<u>Environmental</u>

Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

February 10, 2023

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203

Monitoring and Sampling Summary (4th Quarter 2022) Re:

> Site Management Plan, Post Installation Monitoring & Inspection MOD-PAC CORP. Site, 1801 Elmwood Avenue, Buffalo, New York

Dear Ms. Kuczka:

In accordance with the Site Management Plan (SMP)¹ for NYSDEC Site #C915314, Environmental Advantage, Inc. (EA), has prepared this summary letter report which provides the results of the inspection, monitoring and maintenance of the Sub-Slab Depressurization (SSD) systems completed from October 1, 2022 through December 31, 2022. The attachments to this letter report include figures (Attachment A), summary tables (Attachment B), well data sheets (Attachment C), and analytical laboratory reports (Attachment D).

After discussions with the New York State Department of Environmental Conservation (NYSDEC or Department), New York State Department of Health (NYSDOH) representatives, and Matrix Environmental Technologies, Inc. (METI), the engineering firm responsible for the design and annual inspection and certification of the SSD systems, it was determined that monthly gauging and quarterly groundwater sampling of the Site's four groundwater monitoring wells subject to the remedial program was warranted to investigate the potential seasonal correlation to maintaining a negative pressure of at least 0.002 inches water column (WC) in the sub-slab as the SSD Systems were designed. The monthly collection of vacuum readings for any vapor monitoring point (VMP) that fails to achieve the minimum negative pressure of at least 0.002 inches WC during guarterly SSD inspections was also initiated, until the affected VMP('s) meet the minimum negative pressure as designed (with the exception of VMP-6A² which is considered inactive). At the request of the Department in the September 7, 2022 Periodic Review Report (PRR) Response Letter, monthly VMP monitoring will be

Ph: 716-667-3130 www.envadvantage.com Fax: 716-667-3156

^{1 &}quot;Site Management Plan for MOD-PAC Site, 1801 Elmwood Avenue, City of Buffalo, Erie County, New York, Site No. C915314" prepared by C&S Engineers, Inc., December 2019, revised March 2022 by Environmental Advantage,

 $^{^2}$ VMP-6A has been verified as a dead point, as described in Section 5.1 – 'Area A Testing' of METI's "System Startup Report and Operation and Maintenance Plan" as provided within Appendix H – Operation and Maintenance Manual of the SMP. VMP-6A always exhibits positive pressure readings.

conducted from October 2022 through March 2023. The locations of the groundwater monitoring wells and SSD systems are shown on Figure 1.

Post-Installation SSD Maintenance and Monitoring

System checks are completed on a quarterly basis, at a minimum. Routine monitoring includes the identification and repair of any leaks, operational status checks of blowers and fans, documentation of manifold settings and vacuum point at each vapor extraction point, and documentation of vacuum at each monitoring point. During the quarterly system checks, pre- and post-carbon air samples are collected from Area A. Samples are submitted for laboratory analysis of volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) Method TO-15. In addition, pre- and post-carbon photoionization detector (PID) readings are collected from Area A, as well as from Areas B and C effluent, on a monthly basis. Beginning in October 2022 through March 2023, documentation of vacuum at each monitoring point will also be performed on a monthly basis. Non-routine maintenance, including carbon change outs, is completed as necessary based on analytical data of pre- and post-carbon samples.

Area-specific findings during Q4 2022 are summarized in Table 1A for October, Table 1B for November, and Table 1C for December, with historical data presented in Table 2A for Area A, Table 2B for Area B, and Table 2C for Area C, all of which are provided in Attachment B. Air sample results for the current monitoring period are summarized in Table 3.

SSD Area A – Finished Product Storage Area

During Q4 2022, manometer readings for all active VMPs in Area A achieved the minimum negative pressure of at least 0.002 inches WC in the sub-slab with the exception of VMP-8A in November and December.

Post-carbon analytical data appear to exhibit lower concentrations of all target chlorinated compounds when compared to pre-carbon concentrations with the exception of tetrachloroethene, with an overall target chlorinated VOC (cVOC)³ reduction of 94.58 percent. Air sample results for Q4 2022 are summarized in Table 3, with historical air sample results summarized in Table 4. The complete analytical laboratory report is provided in Attachment C.

SSD Area B - Roll Storage Area (Formerly Cold Storage Area)

During Q4 2022, manometer readings for all active VMPs achieved the minimum 0.002 inches WC in the sub-slab with the exception of VMP-5B in November and December.

³ NYSDOH Target cVOCs are included in this calculation, specifically those listed in the NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", May 2017 Update. Specifically: 1,1,1-Trichloroethane, 1,1-Dichloroethene, Carbon tetrachloride, cis-1,2-Dichloroethene, Methylene chloride, Tetrachloroethene, Trichloroethene, and Vinyl chloride

_

SSD Area C - Maintenance Area

During Q4 2022, manometer readings for all active VMPs met the minimum 0.002 inches WC in the sub-slab with the exception of VMP-3C and VMP 11-C in October and November. The EW-3C fan was out for repair during October and November and was reinstalled prior to the December monitoring event.

Groundwater Monitoring

During the current monitoring period, water table measurements were collected in October, November, and December for the six wells in the vicinity of SSDS Area A, Area B, and Area C (MW-3, MW-11, MW-12, MW-13, MW-14, and MW-15). Groundwater samples were collected on October 7, 2022 from the four monitoring wells included in the remedial program: MW-3, MW-11, MW-12, and MW-13. All samples were submitted for laboratory analysis of Target Compound List (TCL) VOCs via EPA Method 8260. Two analytes were detected at estimated concentrations below the method detection limit for each respective analyte in the rinsate blank sample from the October sampling event. It is not anticipated that the above mentioned detections in the rinsate blank would have any notable impact on the reported sample results. Historical water table measurements for the six wells in the vicinity of SSDS Area A, Area B, and Area C are summarized in Table 5. Historical groundwater elevation monitoring and sampling data results four monitoring wells included in the remedial program are summarized in Table 6. The complete analytical laboratory report is provided in Attachment D. Please Note: Groundwater elevation data are available for the four monitoring wells included in the remedial program only as well details on MW-14 and MW-15 are not included in the Site's remedial documents.

Corrective Measures

A carbon changeout was completed on December 9, 2022 in Area A. The spent carbon was sampled for TCLP VOCs and is pending approval for regeneration via thermal treatment. The EW-3C fan was found to be non-functional during the October monitoring event and sent out for repair; the fan was reinstalled on December 9, 2022. The EW-1C and EW-2C fans were heat traced on October 13, 2022 to prevent damage during the winter months. The electrical infrastructure was also installed for the EW-3C fan at this time. The EW-3C fan was heat traced upon re-installation in December.

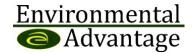
Conclusions and Scheduling

During the Q4 2022 monitoring period, all active manometers met the minimum 0.002 inches WC in the sub-slab with the exception of VMP-8A and VMP-5B in November and December, and VMP-3C and VMP-11C due to the EW-3C fan being down for repair. All of the SSD systems appeared to be functioning properly.

Post-carbon analytical data collected during Q4 2022 exhibited lower concentrations of most target chlorinated compounds and non-chlorinated compounds with an overall target chlorinated VOC (cVOC) reduction of 94.58 percent. These air

analytical results indicate the carbon is adequately removing the bulk of the VOCs detected, and carbon replacement is not warranted at this time. Continued system inspections, monitoring, and sampling will be completed for the first quarter of 2023.

If you have any questions regarding this information presented above, please contact me directly for further information.

