August 15, 2022

Megan Kuczka, DER Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 9
270 Michigan Avenue
Buffalo, New York 14203

Re: Periodic Review Report – April 2022 Revised; DEC Site #C915312

Pierce Arrow Business Center, 155-157 Chandler Street, Buffalo, New York

Dear Ms. Kuczka:

In accordance with the Site Management Plan (NYSDEC Site Number: C915312), Section 7.2 Periodic Review Report, NYSDEC's March 15, 2022 letter to Mr. Rocco Termini regarding the preparation and submittal of a Site Management Periodic Review Report and IC/EC Certification, please find attached a revised Periodic Review Report that includes the appropriate certifications and the 2021-2022 Routine Progress Report.

If you have comments or questions regarding the contents of these documents, please contact me directly.

Very truly yours,

ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

President

Attachments

cc: R. Termini

J. Rothschild

J. Schenne

S. Selmer (NYSDOH)

01101\ CY2021-2022\Pierce Arrow Business Center - BCP #C915312 - PRR 2021-2022 - FINAL Revised 081522

Periodic Review Report

April 27, 2021 - April 27, 2022 Reporting Period

Pierce Arrow Business Center

155-157 Chandler Street Buffalo, New York 14207

NYSDEC Site Number: C915312

Prepared by:

Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

May 27, 2022 Revised August 15, 2022

TABLE OF CONTENTS

1.0	SITE OVERV	/IEW	1
1.1	Site Summ	ary	1
1.2	Site Remed	dial History	1
1.3	Institutiona	l and Engineering Controls	4
1.4	Monitoring	and Sampling Requirements	5
2.0 S	ITE INSPECT	TION AND MONITORING RESULTS	5
2.1	Site Inspec	tions	5
2.2	Indoor Air S	Sampling Results	7
2.3	Groundwat	er Monitoring and Sampling	12
2.4	Data Usabi	lity Summary	12
2.5	Electronic [Data Deliverables	14
2.6	Certification	n Status	14
3.0 C	ORRECTIVE	ACTIONS	14
3.1	Passive Ve	nt Installation	14
3.2	Soil Vapor	Intrusion Investigation – March 2022	14
3.3	Vapor Intru	sion Sample Results	16
3.4	Vapor Intru	sion Sample Decision Matrix	16
4.0 C	VERALL PRF	R CONCLUSIONS AND RECOMENDATIONS	18
Appe	ndices		
Appel Appel Appel Appel	ndix A ndix B ndix C ndix D ndix E ndix F ndix G	Figures Site-Wide Inspections and Field notes Tables Laboratory Analytical Results Data Usability Summary Reports EQuIS Data Submittal Confirmations Institutional Controls/Engineering Controls Certification	

Figures

Figure 1	Site Location Map
Figure 2	Sub-Slab Mitigation Design & SMP Compliance Ambient Air
	Sampling Locations
Figure 3	Monitoring Well Location Map
Figure 4	Historical Indoor Air Sampling Locations & March 2022 Soil Vapor
	Intrusion Investigation Sampling Locations
Figure 5	March 2022 Soil Vapor Intrusion Investigation Sample Locations
Figure 6	Proposed Additional Soil Vapor Intrusion Investigation Sample
	Locations

Tables

Table 1	Indoor Air Analytical Testing Results Comparison – June 2021
Table 2	Indoor Air Analytical Testing Results Comparison – December 2021
	Annual Sample & Post Vent Install Resample
Table 3	Indoor Air Analytical Testing Results – December 2018 through
	December 2021
Table 4	Groundwater Analytical Testing Results – July 2017 through
	December 2021
Table 5	March 2022 Soil Vapor Intrusion Investigation Analytical Testing
	Results
Table 6	March 2022 Soil Vapor Intrusion Investigation Decision Matricies

Certifications

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER¹;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- Access to the Site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices;
- No new information has come to the remedial party (site owners) attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-Site contamination are no longer valid; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, C. Mark Hanna, CHMM, President of Environmental Advantage, Inc., 3636 N. Buffalo Road, Orchard Park, NY 14127, am certifying as Owner's/Remedial Party's Designated Site Representative.

0696	EMaile Sauve	May 27, 2022
CHMM Certification #	Signature	Date

¹ "DER-10/Technical Guidance for Site Investigation and Remediation" prepared by New York State Department of Environmental Conservation (NYSDEC), dated May 3, 2020

1.0 SITE OVERVIEW

1.1 Site Summary

The Pierce Arrow Business Center Property ("Site") is an approximately 2.35 acre property located at 155-157 Chandler Street in the City of Buffalo, Erie County, New York. The Site location and boundaries are provided in Figure 1, located in Appendix A. The Site consists of an approximate 65,000-square foot building, 22,000-square foot courtyard within the central area of the building and an approximate 0.39 acre parking lot area. The Site is zoned D-C Flex Commercial, which permits Residential, Retail, and Service, and Light Industrial uses. The neighborhood surrounding the Site primarily includes light industrial, commercial, and residential properties.

1.2 <u>Site Remedial History</u>

The Site building was originally constructed in 1907 and utilized as a factory occupied by Linde Air Products until the early-1950s. Bell Aircraft Corp. occupied the Site in the early-to-mid 1950s, which was then purchased by Donald Rosen in 1958, who utilized the property for G & R Machinery (machine shop). The Site was purchased by Ontario Equipment Co. in 2005, and by R&M Leasing, LLC in February 2017.

Brownfield Cleanup Agreement (BCA Index No. C915312-02-17²) was executed on April 24, 2017 for the Site, which identified the property as Site # C915312 with the New York State Department of Environmental Conservation (NYSDEC) under the Brownfield Cleanup Program (BCP). Hazard Evaluations Inc. (HEI), in association with Schenne & Associates (S&A), completed remedial investigation (RI) activities, as well as interim remedial measure (IRM) activities, in accordance with an RI/IRM Work Plan³, which was approved by NYSDEC on April 20, 2017. The RI and IRM work was done concurrently, with additional investigation or IRM work completed, as needed. A series of IRM work tasks were performed at the Site in order to remediate the on-Site concerns as detailed in the Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report⁴ and Final Engineering Report⁵. IRM work tasks completed at the Site included the following:

Courtyard Area:

 Asbestos containing materials (ACMs) were identified within the courtyard area which resulted in the need to remove the top two inches of soil. A composite characterization sample was collected for landfill disposal. Test

2 Brownfield Cleanup Agreement for the Pierce Arrow Business Center Site, executed between NYSDEC and R & M Leasing LLC and Signature Development WNY LLC, April 24, 2017.

³ Remedial Investigation-Interim Remedial Measures-Alternative Analysis Work Plan; Brownfield Cleanup Program For Pierce Arrow Business Center; 155-157 Chandler, Buffalo, New York, 14207; BCP # C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, November 11, 2016 – Revised May 22, 2017.

^{4 &}quot;Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report; Brownfield Cleanup Program For Pierce Arrow Business Center; 155-157 Chandler, Buffalo, New York, 14207; BCP # C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 5, 2017.

^{5 &}quot;Final Engineering Report; Brownfield Cleanup Program for Pierce Arrow Business Center, 155-157 Chandler, Buffalo, New York 14207; BCP # C915312" prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 2017.

- results identified PCBs at a concentration of 53 parts per million (ppm), which prompted further IRM work within the courtyard area.
- ACMs soils, which were identified by AMD Environmental, the Owner's representative, were excavated and disposed off-Site as PCBs-containing soil.
 The soils were disposed at a Waste Management facility in Emelle, Alabama.
- After the courtyard was deemed as ACMs free, additional soil excavations were completed under the guidance of HEI. Soil containing over 50 ppm of PCBs was excavated from the courtyard area and disposed off-Site.
- Additional materials removal was completed from the courtyard area, which included the following:
 - Brick was generated from pavers that were present within the courtyard. Concrete was generated from former pad areas, as well as from foundations within the courtyard area. The brick and concrete materials were disposed off-Site at a Waste Management facility in Chaffee, New York.
 - Further soil excavations were completed, generally to depths of 2 to 3
 feet below original grade, into the native underlying clay soils. Soils
 that contained PCBs below 50 ppm, but over the Restricted Residential
 Use Soil Cleanup Objective (RRUSCO) standard of 1 ppm, were
 excavated and disposed at a Waste Management facility in Chaffee,
 New York.
- One 2,000-gallon gasoline underground storage tank (UST) was located within the courtyard area. The tank was uncovered and approximately 150 gallons of a gasoline/water mixture were pumped from the tank. Upon removal, the steel tank was cleaned and crushed for recycling at the Niagara Metals LLC scrap yard. A limited amount of impacted soil was present on the bottom and northern sidewall. The impacted soil was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Three drainage structures or "pits" were also identified within the courtyard area. Each drainage structure was excavated and any associated impacted soil was removed and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Historical records identified the potential for a 10,000-gallon above ground storage tank (AST) vault to be present near the former boiler room. During the removal of a concrete pad, the vault area was discovered under the concrete pad. Once the concrete was removed, the vault was found to be filled with brick and sand.
 - A sample of the sand material was analyzed for PCBs, which indicated a PCBs-concentration over 50 ppm. The sand and brick materials were subsequently removed from the vault and the materials were disposed off-Site at a Waste Management facility in Emelle, Alabama.
 - A concrete footer was located within the vault, measuring approximately 18-inches wide and extending over four feet. The vault had a concrete floor/base that was approximately six inches thick. Due to the vault's proximity to the chimney, the vault footer was required to remain in

place, as removal would risk compromising the structural stability of the chimney foundation.

 Sidewall and bottom samples were collected from the UST excavation area, former vault area, and the drainage structure or "pit" areas. Additionally, confirmatory soil samples were selected from the bottom of the excavation which occurred in the courtyard area. Soil sample results did not identify impacts above the RRUSCO.

Parking Lot Area:

- Due to the presence of metals and SVOCs within the fill material, the three to four feet of fill material within the parking lot area was scheduled for removal during the IRM work. Initial waste characterization samples identified portions of the parking lot at concentrations deemed as hazardous due to characteristic of lead toxicity. Additional delineation work was completed to evaluate areas with lead impacts.
- The lead soils were stabilized on-Site using the MAECTITE® stabilization process, a proprietary process completed by Sevenson Environmental. The stabilization process bound the lead, preventing further leaching. As such, the soil was able to be disposed as non-hazardous soil.
- The parking lot area was then excavated to a depth of three to four feet below grade to the underlying native clay soils. Approximately 2,200 tons of soil were excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Confirmatory soil samples were collected from the sidewall and bottom of the excavation within the parking lot area. Analytical test results did not identify compounds above RRUSCO.

Under Building Area:

- The Site was on a fast track for Site development. As such, HEI worked with the Site Owner to investigate and evaluate specific areas under the building proposed for future water and/or sewer lines. Additionally, sub-slab soil samples were collected and if impacts were identified, the soil was excavated. Concrete samples were also collected to determine if PCBs were present.
- During RI work, specific areas of impact were identified. For each area, the soil surrounding the area was excavated and sidewall and bottom samples were collected, which did not exhibit further exceedances. Soil from under the building was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- PCBs were identified within the concrete floor at various locations, specifically in the southwestern corner of the structure. The concrete was subsequently removed and disposed off-Site at a Waste Management facility in Chaffee, New York. Confirmatory samples were collected from the adjoining concrete floor, which did not identify any PCBs concentrations above RRUSCO.

A Certificate of Completion was issued for the Site on December 27, 2017⁶.

⁶ New York State Department of Environmental Conservation, "Certificate of Completion for the Pierce Arrow

1.3 <u>Institutional and Engineering Controls</u>

Since remaining contamination exists at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) as outlined in the Site Management Plan (SMP)⁷ were required to protect human health and the environment, and include the following:

Institutional Controls:

- The property may be used for restricted residential, commercial, and/or industrial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 1, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

Engineering Controls:

 Four (4) Sub-Slab Depressurization (SSD) systems were installed in the southwestern portion of the Site, in proximity to SS-3/IA-3 and SS-4/IA-4 sample locations. The system objectives and performance goals include the following elements:

Business Center", dated December 27, 2017

^{7 &}quot;Pierce Arrow Business Center, 155-157 Chandler, Erie County, Buffalo, New York, Site Management Plan, NYSDEC Site Number: C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, dated December 14, 2017.

- Reduce and maintain indoor air concentrations to levels below the NYSDOH Soil Vapor Guidance Document Matrix A;
- Maintain a minimum of 0.25 inches of water column in the four SSD systems, measured in the exhaust piping manometer located 5-feet above the finished floor, to limit vapors from entering the building's indoor air while also releasing the trapped vapor beneath the slab; and,
- Demonstrate system effectiveness while maintaining continuous operation of the SSDS, with no significant non-operating time.

The SSD systems were installed in November 2017, with a system start date of November 8, 2017. SSD system locations within the building are identified in Figure 2, provided in Appendix A. The four (4) mitigation fans are individually monitored with a dedicated (air-flow) alarm system, which is mounted to the system pipe to alert users of a low or no flow condition. Each fan also includes an interior mounted manometer installed at eye level to provide a visual indication to the tenants that the system is operating. In the event that a fan loses power or vacuum an audible alarm with a blinking LED light will notify the tenant of the no air flow condition. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued operation is technically impracticable or not feasible.

1.4 Monitoring and Sampling Requirements

The Monitoring and Sampling Plan included in the SMP describes the measures for evaluating the overall performance and effectiveness of the remedy. The Monitoring Plan includes the following:

- Site-wide inspection performed a minimum of once per year, as noted in SMP.
- Evaluate the potential for soil vapor intrusion for any buildings developed on the Site, including provisions for mitigation of any impacts identified.
- Monitoring of the four (4) SSD systems including the following:
 - Annual visual inspection of the complete system conducted during each monitoring event. SSD system components are to be monitored including, but not limited to, vacuum blower and general system piping.
 - Annual indoor air sampling to assess the effectiveness of the four (4) SSD systems. The SSD system locations are shown in Figure 2 (Appendix A).
- Annual sampling and analysis of groundwater at one existing monitoring well (MW-3) for VOCs, using USEPA Method 8260 TCL. The monitoring well location is identified in Figure 3.

2.0 SITE INSPECTION AND MONITORING RESULTS

2.1 <u>Site Inspections</u>

In response to detections of trichloroethene (TCE) in the indoor air during the previous 2020-2021 monitoring period, on June 17, 2021, EA collected follow-up indoor air samples at location IA-6 and completed an SSD inspection to assure the

SSD systems were operating properly as designed. Copies of the Site-wide inspection report, building inventory, and field notes are included in Appendix B. The following was noted during the June 2021 inspection:

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.
- EA collected air sample canisters at the IA-6 indoor location, with an adjacent exterior door slightly propped open to allow for some fresh air infiltration. Air sample canisters were submitted to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2 below.

On December 2, 2021, EA completed a Site-wide inspection and collected annual SMP compliance indoor air samples at locations IA-1 through IA-6 to assure the SSD systems were operating properly as designed. At the direction of the NYSDEC⁸, two additional indoor air samples were collected as well at this time from two rooms adjacent to the location of IA-6, designated as IA-7 and IA-8 as part of a corrective measure, as further described below in Section 2.2. Additionally, annual sampling and analysis of the Site groundwater was also performed at MW-3, as is described in Section 2.3 below. Copies of the Site-wide inspection report, building inventory, and field notes are included in Appendix B. The following was noted during the SSD system inspection:

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.
- EA collected air sample canisters at eight indoor locations and one outdoor location and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2.

Based on the findings of the December 2021 indoor air sampling event, EA completed a follow-up SSD system inspection and collected additional indoor air samples on March 29, 2022 at three locations in the vicinity of IA-6 as part of a corrective measure. Copies of the Site-wide inspection report, building inventory, and field notes are included in Appendix B. The following was noted during this March inspection:

^{8 &}quot;Site Management (SM) – Periodic Review Report (PRR) & June 2021 Indoor Air Sampling Results Response Letter" prepared by Megan Kuczka of NYSDEC, August 4, 2021.

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water;
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at 1.5 inches of water; and
 - SSDS-4 operated at one-inch of water.
- EA collected three indoor air samples with three corresponding sub-slab samples and one outdoor air sample canister in the vicinity of location IA-6 and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2 below.

2.2 <u>Indoor Air Sampling Results</u>

Annual indoor air sampling is required to assess the effectiveness of the four (4) SSD systems. The SSD system locations, along with indoor air sampling locations, are included on Figure 2 (Appendix A).

As detailed in the previous 2020 – 2021 Periodic Review Report (PRR)⁹ and Soil Vapor Intrusion Investigation Work Plan dated March 15, 2022¹⁰, during the previous annual Site-wide inspection and air sampling event completed in December 2020, trichloroethene (TCE) was detected at a concentration of 2.96 micrograms per cubic meter (ug/m³) at the IA-6 location, which exceeds its respective New York State Department of Health (NYSDOH) air guideline value (AGV) value of 2 ug/m³ as outlined in the Guidance for Evaluating Soil Vapor Intrusion in New York State¹¹. As a result of this December 2020 exceedance, EA collected a follow up indoor air sample from this location in February 2021. TCE was again detected at a concentration of 2.96 ug/m³ at IA-6.

Due to the NYSDOH AGV exceedances for TCE at the IA-6 location as discussed above, EA contacted the Site Owner, Mr. Rocco Termini, and recommended that the location of IA-6, which is an unoccupied pass-through hallway containing mailboxes, be better ventilated. On March 26, 2021, Mr. Termini had a ceiling exhaust fan installed within the hallway in an attempt to improve ventilation. Following the installation of the exhaust fan, EA collected an additional follow up indoor air sample from this location on March 31, 2021. TCE was detected at a concentration of 14 ug/m³, which exceeds both its respective NYSDOH AGV and USEPA Commercial Indoor Air Background (90th percentile) guideline values of 2 ug/m³ and 4.2 ug/m³, respectively. EA surmised that the more elevated results observed at the IA-6 location may be related to the ceiling fan creating a negative

⁹ Periodic Review Report – April 2021 – Revised; DEC Site #C911532", prepared by Environmental Advantage, Inc., dated July 16, 2021.

¹⁰ "Soil Vapor Intrusion Investigation Work Plan for Pierce Arrow Business Center" prepared by Environmental Advantage, Inc., dated March 15, 2022, approved by NYSDEC on April 1, 2022.

^{11 &}quot;Guidance for Evaluating Soil Vapor Intrusion in New York State" prepared by NYSDOH, October 2006, updated May 2017.

pressure within the hallway, even though there was no historical record of any underlying concrete slab or sub-slab TCE contamination in this area of the facility based on the pre-design sampling results collected in September 2017.

During the current monitoring period (2021-2022), and for strictly test protocol purposes, EA collected an air sample at the IA-6 location on June 17, 2021, with the two man-door entrances to the pass-through hallway propped open approximately one inch each to allow the infiltration of fresh outdoor air. Indoor air analytical results are summarized on Tables 1 through 3 located in Appendix C and the laboratory reports are included in Appendix D. As shown on Table 1 and Table 3, up to ten VOCs were detected within the IA-6 (061721) indoor air sample. All compounds were detected at concentrations below their respective NYSDOH AGV and USEPA commercial indoor and outdoor air background levels. TCE was detected at a concentration of 1.31 ug/m³, which is below its respective NYSDOH AGV of 2 ug/m³. Based on these results, Mr. Termini proposed to install two approximate 10-inch by 12-inch passive vents within each of the man-door entrances to the unoccupied mail room/location of IA-6 to allow the infiltration of fresh outdoor air which was proposed to the Department in the July 16, 2021 Summary Letter - June 2021 Indoor Air Sampling Results¹² letter report. The Department approved the passive door vent installation remedy and requested additional air sampling post-installation as detailed in the August 4, 2021 Periodic Review Report & June 2021 Indoor Air Sampling Results Response Letter¹³. Passive vent installation was completed in the mailroom (location of IA-6) at the end of October 2021 by building maintenance.

During the December 2, 2021 Annual SMP compliance air sampling event, EA collected six indoor and one outdoor air samples at locations IA-1 through IA-6, and OA-1 to assure the SSD systems were operating properly as designed. At the request of the Department as stated in the August 4, 2021 Periodic Review Report & June 2021 Indoor Air Sampling Results Response Letter, two additional post passive vent installation indoor air samples were collected from two rooms adjacent to the mail room (location of IA-6) designated as IA-7 and IA-8, air sample locations from the December 2021 sampling event are shown on Figure 2. The samples were collected over an 8-hour period and were submitted for VOCs analysis via USEPA method TO-15. Indoor air analytical results are summarized on Tables 1 through 3 located in Appendix C and the laboratory reports are included in Appendix D. As shown on Table 2 and Table 3, 21 individual VOC parameters were detected within the six SMP compliance indoor air samples and one outdoor air sample. Most compounds were detected at concentrations below their respective NYSDOH AGV and USEPA commercial indoor and outdoor air background levels. However, the following results were noted:

o Acetone was detected in all six indoor air samples collected from locations IA-1 (120221) through IA-6 (120221), exhibiting concentrations above its

^{12 &}quot;Summary Letter – June 2021 Indoor Air Sampling Results" prepared by Environmental Advantage, Inc., July 2021.

^{13 &}quot;Site Management (SM) – Periodic Review Report (PRR) & June 2021 Indoor Air Sampling Results Response Letter" prepared by Megan Kuczka of NYSDEC, August 4, 2021.

respective commercial indoor air background levels at the IA-3 (120221), IA-4 (120221), and IA-5 (120221) locations. Acetone was also detected in the outdoor air sample OA-1 (120221).

- o Ethanol was detected in all six indoor air samples collected from locations IA-1 (120221) through IA-6 (120221), exhibiting concentrations above its respective commercial indoor air background levels at the IA-3 (120221) location. Ethanol was also detected in the outdoor air sample OA-1 (120221).
- o Ethyl acetate was detected at the IA-3 (120221) location, exhibiting a concentration above its respective commercial indoor air background levels. Ethyl acetate was not detected in the other five indoor air samples or outdoor air sample.
- o Carbon tetrachloride was detected in all six indoor air samples collected from locations IA-1 (120221) through IA-6 (120221), however at concentrations below its respective commercial indoor air background levels. Carbon tetrachloride was also detected in the outdoor air sample OA-1 (120221).
- o Cis-1,2-Dichloroethene was detected in the IA-5 (120221) indoor air sample, however at concentrations below its respective commercial indoor air background levels. Cis-1,2-Dichloroethene was not detected in the outdoor air sample OA-1 (120221).
- o Methylene chloride was detected in the IA-5 (120221) indoor air sample, however at concentrations below its respective commercial indoor air background levels. Methylene chloride was also detected in the outdoor air sample OA-1 (120221).
- o Tetrachloroethene (PCE) was not detected in any of the indoor or outdoor air samples.
- o TCE was detected in all six indoor air samples collected at concentrations ranging from 0.118 ug/m3 at IA-3 (120221) to 1.73 ug/m3 at IA-6 (120221), all of which were below their respective commercial background level of 4.2 ug/m3 and NYSDOH AGV of 2 ug/m3. TCE was also detected in the outdoor air sample OA-1 (120221).

Post-vent installation indoor air sampling yielded acceptable TCE results at the IA-6 (120221) location as had been anticipated with TCE detected at a concentration of 1.73 ug/m³, which is below its respective NYSDOH AGV of 2 ug/m³. However, TCE was detected at a concentration of 17.5 ug/m³ at the IA-7 location and 18.0 ug/m³ at the IA-8 location, which is above both the NYSDOH AGV and USEPA Commercial Indoor Air Background (90th percentile) guideline value. IA-7 was located in the southern adjacent room (from the IA-6 location) which is currently part of Buffalo Cider Hall and is utilized for storage of kegs, dry goods, and other restaurant supplies, and IA-8 was located in the eastern adjacent room which is

currently also part of Buffalo Cider Hall and is currently utilized for restaurant seating. An open doorway is located between where IA-7 and IA-8 are located; therefore the rooms were unable to be isolated during sampling activities. The location of the additional indoor air samples collected is illustrated in Figure 4. The Post-vent installation sample results are included in Table 3 with the historical sampling results.

As shown on Table 2 and Table 3, 21 individual VOC parameters were detected within the post-vent installation indoor air samples. Most compounds were detected at concentrations below their respective NYSDOH AGV and USEPA commercial indoor and outdoor air background levels. However, the following results were noted:

- o Acetone was detected in both IA-7 (120221) and IA-8 (120221) exhibiting concentrations above its respective commercial indoor air background levels at both locations. As mentioned above, Acetone was also detected in the outdoor air sample OA-1 (120221).
- o Ethanol was detected in both IA-7 (120221) and IA-8 (120221) exhibiting concentrations above its respective commercial indoor air background levels at both locations. Ethanol was also detected in the outdoor air sample OA-1 (120221).
- o Carbon tetrachloride was detected in both IA-7 (120221) and IA-8 (120221), however at concentrations below its respective commercial indoor air background levels. Carbon tetrachloride was also detected in the outdoor air sample OA-1 (120221).
- o Cis-1,2-Dichloroethene was detected in both IA-7 (120221) and IA-8 (120221), however at concentrations below its respective commercial indoor air background levels. Cis-1,2-Dichloroethene was not detected in the outdoor air sample OA-1 (120221).
- o Methylene chloride was detected in the IA-7 (120221) indoor air sample, however at concentrations below its respective commercial indoor air background levels. Methylene chloride was also detected in the outdoor air sample OA-1 (120221).
- o Tetrachloroethene (PCE) was not detected in either IA-7 (120221), IA-8 (120221), or OA-1 (120221).
- o TCE was detected in both IA-7 (120221) and IA-8 (120221) at concentrations of 17.5 ug/m³ and 18.0 ug/m³, respectively. Both of which are above the commercial background level of 4.2 ug/m3 and NYSDOH AGV of 2 ug/m³. TCE was also detected in the outdoor air sample OA-1 (120221).

With respect to sampling locations IA-6, and adjacent IA-7 and IA-8, during the remedial design phase of the IRM completed in September 2017, soil vapor intrusion

samples were collected within the vicinity of the IA-6 location (approximately \pm 10-feet from the current IA-6 location). This original monitoring event was conducted within an open floor space as no interior construction has been initiated in this part of the structure. For this original event, TCE was detected at a concentration of 0.64 ug/m^3 in the indoor air sample collected (below the NYSDOH AGV of 2 ug/m^3); however, TCE was not detected in the associated sub-slab sample collected. Due to these results, no further action was required in this area.

Upon the installation of the four separate Sub-Slab Depressurization Systems (SSDS-1 through SSDS-4) in the south-western area of the structure, monitoring points IA-2 through IA-5 were selected to be used annually to monitor he effectiveness of the SSDS remedy. All four of these locations are positioned to monitor the effectiveness of the existing SSD Systems' operation. IA-1 and IA-6 were selected inside the structure prior to the interior building wall construction strictly as background locations to provide blanket coverage of the interior of the building. IA-6 was specifically selected based on the one-time detection of 0.64 ug/m³ of TCE in the original indoor air monitoring. The IA-6 location and adjacent IA-7 and IA-8 locations are a considerable distance from any of the four operating SSD systems and the SSD systems have no influence in this area.

The results of the December 2021 monitoring and sampling event were provided to the Department in a summary letter¹⁴ in which EA presented the following:

According to the NYSDOH Soil Vapor/Indoor Air Matrix A, 2017 update, the appropriate action with a sub-slab concentration of less than 6 ug/m³ with an accompanying indoor air concentration of 1 ug/m³ and above for TCE is to "identify source(s) and resample or mitigate". Further investigation into the source of the TCE in this area of the building is warranted. The next step is to complete sub-slab air sampling accompanied by corresponding indoor air sampling to identify if there is an unidentified source area that was either not previously investigated, or if building development may have created a [preferential] pathway for sub-slab vapors which was not present during [the] pre-SSDS design soil vapor intrusion (SVI) assessment.

The Department responded in a letter dated February 23, 2022, requesting the submittal of a work plan ¹⁵. The Work plan was submitted to the Department on March 15, 2022, and EA completed the Soil Vapor Intrusion Investigation on March 29, 2022 before the end of the NYSDOH defined heating season. The Department subsequently formally approved the SVI Investigation Work Plan on April 1, 2022. The results of the March 2022 SVI Investigation are further described in Section 3.0 below.

15 "Site Management (SM) – Post Passive Vent Installation Indoor Air Sampling Results Response Letter" prepared by Megan Kuczka of NYSDEC, February 23, 2022.

^{14 &}quot;Summary Letter – Post Passive Vent Installation Indoor Air Sampling Results. Revised", prepared by Environmental Advantage, Inc., dated February 17, 2022.

2.3 Groundwater Monitoring and Sampling

Annual sampling and analysis of groundwater at the one existing monitoring well, identified as MW-3, was performed as required by the SMP. Groundwater samples were collected on December 2, 2021 for VOCs analysis via USEPA Method 8260 TCL (total compound list). The monitoring well is identified in Figure 3. Prior to sample collection, the static groundwater level and total well depth were measured. The monitoring well depth was measured at 18.5 feet below ground surface and groundwater levels were recorded at 2.55 feet below ground surface. During well purging activities, field measurements of pH, specific conductivity, temperature, and turbidity were recorded. Once the parameters stabilized, EA collected the groundwater using low flow sampling techniques.

Groundwater analytical test results are summarized on Table 4, provided in Appendix C. VOCs were not detected in either the MW-3 sample or duplicate sample. VOCs have not been detected at concentrations exceeding their respective Class GA criteria since IRM activities were completed in 2017. The laboratory analytical report is included in Appendix D.

2.4 <u>Data Usability Summary</u>

The analytical data from the air and groundwater samples collected from April 2021 through March 2022 were submitted for independent review, as required by NYSDEC. Vali-Data of WNY, LLC, located in West Falls, New York, completed the data usability summary reports (DUSRs). The DUSRs are provided in Appendix E and were prepared using guidance from the USEPA Region 2 Validation Standard Operating Procedures, USEPA National Functional Guidelines for Data Review, and professional judgement. Indoor air and groundwater samples were collected as described above and were evaluated as described below:

Groundwater Sample December 2021 – Alpha Lab Report L2166429:

The results for one groundwater sample, one blind duplicate, one trip blank, and one rinsate blank were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in laboratory control samples, MS/MSD, compound quantitation, initial calibration, and continuing calibration.
- All criteria were met in the laboratory control samples except the %Rec of Cyclohexane was outside QC limits, high in WG1582628-3,-4 and should be qualified as estimated. This target analyte was not detected in the samples so no further action is required.
- All criteria were met in the MS/MSD sample except the %Rec of Chloromethane, 2-Butanone and Cyclohexane was outside QC limits, high in MW-3(120221)MS/MSD and should be qualified as estimated. These target analytes were not detected in the associated samples, so no further action is required.
- All criteria were met in the Compound Quantitation except Acetone was detected above the MDL, below the reporting limit and is qualified as

- estimated in RINSATE BLANK(120221). This target analyte was not detected in the associated samples, so no further action is required.
- All criteria were met in the Initial Calibration except the RRF of 1,4-Dioxane and 1,1,2-Trichloroethane was outside QC limits in the initial calibration and WG1487567-9. These target analytes should be qualified as estimated in the blanks, spikes and samples.
- All criteria were met in the Continuing Calibration except the RRF of 1,4-Dioxane and 1,1,2-Trichloroethane was outside QC limits in WG1582628-2. The %D of Chloroethane, Chloromethane, Vinyl chloride, 1,1-Dichloroethane and Cyclohexane was outside QC limits in WG1582628-2. These target analytes should be qualified as estimated in the blanks, spikes and samples. Several target analytes were outside laboratory QC limits but within NFG limits, so no further action is required.
- No target analytes were detected in the samples so no further action is required.

Ambient Air Samples December 2021 – Alpha Lab Report L2166417:

The results for eight indoor air samples, one blind duplicate, and one outdoor air samples were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in Holding Times and Canister Certification Blanks
- All results were recorded to the reporting limits; and
- Samples IA-5 (120221), IA-4 (120221), IA-4 (120221) DUPLICATE, IA-3 (120221), IA-7 (120221), and IA-8 (120221) were diluted due to high target analyte concentrations in the TO-15 analysis.
- All holding times were met except sample #8 [IA-6 (120221)] arrived at the lab with 0 inches Hg pressure. All target analytes in this sample should be qualified as estimated.
- All criteria were met except Chloroform was detected in IA-4 (120221)
 DUPLICATE but was not detected in IA-4 (120221).
- All criteria were met except Tetrachloroethene was detected above the reporting limit in L2164399-01 can3244(SIM). This target analyte was not monitored in this analysis, so no further action is required.

Soil Vapor Intrusion Air Samples March 2022 – Alpha Lab Sample L2055692:

The results for three indoor air samples, three sub-slab air samples, and one outdoor air samples were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- The data are acceptable for use except where qualified below in Initial Calibration:
- Sample: DUSR ID#4 (SS-10(032922)/L2217738-04) was diluted due to pressurization of the can;
- All results were recorded to the reporting limits; and

- All criteria were met except a target analyte (Acetone) was outside QC limits in the initial calibration verification off instrument, Airlab16. This target analyte should be qualified as estimated in the associated blanks, spikes and samples.

2.5 <u>Electronic Data Deliverables</u>

As per NYSDEC, all aforementioned data were submitted electronically to the NYSDEC EQuIS system. Confirmation emails of successful data submittal are provided in Appendix F.

2.6 Certification Status

The completed Institutional and Engineering Controls Certification Form is included in Appendix G. <u>Please Note</u>: It is EA's opinion that the four SSD Systems are operating as designed and that the presence of TCE in the indoor air samples in the vicinity of IA-6, IA-7, and IA-8, and SS-7/IA-7(032922), SS-9/IA-9(032922), and SS-10/IA-10(032922) (described below) are not associated with the operation of those systems. As further described below in Section 3.0, TCE exceedances in this area of the building is actively being investigated to determine if a practical, long term solution can be implemented during the current 2022-2023 monitoring and reporting period. All investigation activities and a description of the solution as applied will be addressed in correspondence with the NYSDEC as well as summarized in the 2023-2023 PRR.

3.0 CORRECTIVE ACTIONS

3.1 Passive Vent Installation

As a means to mitigate TCE concentrations in the indoor air of the unoccupied hallway where IA-6 is located, on March 26, 2021 a ceiling exhaust fan was installed within the hallway in an attempt to improve ventilation. Follow-up indoor air samples collected from this location post-fan installation exhibited a TCE concentration of 14 ug/m³. A different scenario was tested in June 2021, with fresh air introduced into the hallway location of IA-6, which produced favorable indoor air sample results for TCE. As a result, two approximate 10-inch by 12-inch passive vents were installed within each man-door entrance of the IA-6 hallway at the end of October 2021 by building maintenance. As discussed above in Section 2.2, post-vent install air sampling completed in December 2021 exhibited favorable TCE results in the area of IA-6; however, air samples collected in adjacent rooms, IA-7 and IA-8, respectively, exhibited elevated concentrations of TCE in the ambient indoor air. The results of the December 2021 air sampling event warranted additional investigation.

3.2 Soil Vapor Intrusion Investigation – March 2022

In accordance with the March 15, 2022 Draft SVI Investigation Work plan, EA completed a Soil Vapor Intrusion Investigation in the vicinity of IA-7 and IA-8 on March 29, 2022 before the end of the NYSDOH defined heating season. Prior to sample collection, a Building Survey consisting of an inspection of the existing on-site facility and product inventory was conducted to assess the current conditions in

proposed sampling areas and determine the likelihood of existing chemicals of concern that may be present that could influence the vapor test results. A photo-ionization device (PID) equipped with an 11.7 evp organic vapor meter (OVM) was also used to monitor indoor air and scan vapors of individual containers that may be present. The complete building survey is included in Attachment B.

In accordance with NYSDOH recommendations, the HVAC system was confirmed to be activated during the investigation. In addition, EA sealed off individual rooms where air samples were taken in order to limit potential airflow from adjoining rooms. EA shut all doors and duct taped poly sheeting across entrances where there were no doors.

Three (3) temporary sub-slab sampling points were then installed by EA, at locations as shown on Figure 5. SS-7 was installed in a storage closet area of the Buffalo Cider Hall, SS-9, was installed in the bar area of the Buffalo Cider Hall, and SS-10 was installed in the "basement" stairway in the event center area of the Buffalo Cider Hall. Sub-slab sampling points were core-drilled with a 1/2-inch drill bit into a competent portion of the concrete floor, away from cracks or drains. Each core-hole was screened for VOCs with PID equipped with an 11.7 evp OVM with the readings recorded in the field notes for each sampling location. The results of the sub-slab PID screening are as follows:

- SS-7(032922) 1.0ppm,
- SS-9(032922) 0.0ppm,
- SS-10(032922) 15.0ppm.

Clean, dedicated 1/4-inch inside diameter polyethylene tubing was placed into each core-hole with care taken to not extend the tubing further than 2-inches into the sub-slab material. Each core-hole annulus was then sealed at the floor surface with non-VOC containing modeling clay. Once it was determined that the sampling system was sealed based on inspection, each sample probe and tube was purged of one to three volumes, and sub-slab sampling was initiated at each location, utilizing a 2.7-liter capacity Summa canister fitted with a laboratory calibrated flow regulation devise to allow the collection of the soil gas sample over an 8-hour sample collection time. Three ambient indoor air samples were also concurrently collected with each sub-slab sample location from approximately 3 to 4 feet above the slab floor. One ambient outdoor sample was also collected at an upwind location from approximately 4 to 5 feet above the ground surface directly outside the Buffalo Cider Hall. Ambient indoor and outdoor air samples were collected over an 8-hour collection period, utilizing 2.7-liter capacity Summa canisters fitted with laboratory calibrated flow regulation devises. All sampling and purging flow rates did not exceed 0.2 liters per minute. A more comprehensive description of the SVI investigation and sampling locations and procedures is detailed in the Soil Vapor Intrusion Investigation Report which was submitted to the Department on May 13, 2022. 16

15

¹⁶ Draft "Soil Vapor Intrusion Investigation Report for Pierce Arrow Business Center" prepared by Environmental Advantage, Inc., dated April 30, 2022.

3.3 <u>Vapor Intrusion Sample Results</u>

The three sub-slab and four ambient air samples were collected over an 8-hour period and were submitted for VOCs analysis via USEPA method TO-15. SVI analytical results are summarized on Table 5 located in Appendix C and the laboratory report is included in Appendix D. As shown on Table 5, 29 induvial VOC parameters were detected within the three sub-slab vapor samples, three ambient indoor air samples and one outdoor air sample. Most compounds were detected at concentrations below their respective NYSDOH air guideline values and USEPA commercial indoor and outdoor air background levels. New York State currently does not have standards, criteria or guidance values for concentrations of VOCs in sub-slab vapor samples. The purpose of collecting sub-slab samples is to identify potential exposure scenarios associated with vapor intrusion. A summary of these results for sample location pairs is as follows:

- SS-7(032922) (sub-slab) Nineteen (19) compounds were detected above method detection limits. TCE was detected at a concentration of 8.92 ug/m³.

