm</u> 'flow vane'. After the repair, the alarm was back to operating properly.

Notes: <u>Elevated PID readings (75ppm) were noted near the 'IA-5' sample point. The elevated readings resulted from stored whiskey barrels located approximately 30 feet away.</u> EA presumes the stored whiskey barrels will elevate the 'Ethanol' concentration in the indoor air in this area.

Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use;
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

oeti . i . **Soil Vapor Intrusion** ampling Building 04 c 0

oil Vapor Intrusion - S	tructure Samplin	g Building Question	naire	Structure ID :	
Site No.: C9	15312	Site Name :	Pierce Arrow	Business center	
Date: /2/10/	12020		7:00am		
Structure Address :		7 chardlerst	. Buffalo, NY		
			unonmental cons	ultant	
Residential ? 🛛 Yes	□ No Owner O	ccupied ? 🗆 Yes 📋	No Owner Interviewed	Y □ Yes □ No	
Commercial ? 🛛 Yes			Mixed Uses ? K Yes		
Identify all non-resident Greatea Kes Proc. Owner Name :	ial use(s): <u>Utila</u> essing services &M Leasi	t (computer sof	Nare), Barrel & Bo Cidery, Owner Phone: ()	ma (Restainent), Andersen Tax,	
		Secondary O	wner Phone : ()_		
Owner Address (if differe	ent):39/ v	kshingtonst.	Buffalo, NY 14	203	
Occupant Name : <u>Fiv</u> Leasees,	e Various con (ENRG moved	OUT Secondary O	Occupant Phone : ()	= =	
Number & Age of All Pe Additional Owner/Occup	rsons Residing at the pant Information : _	his Location :A	Prox, Llo Peof	le, (2 nd floor)	
•			d industrial use		
Mixed use s	ite. 1-2.	storres, Brick	extense, flat n	16ber numbrane roof (85,000 sg. fd	
Approximate Year Built :	Carly 190	005	Is the building Insulated?	XYes 🗆 No	
	(finishing, use, time s SPENA 8	12 hrs per de	rawlspace modeled comm ay in these		
Floor Condition :			(some cracks) 🔲 Poor (br		
Sumps/Drains?	¥Yes □ No etrations & details :	Describe: V 10cated in r	arious floordrain. strooms.	s throughout Facility, Prima	wily
None					
Wall Construction : Identify any wall penetry	ations DVer		e doors @ Blac	kbird cidery.	
Various c	JINAUWS	throughout	facility.		
Identify water, moisture	e, or seepage: locati	on & severity (sump, cra	acks, stains, etc) : <u>ND1</u>	NR ,	
Heating Fuel :	🗆 Oil 🗖 Ga	s 🗆 Wood 🗆 El	ectric 🔲 Other :		
Heating System :	Forced Air	Hot Water	Other :		
Hot Water System :	Combustion	🗆 Electric 🛛 Boile	rmate Other:		
Clothes Dryer :	🗆 Electric 🛛	Gas Where is drye	vented to?		
If combustion occurs, d <u>AVAC</u> Mits	•	drawn from (cold air re	turn, basement, external air, e へ	ic.): <u>Roof-top</u>	
Fans & Vents (identify w	here fans/vents pull a	ir from and where they ve	nt/exhaust to) : <u>N/A</u>		

Structure ID : _____

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

None.					
Attached garage ?	🗆 Yes 🧏 No	Air fresheners ?	🗆 Yes 🗴	. No	
lew carpet or furniture?	🗆 Yes 💆 No	What/Where ?			
ecent painting or staini	ing? 🗌 Yes		Where ? :		_
iny solvent or chemical	-like odors? X Yes 1 & Brine, E	thanol odor	Describe: Fe	rmenting odors ier Barrels in Nu	area of building
ast time Dry Cleaned fa	brics brought in ?	N/A wh	at / Where ?	<u></u>	
Do any building occupants	s use solvents at work ?	🗆 Yes 🛛 🕅 No	Describ	e:	
Any testing for Radon ?	🗆 Yes 🧏 No	Results :	ł		
	r Intrusion Mitigation Syste			If yes, describe below	
4 - 55DS	installed in z	2017and no	discelled as	an engineering (3	antol Gardly S
	Lowest	Building Level Layo	ut Sketch		
		-6(033121)	chardler	s+ ,	\neg
Jhiskey B	airels				
	1JSPPm	C ^{ijus}			-
00000					
				IA-1	_
	45	, typerd			
C hinte					
E 100L octus	polontica '				
5					
SH					_
TAN - 20 0:	5505-2 1-lat	way			_
	Andersen Tax	Borret & Brie		LA-2	
Processing	Financia 1 a X				_
1000000	5505-3	IA-3 . 5505-			
─ │ ┞ ╼ ┥╺╎╺╿╸┥╸┥╸┥╸				╾┝╼╿╌╎╴╎╴╎╴	
┝╾╪╼╪╼╌┊╴╞╴╞╴╎╴┤╴┼╴		ote st.			

Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F HW FP	Boiler or Furnace Hot Water Heater Fireplaces	0 XXXXXXX ######	Other floor or wall penetrations (label appropriately) Perimeter Drains (draw inside or outside outer walls as appropriate) Areas of broken-up concrete
ws	Wood Stoves	• SS-1	Location & label of sub-slab vapor samples
W/D	Washer / Dryer	• IA-1	Location & label of indoor air samples
S	Sumps	• OA-1	Location & label of outdoor air samples
@	Floor Drains	• PFET-1	Location and label of any pressure field test holes.

Structure Sampling - Product Inventory

Page _____ of ____

Homeowner Name & Address:	R	& M Leasing Betzoid Env. Advantage In	Date:	12/10/2020
Samplers & Company:	Eri	- Betzoid Env. Advantage In	🤹 , Structure ID:	C915312
Site Number & Name:	<u>C915</u>	312 · Pierce Arrow Bussiness Ce	Atter Phone Number:	
Make & Model of PID:	Hone	ywell MiniRAE 3000+	Date of PID Calibration:	12/10/2020
Identify any Changes fro	om Original	Building Questionnaire :		
Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
Whiskey Barrels	220	Ethanol	75	Near IA-Slocats
				· · · · · · · · · · · · · · · · · · ·
			·	
·	-			
				-
		<u> </u>		

	ell Data Sheet		
Date: 12/11/2020	Joba	#: 01/01	
Well ID: MW-3			· · · · · ·
Crew: EB			
Well Depth (TOR): 17.5			
Well Depth (GS): 17.9			
Initial Water Level (TOR): 1.4	· .		× .
Initial Water Level (GS): 1.8			
Mahara Oslavlation II	1'1 163	= 7.67 00	1 = wellvol.
Volume Calculation: //6. DTB-DTW*0.163=1-well vol	1 X.102	ga	<u>1 - 1 Well Vol.</u>
	Purge Record		
	oH Con	d. <i>^{ms/}cr</i> Temp. °c	Turbidity NTO
11:51 an 19a1		15 14.11	14.0
11:57 am 1.5gal		35 13.26	5.9
12:04Rn 2 921		83 12.87	7.2
12:09Pm 2.59al	7.04 2	18 12.84	4.3
12:11Pm 2.8gal	7.02	3.26 12.74	3.7
	ersible Pump-		J
Initial Water Quality 6000			
Final Water Quality 6000	×.	····	•
	SAMPLE RECO	ORD	
Date: 12/10/2020	Volu	me: 3x40m	. 1
Time: 12:15pm	Ana	lysis: Voc 826	n Tel
Crew: EB		in of Custody #:	
Method: /an Flow Sampling	San	ple Type: Contr	NUPUS
Sample ID: $MW-3(121020)$		6 8A 10 1 1	7
Water Quality: Good	Diar	neter Multiply by	-
pH: 6.98		1" 0.041	
Conductivity: 3.5/ ms/cm		2" 0.163	
Temperature: 12.68		3" 0.367	
Turbidity: 2.9 NTU		4" (0.653	
		6" 1.468 8" 2.61	
Commonto: Tathalla	dspace :		
		2.2PPm	<u> </u>
TOR= Top of Riser	an pling was	performed.	
-	Signature:	21in/1/2	JO-
		/ '	11 "

 $\langle \cdot \rangle$

1

Client: <u>R&M Leasing</u> Project No.: <u>O[10]</u>
Client: <u>REM Leasing</u> Site Name & Address: <u>155 chendlerst Buffalo, NY</u>
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-5(12112</u>)
Sample Type: ⊠Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/11/2020 Setup Time: 7:20am Stop Time: 3:20Pm
Sample Depth:
Sample Height:5
Sampling Method(s) & Device(s): 2.7 Liter Summa Carister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa
Canister # 300 0 Regulator # 01613
Vacuum Pressure of Canister Prior to Sampling:29,51 ''
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis:
Comments: 0.0 PPM - Ambrent air
Sampler's Signature Merry Date: 12/11/2020

Client: <u>R&M Leasing</u> Project No.: <u>01101</u>
Client: <u>R&M Leasing</u> Project No.: <u>01101</u> Site Name & Address: <u>155 chandler St. Buffalo, NY</u>
Person(s) Performing Sampling: Eric Betzold Sample Identification: IA-4(121126)
Sample Type: 又Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/11/2020 Setup Time: 7:30an Stop Time: 3:30 Pm
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa
Canister # 3100 Regulator # 01706
Vacuum Pressure of Canister Prior to Sampling: <u>- 29.46</u>
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
ØYes □No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO -15
Comments: 0.0 ppm - Ambient air
Sampler's Signature <u>Enil Berto</u> Date: <u>12/11/202</u> 0

Client: <u>R&M Leasing</u> Project No.: <u>DIID1</u>
Client: <u>R&M Leasing</u> Site Name & Address: <u>155 chandler st</u> , <u>Buffalo NY</u>
Person(s) Performing Sampling: <u>Eric Bed-zold</u> Sample Identification: <u>IA-3 (12</u> 1123)
Sample Type: Andoor Air (ambient) Outdoor Air Soil Vapor Sub-slab Vapor
Date of Collection: 12/11/22 Setup Time: 7:35em Stop Time: 3:35 Pm
Sample Depth:
Sample Height:5 /
Sampling Method(s) & Device(s): 2.7 Liter Summa Cenister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 27 Litter Summa
Canister # <u>179</u> Regulator # <u>01804</u>
Vacuum Pressure of Canister Prior to Sampling: <u>-29,40''</u>
Vacuum Pressure of Canister After Sampling: <u>- /0, 30 ''</u>
Temperature in Sampling Zone:65 °F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
₩Yes □No. If no, provide reason(s) why?
Laboratory Name: <u>Alpha Analytical</u>
Analysis:70-15
Comments: D.OPPM - Ambrent air.
Sampler's Signature <u>III/12020</u> Date: <u>12/11/2020</u>

į

k.

Client: R&M Leasing	Project No.: Ollo I
Site Name & Address: 155 chandler st	BJFFalo, NY
Person(s) Performing Sampling:	.1d
Sample Identification: <u>A-3(I</u> 2MZo).Du	ρ,
Sample Type: XIndoor Air (ambient)	
Date of Collection: 12/11/2020 Setup Time: 7	1:35 m Stop Time: 3:35 Pm
Sample Depth:	
Sample Height:5′	
Sampling Method(s) & Device(s): Liter Sun	nma Conister & Regulator
Purge Volume:	Ū.
Sample Volume:	
Sampling Canister Type & Size (if applicable):2,74	iter Summa
Canister # 2765 Regulator	# 01606
Vacuum Pressure of Canister Prior to Sampling:	- Z 9.88 ''
Vacuum Pressure of Canister After Sampling:	- 8.25 "
Temperature in Sampling Zone: 65°F	
Apparent Moisture Content of Sampling Zone:	-PW
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Handling 8	& Delivery of Samples to Laboratory:
XYes □No. If no, provide reason((s) why?
Laboratory Name: Alpha Analyts	c.a. I
Analysis: 70-15	
Comments: 0.0 PPM- Ambient air.	
/	
Sampler's Signature	Date: 12/11/2020

Client: <u>R&M Leasing</u> Project No.: <u>01101</u>
Client: <u></u>
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-6 (121126</u>)
Sample Type: 🕅 Indoor Air (ambient) 🗌 Outdoor Air 🔲 Soil Vapor 🔲 Sub-slab Vapor
Date of Collection: 12/11/2020 Setup Time: 7:45am Stop Time: 3:45Pm
Sample Depth:
Sample Height:5'
Sampling Method(s) & Device(s): 2.7 Liter Summa Cenister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 2.7 Liter Smma
Canister # 2278 Regulator # 01500
Vacuum Pressure of Canister Prior to Sampling: <u>-29.12</u> Vacuum Pressure of Canister After Sampling: <u>-0.65''</u>
Temperature in Sampling Zone: 60 7
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes □No. If no, provide reason(s) why?
Laboratory Name: <u>Alpha Analytical</u>
Analysis: TO-15
Comments: 0.0 ppm - Ambientair.
Sampler's Signature

Client: <u>R&M Leasing</u> Project No.: <u>OIDI</u>
Site Name & Address: 155 chandler St. Buffald, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-1 (1211</u> 25)
Sample Type: Ø∫Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/11/2023 Setup Time: 7:50am Stop Time: 3:50 Pm
Sample Depth:
Sample Height:5`
Sampling Method(s) & Device(s): 2.7 L; ter Summa Carister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable):
Canister # Z353 Regulator # 1558
Vacuum Pressure of Canister Prior to Sampling: 29.51 '
Vacuum Pressure of Canister After Sampling://. 40 ''
Temperature in Sampling Zone:70°F
Apparent Moisture Content of Sampling Zone: ${\it Low}$
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
'⊠Yes □No. If no, provide reason(s) why?
Laboratory Name:Alpha Analytical
Analysis: TO-15
Comments: 0.0ppm - Ambrent air.
· · · · ·
Sampler's Signature <u>Eui Alagoo</u> Date: 12/11/2020

. **

Client: <u>R&M Leasing</u> Project No.: <u>D/101</u>
Client: <u>R&M Leasing</u> Project No.: <u>DIIDI</u> Site Name & Address: <u>ISSChardler St. Buffalo, NY</u>
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>JA-2(12/1</u> 2=)
Sample Type: MIndoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/11/2020 Setup Time: 7155an Stop Time: 3:55pm
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s):7 Liter Summa Conister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 2.7 Litter Summa
Canister # <u>333</u> Regulator # 804
Vacuum Pressure of Canister Prior to Sampling: 2.9.7 [
Vacuum Pressure of Canister After Sampling: <u>- 9.03</u>
Temperature in Sampling Zone: 70°F
Apparent Moisture Content of Sampling Zone: とっい
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Xes □No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: To-15
Comments: 0.0 PPm - Ambient Air
0.0 ppm - Ambient Air
Ind
Sampler's Signature

Client: <u>RVM Leasing</u> Project No.: <u>01101</u>
Client: <u>RVM Leasing</u> Site Name & Address: <u>ISSchardler St. Buffalo, NY</u>
Person(s) Performing Sampling: <u>Eric Betzold</u>
Sample Identification: <u>OA-I ((2112</u> >)
Sample Type: 🗋 Indoor Air (ambient) 🔀 Outdoor Air 🛛 Soil Vapor 🖓 Sub-slab Vapor
Date of Collection: 12/11/2020 Setup Time: 8:000 Stop Time: 4:00Pm
Sample Depth:
Sample Height:6 '
Sampling Method(s) & Device(s): 2.7 Lifer Symma Canister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa
Canister # 3406 Regulator # 016 50
Vacuum Pressure of Canister Prior to Sampling: 29.55 **
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: <u>40°F</u>
Apparent Moisture Content of Sampling Zone: とっ い
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes □No. If no, provide reason(s) why?
Laboratory Name: <u>Alpha Analytical</u>
Analysis:TO-15
Comments: 0.0PPm - Ambrent air
5 not
Sampler's Signature

Site-Wide Inspection Form

Site: 155 Chandler Street Buffalo, NY Date: 2/18/2021	
---	--

Inspector: Eric Betzold Weather: 27°F Cloudy

General site conditions at the time of the inspection: <u>Normal operations</u>, except the western area is currently vacant.

Are site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection? Yes.

Do the implemented institutional controls continue to be protective of human health and the environment? Yes.

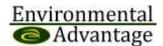
Is the site currently in compliance with requirements of the SMP and the Environmental Easement? Yes.

Are site records complete and up-to-date? Yes.

Are the implemented Engineering Controls (SSDS) operating in compliance with the requirements of the SMP? Yes.

SSDS Pressure Differential Readings:

SSDS-1: 1.0"

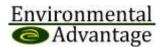

SSDS-2: 1.0"

SSDS-3: 1.5"

SSDS-4: 1.0"

Deficiencies Observed / Corrective Actions Required: None.

Notes: EA re-sampled the indoor air at the 'IA-6 (121120)' sample location due to an elevated TCE reading at 2.96 ug/m3 was recorded during the previous sample event. Ambient Indoor air was 0.0ppm throughout the site.



Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use;
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

Client: <u>R&M Leasing</u> Project No.: <u>Doloi</u>
Client: <u>R&M Leasing</u> Site Name & Address: <u>155chandler St. Buffalo, NY</u>
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-6 (02/82/</u>)
Sample Type: 😾Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 2/18/21 Setup Time: 8:200M Stop Time: 4:20Pm
Sample Depth:
Sample Height:S '
Sampling Method(s) & Device(s): 2.72. Summe Canister & Regulator
Purge Volume:
Sample Volume: 2.7L
Sampling Canister Type & Size (if applicable): 2.7L Summa
Sample Volume.
Vacuum Pressure of Canister Prior to Sampling: -30.58 "Hg
Vacuum Pressure of Canister After Sampling: <u>-6.36" Ha</u>
Temperature in Sampling Zone: 60°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes In no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TD-15
Comments: Ambient Indoor A.r : 0.0 PPm
· · · · · · · · · · · · · · · · · · ·
Sampler's Signature <u>million</u> Date: 2/18/21

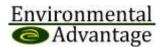
AIR/VAPOR SAMPLING FIELD DATA SHEET

Client: <u>R&MLeaSing</u> Project No.: <u>00101</u>
Client: <u>R&MLeasing</u> Site Name & Address: <u>155chandler st</u> , Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: IA-6(021821) Suplicate
Sample Type: 🔀Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 2/18/21 Setup Time: 8:20 am Stop Time: 4:20 pm
Sample Depth:
Sample Height:5
Sampling Method(s) & Device(s): 2.7 L Summa Canister & Regulator
Purge Volume:
Sample Volume:2.7.L
Sampling Canister Type & Size (if applicable): 271 Summa
Canister # <u> </u>
Vacuum Pressure of Canister Prior to Sampling: <u>-29.90</u> ¹ Hg
Vacuum Pressure of Canister After Sampling: <u>-533[°]H</u> 5
Temperature in Sampling Zone: 60°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
⊠Yes □No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments: Ambrent Indoor a:r: 0.0ppm
Sampler's Signature

Site-Wide Inspection Form

Site: 155 Chandler Street	Buffalo, NY	Date:	3/31/2	2021		
Inspector: Eric Betzold		Weather:	45°F (Cloudy		
General site conditions at the commercial space is leased						
Are site management a confirmation sampling and a						
Do the implemented institut the environment? <u>Yes.</u>						anc
Is the site currently in comp Easement? Yes.						
Are site records complete a	nd up-to-date?	Yes.				
Are the implemented Engi requirements of the SMP?	neering Controls Yes.	(SSDS) opera	ating in	complia	nce with	າ the
SSDS Pressure Differential	Readings:					
SSDS-1: 1.0"						
SSDS-2: 1.0"						
SSDS-3: 1.5"						
SSDS-4: 1.0"						
Deficiencies Observed / Co	rrective Actions R	equired: <u>None</u>).			

