# MARCH 2022 SOIL VAPOR INTRUSION INVESTIGATION REPORT

# Prepared for:

# **Pierce Arrow Business Center**

155-157 Chandler Street Buffalo, New York 14203

NYSDEC Site Number: C915312

# Prepared by:

Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

# **TABLE OF CONTENTS**

|                                                                               |                                                                                                                                                                                                                                                                                                                                                 | 'age  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                               | JC_TION                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                               | ct Background                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                               | ackground                                                                                                                                                                                                                                                                                                                                       |       |
|                                                                               | Remedial History                                                                                                                                                                                                                                                                                                                                |       |
|                                                                               | nary of Previous Vapor Intrusion Monitoring                                                                                                                                                                                                                                                                                                     |       |
|                                                                               | SOIL VAPOR INTRUSION INVESTIGATIONS                                                                                                                                                                                                                                                                                                             |       |
|                                                                               | uction                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                               | apor Intrusion Investigation - March 2022                                                                                                                                                                                                                                                                                                       |       |
|                                                                               | ding SurveyPreparation                                                                                                                                                                                                                                                                                                                          |       |
|                                                                               | ·                                                                                                                                                                                                                                                                                                                                               |       |
| -                                                                             | Sampling                                                                                                                                                                                                                                                                                                                                        |       |
|                                                                               | -Slab                                                                                                                                                                                                                                                                                                                                           |       |
|                                                                               | pient Indoor Air                                                                                                                                                                                                                                                                                                                                |       |
|                                                                               | oient Outdoor Air                                                                                                                                                                                                                                                                                                                               |       |
|                                                                               | Intrusion Analyitical Results                                                                                                                                                                                                                                                                                                                   |       |
|                                                                               | Intrusion Sample Decision Matricies                                                                                                                                                                                                                                                                                                             |       |
|                                                                               | Usability Summary                                                                                                                                                                                                                                                                                                                               |       |
| 3.0 PROPOS                                                                    | ED CORRECTIVE MEASURES                                                                                                                                                                                                                                                                                                                          | 13    |
| APPENDICIES Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F | Figures Tables Site Sheets and Building Survey Laboratory Analytical Report Photographs Data Usability Summary Report                                                                                                                                                                                                                           |       |
| FIGURES Figure 1 Figure 2 Figure 3 Figure 4 Figure 5                          | Site Location Map Site Limits & Remedial Investigation Locations Sub-Slab Mitigation Design & SMP Compliance Indoor Air Samp Locations Historical Indoor Air Sampling Locations & March 2022 Soil Vapor Intru Investigation Sampling Locations March 2022 Soil Vapor Intrusion Investigation & Post Vent Installa                               | ısion |
| Figure 6                                                                      | Sample Locations Proposed Additional Soil Vapor Intrusion Investigation Sample Locations                                                                                                                                                                                                                                                        | s     |
| TABLES Table 1 Table 2 Table 3 Table 4 Table 5                                | Soil Vapor Intrusion Analytical Testing Results (September 2017) Soil Vapor Intrusion Decision Matrices – September 2017 Historical Indoor Air Analytical Testing Results – December 201 December 2021 March 2022 Soil Vapor Intrusion Investigation Analytical Testing Results March 2022 Soil Vapor Intrusion Investigation Decision Matrices |       |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                 |       |

#### 1.0 INTRODUCTION

# 1.1 **Project Background**

Environmental Advantage, Inc. (EA), on behalf of R&M Leasing, LLC (R&M), and in accordance with the SVI Investigation Work Plan that was submitted to the New York State Department of Environmental Conservation (NYSDEC or "Department") and approved on April 1, 2022<sup>1</sup>, completed a Soil Vapor Intrusion (SVI) investigation at the Pierce Arrow Business Center (PABC) facility located at 155-157 Chandler Street in the City of Buffalo, New York (Site), as shown on Figure 1, located in Appendix A. The owner of the property, R&M Leasing, completed a Brownfield Cleanup Program (BCP) Track 2 Cleanup at the site with a Certificate of Completion (COC) issued on December 27, 2017<sup>2</sup>. The SVI investigation was completed in general accordance with NYSDEC DER-10 guidelines and New York State Department of Health (NYSDOH) "Guidance for Evaluating Soil Vapor Intrusion in New York State<sup>3</sup>" document. This SVI investigation was focused on indoor and sub-slab conditions beneath the area of the building currently occupied by Buffalo Cider Hall, where air monitoring completed in accordance with the Department-approved Site Management Plan (SMP)<sup>4</sup>, has indicated trichloroethene (TCE) concentrations in the indoor air in exceedance of the NYSDOH Air Guideline Values (AGV). This SVI Report provides details on the analytical results from this initial investigation in the area described above. Please Note: the investigation was completed on March 28, 2022 after a telephone discussion with a NYSDEC representative, just prior to the end of the NYSDOH defined heating season The finalized SVI Work Plan was subsequently approved by the Department representative assigned to the Site in April 1, 2022. Based on the results of the investigation detailed below, further investigation is needed.

This SVI Investigation Draft Report is not a monitoring report for SMP compliance, as the areas subject to the SVI investigation are not associated with the current Engineering Controls (EC's) operating at the Site, and initial Remedial Investigation (RI) and Interim Remedial Measure (IRM) work did not identify any concerns in the area(s) subject to this investigation. This Draft Report presents an initial completed scope of work to investigate a source of SVI that either was not identified during RI/IRM work, or that has presented itself as a result of completed building development or completed development of neighboring parcels.

# 1.2 Site Background

The PABC Property ("Site") is an approximately 2.35 acre property located at 155-157 Chandler Street in the City of Buffalo, Erie County, New York. Site boundaries

<sup>1 &</sup>quot;Soil Vapor Intrusion Investigation Work Plan for Pierce Arrow Business Center, 155-157 Chandler Street, Buffalo, NY" prepared by Environmental Advantage, Inc., and submitted to the Department on March 15, 2022. Approved by the Department post-investigation on April 1, 2022.

<sup>2</sup> New York State Department of Environmental Conservation, "Certificate of Completion for the Pierce Arrow Business Center", dated December 27, 2017

<sup>3 &</sup>quot;Guidance for Evaluating Soil Vapor Intrusion in New York State" prepared by NYSDOH, October 2006, updated May 2017.

<sup>4 &</sup>quot;Pierce Arrow Business Center, 155-157 Chandler, Erie County, Buffalo, New York, Site Management Plan, NYSDEC Site Number: C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, dated December 14, 2017.

are illustrated in Figure 2. The Site consists of an approximate 65,000-square foot building, 22,000-square foot courtyard within the central area of the building and an approximate 0.39 acre parking lot area directly east of the Site building. The Site is zoned D-C Flex Commercial, which permits Residential, Retail, & Service, and Light Industrial uses. The neighborhood surrounding the Site primarily includes light industrial, commercial and residential properties.

The Site building was originally constructed in 1907 and utilized as a factory occupied by Linde Air Products until the early 1950s. Bell Aircraft Corp. occupied the Site in the early/mid 1950s, before it was purchased by Donald Rosen in 1958, who utilized the property for G & R Machinery (machine shop). The Site was purchased by Ontario Equipment Co. in 2005, and by R&M Leasing, LLC in February 2017. Development at the Site was completed in 2018. The building is currently occupied by the following tenants: Utilant, LLC, Blackbird Cidery Buffalo Cider Hall, Barrel and Brine Kombucha, ODL Orthodontic Lab, Anderson Tax Services, and four (4) luxury second floor loft apartments.

# 1.3 <u>Site Remedial History</u>

Brownfield Cleanup Agreement (BCA Index No. C915312-02-17) was executed on April 24, 2017 for the Site, identified as Site No. C915312. Hazard Evaluations Inc. (HEI) in association with Schenne & Associates (S&A) completed RI and IRM activities concurrently, in order to remediate the on-site concerns. RI and IRM work completed at the Site was detailed in the Site's Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report (RI-IRM-AAR)<sup>5</sup> and Final Engineering Report (FER)<sup>6</sup>. Below is an abridged summary of the Site remedial history relating to SVI and chlorinated volatile organic compound (CVOC) contamination.

#### **SVI** Assessment

During the initial SVI Assessment completed in September 2017 as part of the RI, vapor intrusion air samples were analyzed from five (5) sub-slab locations and six (6) ambient indoor air locations throughout the building, as well as one (1) ambient outdoor location. TCE was detected in three of the sub-slab samples at concentrations ranging from 2.2 ug/m³ at SS-2 to 3,500 ug/m³ at SS-4. TCE was also detected at the indoor samples at concentrations ranging from 0.27 ug/m³ at IA-3 to 1.7 ug/m³ at IA-4. However, all indoor air sample results for TCE were below the NYSDOH AGV of 2 ug/m³. The decision matrices from the updated NYSDOH SVI guidance indicated "no further action" for locations SS-1/IA-1, SS-2/IA-2, SS-5/IA-5 and SS-6/IA-6. However, based on the TCE concentration of 730 ug/m³ and 3500 ug/m³ in the sub-slab samples from SS-3 and SS-4, respectively, decision matrix A indicated these locations/areas would require mitigation. Other CVOCs were detected during the initial SVI Assessment at low levels; however, only TCE required mitigation. Post-COC, TCE has

\_

<sup>5 &</sup>quot;Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report; Brownfield Cleanup Program For Pierce Arrow Business Center; 155-157 Chandler, Buffalo, New York, 14207; BCP # C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 5, 2017.

<sup>6 &</sup>quot;Final Engineering Report; Brownfield Cleanup Program for Pierce Arrow Business Center, 155-157 Chandler, Buffalo, New York 14207; BCP # C915312" prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 2017.

been the only identified chlorinated contaminant of concern associated with recent sampling<sup>7</sup>. The results of the initial SVI Assessment and SVI sampling decision matrices utilized during the RI/IRM is included as Table 1 and Table 2, respectively, located in Appendix B. Sample locations are illustrated on Figure 2 and Figure 3.

As a result of the September 2017 SVI Assessment, a sub-slab depressurization (SSD) system was installed in the southwestern portion of the site in proximity to SS-3/AI-3 and SS-4/AI-4 sample locations, as shown in Figure 3. The SSD system was installed in November 2017, with a system start date of November 8, 2017, in response to the recommendations of the NYSDOH decision matrices. After installation in 2017, the SSD system remained inactive until late fall 2018 while the building was unoccupied and being developed. The full summary (including applicable laboratory analytical reports) of the original SVI Assessment and SSD system installation are included in the Site's FER and SMP.

A review of the historical remedial data associated with the areas where TCE has been detected in the indoor air in exceedance of the NYSDOH AGV (in the vicinity of IA-6, IA-7 and IA-8); reveal no pre- or post-Interim Remedial Measure (IRM) soil or groundwater concentrations of TCE or any other NYSDOH priority CVOC<sup>8</sup>. TCE was non-detect in all interior monitoring wells with the exception of SB128/MW-4 where TCE was detected at an estimated concentration of 0.23 ug/l. No other CVOCs were detected in any of the interior monitoring wells. TCE has not been detected in the only remaining monitoring well post-IRM activities, MW-3 located upgradient in the parking lot area. Interior soil samples collected during the RI exhibited trivial levels of TCE and other CVOCs with the exception of the SB 135 location (vicinity of SS-5/IA-5), which exhibited a TCE concentration of 1.3 mg/kg in exceedance of the Unrestricted Use SCO (UUSCO). The area around SB 135 was excavated and removed during IRM activities. Interior remedial investigation locations are illustrated on Figure 2.

Confirmatory samples collected in the courtyard area post-IRM activities exhibited very low levels of TCE and other CVOCs with the exception of CY-CS-1, which exhibited a TCE concentration of 1.1 mg/kg in exceedance of the UUSCO. However, the concentration of TCE at the CY-CS-1 location was well within the Residential Use SCO (RUSCO) of 10 mg/kg. Furthermore, courtyard confirmatory sample locations related to the Fuel Oil Tank removed directly adjacent to the building foundation outside of Buffalo Cider Hall and in the immediate vicinity of CY-CS-1, exhibited TCE concentrations of 0.036 mg/kg, 0.023mg/kg, and 0.0014 mg/kg. Courtyard confirmatory sample locations around the perimeter of the historical chimney

\_\_\_

<sup>7</sup> Carbon Tetrachloride was detected at concentrations of 41 ug/m3 and 0.63 ug/m3 at the SS-3/IA-3 locations and 23 ug/m3 and 0.57 ug/m3 at the SS-4/IA-4 locations. According to Matrix A the recommended action is to "monitor". Post SSD systems operation, Carbon Tetrachloride has remained <1 ug/m3 at both SS\_3/IA-3 and SS-4/IA-4 locations. Methylene Chloride was detected at concentrations of 2.6 ug/m3 and 150 ug/m3 at the at the SS-4/IA-4 location. According to Matrix B the recommended action is to "Identify Source(s) and Resample or Mitigate". Post SSD systems operation, Methylene Chloride has remained non-detect at the SS-4/IA-4 location.

<sup>8</sup> Priority CVOCs include those listed on the decisions matrices, specifically: Matrix A- Trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (11-DCE), and Carbon Tetrachloride (CT); Matrix B - Tetrachloroethene (PCE), 1,1,1-trichloroethane (111-TCA), and Methylene Chloride; and Matrix C - Vinyl Chloride (VC)

stack also located directly adjacent to the building foundation outside of Buffalo Cider Hall exhibited TCE concentrations of 0.05 mg/kg and 0.00074 mg/kg.

### 1.4 Summary of Previous Vapor Intrusion Monitoring

Below is an abridged summary of the SVI monitoring completed at the Site since the issuance of the COC as reported in the Site's annual Periodic Review Reports (PRR's)9 as required by the Site SMP. Full summaries (including applicable laboratory analytical reports) of the post-SSD installation sampling and annual Indoor/Outdoor Air sampling, can be found in the Department approved PRR's from 2018-2019, 2019-2020, and 2020-2021. Monitoring results for sampling locations identified as IA-1, IA-2, IA-3, and IA-4 are not discussed in this report due to continued compliant results post-SSD system installation. Monitoring results for sampling location IA-5 are briefly discussed as this location exhibited early non-compliant results due to SSD system malfunction.

During annual system monitoring and sampling events, summa air canister samples are collected at six (6) indoor locations and one (1) outdoor location as shown on Figure 3 and Figure 4. Air samples are collected over an 8-hour period and submitted to Alpha Analytical Laboratories to be analyzed for the presence of volatile organic compounds (VOCs) via USEPA method TO-15. Annual monitoring samples are collected during the 'heating season' as defined by NYSDOH (November 15th to March 31<sup>st</sup>), and have been collected on December 18, 2018, December 12, 2019, December 11, 2020, and December 2, 2021. When annual sampling exhibits a non-compliant result, follow up inspections and monitoring is completed as necessary. Follow up samples have been collected on February 13, 2019, June 21, 2019 at the IA-5 location and on February 20, 2020, February 18, 2021, March 31, 2021, and June 11, 2021 at the IA-6 location. Analytical results of all air sampling completed at the Site since SSDS installation are summarized on Table 3.

During the initial post-SSD system monitoring and sampling event in December 2018, SSDS-1, SSDS-2, and SSDS-3 were not operating. According to the property manager at the time, the three SSDS locations had been turned off during interior construction activities due to access issues. SSDS-4 was operating at the time of the inspection. Interior construction activities included a new floor, consisting of new #1 stone, vapor barrier, and six-inches of new concrete throughout the entire building. The concrete floor was finished with a sealer and was completed at the time of the inspection. Interior development was completed in some tenant spaces, but still under way in others. Exterior development work and windows were still being installed. The building was unoccupied at this time. TCE was detected at a concentration of 9.46 ug/m³ in the indoor air sample identified as IA-5. This concentration exceeds the NYSDOH AGV of 2 ug/m³. As noted above, the SSDSs were not all operational at time of sample collection.

<sup>9 &</sup>quot;Periodic Review Report – April 2019; DEC Site #C911532", prepared by Hazard Evaluations, Inc., dated May 31, 2019; Periodic Review Report – April 2020; DEC Site #C911532", prepared by Hazard Evaluations, Inc., dated April 30, 2020; Periodic Review Report – April 2021 – Revised; DEC Site #C911532", prepared by Environmental Advantage, Inc., dated July 16, 2021.

During a follow up site inspection in February 2019, SSDS-1, SSDS-2, and SSDS-4 were operating as designed, SSDS-3 was operational, however the property manager indicated the fan would work intermittently. A follow up indoor air sample was collected at the original IA-5 sample location to assess if indoor air concentrations of TCE had been reduced with operation of the SSD systems. TCE was detected at a concentration of 4.54 ug/m<sup>3</sup> at the IA- 5 location, which exceeds the NYSDOH AGV of 2 ug/m<sup>3</sup>. As noted above, SSDS-3 was operational; however, the property manager indicated the fan would work intermittently. An additional follow up site inspection due to the exceedance at the IA-5 location was completed in June 2019. At the time of the inspection, all four SSD systems appeared to be functioning properly, as positive pressure differential readings were recorded. A follow up indoor air sample was collected at the original IA-5 sample location assess if indoor air concentrations of TCE had been reduced with proper operation of all four SSD systems. TCE was detected at a concentration of 0.903 ug/m<sup>3</sup>, which is below the NYSDOH AGV of 2 ug/m<sup>3</sup>. The property manager indicated that prior to April 26, 2019, the SSDS-3 fan had been replaced due to intermittent malfunction and the SSDS-4 fan had been replaced due to occasional malfunction as reported by the site tenant.

As per the monitoring and sampling requirements listed in the Site's SMP, a second annual Site-wide inspection and air sampling event was completed by HEI in December 2019. The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded. TCE was detected at a concentration of 12.0 ug/m³ at the IA-6 location, which exceeds the NYSDOH AGV of 2 ug/m³. Carbon tetrachloride was also detected at the IA-6 location above its respective commercial indoor air background level¹0. As a result of this December 2019 exceedance, EA collected a follow up sample from this location in February 2020. TCE was detected at a concentration of 1.34 ug/m³, which is below the NYSDOH AGV of 2 ug/m³. The four SSD systems appeared to be functioning properly at the time of the February 2020 inspection.

The third annual SMP required Site-wide inspection and air sampling event was completed by EA in December 2020. The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded. TCE was detected at a concentration of 2.96 ug/m³ at the IA-6 location, which exceeds its respective NYSDOH AGV value of 2 ug/m³. As a result of this December 2020 exceedance, EA collected a follow up indoor air sample from this location in February 2021. TCE was again detected at a concentration of 2.96 ug/m³ at IA-6. The four SSD systems appeared to be functioning properly at the time of the February 2021 inspection.

Due to the NYSDOH AGV exceedances for TCE at the IA-6 location as discussed above, EA contacted the Site Owner, Mr. Rocco Termini, and recommended that the location of IA-6, which is an unoccupied pass-through hallway containing mailboxes, be better ventilated. On March 26, 2021, Mr. Termini had a ceiling exhaust

<sup>10</sup>USEPA 2001: Building Assessment and Survey Evaluation (BASE) Database as incorporated into the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York".

fan installed within the hallway in an attempt to improve ventilation. Following the installation of the exhaust fan, EA collected an additional follow up indoor air sample from this location on March 31, 2021. TCE was detected at a concentration of 14 ug/m³, which exceeds both its respective NYSDOH AGV of 2 ug/m³.

In consideration of the March 2021 results, EA surmised that the more elevated results observed at the IA-6 location may be related to the ceiling fan creating a negative pressure within the hallway, even though there is no historical record of any underlying sub-slab TCE contamination in this area of the facility based on the predesign sampling results collected in September 2017. For strictly test protocol purposes, EA collected an air sample at the IA-6 location on June 17, 2021, with the two man-door entrances to the pass-through hallway propped open approximately one inch each to allow the infiltration of fresh outdoor air. TCE was detected at a concentration of 1.31 ug/m<sup>3</sup>, which is below its respective NYSDOH AGV of 2 ug/m<sup>3</sup>. Based on these results, Mr. Termini proposed to install two approximate 10-inch by 12-inch passive vents within each of the man-door entrances to allow the infiltration of fresh outdoor air which was proposed to the Department in the July 16, 2021 Summary Letter - June 2021 Indoor Air Sampling Results<sup>11</sup> letter report. The Department approved the passive door vent installation remedy and requested additional air sampling post-installation as detailed in the August 4, 2021 Periodic Review Report & June 2021 Indoor Air Sampling Results Response Letter<sup>12</sup>. Passive vent installation was completed in the mailroom (location of IA-6) at the end of October 2021 by building maintenance.

In early December 2021, the fourth annual SMP required Site-wide inspection and air sampling event was completed by EA. At the direction of the NYSDEC<sup>4</sup>, post passive vent installation indoor air samples were collected as well at this time from two rooms adjacent to the mail room (location of IA-6) designated as IA-7 and IA-8. Postvent installation yielded acceptable results at the IA-6 location as had been anticipated with TCE detected at a concentration of 1.73 ug/m³, which is below its respective NYSDOH AGV of 2 ug/m³, however, TCE was detected at a concentration of 17.5 ug/m³ at the IA-7 location and 18.0 ug/m³ at the IA-8 location. IA-7 is located in the southern adjacent room (from the IA-6 location) which is currently part of Buffalo Cider Hall and is utilized for storage of kegs, dry goods, and other restaurant supplies, and IA-8 is located in the eastern adjacent room which is currently also part of Buffalo Cider Hall and is currently utilized for restaurant seating. An open doorway is located between where IA-7 and IA-8 are located. The location of the additional indoor air samples collected is illustrated in Figure 4. A summary of the historical and most recent December 2021 air sampling results is included in Table 3.

<sup>11 &</sup>quot;Summary Letter – June 2021 Indoor Air Sampling Results" prepared by Environmental Advantage, Inc., July 2021

<sup>12 &</sup>quot;Site Management (SM) – Periodic Review Report (PRR) & June 2021 Indoor Air Sampling Results Response Letter" prepared by Megan Kuczka of NYSDEC, August 4, 2021.

The results of the December 2021 monitoring and sampling event were provided to the Department in a summary letter<sup>13</sup> in which EA presented the following:

According to the NYSDOH Soil Vapor/Indoor Air Matrix A, 2017 update 14, the appropriate action with a sub-slab concentration of less than 6 ug/m³ with an accompanying indoor air concentration of 1 ug/m³ and above for TCE is to "identify source(s) and resample or mitigate". Further investigation into the source of the TCE in this area of the building is warranted. The next step is to complete sub-slab air sampling accompanied by corresponding indoor air sampling to identify if there is an unidentified source area that was either not previously investigated, or if building development may have created a [preferential] pathway for sub-slab vapors which was not present during [the] pre-SSDS design soil vapor intrusion (SVI) assessment.

The Department responded in a letter dated February 23, 2022, requesting the submittal of a work plan<sup>15</sup>. The ensuing investigation was completed on March 28, 2022, prior to the end of the NYSDOH defined heating season.

#### 2.0 RECENT SOIL VAPOR INTRUSION INVESTIGATIONS

#### 2.1 Introduction

In December 2021, TCE was detected at two (2) indoor sample locations at concentrations ranging from 17.5 ug/m³ at IA-7 to 18.0 ug/m³ at IA-8. Historical subslab vapor samples collected in the immediate vicinity of this area exhibited non-detected concentrations of TCE, and no further action was recommended for all NYSDOH target CVOCs during RI/IRM activities. Based on the December 2021 indoor air TCE concentrations listed above, decision matrix A of the 2017 update of the NYSDOH SVI guidance recommend to identify source(s) and resample or mitigate. The SVI investigation scope of work as detailed in the March 2022 Work Plan included investigation for potential site contaminants in the sub-slab vapor, indoor ambient air, and outdoor ambient air at the Site, in the vicinity of IA-7 and IA-8. The scope of work included three (3) sub-slab vapor, three (3) indoor ambient air sample locations, and one (1) outdoor ambient air location. Specific sub-slab locations were selected at the time of the investigation based on the Site inspection and accessibility; sampling locations are included on Figure 4 and further described below.

#### 2.2 Soil Vapor Intrusion Investigation – March 2022

Sub-slab and indoor air samples were collected in the vicinity of the two previously identified indoor air locations, IA-7 and IA-8. Specifically, at the previous IA-7

<sup>13 &</sup>quot;Summary Letter – Post Passive Vent Installation Indoor Air Sampling Results. Revised", prepared by Environmental Advantage, Inc., dated February 17, 2022.

<sup>14 &</sup>quot;Guidance for Evaluating Soil Vapor Intrusion in New York State" prepared by NYSDOH, October 2006, updated May 2017.

<sup>15 &</sup>lt;sup>4</sup>Site Management (SM) – Post Passive Vent Installation Indoor Air Sampling Results Response Letter" prepared by Megan Kuczka of NYSDEC, February 23, 2022.

location one (1) sub-slab vapor and corresponding indoor air sample location was completed, adjacent to the previous IA-8 location, in the adjacent room, one (1) sub-slab vapor and corresponding indoor air sample location was completed in an identified below grade area identified as the "basement" area on Site design plans, and a third sub-slab vapor and corresponding indoor air sample location was completed in the bar area of the Buffalo Cider Hall. Due to a large floor drain located in the immediate vicinity of the previous IA-8 location, a sub-slab vapor and corresponding indoor air sample location was not recommended in this area in accordance with Section 2.7.2. of the NYSDOH SVI Guidance document. Sampling locations are shown on Figure 4.

### 2.2.1 Building Survey

An inspection of the existing on-site facility and product inventory was conducted to assess the current conditions in proposed sampling areas and determine the likelihood of existing chemicals of concern that may be present that could influence the vapor test results. A pre-calibrated photoionization detector (PID) was used to monitor indoor air and scan vapors of individual containers that were present. During the building survey, the following products were identified and scanned with a PID:

- 3 gallons of wall paint near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 quart Acetone near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 quart furniture refinisher near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 quart stripper near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 quart brush cleaner near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 quart wood cleaner near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 can stain near SS-7(032922) and IA-7(032922): 0.0ppm,
- 1 gallon bleach in the kitchen area: 0.0ppm.
- 1 quart degreaser in the kitchen area: 0.0ppm,
- 18oz Carbon Off in the kitchen area: 0.0ppm.
- 1 gallon floor cleaner in the kitchen area: 0.0ppm.

Due to zero PID reading on all containers, no containers were removed prior to vapor sampling. The complete building survey is included in Appendix C.

## 2.2.2 Site Preparation

In accordance with NYSDOH recommendations, the HVAC system was confirmed to be activated during the investigation. In addition, EA sealed off individual rooms where air samples were taken in order to limit potential airflow from adjoining rooms. EA shut all doors and duct taped poly sheeting across entrances where there were no doors.

#### 2.3 Vapor Sampling

Three types of air samples were collected, including sub-slab, ambient indoor air and ambient outdoor air samples, as follows:

**2.3.1 Sub-Slab:** EA installed three (3) temporary sub-slab sampling points at locations as shown on Figure 4. Samples were obtained through core-drilled holes into a competent portion of the concrete floor, away from cracks or drains. Clean, dedicated ¼-inch inside diameter polyethylene tubing was placed into the hole and care was taken to not extend the tubing further than 2-inches into the sub-slab material. The corehole annulus was then sealed at the floor surface with non-VOC containing modeling clay. Once it was determined that the sampling system was sealed, the sample probe and tube were purged of one to three volumes, and sampling was initiated.

EA immediately took PID readings through the corehole upon drilling through the sub-slab at each location. The results of the sub-slab PID screening are as follows:

- SS-9(032922) 0.0ppm, - SS-10(032922) 15.0ppm, - SS-7(032922) 1.0ppm.

Sub-slab vapor samples were collected using 2.7-liter capacity Summa canisters each fitted with a laboratory calibrated flow regulation devise to allow the collection of the soil gas sample over an 8-hour sample collection time.

- **2.3.2** Ambient Indoor Air: IA-9(032922) and IA-7(032922) ambient indoor air samples were collected concurrent with sub-slab sample locations SS-9(032922) and SS-7(032922), respectively, from approximately 3 to 4 feet above the slab floor as detailed in the NYSDOH SVI Guidance. The IA-10(032922) ambient indoor air sample was collected concurrent with the sub-slab sample location at the top of the "basement" stairs approximately 10 to 12 feet above the "basement" slab floor. IA-10(032922) was collected in what is known as the "event area" at Buffalo Cider Hall because this location is where human occupancy would be expected. The "basement" area is a stairwell that is walled off at the bottom and blocked off with a steel grate to prevent entrance to this area as it is not intended for human occupancy, however represents the lowest grade slab in the building. A total of 3 ambient indoor air samples were obtained. Samples were collected over an 8-hour collection period.
- **2.3.3 Ambient Outdoor Air:** One ambient outdoor sample was collected at an upwind location from approximately 4 to 5 feet above the ground surface. The sample was located in the courtyard area, immediately outside of the Buffalo Cider Hall. The sample was collected over an 8-hour collection period.

All sampling and purging flow rates did not exceed 0.2 liters per minute. Photographs taken during the investigation are included in Appendix E.

#### 2.4 Vapor Intrusion Analytical Results

Vapor intrusion air samples from three sub-slab locations, three ambient indoor air locations and one ambient outdoor location were submitted to Alpha Analytical Laboratories and analyzed for the presence of VOCs via EPA Method TO-15. Vapor

intrusion sample results are summarized on Table 4. The full analytical report is provided in Appendix D.

The NYSDOH SVI Guidance document lists specific air guideline values (AGV) for limited compounds as presented on Table 3.1 of the NYSDOH document. Table 3.1 applies to both indoor and outdoor ambient air; however NYSDOH does not have specific air guidelines for sub-slab vapor concentrations. The NYSDOH Guidance document also provides "background levels" of a more expanded list of compounds for outdoor air and indoor air within Appendix C of the guidance, Table C2, EPA 2001: Building Assessment and Survey Evaluation (BASE) Database. The 2001 EPA BASE survey consisted of a study of measured concentrations of VOCs from 100 randomly selected public and commercial buildings, however only represents office settings. The NYSDOH guidance indicates that the 90<sup>th</sup> percentile values from the USEPA BASE data for indoor air for office and commercial buildings can be considered for initial benchmark values, however where NYSDOH has published an air guideline value for a specific chemical, the air guideline value supersedes the values listed in the USEPA BASE data.

Based on reviews of toxicity data, risk assessments, and soil vapor intrusion data collected in New York State, the NYSDOH SVI Guidance document has received numerous updates. In September 2013, the air guideline value for tetrachloroethene in ambient air was lowered from 100 ug/m3 to 30 ug/m3 and the recommended immediate action level was lowered from 1,000 ug/m3 to 300 ug/m3. In August 2015, the air guideline value for trichloroethene in ambient air was lowered from 5 ug/m3 to 2 ug/m3 and a recommended immediate action level of 20 ug/m3 was developed. Additionally, in May 2017, NYSDOH updated the original 2006 Soil Vapor/Indoor Air Matrix 1 and Soil Vapor/Indoor Air Matrix 2 to three matrices, including Matrix A (trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (11-DCE), and carbon tetrachloride); Matrix B (tetrachloroethene (PCE), 1,1,1-trichloroethane (111-TCA), and methylene chloride); and Matrix C (vinyl chloride)16.

A summary of the detected VOC concentrations applied to the updated decision matrices are included in Table 5. New York State currently does not have standards, criteria or guidance values for concentrations of VOCs in sub-slab vapor samples. The purpose of collecting sub-slab samples is to identify potential exposure scenarios associated with vapor intrusion. A summary of these results for sample location pairs is as follows:

SS-9(032922) (sub-slab) – Twenty-five (25) compounds were detected above method detection limits. TCE was detected at a concentration of 7.09 ug/m³. IA-9(032922) (indoor) – Sixteen (16) compounds were detected above method detection limits. Three (3) compounds were detected at levels which exceed the 90<sup>th</sup> percentile for indoor air including carbon tetrachloride, chloroform, and TCE.

\_

<sup>&</sup>quot;Soil Vapor Intrusion Updates", New York State Department of Health website. https://health.ny.gov/environmental/indoors/vapor intrusion/update.htm

TCE was detected at a concentration of 25.5 ug/m³, which exceeds the NYSDOHAGV of 2 ug/m³.

- SS-10(032922) (sub-slab) Twenty-two (22) compounds were detected above method detection limits. TCE was detected at a concentration of 23.4 ug/m³. IA-10(032922) (indoor) Fourteen (14) compounds were detected above method detection limits. Four (4) compounds were detected at levels which exceed the 90<sup>th</sup> percentile for indoor air including carbon tetrachloride, chloroform, isopropanol, and TCE. TCE was detected at a concentration of 39.2 ug/m³, which exceeds the NYSDOH AGV of 2 ug/m³.
- SS-7(032922) (sub-slab) Nineteen (19) compounds were detected above method detection limits. TCE was detected at a concentration of 8.92 ug/m³. IA-7(032922) (indoor) Thirteen (13) compounds were detected above method detection limits. Five (5) compounds were detected at levels which exceed the 90<sup>th</sup> percentile for indoor air including carbon tetrachloride, chloroform, isopropanol, ethanol, and TCE. TCE was detected at a concentration of 24.1 ug/m³, which exceeds the NYSDOH AGV of 2 ug/m³.
- OA-1(032922) (outdoor) Six (6) compounds were detected above method detection limits. No compounds were detected at a concentration above the 90<sup>th</sup> percentile for outdoor air.

## 2.5 Vapor Intrusion Sample Decision Matrix

NYSDOH developed decision matrices to provide guidance on a case-by-case basis about actions that should be taken to address current or potential exposures related to soil vapor intrusion. Actions recommended in the matrix are based on relationship between sub-slab vapor concentrations and corresponding indoor air concentrations, with considerations for outdoor air results. The compounds are currently assigned to three matrices, including:

Matrix A Trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE),1,1-dichloroethene (11-DCE), and Carbon Tetrachloride (CT)

Matrix B Tetrachloroethene (PCE), 1,1,1-trichloroethane (111-TCA), and Methylene Chloride

Matrix C Vinyl Chloride (VC)

Analytical testing results for these compounds are presented in Table 5. EA reviewed the decision matrices for each compound. 1,1-DCE, 1,1,1-TCA, and VC were not detected and therefore no further action is needed with regard to these compounds.

**TCE** – TCE was detected in all three of the sub-slab samples at concentrations ranging from 7.09 ug/m³ at SS-9(032922) to 23.4 ug/m³ at SS-10(032922). TCE was also detected at all three indoor ambient air samples at concentrations ranging from 24.1 ug/m³ at IA-7(032922) to 39.2 ug/m³ at IA-10(032922). All

three indoor air sample results for TCE above the NYSDOH AGV of 2 ug/m<sup>3</sup>. Decision matrix indicates these three locations/areas would require mitigation.

**cis-DCE** — cis-DCE was detected all three of the indoor air samples at concentrations ranging from 0.369 ug/m³ at IA-7(032922) to 0.48 ug/m³ at IA-10(032922); however, cis-DCE was not detected in the sub-slab air samples. The decision matrix from the NYSDOH guidance indicates that no further action is needed in this scenario.

**Carbon Tetrachloride** - Carbon tetrachloride was detected at all three sub-slab locations at concentrations ranging from 3.12 ug/m³ at SS-7(032922) to 8.87 ug/m³ at SS-9(032922) and all three indoor air samples at concentrations ranging from 3.96 ug/m³ at IA-7(032922) to 8.05 ug/m³ at IA-9(032922). Decision matrix indicates that SS-9/IA-9 locations/areas would require mitigation and SS-10/IA-10 and SS-7/IA-7 locations/areas would require to Identify Source(s) and Resample or Mitigate.