 IA-7(032922) (indoor) Thirteen (13) compounds were detected above method detection limits. Five (5) compounds were detected at levels which exceed the 90th percentile for indoor air including carbon tetrachloride, chloroform, isopropanol, ethanol, and TCE. TCE was detected at a concentration of 24.1 ug/m³, which exceeds the NYSDOH AGV of 2 ug/m³.
- SS-9(032922) (sub-slab) Twenty-five (25) compounds were detected above method detection limits. TCE was detected at a concentration of 7.09 ug/m³. IA-9(032922) (indoor) Sixteen (16) compounds were detected above method detection limits. Three (3) compounds were detected at levels which exceed the 90th percentile for indoor air including carbon tetrachloride, chloroform, and TCE. TCE was detected at a concentration of 25.5 ug/m³, which exceeds the NYSDOHAGV of 2 ug/m³.
- SS-10(032922) (sub-slab) Twenty-two (22) compounds were detected above method detection limits. TCE was detected at a concentration of 23.4 ug/m³.
 - **IA-10(032922) (indoor)** Fourteen (14) compounds were detected above method detection limits. Four (4) compounds were detected at levels which exceed the 90th percentile for indoor air including carbon tetrachloride, chloroform, isopropanol, and TCE. TCE was detected at a concentration of 39.2 ug/m³, which exceeds the NYSDOH AGV of 2 ug/m³.
- OA-1(032922) (outdoor) Six (6) compounds were detected above method detection limits. No compounds were detected at a concentration above the 90th percentile for outdoor air.

3.4 <u>Vapor Intrusion Sample Decision Matrix</u>

NYSDOH developed decision matrices to provide guidance on a case-by-case basis concerning actions that should be taken to address current or potential

exposures related to soil vapor intrusion. Actions recommended in the matrix are based on relationship between sub-slab vapor concentrations and corresponding indoor air concentrations, with considerations for outdoor air results. In May 2017, NYSDOH updated the original 2006 Soil Vapor/Indoor Air Matrix 1 and Soil Vapor/Indoor Air Matrix 2 to three matrices, including:

Matrix A Trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (11-DCE), and Carbon Tetrachloride

(CT)

Matrix B Tetrachloroethene (PCE), 1,1,1-trichloroethane (111-

TCA), and Methylene Chloride

Matrix C Vinyl Chloride (VC)

A summary of the detected VOC concentrations applied to the updated decision matrices are included in Table 6. 1,1-DCE, 1,1,1-TCA, and VC were not detected in any of the indoor or sub-slab samples and therefore no further action is needed with regard to these compounds.

TCE – TCE was detected in all three of the sub-slab samples at concentrations ranging from 7.09 ug/m³ at SS-9(032922) to 23.4 ug/m³ at SS-10(032922). TCE was also detected at all three indoor ambient air samples at concentrations ranging from 24.1 ug/m³ at IA-7(032922) to 39.2 ug/m³ at IA-10(032922). All three indoor air sample results for TCE above the NYSDOH AGV of 2 ug/m³. The decision matrix indicates these three locations/areas would require mitigation.

cis-DCE – cis-DCE was detected all three of the indoor air samples at concentrations ranging from 0.369 ug/m³ at IA-7(032922) to 0.48 ug/m³ at IA-10(032922); however, cis-DCE was not detected in the sub-slab air samples. The decision matrix from the NYSDOH guidance indicates that no further action is needed in this scenario.

Carbon Tetrachloride - Carbon tetrachloride was detected at all three subslab locations at concentrations ranging from 3.12 ug/m³ at SS-7(032922) to 8.87 ug/m³ at SS-9(032922) and all three indoor air samples at concentrations ranging from 3.96 ug/m³ at IA-7(032922) to 8.05 ug/m³ at IA-9(032922). Decision matrix indicates that SS-9/IA-9 locations/areas would require mitigation and SS-10/IA-10 and SS-7/IA-7 locations/areas would require to Identify Source(s) and Resample or Mitigate.

Methylene Chloride – Methylene Chloride (MC) was detected in one sub-slab air sample SS-9(032922) at a concentration of 1.99 ug/m³. Methylene Chloride was not detected in any of the indoor air samples. The decision matrix from the NYSDOH guidance indicates that no further action is needed in this scenario.

PCE – PCE was detected in one sub-slab sample SS-9(032922) at a concentration of 1.45 ug/m³. PCE was detected in all three indoor air samples at concentrations ranging from 0.305 ug/m³ at IA-10(032922) to 0.610 ug/m³ at IA-9(032922), all of which are below the NYSDOH AGV of 30 ug/m³. The decision matrix from the NYSDOH guidance indicates that no further action is needed in these scenarios

4.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

In general, all components of the Site Management Plan have been met during the current monitoring and reporting period. Based on the consistent groundwater results at MW-3, where VOCs have not been detected at concentrations exceeding their respective Class GA criteria since IRM activities were completed in 2017, it is recommended that groundwater sampling be discontinued. No other changes to the SMP are recommended at this time. The annual Site-wide SSD system inspection and groundwater monitoring well sampling (if required) will be completed by December 2022.

Although there was an exceedance of TCE within the indoor air at the IA-6, IA-7, and IA-8 sample locations, as well as the SS-7/IA-7(032922), SS-9/IA-9(032922), and SS-10/IA-10(032922) locations, the four (4) SSD systems continue to function properly as designed to mitigate soil vapor intrusion in the south-west corner of the building where the SSD systems are located. These SSD systems will be tested if, in the course of the system lifetime, significant changes are made to the system, and the system must be restarted. The SSD systems will be inspected and maintained at least annually. Additional inspections and/or sampling may occur when a suspected failure of the SSD system has been reported or an emergency occurs. The Operation & Maintenance Plan (O&M Plan) describes the measures necessary to operate, monitor and maintain the existing SSD systems and includes procedures for routine operation, shutdown, general maintenance and monitoring requirements, and record keeping. The O&M Plan is fully in place, with no deficiencies in compliance.

A review of the historical remedial data associated with the areas in the vicinity of IA-6, IA-7 and IA-8, reveal no pre- or post-Interim Remedial Measure (IRM) soil or groundwater concentrations of TCE or any other NYSDOH priority CVOC¹⁷. TCE was non-detect in all interior monitoring wells with the exception of SB128/MW-4 where TCE was detected at an estimated concentration of 0.23 ug/l. No other CVOCs were detected in any of the interior monitoring wells. TCE has not been detected in the only remaining monitoring well post-IRM activities, MW-3 located upgradient in the parking lot area. Interior soil samples collected during the RI exhibited trivial levels of TCE and other CVOCs with the exception of the SB 135 location (vicinity of SS-5/IA-5), which exhibited a TCE concentration of 1.3 mg/kg in

¹⁷ Priority CVOCs include those listed on the decisions matrices, specifically: Matrix A- Trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (11-DCE), and Carbon Tetrachloride (CT); Matrix B - Tetrachloroethene (PCE), 1,1,1-trichloroethane (111-TCA), and Methylene Chloride; and Matrix C - Vinyl Chloride (VC).

exceedance of the Unrestricted Use SCO (UUSCO). The area around SB 135 was excavated and removed during IRM activities.

Confirmatory samples collected in the courtyard area post-IRM activities exhibited very low levels of TCE and other CVOCs with the exception of CY-CS-1, which exhibited a TCE concentration of 1.1 mg/kg in exceedance of the UUSCO. Furthermore, courtyard confirmatory sample locations related to the Fuel Oil Tank removed directly adjacent to the building foundation outside of Buffalo Cider Hall and in the immediate vicinity of CY-CS-1, exhibited TCE concentrations of 0.036 mg/kg, 0.023mg/kg, and 0.0014 mg/kg. Courtyard confirmatory sample locations around the perimeter of the historical chimney stack also located directly adjacent to the building foundation outside of Buffalo Cider Hall exhibited low level TCE concentrations of 0.05 mg/kg and 0.00074 mg/kg.

Pre-design air samples collected to determine the need for the SSDS systems currently in place in the south-west corner of the building exhibited "no further action" in the vicinity of IA-6, IA-7 and IA-8, due to non-detect sub-slab and accompanying indoor air concentrations of 0.64 ug/m³ for TCE. However, recent exceedances of the NYSDOH AGV of 2 ug/m3 for TCE in the rooms adjacent to the IA-6 location, identified as IA-7 and IA-8, and SS-7/IA-7(032922), SS-9/IA-9(032922), and SS-10/IA-10(032922), all located within the Buffalo Cider Hall warrants further investigation.

In consideration of the March 27, 2022 analytical results, and with the new knowledge of the recently discovered below-grade ODL storage area, EA proposed to complete SVI sampling in this specific area in effort to identify the source of the chlorinated hydrocarbons. A total of four sub-slab and corresponding indoor ambient air samples, one additional ambient indoor air sample, and two ambient outdoor air samples are proposed for the additional investigative effort at the following locations:

- One sub-slab and corresponding indoor ambient air sample in the below-grade ODL storage area adjacent to where previous SS-10(032922) was collected;
- One sub-slab and corresponding indoor ambient air sample in the Buffalo Cider Hall additional seating area and location of previous indoor air sample IA-8(120221);
- One sub-slab and corresponding indoor ambient air sample in the area known as the "event area" of the cidery, in the vicinity of where previous IA-10(032922) was collected, where the floor has visible cracks and filled-in historic drains; and
- One sub-slab and a corresponding indoor ambient air sample in the ODL tenant space, in the general vicinity of previous samples IA-5/SS-5.

During the initial SVI investigation completed in 2017, sample SS-5 was accidently destroyed by heavy equipment during building development activities. During the initial startup of the four currently operating SSD systems, there were initial exceedances of the NYSDOH AGV for TCE in December 2018 and December 2019

at the IA-5 location at which time not all Site SSD systems were operating effectively¹⁸.

Two additional outdoor ambient air samples were also proposed at the following locations:

- One on the Chandler Street side of the building directly adjacent to the entrance of the cidery and an additional sample collected from the roof top adjacent to the HVAC units that service the cidery area; and
- One additional indoor air ambient sample from the elevator shaft located directly outside of the cidery "event area". Building management was able to lock the elevator doors in an open position during sample collection with the sample tubing inserted into the void between the elevator car and hallway, so that any below grade vapors from the elevator shaft could be collected.

The procedures outlined in the March 2022 SVI Investigation Work Plan were followed for the additional sample collection, with the addition at the request of NYSDEC, that tracer gas be utilized in testing the sub-slab sample locations to ensure that a proper seal is in place around the tubing inserted into the sub-slab. The procedures outlined in Section 2.7.5 of the NYSDOH SVI Guidance document were followed. A diagram illustrating the proposed additional sample locations is included as Figure 6.

Results of the March 2022 SVI Investigation and the proposed additional air sample collection will be reviewed by EA and the engineer on record to develop an appropriate plan of action to mitigate the vapor intrusion in this area. A report of the findings of the additional sampling, as well as a proposed course of action will be included in a Corrective Measures Work Plan for the Department's review and approval. The requirements for Site closure have not yet been met, and no changes to the frequency of PRR submittals are recommended at this time.

_

¹⁸ As detailed in Section 1.4 above, during the initial post-SSD system monitoring and sampling event in December 2018, SSDS-1, SSDS-2, and SSDS-3 were not operating. During a follow up inspection in February 2019, the property manager indicated the fan at SSDS-3 would only work intermittently. Indoor air samples collected at the IA-5 location in both December 2018 and February 2019, detected TCE at a concentration exceeding the NYSDOH AGV of 2ug/m3. An additional follow up site inspection was completed in June 2019 when all four SSD systems were functioning properly. A follow up indoor air sample was collected in June 2019 exhibited TCE at concentrations within the NYSDOH AGV. There have been no further exceedances at the IA-5 location since.

APPENDIX A FIGURES

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, BUFFALO NE & NW, NEW YORK 2013 QUADRANGLE

ENVIRONMENTAL ADVANTAGE, INC.			
Regulatory Compliance – Site Investigations – Facility Inspections			
SITE LOCATION MAP			
155 & 157 CHANDLER STREET			
BUFFALO, NEW YORK			
R & M LEASING LLC			
BUFFALO, NEW YORK			
DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: 01101	
CHECKED BY: CMH	DATE: 04/2022	FIGURE NO: 1	

BUFFALO, NEW YORK

SCALE: 1" = 60'

DATE: 04/2022

DRAWN BY: MB

CHECKED BY: CMH

PROJECT: 01101

FIGURE NO: 3

IA-10 TCE
(ug/m³)
03/29/22 39.2

APPENDIX B SITE-WIDE INSPECTIONS AND FIELD NOTES

Site-Wide Inspection Form

Site: 155 Chandler Street Buffalo, NY Date: 6/17/2021
Inspector: Eric Betzold Weather: 65-75°F Sunny
General site conditions at the time of the inspection: Normal operations
Are site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection? Yes.
Do the implemented institutional controls continue to be protective of human health and the environment? Yes.
Is the site currently in compliance with requirements of the SMP and the Environmental Easement? Yes.
Are site records complete and up-to-date?Yes.
Are the implemented Engineering Controls (SSDS) operating in compliance with the requirements of the SMP? Yes.
SSDS Pressure Differential Readings:
SSDS-1: 1.0"
SSDS-2: 1.0"
SSDS-3: 1.5"
SSDS-4: 1.0"
Deficiencies Observed / Corrective Actions Required:
Notes: Exhaust fan was installed near 'IA-6' sample location. During the sample collection of 'IA-6 (061721)', EA left the two (2) man doors open to allow for fresh air to infiltrate the room. This sampling served as a 'pilot' test for the subsequent installation of passive vents within each door.

Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use:
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

oil Vapor Intrusion -	Structure Sampling Building Questionnaire Structure ID :
Site No.: C9	15312 Site Name: Pierce Arrow Business center
Date: 6/17	15312 Site Name: <u>Pierce Arrow Business center</u> 1/2021 Time: 7:15am
Structure Address :	155-157 Chandlerst. Buffalo, NY
Preparer's Name & Aff	illation: Eric Betzold, Environmental Consultant
Residential? ☐ Yes	□ No Owner Occupied ? □ Yes □ No Owner Interviewed ? □ Yes □ No
Commercial ?	s □ No Industrial? □ Yes □ No Mixed Uses? 💢 Yes □ No
Identify all non-resider Great Lakes Pr Owner Name :	ntial use(s): <u>litilant (computer software)</u> , Barrel & Brine (Restaurant), Andersen occassing services, LLC, ODL Orthodoktics, Blackbird cidery. R&M Leasing Owner Phone: ()
	Secondary Owner Phone : ()
Owner Address (if diffe	erent): 391 Washington 5t. Buffalo NY 14203
Occupant Name :	ix Various Commercial Occupant Phone: ()
L easees	Secondary Occupant Phone : ()
Number & Age of All P Additional Owner/Occi	rersons Residing at this Location: APProx. ID People (2nd floor)
Describe Structure (sty	yle, number floors, size): Refurbished industrial use space into
mixed us	se site. 1-2 storres, Brick externor, Flat rubbermembrane
Approximate Year Built	00 (Az)
Lowest level :	X Slab-on-grade □ Basement □ Crawlspace
Describe Lowest Level	(finishing, use, time spent in space): Remodeled Commercial Space.
DCCuPan+S	
Floor Type: Concre	ete Slab
Floor Condition :	Good (few or no cracks) ☐ Average (some cracks) ☐ Poor (broken concrete or dirt)
Sumps/Drains?	Yes No Facility, Please note: Name in The Sample of
None	netrations & details:
	Wa 1811 55 10 11 51 11 11 11
Wall Construction : Identify any wall penet	Concrete Block Poured Concrete Laid-Up Stone trations: Overhead garage doors @ Blackbird Cidery.
Identify water, moistur	re, or seepage: location & severity (sump, cracks, stains, etc) :
Heating Fuel :	□ Oil ☑ Gas □ Wood □ Electric □ Other:
Heating System :	Forced Air □ Hot Water □ Other :
Hot Water System :	Combustion 🗆 Electric 🗆 Boilermate 🗆 Other:
Clothes Dryer :	□ Electric □ Gas Where is dryer vented to?
If combustion occurs,	describe where air is drawn from (cold air return, basement, external air, etc.): Roof-top
77.7 = 017	where fans/vents pull air from and where they vent/exhaust to) :
	for was installed near 'TA-6' Sample lacation: March 20

Structure	ID	:		

Describe fac	tors that may a Non e	affect indo	oor air quality (chemical use/stora	age, unvented heat	ers, smoking, works	shop):	
Attached gara	age ?	☐ Yes	∑ No	Air fresheners ?	☐ Yes	∑/No		'
New carpet or	r furniture?	□ Yes	≯ No	What/Where ?				
Recent paint	ing or staining	?	□ Yes 🔀	_No	Where ? :			•
Any solvent	or chemical-lik e	e odors ?	□ Yes	X No	Describe :			
Last time Dry	Cleaned fabric	s brought	in? <i>\\}</i>	V	What / Where ?			-
Do any buildir	ng occupants us	e solvents	at work ?	□ Yes 💢 I	No De	escribe :		
Any testing fo	r Radon ?	□ Yes	⋉ No	Results : _				
Radon Syster	m/Soil Vapor Inti ろろ insta	rusion Mitig	gation System p ハ 2017 aィ	resent? Not are de.	□ Yes □ Scribedas	No If yes,	describe below	ntrol for the site,
1			Lowest Bui	lding Level Lav	vout Sketch	_		
0 CG	O Chador	5505-7		Black Brider	elth sops-4	J- lon'		
Measure the ldentify roo	ne distance of al m use (bedroom	I sample lo n, living roo following f ce ster	cations from ide m, den, kitchen	entifiable features, , etc.) on the layou ayout sketch, using Other floor or wa Perimeter Drains Areas of broken- Location & label Location & label Location & label	g the appropriate s all penetrations (lab s (draw inside or o	layout sketch. ymbols: pel appropriately) utside outer walls as samples les ples	s appropriate)	

Structure Sampling - Product Inventory

Homeowner Name & Address:	R&M Leasing	Date:	6/17/2021
Samplers & Company:	Es:c Betzold	Structure ID:	C915312
Site Number & Name:	C915312; Pierce Arrow Busnessa	enter Phone Number:	
		Date of PID Calibration:	6/17/2021
Identify any Changes fro	m Original Building Questionnaire :		

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
None				
700100	-			

	<u> </u>			
·				
	-			

Client: K&N Le	esmg	Project No	o.: <u>01101</u>
Site Name & Address:		St. Buffalo, N	Y .
Person(s) Performing Sam	oling: <u>Este Be</u>	itzold	
Sample Identification:	<u> EA-6 (06</u> 1721)		
Sample Type: ⊠ Indoor A	ir (ambient) □Outd	oor Air □Soil Vapor	□Sub-slab Vapor
Date of Collection: 6/	// 7/2021 Setu	o Time: 7:30 am	Stop Time: 3:30 Pm
Sample Depth:	<u> </u>		
Sample Height: 5			
Sampling Method(s) & Dev	ice(s): <u>2,7 L</u>	Summa Canist	er & Regulator
Purge Volume:	<u></u>		_
Sample Volume: 2.	74		
Sampling Canister Type &	Size (if applicable): _	2.7 L Sum	Ma
Canister#	157	Regulator #	87
		ampling: -29.52	
Vacuum Pressure	of Canister After Sam	pling:	[49
Temperature in Sampling 2	ione: <u>65°F</u>		
Apparent Moisture Content	of Sampling Zone: _	Low	
Soil Type in Sampling Zone). 		
Standard Chain of Custody	Procedures Used for	Handling & Delivery of	Samples to Laboratory:
⊠Yes		ide reason(s) why?	
Laboratory Name:	Alpha Anely	1tical	
Analysis: TE)-15		· · · · · · · · · · · · · · · · · · ·
Comments: Ambie	it Indoor	A: 1: 0.000	<u> </u>
The two M	an -door ento	ancas were lei	ff ajar ~ 1"
to allow the	-MCIltration of	Fresh autobor	arr.
		91184 	Asym Control of the C
Sampler's Signature	Ju / Both	<u> </u>	ate: 6/17/2021

Site-Wide Inspection Form

Site: 155 Chandler Street	Buffalo, NY	Date:	12/2/2	2021
Inspector: Eric Betzold		_	Weather:	45°F Rain
General site conditions at	the time of the insp	ection: _	Normal oper	ations.
Are site management confirmation sampling and				
Do the implemented instit the environment? <u>Yes.</u>				
Is the site currently in con Easement?Yes.				
Are site records complete	and up-to-date?	Yes.		
Are the implemented Engrequirements of the SMP?				
SSDS Pressure Differentia	al Readings:			
SSDS-1: 1.0"	_			
SSDS-2: 1.0"	_			
SSDS-3: 1.5"	_			
SSDS-4: 1.0"	_			
Deficiencies Observed / C	orrective Actions Re	equired:	None.	
Notes: <u>During November</u> entering the un-occupied i			e installed w	rithin the man doors

Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use:
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

Soil Vapor Intrusion - S	Structure Sampling Building Questionnaire Structure ID :	
Site No.: C91	15312 site Name: Pierce Array Business center	
Date: 12/02	2/2021 Time: 7:00 am	
Structure Address :	155-157 Chandlerst. Buffalo, NY	
Preparer's Name & Affil	fillation: Eric Betzold, Environmental Consultant	
Residential? Yes	□ No Owner Occupied ? □ Yes □ No Owner Interviewed ? □ Yes □ No	
Commercial ? \square Yes	s □ No Industrial? □ Yes □ No Mixed Uses? 💢 Yes □ No	
Identify all non-resident Great Lakes Pro Owner Name:	ntial use(s): <u>Utilant (computer software)</u> , <u>Barrelly Brine (Restaurant)</u> , frocessing services, LLC, ODL Orthodokties, Blackbird Cidery, R&M Leasing Owner Phone: ()	+ndersen7
	Secondary Owner Phone : ()	
Owner Address (if differen	erent): 391 Washington 5+. Buffalo, NY 14203	
	ix Various Commercial Occupant Phone: ()	
L ea siees	Secondary Occupant Phone : ()	
Number & Age of All Pe	Persons Residing at this Location: APPVOX. /p People (2nd floor)	
Additional Owner/Occu	upant Information : N/A	
Describe Structure (style	yle, number floors, size): Refurbished industrial use space into	
Approximate Year Built:	se site, 1-2 storres, Brick exterior, Plat rubber mo of 12): Early 1900s Is the building Insulated? XYes \(\text{No}\)	embrane
Lowest level :	☑ Slab-on-grade ☐ Basement ☐ Crawlspace	
Describe Lowest Level	I (finishing, use, time spent in space): Remodeled Commercial Space.	
occupants	s spend 8-12 hrs per day in these areas	
Floor Type: Concrete	ete Slab 🗆 Dirt 🗀 Mixed :	
Floor Condition :	Good (few or no cracks) ☐ Average (some cracks) ☐ Poor (broken concrete or dirt)	
Sumps/Drains?	VYes No No Facility. Please Note: None in IA-6 Sample 10 cat	ŧ
Identify other floor pene	netrations & details:	2027
None		
Wall Construction :	Concrete Block Poured Concrete Laid-Up Stone trations: Worked garage doors @ Blackbird cidery.	
Identify water, moisture	re, or seepage: location & severity (sump, cracks, stains, etc):	
Heating Fuel :	□ Oil ☐ Gas □ Wood □ Electric □ Other:	
Heating System :	Forced Air	
Hot Water System :	Combustion Electric Boilermate Other:	
Clothes Dryer :	☐ Electric ☐ Gas Where is dryer vented to?	
If combustion occurs, d	describe where air is drawn from (cold air return, basement, external air, etc.): Roof-top	
Fans & Vents (identify w	where fans/vents pull air from and where they vent/exhaust to) :	/
Exhoust	- Fan was installed near 'IA-6' Sample location in 1	larch 2021.
10 SSITE VENTS	were installed in November 2021 near IA-6 location.	

Describe fac	tors that may affect ind	door air quality ((chemical use/storage, unvented heaters, smoking, workshop):
			Air fresheners ? ☐ Yes ☐ Yo What/Where ?
	ing or staining ?		No Where ? :
	or chemical-like odors ?	/	No Describe :
ast time Dry	Cleaned fabrics brough	t in ? <i>\V\/</i>	What / Where ?
o any buildir	ng occupants use solveni	ts at work ?	☐ Yes 💆 No Describe :
ny testing fo	or Radon? ☐ Yes	⋉ No	Results :
adon Systen Ц - S&	m/Soil Vapor Intrusion Mi 505 installed		oresent?
		Lowest Bui	ilding Level Layout Sketch
		С	TA-8(120121) TA-7(120221) TA-8(120121) TA-7(120221) TA-8(120121) TA-7(120221)
y			
	0 1 0 3 1 1 1 2 0 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2)	Count of the land
	5505		EA-2(12.0221)
ZAV Gr	2012 221 3 • 3505	Anderse	Hallway Choire 194
	S	sps3 Ta	Bang 5505-4 FA-3((20221)
Measure th	ne distance of all sample	sub-slab, indoor a locations from ide	air, and outdoor air samples on the layout sketch. entifiable features, and include on the layout sketch. , etc.) on the layout sketch.
			ayout sketch, using the appropriate symbols:
B or F HW FP	Boiler or Furnace Hot Water Heater Fireplaces	o xxxxxx ######	Other floor or wall penetrations (label appropriately) Perimeter Drains (draw inside or outside outer walls as appropriate) Areas of broken-up concrete
WS W/D	Wood Stoves Washer / Dryer	• SS-1 • IA-1	Location & label of sub-slab vapor samples Location & label of indoor air samples
s	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

Structure Sampling - Product Inventory

Homeowner Name & Address:	R&M Leasing	Date: 12/02/252 1
Samplers & Company:	Esic Betzold	Structure ID: <u>C91531</u> 2
Site Number & Name:	C915312; Pierce Arrow Busine	SS Center Phone Number:
Make & Model of PID:	Honeywell Min: RAE 3000+	Date of PID Calibration: 12/02/2021
Identify any Changes from	m Original Building Questionnaire : None	·

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
Paint	,	Titanium Dioxide	0.0	Near IA-7
				<u> </u>
	-			

Client: R & M Leasing LLC	Project No.: 01101
Site Name & Address: 155 Chandler	Street Buffalo, NY
Person(s) Performing Sampling: Eric E	
Sample Identification:	20221)
Sample Type: Indoor Air (ambient)	□Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/2/2021	Setup Time: 9:17 am Stop Time: 5:17 pm
Sample Depth:	_
Sample Height: 4	_
	_iter Summa Canister and Regulator
Purge Volume:	_
Sample Volume: 2.7 L	-
Sampling Canister Type & Size (if appli	cable): 2.7 Liter Summa Canister
Canister # 3458	Regulator # <u>01627</u>
Vacuum Pressure of Canister P	Prior to Sampling:
Vacuum Pressure of Canister A	ofter Sampling:
Temperature in Sampling Zone:	
Apparent Moisture Content of Sampling	Zone:/0 W
Soil Type in Sampling Zone:	***************************************
Standard Chain of Custody Procedures	Used for Handling & Delivery of Samples to Laboratory:
/ ~	no, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Ambrestar	- 0.0ppm
Sampler's Signature	A B 3 (20) Date: 17/2/21

Client: R & M Leasing LLC	Project No.: 01101
Site Name & Address: 155 Chandler S	Street Buffalo, NY
Person(s) Performing Sampling: Eric B	
Sample Identification: <u>IA-2 (I</u>	20221)
Sample Type: Indoor Air (ambient)	□Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/2/2021	Setup Time: 9:20am Stop Time: 5:20Pm
Sample Depth:	-
Sample Depth:	_
Sampling Method(s) & Device(s): 2.7 L	iter Summa Canister and Regulator
Purge Volume:	_
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applic	cable): 2.7 Liter Summa Canister
Canister #	Regulator# 0059
Vacuum Pressure of Canister P	rior to Sampling: <u>- 29.30</u>
Vacuum Pressure of Canister A	fter Sampling: 6.92
Temperature in Sampling Zone:	70°F
Apparent Moisture Content of Sampling	Zone: Low
Soil Type in Sampling Zone:	<u> </u>
Standard Chain of Custody Procedures	Used for Handling & Delivery of Samples to Laboratory:
Ya¥xes □No. If	no, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Ambrest air -	0.0 ppm
7	
Samuelaria Simeatura	10/1/21
Sampler's Signature	BSW Date: 12/2/21

Client: R & M Leasing LLC Project No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-3(1</u> 20221)
Sample Type: Soil Vapor □ Sub-slab
Date of Collection: 12/2/2021 Setup Time: 9:00 Stop Time: 5:00 Pr
Sample Depth:
Sample Height:5 '
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister #
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 70 F
Apparent Moisture Content of Sampling Zone:Low
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
☐No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments: Ambiert ar -0.0 PPm
Sampler's Signature Date: 12/2/21

Client: R & M Leasing LLC Project No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-4 (1</u> 20221)
Sample Type: ∭Andoor Air (ambient) □ Outdoor Air □ Soil Vapor □ Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Time: 8:55am Stop Time: 4:556
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister# 3408 Regulator# 01379
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 70°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes □ No. If no, provide reason(s) why?
_aboratory Name:_Alpha Analytical
Analysis: TO-15
Comments: Ambiert air - 0.0ppm
Sampler's Signature Sin //B/W Date: 12/2/21
Sampler's Signature

Client: R & M Leasing LLC Project No.: 01101	
Site Name & Address: 155 Chandler Street Buffalo, NY	
Person(s) Performing Sampling: Eric Betzold	
Sample Identification: <u>TA-4(120</u> 221) DuP.	
Sample Type: ✓ Indoor Air (ambient) □ Outdoor Air □ Soil Vapor □ Sub-slab Vapo	r
Date of Collection: 12/2/2021 Setup Time: 8:55am Stop Time: 4	<u>:55p</u> r
Sample Depth:	
Sample Height: 4'	
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator	
Purge Volume:	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister	
Canister # 3184 Regulator # 01472	
Vacuum Pressure of Canister Prior to Sampling:	
Vacuum Pressure of Canister After Sampling:	
Temperature in Sampling Zone: 76 F	
Apparent Moisture Content of Sampling Zone:	
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Labora	atory:
Yes □ No. If no, provide reason(s) why?	
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Ambient Am - 0,0 ppm	
Sampler's Signature	21

Client: R & M Leasing LLC Project No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-5(12</u> 022)
Sample Type: ☐ Indoor Air (ambient) ☐ Outdoor Air ☐ Soil Vapor ☐ Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Time: 8:50 Stop Time: 4:50Pv
Sample Depth:
Sample Height: 4'
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister# 1723 Regulator# 0321
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:6.89 "
Temperature in Sampling Zone: 70°F
Apparent Moisture Content of Sampling Zone:/ow
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
✓Yes □ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments: Ambient Air - 0.0 ppm
Sampler's Signature

Client: R & M Leasing LLC Project No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>TA-6 (1</u> 20221)
Sample Type: ✓ Indoor Air (ambient) □ Outdoor Air □ Soil Vapor □ Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Time: 9:15am Stop Time: 5:15px
Sample Depth:
Sample Height:5'
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister # Regulator # 0958
Vacuum Pressure of Canister Prior to Sampling: 29.37 "
Vacuum Pressure of Canister After Sampling: 0.05"
Temperature in Sampling Zone: 60°C
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments: Ambient Arr - 0.0 ppm
Sampler's Signature

Client: R & M Leasing LLC Project No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>IA-7(12</u> 0221)
Sample Type: ✓Indoor Air (ambient) □Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Time: 9:10am Stop Time: 5:10fm
Sample Depth:
Sample Height: 4'
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister and Regulator
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister# <u>538</u> Regulator# <u>5139</u>
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling: 5.66 '
Temperature in Sampling Zone: 70°F
Apparent Moisture Content of Sampling Zone: Lew
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes ☐ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments: Ambient air - 0.0PPm
Sampler's Signature Fun Markov Date: 142/21

Client: R & M Leasing LLC Proje	ect No.: 01101
Site Name & Address: 155 Chandler Street Buffalo, NY	
Person(s) Performing Sampling: Eric Betzold	
Sample Identification: <u>TA-8 (12</u> 0221)	
Sample Type: ✓ Indoor Air (ambient) □ Outdoor Air □ Soil Val	por □Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Time: 9:12@	Stop Time: 5:12pm
Sample Depth:	
Sample Height: 4	
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister a	nd Regulator
Purge Volume:	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa C	Canister
Canister# Regulator#	01369
Vacuum Pressure of Canister Prior to Sampling: 25	7./3"_
Vacuum Pressure of Canister After Sampling: 5.	82"
Temperature in Sampling Zone: 70°F	
Apparent Moisture Content of Sampling Zone: Low	
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Handling & Deliver	ry of Samples to Laboratory:
Yes □ No. If no, provide reason(s) why?	
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Ambient Air - 0.0ppm	
Sampler's Signature	Date: [2/2/2]

Client: R & M Leasing LLC	Project No.: 01101
Site Name & Address: 155 Chandler Street Buffa	lo, NY
Person(s) Performing Sampling: Eric Betzold	
Sample Identification: <u>OA-I(1</u> 20221)	•
Sample Type: Indoor Air (ambient) Qutdoor	Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/2/2021 Setup Tir	ne: <u>9:05am</u> Stop Time: <u>5:05 β</u> w
Sample Depth:	
Sample Height:5'	
Sampling Method(s) & Device(s): 2.7 Liter Summ	a Canister and Regulator
Purge Volume:	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable): 2.7 L	iter Summa Canister
Canister# 2384 Reg	julator# <u>0960</u>
Vacuum Pressure of Canister Prior to Sample	ing:
Vacuum Pressure of Canister After Sampling	:
Temperature in Sampling Zone: 45°F	_
Apparent Moisture Content of Sampling Zone:	LOW
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Hai	ndling & Delivery of Samples to Laboratory:
Yes □ No. If no, provide r	eason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Ambient Am - 0	.0 ppm
Sampler's Signature	Date: 12/2/21

Well Data Sheet

Date: 12/2/2021	Job#:
Well ID: MW-3 (120221)	
Crew: Eric Betzold	
Well Depth (TOR): 18.5	_
Well Depth (GS):	_
Initial Water Level (TOR): 2,55	_
Initial Water Level (GS):	-

Volume Calculation: 15.95 x.163 x 1 = 2.60 gal = 1 well vol

Purge Record

Time	Volume	рН	Cond. ms/cm	Temp. VC	Turbidity ~
11:06am	1921	6.98	7.92	16.16	5.2
11:16am	2,921	6.82	4.80	15,45	3.1
11:19 am	2.6921	6.83	5.28	15.30	1.5
	,				

Purge Method:	Baile (Submersible Pump
Initial Water Quality	Good
Final Water Quality	Good

SAMPLE RECORD

Date:
Time: //; 20 am
Crew: Eric Betzold
Method: Low Flow Sample
Sample ID: Mw-3
Water Quality: Good
pH: 6.72
Conductivity: 8.61 ms/cm
Temperature: 15.34°c
Turbidity: 2.2 NTV

Volume: 3x	40ml								
Analysis: Voc	8260 TCL								
	Chain of Custody #:								
Sample Type:	Continuous								

01101

Diameter	Multiply by
1"	0.041
2"	0.163
3"	0.367
4"	0.653
6"	1.468
8"	2.61

Comments: Well headspace: 0.0ppm

TOR= Top of Riser GS= Ground Surface

Signature:

fin jato

Site No.: C915312 Site Name: Proce Array Business center (Black 6
Date: 3/29/2022 Time: Cidary 8:20am
Structure Address: 155 Charoller St. Buffalo, NY
Preparer's Name & Affiliation: EricBetzold Environmental Consultant
Residential ? 🗆 Yes 🗀 No Owner Occupied ? 🗆 Yes 💆 No Owner Interviewed ? 🗆 Yes 💢 No
Commercial? ☐ Yes ☐ No Industrial? ☐ Yes ☐ No Mixed Uses? 文 Yes ☐ No
Identify all non-residential use(s): Black bird Cidery
Owner Name: R&M LeaSing Owner Phone: ()
Secondary Owner Phone : ()
Owner Address (if different): 39/ washing to St. Burral o NY 14703
Occupant Name: Blackbord cidery Occupant Phone: ()
Secondary Occupant Phone: ()
Number & Age of All Persons Residing at this Location: APProx. 10 People (2nd floor)
Additional Owner/Occupant Information:
Describe Structure (style, number floors, size): 1-2 Storres Brick Extense flat Rubber
Membrane roof. (85,000 ft2)
Approximate Year Built: Forly 1900'S Is the building Insulated? Yes \(\subseteq \text{No} \)
Lowest level : ☐ Slab-on-grade
Describe Lowest Level (finishing, use, time spent in space): Small area within Blackbird cidery
Floor Type: Concrete Slab Dirt Mixed :
Floor Condition : Good (few or no cracks) Average (some cracks) Poor (broken concrete or dirt)
Sumps/Drains? Yes Describe: Various Place/trench drains throughout
Identify other floor penetrations & detalis: Various Water/ Sever Imes, electrical
conduits.
Wall Construction: ✓ Concrete Block □ Poured Concrete □ Laid-Up Stone
Identify any wall penetrations: overhead garage doors, located within
Blackbird Cidery.
Identify water, moisture, or seepage: location & severity (sump, cracks, stains, etc):
Heating Fuel: ☐ Oil ♥ Gas ☐ Wood ☐ Electric ☐ Other:
Heating System: ☐ Hot Water ☐ Other:
Hot Water System : Combustion Electric Boilermate Other:
Clothes Dryer: Gas Where is dryer vented to?
If combustion occurs, describe where air is drawn from (cold air return, basement, external air, etc.):
Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) :
Exhast for installed new 'IA-6' sample/ocation in March 2021.