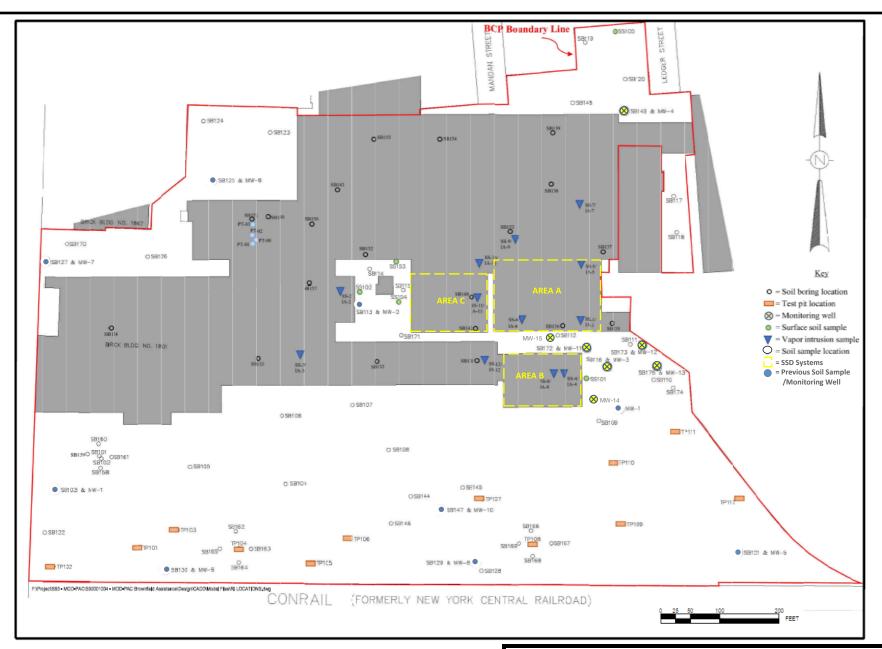

Very truly yours,

ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

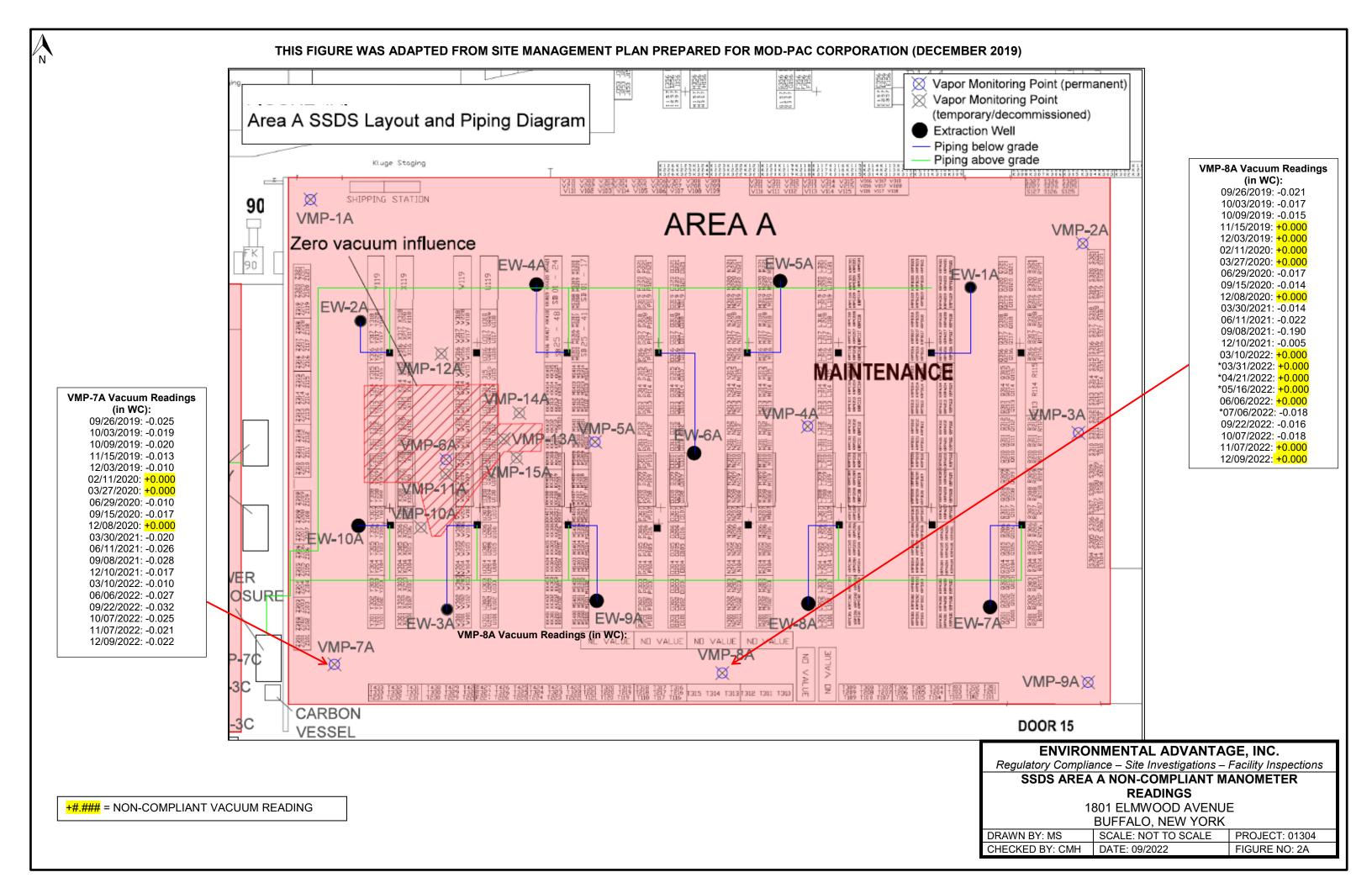
Market Sanne

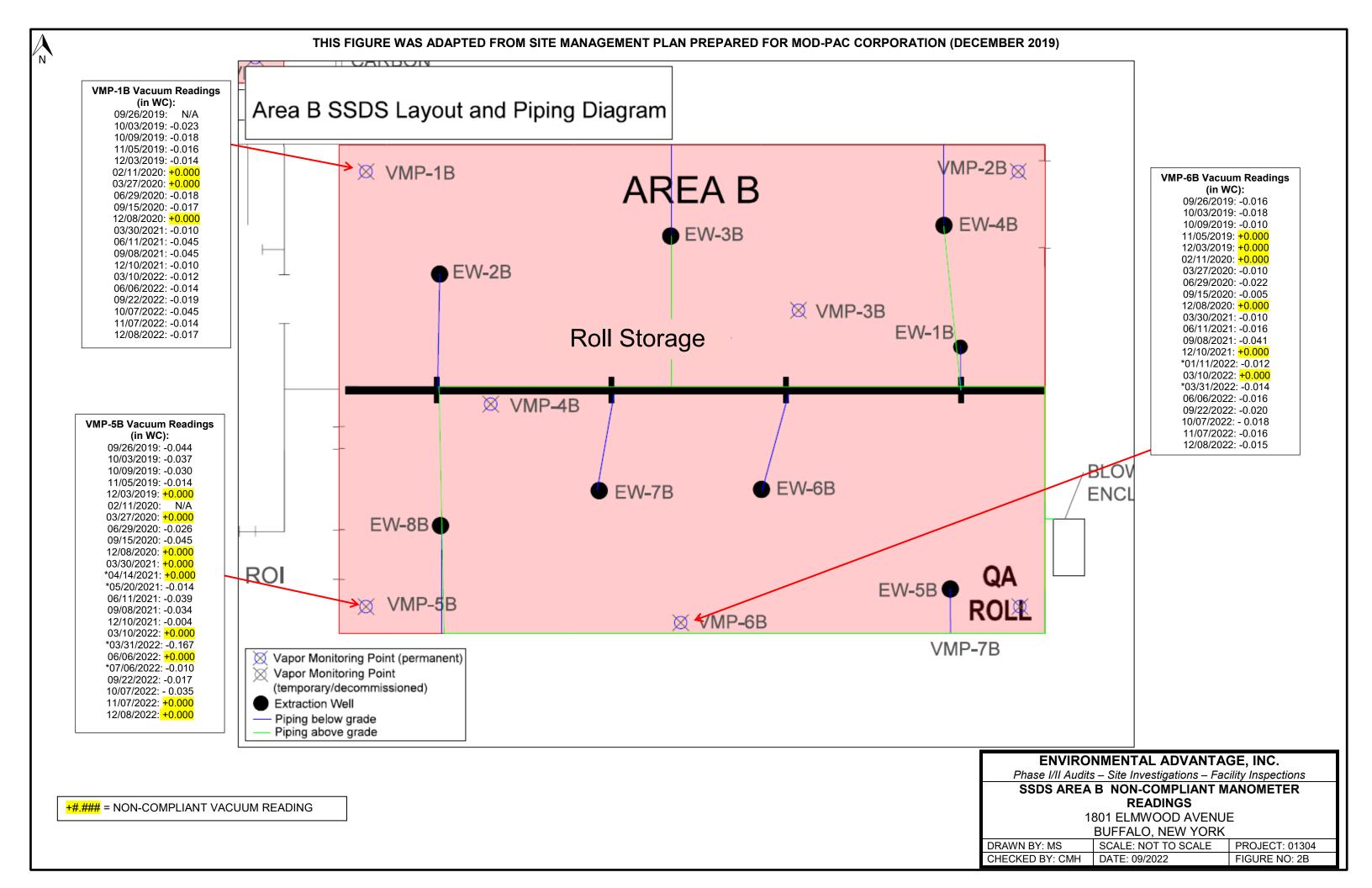
President

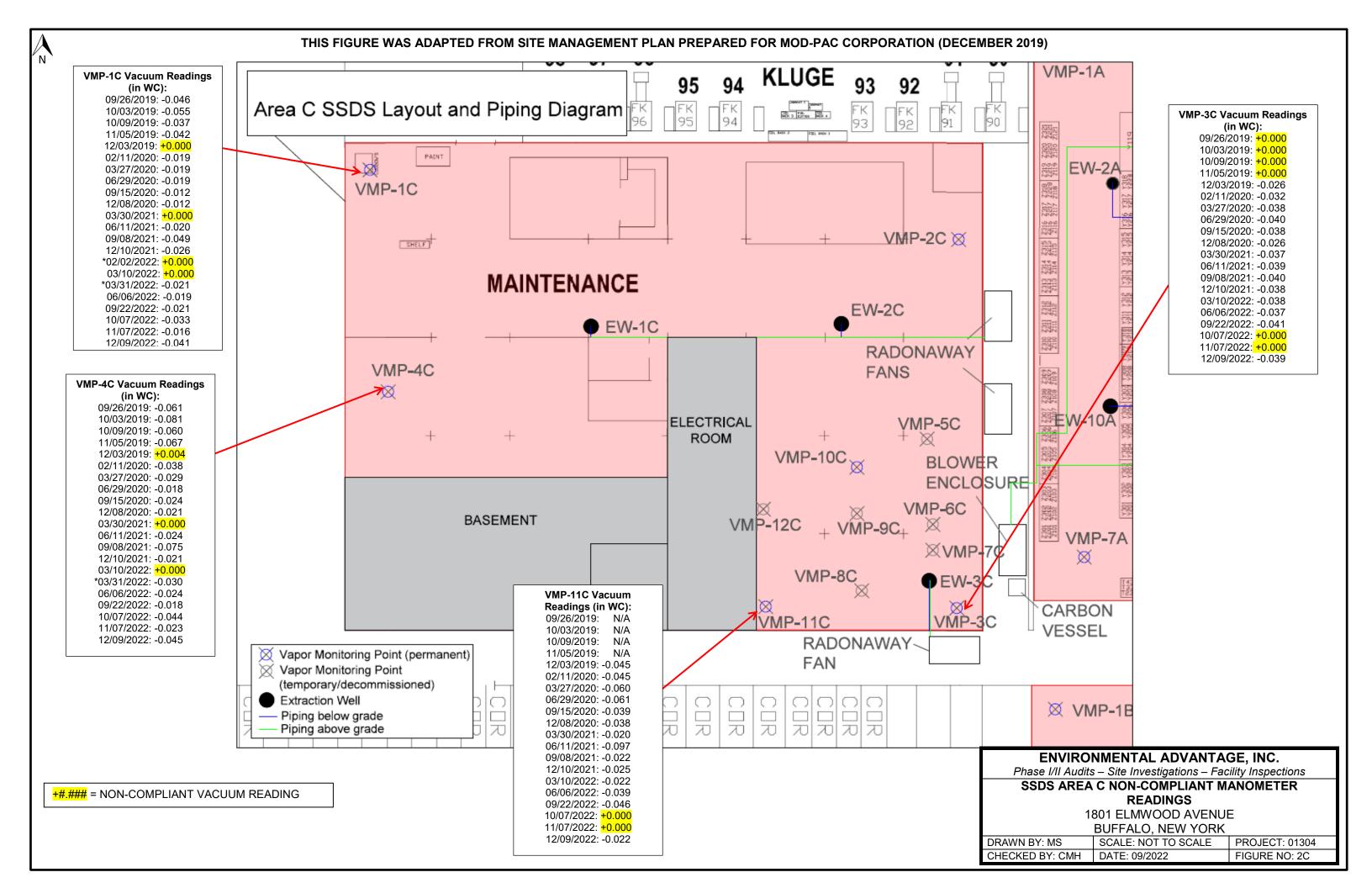


ATTACHMENT A

Figures


ENVIRONMENTAL ADVANTAGE, INC.


Regulatory Compliance - Site Investigations - Facility Inspections


BCP SITE PLAN MOD-PAC, CORP. 1801 ELMWOOD AVENUE BUFFALO, NEW YORK

DRAWN BY: MB SCALE: NOT TO SCALE PROJECT: 01304
CHECKED BY: CMH DATE: 11/2021 FIGURE NO: 1

Figure adapted from Figure 3 within the Site Management Plan for MOD-PAC BCP Site No. C915314

ATTACHMENT B

Tables

Table 1A

MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results October Q4 2022 Summary

Area A - Finished Product Storage Area

Date	Extraction Wells (in WC)										Blower	Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A	(in WC)	Reading (ppm)	Reading (ppm)
10/13/2022	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	19.0	19.0	0.2	0.0

Date		Vapor Monitoring Points (in WC)										
Date	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-6A	VMP-7A	VMP-8A	VMP-9A			
10/13/2022	-0.069	-0.063	-0.071	-0.126	-0.071	0.00	-0.025	-0.018	-0.122			

Area B - Cold Storage Garage

Data	Date Extraction Wells (in WC)									
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(in WC)	Reading (ppm)
10/13/2022	31.0	32.0	33.0	33.0	32.0	34.0	32.0	32.0	20.0	0.8

Date			Vapor	Monitoring Po	oints (in WC)		
Date	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
10/13/2022	-0.045	-0.063	-0.123	-0.215	-0.035	-0.018	-0.131

Area C - Maintenance Area

Date	Extract	ion Wells ((in WC)	System Effluent PID Reading (ppm)				
	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C		
10/13/2022	29.0	31.0	0.0	0.0	0.0	N/A		

Date		V	apor Monit	oring Points	(in WC)	
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
10/13/2022	-0.033	-0.042	0.000	-0.044	-0.044	0.000

Note:

1. in WC = inches water column; ppm = parts per million;

Table 1B

MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results November Q4 2022 Summary

Area A - Finished Product Storage Area

Date	Extraction Wells (in WC)										Blower	Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A	(in WC)	Reading (ppm)	Reading (ppm)
11/7/2022	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	18.0	19.0	0.0	0.0

Date		Vapor Monitoring Points (in WC)										
Date	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-6A	VMP-7A	VMP-8A	VMP-9A			
11/7/2022	-0.077	-0.063	-0.084	-0.122	-0.059	0.000	-0.021	0.000	-0.115			

Area B - Cold Storage Garage

Data	Date Extraction Wells (in WC)									
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(in WC)	Reading (ppm)
11/7/2022	31.0	32.0	33.0	33.0	33.0	34.0	32.0	32.0	18.0	0.0

Date			Vapor	Monitoring Po	oints (in WC)		
Date	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
11/7/2022	-0.014	-0.057	-0.218	-0.312	0.00	-0.016	-0.232

Area C - Maintenance Area

Date	Extract	tion Wells ((in WC)	System Effluent PID Reading (ppm)				
Date	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C		
11/7/2022	29.0	31.0	0.0	0.0	0.0	N/A		

Date		V	apor Monit	oring Points	(in WC)	
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
11/7/2022	-0.016	-0.048	0.000	-0.023	-0.055	0.000

Note:

1. in WC = inches water column; ppm = parts per million;

Table 1C

MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results December Q4 2022 Summary

Area A - Finished Product Storage Area

Dato		Extraction Wells (in WC)										Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-1A EW-2A EW-3A EW-4A EW-5A EW-6A EW-7A EW-8A EW-9A EW-10A									(in WC)	Reading (ppm)	Reading (ppm)
12/9/2022	18.0	18.0	18.0	18.0	18.0	N/A	18.0	18.0	18.0	18.0	19.0	0.0	0.0

Date	Vapor Monitoring Points (in WC)									
Date	VMP-1A VMP-2A VMP-3A VMP-4A VMP-5A VMP-6A VMP-7A VMP-8A V									
12/9/2022	-0.074 -0.043 -0.046 -0.089 -0.048 0.00 -0.022 0.00									