**Methylene Chloride** – Methylene Chloride (MC) was detected in one sub-slab air sample SS-9(032922) at a concentration of 1.99 ug/m³. Methylene Chloride was not detected in any of the indoor air samples. The decision matrix from the NYSDOH guidance indicates that no further action is needed in this scenario.

**PCE** – PCE was detected in one sub-slab sample SS-9(032922) at a concentration of 1.45 ug/m<sup>3</sup>. PCE was detected in all three indoor air samples at concentrations ranging from 0.305 ug/m<sup>3</sup> at IA-10(032922) to 0.610 ug/m<sup>3</sup> at IA-9(032922), all of which are below the NYSDOH AGV of 30 ug/m<sup>3</sup>. The decision matrix from the NYSDOH guidance indicates that no further action is needed in these scenarios.

#### 2.6 Data Usability Summary

The analytical data from the vapor/air samples collected in March 2022 were submitted for independent review, as requested by NYSDEC. Vali-Data of WNY, LLC, located in Fulton, New York, completed the data usability summary report (DUSR). The DUSR is provided in Appendix F and was prepared using guidance from the USEPA Region 2 Validation Standard Operating Procedures, USEPA National Functional Guidelines for Data Review, and professional judgement. Ambient air and sub-slab vapor samples were collected as described above and were evaluated as described below:

# Soil Vapor Intrusion Air Samples March 2022 – Alpha Lab Sample L2055692:

The results for three indoor air samples, three sub-slab air samples, and one outdoor air samples were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- The data are acceptable for use except where qualified below in Initial Calibration;
- Sample: DUSR ID#4 was diluted due to pressurization of the can;

- All results were recorded to the reporting limits; and
- All criteria were met except a target analyte (Acetone) was outside QC limits in the initial calibration verification off instrument, Airlab16. This target analyte should be qualified as estimated in the associated blanks, spikes and samples.

#### 3.0 PROPOSED CORRECTIVE MEASURES

Upon receipt of the results from this SVI Investigation, the site owner and Engineer on record were immediately notified. Photographs taken during an initial Site visit in 2016 and remedial activities in 2018 were reviewed and a larger below-grade "basement" area was identified. Site architectural drawings were also reviewed, identifying two storage closet areas immediately adjacent to the Buffalo Cider Hall event area and mezzanine area. EA requested access to inspect the two "closet" areas identified on the architectural drawings and completed an inspection on April 26, 2022. During the inspection EA identified a storage area leased by ODL Orthodontic Lab that is located below grade, directly adjacent to where sub-slab sample SS-10(032922) was located. When selecting the original SVI Investigation sample locations, building management was questioned about the stairway located in the Buffalo Cider Hall event area at the time, and building management did not have any knowledge of where the stairwell formally terminated or why the area had been closed off. Photographs taken during the April 26, 2022 Site inspection are included in Appendix E.

In consideration of the March 27, 2022 analytical results, and with the new knowledge of the below-grade ODL storage area, EA recommended additional SVI sampling in effort to identify the source of the chlorinated hydrocarbons. A total of four sub-slab and corresponding indoor ambient air samples, one additional ambient indoor air sample, and two ambient outdoor air samples were recommended for the additional investigative effort at the following locations:

- One sub-slab and corresponding indoor ambient air sample in the below-grade ODL storage area adjacent to where previous SS-10(032922) was collected;
- One sub-slab and corresponding indoor ambient air sample in the Buffalo Cider Hall additional seating area and location of previous indoor air sample IA-8(120221);
- One sub-slab and corresponding indoor ambient air sample in the area known as the "event area" of the cidery, in the vicinity of where previous IA-10(032922) was collected, where the floor has visible cracks and filled-in historic drains; and One sub-slab and a corresponding indoor ambient air sample in the ODL tenant space, in the general vicinity of previous samples IA-5/SS-5.

During the initial SVI investigation completed in 2017, sample SS-5 was accidently destroyed by heavy equipment during building development activities. During the initial startup of the four currently operating SSD systems, there were initial exceedances of

the NYSDOH AGV for TCE in December 2018 and December 2019 at the IA-5 location at which time not all Site SSD systems were operating effectively 17.

Two additional outdoor ambient air samples were also proposed at the following locations:

- One on the Chandler Street side of the building directly adjacent to the entrance of the cidery and an additional sample collected from the roof top adjacent to the HVAC units that service the cidery area; and
- One additional indoor air ambient sample from the elevator shaft located directly outside of the cidery "event area". Building management was able to lock the elevator doors in an open position during sample collection with the sample tubing inserted into the void between the elevator car and hallway, so that any below grade vapors from the elevator shaft could be collected.

The procedures outlined in the March 2022 SVI Investigation Work Plan were followed for the additional sample collection, with the addition at the request of NYSDEC, that tracer gas be utilized in testing the sub-slab sample locations to ensure that a proper seal is in place around the tubing inserted into the sub-slab. The procedures outlined in Section 2.7.5 of the NYSDOH SVI Guidance document were followed. A diagram illustrating the proposed additional sample locations is included as Figure 6.

Results of the March 2022 SVI Investigation and the June 2022 additional sample collection will be reviewed by EA and the engineer on record to develop an appropriate plan of action to mitigate the vapor intrusion in this area. In the event that the proposed follow-up sampling identifies a potential source, corrective actions will be reassessed. A report of the findings of the additional sampling will be included in a Corrective Measures Work Plan for the Department's review and approval.

14

concentrations within the NYSDOH AGV. There have been no further exceedances at the IA-5 location since.

<sup>&</sup>lt;sup>17</sup> As detailed in Section 1.4 above, during the initial post-SSD system monitoring and sampling event in December 2018, SSDS-1, SSDS-2, and SSDS-3 were not operating. During a follow up inspection in February 2019, the property manager indicated the fan at SSDS-3 would only work intermittently. Indoor air samples collected at the IA-5 location in both December 2018 and February 2019, detected TCE at a concentration exceeding the NYSDOH AGV of 2ug/m3. An additional follow up site inspection was completed in June 2019 when all four SSD systems were functioning properly. A follow up indoor air sample was collected in June 2019 exhibited TCE at

# APPENDIX A FIGURES



THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, BUFFALO NE & NW, NEW YORK 2013 QUADRANGLE.



| ENVIRONMENTAL ADVANTAGE, INC.                                      |                                                 |              |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|
| Regulatory Compliance – Site Investigations – Facility Inspections |                                                 |              |  |  |  |  |  |  |  |  |  |  |
| LOCATION MAP                                                       |                                                 |              |  |  |  |  |  |  |  |  |  |  |
| 155 a                                                              | 155 and 157 CHANDLER STREET                     |              |  |  |  |  |  |  |  |  |  |  |
| BUFFALO, NEW YORK                                                  |                                                 |              |  |  |  |  |  |  |  |  |  |  |
|                                                                    | <u>,                                      </u>  |              |  |  |  |  |  |  |  |  |  |  |
|                                                                    | R & M LEASING LLC                               |              |  |  |  |  |  |  |  |  |  |  |
|                                                                    | BUFFALO, NEW YORK                               |              |  |  |  |  |  |  |  |  |  |  |
| DRAWN BY: JK                                                       | DRAWN BY: JK SCALE: NOT TO SCALE PROJECT: 01101 |              |  |  |  |  |  |  |  |  |  |  |
| CHECKED BY: MS                                                     | DATE: 03/22                                     | FIGURE NO: 1 |  |  |  |  |  |  |  |  |  |  |







IA-10 TCE
(ug/m³)
03/29/22 39.2









# **APPENDIX B**

# **TABLES**

# Table 1 Soil Vapor Intrusion Analytical Testing Results 155 Chandler Street, Buffalo, NY September 2017

| _                        | Guidance Values                                          | - Indoor Air                     |                  |                    |                  |                    |                  |                    |                  |                    |                                               |                    |                  |                    |                      |                                               |
|--------------------------|----------------------------------------------------------|----------------------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|-----------------------------------------------|--------------------|------------------|--------------------|----------------------|-----------------------------------------------|
| Parameter                | Table C2<br>Commercial Indoor<br>Air Background<br>(90%) | NYSDOH Air<br>Guideline<br>Value | SS-1<br>Sub-Slab | IA-1<br>Indoor Air | SS-2<br>Sub-Slab | IA-2<br>Indoor Air | SS-3<br>Sub-Slab | IA-3<br>Indoor Air | SS-4<br>Sub-Slab | IA-4<br>Indoor Air | SS-5<br>Sub-Slab                              | IA-5<br>Indoor Air | SS-6<br>Sub-Slab | IA-6<br>Indoor Air | OA001<br>Outdoor Air | Table C2<br>Outdoor Air<br>Guidance<br>Values |
| 1,1,1-Trichloroethane    | 20.6                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | 62               | ND                 |                                               | ND                 | ND               | ND                 | ND                   | 2.6                                           |
| 1,1-Dichloroethene       | <1.4                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 |                                               | ND                 | ND               | ND                 | ND                   | <1.4                                          |
| 1,2,4-Trichlorobenzene   | <6.8                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 |                                               | ND                 | ND               | ND                 | 0.98                 | <6.4                                          |
| 1,2,4-Trimethylbenzene   | 9.5                                                      |                                  | 8.4 J            | 0.88               | 5.8 J            | 0.98               | 47               | 1.5                | 7.1              | 5.9                |                                               | 4.7                | 5.6 J            | 75                 | ND                   | 5.8                                           |
| 1,3,5-Trimethylbenzene   | 3.7                                                      |                                  | 1.9 J            | ND                 | 3.0 J            | ND                 | 12               | 0.54 J             | 3.2 J            | 1.9                |                                               | 1.2                | 1.7 J            | 31                 | ND                   | 2.7                                           |
| 2,2,4-trimethylpentane   | NV                                                       |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 |                                               | 3.1                | ND               | ND                 | 0.98                 | NV                                            |
| 4-ethyltoluene           | 3.6                                                      |                                  | 2.1 J            | ND                 | 3.2 J            | ND                 | 13               | ND                 | 2.9 J            | 1.4                |                                               | 1                  | 1.9 J            | 34                 | ND                   | 3.0                                           |
| Acetone                  | 98.9                                                     |                                  | 52               | 28                 | 230              | 33                 | 380              | 49                 | 180              | 150                |                                               | 40                 | 390              | 290                | 30                   | 43.7                                          |
| Benzene                  | 9.4                                                      |                                  | 4.9              | 1.1                | 18               | 0.89               | 23               | 2.9                | 80               | 6.3                |                                               | 9.3                | 110              | 6.1                | 1.1                  | 6.6                                           |
| Bromomethane             | <1.7                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 |                                               | ND                 | 1.2 J            | ND                 | ND                   | <1.6                                          |
| Carbon disulfide         | 4.2                                                      |                                  | 0.81             | ND                 | 4.9              | ND                 | 9.0              | ND                 | 6.7              | ND                 |                                               | ND                 | 25               | ND                 | ND                   | 3.7                                           |
| Carbon tetrachloride     | <1.3                                                     |                                  | 2.0              | 0.63               | ND               | 0.69               | 41               | 0.63               | 23               | 0.57               |                                               | ND                 | 1.4 J            | 0.63               | 0.63                 | 0.7                                           |
| Chloroethane             | <1.1                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 | <u>i</u>                                      | ND                 | 1.1 J            | ND                 | ND                   | <1.2                                          |
| Chloroform               | 1.1                                                      |                                  | 2.5              | ND                 | 0.78             | ND                 | 35               | ND                 | 28               | ND                 | activ                                         | ND                 | 3.5 J            | ND                 | ND                   | 0.6                                           |
| Chloromethane            | 3.7                                                      |                                  | ND               | 1.3                | 0.33             | 1.3                | ND               | 1.4                | ND               | 1.8                | ion                                           | 1.3                | 5.9              | 1.9                | 1.7                  | 3.7                                           |
| cis-1,2-Dichloroethene   | <1.9                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | 3.3 J            | ND                 | Sample destroyed due to construction activity | ND                 | ND               | ND                 | ND                   | <1.8                                          |
| Cyclohexane              | NV                                                       |                                  | 5.9              | ND                 | 39               | ND                 | 48               | 0.52               | 210              | 1.4                | onst                                          | 1.9                | 610              | 1.9                | 0.55                 | NV                                            |
| Ethylbenzene             | 5.7                                                      |                                  | 5.0 J            | 1.3                | 7.7 J            | 2.8                | 34               | 2                  | 9.8              | 2.8                | to o                                          | 2.3                | 8.9 J            | 2.3                | 1.3                  | 3.5                                           |
| Freon 11                 | NV                                                       |                                  | 1.2              | 1.8                | 1.6              | 1.6                | 1.7              | 1.5                | 2.0 J            | 1.6                | que                                           | 1.5                | 1.5 J            | 1.5                | 1.6                  | NV                                            |
| Freon 113                | NV                                                       |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | 0.84 J           | ND                 | yed                                           | ND                 | ND               | ND                 | ND                   | NV                                            |
| Freon 12                 | NV                                                       |                                  | 2.5              | 3                  | 2.7              | 2.9                | 2.7              | 2.7                | 3.0 J            | 2.6                | stro                                          | 2.7                | 2.5 J            | 2.6                | 2.7                  | NV                                            |
| Heptane                  | NV                                                       |                                  | 6.8              | 1.2                | 78               | ND                 | 75               | 1                  | 410              | 2.9                | 9<br>9                                        | 3.7                | 690              | 3.9                | 0.98                 | NV                                            |
| Hexane                   | NV                                                       |                                  | 17               | 2.9                | 79               | 14                 | 60               | 36                 | 560              | 31                 | gmp                                           | 7.4                | 680              | 220                | 6.8                  | 6.4                                           |
| Isopropyl alcohol        | NV                                                       |                                  | 3.9              | 7.4                | 4.1              | 2.2                | 19               | 1.1                | ND               | 13                 | ιχ                                            | 1.9                | ND               | 17                 | 4.9                  | NV                                            |
| m&p-Xylene               | 22.2                                                     |                                  | 18.0 J           | 4.9                | 17               | 3.6                | 140              | 7.5                | 27               | 12                 |                                               | 9.6                | 27               | 11                 | 4.7                  | 12.8                                          |
| Methyl Ethyl Ketone      | 12                                                       |                                  | 3                | 2.2                | 11               | 4.7                | 51               | 23                 | 8.5              | 47                 |                                               | 2.4                | 18               | 2                  | 2.2                  | 11.3                                          |
| Methyl Isobutyl Ketone   | NV                                                       |                                  | ND               | 0.53 J             | ND               | 0.57 J             | ND               | ND                 | ND               | ND                 |                                               | ND                 | ND               | ND                 | ND                   | NV                                            |
| Methylene chloride       | 10                                                       | 60                               | 2                | 3                  | 2.9              | 2.2                | 2.4              | 1.6                | 2.6 J            | 150                |                                               | 2.5                | 2.4 J            | 3.9                | 1.8                  | 6.1                                           |
| o-Xylene                 | 7.9                                                      |                                  | 7.1 J            | 2                  | 6.3              | 3.6                | 48               | 3                  | 8.6              | 3.9                |                                               | 3.3                | 9.1 J            | 6.1                | 2                    | 4.6                                           |
| Styrene                  | 1.9                                                      |                                  | 0.51 J           | ND                 | ND               | ND                 | 0.47 J           | ND                 | 0.77 J           | 0.81               |                                               | 0.89               | ND               | 0.77               | ND                   | 1.3                                           |
| Tetrachloroethylene      | 15.9                                                     | 30                               | 1.3 J            | 0.75               | 0.95 J           | 1                  | 9.7 J            | 1.2                | 340              | 0.95               |                                               | 0.68               | ND               | 0.81               | ND                   | 6.5                                           |
| Tetrahydrofuran          | NV                                                       |                                  | 0.53             | 1.3                | 0.94             | 4.7                | 3.7              | 40                 | 0.8 J            | 91                 |                                               | 0.85               | ND               | 0.71               | 1.1                  | NV                                            |
| Toluene                  | 43                                                       |                                  | 35               | 6.2                | 31               | 6.3                | 170              | 12                 | 110              | 15                 |                                               | 22                 | 110              | 31                 | 3.9                  | 33.7                                          |
| trans-1,2-Dichloroethene | NV                                                       |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | 2.6 J            | ND                 |                                               | ND                 | ND               | ND                 | ND                   | NV                                            |
| Trichloroethene          | 4.2                                                      | 2                                | ND               | ND                 | 2.2 J            | 0.38               | 730              | 0.27               | 3,500            | 1.7                |                                               | ND                 | ND               | 0.64               | ND                   | 1.3                                           |
| Vinyl chloride           | <1.9                                                     |                                  | ND               | ND                 | ND               | ND                 | ND               | ND                 | ND               | ND                 |                                               | ND                 | 0.66 J           | ND                 | ND                   | <1.8                                          |

#### Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in Attachment C of the Final Engineering Report.
- 2. Analytical testing for VOCs via TO-15 completed by Centek Laboratories in Syracuse, New York.
- 3. Results present in ug/m³ or microgram per cubic meter.
- ${\it 4. Samples were collected during a 24-hour sample duration.}\\$
- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.
- 6. Air Guidance Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health.
- 7. NYSDOH does not currently have standards, criteria or guidance values for concentrations in sub-slab vapor. The detection of VOCs in sub-slab vapor samples does not necessarily indicate soil vapor intrusion is occurring or action should be taken to address exposures.
- 8. Grey shaded values represent exceedance of table C2 guidance values for Indoor Air; green shaded values represent exceedance of table C2 guidance values for Outdoor Air; yellow shaded values represent exceedance of NYSDOH Air Guidance Values
- 9. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- 10. ND = Non Detect; NV = No Value

# Table 2 Soil Vapor Intrusion Decision Matrices - September 2017 155 Chandler Street, Buffalo, NY

|                        | 155 C                          | handler Street, But                         | iaio, in r                             |                                                |
|------------------------|--------------------------------|---------------------------------------------|----------------------------------------|------------------------------------------------|
| Sample ID              | Parameter                      | Sub-slab Vapor<br>Concentrations<br>(ug/m³) | Indoor Air<br>Concentration<br>(ug/m³) | Recommended Action                             |
|                        |                                | . ,                                         | (ug/III )                              |                                                |
| Trichloroeth           | nene (TCE); cis-1,2-dichloroet |                                             |                                        |                                                |
|                        | TCE                            | ND                                          | ND                                     | No further action                              |
| SS-1/IA-1              | cis-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | 1,1-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           | 2                                           | 0.63                                   | No further action                              |
|                        | TCE                            | 2.2 J                                       | 0.38                                   | No further action                              |
| SS-2/IA-2              | cis-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | 1,1-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           | ND                                          | 0.69                                   | No further action                              |
|                        | TCE                            | 730                                         | 0.27                                   | Mitigate                                       |
| SS-3/IA-3              | cis-DCE                        | ND                                          | ND                                     | No further action                              |
| 00-0/1/4-0             | 1,1-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           | 41                                          | 0.63                                   | Monitor                                        |
|                        | TCE                            | 3500                                        | 1.7                                    | Mitigate                                       |
| SS-4/IA-4              | cis-DCE                        | 3.3 J                                       | ND                                     | No further action                              |
| 33 <del>-4</del> /IA-4 | 1,1-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           | 23                                          | 0.57                                   | Monitor                                        |
|                        | TCE                            |                                             | ND                                     | No further action                              |
| SS-5/IA-5              | cis-DCE                        | Sample destroyed                            | ND                                     | No further action                              |
| 33-3/IA-3              | 1,1-DCE                        | Sample destroyed                            | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           |                                             | ND                                     | No further action                              |
|                        | TCE                            | ND                                          | 0.64                                   | No further action                              |
| 00.044.0               | cis-DCE                        | ND                                          | ND                                     | No further action                              |
| SS-6/IA-6              | 1,1-DCE                        | ND                                          | ND                                     | No further action                              |
|                        | Carbon Tetrachloride           | 1.4 J                                       | 0.63                                   | No further action                              |
|                        |                                | Matrix B                                    |                                        | •                                              |
| M                      | lethylene Chloride (MC); 1,1,1 | - Trichloroethane (1,1,1-                   | TCA); Tetrachloroeth                   | ylene (PCE)                                    |
|                        | MC                             | 2                                           | 3                                      | No further action                              |
| SS-1/IA-1              | 1,1,1-TCA                      | ND                                          | ND                                     | No further action                              |
|                        | PCE                            | 1.3                                         | 0.75                                   | No further action                              |
|                        | MC                             | 2.9                                         | 2.2                                    | No further action                              |
| SS-2/IA-2              | 1,1,1-TCA                      | ND                                          | ND                                     | No further action                              |
|                        | PCE                            | 0.95                                        | 1.0                                    | No further action                              |
|                        | MC                             | 2.4                                         | 1.6                                    | No further action                              |
| SS-3/IA-3              | 1,1,1-TCA                      | ND                                          | ND                                     | No further action                              |
|                        | PCE                            | 9.7                                         | 1.2                                    | No further action                              |
|                        | мс                             | 2.6 J                                       | 150                                    | Identify source(s) and<br>Resample or Mitigate |
| SS-4/IA-4              | 1,1,1-TCA                      | 62                                          | ND                                     | No further action                              |
|                        | PCE                            | 340                                         | 0.95                                   | No further action                              |
|                        | MC                             | 0.0                                         | 2.5                                    | No further action                              |
| SS-5/IA-5              | 1,1,1-TCA                      | Sample destroyed                            | ND                                     | No further action                              |
| 22 0/1/10              | PCE                            | 54p.0 400110704                             | 0.68                                   | No further action                              |
|                        |                                | 2.4 J                                       | 3.9                                    |                                                |
| SS-6/IA-6              | MC                             | ND                                          | ND                                     | No further action                              |
| 00-0/IA-0              | 1,1,1-TCA                      |                                             |                                        | No further action                              |
|                        | PCE                            | ND<br>Motorice C                            | 0.81                                   | No further action                              |
|                        |                                | Matrix C<br>Vinyl Chloride (VC)             |                                        |                                                |
| SS-1/IA-1              | VC                             | ND                                          | ND                                     | No further action                              |
| SS-2/IA-2              | VC                             | ND                                          | ND                                     | No further action                              |
| SS-3/IA-3              | VC                             | ND                                          | ND                                     | No further action                              |
| SS-4/IA-4              | VC                             | ND                                          | ND                                     | No further action                              |
| SS-5/IA-5              | VC                             | Sample destroyed                            | ND                                     | No further action                              |
| SS-6/IA-6              | VC                             | 0.66J                                       | ND                                     | No further action                              |
| 22 0/1/10              | 1.0                            | 3.500                                       | .15                                    | 1                                              |

- 1. Compounds included on NYSDOH Air Matricies included in this table. For a list of all compounds, refer to analytical report included in Attachment C of the Final Engineering Report.
- 2. Analytical testing for VOCs via TO-15 completed by Centek Laboratories in Syracuse, New York.
- 3. Results present in ug/m3 or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in May 2017.
- 6.Yellow shaded values represent Monitoring recommended; Green shaded values represent Resampling to identify source Mitigation recommended; Orange shaded values represent Mitigation recommended.
- 7. ND = Non Detect

# Table 3 Indoor Air Analytical Testing Results 155 & 157 Chandler Street, Buffalo, NY December 2018 through December 2021

| Ī                                   | Guidance Valu | es - Indoor Air | T           |               | IA-1          |               |               | 1           | I/            | \-2           |               | 1           |             | IA-3          |               |               |             |             | I.            | A-4           |               |               |
|-------------------------------------|---------------|-----------------|-------------|---------------|---------------|---------------|---------------|-------------|---------------|---------------|---------------|-------------|-------------|---------------|---------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|
|                                     | Table C2      |                 |             |               |               |               |               |             | I -           |               |               |             |             | 1             |               |               |             |             | 1             |               |               |               |
|                                     |               | NYSDOH Air      | IA-1 Indoor | IA-1 (121219) | IA-1 (121219) | IA-1 (121120) | IA-1 (120221) | IA-2 Indoor | IA-2 (121219) | IA-2 (121120) | IA-2 (120221) | IA-3 Indoor | IA-3        | IA-3 (121120) | IA-3 (121120) | IA-3 (120221) | IA-4 Indoor | IA-4        | IA-4 (121219) | IA-4 (121120) | IA-4 (120221) | IA-4 (120221) |
| LOCATION                            | Commercial    |                 | Air         | Indoor Air    | Duplicate     | Indoor Air    | Indoor Air    | Air         | Indoor Air    | Indoor Air    | Indoor Air    | Air         | (121219)    | Indoor Air    | Duplicate     | Indoor Air    | Air         | Duplicate   | Indoor Air    | Indoor Air    | Indoor Air    | Duplicate     |
|                                     | Indoor Air    | Guideline       |             |               | Indoor Air    |               |               |             | 1             |               |               |             | Indoor Air  |               | Indoor Air    |               |             | Indoor Air  |               |               |               | Indoor Air    |
| SAMPLING DATE                       | Background    | Value           | 12/18/2018  | 12/12/2019    | 12/12/2019    | 12/11/2020    | 12/2/2021     | 12/18/2018  | 12/12/2019    | 12/11/2020    | 12/2/2021     | 12/18/2018  | 12/12/2019  | 12/11/2020    | 12/11/2020    | 12/2/2021     | 12/18/2018  | 12/18/2018  | 12/12/2019    | 12/11/2020    | 12/2/2021     | 12/2/2021     |
| LAB SAMPLE ID                       | (90%)         |                 | L1852191-06 | L1959919-06   | L1959919-07   | L2055692-06   | L2166417-09   | L1852191-07 | L1959919-08   |               | L2166417-10   | L1852191-02 | L1959919-04 | L2055692-03   | L2055692-04   | L2166417-04   | L1852191-03 | L1852191-04 | L1959919-03   | L2055692-02   | L2166417-02   | L2166417-03   |
| Volatile Organics in Air (ug/m³)    |               |                 |             |               |               |               |               |             |               |               |               |             |             |               |               |               |             |             |               |               |               |               |
| 1,1,1-Trichloroethane*              | 20.6          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethene*                 | <1.4          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| 1,2,4-Trichlorobenzene              | <6.8          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| 1,2,4-Trimethylbenzene              | 9.5           | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| 1,2-Dichloroethane                  | <0.9          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| 2,2,4-trimethylpentane              | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Acetone                             | 98.9          | NV              | 14.4        | 11.9          | 11.8 J        | 8.46 J        | 15.7          | 14.6        | 12.4          | 7.98 J        | 17.6          | 21.1        | 13.3        | 8.29 J        | 11.7 J        | 113           | 24.7        | 24          | 8.20          | 9.93 J        | 195           | 194           |
| Benzene                             | 9.4           | NV              | ND          | 0.744         | 0.824 J       | 0.684         | ND            | ND          | 0.764         | 0.687         | ND            | ND          | 0.652       | ND            | 0.642         | 0.85          | ND          | ND          | 0.684         | ND            | ND            | ND            |
| Carbon disulfide                    | 4.2           | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | 2.24        | 1.35        | 1.36          | 1.94          | 1.42          | ND          | ND          | ND            | ND            | ND            | ND            |
| Carbon tetrachloride*               | <1.3          | NV              | 0.591       | 0.579         | 0.572 J       | 0.522         | 0.579         | 0.566       | 0.598         | 0.516         | 0.554         | 0.541       | 0.491       | 0.428         | 0.453         | 0.434         | 0.711       | 0.723       | 0.516         | 0.384         | 0.472         | 0.491         |
| Chloroform                          | 1.1           | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | 5.66          |
| Chloromethane                       | 3.7           | NV              | 1.25        | 1.19          | 1.16 J        | 1.07          | 1.16          | 1.14        | 1.22          | 1.07          | 1.14          | 2.24        | 1.18        | 1.02          | 1.06          | 1.13          | 2.95        | 1.13        | 1.11          | 1.04          | 1.14          | 1.21          |
| cis-1,2-Dichloroethene*             | <1.9          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | 0.186         | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Cyclohexane                         | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Dichlorodifluoromethane             | 16.5          | NV              | 1.63        | 2.59          | 2.59 J        | 2.20          | 2.78          | 1.68        | 2.70          | 2.12          | 2.82          | 2.4         | 2.58        | 2.02          | 2.06          | 2.51          | 1.78        | 1.66        | 2.57          | 2.04          | 2.61          | 2.73          |
| Ethanol                             | 210           | NV              | 155         | 298           | 352 J         | 230           | 176           | 207         | 224           | 215           | 198           | 307         | 931         | 590           | 803           | 5310 R1       | 148         | 144         | 392           | 1,330         | 100           | 96.3          |
| Ethyl acetate                       | 5.4           | NV              | ND          | 6.85          | 7.03 J        | 6.45          | ND            | ND          | 9.30          | 7.24          | ND            | 26.5        | 231         | 186           | 284           | 140           | 3.29        | 3.33        | 60.5          | 12.4          | ND            | ND            |
| Ethylbenzene                        | 5.7           | NV              | 2.49        | 0.869         | 0.873 J       | 1.02          | ND            | 2.32        | 0.877         | 1.33          | ND            | 2.76        | ND          | ND            | ND            | ND            | 2.79        | 2.82        | ND            | ND            | ND            | ND            |
| Heptane                             | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | 2.09          | ND          | ND          | ND            | ND            | 2.49          | 2.7           |
| Hexane (n-Hexane)                   | NV            | NV              | ND          | 0.888         | 0.962 J       | 1.34          | ND            | ND          | 1.01          | 1.32          | ND            | 0.811       | ND          | ND            | ND            | 0.754         | 1.26        | 1.32        | ND            | 0.839         | 0.934         | 0.906         |
| Isopropanol                         | NV            | NV              | 11.9        | 3.52          | 3.39 J        | 6.02          | 20.5          | 11.3        | 3.17          | 5.60          | 32            | 32.4        | 2.65        | 6.83          | 9.88          | 578 R1        | 99.6        | 97.8        | 2.48          | 7.18          | 1720 R1       | 1730 R1       |
| m&p-Xylene                          | 22.2          | NV              | 9.56        | 3.36          | 3.33 J        | 4.34          | ND            | 9.38        | 3.32          | 4.18          | 2.21          | 10.6        | 1.74        | 2.30          | 2.82          | 2.45          | 10.6        | 10.3        | ND            | 2.39          | ND            | ND            |
| Methyl Ethyl Ketone (2-Butanone)    | 12            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | 4.28        | ND            | 1.58          | ND            | ND          | ND          | 1.64          | ND            | ND            | ND            |
| Methyl Isobutyl Ketone (4-Methyl-2- | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Methylene chloride                  | 10            | 60              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| o-Xylene                            | 7.9           | NV              | 3.12        | 1.22          | 1.29 J        | 1.83          | ND            | 3.09        | 1.22          | 1.47          | 0.943         | 2.86        | ND          | ND            | 0.947         | 0.951         | 3.14        | 3.24        | ND            | ND            | ND            | ND            |
| Styrene                             | 1.9           | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Tetrachloroethene                   | 15.9          | 30              | 0.753       | 0.651         | 0.387 J       | 0.427         | ND            | 0.685       | 0.346         | 1.00          | ND            | 0.332       | 0.488       | ND            | ND            | ND            | 0.922       | 0.882       | ND            | 0.156         | ND            | ND            |
| Tetrahydrofuran                     | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | 3.27          | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |
| Toluene                             | 43            | NV              | 4.07        | 1.53          | 1.76 J        | 1.49          | ND            | 1.21        | 1.57          | 1.43          | 1.07          | 1.16        | 1.38        | 1.41          | 1.58          | 0.946         | 4.26        | 5.8         | 1.30          | 1.15          | 1.23          | 1.21          |
| trans-1,2-Dichloroethene            | NV            | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | 0.932         | ND            | ND            |
| Trichloroethene*                    | 4.2           | 2               | 0.849       | 0.833         | 0.844 J       | 0.801         | 0.973         | 0.736       | 0.742         | 0.790         | 0.865         | 0.489       | ND          | ND            | 0.145         | 0.118         | 1.34        | 1.37        | ND            | 0.478         | 0.161         | 0.161         |
| Trichlorofluoromethane              | 18.1          | NV              | 1.33        | 1.25          | 1.29 J        | 1.19          | 1.33          | 1.3         | 1.29          | 1.15          | 1.33          | 1.12        | 1.27        | 1.15          | ND            | 1.33          | 1.28        | 1.25        | 1.25          | ND            | 1.24          | 1.28          |
| Vinyl chloride*                     | <1.9          | NV              | ND          | ND            | ND            | ND            | ND            | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND          | ND          | ND            | ND            | ND            | ND            |