Notes: <u>EA re-sampled the indoor air at the 'IA-6 (121120) and IA-6 (021821)' sample location due to an elevated TCE reading at 2.96 ug/m3 was recorded during both the previous sample events.</u> Ambient Indoor air was 0.0ppm throughout the site.



Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use;
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

ł

AIR/VAPOR SAMPLING FIELD DATA SHEET

Client: <u>RUM Leasing</u>	Project No.:00 (0 /
Client: <u>R&M Leasing</u> Site Name & Address: <u>155 chandler st.</u>	Suffalo, NY
Person(s) Performing Sampling: Eric Betzol.	d
Sample Identification: <u>IA-6 (03</u> 3121)	
Sample Type: 🕅 Indoor Air (ambient) 🛛 Outdoor Air 🖂	
Date of Collection: 3/31/2021 Setup Time: 7	:40 an Stop Time: 3:40 Pm
Sample Depth:	
Sample Height:5 `	
Sampling Method(s) & Device(s): 2.7 L Summe	Carister & Regulator
Purge Volume:	•
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable):2. 7	L Summa
Canister #3106 Regulator #	# 01473
Vacuum Pressure of Canister Prior to Sampling:	
Vacuum Pressure of Canister After Sampling:	-6.58" Hg
Temperature in Sampling Zone: 65°F	
Apparent Moisture Content of Sampling Zone:	l
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Handling &	A Delivery of Samples to Laboratory:
⊠Yes □No. If no, provide reason(s	s) why?
Laboratory Name: Alpha Analytica 1	
Analysis: To -15	
Commonts	
Comments: Ambrent Indoor Air : 0	2,1PPm
	<u></u>
Sampler's Signature	Date: 3/31/2021
	/

AIR/VAPOR SAMPLING FIELD DATA SHEET

Client: <u>RNM Leasing</u> Project No.: <u>DD/D/</u>
Client: <u>R&M Leasing</u> Project No.: <u>DOIDI</u> Site Name & Address: <u>155 chandler st. Buffalo, NY</u>
Person(s) Performing Sampling: Eric Betzold
Sample Identification:A-6 (033121) DuPlicate
Sample Type: 🕅 Indoor Air (ambient) 🗆 Outdoor Air 🔤 Soil Vapor 🔲 Sub-slab Vapor
Date of Collection: 3/31/2021 Setup Time: 7:40 and Stop Time: 3:40 pm
Sample Depth:
Sample Height:5
Sampling Method(s) & Device(s): 2.7 L Summa Canister & Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7L Summa
Canister # 2224 Regulator # 01685
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling: <u>- 8.24</u> "
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Xyes □No. If no, provide reason(s) why?
Laboratory Name: Alpha Analy tical
Analysis: To-15
Comments:
Comments. Ambrent Indoor Air: 0.1PPm
Sampler's Signature

APPENDIX C

TABLES

Table 1Indoor Air Analytical Testing Results155 Chandler Street, Buffalo, NYDecember 2020

	Guidance Valu	ies - Indoor Air]								
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Indoor Air Guideline	IA-1 (121120) Indoor Air	IA-2 (121120) Indoor Air	IA-3 (121120) Indoor Air	IA-3 (121120) Duplicate Indoor Air	IA-4 (121120) Indoor Air	IA-5 (121120) Indoor Air	IA-6 (121120) Indoor Air	OA-1 (121120) Outdoor Air	Table C2 Outdoor Air
SAMPLING DATE	Background	Value	12/11/2020	12/11/2020	12/11/2020	12/11/2020	12/11/2020	12/11/2020	12/11/2020	12/11/2020	Guidance Values
LAB SAMPLE ID	(90%)		L2055692-06	L2055692-07	L2055692-03	L2055692-04	L2055692-02	L2055692-01	L2055692-05	L2055692-08	
Volatile Organics in Air (ug/m ³)											
Acetone	98.9	NV	8.46 <mark>J</mark>	7.98 <mark>J</mark>	8.29 <mark>J</mark>	11.7 <mark>J</mark>	9.93 <mark>J</mark>	6.29 <mark>J</mark>	7.63 <mark>J</mark>	4.16 <mark>J</mark>	43.7
Benzene	9.4	NV	0.684	0.687	ND	0.642	ND	ND	ND	ND	6.6
Carbon disulfide	4.2	NV	ND	ND	1.36	1.94	ND	ND	ND	ND	3.7
Carbon tetrachloride*	<1.3	NV	0.522	0.516	0.43	0.453	0.384	0.415	0.528	0.4	0.7
Chloromethane	3.7	NV	1.07	1.07	1.02	1.06	1.04	1.01	1.01	0.95	3.7
cis-1,2-Dichloroethene*	<1.9	NV	ND	0.186	ND	ND	ND	ND	0.079	ND	<1.8
Dichlorodifluoromethane	16.5	NV	2.2	2.12	2.02	2.06	2.04	1.93	2.08	1.89	8.1
Ethanol	210	NV	230	215	590	803	1,330	3,050	228	ND	57
Ethyl acetate	5.4	NV	6.45	7.24	186	284	12.4	12.8	ND	ND	1.5
Ethylbenzene	5.7	NV	1.02	1.33	ND	ND	ND	ND	ND	ND	3.5
Hexane	NV	NV	1.34	1.32	ND	ND	0.839	ND	0.733	0.71	6.4
Isopropanol	NV	NV	6.02	5.6	6.83	9.88	7.18	4.42	2.11	ND	NV
m&p-Xylene	22.2	NV	4.34	4.18	2.3	2.82	2.39	1.82	ND	ND	12.8
Methyl Ethyl Ketone (2-butanone)	12	NV	ND	ND	ND	1.58	ND	ND	ND	ND	11.3
o-Xylene	7.9	NV	1.83	1.47	ND	0.947	ND	ND	ND	ND	4.6
Tetrachloroethene	15.9	30	0.427	1	ND	ND	0.156	0.183	0.285	ND	6.5
Toluene	43	NV	1.49	1.43	1.41	1.58	1.15	1.01	1.25	0.81	33.7
trans-1,2-Dichloroethene	NV	NV	ND	ND	ND	ND	0.932	1.67	ND	ND	NV
Trichloroethene*	4.2	2	0.801	0.79	ND	0.145	0.478	0.715	2.96	ND	1.3
Trichlorofluoromethane	18.1	NV	1.19	1.15	ND	1.15	ND	ND	1.14	ND	4.3

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

3. Results present in ug/m³ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) databaseAppendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.

6. Air Guidance Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health, updated September 2013 and August 2015.

7. Green shaded values represent exceedance of table C2 guidance values; yellow shaded values represent exceedance of NYSDOH Air Guidance Values.

8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value. R= sample was diluted and re-analyzed due to unquantifable result.

9. ND = Non Detect; NV = No Value.

Table 2 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY February 2021 Resample

	Guidance Valu	ues - Indoor Air		
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-6 (021821) Indoor Air	IA-6 (021821) Duplicate Indoor Air
SAMPLING DATE	Background	Value	2/18/2021	2/18/2021
LAB SAMPLE ID	(90%)		L2108109-01	L2108109-02
Volatile Organics in Air (ug/m ³)				
1,2,4-Trimethylbenzene	9.5	NV	ND	1.20
2,2,4-trimethylpentane	NV	NV	ND	0.943
Acetone	98.9	NV	3.99 <mark>J</mark>	2.85 <mark>J</mark>
Benzene	9.4	NV	1.12	1.13
Carbon tetrachloride*	<1.3	NV	0.434	0.465
Chloromethane	3.7	NV	0.898	0.944
Cyclohexane	NV	NV	ND	0.688
Dichlorodifluoromethane	16.5	NV	1.99	2.02
Ethanol	210	NV	105	104
Ethyl acetate	5.4	NV	2.79	2.56
Ethylbenzene	5.7	NV	1.62	1.73
Heptane	NV	NV	0.971	1.08
Hexane	NV	NV	3.3	3.41
Isopropanol	NV	NV	1.83 <mark>J</mark>	1.93 <mark>J</mark>
m&p-Xylene	22.2	NV	6.91	7.6
Methyl Ethyl Ketone (2-butanone)	12	NV	1.87	1.67
o-Xylene	7.9	NV	2.08	2.3
Tetrachloroethene*	15.9	30	0.17	0.21
Toluene	43	NV	3.72	4.07
Trichloroethene*	4.2	2	2.96	2.93

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

3. Results present in ug/m³ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.

6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.

7. Green shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values.

8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

9. ND = Non Detect; NV = No Value.

Table 3 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY March 2021 Resample

	Guidance Valu	ies - Indoor Air				
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-6 (033121) Indoor Air	IA-6 (033121) Duplicate Indoor Air		
SAMPLING DATE	Background	Value	3/31/2021	3/31/2021		
LAB SAMPLE ID	(90%)		L2108109-01	L2108109-02		
Volatile Organics in Air (ug/m ³)						
2,2,4-trimethylpentane	NV	NV	1.36	1.29		
Acetone	98.9	NV	21.3 <mark>J</mark>	20.3 <mark>J</mark>		
Benzene	9.4	NV	1.30	1.25		
Carbon tetrachloride*	<1.3	NV	0.528	0.535		
Chloromethane	3.7	NV	1.08	1.04		
cis-1,2-Dichloroethene*	<1.9	NV	0.095	0.091		
Cyclohexane	NV	NV	1.16	1.13		
Dichlorodifluoromethane	16.5	NV	2.12	2.16		
Ethanol	210	NV	194	220		
Ethylbenzene	5.7	NV	1.15	1.09		
Heptane	NV	NV	2.45	2.28		
Hexane	NV	NV	5.08	4.79		
Isopropanol	NV	NV	79.2	79.2		
m&p-Xylene	22.2	NV	4.39	4.26		
Methyl Ethyl Ketone (2-butanone)	12	NV	1.67	1.58		
o-Xylene	7.9	NV	1.49	1.45		
Tetrachloroethene*	15.9	30	0.353	0.319		
Tetrahydrofuran	NV	NV	1.86	1.55		
Toluene	43	NV	6.93	6.59		
Trichloroethene*	4.2	2	14.0	13.6		
Trichlorofluoromethane	18.1	NV	1.15	ND		

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

3. Results present in ug/m³ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.

6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.

7. Green shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values.

8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

9. ND = Non Detect; NV = No Value.

Table 4 Indoor Air Analytical Testing Results Comparison for IA-6 155 & 157 Chandler Street, Buffalo, NY December 2018 through March 2021

_	Guidance Valu	es - Indoor Air		IA	-1			IA-2			IA	-3				A-4					IA-5								IA-6						OA-1		
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-1 Indoor Air	IA-1 (121219) Indoor Air	IA-1 (121219) Duplicate Indoor Air	IA-1 (121120) Indoor Air	IA-2 Indoor Air	IA-2 (121219) Indoor Air) IA-2 (121120) Indoor Air	IA-3 Indoor Air	IA-3 (121219) Indoor Air	IA-3 (121120) Indoor Air	IA-3 (121120) Duplicate Indoor Air	IA-4 Indoor Air	IA-4 Duplicate Indoor Air	IA-4 (121219) Indoor Air	IA-4 (121120) Indoor Air	IA-5 Indoor Air	IA-5 (0219) Indoor Air	IA-5 (0219) Duplicate Indoor Air	IA-5 (0619) Indoor Air	IA-5 (0619) Duplicate Indoor Air		IA-5 (121120) Indoor Air	IA-6 Indoor Air	IA-6 (121219) Indoor Air	IA-6 (022020) Indoor Air	IA-6 (022020) Duplicate Indoor Air	IA-6 (121120) Indoor Air	IA-6 (021821) Indoor Air	IA-6 (021821) Duplicate Indoor Air	IA-6 (033121) Indoor Air	IA-6 (033121) Duplicate Indoor Air	OA-1 Outdoor Air	OA-1 (121219) Outdoor Air		Table C2 Outdoor Air Guidance
SAMPLING DATE	Background (90%)	Value	12/18/2018	12/12/2019	12/12/2019	12/11/2020	12/18/2018	12/12/2019	12/11/2020	12/18/2018	12/12/2019	12/11/2020	12/11/2020	12/18/2018	12/18/2018	12/12/2019	12/11/2020	12/18/2018	2/13/2019	2/13/2019	6/21/2019	6/21/2019	12/12/2019	12/11/2020	12/18/2018	12/12/2019	2/20/2020	2/20/2020	12/11/2020	2/18/2021	2/18/2021	3/31/2021	3/31/2021	12/18/2018	12/12/2019	12/11/2020	Values
LAB SAMPLE ID	(90%)		L1852191-06	L1959919-06	L1959919-07	L2055692-06	L1852191-07	L1959919-08	L2055692-07	L1852191-02	L1959919-04	L2055692-03	L2055692-04	L1852191-03	L1852191-04	L1959919-03	L2055692-02	L1852191-01	L1905849-01	L1905849-02	L1927357-01	L1927357-02	L1959919-02	L2055692-01	L1852191-05	L1959919-05	L2007739-01	L2007739-02	L2055692-05	L2108109-01	L2108109-02	L2108109-01	L2108109-01	L1852191-08	L1959919-01	L2055692-08	
Volatile Organics in Air (ug/m ³)																																					
1,2,4-Trichlorobenzene	<6.8	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98	ND	ND	<6.4
1,2,4-Trimethylbenzene	9.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.09	1.24	ND	ND	1.20	ND	ND	ND	ND	ND	5.8
1,2-Dichloroethane	<0.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.163	0.127	0.139	ND	ND	ND	ND	0.103	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.8
2,2,4-trimethylpentane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.943	1.36	1.29	ND	ND	ND	NV
Acetone	98.9	NV	14.4	11.9	11.8 J	8.46 J	14.6	12.4	7.98 J	21.1	13.3	8.29 J	11.7 J	24.7	24	8.20	9.93 J	46.3	33.5 J	36.3 J	38 J	40.4 J	9.45	6.29 J	5.3	8.69	165	187	7.63 J	3.99 J	2.85 J	21.3 J	20.3 J	4.39	3.44	4.16 J	43.7
Benzene	9.4	NV	ND	0.744	0.824 J	0.684	ND	0.764	0.687	ND	0.652	ND	0.642	ND	ND	0.684	ND	ND	ND	ND	ND	0.866	0.741	ND	ND	0.655	ND	ND	ND	1.12	1.13	1.30	1.25	ND	ND	ND	6.6
Carbon disulfide	4.2	NV	ND	ND	ND	ND	ND	ND	ND	2.24	1.35	1.36	1.94	ND	ND	ND	ND	ND	ND	ND	0.673	0.704	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7
Carbon tetrachloride*	<1.3	NV	0.591	0.579	0.572 J	0.522	0.566	0.598	0.516	0.541	0.491	0.428	0.453	0.711	0.723	0.516	0.384	2.31	1.09	1.05	0.591	0.598	0.547	0.415	0.598	2.26	0.434	0.453	0.528	0.434	0.465	0.528	0.535	0.459	0.484	0.403	0.7
Chloromethane	3.7	NV	1.25	1.19	1.16 J	1.07	1.14	1.22	1.07	2.24	1.18	1.02	1.06	2.95	1.13	1.11	1.04	1.13	0.96	1.01	1.43	1.40	1.23	1.01	1.06	1.09	0.956	0.921	1.01	0.898	0.944	1.08	1.04	1.13	1.11	0.952	3.7
cis-1,2-Dichloroethene*	<1.9	NV	ND	ND	ND	ND	ND	ND	0.186	ND	ND	ND	ND	ND	ND	ND	ND	0.163	0.127	0.139	ND	ND	ND	ND	0.103	0.270	0.095	0.119	0.079	ND	ND	0.095	0.091	ND	ND	ND	<1.8
Cyclohexane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	0.688	1.16	1.13	ND	ND	ND	NV
Dichlorodifluoromethane	16.5	NV	1.63	2.59	2.59 J	2.20	1.68	2.70	2.12	2.4	2.58	2.02	2.06	1.78	1.66	2.57	2.04	1.61	2.44	2.49	2.69	2.53	2.63	1.93	2.49	2.66	1.86	1.93	2.08	1.99	2.02	2.12	2.16	1.39	2.55	1.89	8.1
Ethanol	210	NV	155	298	352 J	230	207	224	215	307	931	590	803	148	144	392	1,330	910	298	315	675	667	63.3	3,050	40.1	194	111	129	228	105	104	194	220	ND	ND	ND	57
Ethyl acetate	5.4	NV	ND	6.85	7.03 J	6.45	ND	9.30	7.24	26.5	231	186	284	3.29	3.33	60.5	12.4	15.9	3.2	3.28	5.19	6.45	ND	12.8	ND	2.01	ND	ND	ND	2.79	2.56	ND	ND	ND	ND	ND	1.5
Ethylbenzene	5.7	NV	2.49	0.869	0.873 J	1.02	2.32	0.877	1.33	2.76	ND	ND	ND	2.79	2.82	ND	ND	4.73	2	2.03	8.38	8.69	0.986	ND	ND	ND	5.52	5.86	ND	1.62	1.73	1.15	1.09	ND	ND	ND	3.5
Heptane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.906	1.22	ND	ND	ND	ND	ND	ND	ND	0.971	1.08	2.45	2.28	ND	ND	ND	NV
Hexane	NV	NV	ND	0.888	0.962 J	1.34	ND	1.01	1.32	0.811	ND	ND	ND	1.26	1.32	ND	0.839	6.87	2.55	2.81	2.49	4.79	0.807	ND	ND	ND	ND	ND	0.733	3.30	3.41	5.08	4.79	ND	ND	0.705	6.4
Isopropanol	NV	NV	11.9	3.52	3.39 J	6.02	11.3	3.17	5.60	32.4	2.65	6.83	9.88	99.6	97.8	2.48	7.18	873	215	228	1230	1170	4.77	4.42	ND	9.24	5.21	5.19	2.11	1.83 J	1.93 J	79.2	79.2	ND	ND	ND	NV
m&p-Xylene	22.2	NV	9.56	3.36	3.33 J	4.34	9.38	3.32	4.18	10.6	1.74	2.30	2.82	10.6	10.3	ND	2.39	19	8.17	8.17	36.7	36.2	3.82	1.82	ND	ND	18.0	19.3	ND	6.91	7.60	4.39	4.26	ND	ND	ND	12.8
Methyl Ethyl Ketone (2-Butanone)	12	NV	ND	ND	ND	ND	ND	ND	ND	ND	4.28	ND	1.58	ND	ND	1.64	ND	4.63	5.66	6.16	2.56	2.70	ND	ND	ND	1.62	ND	ND	ND	1.87	1.67	1.67	1.58	ND	ND	ND	11.3
Methyl Isobutyl Ketone	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	19.8 ND	4.51	4.39	5.12 ND	5.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Methylene chloride	10	60	ND	ND	ND	ND	ND	ND	ND	IND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	IND	2.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	IND	ND	ND	6.1
o-Xylene	7.9	NV	3.12	1.22	1.29 J	1.83	3.09	1.22	1.47	2.86	ND	ND	0.947	3.14	3.24	ND	ND	5.56	2.4	2.44	12.2	12.2	1.20	ND	ND	ND	5.21	5.60	ND	2.08	2.30	1.49	1.45	ND	ND	ND	4.6
Styrene	1.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.932	ND	ND	2.18	2.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3
Tetrachloroethene*	15.9	30	0.753	0.651	0.387 J	0.427	0.685	0.346	1.00	0.332	0.488	ND	ND	0.922	0.882	ND	0.156	1.3	0.353	0.319	0.203	0.292	0.271	0.183	0.529	0.448	0.305	0.292	0.285	0.170	0.210	0.353	0.319	ND	ND	ND	6.5
Tetrahydrofuran	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.86	1.55	ND	ND	ND	NV
Toluene	43	NV	4.07	1.53	1.76 J	1.49	1.21	1.57	1.43	1.16	1.38	1.41	1.58	4.26	5.8	1.30	1.15	7.65	5.35	5.39	5.39	8.63	2.58	1.01	ND	1.82	1.17	1.06	1.25	3.72	4.07	6.93	6.59	ND	0.855 ND	0.806	33.7
trans-1,2-Dichloroethene	NV	NV	0.849	ND 0.833	ND	ND	ND 0 700	ND	ND	ND 0.100	ND	ND	ND	ND	ND	ND	0.932	1.44	2.36	2.5	0.15	5.95	1.10	1.67	UND	UND 10.0	UNI	UND	UNID	UND	UND	IND	IND 100	ND	ND	UND	1.0
Trichloroethene*	4.2	2	0.849	0.833	U.844 J	0.801	0.736	0.742	0.790	0.489	ND 4.07	ND	0.145	1.34	1.37	ND	0.478	9.46	4.54	4.58	0.903	0.833	0.688	0.715	0.924	12.0	1.34	1.43	2.96	2.96	2.93	14.0	13.6	ND	ND 4.04	ND	1.3
Trichlorofluoromethane	18.1	١NV	1.33	1.25	1.29 J	1.19	1.3	1.29	1.15	1.12	1.27	1.15	ND	1.28	1.25	1.25	ND	1.25	ND	ND	1.41	1.49	1.32	ND	1.26	1.31	IND	UNI	1.14	ND	IND	1.15	IND	1.16	1.24	UNI	4.3