Soil Vapor Intrusion - Structure Sampling Building Questionnaire

Structure ID : ______

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

Structure ID		
Structure ID	•	

									1) r	10	2																																		_	
Att	ac	hec	l ga	ara	ge	?						ΙY	es		Ć	X	No)			Ai	r fr	es	her	ner	s ?					ΙY	'es)	X	No)										
Ne	w (car	pet	or	fu	rni	itur	e ?	•			Ye	s	•	Z	(N	0				WI	nat	·/W	/he	ere	? _			_				_		_	_	_					_				_	
Re	ece	nt p	oai	nti	ng	01	st	air	nin	ıg '	?					Ye	es		Ì	K	Ю						١	۸ŀ	ner	e ?	? :		_			_	_			_		_	_	_		_	
An	y s	olv	/en	t c	or c	:he	emi	ica	ıl-l	ike	9 00	dor	s?	•			Y	es		>	(No					[Des	scr	ibe	e:															_	
La:	st t	ime	e D	ry	CI	ea	ne	d f	ab	ric	s b	rou	ıgh	nt ir	ո ?		<u>.</u>	_	_	4	4					١	Λh	at	/ V	Vh	ere	?				_				_			_			_	
Do	ar	ny t	ouil	din	ıg (oco	cup	an	its	us	e s	solv	en	ts a	at v	NOI	r k '	?				٠ (Yes	3	١		No	,					De	sci	ibe	:										_	
An	ıy te	esti	ing	fo	r R	ad	lon	?				Ye	s	C	X	N	lo						Re	esu	ılts	:_																				_	
Ra	do	n S	Syst	ten	n/S	oi	١Va	apc	or I	ntr	้นร	ion	Mi	itig	ati	on																							yes								
ıΤ	_	,	_	J	_	_									<u> </u>																															_	
kb	r <i>()</i>	₹		1U	LT.	· y	, □□	-			ı		1		L	OW	ve	_	-	_		÷	10		el	-1	-		S	ke 	tcl	h	$\overline{}$	\top	_	Т	Т	_	1 1	_	<u> </u>	-	_	-	<u> </u>	_	
-		0.23E						4			_	_	_	_	_		_	_(2	Λ¢	17	(A	le	3	٤	1	1	-	į	-	1	‡	#	‡		ļ	+	÷			1	1	‡	Ì	ţ	<u> </u>	
				╛		_	motes:	er ou	10.79	1000	-	To William	Section 1	wer.	-	gargin.		ਅਰ	- स्टाम		-			<u></u>	233943	dene.	mark.	otta s	name 2	<u> </u>	-		- u	MEE 52	22 23	- P	23 A3	ne ens		e e e e e e e e e e e e e e e e e e e		-			1	J.	
-		"	\dashv	-	_		ı	_	00	ر مري	<u>-</u>		! 				_ !			<u> </u>		<u> </u>	1	<u> </u>			1	,	<u> </u>		<u> </u>	$\frac{1}{1}$	+	+			+	+			4	1		-		1	
	П			_	<u>/</u>	Φ,	ለት	7	*														_		3	7	e,	cl	V	ļ (a	Ŋ	_ -			- -		F					Ť	1			
-	Н			Ì	V			- 1			<u> </u>	Н	_						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>/</u>	-	-	-	-		-	-	-	-	-+	+	+	+	+	-				-	+	4	+	1	
		L						Ì	Į,				j		_	_	_			_	<u> </u>	_	_	-	-		į		ļ	į	į	į	1				Ţ	İ	Į			1	Ţ	į			
-	H							- 1	Ø		<u> </u>	Н	<u> </u>						<u>.</u>	<u> </u>	i	<u> </u>	<u> </u>	<u> </u>	Н	급	\dashv	\dashv	<u> </u>	<u> </u>	<u> </u>	$^{+}$	+	+		+	+	十	Н		(0	7	-\$	Ş	-7	/ I .	A
								Ì				Li	į					- (ζ,	7	P *	2,1					1		1		1	1	1				ļ	ļ	ļ			-			6	ī)	ď
-	H			_		Α	_1	O	٠,			7	_	_						<u> </u>	<u> </u>	<u> </u> 		<u> </u>	Н	-	\dashv	\dashv	ᅥ	\dashv		\dashv	- -	- -	- -	- -	+	╁	\vdash	_	4	•		43	-	-	
					_				_		Ĺ	1	\Box					_	_	2,	11.5						7		T	_	ineno.	_	-	_	==	=	+	-		-		-		+		j	
<u> </u>	H	_				_		4	_	ا ام سا	0	<u> 1</u>	١	\dashv	_	H	_	_	-4		_	_		H	Н		+	\dashv	1	_	\exists	+	\pm	+	\pm	+	$^{+}$	⊥á k	+	7	-	_	-	┨	+	-	
	Ц				_	5	5-	.1	U	Z		-		٠İ			ଚ	L		Ĺ		Ĺ	L				ij	_	j	Ş	S	5- 8)/I	Ą	-9		ļ	I				(a)	ロ	1		1	
	Н	-	-	-	—	-	-	-	-(}	5	PK	M	\mathcal{A}	_			⊢	_	H	\vdash	H	\vdash	-	H	_			-	4	-	•	₽ ,	-		i E	•	╁	-	Н	-	-	+	╅	+	-	
	П									Ē																			╛	•	1	Δ	- \		4	2 2		1				(a	2				
	-		-							l l		H				H				<u> </u>			<u> </u>				-	-	1	_1		•	+	+	1	+	+	+		_			1	-	+	-	
	Ľ		MANUFACT PROPERTY.	PARTIE:	e Const	CERTS	courses	27501	SSECT	397.96	(Chica)	SPREEK!	1007/0 5		7765	ARTESTS.	ama	at Ges	COL	DIFFE.	e e e e e e e e e e e e e e e e e e e	162	EXCREC	19Mil	sapes:	toner.	-	7		7	eperate l	MED# 3	***	4	er seco	40	-	REF CES	i matthe	0434	-	-	_	+	1	_	
																														J	ميد		4	i,	الز	1	2	4				-					
																											f						T	1	t	t	t	t				1	1	t	1	_	
		_								_		L				L		4	į,	n	4	<u></u>	Ļ		_		1	4	4	_	_	4	4	+	+	+	+	+	\vdash			4	4	4	+	_	
	lda	41				.	l th			otic							_			7	1'		1				i		أ			the	ا		1	l de	İ	İ						İ			
			•									of																	•																	_	
-	Me	eas	ure	th:	e d	sit	tan	ce	of	all	Sa	amp	ole	loc	cati	ion	s f	ror	n i	der	ntif	iab	le 1	fea	tur	es,	an	d i	nc	lud	e c	n t	he	lay	ou	l sł	cet	ch.									
-	lde	ntit	fy r	00	m ı	JS	e (b	ed	iro	om	ı, li	vin	g r	oor	n,	dei	n, I	kito	che	n,	eto	2.)	on	the	e la	yoı	ıt s	ke	tch	١.																	
_	Ide	nti	- Fv +1	hД	loc	· at	ion		۰f t	hΔ	fol	llow	in.	n fo	aati	urc		n	the	Io	wo	ı ıt ı	ckc	atok	h i	eir	a t	ho	an	nr	nnr	ist	2 61	ım	hol	٠.											
•			•	IIE									/II IÇ	9 10	au	ure	;5 ()	LITE	: 10	iyui	ut i	SNC	SICI	ι, τ	i5ii	ıy ı	i ie	aμ	pi	opi	iau	. 5	yııı	UUi	ъ.											
		or					er o											0																				atel	• •								
		НΝ					Wa			lea	ter	•				2			XXX								•					e o	OL	ıtsi	de	ou	ter	wa	lls a	as	app	oro	pria	ite)			
		FP					pla												##	•					bro		•									-											
		WS					od S											S							& la							•			npl	es											
	١	N /I)		W	as	she	r/	Dr	yeı	r						•) IA	\-1		L	oca	atic	on 8	& la	be	l of	in	do	or	air	sar	np	les													
		s			S	ım	nps										•	0	A-1		- 1		otic	n i	& I:	aha	ا م ا	OI	ıtd	റവ	r ai	rsa	am	nle	c												
		•			J	ull	ıpə											-			ᆫ	UC	auc	ліс	α I	JUC		-	atu	00	u			PiC	J												

Structure Sampling - Product Inventory

Homeowner Name & Address:	R&M Leasing	Date: 3/29/2022
Samplers & Company:	Errc Betzold & Jason Kryszak	Structure ID: <u>C 91 5 31</u> 2
Site Number & Name:	Pierce Arrow Business center (Black	hone Number:
Make & Model of PID:	Mmi RAE 3000	Date of PID Calibration: 3/28/2-22
Identify any Changes from	n Original Building Questionnaire :	

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
Wall Paint	3	Titanium Dioxide	. ND	Near 55-3/I
Acetone.	guart	Acetone	ND	(1 /1
Furniture Refinisher	guar f	Acetone Acctone, Tolvere, Method, polyethylere Glycol, Rosm	ND	" "
Stripper	guart	Methylere chloride	ND	٠, ١,
Brisheleoner	gust	Methanol, Tolocce, Acetone	ND	11 11
woodckerer	quart	Isofrofanol	an	., ,
Sfray Pass	1can	Vocs	ND	., ,
Stan	can	Vac 5	NO	11 1,
bleach	gal	sodium hypochlorite	NΡ	Kitchen
degresser	Twant	2-Butoxy etherol	MD	** **
Carbon off	1902	2 - Butoxy Ethanol	an	٠, ١,
floor cleaner	1 9allon	Alcohols (< 9- C11)	ND	11 11
•				

Sampler's Signature 4/11 Bolf

Client: Signature Development Project No.:01101
Site Name & Address: 155 Chandler St. Buffalo, NY
Person(s) Performing Sampling: <u>Eric Betzold & Jason Kryszak</u>
Sample Identification: SS-7(032922)
Sample Type: ☐ Indoor Air (ambient) ☐ Outdoor Air ☐ Soil Vapor ■ Sub-slab Vapor
Date of Collection: 03/29/2022 Setup Time: 0900 Stop Time: 1700
Sample Depth: 6 inches
Sample Height: N/A
Sampling Method(s) & Device(s): 2.7 L Summa Canister & Regulator
Purge Volume: N/A
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 L Summa
Canister # 145 Regulator # 0915
Vacuum Pressure of Canister Prior to Sampling: <u>-30.43</u>
Vacuum Pressure of Canister After Sampling:9.20
Temperature in Sampling Zone: _70° F
Apparent Moisture Content of Sampling Zone: <u>Low</u>
Soil Type in Sampling Zone: _Subbase
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
■Yes □ No. If no, provide reason(s) why?
_aboratory Name:Alpha Analytical
Analysis: <u>TO-15</u>
Comments: Sub-slab: 1.0ppm
Completed in eastern portion of building in the electrical room.
Completed in edition of building in the electrical room.

Sampler's Signature 4 in Buffill

Client: Signature Development	Project No.:	01101
Site Name & Address: <u>155 Chandler St. Buffalo, N</u>	IY	
Person(s) Performing Sampling: <u>Eric Betzold & Ja</u>	son Kryszak	
Sample Identification: <u>IA-7(032922)</u>		
Sample Type: ■ Indoor Air (ambient) □Outdoo	· Air □Soil Vapor □Su	ıb-slab Vapor
Date of Collection:03/29/2022 Setup T	ime: 0900 Stop	Time: 1700
Sample Depth: N/A		
Sample Height: 4'		
Sampling Method(s) & Device(s): 2.7 L Summa (Canister & Regulator	
Purge Volume: N/A		
Sample Volume: 2.7 L		
Sampling Canister Type & Size (if applicable): _2.7	L Summa	·
Canister # 2072 Re	egulator # <u>02225</u>	
Vacuum Pressure of Canister Prior to Sam	oling: <u>-30.30</u>	-
Vacuum Pressure of Canister After Sampli	ng:9.30	
Temperature in Sampling Zone: _70º F		
Apparent Moisture Content of Sampling Zone: <u>Lov</u>	<i>I</i>	
Soil Type in Sampling Zone: N/A		
Standard Chain of Custody Procedures Used for H	andling & Delivery of Samp	les to Laboratory:
■Yes □No. If no, provide	reason(s) why?	
Laboratory Name: Alpha Analytical		
Analysis: TO-15		
Comments: Ambient air: 0.0ppm		
Sample completed in eastern portion of building in		

Sampler's Signature 4/11 Bull

Client: Signature Development	Project No.:01101
Site Name & Address: 155 Chandler St.	Buffalo, NY
Person(s) Performing Sampling: <u>Eric Be</u>	tzold & Jason Kryszak
Sample Identification: SS-9(032922)	
Sample Type: ☐ Indoor Air (ambient)	□Outdoor Air □Soil Vapor ■Sub-slab Vapor
Date of Collection: 03/29/2022	Setup Time: <u>0840</u> Stop Time: <u>1640</u>
Sample Depth: 6 inches	
Sample Height: N/A	-
Sampling Method(s) & Device(s): 2.7 L	Summa Canister & Regulator
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applica	able): _2.7 L Summa
Canister #3198	Regulator # <u>01661</u>
Vacuum Pressure of Canister Pri	or to Sampling: -29.38
Vacuum Pressure of Canister Aft	er Sampling:7.75
Temperature in Sampling Zone: _70° F	
Apparent Moisture Content of Sampling 2	Zone: Low
Soil Type in Sampling Zone: Subbase	
Standard Chain of Custody Procedures L	Jsed for Handling & Delivery of Samples to Laboratory:
■Yes □No. If n	o, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments: Subslab: 0.0ppm	
A positive pressure airflow was noted be	elow the slab (fine dust from drilling blowing up slightly).

Sampler's Signature 4 in Buffill

Sampler's Signature 4/11 Bolf

____ D

Client: Signature Development	Project No.: _	01101
Site Name & Address: 155 Chandler St. Buffalo, NY		
Person(s) Performing Sampling: <u>Eric Betzold & Jason I</u>	Kryszak	
Sample Identification: <u>SS-10(032922)</u>		
Sample Type: ☐ Indoor Air (ambient) ☐ Outdoor Air	□Soil Vapor ■S	ub-slab Vapor
Date of Collection: 03/29/2022 Setup Time:	0850 Stop	o Time: 1650
Sample Depth: 6 inches		
Sample Height: <u>N/A</u>		
Sampling Method(s) & Device(s): 2.7 L Summa Canis	ter & Regulator	
Purge Volume: N/A		
Sample Volume: 2.7 L		
Sampling Canister Type & Size (if applicable): 2.7 L St	ımma	
Canister # 133 Regula	tor # <u>01536</u>	
Vacuum Pressure of Canister Prior to Sampling	-29.40	_
Vacuum Pressure of Canister After Sampling:	15.30	
Temperature in Sampling Zone: 70° F		
Apparent Moisture Content of Sampling Zone: Low		
Soil Type in Sampling Zone: Subbase	-	
Standard Chain of Custody Procedures Used for Handlin	ng & Delivery of Sam	oles to Laboratory:
■Yes □No. If no, provide reas	on(s) why?	
Laboratory Name:_Alpha Analytical		
Analysis: <u>TO-15</u>		
Comments: Sub-slab: 15.0ppm		
Sample completed in basement area in the western po	rtion of the building.	During removal of
the sample tube, water was observed in the bottom of	the tube. The satura	ted soils hindered
the amount of air collected in the canister.		

Client: Signature Development	Project No.: 01101
Site Name & Address: 155 Chandler St. Buffalo, NY	
Person(s) Performing Sampling: <u>Eric Betzold & Jason Krysz</u>	rak
Sample Identification: IA-10(032922)	
Sample Type: ■ Indoor Air (ambient) □ Outdoor Air □S	Soil Vapor □Sub-slab Vapor
Date of Collection: 03/29/2022 Setup Time: 0855	
Sample Depth: N/A	
Sample Height: _4'	
Sampling Method(s) & Device(s): 2.7 L Summa Canister &	Regulator
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable): 2.7 L Summa	a
Canister # 370 Regulator #	01702
Vacuum Pressure of Canister Prior to Sampling: <u>-30</u>	.17
Vacuum Pressure of Canister After Sampling:5.03	<u> </u>
Temperature in Sampling Zone: _70º F	
Apparent Moisture Content of Sampling Zone: Low	
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures Used for Handling &	Delivery of Samples to Laboratory:
■Yes □No. If no, provide reason(s)) why?
Laboratory Name: Alpha Analytical	
Analysis: TO-15	
Comments:	
Ambient air: 0.0ppm	
Sample completed in western portion of building 4' north of	pasement stancase.

Sampler's Signature <u>Giù</u> Bol

APPENDIX C TABLES

Table 1 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY June 2021 Resample

	Guidance Valu	ıes - Indoor Air	
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-6 (061121) Indoor Air
SAMPLING DATE	Background	Value	6/17/2021
LAB SAMPLE ID	(90%)		L2132969-01
Volatile Organics in Air (ug/n	n ³)		
Acetone	98.9	NV	11.3
Carbon tetrachloride*	<1.3	NV	0.711
Chloromethane	3.7	NV	1.20
Dichlorodifluoromethane	16.5	NV	2.47
Ethanol	210	NV	41.6
Isopropanol	NV	NV	28.8
Toluene	43	NV	1.01
Trichloroethene*	4.2	2	1.31
Trichlorofluoromethane	18.1	NV	1.31

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during a 8-hour sample duration.
- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.
- 6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.
- 7. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values.
- 8. NV = No Value

Table 2 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY December 2021 Annual Sample & Post Vent Install Resample

	Guidance Valu	ues - Indoor Air											
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-1 (120221) Indoor Air	IA-2 (120221) Indoor Air	IA-3 (120221) Indoor Air	IA-4 (120221) Indoor Air	IA-4 (120221) Duplicate Indoor Air	IA-5 (120221) Indoor Air	IA-6 (120221) Indoor Air	IA-7 (120221) Indoor Air	IA-8 (120221) Indoor Air	OA-1 (120221) Outdoor Air	Table C2 Outdoor Air
SAMPLING DATE	Background	Value	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	12/2/2021	Guidance
LAB SAMPLE ID	(90%)		L2166417-09	L2166417-10	L2166417-04	L2166417-02	L2166417-03	L2166417-01	L2166417-08	L2166417-06	L2166417-07	L2166417-05	Values
Volatile Organics in Air (ug/	/m³)												
1,2,4-Trimethylbenzene	9.5	NV	ND	ND	ND	ND	ND	ND	ND	1.07	ND	ND	5.8
2,2,4-trimethylpentane	NV	NV	ND	ND	ND	ND	ND	ND	ND	1.44	1.47	ND	NV
Acetone	98.9	NV	15.7	17.6	113	195	194	316	20.1 J	152	123	7.79	43.7
Benzene	9.4	NV	ND	ND	0.85	ND	ND	0.872	ND	1.34	1.41	ND	6.6
Carbon disulfide	4.2	NV	ND	ND	1.42	ND	ND	ND	ND	ND	ND	ND	3.7
Carbon tetrachloride*	<1.3	NV	0.579	0.554	0.434	0.472	0.491	0.591	0.484 J	1.01	0.9	0.528	0.7
Chloroform	1.1	NV	ND	ND	ND	ND	5.66	ND	ND	ND	ND	ND	0.6
Chloromethane	3.7	NV	1.16	1.14	1.13	1.14	1.21	1.18	1.12 J	1.32	1.24	1.14	3.7
cis-1,2-Dichloroethene*	<1.9	NV	ND	ND	ND	ND	ND	0.266	ND	0.412	0.369	ND	<1.8
Cyclohexane	NV	NV	ND	ND	ND	ND	ND	ND	ND	1.48	1.57	ND	NV
Dichlorodifluoromethane	16.5	NV	2.78	2.82	2.51	2.61	2.73	2.49	2.53 J	2.64	2.71	2.68	8.1
Ethanol	210	NV	176	198	5310 R1	100	96.3	143	117 <mark>J</mark>	874	820	13.8	57
Ethyl acetate	5.4	NV	ND	ND	140	ND	ND	ND	ND	3.03	2.63	ND	1.5
Ethylbenzene	5.7	NV	ND	ND	ND	ND	ND	ND	ND	1.26	1.15	ND	3.5
Heptane	NV	NV	ND	ND	2.09	2.49	2.7	2.11	ND	5	2.73	ND	NV
Hexane	NV	NV	ND	ND	0.754	0.934	0.906	1.66	0.959 J	5.64	5.85	1.54	6.4
Isopropanol	NV	NV	20.5	32	578 R1	1720 R1	1730 R1	2370 R1	80.1 J	902 R1	733 R1	6.64	16.5
m&p-Xylene	22.2	NV	ND	2.21	2.45	ND	ND	1.89	ND	5.04	4.6	ND	12.8
Methyl Ethyl Ketone	12	NV	ND	ND	ND	ND	ND	1.68	ND	ND	ND	ND	11.3
Methylene chloride	10	60	ND	ND	ND	ND	ND	2.09	ND	3.72	ND	4.24	6.1
o-Xylene	7.9	NV	ND	0.943	0.951	ND	ND	ND	ND	1.73	1.6	ND	4.6
Tetrachloroethene*	15.9	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.5
Tetrahydrofuran	NV	NV	ND	3.27	ND	ND	ND	ND	ND	ND	ND	ND	NV
Toluene	43	NV	ND	1.07	0.946	1.23	1.21	2.46	1.26 J	10.8	7.5	1.46	33.7
Trichloroethene*	4.2	2	0.973	0.865	0.118	0.161	0.161	0.505	1.73 <mark>J</mark>	17.5	18	0.124	1.3
Trichlorofluoromethane	18.1	NV	1.33	1.33	1.33	1.24	1.28	1.35	1.28 J	1.44	1.37	1.34	4.3

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during a 8-hour sample duration.
- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.
- 6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.
- 7. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values.
- 8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- 9. ND = Non Detect; NV = No Value; R1 = Analytical results are from sample re-analysis.
- 10. Red values represent updated values based on data validation.

Table 3 Indoor Air Analytical Testing Results 155 & 157 Chandler Street, Buffalo, NY December 2018 through December 2021

													-									
	Guidance Value	es - Indoor Air			IA-1				IA	ı-2				IA-3					I.	A-4		
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-1 Indoor Air	IA-1 (121219) Indoor Air	IA-1 (121219) Duplicate Indoor Air	IA-1 (121120) Indoor Air	IA-1 (120221) Indoor Air	IA-2 Indoor Air	IA-2 (121219) Indoor Air	IA-2 (121120) Indoor Air	IA-2 (120221) Indoor Air	IA-3 Indoor Air	IA-3 (121219) Indoor Air	IA-3 (121120) Indoor Air	IA-3 (121120) Duplicate Indoor Air	IA-3 (120221) Indoor Air	IA-4 Indoor Air	IA-4 Duplicate Indoor Air	IA-4 (121219) Indoor Air	IA-4 (121120) Indoor Air	IA-4 (120221) Indoor Air	IA-4 (120221) Duplicate Indoor Air
SAMPLING DATE	Background	Value	12/18/2018	12/12/2019	12/12/2019	12/11/2020	12/2/2021	12/18/2018	12/12/2019	12/11/2020	12/2/2021	12/18/2018	12/12/2019	12/11/2020	12/11/2020	12/2/2021	12/18/2018	12/18/2018	12/12/2019	12/11/2020	12/2/2021	12/2/2021
AB SAMPLE ID	(90%)		L1852191-06	L1959919-06	L1959919-07	L2055692-06	L2166417-09	L1852191-07	L1959919-08	L2055692-07	L2166417-10	L1852191-02	L1959919-04	L2055692-03	L2055692-04	L2166417-04	L1852191-03	L1852191-04	L1959919-03	L2055692-02	L2166417-02	L2166417-03
Volatile Organics in Air (ug/m³)																						
1,2,4-Trichlorobenzene	<6.8	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	9.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	< 0.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-trimethylpentane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	98.9	NV	14.4	11.9	11.8 J	8.46 J	15.7	14.6	12.4	7.98 J	17.6	21.1	13.3	8.29 J	11.7 J	113	24.7	24	8.20	9.93 J	195	194
Benzene	9.4	NV	ND	0.744	0.824 J	0.684	ND	ND	0.764	0.687	ND	ND	0.652	ND	0.642	0.85	ND	ND	0.684	ND	ND	ND
Carbon disulfide	4.2	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.24	1.35	1.36	1.94	1.42	ND	ND	ND	ND	ND	ND
Carbon tetrachloride*	<1.3	NV	0.591	0.579	0.572	0.522	0.579	0.566	0.598	0.516	0.554	0.541	0.491	0.428	0.453	0.434	0.711	0.723	0.516	0.384	0.472	0.491
Chloroform	1.1	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.66
Chloromethane	3.7	NV	1.25	1.19	1.16 J	1.07	1.16	1.14	1.22	1.07	1.14	2.24	1.18	1.02	1.06	1.13	2.95	1.13	1.11	1.04	1.14	1.21
cis-1.2-Dichloroethene*	<1.9	NV	ND	ND	ND	ND	ND	ND	ND	0.186	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	16.5	NV	1.63	2.59	2.59 J	2.20	2.78	1.68	2.70	2.12	2.82	2.4	2.58	2.02	2.06	2.51	1.78	1.66	2.57	2.04	2.61	2.73
Ethanol	210	NV	155	298	352 J	230	176	207	224	215	198	307	931	590	803	5310 R1	148	144	392	1,330	100	96.3
Ethyl acetate	5.4	NV	ND	6.85	7.03 J	6.45	ND	ND	9.30	7.24	ND	26.5	231	186	284	140	3.29	3.33	60.5	12.4	ND	ND
Ethylbenzene	5.7	NV	2.49	0.869	0.873 J	1.02	ND	2.32	0.877	1.33	ND	2.76	ND	ND	ND	ND	2.79	2.82	ND	ND	ND	ND
Heptane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.09	ND	ND	ND	ND	2.49	2.7
Hexane (n-Hexane)	NV	NV	ND	0.888	0.962 J	1.34	ND	ND	1.01	1.32	ND	0.811	ND	ND	ND	0.754	1.26	1.32	ND	0.839	0.934	0.906
sopropanol	NV	NV	11.9	3.52	3.39 J	6.02	20.5	11.3	3.17	5.60	32	32.4	2.65	6.83	9.88	578 R1	99.6	97.8	2.48	7.18	1720 R1	1730 R1
n&p-Xvlene	22.2	NV	9.56	3.36	3.33 J	4.34	ND	9.38	3.32	4.18	2.21	10.6	1.74	2.30	2.82	2.45	10.6	10.3	ND	2.39	ND	ND
Methyl Ethyl Ketone (2-Butanone)	12	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.28	ND	1.58	ND	ND	ND	1.64	ND	ND	ND
Methyl Isobutyl Ketone (4-Methyl-2-	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	10	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Xvlene	7.9	NV	3.12	1.22	1.29	1.83	ND	3.09	1.22	1.47	0.943	2.86	ND	ND	0.947	0.951	3.14	3.24	ND	ND	ND	ND
Styrene	1.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene*	15.9	30	0.753	0.651	0.387 J	0.427	ND	0.685	0.346	1.00	ND	0.332	0.488	ND	ND	ND	0.922	0.882	ND	0.156	ND	ND
Tetrahydrofuran	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	3.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	43	NV	4.07	1.53	1.76 J	1.49	ND	1.21	1.57	1.43	1.07	1.16	1.38	1.41	1.58	0.946	4.26	5.8	1.30	1.15	1.23	1.21
rans-1,2-Dichloroethene	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.932	ND	ND
Frichloroethene*	4.2	2	0.849	0.833	0.844 J	0.801	0.973	0.736	0.742	0.790	0.865	0.489	ND	ND	0.145	0.118	1.34	1.37	ND	0.478	0.161	0.161
Frichlorofluoromethane	18.1	NV	1.33	1.25	1.29 J	1.19	1.33	1.3	1.29	1.15	1.33	1.12	1.27	1.15	ND	1.33	1.28	1.25	1.25	ND	1.24	1.28
•																				•		
						I/	\-5									IA-6						IA-7

					T	IA.	N-5	_			<u> </u>			,		IA-6						IA-7	IA-8	ļ	O/	A-1		
OCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-5 Indoor Air	IA-5 (0219) Indoor Air	IA-5 (0219) Duplicate Indoor Air	IA-5 (0619) Indoor Air	IA-5 (0619) Duplicate Indoor Air	IA-5 (121219) Indoor Air	IA-5 (121120) Indoor Air	IA-5 (120221) Indoor Air	IA-6 Indoor Air	IA-6 (121219) Indoor Air	IA-6 (022020) Indoor Air	IA-6 (022020) Duplicate Indoor Air	IA-6 (121120) Indoor Air	IA-6 (021821) Indoor Air	IA-6 (021821) Duplicate Indoor Air	IA-6 (033121) Indoor Air	IA-6 (033121) Duplicate Indoor Air	IA-6 (061721) Indoor Air	IA-6 (120221) Indoor Air	IA-7 (120221) Indoor Air	IA-8 (120221) Indoor Air	OA-1 Outdoor Air	OA-1 (121219) Outdoor Air	OA-1 (121120) Outdoor Air	OA-1 (120221) Outdoor Air	Ta Ou Gi
AMPLING DATE	Background	Value	12/18/2018	2/13/2019	2/13/2019	6/21/2019	6/21/2019	12/12/2019	12/11/2020	12/2/2021	12/18/2018	12/12/2019	2/20/2020	2/20/2020	12/11/2020	2/18/2021	2/18/2021	3/31/2021	3/31/2021	6/17/2021	12/2/2021	12/2/2021	12/2/2021	12/18/2018	12/12/2019	12/11/2020	12/2/2021	
AB SAMPLE ID	(90%)		L1852191-01	L1905849-01	L1905849-02	L1927357-01	L1927357-02	L1959919-02	L2055692-01	L2166417-01	L1852191-05	L1959919-05	L2007739-01	L2007739-02	L2055692-05	L2108109-01	L2108109-02	L2108109-01	L2108109-01	L2132969-01	L2166417-08	L2166417-06	L2166417-07	L1852191-08	L1959919-01	L2055692-08	L2166417-05	15
olatile Organics in Air (ug/m³)																												_
2,4-Trichlorobenzene	<6.8	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98	ND	ND	ND	$\boldsymbol{ au}$
2,4-Trimethylbenzene	9.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.09	1.24	ND	ND	1.20	ND	ND	ND	ND	1.07	ND	ND	ND	ND	ND	
2-Dichloroethane	<0.9	NV	0.163	0.127	0.139	ND	ND	ND	ND	ND	0.103	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,4-trimethylpentane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.943	1.36	1.29	ND	ND	1.44	1.47	ND	ND	ND	ND	
cetone	98.9	NV	46.3	33.5 J	36.3 J	38 J	40.4 J	9.45	6.29 J	316	5.3	8.69	165	187	7.63 J	3.99 J	2.85 J	21.3 J	20.3 J	11.3	20.1 J	152	123	4.39	3.44	4.16 J	7.79	
enzene	9.4	NV	ND	ND	ND	ND	0.866	0.741	ND	0.872	ND	0.655	ND	ND	ND	1.12	1.13	1.30	1.25	ND	ND	1.34	1.41	ND	ND	ND	ND	
arbon disulfide	4.2	NV	ND	ND	ND	0.673	0.704	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
arbon tetrachloride*	<1.3	NV	2.31	1.09	1.05	0.591	0.598	0.547	0.415	0.591	0.598	2.26	0.434	0.453	0.528	0.434	0.465	0.528	0.535	0.711	0.484 J	1.01	0.9	0.459	0.484	0.403	0.528	
hloroform	1.1	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
hloromethane	3.7	NV	1.13	0.96	1.01	1.43	1.40	1.23	1.01	1.18	1.06	1.09	0.956	0.921	1.01	0.898	0.944	1.08	1.08	1.20	1.12 J	1.32	1.24	1.13	1.11	0.952	1.14	
s-1,2-Dichloroethene*	<1.9	NV	0.163	0.127	0.139	ND	ND	ND	ND	0.266	0.103	0.270	0.095	0.119	0.079	ND	ND	0.095	0.091	ND	ND	0.412	0.369	ND	ND	ND	ND	
yclohexane	NV	NV	ND	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.688	1.16	1.13	ND	ND	1.48	1.57	ND	ND	ND	ND	
ichlorodifluoromethane	16.5	NV	1.61	2.44	2.49	2.69	2.53	2.63	1.93	2.49	2.49	2.66	1.86	1.93	2.08	1.99	2.02	2.12	2.16	2.47	2.53 J	2.64	2.71	1.39	2.55	1.89	2.68	4
thanol	210	NV	910	298	315	675	667	63.3	3,050	143	40.1	194	111	129	228	105	104	194	220	41.6	117 J	874	820	ND	ND	ND	13.8	
thyl acetate	5.4	NV	15.9	3.2	3.28 J	5.19	6.45	ND	12.8	ND	ND	2.01	ND	ND	ND	2.79	2.56	ND	ND	ND	ND	3.03	2.63	ND	ND	ND	ND	4
thylbenzene	5.7	NV	4.73	2	2.03	8.38	8.69	0.986	ND	ND	ND	ND	5.52	5.86	ND	1.62	1.73	1.15	1.09	ND	ND	1.26	1.15	ND	ND	ND	ND	
eptane	NV	NV	ND	ND	ND	0.906	1.22	ND	ND	2.11	ND	ND	ND	ND	ND	0.971	1.08	2.45	2.28	ND	ND	5	2.73	ND	ND	ND	ND	
exane (n-Hexane)	NV	NV	6.87	2.55	2.81	2.49	4.79	0.807	ND	1.66	ND	ND	ND	ND	0.733	3.30	3.41	5.08	4.79	ND	0.959 J	5.64	5.85	ND	ND	0.705	1.54	4
opropanol	NV	NV	873	215	228	1230	1170	4.77	4.42	2370 R1	ND	9.24	5.21	5.19	2.11	1.83 J	1.93 J	79.2	79.2	28.8	80.1 J	902 R1	733 R1	ND	ND	ND	6.64	
ı&p-Xylene	22.2	NV	19	8.17	8.17	36.7	36.2	3.82	1.82	1.89	ND	ND	18.0	19.3	ND	6.91	7.60	4.39	4.26	ND	ND	5.04	4.6	ND	ND	ND	ND	4
lethyl Ethyl Ketone (2-Butanone)	12	NV	4.63	5.66	6.16	2.56	2.70	ND	ND	1.68	ND	1.62	ND	ND	ND	1.87	1.67	1.67	1.58	ND	ND	ND	ND	ND	ND	ND	ND	
lethyl Isobutyl Ketone (4-Methyl-2-	NV	NV	19.8	4.51	4.39	5.12	5.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
lethylene chloride	10	60	ND	ND	ND	ND	2.01	ND	ND	2.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.72	ND	ND	ND	ND	4.24	4
-Xylene	7.9	NV	5.56	2.4	2.44	12.2	12.2	1.20	ND	ND	ND	ND	5.21	5.60	ND	2.08	2.30	1.49	1.45	ND	ND	1.73	1.6	ND	ND	ND	ND	4
tyrene	1.9	NV	0.932	ND	ND	2.18	2.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
etrachloroethene*	15.9	30	1.3	0.353	0.319	0.203	0.292	0.271	0.183	ND	0.529	0.448	0.305	0.292	0.285	0.170	0.210	0.353	0.319	ND	ND	ND	ND	ND	ND	ND	ND	4
etrahydrofuran	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.86	1.55	ND	ND	ND	ND	ND	ND	ND	ND	4
oluene	43	NV	7.65	5.35	5.39	5.39	8.63	2.58	1.01	2.46	ND	1.82	1.17	1.06	1.25	3.72	4.07	6.93	6.59	1.01	1.26 J	10.8	7.5	ND	0.855	0.806	1.46	4
ans-1,2-Dichloroethene	NV	NV	1.44	2.36	2.5	6.15	5.95	1.10	1.67	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
richloroethene*	4.2	2	9.46	4.54	4.58	0.903	0.833	0.688	0.715	0.505	0.924	12.0	1.34	1.43 ND	2.96	2.96	2.93 ND	14.0	13.6	1.31	1.73 J	17.5 1.44	18	ND 4.40	ND 4.04	ND	0.124 1.34	4
richlorofluoromethane	18.1	NV	1.25	ND	ND	1.41	1.49	1.32	ND	1.35	1.26	1.31	ND	I ND	1.14	ND	I ND	1.15	ND	1.31	1.28 J	1.44	1.37	1.16	1.24	ND	1.34	4

Table 4
Groundwater Analytical Testing Results
155-157 Chandler Street, Buffalo, NY
July 2017 through December 2021

		Remedial I	nvestigation						Site Manag	ement Plan					
LOCATION	GA	SB126 / MW-	SB126 / MW-	MW-3	MW-3 (Duplicate)	MW-3 (062119)	MW-3 (062119) (Duplicate)	MW-3 (121019)	MW-3 (121019) (Duplicate)	MW-3 (121019)	MW-3 (121019) (Duplicate)	MW-3 (121020)	MW-3 (121020) (Duplicate)	MW-3 (120221)	MW-3 (120221) Duplicate
SAMPLE DATE	GA	7/27/2017	10/19/2017	1/14/2019	1/14/2019	06/21/19	06/21/19	12/10/19	12/10/19	12/10/19	12/10/19	12/10/20	12/10/20	12/02/21	12/02/21
LAB SAMPLE ID		L1726029	L1738023	L1901687-03	L1901687-04	L1927255-03	L1927255-04	L1959098-03	L1959098-04	L1959098-03	L1959098-04	L2055160-01	L2055160-02	L2166429-01	L2166429-02
Volatiles 8260C Analysis (ug/L)															
Acetone	50	24 J	88 J	ND	ND	ND	ND	ND	ND	ND	ND	2.4 JH	2.6 J	ND	ND
2-butanone	50	7.5	130 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	2.2	1.2	0.29 J	0.35 J	ND	ND	0.26 J	0.28 J	0.26 J	0.28 J	0.35 J	0.39 J	ND	ND
Carbon disulfide	NV	1.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NV	0.64 J	0.47 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	5	ND	3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl cyclohexane	NV	0.82 J	0.67 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	11 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
- 2. ug/L = parts per billion (ppb).
- 3. ND = not detected; NV = no value
- 4. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1)
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL). H = The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- 6. Blue shaded values represent exceedance of NYSDEC Class GA criteria.
- 7. Red values represent updated values based on data validation.