Area B - Cold Storage Garage

Data	Date Extraction Wells (in WC)									
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(in WC)	Reading (ppm)
12/8/2022	32.0	33.0	34.0	34.0	33.0	34.0	33.0	32.0	19.0	0.0

Date	Vapor Monitoring Points (in WC)										
Date	VMP-1B	VMP-1B VMP-2B VMP-3B VMP-4B VMP-5B VMP-6B VMP-7B									
12/8/2022	-0.017	-0.043	-0.153	-0.298	0.00	-0.015	-0.156				

Area C - Maintenance Area

Date	Extract	ion Wells ((in WC)	System Effluent PID Reading (ppm)				
Date	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C		
12/9/2022	30.0	30.0	30.0	0.0	0.0	0.0		

Date		Vapor Monitoring Points (in WC)									
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C					
12/9/2022	-0.041	-0.030	-0.039	-0.045	-0.056	-0.022					

Note:

1. in WC = inches water column; ppm = parts per million;

Table 2A MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Area A - Finished Product Storage Area

- ·	1			Е	xtraction V	Vells (in W	C)				Blower	Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A	(in WC)	Reading (ppm)	Reading (ppm)
9/26/2019	14.5	14.5	15.5	14.5	15	1	14.5	15	14.5	15.5	12	3.3	1.5
10/3/2019	14	14	15	14	14	1	14	15	14	15	12	52.6	12.7
10/9/2019	13	13.5	14	13.5	13.5	1	13.5	14	13.5	14.5	13	0.0	0.0
11/5/2019	11.5	12	12.5	11.5	12	1	12	12	11.5	12.5	10	4.7	0.5
12/3/2019	11	11.5	12	11	11.5	1	11.5	11.5	11.5	12	10	1.0	0.1
1/22/2020												0.2	0.0
2/11/2020	10	10.5	11	10.5	11	1	11	11	10.5	11.5	9	0.5	0.0
3/27/2020	10	10	11	10.5	11	1	10.5	10.5	10	11	8	47.8	27.1
6/29/2020	13	13	13.5	13	13	1	13	13	13	13.5	14	0.4	0.4
7/31/2020												0.0	0.0
8/28/2020												0.0	0.0
9/15/2020	13.5	14	14.5	14	14	1	14	14.5	14.5	15	14	2.7	1.1
10/15/2020												7.8	4.6
11/4/2020												0.0	0.0
12/8/2020	12.5	13	13.5	13	13	1	13	14	13	14	12	0.6	0.0
1/4/2021												0.4	0.0
2/18/2021												1.0	0.0
3/30/2021	13	14	14	14	14	0	14	14	14	15	12	0.0	0.0
4/14/2021												0.4	0.0
5/20/2021												0.4	0.0
6/11/2021	16	16	16	16	16	0	16	17	17	17	15	0.1	0.0
7/1/2021											16	0.0	0.0
8/25/2021											18	0.0	0.0
9/8/2021	17	17	18	18	17	0	18	18	18	18	16	0.3	0.0
10/20/2021												0.0	0.0
11/19/2021												0.0	0.0
12/10/2021	16	16	17	16	17	0	17	17	17	17	15	7.6	0.0
1/11/2022											19	0.0	0.0
2/2/2022												0.08	0.0
3/10/2022	15.5	16.5	17	16.5	16.5	1	16.5	17	17	17	12	0.0	0.0
4/21/2022											19	0.0	0.0
5/16/2022											18	0.0	0.0
6/6/2022	16	17	17	16	17	0	17	17	17	17	19	0.0	0.0
7/28/2022											19	1.4	0.0
8/26/2022											19	0.5	0.0
9/22/2022	18	18	19	18	18	0	18	19	19	19	18	1.2	0.1
10/13/2022	18	18	18	18	18	0	18	18	18	19	19	0.2	0.0
11/7/2022	18	18	18	18	18	0	18	18	18	18	19	0.0	0.0
12/9/2022	18	18	18	18	18	0	18	18	18	18	19	0.0	0.0

Date			,	Vapor Mon	itoring Poi	nts (in WC)			
Date	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-6A	VMP-7A	VMP-8A	VMP-9A
9/26/2019	- 0.066	- 0.044	- 0.075	- 0.161	- 0.128	+ 0.000	- 0.025	- 0.021	- 0.173
10/3/2019	- 0.065	- 0.037	- 0.053	- 0.139	- 0.116	+ 0.000	- 0.019	- 0.017	- 0.105
10/9/2019	- 0.061	- 0.034	- 0.045	- 0.110	- 0.103	+ 0.000	- 0.020	- 0.015	- 0.100
11/5/2019	- 0.041	- 0.029	- 0.023	- 0.067	- 0.062	+ 0.010	- 0.013	+ 0.000	- 0.067
12/3/2019	- 0.045	- 0.025	- 0.031	- 0.066	- 0.056	+ 0.020	- 0.010	+ 0.000	- 0.054
2/11/2020	- 0.037	- 0.020	- 0.015	- 0.045	- 0.036	+ 0.015	+ 0.000	+ 0.000	- 0.037
3/27/2020	- 0.025	- 0.023	- 0.016	- 0.032	- 0.032	+ 0.010	+ 0.000	+ 0.000	- 0.022
6/29/2020	- 0.053	- 0.064	- 0.063	- 0.124	- 0.080	NG	- 0.010	- 0.017	- 0.094
9/15/2020	- 0.053	- 0.052	- 0.043	- 0.093	- 0.033	NG	- 0.017	- 0.014	- 0.058
12/8/2020	-0.048	-0.033	-0.026	-0.152	-0.05	NG	+0.000	+0.000	-0.065
3/30/2021	-0.038	-0.052	-0.032	-0.063	-0.022	NG	-0.020	-0.014	-0.047
6/11/2021	-0.073	-0.065	-0.055	-0.105	-0.074	NG	-0.026	-0.022	-0.074
9/8/2021	-0.091	-0.088	-0.075	-0.140	-0.086	NG	-0.028	-0.190	-0.149
12/10/2021	-0.065	-0.056	-0.043	-0.068	-0.052	NG	-0.017	-0.005	-0.088
3/10/2022	-0.045	-0.04	-0.045	-0.080	-0.04	+0.013	-0.010	+0.000	-0.097
3/31/2022	NG	NG	NG	NG	NG	NG	NG	+0.000	NG
4/21/2022	NG	NG	NG	NG	NG	NG	NG	+0.000	NG
5/16/2022	NG	NG	NG	NG	NG	NG	NG	+0.000	NG
6/6/2022	-0.068	-0.060	-0.068	-0.097	-0.056	+0.000	-0.027	+0.000	-0.110
7/28/2022	NG	NG	NG	NG	NG	NG	NG	-0.018	NG
9/22/2022	-0.100	-0.098	-0.105	-0.157	-0.082	+0.000	-0.032	-0.016	-0.149
10/13/2022	-0.069	-0.063	-0.071	-0.126	-0.071	+0.000	-0.025	-0.018	-0.122
11/7/2022	-0.077	-0.063	-0.084	-0.122	-0.059	+0.000	-0.021	+0.000	-0.115
12/9/2022	-0.074	-0.043	-0.046	-0.089	-0.048	+0.000	-0.022	+0.000	-0.110

Note:

- 1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
 2. Blank space indicates that data was not collected
 3. in WC = inches water column; ppm = parts per million;

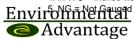


Table 2B MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Area B - Cold Storage Garage

D. C.			Е	xtraction V	Vells (in WO	C)			Blower	System Effluent
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(in WC)	PID Reading (ppm)
9/26/2019	13	13.5	13.5	14.5	13.5	14	13	12	10.5	1.3
10/3/2019	13	13.5	13.5	14	13.5	14	13	12	10	1.4
10/9/2019	12.5	13	13	13.5	13	13.5	12	12	10	0.0
11/5/2019	12	13	12.5	13	12.5	13	11.5	11	9	0.5
12/3/2019	11	11	11	11.5	11	11.5	10.5	10	8	0.1
1/22/2020										0.0
2/11/2020	12.5	13	13	13.5	13	13.5	12	11.5	9	0.0
3/27/2020	14	15	14	15	15	15	14	13.5	10	0.0
6/29/2020	16	12	17	12.5	17	17	16	15.5	16	0.0
7/31/2020										0.0
8/28/2020										0.0
9/15/2020	17	18	17	18	18	18	17	16.5	16	2.7
10/15/2020										0.3
11/4/2020										0.0
12/8/2020	16.5	17	17	17	17	17	16.5	16	13	0.4
1/4/2021										0.0
2/18/2021										0.0
3/30/2021	16	17	17	17	17	17	16	16	12	0.0
4/14/2021										0.0
5/20/2021										0.1
6/11/2021	18	18	19	20	19	19	18	18	18	0.0
7/1/2021									18	0.0
8/25/2021									20	0.0
9/8/2021	20	21	22	23	22	22	21	21	19	0.0
10/20/2021										0.0
11/19/2021										0.0
12/10/2021	20	20	21	21	21	21	20	20	16	0.0
1/11/2022									19	0.0
2/2/2022										0.0
3/10/2022	22	23	23	23.5	22.5	23	22.5	22	20	0.0
4/21/2022									19	0.0
5/16/2022									19	0.0
6/6/2022	26	27	27	28	27	27	27	26	19	0.0
7/28/2022									25	0.5
8/26/2022									23	0.0
9/22/2022	28	29	30	30	29	30	29	28	26	2.6
10/13/2022	31	32	33	33	32	34	32	32	20	0.8
11/7/2022	31	32	33	33	33	34	32	32	18	0.0
12/8/2022	32	33	34	34	33	34	33	32	19	0.0

Date			Vapor Mon	itoring Poi	nts (in WC)		
Date	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
9/26/2019	N/A	- 0.065	- 0.419	N/A	- 0.044	- 0.016	- 0.200
10/3/2019	- 0.023	- 0.062	- 0.303	- 0.383	- 0.037	- 0.018	- 0.196
10/9/2019	- 0.018	- 0.055	- 0.258	- 0.329	- 0.030	- 0.010	- 0.178
11/5/2019	- 0.016	- 0.018	- 0.217	- 0.271	- 0.014	+ 0.000	- 0.171
12/3/2019	- 0.014	- 0.032	- 0.114	- 0.156	+ 0.000	+ 0.000	- 0.136
2/11/2020	+ 0.000	- 0.040	N/A	- 0.161	N/A	+ 0.000	- 0.072
3/27/2020	+ 0.000	- 0.040	- 0.163	- 0.171	+ 0.000	- 0.010	- 0.152
6/29/2020	- 0.018	- 0.064	- 0.354	- 0.343	- 0.026	- 0.022	- 0.0198
9/15/2020	- 0.017	- 0.041	- 0.118	- 0.361	- 0.045	- 0.005	- 0.160
12/8/2020	+0.000	-0.02	-0.137	-0.208	+0.000	+0.000	-0.203
3/30/2021	- 0.010	- 0.045	- 0.162	- 0.219	+0.000	- 0.010	- 0.197
4/14/2021	NG	NG	NG	NG	+0.000	NG	NG
5/20/2021	NG	NG	NG	NG	-0.014	NG	NG
6/11/2021	-0.045	-0.051	-0.262	-0.903	-0.039	-0.016	-0.201
9/8/2021	-0.045	-0.058	-0.285	-1.020	-0.034	-0.041	-0.060
12/10/2021	-0.010	-0.40	-0.189	-0.177	-0.004	+0.000	-0.190
1/11/2022	NG	NG	NG	NG	NG	-0.012	NG
3/10/2022	-0.012	-0.032	-0.141	-0.262	+0.000	+0.000	-0.133
3/31/2021	NG	NG	NG	NG	-0.167	-0.014	NG
6/6/2022	-0.014	-0.050	-0.211	-0.299	+0.000	-0.016	-0.026
7/28/2022	NG	NG	NG	NG	-0.010	NG	NG
9/22/2022	-0.019	-0.057	-0.238	-0.328	-0.017	-0.020	-0.263
10/13/2022	-0.045	-0.063	-0.123	-0.215	-0.035	-0.018	-0.131
11/7/2022	-0.014	-0.057	-0.218	-0.312	0.00	-0.016	-0.232
12/8/2022	-0.017	-0.043	-0.153	-0.298	0.00	-0.015	-0.156

- **Note:**1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
- 2. N/A indicates the VMP was not accessible during the time of the system check
- 3. Blank space indicates that data was not collected
 4. in WC = inches water column; ppm = parts per million;

Table 2C MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Area C - Maintenance Area