 Notes:

 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

 3. Results creater in uum¹ or microarem per cubic meter.

 3. Samples were collected during a 8-hor sample duration.

 5. Solb percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.

 6. Air Guidance Values form "Guidance for Evaluating Sol Vapor Intrusion in the State of New York' dated Coblez 2006, prepared by NYSDOH.

 7. Bue shading represents the samples most previous) collected during the 2018-2020 FRR Reporting Period.

 8. Origin prepares the samples collected during the 2020-2021 PRR Reporting Period.

 9. Grey shaded values trapescent exceedance of table C2 guidance values, reliaves values.

 10. ND = Non Detect: NV = No Value.

 11. Outsilifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

 12. Red values represent updated values based on data validation.

Table 5 Groundwater Analytical Testing Results 155-157 Chandler Street, Buffalo, NY December 2020

LOCATION	NY-TOGS-GA	MW-3 (121020)	MW-3 (121020) DUPLICATE		
SAMPLE DATE	NT-1003-0A	12/10/2020	12/10/2020		
LAB SAMPLE ID		L2055160-01	L2055160-02		
Volatiles 8260C Analysis (ug/L)					
Acetone	50	2.4 JH	2.6 <mark>J</mark>		
2-butanone	50	ND	ND		
Benzene	1	0.35 J	0.39 J		
Carbon disulfide	NV	ND	ND		
Cyclohexane	NV	ND	ND		
cis-1,2-dichloroethene	5	ND	ND		
Methyl cyclohexane	NV	ND	ND		
Trichloroethene	5	ND	ND		

Notes:

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
- 2. ug/L = parts per billion (ppb).
- 3. ND = not detected; NV = no value
- 4. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1)
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL). H = The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- 6. Blue shaded values represent exceedance of NYSDEC Class GA criteria.
- 7. Red values represent updated values based on data validation.

Table 6 Groundwater Analytical Testing Results 155-157 Chandler Street, Buffalo, NY July 2017 through December 2020

		Remedial II	nvestigation				Site Manag	ement Plan			
LOCATION	GA	SB126 / MW-3	SB126 / MW-3	MW-3	MW-3 (Duplicate)	MW-3 (062119)	MW-3 (062119) (Duplicate)	MW-3 (121019)	MW-3 (121019) (Duplicate)	MW-3 (121020)	MW-3 (121020) (Duplicate)
SAMPLE DATE	GA	7/27/2017	10/19/2017	1/14/2019	1/14/2019	06/21/19	06/21/19	12/10/19	12/10/19	12/10/20	12/10/20
LAB SAMPLE ID		L1726029	L1738023	L1901687-03	L1901687-04	L1927255-03	L1927255-04	L1959098-03	L1959098-04	L2055160-01	L2055160-02
Volatiles 8260C Analys	sis (ug/L)										
Acetone	50	24 J	88 J	ND	ND	ND	ND	ND	ND	2.4 <mark>JH</mark>	2.6 <mark>J</mark>
2-butanone	50	7.5	130 J	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	2.2	1.2	0.29 J	0.35 J	ND	ND	0.26 J	0.28 J	0.35 J	0.39 J
Carbon disulfide	NV	1.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NV	0.64 J	0.47 J	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	5	ND	3.0	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	NV	0.82 J	0.67 J	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	11 J	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.

2. ug/L = parts per billion (ppb).

3. ND = not detected; NV = no value

4. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1)

5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL). H = The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

6. Blue shaded values represent exceedance of NYSDEC Class GA criteria.

APPENDIX D

LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number:	L2055692
Client:	Environmental Advantage, Inc.
	3636 North Buffalo Road
	Orchard Park, NY 14127
ATTN:	Eric Betzold
Phone:	(716) 667-3130
Project Name:	CY2020 ANNUAL SMP INDOOR AIR
Project Number:	01101
Report Date:	12/18/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:CY2020 ANNUAL SMP INDOOR AIRProject Number:01101

Lab Number:	L2055692
Report Date:	12/18/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2055692-01	IA-5 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:20	12/11/20
L2055692-02	IA-4 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:30	12/11/20
L2055692-03	IA-3 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:35	12/11/20
L2055692-04	IA-3 (121120) DUP	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:35	12/11/20
L2055692-05	IA-6 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:45	12/11/20
L2055692-06	IA-1 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:50	12/11/20
L2055692-07	IA-2 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 15:55	12/11/20
L2055692-08	OA-1 (121120)	AIR	155 CHANDLER ST. BUFFALO, NY	12/11/20 16:00	12/11/20

Project Name: CY2020 ANNUAL SMP INDOOR AIR Project Number: 01101

Lab Number: L2055692 Report Date: 12/18/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: CY2020 ANNUAL SMP INDOOR AIR Project Number: 01101

Lab Number: L2055692 **Report Date:** 12/18/20

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 8, 2020. The canister certification results are provided as an addendum.

L2055692-01,02: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2055692-01,02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

WG1446363-3: The LCS recovery for 1,2,4-trichlorobenzene (133%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

Sample Receipt

Although the CoC indicates the samples were released to the Alpha courier at 1555 hours the final sample was collected at 1600 hours and the client confirmed that the transfer of samples to the Alpha courier was actually a minute or so after 1600 hours.

The canister ID number for the sample designated OA-1 (121120) (L2055692-08) is listed on the CoC as 3406 but should be 3405.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

felly Mell Kelly O'Neill

Title: Technical Director/Representative

Date: 12/18/20

AIR

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-01	Date Collected:	12/11/20 15:20
Client ID:	IA-5 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.390	0.200		1.93	0.989			1
Chloromethane	0.487	0.200		1.01	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	978	5.00		1840	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.65	1.00		6.29	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	1.80	0.500		4.42	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	0.421	0.200		1.67	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	3.55	0.500		12.8	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-01
Client ID:	IA-5 (121120)
Sample Location:	155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:20Date Received:12/11/20Field Prep:Not Specified

Sample Depth:	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.267	0.200		1.01	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	0.420	0.400		1.82	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-01	Date Collected:	12/11/20 15:20
Client ID:	IA-5 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-01	Date Collected:	12/11/20 15:20
Client ID: Sample Location:	IA-5 (121120) 155 CHANDLER ST. BUFFALO. NY	Date Received: Field Prep:	12/11/20 Not Specified
		Field Fiep.	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 20:24
Analyst:	TS

		ppbV		ug/m3				Dilutior
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.066	0.020		0.415	0.126			1
Trichloroethene	0.133	0.020		0.715	0.107			1
Tetrachloroethene	0.027	0.020		0.183	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	93		60-140

Project Name: Project Number:	CY2020 ANNUA 01101	L SMP IND	OOR AIR				Number ort Date	- L/	2055692 2/18/20
			SAMPL	E RESUL	TS				
Lab ID: Client ID: Sample Location:	L2055692-01 IA-5 (121120) 155 CHANDLE	D R ST. BUFF	FALO, NY				Collecte Receive Prep:	ed: 12/1	1/20 15:20 1/20 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 12/18/20 09:10 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Parameter	Results	RL	MDL	Results	RL	MDL	Quaimer	
Volatile Organics in Air - Mansfield La	ab							
Ethanol	1620	25.0		3050	47.1			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	78		60-140
Bromochloromethane	79		60-140
chlorobenzene-d5	82		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-02	Date Collected:	12/11/20 15:30
	IA-4 (121120)	Date Received:	12/11/20
	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Air
48,TO-15
12/17/20 21:48
TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.412	0.200		2.04	0.989			1
Chloromethane	0.506	0.200		1.04	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	512	5.00		965	9.42		Е	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.18	1.00		9.93	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.92	0.500		7.18	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	0.235	0.200		0.932	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	3.43	0.500		12.4	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-02
Client ID:	IA-4 (121120)
Sample Location:	155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:30Date Received:12/11/20Field Prep:Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.238	0.200		0.839	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.304	0.200		1.15	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	0.551	0.400		2.39	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-02	Date Collected:	12/11/20 15:30
Client ID:	IA-4 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	93		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-02	Date Collected:	12/11/20 15:30
Client ID: Sample Location:	IA-4 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	12/11/20 Not Specified
	,	Tield Fiep.	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 21:48
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.061	0.020		0.384	0.126			1
Trichloroethene	0.089	0.020		0.478	0.107			1
Tetrachloroethene	0.023	0.020		0.156	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	92		60-140

Project Name: Project Number:	CY2020 ANNUAL SMP INDOOR AIR 01101				lumber: rt Date:		2055692 2/18/20		
			SAMPL	E RESUL	TS				
Lab ID: Client ID: Sample Location:	L2055692-02 IA-4 (121120) 155 CHANDLEI	D R ST. BUFF	FALO, NY				Collected: Received: Prep:	12/1	1/20 15:30 1/20 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 12/18/20 09:50 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL C	Qualifier	Factor

	Results				
Volatile Organics in Air - Mansf	eld Lab				
Ethanol	706	12.5	 1330	23.6	 2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		60-140
Bromochloromethane	80		60-140
chlorobenzene-d5	84		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-03	Date Collected:	12/11/20 15:35
Client ID: Sample Location:	IA-3 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	12/11/20 Not Specified
		•	•

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/17/20 22:29
Analyst:	TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	0.408	0.200		2.02	0.989			1
Chloromethane	0.492	0.200		1.02	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	313	5.00		590	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.49	1.00		8.29	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.78	0.500		6.83	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.438	0.200		1.36	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	51.7	0.500		186	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-03
Client ID:	IA-3 (121120)
Sample Location:	155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:35Date Received:12/11/20Field Prep:Not Specified

Sample Depth:		ppbV		ug/m3			Dilutio	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.374	0.200		1.41	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	0.530	0.400		2.30	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
I,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-03	Date Collected:	12/11/20 15:35
Client ID:	IA-3 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	93		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-03	Date Collected:	12/11/20 15:35
Client ID: Sample Location:	IA-3 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received:	
Campie Ecoation.		Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 22:29
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.068	0.020		0.428	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	91		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-04	Date Collected:	12/11/20 15:35
Client ID:	IA-3 (121120) DUP	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/17/20 23:11
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.416	0.200		2.06	0.989			1
Chloromethane	0.512	0.200		1.06	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	426	5.00		803	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.94	1.00		11.7	2.38			1
Trichlorofluoromethane	0.204	0.200		1.15	1.12			1
Isopropanol	4.02	0.500		9.88	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.622	0.200		1.94	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.536	0.500		1.58	1.47			1
Ethyl Acetate	78.8	0.500		284	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID: L2055692-04 Date Collected: 12/11/20 15:35 Client ID: IA-3 (121120) DUP Date Received: 12/11/20 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL		Results	RL	RL MDL		Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.201	0.200		0.642	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.420	0.200		1.58	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	0.650	0.400		2.82	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
p-Xylene	0.218	0.200		0.947	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-04	Date Collected:	12/11/20 15:35
Client ID:	IA-3 (121120) DUP	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	93		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-04	Date Collected:	12/11/20 15:35
Client ID: Sample Location:	IA-3 (121120) DUP 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	
		riold riop.	net opeenied

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 23:11
Analyst:	TS

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	insfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	0.027	0.020		0.145	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	91		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-05	Date Collected:	12/11/20 15:45
Client ID: Sample Location:	IA-6 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	12/11/20 Not Specified
			•

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/17/20 23:53
Analyst:	TS

	ррьV			ug/m3				Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.420	0.200		2.08	0.989			1
Chloromethane	0.491	0.200		1.01	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	121	5.00		228	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.21	1.00		7.63	2.38			1
Trichlorofluoromethane	0.203	0.200		1.14	1.12			1
Isopropanol	0.859	0.500		2.11	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID: L2055692-05 Client ID: IA-6 (121120) Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:45Date Received:12/11/20Field Prep:Not Specified

Sample Depth:		ppbV			ug/m3			Dilutio	
Parameter	Results	RL MDL		Results RL MD		MDL	Qualifier	Factor	
Volatile Organics in Air - Man	sfield Lab								
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	0.208	0.200		0.733	0.705			1	
Benzene	ND	0.200		ND	0.639			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	0.331	0.200		1.25	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
p/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-05	Date Collected:	12/11/20 15:45
Client ID:	IA-6 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	92		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-05	Date Collected:	12/11/20 15:45
Client ID:	IA-6 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 23:53
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	N - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.020	0.020		0.079	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.084	0.020		0.528	0.126			1
Trichloroethene	0.551	0.020		2.96	0.107			1
Tetrachloroethene	0.042	0.020		0.285	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	91		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-06	Date Collected:	12/11/20 15:50
Client ID: Sample Location:	IA-1 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	12/11/20 Not Specified
		•	•

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/18/20 00:38
Analyst:	TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	0.445	0.200		2.20	0.989			1
Chloromethane	0.517	0.200		1.07	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	122	5.00		230	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.56	1.00		8.46	2.38			1
Trichlorofluoromethane	0.211	0.200		1.19	1.12			1
Isopropanol	2.45	0.500		6.02	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	1.79	0.500		6.45	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-06
Client ID:	IA-1 (121120)
Sample Location:	155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:50Date Received:12/11/20Field Prep:Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.381	0.200		1.34	0.705			1
Benzene	0.214	0.200		0.684	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.395	0.200		1.49	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.234	0.200		1.02	0.869			1
p/m-Xylene	1.00	0.400		4.34	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.422	0.200		1.83	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-06	Date Collected:	12/11/20 15:50
Client ID:	IA-1 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	81		60-140
Bromochloromethane	83		60-140
chlorobenzene-d5	89		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-06	Date Collected:	12/11/20 15:50
Client ID: Sample Location:	IA-1 (121120)	Date Received:	
Sample Location.	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/18/20 00:38
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.083	0.020		0.522	0.126			1
Trichloroethene	0.149	0.020		0.801	0.107			1
Tetrachloroethene	0.063	0.020		0.427	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	77		60-140
bromochloromethane	81		60-140
chlorobenzene-d5	87		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-07	Date Collected:	12/11/20 15:55
Client ID:	IA-2 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/18/20 01:20
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.429	0.200		2.12	0.989			1
Chloromethane	0.520	0.200		1.07	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	114	5.00		215	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.36	1.00		7.98	2.38			1
Trichlorofluoromethane	0.205	0.200		1.15	1.12			1
Isopropanol	2.28	0.500		5.60	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	2.01	0.500		7.24	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-07
Client ID:	IA-2 (121120)
Sample Location:	155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 15:55Date Received:12/11/20Field Prep:Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.375	0.200		1.32	0.705			1
Benzene	0.215	0.200		0.687	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.380	0.200		1.43	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.306	0.200		1.33	0.869			1
p/m-Xylene	0.963	0.400		4.18	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.338	0.200		1.47	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
I,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-07	Date Collected:	12/11/20 15:55
Client ID:	IA-2 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	85		60-140
chlorobenzene-d5	90		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-07	Date Collected:	12/11/20 15:55
Client ID: Sample Location:	IA-2 (121120) 155 CHANDLER ST. BUFFALO, NY	Date Received: Field Prep:	
•		Tield Tiep.	Not opcomed