Table 5 March 2022 Soil Vapor Intrusion Investigation Analytical Testing Results Pierce Arrow Business Center 155 Chandler Street, Buffalo, NY

LOCATION			SS-7 (032922)	IA-7 (032922)	SS 0 (022022)	lia o (022022)	NCC 40 (022022)	LA 40 (022022)	OA 1 (022022)	=
SAMPLING DATE	Table C2 Commercial	NYSDOH Air	3/29/2022	3/29/2022	3/29/2022	3/29/2022	SS-10 (032922) 3/29/2022	3/29/2022	OA-1 (032922) 3/29/2022	Table C2 Commercial
SAMPLING DATE	Indoor Air	Guideline	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	Outdoor Air
			1							
	Background (90%)	Value					1 0017700 01	1 0047700 05	1 0047700 04	Background (90%)
LAB SAMPLE ID			L2217738-07	L2217738-06	L2217738-02	L2217738-03	L2217738-04	L2217738-05	L2217738-01	(90%)
Volatile Organics in Air (ug/m3)										
1,1,1-Trichloroethane*	20.6	NV	ND	ND *	ND	ND *	ND	ND *	ND *	2.6
1,1,2,2-Tetrachloroethane	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
1,1,2-Trichloroethane	<1.5	NV	ND	ND	ND	ND	ND	ND	ND	<1.6
1,1-Dichloroethane	<0.7	NV	ND	ND	ND	ND	ND	ND	ND	<0.6
1,1-Dichloroethene*	<1.4	NV	ND	ND *	ND	ND *	ND	ND *	ND *	<1.4
1,2,4-Trichlorobenzene	<6.8	NV	ND	ND	ND	ND	ND .	ND	ND	<6.4
1,2,4-Trimethylbenzene	9.5	NV	25.8	ND	27.9	ND	27.3	ND	ND	5.8
1,2-Dibromoethane	<1.5	NV	ND ND	ND	ND	ND	ND	ND	ND	<1.6
1,2-Dichlorobenzene	<1.2	NV NV	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	<1.2
1,2-Dichloroethane	<0.9	NV	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	<0.8
1,2-Dichloropropane	<1.6	NV	ND 0.04	ND ND	ND 0.40	ND	ND 0.00	ND ND	ND	<1.6
1,3,5-Trimethylbenzene	3.7	NV NV	6.34	ND	6.49	ND	6.93	ND ND	ND	2.7
1,3-Butadiene	<3.0	NV NV	ND ND	ND ND	ND	ND	111	ND ND	ND	<3.4
1,3-Dichlorobenzene	<2.4	NV NV	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	<2.2
1,4-Dichlorobenzene	5.5	NV NV			ND ND	ND ND		ND ND		1.2 NV
1,4-Dioxane 2,2,4-Trimethylpentane	NV NV	NV NV	ND ND	ND ND	1.59	ND ND	ND ND	ND ND	ND ND	NV NV
	NV	NV	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	NV
3-Chloropropene 4-Ethyltoluene	3.6	NV	6.19	ND ND	7.57	ND ND	9.68	ND ND	ND ND	3.0
Acetone	98.9	NV	4.37 J	65.6 J	13.7 J	41.6 J	92.6 J	88.8 J	3.52 J	43.7
Benzene	9.4	NV	8.31	ND	5.43	0.639	133	0.684	ND	6.6
Benzyl chloride	<6.8	NV	ND	ND ND	ND	ND	ND	ND	ND ND	<6.4
Bromodichloromethane	NV	NV	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NV
Bromoform	NV	NV	ND ND	ND ND	ND	ND	ND	ND	ND	NV
Bromomethane	<1.7	NV	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	<1.6
Carbon disulfide	4.2	NV	ND ND	ND ND	3.18	ND	135	ND ND	ND	3.7
Carbon tetrachloride*	<1.3	NV	3.12	3.96 *	8.87	8.05 *	4.3	5.13 *	0.566 *	0.7
Chlorobenzene	<0.9	NV	ND	ND ND	ND	ND	ND	ND ND	ND	<0.8
Chloroethane	<1.1	NV	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	<1.2
Chloroform	1.1	NV	ND	1.41	3.28	2.94	2.36	1.82	ND ND	0.6
Chloromethane	3.7	NV	ND	1.24	ND	1.21	4.44	1.23	1.11	3.7
cis-1,2-Dichloroethene*	<1.9	NV	ND	0.369 *	ND	0.389 *	ND	0.48 *	ND *	<1.8
cis-1,3-Dichloropropene	<2.3	NV	ND	ND	ND	ND	ND	ND	ND	<2.2
Cyclohexane	NV	NV	8.67	ND	5.68	ND	235	ND	ND	NV
Dibromochloromethane	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
Dichlorodifluoromethane	16.5	NV	2.57	2.69	2.73	2.69	2.6	2.7	2.55	8.1
Ethanol	210	NV	ND	232	14.8	209	33.9	144	ND	57
Ethyl Acetate	5.4	NV	2.24	ND	ND	ND	ND	1.99	ND	1.5
Ethylbenzene	5.7	NV	16.5	ND	16.5	ND	42.6	ND	ND	3.5
Freon-113	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
Freon-114	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
Heptane	NV	NV	14.3	ND	13.1	1.13	447	ND	ND	NV
Hexachlorobutadiene	<6.8	NV	ND	ND	ND	ND	ND	ND	ND	<6.4
n-Hexane	10.2	NV	32.6	ND	26.6	ND	465	ND	ND	6.4
Isopropanol	250	NV	3.74	371	8.06	237	16.8	543	3.79	16.5
p/m-Xylene	22.2	NV	79.9	ND	79.5	1.98	175	ND	ND	12.8
2-Hexanone	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
2-Butanone	12	NV	3.27	2.01	14.2	ND	23.2	ND	ND	11.3
4-Methyl-2-pentanone	6.0	NV	ND	ND	ND	ND	ND	ND	ND	1.9
Methyl tert butyl ether	11.5	NV	ND	ND	ND	ND	ND	ND	ND	6.2
Methylene chloride	10	60	ND	ND	1.99	ND	ND	ND	ND	6.1
o-Xylene	7.9	NV	25.4	ND	26.1	1.02	44.3	ND	ND	4.6
Styrene	1.9	NV	ND	ND	ND	ND	ND	ND	ND	1.3
Tertiary butyl Alcohol	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
Tetrachloroethene*	15.9	30	ND	0.373 *	1.45	0.61 *	ND	0.305 *	ND *	6.5
Tetrahydrofuran	NV	NV	ND	ND	8.49	ND	ND	ND	ND	NV
Toluene	43	NV	86.3	1.56	78	1.38	324	1.09	ND	33.7
trans-1,2-Dichloroethene	NV	NV	ND	ND	ND	ND	ND	ND	ND	NV
Itrana 1.2 Diablerennene	<1.3	NV	ND	ND	ND	ND	ND	ND	ND	<1.4
trans-1,3-Dichloropropene										
Trichloroethene*	4.2	2	8.92	24.1 *	7.09	25.5 *	23.4	39.2 *	ND *	1.3
Trichloroethene* Trichlorofluoromethane	4.2 18.1	2 NV	1.52	1.31	1.57	1.38	ND	1.3	1.18	4.3
Trichloroethene*	4.2	2								

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. 90th percentile values as presented in Table C2. EPA 2001: Building assessment and survey evaluation (BASE) database, SUMMS canister method (Appendix C, in the NYSDOH Guidance Manual).
- 6. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in September 2013 and August 2015.
- 7. Green shaded values represent exceedance of Table C2 commercial background levels; yellow shaded values represent exceedance of NYSDOH Air Guideline Values as updated.
- 8. ND = Non Detect; NV = No Background/Guideline Value
- 9. * Volatile Organics in Air by SIM
- 10. No appropriate guidance values apply to sub-slab air, therefore background guidance values from Table C2 and NYSDOH Air Guideline values from Table 3.1 are compared to indoor and outdoor air only.
- 11. RED = Udated as a result of Data Validation.

Table 6 March 2022 Soil Vapor Intrusion Investigation Decision Matrices 155 Chandler Street, Buffalo, NY

Sample ID	Parameter	Sub-slab Vapor Concentrations (ug/m³)	Indoor Air Concentration (ug/m³)	Recommended Action		
Trichloroethene (TCE); cis-1,2-dichloroethene	Matrix A (cis-DCE); 1,1-dichlo	roethene (1,1-DCE); Carbon Tetrachloride		
	TCE	8.92	24.1	Mitigate		
	cis-DCE	ND	0.369	No further action		
SS-7/IA-7	1,1-DCE	ND	ND	No further action		
	Carbon Tetrachloride	3.12	3.96	Identify Source(s) and Resample or Mitigate		
	TCE	7.09	25.5	Mitigate		
SS-9/IA-9	cis-DCE	ND	0.389	No further action		
30-9/IA-9	1,1-DCE	ND	ND	No further action		
	Carbon Tetrachloride	8.87	8.05	Mitigate		
	TCE	23.4	39.2	Mitigate		
	cis-DCE	ND	0.48	No further action		
SS-10/IA-10	1,1-DCE	ND	ND	No further action		
	Carbon Tetrachloride	4.3	5.13	Identify Source(s) and Resample or Mitigate		
Methyle	ne Chloride (MC); 1,1,1- Tric	Matrix B chloroethane (1,1,1-T	CA); Tetrachloroet	hylene (PCE)		
	MC	ND	ND	No further action		
SS-7/IA-7	1,1,1-TCA	ND	ND	No further action		
	PCE	ND	0.373	No further action		
	MC	1.99	ND	No further action		
SS-9/IA-9	1,1,1-TCA	ND	ND	No further action		
	PCE	1.45	0.610	No further action		
	MC	ND	ND	No further action		
SS-10/IA-10	1,1,1-TCA	ND	ND	No further action		
	PCE	ND	0.305	No further action		
	V	Matrix C inyl Chloride (VC)				
SS-7/IA-7	VC	ND	ND	No further action		
SS-9/IA-9	VC	ND	ND	No further action		
SS-10/IA-10	VC	ND	ND	No further action		

- 1. Compoundsincluded on NYSDOH Air Matricies included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m3 or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in May 2017.
- 6. Green shaded values represent Resampling to identify source Mitigation recommended; Orange shaded values represent Mitigation recommended.
- 7. ND = Non Detect

APPENDIX D LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L2132969

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101 Report Date: 06/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number:

L2132969

Report Date:

06/24/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2132969-01	IA-6 (061721)	AIR	155 CHANDLER ST. BUFFALO, NY	06/17/21 15:30	06/17/21

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number:

Project Number: 01101 Report Date: 06/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number: L2132969
Project Number: 01101 Report Date: 06/24/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 16, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Christopher J. Anderson

Title: Technical Director/Representative

Date: 06/24/21

AIR

Lab Number:

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101 Report Date: 06/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 06/17/21 15:30

Client ID: IA-6 (061721) Date Received: 06/17/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 06/22/21 21:01

Analyst: TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Dichlorodifluoromethane	0.500	0.200		2.47	0.989			1
Chloromethane	0.582	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	22.1	5.00		41.6	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.76	1.00		11.3	2.38			1
Trichlorofluoromethane	0.233	0.200		1.31	1.12			1
Isopropanol	11.7	0.500		28.8	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Lab Number:

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101 Report Date: 06/24/21

SAMPLE RESULTS

Lab ID: L2132969-01 Client ID: IA-6 (061721)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 06/17/21 15:30

Date Received: 06/17/21
Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.267	0.200		1.01	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: Report Date:

01101 06/24/21

SAMPLE RESULTS

Lab ID: L2132969-01

Client ID: IA-6 (061721)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Date Collected: 06/17/21 15:30

Date Received: 06/17/21

Lab Number:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	89		60-140

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number:

L2132969

Report Date:

Date Received:

06/24/21

SAMPLE RESULTS

Lab ID: L2132969-01

Client ID: IA-6 (061721)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 06/17/21 15:30

06/17/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/22/21 21:01

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.113	0.020		0.711	0.126			1
Trichloroethene	0.243	0.020		1.31	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

L2132969

Lab Number:

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101 Report Date: 06/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15
Analytical Date: 06/22/21 15:05

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG1515522-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number: L2132969

Project Number: 01101 Report Date: 06/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/22/21 15:05

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	Batch:	WG1515522-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number: L2132969

Project Number: 01101 Report Date: 06/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/22/21 15:05

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01	Batch:	WG1515522-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number: L2132969

Project Number: 01101 Report Date: 06/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/22/21 15:44

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab f	or sample	e(s): 01 E	Batch: WG1	515525-4	ļ		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batch	n: WG1515522-3					
Dichlorodifluoromethane	85		-		70-130	-		
Chloromethane	90		-		70-130	-		
Freon-114	88		-		70-130	-		
Vinyl chloride	89		-		70-130	-		
1,3-Butadiene	99		-		70-130	-		
Bromomethane	94		-		70-130	-		
Chloroethane	91		-		70-130	-		
Ethanol	89		-		40-160	-		
Vinyl bromide	90		-		70-130	-		
Acetone	72		-		40-160	-		
Trichlorofluoromethane	107		-		70-130	-		
Isopropanol	75		-		40-160	-		
1,1-Dichloroethene	96		-		70-130	-		
Tertiary butyl Alcohol	86		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	98		-		70-130	-		
Carbon disulfide	91		-		70-130	-		
Freon-113	92		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
Methyl tert butyl ether	90		-		70-130	-		
2-Butanone	95		-		70-130	-		
cis-1,2-Dichloroethene	97		-		70-130	-		

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01 Batch	n: WG1515522-3					
Ethyl Acetate	94		-		70-130	-		
Chloroform	99		-		70-130	-		
Tetrahydrofuran	92		-		70-130	-		
1,2-Dichloroethane	100		-		70-130	-		
n-Hexane	100		-		70-130	-		
1,1,1-Trichloroethane	111		-		70-130	-		
Benzene	99		-		70-130	-		
Carbon tetrachloride	117		-		70-130	-		
Cyclohexane	102		-		70-130	-		
1,2-Dichloropropane	101		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	103		-		70-130	-		
Trichloroethene	102		-		70-130	-		
2,2,4-Trimethylpentane	104		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	112		-		70-130	-		
4-Methyl-2-pentanone	107		-		70-130	-		
trans-1,3-Dichloropropene	99		-		70-130	-		
1,1,2-Trichloroethane	100		-		70-130	-		
Toluene	92		-		70-130	-		
2-Hexanone	97		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	92		-		70-130	-		

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Bat	ch: WG1515522-3					
Tetrachloroethene	90		-		70-130	-		
Chlorobenzene	91		-		70-130	-		
Ethylbenzene	98		-		70-130	-		
p/m-Xylene	99		-		70-130	-		
Bromoform	110		-		70-130	-		
Styrene	96		-		70-130	-		
1,1,2,2-Tetrachloroethane	100		-		70-130	-		
o-Xylene	104		-		70-130	-		
4-Ethyltoluene	100		-		70-130	-		
1,3,5-Trimethylbenzene	111		-		70-130	-		
1,2,4-Trimethylbenzene	108		-		70-130	-		
Benzyl chloride	115		-		70-130	-		
1,3-Dichlorobenzene	102		-		70-130	-		
1,4-Dichlorobenzene	99		-		70-130	-		
1,2-Dichlorobenzene	102		-		70-130	-		
1,2,4-Trichlorobenzene	115		-		70-130	-		
Hexachlorobutadiene	115		-		70-130	-		

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: Lab

L2132969

Report Date:

06/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sa	ample(s): 01	Batch: WG15	15525-3					
Vinyl chloride	89		-		70-130	-		25	
1,1-Dichloroethene	94		-		70-130	-		25	
cis-1,2-Dichloroethene	94		-		70-130	-		25	
1,1,1-Trichloroethane	105		-		70-130	-		25	
Carbon tetrachloride	114		-		70-130	-		25	
Trichloroethene	100		-		70-130	-		25	
Tetrachloroethene	92		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969 Report Date: 06/24/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG151552	5-5 QC Sam	ple: L2132	969-01 Client ID: IA-6 (061721)
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.113	0.119	ppbV	5	25
Trichloroethene	0.243	0.244	ppbV	0	25
Tetrachloroethene	ND	ND	ppbV	NC	25

JUNE 2021 IA-6 RESAMPLE L2132969

Project Number: 01101 Report Date: 06/24/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2132969-01	IA-6 (061721)	01787	Flow 4	06/16/21	355542		-	-	-	Pass	4.5	4.2	7
L2132969-01	IA-6 (061721)	157	2.7L Can	06/16/21	355542	L2131138-06	Pass	-29.6	-5.7	-	-		-

Project Name:

L2131138

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: 06/10/21 08:00 Client ID: **CAN 171 SHELF 15** Date Received: 06/10/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 06/11/21 01:12

Analyst: ΑW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2131138

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: 06/10/21 08:00 Client ID: **CAN 171 SHELF 15** Date Received: 06/10/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2131138

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: 06/10/21 08:00 Client ID: **CAN 171 SHELF 15** Date Received: 06/10/21

Sample Location:

Field Prep: Not Specified

·		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2131138

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: 06/10/21 08:00 Client ID: **CAN 171 SHELF 15** Date Received: 06/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
l-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2131138

Project Number: CANISTER QC BAT Report Date: 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Client ID: CAN 171 SHELF 15

Sample Location:

Date Collected:

06/10/21 08:00

Date Received:

06/10/21

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	90		60-140

L2131138

06/10/21 08:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: Client ID: **CAN 171 SHELF 15** Date Received:

Sample Location:

06/10/21 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/11/21 01:12

Analyst: ΑW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2131138

06/10/21 08:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Date Collected: Client ID: **CAN 171 SHELF 15**

Sample Location:

Date Received: 06/10/21 Field Prep: Not Specified

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mar	nsfield Lab								
1,2-Dichloropropane	ND	0.020		ND	0.092			1	
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
p/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2131138

Project Number: CANISTER QC BAT Report Date: 06/24/21

Air Canister Certification Results

Lab ID: L2131138-06

Client ID: CAN 171 SHELF 15

Sample Location:

Date Collected:

06/10/21 08:00

Date Received:

06/10/21

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1	
Naphthalene	ND	0.050		ND	0.262			1	
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1	
Hexachlorobutadiene	ND	0.050		ND	0.533			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	90		60-140

Lab Number: L2132969

Project Number: 01101 Report Date: 06/24/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

JUNE 2021 IA-6 RESAMPLE

Cooler Information

Project Name:

Cooler Custody Seal

NA Absent

Container Information			Initial Final		Temp			Frozen		
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	I 2132969-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30) TO15-LL(30)

Project Name: JUNE 2021 IA-6 RESAMPLE Lab Number: L2132969
Project Number: 01101 Report Date: 06/24/21

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid Phase Microsytraction (SPME).

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:JUNE 2021 IA-6 RESAMPLELab Number:L2132969Project Number:01101Report Date:06/24/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:JUNE 2021 IA-6 RESAMPLELab Number:L2132969Project Number:01101Report Date:06/24/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:JUNE 2021 IA-6 RESAMPLELab Number:L2132969Project Number:01101Report Date:06/24/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 33 of 34

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

													Sei	iai_iv	0.06242114.	30	
AIR AN		ANALYSIS	5 ,	AGE	_or_ _ _	Date I	Date Rec'd in Lab: 6 118/21					A	ALPHA JOB#: LZ137960				
320 Forbes Blvd, N	Mansfield, MA 02048	Project Inform				THE RESIDENCE	ort Inforn	nation -	Data	Deliver	ables	В	illing	Infor	mation		
	0 FAX: 508-822-3288	Project Name: 3				1,7777 (7.75)						×	Same	as Cli	ent info PO#:	01/01	
Client Information	on	Project Location	155 charo	llerst.	Buffal	D. W.XLAD	DEx Criteria Ch	nacker								.,,,	
Client Env. Ac	lvantage Inc.	Project #: 011	01				(Default bas	red on Regi			ded)						
Address: 3636	N. Buffalo Rd	Project Manager ALPHA Quote #	MarkHa	ma+/	Marys	z. m. D.EN	Other Form AAIL (stand	mats: dard odf	report)			R	egula	atory	Requirements	Report Limit	
orchard	Park NY 14127	ALPHA Quote #		,	, 0	B'Ad	ditional De	eliverable	s.			1000	ate/Fe		Program	Res / Comn	
Phone: 716-6		Turn-Around	Time			Repor	rt to: (#.mmm)	nt than Projec	r Manager)								
Fax: 716-66	7-3156			Was N. P.													
	a envadvatage. co.	Standard	☐ RUSH (colly	confirmed if pre-a	Approved!)						-		Δ	NAL	YSIS		
	ave been previously analyzed by Alpi	na Date Due:		Time:									17	0			
Other Project S	Specific Requirements/Co	mments: Additi	onally emos	1 Fesult	sto m	Szusta	aK@e	nvadu	lantas	10		11	10	7/	0,15		
Project-Specific	Target Compound List:	0							0	ic,co,	~	//	11	/ Au			
	Description of the second				W TOWNS OWN	No. of Street, or other party of the last	of the same of	10. 10.	man Serie	106/08	_/	/_/	ET Albana	S B			
ALPHA Lab ID	THE RESIDENCE OF THE PARTY OF T	All Colum	STATE OF THE PERSON NAMED IN	STATE OF TAXABLE PARTY.	THE RESERVE OF THE PARTY OF THE	-	-	The same of the sa	ıt		12/2	TS SIM	Fixed Gasses	1 d 1/4	//		
(Lab Use Only)	Sample ID	End Date Start T	ime End Time	Initial Vacuum	Final Vacuum	Sample Matrix*	4 1 2 3 3 3 3 1 3 3	s Can Size	I D Can	I D - Flor	2	0 8	Fore	Suffer	Sample Cor	nments (i.e. PID	
32969-01	IA-6(061721)	6/17/21 7:30			THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	EB	2.7L		101787				T	0.000		
											Ħ	П		\Box	0.017		
THE STATE OF											H	+	+	+			
											H	+	+	-			
							-	-			-	ш	4	\perp			
											Ш						
											П						
											П	П		П			
											\forall		+	+			
		AA = Ambient Air (In	door/Outdoor)									1	_				
*SAMPLI	E MATRIX CODES	SV = Soil Vapor/Land Other = Please Specify	fill Gas/SVE				С	ontainer	Туре		c\$				Please print cle	arly, legibly and nples can not be	
		Relinquished By		Date	e/Time		Desir	and D				Date CT			logged in and tu	rnaround time	
	2	wi 1880		6/17	/21 15:	35 (7	Recei	ved By:	B	DL	6/17	Date/Ti		30	guities are resol	ort until any ambi- ved. All samples	
Page 34 of 34	d	PUTE / AAL		dini	the second secon	1	live	full	un	7	0.18/	110	131	9	Terms and Cond See reverse sid		
Form No: 101-02 Rev: (25-	Sep-15)	adentle		11,91	21 411) 4	16 971		4	. /	lich	21 1	110%		see reverse sid	в.	

ANALYTICAL REPORT

Lab Number: L2166417

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101
Report Date: 12/17/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2166417 **Report Date:** 12/17/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2166417-01	IA-5 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 16:50	12/03/21
L2166417-02	IA-4 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 16:55	12/03/21
L2166417-03	IA-4 (120221) DUP.	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 16:55	12/03/21
L2166417-04	IA-3 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:00	12/03/21
L2166417-05	OA-1 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:05	12/03/21
L2166417-06	IA-7 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:10	12/03/21
L2166417-07	IA-8 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:12	12/03/21
L2166417-08	IA-6 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:15	12/03/21
L2166417-09	IA-1 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:17	12/03/21
L2166417-10	IA-2 (120221)	AIR	155 CHANDLER ST. BUFFALO, NY	12/02/21 17:20	12/03/21

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on November 30, 2021. The canister certification results are provided as an addendum.

L2166417-01D through -04D, and -06D and -07D: The samples were re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The reanalysis was performed only for the compound(s) that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/17/21

Christopher J. Anderson

AIR

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 16:50

Client ID: Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 19:03

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.503	0.200		2.49	0.989			1
Chloromethane	0.573	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	75.8	5.00		143	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	133	1.00		316	2.38			1
Trichlorofluoromethane	0.240	0.200		1.35	1.12			1
sopropanol	869	0.500		2140	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.603	0.500		2.09	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.568	0.500		1.68	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

Project Name: Lab Number: CY2021 SMP INDOOR AIR SAMPLING

Project Number: Report Date: 01101 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-01 Date Collected: 12/02/21 16:50 Client ID:

IA-5 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.470	0.200		1.66	0.705			1
Benzene	0.273	0.200		0.872	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.514	0.200		2.11	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.652	0.200		2.46	0.754			1
?-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	0.434	0.400		1.89	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-01

Client ID: IA-5 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 16:50

Date Received: 12/03/21

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	105		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 16:50

Client ID: IA-5 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 19:03

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results RL MDL C	Qualifier	Factor		
Volatile Organics in Air by SIM - M	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.067	0.020		0.266	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.094	0.020		0.591	0.126			1
Trichloroethene	0.094	0.020		0.505	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	102		60-140
bromochloromethane	103		60-140
chlorobenzene-d5	102		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-01 D

Client ID: IA-5 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 16:50

Date Received: 12/03/21

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 06:29

	PpbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Isopropanol	963	4.17		2370	10.3			8.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	98		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 16:55

Client ID: IA-4 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 12/15/21 19:42

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.527	0.200		2.61	0.989			1
Chloromethane	0.553	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	53.3	5.00		100	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	82.1	1.00		195	2.38			1
Trichlorofluoromethane	0.221	0.200		1.24	1.12			1
Isopropanol	587	0.500		1440	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date:

Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-02

Client ID: IA-4 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 16:55

Date Received: 12/03/21
Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.200		ND	0.809			1
0.265	0.200		0.934	0.705			1
ND	0.200		ND	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
0.608	0.200		2.49	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.326	0.200		1.23	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	1.36			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
	ND 0.265 ND ND ND ND ND ND ND ND ND ND ND ND ND	Results RL d Lab ND 0.200 ND 0.200 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <td>Results RL MDL A Lab ND 0.200 0.265 0.200 ND 0.200 </td> <td>Results RL MDL Results ND 0.200 ND 0.265 0.200 0.934 ND 0.200 ND ND 0.200 ND</td> <td>Results RL MDL Results RL B Lab ND 0.200 ND 0.809 0.265 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908</td> <td>Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 0.265 0.200 0.934 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND 0.500 ND 0</td> <td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 0.265 0.200 0.934 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.638 ND 0.200 ND 0.924 ND 0.200 ND 0.920 ND 0.908 </td>	Results RL MDL A Lab ND 0.200 0.265 0.200 ND 0.200	Results RL MDL Results ND 0.200 ND 0.265 0.200 0.934 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL B Lab ND 0.200 ND 0.809 0.265 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908	Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 0.265 0.200 0.934 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND 0.500 ND 0	Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 0.265 0.200 0.934 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.638 ND 0.200 ND 0.924 ND 0.200 ND 0.920 ND 0.908

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-02

Client ID: IA-4 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 16:55

Date Received: 12/03/21

Field Prep: Not Specified

Campio Bopaii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	97		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 16:55

Client ID: IA-4 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 19:42

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.075	0.020		0.472	0.126			1
Trichloroethene	0.030	0.020		0.161	0.107			1

	۵, ۵	o ""	Acceptance Criteria
Internal Standard	% Recovery	Qualifier	Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

12/02/21 16:55

Date Collected:

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-02 D

Client ID: IA-4 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 07:05

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Isopropanol	701	2.50		1720	6.15			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-03 Date Collected: 12/02/21 16:55

Client ID: IA-4 (120221) DUP. Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 20:21

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.552	0.200		2.73	0.989			1
Chloromethane	0.584	0.200		1.21	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	51.1	5.00		96.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	81.5	1.00		194	2.38			1
Trichlorofluoromethane	0.227	0.200		1.28	1.12			1
Isopropanol	584	0.500		1440	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	1.16	0.200		5.66	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-03 Date Collected: 12/02/21 16:55
Client ID: Date Received: 12/03/21

Client ID: IA-4 (120221) DUP. Date Received: 12/03/21
Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

	ppbV			ug/m3			Dilution Factor
Results	RL	MDL	Results	RL	MDL	Qualifier	
l Lab							
ND	0.200		ND	0.809			1
0.257	0.200		0.906	0.705			1
ND	0.200		ND	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
0.659	0.200		2.70	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.321	0.200		1.21	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	1.36			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
	ND 0.257 ND ND ND ND ND ND ND ND ND ND ND ND ND	Results RL I Lab ND 0.200 0.257 0.200 ND 0.200 ND	Results RL MDL I Lab ND 0.200 0.257 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.400 ND 0.200 ND 0.200 ND 0.200 ND 0.200<	Results RL MDL Results ND 0.200 ND 0.257 0.200 0.906 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL I Lab ND 0.200 ND 0.809 0.257 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908	Results RL MDL Results RL MDL B Lab ND 0.200 ND 0.809 0.257 0.200 0.906 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.500 ND 0	Results RL MDL Results RL MDL Qualifier It Lab ND 0.200 ND 0.809 0.257 0.200 0.906 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.932 ND 0.200 ND 0.908 ND 0.500

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 16:55

Client ID: IA-4 (120221) DUP. Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Project Name: Lab Number: CY2021 SMP INDOOR AIR SAMPLING L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-03

Date Collected: 12/02/21 16:55 Client ID: IA-4 (120221) DUP.

Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 20:21

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.078	0.020		0.491	0.126			1
Trichloroethene	0.030	0.020		0.161	0.107			1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-03 D Date Collected: 12/02/21 16:55

Client ID: IA-4 (120221) DUP. Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 07:41

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Isopropanol	704	2.50		1730	6.15			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	98		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:00

Client ID: IA-3 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 21:00

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.508	0.200		2.51	0.989			1
Chloromethane	0.546	0.200		1.13	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	2640	5.00		4970	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	47.4	1.00		113	2.38			1
Trichlorofluoromethane	0.236	0.200		1.33	1.12			1
Isopropanol	264	0.500		649	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.455	0.200		1.42	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	38.8	0.500		140	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-04 Date Collected: 12/02/21 17:00 Client ID: Date Received: 12/03/21

Client ID: IA-3 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Campio Dopaii		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.214	0.200		0.754	0.705			1
Benzene	0.266	0.200		0.850	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.511	0.200		2.09	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.251	0.200		0.946	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	0.565	0.400		2.45	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.219	0.200		0.951	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-04 Date Collected: 12/02/21 17:00

Client ID: IA-3 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	91		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-04 Date Collected: 12/02/21 17:00

Client ID: IA-3 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 21:00

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.069	0.020		0.434	0.126			1
Trichloroethene	0.022	0.020		0.118	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	87		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-04 D Date Collected: 12/02/21 17:00

Client ID: IA-3 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 08:17

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethanol	2820	50.0		5310	94.2			10
Isopropanol	235	5.00		578	12.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	98		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:05

Client ID: OA-1 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 21:39

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.542	0.200		2.68	0.989			1
Chloromethane	0.553	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.30	5.00		13.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.28	1.00		7.79	2.38			1
Trichlorofluoromethane	0.239	0.200		1.34	1.12			1
Isopropanol	2.70	0.500		6.64	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	1.22	0.500		4.24	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:05
Client ID: Date Received: 12/03/21

Client ID: OA-1 (120221) Date Received: 12/03/21
Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.436	0.200		1.54	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.388	0.200		1.46	0.754			1
?-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-05

Client ID: OA-1 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:05

Date Received: 12/03/21

Field Prep: Not Specified

Campio Bopaii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	92		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:05

Client ID: OA-1 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 21:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.084	0.020		0.528	0.126			1
Trichloroethene	0.023	0.020		0.124	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	90		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:10

Client ID: IA-7 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 22:17

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.534	0.200		2.64	0.989			1
Chloromethane	0.641	0.200		1.32	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	464	5.00		874	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	64.0	1.00		152	2.38			1
Trichlorofluoromethane	0.257	0.200		1.44	1.12			1
Isopropanol	342	0.500		841	1.23		Е	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	1.07	0.500		3.72	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.841	0.500		3.03	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Date Collected:

L2166417

12/02/21 17:10

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-06 Client ID: IA-7 (120221)

Client ID: IA-7 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.60	0.200		5.64	0.705			1
Benzene	0.421	0.200		1.34	0.639			1
Cyclohexane	0.430	0.200		1.48	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.308	0.200		1.44	0.934			1
Heptane	1.22	0.200		5.00	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	2.86	0.200		10.8	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.289	0.200		1.26	0.869			1
o/m-Xylene	1.16	0.400		5.04	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.399	0.200		1.73	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-06

Client ID: IA-7 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:10

Date Received: 12/03/21

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.218	0.200		1.07	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	81		60-140
Bromochloromethane	81		60-140
chlorobenzene-d5	82		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:10

Client ID: IA-7 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 22:17

		ppbV			ug/m3			Dilution Qualifier Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.104	0.020		0.412	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.160	0.020		1.01	0.126			1
Trichloroethene	3.26	0.020		17.5	0.107			1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	81		60-140
chlorobenzene-d5	80		60-140

12/02/21 17:10

Date Collected:

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-06 D

Client ID: IA-7 (120221) Date Received: 12/03/21
Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 08:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Isopropanol	367	1.67		902	4.10			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	97		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:12

Client ID: IA-8 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 22:56

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.548	0.200		2.71	0.989			1
Chloromethane	0.602	0.200		1.24	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	435	5.00		820	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	51.9	1.00		123	2.38			1
Trichlorofluoromethane	0.244	0.200		1.37	1.12			1
Isopropanol	320	0.500		787	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.731	0.500		2.63	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2166417

Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-07 Client ID: IA-8 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:12

Date Received: 12/03/21

Field Prep: Not Specified

		ppbV		ug/m3			Dilution Factor	
Parameter	Results	RL MDL		Results	RL	RL MDL		
Volatile Organics in Air - Mansfi	ield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.66	0.200		5.85	0.705			1
Benzene	0.441	0.200		1.41	0.639			1
Cyclohexane	0.455	0.200		1.57	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.315	0.200		1.47	0.934			1
Heptane	0.665	0.200		2.73	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	1.99	0.200		7.50	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
etrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.265	0.200		1.15	0.869			1
n/m-Xylene	1.06	0.400		4.60	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.368	0.200		1.60	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-07

Client ID: IA-8 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:12

Date Received: 12/03/21

Field Prep: Not Specified

Campio Dopuii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-Difluorobenzene	87		60-140		
Bromochloromethane	89		60-140		
chlorobenzene-d5	90		60-140		

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-07 Date Collected: 12/02/21 17:12

Client ID: IA-8 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 22:56

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.093	0.020		0.369	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.143	0.020		0.900	0.126			1
Trichloroethene	3.35	0.020		18.0	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	88		60-140

12/02/21 17:12

Date Collected:

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-07 D

Client ID: IA-8 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 12/16/21 09:30

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Isopropanol	298	1.67		733	4.10			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	99		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:15

Client ID: IA-6 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/15/21 23:35

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.512	0.200		2.53	0.989			1
Chloromethane	0.540	0.200		1.12	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	62.2	5.00		117	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.46	1.00		20.1	2.38			1
Trichlorofluoromethane	0.227	0.200		1.28	1.12			1
Isopropanol	32.6	0.500		80.1	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

12/02/21 17:15

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-08 Date Collected:
Client ID: IA-6 (120221) Date Received:

Client ID: IA-6 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depair		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.272	0.200		0.959	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.335	0.200		1.26	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-08

Client ID: IA-6 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:15

Date Received: 12/03/21

Field Prep: Not Specified

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND ND ND ND ND ND ND ND ND ND ND ND	Results RL Lab ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:15

Client ID: IA-6 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 23:35

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.077	0.020		0.484	0.126			1
Trichloroethene	0.321	0.020		1.73	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:17

Client ID: IA-1 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 00:14

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.562	0.200		2.78	0.989			1
Chloromethane	0.563	0.200		1.16	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	93.3	5.00		176	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	6.63	1.00		15.7	2.38			1
Trichlorofluoromethane	0.237	0.200		1.33	1.12			1
Isopropanol	8.35	0.500		20.5	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-09 Date Collected: 12/02/21 17:17
Client ID: Date Received: 12/03/21

Client ID: IA-1 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
etrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-09

Client ID: IA-1 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:17

Date Received: 12/03/21

Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:17

Client ID: IA-1 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/16/21 00:14

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.092	0.020		0.579	0.126			1
Trichloroethene	0.181	0.020		0.973	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	90		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 17:20

Client ID: IA-2 (120221) Date Received: 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/16/21 00:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.570	0.200		2.82	0.989			1
Chloromethane	0.551	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	105	5.00		198	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.43	1.00		17.6	2.38			1
Trichlorofluoromethane	0.237	0.200		1.33	1.12			1
sopropanol	13.0	0.500		32.0	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	1.11	0.500		3.27	1.47			1

L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-10 Client ID: IA-2 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:20

Date Received: 12/03/21

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.284	0.200		1.07	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
etrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	0.509	0.400		2.21	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	0.217	0.200		0.943	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1

Project Name: Lab Number: L2166417 CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-10 Date Collected: 12/02/21 17:20

Client ID: IA-2 (120221) Date Received: 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

SAMPLE RESULTS

Lab ID: L2166417-10

Client ID: IA-2 (120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/02/21 17:20 Date Received: 12/03/21

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/16/21 00:53

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.088	0.020		0.554	0.126			1
Trichloroethene	0.161	0.020		0.865	0.107			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	90		60-140

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/15/21 16:30

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01-	-10 Batch	: WG15838	359-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/15/21 16:30

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	-10 Batch	n: WG15838	59-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/15/21 16:30

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	-10 Batch	: WG15838	359-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 12/15/21 17:09

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab f	or sample	(s): 01-1	0 Batch: W	G158386	60-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2166417

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-10	Batch: WG15838	59-3				
Dichlorodifluoromethane	92		-		70-130	-		
Chloromethane	94		-		70-130	-		
Freon-114	98		-		70-130	-		
Vinyl chloride	101		-		70-130	-		
1,3-Butadiene	98		-		70-130	-		
Bromomethane	101		-		70-130	-		
Chloroethane	100		-		70-130	-		
Ethanol	95		-		40-160	-		
Vinyl bromide	97		-		70-130	-		
Acetone	115		-		40-160	-		
Trichlorofluoromethane	102		-		70-130	-		
Isopropanol	99		-		40-160	-		
1,1-Dichloroethene	105		-		70-130	-		
Tertiary butyl Alcohol	90		-		70-130	-		
Methylene chloride	99		-		70-130	-		
3-Chloropropene	98		-		70-130	-		
Carbon disulfide	91		-		70-130	-		
Freon-113	88		-		70-130	-		
trans-1,2-Dichloroethene	99		-		70-130	-		
1,1-Dichloroethane	103		-		70-130	-		
Methyl tert butyl ether	98		-		70-130	-		
2-Butanone	97		-		70-130	-		
cis-1,2-Dichloroethene	106		-		70-130	-		

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2166417

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-10	Batch: WG158385	9-3				
Ethyl Acetate	106		-		70-130	-		
Chloroform	104		-		70-130	-		
Tetrahydrofuran	97		-		70-130	-		
1,2-Dichloroethane	101		-		70-130	-		
n-Hexane	102		-		70-130	-		
1,1,1-Trichloroethane	100		-		70-130	-		
Benzene	93		-		70-130	-		
Carbon tetrachloride	104		-		70-130	-		
Cyclohexane	103		-		70-130	-		
1,2-Dichloropropane	102		-		70-130	-		
Bromodichloromethane	107		-		70-130	-		
1,4-Dioxane	98		-		70-130	-		
Trichloroethene	103		-		70-130	-		
2,2,4-Trimethylpentane	104		-		70-130	-		
Heptane	98		-		70-130	-		
cis-1,3-Dichloropropene	108		-		70-130	-		
4-Methyl-2-pentanone	100		-		70-130	-		
trans-1,3-Dichloropropene	93		-		70-130	-		
1,1,2-Trichloroethane	104		-		70-130	-		
Toluene	93		-		70-130	-		
2-Hexanone	96		-		70-130	-		
Dibromochloromethane	110		-		70-130	-		
1,2-Dibromoethane	101		-		70-130	-		

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2166417

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-10	Batch: WG158385	59-3				
Tetrachloroethene	99		-		70-130	-		
Chlorobenzene	100		-		70-130	-		
Ethylbenzene	101		-		70-130	-		
p/m-Xylene	101		-		70-130	-		
Bromoform	109		-		70-130	-		
Styrene	102		-		70-130	-		
1,1,2,2-Tetrachloroethane	105		-		70-130	-		
o-Xylene	104		-		70-130	-		
4-Ethyltoluene	97		-		70-130	-		
1,3,5-Trimethylbenzene	99		-		70-130	-		
1,2,4-Trimethylbenzene	104		-		70-130	-		
Benzyl chloride	99		-		70-130	-		
1,3-Dichlorobenzene	100		-		70-130	-		
1,4-Dichlorobenzene	101		-		70-130	-		
1,2-Dichlorobenzene	102		-		70-130	-		
1,2,4-Trichlorobenzene	107		-		70-130	-		
Hexachlorobutadiene	104		-		70-130	-		

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2166417

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	01-10 Batch: WC	91583860-3	3				
Vinyl chloride	96		-		70-130	-		25	
1,1-Dichloroethene	99		-		70-130	-		25	
cis-1,2-Dichloroethene	99		-		70-130	-		25	
1,1,1-Trichloroethane	89		-		70-130	-		25	
Carbon tetrachloride	95		-		70-130	-		25	
Trichloroethene	92		-		70-130	-		25	
Tetrachloroethene	92		-		70-130	-		25	

CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Canister and Flow Controller Information