Data	Extra	ction Wells (i	n WC)	Fan System Effluent PID Reading (ppm)				
Date	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C		
9/26/2019	43	40		1.4	0.7			
10/3/2019	44	45		1.0	4.5			
10/9/2019	44.5	45.5		0.0	0.0			
11/5/2019	44	46		0.0	0.4			
12/3/2019		39	28		1.2	0.4		
1/22/2020					0.4	0.0		
2/11/2020	31	30	27.5	0.2	0.0	0.0		
3/27/2020	29	32	28	0.0	0.0	0.0		
6/29/2020	27	31	29	0.0	0.0	0.0		
7/31/2020				0.0	0.0	0.0		
8/28/2020				0.0	0.0	0.0		
9/15/2020	28.5	31	29	0.0	0.0	0.0		
10/15/2020				0.0	0.0	0.0		
11/4/2020				0.0	0.0	0.0		
12/8/2020	31	31	29	0.0	0.0	0.0		
1/4/2021				0.0	0.0	0.0		
2/18/2021						0.0		
3/30/2021		32	30		0.0	0.0		
4/14/2021					0.1	0.0		
5/20/2021				0.0	0.0	0.0		
6/11/2021	23	31	30	0.0	0.0	0.0		
7/1/2021				0.0	0.0	0.0		
8/25/2021				0.0	0.0	0.0		
9/8/2021	29	31	30	0.0	0.0	0.0		
10/20/2021				0.0	0.0	0.0		
11/19/2021				0.0	0.0	0.0		
12/10/2021	30	32	30	4.7	0.0	0.0		
1/11/2022				0.0	0.0	0.0		
2/2/2022				0.0	0.0	0.0		
3/10/2022	11	32	31	0.0	0.0	0.0		
4/21/2022				0.0	0.0	0.0		
5/16/2022				0.0	0.0	0.0		
6/6/2022	28	31	32	0.0	0.0	0.0		
7/28/2022				1.5	0.7	0.1		
8/26/2022				0.1	0.0	0.0		
9/22/2022	29	31	32	0.0	0.0	0.0		
10/13/2022	29	31	0	0.0	0.0	N/A		
11/7/2022	29	31	0	0.0	0.0	N/A		
12/9/2022	30	30	30	0.0	0.0	0.0		

Data		Vapor Monitoring Points (in WC)										
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C						
9/26/2019	- 0.046	- 0.085	+ 0.000	- 0.061								
10/3/2019	- 0.055	- 0.092	+ 0.000	- 0.081								
10/9/2019	- 0.037	- 0.075	+ 0.000	- 0.060								
11/5/2019	- 0.042	- 0.067	+ 0.000	- 0.067								
12/3/2019	+ 0.000	- 0.027	- 0.026	+ 0.004	- 0.045	- 0.018						
2/11/2020	- 0.019	- 0.026	- 0.032	- 0.038	- 0.045	- 0.020						
3/27/2020	- 0.019	- 0.033	- 0.038	- 0.029	- 0.060	- 0.021						
6/29/2020	- 0.019	- 0.050	- 0.040	- 0.018	- 0.061	- 0.044						
9/15/2020	- 0.012	- 0.040	- 0.038	- 0.024	- 0.039	- 0.017						
12/8/2020	-0.012	-0.038	-0.026	-0.021	-0.038	-0.016						
3/30/2021	+ 0.000	- 0.022	- 0.037	+ 0.000	- 0.025	- 0.020						
6/11/2021	-0.020	-0.054	-0.039	-0.024	-0.058	-0.097						
9/8/2021	-0.049	-0.042	-0.040	-0.075	-0.066	-0.022						
12/10/2021	-0.026	-0.040	-0.038	-0.021	-0.059	-0.025						
2/2/2022	+0.000	-0.028	-0.038	-0.012	-0.034	-0.019						
3/10/2022	+0.000	-0.031	-0.038	+0.000	-0.042	-0.022						
3/31/2022	-0.021	NG	NG	-0.030	NG	NG						
6/6/2022	-0.019	-0.058	-0.037	-0.024	-0.076	-0.039						
9/22/2022	-0.021	-0.059	-0.041	-0.018	-0.086	-0.046						
10/13/2022	-0.033	-0.042	0.000	-0.044	-0.044	0.000						
11/7/2022	-0.016	-0.048	0.000	-0.023	-0.055	0.000						
12/9/2022	-0.041	-0.03	-0.039	-0.045	-0.056	-0.022						

- Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
 Blank space indicates that data was not collected
 in WC = inches water column; ppm = parts per million;

- 4. Please note that a blower is not included within the extraction system of Area C and that the Environmental extraction system is operated by fans.

 Advantage

Table 3 MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY Summary of Air Analytical Testing Results

	December 20	22 - L2269445
Parameter	AREA A-PRE (120922)	AREA A-POST (120922)
Volatile Organic Compounds (ug/m³)		
1,1,1-Trichloroethane	ND	ND
1,1,2,2-Tetrachloroethane 1.1.2-Trichloroethane	ND ND	ND ND
1,1-Dichloroethane	ND	ND ND
1,1-Dichloroethene	ND	ND
1,2,4-Trichlorobenzene	ND	ND
1,2,4-Trimethylbenzene	2.89	3.58
1,2-Dibromoethane	ND	ND
1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND	ND ND
1.2-Dichloropropane	ND ND	ND ND
1,3,5-Trimethylbenzene	ND	1.55
1,3-Butadiene	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
1,4-Dioxane	ND	ND ND
2,2,4-Trimethylpentane 2-Butanone	ND 2.08	ND ND
2-Hexanone	2.08 ND	ND ND
3-Chloropropene	ND	ND ND
4-Ethyltoluene	ND	ND
4-Methyl-2-pentanone	ND	ND
Acetone	196	17.3
Benzene	1.83	0.757
Benzyl chloride Bromodichloromethane	ND ND	ND ND
Bromodichioromethane Bromoform	ND ND	ND ND
Bromomethane	ND ND	ND ND
Carbon disulfide	4.20	0.782
Carbon tetrachloride	ND	ND
Chlorobenzene	ND	ND
Chloroethane	ND	ND
Chloroform	24.4	ND 0.704
Chloromethane cis-1,2-Dichloroethene	0.748 3.30	0.791 ND
cis-1,3-Dichloropropene	ND	ND
Cyclohexane	0.898	ND
Dibromochloromethane	ND	ND
Dichlorodifluoromethane	2.61	ND
Ethyl Alcohol	127	25.1
Ethyl Acetate	170	137
Ethylbenzene Freon-113	3.86 ND	1.21 ND
Freon-114	ND ND	ND ND
Heptane	9.02	ND
Hexachlorobutadiene	ND	ND
iso-Propyl Alcohol	467	50.9
Methyl tert butyl ether	ND	ND
Methylene chloride	ND	ND 4.44
n-Hexane o-Xylene	27.7 4.60	4.44 2.33
p/m-Xylene	14.8	6.30
Styrene	1.26	ND
tert-Butyl Alcohol	16.6	ND
Tetrachloroethene	2.94	5.51
Tetrahydrofuran	ND	ND
Toluene	18.6	4.33
trans-1,2-Dichloroethene	ND ND	ND ND
trans-1,3-Dichloropropene Trichloroethene	ND 250	ND 8.38
Trichlorofluoromethane	1.48	ND
Vinyl bromide	ND	ND
Vinyl chloride	ND	ND

Notes:

- Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in the Appendix.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Parameters shaded in red indicate analytes of concern (Target cVOCs)
- 5. Results in red indicate higher post-carbon readings over pre-carbon readings
- 6. Blank results = No Value Above Detection Limit

Table 4 MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY Summary of Air Analytical Testing Results