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/18/20 01:20
Analyst:	TS

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
0.047	0.020		0.186	0.079			1
ND	0.020		ND	0.109			1
0.082	0.020		0.516	0.126			1
0.147	0.020		0.790	0.107			1
0.148	0.020		1.00	0.136			1
	sfield Lab ND 0.047 ND 0.082 0.147	Results RL sfield Lab ND 0.020 ND 0.020 0.047 ND 0.020 0.047 ND 0.020 0.047 ND 0.020 0.047 ND 0.020 0.020 ND 0.020 0.020 0.082 0.020 0.020 0.147 0.020 0.020	Results RL MDL sfield Lab ND 0.020 ND 0.020 0.047 0.020 ND 0.020 0.047 0.020 0.082 0.020 0.147 0.020	Results RL MDL Results sfield Lab ND 0.020 ND ND 0.020 ND ND ND 0.020 ND ND 0.047 0.020 0.186 ND 0.020 ND 0.082 0.020 0.516 0.147 0.020 0.790	Results RL MDL Results RL sfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.047 0.020 0.186 0.079 ND 0.020 ND 0.109 0.082 0.020 0.516 0.126 0.147 0.020 0.790 0.107	Results RL MDL Results RL MDL sfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.047 0.020 0.186 0.079 ND 0.020 ND 0.109 0.047 0.020 ND 0.109 0.082 0.020 0.516 0.126 0.147 0.020 0.790 0.107	Results RL MDL Results RL MDL Qualifier sfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.047 0.020 0.186 0.079 ND 0.020 ND 0.109 0.047 0.020 ND 0.109 0.082 0.020 0.516 0.126 0.147 0.020 0.790 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	81		60-140
bromochloromethane	83		60-140
chlorobenzene-d5	89		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-08	Date Collected:	12/11/20 16:00
Client ID:	OA-1 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	12/17/20 19:42
Analyst:	TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.382	0.200		1.89	0.989			1
Chloromethane	0.461	0.200		0.952	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.75	1.00		4.16	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID: L2055692-08 Client ID: OA-1 (121120) Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:12/11/20 16:00Date Received:12/11/20Field Prep:Not Specified

Sample Depth:	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.200	0.200		0.705	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.214	0.200		0.806	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID:	L2055692-08	Date Collected:	12/11/20 16:00
Client ID:	OA-1 (121120)	Date Received:	12/11/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	90		60-140

Project Name:	CY2020 ANNUAL SMP INDOOR AIR	Lab Number:	L2055692
Project Number:	01101	Report Date:	12/18/20

Lab ID: L20	55692-08	Date Collected:	12/11/20 16:00
	-1 (121120)	Date Received:	12/11/20
	5 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	12/17/20 19:42
Analyst:	TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.064	0.020		0.403	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	89		60-140

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Lab Number: L2055692 Report Date: 12/18/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/17/20 18:19

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for samp	ole(s): 01-0	08 Batch:	WG14463	63-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

 Lab Number:
 L2055692

 Report Date:
 12/18/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/17/20 18:19

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for san	nple(s): 01-	08 Batch:	WG14463	863-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Lab Number: L2055692 Report Date: 12/18/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/17/20 18:19

		ppbV			ug/m3		-	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	08 Batch:	WG14463	363-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Number: L2055692 Report Date: 12/18/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 12/17/20 19:00

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab fo	or sample	(s): 01-08	Batch: W	G144636	64-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

 Lab Number:
 L2055692

 Report Date:
 12/18/20

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-08 Batch: WG1446363-3 Dichlorodifluoromethane 79 70-130 --Chloromethane 93 70-130 --Freon-114 86 70-130 --Vinyl chloride 80 70-130 --1,3-Butadiene 91 70-130 --Bromomethane 79 70-130 --Chloroethane 81 70-130 --Ethanol 73 40-160 --Vinyl bromide 89 70-130 _ -65 40-160 Acetone --Trichlorofluoromethane 77 70-130 --Isopropanol 72 40-160 --1,1-Dichloroethene 78 70-130 --70-130 Tertiary butyl Alcohol 74 --Methylene chloride 97 70-130 --3-Chloropropene 85 70-130 _ -Carbon disulfide 91 70-130 --Freon-113 70-130 106 -trans-1,2-Dichloroethene 70-130 78 --1,1-Dichloroethane 79 70-130 --Methyl tert butyl ether 88 70-130 --70-130 2-Butanone 90 -cis-1,2-Dichloroethene 79 70-130 --

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

 Lab Number:
 L2055692

 Report Date:
 12/18/20

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-08 Batch: WG1446363-3 Ethyl Acetate 82 70-130 --Chloroform 82 70-130 --Tetrahydrofuran 87 70-130 --1,2-Dichloroethane 71 70-130 -n-Hexane 92 70-130 --1,1,1-Trichloroethane 92 70-130 --92 70-130 Benzene --Carbon tetrachloride 88 70-130 --Cyclohexane 91 70-130 _ -94 70-130 1,2-Dichloropropane --Bromodichloromethane 93 70-130 --1,4-Dioxane 94 70-130 --Trichloroethene 99 70-130 --2,2,4-Trimethylpentane 70-130 94 --Heptane 106 70-130 -cis-1,3-Dichloropropene 103 70-130 --4-Methyl-2-pentanone 107 70-130 -trans-1,3-Dichloropropene 70-130 88 --1,1,2-Trichloroethane 70-130 104 --Toluene 100 70-130 --2-Hexanone 113 70-130 _ -Dibromochloromethane 110 70-130 --109 1,2-Dibromoethane 70-130 --

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

 Lab Number:
 L2055692

 Report Date:
 12/18/20

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-08 Batch: WG1446363-3 Tetrachloroethene 104 70-130 --104 70-130 Chlorobenzene --Ethylbenzene 105 70-130 -p/m-Xylene 106 70-130 --Bromoform 114 70-130 --Styrene 70-130 110 --1,1,2,2-Tetrachloroethane 109 70-130 -o-Xylene 109 70-130 --4-Ethyltoluene 108 70-130 --110 70-130 1,3,5-Trimethylbenzene --116 1,2,4-Trimethylbenzene 70-130 --Benzyl chloride 110 70-130 --1,3-Dichlorobenzene 115 70-130 --112 70-130 1,4-Dichlorobenzene --70-130 1,2-Dichlorobenzene 113 --Q 1,2,4-Trichlorobenzene 133 70-130 --Hexachlorobutadiene 124 70-130 --

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

 Lab Number:
 L2055692

 Report Date:
 12/18/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-08 Batch: WG	1446364-3					
Vinyl chloride	81		-		70-130	-		25	
1,1-Dichloroethene	78		-		70-130	-		25	
cis-1,2-Dichloroethene	79		-		70-130	-		25	
1,1,1-Trichloroethane	92		-		70-130	-		25	
Carbon tetrachloride	85		-		70-130	-		25	
Trichloroethene	100		-		70-130	-		25	
Tetrachloroethene	102		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: CY2020 ANNUAL SMP INDOOR AIR Project Number: 01101

Lab Number: L2055692 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield Lab 121120)	Associated sample(s): 01-08	QC Batch ID: WG14	146364-5	QC Sample:	L2055692-01	Client ID: IA-5
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Carbon tetrachloride	0.066	0.071	ppbV	7		25
Trichloroethene	0.133	0.143	ppbV	7		25
Tetrachloroethene	0.027	0.027	ppbV	0		25

Serial_No:12182016:36
Lab Number: L2055692

Report Date: 12/18/20

Project Number: 01101

Canister and Flow Controller Information

			Madia Tuna	Data	Pattla	Cleaning	Conlock	Initial Pressure	Pressure on Receipt	Flow	Flow Out	Elow In	
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	(in. Hg)	(in. Hg)	Leak Chk	mL/min	Flow In mL/min	
L2055692-01	IA-5 (121120)	01613	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.5	0
L2055692-01	IA-5 (121120)	3000	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.1	-5.8	-	-	-	-
L2055692-02	IA-4 (121120)	01706	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.3	5
L2055692-02	IA-4 (121120)	3100	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.0	-7.4	-	-	-	-
L2055692-03	IA-3 (121120)	01804	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.4	2
L2055692-03	IA-3 (121120)	179	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.1	-10.5	-	-	-	-
L2055692-04	IA-3 (121120) DUP	01606	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.3	5
L2055692-04	IA-3 (121120) DUP	2765	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.2	-8.2	-	-	-	-
L2055692-05	IA-6 (121120)	01500	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.3	5
L2055692-05	IA-6 (121120)	2278	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.0	-8.6	-	-	-	-
L2055692-06	IA-1 (121120)	01558	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.6	2
L2055692-06	IA-1 (121120)	2303	2.7L Can	12/08/20	337724	L2053956-06	Pass	-28.9	-11.6	-	-	-	-
L2055692-07	IA-2 (121120)	0804	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.3	5
L2055692-07	IA-2 (121120)	333	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.0	-8.3	-	-	-	-
L2055692-08	OA-1 (121120)	01650	Flow 4	12/08/20	337724		-	-	-	Pass	4.5	4.5	0

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Serial_No:12182016:36
Lab Number: L2055692

Report Date: 12/18/20

Canister and Flow Controller Information

Samplenun	n Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2055692-08	OA-1 (121120)	3405	2.7L Can	12/08/20	337724	L2053956-06	Pass	-29.0	-8.4	-	-	-	-

Report Date: Air Canister Certification Results Lab ID: L2053956-06 Date Collected: 12/04/20 08:00 Client ID: CAN 2689 SHELF 9 Date Received: 12/04/20 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 12/05/20 02:54 TS Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 ------Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 --Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 ---1.12 ---Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane 1 ND 0.200 ND 0.590 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1

Serial_No:12182016:36

L2053956

12/18/20

Lab Number:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Project Name:	BATCH CANISTER CERTIFICATION	L

Serial_No:12182016:36 ab Number: L2053956

Report Date: 12/18/20

Project Number: CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2053956-06	Date Collected:	12/04/20 08:00
Client ID:	CAN 2689 SHELF 9	Date Received:	12/04/20
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ррЬУ			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Xylenes, total	ND	0.600		ND	0.869			1
√inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
I,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number: L2053956 Report Date: 12/18/20

Serial_No:12182016:36

Air Canister Certification Results

Lab ID:	L2053956-06	Date Collected:	12/04/20 08:00
Client ID:	CAN 2689 SHELF 9	Date Received:	12/04/20
Sample Location:		Field Prep:	Not Specified

Sample Deptn:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	ND	0.200		ND	0.754			1
I,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

5
Lab

Serial_No:12182016:36 ab Number: L2053956

Report Date: 12/18/20

Air Canister Certification Results

Lab ID:	L2053956-06	Date Collected:	12/04/20 08:00
Client ID:	CAN 2689 SHELF 9	Date Received:	12/04/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfie	eld Lab								
o-Xylene	ND	0.200		ND	0.869			1	
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1	
Nonane	ND	0.200		ND	1.05			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
Bromobenzene	ND	0.200		ND	0.793			1	
2-Chlorotoluene	ND	0.200		ND	1.04			1	
n-Propylbenzene	ND	0.200		ND	0.983			1	
4-Chlorotoluene	ND	0.200		ND	1.04			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
ert-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Decane	ND	0.200		ND	1.16			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,3-Trimethylbenzene	ND	0.200		ND	0.983			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1	
Jndecane	ND	0.200		ND	1.28			1	
Dodecane	ND	0.200		ND	1.39			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Naphthalene	ND	0.200		ND	1.05			1	
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1	

							Serial	_No:121	82016:36
Project Name:	BATCH CANIST	ER CERTI	FICATION			La	b Num	ber:	L2053956
Project Number:	CANISTER QC	BAT				Re	eport D	ate:	12/18/20
		Air Can	ister Cei	rtificatior	n Results				
Lab ID: Client ID: Sample Location:	L2053956-06 CAN 2689 SHE	LF 9					Collecte Receive Prep:		12/04/20 08:00 12/04/20 Not Specified
Sample Depth:									
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
Hexachlorobutadiene		ND	0.200		ND	2.13			1
T		Re	sults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Cor	npounds								

% Recovery

85

88

87

Qualifier

Acceptance Criteria

60-140

60-140

60-140

No Tentatively Identified Compounds

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Air Canister Certification Results Lab ID: L2053956-06 Date Collected: 12/04/20 08:00 Client ID: CAN 2689 SHELF 9 Date Received: 12/04/20 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 12/05/20 02:54 тs Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane 0.200 ND ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 1 ND 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:12182016:36

L2053956

12/18/20

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Project Number: CANISTER QC BAT

Lab Number: L2053956 Report Date: 12/18/20

Serial_No:12182016:36

Air Canister Certification Results

Lab ID:	L2053956-06	Date Collected:	12/04/20 08:00
Client ID:	CAN 2689 SHELF 9	Date Received:	12/04/20
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilutior
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Fetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
I,4-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene								

		Serial_No:12	182016:36
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2053956
Project Number:	CANISTER QC BAT	Report Date:	12/18/20

Air Canister Certification Results

Lab ID:	L2053956-06	Date Collected:	12/04/20 08:00
Client ID:	CAN 2689 SHELF 9	Date Received:	12/04/20
Sample Location:		Field Prep:	Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL MDI		- Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	93		60-140		
bromochloromethane	96		60-140		
chlorobenzene-d5	98		60-140		

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
N/A	Present/Intact				

Container Information

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2055692-01A	Canister - 2.7 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)
L2055692-02A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2055692-03A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2055692-04A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2055692-05A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2055692-06A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2055692-07A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2055692-08A	Canister - 2.7 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Lab Number: L2055692

Report Date: 12/18/20

GLOSSARY

Acronyms

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Lab Number: L2055692 **Report Date:**

12/18/20

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:12182016:36

Project Name: CY2020 ANNUAL SMP INDOOR AIR

Project Number: 01101

Lab Number: L2055692

Report Date: 12/18/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:CY2020 ANNUAL SMP INDOOR AIRProject Number:01101