|                                            |                                      |                         |                    |                           | _                                      | I/                        | \-5                                    |                             |                             |                             |                    |                             |                             |                                          |                             | IA-6                        |                                          |                             |                                          |                             |                             | IA-7                        | IA-8                        |                     | 0,                              | A-1                             |                                 |
|--------------------------------------------|--------------------------------------|-------------------------|--------------------|---------------------------|----------------------------------------|---------------------------|----------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|---------------------------------|---------------------------------|---------------------------------|
| OCATION                                    | Table C2<br>Commercial<br>Indoor Air | NYSDOH Air<br>Guideline | IA-5 Indoor<br>Air | IA-5 (0219)<br>Indoor Air | IA-5 (0219)<br>Duplicate<br>Indoor Air | IA-5 (0619)<br>Indoor Air | IA-5 (0619)<br>Duplicate<br>Indoor Air | IA-5 (121219)<br>Indoor Air | IA-5 (121120)<br>Indoor Air | IA-5 (120221)<br>Indoor Air | IA-6 Indoor<br>Air | IA-6 (121219)<br>Indoor Air | IA-6 (022020)<br>Indoor Air | IA-6 (022020)<br>Duplicate<br>Indoor Air | IA-6 (121120)<br>Indoor Air | IA-6 (021821)<br>Indoor Air | IA-6 (021821)<br>Duplicate<br>Indoor Air | IA-6 (033121)<br>Indoor Air | IA-6 (033121)<br>Duplicate<br>Indoor Air | IA-6 (061121)<br>Indoor Air | IA-6 (120221)<br>Indoor Air | IA-7 (120221)<br>Indoor Air | IA-8 (120221)<br>Indoor Air | OA-1<br>Outdoor Air | OA-1<br>(121219)<br>Outdoor Air | OA-1<br>(121120)<br>Outdoor Air | OA-1<br>(120221)<br>Outdoor Air |
| AMPLING DATE                               | Background                           | Value                   | 12/18/2018         | 2/13/2019                 | 2/13/2019                              | 6/21/2019                 | 6/21/2019                              | 12/12/2019                  | 12/11/2020                  | 12/2/2021                   | 12/18/2018         | 12/12/2019                  | 2/20/2020                   | 2/20/2020                                | 12/11/2020                  | 2/18/2021                   | 2/18/2021                                | 3/31/2021                   | 3/31/2021                                | 6/11/2021                   | 12/2/2021                   | 12/2/2021                   | 12/2/2021                   | 12/18/2018          | 12/12/2019                      | 12/11/2020                      | 12/2/2021                       |
| AB SAMPLE ID                               | (90%)                                |                         | L1852191-01        | L1905849-0                | 1 L1905849-02                          | L1927357-01               | L1927357-02                            | L1959919-02                 | L2055692-01                 | L2166417-01                 | L1852191-05        | L1959919-05                 | L2007739-01                 | L2007739-02                              | L2055692-05                 | L2108109-01                 | L2108109-02                              | L2108109-01                 | L2108109-01                              | L2132969-01                 | L2166417-08                 | L2166417-06                 | L2166417-07                 | L1852191-08         | L1959919-01                     | L2055692-08                     | L2166417-0                      |
| olatile Organics in Air (ug/m³)            |                                      |                         |                    | L                         |                                        | <u> </u>                  | <u> </u>                               | <u> </u>                    |                             |                             |                    | L                           |                             |                                          |                             |                             | l                                        | 1                           |                                          |                             |                             |                             |                             |                     | l                               |                                 | l                               |
| 1,1-Trichloroethane*                       | 20.6                                 | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| 1-Dichloroethene*                          | <1.4                                 | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| 2,4-Trichlorobenzene                       | <6.8                                 | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | 0.98                | ND                              | ND                              | ND                              |
| 2,4-Trimethylbenzene                       | 9.5                                  | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | 1.09                        | 1.24                                     | ND                          | ND                          | 1.20                                     | ND                          | ND                                       | ND                          | ND                          | 1.07                        | ND                          | ND                  | ND                              | ND                              | ND                              |
| 2-Dichloroethane                           | <0.9                                 | NV                      | 0.163              | 0.127                     | 0.139                                  | ND                        | ND                                     | ND                          | ND                          | ND                          | 0.103              | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| ,4-trimethylpentane                        | NV                                   | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | 0.943                                    | 1.36                        | 1.29                                     | ND                          | ND                          | 1.44                        | 1.47                        | ND                  | ND                              | ND                              | ND                              |
| etone                                      | 98.9                                 | NV                      | 46.3               | 33.5 J                    | 36.3 J                                 | 38 J                      | 40.4 J                                 | 9.45                        | 6.29 J                      | 316                         | 5.3                | 8.69                        | 165                         | 187                                      | 7.63 J                      | 3.99 J                      | 2.85 J                                   | 21.3 J                      | 20.3 J                                   | 11.3                        | 20.1 J                      | 152                         | 123                         | 4.39                | 3.44                            | 4.16 J                          | 7.79                            |
| nzene                                      | 9.4                                  | NV                      | ND                 | ND                        | ND                                     | ND                        | 0.866                                  | 0.741                       | ND                          | 0.872                       | ND                 | 0.655                       | ND                          | ND                                       | ND                          | 1.12                        | 1.13                                     | 1.30                        | 1.25                                     | ND                          | ND                          | 1.34                        | 1.41                        | ND                  | ND                              | ND                              | ND                              |
| rbon disulfide                             | 4.2                                  | NV                      | ND                 | ND                        | ND                                     | 0.673                     | 0.704                                  | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| rbon tetrachloride*                        | <1.3                                 | NV                      | 2.31               | 1.09                      | 1.05                                   | 0.591                     | 0.598                                  | 0.547                       | 0.415                       | 0.591                       | 0.598              | 2.26                        | 0.434                       | 0.453                                    | 0.528                       | 0.434                       | 0.465                                    | 0.528                       | 0.535                                    | 0.711                       | 0.484 J                     | 1.01                        | 0.9                         | 0.459               | 0.484                           | 0.403                           | 0.528                           |
| loroform                                   | 1.1                                  | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| loromethane                                | 3.7                                  | NV                      | 1.13               | 0.96                      | 1.01                                   | 1.43                      | 1.40                                   | 1.23                        | 1.01                        | 1.18                        | 1.06               | 1.09                        | 0.956                       | 0.921                                    | 1.01                        | 0.898                       | 0.944                                    | 1.08                        | 1.08                                     | 1.20                        | 1.12 J                      | 1.32                        | 1.24                        | 1.13                | 1.11                            | 0.952                           | 1.14                            |
| -1,2-Dichloroethene*                       | <1.9                                 | NV                      | 0.163              | 0.127                     | 0.139                                  | ND                        | ND                                     | ND                          | ND                          | 0.266                       | 0.103              | 0.270                       | 0.095                       | 0.119                                    | 0.079                       | ND                          | ND                                       | 0.095                       | 0.091                                    | ND                          | ND                          | 0.412                       | 0.369                       | ND                  | ND                              | ND                              | ND                              |
| clohexane                                  | NV                                   | NV                      | ND                 | ND                        | ND                                     | ND                        | 1.03                                   | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | 0.688                                    | 1.16                        | 1.13                                     | ND                          | ND                          | 1.48                        | 1.57                        | ND                  | ND                              | ND                              | ND                              |
| lorodifluoromethane                        | 16.5                                 | NV                      | 1.61               | 2.44                      | 2.49                                   | 2.69                      | 2.53                                   | 2.63                        | 1.93                        | 2.49                        | 2.49               | 2.66                        | 1.86                        | 1.93                                     | 2.08                        | 1.99                        | 2.02                                     | 2.12                        | 2.16                                     | 2.47                        | 2.53 J                      | 2.64                        | 2.71                        | 1.39                | 2.55                            | 1.89                            | 2.68                            |
| anol                                       | 210                                  | NV                      | 910                | 298                       | 315                                    | 675                       | 667                                    | 63.3                        | 3,050                       | 143                         | 40.1               | 194                         | 111                         | 129                                      | 228                         | 105                         | 104                                      | 194                         | 220                                      | 41.6                        | 117 J                       | 874                         | 820                         | ND                  | ND                              | ND                              | 13.8                            |
| yl acetate                                 | 5.4                                  | NV                      | 15.9               | 3.2                       | 3.28 J                                 | 5.19                      | 6.45                                   | ND                          | 12.8                        | ND                          | ND                 | 2.01                        | ND                          | ND                                       | ND                          | 2.79                        | 2.56                                     | ND                          | ND                                       | ND                          | ND                          | 3.03                        | 2.63                        | ND                  | ND                              | ND                              | ND                              |
| lbenzene                                   | 5.7                                  | NV                      | 4.73               | 2                         | 2.03                                   | 8.38                      | 8.69                                   | 0.986                       | ND                          | ND<br>0.44                  | ND                 | ND                          | 5.52                        | 5.86                                     | ND                          | 1.62                        | 1.73                                     | 1.15                        | 1.09                                     | ND                          | ND                          | 1.26                        | 1.15                        | ND                  | ND                              | ND                              | ND                              |
| otane                                      | NV<br>NV                             | NV                      | ND<br>0.07         | ND<br>0.55                | ND<br>0.04                             | 0.906                     | 1.22                                   | ND<br>0.007                 | ND                          | 2.11                        | ND                 | ND<br>ND                    | ND                          | ND                                       | ND<br>0.700                 | 0.971                       | 1.08                                     | 2.45                        | 2.28                                     | ND                          | ND                          | 5                           | 2.73                        | ND<br>ND            | ND                              | ND<br>0.705                     | ND<br>4.54                      |
| ane (n-Hexane)                             | NV<br>NV                             | NV<br>NV                | 6.87<br>873        | 2.55                      | 2.81                                   | 2.49<br>1230              | 4.79                                   | 0.807                       | ND<br>4.42                  | 1.66<br>2370 R1             | ND<br>ND           |                             | ND<br>5.04                  | ND<br>5.40                               | 0.733<br>2.11               | 3.30                        | 3.41                                     | 5.08                        | 4.79                                     | ND                          | 0.959 J                     | 5.64<br>902 R1              | 5.85                        | ND<br>ND            | ND                              | 0.705                           | 1.54<br>6.64                    |
| p-Xvlene                                   | 22.2                                 | NV<br>NV                | 19                 | 215<br>8.17               | 228<br>8.17                            | 36.7                      | 1170<br>36.2                           | 4.77<br>3.82                | 1.82                        | 1.89                        | ND<br>ND           | 9.24<br>ND                  | 5.21<br>18.0                | 5.19<br>19.3                             | 2.11<br>ND                  | 1.83 J<br>6.91              | 1.93 J<br>7.60                           | 79.2<br>4.39                | 79.2<br>4.26                             | 28.8<br>ND                  | 80.1 J<br>ND                | 902 R1<br>5.04              | 733 R1<br>4.6               | ND<br>ND            | ND<br>ND                        | ND<br>ND                        | ND                              |
| p-xylene<br>thyl Ethyl Ketone (2-Butanone) | 12                                   | NV<br>NV                | 4.63               | 5.66                      | 6.16                                   | 2.56                      | 2.70                                   | 3.62<br>ND                  | ND                          | 1.68                        | ND<br>ND           | 1.62                        | ND                          | ND                                       | ND<br>ND                    | 1.87                        | 1.67                                     | 1.67                        | 1.58                                     | ND<br>ND                    | ND<br>ND                    | 5.04<br>ND                  | ND                          | ND                  | ND<br>ND                        | ND<br>ND                        | ND<br>ND                        |
| thyl Isobutyl Ketone (4-Methyl-2-          | I NV                                 | NV<br>NV                | 19.8               | 4.51                      | 4.39                                   | 5.12                      | 5.16                                   | ND<br>ND                    | ND<br>ND                    | ND                          | ND<br>ND           | ND                          | ND                          | ND<br>ND                                 | ND<br>ND                    | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND<br>ND                    | ND<br>ND                    | ND<br>ND                    | ND                  | ND<br>ND                        | ND<br>ND                        | ND<br>ND                        |
| hylene chloride                            | 10                                   | 60                      | ND                 | ND                        | ND                                     | ND                        | 2.01                                   | ND<br>ND                    | ND<br>ND                    | 2.09                        | ND                 | ND                          | ND                          | ND                                       | ND<br>ND                    | ND                          | ND<br>ND                                 | ND                          | ND                                       | ND                          | ND                          | 3.72                        | ND                          | ND                  | ND                              | ND                              | 4.24                            |
| vlene                                      | 7.9                                  | NV                      | 5.56               | 2.4                       | 2.44                                   | 12.2                      | 12.2                                   | 1.20                        | ND                          | ND                          | ND                 | ND                          | 5.21                        | 5.60                                     | ND                          | 2.08                        | 2.30                                     | 1.49                        | 1.45                                     | ND                          | ND                          | 1.73                        | 1.6                         | ND                  | ND                              | ND                              | ND                              |
| rene                                       | 1.9                                  | NV                      | 0.932              | ND                        | ND                                     | 2.18                      | 2.76                                   | ND                          | ND                          | ND                          | ND<br>ND           | ND.                         | ND.                         | ND                                       | ND.                         | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND.                         | ND                          | ND                  | ND<br>ND                        | ND                              | ND.                             |
| rachloroethene                             | 15.9                                 | 30                      | 1.3                | 0.353                     | 0.319                                  | 0.203                     | 0.292                                  | 0.271                       | 0.183                       | ND                          | 0.529              | 0.448                       | 0.305                       | 0.292                                    | 0.285                       | 0.170                       | 0.210                                    | 0.353                       | 0.319                                    | ND                          | ND                          | ND                          | ND<br>ND                    | ND                  | ND<br>ND                        | ND                              | ND                              |
| rahvdrofuran                               | NV                                   | NV                      | ND                 | ND                        | ND                                     | ND.                       | ND                                     | ND.                         | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND.                                      | 1.86                        | 1.55                                     | ND                          | ND ND                       | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |
| uene                                       | 43                                   | NV                      | 7.65               | 5.35                      | 5.39                                   | 5.39                      | 8.63                                   | 2.58                        | 1.01                        | 2.46                        | ND                 | 1.82                        | 1.17                        | 1.06                                     | 1.25                        | 3.72                        | 4.07                                     | 6.93                        | 6.59                                     | 1.01                        | 1.26 J                      | 10.8                        | 7.5                         | ND                  | 0.855                           | 0.806                           | 1.46                            |
| ns-1,2-Dichloroethene                      | NV                                   | NV                      | 1.44               | 2.36                      | 2.5                                    | 6.15                      | 5.95                                   | 1.10                        | 1.67                        | ND                          | ND                 | ND                          | ND                          | ND                                       | ND.                         | ND                          | ND                                       | ND.                         | ND.                                      | ND                          | ND                          | ND.                         | ND.                         | ND                  | ND                              | ND                              | ND                              |
| chloroethene*                              | 4.2                                  | 2                       | 9.46               | 4.54                      | 4.58                                   | 0.903                     | 0.833                                  | 0.688                       | 0.715                       | 0.505                       | 0.924              | 12.0                        | 1.34                        | 1.43                                     | 2.96                        | 2.96                        | 2.93                                     | 14.0                        | 13.6                                     | 1.31                        | 1.73 J                      | 17.5                        | 18                          | ND                  | ND                              | ND                              | 0.124                           |
| chlorofluoromethane                        | 18.1                                 | NV                      | 1.25               | ND                        | ND                                     | 1.41                      | 1.49                                   | 1.32                        | ND                          | 1.35                        | 1.26               | 1.31                        | ND                          | ND                                       | 1.14                        | ND                          | ND                                       | 1.15                        | ND                                       | 1.31                        | 1.28 J                      | 1.44                        | 1.37                        | 1.16                | 1.24                            | ND                              | 1.34                            |
| nyl chloride*                              | <1.9                                 | NV                      | ND                 | ND                        | ND                                     | ND                        | ND                                     | ND                          | ND                          | ND                          | ND                 | ND                          | ND                          | ND                                       | ND                          | ND                          | ND                                       | ND                          | ND                                       | ND                          | ND                          | ND                          | ND                          | ND                  | ND                              | ND                              | ND                              |



#### Table 4

# March 2022 Soil Vapor Intrusion Investigation Analytical Testing Results Pierce Arrow Business Center 155 Chandler Street, Buffalo, NY

| LOCATION                         |                     |            | SS-7 (032922) | IA-7 (032922) | SS-9 (032922) | IA-9 (032922) | SS-10 (032922) | IA-10 (032922) | OA-1 (032922) | Table C2    |
|----------------------------------|---------------------|------------|---------------|---------------|---------------|---------------|----------------|----------------|---------------|-------------|
| SAMPLING DATE                    | Table C2 Commercial | NYSDOH Air | 3/29/2022     | 3/29/2022     | 3/29/2022     | 3/29/2022     | 3/29/2022      | 3/29/2022      | 3/29/2022     | Commercial  |
| CATANI ENTO BATTE                | Indoor Air          | Guideline  | O/ZO/ZOZZ     | O/ZO/ZOZZ     | OIZOIZOZZ     | O/EO/EOEE     | O/ZO/ZOZZ      | O/ZO/ZOZZ      | O/ZO/ZOZZ     | Outdoor Air |
|                                  | Background (90%)    | Value      | 1             |               |               |               |                |                |               | Background  |
|                                  | background (90%)    | value      | 1 0047700 07  |               |               |               |                | 1.0047700.05   | 1 0047700 04  | (90%)       |
| LAB SAMPLE ID                    |                     |            | L2217738-07   | L2217738-06   | L2217738-02   | L2217738-03   | L2217738-04    | L2217738-05    | L2217738-01   | (90%)       |
| Volatile Organics in Air (ug/m3) |                     |            |               |               |               |               |                |                |               |             |
| 1,1,1-Trichloroethane*           | 20.6                | NV         | ND            | ND *          | ND            | ND *          | ND             | ND *           | ND *          | 2.6         |
| 1,1,2,2-Tetrachloroethane        | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| 1,1,2-Trichloroethane            | <1.5                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <1.6        |
| 1,1-Dichloroethane               | <0.7                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <0.6        |
| 1,1-Dichloroethene*              | <1.4                | NV         | ND            | ND *          | ND            | ND *          | ND             | ND *           | ND *          | <1.4        |
| 1,2,4-Trichlorobenzene           | <6.8                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <6.4        |
| 1,2,4-Trimethylbenzene           | 9.5                 | NV         | 25.8          | ND            | 27.9          | ND            | 27.3           | ND             | ND            | 5.8         |
| 1,2-Dibromoethane                | <1.5                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <1.6        |
| 1,2-Dichlorobenzene              | <1.2                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <1.2        |
| 1,2-Dichloroethane               | <0.9                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <0.8        |
| 1,2-Dichloropropane              | <1.6                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <1.6        |
| 1,3,5-Trimethylbenzene           | 3.7                 | NV         | 6.34          | ND            | 6.49          | ND            | 6.93           | ND             | ND            | 2.7         |
| 1,3-Butadiene                    | <3.0                | NV         | ND            | ND            | ND            | ND            | 111            | ND             | ND            | <3.4        |
| 1,3-Dichlorobenzene              | <2.4                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <2.2        |
| 1,4-Dichlorobenzene              | 5.5                 | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | 1.2         |
| 1,4-Dioxane                      | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| 2,2,4-Trimethylpentane           | NV                  | NV         | ND            | ND            | 1.59          | ND            | ND             | ND             | ND            | NV          |
| 3-Chloropropene                  | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| 4-Ethyltoluene                   | 3.6                 | NV         | 6.19          | ND            | 7.57          | ND            | 9.68           | ND             | ND            | 3.0         |
| Acetone                          | 98.9                | NV         | 4.37 J        | 65.6 J        | 13.7 J        | 41.6 J        | 92.6 J         | 88.8 J         | 3.52 J        | 43.7        |
| Benzene                          | 9.4                 | NV         | 8.31          | ND ND         | 5.43          | 0.639         | 133            | 0.684          | ND            | 6.6         |
| Benzyl chloride                  | <6.8                | NV         | ND            | ND ND         | ND            | ND            | ND ND          | ND             | ND            | <6.4        |
| Bromodichloromethane             | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| Bromoform                        | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND ND          | ND            | NV          |
| Bromomethane                     | <1.7                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <1.6        |
| Carbon disulfide                 | 4.2                 | NV         | ND<br>ND      | ND ND         | 3.18          | ND            | 135            | ND<br>ND       | ND<br>ND      | 3.7         |
| Carbon tetrachloride*            | <1.3                | NV         | 3.12          | 3.96 *        | 8.87          | 8.05 *        | 4.3            | 5.13 *         | 0.566 *       | 0.7         |
| Chlorobenzene                    | <0.9                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <0.8        |
|                                  | <1.1                | NV         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND       | ND<br>ND      | <1.2        |
| Chloroethane<br>Chloroform       | 1.1                 |            | ND<br>ND      | 1.41          | 3.28          | 2.94          | 2.36           | 1.82           | ND<br>ND      | 0.6         |
|                                  | 3.7                 | NV<br>NV   | ND<br>ND      | 1.41          | 3.26<br>ND    | 1.21          | 4.44           | 1.02           | 1.11          | 3.7         |
| Chloromethane                    |                     |            | ND<br>ND      | 0.369 *       |               | 0.389 *       |                |                |               |             |
| cis-1,2-Dichloroethene*          | <1.9                | NV<br>NV   |               |               | ND            |               | ND<br>ND       | 0.48 *         | ND *          | <1.8        |
| cis-1,3-Dichloropropene          | <2.3                | NV         | ND<br>2.07    | ND            | ND<br>5.00    | ND            | ND             | ND             | ND            | <2.2        |
| Cyclohexane                      | NV                  | NV         | 8.67          | ND            | 5.68          | ND            | 235            | ND             | ND            | NV          |
| Dibromochloromethane             | NV<br>10.5          | NV         | ND<br>0.57    | ND<br>0.00    | ND<br>0.70    | ND<br>0.00    | ND             | ND 0.7         | ND ND         | NV          |
| Dichlorodifluoromethane          | 16.5                | NV         | 2.57          | 2.69          | 2.73          | 2.69          | 2.6            | 2.7            | 2.55          | 8.1         |
| Ethanol                          | 210                 | NV         | ND            | 232           | 14.8          | 209           | 33.9           | 144            | ND            | 57          |
| Ethyl Acetate                    | 5.4                 | NV         | 2.24          | ND            | ND            | ND            | ND             | 1.99           | ND            | 1.5         |
| Ethylbenzene                     | 5.7                 | NV         | 16.5          | ND            | 16.5          | ND            | 42.6           | ND             | ND            | 3.5         |
| Freon-113                        | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| Freon-114                        | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| Heptane                          | NV                  | NV         | 14.3          | ND            | 13.1          | 1.13          | 447            | ND             | ND            | NV          |
| Hexachlorobutadiene              | <6.8                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | <6.4        |
| n-Hexane                         | 10.2                | NV         | 32.6          | ND            | 26.6          | ND            | 465            | ND             | ND            | 6.4         |
| Isopropanol                      | 250                 | NV         | 3.74          | 371           | 8.06          | 237           | 16.8           | 543            | 3.79          | 16.5        |
| p/m-Xylene                       | 22.2                | NV         | 79.9          | ND            | 79.5          | 1.98          | 175            | ND             | ND            | 12.8        |
| 2-Hexanone                       | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| 2-Butanone                       | 12                  | NV         | 3.27          | 2.01          | 14.2          | ND            | 23.2           | ND             | ND            | 11.3        |
| 4-Methyl-2-pentanone             | 6.0                 | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | 1.9         |
| Methyl tert butyl ether          | 11.5                | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | 6.2         |
| Methylene chloride               | 10                  | 60         | ND            | ND            | 1.99          | ND            | ND             | ND             | ND            | 6.1         |
| o-Xylene                         | 7.9                 | NV         | 25.4          | ND            | 26.1          | 1.02          | 44.3           | ND             | ND            | 4.6         |
| Styrene                          | 1.9                 | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | 1.3         |
| Tertiary butyl Alcohol           | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND             | ND            | NV          |
| Tetrachloroethene*               | 15.9                | 30         | ND            | 0.373 *       | 1.45          | 0.61 *        | ND             | 0.305 *        | ND *          | 6.5         |
| Tetrahydrofuran                  | NV                  | NV         | ND            | ND            | 8.49          | ND            | ND             | ND             | ND            | NV          |
| Toluene                          | 43                  | NV         | 86.3          | 1.56          | 78            | 1.38          | 324            | 1.09           | ND            | 33.7        |
| trans-1,2-Dichloroethene         | NV                  | NV         | ND            | ND            | ND            | ND            | ND             | ND ND          | ND            | NV          |
| trans-1,3-Dichloropropene        | <1.3                | NV         | ND<br>ND      | ND ND         | ND            | ND            | ND<br>ND       | ND<br>ND       | ND            | <1.4        |
| Trichloroethene*                 | 4.2                 | 2          | 8.92          | 24.1 *        | 7.09          | 25.5 *        | 23.4           | 39.2 *         | ND *          | 1.3         |
| Trichlorofluoromethane           | 18.1                | NV         | 1.52          | 1.31          | 1.57          | 1.38          | ND             | 1.3            | 1.18          | 4.3         |
| Vinyl bromide                    | NV                  |            | 1.52<br>ND    | 1.31<br>ND    | 1.57<br>ND    | 1.38<br>ND    | ND<br>ND       | 1.3<br>ND      | 1.18<br>ND    | NV          |
|                                  |                     | NV<br>NV   |               |               |               |               |                |                |               |             |
| Vinyl chloride*                  | <1.9                | NV         | ND            | ND *          | ND            | ND *          | ND             | ND *           | ND *          | <1.8        |

#### Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. 90th percentile values as presented in Table C2. EPA 2001: Building assessment and survey evaluation (BASE) database, SUMMS canister method (Appendix C, in the NYSDOH Guidance Manual).
- 6. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in September 2013 and August 2015.
- 7. Green shaded values represent exceedance of Table C2 commercial background levels; yellow shaded values represent exceedance of NYSDOH Air Guideline Values as updated.
- 8. ND = Non Detect; NV = No Background/Guideline Value
- 9. \* Volatile Organics in Air by SIM
- 10. No appropriate guidance values apply to sub-slab air, therefore background guidance values from Table C2 and NYSDOH Air Guideline values from Table 3.1 are compared to indoor and outdoor air only.
- 11. RED = Udated as a result of Data Validation.

# Table 5 March 2022 Soil Vapor Intrusion Investigation Decision Matrices 155 Chandler Street, Buffalo, NY

| Sample ID          | Parameter                     | Sub-slab Vapor<br>Concentrations<br>(ug/m³) | Indoor Air<br>Concentration<br>(ug/m³) | Recommended Action                             |
|--------------------|-------------------------------|---------------------------------------------|----------------------------------------|------------------------------------------------|
| Trichloroethene (T | CE); cis-1,2-dichloroethene   | Matrix A<br>(cis-DCE); 1,1-dichlo           | roethene (1,1-DCE                      | ); Carbon Tetrachloride                        |
|                    | TCE                           | 8.92                                        | 24.1                                   | Mitigate                                       |
|                    | cis-DCE                       | ND                                          | 0.369                                  | No further action                              |
| SS-7/IA-7          | 1,1-DCE                       | ND                                          | ND                                     | No further action                              |
|                    | Carbon Tetrachloride          | 3.12                                        | 3.96                                   | Identify Source(s) and<br>Resample or Mitigate |
|                    | TCE                           | 7.09                                        | 25.5                                   | Mitigate                                       |
| SS-9/IA-9          | cis-DCE                       | ND                                          | 0.389                                  | No further action                              |
| 00-9/IA-9          | 1,1-DCE                       | ND                                          | ND                                     | No further action                              |
|                    | Carbon Tetrachloride          | 8.87                                        | 8.05                                   | Mitigate                                       |
|                    | TCE                           | 23.4                                        | 39.2                                   | Mitigate                                       |
|                    | cis-DCE                       | ND                                          | 0.48                                   | No further action                              |
| SS-10/IA-10        | 1,1-DCE                       | ND                                          | ND                                     | No further action                              |
|                    | Carbon Tetrachloride          | 4.3                                         | 5.13                                   | Identify Source(s) and<br>Resample or Mitigate |
| Methyler           | ne Chloride (MC); 1,1,1- Tric | <b>Matrix B</b><br>hloroethane (1,1,1-T     | CA); Tetrachloroet                     | hylene (PCE)                                   |
|                    | MC                            | ND                                          | ND                                     | No further action                              |
| SS-7/IA-7          | 1,1,1-TCA                     | ND                                          | ND                                     | No further action                              |
|                    | PCE                           | ND                                          | 0.373                                  | No further action                              |
|                    | MC                            | 1.99                                        | ND                                     | No further action                              |
| SS-9/IA-9          | 1,1,1-TCA                     | ND                                          | ND                                     | No further action                              |
|                    | PCE                           | 1.45                                        | 0.610                                  | No further action                              |
|                    | MC                            | ND                                          | ND                                     | No further action                              |
| SS-10/IA-10        | 1,1,1-TCA                     | ND                                          | ND                                     | No further action                              |
|                    | PCE                           | ND                                          | 0.305                                  | No further action                              |
|                    | V                             | Matrix C<br>inyl Chloride (VC)              |                                        |                                                |
| SS-7/IA-7          | VC                            | ND                                          | ND                                     | No further action                              |
| SS-9/IA-9          | VC                            | ND                                          | ND                                     | No further action                              |
| SS-10/IA-10        | VC                            | ND                                          | ND                                     | No further action                              |

- 1. Compoundsincluded on NYSDOH Air Matricies included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m3 or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in May 2017.
- 6. Green shaded values represent Resampling to identify source Mitigation recommended; Orange shaded values represent Mitigation recommended.
- 7. ND = Non Detect



# **APPENDIX C**

# FIELD NOTES & BUILDING SURVEY

| Site No.: C915312 Site Name: Proce Array Business center (Black 6                                       |
|---------------------------------------------------------------------------------------------------------|
| Date: 3/29/2022 Time: Cidary 8:20am                                                                     |
| Structure Address: 155 Charoller St. Buffalo, NY                                                        |
| Preparer's Name & Affiliation: EricBetzold Environmental Consultant                                     |
| Residential ? 🗆 Yes 🗀 No Owner Occupied ? 🗆 Yes 💆 No Owner Interviewed ? 🗆 Yes 💢 No                     |
| Commercial? ☐ Yes ☐ No Industrial? ☐ Yes ☐ No Mixed Uses? 文 Yes ☐ No                                    |
| Identify all non-residential use(s): Black bird Cidery                                                  |
| Owner Name: R&M LeaSing Owner Phone: ( )                                                                |
| Secondary Owner Phone : ( )                                                                             |
| Owner Address (if different): 39/ washing to St. Burral o NY 14703                                      |
| Occupant Name: Blackbord cidery Occupant Phone: ( )                                                     |
| Secondary Occupant Phone: ( )                                                                           |
| Number & Age of All Persons Residing at this Location: APProx. 10 Reofle (2nd floor)                    |
| Additional Owner/Occupant Information:                                                                  |
| Describe Structure (style, number floors, size): 1-2 Storres Brick Extense flat Rubber                  |
| Membrane roof. (85,000 ft2)                                                                             |
| Approximate Year Built: Forly 1900'S Is the building Insulated? Yes \( \subseteq \text{No} \)           |
| Lowest level : ☐ Slab-on-grade                                                                          |
| Describe Lowest Level (finishing, use, time spent in space): Small area within Blackbird cidery         |
| Floor Type: Concrete Slab   Dirt   Mixed :                                                              |
| Floor Condition : Good (few or no cracks) Average (some cracks) Poor (broken concrete or dirt)          |
| Sumps/Drains? Yes Describe: Various Place/trench drains throughout                                      |
| Identify other floor penetrations & detalis: Various Water/ Sever Imes, electrical                      |
| conduits.                                                                                               |
| Wall Construction: ✓ Concrete Block □ Poured Concrete □ Laid-Up Stone                                   |
| Identify any wall penetrations: overhead garage doors, located within                                   |
| Blackbird Cidery.                                                                                       |
| Identify water, moisture, or seepage: location & severity (sump, cracks, stains, etc):                  |
| Heating Fuel: ☐ Oil ♥ Gas ☐ Wood ☐ Electric ☐ Other:                                                    |
| Heating System: ☐ Hot Water ☐ Other:                                                                    |
| Hot Water System :   Combustion   Electric   Boilermate   Other:                                        |
| Clothes Dryer: Gas Where is dryer vented to?                                                            |
| If combustion occurs, describe where air is drawn from (cold air return, basement, external air, etc.): |
| Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) :                 |
| Exhast for installed new 'IA-6' sample/ocation in March 2021.                                           |