	Octob	er 2019 - L1	946093	Novem	ber 2019 - L	1952487	Decemb	oer 2019 - L1	1957660	February	y 2020 - L20	006152	June 2 L2027		September L2031			ember 2020 - L2054640	March L211		June 2021 - L2131935	September 202* L2148116		nber 2021 - 168195	March 2 L2212		June 2022-	L2229574	Septemb L225			oer 2022 - 69445
Parameter	AREA A - PRE	AREA A- POST	AREA B	AREA A- PRE (110519)	AREA A- POST (110519)	AREA-B (110519)	AREA A- PRE (120319)	AREA A- POST (120319)	AREA B (120319)	AREA A- PRE (021120)	AREA A- POST (021120)	AREA B (120319)	PRE	AREA A- POST (063020)	PRE	AREA A- POST (091520)	AREA PRI (1208	POST	PRE	AREA A- POST (033021)	AREA A- PRE POST (061121) (061121	- AREA A- AREA PRE POS	A- S AREA		AREA A- PRE	AREA A- POST (031022)	AREA A- PRE (060622)	AREA A- POST (060622)	AREA A- PRE (092222)	AREA A- POST (092222)	AREA A- PRE (120922)	AREA A- POST (120922)
Volatile Organics in Air (ug/m ³	3)																		,		7 (7)	, , , , , , , , , , , , , , , , , , , ,					,		,		, ,,	
1,1,2,2-Tetrachloroethane	1.11 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE) ND	ND ND	ND ND	ND ND	ND NE	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND NE			ND ND	ND ND	ND ND	ND ND	ND DN	ND ND	ND ND	ND ND
1,1-Dichloroethene	94.8	ND	4.52	35.5	ND	ND	41.6	5.55	0.979	ND	ND	ND	ND	ND	ND	ND	NE) ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND 2.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 48.5	ND 30.2	ND 56	ND 21.8	ND 21.5	ND 64.4	ND 63.4	NE 29.	ND 7 23.7	ND 34.4	ND 28.8	ND ND 46.1 38.9	ND NE 42.4 53.		ND 49.2	ND 7.28	ND 4.56	ND ND	ND 9.83	ND 4.33	ND 4,39	ND 2.89	ND 3,58
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE) ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND DN	ND ND	ND ND	ND ND	ND ND	NE NE	ND ND	ND ND	ND ND	ND ND ND ND	ND NE	ND		ND ND	ND ND	ND ND	ND 0.999	ND DN	ND ND	ND ND	ND ND
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ND 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 7.87	ND 4.7	ND 10.2	ND 5.7	ND 4.75	ND 14.5	ND 17.2	NE 8.9	ND 6.44	ND 12.4	ND 9.54	ND ND 14.2 11.2	ND NE 10.2 13.			ND 2.36	ND 1,43	ND ND	ND 2.7	ND 1.33	ND 1.23	ND ND	ND 1.55
1,3-Butadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	ND ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND	ND NE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	ND ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane 2-Butanone	ND 9.88	ND ND	ND 3.07	ND 4.13	ND ND	ND ND	ND 5.28	ND ND	ND ND	ND 4.04	0.976 ND	2.98 ND	ND 6.25	ND 2.45	3.13 ND	ND ND	NE 2.1	ND ND ND	ND 2.98	ND ND	3.14 ND 3.89 ND	ND 1.3 2.53 NE	2.78	1.68	ND 1.8	ND ND	ND ND	ND 3.27	1.22 2.92	ND 3.16	ND 2.08	ND ND
2-Hexanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE) ND	ND ND	ND ND	ND ND ND ND	ND NE	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-Chloropropene 4-Ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.5	9.49	21.8	4.22	3.87	12.4	10.9	3.9	5 2.79	6.1	4.46	10.7 8.26	6 8.2	30	21.6	ND	ND	ND	1.85	ND	ND	ND	ND
4-Methyl-2-pentanone Acetone	ND 59.4	ND 10.5	ND 22.7	ND 49.9	ND ND	ND 69.8	ND 75.5	ND 4.44	ND 13.3	ND 87.4	ND ND	ND 53.4	ND 100	ND 10.6	ND 26.6	ND 9.95	NE 194	ND 12.3	9.71 73.6	ND 12.5	4.47 ND 73.6 20.7	ND 3.5 38.2 40.			ND 134	ND 10.6	ND 668	ND 58.7	ND 69.6	3.43 33.5	ND 196	ND 17.3
Benzene	0.891	ND	ND	ND	ND	ND	ND	ND	ND	5.34	2.5	10.4	ND	0.987	4.79	2.43	1.4	2 0.69	2.25	1.03	10.7 4.98	2.75 5.4	2.58	1.04	ND	ND	ND	1.53	1.56	ND	1.83	0.757
Benzyl chloride Bromodichloromethane	ND ND	ND ND	ND ND	ND 9.71	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE	ND ND	ND ND	ND ND	ND ND	ND NE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform Bromomethane	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND	ND NE		ND ND	ND	2.17	ND	ND ND	ND	ND ND	ND	ND ND
Carbon disulfide	ND	ND ND	ND	ND	ND	ND	ND	0.835	ND ND	ND	21.5	ND	5.82	6.42	4.42	2.21	1.4	5 0.931	2.42	0.944	7.41 2.68	3.83 12.	4.61	2.56	ND 1.3	0.956	ND 7.51	3.74	ND 8.16	6.26	ND 4.20	0.782
Carbon tetrachloride Chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.26 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE	ND ND	ND ND	ND ND	ND ND	ND NE			ND ND	ND ND	ND ND	ND ND	ND 0.953	ND ND	ND ND	ND ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 NE) ND	ND	ND	ND ND	ND NE	5 ND	ND	ND	ND	ND	ND	ND	ND E	ND.	ND
Chloroform Chloromethane	14.4 0.591	ND 0.745	ND ND	9.86 ND	ND ND	ND ND	20.3 ND	1.69 0.603	ND 0.785	17 ND	1.51 0.446	ND 1.21	16.7 ND	31.8 0.77	20.7 ND	17.5 0.438	0.62 0.62		38.4 0.648	12.6 0.766	46.7 59.6 ND 0.558	31.5 42. ND 0.56			40.5 0.62	0.986 1.01	21.6 ND	1.67 0.812	14 0.849	0.518	0.748	ND 0.791
cis-1,2-Dichloroethene	88.8 ND	ND	ND	33.5	ND ND	ND ND	41.6 ND	5.55	0.979	22.5 ND	12.5	ND ND	26.1	63	19.2 ND	21.7 ND	15.		11.2 ND	11.3	11.7 29.1	10.1 13. ND ND	3.87	ND ND	3.26	ND ND	ND	0.999 ND	5.27 ND	6.03	3.30 ND	ND ND
cis-1,3-Dichloropropene Cyclohexane	4.23	ND ND	ND ND	ND 2	ND ND	2.52	ND ND	ND ND	ND ND	1.61	ND ND	0.847	ND ND	ND ND	2.54	0.823	3 NE	ND ND	1.41	ND ND	ND ND 2.42 ND	ND NL ND 1.2			ND ND	ND ND	ND ND	ND ND	0.981	ND B	0.898	ND ND
Dibromochloromethane Dichlorodifluoromethane	ND 1.99	ND 1.78	ND 1.98	ND 2.13	ND ND	ND ND	ND ND	ND 2.1	ND 2.93	ND ND	ND 1.47	ND 1.99	ND ND	ND 2.15	ND ND	ND 1.61	0 NE	ND 1 2.38	ND 1.95	ND 2.04	ND ND 2.06 1.87	ND NE 2.64 2.1			ND 2.35	ND 2.39	ND ND	ND 3.12	ND 3.2	ND 2.27	ND 2.61	ND ND
Ethyl Alcohol	14.3	23.4	16	22.2	ND	61.6	43.5	34.5	10.3	63.7	40.9	30.1	143	112	106	81.8	91 91	57.1	71.6	86.7	87.8 61.6	49.7 64.	V 79	23.2	129	ND	148	119	126	83.8	127	25.1
Ethyl Acetate Ethylbenzene	ND 1.58	ND ND	ND 0.973	ND 2.32	ND ND	ND ND	ND 3.54	ND ND	ND ND	ND 37.6	ND 20	ND 60.4	ND 6.65	ND 5.13	ND 17.9	ND 13.6	16.		3.27 15.9	3.13 6.91	4.4 4.14 19.1 11.5	ND NE 9.64 16.		2.5 4.17	ND 3.61	ND ND	ND ND	3.6 3.87	4.72 2.21	ND 1.12	170 3.86	137
Freon-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE) ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon-114 Heptane	ND 14.3	ND ND	ND 2.35	ND 9.51	ND ND	ND 6.27	ND 18.2	ND ND	ND 1.25	ND 16.6	ND 1.01	ND 14.1	ND 5.7	ND 1.25	ND 6.31	ND 1.31	24.	9 ND	ND 7.38	ND 0.836	ND ND 6.64 1.94	ND NE 1.98 3.7	7.09	ND ND	ND 13.2	ND ND	ND ND	ND 1.75	ND 1.79	ND ND	ND 9.02	ND ND
Hexachlorobutadiene iso-Propyl Alcohol	ND 44	ND 48.2	ND 28	ND 103	ND ND	ND 742	ND 275	ND 1.96	ND 7.03	ND 157	ND 9.44	ND 44.2	ND 191	ND 472	ND 83.8	ND 34.4	NE 37		ND 253	ND 164	ND ND 95.9 533	ND NE 38.8 95.	ND	ND 16.1	ND	ND 3.22	ND 5090	ND 733 D	ND FC F	ND 157	ND 467	ND 50.9
Methyl tert butyl ether	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE) ND	ND	ND	ND ND	ND NE	ND	ND	283 ND	ND	ND	ND	56.5 ND	ND	ND	ND
Methylene chloride n-Hexane	9.21 6.06	13.2 5.08	9.87	3.68 5.22	5.45 1.89	5.35 3.98	ND 28.2	4.45 1.2	3.61 1.54	ND 20.7	ND 0.948	ND 6.1	ND 12.2	ND 2.59	ND 29.3	ND 3,67	18.		ND 33.7	1.79 5.15	73.7 14.9	6.62 NE 4.12 61.	ND 17.9	2.07	1.75 7.68	ND ND	ND 14.4	ND 4.86	3.07 12.5	ND 8.07	ND 27.7	ND 4.44
o-Xylene	1.55	ND	1.64	2.35	ND	2.81	3.14	ND ND	ND	46.5	26.9	64.7	12.1	10.2	33.1	26.6	25.	5 10.5	28.9	14.9	30.9 20.4	20.1 31.	13.1	8.3	4.47	1.9	ND	6.34	3.61	2.28	4.60	2.33
p/m-Xylene Styrene	5.3 ND	ND ND	4.34 ND	8.08 ND	ND ND	ND	11.7 ND	ND	2.07 ND	138 2.78	77.7 ND	181 0.873	28.1 3.17	ND	83.4 ND	65.6 0.856	2.1	4 ND	71.2 ND	33.9 ND	89 57.8 1.9 1.14	48.6 79. 1.29 1.2	ND.	ND	13.9 ND	4.6 ND	18.6 ND	17.3 0.856	9.86 ND	5.26 ND	14.8 1.26	6.30 ND
tert-Butyl Alcohol Tetrachloroethene	ND 2.12	ND ND	ND 77.3	3.64 ND	ND ND	5.67 31.4	7.31 ND	ND 1 97	ND 12.4	7.64 ND	ND ND	1.7 10.6	11.9 5.78	ND 5.8	ND 4.95	ND 2.3	9.3		5.15 4.12	ND ND	3.58 ND 2.63 ND	2.26 8.9 2.28 NE		1.73 ND	13.5 1.75	ND ND	20.3 ND	ND ND	6.55 2.31	4.79 ND	16.6 2.94	ND 5,51
Tetrahydrofuran	47.2	ND	9.53	12.1	ND	4.98	13	7.73	ND	5.84	4.72	2.01	5.43	106	ND	6.55	1.5	5 ND	ND	ND	ND 2.43	2.14 3.1	ND.	ND	ND	ND	ND	4.16	ND	2.22	ND	ND
Toluene trans-1.2-Dichloroethene	1.89 6.03	ND ND	1.55 ND	6.1	ND ND	8.55 ND	12.7 ND	ND ND	2.07 ND	131 ND	66.3 3.33	168 ND	23.2 ND	15.8 2.67	65.6 ND	45.2 1.12	31. 0.85		39.2 ND	20.1 1.03	93.5 52 ND 1.72	36.6 62. ND 0.84		20.4 ND	14.5 ND	2.81 ND	20.3 ND	18.4 ND	11.6 ND	4.37 ND	18.6 ND	4.33 ND
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE) ND	ND	ND	ND ND	ND NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene Trichlorofluoromethane	2630 1.48	ND 3.62	554 2.69	978 ND	ND 2.67	236 ND	1030 ND	2.48 3.47	104	656 ND	10.8	79.5 1.37	983 10.2	17.2 10.7	736 3.36	133 4.40	1.4		378 1.69	1.79	469 29.3 3.53 3.47	559 1.2 6.07 4.0		16 ND	1.4	7.95 ND	262 ND	18.4 5.22	353 3.73	29.4 4.61	250 1.48	8.38 ND
Vinyl bromide	ND ND	ND ND	ND	1.78	ND	2.55	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	NE NE	ND ND	ND	ND	ND ND	ND NE		ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
Vinyl chloride Total Target cVOCs	ND 2,826.04	ND 13.20	ND NC	1.04	ND 5.45	1.49 NC	ND 1,113.20	ND 20.00	ND NC		ND 23.30	ND NC	ND 1,014.88	ND 86.00		ND 157.00		ND 79 19.30	ND 393.32	ND 35.09	ND ND 483.33 58.40			ND 16.00	ND 230.76	ND 7.95	ND 262.00	ND 19.40	ND 363.65	ND 35.43	ND 256.24	ND 13.89
Percent Decrease of CVOCs Pre to Post Carbon (%)	-9	9.53	NC		9.48	NC	-98		NC	-96.		NC	-91.		-79.	.35		-96.32	-91		-87.92	-97.41		93.91	-96.5		-92.			.26		4.58
Percent Decrease of CVOCs From Baseline (10/2019 Pre)	ı	NA.	NC	-6:	2.78	NC	-60).61	NC	-75.9	99	NC	-64.	09	-73.	.10		-81.43	-86	.08	-82.90	-79.55		90.70	-91.8	B3	-90.	.73	-87	.13	-90	0.93

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in appendix.

2. Analytical testing for VOCs vs TO-15 completed by Alpha Analytical.

3. Results present in supim or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

- 5. Parameters shaded in red indicate analytes of concern (Target CVOCs). NYSDOH Target cVOCs are included in this calculation, specifically those listed in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York', May 2017 Update. Specifically: 1,1,1-Trichloroethene, Carbon tetrachloride, dis-1,2-Dichloroethene, Methylene chloride, Tetrachloroethene, Tetrachlo

Table 5 Historical Groundwater Monitoring Data Summary MOD-PAC CORP.