 Lab Number:
 L2055692

 Report Date:
 12/18/20

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

1000								I_No:12182016:36
	AIR A CHAIN OF CUSTOD Mansfield, MA 02048	ANALYSIS Project Informat		Cate Rec u m	Lab: 12/1	The state of the s	THE OWNER WHEN THE OWNER	ob#: L2055692
EL: 508-822-93	800 FAX: 508-822-3288	Project News Ch 12			and the second se	Deliverables	Billing Inf	
lient Informa	tion	Project Location	SSchardlerst. Bill	ADEx			Same as C	Client info PO #: 01/01
lient: Env Ad	vartage Inc	Project #01101	sschardlerst. Bill	alo, NY Criteria (Checker:			
dress: 363	N. BAGalord		11 411 1 5 0	(Default b) Other Fo	asad on Regulatory C rmats:	interia Indicated)		
rchadPa	KNY 14127	ALPHA Quote #:	Mark Hanne't Eric Be	Additional D	ndard pdf report)	Regulatory	y Requirements/Report Li
one: 716-0	667-3130	Turn-Around Tim	1e	_	Ant than Project Manager		State/Fed	Program Res / Co
716-6	667-3156				onn enan redject elanager	1		
ait mhannal	Dervadion tage.com	Standard D	RUSH (only continued if pre-approved)			_		
These samples h	nave been previously analyzed by Alph Specific Requirements/Con	Date Due:	Time:				ANAL	LYSIS
PHA Lab ID			Below Must	Be Fille	d Out		o SIM	
	Sample ID	End Date Start Time	ECTION	Sample Sampler		ID-Flow	P-H-d	/ /
ab Use Only)	IA-5(121120)	End Date Start Time	End Time Vacuum Vacuum		Size Can	ID-Flow 02	2 0 1 0 1	
ib Use Only)	IA-5(121120) IA-4 (121120)	12/11/2020 7:20 cm	3:20 Pm-29.51 -608	AA EB	Size Can 2:74 3010	01613 X	APH Fixed	Sample Comments (i.e. F
ib Use Only)	IA-5(121120) IA-4 (121120)	12/11/2020 7:2020 3 12/11/2020 7:2020 3	3:20Pm-29.51 -608 3:30Pm-29.46 -7.87	AA EB "AA EB	Size Can 2.74 3000 2.74 3100	01613 X 01706 X	APH.	0.0ppm D.0ppm
ib Use Only) 12 - 01 02	IA-5(121120) IA-4 (121120) IA-3(121120)	12/11/2020 7:2020 12/11/2020 7:30200 12/11/2020 7:30200 12/11/2020 7:3520 3	2:20 Pm-29.51 -608 3:20 Pm-29.51 -608 3:30 Pm-29.46 -7.87 3:35 Pm -29.46 -10.30	AA EB AA EB AA EB	Size Can 2:74 3010 2:74 3100 2:74 179	01613 X 01706 X 01804 X	APH.	0.0PPm 0.0PPm 0.0PPm
ib Use Only) 12 - 01 02 03	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120)	12/11/2020 7:20 and 3 12/11/2020 7:30am 12/11/2020 7:30am 12/11/2020 7:35em	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:32Pm-29.46 -7.87 3:35Pm -29.46 -10.30 3:35Pm -29.88 -8.25	AA EB AA EB AA EB AA EB	Size Can 2:74 3010 2:74 3100 2:74 179 2:72 2165	01613 X 01706 X 01804 X 01606 X	APH.	0.0ppm 0.0ppm
ab Use Only) 12 - 01 02 03 04 05	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) IA-6(121120)	12/11/2020 7:20 20 3 12/11/2020 7:30am 12/11/2020 7:30am 12/11/2020 7:35em 12/11/2020 7:35em 12/11/2020 7:45am	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:32Pm-29.46 -7.87 3:35Pm -29.46 -10.30 3:35Pm -29.98 -8.25 3:45Pm -29.12 -0.65"	AA EB AA EB AA EB AA EB AA EB	Size Can 2:74 3010 2:74 3100 2:74 179 2:74 2278 2:74 2278	01613 X 01706 X 01804 X 01606 X 01500 X	APH.	0.0PPm 0.0PPm 0.0PPm
ab Use Only) 71 - 01 02 03 04	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) DUP. IA-6(121120) IA-1(121120)	End Date Start Time 12/11/2020 7:20 and 12/11/2020 7:30 and 12/11/2020 7:35 and 12/11/2020 7:35 and 12/11/2020 7:35 and 12/11/2020 7:45 and 12/11/2020 7:45 and	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -10.30 3:35Pm -29.88 -8.25 3:45Pm -29.12 -0.65" 3:50Pm-29.51 -11.40	AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2:74 3000 2:74 3100 2:74 179 2:74 2165 2:74 2278 2:74 230	01613 X 01706 X 01804 X 01606 X 01500 X 31558 X	APH.	0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm
ab Use Only) 712 - 01 02 03 04 05 06	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) DUP. IA-6(121120) IA-1(121120) IA-2(121120)	End Date Start Time 12/11/2020 7:2020 7 12/11/2020 7:3020 12/11/2020 7:3520 12/11/2020 7:3520 12/11/2020 7:4520 12/11/2020 7:5020 12/11/2020 7:5500	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -1030 3:35Pm -29.98 -825 3:45Pm -29.12 -0.65" 3:50Pm-29.51 -11.40 3:55Pm -29.71 -9.03	AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2.74 3000 2.74 3000 2.74 179 2.74 2165 2.74 2278 2.74 230	01613 X 01706 X 01804 X 01606 X 01500 X 31558 X	APH.	0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm
ab Use Only) 912 - 61 02 03 04 05 06 07	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) DUP. IA-6(121120) IA-1(121120)	End Date Start Time 12/11/2020 7:2020 7 12/11/2020 7:3020 12/11/2020 7:3520 12/11/2020 7:3520 12/11/2020 7:4520 12/11/2020 7:5020 12/11/2020 7:5500	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -10.30 3:35Pm -29.88 -8.25 3:45Pm -29.12 -0.65" 3:50Pm-29.51 -11.40	AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2.74 3000 2.74 3000 2.74 179 2.74 2165 2.74 2278 2.74 230	01613 X 01706 X 01804 X 01606 X 01500 X 31558 X	APA.	0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm
ab Use Only) 92 - 61 02 03 04 05 06 07	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) DUP. IA-6(121120) IA-1(121120) IA-2(121120)	End Date Start Time 12/11/2020 7:2020 7 12/11/2020 7:3020 12/11/2020 7:3520 12/11/2020 7:3520 12/11/2020 7:4520 12/11/2020 7:5020 12/11/2020 7:5500	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -1030 3:35Pm -29.98 -825 3:45Pm -29.12 -0.65" 3:50Pm-29.51 -11.40 3:55Pm -29.71 -9.03	AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2.74 3000 2.74 3000 2.74 179 2.74 2165 2.74 2278 2.74 230	01613 X 01706 X 01804 X 01606 X 01500 X 31558 X	APPL -	0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm 0.0PPm
ab Use Only) 712 - 01 02 03 04 05 06 07 08 03	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) IA-6(121120) IA-1(121120) DA-1(121120)	End Date Start Time 12/11/2020 7:2020 7 12/11/2020 7:3020 12/11/2020 7:3520 12/11/2020 7:3520 12/11/2020 7:4520 12/11/2020 7:5020 12/11/2020 7:5500	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -1030 3:35Pm -29.98 -8.25 3:45Pm -29.12 -0.65" 3:50PM-29.51 -11.40 3:55Pm-29.51 -11.40 3:55Pm-29.55 -8.98	AA EB AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2.74 3000 2.74 3000 2.74 179 2.74 2165 2.74 2278 2.74 230	01613 X 01706 X 01804 X 01606 X 01500 X 31553 X 0804 X 1650 X		D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM
ab Use Only) Pt - cl 0t 07 04 05 06 07 03	IA-5(121120) IA-4 (121120) IA-3(121120) IA-3(121120) IA-3(121120) IA-6(121120) IA-1(121120) DA-1(121120)	End Date Start Time 12/11/2020 7:20 and 12/11/2020 7:30 and 12/11/2020 7:30 and 12/11/2020 7:35 and 12/11/2020 7:35 and 12/11/2020 7:35 and 12/11/2020 7:50 and 12/11/2020 7:55 and	End Time Vacuum Vacuum 3:20Pm-29.51 -608 3:30Pm-29.46 -7.87 3:35Pm -29.46 -1030 3:35Pm -29.98 -8.25 3:45Pm -29.12 -0.65" 3:50PM-29.51 -11.40 3:55Pm-29.51 -11.40 3:55Pm-29.55 -8.98	AA EB AA EB AA EB AA EB AA EB AA EB AA EB AA EB	Size Can 2:74 3000 2:74 3000 2:74 179 2:74 2165 2:74 2276 2:74 2305 2:74 333 2:74 333 2:74 34060 ontainer Type	01613 X 01706 X 01804 X 01606 X 01500 X 31553 X 0804 X 1650 X	2 14 12 13 14 1	D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM D.OPPM

ANALYTICAL REPORT

Lab Number:	L2055160
Client:	Environmental Advantage, Inc.
	3636 North Buffalo Road
	Orchard Park, NY 14127
ATTN:	Mark Hanna
Phone:	(716) 667-3130
Project Name:	CY2020 ANNUAL SMP GW SAMPLING
Project Number:	01101
Report Date:	12/21/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:CY2020 ANNUAL SMP GW SAMPLINGProject Number:01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2055160-01	MW-3 (121020)	WATER	155 CHANDLER ST. BUFFALO, NY	12/10/20 12:15	12/10/20
L2055160-02	MW-3 (121020) DUPLICATE	WATER	155 CHANDLER ST. BUFFALO, NY	12/10/20 12:15	12/10/20
L2055160-03	TRIP BLANK (121020)	WATER	155 CHANDLER ST. BUFFALO, NY	12/10/20 12:20	12/10/20
L2055160-04	RINSATE BLANK (121020)	WATER	155 CHANDLER ST. BUFFALO, NY	12/10/20 12:25	12/10/20

Project Name: CY2020 ANNUAL SMP GW SAMPLING Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:CY2020 ANNUAL SMP GW SAMPLINGProject Number:01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

nature: Michelle M. Morris

Title: Technical Director/Representative

Date: 12/21/20

ORGANICS

VOLATILES

		Serial_No	o:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID: Client ID:	L2055160-01 MW-3 (121020)	Date Collected: Date Received:	12/10/20 12:15 12/10/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 12/18/20 10:17 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	0.35	J	ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

		Serial_No	o:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID:	L2055160-01	Date Collected:	12/10/20 12:15
Client ID:	MW-3 (121020)	Date Received:	12/10/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	2.4	J	ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	97		70-130	

		Serial_No	p:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2055160-02 MW-3 (121020) DUPLICATE 155 CHANDLER ST. BUFFALO, NY	Date Collected: Date Received: Field Prep:	12/10/20 12:15 12/10/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 12/18/20 10:40 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	0.39	J	ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

		Serial_No	0:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID:	L2055160-02	Date Collected:	12/10/20 12:15
Client ID:	MW-3 (121020) DUPLICATE	Date Received:	12/10/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	2.6	J	ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	98		70-130	

		Serial_No	o:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2055160-03 TRIP BLANK (121020) 155 CHANDLER ST. BUFFALO, NY	Date Collected: Date Received: Field Prep:	12/10/20 12:20 12/10/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 12/18/20 11:27 PD		·

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID:	L2055160-03	Date Collected:	12/10/20 12:20
Client ID:	TRIP BLANK (121020)	Date Received:	12/10/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	98		70-130	

Serial_No:12212015:20

		Serial_No	p:12212015:20
Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2055160-04 RINSATE BLANK (121020) 155 CHANDLER ST. BUFFALO, NY	Date Collected: Date Received: Field Prep:	12/10/20 12:25 12/10/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 12/18/20 11:04 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	SAMPLE RESULTS		
Lab ID:	L2055160-04	Date Collected:	12/10/20 12:25
Client ID:	RINSATE BLANK (121020)	Date Received:	12/10/20
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	99		70-130	

Serial_No:12212015:20

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:12/18/20 08:46Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	01-04 Batch:	WG1446737-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:12/18/20 08:46Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	01-04 Batch:	WG1446737-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Lab Number:	L2055160
Project Number:	01101	Report Date:	12/21/20
	Mothod Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:12/18/20 08:46Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s): 01-04	Batch:	WG1446737-5	

		1	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1.2-Dichloroethane-d4	99		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	104		70-130
Dibromofluoromethane	97		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1446737-3 WG1446737-4 Methylene chloride 100 100 70-130 0 20 1,1-Dichloroethane 110 120 70-130 9 20 Chloroform 100 110 70-130 20 10 Carbon tetrachloride 100 100 63-132 20 0 70-130 20 1,2-Dichloropropane 110 120 9 Dibromochloromethane 99 92 63-130 7 20 110 110 70-130 20 1.1.2-Trichloroethane 0 Tetrachloroethene 100 100 70-130 0 20 Chlorobenzene 110 110 75-130 0 20 Trichlorofluoromethane 94 96 62-150 2 20 1.2-Dichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 100 100 67-130 0 20 Bromodichloromethane 100 100 67-130 0 20 70-130 20 trans-1,3-Dichloropropene 100 100 0 cis-1,3-Dichloropropene 100 100 70-130 0 20 Bromoform 95 95 54-136 0 20 1,1,2,2-Tetrachloroethane 110 110 67-130 20 0 70-130 20 Benzene 110 110 0 70-130 20 Toluene 110 110 0 Ethylbenzene 110 110 70-130 0 20 Chloromethane 100 110 64-130 10 20 Bromomethane 20 65 60 39-139 8 20 Vinyl chloride 110 110 55-140 0

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04	Batch:	WG1446737-3	WG1446737-4				
Chloroethane	110			120		55-138	9		20	
1,1-Dichloroethene	110			110		61-145	0		20	
trans-1,2-Dichloroethene	110			110		70-130	0		20	
Trichloroethene	100			110		70-130	10		20	
1,2-Dichlorobenzene	100			110		70-130	10		20	
1,3-Dichlorobenzene	110			110		70-130	0		20	
1,4-Dichlorobenzene	110			110		70-130	0		20	
Methyl tert butyl ether	100			100		63-130	0		20	
p/m-Xylene	110			110		70-130	0		20	
o-Xylene	105			110		70-130	5		20	
cis-1,2-Dichloroethene	110			110		70-130	0		20	
Styrene	105			110		70-130	5		20	
Dichlorodifluoromethane	78			79		36-147	1		20	
Acetone	100			110		58-148	10		20	
Carbon disulfide	95			94		51-130	1		20	
2-Butanone	110			110		63-138	0		20	
4-Methyl-2-pentanone	110			110		59-130	0		20	
2-Hexanone	110			110		57-130	0		20	
Bromochloromethane	110			110		70-130	0		20	
1,2-Dibromoethane	100			100		70-130	0		20	
1,2-Dibromo-3-chloropropane	85			92		41-144	8		20	
Isopropylbenzene	110			120		70-130	9		20	
1,2,3-Trichlorobenzene	76			80		70-130	5		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1446737-3	WG1446737-4		
1,2,4-Trichlorobenzene	86		89		70-130	3	20
Methyl Acetate	110		110		70-130	0	20
Cyclohexane	120		120		70-130	0	20
1,4-Dioxane	108		104		56-162	4	20
Freon-113	110		110		70-130	0	20
Methyl cyclohexane	100		110		70-130	10	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	_
1,2-Dichloroethane-d4	102	103	70-130	
Toluene-d8	102	103	70-130	
4-Bromofluorobenzene	107	105	70-130	
Dibromofluoromethane	99	99	70-130	

Matrix Spike Analysis

Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Batch Quality Control	Lab Number:	L2055160
Project Number:	01101		Report Date:	12/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-3 (121020)	1S - Westborough	Lab Assoc	iated sample(s): 01-04 QC	Batch ID: WG14467	737-6 WG1446	6737-7 (QC Sample	e: L205	5160-01	Client ID:
Methylene chloride	ND	10	10	100	10	100		70-130	0		20
1,1-Dichloroethane	ND	10	12	120	12	120		70-130	0		20
Chloroform	ND	10	10	100	11	110		70-130	10		20
Carbon tetrachloride	ND	10	10	100	11	110		63-132	10		20
1,2-Dichloropropane	ND	10	12	120	12	120		70-130	0		20
Dibromochloromethane	ND	10	10	100	10	100		63-130	0		20
1,1,2-Trichloroethane	ND	10	11	110	11	110		70-130	0		20
Tetrachloroethene	ND	10	10	100	10	100		70-130	0		20
Chlorobenzene	ND	10	11	110	11	110		75-130	0		20
Trichlorofluoromethane	ND	10	9.9	99	9.9	99		62-150	0		20
1,2-Dichloroethane	ND	10	11	110	11	110		70-130	0		20
1,1,1-Trichloroethane	ND	10	11	110	11	110		67-130	0		20
Bromodichloromethane	ND	10	10	100	11	110		67-130	10		20
trans-1,3-Dichloropropene	ND	10	10	100	10	100		70-130	0		20
cis-1,3-Dichloropropene	ND	10	9.8	98	10	100		70-130	2		20
Bromoform	ND	10	9.4	94	9.9	99		54-136	5		20
1,1,2,2-Tetrachloroethane	ND	10	12	120	12	120		67-130	0		20
Benzene	0.35J	10	12	120	12	120		70-130	0		20
Toluene	ND	10	11	110	11	110		70-130	0		20
Ethylbenzene	ND	10	11	110	11	110		70-130	0		20
Chloromethane	ND	10	11	110	11	110		64-130	0		20
Bromomethane	ND	10	4.1	41	5.3	53		39-139	26	Q	20
Vinyl chloride	ND	10	11	110	12	120		55-140	9		20

Matrix Spike Analysis

Project Name:	CY2020 ANNUAL SMP GW SAMPLING	Batch Quality Control	Lab Number:	L2055160
Project Number:	01101		Report Date:	12/21/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-3 (121020)	S - Westborough	Lab Assoc	iated sample(s): 01-04 Q	C Batch ID	: WG14467	37-6 WG1446	6737-7	QC Sample	e: L205	5160-01	Client ID:
Chloroethane	ND	10	12	120		12	120		55-138	0		20
1,1-Dichloroethene	ND	10	11	110		12	120		61-145	9		20
trans-1,2-Dichloroethene	ND	10	11	110		12	120		70-130	9		20
Trichloroethene	ND	10	11	110		11	110		70-130	0		20
1,2-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,3-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,4-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
Methyl tert butyl ether	ND	10	11	110		11	110		63-130	0		20
p/m-Xylene	ND	20	22	110		22	110		70-130	0		20
o-Xylene	ND	20	22	110		22	110		70-130	0		20
cis-1,2-Dichloroethene	ND	10	11	110		11	110		70-130	0		20
Styrene	ND	20	21	105		22	110		70-130	5		20
Dichlorodifluoromethane	ND	10	8.0	80		8.2	82		36-147	2		20
Acetone	2.4J	10	15	150	Q	15	150	Q	58-148	0		20
Carbon disulfide	ND	10	9.7	97		9.9	99		51-130	2		20
2-Butanone	ND	10	12	120		12	120		63-138	0		20
4-Methyl-2-pentanone	ND	10	13	130		13	130		59-130	0		20
2-Hexanone	ND	10	12	120		13	130		57-130	8		20
Bromochloromethane	ND	10	11	110		12	120		70-130	9		20
1,2-Dibromoethane	ND	10	11	110		11	110		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	9.7	97		9.9	99		41-144	2		20
Isopropylbenzene	ND	10	11	110		12	120		70-130	9		20
1,2,3-Trichlorobenzene	ND	10	8.1	81		8.8	88		70-130	8		20

Matrix Spike Analysis

Project Name: Project Number:	CY2020 ANNU 01101		Batch Q	uality Cor	ntrol	Lab Nun Report D			2055160			
	Native	MS	MS	MS % Recovered	Qual	MSD Found	MSD	Recovery		Qual	RPD Limito	
meter	Native Sample	MS Added	MS Found	MS %Recoverv	Qual	MSD Found	MSD %Recoverv	Recovery Limits	RPD	Qual		RPD Limits

Parameter	Sample /	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/M MW-3 (121020)	/IS - Westborough La	ab Assoc	iated sample(s): 01-04 QC	Batch ID:	WG14467	737-6 WG144	6737-7	QC Sample	: L2055	5160-01	Client ID:
1,2,4-Trichlorobenzene	ND	10	8.6	86		9.4	94		70-130	9		20
Methyl Acetate	ND	10	12	120		12	120		70-130	0		20
Cyclohexane	ND	10	12	120		12	120		70-130	0		20
1,4-Dioxane	ND	500	590	118		590	118		56-162	0		20
Freon-113	ND	10	11	110		11	110		70-130	0		20
Methyl cyclohexane	ND	10	11	110		11	110		70-130	0		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	107	104	70-130
4-Bromofluorobenzene	103	105	70-130
Dibromofluoromethane	99	98	70-130
Toluene-d8	102	103	70-130

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2055160-01A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01A1	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01A2	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01B1	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01B2	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01C1	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-01C2	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-02A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-02B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-02C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-03A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-03B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-04A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-04B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2055160-04C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

Lab Number: L2055160

Report Date: 12/21/20

Acronyms

GLC	DSSA	RY
-----	------	----

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101

Lab Number: L2055160

Report Date: 12/21/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:12212015:20

Project Name: CY2020 ANNUAL SMP GW SAMPLING

Project Number: 01101 Lab Number: L2055160 **Report Date:**

12/21/20

Data Qualifiers

- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- S - Analytical results are from modified screening analysis.