	Media ID	Media Type	Date									
5 (120221)			Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
	0321	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.5	0
5 (120221)	1723	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.3	-7.5	-	-	-	-
4 (120221)	01379	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.7	4
4 (120221)	3408	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.2	-4.8	-	-	-	-
4 (120221) DUP.	01472	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	3.8	17
4 (120221) DUP.	3184	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.3	-5.4	-	-	-	-
3 (120221)	0292	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.5	0
3 (120221)	2737	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.2	-3.7	-	-	-	-
s-1 (120221)	0960	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.3	5
s-1 (120221)	2384	2.7L Can	11/30/21	371693	L2164399-01	Pass	-28.2	-4.8	-	-	-	-
7 (120221)	0139	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.2	7
7 (120221)	538	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.4	-6.2	-	-	-	
8 (120221)	01369	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.7	4
8 (120221)	561	2.7L Can	11/30/21	371693	L2163998-01	Pass	-29.2	-6.2	-	-	-	-
6 (120221)	0958	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.2	7
4 4 4 4 3 3 7 7 7 8	(120221) (120221) DUP. (120221) DUP. (120221) (120221) (120221) (120221) (120221) (120221) (120221) (120221) (120221)	(120221) 01379 (120221) DUP. 01472 (120221) DUP. 3184 (120221) 0292 (120221) 2737 (120221) 0960 (120221) 2384 (120221) 0139 (120221) 538 (120221) 01369 (120221) 561	(120221) 01379 Flow 5 (120221) 3408 2.7L Can (120221) DUP. 01472 Flow 5 (120221) DUP. 3184 2.7L Can (120221) 0292 Flow 5 (120221) 2737 2.7L Can (120221) 0960 Flow 5 (120221) 2384 2.7L Can (120221) 0139 Flow 5 (120221) 538 2.7L Can (120221) 538 2.7L Can (120221) 538 2.7L Can	(120221) 01379 Flow 5 11/30/21 (120221) 3408 2.7L Can 11/30/21 (120221) DUP. 01472 Flow 5 11/30/21 (120221) DUP. 3184 2.7L Can 11/30/21 (120221) 0292 Flow 5 11/30/21 (120221) 2737 2.7L Can 11/30/21 (120221) 0960 Flow 5 11/30/21 (120221) 2384 2.7L Can 11/30/21 (120221) 0139 Flow 5 11/30/21 (120221) 538 2.7L Can 11/30/21 (120221) 538 2.7L Can 11/30/21 (120221) 538 2.7L Can 11/30/21 (120221) 538 2.7L Can 11/30/21 (120221) 538 2.7L Can 11/30/21	(120221) 01379 Flow 5 11/30/21 371693 (120221) 3408 2.7L Can 11/30/21 371693 (120221) DUP. 01472 Flow 5 11/30/21 371693 (120221) DUP. 3184 2.7L Can 11/30/21 371693 (120221) 0292 Flow 5 11/30/21 371693 (120221) 2737 2.7L Can 11/30/21 371693 (120221) 0960 Flow 5 11/30/21 371693 (120221) 2384 2.7L Can 11/30/21 371693 (120221) 2384 2.7L Can 11/30/21 371693 (120221) 538 2.7L Can 11/30/21 371693 (120221) 538 2.7L Can 11/30/21 371693 (120221) 538 2.7L Can 11/30/21 371693 (120221) 538 2.7L Can 11/30/21 371693 (120221) 538 2.7L Can 11/30/21 371693 (120221) 551 2.7L Can 11/30/21 371693 (120221) 561 2.7L Can 11/30/21 371693	(120221) 01379 Flow 5 11/30/21 371693 L2164399-01 (120221) DUP. 01472 Flow 5 11/30/21 371693 L2164399-01 (120221) DUP. 3184 2.7L Can 11/30/21 371693 L2164399-01 (120221) 0292 Flow 5 11/30/21 371693 L2164399-01 (120221) 2737 2.7L Can 11/30/21 371693 L2164399-01 (120221) 0960 Flow 5 11/30/21 371693 L2164399-01 (120221) 2384 2.7L Can 11/30/21 371693 L2164399-01 (120221) 0139 Flow 5 11/30/21 371693 L2164399-01 (120221) 538 2.7L Can 11/30/21 371693 L2164399-01 (120221) 538 2.7L Can 11/30/21 371693 L2164399-01 (120221) 538 2.7L Can 11/30/21 371693 L2164399-01 (120221) 538 2.7L Can 11/30/21 371693 L2164399-01 (120221) 538 2.7L Can 11/30/21 371693 L2164399-01 (120221) 558 2.7L Can 11/30/21 371693 L2164399-01	(120221) 01379 Flow 5 11/30/21 371693	(120221) 01379 Flow 5 11/30/21 371693	(120221) 01379 Flow 5 11/30/21 371693	(120221) 01379 Flow 5 11/30/21 371693 L2164399-01 Pass -29.2 -4.8	(120221) 01379 Flow 5 11/30/21 371693	(120221) 0.01379 Flow 5 11/30/21 371693 L2164399-01 Pass -29.2 -4.8

Project Name:

CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L2166417-08	IA-6 (120221)	2192	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.4	0.0	-	-	-	-
L2166417-09	IA-1 (120221)	01627	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.7	4
L2166417-09	IA-1 (120221)	3458	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.2	-7.5	-	-	-	-
L2166417-10	IA-2 (120221)	0059	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	3.0	40
L2166417-10	IA-2 (120221)	2239	2.7L Can	11/30/21	371693	L2163998-01	Pass	-29.3	-7.7	-	-	-	-

Project Name:

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 11/22/21 00:28 Analytical Date:

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

Sample Depth.								
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab	Tiodailo		DE					
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

Запре Верш.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2163998

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Client ID: CAN 2305 SHELF 6 Date Collected: Date Received: 11/18/21 15:00

11/19/21

Field Prep:

Not Specified

Sample Depth:

Sample Location:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	102		60-140
Bromochloromethane	110		60-140
chlorobenzene-d5	134		60-140

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 11/22/21 00:28

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2163998

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

Sample Depth.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

L2163998

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION**

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2163998-01

Date Collected: 11/18/21 15:00 Client ID: CAN 2305 SHELF 6 Date Received: 11/19/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	100		60-140
chlorobenzene-d5	100		60-140

L2164399

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01 Date Collected: 11/21/21 10:00

Client ID: CAN 3244 SHELF 1 Date Received: 11/22/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 11/22/21 18:42

Analyst: TS

		PpbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2164399

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Date Collected: 11/21/21 10:00 Client ID: **CAN 3244 SHELF 1** Date Received: 11/22/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2164399

11/21/21 10:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Date Collected: Client ID: **CAN 3244 SHELF 1** Date Received:

Sample Location:

11/22/21 Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2164399

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Date Collected: 11/21/21 10:00 Client ID: **CAN 3244 SHELF 1** Date Received: 11/22/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2164399

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Client ID: CAN 3244 SHELF 1

Sample Location:

Date Collected:

11/21/21 10:00

Date Received:

11/22/21

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	94		60-140

L2164399

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01 Date Collected: 11/21/21 10:00

Client ID: CAN 3244 SHELF 1 Date Received: 11/22/21 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 11/22/21 18:42

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2164399

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Date Collected: 11/21/21 10:00 Client ID: **CAN 3244 SHELF 1** Date Received: 11/22/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Запріє Берпі.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.107	0.020		0.726	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2164399

Project Number: CANISTER QC BAT Report Date: 12/17/21

Air Canister Certification Results

Lab ID: L2164399-01

Client ID: CAN 3244 SHELF 1

Sample Location:

Date Collected:

11/21/21 10:00

Date Received:

11/22/21

Field Prep:

Not Specified

Sample Depth:

, ,		ppbV	ppbV		ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	100		60-140
chlorobenzene-d5	96		60-140

Serial_No:12172117:07 *Lab Number:* L2166417

Project Name: CY2021 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 12/17/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

CoolerCustody SealNAPresent/Intact

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2166417-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2166417-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-06A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-07A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-08A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2166417-09A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2166417-10A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

GLOSSARY

Acronyms

DL

LOQ

MS

RL

Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when
those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:CY2021 SMP INDOOR AIR SAMPLINGLab Number:L2166417Project Number:01101Report Date:12/17/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	AIR A	ANALYSIS PAGE_1_OF_	Date Rec'd in Lab: 12/6/21	ALPHA Job#: 12166417
320 Forbes Blvd,	Mansfield, MA 02048	Project Information	Report Information - Data Deliverables	Billing Information
TEL: 508-822-930	00 FAX: 508-822-3288	Project Name: CY2021 SMP Indoor	Sampling	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TW
Client Informat		Project Location: 155chandler st. But	Z ADEX	Same as Client info PO#: OIID/
Client: Env.	Advantage Inc.	THE PARTY OF THE P	(Default based on Regulators Critical Indiana)	
Address: 3636	N Ruccoln ed	Project Manager: Mark Hanna + Mary	Other Formats:	Pagulaton Bandan I B
Orchard P	ark NY 14127	ALPHA Quote #:	Additional Deliverables:	Regulatory Requirements/Report Limits State/Fed Program Res / Communications
Phone: 716-	667-3130	Turn-Around Time	Report to: (if different than Project Manager)	1,007,0011
716-66	67-3156	Standard Digital	- V	
Email: Mhanne	20 envaduentage c	on		ANALYSIS
 I nese samples ha 	ave been previously analyzed by Alaba	Date Due:		ANALISIS
			F	
· · · · · · · · · · · · · · · · · · ·	rarger Compound List:		/	14 199
	Δ	II Columns Below Mus	t Be Filled Out	N
ALPHA Lab ID (Lab Use Only)	Sample ID	COLLEGION	Sample Sampler's Con 15 15 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
06417-01	TA-5 (120221)		1 10	Sample Comments (i.e. PI
The state of		12/2/21 0:550 4:550 20 11:550 10	AA EB 27L 1723 0321 X	O.OPPm
	21. 1(12022.)	1941 8:55 4:56 27.06 -44	The state of the s	0.08Pm
		7.	1" AA EB 2.74318401472 X	0.0 ppg
		142/21 9:00am 5:00px29.08"-3.17	"AA EB 2.7L 2757 0292 X	0.0PPm
		144/21 9:05an 5:05, 27.82 -5.9	7-11	
		12/2/21 9:10am 5:10 Pm 29.02-5.66	"AA FR 271 538 0130 V	D.099m
The second secon		12/2/21 9:12an 5:12pm 29,13"-5.82	1 AA 6B 271 71 1911	DOPPM
	IA-6(120221)	12/2/21 9:15 am 5:15 pm 2937:0.05	0 .	0.0 PPM
	IA-1(120221)	12/2/219:1700 5:17Pm 29.70"-7.12"	AA EB 2.71 3458 01627 V	0.0 ppn
10	IA 2(120221)	12/2/219:20an 5:20pm 29.30"-1.9.	2 AA CB 27 2733 mcey	O, O PPM
*SAMPLE	Regulatory R Regu		0.0 PPm would no	
Grilli EL		ther = Please Specify	Container Type CS	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time
	may	m) Eustak 43/21 9:37A	13/AC 12034	e/Time: clock will not start until any ambi
ige 84 of 84 ⁽²⁵⁻⁸⁾	ep-15)	(2/22/21/12)		Terms and Conditions.

ANALYTICAL REPORT

Lab Number: L2166429

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101 Report Date: 12/17/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number:

L2166429

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2166429-01	MW-3(120221)	WATER	155 CHANDLER ST. BUFFALO, NY	12/02/21 11:20	12/03/21
L2166429-02	MW-3(120221) DUPLICATE	WATER	155 CHANDLER ST. BUFFALO, NY	12/02/21 11:20	12/03/21
L2166429-03	TRIP BLANK(120221)	WATER	155 CHANDLER ST. BUFFALO, NY	12/02/21 11:50	12/03/21
L2166429-04	RINSATE BLANK(120221)	WATER	155 CHANDLER ST. BUFFALO, NY	12/02/21 12:00	12/03/21

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Page 12/17/21

Project Number: 01101 Report Date: 12/17/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Report Date: 12/17/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/17/21

600, Sharow Kelly Stenstrom

ORGANICS

VOLATILES

L2166429

12/17/21

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

SAMPLE RESULTS

Date Collected: 12/02/21 11:20

Lab Number:

Report Date:

Lab ID: L2166429-01 Client ID: Date Received: 12/03/21 MW-3(120221)

Field Prep: Sample Location: 155 CHANDLER ST. BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/12/21 18:01

Analyst: PD

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: CY2021 ANNUAL GW SAMPLING L2166429

Project Number: Report Date: 01101 12/17/21

SAMPLE RESULTS

Lab ID: L2166429-01 Date Collected: 12/02/21 11:20

Date Received: Client ID: MW-3(120221) 12/03/21

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	114	70-130	

L2166429

12/17/21

Project Name: CY2021 ANNUAL GW SAMPLING

L2166429-02

MW-3(120221) DUPLICATE

155 CHANDLER ST. BUFFALO, NY

Project Number: 01101

SAMPLE RESULTS

Date Collected: 12/02/21 11:20

Date Received: 12/03/21 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/12/21 17:38

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

12/17/21

Project Name: Lab Number: CY2021 ANNUAL GW SAMPLING L2166429

Project Number: Report Date: 01101

SAMPLE RESULTS

Lab ID: L2166429-02 Date Collected: 12/02/21 11:20

Date Received: Client ID: MW-3(120221) DUPLICATE 12/03/21 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	113	70-130	

L2166429

12/17/21

12/03/21

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: L2166429-03 Date Collected: 12/02/21 11:50

Client ID: TRIP BLANK(120221)

Field Prep: Sample Location: 155 CHANDLER ST. BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/12/21 17:14

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: Lab Number: CY2021 ANNUAL GW SAMPLING L2166429

Project Number: Report Date: 01101 12/17/21

Result

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2166429-03 Date Collected: 12/02/21 11:50

Date Received: Client ID: 12/03/21 TRIP BLANK(120221)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Office			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	115		70-130	

L2166429

12/17/21

Project Name: CY2021 ANNUAL GW SAMPLING

155 CHANDLER ST. BUFFALO, NY

RINSATE BLANK(120221)

L2166429-04

Project Number: 01101

SAMPLE RESULTS

Date Collected: 12/02/21 12:00

Date Received: 12/03/21 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/12/21 16:51

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

12/17/21

Dilution Factor

Report Date:

MDL

RL

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101

SAMPLE RESULTS

Lab ID: L2166429-04 Date Collected: 12/02/21 12:00

Client ID: RINSATE BLANK(120221) Date Received: 12/03/21

Result

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

Sample Depth:

Parameter

i didilictoi			••			2	
Volatile Organics by GC/MS - Westbe	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.0	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	113		70-130	

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/21 10:18

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1582628-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/21 10:18

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01-04	Batch:	WG1582628-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Report Date: 12/17/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/21 10:18

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1582628-5

		Acceptance	
Surrogate	%Recovery 0	Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	116	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number: L2166429

Report Date: 12/17/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch: WC	G1582628-3 WG1582628-4		
Methylene chloride	110		110	70-130	0	20
1,1-Dichloroethane	120		120	70-130	0	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	96		97	63-132	1	20
1,2-Dichloropropane	110		110	70-130	0	20
Dibromochloromethane	87		91	63-130	4	20
1,1,2-Trichloroethane	86		93	70-130	8	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	100		110	75-130	10	20
Trichlorofluoromethane	120		120	62-150	0	20
1,2-Dichloroethane	100		110	70-130	10	20
1,1,1-Trichloroethane	100		100	67-130	0	20
Bromodichloromethane	94		95	67-130	1	20
trans-1,3-Dichloropropene	79		84	70-130	6	20
cis-1,3-Dichloropropene	88		90	70-130	2	20
Bromoform	78		84	54-136	7	20
1,1,2,2-Tetrachloroethane	86		92	67-130	7	20
Benzene	100		100	70-130	0	20
Toluene	100		100	70-130	0	20
Ethylbenzene	100		110	70-130	10	20
Chloromethane	130		130	64-130	0	20
Bromomethane	73		75	39-139	3	20
Vinyl chloride	130		130	55-140	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number: L2166429

Report Date: 12/17/21

arameter	LCS %Recovery		LCSD ecovery Q	%Recovery ual Limits	, RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associated sar	mple(s): 01-04	Batch: WG15	32628-3 WG15826	28-4	
Chloroethane	130		130	55-138	0	20
1,1-Dichloroethene	120		120	61-145	0	20
trans-1,2-Dichloroethene	110		110	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	96		98	70-130	2	20
1,3-Dichlorobenzene	98		100	70-130	2	20
1,4-Dichlorobenzene	98		100	70-130	2	20
Methyl tert butyl ether	84		88	63-130	5	20
p/m-Xylene	105		105	70-130	0	20
o-Xylene	100		105	70-130	5	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Styrene	100		105	70-130	5	20
Dichlorodifluoromethane	100		100	36-147	0	20
Acetone	90		92	58-148	2	20
Carbon disulfide	120		120	51-130	0	20
2-Butanone	91		96	63-138	5	20
4-Methyl-2-pentanone	77		84	59-130	9	20
2-Hexanone	82		89	57-130	8	20
Bromochloromethane	100		110	70-130	10	20
1,2-Dibromoethane	85		88	70-130	3	20
1,2-Dibromo-3-chloropropane	72		75	41-144	4	20
Isopropylbenzene	100		100	70-130	0	20
1,2,3-Trichlorobenzene	80		85	70-130	6	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number: L2166429

Report Date: 12/17/21

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04	Batch:	WG1582628-3	WG1582628-4			
1,2,4-Trichlorobenzene	84			87		70-130	4		20
Methyl Acetate	95			99		70-130	4		20
Cyclohexane	140	Q		140	Q	70-130	0		20
1,4-Dioxane	102			94		56-162	8		20
Freon-113	120			120		70-130	0		20
Methyl cyclohexane	100			100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	108	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	100	98	70-130
Dibromofluoromethane	107	107	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number:

L2166429

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-3(120221)	S - Westborough	Lab Asso	ciated sample	(s): 01-04 C	C Batch ID	: WG15826	628-6 WG1582	2628-7	QC Sample	e: L2166	429-01	Client ID:
Methylene chloride	ND	10	12	120		11	110		70-130	9		20
1,1-Dichloroethane	ND	10	14	140	Q	13	130		70-130	7		20
Chloroform	ND	10	12	120		11	110		70-130	9		20
Carbon tetrachloride	ND	10	11	110		10	100		63-132	10		20
1,2-Dichloropropane	ND	10	13	130		13	130		70-130	0		20
Dibromochloromethane	ND	10	11	110		11	110		63-130	0		20
1,1,2-Trichloroethane	ND	10	12	120		11	110		70-130	9		20
Tetrachloroethene	ND	10	12	120		11	110		70-130	9		20
Chlorobenzene	ND	10	12	120		12	120		75-130	0		20
Trichlorofluoromethane	ND	10	13	130		12	120		62-150	8		20
1,2-Dichloroethane	ND	10	13	130		13	130		70-130	0		20
1,1,1-Trichloroethane	ND	10	11	110		11	110		67-130	0		20
Bromodichloromethane	ND	10	11	110		11	110		67-130	0		20
trans-1,3-Dichloropropene	ND	10	10	100		9.8	98		70-130	2		20
cis-1,3-Dichloropropene	ND	10	10	100		10	100		70-130	0		20
Bromoform	ND	10	10	100		10	100		54-136	0		20
1,1,2,2-Tetrachloroethane	ND	10	12	120		12	120		67-130	0		20
Benzene	ND	10	12	120		12	120		70-130	0		20
Toluene	ND	10	12	120		12	120		70-130	0		20
Ethylbenzene	ND	10	12	120		12	120		70-130	0		20
Chloromethane	ND	10	15	150	Q	15	150	Q	64-130	0		20
Bromomethane	ND	10	8.4	84		8.3	83		39-139	1		20
Vinyl chloride	ND	10	15	150	Q	14	140		55-140	7		20

Matrix Spike Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number:

L2166429

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3(120221)	Westborough	Lab Ass	ociated sample(s): 01-04	QC E	Batch ID:	WG15826	628-6 WG1582	2628-7	QC Sample	e: L2166	6429-01	Client ID:
Chloroethane	ND	10	14	140		Q	13	130		55-138	7		20
1,1-Dichloroethene	ND	10	13	130			13	130		61-145	0		20
rans-1,2-Dichloroethene	ND	10	12	120			12	120		70-130	0		20
Trichloroethene	ND	10	12	120			11	110		70-130	9		20
1,2-Dichlorobenzene	ND	10	11	110			11	110		70-130	0		20
1,3-Dichlorobenzene	ND	10	11	110			11	110		70-130	0		20
1,4-Dichlorobenzene	ND	10	11	110			11	110		70-130	0		20
Methyl tert butyl ether	ND	10	11	110			11	110		63-130	0		20
o/m-Xylene	ND	20	24	120			23	115		70-130	4		20
o-Xylene	ND	20	24	120			23	115		70-130	4		20
cis-1,2-Dichloroethene	ND	10	12	120			11	110		70-130	9		20
Styrene	ND	20	24	120			23	115		70-130	4		20
Dichlorodifluoromethane	ND	10	11	110			10	100		36-147	10		20
Acetone	ND	10	13	130			13	130		58-148	0		20
Carbon disulfide	ND	10	13	130			12	120		51-130	8		20
2-Butanone	ND	10	14	140		Q	14	140	Q	63-138	0		20
4-Methyl-2-pentanone	ND	10	12	120			12	120		59-130	0		20
2-Hexanone	ND	10	13	130			13	130		57-130	0		20
Bromochloromethane	ND	10	12	120			12	120		70-130	0		20
1,2-Dibromoethane	ND	10	11	110			11	110		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	10	100			11	110		41-144	10		20
sopropylbenzene	ND	10	12	120			11	110		70-130	9		20
1,2,3-Trichlorobenzene	ND	10	10	100			11	110		70-130	10		20

Matrix Spike Analysis Batch Quality Control

Project Name: CY2021 ANNUAL GW SAMPLING

Project Number: 01101

Lab Number:

L2166429

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3(120221)	- Westborough L	_ab Assoc	ciated sample(s	s): 01-04 C	C Batch ID	: WG15826	328-6 WG1582	2628-7	QC Sample	: L216	6429-01	Client ID:
1,2,4-Trichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl Acetate	ND	10	14	140	Q	13	130		70-130	7		20
Cyclohexane	ND	10	15	150	Q	15	150	Q	70-130	0		20
1,4-Dioxane	ND	500	660	132		700	140		56-162	6		20
Freon-113	ND	10	12	120		12	120		70-130	0		20
Methyl cyclohexane	ND	10	11	110		10	100		70-130	10		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	116	116	70-130
4-Bromofluorobenzene	97	98	70-130
Dibromofluoromethane	106	104	70-130
Toluene-d8	103	102	70-130

Project Name: CY2021 ANNUAL GW SAMPLING

Lab Number: L2166429 Project Number: 01101 Report Date: 12/17/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2166429-01A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01A1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01A2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01B1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01B2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01C1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-01C2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-02C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-03A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-03B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-04A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-04B	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2166429-04C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429

Project Number: 01101 Report Date: 12/17/21

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2021 ANNUAL GW SAMPLINGLab Number:L2166429Project Number:01101Report Date:12/17/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2021 ANNUAL GW SAMPLINGLab Number:L2166429Project Number:01101Report Date:12/17/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2021 ANNUAL GW SAMPLINGLab Number:L2166429Project Number:01101Report Date:12/17/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873**

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	05	Page / of	7 10	Date in	Rec'd Lab	14/4	21	ALPHA JOB# 660	120
Westborough, MA 01581	Mansfield, MA 02048	Project Information			- WEL	CHICAGO IN	Deliverable	COLUMN TWO IS NOT			Billing Information	1
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Committee of the Commit	21 Ann.	10.50	-olmo		☐ ASP		V ASP	В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: CY202 Project Location: \$50	al a lla	CI D CO	1 110	0	=	S (1 File)	-	S (4 File)	PO# DILDI	
Client Information	TE TOTAL COM		nonaler	ST. BULL	alt, NT		Othe	25.51	L Lau	0 (41 110)	or Onto	
	Madaga Tac	Project # Ollo1	is at the C				THE RESERVE OF THE PERSON NAMED IN	622 27	nt .		Disposal Site Information	
	vantage Inc.	(Use Project name as Pro		1. 44		1 10	NY TO	Requireme	Marie San Land	art 375		
Address: 3636 N		Project Manager: Man	K Hann	at Mar	* Zar	tak	=		=		Please identify below location applicable disposal facilities.	n of
orchard Park		ALPHAQuote #:			THE OWNER OF	10 0 E M	=	Standards	☐ NY C			
Phone: 716-66		Turn-Around Time	7			N 10 10 10	=	estricted Use	Other		Disposal Facility:	
	7-3156	Standard Standard	2	Due Date:			=	nrestricted Us			□ NJ □ NY	
		Rush (only if pre approved)		# of Days:				Sewer Discha	arge		Other:	
These samples have b		The state of the s					ANALYSIS				Sample Filtration	0
Other project specific Add Thona() OPEN NEW SO Please specify Metals	y enail resul mple delive	ts to mszustak y group on 12/2/2	Denva 21; Close	dvantage esample d	clive-y	goup!	8760TCL				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	-	ection	Sample	Sampler's	700					, it
			Date	Time	Matrix	Initials					Sample Specific Comments	100-10
6642901	MW-3(120	221)	12/2/21	11:20am	GW	EB	V					3
(0)		221) Duplicate	1	11:20em			<u>Y</u>					3
(0)	MW-3(120	221) /15		11:20am			X					3
(0)	MW-3 (120	221) MSD		11:20 am	· •		X					3
, 03	Trip Blank	5(120221)		11:50 am	WA		X					2
iol		onk (120221)	1	12:00 Pm		1	X					3
Preservative Code:	Container Code											
A = None B = HCl C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No			Con	tainer Type	•				Please print clearly, leg and completely. Samp not be logged in and	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				Р	reservative	В				turnaround time clock start until any ambiguit	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished E		Date/1		لر	Received B	r.	Date	/Time	resolved, BY EXECUT	
H = Na ₂ S ₂ O ₃	E = Encore	many Stein	tal	12/3/21	9:37A	16	SARC	,	12/03/20	9:37	THIS COC, THE CLIE HAS READ AND AGR	
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	By	A Company of the Comp	12/03/21	10:10	2	1	-		0010	TO BE BOUND BY AL TERMS & CONDITION	PHA'S
Form No: 01-25 HC (rev. 30	0-Sept-2013)			Ž.							(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2217738

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Report Date: 06/01/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 00101

Lab Number: L2217738 **Report Date:** 06/01/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2217738-01	OA-1 (032922)	AIR	155 CHANDLER ST. BUFFALO NY	03/29/22 16:30	03/30/22
L2217738-02	SS-9(032922)	SOIL_VAPOR	155 CHANDLER ST. BUFFALO NY	03/29/22 16:40	03/30/22
L2217738-03	IA-9(032922)	AIR	155 CHANDLER ST. BUFFALO NY	03/29/22 16:45	03/30/22
L2217738-04	SS-10(032922)	SOIL_VAPOR	155 CHANDLER ST. BUFFALO NY	03/29/22 17:05	03/30/22
L2217738-05	IA-10 (032922)	AIR	155 CHANDLER ST. BUFFALO NY	03/29/22 16:55	03/30/22
L2217738-06	IA-7 (032922)	AIR	155 CHANDLER ST. BUFFALO NY	03/29/22 17:00	03/30/22
L2217738-07	SS-7(032922)	SOIL_VAPOR	155 CHANDLER ST. BUFFALO NY	03/29/22 17:00	03/30/22

L2217738

Lab Number:

Project Name: NYSDEC VIM STUDY

Project Number: 00101 Report Date: 06/01/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:06012215:51

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Case Narrative (continued)

Report Revision

June 1, 2022 the report has been amended to change sample IDs at the request of the client. A revised COC is included in this submittal.

Volatile Organics in Air

Canisters were released from the laboratory on March 28, 2022. The canister certification results are provided as an addendum.

L2217738-04D: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to perform a screen analysis. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/01/22

Christopher J. Anderson

ALPHA

AIR

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:30 Date Received: 03/30/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 17:49

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.515	0.200		2.55	0.989			1
Chloromethane	0.539	0.200		1.11	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.48	1.00		3.52	2.38			1
Trichlorofluoromethane	0.210	0.200		1.18	1.12			1
Isopropanol	1.54	0.500		3.79	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:30

Date Received: 03/30/22 Field Prep: Not Specified

оапріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-01

Client ID: OA-1 (032922)

155 CHANDLER ST. BUFFALO NY

Date Collected:

03/29/22 16:30

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Sample Location:

ug/m3 ppbV Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab 1,2,4-Trimethylbenzene ND 0.200 ND0.983 1 Benzyl chloride ND 0.200 --ND 1.04 --1 1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2-Dichlorobenzene 1 ND 0.200 ND 1.20 --1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 ----Hexachlorobutadiene ND 0.200 ND 2.13 --1 --

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	104		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date:

Date Collected:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-01

Client ID: OA-1 (032922)

Sample Location:

Date Received: Field Prep:

03/29/22 16:30 03/30/22

155 CHANDLER ST. BUFFALO NY

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 04/10/22 17:49

Analyst:

TS

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL MDL		Qualifier	Factor
nsfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.090	0.020		0.566	0.126			1
ND	0.020		ND	0.107			1
ND	0.020		ND	0.136			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Results RL nsfield Lab ND 0.020 ND 0.020	Results RL MDL nsfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.090 0.020 ND ND 0.020 ND	Results RL MDL Results RL ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.090 0.020 0.566 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Insfield Lab ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.090 0.020 0.566 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Qualifier NSfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.090 0.020 ND 0.126 ND 0.020 ND 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	105		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-02

Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 16:40

Date Received: 03/30/22

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date:

04/10/22 22:58

Analyst: TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.552	0.200		2.73	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.86	5.00		14.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.75	1.00		13.7	2.38			1
Trichlorofluoromethane	0.279	0.200		1.57	1.12			1
Isopropanol	3.28	0.500		8.06	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.574	0.500		1.99	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.02	0.200		3.18	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	4.80	0.500		14.2	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-02 Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 16:40

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.671	0.200		3.28	0.977			1
Tetrahydrofuran	2.88	0.500		8.49	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	7.54	0.200		26.6	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.70	0.200		5.43	0.639			1
Carbon tetrachloride	1.41	0.200		8.87	1.26			1
Cyclohexane	1.65	0.200		5.68	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	1.32	0.200		7.09	1.07			1
2,2,4-Trimethylpentane	0.341	0.200		1.59	0.934			1
Heptane	3.20	0.200		13.1	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	20.7	0.200		78.0	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.214	0.200		1.45	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	3.79	0.200		16.5	0.869			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-02 Client ID: SS-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29

03/29/22 16:40 03/30/22

Date Received: 03/30/22
Field Prep: Not Specified

острю ворит.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	18.3	0.400		79.5	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	6.01	0.200		26.1	0.869			1
4-Ethyltoluene	1.54	0.200		7.57	0.983			1
1,3,5-Trimethylbenzene	1.32	0.200		6.49	0.983			1
1,2,4-Trimethylbenzene	5.68	0.200		27.9	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	98		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date: 06/01/22

SAMPLE RESULTS

Lab ID: L2217738-03 Client ID:

IA-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 16:45

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 21:03

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.543	0.200		2.69	0.989			1
Chloromethane	0.587	0.200		1.21	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	111	5.00		209	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	17.5	1.00		41.6	2.38			1
Trichlorofluoromethane	0.246	0.200		1.38	1.12			1
Isopropanol	96.4	0.500		237	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.602	0.200		2.94	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-03 Client ID: IA-9(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:45

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
0.200	0.200		0.639	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
0.276	0.200		1.13	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.366	0.200		1.38	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
0.456	0.400		1.98	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
0.234	0.200		1.02	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Results RL d Lab ND 0.200 ND 0.200 0.200 ND 0.200 ND 0.200 ND </td <td>Results RL MDL d Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <</td> <td>Results RL MDL Results d Lab ND 0.200 ND ND 0.200 ND 0.200 0.200 ND ND 0.200 </td> <td>Results RL MDL Results RL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.200 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908</td> <td>Results RL MDL Results RL MDL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 <!--</td--><td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 ND 0.809 ND 0.705 ND 0.705 ND 0.639 0.639 ND 0.638 ND 0.688 ND 0.924 ND 0.924 ND 0.924 ND 0.934 ND 0.934 ND 0.934 </td></td>	Results RL MDL d Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <	Results RL MDL Results d Lab ND 0.200 ND ND 0.200 ND 0.200 0.200 ND ND 0.200	Results RL MDL Results RL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.200 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908	Results RL MDL Results RL MDL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 </td <td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 ND 0.809 ND 0.705 ND 0.705 ND 0.639 0.639 ND 0.638 ND 0.688 ND 0.924 ND 0.924 ND 0.924 ND 0.934 ND 0.934 ND 0.934 </td>	Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 ND 0.809 ND 0.705 ND 0.705 ND 0.639 0.639 ND 0.638 ND 0.688 ND 0.924 ND 0.924 ND 0.924 ND 0.934 ND 0.934 ND 0.934

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-03 Client ID:

IA-9(032922)

Sample Location:

Date Collected:

03/29/22 16:45

Date Received:

03/30/22

Sample Depth:

155 CHANDLER ST. BUFFALO NY

Field Prep: Not Specified

ug/m3 ppbV Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab 1,2,4-Trimethylbenzene ND 0.200 ND0.983 1 Benzyl chloride ND 0.200 --ND 1.04 --1 1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2-Dichlorobenzene 1 ND 0.200 ND 1.20 1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 ----Hexachlorobutadiene ND 0.200 ND 2.13 --1 --

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	101		60-140
chlorobenzene-d5	98		60-140

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-03

Client ID: IA-9(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03

03/29/22 16:45

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 21:03

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.098	0.020		0.389	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	1.28	0.020		8.05	0.126			1
Trichloroethene	4.74	0.020		25.5	0.107			1
Tetrachloroethene	0.090	0.020		0.610	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	100		60-140

Project Number: 00101

Lab Number: L2217738

Report Date: 06/01/22

SAMPLE RESULTS

Lab ID: L2217738-04 D

Client ID: SS-10(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:05

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 23:37

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.526	0.422		2.60	2.09			2.111
Chloromethane	2.15	0.422		4.44	0.871			2.111
Freon-114	ND	0.422		ND	2.95			2.111
Vinyl chloride	ND	0.422		ND	1.08			2.111
1,3-Butadiene	50.3	0.422		111	0.934			2.111
Bromomethane	ND	0.422		ND	1.64			2.111
Chloroethane	ND	0.422		ND	1.11			2.111
Ethanol	18.0	10.6		33.9	20.0			2.111
Vinyl bromide	ND	0.422		ND	1.85			2.111
Acetone	39.0	2.11		92.6	5.01			2.111
Trichlorofluoromethane	ND	0.422		ND	2.37			2.111
Isopropanol	6.84	1.06		16.8	2.61			2.111
1,1-Dichloroethene	ND	0.422		ND	1.67			2.111
Tertiary butyl Alcohol	ND	1.06		ND	3.21			2.111
Methylene chloride	ND	1.06		ND	3.68			2.111
3-Chloropropene	ND	0.422		ND	1.32			2.111
Carbon disulfide	43.5	0.422		135	1.31			2.111
Freon-113	ND	0.422		ND	3.23			2.111
trans-1,2-Dichloroethene	ND	0.422		ND	1.67			2.111
1,1-Dichloroethane	ND	0.422		ND	1.71			2.111
Methyl tert butyl ether	ND	0.422		ND	1.52			2.111
2-Butanone	7.87	1.06		23.2	3.13			2.111
cis-1,2-Dichloroethene	ND	0.422		ND	1.67			2.111

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-04 D
Client ID: SS-10(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:05

Date Received: 03/30/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

		ppbV	ppbV			ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.06		ND	3.82			2.111
Chloroform	0.483	0.422		2.36	2.06			2.111
Tetrahydrofuran	ND	1.06		ND	3.13			2.111
1,2-Dichloroethane	ND	0.422		ND	1.71			2.111
n-Hexane	132	0.422		465	1.49			2.111
1,1,1-Trichloroethane	ND	0.422		ND	2.30			2.111
Benzene	41.7	0.422		133	1.35			2.111
Carbon tetrachloride	0.684	0.422		4.30	2.65			2.111
Cyclohexane	68.4	0.422		235	1.45			2.111
1,2-Dichloropropane	ND	0.422		ND	1.95			2.111
Bromodichloromethane	ND	0.422		ND	2.83			2.111
1,4-Dioxane	ND	0.422		ND	1.52			2.111
Trichloroethene	4.36	0.422		23.4	2.27			2.111
2,2,4-Trimethylpentane	ND	0.422		ND	1.97			2.111
Heptane	109	0.422		447	1.73			2.111
cis-1,3-Dichloropropene	ND	0.422		ND	1.92			2.111
4-Methyl-2-pentanone	ND	1.06		ND	4.34			2.111
trans-1,3-Dichloropropene	ND	0.422		ND	1.92			2.111
1,1,2-Trichloroethane	ND	0.422		ND	2.30			2.111
Toluene	86.0	0.422		324	1.59			2.111
2-Hexanone	ND	0.422		ND	1.73			2.111
Dibromochloromethane	ND	0.422		ND	3.60			2.111
1,2-Dibromoethane	ND	0.422		ND	3.24			2.111
Tetrachloroethene	ND	0.422		ND	2.86			2.111
Chlorobenzene	ND	0.422		ND	1.94			2.111
Ethylbenzene	9.80	0.422		42.6	1.83			2.111

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-04 D Client ID:

SS-10(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 17:05

Date Received: Field Prep:

03/30/22 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
p/m-Xylene	40.2	0.844		175	3.67			2.111
Bromoform	ND	0.422		ND	4.36			2.111
Styrene	ND	0.422		ND	1.80			2.111
1,1,2,2-Tetrachloroethane	ND	0.422		ND	2.90			2.111
o-Xylene	10.2	0.422		44.3	1.83			2.111
4-Ethyltoluene	1.97	0.422		9.68	2.07			2.111
1,3,5-Trimethylbenzene	1.41	0.422		6.93	2.07			2.111
1,2,4-Trimethylbenzene	5.55	0.422		27.3	2.07			2.111
Benzyl chloride	ND	0.422		ND	2.19			2.111
1,3-Dichlorobenzene	ND	0.422		ND	2.54			2.111
1,4-Dichlorobenzene	ND	0.422		ND	2.54			2.111
1,2-Dichlorobenzene	ND	0.422		ND	2.54			2.111
1,2,4-Trichlorobenzene	ND	0.422		ND	3.13			2.111
Hexachlorobutadiene	ND	0.422		ND	4.50			2.111

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	102		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-05 Client ID:

IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 16:55

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/10/22 21:41

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.546	0.200		2.70	0.989			1
Chloromethane	0.594	0.200		1.23	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	76.4	5.00		144	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	37.4	1.00		88.8	2.38			1
Trichlorofluoromethane	0.232	0.200		1.30	1.12			1
Isopropanol	221	0.500		543	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.551	0.500		1.99	1.80			1
Chloroform	0.373	0.200		1.82	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-05 Client ID: IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:55

Date Received: 03/30/22 Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
0.214	0.200		0.684	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.290	0.200		1.09	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Results RL I Lab ND 0.200 ND 0.500 ND 0.200 ND	Results RL MDL I Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <	Results RL MDL Results I Lab ND 0.200 ND ND 0.200	Results RL MDL Results RL I Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.214 0.200 ND 0.684 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 0.754	Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.214 0.200 ND 0.684 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 N	Results RL MDL Results RL MDL Qualifier I Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.214 0.200 ND 0.684 0.639 ND 0.201 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.982 ND 0.200

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-05 Client ID: IA-10 (032922)

IA-10 (032922)

155 CHANDLER ST. BUFFALO NY

Date Collected:

03/29/22 16:55

Date Received: Field Prep:

03/30/22 Not Specified

Sample Depth:

Sample Location:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	103		60-140

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-05

Client ID: IA-10 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 16:55

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 21:41

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.121	0.020		0.480	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.815	0.020		5.13	0.126			1
Trichloroethene	7.29	0.020		39.2	0.107			1
Tetrachloroethene	0.045	0.020		0.305	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	104		60-140

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-06

Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00 Date Received: 03/30/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 22:20

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.545	0.200		2.69	0.989			1
Chloromethane	0.600	0.200		1.24	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	123	5.00		232	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	27.6	1.00		65.6	2.38			1
Trichlorofluoromethane	0.233	0.200		1.31	1.12			1
Isopropanol	151	0.500		371	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.681	0.500		2.01	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.288	0.200		1.41	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-06 Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER S

155 CHANDLER ST. BUFFALO NY Field Prep:

Date Collected: 03/29/22 17:00 Date Received: 03/30/22

Not Specified

Затріє Беріп.		ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield	Lab								
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
Benzene	ND	0.200		ND	0.639			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	0.414	0.200		1.56	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
,2-Dibromoethane	ND	0.200		ND	1.54			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
o/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
p-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-06 Client ID: IA-7 (032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected:

03/29/22 17:00

Date Received:

03/30/22

Field Prep:

Not Specified

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND ND ND ND ND ND ND ND ND ND	Results RL _ab ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	101		60-140
chlorobenzene-d5	97		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date: 06/01/22