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Trichloroethene (µg/L) NY-TOGS-GA (5 µg/L)	% Increase/ Decrease
/IW - 3	2/5/18				280 7, 2019 - June 28, 2019	Baseline
	7/16/19	600.71 Potassi 600.71	NG um Permanganete Inje NG	NG ections October 1, NG	ND 2019 - October 10, 2019 220	-100.00 9 -21.43
	4/15/20 3/10/21	600.71 600.71	5.54 6.10	595.17 594.61	370 JH NT	32.14 N/A
	3/30/21 4/14/21	600.71 600.71	5.95 5.98	594.76 594.73	NT 340	N/A 21.43
	5/20/21 6/11/21	600.71 600.71	6.10 6.12	594.61 594.59	NT NT	N/A N/A
	7/1/21 8/25/21 9/22/21	600.71 600.71 600.71	6.30 5.80 5.45	594.41 594.91 595.26	400 NT NT	42.86 N/A N/A
	11/19/21	600.71 600.71	5.30 5.55	595.41 595.16	340 NT	21.43 N/A
	1/12/22	600.71	5.70	595.01	190	-32.14
	3/10/22	600.71 600.71	6.09 6.44	594.62 594.27	NT NT	N/A N/A
	4/5/22 5/16/22	600.71 600.71	5.65 5.81	595.06 594.90	280 NT	0.00 N/A
	6/6/22 7/6/22	600.71 600.71	5.70 5.91	595.01 594.80	NT 240	N/A -14.29
	8/9/22 9/22/22	600.71 600.71	5.85 6.18	594.86 594.53	NT NT	N/A N/A
	10/7/22	600.71 600.71	6.03 5.71	594.68 595.00	350 NT	25.00 N/A
IW - 11	12/8/22 2/5/18	600.71 600.41	5.55 4.66	595.16 595.75 Pilot Study June 2	NT 40 7, 2019 - June 28, 2019	N/A Baseline
	7/16/19	600.41	NG	NG	20 2019 - October 10, 2019	-50.00 9
	10/24/19 4/15/20	600.41 600.41	NG 5.27	NG 595.14	16 45 JH	-60.00 12.50
	3/10/21 3/30/21	600.41 600.41	5.82 5.74	594.59 594.67	NT NT	N/A N/A
	4/14/21 5/20/21	600.41 600.41	5.74 5.84	594.67 594.57	16 NT NT	-60.00 N/A
	6/11/21 7/1/21 8/25/21	600.41 600.41 600.41	5.85 6.00 5.58	594.56 594.41 594.83	47 NT	N/A 17.50 N/A
	9/22/21	600.41 600.41	5.32 5.15	595.09 595.26	NT 32	N/A -20.00
	12/10/21 1/12/22	600.41 600.41	5.35 5.45	595.06 594.96	NT 22	N/A -45.00
	2/2/22 3/10/22	600.41 600.41	5.80 5.21	594.61 595.20	NT NT	N/A N/A
	4/5/22 5/16/22	600.41 600.41	5.45 5.49 5.46	594.96 594.92 594.95	24 NT NT	-40.00 N/A N/A
	6/6/22 7/6/22 8/9/22	600.41 600.41 600.41	5.46 5.63 5.71	594.95 594.78 594.70	NT 27 NT	N/A -32.50 N/A
	9/22/22	600.41 600.41	5.71 5.90 5.80	594.70 594.51 594.61	NT 34	N/A N/A -15.00
	11/7/22 12/8/22	600.41 600.41	5.61 5.38	594.80 595.03	NT NT	N/A N/A
W - 12	2/5/18				0.44 J 7, 2019 - June 28, 2019	Baseline
	7/16/19				ND 2019 - October 10, 2019	
	10/24/19 4/15/20 3/10/21	600.50 600.50 600.50	NG 4.41 5.03	NG 596.09 595.47	ND ND NT	-100.00 -100.00 N/A
	3/30/21 4/14/21	600.50 600.50	4.86 4.86	595.64 595.64	NT ND	N/A -100.00
	5/20/21 6/11/21	600.50 600.50	5.05 5.10	595.45 595.40	NT NT	N/A N/A
	7/1/21 8/25/21	600.50 600.50	5.35 4.80	595.15 595.70	ND NT	-100.00 N/A
	9/22/21	600.50 600.50	4.40 4.10	596.10 596.40	NT ND	N/A -100.00
	12/10/21 1/12/22 2/2/22	600.50 600.50 600.50	4.35 4.58 5.20	596.15 595.92 595.30	NT ND NT	N/A -100.00 N/A
	3/10/22 4/5/22	600.50 600.50	4.30 4.41	596.20 596.09	NT ND	N/A -100.00
	5/16/22 6/6/22	600.50 600.50	5.30 4.73	595.20 595.77	NT NT	N/A N/A
	7/6/22 8/9/22	600.50 600.50	4.10 4.89	596.40 595.61	ND NT	-100.00 N/A
	9/22/22	600.50 600.50	5.15 5.04	595.35 595.46	NT ND	N/A -100.00
W - 13	11/7/22 12/8/22 2/5/18	600.50 600.50 600.31	4.62 4.42 4.44	595.88 596.08 595.87	NT NT 160	N/A N/A Baseline
	7/16/19	600.31	ssium Permanganete I NG	Pilot Study June 2 NG	7, 2019 - June 28, 2019 78	-51.25
	10/24/19	600.31	NG	NG	2019 - October 10, 2019 240	50.00
	4/15/20 3/10/21 3/30/21	600.31 600.31 600.31	3.70 4.25 4.10	596.61 596.06 596.21	140 JH NT NT	-12.50 N/A N/A
	4/14/21 5/20/21	600.31 600.31	4.13 4.32	596.18 595.99	95 NT	-40.63 N/A
	6/11/21 7/1/21	600.31 600.31	4.40 4.60	595.91 595.71	NT 150	N/A -6.25
	8/25/21 9/22/21	600.31 600.31	4.10 3.35	596.21 596.96	NT NT	N/A N/A
	11/19/21 12/10/21	600.31 600.31	3.30 3.50	597.01 596.81	73 NT	-54.38 N/A
	1/12/22 2/2/22 3/10/22	600.31 600.31 600.31	3.85 4.30 4.46	596.46 596.01 595.85	74 NT NT	-53.75 N/A N/A
	4/5/22 5/16/22	600.31 600.31	3.80 4.10	596.51 596.21	59 NT	-63.13 N/A
	6/6/22 7/6/22	600.31 600.31	4.23 4.11	596.08 596.20	NT 89	N/A -44.38
	8/9/22 9/22/22	600.31 600.31	3.90 4.45	596.41 595.86	NT NT	N/A N/A
	10/7/22 11/7/22 12/8/22	600.31 600.31 600.31	5.66 3.78 3.45	594.65 596.53 596.86	72 NT NT	-55.00 N/A N/A
W - 14	3/10/21 3/30/21	000.01	6.76 6.72	-6.76 -6.72	NT NT	N/A N/A N/A
	4/14/21 5/20/21		6.73	-6.73	NT NT	N/A N/A N/A
	6/11/21		6.75 6.80 6.95	-6.75 -6.80	NT NT	N/A
	7/1/21 8/25/21		6.95 6.50	-6.95 -6.50	NT	N/A N/A
	9/22/21 11/19/21		6.15 6.10	-6.15 -6.10	NT NT	N/A N/A
	12/10/21		6.30 6.40	-6.30 -6.40	NT NT	N/A N/A
	2/2/22 3/10/22		6.74 7.36	-6.74 -7.36	NT NT	N/A N/A
	4/5/22 5/16/22		6.40 6.54	-6.40 -6.54	NT NT	N/A N/A
	6/6/22 7/6/22		6.31 6.57	-6.31 -6.57	NT NT	N/A N/A
	8/9/22 9/22/22		6.61 6.82	-6.61 -6.82	NT NT	N/A N/A
	10/7/22 11/7/22		7.56 6.52	-7.56 -6.52	NT NT	N/A N/A
	12/8/22		6.34 5.42	-6.34 -5.42	NT NT	N/A N/A
W - 15	3/10/21		5.32 5.34	-5.32 -5.34	NT NT	N/A N/A
W - 15				-5.40 -5.60	NT NT	N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21		5.40 5.60	. 0.00	NT NT	N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21		5.60 5.60	-5.60		K1/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21		5.60 5.60 5.18 3.85	-5.60 -5.18 -3.85	NT NT	N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 11/19/21 12/10/21		5.60 5.60 5.18 3.85 4.80 4.90	-5.60 -5.18 -3.85 -4.80 -4.90	NT NT NT NT	N/A N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 11/19/21 12/10/21 1/12/22 2/2/22		5.60 5.60 5.18 3.85 4.80 4.90 5.05 6.02	-5.60 -5.18 -3.85 -4.80 -4.90 -5.05 -6.02	NT NT NT NT NT NT	N/A N/A N/A N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 11/19/21 12/10/21 1/12/22 2/2/22 3/10/22		5.60 5.60 5.18 3.85 4.80 4.90 5.05 6.02 4.90 5.08	-5.60 -5.18 -3.85 -4.80 -4.90 -5.05 -6.02 -4.90 -5.08	NT NT NT NT NT NT NT	N/A N/A N/A N/A N/A N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/11/21 8/25/21 9/22/21 11/19/21 12/10/21 11/12/22 2/2/22 3/10/22 4/5/22 6/6/22		5.60 5.60 5.18 3.85 4.80 4.90 5.05 6.02 4.90 5.08 6.04 5.12	-5.60 -5.18 -3.85 -4.80 -4.90 -5.05 -6.02 -4.90 -5.08 -6.04 -5.12	NT N	N/A N/A N/A N/A N/A N/A N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 11/19/21 12/10/21 1/12/22 2/2/22 4/5/22 5/16/22		5.60 5.60 5.18 3.85 4.80 4.90 5.05 6.02 4.90 5.08 6.04	-5.60 -5.18 -3.85 -4.80 -4.90 -5.05 -6.02 -4.90 -5.08 -6.04	NT	N/A N/A N/A N/A N/A N/A N/A N/A
W - 15	3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/11/21 8/25/21 9/22/21 11/19/21 12/10/21 1/12/22 2/2/22 3/10/22 4/5/22 5/16/22 7/6/22		5.60 5.60 5.18 3.85 4.80 4.90 5.05 6.02 4.90 5.08 6.04 5.12 5.27	-5.60 -5.18 -3.85 -4.80 -4.90 -5.05 -6.02 -4.90 -5.08 -6.04 -5.12 -5.27	NT N	N/A

^{1.} NG = Not Gauged; ND = Non-Detect; NT = Not tested; N/A = Not Applicable; J = Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).; H = The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection;
2. Water Levels measured from top of riser
3. Blue Shading = Result exceeds NY-TOGS-GA for TCE
4. RED BOLDED = Percent increase of TCE from Baseline
5. BLUE BOLDED = Result changed as a result of data validation.
6. Data Validation was not preformed on the following sample dates: 7/16/19 (sampled by others), 10/24/19 (sampled by others), 7/1/21, 11/19/21, 11/12/22.

Table 6
Historical Groundwater Monitoring and Sampling Data Summary
MOD-PAC CORP.

					_									
		l												
		l		GW	1,1-				cis-1,2-	trans-1,2-				
Monitoring Well		Top of	Depth to	Elevation	Dichloroethen	2-Butanone	Acetone	Benzene	Dichloroethen	Dichloroethen	Trichloroethe	Vinyl chloride	Total	% Increase/
	Date	Casing (ft)	Water (ft)	(ft)	e (µg/L)	(µg/L)	(µg/L)	(µg/L)	e (µg/L)	e (µg/L)	ne (µg/L)	(µg/L)	VOCs	Decrease
				ľ. ,	· (F-9/-/			(1-3/-/				2	(µg/L)	TCE
MM 0	0/5/40	NY-TOGS-		F0F 00) ND	50	50	ND	5	5	5			
MW - 3	2/5/18	600.71	5.05	595.66	ND Botos	ND Sium Borma	ND	ND Study June	80 27, 2019 - Ju	14	280	13	387.0	Baseline
	7/16/19	600.71	NG	NG	ND ND	3.10 J	38	ND	ND ND	ND	ND	ND	43.4	-100.00
	7/10/19	000.71	ING	NG					1, 2019 - Oct			טאו	43.4	-100.00
	10/24/2019*	600.71	NG	NG	ND ND	ND ND	<20	<1	30	3	220	<1	253.0	-21.43
	4/15/20	600.71	5.54	595.17	ND ND	ND	6.40 J	ND	57	7.3	370 JH	3.7	444.4	32.14
	4/14/21	600.71	5.98	594.73	0.88 J	ND	ND	ND ND	82	8.8	340	5.6	440.5	21.43
	7/1/21	600.71	6.30	594.41	2.0	ND	ND ND	0.41 J	140	16	400	8.1	566.5	42.86
	11/19/21	600.71	5.30	595.41	0.77 J	ND	ND	ND	43	4 J	340	2.9	390.7	21.43
	1/12/22	600.71	5.70	595.01	0.86	ND	ND	0.16 J	57	3.3	190	3.5	254.8	-32.14
	4/5/22	600.71	5.65	595.06	0.44 J	ND	ND	ND	46	5.1 J	280	2.3 J	333.8	0.00
	7/6/22	600.71	5.91	594.80	0.48 J	ND	ND	ND	74	6.2	240	3.7	324.4	-14.29
	10/7/22	600.71	6.03	594.68	0.76 J	6.50 J	7.60 J	0.34 J	92	6.5	350	7.2	470.9	25.00
MW - 11	2/5/18	600.41	4.66	595.75	ND	2.3 J	9.4	0.16 J	3.1	2.9	40	5.6	64.56	Baseline
		•	•	•	Potas		nganete Pilo		27, 2019 - Ju					
	7/16/19	600.41	NG	NG	0.35 J	ND	4.5 J	ND	14	25	20	9.8	73.65	-50.00
					Potassi	um Permang	anete Injection	ons October	1, 2019 - Oct	ober 10, 2019				
	10/24/2019*	600.41	NG	NG	ND	150 J	920	ND	<10	<10	16	ND	1086.0	-60.00
	4/15/20	600.41	5.27	595.14	ND	2.2 J	11	0.21 J	7	10	45 JH	9	84.4	12.50
	4/14/21	600.41	5.74	594.67	ND	ND	ND	ND	8	9.4	16	5.7	39.1	-60.00
	7/1/21	600.41	6.00	594.41	0.35 J	ND	ND	0.25 J	13	17	47	10	87.6	17.50
	11/19/21	600.41	5.15	595.26	0.27 J	ND	ND	0.25 J	17	30	32	7.8	87.3	-20.00
	1/12/22	600.41	5.45	594.96	0.31 J	ND	ND	0.20 J	11	19	22	6.2	58.7	-45.00
	4/5/22	600.41	5.45	594.96	0.27 J	ND	ND	0.17 J	9.8	15	24	9.7	58.9	-40.00
	7/6/22	600.41	5.63	594.78	0.36 J	ND	3.6 J	0.22 J	15	20	27	10	76.2	-32.50
	10/7/22	600.41	5.80	594.61	ND	ND	ND	0.22 J	13	15	34	7.2	69.4	-15.00
MW - 12	2/5/18	600.50	4.52	595.98	ND	ND	2.2 J	ND	ND	ND	0.44 J	ND	2.64	Baseline
	7/40/40	C00 F0	NO	I NO				ND ND	27, 2019 - Ju		ND	L ND	2.0	100.00
	7/16/19	600.50	NG	NG	ND Potossi	ND	3 J		ND 1, 2019 - Oct	ND		ND	3.0	-100.00
	10/24/2019*	600.50	NG	NG	ND ND	ND	<200	ND	ND	ND	ND	l ND	ND	-100.00
	4/15/20	600.50	4.41	596.09	ND ND	ND ND	11	ND ND	ND ND	ND ND	ND ND	ND ND	11.0	-100.00
	4/14/21	600.50	4.86	595.64	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	-100.00
	7/1/21	600.50	5.35	595.04	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	-100.00
	11/19/21	600.50	4.10	596.40	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	-100.00
	1/12/22	600.50	4.58	595.92	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	-100.00
	4/5/22	600.50	4.41	596.09	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	-100.00
	7/6/22	600.50	4.10	596.40	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	-100.00
	10/7/22	600.50	5.04	595.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	-100.00
MW - 13	2/5/18	600.31	4.44	595.87	1	ND	ND	ND	180	4.1	160	25	371.3	Baseline
	2/0/10			, 000.0.	Potas				27, 2019 - Ju					
	7/16/19	600.31	NG	NG	1.20 J	ND	ND	ND	400	3.9 J	78	56	539.1	-51.25
		•	•	•	Potassi	um Permang	anete Injecti	ons October	1, 2019 - Oct	ober 10, 2019	9			
	10/24/2019*	600.31	NG	NG	<1	ND	28	ND	97	2	240	2	369.0	50.00
	4/15/20	600.31	3.70	596.61	0.73	ND	3.2 J	ND	200	4.4	140 JH	55	403.3	-12.50
	4/14/21	600.31	4.13	596.18	0.69	ND	ND	ND	150	1.7 J	95	70	317.4	-40.63
	7/1/21	600.31	4.60	595.71	1.5	ND	ND	0.18 J	210	3.9	150	88	453.6	-6.25
	11/19/21	600.31	3.30	597.01	0.45 J	ND	ND	ND	50	ND	73	20	143.5	-54.38
	1/12/22	600.31	3.85	596.46	1.1	ND	ND	ND	140	1.8 J	74	54	270.9	-53.75
	4/5/22	600.31	3.80	596.51	0.9	ND	ND	ND	130	1.8 J	59	75	266.7	-63.13
	7/6/22	600.31	4.11	596.20	0.73	ND	ND	ND	110	1.7 J	89	51	252.4	-44.38
	10/7/22	600.31	5.66	594.65	0.53	1.9 J	ND	ND	85	1.2 J	72	39	199.6	-55.00
Notes:														