Soil Vapor Intrusion - Structure Sampling Building Questionnaire

Structure ID : \_\_\_\_\_\_

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

| Structure ID |   |  |
|--------------|---|--|
| Structure ID | • |  |

|          |             |             |                    |         |          |            |         |       | 1     | ) r        | 10                                             | 2          |                 |               |          |          |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          |          |          |            |               |            |        |         |      |        |         |          |      |          |             |      |      |          | _            |   |
|----------|-------------|-------------|--------------------|---------|----------|------------|---------|-------|-------|------------|------------------------------------------------|------------|-----------------|---------------|----------|----------|--------------|--------|----------|-----------------------------------------------|------------------------------------------------|--------------|----------|-----------------------------------------------|--------|--------|----------|----------|----------|----------|------------|---------------|------------|--------|---------|------|--------|---------|----------|------|----------|-------------|------|------|----------|--------------|---|
| Att      | ac          | hec         | l ga               | ara     | ge       | ?          |         |       |       |            |                                                | ΙY         | es              |               | Ć        | X        | No           | )      |          |                                               | Ai                                             | r fr         | es       | her                                           | ner    | s ?    |          |          |          |          | ΙY         | 'es           |            | )      | X       | No   | )      |         |          |      |          |             |      |      |          |              |   |
| Ne       | w (         | car         | pet                | or      | fu       | rni        | itur    | e ?   | •     |            |                                                | Ye         | s               | •             | Z        | (N       | 0            |        |          |                                               | WI                                             | nat          | ·/W      | /he                                           | ere    | ? _    |          |          | _        |          |            |               | _          |        | _       | _    | _      |         |          |      |          | _           |      |      |          | _            |   |
| Re       | ece         | nt p        | oai                | nti     | ng       | 01         | st      | air   | nin   | ıg '       | ?                                              |            |                 |               |          | Ye       | es           |        | Ì        | K                                             | Ю                                              |              |          |                                               |        |        | ١        | ۸ŀ       | ner      | e ?      | <b>?</b> : |               | _          |        |         | _    | _      |         |          | _    |          | _           | _    | _    |          | _            |   |
| An       | y s         | olv         | /en                | t c     | or c     | :he        | emi     | ica   | ıl-l  | ike        | 9 00                                           | dor        | s?              | •             |          |          | Y            | es     |          | >                                             | (                                              | No           |          |                                               |        |        | [        | Des      | scr      | ibe      | e:         |               |            |        |         |      |        |         |          |      |          |             |      |      |          | _            |   |
| La:      | st t        | ime         | e D                | ry      | CI       | ea         | ne      | d f   | ab    | ric        | s b                                            | rou        | ıgh             | nt ir         | ո ?      |          | <u>.</u>     | _      | _        | 4                                             | 4                                              |              |          |                                               |        | ١      | Λh       | at       | / V      | Vh       | ere        | ?             |            |        |         | _    |        |         |          | _    |          |             | _    |      |          | _            |   |
| Do       | ar          | ny t        | ouil               | din     | ıg (     | oco        | cup     | an    | its   | us         | e s                                            | solv       | en              | ts a          | at v     | NOI      | r <b>k</b> ' | ?      |          |                                               |                                                | ٠ (          | Yes      | 3                                             | ١      |        | No       | ,        |          |          |            |               | De         | sci    | ibe     | :    |        |         |          |      |          |             |      |      |          | _            |   |
| An       | ıy te       | esti        | ing                | fo      | r R      | ad         | lon     | ?     |       |            |                                                | Ye         | s               | C             | X        | N        | lo           |        |          |                                               |                                                |              | Re       | esu                                           | ılts   | :_     |          |          |          |          |            |               |            |        |         |      |        |         |          |      |          |             |      |      |          | _            |   |
| Ra       | do          | n S         | Syst               | ten     | n/S      | oi         | ١Va     | apc   | or I  | ntr        | ้นร                                            | ion        | Mi              | itig          | ati      | on       |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          |          |          |            |               |            |        |         |      |        |         | yes      |      |          |             |      |      |          |              |   |
| ıΤ       | _           | ,           | _                  | J       | _        | _          |         |       |       |            |                                                |            |                 |               | <u> </u> |          |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          |          |          |            |               |            |        |         |      |        |         |          |      |          |             |      |      |          | _            |   |
| kb       | r <i>()</i> | <b>₹</b>    |                    | 1U      | LT.      | · <b>y</b> | ,<br>□□ | -     |       |            | ı                                              |            | 1               |               | L        | OW       | ve           | _      | -        | _                                             |                                                | ÷            | 10       |                                               | el     | -1     | -        |          | S        | ke<br>   | tcl        | h             | _          | $\top$ | _       | Т    | Т      | _       | 1 1      | _    | <u> </u> | -           | _    | -    | <u> </u> | _            |   |
| -        |             | 0.23E       |                    |         |          |            |         | 4     |       |            | _                                              | _          | _               | _             | _        |          | _            | _(     | 2        | Λ¢                                            | 17                                             | (A           | le       | 3                                             | ٤      | 1      | 1        | -        | į        | -        | 1          | ‡             | #          | ‡      |         | ļ    | +      | ÷       |          |      | 1        | 1           | ‡    | Ì    | ţ        | <u> </u>     |   |
|          |             |             |                    | ╛       |          | _          | motes:  | er ou | 10.79 | 1000       | -                                              | To William | Section 1       | wer.          | -        | gargin.  |              | ਅਰ     | - स्टाम  |                                               | -                                              |              |          | <u></u>                                       | 233943 | dene.  | mark.    | otta s   | 1        | <u> </u> | -          |               | - u        | MEE 52 | 22 23   | - P  | 23 A3  | ne ens  |          |      |          | -           |      |      | 1        | J.           |   |
| -        |             | "           | $\dashv$           | -       | _        |            | ı       | _     | 00    | ر<br>مري   | <u>-</u>                                       |            | !<br>           |               |          |          | _ !          |        |          | <u> </u>                                      |                                                | <u> </u>     | 1 !      | <u> </u>                                      |        |        | 1        | ,        | <u> </u> |          | <u> </u>   | $\frac{1}{1}$ | +          | +      |         |      | +      | +       |          |      | 4        | 4           |      | -    |          | 1            |   |
|          | П           |             |                    | _       | <u>/</u> | Φ,         | ለት      | 7     | *     |            |                                                |            |                 |               |          |          |              |        |          |                                               |                                                |              | _        |                                               | 3      | 7      | e,       | cl       | V        | ļ (      | a          | Ŋ             | _ -        |        |         | - -  |        | =       |          |      |          |             | Ť    | 1    |          |              |   |
| -        | Н           |             |                    | Ì       | V        |            |         | - 1   |       |            | <u>                                       </u> | Н          | _               |               |          |          |              |        | <u> </u> | <u>                                      </u> | <u>                                       </u> | <u> </u>     | <u>/</u> | -                                             | -      | -      | -        |          | -        | -        | -          | -             | -+         | +      | +       | +    | +      | -       |          |      |          | -           | +    | 4    | +        | 1            |   |
|          |             | L           |                    |         |          |            |         | Ì     | Į,    |            |                                                |            | j               |               | _        | _        | _            |        |          | _                                             | <u> </u>                                       | _            | _        | -                                             | -      |        | į        |          | ļ        | į        | į          | į             | 1          |        |         |      | Ţ      | İ       | Į        |      |          | 1           | Ţ    | į    |          |              |   |
| -        | H           |             |                    |         |          |            |         | - 1   | Ø     |            | <u>                                     </u>   | Н          | <u> </u>        |               |          |          |              |        | <u>.</u> | <u> </u>                                      | i                                              | <u> </u>     | <u> </u> | <u>                                      </u> | Н      | 급      | $\dashv$ | $\dashv$ | <u> </u> | <u> </u> | <u> </u>   | $^{+}$        | +          | +      |         | +    | +      | +       | Н        |      | (0       | 7           | -\$  | Ş    | -7       | <b>/ I</b> . | A |
|          |             |             |                    |         |          |            |         | Ì     |       |            |                                                | Li         | į               |               |          |          |              | - (    | ζ,       | 7                                             | <b>P</b> *                                     | 2,1          |          |                                               |        |        | 1        |          | 1        |          | 1          | 1             | 1          |        |         |      | ļ      | ļ       | ļ        |      |          | -           |      |      | 6        | ī)           | ď |
| -        | H           |             |                    | _       |          | Α          | _1      | O     | ٠,    |            |                                                | 7          | _               | _             |          |          |              |        |          | <u>                                      </u> | <u>                                       </u> | <u> </u><br> |          | <u>                                      </u> | Н      | -      | $\dashv$ | $\dashv$ | ᅥ        | $\dashv$ |            | $\dashv$      | - -        | - -    | - -     | - -  | +      | ╁       | $\vdash$ | _    | 4        | •           |      | 43   | -        | -            |   |
|          |             |             |                    |         | _        |            |         |       | _     |            | Ĺ                                              | 1          | $\Box$          |               |          |          |              | _      | _        | 2,                                            | 11.5                                           |              |          |                                               |        |        | 7        |          | T        | _        | inenc.     | _             | -          | _      | ==      | =    | +      | -       |          | -    |          | -           |      | +    |          | j            |   |
| <u> </u> | H           | _           |                    |         |          | _          |         | 4     | _     | ا<br>ام سا | <b>0</b>                                       | <u>  1</u> | ١               | $\dashv$      | _        | H        | _            | _      | -4       |                                               | _                                              | _            |          | H                                             | Н      |        | +        | $\dashv$ | 1        | _        | $\exists$  | +             | $\pm$      | +      | $\pm$   | +    | $^{+}$ | ⊥á<br>I | +        | _    | -        | _           | -    | ┨    | +        | -            |   |
|          | Ц           |             |                    |         | _        | 5          | 5-      | .1    | U     | Z          |                                                | -          |                 | ٠İ            |          |          | ଚ            | L      |          | Ĺ                                             |                                                | Ĺ            | L        |                                               |        |        | ij       | _        | j        | Ş        | S          | <b>5-</b> 8   | )/I        | Ą      | -9      |      | ļ      | I       |          |      |          | <b>(</b> a) | ロ    | 1    |          | 1            |   |
|          | Н           | -           | -                  | -       | —        | -          | -       | -     | -(    | }          | 5                                              | PK         | M               | $\mathcal{A}$ | _        |          |              | ⊢      | _        | H                                             | $\vdash$                                       | H            | $\vdash$ | -                                             | H      | _      |          |          | -        | 4        | -          | •             | ₽ ,        | -      |         | i E  | •      | ╁       | -        | Н    | -        | -           | +    | ╅    | +        | -            |   |
|          | П           |             |                    |         |          |            |         |       |       | Ē          |                                                |            |                 |               |          |          |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          | ╛        | •        | 1          | Δ             | - \        |        | 4       | 2 2  |        | 1       |          |      |          | (á          | 2    |      |          |              |   |
|          | -           |             | -                  |         |          |            |         |       |       | <u> </u>   |                                                | H          |                 |               |          | H        |              |        |          | <u> </u>                                      |                                                |              | <u> </u> |                                               |        |        | -        | -        | 1        | _1       |            | •             | +          | +      | 1       | +    | +      | +       |          | _    |          |             | 1    | -    | +        | -            |   |
|          | Ľ           |             | MANUFACT PROPERTY. | PARTIE: | e@zaki   | CERTS      | courses | 27501 | SSECT | 397.96     | (Chica)                                        | SPREEK!    | <b>1007/0</b> 5 | <b></b>       | 7765     | ARTESTS. | ama          | at Ges | COL      | DIFFE.                                        | e e e e e e e e e e e e e e e e e e e          | 162          | EXCREC   | 19Mil                                         | sapes: | toner. | -        | 7        |          | 7        | eperate l  | MED# 3        | ***        | 4      | er seco | 40   | -      | REF CES | i matthe | 0434 | -        | -           | _    | +    | 1        | _            |   |
|          |             |             |                    |         |          |            |         |       |       |            |                                                |            |                 |               |          |          |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          |          | J        | ميد        |               | 4          | i,     | الز     | 1    | 2      | 4       |          |      |          | -           |      |      |          |              |   |
|          |             |             |                    |         |          |            |         |       |       |            |                                                |            |                 |               |          |          |              |        |          |                                               |                                                |              |          |                                               |        |        | f        |          |          |          |            |               | 士          | 1      | t       | t    | t      | t       |          |      |          | 1           | 1    | t    | 1        | _            |   |
|          |             | _           |                    |         |          |            |         |       |       | _          |                                                | L          |                 |               |          | L        |              | 4      | į,       | n                                             | 4                                              | <u></u>      | Ļ        |                                               | _      |        | 1        | 4        | 4        | _        | _          | 4             | 4          | +      | +       | +    | +      | +       | $\vdash$ |      |          | 4           | 4    | 4    | +        | _            |   |
|          | lda         | 41          |                    |         |          | <b>.</b>   | l th    |       |       | otic       |                                                |            |                 |               |          |          | _            |        |          | 7                                             | 1'                                             |              | <u> </u> |                                               |        |        | i        |          | أ        |          |            | the           | ا          |        | 1       | l de | İ      | İ       |          |      |          |             |      | İ    |          |              |   |
|          |             |             | •                  |         |          |            |         |       |       |            |                                                | of         |                 |               |          |          |              |        |          |                                               |                                                |              |          |                                               |        |        |          |          | •        |          |            |               |            |        |         |      |        |         |          |      |          |             |      |      |          | _            |   |
| -        | Me          | eas         | ure                | th:     | e d      | sit        | tan     | ce    | of    | all        | Sa                                             | amp        | ole             | loc           | cati     | ion      | s f          | ror    | n i      | der                                           | ntif                                           | iab          | le 1     | fea                                           | tur    | es,    | an       | d i      | nc       | lud      | e c        | n t           | he         | lay    | ou      | l sł | cet    | ch.     |          |      |          |             |      |      |          |              |   |
| -        | lde         | ntit        | fy r               | 00      | m ı      | JS         | e (b    | ed    | iro   | om         | ı, li                                          | vin        | g r             | oor           | n,       | dei      | n, I         | kito   | che      | n,                                            | eto                                            | 2.)          | on       | the                                           | e la   | yoı    | ıt s     | ke       | tch      | ١.       |            |               |            |        |         |      |        |         |          |      |          |             |      |      |          |              |   |
| _        | Ide         | nti         | -<br>Fv +1         | hД      | loc      | · at       | ion     |       | ۰f t  | hΔ         | fol                                            | llow       | in.             | n fo          | aati     | urc      |              | n      | the      | Io                                            | wo                                             | ı ıt ı       | ckc      | atok                                          | h i    | eir    | a t      | ho       | an       | nr       | nnr        | ist           | 2 61       | ım     | hol     | ٠.   |        |         |          |      |          |             |      |      |          |              |   |
| •        |             |             | •                  | IIE     |          |            |         |       |       |            |                                                |            | /II IÇ          | 9 10          | au       | ure      | ;5 (         | )      | LITE     | : 10                                          | iyui                                           | ut i         | SNC      | SICI                                          | ι, τ   | ioii   | ıy ı     | i ie     | aμ       | pi       | opi        | iau           | <b>.</b> 5 | yııı   | UUi     | ъ.   |        |         |          |      |          |             |      |      |          |              |   |
|          |             | or          |                    |         |          |            | er o    |       |       |            |                                                |            |                 |               |          |          |              | 0      |          |                                               |                                                |              |          |                                               |        |        |          |          |          |          |            |               |            |        |         |      |        | atel    | • •      |      |          |             |      |      |          |              |   |
|          |             | НΝ          |                    |         |          |            | Wa      |       |       | lea        | ter                                            | •          |                 |               |          | 2        |              |        | XXX      |                                               |                                                |              |          |                                               |        |        | •        |          |          |          |            | e o           | OL         | ıtsi   | de      | ou   | ter    | wa      | lls a    | as   | app      | oro         | pria | ite) |          |              |   |
|          |             | FP          |                    |         |          |            | pla     |       |       |            |                                                |            |                 |               |          |          |              |        | ##       | •                                             |                                                |              |          |                                               | bro    |        | •        |          |          |          |            |               |            |        |         | -    |        |         |          |      |          |             |      |      |          |              |   |
|          |             | WS          |                    |         |          |            | od S    |       |       |            |                                                |            |                 |               |          |          |              | S      |          |                                               |                                                |              |          |                                               | & la   |        |          |          |          |          |            | •             |            |        | npl     | es   |        |         |          |      |          |             |      |      |          |              |   |
|          | ١           | <b>N</b> /I | )                  |         | W        | as         | she     | r/    | Dr    | yeı        | r                                              |            |                 |               |          |          | •            | ) IA   | \-1      |                                               | L                                              | oca          | atic     | on 8                                          | & la   | be     | l of     | in       | do       | or       | air        | sar           | np         | les    |         |      |        |         |          |      |          |             |      |      |          |              |   |
|          |             | s           |                    |         | S        | ım         | nps     |       |       |            |                                                |            |                 |               |          |          | •            | 0      | A-1      |                                               | - 1                                            |              | otic     | n i                                           | & I:   | aha    | l of     | OI       | ıtd      | റവ       | r ai       | rsa           | am         | nle    | c       |      |        |         |          |      |          |             |      |      |          |              |   |
|          |             | •           |                    |         | J        | ull        | ıpə     |       |       |            |                                                |            |                 |               |          |          |              | -      |          |                                               | ᆫ                                              | UC           | auc      | ліс                                           | α I    | JUC    |          | -        | atu      | 00       | u          |               | <b></b>    | PiC    | J       |      |        |         |          |      |          |             |      |      |          |              |   |

# Structure Sampling - Product Inventory

| Homeowner Name & Address: | R&M Leasing                         | Date: 3/29/2022                    |
|---------------------------|-------------------------------------|------------------------------------|
| Samplers & Company:       | Errc Betzold & Jason Kryszak        | Structure ID: <u>C 91 5 31</u> 2   |
| Site Number & Name:       | Pierce Arrow Business center (Black | hone Number:                       |
| Make & Model of PID:      | Mmi RAE 3000                        | Date of PID Calibration: 3/28/2-22 |
| Identify any Changes from | n Original Building Questionnaire : |                                    |

| Product Name/Description | Quantity    | Chemical Ingredients                                              | PID Reading | Location       |
|--------------------------|-------------|-------------------------------------------------------------------|-------------|----------------|
| Wall Paint               | 3           | Titanium Dioxide                                                  | . ND        | Near<br>55-3/I |
| Acetone.                 | guart       | Acetone                                                           | ND          | (1 /1          |
| Furniture Refinisher     | guar f      | Acetone<br>Acctone, Tolvere, Method, polyethylere<br>Glycol, Rosm | ND          | " "            |
| Stripper                 | guart       | Methylere chloride                                                | ND          | ٠, ١,          |
| Brisheleoner             | gust        | Methanol, Tolocce, Acctone                                        | ND          | 11 11          |
| woodckerer               | quart       | Isofrofanol                                                       | an          | ., ,           |
| Sfray Pass               | 1can        | Vocs                                                              | ND          | ., ,           |
| Stan                     | can         | Vac 5                                                             | NO          | 11 1,          |
| bleach                   | gal         | sodium hypochlorite                                               | NΡ          | Kitchen        |
| degresser                | Twant       | 2-Butoxy etherol                                                  | MD          | ** **          |
| Carbon off               | 1902        | 2 - Butoxy Ethanol                                                | an          | ٠, ١,          |
| floor cleaner            | 1<br>9allon | Alcohols ( < 9- C11)                                              | ND          | 11 11          |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
|                          |             |                                                                   |             |                |
| •                        |             |                                                                   |             |                |



# AIR/VAPOR SAMPLING FIELD DATA SHEET

Sampler's Signature 4/11 Bolf

Date: 03/29/2022



# AIR/VAPOR SAMPLING FIELD DATA SHEET

| Client: Signature Development                                | Project No.:01101                                      |  |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Site Name & Address: 155 Chandler St.                        | Buffalo, NY                                            |  |  |  |  |  |
|                                                              | ( al. 10 January 17 a. al.                             |  |  |  |  |  |
|                                                              | tzold & Jason Kryszak                                  |  |  |  |  |  |
| Sample Identification: <u>SS-7(032922)</u>                   |                                                        |  |  |  |  |  |
| Sample Type: ☐ Indoor Air (ambient)                          | □Outdoor Air □Soil Vapor ■Sub-slab Vapor               |  |  |  |  |  |
| Date of Collection: 03/29/2022                               | Setup Time: <u>0900</u> Stop Time: <u>1700</u>         |  |  |  |  |  |
| Sample Depth: 6 inches                                       |                                                        |  |  |  |  |  |
| Sample Height: N/A                                           | -                                                      |  |  |  |  |  |
| Sampling Method(s) & Device(s): 2.7 L                        | Summa Canister & Regulator                             |  |  |  |  |  |
| Purge Volume: N/A                                            |                                                        |  |  |  |  |  |
| Sample Volume: 2.7 L                                         |                                                        |  |  |  |  |  |
| Sampling Canister Type & Size (if applicable): _ 2.7 L Summa |                                                        |  |  |  |  |  |
| Canister #145                                                | Regulator #0915                                        |  |  |  |  |  |
| Vacuum Pressure of Canister Pri                              | or to Sampling: -30.43                                 |  |  |  |  |  |
| Vacuum Pressure of Canister Aft                              | er Sampling:9.20                                       |  |  |  |  |  |
| Temperature in Sampling Zone: _70° F                         |                                                        |  |  |  |  |  |
| Apparent Moisture Content of Sampling Zone: Low              |                                                        |  |  |  |  |  |
| Soil Type in Sampling Zone: Subbase                          |                                                        |  |  |  |  |  |
| Standard Chain of Custody Procedures L                       | Jsed for Handling & Delivery of Samples to Laboratory: |  |  |  |  |  |
| ■Yes □No. If n                                               | o, provide reason(s) why?                              |  |  |  |  |  |
| Laboratory Name: Alpha Analytical                            |                                                        |  |  |  |  |  |
| Analysis: TO-15                                              |                                                        |  |  |  |  |  |
| Comments:                                                    |                                                        |  |  |  |  |  |
|                                                              |                                                        |  |  |  |  |  |
| Completed in eastern portion of building                     | in the electrical room.                                |  |  |  |  |  |
|                                                              |                                                        |  |  |  |  |  |
|                                                              |                                                        |  |  |  |  |  |
|                                                              |                                                        |  |  |  |  |  |

Sampler's Signature 4 in Buffill

Date: 03/29/2022



# AIR/VAPOR SAMPLING FIELD DATA SHEET

| Client: Signature Development                               | Project No.:               | 01101              |  |  |  |
|-------------------------------------------------------------|----------------------------|--------------------|--|--|--|
| Site Name & Address: <u>155 Chandler St. Buffalo, N</u>     | IY                         |                    |  |  |  |
| Person(s) Performing Sampling: <u>Eric Betzold &amp; Ja</u> | son Kryszak                |                    |  |  |  |
| Sample Identification: <u>IA-7(032922)</u>                  |                            |                    |  |  |  |
| Sample Type: ■ Indoor Air (ambient) □Outdoo                 | · Air □Soil Vapor □Su      | ıb-slab Vapor      |  |  |  |
| Date of Collection:03/29/2022 Setup T                       | ime: 0900 Stop             | Time: 1700         |  |  |  |
| Sample Depth: N/A                                           |                            |                    |  |  |  |
| Sample Height: 4'                                           |                            |                    |  |  |  |
| Sampling Method(s) & Device(s): 2.7 L Summa (               | Canister & Regulator       |                    |  |  |  |
| Purge Volume: N/A                                           |                            |                    |  |  |  |
| Sample Volume: 2.7 L                                        |                            |                    |  |  |  |
| Sampling Canister Type & Size (if applicable): <u>2.7</u>   | L Summa                    | ·                  |  |  |  |
| Canister # 2072 Re                                          | egulator # <u>02225</u>    |                    |  |  |  |
| Vacuum Pressure of Canister Prior to Sam                    | oling: <u>-30.30</u>       | -                  |  |  |  |
| Vacuum Pressure of Canister After Sampli                    | ng:9.30                    |                    |  |  |  |
| Temperature in Sampling Zone: _70º F                        |                            |                    |  |  |  |
| Apparent Moisture Content of Sampling Zone: Low             |                            |                    |  |  |  |
| Soil Type in Sampling Zone: N/A                             |                            |                    |  |  |  |
| Standard Chain of Custody Procedures Used for H             | andling & Delivery of Samp | les to Laboratory: |  |  |  |
| ■Yes □No. If no, provide                                    | reason(s) why?             |                    |  |  |  |
| Laboratory Name: Alpha Analytical                           |                            |                    |  |  |  |
| Analysis: TO-15                                             |                            |                    |  |  |  |
| Comments: Ambient air: 0.0ppm                               |                            |                    |  |  |  |
| Sample completed in eastern portion of building in          |                            |                    |  |  |  |
|                                                             |                            |                    |  |  |  |
|                                                             |                            |                    |  |  |  |
|                                                             |                            |                    |  |  |  |

Sampler's Signature 4/11 Bull

Date: 03/29/2022



| Client: Signature Development            | Project No.:01101                                             |
|------------------------------------------|---------------------------------------------------------------|
| Site Name & Address: 155 Chandler St     | t. Buffalo, NY                                                |
| Person(s) Performing Sampling: Eric Be   | etzold & Jason Kryszak                                        |
| Sample Identification: SS-9(032922)      | -                                                             |
| Sample Type: ☐ Indoor Air (ambient)      | □Outdoor Air □Soil Vapor ■Sub-slab Vapor                      |
| Date of Collection: 03/29/2022           | Setup Time: 0840 Stop Time: 1640                              |
| Sample Depth: 6 inches                   | -                                                             |
| Sample Height: N/A                       | _                                                             |
| Sampling Method(s) & Device(s):2.7 I     | _ Summa Canister & Regulator                                  |
| Purge Volume: N/A                        | -                                                             |
| Sample Volume: 2.7 L                     |                                                               |
| Sampling Canister Type & Size (if applic | able):                                                        |
| Canister # 3198                          | Regulator # <u>01661</u>                                      |
| Vacuum Pressure of Canister Pr           | rior to Sampling: <u>-29.38</u>                               |
| Vacuum Pressure of Canister Af           | ter Sampling: <u>-7.75</u>                                    |
| Temperature in Sampling Zone: 70° F      |                                                               |
| Apparent Moisture Content of Sampling    | Zone: Low                                                     |
| Soil Type in Sampling Zone: Subbase      |                                                               |
| Standard Chain of Custody Procedures     | Used for Handling & Delivery of Samples to Laboratory:        |
| ■Yes □No. If                             | no, provide reason(s) why?                                    |
| Laboratory Name: Alpha Analytical        |                                                               |
| Analysis: TO-15                          |                                                               |
| Comments: Subslab: 0.0ppm                |                                                               |
| A positive pressure airflow was noted b  | pelow the slab (fine dust from drilling blowing up slightly). |
|                                          |                                                               |
|                                          |                                                               |
|                                          |                                                               |

Sampler's Signature 4 in Buff

Date: 03/29/2022



| Client: Signature Development              | Project No.:01101                                      |
|--------------------------------------------|--------------------------------------------------------|
| Site Name & Address: 155 Chandler St       | Buffalo, NY                                            |
| Person(s) Performing Sampling: Eric Be     | etzold & Jason Kryszak                                 |
| Sample Identification: <u>IA-9(032922)</u> | -                                                      |
| Sample Type: ■ Indoor Air (ambient)        | □Outdoor Air □Soil Vapor □Sub-slab Vapor               |
| Date of Collection: 03/29/2022             | Setup Time: 0845 Stop Time: 1645                       |
| Sample Depth: N/A                          | _                                                      |
| Sample Height: 4'                          | _                                                      |
| Sampling Method(s) & Device(s): 2.7 I      | _ Summa Canister & Regulator                           |
| Purge Volume: N/A                          | _                                                      |
| Sample Volume: 2.7 L                       |                                                        |
| Sampling Canister Type & Size (if applic   | able): _ <u>2.7 L Summa</u>                            |
| Canister # 559                             | Regulator # <u>0095</u>                                |
| Vacuum Pressure of Canister Pr             | rior to Sampling: <u>-30.08</u>                        |
| Vacuum Pressure of Canister Af             | ter Sampling: <u>-8.60</u>                             |
| Temperature in Sampling Zone: 70° F        |                                                        |
| Apparent Moisture Content of Sampling      | Zone: Low                                              |
| Soil Type in Sampling Zone: N/A            |                                                        |
| Standard Chain of Custody Procedures       | Used for Handling & Delivery of Samples to Laboratory: |
| ■Yes □No. If i                             | no, provide reason(s) why?                             |
| Laboratory Name: Alpha Analytical          |                                                        |
| Analysis: TO-15                            |                                                        |
| Comments: Ambient air: 0.0ppm              | Sample completed in 'Bar Area'                         |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |

Sampler's Signature 4 Lie Bolf

Date: 03/29/2022



| Client: Signature Development                   | Project No.:01101                                      |
|-------------------------------------------------|--------------------------------------------------------|
| Site Name & Address: 155 Chandler St            | . Buffalo, NY                                          |
| Person(s) Performing Sampling: Eric Be          | etzold & Jason Kryszak                                 |
| Sample Identification: SS-10(032922)            |                                                        |
| Sample Type: ☐ Indoor Air (ambient)             | □Outdoor Air □Soil Vapor ■Sub-slab Vapor               |
| Date of Collection: 03/29/2022                  | Setup Time: <u>0850</u> Stop Time: <u>1650</u>         |
| Sample Depth: 6 inches                          |                                                        |
| Sample Height: N/A                              | -                                                      |
| Sampling Method(s) & Device(s): 2.7 L           | Summa Canister & Regulator                             |
| Purge Volume: N/A                               |                                                        |
| Sample Volume: 2.7 L                            |                                                        |
| Sampling Canister Type & Size (if applications) | able): <u>2.7 L Summa</u>                              |
| Canister # 133                                  | Regulator # <u>01536</u>                               |
| Vacuum Pressure of Canister Pr                  | ior to Sampling: <u>-29.40</u>                         |
| Vacuum Pressure of Canister Af                  | ter Sampling:15.30                                     |
| Temperature in Sampling Zone: 70° F             |                                                        |
| Apparent Moisture Content of Sampling           | Zone: Low                                              |
| Soil Type in Sampling Zone: Subbase             |                                                        |
| Standard Chain of Custody Procedures I          | Used for Handling & Delivery of Samples to Laboratory: |
| ■Yes □No. If r                                  | no, provide reason(s) why?                             |
| Laboratory Name: Alpha Analytical               |                                                        |
| Analysis: TO-15                                 |                                                        |
| Comments: Sub-slab: 15.0ppm                     |                                                        |
| Sample completed in basement area in            | the western portion of the building. During removal of |
| the sample tube, water was observed i           | n the bottom of the tube. The saturated soils hindered |
| the amount of air collected in the canis        | ter.                                                   |
|                                                 |                                                        |

Sampler's Signature 4 in Buffill Date: 03/29/2022



| Client: Signature Development                 | Project No.:01101                                      |
|-----------------------------------------------|--------------------------------------------------------|
| Site Name & Address: 155 Chandler St          | Buffalo, NY                                            |
| Person(s) Performing Sampling: <u>Eric Be</u> | etzold & Jason Kryszak                                 |
| Sample Identification: <u>IA-10(032922)</u>   | -                                                      |
| Sample Type: ■ Indoor Air (ambient)           | □Outdoor Air □Soil Vapor □Sub-slab Vapor               |
| Date of Collection: 03/29/2022                | Setup Time: 0855 Stop Time: 1655                       |
| Sample Depth: N/A                             | -                                                      |
| Sample Height: 4'                             | _                                                      |
| Sampling Method(s) & Device(s): 2.7 I         | _ Summa Canister & Regulator                           |
| Purge Volume: N/A                             | -                                                      |
| Sample Volume: 2.7 L                          |                                                        |
| Sampling Canister Type & Size (if applic      | able): 2.7 L Summa                                     |
| Canister # 370                                | Regulator # <u>01702</u>                               |
| Vacuum Pressure of Canister Pr                | rior to Sampling: <u>-30.17</u>                        |
| Vacuum Pressure of Canister Af                | ter Sampling: <u>-5.03</u>                             |
| Temperature in Sampling Zone: 70° F           |                                                        |
| Apparent Moisture Content of Sampling         | Zone: Low                                              |
| Soil Type in Sampling Zone: N/A               |                                                        |
| Standard Chain of Custody Procedures          | Used for Handling & Delivery of Samples to Laboratory: |
| ■Yes □No. If i                                | no, provide reason(s) why?                             |
| Laboratory Name: Alpha Analytical             |                                                        |
| Analysis: TO-15                               |                                                        |
| Comments:  Ambient air: 0.0ppm                |                                                        |
| Sample completed in western portion of        | of building 4' north of basement staircase.            |
|                                               |                                                        |
|                                               |                                                        |
|                                               |                                                        |

Sampler's Signature 4 in Buff

Date: 03/29/2022

## **APPENDIX D**

## LABRATORY ANALYITICAL REPORT



#### ANALYTICAL REPORT

Lab Number: L2217738

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Report Date: 06/01/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



**Project Number:** 00101

**Lab Number:** L2217738 **Report Date:** 06/01/22

| Alpha<br>Sample ID | Client ID      | Matrix     | Sample<br>Location          | Collection Date/Time | Receive Date |
|--------------------|----------------|------------|-----------------------------|----------------------|--------------|
| L2217738-01        | OA-1 (032922)  | AIR        | 155 CHANDLER ST. BUFFALO NY | 03/29/22 16:30       | 03/30/22     |
| L2217738-02        | SS-9(032922)   | SOIL_VAPOR | 155 CHANDLER ST. BUFFALO NY | 03/29/22 16:40       | 03/30/22     |
| L2217738-03        | IA-9(032922)   | AIR        | 155 CHANDLER ST. BUFFALO NY | 03/29/22 16:45       | 03/30/22     |
| L2217738-04        | SS-10(032922)  | SOIL_VAPOR | 155 CHANDLER ST. BUFFALO NY | 03/29/22 17:05       | 03/30/22     |
| L2217738-05        | IA-10 (032922) | AIR        | 155 CHANDLER ST. BUFFALO NY | 03/29/22 16:55       | 03/30/22     |
| L2217738-06        | IA-7 (032922)  | AIR        | 155 CHANDLER ST. BUFFALO NY | 03/29/22 17:00       | 03/30/22     |
| L2217738-07        | SS-7(032922)   | SOIL_VAPOR | 155 CHANDLER ST. BUFFALO NY | 03/29/22 17:00       | 03/30/22     |



L2217738

Lab Number:

Project Name: NYSDEC VIM STUDY

Project Number: 00101 Report Date: 06/01/22

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Serial\_No:06012215:51

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

#### **Case Narrative (continued)**

Report Revision

June 1, 2022 the report has been amended to change sample IDs at the request of the client. A revised COC is included in this submittal.

Volatile Organics in Air

Canisters were released from the laboratory on March 28, 2022. The canister certification results are provided as an addendum.

L2217738-04D: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to perform a screen analysis. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/01/22

Christopher J. Anderson

ALPHA

# **AIR**



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:30 Date Received: 03/30/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 17:49

Analyst: TS

|                                |             | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.515       | 0.200 |     | 2.55    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.539       | 0.200 |     | 1.11    | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | ND          | 5.00  |     | ND      | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 1.48        | 1.00  |     | 3.52    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.210       | 0.200 |     | 1.18    | 1.12  |     |           | 1        |
| Isopropanol                    | 1.54        | 0.500 |     | 3.79    | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND          | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Ethyl Acetate                  | ND          | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                     | ND          | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |
|                                |             |       |     |         |       |     |           |          |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:30

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

| оапріє Беріп.                      |         | ppbV  |     |         | ug/m3 |     |           | Dilution |
|------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfie | eld Lab |       |     |         |       |     |           |          |
| 1,2-Dichloroethane                 | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                           | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Benzene                            | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Cyclohexane                        | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane                | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane               | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                        | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2,2,4-Trimethylpentane             | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                            | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene            | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1-Methyl-2-pentanone               | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene           | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| ,1,2-Trichloroethane               | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| oluene                             | ND      | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 2-Hexanone                         | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane               | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| ,2-Dibromoethane                   | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Chlorobenzene                      | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                       | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                         | ND      | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                          | ND      | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                            | ND      | 0.200 |     | ND      | 0.852 |     |           | 1        |
| ,1,2,2-Tetrachloroethane           | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                           | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 4-Ethyltoluene                     | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ,3,5-Trimethylbenzene              | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
|                                    |         |       |     |         |       |     |           |          |



Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

### SAMPLE RESULTS

Lab ID: L2217738-01

Client ID: OA-1 (032922)

155 CHANDLER ST. BUFFALO NY

Date Collected:

03/29/22 16:30

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Sample Location:

ug/m3 ppbV Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab 1,2,4-Trimethylbenzene ND 0.200 ND0.983 1 Benzyl chloride ND 0.200 --ND 1.04 --1 1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2-Dichlorobenzene 1 ND 0.200 ND 1.20 --1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 ----Hexachlorobutadiene ND 0.200 ND 2.13 --1 --

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 100        |           | 60-140                 |
| Bromochloromethane  | 104        |           | 60-140                 |
| chlorobenzene-d5    | 104        |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date:

Date Collected:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location:

Date Received: Field Prep:

03/29/22 16:30 03/30/22

155 CHANDLER ST. BUFFALO NY

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 04/10/22 17:49

Analyst:

TS

| ppbV        |                                          |                                                                                                                                                                                                                                                                                                 | ug/m3                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | Dilution                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results     | RL                                       | MDL                                                                                                                                                                                                                                                                                             | Results                                                                                                                                                                                                                                                   | RL                                                                                                                                                                                                                                                                                          | MDL                                                                                                                                                                                                                                                                                                                                                                                           | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                 | Factor                                                                                                                                                                                                                                                                                                                                                                                                 |
| nsfield Lab |                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.051                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.079                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.079                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.109                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.090       | 0.020                                    |                                                                                                                                                                                                                                                                                                 | 0.566                                                                                                                                                                                                                                                     | 0.126                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.107                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND          | 0.020                                    |                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                        | 0.136                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | ND ND ND ND ND ND ND ND ND ND ND ND ND N | Results         RL           nsfield Lab         ND         0.020           ND         0.020         ND         0.020           ND         0.020         ND         0.020           ND         0.020         ND         0.020           ND         0.020         0.020         ND         0.020 | Results         RL         MDL           nsfield Lab             ND         0.020            ND         0.020            ND         0.020            ND         0.020            ND         0.020            ND         0.020            ND         0.020 | Results         RL         MDL         Results           ND         0.020          ND           ND         0.020          ND           ND         0.020          ND           ND         0.020          ND           0.090         0.020          ND           ND         0.020          ND | Results         RL         MDL         Results         RL           ND         0.020          ND         0.051           ND         0.020          ND         0.079           ND         0.020          ND         0.079           ND         0.020          ND         0.109           0.090         0.020          0.566         0.126           ND         0.020          ND         0.107 | Results         RL         MDL         Results         RL         MDL           Insfield Lab         ND         0.051            ND         0.020          ND         0.079            ND         0.020          ND         0.079            ND         0.020          ND         0.109            0.090         0.020          0.566         0.126            ND         0.020          ND         0.107 | Results         RL         MDL         Results         RL         MDL         Qualifier           NSfield Lab         ND         0.020          ND         0.051            ND         0.020          ND         0.079            ND         0.020          ND         0.109            ND         0.090         0.020          ND         0.126            ND         0.020          ND         0.107 |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 101        |           | 60-140                 |
| bromochloromethane  | 108        |           | 60-140                 |
| chlorobenzene-d5    | 105        |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-02

Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 16:40

Date Received: 03/30/22

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil\_Vapor Anaytical Method: 48,TO-15 Analytical Date:

04/10/22 22:58

Analyst: TS

|                                |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.552      | 0.200 |     | 2.73    | 0.989 |     |           | 1        |
| Chloromethane                  | ND         | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Vinyl chloride                 | ND         | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 7.86       | 5.00  |     | 14.8    | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 5.75       | 1.00  |     | 13.7    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.279      | 0.200 |     | 1.57    | 1.12  |     |           | 1        |
| Isopropanol                    | 3.28       | 0.500 |     | 8.06    | 1.23  |     |           | 1        |
| 1,1-Dichloroethene             | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol         | ND         | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | 0.574      | 0.500 |     | 1.99    | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | 1.02       | 0.200 |     | 3.18    | 0.623 |     |           | 1        |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 4.80       | 0.500 |     | 14.2    | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene         | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-02 Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 16:40

Date Received: Field Prep:

03/30/22 Not Specified

| Sample Depth:                   |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mans | sfield Lab |       |     |         |       |     |           |          |
| Ethyl Acetate                   | ND         | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                      | 0.671      | 0.200 |     | 3.28    | 0.977 |     |           | 1        |
| Tetrahydrofuran                 | 2.88       | 0.500 |     | 8.49    | 1.47  |     |           | 1        |
| 1,2-Dichloroethane              | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                        | 7.54       | 0.200 |     | 26.6    | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane           | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Benzene                         | 1.70       | 0.200 |     | 5.43    | 0.639 |     |           | 1        |
| Carbon tetrachloride            | 1.41       | 0.200 |     | 8.87    | 1.26  |     |           | 1        |
| Cyclohexane                     | 1.65       | 0.200 |     | 5.68    | 0.688 |     |           | 1        |
| 1,2-Dichloropropane             | ND         | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane            | ND         | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                     | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                 | 1.32       | 0.200 |     | 7.09    | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane          | 0.341      | 0.200 |     | 1.59    | 0.934 |     |           | 1        |
| Heptane                         | 3.20       | 0.200 |     | 13.1    | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene         | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone            | ND         | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene       | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane           | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                         | 20.7       | 0.200 |     | 78.0    | 0.754 |     |           | 1        |
| 2-Hexanone                      | ND         | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane            | ND         | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane               | ND         | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene               | 0.214      | 0.200 |     | 1.45    | 1.36  |     |           | 1        |
| Chlorobenzene                   | ND         | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                    | 3.79       | 0.200 |     | 16.5    | 0.869 |     |           | 1        |
|                                 |            |       |     |         |       |     |           |          |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-02 Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29

03/29/22 16:40 03/30/22

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

| острю ворит.                    |           | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|-----------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results   | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mans | field Lab |       |     |         |       |     |           |          |
| p/m-Xylene                      | 18.3      | 0.400 |     | 79.5    | 1.74  |     |           | 1        |
| Bromoform                       | ND        | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                         | ND        | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane       | ND        | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                        | 6.01      | 0.200 |     | 26.1    | 0.869 |     |           | 1        |
| 4-Ethyltoluene                  | 1.54      | 0.200 |     | 7.57    | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene          | 1.32      | 0.200 |     | 6.49    | 0.983 |     |           | 1        |
| 1,2,4-Trimethylbenzene          | 5.68      | 0.200 |     | 27.9    | 0.983 |     |           | 1        |
| Benzyl chloride                 | ND        | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene             | ND        | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene             | ND        | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene             | ND        | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene          | ND        | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene             | ND        | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                                 |           |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 97         |           | 60-140                 |
| Bromochloromethane  | 102        |           | 60-140                 |
| chlorobenzene-d5    | 98         |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date: 06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-03 Client ID:

IA-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 16:45

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 21:03

Analyst: TS

|                                |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.543      | 0.200 |     | 2.69    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.587      | 0.200 |     | 1.21    | 0.413 |     |           | 1        |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 111        | 5.00  |     | 209     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 17.5       | 1.00  |     | 41.6    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.246      | 0.200 |     | 1.38    | 1.12  |     |           | 1        |
| Isopropanol                    | 96.4       | 0.500 |     | 237     | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND         | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND         | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND         | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | ND         | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Ethyl Acetate                  | ND         | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                     | 0.602      | 0.200 |     | 2.94    | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND         | 0.500 |     | ND      | 1.47  |     |           | 1        |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-03 Client ID: IA-9(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:45

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

| ppbV    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| d Lab   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.200   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.276   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.500                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.366   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.456   | 0.400                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.234   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | ND ND ND ND ND ND ND ND ND ND ND ND ND N | Results         RL           d Lab         ND         0.200           ND         0.200         0.200           ND         0.200         ND           ND         0.200           ND <td< td=""><td>Results         RL         MDL           d Lab         ND         0.200            ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             &lt;</td><td>Results         RL         MDL         Results           d Lab         ND         0.200          ND           ND         0.200          ND           0.200         0.200          ND           ND         0.200        </td><td>Results         RL         MDL         Results         RL           d Lab         ND         0.200          ND         0.809           ND         0.200          ND         0.705           0.200         0.200          ND         0.639           ND         0.200          ND         0.688           ND         0.200          ND         0.924           ND         0.200          ND         0.934           ND         0.200          ND         0.934           ND         0.200          ND         0.908           ND         0.200          ND         0.908</td><td>Results         RL         MDL         Results         RL         MDL           d Lab           ND         0.200          ND         0.809            ND         0.200          ND         0.705            ND         0.200          ND         0.639         0.639            ND         0.200          ND         0.639             ND         0.200          ND         0.688            ND         0.200          ND         0.924            ND         0.200          ND         0.934            ND         0.200          ND         0.934            ND         0.200        <!--</td--><td>Results         RL         MDL         Results         RL         MDL         Qualifier           d Lab           ND         0.200          ND         0.809           ND         0.809           ND         0.705           ND         0.705           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.924           ND         0.924           ND         0.924           ND         0.924           ND         0.934           ND         0.934          ND</td></td></td<> | Results         RL         MDL           d Lab         ND         0.200            ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             < | Results         RL         MDL         Results           d Lab         ND         0.200          ND           ND         0.200          ND           0.200         0.200          ND           ND         0.200 | Results         RL         MDL         Results         RL           d Lab         ND         0.200          ND         0.809           ND         0.200          ND         0.705           0.200         0.200          ND         0.639           ND         0.200          ND         0.688           ND         0.200          ND         0.924           ND         0.200          ND         0.934           ND         0.200          ND         0.934           ND         0.200          ND         0.908           ND         0.200          ND         0.908 | Results         RL         MDL         Results         RL         MDL           d Lab           ND         0.200          ND         0.809            ND         0.200          ND         0.705            ND         0.200          ND         0.639         0.639            ND         0.200          ND         0.639             ND         0.200          ND         0.688            ND         0.200          ND         0.924            ND         0.200          ND         0.934            ND         0.200          ND         0.934            ND         0.200 </td <td>Results         RL         MDL         Results         RL         MDL         Qualifier           d Lab           ND         0.200          ND         0.809           ND         0.809           ND         0.705           ND         0.705           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.924           ND         0.924           ND         0.924           ND         0.924           ND         0.934           ND         0.934          ND</td> | Results         RL         MDL         Results         RL         MDL         Qualifier           d Lab           ND         0.200          ND         0.809           ND         0.809           ND         0.705           ND         0.705           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.639         0.639           ND         0.924           ND         0.924           ND         0.924           ND         0.924           ND         0.934           ND         0.934          ND |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

### SAMPLE RESULTS

Lab ID: L2217738-03 Client ID:

IA-9(032922)

Sample Location:

Date Collected:

03/29/22 16:45

Date Received:

03/30/22

Sample Depth:

155 CHANDLER ST. BUFFALO NY

Field Prep: Not Specified

ug/m3 ppbV Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab 1,2,4-Trimethylbenzene ND 0.200 ND0.983 1 Benzyl chloride ND 0.200 --ND 1.04 --1 1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2-Dichlorobenzene 1 ND 0.200 ND 1.20 1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 ----Hexachlorobutadiene ND 0.200 ND 2.13 --1 --

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 95         |           | 60-140                 |
| Bromochloromethane  | 101        |           | 60-140                 |
| chlorobenzene-d5    | 98         |           | 60-140                 |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

## **SAMPLE RESULTS**

Lab ID: L2217738-03

Client ID: IA-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03

03/29/22 16:45

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 21:03

Analyst: TS

|                                 |                   | ppbV  |        |         | ug/m3 |     |           | Dilution |
|---------------------------------|-------------------|-------|--------|---------|-------|-----|-----------|----------|
| Parameter                       | Results           | RL    | RL MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SII | M - Mansfield Lab |       |        |         |       |     |           |          |
| Vinyl chloride                  | ND                | 0.020 |        | ND      | 0.051 |     |           | 1        |
| 1,1-Dichloroethene              | ND                | 0.020 |        | ND      | 0.079 |     |           | 1        |
| cis-1,2-Dichloroethene          | 0.098             | 0.020 |        | 0.389   | 0.079 |     |           | 1        |
| 1,1,1-Trichloroethane           | ND                | 0.020 |        | ND      | 0.109 |     |           | 1        |
| Carbon tetrachloride            | 1.28              | 0.020 |        | 8.05    | 0.126 |     |           | 1        |
| Trichloroethene                 | 4.74              | 0.020 |        | 25.5    | 0.107 |     |           | 1        |
| Tetrachloroethene               | 0.090             | 0.020 |        | 0.610   | 0.136 |     |           | 1        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 97         |           | 60-140                 |
| bromochloromethane  | 104        |           | 60-140                 |
| chlorobenzene-d5    | 100        |           | 60-140                 |



**Project Number:** 00101

Lab Number: L2217738

**Report Date:** 06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-04 D

Client ID: SS-10(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:05

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Soil\_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 23:37

Analyst: TS

|                                |            | Vdqq  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.526      | 0.422 |     | 2.60    | 2.09  |     |           | 2.111    |
| Chloromethane                  | 2.15       | 0.422 |     | 4.44    | 0.871 |     |           | 2.111    |
| Freon-114                      | ND         | 0.422 |     | ND      | 2.95  |     |           | 2.111    |
| Vinyl chloride                 | ND         | 0.422 |     | ND      | 1.08  |     |           | 2.111    |
| 1,3-Butadiene                  | 50.3       | 0.422 |     | 111     | 0.934 |     |           | 2.111    |
| Bromomethane                   | ND         | 0.422 |     | ND      | 1.64  |     |           | 2.111    |
| Chloroethane                   | ND         | 0.422 |     | ND      | 1.11  |     |           | 2.111    |
| Ethanol                        | 18.0       | 10.6  |     | 33.9    | 20.0  |     |           | 2.111    |
| Vinyl bromide                  | ND         | 0.422 |     | ND      | 1.85  |     |           | 2.111    |
| Acetone                        | 39.0       | 2.11  |     | 92.6    | 5.01  |     |           | 2.111    |
| Trichlorofluoromethane         | ND         | 0.422 |     | ND      | 2.37  |     |           | 2.111    |
| Isopropanol                    | 6.84       | 1.06  |     | 16.8    | 2.61  |     |           | 2.111    |
| 1,1-Dichloroethene             | ND         | 0.422 |     | ND      | 1.67  |     |           | 2.111    |
| Tertiary butyl Alcohol         | ND         | 1.06  |     | ND      | 3.21  |     |           | 2.111    |
| Methylene chloride             | ND         | 1.06  |     | ND      | 3.68  |     |           | 2.111    |
| 3-Chloropropene                | ND         | 0.422 |     | ND      | 1.32  |     |           | 2.111    |
| Carbon disulfide               | 43.5       | 0.422 |     | 135     | 1.31  |     |           | 2.111    |
| Freon-113                      | ND         | 0.422 |     | ND      | 3.23  |     |           | 2.111    |
| trans-1,2-Dichloroethene       | ND         | 0.422 |     | ND      | 1.67  |     |           | 2.111    |
| 1,1-Dichloroethane             | ND         | 0.422 |     | ND      | 1.71  |     |           | 2.111    |
| Methyl tert butyl ether        | ND         | 0.422 |     | ND      | 1.52  |     |           | 2.111    |
| 2-Butanone                     | 7.87       | 1.06  |     | 23.2    | 3.13  |     |           | 2.111    |
| cis-1,2-Dichloroethene         | ND         | 0.422 |     | ND      | 1.67  |     |           | 2.111    |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-04 D
Client ID: SS-10(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:05

Date Received: 03/30/22 Field Prep: Not Specified

## Sample Depth:

Sample Location:

|                                 |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mans | sfield Lab |       |     |         |       |     |           |          |
| Ethyl Acetate                   | ND         | 1.06  |     | ND      | 3.82  |     |           | 2.111    |
| Chloroform                      | 0.483      | 0.422 |     | 2.36    | 2.06  |     |           | 2.111    |
| Tetrahydrofuran                 | ND         | 1.06  |     | ND      | 3.13  |     |           | 2.111    |
| 1,2-Dichloroethane              | ND         | 0.422 |     | ND      | 1.71  |     |           | 2.111    |
| n-Hexane                        | 132        | 0.422 |     | 465     | 1.49  |     |           | 2.111    |
| 1,1,1-Trichloroethane           | ND         | 0.422 |     | ND      | 2.30  |     |           | 2.111    |
| Benzene                         | 41.7       | 0.422 |     | 133     | 1.35  |     |           | 2.111    |
| Carbon tetrachloride            | 0.684      | 0.422 |     | 4.30    | 2.65  |     |           | 2.111    |
| Cyclohexane                     | 68.4       | 0.422 |     | 235     | 1.45  |     |           | 2.111    |
| 1,2-Dichloropropane             | ND         | 0.422 |     | ND      | 1.95  |     |           | 2.111    |
| Bromodichloromethane            | ND         | 0.422 |     | ND      | 2.83  |     |           | 2.111    |
| 1,4-Dioxane                     | ND         | 0.422 |     | ND      | 1.52  |     |           | 2.111    |
| Trichloroethene                 | 4.36       | 0.422 |     | 23.4    | 2.27  |     |           | 2.111    |
| 2,2,4-Trimethylpentane          | ND         | 0.422 |     | ND      | 1.97  |     |           | 2.111    |
| Heptane                         | 109        | 0.422 |     | 447     | 1.73  |     |           | 2.111    |
| cis-1,3-Dichloropropene         | ND         | 0.422 |     | ND      | 1.92  |     |           | 2.111    |
| 4-Methyl-2-pentanone            | ND         | 1.06  |     | ND      | 4.34  |     |           | 2.111    |
| trans-1,3-Dichloropropene       | ND         | 0.422 |     | ND      | 1.92  |     |           | 2.111    |
| 1,1,2-Trichloroethane           | ND         | 0.422 |     | ND      | 2.30  |     |           | 2.111    |
| Toluene                         | 86.0       | 0.422 |     | 324     | 1.59  |     |           | 2.111    |
| 2-Hexanone                      | ND         | 0.422 |     | ND      | 1.73  |     |           | 2.111    |
| Dibromochloromethane            | ND         | 0.422 |     | ND      | 3.60  |     |           | 2.111    |
| 1,2-Dibromoethane               | ND         | 0.422 |     | ND      | 3.24  |     |           | 2.111    |
| Tetrachloroethene               | ND         | 0.422 |     | ND      | 2.86  |     |           | 2.111    |
| Chlorobenzene                   | ND         | 0.422 |     | ND      | 1.94  |     |           | 2.111    |
| Ethylbenzene                    | 9.80       | 0.422 |     | 42.6    | 1.83  |     |           | 2.111    |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-04 D Client ID:

SS-10(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 17:05

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

|                                  | ppbV      |       |     | ug/m3   |      |     |           | Dilution |
|----------------------------------|-----------|-------|-----|---------|------|-----|-----------|----------|
| Parameter                        | Results   | RL    | MDL | Results | RL   | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | field Lab |       |     |         |      |     |           |          |
| p/m-Xylene                       | 40.2      | 0.844 |     | 175     | 3.67 |     |           | 2.111    |
| Bromoform                        | ND        | 0.422 |     | ND      | 4.36 |     |           | 2.111    |
| Styrene                          | ND        | 0.422 |     | ND      | 1.80 |     |           | 2.111    |
| 1,1,2,2-Tetrachloroethane        | ND        | 0.422 |     | ND      | 2.90 |     |           | 2.111    |
| o-Xylene                         | 10.2      | 0.422 |     | 44.3    | 1.83 |     |           | 2.111    |
| 4-Ethyltoluene                   | 1.97      | 0.422 |     | 9.68    | 2.07 |     |           | 2.111    |
| 1,3,5-Trimethylbenzene           | 1.41      | 0.422 |     | 6.93    | 2.07 |     |           | 2.111    |
| 1,2,4-Trimethylbenzene           | 5.55      | 0.422 |     | 27.3    | 2.07 |     |           | 2.111    |
| Benzyl chloride                  | ND        | 0.422 |     | ND      | 2.19 |     |           | 2.111    |
| 1,3-Dichlorobenzene              | ND        | 0.422 |     | ND      | 2.54 |     |           | 2.111    |
| 1,4-Dichlorobenzene              | ND        | 0.422 |     | ND      | 2.54 |     |           | 2.111    |
| 1,2-Dichlorobenzene              | ND        | 0.422 |     | ND      | 2.54 |     |           | 2.111    |
| 1,2,4-Trichlorobenzene           | ND        | 0.422 |     | ND      | 3.13 |     |           | 2.111    |
| Hexachlorobutadiene              | ND        | 0.422 |     | ND      | 4.50 |     |           | 2.111    |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 100        |           | 60-140                 |
| Bromochloromethane  | 102        |           | 60-140                 |
| chlorobenzene-d5    | 102        |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-05 Client ID:

IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 16:55

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 21:41

Analyst: TS

|                                |             | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.546       | 0.200 |     | 2.70    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.594       | 0.200 |     | 1.23    | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 76.4        | 5.00  |     | 144     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 37.4        | 1.00  |     | 88.8    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.232       | 0.200 |     | 1.30    | 1.12  |     |           | 1        |
| Isopropanol                    | 221         | 0.500 |     | 543     | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND          | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Ethyl Acetate                  | 0.551       | 0.500 |     | 1.99    | 1.80  |     |           | 1        |
| Chloroform                     | 0.373       | 0.200 |     | 1.82    | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |
|                                |             |       |     |         |       |     |           |          |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-05 Client ID: IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:55

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

|         | ppbV                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| l Lab   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.214   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.500                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.290   | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.400                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND      | 0.200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | ND ND ND ND ND ND ND ND ND ND ND ND ND N | Results         RL           I Lab         ND         0.200           ND         0.500           ND         0.200           ND | Results         RL         MDL           I Lab         ND         0.200            ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             ND         0.200             < | Results         RL         MDL         Results           I Lab         ND         0.200          ND           ND         0.200 | Results         RL         MDL         Results         RL           I Lab         ND         0.200          ND         0.809           ND         0.200          ND         0.705           0.214         0.200          ND         0.684         0.639           ND         0.200          ND         0.688           ND         0.200          ND         0.924           ND         0.200          ND         0.934           ND         0.200          ND         0.934           ND         0.200          ND         0.908           ND         0.200          ND         0.908           ND         0.200          ND         0.754 | Results         RL         MDL         Results         RL         MDL           I Lab           ND         0.200          ND         0.809            ND         0.200          ND         0.705            0.214         0.200          ND         0.684         0.639            ND         0.200          ND         0.688            ND         0.200          ND         0.924            ND         0.200          ND         0.934            ND         0.200          ND         0.908            ND         0.200          N | Results         RL         MDL         Results         RL         MDL         Qualifier           I Lab           ND         0.200          ND         0.809            ND         0.200          ND         0.705            0.214         0.200          ND         0.684         0.639            ND         0.201          ND         0.688            ND         0.200          ND         0.924            ND         0.200          ND         0.934            ND         0.200          ND         0.982            ND         0.200 |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-05 Client ID: IA-10 (032922)

IA-10 (032922)

155 CHANDLER ST. BUFFALO NY

Date Collected:

03/29/22 16:55

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Sample Location:

|                                |             | ppbV  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| 1,2,4-Trimethylbenzene         | ND          | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Benzyl chloride                | ND          | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene            | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene            | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene            | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene         | ND          | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene            | ND          | 0.200 |     | ND      | 2.13  |     |           | 1        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 99         |           | 60-140                 |
| Bromochloromethane  | 104        |           | 60-140                 |
| chlorobenzene-d5    | 103        |           | 60-140                 |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-05

Client ID: IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:55

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 21:41

Analyst: TS

|                                 |                   | ppbV  |     | ug/m3   |       |     |           | Dilution |
|---------------------------------|-------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results           | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | 1 - Mansfield Lab |       |     |         |       |     |           |          |
| Vinyl chloride                  | ND                | 0.020 |     | ND      | 0.051 |     |           | 1        |
| 1,1-Dichloroethene              | ND                | 0.020 |     | ND      | 0.079 |     |           | 1        |
| cis-1,2-Dichloroethene          | 0.121             | 0.020 |     | 0.480   | 0.079 |     |           | 1        |
| 1,1,1-Trichloroethane           | ND                | 0.020 |     | ND      | 0.109 |     |           | 1        |
| Carbon tetrachloride            | 0.815             | 0.020 |     | 5.13    | 0.126 |     |           | 1        |
| Trichloroethene                 | 7.29              | 0.020 |     | 39.2    | 0.107 |     |           | 1        |
| Tetrachloroethene               | 0.045             | 0.020 |     | 0.305   | 0.136 |     |           | 1        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 100        |           | 60-140                 |
| bromochloromethane  | 108        |           | 60-140                 |
| chlorobenzene-d5    | 104        |           | 60-140                 |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-06

Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00 Date Received: 03/30/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 22:20

Analyst: TS

|                                |             | ppbV  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.545       | 0.200 |     | 2.69    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.600       | 0.200 |     | 1.24    | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 123         | 5.00  |     | 232     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 27.6        | 1.00  |     | 65.6    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.233       | 0.200 |     | 1.31    | 1.12  |     |           | 1        |
| Isopropanol                    | 151         | 0.500 |     | 371     | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND          | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 0.681       | 0.500 |     | 2.01    | 1.47  |     |           | 1        |
| Ethyl Acetate                  | ND          | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                     | 0.288       | 0.200 |     | 1.41    | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-06 Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER S

155 CHANDLER ST. BUFFALO NY Field Prep:

Date Collected: 03/29/22 17:00 Date Received: 03/30/22

Not Specified

## Sample Depth:

| Затріє Беріп.                        |         | ppbV  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                            | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield | Lab     |       |     |         |       |     |           |          |
| 1,2-Dichloroethane                   | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                             | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Benzene                              | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Cyclohexane                          | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane                 | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                          | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2,2,4-Trimethylpentane               | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                              | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene              | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1-Methyl-2-pentanone                 | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene             | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| ,1,2-Trichloroethane                 | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                              | 0.414   | 0.200 |     | 1.56    | 0.754 |     |           | 1        |
| 2-Hexanone                           | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane                 | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| ,2-Dibromoethane                     | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Chlorobenzene                        | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                         | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                           | ND      | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                            | ND      | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                              | ND      | 0.200 |     | ND      | 0.852 |     |           | 1        |
| ,1,2,2-Tetrachloroethane             | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
| p-Xylene                             | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 4-Ethyltoluene                       | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ,3,5-Trimethylbenzene                | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-06 Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 17:00

Date Received:

03/30/22

Field Prep:

Not Specified

Sample Depth:

| ppbV    |                               | ug/m3                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                | Dilution                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                            | MDL                                                                            | Results                                                                                                                                                                                                                                       | RL                                                                                                                                                                                                                                                                                                                                          | MDL                                                                                                                                                                                                                                                                                                                                                                                            | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                       | Factor                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ₋ab     |                               |                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 0.983                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 1.04                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 1.48                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND      | 0.200                         |                                                                                | ND                                                                                                                                                                                                                                            | 2.13                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | ND ND ND ND ND ND ND ND ND ND | ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200 | Results         RL         MDL           Lab         ND         0.200            ND         0.200            ND         0.200            ND         0.200            ND         0.200            ND         0.200            ND         0.200 | Results         RL         MDL         Results           Lab         ND         0.200          ND           ND         0.200          ND | Results         RL         MDL         Results         RL           Lab         ND         0.200          ND         0.983           ND         0.200          ND         1.04           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.48 | Results         RL         MDL         Results         RL         MDL           Lab         ND         0.200          ND         0.983            ND         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48 | Results         RL         MDL         Results         RL         MDL         Qualifier           Lab           ND         0.200          ND         0.983            ND         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48            ND         0.200          ND         1.48 |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 96         |           | 60-140                 |
| Bromochloromethane  | 101        |           | 60-140                 |
| chlorobenzene-d5    | 97         |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date: 06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-06

Date Collected: 03/29/22 17:00

Client ID: IA-7 (032922)

Date Received: 03/30/22

Sample Location: 155 CHANDLER ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix:

Air Anaytical Method:

48,TO-15-SIM

Analytical Date:

04/10/22 22:20

Analyst: TS

|                                      | ppbV        |       | ug/m3 |         |       |     | Dilution  |        |
|--------------------------------------|-------------|-------|-------|---------|-------|-----|-----------|--------|
| Parameter                            | Results     | RL    | MDL   | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM - Ma | nsfield Lab |       |       |         |       |     |           |        |
| Vinyl chloride                       | ND          | 0.020 |       | ND      | 0.051 |     |           | 1      |
| 1,1-Dichloroethene                   | ND          | 0.020 |       | ND      | 0.079 |     |           | 1      |
| cis-1,2-Dichloroethene               | 0.093       | 0.020 |       | 0.369   | 0.079 |     |           | 1      |
| 1,1,1-Trichloroethane                | ND          | 0.020 |       | ND      | 0.109 |     |           | 1      |
| Carbon tetrachloride                 | 0.629       | 0.020 |       | 3.96    | 0.126 |     |           | 1      |
| Trichloroethene                      | 4.48        | 0.020 |       | 24.1    | 0.107 |     |           | 1      |
| Tetrachloroethene                    | 0.055       | 0.020 |       | 0.373   | 0.136 |     |           | 1      |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 97         |           | 60-140                 |
| bromochloromethane  | 104        |           | 60-140                 |
| chlorobenzene-d5    | 98         |           | 60-140                 |



Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

### **SAMPLE RESULTS**

Lab ID: L2217738-07

Client ID: SS-7(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 17:00

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Anaytical Method:

Soil\_Vapor 48,TO-15 04/11/22 00:15

Analytical Date: Analyst:

TS

|                                |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.519      | 0.200 |     | 2.57    | 0.989 |     |           | 1        |
| Chloromethane                  | ND         | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Vinyl chloride                 | ND         | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | ND         | 5.00  |     | ND      | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 1.84       | 1.00  |     | 4.37    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.270      | 0.200 |     | 1.52    | 1.12  |     |           | 1        |
| Isopropanol                    | 1.52       | 0.500 |     | 3.74    | 1.23  |     |           | 1        |
| 1,1-Dichloroethene             | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol         | ND         | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND         | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND         | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 1.11       | 0.500 |     | 3.27    | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene         | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-07 Client ID: SS-7(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00

Date Received: 03/30/22 Field Prep: Not Specified

## Sample Depth:

Sample Location:

|                                  |          | ppbV  |     |         | ug/m3 |     |           | Dilution |
|----------------------------------|----------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results  | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | ield Lab |       |     |         |       |     |           |          |
| Ethyl Acetate                    | 0.622    | 0.500 |     | 2.24    | 1.80  |     |           | 1        |
| Chloroform                       | ND       | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                  | ND       | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 1,2-Dichloroethane               | ND       | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                         | 9.26     | 0.200 |     | 32.6    | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane            | ND       | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Benzene                          | 2.60     | 0.200 |     | 8.31    | 0.639 |     |           | 1        |
| Carbon tetrachloride             | 0.496    | 0.200 |     | 3.12    | 1.26  |     |           | 1        |
| Cyclohexane                      | 2.52     | 0.200 |     | 8.67    | 0.688 |     |           | 1        |
| 1,2-Dichloropropane              | ND       | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane             | ND       | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                      | ND       | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                  | 1.66     | 0.200 |     | 8.92    | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane           | ND       | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                          | 3.50     | 0.200 |     | 14.3    | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene          | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1-Methyl-2-pentanone             | ND       | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene        | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane            | ND       | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                          | 22.9     | 0.200 |     | 86.3    | 0.754 |     |           | 1        |
| 2-Hexanone                       | ND       | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane             | ND       | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                | ND       | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                | ND       | 0.200 |     | ND      | 1.36  |     |           | 1        |
| Chlorobenzene                    | ND       | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                     | 3.80     | 0.200 |     | 16.5    | 0.869 |     |           | 1        |



**Project Number:** 00101

Lab Number:

L2217738

Report Date:

06/01/22

#### **SAMPLE RESULTS**

Lab ID: L2217738-07 Client ID: SS-7(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

| ppbV    |                                                  |                                                                                                                                                                                                   | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                               | MDL                                                                                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lab     |                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18.4    | 0.400                                            |                                                                                                                                                                                                   | 79.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.84    | 0.200                                            |                                                                                                                                                                                                   | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.26    | 0.200                                            |                                                                                                                                                                                                   | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.29    | 0.200                                            |                                                                                                                                                                                                   | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.24    | 0.200                                            |                                                                                                                                                                                                   | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.200                                            |                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 18.4 ND ND ND 5.84 1.26 1.29 5.24 ND ND ND ND ND | Results RL  Lab  18.4 0.400  ND 0.200  ND 0.200  ND 0.200  1.26 0.200  1.29 0.200  5.24 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200  ND 0.200 | Results         RL         MDL           Lab         18.4         0.400            ND         0.200            ND         0.200            ND         0.200            5.84         0.200            1.26         0.200            1.29         0.200            ND         0.200 | Results         RL         MDL         Results           Lab         18.4         0.400          79.9           ND         0.200          ND           ND         0.200          ND           ND         0.200          ND           5.84         0.200          6.19           1.26         0.200          6.34           5.24         0.200          6.34           5.24         0.200          ND           ND         0.200          ND | Results         RL         MDL         Results         RL           Lab         18.4         0.400          79.9         1.74           ND         0.200          ND         2.07           ND         0.200          ND         0.852           ND         0.200          ND         1.37           5.84         0.200          ND         1.37           5.84         0.200          6.19         0.983           1.26         0.200          6.34         0.983           1.29         0.200          6.34         0.983           5.24         0.200          ND         1.04           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.48 | Results         RL         MDL         Results         RL         MDL           Lab           18.4         0.400          79.9         1.74            ND         0.200          ND         2.07            ND         0.200          ND         0.852            ND         0.200          ND         1.37            5.84         0.200          ND         1.37            5.84         0.200          6.19         0.983            1.29         0.200          6.34         0.983            5.24         0.200          ND         1.04            ND         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1. | Results         RL         MDL         Results         RL         MDL         Qualifier           Lab           18.4         0.400          79.9         1.74             ND         0.200          ND         2.07             ND         0.200          ND         0.852             ND         0.200          ND         1.37             5.84         0.200          0.19         0.983             1.26         0.200          6.34         0.983             1.29         0.200          25.8         0.983             ND         0.200          ND         1.04             ND         0.200          ND         1.20             ND         0.200          ND         1.20             ND         0.200          ND         1.20 |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 91         |           | 60-140                 |
| Bromochloromethane  | 92         |           | 60-140                 |
| chlorobenzene-d5    | 90         |           | 60-140                 |



Serial\_No:06012215:51

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

|                                     | ppbV           |             |           | ug/m3     |       |     |           | Dilution |
|-------------------------------------|----------------|-------------|-----------|-----------|-------|-----|-----------|----------|
| Parameter                           | Results        | RL          | MDL       | Results   | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfiel | d Lab for samp | ole(s): 01- | 07 Batch: | : WG16256 | 613-4 |     |           |          |
| Dichlorodifluoromethane             | ND             | 0.200       |           | ND        | 0.989 |     |           | 1        |
| Chloromethane                       | ND             | 0.200       |           | ND        | 0.413 |     |           | 1        |
| Freon-114                           | ND             | 0.200       |           | ND        | 1.40  |     |           | 1        |
| Vinyl chloride                      | ND             | 0.200       |           | ND        | 0.511 |     |           | 1        |
| 1,3-Butadiene                       | ND             | 0.200       |           | ND        | 0.442 |     |           | 1        |
| Bromomethane                        | ND             | 0.200       |           | ND        | 0.777 |     |           | 1        |
| Chloroethane                        | ND             | 0.200       |           | ND        | 0.528 |     |           | 1        |
| Ethanol                             | ND             | 5.00        |           | ND        | 9.42  |     |           | 1        |
| Vinyl bromide                       | ND             | 0.200       |           | ND        | 0.874 |     |           | 1        |
| Acetone                             | ND             | 1.00        |           | ND        | 2.38  |     |           | 1        |
| Trichlorofluoromethane              | ND             | 0.200       |           | ND        | 1.12  |     |           | 1        |
| Isopropanol                         | ND             | 0.500       |           | ND        | 1.23  |     |           | 1        |
| 1,1-Dichloroethene                  | ND             | 0.200       |           | ND        | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol              | ND             | 0.500       |           | ND        | 1.52  |     |           | 1        |
| Methylene chloride                  | ND             | 0.500       |           | ND        | 1.74  |     |           | 1        |
| 3-Chloropropene                     | ND             | 0.200       |           | ND        | 0.626 |     |           | 1        |
| Carbon disulfide                    | ND             | 0.200       |           | ND        | 0.623 |     |           | 1        |
| Freon-113                           | ND             | 0.200       |           | ND        | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene            | ND             | 0.200       |           | ND        | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                  | ND             | 0.200       |           | ND        | 0.809 |     |           | 1        |
| Methyl tert butyl ether             | ND             | 0.200       |           | ND        | 0.721 |     |           | 1        |
| 2-Butanone                          | ND             | 0.500       |           | ND        | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene              | ND             | 0.200       |           | ND        | 0.793 |     |           | 1        |
| Ethyl Acetate                       | ND             | 0.500       |           | ND        | 1.80  |     |           | 1        |
| Chloroform                          | ND             | 0.200       |           | ND        | 0.977 |     |           | 1        |



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

|                                   |                  | ppbV        |            |         | ug/m3 |     |           | Dilution |
|-----------------------------------|------------------|-------------|------------|---------|-------|-----|-----------|----------|
| Parameter                         | Results          | RL          | MDL        | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfi | eld Lab for samp | ole(s): 01- | -07 Batch: | WG16256 | 613-4 |     |           |          |
| Tetrahydrofuran                   | ND               | 0.500       |            | ND      | 1.47  |     |           | 1        |
| 1,2-Dichloroethane                | ND               | 0.200       |            | ND      | 0.809 |     |           | 1        |
| n-Hexane                          | ND               | 0.200       |            | ND      | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane             | ND               | 0.200       |            | ND      | 1.09  |     |           | 1        |
| Benzene                           | ND               | 0.200       |            | ND      | 0.639 |     |           | 1        |
| Carbon tetrachloride              | ND               | 0.200       |            | ND      | 1.26  |     |           | 1        |
| Cyclohexane                       | ND               | 0.200       |            | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane               | ND               | 0.200       |            | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane              | ND               | 0.200       |            | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                       | ND               | 0.200       |            | ND      | 0.721 |     |           | 1        |
| Trichloroethene                   | ND               | 0.200       |            | ND      | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane            | ND               | 0.200       |            | ND      | 0.934 |     |           | 1        |
| Heptane                           | ND               | 0.200       |            | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene           | ND               | 0.200       |            | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone              | ND               | 0.500       |            | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene         | ND               | 0.200       |            | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane             | ND               | 0.200       |            | ND      | 1.09  |     |           | 1        |
| Toluene                           | ND               | 0.200       |            | ND      | 0.754 |     |           | 1        |
| 2-Hexanone                        | ND               | 0.200       |            | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane              | ND               | 0.200       |            | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                 | ND               | 0.200       |            | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                 | ND               | 0.200       |            | ND      | 1.36  |     |           | 1        |
| Chlorobenzene                     | ND               | 0.200       |            | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                      | ND               | 0.200       |            | ND      | 0.869 |     |           | 1        |
| p/m-Xylene                        | ND               | 0.400       |            | ND      | 1.74  |     |           | 1        |
|                                   |                  |             |            |         |       |     |           |          |