Project Name:CY2020 ANNUAL SMP GW SAMPLINGProject Number:01101

 Lab Number:
 L2055160

 Report Date:
 12/21/20

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page) of	8 0.90	D	ate Rec'd in Lab	12(11	120	ALPHA JOB# 12055160	11 1
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		A SALE AND		and an and a second	Delive	rables			Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: CY202	o Annu	al SMP 6	w Sema	pling		ASP-A	XAS	P-B	Same as Client Info	
PAX. 300-030-3133	FAA: 508-622-3288	Project Location: 1550	chandler	St. B.F	Falo, N	Y		EQuIS (1 File)	EQ	ulS (4 File)	PO #	
Client Information		Project # 01101		1.1.1.				Other				
Client: Env. Adva	stage Inc.	(Use Project name as Pro	oject #)				Regula	atory Requirer	nent		Disposal Site Information	
Address: 3636 N.			and the second se	a tEric	Betza	A		NY TOGS	NY	Part 375	Please identify below location	of
orchard Park N		ALPHAQuote #:			Jereo		1 1	AWQ Standards		CP-51	applicable disposal facilities.	
Phone: 716-667		Turn-Around Time	A REAL PROPERTY	State State	N.S.		i E	VY Restricted U	se 🗌 Oth	er	Disposal Facility:	********
Fax: 716-667	and the second diversion of th	Standard	NL	Due Date:			1 n	NY Unrestricted	Use			
		Rush (only if pre approved)		# of Days:				NYC Sewer Disc	harge		Other:	
These samples have be	1						ANAL	_			Sample Filtration	τ
Other project specific	requirements/comm	ents:										0
Open new Group on 12/ Please specify Metals	Sample delive 10/2020, Add or TAL.	it group on 12/1 Itenally, email resu	o/zozo. itsto el	close son betzaldra	vple del envady	ivery entrop.com	8				Done Lab to do Preservation Lab to do (Please Specify below)	a I Bo,
ALPHA Lab ID	19360	1. M. 1997	Colle	ection	Sample	Sampler's	Voc.	11			(······)	t
(Lab Use Only)	Sample ID		Date Time		Matrix Initials		15				Sample Specific Comments	- 1
55160 - 61	Mw-3(1	21020	12/10/20	12:159	GW	EB	X				Sample Opecine Comments	3
1 - 02		1020) Deplicate	141900	16/12/1	1	- GP	X					3
- 01	MW-3(1210				-		Ŷ					3
- 01					1	\vdash						3
-03	MW+3(1210)				-		X	-				_
V -04	TCIPBIANK			12:20Pm	WA		X					2
-04	Rinsete Blank	(121020)	v	12:25Pm	WA	V	X					3
A REAL PROPERTY OF												-
												+
												_
Preservative Code:	Container Code											_
A = None B = HCI C = HNO ₃	P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No				tainer Type Preservative	VB				Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w	is can
E = NaOH	B = Bacteria Cup						V				start until any ambiguitie	es are
$F = MeOH$ $C = Cube$ $G = NaHSO_4$ $O = Other$ $H = Na_2S_2O_3$ $E = Encore$ $K/E = Zn Ac/NaOH$ $D = BOD Bottle$ $O = Other$			AAL	and the second sec				A An	Izlat	ate/Time 2013-00 2001:30	THIS COC, THE CLIENT	
Form No: 01-25 HC (rev. 30	-Sept-2013)					/		-0-			(See reverse side.)	24

ANALYTICAL REPORT

Lab Number:	L2108109
Client:	Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, NY 14127
ATTN:	Mary Szustak
Phone:	() -
Project Name:	CY21 INDOOR AIR RESAMPLE
Project Number:	00101
Report Date:	02/25/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

 Lab Number:
 L2108109

 Report Date:
 02/25/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2108109-01	IA-6 (021821)	AIR	155 CHANDLER ST. BUFFALO, NY	02/18/21 16:20	02/18/21
L2108109-02	IA-6 (021821) DUPLICATE	AIR	155 CHANDLER ST. BUFFALO, NY	02/18/21 16:20	02/18/21

 Lab Number:
 L2108109

 Report Date:
 02/25/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2108109

 Report Date:
 02/25/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 15, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 02/25/21

AIR

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID: Client ID:	IA-6 (021821)	Date Collected: Date Received:	
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/24/21 22:15
Analyst:	RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL		Results RL MDI		MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.403	0.200		1.99	0.989			1
Chloromethane	0.435	0.200		0.898	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	55.6	5.00		105	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.68	1.00		3.99	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	0.745	0.500		1.83	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.633	0.500		1.87	1.47			1
Ethyl Acetate	0.774	0.500		2.79	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID: L2108109-01 Client ID: IA-6 (021821) Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:02/18/21 16:20Date Received:02/18/21Field Prep:Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.936	0.200		3.30	0.705			1
Benzene	0.350	0.200		1.12	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.237	0.200		0.971	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.987	0.200		3.72	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.372	0.200		1.62	0.869			1
p/m-Xylene	1.59	0.400		6.91	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.479	0.200		2.08	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-01	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821)	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-01	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821)	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	02/24/21 22:15
Analyst:	RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.069	0.020		0.434	0.126			1
Trichloroethene	0.550	0.020		2.96	0.107			1
Tetrachloroethene	0.025	0.020		0.170	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-02	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821) DUPLICATE	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/24/21 22:55
Analyst:	RY

		ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mar	nsfield Lab								
Dichlorodifluoromethane	0.409	0.200		2.02	0.989			1	
Chloromethane	0.457	0.200		0.944	0.413			1	
Freon-114	ND	0.200		ND	1.40			1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Bromomethane	ND	0.200		ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528			1	
Ethanol	55.0	5.00		104	9.42			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acetone	1.20	1.00		2.85	2.38			1	
Trichlorofluoromethane	ND	0.200		ND	1.12			1	
Isopropanol	0.785	0.500		1.93	1.23			1	
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
Freon-113	ND	0.200		ND	1.53			1	
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
2-Butanone	0.567	0.500		1.67	1.47			1	
Ethyl Acetate	0.710	0.500		2.56	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-02	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821) DUPLICATE	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	er Factor	
Volatile Organics in Air - Manst	field Lab								
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	0.968	0.200		3.41	0.705			1	
Benzene	0.355	0.200		1.13	0.639			1	
Cyclohexane	0.200	0.200		0.688	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
2,2,4-Trimethylpentane	0.202	0.200		0.943	0.934			1	
Heptane	0.264	0.200		1.08	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	1.08	0.200		4.07	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	0.399	0.200		1.73	0.869			1	
p/m-Xylene	1.75	0.400		7.60	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	0.529	0.200		2.30	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-02	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821) DUPLICATE	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mai	nsfield Lab							
1,2,4-Trimethylbenzene	0.245	0.200		1.20	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Name:	CY21 INDOOR AIR RESAMPLE	Lab Number:	L2108109
Project Number:	00101	Report Date:	02/25/21

Lab ID:	L2108109-02	Date Collected:	02/18/21 16:20
Client ID:	IA-6 (021821) DUPLICATE	Date Received:	02/18/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	02/24/21 22:55
Analyst:	RY

ppbV		ug/m3				Dilutior	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
nsfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.074	0.020		0.465	0.126			1
0.545	0.020		2.93	0.107			1
0.031	0.020		0.210	0.136			1
	nsfield Lab ND ND ND ND 0.074 0.545	Results RL nsfield Lab 0.020 ND 0.020 0.074 0.020 0.545 0.020	Results RL MDL nsfield Lab	Results RL MDL Results nsfield Lab ND 0.020 ND 0.074 0.020 0.465 0.545 0.020 2.93	Results RL MDL Results RL nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.074 0.020 0.465 0.126 0.545 0.020 2.93 0.107	Results RL MDL Results RL MDL nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.074 0.020 0.465 0.126 0.545 0.020 2.93 0.107	Results RL MDL Results RL MDL Qualifier nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.074 0.020 2.93 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	94		60-140

Project Number: 00101

 Lab Number:
 L2108109

 Report Date:
 02/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 15:11

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	- Mansfield Lab for sam	ole(s): 01-	02 Batch	: WG14678	61-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Number: 00101

Lab Number: L2108109 Report Date: 02/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 15:11

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - M	ansfield Lab for sam	ple(s): 01·	02 Batch	: WG14678	861-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Number: 00101

 Lab Number:
 L2108109

 Report Date:
 02/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 15:11

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	02 Batch:	: WG14678	861-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Number: 00101

Lab Number: L2108109 Report Date: 02/25/21

Method Blank Analysis Batch Quality Control

Analytical Method:48,TO-15-SIMAnalytical Date:02/24/21 15:50

		ppbV				Dilution		
Parameter	Results	RL	RL MDL		RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-02	2 Batch: W	G146786	62-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Lab Control Sample Analysis Batch Quality Control

Project Number: 00101 Lab Number: L2108109

Report Date: 02/25/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01-02	Batch: WG14678	61-3				
Dichlorodifluoromethane	72		-		70-130	-		
Chloromethane	72		-		70-130	-		
Freon-114	83		-		70-130	-		
Vinyl chloride	78		-		70-130	-		
1,3-Butadiene	85		-		70-130	-		
Bromomethane	77		-		70-130	-		
Chloroethane	76		-		70-130	-		
Ethanol	79		-		40-160	-		
Vinyl bromide	70		-		70-130	-		
Acetone	52		-		40-160	-		
Trichlorofluoromethane	78		-		70-130	-		
Isopropanol	60		-		40-160	-		
1,1-Dichloroethene	82		-		70-130	-		
Tertiary butyl Alcohol	72		-		70-130	-		
Methylene chloride	83		-		70-130	-		
3-Chloropropene	77		-		70-130	-		
Carbon disulfide	74		-		70-130	-		
Freon-113	77		-		70-130	-		
trans-1,2-Dichloroethene	74		-		70-130	-		
1,1-Dichloroethane	86		-		70-130	-		
Methyl tert butyl ether	87		-		70-130	-		
2-Butanone	84		-		70-130	-		
cis-1,2-Dichloroethene	80		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Number: 00101 Lab Number: L2108109

Report Date: 02/25/21

Bathle Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG1467861-3 Ehyl Acetate 84 - 70-130 - Chloroform 87 - 70-130 - Tetrahydrofuran 80 - 70-130 - 1.2-Dichloroethane 78 - 70-130 - 1.2-Dichloroethane 89 - 70-130 - 1.1-Trichloroethane 91 - 70-130 - 1.1,1-Trichloroethane 91 - 70-130 - Garbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - 1.2-Dichloropropane 87 - 70-130 - 1.2-Dichloropropane 98 - 70-130 - 1.4-Dioxane 98 - 70-130 - 1.4-Dichloropropene 91 - 70-130 - 1.4-Dichloropropene 92 - 70-130	arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Chlorotorm 87 70-130 . Tetrahydroturan 80 . 70-130 . 1.2-Dichloroethane 78 . 70-130 . n-Hexane 89 . 70-130 . 1.1-Inchloroethane 91 . 70-130 . 1.1.1-Inchloroethane 91 . 70-130 . Benzene 98 . 70-130 . Carbon tetrachloride 99 . 70-130 . Cyclohexane 90 . 70-130 . 1.2-Dichloropropane 87 . 70-130 . 1.2-Dichloropropane 87 . 70-130 . 1.4-Dioxane 98 . 70-130 . 1.4-Dioxane 94 . 70-130 . 1.4-Dioxane 92 . 70-130 . 2.2.4-Timethybentane 93 . 70-130 . ics-1.3-Dichloropropene <t< td=""><td>olatile Organics in Air - Mansfield Lab Ass</td><td>ociated sample(s)</td><td>: 01-02</td><td>Batch: WG146786</td><td>61-3</td><td></td><td></td><td></td><td></td></t<>	olatile Organics in Air - Mansfield Lab Ass	ociated sample(s)	: 01-02	Batch: WG146786	61-3				
Tetrahydrofuran 80 - 70-130 - 1.2-Dichloroethane 78 - 70-130 - n-Hexane 89 - 70-130 - 1.1,1-Trichloroethane 91 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - Cyclohexane 90 - 70-130 - 1.2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1.4-Dioxare 94 - 70-130 - 1.4-Dioxare 92 - 70-130 - 2.2.4-Trimethylpentane 90 - 70-130 - 1.3-Dichloropropene 109 - 70-130 - 1.1.2-Trichloropropene 94 - 70-130 - 1.	Ethyl Acetate	84		-		70-130	-		
1.2-Dichloroethane 78 70-130 - n-Hexane 89 - 70-130 - 1,1,1-Trichloroethane 91 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 99 - 70-130 - Cyclobexane 90 - 70-130 - Cyclobexane 90 - 70-130 - 1,2-Dichloropopane 87 - 70-130 - 1,2-Dichloropopane 98 - 70-130 - 1,4-Dioxane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 92 - 70-130 - 2,2,4-Trimethylepentane 93 - 70-130 - Leptane 93 - 70-130 - Lis-Trichloroethane 93 - 70-130 - Lis-Trichloroethane 93 <td>Chloroform</td> <td>87</td> <td></td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td></td>	Chloroform	87		-		70-130	-		
n-Hexane 89 - 70-130 - 1,1,1-Trichloroethane 91 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - 1.2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1.2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1.4-Dioxane 94 - 70-130 - 1.4-Dioxane 92 - 70-130 - 2.2,4-Trimethylpentane 90 - 70-130 - Itapine 93 - 70-130 - 4.4ettyl-2-pentanone 94 - 70-130 - 1.1,2-Trichloroethane 93 - 70-130 - 1	Tetrahydrofuran	80		-		70-130	-		
1,1,1-Trichloroethane 91 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - 1,2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 92 - 70-130 - 1,4-Dioxane 92 - 70-130 - 1,4-Dioxane 93 - 70-130 - 2,2,4-Trimethylpentane 93 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - 2-Hexanone <td>1,2-Dichloroethane</td> <td>78</td> <td></td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td></td>	1,2-Dichloroethane	78		-		70-130	-		
Benzene 98 - 70-130 - Carbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - 1,2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 92 - 70-130 - 2,2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 94 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloropthane 93 - 70-130 - 1,1,2-Trichloropthane 93 - 70-130 - 1,1,2-Trichloropthane 93 - 70-130 - <	n-Hexane	89		-		70-130	-		
Carbon tetrachloride 99 - 70-130 - Cyclohexane 90 - 70-130 - 1,2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 92 - 70-130 - 1,4-Dioxane 92 - 70-130 - 2,2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 109 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloroptopene 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopane 93 - 70-130 - <	1,1,1-Trichloroethane	91		-		70-130	-		
Cyclohexane 90 - 70-130 - 1,2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 94 - 70-130 - 1,4-Dioxane 92 - 70-130 - 1,4-Dioxane 92 - 70-130 - 2,2,4-Trimethylpentane 90 - 70-130 - 1,9-Dichloropropene 93 - 70-130 - cis-1,3-Dichloropropene 109 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloroptopene 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptomethane 93 - 70-130 - 2-Hexanone 102 - 70-130 -	Benzene	98		-		70-130	-		
1,2-Dichloropropane 87 - 70-130 - Bromodichloromethane 98 - 70-130 - 1,4-Dioxane 94 - 70-130 - Trichloroethene 92 - 70-130 - 2,2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 109 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - 1,1,2-Trichloropropene 109 - 70-130 - 1,1,2-Trichloroptopene 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	Carbon tetrachloride	99		-		70-130	-		
Bromodichloromethane 98 70-130 - 1,4-Dioxane 94 70-130 - Trichloroethene 92 70-130 - 2,2,4-Trimethylpentane 90 70-130 - Heptane 93 70-130 - cis-1,3-Dichloropropene 109 70-130 - 4-Methyl-2-pentanone 94 70-130 - 1,1,2-Trichloroethane 94 70-130 - 1,1,2-Trichloroptopene 109 70-130 - 1,1,2-Trichloroethane 93 70-130 - 1,1,2-Trichloroethane 93 70-130 - 1,1,2-Trichloroethane 93 70-130 - Toluene 85 70-130 - 2-Hexanone 102 70-130 - Dibromochloromethane 99 - 70-130 -	Cyclohexane	90		-		70-130	-		
1.4-Dioxane 94 - 70-130 - Trichloroethene 92 - 70-130 - 2.2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 93 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroptopene 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	1,2-Dichloropropane	87		-		70-130	-		
Trichloroethene 92 70-130 - 2,2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 109 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopene 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - 1,1,2-Trichloropthane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	Bromodichloromethane	98		-		70-130	-		
2,2,4-Trimethylpentane 90 - 70-130 - Heptane 93 - 70-130 - cis-1,3-Dichloropropene 109 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroptopene 93 - 70-130 - Toluene 93 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	1,4-Dioxane	94		-		70-130	-		
Heptane 93 70-130 - cis-1,3-Dichloropropene 109 70-130 - 4-Methyl-2-pentanone 94 70-130 - trans-1,3-Dichloropropene 94 70-130 - trans-1,3-Dichloropropene 94 70-130 - 1,1,2-Trichloroethane 93 70-130 - Toluene 85 70-130 - 2-Hexanone 102 70-130 - Dibromochloromethane 99 102 70-130 -	Trichloroethene	92		-		70-130	-		
cis-1,3-Dichloropropene 109 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	2,2,4-Trimethylpentane	90		-		70-130	-		
4-Methyl-2-pentanone 94 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	Heptane	93		-		70-130	-		
trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	cis-1,3-Dichloropropene	109		-		70-130	-		
1,1,2-Trichloroethane 93 - 70-130 - Toluene 85 - 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	4-Methyl-2-pentanone	94		-		70-130	-		
Toluene 85 70-130 - 2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	trans-1,3-Dichloropropene	94		-		70-130	-		
2-Hexanone 102 - 70-130 - Dibromochloromethane 99 - 70-130 -	1,1,2-Trichloroethane	93		-		70-130	-		
Dibromochloromethane 99 - 70-130 -	Toluene	85		-		70-130	-		
	2-Hexanone	102		-		70-130	-		
1,2-Dibromoethane 103 - 70-130 -	Dibromochloromethane	99		-		70-130	-		
	1,2-Dibromoethane	103		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: CY21 INDOOR AIR RESAMPLE

Project Number: 00101

Lab Number: L2108109 02/25/21

Report Date:

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch:	WG14678	61-3				
Tetrachloroethene	89			-		70-130	-		
Chlorobenzene	96			-		70-130	-		
Ethylbenzene	91			-		70-130	-		
p/m-Xylene	93			-		70-130	-		
Bromoform	101			-		70-130	-		
Styrene	103			-		70-130	-		
1,1,2,2-Tetrachloroethane	97			-		70-130	-		
o-Xylene	92			-		70-130	-		
4-Ethyltoluene	96			-		70-130	-		
1,3,5-Trimethylbenzene	77			-		70-130	-		
1,2,4-Trimethylbenzene	97			-		70-130	-		
Benzyl chloride	90			-		70-130	-		
1,3-Dichlorobenzene	99			-		70-130	-		
1,4-Dichlorobenzene	95			-		70-130	-		
1,2-Dichlorobenzene	91			-		70-130	-		
1,2,4-Trichlorobenzene	93			-		70-130	-		
Hexachlorobutadiene	100			-		70-130	-		

Lab Control Sample Analysis

Batch Quality Control

Project Number: 00101

Lab Number: L2108109 Report Date: 02/25/21

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-02 Batch: WG1467862-3 Vinyl chloride 73 70-130 25 --25 1,1-Dichloroethene 75 70-130 -cis-1,2-Dichloroethene 71 70-130 25 --1,1,1-Trichloroethane 82 70-130 25 --Carbon tetrachloride 92 70-130 25 --84 70-130 25 Trichloroethene --25 Tetrachloroethene 83 70-130 --

Project Number: 00101

Serial_No:02252116:35 Lab Number: L2108109

Report Date: 02/25/21

Canister and Flow Controller Information

								1 141 - 1	D	F 1			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leal Check	Initial k Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2108109-01	IA-6 (021821)	01603	Flow 4	02/15/21	343081		-	-	-	Pass	4.5	3.6	22
L2108109-01	IA-6 (021821)	340	2.7L Can	02/15/21	343081	L2106543-02	Pass	-30.0	-4.3	-	-	-	-
L2108109-02	IA-6 (021821) DUPLICATE	0149	Flow 4	02/15/21	343081		-	-	-	Pass	4.5	4.5	0
L2108109-02	IA-6 (021821) DUPLICATE	448	2.7L Can	02/15/21	343081	L2106543-02	Pass	-29.9	-3.5	-	-	-	-

Project Number:	CANISTER QC E	BAT				R	leport D	Date: ()2/25/21
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2106543-02 CAN 552 SHEL	F 2				Date	Collecte Receive Prep:	-	02/10/21 16:00 02/11/21 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 02/11/21 17:46 EW								
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:02252116:35

L2106543

Lab Number:

	Serial_No:02	2252116:35
ICATION	Lab Number:	L2106543

Project Name: BATCH CANISTER CERTIF Project Number: CANISTER QC BAT

mber: L2106543 Report Date: 02/25/21

Air Canister Certification Results

Lab ID:	L2106543-02	Date Collected:	02/10/21 16:00
Client ID:	CAN 552 SHELF 2	Date Received:	02/11/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Kylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

	Serial_No:02	2252116:35
FICATION	Lab Number:	L2106543

Project Name: BATCH CANISTER CERTIF Project Number: CANISTER QC BAT

mber: L2106543 Report Date: 02/25/21

Air Canister Certification Results

Lab ID:	L2106543-02	Date Collected:	02/10/21 16:00
Client ID:	CAN 552 SHELF 2	Date Received:	02/11/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

	Serial_No:02	2252116:35
ATION	Lab Number:	L2106543

ber: L2106543 Report Date: 02/25/21

Air Canister Certification Results

Lab ID:	L2106543-02	Date Collected:	02/10/21 16:00
Client ID:	CAN 552 SHELF 2	Date Received:	02/11/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
lsopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

					Serial	_No:022	52116:35		
Project Name:	BATCH CANIST	ER CERT	IFICATION	1		Lab	o Num	ber:	L2106543
Project Number:	CANISTER QC	ЗАТ				Re	port D	ate:	02/25/21
		Air Car	nister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L2106543-02 CAN 552 SHEL	F 2				Date C Date R Field P	eceive		02/10/21 16:00 02/11/21 Not Specified
Sample Depth:			a a b M						
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution _r Factor
Volatile Organics in	Air - Mansfield Lab	itooutio							
		R	esults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	89		60-140

Air Canister Certification Results Lab ID: L2106543-02 Date Collected: 02/10/21 16:00 Client ID: CAN 552 SHELF 2 Date Received: 02/11/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 02/11/21 17:46 EW Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane ND 0.200 ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 0.020 ND 1 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:02252116:35

L2106543

02/25/21

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Report Date: 02/25/21

L2106543

Air Canister Certification Results

Lab ID:	L2106543-02	Date Collected:	02/10/21 16:00
Client ID:	CAN 552 SHELF 2	Date Received:	02/11/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Serial_No:02252116:3					
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2106543		
Project Number:	CANISTER QC BAT	Report Date:	02/25/21		
Air Canister Certification Results					

Lab ID:	L2106543-02	Date Collected:	02/10/21 16:00
Client ID:	CAN 552 SHELF 2	Date Received:	02/11/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:

		ppbV Results RL MDL		ug/m3				Dilution
Parameter	Results			Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	90		60-140

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal			
NA	Absent			

Containar Information

Page 31 of 37

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C F	Pres	Seal	Date/Time	Analysis(*)
L2108109-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)
L2108109-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)

YES

Serial_No:02252116:35

Project Name: CY21 INDOOR AIR RESAMPLE

Project Number: 00101

Lab Number: L2108109

Report Date: 02/25/21

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)			
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). 			
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.			
EPA	- Environmental Protection Agency.			
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.			
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.			
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.			
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)			
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. T LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report format only.)			
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)			
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.			
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. 			
MSD	- Matrix Spike Sample Duplicate: Refer to MS.			
NA	- Not Applicable.			
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.			
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.			
NI	- Not Ignitable.			
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.			
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. 			
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.			
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.			
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.			
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.			
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.			
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.			
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.			

Report Format: Data Usability Report

Project Number: 00101

Lab Number: L2108109

Report Date: 02/25/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:02252116:35

Project Name: CY21 INDOOR AIR RESAMPLE

Project Number: 00101

Lab Number: L2108109

Report Date: 02/25/21

Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Lab Number:
 L2108109

 Report Date:
 02/25/21

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:02252116:35

A	AIR AN	ALY	SIS	PA	ge	OF /	Date R	ec'd in Lal	b: 2	11913	al		A	LPH/	A Job	#: Laios	169
	CHAIN OF CUSTODY	Project	Informatio	n			Repor	t Informa	ation -	Data D	eliveral	bles	E	Billing	Inform	mation	
320 Forbes Blvd, M TEL: 508-822-9300	ansfield, MA 02048 FAX: 508-822-3288	Project N	ame: CY2	1 Indes	ArR	sample	G FAX						×	Same	as Clie	nt info PO #: C	15100
Client Information	n	Project Lo	ocation: 15.	school	llerst	Biffel	NY C	Ex Criteria Che	ecker:								
Client: Env. A	Vantage Inc	Project #:	00101					(Default base	id on Regu	ASD.	B	d)					
	N. B. Aato Rd	Project M	anager: Mo	ork Han	vet Mo	sy Szu	AREM	AIL (stand	ard pdf r	eport)	1-		F	Regula	atory F	Requirements/	Report Limit
Archard Parl	KNY 14127	ALPHA C					Add	litional Del	iverable	S.			S	tate/Fe	d	Program	Res / Comm
Phone: 716-6	607-3130	Turn-A	round Tim	8			Report 4	10: 11 allenn	Litture Project	Manager; Mal	resul	tst	2				
Fax: 716-6	67-3156	Standa		DIICU	confirment if pre-as		MS	ditions zusta	Kae	nual	intag	e.c.	e in				
These samples had	ve been previously analyzed by Alpha Specific Requirements/Comr	Date Du		NUGITIA	Time:								1	A 	INALY	/SIS	
Project-Specific	Target Compound List:			A MARKED OF		Application				-	Prices V	_/		and home	lencaptarus b		
	A		umns						the second	Concern.		15	TO.15 SIM	Fixed Gae	olos & A	/ /	
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	COL Start Time	End Time	N Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	Size	I D Can	I D - Flow Controller		0.4	Fixed	Sum	Sample Com	ments (i.e. PID
8109-01	IA-6(021821)	2/18/21	8:20am	4:200	30.58	-6.36"	AA	EB	310	340	D1603	X				D.OPPm)
-02	IA-6(02182)Deleate	2/18/21	8:20am	4 2091	-29.9	-5.33	AA	EB	2,76	448	D149	X				0.0PP	n
		-											+				
													+		+		
																	U
									-								
*SAMPL	E MATRIX CODES S		nt Air (Indoor por/Landfill C e Specify					C	Containe	r Type		cS				Please print cle completely. Sai logged in and tu	mples can not be
	1	Relinqu	ished By:		Dat	te/Time	120	Rece	ived By:				Date	Time:		guities are resol	art until any ambi- ved. All samples ubject to Alpha's

ANALYTICAL REPORT

Lab Number:	L2116174
Client:	Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, NY 14127
ATTN:	Mark Hanna
Phone:	(716) 667-3130
Project Name:	CY2020-2021 SMP INDOOR AIR RE
Project Number:	00101
Report Date:	04/12/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:CY2020-2021 SMP INDOOR AIR REProject Number:00101

 Lab Number:
 L2116174

 Report Date:
 04/12/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2116174-01	IA-6 (033121)	AIR	155 CHANDLER ST. BUFFALO, NY	03/31/21 15:40	03/31/21
L2116174-02	IA-6 (033121) DUPLICATE	AIR	155 CHANDLER ST. BUFFALO, NY	03/31/21 15:40	03/31/21

Project Name: CY2020-2021 SMP INDOOR AIR RE Project Number: 00101

 Lab Number:
 L2116174

 Report Date:
 04/12/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: CY2020-2021 SMP INDOOR AIR RE Project Number: 00101

 Lab Number:
 L2116174

 Report Date:
 04/12/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 26, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 04/12/21

AIR

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID:	L2116174-01	Date Collected:	03/31/21 15:40
Client ID:	IA-6 (033121)	Date Received:	03/31/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Air
48,TO-15
04/09/21 21:57
EW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.428	0.200		2.12	0.989			1
Chloromethane	0.522	0.200		1.08	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	103	5.00		194	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.97	1.00		21.3	2.38			1
Trichlorofluoromethane	0.204	0.200		1.15	1.12			1
Isopropanol	32.2	0.500		79.2	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.566	0.500		1.67	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.630	0.500		1.86	1.47			1

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID: L2116174-01 Client ID: IA-6 (033121) Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:	03/31/21 15:40
Date Received:	03/31/21
Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.44	0.200		5.08	0.705			1
Benzene	0.408	0.200		1.30	0.639			1
Cyclohexane	0.338	0.200		1.16	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.292	0.200		1.36	0.934			1
Heptane	0.597	0.200		2.45	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.84	0.200		6.93	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.265	0.200		1.15	0.869			1
p/m-Xylene	1.01	0.400		4.39	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.344	0.200		1.49	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/31/21 15:40

Not Specified

03/31/21

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

SAMPLE RESULTS

Lab ID:	L2116174-01	Date Collected:
Client ID:	IA-6 (033121)	Date Received:
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	97		60-140

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

$Cliont(D) = IA \in (0.22124)$	15:40
Client ID:IA-6 (033121)Date Received:03/31/21Sample Location:155 CHANDLER ST. BUFFALO, NYField Prep:Not Spec	

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/09/21 21:57
Analyst:	EW

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
0.024	0.020		0.095	0.079			1
ND	0.020		ND	0.109			1
0.084	0.020		0.528	0.126			1
2.60	0.020		14.0	0.107			1
0.052	0.020		0.353	0.136			1
	sfield Lab ND 0.024 ND 0.084 2.60	Results RL Isfield Lab ND 0.020 ND 0.020 0.020 ND 0.020 0.020 0.024 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 2.60 0.020 0.020	Results RL MDL Isfield Lab	Results RL MDL Results NSfield Lab ND 0.020 ND ND 0.020 ND ND ND 0.020 ND 0.095 ND 0.020 ND 0.095 ND 0.020 ND 0.025 ND 0.020 ND 0.025 2.60 0.020 14.0 14.0	Results RL MDL Results RL Isfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.024 0.020 0.095 0.079 ND 0.020 ND 0.109 0.084 0.020 0.528 0.126 2.60 0.020 14.0 0.107	Results RL MDL Results RL MDL Isfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.024 0.020 0.095 0.079 ND 0.020 ND 0.109 0.084 0.020 0.528 0.126 2.60 0.020 14.0 0.107	Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 0.024 0.020 ND 0.109 ND 0.020 ND 0.109 0.084 0.020 14.0 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID:	L2116174-02	Date Collected:	03/31/21 15:40
Client ID:	IA-6 (033121) DUPLICATE	Date Received:	03/31/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/09/21 22:42
Analyst:	EW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Dichlorodifluoromethane	0.436	0.200		2.16	0.989			1
Chloromethane	0.502	0.200		1.04	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	117	5.00		220	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.53	1.00		20.3	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	32.2	0.500		79.2	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.536	0.500		1.58	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.527	0.500		1.55	1.47			1

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID:	L2116174-02	Date Collected:	03/31/21 15:40
Client ID:	IA-6 (033121) DUPLICATE	Date Received:	03/31/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	ppbV			ug/m3			Dilu	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.36	0.200		4.79	0.705			1
Benzene	0.392	0.200		1.25	0.639			1
Cyclohexane	0.327	0.200		1.13	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.276	0.200		1.29	0.934			1
Heptane	0.556	0.200		2.28	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.75	0.200		6.59	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.252	0.200		1.09	0.869			1
o/m-Xylene	0.980	0.400		4.26	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.334	0.200		1.45	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID:	L2116174-02	Date Collected:	03/31/21 15:40
Client ID:	IA-6 (033121) DUPLICATE	Date Received:	03/31/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results	RL MC		Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	98		60-140

Project Name:	CY2020-2021 SMP INDOOR AIR RE	Lab Number:	L2116174
Project Number:	00101	Report Date:	04/12/21

Lab ID:	L2116174-02	Date Collected:	03/31/21 15:40
Client ID:	IA-6 (033121) DUPLICATE	Date Received:	
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/09/21 22:42
Analyst:	EW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.023	0.020		0.091	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.085	0.020		0.535	0.126			1
Trichloroethene	2.53	0.020		13.6	0.107			1
Tetrachloroethene	0.047	0.020		0.319	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/09/21 14:42

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - M	lansfield Lab for sam	ole(s): 01-	02 Batch	: WG14845	509-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/09/21 14:42

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	 Mansfield Lab for samp 	ole(s): 01-0	02 Batch	: WG14845	09-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/09/21 14:42

		ppbV						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab for samp	ole(s): 01-	02 Batch:	WG14845	509-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/09/21 15:22

		ppbV				Dilution Factor		
Parameter	Results	Results RL MDL Results RL		RL	MDL		Qualifier	
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-02	2 Batch: W	G148451	0-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

 Lab Number:
 L2116174

 Report Date:
 04/12/21

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG1484509-3 Dichlorodifluoromethane 92 70-130 --Chloromethane 94 70-130 --Freon-114 96 70-130 --Vinyl chloride 89 70-130 --1,3-Butadiene 97 70-130 --Bromomethane 90 70-130 --Chloroethane 91 70-130 --Ethanol 97 40-160 --Vinyl bromide 93 70-130 --66 40-160 Acetone --Trichlorofluoromethane 94 70-130 --Isopropanol 73 40-160 --1,1-Dichloroethene 92 70-130 --70-130 Tertiary butyl Alcohol 82 --Methylene chloride 100 70-130 --3-Chloropropene 97 70-130 _ -Carbon disulfide 94 70-130 --Freon-113 70-130 97 -trans-1,2-Dichloroethene 70-130 93 --1,1-Dichloroethane 96 70-130 --Methyl tert butyl ether 100 70-130 --70-130 2-Butanone 99 -cis-1,2-Dichloroethene 97 70-130 --

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174

Report Date: 04/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	01-02	Batch: WG14845)9-3				
Ethyl Acetate	98		-		70-130	-		
Chloroform	98		-		70-130	-		
Tetrahydrofuran	96		-		70-130	-		
1,2-Dichloroethane	94		-		70-130	-		
n-Hexane	96		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
Benzene	97		-		70-130	-		
Carbon tetrachloride	102		-		70-130	-		
Cyclohexane	96		-		70-130	-		
1,2-Dichloropropane	99		-		70-130	-		
Bromodichloromethane	99		-		70-130	-		
1,4-Dioxane	96		-		70-130	-		
Trichloroethene	100		-		70-130	-		
2,2,4-Trimethylpentane	97		-		70-130	-		
Heptane	103		-		70-130	-		
cis-1,3-Dichloropropene	108		-		70-130	-		
4-Methyl-2-pentanone	104		-		70-130	-		
trans-1,3-Dichloropropene	93		-		70-130	-		
1,1,2-Trichloroethane	103		-		70-130	-		
Toluene	100		-		70-130	-		
2-Hexanone	106		-		70-130	-		
Dibromochloromethane	107		-		70-130	-		
1,2-Dibromoethane	107		-		70-130	-		

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174 Report Date: 04/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG1484	509-3				
Tetrachloroethene	104		-		70-130	-		
Chlorobenzene	106		-		70-130	-		
Ethylbenzene	104		-		70-130	-		
p/m-Xylene	104		-		70-130	-		
Bromoform	112		-		70-130	-		
Styrene	109		-		70-130	-		
1,1,2,2-Tetrachloroethane	108		-		70-130	-		
o-Xylene	107		-		70-130	-		
4-Ethyltoluene	106		-		70-130	-		
1,3,5-Trimethylbenzene	106		-		70-130	-		
1,2,4-Trimethylbenzene	112		-		70-130	-		
Benzyl chloride	113		-		70-130	-		
1,3-Dichlorobenzene	111		-		70-130	-		
1,4-Dichlorobenzene	112		-		70-130	-		
1,2-Dichlorobenzene	111		-		70-130	-		
1,2,4-Trichlorobenzene	121		-		70-130	-		
Hexachlorobutadiene	112		-		70-130	-		

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174

Report Date: 04/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated sa	ample(s): (01-02 Batch: WG	61484510-3	3				
Vinyl chloride	91		-		70-130	-		25	
1,1-Dichloroethene	94		-		70-130	-		25	
cis-1,2-Dichloroethene	99		-		70-130	-		25	
1,1,1-Trichloroethane	103		-		70-130	-		25	
Carbon tetrachloride	101		-		70-130	-		25	
Trichloroethene	101		-		70-130	-		25	
Tetrachloroethene	104		-		70-130	-		25	