Notes

^{1.} NG = Not Gauged; ND = Non-Detect; J = Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).; H = The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection;

Water Levels measured from top of riser

Blue Shading = Result exceeds NY-TOGS-GA
 RED BOLDED = Percent increase of TCE from Baseline

BLUE BOLDED = Result changed as a result of data validation.

^{6.} Data Validation was not preformed on the following sample dates: 7/16/19 (sampled by others), 10/24/19 (sampled by others), 7/1/21, 11/19/21, 1/12/22.

^{7. 10/24/2019} data analyzed by eurofins Lancaster Labratories Environmental, all other data analyzed by Alpha Analyttical

ATTACHMENT C

Well Data Sheets

Job#;

Well ID: 5B1

Crew: "5K

Well Depth (TOR): 15.0

Well Depth (GS):

Initial Water Level (TOR):

Initial Water Level (GS):

Volume Calculation: (1570 - 6.03)(0.163) = 1.46 ga/
DTB-DTW*0.163=1-well vol

	gal	Purge Re	cord Ms/cm	ے "	NTU
Time	Volume	рН	Cond.	Temp.	Turbidity
947	0.5	7.26	2.63	20.67	11.2
952	1.0	7.25	1.43	21.52	0.0
958	1.75	7.26	1.42	21.34	0.0
			-		
					ļ

Baile Submersible Pump Purge Method: Initial Water Quality FAIR -SLIGHT SHEEN

Final Water Quality 600 D

SAMPLE RECORD

Date: 10/07/2022 Time: Crew: Method: LOW FLOW

Sample ID: MW-3(100722

Water Quality: 600 D

7.26

m5/cm Conductivity: ,42

NTU

21.34 Temperature: Turbidity: Ø, O

SELCHAM Volume: Analysis: Chain of Custody #: Sample Type: GRAB

Diameter Multiply by 0.041 0.163 0.367 0.653 6" 1.468 2.61

Comments: HEADSPACE: 2.9

TOR= Top of Riser GS= Ground Surface

Date:	Of	27/	20	2	2_		
	. 00	7 7 7				_	

Job# 01304

Well ID: SB172 / MU-11

Crew: 3K

Well Depth (TOR): 15.05

Well Depth (GS): 15.88

Initial Water Level (TOR): 5.8

Initial Water Level (GS):

Volume Calculation: (15.05 - 5.8)(0.041) = 0.38 gal

DTB-DTW*0.163=1-well vol

Purge Record MS/cm NTU 00 рH Cond. Time Volume Temp. Turbidity 029 0.25 7.13 2,20 21.48 17.6 2.42 21.23 0,50

Purge Method: Bailer/Submersible Pump

Initial Water Quality FAIX - 600 D

Final Water Quality FAIX - 600 D

SAMPLE RECORD

Date: 10/07/2022
Time: 1032
Crew: JK
Method: Low FLow
Sample ID: MW-11 (106722)
Water Quality: 600 D

Volume: S	EC	CHMH	
Analysis:	Ü		
Chain of Cust	ody#:		
Sample Type	GR	% 3	

	Water Quality:	60
_	pH: フ, O	
mslow	Conductivity:	ひ
ن ه ا	Temperature:	2
(r_{ν})	Turbidity:	5
1.		

Diameter	Multiply by
4	0.041
2"	0.163
3"	0.367
. 4 ⁿ	0.653
6"	1.468
8"	2.61

Comments: HEADSPACE: 1.4 ppn

COLLECTED DUPLICATE SAMPLE

TOR= Top of Riser GS= Ground Surface

Date:	O	4 0	7	2022
		200	1	

Job# 01304

Well ID: MW-12

Crew: '5K

Well Depth (TOR): 12

Well Depth (GS):

Initial Water Level (TOR):

Initial Water Level (GS):

Volume Calculation: (14.7 - 5.04)(0.041) = 0.40

DTB-DTW*0.163=1-well vol

	god	Purge Re	ecord M3/c	m oc	MITU
Time	Volume	рH	Cond.	Temp.	Turbidity
1117	0.25	7.08	1.50	20.36	127.0
1120	0.40	7.14	1,18	20,94	25.0
		,			
		٠,			

Purge Method:

Bailer/Submersible Pump

Initial Water Quality

POOR -TURBIA

FMR Final Water Quality

SAMPLE RECORD

Time: 1120

Crew:

LOW FLOW Method:

Sample ID: MW-12 (0072)

Water Quality: FAIR

7.14 pH:

Conductivity:

Temperature:

Turbidity:

20,94 25.0

Volume: SEE CHAM

Analysis:

Chain of Custody #:

Sample Type: GRAB

Diameter	Multiply by
(1) (1)	0.041
2"	0.163
3"	0.367
4"	0.653
6"	1.468
8"	2.61

Comments: HEADSPACE: 0.0 ppm

COLLECTED MS + MSD SAMPLES

TOR= Top of Riser GS= Ground Surface

NTU

Well Date	a Sneet
Date: 10/07/2022 Well ID: SB173 / MW-13	Job#: 01304
Crew: 3K	
Well Depth (TOR): 14.23	
Well Depth (GS): 14, 93	
Initial Water Level (TOR): 5.00	
Initial Water Level (GS):	<u> </u>
Volume Calculation: (14.23-5.66	(0.041) = 0,35 gal
DTB-DTW*0.163=1-well vol	(1 m %)
	- wolch "C init

		Purge Re	cord かうに	m v	אחט.
Time	Volume	рН	Cond.	Temp.	Turbidity
1200	0.35	7,54	0.55	20.78	0.0
		· ·			
		٠,			

Purge Method:	Bailer/Suppersible Pump	
Initial Water Quality	6000	
Final Water Quality	- 600D	

SAMPLE RECORD

	Date: /0/07/2022
	Time: /200
	Crew: 3K
•	Method: LOW FLOW
	Sample ID: MW-13 (100722)
	Water Quality: 600 D
	pH: 7,54
mS/cm	Conductivity: 0.55
00	Temperature: 20.78
UTY	Turbidity: 0.0
•	

Volume: SE	ER CHAM	_
Analysis:	11	_
Chain of Custo	ody#: —	
Sample Type:	6 RAB	

Diameter	Multiply by
الات	0.041
2"	0.163
3"	0.367
4"	0.653
6"	1.468
8"	2.61

Comments: HEADSPACE: 0, 1 ppm

TOR= Top of Riser GS= Ground Surface

Initial Water Level (TOR): 7,56 Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol Purge I	Job#: O	1304	
Well ID: MW-14 Crew: 5K Well Depth (TOR): 9.7 Well Depth (GS): /01/6 Initial Water Level (TOR): 7.56 Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol			
Well Depth (TOR): 9.7 Well Depth (GS): /01/6 Initial Water Level (TOR): 7.56 Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol			
Well Depth (GS): /01/6 Initial Water Level (TOR): 7.56 Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol Purge I			
Initial Water Level (TOR): 7,56 Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol Purge I			
Initial Water Level (GS): Volume Calculation: DTB-DTW*0.163=1-well vol Purge I			
Volume Calculation: DTB-DTW*0,163=1-well vol			-
DTB-DTW*0.163=1-well vol			
DTB-DTW*0.163=1-well vol			
Purge I			
· 1.	Record		·
Time Volume pH	Cond.	Temp.	Turbidity
			* .
			<u> </u>
· /	" .		
Purge Method: Bailer/Submersible	Pump		
Initial Water Quality		 	
Final Water Quality			
			•
SAMPL	E RECORD		
D-4::	37.1.	*	
Date:	Volume:		
Time:	Analysis:		
Crew:	Chain of C		
Method: Sample ID:	Sample Ty	pe:	
Water Quality:	Diameter	Multiply by	1
	1"		4
pH:	2"	0.041	
Conductivity:	3"	0.163	
Tomporatura	٦	0.367	1
Temperature:	A11	いだたり	1 .
Temperature: Vurbidity:	4" G"	0.653	
	4" 6" 8"	0.653 1.468 2.61	

TOR= Top of Riser
GS= Ground Surface

	7		well Data	Sneet		
Well Dept	MW - 15 K h (TOR): h (GS):	10.42	-	Job#: (31304	<u> </u>
*	er Level (T		4 7.5			
Initial Wat	er Level (C	9S):	4			÷
	alculation: /*0.163=1-	***	Purge R	ecord		. ,
*.	Time	Volume			Temp.	Turbidity
•.	Time	Volume	рН	Cond.	Temp.	Turbidity
	Time	Volume			Temp.	Turbidity
	Time	Volume			Temp.	Turbidity
	Time	Volume			Temp.	Turbidity
	Time	Volume			Temp.	Turbidity
			pH	Cond.	Temp.	Turbidity
Purge Me	ethod:	Bailer/Su	pH	Cond.	Temp.	Turbidity
Initial Wa		Bailer/Su	pH	Cond.	Temp.	Turbidity

SAMPLE RECORD

Date:	
Time:	,
Crew:	
Method:	
Sample ID:	
Water Quality:	•
pH:	
Conductivity:	
Temperature:	
Turbidity	

Volume:	
Analysis:	
Chain of Custody#:	
Sample Type:	

Diameter	Multiply by
1"	0.041
2"	0.163
3"	0.367
4"	0.653
6"	1.468
8"	2.61

Comments: HEADSPACE: 0.0 ppm

NO SAMPLE NOEDE

TOR= Top of Riser GS= Ground Surface

ATTACHMENT D

Analytical Laboratory Reports

ANALYTICAL REPORT

Lab Number: L2269445

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: Q4 2022 SSDS MONITORING

Project Number: 01304
Report Date: 12/23/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Q4 2022 SSDS MONITORING

Project Number: 01304

Lab Number:

L2269445

Report Date:

12/23/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2269445-01	AREA A-PRE(120922)	SOIL_VAPOR	MPC BUFFALO, NY	12/09/22 00:00	12/09/22
L2269445-02	AREA A-POST(120922)	SOIL_VAPOR	MPC BUFFALO, NY	12/09/22 00:00	12/09/22

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.							