SAMPLE RESULTS

Lab ID: L2217738-06

Date Collected: 03/29/22 17:00

Client ID: IA-7 (032922)

Date Received: 03/30/22

Sample Location: 155 CHANDLER ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix:

Air Anaytical Method:

48,TO-15-SIM

Analytical Date:

04/10/22 22:20

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.093	0.020		0.369	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.629	0.020		3.96	0.126			1
Trichloroethene	4.48	0.020		24.1	0.107			1
Tetrachloroethene	0.055	0.020		0.373	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	98		60-140

Project Number: 00101 Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-07

Client ID: SS-7(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY Date Collected: 03/29/22 17:00

Date Received: 03/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Anaytical Method:

Soil_Vapor 48,TO-15 04/11/22 00:15

Analytical Date: Analyst:

TS

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.519	0.200		2.57	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.84	1.00		4.37	2.38			1
Trichlorofluoromethane	0.270	0.200		1.52	1.12			1
Isopropanol	1.52	0.500		3.74	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.11	0.500		3.27	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-07 Client ID: SS-7(032922)

155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00

Date Received: 03/30/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

		ppbV			ug/m3	ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansf	ield Lab								
Ethyl Acetate	0.622	0.500		2.24	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	9.26	0.200		32.6	0.705			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
Benzene	2.60	0.200		8.31	0.639			1	
Carbon tetrachloride	0.496	0.200		3.12	1.26			1	
Cyclohexane	2.52	0.200		8.67	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
Trichloroethene	1.66	0.200		8.92	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	3.50	0.200		14.3	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	22.9	0.200		86.3	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Tetrachloroethene	ND	0.200		ND	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	3.80	0.200		16.5	0.869			1	

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

SAMPLE RESULTS

Lab ID: L2217738-07 Client ID: SS-7(032922)

Sample Location: 155 CHANDLER ST. BUFFALO NY

Date Collected: 03/29/22 17:00

Date Received: 03/30/22 Field Prep: Not Specified

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
18.4	0.400		79.9	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
5.84	0.200		25.4	0.869			1
1.26	0.200		6.19	0.983			1
1.29	0.200		6.34	0.983			1
5.24	0.200		25.8	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	18.4 ND ND ND 5.84 1.26 1.29 5.24 ND ND ND ND ND ND ND ND ND	Results RL 18.4 0.400 ND 0.200 ND 0.200 ND 0.200 1.26 0.200 1.29 0.200 1.29 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Lab 18.4 0.400 ND 0.200 ND 0.200 ND 0.200 5.84 0.200 1.26 0.200 1.29 0.200 ND 0.200	Results RL MDL Results 18.4 0.400 79.9 ND 0.200 ND ND 0.200 ND ND 0.200 ND 5.84 0.200 6.19 1.26 0.200 6.34 1.29 0.200 6.34 5.24 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab 18.4 0.400 79.9 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 5.84 0.200 ND 1.37 5.84 0.200 6.19 0.983 1.26 0.200 6.34 0.983 1.29 0.200 6.34 0.983 5.24 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab 18.4 0.400 79.9 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 5.84 0.200 ND 1.37 5.84 0.200 6.19 0.983 1.29 0.200 6.34 0.983 5.24 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.	Results RL MDL Results RL MDL Qualifier Lab 18.4 0.400 79.9 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 5.84 0.200 0.19 0.983 1.26 0.200 6.34 0.983 1.29 0.200 25.8 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	90		60-140

Serial_No:06012215:51

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01-	07 Batch:	: WG16256	613-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01-	-07 Batch:	WG16256	613-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/10/22 15:14

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01-	-07 Batch	n: WG16256	513-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/10/22 15:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab f	or sample	(s): 01,0	3,05-06 Bat	ch: WG1	625614	l-4	
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738

Report Date: 06/01/22

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	Associated sample(s):	01-07	Batch: WG162561	3-3				
Dichlorodifluoromethane	104		-		70-130	-		
Chloromethane	94		-		70-130	-		
Freon-114	101		-		70-130	-		
Vinyl chloride	82		-		70-130	-		
1,3-Butadiene	93		-		70-130	-		
Bromomethane	90		-		70-130	-		
Chloroethane	82		-		70-130	-		
Ethanol	116		-		40-160	-		
Vinyl bromide	89		-		70-130	-		
Acetone	96		-		40-160	-		
Trichlorofluoromethane	103		-		70-130	-		
Isopropanol	90		-		40-160	-		
1,1-Dichloroethene	92		-		70-130	-		
Tertiary butyl Alcohol	82		-		70-130	-		
Methylene chloride	101		-		70-130	-		
3-Chloropropene	92		-		70-130	-		
Carbon disulfide	92		-		70-130	-		
Freon-113	98		-		70-130	-		
trans-1,2-Dichloroethene	84		-		70-130	-		
1,1-Dichloroethane	88		-		70-130	-		
Methyl tert butyl ether	93		-		70-130	-		
2-Butanone	86		-		70-130	-		
cis-1,2-Dichloroethene	91		-		70-130	-		

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738

Report Date: 06/01/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-07	Batch: WG162561	3-3				
Ethyl Acetate	88		-		70-130	-		
Chloroform	107		-		70-130	-		
Tetrahydrofuran	82		-		70-130	-		
1,2-Dichloroethane	94		-		70-130	-		
n-Hexane	96		-		70-130	-		
1,1,1-Trichloroethane	110		-		70-130	-		
Benzene	99		-		70-130	-		
Carbon tetrachloride	119		-		70-130	-		
Cyclohexane	98		-		70-130	-		
1,2-Dichloropropane	94		-		70-130	-		
Bromodichloromethane	114		-		70-130	-		
1,4-Dioxane	103		-		70-130	-		
Trichloroethene	110		-		70-130	-		
2,2,4-Trimethylpentane	98		-		70-130	-		
Heptane	97		-		70-130	-		
cis-1,3-Dichloropropene	114		-		70-130	-		
4-Methyl-2-pentanone	99		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	105		-		70-130	-		
Toluene	96		-		70-130	-		
2-Hexanone	95		-		70-130	-		
Dibromochloromethane	115		-		70-130	-		
1,2-Dibromoethane	110		-		70-130	-		

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738

Report Date: 06/01/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-07	Batch: WG162561	3-3				
Tetrachloroethene	115		-		70-130	-		
Chlorobenzene	106		-		70-130	-		
Ethylbenzene	102		-		70-130	-		
p/m-Xylene	106		-		70-130	-		
Bromoform	118		-		70-130	-		
Styrene	103		-		70-130	-		
1,1,2,2-Tetrachloroethane	114		-		70-130	-		
o-Xylene	107		-		70-130	-		
4-Ethyltoluene	102		-		70-130	-		
1,3,5-Trimethylbenzene	113		-		70-130	-		
1,2,4-Trimethylbenzene	110		-		70-130	-		
Benzyl chloride	97		-		70-130	-		
1,3-Dichlorobenzene	114		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		
1,2-Dichlorobenzene	112		-		70-130	-		
1,2,4-Trichlorobenzene	114		-		70-130	-		
Hexachlorobutadiene	119		-		70-130	-		

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number:

L2217738

Report Date:

06/01/22

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated sa	ample(s):	01,03,05-06	Batch:	WG1628	5614-3				
Vinyl chloride	86		-			70-130	-		25	
1,1-Dichloroethene	96		-			70-130	-		25	
cis-1,2-Dichloroethene	94		-			70-130	-		25	
1,1,1-Trichloroethane	119		-			70-130	-		25	
Carbon tetrachloride	110		-			70-130	-		25	
Trichloroethene	111		-			70-130	-		25	
Tetrachloroethene	117		-			70-130	-		25	

NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Canister and Flow Controller Information

							Initial	Pressure	Flow			
Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressur (in. Hg)		Controler	Flow Out mL/min		
OA-1 (032922)	0771	Flow 5	03/28/22	382387		-	-	-	Pass	4.5	1.2	116
OA-1 (032922)	2300	2.7L Can	03/28/22	382387	L2214467-04	Pass	-28.9	-5.7	-	-	-	-
SS-9(032922)	01661	Flow 4	03/28/22	382387		-	-	-	Pass	4.5	4.8	6
SS-9(032922)	3198	2.7L Can	03/28/22	382387	L2214467-04	Pass	-28.2	-6.7	-	-	-	-
IA-9(032922)	0095	Flow 5	03/28/22	382387		-	-	-	Pass	4.5	3.1	37
IA-9(032922)	559	2.7L Can	03/28/22	382387	L2214467-04	Pass	-28.8	-8.4	-	-	-	-
SS-10(032922)	01536	Flow 4	03/28/22	382387		-	-	-	Pass	4.5	0.0	200
SS-10(032922)	133	2.7L Can	03/28/22	382387	L2214467-04	Pass	-28.9	-14.4	-	-	-	-
IA-10 (032922)	01702	Flow 4	03/28/22	382387		-	-	-	Pass	4.5	4.7	4
IA-10 (032922)	370	2.7L Can	03/28/22	382387	L2214467-04	Pass	-29.0	-4.8	-	-	-	-
IA-7 (032922)	02225	Flow 4	03/28/22	382387		-	-	-	Pass	4.5	4.1	9
IA-7 (032922)	2072	2.7L Can	03/28/22	382387	L2214467-04	Pass	-29.0	-9.2	-	-	-	-
SS-7(032922)	0915	Flow 5	03/28/22	382387		-	-	-	Pass	4.5	4.6	2
SS-7(032922)	145	2.7L Can	03/28/22	382387	L2214467-04	Pass	-29.0	-8.1			-	
	OA-1 (032922) SS-9(032922) SS-9(032922) IA-9(032922) IA-9(032922) SS-10(032922) IA-10 (032922) IA-10 (032922) IA-7 (032922) IA-7 (032922) SS-7(032922)	OA-1 (032922) 0771 OA-1 (032922) 2300 SS-9(032922) 01661 SS-9(032922) 3198 IA-9(032922) 0095 IA-9(032922) 559 SS-10(032922) 01536 SS-10(032922) 133 IA-10 (032922) 01702 IA-10 (032922) 370 IA-7 (032922) 02225 IA-7 (032922) 2072 SS-7(032922) 0915	Client ID Media ID OA-1 (032922) 0771 Flow 5 SS-9(032922) 2300 2.7L Can SS-9(032922) 01661 Flow 4 SS-9(032922) 3198 2.7L Can IA-9(032922) 559 2.7L Can SS-10(032922) 01536 Flow 4 SS-10(032922) 133 2.7L Can IA-10 (032922) 01702 Flow 4 IA-10 (032922) 370 2.7L Can IA-7 (032922) 02225 Flow 4 IA-7 (032922) 2072 2.7L Can SS-7(032922) 0915 Flow 5	Client ID Media ID Prepared OA-1 (032922) 0771 Flow 5 03/28/22 OA-1 (032922) 2300 2.7L Can 03/28/22 SS-9(032922) 01661 Flow 4 03/28/22 IA-9(032922) 3198 2.7L Can 03/28/22 IA-9(032922) 559 2.7L Can 03/28/22 SS-10(032922) 01536 Flow 4 03/28/22 SS-10(032922) 133 2.7L Can 03/28/22 IA-10 (032922) 01702 Flow 4 03/28/22 IA-10 (032922) 370 2.7L Can 03/28/22 IA-7 (032922) 02225 Flow 4 03/28/22 IA-7 (032922) 2072 2.7L Can 03/28/22 SS-7(032922) 0915 Flow 5 03/28/22	Client ID Media ID Prepared Order 0A-1 (032922) 0771 Flow 5 03/28/22 382387 0A-1 (032922) 2300 2.7L Can 03/28/22 382387 SS-9(032922) 01661 Flow 4 03/28/22 382387 IA-9(032922) 3198 2.7L Can 03/28/22 382387 IA-9(032922) 559 2.7L Can 03/28/22 382387 SS-10(032922) 01536 Flow 4 03/28/22 382387 SS-10(032922) 133 2.7L Can 03/28/22 382387 IA-10 (032922) 01702 Flow 4 03/28/22 382387 IA-10 (032922) 370 2.7L Can 03/28/22 382387 IA-7 (032922) 02225 Flow 4 03/28/22 382387 IA-7 (032922) 2072 2.7L Can 03/28/22 382387 SS-7(032922) 0915 Flow 5 03/28/22 382387	Client ID Media ID Prepared Order Batch ID OA-1 (032922) 0771 Flow 5 03/28/22 382387 OA-1 (032922) 2300 2.7L Can 03/28/22 382387 L2214467-04 SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 IA-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 SS-10(032922) 01536 Flow 4 03/28/22 382387 L2214467-04 IA-10 (032922) 133 2.7L Can 03/28/22 382387 L2214467-04 IA-10 (032922) 01702 Flow 4 03/28/22 382387 L2214467-04 IA-7 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 IA-7 (032922) 2072 2.7L Can 03/28/22 382387 L2214467-04 SS-7(032922) 0915 Flow 5 03/28/22 382387 L2214467-04	Client ID Media ID Prepared Order Batch ID Check OA-1 (032922) 0771 Flow 5 03/28/22 382387 - OA-1 (032922) 2300 2.7L Can 03/28/22 382387 L2214467-04 Pass SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 Pass IA-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass SS-10(032922) 01536 Flow 4 03/28/22 382387 L2214467-04 Pass IA-10 (032922) 01702 Flow 4 03/28/22 382387 L2214467-04 Pass IA-7 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 Pass IA-7 (032922) 20225 Flow 4 03/28/22 382387 L2214467-04 Pass IA-7 (032922) 2072 2.7L Can 03/28/22 <td< td=""><td>Client ID Media ID Media Type Date Prepared Bottle Order Cleaning Batch ID Can Leak (In. Hg) OA-1 (032922) 0771 Flow 5 03/28/22 382387 L2214467-04 Pass -28.9 SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 Pass -28.2 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.2 IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 SS-10(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 SS-10(032922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 IA-10 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 Pass -29.0 IA-7 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 Pass -29.0 IA-7 (032922)</td><td>Client ID Media ID Media Type Prepared Bottle Order Cleaning Batch ID Can Leak (in. Hg) In. Hg) (in. Hg) OA-1 (032922) 0771 Flow 5 03/28/22 382387 - - - - OA-1 (032922) 2300 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 -5.7 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.2 -6.7 IA-9(032922) 0995 Flow 5 03/28/22 382387 L2214467-04 Pass -28.2 -6.7 IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 -8.4 SS-10(032922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 -14.4 IA-10 (032922) 01702 Flow 4 03/28/22 382387 L2214467-04 Pass -29.0 -4.8 IA-7 (032922) 02225 Flow 4</td><td> Client ID Media ID Pare Pare pare Order Clearing Clearing Check Chec</td><td>Client ID Media ID Media Type Herbarod Pare propored Propored Clouble State ID Order Batch ID Order Batch ID Order Check Pressure (n. Hg) cn. Negotive Check of Mulmin Flow Order Mulmin OA-1 (032922) 0.771 Flow 5 03/28/22 382387 L2214467-04 Pass 28.9 -5.7 SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 Pass 28.9 -5.7 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass 28.2 -6.7 IA-9(032922) 0995 Flow 5 03/28/22 382387 L2214467-04 Pass 28.8 -8.4 SS-10(032922) 01536 Flow 4 03/28/22 382387 L2214467-04 Pass 28.9 -14.4 SS-10(033922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass 28.9 -14.4 </td><td> Cicient D Media D Media D Media D Media Type Dare Drieg</td></td<>	Client ID Media ID Media Type Date Prepared Bottle Order Cleaning Batch ID Can Leak (In. Hg) OA-1 (032922) 0771 Flow 5 03/28/22 382387 L2214467-04 Pass -28.9 SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 Pass -28.2 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.2 IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 SS-10(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 SS-10(032922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 IA-10 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 Pass -29.0 IA-7 (032922) 370 2.7L Can 03/28/22 382387 L2214467-04 Pass -29.0 IA-7 (032922)	Client ID Media ID Media Type Prepared Bottle Order Cleaning Batch ID Can Leak (in. Hg) In. Hg) (in. Hg) OA-1 (032922) 0771 Flow 5 03/28/22 382387 - - - - OA-1 (032922) 2300 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 -5.7 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.2 -6.7 IA-9(032922) 0995 Flow 5 03/28/22 382387 L2214467-04 Pass -28.2 -6.7 IA-9(032922) 559 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.8 -8.4 SS-10(032922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass -28.9 -14.4 IA-10 (032922) 01702 Flow 4 03/28/22 382387 L2214467-04 Pass -29.0 -4.8 IA-7 (032922) 02225 Flow 4	Client ID Media ID Pare Pare pare Order Clearing Clearing Check Chec	Client ID Media ID Media Type Herbarod Pare propored Propored Clouble State ID Order Batch ID Order Batch ID Order Check Pressure (n. Hg) cn. Negotive Check of Mulmin Flow Order Mulmin OA-1 (032922) 0.771 Flow 5 03/28/22 382387 L2214467-04 Pass 28.9 -5.7 SS-9(032922) 01661 Flow 4 03/28/22 382387 L2214467-04 Pass 28.9 -5.7 SS-9(032922) 3198 2.7L Can 03/28/22 382387 L2214467-04 Pass 28.2 -6.7 IA-9(032922) 0995 Flow 5 03/28/22 382387 L2214467-04 Pass 28.8 -8.4 SS-10(032922) 01536 Flow 4 03/28/22 382387 L2214467-04 Pass 28.9 -14.4 SS-10(033922) 133 2.7L Can 03/28/22 382387 L2214467-04 Pass 28.9 -14.4	Cicient D Media D Media D Media D Media Type Dare Drieg

Project Name:

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received: 03/21/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/21/22 23:44

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

Затріє Беріт.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

Затріє Беріп.	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2214467

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received:

03/21/22 Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	94		60-140

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: **CAN 2074 SHELF 13** Date Received: 03/21/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/21/22 23:44

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2214467

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: 03/21/22 09:00 Client ID: CAN 2074 SHELF 13 03/21/22 Date Received:

Sample Location: Field Prep: Not Specified

sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

03/21/22 09:00

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2214467

Project Number: CANISTER QC BAT **Report Date:** 06/01/22

Air Canister Certification Results

Lab ID: L2214467-04

Date Collected: Client ID: **CAN 2074 SHELF 13** Date Received:

03/21/22 Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	93		60-140

Project Name: NYSDEC VIM STUDY

Project Number: 00101

Lab Number: L2217738 **Report Date:** 06/01/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

CoolerCustody SealNAPresent/Intact

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2217738-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2217738-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2217738-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2217738-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2217738-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2217738-06A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2217738-07A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

GLOSSARY

Acronyms

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:NYSDEC VIM STUDYLab Number:L2217738Project Number:00101Report Date:06/01/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Alebia	AIR AI	NALYSIS	PAGEOF	Date Rec'd in	Lab: 3/30/22	AND THE PROPERTY.	b#: LZZ17738
320 Forbes Blvd, M	Mansfield, MA 02048	Project Information		Report Infor	mation - Data Deliverab	oles Billing Info	ormation
TEL: 508-822-930	0 FAX: 508-822-3288	Project Name: WYSDEC V	IM study	DEAY		Same as C	
Client Informati		Project Location: 15 5cha	dierst. Buffel	ADEx Criteria	Shaakaa.		04101
Client Env. Ac	dventage Inc.	Project #: Dolo I	. , , , , ,	(Default b	ased on Regulatory Criteria Indicated	,	
3636	N BAFalo Rd.		leine + Merks	Other Fo	ormats:	Regulatory	y Requirements/Report Limit
Orchard Pa	K NY 14127	Project Manager: Mark (-) ALPHA Quote #:		Additional [Deliverables:	State/Fed	Program Res / Comm
Phone: 716-6		Turn-Around Time		Report to: if alle	erent than Project Manager)		
Fax: 716-66		Standard □ RUSH	nly confirmed if pre-approved?				
Other Project S	Denvadvan tage Converse been previously analyzed by Alpha Specific Requirements/Common Target Compound List:	Date Due:	Time:			ANAL	YSIS
	Al	l Columns Be	low Must	Be Fille	ed Out	S SIM Submer Inco	///
ALPHA Lab ID (Lab Use Only)	Sample ID	COLLECTI End Date Start Time End Tim		Sample Sample	31 92 1 700 120 10	7 2 7 8 8	/
17738-01	0A-1/0329/22	3/29/22 8:30am 430f		Matrix* Initials	OLC CAIT		Sample Comments (i.e. PID
20	55-9(032922)		m-29.38"-7.75	V 78800			100
03	IA-9(032922)		7-30.08 -8.60		2.74319801661)	4	0.0 ppm
04	55-10(032922)				2.7 1 559 0095)		
		0.564 3.65	~29.40"-15.30"	SV EB	100 H		15 ppm
4.4	IA-100329225	g.35474.55	fm-30.17" -503"		C		
	IA-3(032922)	9:00 am 5:00?	m-3030'-930"		27420720225	(
07	55-3(032902)	9:000n 5:00li	7-30.43"-9.20	SV EB	2.72 145 0915	×	1 PPm
*SAMPLE	MATRIX CODES SV	= Ambient Air (Indoor/Outdoor) = Soil Vapor/Landfill Gas/SVE er = Please Specify			Container Type	5	Please print clearly, legibly and
orm No: 101-02 Rev. (25-8 Page 54 of 54	Stock	Relinguished By:	Date/Time 3/30/22/35	SAROMENT.	eiyed By:	Date/Time: 30/22 3:53 30/22 556	completely. Samples can not be logged in and turnaround time clock will not start until any ambi-

APPENDIX E DATA USABILIY SUMMARY REPORTS

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY SDG#L2166417 March 3, 2022 Sampling date: 12/2/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical, SDG#L2166417 submitted to Vali-Data of WNY, LLC on April 16, 2021. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15 and TO-15-SIM, January 1999.

ID	Sample ID	Laboratory ID
1	IA-5 (120221)	L2166417-01
2	IA-4 (120221)	L2166417-02
3	IA-4 (120221) DUPLICATE	L2166417-03
4	IA-3 (120221)	L2166417-04
5	OA-1 (120221)	L2166417-05
6	IA-7 (120221)	L2166417-06
7	IA-8 (120221)	L2166417-07
8	IA-6 (120221)	L2166417-08
9	IA-1 (120221)	L2166417-09
10	IA-2 (120221)	L2166417-10

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD/Duplicate
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check
- -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the

procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Holding Times and Canister Certification Blanks.

All results were recorded to the reporting limits.

Samples: 1-4, 6 and 7 were diluted due to high target analyte concentrations.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except sample #8 arrived at the lab with 0 inches Hg pressure. All target analytes in this sample should be qualified as estimated.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Chloroform was detected in IA-4 (120221) DUPLICATE but was not detected in IA-4 (120221).

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD/DUPLICATE

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met except Tetrachloroethene was detected above the reporting limit in L2164399-01 can3244(SIM). This target analyte was not monitored in this analysis, so no further action is required.

Project Name:CY2021 SMP INDOOR AIR SAMPLINGLab Number:L2166417Project Number:01101Report Date:12/17/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CY2021 SMP INDOOR AIR SAMPLINGLab Number:L2166417Project Number:01101Report Date:12/17/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on November 30, 2021. The canister certification results are provided as an addendum.

L2166417-01D through -04D, and -06D and -07D: The samples were re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The reanalysis was performed only for the compound(s) that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J Onderson

Report Date: 12/17/21

Title: Technical Director/Representative

Project Name: CY2021 SMP INDOOR AIR SAMPLING Lab Number: L2166417

Project Number: 01101 Report Date: 12/17/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)			Flow In mL/min	% RPD
L2166417-08	IA-6 (120221)	2192	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.4	0.0	-	-	-	-
L2166417-09	IA-1 (120221)	01627	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	4.7	4
L2166417-09	IA-1 (120221)	3458	2.7L Can	11/30/21	371693	L2164399-01	Pass	-29.2	-7.5	-	-	-	-
L2166417-10	IA-2 (120221)	0059	Flow 5	11/30/21	371693		-	-	-	Pass	4.5	3.0	40
L2166417-10	IA-2 (120221)	2239	2.7L Can	11/30/21	371693	L2163998-01	Pass	-29.3	-7.7	-	-	-	-

Project Name: **BATCH CANISTER CERTIFICATION**

Project Number: CANISTER QC BAT

Air Canister Certification Results

Lab Number:

Report Date:

L2164399

12/17/21

Date Collected: Lab ID: L2164399-01 11/21/21 10:00

Client ID: **CAN 3244 SHELF 1** Date Received: 11/22/21

Sample Location: Field Prep: Not Specified

Campio Location.				rtot opoon				
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM								
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.107	0.020		0.726	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020	-	ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-01 Client ID : IA-5 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627890
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:50

Date Received : 12/03/21

Date Analyzed : 12/15/21 19:03 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Jaiii	DIE AITIOUITE . 230 IIII				ac co	Julilii	. 1112	N- I		
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.503	0.200		2.49	0.989				
74-87-3	Chloromethane	0.573	0.200		1.18	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	75.8	5.00		143	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	133	1.00		316	2.38				
75-69-4	Trichlorofluoromethane	0.240	0.200		1.35	1.12				
67-63-0	Isopropanol	869	0.500		2140	1.23		E		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	0.603	0.500		2.09	1.74				
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	0.568	0.500		1.68	1.47				
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	0.470	0.200		1.66	0.705				
71-43-2	Benzene	0.273	0.200		0.872	0.639				

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number

Lab ID : L2166417-01 Client ID : IA-5 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627890
Sample Amount : 250 ml

Project Number : 01101 Date Collected : 12/02/21 16:50

: L2166417

Date Received : 12/03/21

Date Analyzed : 12/15/21 19:03

: 1

Analyst : RY Instrument ID : AIRLAB16

Lab Number

Dilution Factor

GC Column : RTX-1

oumpic Amount . 200 mi						ao colamin . III x i		
		ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
142-82-5	Heptane	0.514	0.200		2.11	0.820		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
108-88-3	Toluene	0.652	0.200		2.46	0.754		
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	0.434	0.400		1.89	1.74		
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-01 Client ID : IA-5 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627890
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:50

Date Received : 12/03/21 Date Analyzed : 12/15/21 19:03

Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

CAS NO.	Parameter	ppbV			ug/m3				
		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

: L2166417

Client : Environmental Advantage, Inc. Lab Number

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101
Lab ID : L2166417-01D Date Collected : 12/02/21 16:50

Client ID : IA-5 (120221) Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/16/21 06:29

Sample Matrix : AIR Dilution Factor : 8.333

Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R1627907 Instrument ID : AIRLAB16

Sample Amount : 30.0 ml GC Column : RTX-1

ppbV ug/m3 Results RL MDL Results RL MDL CAS NO. Qualifier **Parameter** 67-63-0 Isopropanol 963 2370 4.17 10.3

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Pro

Lab ID : L2166417-02 Client ID : IA-4 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627891
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21
Date Analyzed : 12/15/21 19:42

Dilution Factor : 1 Analyst : RY

			ppbV			ug/m3		<u>_</u>	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.527	0.200		2.61	0.989			
74-87-3	Chloromethane	0.553	0.200		1.14	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	53.3	5.00		100	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	82.1	1.00		195	2.38			
75-69-4	Trichlorofluoromethane	0.221	0.200		1.24	1.12			
67-63-0	Isopropanol	587	0.500		1440	1.23		E	
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	0.265	0.200		0.934	0.705			
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-02 Client ID : IA-4 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627891
Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21
Date Analyzed : 12/15/21 19:42

Date Analyzed : 12/1 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

	Parameter		ppbV			ug/m3		=	
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	0.608	0.200		2.49	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.326	0.200		1.23	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Proje

Lab ID : L2166417-02 Client ID : IA-4 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627891
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21
Date Analyzed : 12/15/21 19:42

Dilution Factor : 1 Analyst : RY

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc. Lab Number : L2166417
Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101 Lab ID : L2166417-02D Date Collected : 12/02/21 16:55

Client ID : IA-4 (120221) Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/16/21 07:05

Sample Matrix : AIR Dilution Factor : 5
Analytical Method : 48,TO-15 Analyst : RY
Lab File ID : R1627908 Instrument ID : AIRLAB16

Sample Amount : 50.0 ml : RTX-1

ppbV ug/m3 Results RL MDL Results RL MDL CAS NO. Qualifier **Parameter** 67-63-0 Isopropanol 701 1720 2.50 6.15

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Nur

Lab ID : L2166417-03

Client ID : IA-4 (120221) DUP.

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627892

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21

Date Analyzed : 12/15/21 20:21

Dilution Factor : 1 Analyst : RY

Cumple Amount : 200 mi					do oblanin : mi				
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.552	0.200		2.73	0.989			
74-87-3	Chloromethane	0.584	0.200		1.21	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	51.1	5.00		96.3	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	81.5	1.00		194	2.38			
75-69-4	Trichlorofluoromethane	0.227	0.200		1.28	1.12			
67-63-0	Isopropanol	584	0.500		1440	1.23		E	
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	1.16	0.200		5.66	0.977			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	0.257	0.200		0.906	0.705			
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING P

Lab ID : L2166417-03

Client ID : IA-4 (120221) DUP.

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR Analytical Method : 48,TO-15

Lab File ID : R1627892 Sample Amount : 250 ml Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21

Date Analyzed : 12/15/21 20:21

Dilution Factor : 1 Analyst : RY

Sample Amount . 250 mi						GC Column . HTX-1			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	0.659	0.200		2.70	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.321	0.200		1.21	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project I

Lab ID : L2166417-03

Client ID : IA-4 (120221) DUP.

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15 Lab File ID : R1627892

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21

Date Analyzed : 12/15/21 20:21

Dilution Factor : 1 Analyst : RY

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc. Lab Number : L2166417
Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101

Client ID : IA-4 (120221) DUP. Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/16/21 07:41

Sample Matrix : AIR Dilution Factor : 5

Analytical Method : 48,TO-15

Lab File ID : R1627909

Sample Amount : 50.0 ml

Dilution Factor : 5

Analyst : RY

Instrument ID : AIRLAB16

ppbV ug/m3 Results RL MDL Results RL MDL CAS NO. Qualifier **Parameter** 67-63-0 Isopropanol 704 1730 2.50 6.15

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-04 Client ID : IA-3 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627893
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:00

Date Received : 12/03/21

Date Analyzed : 12/15/21 21:00 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Campic Amount . 250 mi					do colamin : ITTX I			X-1
	_		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.508	0.200		2.51	0.989		
74-87-3	Chloromethane	0.546	0.200		1.13	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	2640	5.00		4970	9.42		E
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	47.4	1.00		113	2.38		
75-69-4	Trichlorofluoromethane	0.236	0.200		1.33	1.12		
67-63-0	Isopropanol	264	0.500		649	1.23		E
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	0.455	0.200		1.42	0.623		
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	ND	0.500		ND	1.47		U
141-78-6	Ethyl Acetate	38.8	0.500		140	1.80		
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	0.214	0.200		0.754	0.705		
71-43-2	Benzene	0.266	0.200		0.850	0.639		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-04 Client ID : IA-3 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627893
Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:00

Date Received : 12/03/21 Date Analyzed : 12/15/21 21:00

Dilution Factor : 1 Analyst : RY

			ppbV			ug/m3		_	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	0.511	0.200		2.09	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.251	0.200		0.946	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	0.565	0.400		2.45	1.74			
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	0.219	0.200		0.951	0.869			
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-04 Client ID : IA-3 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627893
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:00

Date Received : 12/03/21 Date Analyzed : 12/15/21 21:00

Dilution Factor : 1 Analyst : RY

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Nu

Lab ID : L2166417-04D Client ID : IA-3 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627910
Sample Amount : 25.0 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:00 Date Received : 12/03/21

Date Analyzed : 12/16/21 08:17

Dilution Factor : 10
Analyst : RY
Instrument ID : AIRLAB16

GC Column : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
64-17-5	Ethanol	2820	50.0		5310	94.2			
67-63-0	Isopropanol	235	5.00		578	12.3			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-05 Client ID : OA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627894
Sample Amount : 250 ml

Date Collected : 12/02/21 17:05 Date Received : 12/03/21

: L2166417

: 01101

Date Analyzed : 12/15/21 21:39 Dilution Factor : 1

Lab Number

Project Number

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Sample Amount . 230 mil						GC Column . HTX-1				
	_		ppbV			ug/m3		<u></u>		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.542	0.200		2.68	0.989				
74-87-3	Chloromethane	0.553	0.200		1.14	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	7.30	5.00		13.8	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	3.28	1.00		7.79	2.38				
75-69-4	Trichlorofluoromethane	0.239	0.200		1.34	1.12				
67-63-0	Isopropanol	2.70	0.500		6.64	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	1.22	0.500		4.24	1.74				
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	0.436	0.200		1.54	0.705				
71-43-2	Benzene	ND	0.200		ND	0.639		U		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-05 Client ID : OA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627894
Sample Amount : 250 ml

Date Collected : 12/02/21 17:05 Date Received : 12/03/21

: L2166417

: 01101

Date Received : 12/03/21
Date Analyzed : 12/15/21 21:39

Dilution Factor : 1 Analyst : RY

Lab Number

Project Number

Sample Amount . 250 mi						GC Column . HTX-1				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U		
	-									
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U		
142-82-5	Heptane	ND	0.200		ND	0.820		U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	0.388	0.200		1.46	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U		
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U		
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
95-47-6	o-Xylene	ND	0.200		ND	0.869		U		
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U		

Client : Environmental Advantage, Inc.

: CY2021 SMP INDOOR AIR SAMPLING **Project Name**

Lab ID : L2166417-05 Client ID : OA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1627894 Sample Amount : 250 ml

Lab Number Project Number : 01101

: L2166417

Date Collected : 12/02/21 17:05

Date Received : 12/03/21 Date Analyzed : 12/15/21 21:39

Dilution Factor : 1 : RY Analyst

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-06 Client ID : IA-7 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627895
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:10

Date Received : 12/03/21 Date Analyzed : 12/15/21 22:17

Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Sample Amount . 230 mi						GO COIGIIII . ITTX-1				
			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.534	0.200		2.64	0.989				
74-87-3	Chloromethane	0.641	0.200		1.32	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	464	5.00		874	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	64.0	1.00		152	2.38				
75-69-4	Trichlorofluoromethane	0.257	0.200		1.44	1.12				
67-63-0	Isopropanol	342	0.500		841	1.23		E		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	1.07	0.500		3.72	1.74				
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	0.841	0.500		3.03	1.80				
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
09-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	1.60	0.200		5.64	0.705				
71-43-2	Benzene	0.421	0.200		1.34	0.639				

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project

Lab ID : L2166417-06 Client ID : IA-7 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627895
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:10

Date Received : 12/03/21 Date Analyzed : 12/15/21 22:17

Dilution Factor : 1 Analyst : RY

Sample Amount . 250 mi					GC Column . HTX-1				
	ppbV								
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
Cyclohexane	0.430	0.200		1.48	0.688				
1,2-Dichloropropane	ND	0.200		ND	0.924		U		
Bromodichloromethane	ND	0.200		ND	1.34		U		
1,4-Dioxane	ND	0.200		ND	0.721		U		
2,2,4-Trimethylpentane	0.308	0.200		1.44	0.934				
Heptane	1.22	0.200		5.00	0.820				
cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
Toluene	2.86	0.200		10.8	0.754				
2-Hexanone	ND	0.200		ND	0.820		U		
Dibromochloromethane	ND	0.200		ND	1.70		U		
1,2-Dibromoethane	ND	0.200		ND	1.54		U		
Tetrachloroethene	ND	0.200		ND	1.36		U		
Chlorobenzene	ND	0.200		ND	0.921		U		
Ethylbenzene	0.289	0.200		1.26	0.869				
p/m-Xylene	1.16	0.400		5.04	1.74				
Bromoform	ND	0.200		ND	2.07		U		
Styrene	ND	0.200		ND	0.852		U		
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
o-Xylene	0.399	0.200		1.73	0.869				
4-Ethyltoluene	ND	0.200		ND	0.983		U		
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U		
1,2,4-Trimethylbenzene	0.218	0.200		1.07	0.983				
•							U		
	Cyclohexane 1,2-Dichloropropane Bromodichloromethane 1,4-Dioxane 2,2,4-Trimethylpentane Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Ethylbenzene p/m-Xylene Bromoform Styrene 1,1,2,2-Tetrachloroethane 0-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene	Cyclohexane 0.430 1,2-Dichloropropane ND Bromodichloromethane ND 1,4-Dioxane ND 2,2,4-Trimethylpentane 0.308 Heptane 1.22 cis-1,3-Dichloropropene ND 4-Methyl-2-pentanone ND trans-1,3-Dichloropropene ND 1,1,2-Trichloroethane ND Toluene 2.86 2-Hexanone ND Dibromochloromethane ND 1,2-Dibromoethane ND Tetrachloroethene ND Chlorobenzene ND Ethylbenzene 0.289 p/m-Xylene 1.16 Bromoform ND Styrene ND 1,3,5-Trimethylbenzene ND 1,2,4-Trimethylbenzene ND 1,2,4-Trimethylbenzene 0.218	Parameter Results RL Cyclohexane 0.430 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 2,2,4-Trimethylpentane 0.308 0.200 Heptane 1.22 0.200 cis-1,3-Dichloropropene ND 0.200 4-Methyl-2-pentanone ND 0.200 trans-1,3-Dichloropropene ND 0.200 1,1,2-Trichloroethane ND 0.200 Toluene 2.86 0.200 2-Hexanone ND 0.200 Dibromochloromethane ND 0.200 1,2-Dibromoethane ND 0.200 Chlorobenzene ND 0.200 Ethylbenzene 0.289 0.200 p/m-Xylene 1.16 0.400 Bromoform ND 0.200 1,1,2,2-Tetrachloroethane ND 0.200 0-Xylene 0.399 0.200 1,3,	Cyclohexane 0.430 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 2,2,4-Trimethylpentane 0.308 0.200 Heptane 1.22 0.200 cis-1,3-Dichloropropene ND 0.200 4-Methyl-2-pentanone ND 0.200 trans-1,3-Dichloropropene ND 0.200 1,1,2-Trichloroethane ND 0.200 Toluene 2.86 0.200 2-Hexanone ND 0.200 Dibromochloromethane ND 0.200 1,2-Dibromoethane ND 0.200 Tetrachloroethene ND 0.200 Ethylbenzene 0.289 0.200 Ethyltoluene ND 0.200 1,1,2,2-Tetrachloro	Parameter Results RL MDL Results Cyclohexane 0.430 0.200 1.48 1,2-Dichloropropane ND 0.200 ND Bromodichloromethane ND 0.200 ND 1,4-Dioxane ND 0.200 ND 2,2,4-Trimethylpentane 0.308 0.200 1.44 Heptane 1.22 0.200 ND cis-1,3-Dichloropropene ND 0.200 ND 4-Methyl-2-pentanone ND 0.200 ND trans-1,3-Dichloropropene ND 0.200 ND 1,1,2-Trichloroethane ND 0.200 ND Toluene 2.86 0.200 ND 2-Hexanone ND 0.200 ND Dibromochloromethane ND 0.200 ND 1,2-Dibromocethane ND 0.200 <	Parameter Results RL MDL Results RL Cyclohexane 0.430 0.200 1.48 0.688 1,2-Dichloropropane ND 0.200 ND 0.924 Bromodichloromethane ND 0.200 ND 1.34 1,4-Dioxane ND 0.200 ND 0.721 2,2,4-Trimethylpentane 0.308 0.200 ND 0.721 4-Hethane 1.22 0.200 ND 0.934 4-Hethyl-2-pentanone ND 0.200 ND 0.908 4-Methyl-2-pentanone ND 0.500 ND 0.908 1,1,2-Trichloropropene ND 0.200 ND 0.908 1,1,2-Trichloroethane ND 0.200 ND 1.09 1-Q-Hexanone ND 0.200 ND 0.820 Dibromochloromethane ND 0.200 <	Cyclohexane Results RL MDL Results RL MDL 1,2-Dichloropropane ND 0.200 ND 0.924 Bromodichloromethane ND 0.200 ND 0.924 1,4-Dioxane ND 0.200 ND 0.721 2,2,4-Trimethylpentane 0.308 0.200 1.44 0.934 Heptane 1.22 0.200 5.00 0.820 cis-1,3-Dichloropropene ND 0.200 ND 0.908 4-Methyl-2-pentanone ND 0.500 ND 0.908 4-Methyl-2-pentanone ND 0.500 ND 0.908 4-Methyl-2-pentanone ND 0.200 ND 0.908 trans-1,3-Dichloropropene ND 0.200 ND 0.908 Toluene		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-06 Client ID : IA-7 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627895
Sample Amount : 250 ml

Project Number : 01101

Lab Number

Date Collected : 12/02/21 17:10

: L2166417

Date Received : 12/03/21 Date Analyzed : 12/15/21 22:17

Dilution Factor : 1 Analyst : RY

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc. Lab Number : L2166417
Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101

Lab ID : L2166417-06D Client ID : IA-7 (120221)

Client ID : IA-7 (120221) Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/16/21 08:53

Sample Matrix : AIR

Analytical Method : 48,TO-15

Lab File ID : R1627911

Sample Amount : 75.0 ml

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Date Collected

Dilution Factor

: 12/02/21 17:10

: 3.333

ug/m3 ppbV Results RL MDL Results RL MDL CAS NO. Qualifier **Parameter** 67-63-0 Isopropanol 367 902 1.67 4.10

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number

Lab ID : L2166417-07 Client ID : IA-8 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627896
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:12

Date Received : 12/03/21

Date Analyzed : 12/15/21 22:56 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

Sample Amount . 230 mi						GC Column . HTX-1				
		ppbV			ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.548	0.200		2.71	0.989				
74-87-3	Chloromethane	0.602	0.200		1.24	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	435	5.00		820	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	51.9	1.00		123	2.38				
75-69-4	Trichlorofluoromethane	0.244	0.200		1.37	1.12				
67-63-0	Isopropanol	320	0.500		787	1.23		E		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	0.731	0.500		2.63	1.80				
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	1.66	0.200		5.85	0.705				
71-43-2	Benzene	0.441	0.200		1.41	0.639				

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101

Lab ID : L2166417-07 Client ID : IA-8 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627896
Sample Amount : 250 ml

Dilution Factor : 1 Analyst : RY

Lab Number

Date Collected

Date Received

Date Analyzed

Instrument ID : AIRLAB16 GC Column : RTX-1

: L2166417

: 12/03/21

: 12/02/21 17:12

: 12/15/21 22:56

Sample Amount . 230 mi						GC Column . HTX-1				
			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
110-82-7	Cyclohexane	0.455	0.200		1.57	0.688				
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
540-84-1	2,2,4-Trimethylpentane	0.315	0.200		1.47	0.934				
142-82-5	Heptane	0.665	0.200		2.73	0.820				
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	1.99	0.200		7.50	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	0.265	0.200		1.15	0.869				
179601-23-1	p/m-Xylene	1.06	0.400		4.60	1.74				
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
95-47-6	o-Xylene	0.368	0.200		1.60	0.869				
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U		

Client : Environmental Advantage, Inc.