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

|                                   |                  | ppbV       |           |            | ug/m3 |     |           | Dilution |
|-----------------------------------|------------------|------------|-----------|------------|-------|-----|-----------|----------|
| Parameter                         | Results          | RL         | MDL       | Results    | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfi | eld Lab for samp | le(s): 01- | -07 Batch | n: WG16256 | 513-4 |     |           |          |
| Bromoform                         | ND               | 0.200      |           | ND         | 2.07  |     |           | 1        |
| Styrene                           | ND               | 0.200      |           | ND         | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane         | ND               | 0.200      |           | ND         | 1.37  |     |           | 1        |
| o-Xylene                          | ND               | 0.200      |           | ND         | 0.869 |     |           | 1        |
| 4-Ethyltoluene                    | ND               | 0.200      |           | ND         | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene            | ND               | 0.200      |           | ND         | 0.983 |     |           | 1        |
| 1,2,4-Trimethylbenzene            | ND               | 0.200      |           | ND         | 0.983 |     |           | 1        |
| Benzyl chloride                   | ND               | 0.200      |           | ND         | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene               | ND               | 0.200      |           | ND         | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene               | ND               | 0.200      |           | ND         | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene               | ND               | 0.200      |           | ND         | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene            | ND               | 0.200      |           | ND         | 1.48  |     |           | 1        |
| Hexachlorobutadiene               | ND               | 0.200      |           | ND         | 2.13  |     |           | 1        |



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 15:52

|                                     |                 | ppbV      |           |             | ug/m3   |        |           | Dilution |
|-------------------------------------|-----------------|-----------|-----------|-------------|---------|--------|-----------|----------|
| Parameter                           | Results         | RL        | MDL       | Results     | RL      | MDL    | Qualifier | Factor   |
| Volatile Organics in Air by SIM - M | lansfield Lab f | or sample | (s): 01,0 | 3,05-06 Bat | ch: WG1 | 625614 | l-4       |          |
| Vinyl chloride                      | ND              | 0.020     |           | ND          | 0.051   |        |           | 1        |
| 1,1-Dichloroethene                  | ND              | 0.020     |           | ND          | 0.079   |        |           | 1        |
| cis-1,2-Dichloroethene              | ND              | 0.020     |           | ND          | 0.079   |        |           | 1        |
| 1,1,1-Trichloroethane               | ND              | 0.020     |           | ND          | 0.109   |        |           | 1        |
| Carbon tetrachloride                | ND              | 0.020     |           | ND          | 0.126   |        |           | 1        |
| Trichloroethene                     | ND              | 0.020     |           | ND          | 0.107   |        |           | 1        |
| Tetrachloroethene                   | ND              | 0.020     |           | ND          | 0.136   |        |           | 1        |



Project Name: NYSDEC VIM STUDY

**Project Number:** 00101

Lab Number: L2217738

**Report Date:** 06/01/22

| rameter                                   | LCS<br>%Recovery      | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-------------------------------------------|-----------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| olatile Organics in Air - Mansfield Lab A | Associated sample(s): | 01-07 | Batch: WG162561   | 3-3  |                     |     |      |               |
| Dichlorodifluoromethane                   | 104                   |       | -                 |      | 70-130              | -   |      |               |
| Chloromethane                             | 94                    |       | -                 |      | 70-130              | -   |      |               |
| Freon-114                                 | 101                   |       | -                 |      | 70-130              | -   |      |               |
| Vinyl chloride                            | 82                    |       | -                 |      | 70-130              | -   |      |               |
| 1,3-Butadiene                             | 93                    |       | -                 |      | 70-130              | -   |      |               |
| Bromomethane                              | 90                    |       | -                 |      | 70-130              | -   |      |               |
| Chloroethane                              | 82                    |       | -                 |      | 70-130              | -   |      |               |
| Ethanol                                   | 116                   |       | -                 |      | 40-160              | -   |      |               |
| Vinyl bromide                             | 89                    |       | -                 |      | 70-130              | -   |      |               |
| Acetone                                   | 96                    |       | -                 |      | 40-160              | -   |      |               |
| Trichlorofluoromethane                    | 103                   |       | -                 |      | 70-130              | -   |      |               |
| Isopropanol                               | 90                    |       | -                 |      | 40-160              | -   |      |               |
| 1,1-Dichloroethene                        | 92                    |       | -                 |      | 70-130              | -   |      |               |
| Tertiary butyl Alcohol                    | 82                    |       | -                 |      | 70-130              | -   |      |               |
| Methylene chloride                        | 101                   |       | -                 |      | 70-130              | -   |      |               |
| 3-Chloropropene                           | 92                    |       | -                 |      | 70-130              | -   |      |               |
| Carbon disulfide                          | 92                    |       | -                 |      | 70-130              | -   |      |               |
| Freon-113                                 | 98                    |       | -                 |      | 70-130              | -   |      |               |
| trans-1,2-Dichloroethene                  | 84                    |       | -                 |      | 70-130              | -   |      |               |
| 1,1-Dichloroethane                        | 88                    |       | -                 |      | 70-130              | -   |      |               |
| Methyl tert butyl ether                   | 93                    |       | -                 |      | 70-130              | -   |      |               |
| 2-Butanone                                | 86                    |       | -                 |      | 70-130              | -   |      |               |
| cis-1,2-Dichloroethene                    | 91                    |       | -                 |      | 70-130              | -   |      |               |



Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738

**Report Date:** 06/01/22

| Parameter                                     | LCS<br>%Recovery   | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-----------------------------------------------|--------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| /olatile Organics in Air - Mansfield Lab Asso | ociated sample(s): | 01-07 | Batch: WG162561   | 3-3  |                     |     |      |               |
| Ethyl Acetate                                 | 88                 |       | -                 |      | 70-130              | -   |      |               |
| Chloroform                                    | 107                |       | -                 |      | 70-130              | -   |      |               |
| Tetrahydrofuran                               | 82                 |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloroethane                            | 94                 |       | -                 |      | 70-130              | -   |      |               |
| n-Hexane                                      | 96                 |       | -                 |      | 70-130              | -   |      |               |
| 1,1,1-Trichloroethane                         | 110                |       | -                 |      | 70-130              | -   |      |               |
| Benzene                                       | 99                 |       | -                 |      | 70-130              | -   |      |               |
| Carbon tetrachloride                          | 119                |       | -                 |      | 70-130              | -   |      |               |
| Cyclohexane                                   | 98                 |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloropropane                           | 94                 |       | -                 |      | 70-130              | -   |      |               |
| Bromodichloromethane                          | 114                |       | -                 |      | 70-130              | -   |      |               |
| 1,4-Dioxane                                   | 103                |       | -                 |      | 70-130              | -   |      |               |
| Trichloroethene                               | 110                |       | -                 |      | 70-130              | -   |      |               |
| 2,2,4-Trimethylpentane                        | 98                 |       | -                 |      | 70-130              | -   |      |               |
| Heptane                                       | 97                 |       | -                 |      | 70-130              | -   |      |               |
| cis-1,3-Dichloropropene                       | 114                |       | -                 |      | 70-130              | -   |      |               |
| 4-Methyl-2-pentanone                          | 99                 |       | -                 |      | 70-130              | -   |      |               |
| trans-1,3-Dichloropropene                     | 100                |       | -                 |      | 70-130              | -   |      |               |
| 1,1,2-Trichloroethane                         | 105                |       | -                 |      | 70-130              | -   |      |               |
| Toluene                                       | 96                 |       | -                 |      | 70-130              | -   |      |               |
| 2-Hexanone                                    | 95                 |       | -                 |      | 70-130              | -   |      |               |
| Dibromochloromethane                          | 115                |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dibromoethane                             | 110                |       | -                 |      | 70-130              | -   |      |               |
|                                               |                    |       |                   |      |                     |     |      |               |



Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738

**Report Date:** 06/01/22

| Parameter                                | LCS<br>%Recovery      | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|-----------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| /olatile Organics in Air - Mansfield Lab | Associated sample(s): | 01-07 | Batch: WG162561   | 3-3  |                     |     |      |               |
| Tetrachloroethene                        | 115                   |       | -                 |      | 70-130              | -   |      |               |
| Chlorobenzene                            | 106                   |       | -                 |      | 70-130              | -   |      |               |
| Ethylbenzene                             | 102                   |       | -                 |      | 70-130              | -   |      |               |
| p/m-Xylene                               | 106                   |       | -                 |      | 70-130              | -   |      |               |
| Bromoform                                | 118                   |       | -                 |      | 70-130              | -   |      |               |
| Styrene                                  | 103                   |       | -                 |      | 70-130              | -   |      |               |
| 1,1,2,2-Tetrachloroethane                | 114                   |       | -                 |      | 70-130              | -   |      |               |
| o-Xylene                                 | 107                   |       | -                 |      | 70-130              | -   |      |               |
| 4-Ethyltoluene                           | 102                   |       | -                 |      | 70-130              | -   |      |               |
| 1,3,5-Trimethylbenzene                   | 113                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2,4-Trimethylbenzene                   | 110                   |       | -                 |      | 70-130              | -   |      |               |
| Benzyl chloride                          | 97                    |       | -                 |      | 70-130              | -   |      |               |
| 1,3-Dichlorobenzene                      | 114                   |       | -                 |      | 70-130              | -   |      |               |
| 1,4-Dichlorobenzene                      | 110                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichlorobenzene                      | 112                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2,4-Trichlorobenzene                   | 114                   |       | -                 |      | 70-130              | -   |      |               |
| Hexachlorobutadiene                      | 119                   |       | -                 |      | 70-130              | -   |      |               |



Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

| Parameter                                      | LCS<br>%Recovery | Qual      | LCSI<br>%Recov |        | Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|------------------------------------------------|------------------|-----------|----------------|--------|--------|---------------------|-----|------|---------------|--|
| Volatile Organics in Air by SIM - Mansfield La | b Associated sa  | ample(s): | 01,03,05-06    | Batch: | WG1628 | 5614-3              |     |      |               |  |
| Vinyl chloride                                 | 86               |           | -              |        |        | 70-130              | -   |      | 25            |  |
| 1,1-Dichloroethene                             | 96               |           | -              |        |        | 70-130              | -   |      | 25            |  |
| cis-1,2-Dichloroethene                         | 94               |           | -              |        |        | 70-130              | -   |      | 25            |  |
| 1,1,1-Trichloroethane                          | 119              |           | -              |        |        | 70-130              | -   |      | 25            |  |
| Carbon tetrachloride                           | 110              |           | -              |        |        | 70-130              | -   |      | 25            |  |
| Trichloroethene                                | 111              |           | -              |        |        | 70-130              | -   |      | 25            |  |
| Tetrachloroethene                              | 117              |           | -              |        |        | 70-130              | -   |      | 25            |  |



NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

# **Canister and Flow Controller Information**

|                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Client ID      | Media ID                                                                                                                                                         | Media Type                                                                                                                                                                                                                                                                                                                                                                                                                         | Date<br>Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bottle<br>Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cleaning<br>Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Can Leak<br>Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressur<br>(in. Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Controler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flow Out<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |
| OA-1 (032922)  | 0771                                                                                                                                                             | Flow 5                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116                                                               |
| OA-1 (032922)  | 2300                                                                                                                                                             | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| SS-9(032922)   | 01661                                                                                                                                                            | Flow 4                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                 |
| SS-9(032922)   | 3198                                                                                                                                                             | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| IA-9(032922)   | 0095                                                                                                                                                             | Flow 5                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                |
| IA-9(032922)   | 559                                                                                                                                                              | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| SS-10(032922)  | 01536                                                                                                                                                            | Flow 4                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                               |
| SS-10(032922)  | 133                                                                                                                                                              | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| IA-10 (032922) | 01702                                                                                                                                                            | Flow 4                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                 |
| IA-10 (032922) | 370                                                                                                                                                              | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| IA-7 (032922)  | 02225                                                                                                                                                            | Flow 4                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                 |
| IA-7 (032922)  | 2072                                                                                                                                                             | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                 |
| SS-7(032922)   | 0915                                                                                                                                                             | Flow 5                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                 |
| SS-7(032922)   | 145                                                                                                                                                              | 2.7L Can                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 382387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L2214467-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
|                | OA-1 (032922)  SS-9(032922)  SS-9(032922)  IA-9(032922)  IA-9(032922)  SS-10(032922)  IA-10 (032922)  IA-10 (032922)  IA-7 (032922)  IA-7 (032922)  SS-7(032922) | OA-1 (032922)       0771         OA-1 (032922)       2300         SS-9(032922)       01661         SS-9(032922)       3198         IA-9(032922)       0095         IA-9(032922)       559         SS-10(032922)       01536         SS-10(032922)       133         IA-10 (032922)       01702         IA-10 (032922)       370         IA-7 (032922)       02225         IA-7 (032922)       2072         SS-7(032922)       0915 | Client ID       Media ID         OA-1 (032922)       0771       Flow 5         SS-9(032922)       2300       2.7L Can         SS-9(032922)       01661       Flow 4         SS-9(032922)       3198       2.7L Can         IA-9(032922)       559       2.7L Can         SS-10(032922)       01536       Flow 4         SS-10(032922)       133       2.7L Can         IA-10 (032922)       01702       Flow 4         IA-10 (032922)       370       2.7L Can         IA-7 (032922)       02225       Flow 4         IA-7 (032922)       2072       2.7L Can         SS-7(032922)       0915       Flow 5 | Client ID         Media ID         Prepared           OA-1 (032922)         0771         Flow 5         03/28/22           OA-1 (032922)         2300         2.7L Can         03/28/22           SS-9(032922)         01661         Flow 4         03/28/22           IA-9(032922)         3198         2.7L Can         03/28/22           IA-9(032922)         559         2.7L Can         03/28/22           SS-10(032922)         01536         Flow 4         03/28/22           SS-10(032922)         133         2.7L Can         03/28/22           IA-10 (032922)         01702         Flow 4         03/28/22           IA-10 (032922)         370         2.7L Can         03/28/22           IA-7 (032922)         02225         Flow 4         03/28/22           IA-7 (032922)         2072         2.7L Can         03/28/22           SS-7(032922)         0915         Flow 5         03/28/22 | Client ID         Media ID         Prepared         Order           0A-1 (032922)         0771         Flow 5         03/28/22         382387           0A-1 (032922)         2300         2.7L Can         03/28/22         382387           SS-9(032922)         01661         Flow 4         03/28/22         382387           IA-9(032922)         3198         2.7L Can         03/28/22         382387           IA-9(032922)         559         2.7L Can         03/28/22         382387           SS-10(032922)         01536         Flow 4         03/28/22         382387           SS-10(032922)         133         2.7L Can         03/28/22         382387           IA-10 (032922)         01702         Flow 4         03/28/22         382387           IA-10 (032922)         370         2.7L Can         03/28/22         382387           IA-7 (032922)         02225         Flow 4         03/28/22         382387           IA-7 (032922)         2072         2.7L Can         03/28/22         382387           SS-7(032922)         0915         Flow 5         03/28/22         382387 | Client ID         Media ID         Prepared         Order         Batch ID           OA-1 (032922)         0771         Flow 5         03/28/22         382387           OA-1 (032922)         2300         2.7L Can         03/28/22         382387         L2214467-04           SS-9(032922)         01661         Flow 4         03/28/22         382387         L2214467-04           IA-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04           SS-10(032922)         01536         Flow 4         03/28/22         382387         L2214467-04           IA-10 (032922)         133         2.7L Can         03/28/22         382387         L2214467-04           IA-10 (032922)         01702         Flow 4         03/28/22         382387         L2214467-04           IA-7 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04           IA-7 (032922)         2072         2.7L Can         03/28/22         382387         L2214467-04           SS-7(032922)         0915         Flow 5         03/28/22         382387         L2214467-04 | Client ID         Media ID         Prepared         Order         Batch ID         Check           OA-1 (032922)         0771         Flow 5         03/28/22         382387         -           OA-1 (032922)         2300         2.7L Can         03/28/22         382387         L2214467-04         Pass           SS-9(032922)         01661         Flow 4         03/28/22         382387         L2214467-04         Pass           IA-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04         Pass           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass           SS-10(032922)         01536         Flow 4         03/28/22         382387         L2214467-04         Pass           IA-10 (032922)         01702         Flow 4         03/28/22         382387         L2214467-04         Pass           IA-7 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04         Pass           IA-7 (032922)         20225         Flow 4         03/28/22         382387         L2214467-04         Pass           IA-7 (032922)         2072         2.7L Can         03/28/22 <td< td=""><td>Client ID         Media ID         Media Type         Date Prepared         Bottle Order         Cleaning Batch ID         Can Leak (In. Hg)           OA-1 (032922)         0771         Flow 5         03/28/22         382387         L2214467-04         Pass         -28.9           SS-9(032922)         01661         Flow 4         03/28/22         382387         L2214467-04         Pass         -28.2           SS-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.2           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8           SS-10(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8           SS-10(032922)         133         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9           IA-10 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04         Pass         -29.0           IA-7 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04         Pass         -29.0           IA-7 (032922)</td><td>Client ID         Media ID         Media Type         Prepared         Bottle Order         Cleaning Batch ID         Can Leak (in. Hg)         In. Hg)         (in. Hg)           OA-1 (032922)         0771         Flow 5         03/28/22         382387         -         -         -         -           OA-1 (032922)         2300         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9         -5.7           SS-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.2         -6.7           IA-9(032922)         0995         Flow 5         03/28/22         382387         L2214467-04         Pass         -28.2         -6.7           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8         -8.4           SS-10(032922)         133         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9         -14.4           IA-10 (032922)         01702         Flow 4         03/28/22         382387         L2214467-04         Pass         -29.0         -4.8           IA-7 (032922)         02225         Flow 4</td><td>  Client ID   Media ID   Pare   Pare pare   Order   Clearing   Clearing   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Chec</td><td>Client ID         Media ID         Media Type<br/>Herbarod         Pare propored Propored         Clouble Solution of Order Batch ID         Check Check (n. Hg)         Presult (n. Hg)         Cleak of Mulmin to Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)<td>  Cicient D   Media D   Media D   Media D   Media Type   Dare Drieg</td></td></td<> | Client ID         Media ID         Media Type         Date Prepared         Bottle Order         Cleaning Batch ID         Can Leak (In. Hg)           OA-1 (032922)         0771         Flow 5         03/28/22         382387         L2214467-04         Pass         -28.9           SS-9(032922)         01661         Flow 4         03/28/22         382387         L2214467-04         Pass         -28.2           SS-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.2           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8           SS-10(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8           SS-10(032922)         133         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9           IA-10 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04         Pass         -29.0           IA-7 (032922)         370         2.7L Can         03/28/22         382387         L2214467-04         Pass         -29.0           IA-7 (032922) | Client ID         Media ID         Media Type         Prepared         Bottle Order         Cleaning Batch ID         Can Leak (in. Hg)         In. Hg)         (in. Hg)           OA-1 (032922)         0771         Flow 5         03/28/22         382387         -         -         -         -           OA-1 (032922)         2300         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9         -5.7           SS-9(032922)         3198         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.2         -6.7           IA-9(032922)         0995         Flow 5         03/28/22         382387         L2214467-04         Pass         -28.2         -6.7           IA-9(032922)         559         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.8         -8.4           SS-10(032922)         133         2.7L Can         03/28/22         382387         L2214467-04         Pass         -28.9         -14.4           IA-10 (032922)         01702         Flow 4         03/28/22         382387         L2214467-04         Pass         -29.0         -4.8           IA-7 (032922)         02225         Flow 4 | Client ID   Media ID   Pare   Pare pare   Order   Clearing   Clearing   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Check   Chec | Client ID         Media ID         Media Type<br>Herbarod         Pare propored Propored         Clouble Solution of Order Batch ID         Check Check (n. Hg)         Presult (n. Hg)         Cleak of Mulmin to Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg)         Cleak (n. Hg) <td>  Cicient D   Media D   Media D   Media D   Media Type   Dare Drieg</td> | Cicient D   Media D   Media D   Media D   Media Type   Dare Drieg |



Project Name:

L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT Report Date: 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received: 03/21/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/21/22 23:44

Analyst: TS

|                                     |         | ppbV  |     |         | ug/m3 |     | Dilution  |        |
|-------------------------------------|---------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                           | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfiel | d Lab   |       |     |         |       |     |           |        |
| Chlorodifluoromethane               | ND      | 0.200 |     | ND      | 0.707 |     |           | 1      |
| Propylene                           | ND      | 0.500 |     | ND      | 0.861 |     |           | 1      |
| Propane                             | ND      | 0.500 |     | ND      | 0.902 |     |           | 1      |
| Dichlorodifluoromethane             | ND      | 0.200 |     | ND      | 0.989 |     |           | 1      |
| Chloromethane                       | ND      | 0.200 |     | ND      | 0.413 |     |           | 1      |
| Freon-114                           | ND      | 0.200 |     | ND      | 1.40  |     |           | 1      |
| Methanol                            | ND      | 5.00  |     | ND      | 6.55  |     |           | 1      |
| Vinyl chloride                      | ND      | 0.200 |     | ND      | 0.511 |     |           | 1      |
| 1,3-Butadiene                       | ND      | 0.200 |     | ND      | 0.442 |     |           | 1      |
| Butane                              | ND      | 0.200 |     | ND      | 0.475 |     |           | 1      |
| Bromomethane                        | ND      | 0.200 |     | ND      | 0.777 |     |           | 1      |
| Chloroethane                        | ND      | 0.200 |     | ND      | 0.528 |     |           | 1      |
| Ethanol                             | ND      | 5.00  |     | ND      | 9.42  |     |           | 1      |
| Dichlorofluoromethane               | ND      | 0.200 |     | ND      | 0.842 |     |           | 1      |
| Vinyl bromide                       | ND      | 0.200 |     | ND      | 0.874 |     |           | 1      |
| Acrolein                            | ND      | 0.500 |     | ND      | 1.15  |     |           | 1      |
| Acetone                             | ND      | 1.00  |     | ND      | 2.38  |     |           | 1      |
| Acetonitrile                        | ND      | 0.200 |     | ND      | 0.336 |     |           | 1      |
| Trichlorofluoromethane              | ND      | 0.200 |     | ND      | 1.12  |     |           | 1      |
| Isopropanol                         | ND      | 0.500 |     | ND      | 1.23  |     |           | 1      |
| Acrylonitrile                       | ND      | 0.500 |     | ND      | 1.09  |     |           | 1      |
| Pentane                             | ND      | 0.200 |     | ND      | 0.590 |     |           | 1      |
| Ethyl ether                         | ND      | 0.200 |     | ND      | 0.606 |     |           | 1      |
| 1,1-Dichloroethene                  | ND      | 0.200 |     | ND      | 0.793 |     |           | 1      |
|                                     |         |       |     |         |       |     |           |        |



L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

| Затріє Беріт.                            |         | ppbV  |     |         | ug/m3 |     | Dilution  |        |
|------------------------------------------|---------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                                | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfield Lab | )       |       |     |         |       |     |           |        |
| Tertiary butyl Alcohol                   | ND      | 0.500 |     | ND      | 1.52  |     |           | 1      |
| Methylene chloride                       | ND      | 0.500 |     | ND      | 1.74  |     |           | 1      |
| 3-Chloropropene                          | ND      | 0.200 |     | ND      | 0.626 |     |           | 1      |
| Carbon disulfide                         | ND      | 0.200 |     | ND      | 0.623 |     |           | 1      |
| Freon-113                                | ND      | 0.200 |     | ND      | 1.53  |     |           | 1      |
| trans-1,2-Dichloroethene                 | ND      | 0.200 |     | ND      | 0.793 |     |           | 1      |
| 1,1-Dichloroethane                       | ND      | 0.200 |     | ND      | 0.809 |     |           | 1      |
| Methyl tert butyl ether                  | ND      | 0.200 |     | ND      | 0.721 |     |           | 1      |
| Vinyl acetate                            | ND      | 1.00  |     | ND      | 3.52  |     |           | 1      |
| Xylenes, total                           | ND      | 0.600 |     | ND      | 0.869 |     |           | 1      |
| 2-Butanone                               | ND      | 0.500 |     | ND      | 1.47  |     |           | 1      |
| cis-1,2-Dichloroethene                   | ND      | 0.200 |     | ND      | 0.793 |     |           | 1      |
| Ethyl Acetate                            | ND      | 0.500 |     | ND      | 1.80  |     |           | 1      |
| Chloroform                               | ND      | 0.200 |     | ND      | 0.977 |     |           | 1      |
| Tetrahydrofuran                          | ND      | 0.500 |     | ND      | 1.47  |     |           | 1      |
| 2,2-Dichloropropane                      | ND      | 0.200 |     | ND      | 0.924 |     |           | 1      |
| 1,2-Dichloroethane                       | ND      | 0.200 |     | ND      | 0.809 |     |           | 1      |
| n-Hexane                                 | ND      | 0.200 |     | ND      | 0.705 |     |           | 1      |
| Diisopropyl ether                        | ND      | 0.200 |     | ND      | 0.836 |     |           | 1      |
| tert-Butyl Ethyl Ether                   | ND      | 0.200 |     | ND      | 0.836 |     |           | 1      |
| 1,2-Dichloroethene (total)               | ND      | 1.00  |     | ND      | 1.00  |     |           | 1      |
| 1,1,1-Trichloroethane                    | ND      | 0.200 |     | ND      | 1.09  |     |           | 1      |
| 1,1-Dichloropropene                      | ND      | 0.200 |     | ND      | 0.908 |     |           | 1      |
| Benzene                                  | ND      | 0.200 |     | ND      | 0.639 |     |           | 1      |
| Carbon tetrachloride                     | ND      | 0.200 |     | ND      | 1.26  |     |           | 1      |
| Cyclohexane                              | ND      | 0.200 |     | ND      | 0.688 |     |           | 1      |
| tert-Amyl Methyl Ether                   | ND      | 0.200 |     | ND      | 0.836 |     |           | 1      |



L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

| Затріє Беріп.                            | ppbV    |       |     |         | ug/m3 |     | Dilution  |        |
|------------------------------------------|---------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                                | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfield Lab |         |       |     |         |       |     |           |        |
| Dibromomethane                           | ND      | 0.200 |     | ND      | 1.42  |     |           | 1      |
| 1,2-Dichloropropane                      | ND      | 0.200 |     | ND      | 0.924 |     |           | 1      |
| Bromodichloromethane                     | ND      | 0.200 |     | ND      | 1.34  |     |           | 1      |
| 1,4-Dioxane                              | ND      | 0.200 |     | ND      | 0.721 |     |           | 1      |
| Trichloroethene                          | ND      | 0.200 |     | ND      | 1.07  |     |           | 1      |
| 2,2,4-Trimethylpentane                   | ND      | 0.200 |     | ND      | 0.934 |     |           | 1      |
| Methyl Methacrylate                      | ND      | 0.500 |     | ND      | 2.05  |     |           | 1      |
| Heptane                                  | ND      | 0.200 |     | ND      | 0.820 |     |           | 1      |
| cis-1,3-Dichloropropene                  | ND      | 0.200 |     | ND      | 0.908 |     |           | 1      |
| 4-Methyl-2-pentanone                     | ND      | 0.500 |     | ND      | 2.05  |     |           | 1      |
| trans-1,3-Dichloropropene                | ND      | 0.200 |     | ND      | 0.908 |     |           | 1      |
| 1,1,2-Trichloroethane                    | ND      | 0.200 |     | ND      | 1.09  |     |           | 1      |
| Toluene                                  | ND      | 0.200 |     | ND      | 0.754 |     |           | 1      |
| 1,3-Dichloropropane                      | ND      | 0.200 |     | ND      | 0.924 |     |           | 1      |
| 2-Hexanone                               | ND      | 0.200 |     | ND      | 0.820 |     |           | 1      |
| Dibromochloromethane                     | ND      | 0.200 |     | ND      | 1.70  |     |           | 1      |
| 1,2-Dibromoethane                        | ND      | 0.200 |     | ND      | 1.54  |     |           | 1      |
| Butyl acetate                            | ND      | 0.500 |     | ND      | 2.38  |     |           | 1      |
| Octane                                   | ND      | 0.200 |     | ND      | 0.934 |     |           | 1      |
| Tetrachloroethene                        | ND      | 0.200 |     | ND      | 1.36  |     |           | 1      |
| 1,1,1,2-Tetrachloroethane                | ND      | 0.200 |     | ND      | 1.37  |     |           | 1      |
| Chlorobenzene                            | ND      | 0.200 |     | ND      | 0.921 |     |           | 1      |
| Ethylbenzene                             | ND      | 0.200 |     | ND      | 0.869 |     |           | 1      |
| p/m-Xylene                               | ND      | 0.400 |     | ND      | 1.74  |     |           | 1      |
| Bromoform                                | ND      | 0.200 |     | ND      | 2.07  |     |           | 1      |
| Styrene                                  | ND      | 0.200 |     | ND      | 0.852 |     |           | 1      |
| 1,1,2,2-Tetrachloroethane                | ND      | 0.200 |     | ND      | 1.37  |     |           | 1      |



L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

| Затріє Берті.                           |         | ppbV  |     |         | ug/m3 |     | Dilution  |        |
|-----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                               | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfield La | b       |       |     |         |       |     |           |        |
| o-Xylene                                | ND      | 0.200 |     | ND      | 0.869 |     |           | 1      |
| 1,2,3-Trichloropropane                  | ND      | 0.200 |     | ND      | 1.21  |     |           | 1      |
| Nonane                                  | ND      | 0.200 |     | ND      | 1.05  |     |           | 1      |
| Isopropylbenzene                        | ND      | 0.200 |     | ND      | 0.983 |     |           | 1      |
| Bromobenzene                            | ND      | 0.200 |     | ND      | 0.793 |     |           | 1      |
| 2-Chlorotoluene                         | ND      | 0.200 |     | ND      | 1.04  |     |           | 1      |
| n-Propylbenzene                         | ND      | 0.200 |     | ND      | 0.983 |     |           | 1      |
| 4-Chlorotoluene                         | ND      | 0.200 |     | ND      | 1.04  |     |           | 1      |
| 4-Ethyltoluene                          | ND      | 0.200 |     | ND      | 0.983 |     |           | 1      |
| 1,3,5-Trimethylbenzene                  | ND      | 0.200 |     | ND      | 0.983 |     |           | 1      |
| tert-Butylbenzene                       | ND      | 0.200 |     | ND      | 1.10  |     |           | 1      |
| 1,2,4-Trimethylbenzene                  | ND      | 0.200 |     | ND      | 0.983 |     |           | 1      |
| Decane                                  | ND      | 0.200 |     | ND      | 1.16  |     |           | 1      |
| Benzyl chloride                         | ND      | 0.200 |     | ND      | 1.04  |     |           | 1      |
| 1,3-Dichlorobenzene                     | ND      | 0.200 |     | ND      | 1.20  |     |           | 1      |
| 1,4-Dichlorobenzene                     | ND      | 0.200 |     | ND      | 1.20  |     |           | 1      |
| sec-Butylbenzene                        | ND      | 0.200 |     | ND      | 1.10  |     |           | 1      |
| p-Isopropyltoluene                      | ND      | 0.200 |     | ND      | 1.10  |     |           | 1      |
| 1,2-Dichlorobenzene                     | ND      | 0.200 |     | ND      | 1.20  |     |           | 1      |
| n-Butylbenzene                          | ND      | 0.200 |     | ND      | 1.10  |     |           | 1      |
| 1,2-Dibromo-3-chloropropane             | ND      | 0.200 |     | ND      | 1.93  |     |           | 1      |
| Undecane                                | ND      | 0.200 |     | ND      | 1.28  |     |           | 1      |
| Dodecane                                | ND      | 0.200 |     | ND      | 1.39  |     |           | 1      |
| 1,2,4-Trichlorobenzene                  | ND      | 0.200 |     | ND      | 1.48  |     |           | 1      |
| Naphthalene                             | ND      | 0.200 |     | ND      | 1.05  |     |           | 1      |
| 1,2,3-Trichlorobenzene                  | ND      | 0.200 |     | ND      | 1.48  |     |           | 1      |
| Hexachlorobutadiene                     | ND      | 0.200 |     | ND      | 2.13  |     |           | 1      |



**Project Name:** Lab Number: **BATCH CANISTER CERTIFICATION** L2214467

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received:

03/21/22 Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

**Tentatively Identified Compounds** 

No Tentatively Identified Compounds

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 95         |           | 60-140                 |
| Bromochloromethane  | 97         |           | 60-140                 |
| chlorobenzene-d5    | 94         |           | 60-140                 |



L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received: 03/21/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/21/22 23:44

Analyst: TS

|                                 |                 | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane         | ND              | 0.200 |     | ND      | 0.989 |     |           | 1        |
| Chloromethane                   | ND              | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                       | ND              | 0.050 |     | ND      | 0.349 |     |           | 1        |
| Vinyl chloride                  | ND              | 0.020 |     | ND      | 0.051 |     |           | 1        |
| 1,3-Butadiene                   | ND              | 0.020 |     | ND      | 0.044 |     |           | 1        |
| Bromomethane                    | ND              | 0.020 |     | ND      | 0.078 |     |           | 1        |
| Chloroethane                    | ND              | 0.100 |     | ND      | 0.264 |     |           | 1        |
| Acrolein                        | ND              | 0.050 |     | ND      | 0.115 |     |           | 1        |
| Acetone                         | ND              | 1.00  |     | ND      | 2.38  |     |           | 1        |
| Frichlorofluoromethane          | ND              | 0.050 |     | ND      | 0.281 |     |           | 1        |
| Acrylonitrile                   | ND              | 0.500 |     | ND      | 1.09  |     |           | 1        |
| 1,1-Dichloroethene              | ND              | 0.020 |     | ND      | 0.079 |     |           | 1        |
| Methylene chloride              | ND              | 0.500 |     | ND      | 1.74  |     |           | 1        |
| Freon-113                       | ND              | 0.050 |     | ND      | 0.383 |     |           | 1        |
| trans-1,2-Dichloroethene        | ND              | 0.020 |     | ND      | 0.079 |     |           | 1        |
| 1,1-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |     |           | 1        |
| Methyl tert butyl ether         | ND              | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                      | ND              | 0.500 |     | ND      | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene          | ND              | 0.020 |     | ND      | 0.079 |     |           | 1        |
| Chloroform                      | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| 1,2-Dichloroethane              | ND              | 0.020 |     | ND      | 0.081 |     |           | 1        |
| 1,1,1-Trichloroethane           | ND              | 0.020 |     | ND      | 0.109 |     |           | 1        |
| Benzene                         | ND              | 0.100 |     | ND      | 0.319 |     |           | 1        |
| Carbon tetrachloride            | ND              | 0.020 |     | ND      | 0.126 |     |           | 1        |
|                                 |                 |       |     |         |       |     |           |          |



L2214467

Lab Number:

**Project Name: BATCH CANISTER CERTIFICATION** 

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: CAN 2074 SHELF 13 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

| Sample Depth:                   |                 | ppbV  |     |         | ug/m3 |     | !         | Dilution |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |          |
| 1,2-Dichloropropane             | ND              | 0.020 |     | ND      | 0.092 |     |           | 1        |
| Bromodichloromethane            | ND              | 0.020 |     | ND      | 0.134 |     |           | 1        |
| 1,4-Dioxane                     | ND              | 0.100 |     | ND      | 0.360 |     |           | 1        |
| Trichloroethene                 | ND              | 0.020 |     | ND      | 0.107 |     |           | 1        |
| cis-1,3-Dichloropropene         | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| I-Methyl-2-pentanone            | ND              | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene        | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| ,1,2-Trichloroethane            | ND              | 0.020 |     | ND      | 0.109 |     |           | 1        |
| Toluene                         | ND              | 0.100 |     | ND      | 0.377 |     |           | 1        |
| Dibromochloromethane            | ND              | 0.020 |     | ND      | 0.170 |     |           | 1        |
| ,2-Dibromoethane                | ND              | 0.020 |     | ND      | 0.154 |     |           | 1        |
| Tetrachloroethene               | ND              | 0.020 |     | ND      | 0.136 |     |           | 1        |
| ,1,1,2-Tetrachloroethane        | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| Chlorobenzene                   | ND              | 0.100 |     | ND      | 0.461 |     |           | 1        |
| Ethylbenzene                    | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| o/m-Xylene                      | ND              | 0.040 |     | ND      | 0.174 |     |           | 1        |
| Bromoform                       | ND              | 0.020 |     | ND      | 0.207 |     |           | 1        |
| Styrene                         | ND              | 0.020 |     | ND      | 0.085 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane       | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| o-Xylene                        | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| sopropylbenzene                 | ND              | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Ethyltoluene                  | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| ,3,5-Trimethybenzene            | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| ,2,4-Trimethylbenzene           | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| Benzyl chloride                 | ND              | 0.100 |     | ND      | 0.518 |     |           | 1        |
| ,3-Dichlorobenzene              | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
| 1,4-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |



03/21/22 09:00

**Project Name:** Lab Number: **BATCH CANISTER CERTIFICATION** L2214467

**Project Number:** CANISTER QC BAT **Report Date:** 06/01/22

# **Air Canister Certification Results**

Lab ID: L2214467-04

Date Collected: Client ID: **CAN 2074 SHELF 13** Date Received:

03/21/22 Sample Location: Field Prep: Not Specified

|                                   |               | ppbV  |     |         | ug/m3 |     | Dilution  |        |
|-----------------------------------|---------------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                         | Results       | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM - | Mansfield Lab |       |     |         |       |     |           |        |
| sec-Butylbenzene                  | ND            | 0.200 |     | ND      | 1.10  |     |           | 1      |
| p-Isopropyltoluene                | ND            | 0.200 |     | ND      | 1.10  |     |           | 1      |
| 1,2-Dichlorobenzene               | ND            | 0.020 |     | ND      | 0.120 |     |           | 1      |
| n-Butylbenzene                    | ND            | 0.200 |     | ND      | 1.10  |     |           | 1      |
| 1,2,4-Trichlorobenzene            | ND            | 0.050 |     | ND      | 0.371 |     |           | 1      |
| Naphthalene                       | ND            | 0.050 |     | ND      | 0.262 |     |           | 1      |
| 1,2,3-Trichlorobenzene            | ND            | 0.050 |     | ND      | 0.371 |     |           | 1      |
| Hexachlorobutadiene               | ND            | 0.050 |     | ND      | 0.533 |     |           | 1      |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 94         |           | 60-140                 |
| bromochloromethane  | 98         |           | 60-140                 |
| chlorobenzene-d5    | 93         |           | 60-140                 |



Project Name: NYSDEC VIM STUDY

Project Number: 00101

**Lab Number:** L2217738 **Report Date:** 06/01/22

# Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

CoolerCustody SealNAPresent/Intact

| Container Info |                      | Initial | Final       | Temp |             |   | Frozen |           |                          |
|----------------|----------------------|---------|-------------|------|-------------|---|--------|-----------|--------------------------|
| Container ID   | Container Type       | Cooler  | cooler pH p |      | H deg C Pro |   | Seal   | Date/Time | Analysis(*)              |
| L2217738-01A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2217738-02A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30)              |
| L2217738-03A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2217738-04A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30)              |
| L2217738-05A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2217738-06A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2217738-07A   | Canister - 2.7 Liter | NA      | NA          |      |             | Υ | Absent |           | TO15-LL(30)              |



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

#### **GLOSSARY**

#### **Acronyms**

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

#### Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



Project Name:NYSDEC VIM STUDYLab Number:L2217738Project Number:00101Report Date:06/01/22

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
   (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

#### REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

| Alebia                                     | AIR AI                                                                                                         | NALYSIS PAGE                                                                            |                                        | Rec'd in Lab: 3/30/22                                                 | ALPHA Job #: L2217738                                                                                                                                                                                       |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 320 Forbes Blvd, M                         | Mansfield, MA 02048                                                                                            | Project Information                                                                     | Rep                                    | ort Information - Data Deliverables                                   | Billing Information                                                                                                                                                                                         |
| TEL: 508-822-930                           | 0 FAX: 508-822-3288                                                                                            | Project Name: NYSDEC VIN                                                                | 1.5thdv DE                             | 2277                                                                  | Same as Client info PO#. Odfo/                                                                                                                                                                              |
| Client Informati                           |                                                                                                                | Project Location: 13 Schadles                                                           | st. Buffela                            |                                                                       | 34161                                                                                                                                                                                                       |
| Client Env. Ac                             | dventage Inc.                                                                                                  | Project #: Dolo I                                                                       | - i                                    | Criteria Checker:<br>(Default based on Regulatory Criteria Indicated) |                                                                                                                                                                                                             |
| 3636                                       | N. Buffalo Rd.                                                                                                 |                                                                                         | A HONSON                               | Other Formats: MAIL (standard pdf report)                             | Regulatory Requirements/Report Limit                                                                                                                                                                        |
| Orchard Pa                                 | K NY 14127                                                                                                     | Project Manager: Mark Hann ALPHA Quote #:                                               | GAO                                    | Iditional Deliverables:                                               | State/Fed Program Res / Comm                                                                                                                                                                                |
| Phone: 716-6                               |                                                                                                                | Turn-Around Time                                                                        | Repo                                   | rt to: (if different than Project Manager)                            |                                                                                                                                                                                                             |
| Fax: 716-66                                |                                                                                                                | Standard RUSH (only confer                                                              | _                                      |                                                                       |                                                                                                                                                                                                             |
| Other Project S                            | Den Vad van Fage Converse been previously analyzed by Alpha Specific Requirements/Common Target Compound List: | Date Due: Tim                                                                           |                                        |                                                                       | ANALYSIS  St. O.L. 12  St. O.L. 12  St. O.L. 12                                                                                                                                                             |
|                                            | AI                                                                                                             | l Columns Belo                                                                          | w Must Be                              | Filled Out                                                            | S S SIM                                                                                                                                                                                                     |
| ALPHA Lab ID<br>(Lab Use Only)             | Sample ID                                                                                                      | COLLECTION In End Date   Start Time   End Time   Va                                     |                                        | Sampler's Com LD LD III                                               | 2/1/2/8/8/                                                                                                                                                                                                  |
| 17738-01                                   | DA-1/0329/22                                                                                                   | 3/29/22 8:30am 430Pm-3                                                                  |                                        | 40                                                                    | D/ ₹ / ऄ / Sample Comments (i.e. PID                                                                                                                                                                        |
| 20                                         | 55-9(032922)                                                                                                   | 8:40an 4:40 Pm-2                                                                        |                                        | EB 27L 2300 0711 X                                                    |                                                                                                                                                                                                             |
| 03                                         | IA-9(032922)                                                                                                   |                                                                                         |                                        | EB 2.74319801661 X                                                    | 0.0 ppm                                                                                                                                                                                                     |
| 04                                         | 55-10(032922)                                                                                                  | 8:55 am 4:45 pm 3                                                                       |                                        | EB 2.7 L 559 0095 X                                                   |                                                                                                                                                                                                             |
|                                            |                                                                                                                | 8:50 5:05 pm 29                                                                         | 140 -15.50 SV                          | EB 2.7413301536 X                                                     | 15 pm                                                                                                                                                                                                       |
| 4.4                                        | IA-100329225                                                                                                   | 8:55an 4:55pm3                                                                          | 0.17 -503 AA                           | EB 2.74370 01702 X                                                    |                                                                                                                                                                                                             |
|                                            | IA-3(032922)                                                                                                   | 9:00am 5:00Pm-3                                                                         | 030'-930" AA                           |                                                                       |                                                                                                                                                                                                             |
| 07                                         | 55-3(032902)                                                                                                   | 9:00an 5:00fm-3                                                                         | 0.43°-9.20 SV                          | EB 2.72 145 0915 X                                                    | 1 PPm                                                                                                                                                                                                       |
| *SAMPLE                                    | MATRIX CODES SV                                                                                                | = Ambient Air (Indoor/Outdoor)<br>= Soil Vapor/Landfill Gas/SVE<br>per = Please Specify | 7434                                   | Container Type CS                                                     | Please print clearly, legibly and                                                                                                                                                                           |
| orm No: 101-02 Rev. (25-S<br>Page 54 of 54 | Stock                                                                                                          | Relinguished By:                                                                        | Date/Time<br>30/12/355<br>3/30/22/5:55 |                                                                       | completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Terms and Conditions.  See reverse side. |

# **APPENDIX E**

# **PHOTOGRAPHS**





1. 03/29/2022: Storage/keg room on east side of cidery.

2. 03/29/2022: Storage/keg room on east side of cidery.



3. 03/29/2022: Storage/keg on east side of cidery with IA-7(032922) and SS-7(032922) in place.



03/29/2022: Storage/keg room from perspective of main entrance into bar area looking east.

4.



5. 03/29/2022: Door to storage/keg room is sealed with poly sheeting and duct tape to prevent air flow.



03/29/2022: Door to storage/keg room is sealed with poly sheeting and duct tape to prevent air flow.







7. 03/29/2022: Main dinning/drinking area of barroom in southern portion of cidery.

8. 03/29/2022: View of bar from the main dinning/drinking area.





9. 03/29/2022: Plumbing located behind the main bar area.

03/29/2022: Plumbing located behind the main bar area.

10.



2022/03/29

03/29/2022: View of IA-9(032922) & SS-9(032922) in main dinning/drinking area adjacent to bar.

03/29/2022: View of IA-9(032922) & SS-9(032922) in main dinning/drinking area adjacent to bar with doors closed to prevent air flow.







13. 03/29/2022: View of northern room with kitchen looking north with floor drain.

14. 03/29/2022: View of kitchen area adjacent to the closed doors of the bar room.





15. 03/29/2022: Kitchen area looking west at door sealed with poly to prevent air flow.

16. 03/29/2022: Kitchen area plumbing along with sanitation drain.





03/29/2022: Kitchen area plumbing.

03/29/2022: Northern kitchen area looking west at the entrance to the mezzanine area covered with poly to prevent air flow.







19. 03/29/2022: Entrance to entertainment/mezzanine area from kitchen area (prior to poly sealing).

20. 03/29/2022: View mezzanine floor looking south. Left stairwell goes to basement.



2022/03/29

21. 03/29/2022: IA-10(032922) on first floor adjacent to basement stairs. Basement is walled off by plywood.

22. 03/29/2022: SS-10(032922) at the bottom of the stairs on the left side of the previous picture.



2022/04/26

01/25/2018: View of basement level below the mezzanine from 2018 Site Inspection.

24.

04/26/2022: View of the current basement setting. Utilized as storage room for ODL across the hall.



# **APPENDIX F**

# **DATA USABILITY SUMMARY REPORT**

# **Data Usability Summary Report**

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St. SDG#L2217738 May 31, 2022 Reissued: June 6, 2022 Sampling date: 3/29/2022

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

#### **DELIVERABLES**

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package(reissued: June 6, 2022) for Environmental Advantage, project located at 155 Chandler St., Alpha Analytical, SDG#L2217738 submitted to Vali-Data of WNY, LLC on April 20, 2022. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

| ID | Sample ID     | Laboratory ID |
|----|---------------|---------------|
| 1  | OA-1 (032922) | L2217738-01   |
| 2  | SS-9(032922)  | L2217738-02   |
| 3  | IA-9(032922)  | L2217738-03   |
| 4  | SS-10(032922) | L2217738-04   |
| 5  | IA-10(032922) | L2217738-05   |
| 6  | IA-7(032922)  | L2217738-06   |
| 7  | SS-7(032922)  | L2217738-07   |

### VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD/Duplicate
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check
- -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

#### **OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES**

The data are acceptable for use except where qualified below in Initial Calibration.

Sample: DUSR ID#4 was diluted due to pressurization of the can.

All results were recorded to the reporting limits.

#### **DATA COMPLETENESS**

All criteria were met.

#### NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

# **CHAIN OF CUSTODY AND TRAFFIC REPORTS**

All criteria were met.

#### **HOLDING TIMES**

All holding times were met.

#### INTERNAL STANDARD (IS)

All criteria were met.

#### **METHOD BLANK**

All criteria were met.

#### FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

#### LABORATORY CONTROL SAMPLES

All criteria were met.

#### MS/MSD/DUPLICATE

No MS/MSD/Duplicate was acquired.

#### **COMPOUND QUANTITATION**

All criteria were met.

#### **INITIAL CALIBRATION**

All criteria were met except a target analyte was outside QC limits in the initial calibration verification off instrument, Airlab16. This target analyte should be qualified as estimated in the associated blanks, spikes and samples.

| <b>ICV</b> instrument | <b>Target Analyte</b> | %D    | Qualifier | <b>Associated Sample</b> |
|-----------------------|-----------------------|-------|-----------|--------------------------|
| Airlab16              | Acetone               | -32.0 | UJ/J      | WG1625613, 1-7           |

# **CONTINUING CALIBRATION**

All criteria were met.

# GC/MS PERFORMANCE CHECK

All criteria were met.

# **CANISTER CERTIFICATION BLANKS**

All criteria were met.

Project Name:NYSDEC VIM STUDYLab Number:L2217738Project Number:00101Report Date:06/01/22

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

#### **Case Narrative (continued)**

#### Report Revision

June 1, 2022 the report has been amended to change sample IDs at the request of the client. A revised COC is included in this submittal.

Volatile Organics in Air

Canisters were released from the laboratory on March 28, 2022. The canister certification results are provided as an addendum.

L2217738-04D: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to perform a screen analysis. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J Onlesson

Report Date: 06/01/22

Title: Technical Director/Representative

# Results Summary Form 1 Volatile Organics in Air

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630096 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22 Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

| oumpic Amount . 200 mi |                          |         |       |     |         | do column . III x i |     |           |
|------------------------|--------------------------|---------|-------|-----|---------|---------------------|-----|-----------|
|                        |                          |         | ppbV  |     |         | ug/m3               |     |           |
| CAS NO.                | Parameter                | Results | RL    | MDL | Results | RL                  | MDL | Qualifier |
| 75-71-8                | Dichlorodifluoromethane  | 0.515   | 0.200 |     | 2.55    | 0.989               |     |           |
| 74-87-3                | Chloromethane            | 0.539   | 0.200 |     | 1.11    | 0.413               |     |           |
| 76-14-2                | Freon-114                | ND      | 0.200 |     | ND      | 1.40                |     | U         |
| 106-99-0               | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442               |     | U         |
| 74-83-9                | Bromomethane             | ND      | 0.200 |     | ND      | 0.777               |     | U         |
| 75-00-3                | Chloroethane             | ND      | 0.200 |     | ND      | 0.528               |     | U         |
| 64-17-5                | Ethanol                  | ND      | 5.00  |     | ND      | 9.42                |     | U         |
| 593-60-2               | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874               |     | U         |
| 67-64-1                | Acetone                  | 1.48    | 1.00  |     | 3.52    | 2.38                |     |           |
| 75-69-4                | Trichlorofluoromethane   | 0.210   | 0.200 |     | 1.18    | 1.12                |     |           |
| 67-63-0                | Isopropanol              | 1.54    | 0.500 |     | 3.79    | 1.23                |     |           |
| 75-65-0                | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52                |     | U         |
| 75-09-2                | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74                |     | U         |
| 107-05-1               | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626               |     | U         |
| 75-15-0                | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623               |     | U         |
| 76-13-1                | Freon-113                | ND      | 0.200 |     | ND      | 1.53                |     | U         |
| 156-60-5               | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793               |     | U         |
| 75-34-3                | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809               |     | U         |
| 1634-04-4              | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721               |     | U         |
| 78-93-3                | 2-Butanone               | ND      | 0.500 |     | ND      | 1.47                |     | U         |
| 141-78-6               | Ethyl Acetate            | ND      | 0.500 |     | ND      | 1.80                |     | U         |
| 67-66-3                | Chloroform               | ND      | 0.200 |     | ND      | 0.977               |     | U         |
| 109-99-9               | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47                |     | U         |
| 107-06-2               | 1,2-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809               |     | U         |
| 110-54-3               | n-Hexane                 | ND      | 0.200 |     | ND      | 0.705               |     | U         |
| 71-43-2                | Benzene                  | ND      | 0.200 |     | ND      | 0.639               |     | U         |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630096 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22

Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

| Camp        | ic Amount . 200 mi        |         |       |     | 40 00   | Jiaiiiii |     | X 1       |
|-------------|---------------------------|---------|-------|-----|---------|----------|-----|-----------|
|             |                           |         | ppbV  |     |         | ug/m3    |     |           |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL       | MDL | Qualifier |
| 110-82-7    | Cyclohexane               | ND      | 0.200 |     | ND      | 0.688    |     | U         |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924    |     | U         |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34     |     | U         |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721    |     | U         |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934    |     | U         |
| 142-82-5    | Heptane                   | ND      | 0.200 |     | ND      | 0.820    |     | U         |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05     |     | U         |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |     | U         |
| 108-88-3    | Toluene                   | ND      | 0.200 |     | ND      | 0.754    |     | U         |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820    |     | U         |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70     |     | U         |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54     |     | U         |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921    |     | U         |
| 100-41-4    | Ethylbenzene              | ND      | 0.200 |     | ND      | 0.869    |     | U         |
| 179601-23-1 | p/m-Xylene                | ND      | 0.400 |     | ND      | 1.74     |     | U         |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07     |     | U         |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852    |     | U         |
| 79-34-5     | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37     |     | U         |
| 95-47-6     | o-Xylene                  | ND      | 0.200 |     | ND      | 0.869    |     | U         |
| 622-96-8    | 4-Ethyltoluene            | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 108-67-8    | 1,3,5-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 95-63-6     | 1,2,4-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 100-44-7    | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04     |     | U         |
| 541-73-1    | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20     |     | U         |



Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 17:49

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1630096 Instrument ID : AIF

Lab File ID : R1630096 Instrument ID : AIRLAB16 Sample Amount : 250 ml GC Column : RTX-1

| CAS NO.  |                        | ppbV    |       |     |         | ug/m3 |     |           |  |
|----------|------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
|          | Parameter              | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 106-46-7 | 1,4-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene | ND      | 0.200 |     | ND      | 1.48  |     | U         |  |
| 87-68-3  | Hexachlorobutadiene    | ND      | 0.200 |     | ND      | 2.13  |     | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

| Ouiii     | oic Airiodht . 200 iiii  |         |       |     | 40 00   | Jiaiiiii |     | X 1       |  |
|-----------|--------------------------|---------|-------|-----|---------|----------|-----|-----------|--|
|           |                          |         | ppbV  |     |         | ug/m3    |     |           |  |
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL       | MDL | Qualifier |  |
| 75-71-8   | Dichlorodifluoromethane  | 0.552   | 0.200 |     | 2.73    | 0.989    |     |           |  |
| 74-87-3   | Chloromethane            | ND      | 0.200 |     | ND      | 0.413    |     | U         |  |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40     |     | U         |  |
| 75-01-4   | Vinyl chloride           | ND      | 0.200 |     | ND      | 0.511    |     | U         |  |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442    |     | U         |  |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777    |     | U         |  |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528    |     | U         |  |
| 64-17-5   | Ethanol                  | 7.86    | 5.00  |     | 14.8    | 9.42     |     |           |  |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874    |     | U         |  |
| 67-64-1   | Acetone                  | 5.75    | 1.00  |     | 13.7    | 2.38     |     |           |  |
| 75-69-4   | Trichlorofluoromethane   | 0.279   | 0.200 |     | 1.57    | 1.12     |     |           |  |
| 67-63-0   | Isopropanol              | 3.28    | 0.500 |     | 8.06    | 1.23     |     |           |  |
| 75-35-4   | 1,1-Dichloroethene       | ND      | 0.200 |     | ND      | 0.793    |     | U         |  |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52     |     | U         |  |
| 75-09-2   | Methylene chloride       | 0.574   | 0.500 |     | 1.99    | 1.74     |     |           |  |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626    |     | U         |  |
| 75-15-0   | Carbon disulfide         | 1.02    | 0.200 |     | 3.18    | 0.623    |     |           |  |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53     |     | U         |  |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793    |     | U         |  |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809    |     | U         |  |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721    |     | U         |  |
| 78-93-3   | 2-Butanone               | 4.80    | 0.500 |     | 14.2    | 1.47     |     |           |  |
| 156-59-2  | cis-1,2-Dichloroethene   | ND      | 0.200 |     | ND      | 0.793    |     | U         |  |
| 141-78-6  | Ethyl Acetate            | ND      | 0.500 |     | ND      | 1.80     |     | U         |  |
| 67-66-3   | Chloroform               | 0.671   | 0.200 |     | 3.28    | 0.977    |     |           |  |
| 109-99-9  | Tetrahydrofuran          | 2.88    | 0.500 |     | 8.49    | 1.47     |     |           |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

| Jampi       | e Amount . 230 mi         |         |       |     | ac co   | /IUIIIII | . 1112 | <b>X</b> -1 |
|-------------|---------------------------|---------|-------|-----|---------|----------|--------|-------------|
|             |                           |         | ppbV  |     |         | ug/m3    |        |             |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL       | MDL    | Qualifier   |
| 107-06-2    | 1,2-Dichloroethane        | ND      | 0.200 |     | ND      | 0.809    |        | U           |
| 110-54-3    | n-Hexane                  | 7.54    | 0.200 |     | 26.6    | 0.705    |        |             |
| 71-55-6     | 1,1,1-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |        | U           |
| 71-43-2     | Benzene                   | 1.70    | 0.200 |     | 5.43    | 0.639    |        |             |
| 56-23-5     | Carbon tetrachloride      | 1.41    | 0.200 |     | 8.87    | 1.26     |        |             |
| 110-82-7    | Cyclohexane               | 1.65    | 0.200 |     | 5.68    | 0.688    |        |             |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924    |        | U           |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34     |        | U           |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721    |        | U           |
| 79-01-6     | Trichloroethene           | 1.32    | 0.200 |     | 7.09    | 1.07     |        |             |
| 540-84-1    | 2,2,4-Trimethylpentane    | 0.341   | 0.200 |     | 1.59    | 0.934    |        |             |
| 142-82-5    | Heptane                   | 3.20    | 0.200 |     | 13.1    | 0.820    |        |             |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908    |        | U           |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05     |        | U           |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908    |        | U           |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |        | U           |
| 108-88-3    | Toluene                   | 20.7    | 0.200 |     | 78.0    | 0.754    |        |             |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820    |        | U           |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70     |        | U           |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54     |        | U           |
| 127-18-4    | Tetrachloroethene         | 0.214   | 0.200 |     | 1.45    | 1.36     |        |             |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921    |        | U           |
| 100-41-4    | Ethylbenzene              | 3.79    | 0.200 |     | 16.5    | 0.869    |        |             |
| 179601-23-1 | p/m-Xylene                | 18.3    | 0.400 |     | 79.5    | 1.74     |        |             |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07     |        | U           |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852    |        | U           |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

|          |                           |         |       |     |         | -     |     |           |  |
|----------|---------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
|          | Parameter                 | ppbV    |       |     | ug/m3   |       |     |           |  |
| CAS NO.  |                           | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 79-34-5  | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37  |     | U         |  |
| 95-47-6  | o-Xylene                  | 6.01    | 0.200 |     | 26.1    | 0.869 |     |           |  |
| 622-96-8 | 4-Ethyltoluene            | 1.54    | 0.200 |     | 7.57    | 0.983 |     |           |  |
| 108-67-8 | 1,3,5-Trimethylbenzene    | 1.32    | 0.200 |     | 6.49    | 0.983 |     |           |  |
| 95-63-6  | 1,2,4-Trimethylbenzene    | 5.68    | 0.200 |     | 27.9    | 0.983 |     |           |  |
| 100-44-7 | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04  |     | U         |  |
| 541-73-1 | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 106-46-7 | 1,4-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene    | ND      | 0.200 |     | ND      | 1.48  |     | U         |  |
| 87-68-3  | Hexachlorobutadiene       | ND      | 0.200 |     | ND      | 2.13  |     | U         |  |
|          |                           |         |       |     |         |       |     |           |  |

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630101 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22

Date Analyzed : 04/10/22 21:03 Dilution Factor : 1

Dilution Factor : 1 Analyst : TS

| Cum       | pic Airiount . 200 iiii  |         |       |     | 40 00   | Jiaiiiii |     | X 1       |
|-----------|--------------------------|---------|-------|-----|---------|----------|-----|-----------|
|           |                          |         | ppbV  |     |         | ug/m3    |     |           |
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL       | MDL | Qualifier |
| 75-71-8   | Dichlorodifluoromethane  | 0.543   | 0.200 |     | 2.69    | 0.989    |     |           |
| 74-87-3   | Chloromethane            | 0.587   | 0.200 |     | 1.21    | 0.413    |     |           |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40     |     | U         |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442    |     | U         |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777    |     | U         |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528    |     | U         |
| 64-17-5   | Ethanol                  | 111     | 5.00  |     | 209     | 9.42     |     |           |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874    |     | U         |
| 67-64-1   | Acetone                  | 17.5    | 1.00  |     | 41.6    | 2.38     |     |           |
| 75-69-4   | Trichlorofluoromethane   | 0.246   | 0.200 |     | 1.38    | 1.12     |     |           |
| 67-63-0   | Isopropanol              | 96.4    | 0.500 |     | 237     | 1.23     |     |           |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52     |     | U         |
| 75-09-2   | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74     |     | U         |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626    |     | U         |
| 75-15-0   | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623    |     | U         |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53     |     | U         |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793    |     | U         |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809    |     | U         |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721    |     | U         |
| 78-93-3   | 2-Butanone               | ND      | 0.500 |     | ND      | 1.47     |     | U         |
| 141-78-6  | Ethyl Acetate            | ND      | 0.500 |     | ND      | 1.80     |     | U         |
| 67-66-3   | Chloroform               | 0.602   | 0.200 |     | 2.94    | 0.977    |     |           |
| 109-99-9  | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47     |     | U         |
| 107-06-2  | 1,2-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809    |     | U         |
| 110-54-3  | n-Hexane                 | ND      | 0.200 |     | ND      | 0.705    |     | U         |
| 71-43-2   | Benzene                  | 0.200   | 0.200 |     | 0.639   | 0.639    |     |           |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630101 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:03

Dilution Factor : 1

Analyst : TS

| Samp        | e Amount . 230 mi         |         |       |     | GC CC   | Julili | . 1112 | N- I      |
|-------------|---------------------------|---------|-------|-----|---------|--------|--------|-----------|
|             |                           |         | ppbV  |     |         | ug/m3  |        |           |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL     | MDL    | Qualifier |
| 110-82-7    | Cyclohexane               | ND      | 0.200 |     | ND      | 0.688  |        | U         |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924  |        | U         |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34   |        | U         |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721  |        | U         |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934  |        | U         |
| 142-82-5    | Heptane                   | 0.276   | 0.200 |     | 1.13    | 0.820  |        |           |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908  |        | U         |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05   |        | U         |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908  |        | U         |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09   |        | U         |
| 108-88-3    | Toluene                   | 0.366   | 0.200 |     | 1.38    | 0.754  |        |           |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820  |        | U         |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70   |        | U         |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54   |        | U         |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921  |        | U         |
| 100-41-4    | Ethylbenzene              | ND      | 0.200 |     | ND      | 0.869  |        | U         |
| 179601-23-1 | p/m-Xylene                | 0.456   | 0.400 |     | 1.98    | 1.74   |        |           |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07   |        | U         |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852  |        | U         |
| 79-34-5     | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37   |        | U         |
| 95-47-6     | o-Xylene                  | 0.234   | 0.200 |     | 1.02    | 0.869  |        |           |
| 622-96-8    | 4-Ethyltoluene            | ND      | 0.200 |     | ND      | 0.983  |        | U         |
| 108-67-8    | 1,3,5-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983  |        | U         |
| 95-63-6     | 1,2,4-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983  |        | U         |
| 100-44-7    | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04   |        | U         |
| 541-73-1    | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20   |        | U         |



Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 21:03

Sample Matrix : AIR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1630101 Instrument ID : AIF

Lab File ID : R1630101 Instrument ID : AIRLAB16 Sample Amount : 250 ml GC Column : RTX-1

| CAS NO.  | Parameter              | ppbV    |       |     | ug/m3   |      |     |           |  |
|----------|------------------------|---------|-------|-----|---------|------|-----|-----------|--|
|          |                        | Results | RL    | MDL | Results | RL   | MDL | Qualifier |  |
| 106-46-7 | 1,4-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20 |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20 |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene | ND      | 0.200 |     | ND      | 1.48 |     | U         |  |
| 87-68-3  | Hexachlorobutadiene    | ND      | 0.200 |     | ND      | 2.13 |     | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630105 Sample Amount : 118 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:05

Date Received : 03/30/22 Date Analyzed : 04/10/22 23:37

Dilution Factor : 2.111 Analyst : TS

| Janin     | DE AIRIOUITE . I TO IIII |         |       |     | GC CC   | Julilii | . 1117 | <b>\-</b> 1 |
|-----------|--------------------------|---------|-------|-----|---------|---------|--------|-------------|
|           |                          |         | ppbV  |     |         | ug/m3   |        |             |
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL      | MDL    | Qualifier   |
| 75-71-8   | Dichlorodifluoromethane  | 0.526   | 0.422 |     | 2.60    | 2.09    |        |             |
| 74-87-3   | Chloromethane            | 2.15    | 0.422 |     | 4.44    | 0.871   |        |             |
| 76-14-2   | Freon-114                | ND      | 0.422 |     | ND      | 2.95    |        | U           |
| 75-01-4   | Vinyl chloride           | ND      | 0.422 |     | ND      | 1.08    |        | U           |
| 106-99-0  | 1,3-Butadiene            | 50.3    | 0.422 |     | 111     | 0.934   |        |             |
| 74-83-9   | Bromomethane             | ND      | 0.422 |     | ND      | 1.64    |        | U           |
| 75-00-3   | Chloroethane             | ND      | 0.422 |     | ND      | 1.11    |        | U           |
| 64-17-5   | Ethanol                  | 18.0    | 10.6  |     | 33.9    | 20.0    |        |             |
| 593-60-2  | Vinyl bromide            | ND      | 0.422 |     | ND      | 1.85    |        | U           |
| 67-64-1   | Acetone                  | 39.0    | 2.11  |     | 92.6    | 5.01    |        |             |
| 75-69-4   | Trichlorofluoromethane   | ND      | 0.422 |     | ND      | 2.37    |        | U           |
| 67-63-0   | Isopropanol              | 6.84    | 1.06  |     | 16.8    | 2.61    |        |             |
| 75-35-4   | 1,1-Dichloroethene       | ND      | 0.422 |     | ND      | 1.67    |        | U           |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 1.06  |     | ND      | 3.21    |        | U           |
| 75-09-2   | Methylene chloride       | ND      | 1.06  |     | ND      | 3.68    |        | U           |
| 107-05-1  | 3-Chloropropene          | ND      | 0.422 |     | ND      | 1.32    |        | U           |
| 75-15-0   | Carbon disulfide         | 43.5    | 0.422 |     | 135     | 1.31    |        |             |
| 76-13-1   | Freon-113                | ND      | 0.422 |     | ND      | 3.23    |        | U           |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.422 |     | ND      | 1.67    |        | U           |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.422 |     | ND      | 1.71    |        | U           |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.422 |     | ND      | 1.52    |        | U           |
| 78-93-3   | 2-Butanone               | 7.87    | 1.06  |     | 23.2    | 3.13    |        |             |
| 156-59-2  | cis-1,2-Dichloroethene   | ND      | 0.422 |     | ND      | 1.67    |        | U           |
| 141-78-6  | Ethyl Acetate            | ND      | 1.06  |     | ND      | 3.82    |        | U           |
| 67-66-3   | Chloroform               | 0.483   | 0.422 |     | 2.36    | 2.06    |        |             |
| 109-99-9  | Tetrahydrofuran          | ND      | 1.06  |     | ND      | 3.13    |        | U           |



Client : Environmental Advantage, Inc.