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Serial_No:04122115:48
Lab Number: L2116174

Report Date: 04/12/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Lea Check	Initial k Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2116174-01	IA-6 (033121)	01473	Flow 5	03/26/21	347184		-	-	-	Pass	4.5	4.7	4
L2116174-01	IA-6 (033121)	3106	2.7L Can	03/26/21	347184	L2114069-01	Pass	-29.2	-6.0	-	-	-	-
L2116174-02	IA-6 (033121) DUPLICATE	01685	Flow 5	03/26/21	347184		-	-	-	Pass	4.5	4.1	9
L2116174-02	IA-6 (033121) DUPLICATE	2224	2.7L Can	03/26/21	347184	L2114069-01	Pass	-29.2	-7.7	-	-	-	-

Project Number:	CANISTER QC E	BAT				R	leport D	Date: (04/12/21
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2114069-01 CAN 367 SHEL	F 1				Date	Collecte Receive Prep:	-	03/20/21 16:00 03/22/21 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 03/22/21 18:14 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane	I.	ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:04122115:48

Lab Number: L2114069

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04122115:48
Lab Number: L2114069
Report Date: 04/12/21

Air Canister Certification Results

Lab ID:	L2114069-01	Date Collected:	03/20/21 16:00
Client ID:	CAN 367 SHELF 1	Date Received:	03/22/21
Sample Location:		Field Prep:	Not Specified

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Kylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Fetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04122115:48
Lab Number: L2114069
Report Date: 04/12/21

Air Canister Certification Results

Lab ID:	L2114069-01	Date Collected:	03/20/21 16:00
Client ID:	CAN 367 SHELF 1	Date Received:	03/22/21
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04122115:48
Lab Number: L2114069
Report Date: 04/12/21

Air Canister Certification Results

Lab ID:	L2114069-01	Date Collected:	03/20/21 16:00
Client ID:	CAN 367 SHELF 1	Date Received:	03/22/21
Sample Location:		Field Prep:	Not Specified

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
lsopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:041	22115:48	3
Project Name:	BATCH CANIST	ER CER	TIFICATION	l		Lat	o Num	ber:	L211406	9
Project Number:	CANISTER QC E	ВАТ				Re	port D	ate:	04/12/21	
		Air Ca	nister Ce	rtification	Results					
Lab ID: Client ID: Sample Location:	L2114069-01 CAN 367 SHEL	F 1				Date C Date R Field P	eceive		03/20/2 [/] 03/22/2 [/] Not Spe	1
Sample Depth:										
			ppbV		ug/m3				Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Facto	or
Volatile Organics in	Air - Mansfield Lab									
Ta stationale Islandificati Qua		F	Results	Qualifier	Units	RDL		Dilutic Facto		
Tentatively Identified Cor	npounds									

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	85		60-140

		Air Can	ister Cer	rtificatio	on Results	5				
Lab ID: Client ID: Sample Location:	L2114069-01 CAN 367 SHEL	.F 1				Date Collected: Date Received: Field Prep:			03/20/21 16:00 03/22/21 Not Specified	
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 03/22/21 18:14 TS									
			ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in A	Air by SIM - Mansfie	eld Lab								
Dichlorodifluoromethane		ND	0.200		ND	0.989			1	
Chloromethane		ND	0.200		ND	0.413			1	
Freon-114		ND	0.050		ND	0.349			1	
Vinyl chloride		ND	0.020		ND	0.051			1	
1,3-Butadiene		ND	0.020		ND	0.044			1	
Bromomethane		ND	0.020		ND	0.078			1	
Chloroethane		ND	0.100		ND	0.264			1	
Acrolein		ND	0.050		ND	0.115			1	
Acetone		ND	1.00		ND	2.38			1	
Trichlorofluoromethane		ND	0.050		ND	0.281			1	
Acrylonitrile		ND	0.500		ND	1.09			1	
1,1-Dichloroethene		ND	0.020		ND	0.079			1	
Methylene chloride		ND	0.500		ND	1.74			1	
Freon-113		ND	0.050		ND	0.383			1	
trans-1,2-Dichloroethene	•	ND	0.020		ND	0.079			1	
1,1-Dichloroethane		ND	0.020		ND	0.081			1	
Methyl tert butyl ether		ND	0.200		ND	0.721			1	
2-Butanone		ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1	
Chloroform		ND	0.020		ND	0.098			1	
1,2-Dichloroethane		ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1	
Benzene		ND	0.100		ND	0.319			1	
Carbon tetrachloride		ND	0.020		ND	0.126			1	

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Serial_No:04122115:48

L2114069

04/12/21

Lab Number:

Report Date:

		5
Project Name:	BATCH CANISTER CERTIFICATION	Lab
roject Number		Pop

Serial_No:04122115:48 Number: L2114069 04/12/21

Report Date:

Air Canister Certification Results

Lab ID:	L2114069-01	Date Collected:	03/20/21 16:00
Client ID:	CAN 367 SHELF 1	Date Received:	03/22/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:

Project Number: CANISTER QC BAT

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
lsopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

		Serial_No:04	4122115:48				
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2114069				
Project Number:	CANISTER QC BAT	Report Date:	04/12/21				
Air Canister Certification Results							

Lab ID:	L2114069-01	Date Collected:	03/20/21 16:00	
Client ID:	CAN 367 SHELF 1	Date Received:	03/22/21	
Sample Location:		Field Prep:	Not Specified	

		ppbV			ug/m3		Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal				
NA	Absent				

Container Information

Container Information Container ID Container Type			Initial	Final 7	Temp			Frozen		
		Container Type	Cooler	рН Р	рН	deg C Pi	Pres S	Seal	Date/Time	Analysis(*)
	L2116174-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)
	L2116174-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30),TO15-LL(30)

YES

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174

Report Date: 04/12/21

GLOSSARY

Acronyms

DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMF	C - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCS	 Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDI	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSE	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDP	A/DPA - N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STL	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174

Report Date: 04/12/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:04122115:48

Project Name: CY2020-2021 SMP INDOOR AIR RE

Project Number: 00101

Lab Number: L2116174

Report Date: 04/12/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:CY2020-2021 SMP INDOOR AIR REProject Number:00101

 Lab Number:
 L2116174

 Report Date:
 04/12/21

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04122115:48

TEL: 508-822-93 Client: ENV. A Address: 3636 Drchard (Phone: 716-6 Fax: 716-6 Email: Mhannay	Mansfield, MA 02048 DO FAX: 508-822-3288 ION dvantage Inc. N. Bufbalo Rd. Dark NY 14127 667-3130 667-3156 Q ENVad Vantage.	Project I Project I Project I Project I ALPHA 0 Turn-A	t Information Name: CY202 Cocation: 155 Cocation: 155 To 101 Manager: Mark Quote #: Nound Time	0-2021 SM MP12 handlers	arc Bet	Rep Ar o F alo, NY Zoldo E O A	AX DEx Criteria C	mation Checker: assed on Re rmats: odard pd eliverabl	- Data gulalory C f report) es:		les E	Same as (Same as (egulator ate/Fed	ob #: L2116174 formation Client info PO #: DO Io1 y Requirements/Report Lim Program Res / Com LYSIS
ALPHA Lab ID (Lab Use Only)	sve been previously analyzed by Ay Specific Requirements/Co : Target Compound List: Sample ID IA-6 (033121) IA-6(033121) Dup	End Date	COLLEC Start Time End	TION Time Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	s Can Size 2.72	ID Can 3106	DIG85 X		Flyed Galses	SI LO 12
*SAMPLE	MATRIX CODES	AA = Ambient / SV = Soil Vapor Other = Please S	Air (Indoor/Outdoo /Landfill Gas/SVE pecify	()			Co	ntainer	Type	cs			Please print clearly, legibly and
lo: 101-02 Rev: (25-Se je 37 of 37	p-15)	Relinguish	ed By:	Date 3/3/12 3/3/2/ 3/3//2/	Time 1545 1600	Z	Receive	ed By:	HAL Care	3]3] 3 y/	Date/Time 21 131 01 21 04	1545 110 110	completely. Samples can not be logged in and turnaround time clock will not start until any ambi- guites are resolved. All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.

APPENDIX E

DATA USABILIY SUMMARY REPORTSTABLES

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY Alpha Analytical SDG#L2055160 April 2, 2021 Sampling date: 12/10/2020

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical #L2055160 submitted to Vali-Data of WNY, LLC on March 8, 2021. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Volatile Organics (8260C).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
 -Narrative and Data Reporting Forms
 -Chain of Custody and Traffic Reports
 -Holding Times
 -Internal Standard (IS) Area Performance
 -Surrogate Spike Recoveries
 -Method Blank
 -Field Duplicate Sample Precision
 -Laboratory Control Samples
 -MS/MSD
 -Compound Quantitation
 -Initial Calibration
 -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in MS/MSD, Initial Calibration and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES All holding times were met.

INTERNAL STANDARD (IS) All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the RPD of Bromomethane was outside QC limits between MW-3(121020)MS and MW-3(121020)MSD and should be qualified as estimated in MW-3(121020) and MW-3(121020)MS/MSD.

The %Rec of Acetone was outside QC limits, high in MW-3(121020)MS/MSD and should be qualified as estimated. This target analyte should be qualified as estimated high in MW-3(121020), if detected.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane, Bromodichloromethane and 1,1,2-Trichloroethane was outside QC limits in the initial calibration and WG1432946. The %D of Carbon disulfide was outside QC limits in WG1432946. These target analytes should be qualified as estimated in the associated blanks, spikes and samples. Alternate forms of regression were performed on all target analytes whose %RSD >20%, with

acceptable results.

CONTINUING CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane and 1,1,2-Trichloroethane was outside QC limits in WG1446737-2. The %D of Bromomethane was outside QC limits in WG1446737-2. These target analytes should be qualified as estimated in the associated blanks, spikes and

samples.

Several target analytes were outside laboratory QC limits but within NFG limits, so no further action is required.

GC/MS PERFORMANCE CHECK

All criteria were met.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY SDG#L2055692 April 1, 2021 Sampling date: 12/11/2020

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical, SDG#L2055692 submitted to Vali-Data of WNY, LLC on March 8, 2021. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15 and TO-15-SIM, January 1999.

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

-Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Internal Standard (IS) Area Performance -Method Blank -Field Duplicate Sample Precision -Laboratory Control Samples -MS/MSD/Duplicate -Compound Quantitation -Initial Calibration -Continuing Calibration -GC/MS Performance Check -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Laboratory Control Samples.

All results were recorded to the reporting limits. Samples: IA-5(121120) and IA-4(121120) were diluted due to high target analyte concentrations in the TO-15 analysis.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

There is a discrepancy in the final pressure for sample IA-6(121120) between what the laboratory measured upon receipt and the flow controller registered. After consulting with the field technician, it is believed that the flow controller was not accurate, and the final pressure measured by the laboratory should be considered the correct value. No further action is required.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Trichlorofluoromethane, 2-Butanone, Benzene and o-Xylene were detected in IA-3(121120)DUP but were not detected in IA-3(121120).

Trichloroethene was detected in IA-3(121120)DUP but was not detected in IA-3(121120) in the VOC SIM analysis.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of 1,2,4-Trichlorobenzene was outside QC limits, high in WG1446363-3 and should be qualified as estimated. This target analyte should be qualified as estimated high in the associated samples in which it was detected.

The %Rec of Acetone was outside QC limits, low in WG1446363-3 and should be qualified as estimated. This target analyte should be qualified as estimated in the associated samples.

MS/MSD/DUPLICATE

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY SDG#L2108109 April 1, 2021 Sampling date: 2/18/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical, SDG#L2108109 submitted to Vali-Data of WNY, LLC on March 8, 2021. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15 and TO-15-SIM, January 1999.

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

-Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Internal Standard (IS) Area Performance -Method Blank -Field Duplicate Sample Precision -Laboratory Control Samples -MS/MSD/Duplicate -Compound Quantitation -Initial Calibration -Continuing Calibration -GC/MS Performance Check -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Laboratory Control Samples and Initial Calibration.

All results were recorded to the reporting limits.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Cyclohexane, 2,2,4-Trimethylpentane and 1,2,4-Trimethylbenzene were detected in IA-6(021821)DUP but were not detected in IA-6(021821).

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Acetone and Isopropanol was outside QC limits, low in WG1467861-3 and should be qualified as estimated. These target analytes should be qualified as estimated in the associated samples.

MS/MSD/DUPLICATE

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the %D of Acetone was outside QC limits in WG1456889. This target analyte should be qualified as estimated in the associated samples, blanks and spikes.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY SDG#L2116174 April 22, 2021 Sampling date: 3/31/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical, SDG#L2116174 submitted to Vali-Data of WNY, LLC on April 16, 2021. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15 and TO-15-SIM, January 1999.

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

-Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Internal Standard (IS) Area Performance -Method Blank -Field Duplicate Sample Precision -Laboratory Control Samples -MS/MSD/Duplicate -Compound Quantitation -Initial Calibration -Continuing Calibration -GC/MS Performance Check -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Laboratory Control Samples.

All results were recorded to the reporting limits.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES All holding times were met.

INTERNAL STANDARD (IS) All criteria were met.

METHOD BLANK All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Trichlorofluoromethane was detected in IA-6 (033121) but was not detected in IA-6 (033121)DUPLICATE.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Acetone was outside QC limits, low in WG1484509-3 and should be qualified as estimated. This target analyte should be qualified as estimated in the associated samples.

MS/MSD/DUPLICATE No MS/MSD was acquired.

COMPOUND QUANTITATION All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS All criteria were met.

APPENDIX F

EQUIS DATA SUBMITAL CONFIRMATIONS

Mallory

From:	Mallory <mbehlmaier@envadvantage.com></mbehlmaier@envadvantage.com>
Sent:	Tuesday, May 11, 2021 1:27 PM
То:	NYENVDATA@dec.ny.gov
Cc:	mhanna@envadvantage.com; ebetzold@envadvantage.com;
	Megan.Kuczka@dec.ny.gov
Subject:	Pierce Arrow Business Center Site BCP #C915312 - Electronic Data Deliverable
Attachments:	20210511 1254.C915312.NYSDEC_MERGE.zip; 20210511
	1300.C915312.NYSDEC_MERGE.zip; 20210511 1316.C915312.NYSDEC_MERGE.zip;
	20210511 1317.C915312.NYSDEC_MERGE.zip

Aaron,

Please find attached four zip files containing the following data sets for BCP Site C915312 – Pierce Arrow Business Center

L2055160 L2055692 L2108109 L2116174

Thank you, Mallory

Mallory Behlmaier, Environmental Scientist Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, NY 14127 Phone (716) 667-3130 ext. 116 Fax (716) 667-3156 mbehlmaier@envadvantage.com www.envadvantage.com

CONFIDENTIALITY NOTICE

This electronic transmission, including any attachments, may contain confidential information belonging to the sender and is intended only for receipt by the individual or entity named. If you believe you have received this transmission in error, please notify the sender immediately by return e-mail and delete and erase this transmission from your system. Further, you are hereby notified that any disclosure, copying, distribution, use or dissemination of the transmission or its contents, or the taking of any action in reliance on the contents of this transmission, is strictly prohibited. WARNING: Electronic transmissions are not guaranteed to be timely, error-free, secure, or free of malicious code, and the sender accepts no liability for any damage caused by viruses, malicious code, or errors or omissions contained in or resulting from this transmission.

APPENDIX G

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915312	Site Details	Box 1	
Sit	e Name Pi	erce Arrow Business C	enter		
Cit Co	e Address: y/Town: Bu unty:Erie e Acreage:		t Zip Code: 14207		
Re	porting Peri	od: April 27, 2020 to Apr	ril 27, 2021		
				YES	NO
1.	Is the infor	mation above correct?		X	
	If NO, inclu	ude handwritten above or	r on a separate sheet.		
2.		or all of the site property mendment during this Re	v been sold, subdivided, merged, or unde porting Period?	ergone a	X
3.	 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 				X
4.	· · · · · · · · · · · · · · · · · · ·				X
			s 2 thru 4, include documentation or eviously submitted with this certificat		
5.	Is the site	currently undergoing dev	velopment?		X
				Box 2	
				YES	NO
6.		ent site use consistent wi -Residential, Commercia	ith the use(s) listed below? I, and Industrial	X	
7.	Are all ICs	in place and functioning	as designed?	X	
	IF T		R QUESTION 6 OR 7 IS NO, sign and dat HE REST OF THIS FORM. Otherwise co		
AC	Corrective N	leasures Work Plan mus	at be submitted along with this form to a	address these iss	sues.
Sig	nature of Ov	vner, Remedial Party or D	esignated Representative	Date	

		Box 2A
8. Has any new	information revealed that assumptions made i	n the Qualitative Exposure
Assessment	regarding offsite contamination are no longer v	valid? X
	ered YES to question 8, include documentat entation has been previously submitted with	
	mptions in the Qualitative Exposure Assessme ive Exposure Assessment must be certified ev	
	ered NO to question 9, the Periodic Review alitative Exposure Assessment based on th	
SITE NO. C915312	2	Box 3
Description o	f Institutional Controls	
<u>Parcel</u> 77.84-1-4	<u>Owner</u> R&M Leasing, LLC	Institutional Control
		IC/EC Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan
		Monitoring Plan
		Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan Soil Management Plan
-	ntial Use. on Evaluation for any future structures. or Excavation Work Plan for any future intrusiv	
		Box 4
Description o	f Engineering Controls	
Parcel	Engineering Control	
77.84-1-4 . Monitoring of the S	Vapor Mitigation Sub-slab Depressurization System.	

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	X
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	CMarkedance 5/26/2021
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915312

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I C. Mark Hanna	at 3636 N. Buffalo Rd. Orchard Park, NY 14127,					
print name	print business ad	print business address				
am certifying as <u>Designated Repre</u>	esentative	(Owner or Remedial Party)				
for the Site named in the Site Details Section of this form.						
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative	5/26/2021 Date				

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I C. Mark Hanna	_{at} _3636 N. Buffalo Rd. Orchard Park, NY 14127 _,
print name	print business address
am certifying as a Qualified Environr	
	(Owner or Remedial Party)
Marked Same	5/26/2021
Signature of Qualified Environmenta the Owner or Remedial Party, Rend	
the Owner of Reffectial Failty, Reffu	