: CY2021 SMP INDOOR AIR SAMPLING **Project Name**

Lab ID : L2166417-07 Client ID : IA-8 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1627896 Sample Amount : 250 ml

Lab Number Project Number : 01101

: L2166417

Date Collected : 12/02/21 17:12

Date Received : 12/03/21

Date Analyzed : 12/15/21 22:56 : 1

Dilution Factor : RY Analyst

Parameter	ppbV			ug/m3				
	Results	RL	MDL	Results	RL	MDL	Qualifier	
1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
Hexachlorobutadiene	ND	0.200		ND	2.13		U	
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2,4-Trichlorobenzene ND	Parameter Results RL 1,3-Dichlorobenzene ND 0.200 1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL 1,3-Dichlorobenzene ND 0.200 1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL Results 1,3-Dichlorobenzene ND 0.200 ND 1,4-Dichlorobenzene ND 0.200 ND 1,2-Dichlorobenzene ND 0.200 ND 1,2,4-Trichlorobenzene ND 0.200 ND	Parameter Results RL MDL Results RL 1,3-Dichlorobenzene ND 0.200 ND 1.20 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL 1,3-Dichlorobenzene ND 0.200 ND 1.20 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL Qualifier 1,3-Dichlorobenzene ND 0.200 ND 1.20 U 1,4-Dichlorobenzene ND 0.200 ND 1.20 U 1,2-Dichlorobenzene ND 0.200 ND 1.48 U 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 U

Client : Environmental Advantage, Inc. Lab Number : L2166417
Project Name : CY2021 SMP INDOOR AIR SAMPLING Project Number : 01101

Lab ID : L2166417-07D Date Collected Client ID : IA-8 (120221) Date Received

Client ID : IA-8 (120221) Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/16/21 09:30

Sample Matrix : AIR Dilution Factor : 3.333

Analytical Method : 48,TO-15 Analyst : RY
Lab File ID : R1627912 Instrument ID : AIRLAB16

Sample Amount : 75.0 ml GC Column : RTX-1

ug/m3 ppbV Results RL MDL Results RL MDL CAS NO. Qualifier **Parameter** 67-63-0 Isopropanol 298 733 1.67 4.10

: 12/02/21 17:12

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-08 Client ID : IA-6 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627897
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:15

Date Received : 12/03/21 Date Analyzed : 12/15/21 23:35

Dilution Factor : 1 Analyst : RY

Sample Amount . 230 mi					GC Column . HTX-1					
			ppbV			ug/m3		<u>-</u>		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.512	0.200		2.53	0.989				
74-87-3	Chloromethane	0.540	0.200		1.12	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	62.2	5.00		117	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	8.46	1.00		20.1	2.38				
75-69-4	Trichlorofluoromethane	0.227	0.200		1.28	1.12				
67-63-0	Isopropanol	32.6	0.500		80.1	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	0.272	0.200		0.959	0.705				
71-43-2	Benzene	ND	0.200		ND	0.639		U		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-08 Client ID : IA-6 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627897
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:15

Date Received : 12/03/21 Date Analyzed : 12/15/21 23:35

Dilution Factor : 1 Analyst : RY

Sample Amount . 250 mi					GC CC	\ -1			
			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.335	0.200		1.26	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-08 Client ID : IA-6 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627897
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:15

Date Received : 12/03/21 Date Analyzed : 12/15/21 23:35

Dilution Factor : 1 Analyst : RY

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-09 Client ID : IA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627898
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:17

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:14

Dilution Factor : 1
Analyst : RY
Instrument ID : AIR

oumpic Amount . 200 mi					40 00	X		
	_		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.562	0.200		2.78	0.989		
74-87-3	Chloromethane	0.563	0.200		1.16	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	93.3	5.00		176	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	6.63	1.00		15.7	2.38		
75-69-4	Trichlorofluoromethane	0.237	0.200		1.33	1.12		
67-63-0	Isopropanol	8.35	0.500		20.5	1.23		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	ND	0.500		ND	1.47		U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705		U
71-43-2	Benzene	ND	0.200		ND	0.639		U

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-09 Client ID : IA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627898
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:17

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:14

Dilution Factor : 1 Analyst : RY

Sample Amount . 230 mil					GC Column . HTX-1					
			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U		
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U		
142-82-5	Heptane	ND	0.200		ND	0.820		U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	ND	0.200		ND	0.754		U		
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U		
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U		
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
95-47-6	o-Xylene	ND	0.200		ND	0.869		U		
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U		

Client : Environmental Advantage, Inc.

: CY2021 SMP INDOOR AIR SAMPLING **Project Name**

Lab ID : L2166417-09 Client ID : IA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1627898 Sample Amount : 250 ml

Lab Number Project Number : 01101

: L2166417

Date Collected : 12/02/21 17:17

Date Received : 12/03/21 Date Analyzed : 12/16/21 00:14

Dilution Factor : 1 : RY Analyst

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-10 Client ID : IA-2 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627899
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:20

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:53

Dilution Factor : 1 Analyst : RY

Sample Amount . 230 mi						GC Column . HTX-1				
			ppbV			ug/m3		_		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.570	0.200		2.82	0.989				
74-87-3	Chloromethane	0.551	0.200		1.14	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	105	5.00		198	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	7.43	1.00		17.6	2.38				
75-69-4	Trichlorofluoromethane	0.237	0.200		1.33	1.12				
67-63-0	Isopropanol	13.0	0.500		32.0	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	1.11	0.500		3.27	1.47				
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	ND	0.200		ND	0.705		U		
71-43-2	Benzene	ND	0.200		ND	0.639		U		

ppbV

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-10 Client ID : IA-2 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627899
Sample Amount : 250 ml

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:53
Dilution Factor : 1

: L2166417

: 12/02/21 17:20

: 01101

Analyst : RY Instrument ID : AIRL

Lab Number

Project Number

Date Collected

		ppo+				ug/III0			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.284	0.200		1.07	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	0.509	0.400		2.21	1.74			
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	0.217	0.200		0.943	0.869			
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-10 Client ID : IA-2 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627899
Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:20

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:53

Dilution Factor : 1 Analyst : RY

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : WG1583859-4

Client ID : WG1583859-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627888
Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101
Date Collected : NA

Date Received : NA
Date Analyzed : 12/15/21 16:30

Dilution Factor : 1 Analyst : RY

oumpic Amount . 200 mi						30 Column . III X I				
		ppbV			ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	ND	0.200		ND	0.989		U		
74-87-3	Chloromethane	ND	0.200		ND	0.413		U		
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	ND	5.00		ND	9.42	-	U		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	ND	1.00		ND	2.38		U		
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U		
67-63-0	Isopropanol	ND	0.500		ND	1.23		U		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Pr

Lab ID : WG1583859-4

Client ID : WG1583859-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627888
Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101
Date Collected : NA
Date Received : NA

Date Analyzed : 12/15/21 16:30

Dilution Factor : 1 Analyst : RY Instrument ID : AIR

Sample Amount . 230 mi					GC Column . MTX-1				
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : WG1583859-4

Client ID : WG1583859-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1627888
Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101
Date Collected : NA

Date Received : NA
Date Analyzed : 12/15/21 16:30

Dilution Factor : 1 Analyst : RY

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

ppbV

RL

0.020

0.020

0.020

0.020

0.020

0.020

MDL

--

ND

0.591

0.505

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING Pr

Results

ND

ND

0.067

ND

0.094

0.094

Lab ID : L2166417-01 Client ID : IA-5 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627890_EV2

Sample Amount : 250 ml

Parameter

Vinyl chloride

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

Carbon tetrachloride

Trichloroethene

CAS NO.

75-01-4

75-35-4

156-59-2

71-55-6

56-23-5

79-01-6

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:50

Date Received : 12/03/21

Date Analyzed : 12/15/21 19:03 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

0.109

0.126

0.107

 ug/m3

 Results
 RL
 MDL
 Qualifier

 ND
 0.051
 - U

 ND
 0.079
 - U

 0.266
 0.079
 - -

--

U

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-02 Client ID : IA-4 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627891_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21

Date Analyzed : 12/15/21 19:42 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16

GC Column : RTX-1

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.075	0.020		0.472	0.126			
79-01-6	Trichloroethene	0.030	0.020		0.161	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-03

Client ID : IA-4 (120221) DUP.

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627892_EV2

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 16:55

Date Received : 12/03/21

Date Analyzed : 12/15/21 20:21 Dilution Factor : 1

Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter		ppbV			ug/m3		Qualifier	
CAS NO.		Results	RL	MDL	Results	RL	MDL		
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.078	0.020		0.491	0.126			
79-01-6	Trichloroethene	0.030	0.020		0.161	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-04 Client ID : IA-3 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627893_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:00

Date Received : 12/03/21

Date Analyzed : 12/15/21 21:00 Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.069	0.020		0.434	0.126			
79-01-6	Trichloroethene	0.022	0.020		0.118	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-05 Client ID : OA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627894_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:05

Date Received : 12/03/21

Date Analyzed : 12/15/21 21:39 Dilution Factor : 1

Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.084	0.020		0.528	0.126			
79-01-6	Trichloroethene	0.023	0.020		0.124	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-06 Client ID : IA-7 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627895_EV2

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:10

Date Received : 12/03/21 Date Analyzed : 12/15/21 22:17

Dilution Factor : 1

Analyst : RY
Instrument ID : AIRLAB16
GC Column : RTX-1

	Parameter Result	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.104	0.020		0.412	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.160	0.020		1.01	0.126			
79-01-6	Trichloroethene	3.26	0.020		17.5	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-07 Client ID : IA-8 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627896_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:12

Date Received : 12/03/21

Date Analyzed : 12/15/21 22:56

Dilution Factor : 1 Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.093	0.020		0.369	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.143	0.020		0.900	0.126			
79-01-6	Trichloroethene	3.35	0.020		18.0	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-08 Client ID : IA-6 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627897_EV2

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : 12/02/21 17:15

Date Received : 12/03/21

Date Analyzed : 12/15/21 23:35 Dilution Factor : 1

Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter		ppbV			ug/m3		
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U
56-23-5	Carbon tetrachloride	0.077	0.020		0.484	0.126		
79-01-6	Trichloroethene	0.321	0.020		1.73	0.107		

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-09 Client ID : IA-1 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627898_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:17

Date Received : 12/03/21
Date Analyzed : 12/16/21 00:14

Dilution Factor : 1 Analyst : RY

Instrument ID : AIRLAB16
GC Column : RTX-1

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.092	0.020		0.579	0.126			
79-01-6	Trichloroethene	0.181	0.020		0.973	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : L2166417-10 Client ID : IA-2 (120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627899_EV2

Sample Amount : 250 ml

Lab Number : L2166417
Project Number : 01101

Date Collected : 12/02/21 17:20

Date Received : 12/03/21

Date Analyzed : 12/16/21 00:53 Dilution Factor : 1

Analyst : RY
Instrument ID : AIR

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.088	0.020		0.554	0.126			
79-01-6	Trichloroethene	0.161	0.020		0.865	0.107			

Client : Environmental Advantage, Inc.

Project Name : CY2021 SMP INDOOR AIR SAMPLING

Lab ID : WG1583860-4

Client ID : WG1583860-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1627889_EV2

Sample Amount : 250 ml

Lab Number : L2166417 Project Number : 01101

Date Collected : NA
Date Received : NA

Date Analyzed : 12/15/21 17:09

Dilution Factor : 1 Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	ND	0.020		ND	0.126		U	
79-01-6	Trichloroethene	ND	0.020		ND	0.107		U	
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St., Buffalo, NY Alpha Analytical SDG#L2166429 March 2, 2022 Sampling date: 12/2/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Buffalo, NY, Alpha Analytical #L2166429 submitted to Vali-Data of WNY, LLC on January 10, 2022. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Volatile Organics (8260C).

ID	Sample ID	Laboratory ID
1	MW-3(120221)	L2166429-01
2	MW-3(120221) DUPLICATE	L2166429-02
3	TRIP BLANK (120221)	L2166429-03
4	RINSATE BLANK (120221)	L2166429-04

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Laboratory Control Samples, MS/MSD, Compound Quantitation, Initial Calibration and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Cyclohexane was outside QC limits, high in WG1582628-3,-4 and should be qualified as estimated. This target analyte was not detected in the samples so no further action is required.

MS/MSD

All criteria were met except the %Rec of Chloromethane, 2-Butanone and Cyclohexane was outside QC limits, high in MW-3(120221)MS/MSD and should be qualified as estimated. These target analytes were not detected in the associated samples, so no further action is required.

COMPOUND QUANTITATION

All criteria were met except Acetone was detected above the MDL, below the reporting limit and is qualified as estimated in RINSATE BLANK(120221). This target analyte was not detected in the associated samples, so no further action is required.

INITIAL CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane and 1,1,2-Trichloroethane was outside QC limits in the initial calibration and WG1487567-9. These target analytes should be qualified as estimated in the blanks, spikes and samples.

CONTINUING CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane and 1,1,2-Trichloroethane was outside QC limits in WG1582628-2. The %D of Chloroethane, Chloromethane, Vinyl chloride, 1,1-Dichloroethane and Cyclohexane was outside QC limits in WG1582628-2. These target analytes should be qualified as estimated in the blanks, spikes and samples. Several target analytes were outside laboratory QC limits but within NFG limits, so no further action is required.

GC/MS PERFORMANCE CHECK

All criteria were met.

Project Name: CY2021 ANNUAL GW SAMPLING Lab Number: L2166429
Project Number: 01101 Report Date: 12/17/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CY2021 ANNUAL GW SAMPLINGLab Number:L2166429Project Number:01101Report Date:12/17/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

609 Skarow Kelly Stenstrom

Report Date: 12/17/21

Title: Technical Director/Representative

Laboratory Control Sample Summary Form 3 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Matrix : WATER

	Laborato	ry Control Sam	ple	Laborato	ry Control Dup	licate			
Danier de la constant	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Trichloroethene	10	10	100	10	10	100	0	70-130	20
1,2-Dichlorobenzene	10	9.6	96	10	9.8	98	2	70-130	20
1,3-Dichlorobenzene	10	9.8	98	10	10	100	2	70-130	20
1,4-Dichlorobenzene	10	9.8	98	10	10	100	2	70-130	20
Methyl tert butyl ether	10	8.4	84	10	8.8	88	5	63-130	20
p/m-Xylene	20	21	105	20	21	105	0	70-130	20
o-Xylene	20	20	100	20	21	105	5	70-130	20
cis-1,2-Dichloroethene	10	10	100	10	10	100	0	70-130	20
Styrene	20	20	100	20	21	105	5	70-130	20
Dichlorodifluoromethane	10	10	100	10	10	100	0	36-147	20
Acetone	10	9.0	90	10	9.2	92	2	58-148	20
Carbon disulfide	10	12	120	10	12	120	0	51-130	20
2-Butanone	10	9.1	91	10	9.6	96	5	63-138	20
4-Methyl-2-pentanone	10	7.7	77	10	8.4	84	9	59-130	20
2-Hexanone	10	8.2	82	10	8.9	89	8	57-130	20
Bromochloromethane	10	10	100	10	11	110	10	70-130	20
1,2-Dibromoethane	10	8.5	85	10	8.8	88	3	70-130	20
1,2-Dibromo-3-chloropropane	10	7.2	72	10	7.5	75	4	41-144	20
Isopropylbenzene	10	10	100	10	10	100	0	70-130	20
1,2,3-Trichlorobenzene	10	8.0	80	10	8.5	85	6	70-130	20
1,2,4-Trichlorobenzene	10	8.4	84	10	8.7	87	4	70-130	20
Methyl Acetate	10	9.5	95	10	9.9	99	4	70-130	20
Cyclohexane	10	14	140 Q	10	14	140 Q	0	70-130	20
1,4-Dioxane	500	510	102	500	470	94	8	56-162	20
Freon-113	10	12	120	10	12	120	0	70-130	20
Methyl cyclohexane	10	10	100	10	10	100	0	70-130	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429

Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Client Sample ID : MW-3(120221) Matrix : WATER

		Matrix Spike Sample		Matrix Spike Duplicate						
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Methylene chloride	ND	10	12	120	10	11	110	9	70-130	20
1,1-Dichloroethane	ND	10	14	140 Q	10	13	130	7	70-130	20
Chloroform	ND	10	12	120	10	11	110	9	70-130	20
Carbon tetrachloride	ND	10	11	110	10	10	100	10	63-132	20
1,2-Dichloropropane	ND	10	13	130	10	13	130	0	70-130	20
Dibromochloromethane	ND	10	11	110	10	11	110	0	63-130	20
1,1,2-Trichloroethane	ND	10	12	120	10	11	110	9	70-130	20
Tetrachloroethene	ND	10	12	120	10	11	110	9	70-130	20
Chlorobenzene	ND	10	12	120	10	12	120	0	75-130	20
Trichlorofluoromethane	ND	10	13	130	10	12	120	8	62-150	20
1,2-Dichloroethane	ND	10	13	130	10	13	130	0	70-130	20
1,1,1-Trichloroethane	ND	10	11	110	10	11	110	0	67-130	20
Bromodichloromethane	ND	10	11	110	10	11	110	0	67-130	20
trans-1,3-Dichloropropene	ND	10	10	100	10	9.8	98	2	70-130	20
cis-1,3-Dichloropropene	ND	10	10	100	10	10	100	0	70-130	20
Bromoform	ND	10	10	100	10	10	100	0	54-136	20
1,1,2,2-Tetrachloroethane	ND	10	12	120	10	12	120	0	67-130	20
Benzene	ND	10	12	120	10	12	120	0	70-130	20
Toluene	ND	10	12	120	10	12	120	0	70-130	20
Ethylbenzene	ND	10	12	120	10	12	120	0	70-130	20
Chloromethane	ND	10	15	150 Q	10	15	150 Q	0	64-130	20
Bromomethane	ND	10	8.4	84	10	8.3	83	1	39-139	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429

Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Client Sample ID : MW-3(120221) Matrix : WATER

 Client Sample ID
 : MW-3(120221)
 Matrix
 : WATER

 Lab Sample ID
 : L2166429-01
 Analysis Date
 : 12/12/21 18:01

 Matrix Spike
 : WG1582628-6
 MS Analysis Date
 : 12/12/21 18:24

 Matrix Spike Dup
 : WG1582628-7
 MSD Analysis Date
 : 12/12/21 18:47

		Matrix Sp	ike Sample		Matrix Spi	ke Duplicate				
	Sample	Spike	Spike		Spike	Spike				
Davamatav	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery Limits	RPD Limit
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Vinyl chloride	ND	10	15	150 Q	10	14	140	7	55-140	20
Chloroethane	ND	10	14	140 Q	10	13	130	7	55-138	20
1,1-Dichloroethene	ND	10	13	130	10	13	130	0	61-145	20
trans-1,2-Dichloroethene	ND	10	12	120	10	12	120	0	70-130	20
Trichloroethene	ND	10	12	120	10	11	110	9	70-130	20
1,2-Dichlorobenzene	ND	10	11	110	10	11	110	0	70-130	20
1,3-Dichlorobenzene	ND	10	11	110	10	11	110	0	70-130	20
1,4-Dichlorobenzene	ND	10	11	110	10	11	110	0	70-130	20
Methyl tert butyl ether	ND	10	11	110	10	11	110	0	63-130	20
p/m-Xylene	ND	20	24	120	20	23	115	4	70-130	20
o-Xylene	ND	20	24	120	20	23	115	4	70-130	20
cis-1,2-Dichloroethene	ND	10	12	120	10	11	110	9	70-130	20
Styrene	ND	20	24	120	20	23	115	4	70-130	20
Dichlorodifluoromethane	ND	10	11	110	10	10	100	10	36-147	20
Acetone	ND	10	13	130	10	13	130	0	58-148	20
Carbon disulfide	ND	10	13	130	10	12	120	8	51-130	20
2-Butanone	ND	10	14	140 Q	10	14	140 Q	0	63-138	20
4-Methyl-2-pentanone	ND	10	12	120	10	12	120	0	59-130	20
2-Hexanone	ND	10	13	130	10	13	130	0	57-130	20
Bromochloromethane	ND	10	12	120	10	12	120	0	70-130	20
1,2-Dibromoethane	ND	10	11	110	10	11	110	0	70-130	20
1,2-Dibromo-3-chloropropane	ND	10	10	100	10	11	110	10	41-144	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429

Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Client Sample ID : MW-3(120221) Matrix : WATER

 Client Sample ID
 : MW-3(120221)
 Matrix
 : WATER

 Lab Sample ID
 : L2166429-01
 Analysis Date
 : 12/12/21 18:01

 Matrix Spike
 : WG1582628-6
 MS Analysis Date
 : 12/12/21 18:24

 Matrix Spike Dup
 : WG1582628-7
 MSD Analysis Date
 : 12/12/21 18:47

		Matrix Sp	ike Sample		Matrix Spi	ke Duplicate						
	Sample	Spike Added (ug/l)	Spike Conc. (ug/l)	%R	Spike Added (ug/l)	Spike Conc. (ug/l)	%R					
	Conc.							RPD	Recovery	RPD		
Parameter	(ug/l)								Limits	Limit		
Isopropylbenzene	ND	10	12	120	10	11	110	9	70-130	20		
1,2,3-Trichlorobenzene	ND	10	10	100	10	11	110	10	70-130	20		
1,2,4-Trichlorobenzene	ND	10	10	100	10	10	100	0	70-130	20		
Methyl Acetate	ND	10	14	140 Q	10	13	130	7	70-130	20		
Cyclohexane	ND	10	15	150 Q	10	15	1 <mark>50 Q</mark>	0	70-130	20		
1,4-Dioxane	ND	500	660	132	500	700	140	6	56-162	20		
Freon-113	ND	10	12	120	10	12	120	0	70-130	20		
Methyl cyclohexane	ND	10	11	110	10	10	100	10	70-130	20		

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-01 Client ID : MW-3(120221)

Client ID : MW-3(120221) Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 18:01

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05211212A25

Sample Amount : 10 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND U 1,1-Dichloroethane 2.5 0.70 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U ND п 124-48-1 Dibromochloromethane 0.50 0.15 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 Tetrachloroethene ND 0.18 U 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 0.70 U 2.5 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 75-25-2 ND 2.0 0.65 U **Bromoform** 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 U Ethylbenzene ND 2.5 0.70 74-87-3 Chloromethane ND 2.5 0.70 U 74-83-9 **Bromomethane** ND 2.5 0.70 U 75-01-4 Vinyl chloride ND 1.0 0.07 ш 75-00-3 Chloroethane 2.5 0.70 U ND U ND 0.50 75-35-4 1,1-Dichloroethene 0.17

: 12/02/21 11:20

: 1

: PD

: VOA105

Date Collected

Dilution Factor

Instrument ID

Analyst

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-01 Client ID : MW-3(120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05211212A25

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Date Received : 12/03/21
Date Analyzed : 12/12/21 18:01
Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2
%Solids : N/A

Injection Volume: N/A

Date Collected

: 12/02/21 11:20

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U ND 0.50 U 79-01-6 Trichloroethene 0.18 95-50-1 ND 2.5 0.70 U 1,2-Dichlorobenzene 541-73-1 ND 2.5 0.70 п 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U ND 2.5 0.70 п 1634-04-4 Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U 75-15-0 Carbon disulfide ND 5.0 1.0 U 2-Butanone ND 5.0 1.9 U 78-93-3 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 ND 5.0 1.0 U 2-Hexanone 74-97-5 Bromochloromethane ND 2.5 0.70 U U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U ND U 98-82-8 Isopropylbenzene 2.5 0.70 87-61-6 1,2,3-Trichlorobenzene ND 2.5 0.70 U 120-82-1 ND 2.5 0.70 U 1,2,4-Trichlorobenzene 79-20-9 ND 2.0 0.23 п **Methyl Acetate** 10 0.27 U 110-82-7 Cyclohexane ND U ND 250 123-91-1 1,4-Dioxane 61.

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/03/21

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A25 Instrument ID : VOA105 GC Column Sample Amount : 10 ml : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

Results	RL	MDL	Qualifier
ND	2.5	0.70	U
ND	10	0.40	U

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-02

Client ID : MW-3(120221) DUPLICATE Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 17:38

Date Collected : 12/02/21 11:20

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A24 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-02

Client ID : MW-3(120221) DUPLICATE Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 17:38

Date Collected : 12/02/21 11:20

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A24 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/ L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
123-91-1	1,4-Dioxane	ND	250	61.	U	

Client : Environmental Advantage, Inc. Lab Number : L2166429 **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-02

Date Collected : 12/02/21 11:20 Client ID : MW-3(120221) DUPLICATE Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 17:38

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A24 Instrument ID : VOA105 GC Column Sample Amount : 10 ml : RTX-502.2

%Solids Level : LOW : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

		ug/L	
CAS NO.	Parameter	Results RL MDL Qualifier	
76-13-1	Freon-113	ND 2.5 0.70 U	
108-87-2	Methyl cyclohexane	ND 10 0.40 U	

Date Collected : 12/02/21 11:50

Client : Environmental Advantage, Inc. : L2166429 Lab Number **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-03

Client ID : TRIP BLANK(120221)

Date Received : 12/03/21 : 155 CHANDLER ST. BUFFALO, NY Sample Location Date Analyzed : 12/12/21 17:14

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A23 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Date Collected : 12/02/21 11:50

Client : Environmental Advantage, Inc. : L2166429 Lab Number **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-03

Client ID : TRIP BLANK(120221)

Date Received : 12/03/21 : 155 CHANDLER ST. BUFFALO, NY Sample Location Date Analyzed : 12/12/21 17:14

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A23 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U		
79-01-6	Trichloroethene	ND	0.50	0.18	U		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U		
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U		
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U		
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U		
95-47-6	o-Xylene	ND	2.5	0.70	U		
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U		
100-42-5	Styrene	ND	2.5	0.70	U		
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U		
67-64-1	Acetone	ND	5.0	1.5	U		
75-15-0	Carbon disulfide	ND	5.0	1.0	U		
78-93-3	2-Butanone	ND	5.0	1.9	U		
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U		
591-78-6	2-Hexanone	ND	5.0	1.0	U		
74-97-5	Bromochloromethane	ND	2.5	0.70	U		
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U		
98-82-8	Isopropylbenzene	ND	2.5	0.70	U		
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
79-20-9	Methyl Acetate	ND	2.0	0.23	U		
110-82-7	Cyclohexane	ND	10	0.27	U		
123-91-1	1,4-Dioxane	ND	250	61.	U		

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Client ID : TRIP BLANK(120221) Date Received : 12/03/21

Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 17:14

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : PD : 1,8260C Analyst : VOA105 Lab File ID : V05211212A23 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L
CAS NO.	Parameter	Results RL MDL Qualifier
76-13-1	Freon-113	ND 2.5 0.70 U
108-87-2	Methyl cyclohexane	ND 10 0.40 U

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-04

Client ID : RINSATE BLANK(120221)

Sample Location : 155 CHANDLER ST. BUFFALO, NY Date

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05211212A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Date Analyzed : 12/12/21 16:51
Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2

Date Received : 12/03/21

Date Collected : 12/02/21 12:00

%Solids : N/A Injection Volume : N/A

	ug/L						
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	2.5	0.70	U		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
67-66-3	Chloroform	ND	2.5	0.70	U		
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U		
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U		
124-48-1	Dibromochloromethane	ND	0.50	0.15	U		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U		
127-18-4	Tetrachloroethene	ND	0.50	0.18	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U		
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U		
75-27-4	Bromodichloromethane	ND	0.50	0.19	U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U		
75-25-2	Bromoform	ND	2.0	0.65	U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U		
71-43-2	Benzene	ND	0.50	0.16	U		
108-88-3	Toluene	ND	2.5	0.70	U		
100-41-4	Ethylbenzene	ND	2.5	0.70	U		
74-87-3	Chloromethane	ND	2.5	0.70	U		
74-83-9	Bromomethane	ND	2.5	0.70	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		
75-00-3	Chloroethane	ND	2.5	0.70	U		
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		

Date Collected : 12/02/21 12:00

: 1

: PD

: VOA105

Client : Environmental Advantage, Inc. : L2166429 Lab Number **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-04

Client ID : RINSATE BLANK(120221)

Date Received : 12/03/21 Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 16:51

Sample Matrix **Dilution Factor** : WATER Analytical Method : 1,8260C Analyst Lab File ID : V05211212A22 Instrument ID Sample Amount : 10 ml

GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U		
79-01-6	Trichloroethene	ND	0.50	0.18	U		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U		
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U		
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U		
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U		
95-47-6	o-Xylene	ND	2.5	0.70	U		
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U		
100-42-5	Styrene	ND	2.5	0.70	U		
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U		
67-64-1	Acetone	2.0	5.0	1.5	J		
75-15-0	Carbon disulfide	ND	5.0	1.0	U		
78-93-3	2-Butanone	ND	5.0	1.9	U		
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U		
591-78-6	2-Hexanone	ND	5.0	1.0	U		
74-97-5	Bromochloromethane	ND	2.5	0.70	U		
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U		
98-82-8	Isopropylbenzene	ND	2.5	0.70	U		
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
79-20-9	Methyl Acetate	ND	2.0	0.23	U		
110-82-7	Cyclohexane	ND	10	0.27	U		
123-91-1	1,4-Dioxane	ND	250	61.	U		

Client : Environmental Advantage, Inc. Lab Number : L2166429 **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Lab ID : L2166429-04

Date Collected : 12/02/21 12:00 Client ID : RINSATE BLANK(120221) Date Received : 12/03/21

Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 12/12/21 16:51

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,8260C Analyst : PD Lab File ID : V05211212A22 Instrument ID : VOA105 GC Column Sample Amount : 10 ml : RTX-502.2

%Solids Level : LOW : N/A

Extract Volume (MeOH): N/A Injection Volume: N/A

		u				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : Environmental Advantage, Inc.
Project Name : CY2021 ANNUAL GW SAMPLING

Lab ID : WG1582628-5

Client ID : WG1582628-5BLANK

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05211212A05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2166429
Project Number : 01101
Date Collected : NA
Date Received : NA

Date Analyzed : 12/12/21 10:18

Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : Environmental Advantage, Inc. Lab Project Name : CY2021 ANNUAL GW SAMPLING Pro

Lab ID : WG1582628-5

Client ID : WG1582628-5BLANK

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05211212A05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2166429
Project Number : 01101
Date Collected : NA
Date Received : NA

Date Analyzed : 12/12/21 10:18

Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
123-91-1	1,4-Dioxane	ND	250	61.	U	

Client : Environmental Advantage, Inc. Lab Number : L2166429 **Project Name** : CY2021 ANNUAL GW SAMPLING Project Number : 01101 Lab ID : WG1582628-5 Date Collected : NA Date Received : NA

Client ID : WG1582628-5BLANK

Sample Location Date Analyzed : 12/12/21 10:18

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C Analyst : PD : VOA105 Lab File ID : V05211212A05 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

%Solids Level : LOW : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
76-13-1	Freon-113	ND	2.5	0.70	U
108-87-2	Methyl cyclohexane	ND	10	0.40	U

Initial Calibration Summary Form 6 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429

Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Instrument ID : VOA105 Ical Ref : ICAL18369

Calibration dates : 10/07/21 19:35 10/07/21 23:04

Calibration Files

L11 = V05211007N04.d L1 = V05211007N06.d L2 = V05211007N08.d L3 = V05211007N09.d L4 = V05211007N10.d L6 = V05211007N11.d L8 = V05211007N12.d L10 = V05211007N13.d

	Compound	L11	L1	L2	L3	L4	L6	L8	L10	Avg	%RSD
40) TP	1,1-Dichloropr		0.260	0.303	0.319	0.334	0.330	0.322	0.312	0.311	8.04
	Benzene	0.893	0.786	0.890	0.897	0.917	0.900	0.879	0.848	0.876	4.73
	Tertiary-Amyl Methyl Ether						0.509				2.12
43) S	1,2-Dichloroethane-d4										3.49
44) TP	1,2-Dichloroet						0.307				2.84
47) TP	Methyl cyclohe		0.406	0.422	0.410	0.434	0.438	0.421	0.405	0.419	3.18
48) TP	Trichloroethene	0.286	0.180	0.222	0.244	0.250	0.247	0.241	0.233	0.238	12.43
50) TP	Dibromomethane						0.125				4.05
51) TC	1,2-Dichloropr		0.217	0.244	0.252	0.257	0.255	0.252	0.246	0.246	5.62
53) TP	2-Chloroethyl		0.101	0.107	0.113	0.114	0.114	0.112	0.109	0.110	4.49
54) TP	Bromodichlorom		0.371	0.326	0.318	0.311	0.309	0.306	0.300	0.320	7.44
57) TP	1,4-Dioxane									0.001#	6.15
58) TP	cis-1,3-Dichloropropene Chlorobenzene-d5		0.317	0.351	0.356	0.371	0.368	0.365	0.357	0.355	5.14
59) I	Chlorobenzene-d5			I	STD						
60) S	Toluene-d8	1.224	1.210	1.235	1.250	1.245	1.239	1.235	1.244	1.235	1.04
61) TC	Toluene		0.660	0.724	0.730	0.754	0.734	0.721	0.697	0.717	4.25
62) TP	4-Methyl-2-pen		0.081	0.076	0.076	0.072	0.073	0.071	0.067	0.073#	5.92
63) TP	Tetrachloroethene		0.276	0.331	0.345	0.357	0.351	0.342	0.328	0.333	8.18
65) TP	trans-1,3-Dichloropropene		0.330	0.362	0.382	0.408	0.405	0.401	0.390	0.383	7.31
67) TP	Ethyl methacry		0.241	0.279	0.271	0.267	0.261	0.255	0.245	0.260	5.36
68) TP	1,1,2-Trichlor		0.225	0.183	0.176	0.178	0.175	0.173	0.169	0.183	10.47
69) TP	Chlorodibromom		0.237	0.263	0.270	0.284	0.284	0.284	0.280	0.272	6.43
70) TP	1,3-Dichloropr		0.330	0.392	0.402	0.412	0.409	0.404	0.395	0.392	7.20
71) TP	1,2-Dibromoethane		0.207	0.236	0.235	0.245	0.240	0.236	0.230	0.233	5.31
72) TP	2-Hexanone		0.124	0.123	0.129	0.129	0.126	0.122	0.116	0.124	3.62
73) TP	Chlorobenzene		0.742	0.794	0.801	0.816	0.793	0.785	0.760	0.785	3.21
74) TC	Ethylbenzene		1.404	1.458	1.455	1.490	1.441	1.402	1.330	1.426	3.67
75) TP	1,1,1,2-Tetrac		0.267	0.296	0.296	0.310	0.308	0.304	0.299	0.297	4.90
76) TP	p/m Xylene		0.505	0.573	0.574	0.584	0.560	0.547	0.516	0.551	5.53
77) TP	o Xylene		0.474	0.543	0.547	0.553	0.531	0.520	0.491	0.523	5.72
78) TP	Styrene						0.883		0.783	0.863	6.09
79) I	1,4-Dichlorobenzene-d4										
80) TP	Bromoform		0.258	0.274	0.285	0.299	0.305	0.307	0.306	0.291	6.51
82) TP	Isopropylbenzene		2.404	2.689	2.689	2.766	2.684	2.617	2.481	2.619	4.95
83) S	4-Bromofluorobenzene	0.928									1.73
84) TP	Bromobenzene		0.561	0.610	0.612	0.624	0.609	0.612	0.596	0.603	3.42