**Project Name** : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15 Lab File ID : R1630105

Sample Amount : 118 ml **Lab Number** : L2217738 Project Number : 00101

**Date Collected** : 03/29/22 17:05

: TS

**Date Received** : 03/30/22 Date Analyzed : 04/10/22 23:37

**Dilution Factor** : 2.111

**Analyst** Instrument ID : AIRLAB16 : RTX-1 GC Column

|             | e Amount . 110 mi         |         |       |     | GC CC   | ,.a   | . 1112 | ` '       |  |
|-------------|---------------------------|---------|-------|-----|---------|-------|--------|-----------|--|
|             |                           |         | ppbV  |     |         | ug/m3 |        |           |  |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL    | MDL    | Qualifier |  |
|             |                           |         |       |     |         |       |        |           |  |
| 107-06-2    | 1,2-Dichloroethane        | ND      | 0.422 |     | ND      | 1.71  |        | U         |  |
| 110-54-3    | n-Hexane                  | 132     | 0.422 |     | 465     | 1.49  |        |           |  |
| 71-55-6     | 1,1,1-Trichloroethane     | ND      | 0.422 |     | ND      | 2.30  |        | U         |  |
| 71-43-2     | Benzene                   | 41.7    | 0.422 |     | 133     | 1.35  |        |           |  |
| 56-23-5     | Carbon tetrachloride      | 0.684   | 0.422 |     | 4.30    | 2.65  |        |           |  |
| 110-82-7    | Cyclohexane               | 68.4    | 0.422 |     | 235     | 1.45  |        |           |  |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.422 |     | ND      | 1.95  |        | U         |  |
| 75-27-4     | Bromodichloromethane      | ND      | 0.422 |     | ND      | 2.83  |        | U         |  |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.422 |     | ND      | 1.52  |        | U         |  |
| 79-01-6     | Trichloroethene           | 4.36    | 0.422 |     | 23.4    | 2.27  |        |           |  |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.422 |     | ND      | 1.97  |        | U         |  |
| 142-82-5    | Heptane                   | 109     | 0.422 |     | 447     | 1.73  |        |           |  |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.422 |     | ND      | 1.92  |        | U         |  |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 1.06  |     | ND      | 4.34  |        | U         |  |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.422 |     | ND      | 1.92  |        | U         |  |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.422 |     | ND      | 2.30  |        | U         |  |
| 108-88-3    | Toluene                   | 86.0    | 0.422 |     | 324     | 1.59  |        |           |  |
| 591-78-6    | 2-Hexanone                | ND      | 0.422 |     | ND      | 1.73  |        | U         |  |
| 124-48-1    | Dibromochloromethane      | ND      | 0.422 |     | ND      | 3.60  |        | U         |  |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.422 |     | ND      | 3.24  |        | U         |  |
| 127-18-4    | Tetrachloroethene         | ND      | 0.422 |     | ND      | 2.86  |        | U         |  |
| 108-90-7    | Chlorobenzene             | ND      | 0.422 |     | ND      | 1.94  |        | U         |  |
| 100-41-4    | Ethylbenzene              | 9.80    | 0.422 |     | 42.6    | 1.83  |        |           |  |
| 179601-23-1 | p/m-Xylene                | 40.2    | 0.844 |     | 175     | 3.67  |        |           |  |
| 75-25-2     | Bromoform                 | ND      | 0.422 |     | ND      | 4.36  |        | U         |  |
| 100-42-5    | Styrene                   | ND      | 0.422 |     | ND      | 1.80  |        | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630105 Sample Amount : 118 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:05

Date Received : 03/30/22 Date Analyzed : 04/10/22 23:37

Dilution Factor : 2.111 Analyst : TS

|          | Parameter                 | ppbV    |       |     | ug/m3   |      |     |           |  |
|----------|---------------------------|---------|-------|-----|---------|------|-----|-----------|--|
| CAS NO.  |                           | Results | RL    | MDL | Results | RL   | MDL | Qualifier |  |
| 79-34-5  | 1,1,2,2-Tetrachloroethane | ND      | 0.422 |     | ND      | 2.90 |     | U         |  |
| 95-47-6  | o-Xylene                  | 10.2    | 0.422 |     | 44.3    | 1.83 |     |           |  |
| 622-96-8 | 4-Ethyltoluene            | 1.97    | 0.422 |     | 9.68    | 2.07 |     |           |  |
| 108-67-8 | 1,3,5-Trimethylbenzene    | 1.41    | 0.422 |     | 6.93    | 2.07 |     |           |  |
| 95-63-6  | 1,2,4-Trimethylbenzene    | 5.55    | 0.422 |     | 27.3    | 2.07 |     |           |  |
| 100-44-7 | Benzyl chloride           | ND      | 0.422 |     | ND      | 2.19 |     | U         |  |
| 541-73-1 | 1,3-Dichlorobenzene       | ND      | 0.422 |     | ND      | 2.54 |     | U         |  |
| 106-46-7 | 1,4-Dichlorobenzene       | ND      | 0.422 |     | ND      | 2.54 |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene       | ND      | 0.422 |     | ND      | 2.54 |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene    | ND      | 0.422 |     | ND      | 3.13 |     | U         |  |
| 87-68-3  | Hexachlorobutadiene       | ND      | 0.422 |     | ND      | 4.50 |     | U         |  |

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-05 Client ID : IA-10 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR Analytical Method : 48,TO-15

Lab File ID : R1630102 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:55

Date Received : 03/30/22

Date Analyzed : 04/10/22 21:41

Dilution Factor : 1 Analyst : TS

|           |                          |         | ppbV  |     |         | ug/m3 |     |           |  |
|-----------|--------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
|           |                          |         |       |     |         |       |     |           |  |
| 75-71-8   | Dichlorodifluoromethane  | 0.546   | 0.200 |     | 2.70    | 0.989 |     |           |  |
| 74-87-3   | Chloromethane            | 0.594   | 0.200 |     | 1.23    | 0.413 |     |           |  |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40  |     | U         |  |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442 |     | U         |  |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777 |     | U         |  |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528 |     | U         |  |
| 64-17-5   | Ethanol                  | 76.4    | 5.00  |     | 144     | 9.42  |     |           |  |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874 |     | U         |  |
| 67-64-1   | Acetone                  | 37.4    | 1.00  |     | 88.8    | 2.38  |     |           |  |
| 75-69-4   | Trichlorofluoromethane   | 0.232   | 0.200 |     | 1.30    | 1.12  |     |           |  |
| 67-63-0   | Isopropanol              | 221     | 0.500 |     | 543     | 1.23  |     |           |  |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52  |     | U         |  |
| 75-09-2   | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74  |     | U         |  |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626 |     | U         |  |
| 75-15-0   | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623 |     | U         |  |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53  |     | U         |  |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793 |     | U         |  |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809 |     | U         |  |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721 |     | U         |  |
| 78-93-3   | 2-Butanone               | ND      | 0.500 |     | ND      | 1.47  |     | U         |  |
| 141-78-6  | Ethyl Acetate            | 0.551   | 0.500 |     | 1.99    | 1.80  |     |           |  |
| 67-66-3   | Chloroform               | 0.373   | 0.200 |     | 1.82    | 0.977 |     |           |  |
| 109-99-9  | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47  |     | U         |  |
| 107-06-2  | 1,2-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809 |     | U         |  |
| 110-54-3  | n-Hexane                 | ND      | 0.200 |     | ND      | 0.705 |     | U         |  |
| 71-43-2   | Benzene                  | 0.214   | 0.200 |     | 0.684   | 0.639 |     |           |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-05 Client ID : IA-10 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630102 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 16:55

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:41

Dilution Factor : 1

Analyst : TS

| Camp        | ic Amount . 250 mil       |         |       |     | 40 00   | Jiaiiiii |     | X 1       |
|-------------|---------------------------|---------|-------|-----|---------|----------|-----|-----------|
|             |                           |         | ppbV  |     |         | ug/m3    |     |           |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL       | MDL | Qualifier |
| 110-82-7    | Cyclohexane               | ND      | 0.200 |     | ND      | 0.688    |     | U         |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924    |     | U         |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34     |     | U         |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721    |     | U         |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934    |     | U         |
| 142-82-5    | Heptane                   | ND      | 0.200 |     | ND      | 0.820    |     | U         |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05     |     | U         |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |     | U         |
| 108-88-3    | Toluene                   | 0.290   | 0.200 |     | 1.09    | 0.754    |     |           |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820    |     | U         |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70     |     | U         |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54     |     | U         |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921    |     | U         |
| 100-41-4    | Ethylbenzene              | ND      | 0.200 |     | ND      | 0.869    |     | U         |
| 179601-23-1 | p/m-Xylene                | ND      | 0.400 |     | ND      | 1.74     |     | U         |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07     |     | U         |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852    |     | U         |
| 79-34-5     | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37     |     | U         |
| 95-47-6     | o-Xylene                  | ND      | 0.200 |     | ND      | 0.869    |     | U         |
| 622-96-8    | 4-Ethyltoluene            | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 108-67-8    | 1,3,5-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 95-63-6     | 1,2,4-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983    |     | U         |
| 100-44-7    | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04     |     | U         |
| 541-73-1    | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20     |     | U         |



Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 21:41

Sample Matrix : AIR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1630102 Instrument ID : AIF

Lab File ID : R1630102 Instrument ID : AIRLAB16 Sample Amount : 250 ml GC Column : RTX-1

|          | Parameter              | ppbV    |       |     | ug/m3   |      |     |           |  |
|----------|------------------------|---------|-------|-----|---------|------|-----|-----------|--|
| CAS NO.  |                        | Results | RL    | MDL | Results | RL   | MDL | Qualifier |  |
| 106-46-7 | 1,4-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20 |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene    | ND      | 0.200 |     | ND      | 1.20 |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene | ND      | 0.200 |     | ND      | 1.48 |     | U         |  |
| 87-68-3  | Hexachlorobutadiene    | ND      | 0.200 |     | ND      | 2.13 |     | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630103 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:20

Dilution Factor : 1 Analyst : TS

|           |                          |         | ppbV  |     |         | ug/m3 |     |           |  |
|-----------|--------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
|           |                          |         |       |     |         |       |     |           |  |
| 75-71-8   | Dichlorodifluoromethane  | 0.545   | 0.200 |     | 2.69    | 0.989 |     |           |  |
| 74-87-3   | Chloromethane            | 0.600   | 0.200 |     | 1.24    | 0.413 |     |           |  |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40  |     | U         |  |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442 |     | U         |  |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777 |     | U         |  |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528 |     | U         |  |
| 64-17-5   | Ethanol                  | 123     | 5.00  |     | 232     | 9.42  |     |           |  |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874 |     | U         |  |
| 67-64-1   | Acetone                  | 27.6    | 1.00  |     | 65.6    | 2.38  |     |           |  |
| 75-69-4   | Trichlorofluoromethane   | 0.233   | 0.200 |     | 1.31    | 1.12  |     |           |  |
| 67-63-0   | Isopropanol              | 151     | 0.500 |     | 371     | 1.23  |     |           |  |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52  |     | U         |  |
| 75-09-2   | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74  |     | U         |  |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626 |     | U         |  |
| 75-15-0   | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623 |     | U         |  |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53  |     | U         |  |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793 |     | U         |  |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809 |     | U         |  |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721 |     | U         |  |
| 78-93-3   | 2-Butanone               | 0.681   | 0.500 |     | 2.01    | 1.47  |     |           |  |
| 141-78-6  | Ethyl Acetate            | ND      | 0.500 |     | ND      | 1.80  |     | U         |  |
| 67-66-3   | Chloroform               | 0.288   | 0.200 |     | 1.41    | 0.977 |     |           |  |
| 109-99-9  | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47  |     | U         |  |
| 107-06-2  | 1,2-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809 |     | U         |  |
| 110-54-3  | n-Hexane                 | ND      | 0.200 |     | ND      | 0.705 |     | U         |  |
| 71-43-2   | Benzene                  | ND      | 0.200 |     | ND      | 0.639 |     | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630103 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:20 Dilution Factor : 1

Dilution Factor : 1
Analyst : TS

|             |                           |         | ppbV  |     |         | ug/m3 |     |           |  |
|-------------|---------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
|             |                           |         |       |     |         |       |     |           |  |
| 110-82-7    | Cyclohexane               | ND      | 0.200 |     | ND      | 0.688 |     | U         |  |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924 |     | U         |  |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34  |     | U         |  |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721 |     | U         |  |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934 |     | U         |  |
| 142-82-5    | Heptane                   | ND      | 0.200 |     | ND      | 0.820 |     | U         |  |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908 |     | U         |  |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05  |     | U         |  |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908 |     | U         |  |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09  |     | U         |  |
| 108-88-3    | Toluene                   | 0.414   | 0.200 |     | 1.56    | 0.754 |     |           |  |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820 |     | U         |  |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70  |     | U         |  |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54  |     | U         |  |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921 |     | U         |  |
| 100-41-4    | Ethylbenzene              | ND      | 0.200 |     | ND      | 0.869 |     | U         |  |
| 179601-23-1 | p/m-Xylene                | ND      | 0.400 |     | ND      | 1.74  |     | U         |  |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07  |     | U         |  |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852 |     | U         |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37  |     | U         |  |
| 95-47-6     | o-Xylene                  | ND      | 0.200 |     | ND      | 0.869 |     | U         |  |
| 622-96-8    | 4-Ethyltoluene            | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 108-67-8    | 1,3,5-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 95-63-6     | 1,2,4-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 100-44-7    | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04  |     | U         |  |
| 541-73-1    | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |



: L2217738 Client : Environmental Advantage, Inc. **Lab Number Project Name** : NYSDEC VIM STUDY **Project Number** : 00101

Lab ID **Date Collected** : L2217738-06 : 03/29/22 17:00 Client ID : IA-7 (032922) **Date Received** : 03/30/22

Sample Location : 155 CHANDLER ST. BUFFALO NY **Date Analyzed** : 04/10/22 22:20

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1630103

**Analyst** : TS : AIRLAB16 Instrument ID Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 Results MDL Results MDL RL RL Qualifier CAS NO. **Parameter** U 106-46-7 1,4-Dichlorobenzene ND 0.200 ND 1.20 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 120-82-1 ND 0.200 ND 1.48 U 1,2,4-Trichlorobenzene 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

**Dilution Factor** 

: 1



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15 Lab File ID : R1630106

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

| Jailij    | pie Allioulit . 230 illi |         |       |     | ac c    | Julilii | . 1112 | N- I      |
|-----------|--------------------------|---------|-------|-----|---------|---------|--------|-----------|
|           |                          |         | ppbV  |     |         | ug/m3   |        |           |
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL      | MDL    | Qualifier |
| 75-71-8   | Dichlorodifluoromethane  | 0.519   | 0.200 |     | 2.57    | 0.989   |        |           |
| 74-87-3   | Chloromethane            | ND      | 0.200 |     | ND      | 0.413   |        | U         |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40    |        | U         |
| 75-01-4   | Vinyl chloride           | ND      | 0.200 |     | ND      | 0.511   |        | U         |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442   |        | U         |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777   |        | U         |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528   |        | U         |
| 64-17-5   | Ethanol                  | ND      | 5.00  |     | ND      | 9.42    |        | U         |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874   |        | U         |
| 67-64-1   | Acetone                  | 1.84    | 1.00  |     | 4.37    | 2.38    |        |           |
| 75-69-4   | Trichlorofluoromethane   | 0.270   | 0.200 |     | 1.52    | 1.12    |        |           |
| 67-63-0   | Isopropanol              | 1.52    | 0.500 |     | 3.74    | 1.23    |        |           |
| 75-35-4   | 1,1-Dichloroethene       | ND      | 0.200 |     | ND      | 0.793   |        | U         |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52    |        | U         |
| 75-09-2   | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74    |        | U         |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626   |        | U         |
| 75-15-0   | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623   |        | U         |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53    |        | U         |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793   |        | U         |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809   |        | U         |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721   |        | U         |
| 78-93-3   | 2-Butanone               | 1.11    | 0.500 |     | 3.27    | 1.47    |        |           |
| 156-59-2  | cis-1,2-Dichloroethene   | ND      | 0.200 |     | ND      | 0.793   |        | U         |
| 141-78-6  | Ethyl Acetate            | 0.622   | 0.500 |     | 2.24    | 1.80    |        |           |
| 67-66-3   | Chloroform               | ND      | 0.200 |     | ND      | 0.977   |        | U         |
| 109-99-9  | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47    |        | U         |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630106 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

| Camp        | Ac Amount . 200 mi        |         |       |     | 40 00   | Jiaiiiii |     | X 1       |
|-------------|---------------------------|---------|-------|-----|---------|----------|-----|-----------|
|             |                           |         | ppbV  |     |         | ug/m3    |     |           |
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL       | MDL | Qualifier |
| 107-06-2    | 1,2-Dichloroethane        | ND      | 0.200 |     | ND      | 0.809    |     | U         |
| 110-54-3    | n-Hexane                  | 9.26    | 0.200 |     | 32.6    | 0.705    |     |           |
| 71-55-6     | 1,1,1-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |     | U         |
| 71-43-2     | Benzene                   | 2.60    | 0.200 |     | 8.31    | 0.639    |     |           |
| 56-23-5     | Carbon tetrachloride      | 0.496   | 0.200 |     | 3.12    | 1.26     |     |           |
| 110-82-7    | Cyclohexane               | 2.52    | 0.200 |     | 8.67    | 0.688    |     |           |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924    |     | U         |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34     |     | U         |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721    |     | U         |
| 79-01-6     | Trichloroethene           | 1.66    | 0.200 |     | 8.92    | 1.07     |     |           |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934    |     | U         |
| 142-82-5    | Heptane                   | 3.50    | 0.200 |     | 14.3    | 0.820    |     |           |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05     |     | U         |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908    |     | U         |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09     |     | U         |
| 108-88-3    | Toluene                   | 22.9    | 0.200 |     | 86.3    | 0.754    |     |           |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820    |     | U         |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70     |     | U         |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54     |     | U         |
| 127-18-4    | Tetrachloroethene         | ND      | 0.200 |     | ND      | 1.36     |     | U         |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921    |     | U         |
| 100-41-4    | Ethylbenzene              | 3.80    | 0.200 |     | 16.5    | 0.869    |     |           |
| 179601-23-1 | p/m-Xylene                | 18.4    | 0.400 |     | 79.9    | 1.74     |     |           |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07     |     | U         |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852    |     | U         |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL\_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630106 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

|          | Parameter                 | ppbV    |       |     | ug/m3   |       |     |           |
|----------|---------------------------|---------|-------|-----|---------|-------|-----|-----------|
| CAS NO.  |                           | Results | RL    | MDL | Results | RL    | MDL | Qualifier |
| 79-34-5  | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37  |     | U         |
| 95-47-6  | o-Xylene                  | 5.84    | 0.200 |     | 25.4    | 0.869 |     |           |
| 622-96-8 | 4-Ethyltoluene            | 1.26    | 0.200 |     | 6.19    | 0.983 |     |           |
| 108-67-8 | 1,3,5-Trimethylbenzene    | 1.29    | 0.200 |     | 6.34    | 0.983 |     |           |
| 95-63-6  | 1,2,4-Trimethylbenzene    | 5.24    | 0.200 |     | 25.8    | 0.983 |     |           |
| 100-44-7 | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04  |     | U         |
| 541-73-1 | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |
| 106-46-7 | 1,4-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |
| 95-50-1  | 1,2-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |
| 120-82-1 | 1,2,4-Trichlorobenzene    | ND      | 0.200 |     | ND      | 1.48  |     | U         |
| 87-68-3  | Hexachlorobutadiene       | ND      | 0.200 |     | ND      | 2.13  |     | U         |

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630094

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : NA
Date Received : NA

Date Analyzed : 04/10/22 15:14

Dilution Factor : 1 Analyst : TS

| Janip     | DE AIIIOUIIL . 230 IIII  |         |       |     | ac co   | Julilli | . 1112 | N- I      |   |
|-----------|--------------------------|---------|-------|-----|---------|---------|--------|-----------|---|
|           |                          |         | ppbV  |     |         | ug/m3   |        |           |   |
| CAS NO.   | Parameter                | Results | RL    | MDL | Results | RL      | MDL    | Qualifier | _ |
| 75-71-8   | Dichlorodifluoromethane  | ND      | 0.200 |     | ND      | 0.989   |        | U         |   |
| 74-87-3   | Chloromethane            | ND      | 0.200 |     | ND      | 0.413   |        | U         |   |
| 76-14-2   | Freon-114                | ND      | 0.200 |     | ND      | 1.40    |        | U         |   |
| 75-01-4   | Vinyl chloride           | ND      | 0.200 |     | ND      | 0.511   |        | U         |   |
| 106-99-0  | 1,3-Butadiene            | ND      | 0.200 |     | ND      | 0.442   |        | U         |   |
| 74-83-9   | Bromomethane             | ND      | 0.200 |     | ND      | 0.777   |        | U         |   |
| 75-00-3   | Chloroethane             | ND      | 0.200 |     | ND      | 0.528   |        | U         |   |
| 64-17-5   | Ethanol                  | ND      | 5.00  |     | ND      | 9.42    |        | U         |   |
| 593-60-2  | Vinyl bromide            | ND      | 0.200 |     | ND      | 0.874   |        | U         |   |
| 67-64-1   | Acetone                  | ND      | 1.00  |     | ND      | 2.38    |        | U         |   |
| 75-69-4   | Trichlorofluoromethane   | ND      | 0.200 |     | ND      | 1.12    |        | U         |   |
| 67-63-0   | Isopropanol              | ND      | 0.500 |     | ND      | 1.23    |        | U         |   |
| 75-35-4   | 1,1-Dichloroethene       | ND      | 0.200 |     | ND      | 0.793   |        | U         |   |
| 75-65-0   | Tertiary butyl Alcohol   | ND      | 0.500 |     | ND      | 1.52    |        | U         |   |
| 75-09-2   | Methylene chloride       | ND      | 0.500 |     | ND      | 1.74    |        | U         |   |
| 107-05-1  | 3-Chloropropene          | ND      | 0.200 |     | ND      | 0.626   |        | U         |   |
| 75-15-0   | Carbon disulfide         | ND      | 0.200 |     | ND      | 0.623   |        | U         |   |
| 76-13-1   | Freon-113                | ND      | 0.200 |     | ND      | 1.53    |        | U         |   |
| 156-60-5  | trans-1,2-Dichloroethene | ND      | 0.200 |     | ND      | 0.793   |        | U         |   |
| 75-34-3   | 1,1-Dichloroethane       | ND      | 0.200 |     | ND      | 0.809   |        | U         |   |
| 1634-04-4 | Methyl tert butyl ether  | ND      | 0.200 |     | ND      | 0.721   |        | U         |   |
| 78-93-3   | 2-Butanone               | ND      | 0.500 |     | ND      | 1.47    |        | U         |   |
| 156-59-2  | cis-1,2-Dichloroethene   | ND      | 0.200 |     | ND      | 0.793   |        | U         |   |
| 141-78-6  | Ethyl Acetate            | ND      | 0.500 |     | ND      | 1.80    |        | U         |   |
| 67-66-3   | Chloroform               | ND      | 0.200 |     | ND      | 0.977   |        | U         |   |
| 09-99-9   | Tetrahydrofuran          | ND      | 0.500 |     | ND      | 1.47    |        | U         |   |
|           |                          |         |       |     |         |         |        |           |   |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

: 250 ml

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1630094

Sample Amount

Date Analyzed : 04/10/22 15:14

: L2217738

: 00101

: NA

: NA

Dilution Factor : 1 Analyst : TS

**Lab Number** 

**Project Number** 

**Date Collected** 

**Date Received** 

|             |                           |         | ppbV  |     |         | ug/m3 |     |           |  |
|-------------|---------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.     | Parameter                 | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
|             |                           |         |       |     |         |       |     |           |  |
| 107-06-2    | 1,2-Dichloroethane        | ND      | 0.200 |     | ND      | 0.809 |     | U         |  |
| 110-54-3    | n-Hexane                  | ND      | 0.200 |     | ND      | 0.705 |     | U         |  |
| 71-55-6     | 1,1,1-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09  |     | U         |  |
| 71-43-2     | Benzene                   | ND      | 0.200 |     | ND      | 0.639 |     | U         |  |
| 56-23-5     | Carbon tetrachloride      | ND      | 0.200 |     | ND      | 1.26  |     | U         |  |
| 110-82-7    | Cyclohexane               | ND      | 0.200 |     | ND      | 0.688 |     | U         |  |
| 78-87-5     | 1,2-Dichloropropane       | ND      | 0.200 |     | ND      | 0.924 |     | U         |  |
| 75-27-4     | Bromodichloromethane      | ND      | 0.200 |     | ND      | 1.34  |     | U         |  |
| 123-91-1    | 1,4-Dioxane               | ND      | 0.200 |     | ND      | 0.721 |     | U         |  |
| 79-01-6     | Trichloroethene           | ND      | 0.200 |     | ND      | 1.07  |     | U         |  |
| 540-84-1    | 2,2,4-Trimethylpentane    | ND      | 0.200 |     | ND      | 0.934 |     | U         |  |
| 142-82-5    | Heptane                   | ND      | 0.200 |     | ND      | 0.820 |     | U         |  |
| 10061-01-5  | cis-1,3-Dichloropropene   | ND      | 0.200 |     | ND      | 0.908 |     | U         |  |
| 108-10-1    | 4-Methyl-2-pentanone      | ND      | 0.500 |     | ND      | 2.05  |     | U         |  |
| 10061-02-6  | trans-1,3-Dichloropropene | ND      | 0.200 |     | ND      | 0.908 |     | U         |  |
| 79-00-5     | 1,1,2-Trichloroethane     | ND      | 0.200 |     | ND      | 1.09  |     | U         |  |
| 108-88-3    | Toluene                   | ND      | 0.200 |     | ND      | 0.754 |     | U         |  |
| 591-78-6    | 2-Hexanone                | ND      | 0.200 |     | ND      | 0.820 |     | U         |  |
| 124-48-1    | Dibromochloromethane      | ND      | 0.200 |     | ND      | 1.70  |     | U         |  |
| 106-93-4    | 1,2-Dibromoethane         | ND      | 0.200 |     | ND      | 1.54  |     | U         |  |
| 127-18-4    | Tetrachloroethene         | ND      | 0.200 |     | ND      | 1.36  |     | U         |  |
| 108-90-7    | Chlorobenzene             | ND      | 0.200 |     | ND      | 0.921 |     | U         |  |
| 100-41-4    | Ethylbenzene              | ND      | 0.200 |     | ND      | 0.869 |     | U         |  |
| 179601-23-1 | p/m-Xylene                | ND      | 0.400 |     | ND      | 1.74  |     | U         |  |
| 75-25-2     | Bromoform                 | ND      | 0.200 |     | ND      | 2.07  |     | U         |  |
| 100-42-5    | Styrene                   | ND      | 0.200 |     | ND      | 0.852 |     | U         |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15 Lab File ID : R1630094

Sample Amount : 250 ml

Lab Number : L2217738

Project Number : 00101 Date Collected : NA

Date Analyzed : 04/10/22 15:14

: NA

Dilution Factor : 1 Analyst : TS

**Date Received** 

|          |                           |         | ppbV  |     |         | ug/m3 |     |           |  |
|----------|---------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.  | Parameter                 | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
|          |                           |         |       |     |         |       |     |           |  |
| 79-34-5  | 1,1,2,2-Tetrachloroethane | ND      | 0.200 |     | ND      | 1.37  |     | U         |  |
| 95-47-6  | o-Xylene                  | ND      | 0.200 |     | ND      | 0.869 |     | U         |  |
| 622-96-8 | 4-Ethyltoluene            | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 108-67-8 | 1,3,5-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 95-63-6  | 1,2,4-Trimethylbenzene    | ND      | 0.200 |     | ND      | 0.983 |     | U         |  |
| 100-44-7 | Benzyl chloride           | ND      | 0.200 |     | ND      | 1.04  |     | U         |  |
| 541-73-1 | 1,3-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 106-46-7 | 1,4-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 95-50-1  | 1,2-Dichlorobenzene       | ND      | 0.200 |     | ND      | 1.20  |     | U         |  |
| 120-82-1 | 1,2,4-Trichlorobenzene    | ND      | 0.200 |     | ND      | 1.48  |     | U         |  |
| 87-68-3  | Hexachlorobutadiene       | ND      | 0.200 |     | ND      | 2.13  |     | U         |  |

#### Evaluate Continuing Calibration Report

Data Path : 0:\Forensics\Data\Airlab16\2022\03\0309T\_I\

Data File : r1629381.D

: 9 Mar 2022 11:48 PM Acq On

Operator : AIRLAB16:RY : CTO15-LLSTD010 Sample : WG1614549 Misc

ALS Vial : 0 Sample Multiplier: 1

Quant Time: Mar 11 13:49:00 2022

Quant Method: 0:\Forensics\Data\Airlab16\2022\03\0309T\_I\TFS16\_220309.M

Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis

QLast Update: Thu Mar 10 19:22:17 2022 Response via: Initial Calibration

Min. RRF 0.000 Min. Rel. Area: 60% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area : 140%

|                 |          | Compound                   | AvgRF          | CCRF           | %Dev Are       | ea% De     | ev(min)      |
|-----------------|----------|----------------------------|----------------|----------------|----------------|------------|--------------|
|                 | I        | bromochloromethane         | 1.000          | 1.000          | 0.0            | 90         | 0.00         |
| 2               |          | chlorodifluoromethane      | 0.752          | 0.659          | 12.4           | 79         | 0.01         |
| 3               |          | propylene                  | 0.419          | 0.526          | -25.5          | 116        | 0.00         |
| 4               |          | propane                    | 0.609          | 0.514          | 15.6           | 77         | 0.00         |
| 5<br>6          | <b>a</b> | dichlorodifluoromethane    | 0.998          | 0.998          | 0.0            | 89         | 0.01         |
| 7               | С        | chloromethane              | 0.481          | 0.484          | -0.6           | 90<br>91   | 0.00         |
| 8               | С        | Freon-114 methanol         | 1.308<br>0.289 | 1.348<br>0.247 | -3.1<br>14.5   | 91<br>75   | 0.01<br>0.02 |
| 9               | C        | vinyl chloride             | 0.269          | 0.247          | -7.0           | 93         | 0.02         |
|                 | C        | 1,3-butadiene              | 0.665          | 0.733          | -7.0<br>-5.6   | 93<br>93   | 0.00         |
| 11              | C        | butane                     | 0.823          | 0.472          | -2.4           | 93         | 0.01         |
| 13              | C        | bromomethane               | 0.553          | 0.552          | 0.2            | 87         | 0.00         |
| $\frac{13}{14}$ |          | chloroethane               | 0.351          | 0.396          | -12.8          | 101        | 0.01         |
| 15              | C        | ethanol                    | 0.388          | 0.322          | 17.0           | 72         | 0.02         |
| 16              |          | dichlorofluoromethane      | 1.125          | 1.257          | -11.7          | 94         | 0.00         |
| 17              | С        | vinyl bromide              | 0.513          | 0.579          | -12.9          | 101        | 0.00         |
| 18              |          | acrolein                   | 0.276          | 0.244          | 11.6           | 78         | 0.01         |
| 19              |          | acetone                    | 0.641          | 0.846          | -32.0#         | 121        | 0.00         |
| 20              | С        | acetonitrile               | 0.504          | 0.563          | -11.7          | 98         | 0.02         |
| 21              |          | trichlorofluoromethane     | 0.986          | 1.083          | -9.8           | 96         | 0.00         |
| 22              |          | isopropyl alcohol          | 0.738          | 0.924          | -25.2          | 113        | 0.01         |
| 23              | C        | acrylonitrile              | 0.464          | 0.438          | 5.6            | 83         | 0.00         |
| 24              |          | pentane                    | 1.035          | 1.136          | -9.8           | 102        | 0.01         |
| 25              |          | ethyl ether                | 1.326          | 1.186          | 10.6           | 78         | 0.00         |
| 26              | C        | 1,1-dichloroethene         | 0.917          | 1.003          | -9.4           | 95         | 0.00         |
| 27              |          | tertiary butyl alcohol     | 1.176          | 1.209          | -2.8           | 91         | 0.01         |
| 28              |          | methylene chloride         | 0.569          | 0.572          | -0.5           | 89         | 0.00         |
| 29              |          | 3-chloropropene            | 0.721          | 0.871          | -20.8          | 108        | 0.00         |
| 30              | С        | carbon disulfide           | 1.534          | 1.608          | -4.8           | 93         | 0.00         |
| 31              |          | Freon 113                  | 1.100          | 1.275          | -15.9          | 102        | 0.01         |
| 32              | <i>a</i> | trans-1,2-dichloroethene   | 0.947          | 1.008          | -6.4           | 94         | 0.00         |
| 33<br>34        |          | 1,1-dichloroethane<br>MTBE | 1.135<br>1.273 | 1.285<br>1.464 | -13.2<br>-15.0 | 100<br>102 | 0.00         |
| 35              |          | vinyl acetate              | 1.273          | 1.464          | 4.0            | 92         | 0.00         |
| 36              |          | 2-butanone                 | 1.149          | 1.183          | -3.0           | 92<br>95   | 0.00         |
| 37              | C        | cis-1,2-dichloroethene     | 0.866          | 0.960          | -10.9          | 97         | 0.00         |
| 38              |          | Ethyl Acetate              | 0.224          | 0.261          | -16.5          | 95         | 0.00         |
| 39              | C        | chloroform                 | 0.224          | 0.261          | -4.0           | 91         | 0.00         |
| 40              | _        | Tetrahydrofuran            | 0.680          | 0.740          | -8.8           | 101        | 0.00         |
| -               |          | <u>-</u> <del></del>       |                |                |                |            |              |

Client : Environmental Advantage, Inc. Lab Num
Project Name : NYSDEC VIM STUDY Project N

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630096\_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22 Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

|          | Parameter              | ppbV    |       |     | ug/m3   |       |     |           |  |
|----------|------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
| CAS NO.  |                        | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 75-01-4  | Vinyl chloride         | ND      | 0.020 |     | ND      | 0.051 |     | U         |  |
| 73-01-4  | Vinyi cinonae          | 140     | 0.020 |     | IND     | 0.001 |     |           |  |
| 75-35-4  | 1,1-Dichloroethene     | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 156-59-2 | cis-1,2-Dichloroethene | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 71-55-6  | 1,1,1-Trichloroethane  | ND      | 0.020 |     | ND      | 0.109 |     | U         |  |
| 56-23-5  | Carbon tetrachloride   | 0.090   | 0.020 |     | 0.566   | 0.126 |     |           |  |
| 79-01-6  | Trichloroethene        | ND      | 0.020 |     | ND      | 0.107 |     | U         |  |
| 127-18-4 | Tetrachloroethene      | ND      | 0.020 |     | ND      | 0.136 |     | U         |  |



Client : Environmental Advantage, Inc.
Project Name : NYSDEC VIM STUDY

Project Name : NYSDEC VIM Lab ID : L2217738-03

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630101\_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:03

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16

GC Column : RTX-1

| CAS NO.  | Parameter              | ppbV    |       |     | ug/m3   |       |     |           |  |
|----------|------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
|          |                        | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 75-01-4  | Vinyl chloride         | ND      | 0.020 |     | ND      | 0.051 |     | U         |  |
| 75-35-4  | 1,1-Dichloroethene     | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 156-59-2 | cis-1,2-Dichloroethene | 0.098   | 0.020 |     | 0.389   | 0.079 |     |           |  |
| 71-55-6  | 1,1,1-Trichloroethane  | ND      | 0.020 |     | ND      | 0.109 |     | U         |  |
| 56-23-5  | Carbon tetrachloride   | 1.28    | 0.020 |     | 8.05    | 0.126 |     |           |  |
| 79-01-6  | Trichloroethene        | 4.74    | 0.020 |     | 25.5    | 0.107 |     |           |  |
| 127-18-4 | Tetrachloroethene      | 0.090   | 0.020 |     | 0.610   | 0.136 |     |           |  |
|          |                        |         |       |     |         |       |     |           |  |



Date Collected

: 03/29/22 16:55

: 1

Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Lab ID : L2217738-05
Client ID : IA-10 (032922)

Client ID : IA-10 (032922) Date Received : 03/30/22 Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 21:41

Sample Matrix : AIR Dilution Factor

Analytical Method : 48,TO-15-SIM Analyst : TS
Lab File ID : R1630102\_EV2 Instrument ID : AIRLAB16
Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 MDL Results MDL Results RL RL CAS NO. **Parameter** Qualifier U 75-01-4 Vinyl chloride ND 0.020 ND 0.051 75-35-4 1,1-Dichloroethene ND 0.020 ND 0.079 U 0.121 0.020 0.480 156-59-2 cis-1,2-Dichloroethene 0.079 71-55-6 1,1,1-Trichloroethane ND 0.020 ND 0.109 U 56-23-5 Carbon tetrachloride 0.815 0.020 5.13 0.126 --79-01-6 Trichloroethene 7.29 0.020 39.2 0.107 127-18-4 Tetrachloroethene 0.045 0.020 0.305 0.136



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630103\_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:20

Dilution Factor : 1 Analyst : TS

| CAS NO.  | Parameter              | ppbV    |       |     | ug/m3   |       |     |           |  |
|----------|------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
|          |                        | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 75-01-4  | Vinyl chloride         | ND      | 0.020 |     | ND      | 0.051 |     | U         |  |
| 75-35-4  | 1,1-Dichloroethene     | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 156-59-2 | cis-1,2-Dichloroethene | 0.093   | 0.020 |     | 0.369   | 0.079 |     |           |  |
| 71-55-6  | 1,1,1-Trichloroethane  | ND      | 0.020 |     | ND      | 0.109 |     | U         |  |
| 56-23-5  | Carbon tetrachloride   | 0.629   | 0.020 |     | 3.96    | 0.126 |     |           |  |
| 79-01-6  | Trichloroethene        | 4.48    | 0.020 |     | 24.1    | 0.107 |     |           |  |
| 127-18-4 | Tetrachloroethene      | 0.055   | 0.020 |     | 0.373   | 0.136 |     |           |  |



Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625614-4

Client ID : WG1625614-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630095\_EV2

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : NA
Date Received : NA

Date Analyzed : 04/10/22 15:52

Dilution Factor : 1 Analyst : TS

| CAS NO.  | Parameter              | ppbV    |       |     | ug/m3   |       |     |           |  |
|----------|------------------------|---------|-------|-----|---------|-------|-----|-----------|--|
|          |                        | Results | RL    | MDL | Results | RL    | MDL | Qualifier |  |
| 75-01-4  | Vinyl chloride         | ND      | 0.020 |     | ND      | 0.051 |     | U         |  |
| 75-35-4  | 1,1-Dichloroethene     | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 156-59-2 | cis-1,2-Dichloroethene | ND      | 0.020 |     | ND      | 0.079 |     | U         |  |
| 71-55-6  | 1,1,1-Trichloroethane  | ND      | 0.020 |     | ND      | 0.109 |     | U         |  |
| 56-23-5  | Carbon tetrachloride   | ND      | 0.020 |     | ND      | 0.126 |     | U         |  |
| 79-01-6  | Trichloroethene        | ND      | 0.020 |     | ND      | 0.107 |     | U         |  |
| 127-18-4 | Tetrachloroethene      | ND      | 0.020 |     | ND      | 0.136 |     | U         |  |