Evaluate Continuing Calibration Report

Data Path : I:\VOLATILES\VOA105\2021\211007NICAL\

Data File : V05211007N18.d

Acq On : 8 Oct 2021 12:59 am

Operator : VOA105:PD
Sample : C8260STD10PPB
Misc : WG1556175,ICAL

ALS Vial : 18 Sample Multiplier: 1

Quant Time: Oct 08 11:28:40 2021

Quant Method : I:\VOLATILES\VOA105\2021\211007NICAL\V105_211007N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Fri Oct 08 11:24:02 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Are	ea% D	ev(min)
43 S 44 TP 47 TP 48 TP 50 TP 51 TC 53 TP 54 TP 57 TP 58 TP	1,2-Dichloroethane-d4 1,2-Dichloroethane Methyl cyclohexane Trichloroethene Dibromomethane 1,2-Dichloropropane 2-Chloroethyl vinyl ether Bromodichloromethane 1,4-Dioxane cis-1,3-Dichloropropene	0.312 0.310 0.419 0.238 0.127 0.246 0.110 0.320 0.00085 0.355	0.322 0.307 0.330 0.242 0.117 0.244 0.115 0.304 0.00105# 0.347	-3.2 1.0 21.2# -1.7 7.9 0.8 -4.5 5.0 -23.5# 2.3	94 97 102 96	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
59 I 60 S 61 TC 62 TP 63 TP 65 TP 67 TP 68 TP 70 TP 71 TP 72 TP 73 TP 74 TC 75 TP 76 TP 77 TP 78 TP	Chlorobenzene-d5 Toluene-d8 Toluene 4-Methyl-2-pentanone Tetrachloroethene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane Chlorodibromomethane 1,3-Dichloropropane 1,2-Dibromoethane 2-Hexanone Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroethane p/m Xylene o Xylene Styrene	1.000 1.235 0.717 0.073 0.333 0.383 0.260 0.183 0.272 0.392 0.233 0.124 0.785 1.426 0.297 0.551 0.523 0.863	1.000 1.245 0.708 0.064# 0.333 0.363 0.242 0.162 0.255 0.368 0.218 0.118 0.795 1.404 0.280 0.559 0.532 0.876	0.0 -0.8 1.3 12.3 0.0 5.2 6.9 11.5 6.3 6.1 6.4 4.8 -1.3 1.5 5.7 -1.5	101 101 98 86 97 96 93 96 93 94 92 100 98 95 98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
79 I 80 TP 82 TP 83 S 84 TP 85 TP 86 TP 87 TP 88 TP	1,4-Dichlorobenzene-d4 Bromoform Isopropylbenzene 4-Bromofluorobenzene Bromobenzene n-Propylbenzene 1,4-Dichlorobutane 1,1,2,2-Tetrachloroethane 4-Ethyltoluene	1.000 0.291 2.619 0.908 0.603 3.104 0.772 0.432 2.590	1.000 0.269 2.608 0.898 0.596 3.119 0.736 0.372 2.534	0.0 7.6 0.4 1.1 1.2 -0.5 4.7 13.9 2.2	101 96 98 99 99 99 98 94	-0.01 0.00 0.00 0.00 0.00 0.00 0.00

V105_211007N_8260.m Fri Oct 08 11:32:41 2021

Calibration Verification Summary Form 7 **Volatiles**

Client : Environmental Advantage, Inc. Lab Number : L2166429 : CY2021 ANNUAL GW SAMPLING **Project Name** Project Number : 01101 : 12/12/21 08:46

Instrument ID : VOA105 Calibration Date

Lab File ID : V05211212A01 Init. Calib. Date(s) : 10/07/21 10/07/21 Init. Calib. Times Sample No : WG1582628-2 : 19:35 23:04

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	93	0
Dichlorodifluoromethane	0.271	0.277	-	-2.2	20	94	0
Chloromethane	0.35	0.464	-	-32.6*	20	123	0
Vinyl chloride	0.286	0.382	-	-33.6*	20	117	0
Bromomethane	0.141	0.103	-	27*	20	76	0
Chloroethane	0.165	0.209	-	-26.7*	20	114	0
Trichlorofluoromethane	0.341	0.4	-	-17.3	20	105	0
Ethyl ether	0.089	0.095	-	-6.7	20	101	01
1,1-Dichloroethene	0.204	0.242	-	-18.6	20	105	0
Carbon disulfide	0.593	0.702	-	-18.4	20	107	0
Freon-113	0.215	0.25	-	-16.3	20	103	0
Acrolein	0.026	0.027	-	-3.8	20	98	0
Methylene chloride	0.24	0.255	-	-6.3	20	100	0
Acetone	0.043	0.039	-	9.3	20	82	0
trans-1,2-Dichloroethene	0.234	0.255	-	-9	20	99	0
Methyl acetate	0.109	0.103	-	5.5	20	95	0
Methyl tert-butyl ether	0.449	0.378	-	15.8	20	77	0
tert-Butyl alcohol	0.01081	0.00738*	-	31.7*	20	62	01
Diisopropyl ether	0.799	0.863	-	-8	20	101	0
1,1-Dichloroethane	0.469	0.576	-	-22.8*	20	109	0
Halothane	0.18	0.192	-	-6.7	20	95	0
Acrylonitrile	0.058	0.063	-	-8.6	20	98	0
Ethyl tert-butyl ether	0.67	0.573	-	14.5	20	80	0
Vinyl acetate	0.482	0.422	-	12.4	20	94	0
cis-1,2-Dichloroethene	0.263	0.278	-	-5.7	20	98	0
2,2-Dichloropropane	0.376	0.366	-	2.7	20	90	01
Bromochloromethane	0.114	0.12		-5.3	20	95	0
Cyclohexane	0.482	0.653		-35.5*	20	124	0
Chloroform	0.42	0.441	-	-5	20	97	01
Ethyl acetate	0.148	0.127		14.2	20	81	0
Carbon tetrachloride	0.35	0.337	<u> </u>	3.7	20	87	0
Tetrahydrofuran	0.048	0.048	<u> </u>	0	20	98	0
Dibromofluoromethane	0.271	0.291		-7.4	20	99	01
1,1,1-Trichloroethane	0.39	0.398		-7.4	20	92	01
2-Butanone	0.064	0.058		9.4	20	88	0
	0.064	0.328	-	-5.5	20	96	0
1,1-Dichloropropene							
Benzene	0.876	0.91	-	-3.9	20	94	0
tert-Amyl methyl ether	0.494	0.341		31*	20	66	0
1,2-Dichloroethane-d4	0.312	0.333	-	-6.7	20	96	0
1,2-Dichloroethane	0.31	0.326	-	-5.2	20	97	0
Methyl cyclohexane	0.419	0.417	-	0.5	20	95	0
Trichloroethene	0.238	0.237	-	0.4	20	90	0
Dibromomethane	0.127	0.117	-	7.9	20	87	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Environmental Advantage, Inc. Lab Number : L2166429
Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101

Project Name : CY2021 ANNUAL GW SAMPLING Project Number : 01101
Instrument ID : VOA105 Calibration Date : 12/12/21 08:46

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dichloropropane	0.246	0.275	-	-11.8	20	101	0
Bromodichloromethane	0.32	0.302	-	5.6	20	88	0
1,4-Dioxane	0.00085	0.00087*	-	-2.4	20	95	0
cis-1,3-Dichloropropene	0.355	0.313	-	11.8	20	82	0
Chlorobenzene-d5	1	1	-	0	20	95	0
Toluene-d8	1.235	1.271	-	-2.9	20	97	01
Toluene	0.717	0.733	-	-2.2	20	96	0
4-Methyl-2-pentanone	0.073	0.057	-	21.9*	20	71	0
Tetrachloroethene	0.333	0.339	-	-1.8	20	93	0
trans-1,3-Dichloropropene	0.383	0.303	-	20.9*	20	75	0
Ethyl methacrylate	0.26	0.204	-	21.5*	20	72	0
1,1,2-Trichloroethane	0.183	0.158*	-	13.7	20	85	0
Chlorodibromomethane	0.272	0.236	-	13.2	20	83	0
1,3-Dichloropropane	0.392	0.353	-	9.9	20	84	0
1,2-Dibromoethane	0.233	0.198*	-	15	20	80	0
2-Hexanone	0.124	0.101	-	18.5	20	75	0
Chlorobenzene	0.785	0.821	-	-4.6	20	97	0
Ethylbenzene	1.426	1.501	-	-5.3	20	98	0
1,1,1,2-Tetrachloroethane	0.297	0.251	-	15.5	20	81	0
p/m Xylene	0.551	0.569	-	-3.3	20	94	0
o Xylene	0.523	0.534	-	-2.1	20	93	0
Styrene	0.863	0.875	-	-1.4	20	92	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	94	01
Bromoform	0.291	0.228	-	21.6*	20	75	0
Isopropylbenzene	2.619	2.769	-	-5.7	20	97	0
4-Bromofluorobenzene	0.908	0.903	-	0.6	20	92	0
Bromobenzene	0.603	0.596	-	1.2	20	91	0
n-Propylbenzene	3.104	3.33	-	-7.3	20	97	0
1,4-Dichlorobutane	0.772	0.852	-	-10.4	20	105	0
1,1,2,2-Tetrachloroethane	0.432	0.37	-	14.4	20	87	0
4-Ethyltoluene	2.59	2.658	-	-2.6	20	93	0
2-Chlorotoluene	1.806	1.824	-	-1	20	95	0
1,3,5-Trimethylbenzene	2.28	2.212	-	3	20	88	0
1,2,3-Trichloropropane	0.344	0.301	-	12.5	20	85	0
trans-1,4-Dichloro-2-buten	0.14	0.128	-	8.6	20	98	0
4-Chlorotoluene	1.91	1.95	-	-2.1	20	94	0
tert-Butylbenzene	1.962	1.981	-	-1	20	93	0
1,2,4-Trimethylbenzene	2.231	2.136	-	4.3	20	88	0
sec-Butylbenzene	2.871	3.014	-	-5	20	96	0
p-Isopropyltoluene	2.513	2.496	-	0.7	20	90	0
1,3-Dichlorobenzene	1.215	1.197	-	1.5	20	92	0
1,4-Dichlorobenzene	1.211	1.182	-	2.4	20	90	0
p-Diethylbenzene	1.487	1.42	-	4.5	20	88	0

^{*} Value outside of QC limits.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St. SDG#L2217738 May 31, 2022 Reissued: June 6, 2022 Sampling date: 3/29/2022

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package(reissued: June 6, 2022) for Environmental Advantage, project located at 155 Chandler St., Alpha Analytical, SDG#L2217738 submitted to Vali-Data of WNY, LLC on April 20, 2022. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

ID	Sample ID	Laboratory ID
1	OA-1 (032922)	L2217738-01
2	SS-9(032922)	L2217738-02
3	IA-9(032922)	L2217738-03
4	SS-10(032922)	L2217738-04
5	IA-10(032922)	L2217738-05
6	IA-7(032922)	L2217738-06
7	SS-7(032922)	L2217738-07

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD/Duplicate
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check
- -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Initial Calibration.

Sample: DUSR ID#4 was diluted due to pressurization of the can.

All results were recorded to the reporting limits.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD/DUPLICATE

No MS/MSD/Duplicate was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except a target analyte was outside QC limits in the initial calibration verification off instrument, Airlab16. This target analyte should be qualified as estimated in the associated blanks, spikes and samples.

ICV instrument	Target Analyte	%D	Qualifier	Associated Sample
Airlab16	Acetone	-32.0	UJ/J	WG1625613, 1-7

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: NYSDEC VIM STUDY Lab Number: L2217738

Project Number: 00101 Report Date: 06/01/22

Case Narrative (continued)

Report Revision

June 1, 2022 the report has been amended to change sample IDs at the request of the client. A revised COC is included in this submittal.

Volatile Organics in Air

Canisters were released from the laboratory on March 28, 2022. The canister certification results are provided as an addendum.

L2217738-04D: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to perform a screen analysis. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J Onlesson

Report Date: 06/01/22

Title: Technical Director/Representative

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630096 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22 Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

Campic Amount . 200 mi						ao colainn . mix i			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.515	0.200		2.55	0.989			
74-87-3	Chloromethane	0.539	0.200		1.11	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	ND	5.00		ND	9.42		U	
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	1.48	1.00		3.52	2.38			
75-69-4	Trichlorofluoromethane	0.210	0.200		1.18	1.12			
67-63-0	Isopropanol	1.54	0.500		3.79	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630096 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22

Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

oumple Amount 1 200 mi						ao colamin . III x i			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 17:49

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1630096 Instrument ID : AIF

Lab File ID : R1630096 Instrument ID : AIRLAB16 Sample Amount : 250 ml GC Column : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

oumple Amount . 200 mi						do column . HTX I		
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.552	0.200		2.73	0.989		
74-87-3	Chloromethane	ND	0.200		ND	0.413		U
76-14-2	Freon-114	ND	0.200		ND	1.40		U
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	7.86	5.00		14.8	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	5.75	1.00		13.7	2.38		
75-69-4	Trichlorofluoromethane	0.279	0.200		1.57	1.12		
67-63-0	Isopropanol	3.28	0.500		8.06	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U
75-09-2	Methylene chloride	0.574	0.500		1.99	1.74		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	1.02	0.200		3.18	0.623		
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	4.80	0.500		14.2	1.47		
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
67-66-3	Chloroform	0.671	0.200		3.28	0.977		
109-99-9	Tetrahydrofuran	2.88	0.500		8.49	1.47		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

Sample Amount . 250 mi						GC Column . HTX-1				
			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	7.54	0.200		26.6	0.705				
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U		
71-43-2	Benzene	1.70	0.200		5.43	0.639				
56-23-5	Carbon tetrachloride	1.41	0.200		8.87	1.26				
110-82-7	Cyclohexane	1.65	0.200		5.68	0.688				
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
79-01-6	Trichloroethene	1.32	0.200		7.09	1.07				
540-84-1	2,2,4-Trimethylpentane	0.341	0.200		1.59	0.934				
142-82-5	Heptane	3.20	0.200		13.1	0.820				
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	20.7	0.200		78.0	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
127-18-4	Tetrachloroethene	0.214	0.200		1.45	1.36				
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	3.79	0.200		16.5	0.869				
179601-23-1	p/m-Xylene	18.3	0.400		79.5	1.74				
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-02 Client ID : SS-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630104 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:40

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:58

Dilution Factor : 1 Analyst : TS

						-			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	6.01	0.200		26.1	0.869			
622-96-8	4-Ethyltoluene	1.54	0.200		7.57	0.983			
108-67-8	1,3,5-Trimethylbenzene	1.32	0.200		6.49	0.983			
95-63-6	1,2,4-Trimethylbenzene	5.68	0.200		27.9	0.983			
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630101 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22

Date Analyzed : 04/10/22 21:03 Dilution Factor : 1

Dilution Factor : 1 Analyst : TS

oumpic Amount . 200 mi						do column . HTX I				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.543	0.200		2.69	0.989				
74-87-3	Chloromethane	0.587	0.200		1.21	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	111	5.00		209	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	17.5	1.00		41.6	2.38				
75-69-4	Trichlorofluoromethane	0.246	0.200		1.38	1.12				
67-63-0	Isopropanol	96.4	0.500		237	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	0.602	0.200		2.94	0.977				
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	ND	0.200		ND	0.705		U		
71-43-2	Benzene	0.200	0.200		0.639	0.639				

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630101 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:03

Dilution Factor : 1

Analyst : TS

Samp	Sample Amount . 250 mil					GC Column . ITTX-1				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U		
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U		
142-82-5	Heptane	0.276	0.200		1.13	0.820				
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	0.366	0.200		1.38	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U		
179601-23-1	p/m-Xylene	0.456	0.400		1.98	1.74				
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
95-47-6	o-Xylene	0.234	0.200		1.02	0.869				
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U		
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U		

Client : Environmental Advantage, Inc. Lab Number : L2217738
Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 21:03

Sample Matrix : AIR Dilution Factor

Analytical Method : 48,TO-15 Analyst

Lab File ID : R1630101 Instrument ID

Sample Amount : 250 ml GC Column

ppbV ug/m3 Results MDL Results MDL RL RL Qualifier CAS NO. **Parameter** 0.200 U 106-46-7 1,4-Dichlorobenzene ND ND 1.20 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 120-82-1 ND 0.200 ND 1.48 U 1,2,4-Trichlorobenzene 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

: 1

: TS

: RTX-1

: AIRLAB16

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630105 Sample Amount : 118 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:05

Date Received : 03/30/22 Date Analyzed : 04/10/22 23:37

Dilution Factor : 2.111 Analyst : TS

Sample Amount . 110 mi						GC Column . HTX-1				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.526	0.422		2.60	2.09				
74-87-3	Chloromethane	2.15	0.422		4.44	0.871				
76-14-2	Freon-114	ND	0.422		ND	2.95		U		
75-01-4	Vinyl chloride	ND	0.422		ND	1.08		U		
106-99-0	1,3-Butadiene	50.3	0.422		111	0.934				
74-83-9	Bromomethane	ND	0.422		ND	1.64		U		
75-00-3	Chloroethane	ND	0.422		ND	1.11		U		
64-17-5	Ethanol	18.0	10.6		33.9	20.0				
593-60-2	Vinyl bromide	ND	0.422		ND	1.85		U		
67-64-1	Acetone	39.0	2.11		92.6	5.01				
75-69-4	Trichlorofluoromethane	ND	0.422		ND	2.37		U		
67-63-0	Isopropanol	6.84	1.06		16.8	2.61				
75-35-4	1,1-Dichloroethene	ND	0.422		ND	1.67		U		
75-65-0	Tertiary butyl Alcohol	ND	1.06		ND	3.21		U		
75-09-2	Methylene chloride	ND	1.06		ND	3.68		U		
107-05-1	3-Chloropropene	ND	0.422		ND	1.32		U		
75-15-0	Carbon disulfide	43.5	0.422		135	1.31				
76-13-1	Freon-113	ND	0.422		ND	3.23		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.422		ND	1.67		U		
75-34-3	1,1-Dichloroethane	ND	0.422		ND	1.71		U		
1634-04-4	Methyl tert butyl ether	ND	0.422		ND	1.52		U		
78-93-3	2-Butanone	7.87	1.06		23.2	3.13				
156-59-2	cis-1,2-Dichloroethene	ND	0.422		ND	1.67		U		
141-78-6	Ethyl Acetate	ND	1.06		ND	3.82		U		
67-66-3	Chloroform	0.483	0.422		2.36	2.06				
109-99-9	Tetrahydrofuran	ND	1.06		ND	3.13		U		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15 Lab File ID : R1630105

Sample Amount : 118 ml **Lab Number** : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:05

: TS

Date Received : 03/30/22 Date Analyzed : 04/10/22 23:37

Dilution Factor : 2.111

Analyst Instrument ID : AIRLAB16 : RTX-1 GC Column

Sample Amount . 110 mil						Julili		I V- I		
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
107-06-2	1,2-Dichloroethane	ND	0.422		ND	1.71		U		
110-54-3	n-Hexane	132	0.422		465	1.49				
71-55-6	1,1,1-Trichloroethane	ND	0.422		ND	2.30		U		
71-43-2	Benzene	41.7	0.422		133	1.35				
56-23-5	Carbon tetrachloride	0.684	0.422		4.30	2.65				
110-82-7	Cyclohexane	68.4	0.422		235	1.45				
78-87-5	1,2-Dichloropropane	ND	0.422		ND	1.95		U		
75-27-4	Bromodichloromethane	ND	0.422		ND	2.83		U		
123-91-1	1,4-Dioxane	ND	0.422		ND	1.52		U		
79-01-6	Trichloroethene	4.36	0.422		23.4	2.27				
540-84-1	2,2,4-Trimethylpentane	ND	0.422		ND	1.97		U		
142-82-5	Heptane	109	0.422		447	1.73				
10061-01-5	cis-1,3-Dichloropropene	ND	0.422		ND	1.92		U		
108-10-1	4-Methyl-2-pentanone	ND	1.06		ND	4.34		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.422		ND	1.92		U		
79-00-5	1,1,2-Trichloroethane	ND	0.422		ND	2.30		U		
108-88-3	Toluene	86.0	0.422		324	1.59				
591-78-6	2-Hexanone	ND	0.422		ND	1.73		U		
124-48-1	Dibromochloromethane	ND	0.422		ND	3.60		U		
106-93-4	1,2-Dibromoethane	ND	0.422		ND	3.24		U		
127-18-4	Tetrachloroethene	ND	0.422		ND	2.86		U		
108-90-7	Chlorobenzene	ND	0.422		ND	1.94		U		
100-41-4	Ethylbenzene	9.80	0.422		42.6	1.83				
179601-23-1	p/m-Xylene	40.2	0.844		175	3.67				
75-25-2	Bromoform	ND	0.422		ND	4.36		U		
100-42-5	Styrene	ND	0.422		ND	1.80		U		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-04D Client ID : SS-10(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630105 Sample Amount : 118 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:05

Date Received : 03/30/22 Date Analyzed : 04/10/22 23:37

Dilution Factor : 2.111 Analyst : TS

	Parameter	ppbV				ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.422		ND	2.90		U	
95-47-6	o-Xylene	10.2	0.422		44.3	1.83			
622-96-8	4-Ethyltoluene	1.97	0.422		9.68	2.07			
108-67-8	1,3,5-Trimethylbenzene	1.41	0.422		6.93	2.07			
95-63-6	1,2,4-Trimethylbenzene	5.55	0.422		27.3	2.07			
100-44-7	Benzyl chloride	ND	0.422		ND	2.19		U	
541-73-1	1,3-Dichlorobenzene	ND	0.422		ND	2.54		U	
106-46-7	1,4-Dichlorobenzene	ND	0.422		ND	2.54		U	
95-50-1	1,2-Dichlorobenzene	ND	0.422		ND	2.54		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.422		ND	3.13		U	
87-68-3	Hexachlorobutadiene	ND	0.422		ND	4.50		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-05 Client ID : IA-10 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR Analytical Method : 48,TO-15

Lab File ID : R1630102 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:55

Date Received : 03/30/22

Date Analyzed : 04/10/22 21:41

Dilution Factor : 1 Analyst : TS

	Parameter		ppbV			ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.546	0.200		2.70	0.989			
74-87-3	Chloromethane	0.594	0.200		1.23	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	76.4	5.00		144	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	37.4	1.00		88.8	2.38			
75-69-4	Trichlorofluoromethane	0.232	0.200		1.30	1.12			
67-63-0	Isopropanol	221	0.500		543	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	0.551	0.500		1.99	1.80			
67-66-3	Chloroform	0.373	0.200		1.82	0.977			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	0.214	0.200		0.684	0.639			

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-05 Client ID : IA-10 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630102 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 16:55

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:41

Dilution Factor : 1

Analyst : TS

oumpie Amount . 200 mi					do column . HTX I				
		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.290	0.200		1.09	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc. Lab Number : L2217738

Project Name : NYSDEC VIM STUDY Project Number : 00101

Sample Location : 155 CHANDLER ST. BUFFALO NY Date Analyzed : 04/10/22 21:41

Sample Matrix : AIR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1630102 Instrument ID : AIF

Lab File ID : R1630102 Instrument ID : AIRLAB16 Sample Amount : 250 ml GC Column : RTX-1

	Parameter	ppbV				ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630103 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:20

Dilution Factor : 1 Analyst : TS

	Parameter		ppbV			ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.545	0.200		2.69	0.989			
74-87-3	Chloromethane	0.600	0.200		1.24	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	123	5.00		232	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	27.6	1.00		65.6	2.38			
75-69-4	Trichlorofluoromethane	0.233	0.200		1.31	1.12			
67-63-0	Isopropanol	151	0.500		371	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	0.681	0.500		2.01	1.47			
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	0.288	0.200		1.41	0.977			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630103 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/10/22 22:20 Dilution Factor : 1

Dilution Factor : 1
Analyst : TS

	Parameter		ppbV			ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.414	0.200		1.56	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

: L2217738 Client : Environmental Advantage, Inc. **Lab Number Project Name** : NYSDEC VIM STUDY **Project Number** : 00101

Lab ID **Date Collected** : L2217738-06 : 03/29/22 17:00 Client ID : IA-7 (032922) **Date Received** : 03/30/22

Sample Location : 155 CHANDLER ST. BUFFALO NY **Date Analyzed** : 04/10/22 22:20

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1630103

Analyst : TS : AIRLAB16 Instrument ID Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 Results MDL Results MDL RL RL Qualifier CAS NO. **Parameter** U 106-46-7 1,4-Dichlorobenzene ND 0.200 ND 1.20 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 120-82-1 ND 0.200 ND 1.48 U 1,2,4-Trichlorobenzene 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

Dilution Factor

: 1

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15 Lab File ID : R1630106

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

Sample Amount . 230 mil						GC Column . HTX-1				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.519	0.200		2.57	0.989				
74-87-3	Chloromethane	ND	0.200		ND	0.413		U		
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	ND	5.00		ND	9.42		U		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	1.84	1.00		4.37	2.38				
75-69-4	Trichlorofluoromethane	0.270	0.200		1.52	1.12				
67-63-0	Isopropanol	1.52	0.500		3.74	1.23				
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	1.11	0.500		3.27	1.47				
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
141-78-6	Ethyl Acetate	0.622	0.500		2.24	1.80				
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630106 Sample Amount : 250 ml Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

Campic Amount . 200 mi						ao column : mix i				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	9.26	0.200		32.6	0.705				
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U		
71-43-2	Benzene	2.60	0.200		8.31	0.639				
56-23-5	Carbon tetrachloride	0.496	0.200		3.12	1.26				
110-82-7	Cyclohexane	2.52	0.200		8.67	0.688				
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
79-01-6	Trichloroethene	1.66	0.200		8.92	1.07				
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U		
142-82-5	Heptane	3.50	0.200		14.3	0.820				
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U		
108-88-3	Toluene	22.9	0.200		86.3	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	3.80	0.200		16.5	0.869				
179601-23-1	p/m-Xylene	18.4	0.400		79.9	1.74				
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-07 Client ID : SS-7(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R1630106 Sample Amount : 250 ml Lab Number : L2217738 Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22

Date Analyzed : 04/11/22 00:15

Dilution Factor : 1 Analyst : TS

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	5.84	0.200		25.4	0.869			
622-96-8	4-Ethyltoluene	1.26	0.200		6.19	0.983			
108-67-8	1,3,5-Trimethylbenzene	1.29	0.200		6.34	0.983			
95-63-6	1,2,4-Trimethylbenzene	5.24	0.200		25.8	0.983			
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1630094

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : NA
Date Received : NA

Date Analyzed : 04/10/22 15:14

Dilution Factor : 1 Analyst : TS

Sample Amount . 230 mi						GC Column . ITTX-1			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	ND	0.200		ND	0.989		U	
74-87-3	Chloromethane	ND	0.200		ND	0.413		U	
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	ND	5.00		ND	9.42		U	
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	ND	1.00		ND	2.38		U	
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U	
67-63-0	Isopropanol	ND	0.500		ND	1.23		U	
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U	
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
09-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

: 250 ml

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1630094

Sample Amount

Date Analyzed : 04/10/22 15:14

: L2217738

: 00101

: NA

: NA

Dilution Factor : 1 Analyst : TS

Lab Number

Project Number

Date Collected

Date Received

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625613-4

Client ID : WG1625613-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15 Lab File ID : R1630094

Sample Amount : 250 ml

Lab Number : L2217738

Project Number : 00101 Date Collected : NA

Date Analyzed : 04/10/22 15:14

: NA

Dilution Factor : 1 Analyst : TS

Date Received

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Evaluate Continuing Calibration Report

Data Path : 0:\Forensics\Data\Airlab16\2022\03\0309T_I\

Data File : r1629381.D

: 9 Mar 2022 11:48 PM Acq On

Operator : AIRLAB16:RY : CTO15-LLSTD010 Sample : WG1614549 Misc

ALS Vial : 0 Sample Multiplier: 1

Quant Time: Mar 11 13:49:00 2022

Quant Method: 0:\Forensics\Data\Airlab16\2022\03\0309T_I\TFS16_220309.M

Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis

QLast Update: Thu Mar 10 19:22:17 2022 Response via: Initial Calibration

Min. RRF 0.000 Min. Rel. Area: 60% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area : 140%

		Compound	AvgRF	CCRF	%Dev Are	ea% De	ev(min)
	I	bromochloromethane	1.000	1.000	0.0	90	0.00
2		chlorodifluoromethane	0.752	0.659	12.4	79	0.01
3		propylene	0.419	0.526	-25.5	116	0.00
4		propane	0.609	0.514	15.6	77	0.00
5 6	a	dichlorodifluoromethane	0.998	0.998	0.0	89	0.01
7	С	chloromethane	0.481	0.484	-0.6	90 91	0.00
8	С	Freon-114 methanol	1.308 0.289	1.348 0.247	-3.1 14.5	91 75	0.01 0.02
9	C	vinyl chloride	0.269	0.247	-7.0	93	0.02
	C	1,3-butadiene	0.665	0.733	-7.0 -5.6	93 93	0.00
11	C	butane	0.823	0.472	-2.4	93	0.01
13	С	bromomethane	0.553	0.552	0.2	87	0.00
$\frac{13}{14}$		chloroethane	0.351	0.396	-12.8	101	0.01
15	C	ethanol	0.388	0.322	17.0	72	0.02
16		dichlorofluoromethane	1.125	1.257	-11.7	94	0.00
17	С	vinyl bromide	0.513	0.579	-12.9	101	0.00
18		acrolein	0.276	0.244	11.6	78	0.01
19		acetone	0.641	0.846	-32.0#	121	0.00
20	С	acetonitrile	0.504	0.563	-11.7	98	0.02
21		trichlorofluoromethane	0.986	1.083	-9.8	96	0.00
22		isopropyl alcohol	0.738	0.924	-25.2	113	0.01
23	C	acrylonitrile	0.464	0.438	5.6	83	0.00
24		pentane	1.035	1.136	-9.8	102	0.01
25		ethyl ether	1.326	1.186	10.6	78	0.00
26	C	1,1-dichloroethene	0.917	1.003	-9.4	95	0.00
27		tertiary butyl alcohol	1.176	1.209	-2.8	91	0.01
28		methylene chloride	0.569	0.572	-0.5	89	0.00
29		3-chloropropene	0.721	0.871	-20.8	108	0.00
30	С	carbon disulfide	1.534	1.608	-4.8	93	0.00
31		Freon 113	1.100	1.275	-15.9	102	0.01
32	<i>a</i>	trans-1,2-dichloroethene	0.947	1.008	-6.4	94	0.00
33 34		1,1-dichloroethane MTBE	1.135 1.273	1.285 1.464	-13.2 -15.0	100 102	0.00
35		vinyl acetate	1.273	1.464	4.0	92	0.00
36		2-butanone	1.149	1.183	-3.0	92 95	0.00
37	C	cis-1,2-dichloroethene	0.866	0.960	-10.9	97	0.00
38		Ethyl Acetate	0.224	0.261	-16.5	95	0.00
39	C	chloroform	0.224	0.261	-4.0	91	0.00
40	_	Tetrahydrofuran	0.680	0.740	-8.8	101	0.00
-		<u>-</u> 					

Client : Environmental Advantage, Inc. Lab Num
Project Name : NYSDEC VIM STUDY Project N

Lab ID : L2217738-01 Client ID : OA-1 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630096_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:30

Date Received : 03/30/22 Date Analyzed : 04/10/22 17:49

Dilution Factor : 1 Analyst : TS

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
73-01-4	Viriyi cinonae	140	0.020		IND	0.001			
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.090	0.020		0.566	0.126			
79-01-6	Trichloroethene	ND	0.020		ND	0.107		U	
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-03 Client ID : IA-9(032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630101_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:45

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:03

Dilution Factor : 1 Analyst : TS

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.098	0.020		0.389	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	1.28	0.020		8.05	0.126			
79-01-6	Trichloroethene	4.74	0.020		25.5	0.107			
127-18-4	Tetrachloroethene	0.090	0.020		0.610	0.136			

Results Summary Form 1 Volatile Organics in Air by SIM

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-05 Client ID : IA-10 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630102_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 16:55

Date Received : 03/30/22 Date Analyzed : 04/10/22 21:41

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

		ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.121	0.020		0.480	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.815	0.020		5.13	0.126			
79-01-6	Trichloroethene	7.29	0.020		39.2	0.107			
127-18-4	Tetrachloroethene	0.045	0.020		0.305	0.136			

Results Summary Form 1 Volatile Organics in Air by SIM

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : L2217738-06 Client ID : IA-7 (032922)

Sample Location : 155 CHANDLER ST. BUFFALO NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630103_EV2

Sample Amount : 250 ml

Lab Number : L2217738
Project Number : 00101

Date Collected : 03/29/22 17:00

Date Received : 03/30/22 Date Analyzed : 04/10/22 22:20

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

		ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.093	0.020		0.369	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.629	0.020		3.96	0.126			
79-01-6	Trichloroethene	4.48	0.020		24.1	0.107			
127-18-4	Tetrachloroethene	0.055	0.020		0.373	0.136			

Results Summary Form 1 Volatile Organics in Air by SIM

Client : Environmental Advantage, Inc.

Project Name : NYSDEC VIM STUDY

Lab ID : WG1625614-4

Client ID : WG1625614-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1630095_EV2

Sample Amount : 250 ml

Lab Number : L2217738 Project Number : 00101

Date Collected : NA
Date Received : NA

Date Analyzed : 04/10/22 15:52

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

	Parameter		ppbV		ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	ND	0.020		ND	0.126		U	
79-01-6	Trichloroethene	ND	0.020		ND	0.107		U	
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

APPENDIX F EQUIS DATA SUBMITAL CONFIRMATIONS

From: Mallory

To: "dec.sm.NYENVDATA"

Subject: RE: Pierce Arrow Business Center Site BCP #C915312 - Electorinc Data Deliverable

Date: Tuesday, April 12, 2022 12:47:00 PM

Attachments: 20220412 1233.C915312.NYSDEC REPLACE.zip

image001.png

20220412 1239.C915312.NYSDEC REPLACE.zip

Aaron,

Thank you for reaching out. Yes it would be our firm providing the location data. Please see attached the two REPLACE EDD files.

Thank you, Mallory

Mallory Behlmaier, Environmental Scientist Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, NY 14127 Phone (716) 667-3130 ext. 109 Fax (716) 667-3156 mbehlmaier@envadvantage.com www.envadvantage.com

This electronic transmission, including any attachments, may contain confidential information belonging to the sender and is intended only for receipt by the individual or entity named. If you believe you have received this transmission in error, please notify the sender immediately by return e-mail and delete and erase this transmission from your system. Further, you are hereby notified that any disclosure, copying, distribution, use or dissemination of the transmission or its contents, or the taking of any action in reliance on the contents of this transmission, is strictly prohibited. WARNING: Electronic transmissions are not guaranteed to be timely, error-free, secure, or free of malicious code, and the sender accepts no liability for any damage caused by viruses, malicious code, or errors or omissions contained in or resulting from this transmission.

From: dec.sm.NYENVDATA [mailto:NYENVDATA@dec.ny.gov]

Sent: Tuesday, April 12, 2022 11:53 AM

To: Mallory

Subject: RE: Pierce Arrow Business Center Site BCP #C915312 - Electorinc Data Deliverable

Mallory,

We will review your data in full when we reach it in the queue, but I was wondering if you've given thought to the choice of 'ALPHA' as the data provider for your location information.

The Location_v4.data_provider column determines which party we'll contact if we have questions about coordinate data. Are you sure you want us to ask your lab contact about that? And not your firm, EA Inc.?

It's just an item I found curious, not something to reject data over. If you determine that you want to revise this information, you can send an UPDATE or REPLACE EDD to correct it.

Thank you,

From: Mallory <mbehlmaier@envadvantage.com>

Sent: Friday, April 8, 2022 9:34 AM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov>

Cc: 'Mary Szustak' <MSzustak@envadvantage.com>; Mark Hanna <mhanna@envadvantage.com>;

Kuczka, Megan E (DEC) < Megan. Kuczka@dec.ny.gov>

Subject: Pierce Arrow Business Center Site BCP #C915312 - Electorinc Data Deliverable

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Aaron,

Please find attached two zip files containing the following data sets for BCP Site C915312 – Pierce Arrow Business Center

L2166417 L2166429

Thank you, Mallory

Mallory Behlmaier, Environmental Scientist Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, NY 14127 Phone (716) 667-3130 ext. 109 Fax (716) 667-3156 mbehlmaier@envadvantage.com www.envadvantage.com

This electronic transmission, including any attachments, may contain confidential information belonging to the sender and is intended only for receipt by the individual or entity named. If you believe you have received this transmission in error, please notify the sender immediately by return e-mail and delete and erase this transmission from your system. Further, you are hereby notified that any disclosure, copying, distribution, use or dissemination of the transmission or its contents, or the taking of any action in reliance on the contents of this transmission, is strictly prohibited. WARNING: Electronic transmissions are not guaranteed to be timely, error-free, secure, or free of malicious code, and the sender accepts no liability for any damage caused by viruses, malicious code, or errors

or omissions contained in or resulting from this transmission.

APPENDIX G

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details		Box 1	
Sit	e No.	C915312				
Sit	e Name Pie	erce Arrow Business Cent	er			
Cit Co	e Address: y/Town: Bu unty:Erie e Acreage:		Zip Code: 14207			
Re	porting Perio	od: April 27, 2021 to April 2	7, 2022			
					YES	NO
1.	Is the infor	mation above correct?			\checkmark	
	If NO, inclu	ide handwritten above or on	a separate sheet.			
2.		or all of the site property be nendment during this Repor	en sold, subdivided, merged, or under ting Period?	rgone a		\checkmark
3.		been any change of use at t RR 375-1.11(d))?	he site during this Reporting Period			\checkmark
4.	•	ederal, state, and/or local pe e property during this Repor	ermits (e.g., building, discharge) been ting Period?	ı issued		\checkmark
			thru 4, include documentation or e			
5.	Is the site of	currently undergoing develo	pment?			\checkmark
					Box 2	
					YES	NO
6.		ent site use consistent with t Residential, Commercial, ar	• •		\checkmark	
7.	Are all ICs	in place and functioning as	designed?	✓		
	IF TI		JESTION 6 OR 7 IS NO, sign and date REST OF THIS FORM. Otherwise co		and	
Α (Corrective M	leasures Work Plan must be	e submitted along with this form to a	ddress t	hese iss	ues.
Sig	nature of Ow	vner, Remedial Party or Desig	gnated Representative	Date		

			Box 2A	
8.	Has any new information revealed that assumptions made in the Qual Assessment regarding offsite contamination are no longer valid?	litative Exposure	YES	NO ✓
	If you answered YES to question 8, include documentation or evithat documentation has been previously submitted with this cert			
9.	Are the assumptions in the Qualitative Exposure Assessment still valid (The Qualitative Exposure Assessment must be certified every five ye		\checkmark	
	If you answered NO to question 9, the Periodic Review Report mu updated Qualitative Exposure Assessment based on the new ass			
SITE	NO. C915312		Вох	3
	Description of Institutional Controls			
Parce 77.84 -	·	Institutional Control		
		C/EC Plan Ground Water Use I Soil Management P Landuse Restriction Site Management P	lan	on
		Monitoring Plan		
. Res . Soil . Soil	ibition of use of groundwater. cricted Residential Use. Vapor Intrusion Evaluation for any existing or future structures. Management or Excavation Work Plan for any future intrusive work.			
77.84-] 	Ground Water Use I Landuse Restriction Monitoring Plan Site Management P C/EC Plan Soil Management P	lan	on
. Res . Soil . Soil	ibition of use of groundwater. ricted Residential Use. Vapor Intrusion Evaluation for any future structures. Management or Excavation Work Plan for any future intrusive work. undwater Monitoring Plan			
			Вох	4
[Description of Engineering Controls			
Parce 77.84 -				
	Vapor Mitigation toring of the Sub-slab Depressurization System.			

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915312

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

l C. Mark Hann	na at 3636 N Buffalo Road., O	rchard Park, NY 14127
print nam	ne print business add	Iress
am certifying as	Designated Representative of the Site Owner	(Owner or Remedial Party)
·	the Site Details Section of this form.	05/27/2022
Signature of Owner, F Rendering Certification	Remedial Party, or Designated Representative on	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

' <u></u> "	Buffalo Road., Orchard Park NY 14127 rint business address	,,
am certifying as a Qualified Environmental Professiona	Owner (Owner or Remedial Party)	
EMailed Sauce	0696 05/27/2022	
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification	CHMM Date Certification #	