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445
Project Number: 01304 Report Date: 12/23/22

Case Narrative (continued)

Volatile Organics in Air

L2269445-01 and -02: Samples were transferred from a Tedlar bag into a fused silica lined canister upon receipt in order to extend the holding time for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

hulyhm Jennifer Jerome

Authorized Signature:

Title: Technical Director/Representative Date: 12/23/22

AIR

12/09/22 00:00

Date Collected:

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-01

Client ID: AREA A-PRE(120922) Date Received: 12/09/22 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 12/22/22 05:10

Analyst: RAY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
eld Lab							
0.528	0.200		2.61	0.989			1
0.362	0.200		0.748	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
67.6	5.00		127	9.42			1
ND	0.200		ND	0.874			1
82.7	1.00		196	2.38			1
0.263	0.200		1.48	1.12			1
190	0.500		467	1.23			1
ND	0.200		ND	0.793			1
5.46	0.500		16.6	1.52			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
1.35	0.200		4.20	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
0.705	0.500		2.08	1.47			1
0.832	0.200		3.30	0.793			1
	0.528 0.362 ND ND ND ND ND 67.6 ND 82.7 0.263 190 ND 5.46 ND ND 1.35 ND ND ND ND 1.35 ND	Results RL eld Lab 0.528 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 67.6 5.00 ND 0.200 82.7 1.00 0.263 0.200 ND 0.500 ND 0.200 5.46 0.500 ND 0.500 ND 0.200 ND 0.500	Results RL MDL eld Lab 0.528 0.200 0.362 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 82.7 1.00 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200 ND	Results RL MDL Results eld Lab 0.528 0.200 2.61 0.362 0.200 0.748 ND 0.200 ND 67.6 5.00 ND 82.7 1.00 ND 82.7 1.00 196 0.263 0.200 ND ND 0.500 467 ND 0.500 ND 5.46 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200	Results RL MDL Results RL eld Lab 0.528 0.200 2.61 0.989 0.362 0.200 0.748 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 67.6 5.00 127 9.42 ND 0.200 ND 0.874 82.7 1.00 196 2.38 0.263 0.200 1.48 1.12 190 0.500 1.48 1.12 190 0.500 ND 0.793 5.46 0.500 ND 1.74 ND 0.500 ND 0.626	Results RL MDL Results RL MDL eld Lab 0.528 0.200 2.61 0.989 0.362 0.200 0.748 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.7777 ND 0.200 ND 0.528 67.6 5.00 127 9.42 ND 0.200 ND 0.874 82.7 1.00 196 2.38 190 0.500 1.48 1.12 ND 0.500 ND 0.793 <td> Results RL MDL Results RL MDL Qualifier </td>	Results RL MDL Results RL MDL Qualifier

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-01

Client ID: AREA A-PRE(120922)
Sample Location: MPC BUFFALO, NY

Date Collected: 12/09/22 00:00

Date Received: 12/09/22 Field Prep: Not Specified

Sample Depth:

Campio Bopuii	Vdqq			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Ethyl Acetate	47.3	0.500		170	1.80			1
Chloroform	4.99	0.200		24.4	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	7.86	0.200		27.7	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.574	0.200		1.83	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.261	0.200		0.898	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	46.5	0.200		250	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	2.20	0.200		9.02	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	4.94	0.200		18.6	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.434	0.200		2.94	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.888	0.200		3.86	0.869			1

Project Name: Lab Number: L2269445 Q4 2022 SSDS MONITORING

Project Number: Report Date: 01304 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-01

Date Collected: 12/09/22 00:00 Client ID: AREA A-PRE(120922) Date Received: 12/09/22 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	3.40	0.400		14.8	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.296	0.200		1.26	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	1.06	0.200		4.60	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.587	0.200		2.89	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	99		60-140

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-02 Date Collected: 12/09/22 00:00

Client ID: AREA A-POST(120922) Date Received: 12/09/22 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 12/22/22 04:30

Analyst: RAY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	0.383	0.200		0.791	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	13.3	5.00		25.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.27	1.00		17.3	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	20.7	0.500		50.9	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.251	0.200		0.782	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: Lab Number: Q4 2022 SSDS MONITORING L2269445

Project Number: Report Date: 01304 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-02

Date Collected: 12/09/22 00:00 Client ID: AREA A-POST(120922) Date Received: 12/09/22 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

•		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	38.1	0.500		137	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.26	0.200		4.44	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.237	0.200		0.757	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	1.56	0.200		8.38	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.15	0.200		4.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.812	0.200		5.51	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.279	0.200		1.21	0.869			1

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

SAMPLE RESULTS

Lab ID: L2269445-02

Client ID: AREA A-POST(120922)
Sample Location: MPC BUFFALO, NY

Date Collected: 12/09/22 00:00

Date Received: 12/09/22 Field Prep: Not Specified

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
1.45	0.400		6.30	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
0.536	0.200		2.33	0.869			1
ND	0.200		ND	0.983			1
0.316	0.200		1.55	0.983			1
0.728	0.200		3.58	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	1.45 ND ND ND 0.536 ND 0.316 0.728 ND	Results RL 1.45 0.400 ND 0.200 ND 0.200	Results RL MDL 3 Lab 1.45 0.400 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 0.728 0.200 ND 0.200	Results RL MDL Results 1 Lab 1.45 0.400 6.30 ND 0.200 ND ND 0.200 ND ND 0.200 ND 0.536 0.200 ND 0.316 0.200 ND 0.728 0.200 ND ND 0.200 ND	Results RL MDL Results RL 1.45 0.400 6.30 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.536 0.200 ND 0.983 ND 0.200 ND 0.983 0.316 0.200 1.55 0.983 0.728 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL 1 Lab 1.45 0.400 6.30 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.536 0.200 ND 0.983 ND 0.200 ND 0.983 0.316 0.200 1.55 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.4	Results RL MDL Results RL MDL Qualifier I Lab 1.45 0.400 6.30 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.536 0.200 ND 0.983 ND 0.200 ND 0.983 0.728 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 <td< td=""></td<>

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/21/22 16:09

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-02 Batch	: WG17262	235-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
	.,	0.200		.,_	0.0			

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/21/22 16:09

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	-02 Batch	: WG17262	235-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
p/m-Xylene	ND	0.400		ND	1.74			

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/21/22 16:09

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	02 Batcl	n: WG17262	35-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: Q4 2022 SSDS MONITORING

Project Number: 01304

Lab Number: L2269445

Report Date: 12/23/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG172623	35-3				
Dichlorodifluoromethane	90		-		70-130	-		
Chloromethane	97		-		70-130	-		
Freon-114	96		-		70-130	-		
Vinyl chloride	91		-		70-130	-		
1,3-Butadiene	105		-		70-130	-		
Bromomethane	95		-		70-130	-		
Chloroethane	85		-		70-130	-		
Ethanol	98		-		40-160	-		
Vinyl bromide	85		-		70-130	-		
Acetone	78		-		40-160	-		
Trichlorofluoromethane	85		-		70-130	-		
Isopropanol	102		-		40-160	-		
1,1-Dichloroethene	86		-		70-130	-		
Tertiary butyl Alcohol	83		-		70-130	-		
Methylene chloride	101		-		70-130	-		
3-Chloropropene	87		-		70-130	-		
Carbon disulfide	87		-		70-130	-		
Freon-113	88		-		70-130	-		
trans-1,2-Dichloroethene	81		-		70-130	-		
1,1-Dichloroethane	82		-		70-130	-		
Methyl tert butyl ether	86		-		70-130	-		
2-Butanone	86		-		70-130	-		
cis-1,2-Dichloroethene	86		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Q4 2022 SSDS MONITORING

Project Number: 01304

Lab Number: L2269445

Report Date: 12/23/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG172623	5-3				
Ethyl Acetate	87		-		70-130	-		
Chloroform	102		-		70-130	-		
Tetrahydrofuran	82		-		70-130	-		
1,2-Dichloroethane	82		-		70-130	-		
n-Hexane	103		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
Benzene	99		-		70-130	-		
Carbon tetrachloride	103		-		70-130	-		
Cyclohexane	106		-		70-130	-		
1,2-Dichloropropane	93		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	104		-		70-130	-		
Trichloroethene	102		-		70-130	-		
2,2,4-Trimethylpentane	105		-		70-130	-		
Heptane	100		-		70-130	-		
cis-1,3-Dichloropropene	108		-		70-130	-		
4-Methyl-2-pentanone	100		-		70-130	-		
trans-1,3-Dichloropropene	93		-		70-130	-		
1,1,2-Trichloroethane	99		-		70-130	-		
Toluene	89		-		70-130	-		
2-Hexanone	92		-		70-130	-		
Dibromochloromethane	98		-		70-130	-		
1,2-Dibromoethane	96		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Q4 2022 SSDS MONITORING

Project Number: 01304

Lab Number: L2269445

Report Date: 12/23/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG172623	35-3				
Tetrachloroethene	101		-		70-130	-		
Chlorobenzene	98		-		70-130	-		
Ethylbenzene	95		-		70-130	-		
p/m-Xylene	96		-		70-130	-		
Bromoform	99		-		70-130	-		
Styrene	93		-		70-130	-		
1,1,2,2-Tetrachloroethane	107		-		70-130	-		
o-Xylene	98		-		70-130	-		
4-Ethyltoluene	90		-		70-130	-		
1,3,5-Trimethylbenzene	93		-		70-130	-		
1,2,4-Trimethylbenzene	98		-		70-130	-		
Benzyl chloride	96		-		70-130	-		
1,3-Dichlorobenzene	99		-		70-130	-		
1,4-Dichlorobenzene	100		-		70-130	-		
1,2-Dichlorobenzene	98		-		70-130	-		
1,2,4-Trichlorobenzene	98		-		70-130	-		
Hexachlorobutadiene	92		-		70-130	-		

Project Name: Q4 2022 SSDS MONITORING Lab Number: L2269445

Project Number: 01304 Report Date: 12/23/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Info	ormation		Initial	Final	Temp		Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C Pres	s Seal	Date/Time	Analysis(*)
L2269445-01A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2269445-01X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2269445-02A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2269445-02X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)

Project Name: Lab Number: Q4 2022 SSDS MONITORING L2269445

01304 **Report Date: Project Number:** 12/23/22

GLOSSARY

Acronyms

LOD

LOQ

MS

NP

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:Q4 2022 SSDS MONITORINGLab Number:L2269445Project Number:01304Report Date:12/23/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:Q4 2022 SSDS MONITORINGLab Number:L2269445Project Number:01304Report Date:12/23/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:Q4 2022 SSDS MONITORINGLab Number:L2269445Project Number:01304Report Date:12/23/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

700									OCI	iai_ivo.	2232210.	
Alaka	AIR AN CHAIN OF CUSTODY	NALYSIS	PAGEOF	Date Rec'd in	Lab: 12	110	122		ALPHA	Job#:	1220	69445
320 Forbes Blvd M	Mansfield, MA 02048	Project Information		Report Info	mation -	Data D	eliveral	oles	Billing	Informat	ion	
	00 FAX: 508-822-3288	Project Name: Q4 2022	SSDS MONITORING	□ FAX					& Same a	s Client in	nfo PO#.	01304
Client Informati	ion	Project Location: MPC 8	SUFFACO, NY	ADEx Criteria	Checker:							
Client FNV. Ab	MANTAGE INC.	Project #: 01304		(Default I	ased on Regu	atory Crite	eria Indicate	1)				
Address: 3636	N. BUFFIND Rd	Project Manager: MARY	CHANNA +	Other Fo		eport)			Regula	tory Req	uirements	Report Limit
	ARK, N7 14127	ALPHA Quote #:	32-31.12	☐ Additional		- 7-12			State/Fed	Pro	gram	Res / Comm
Phone: (+16) 6		Turn-Around Time		Report to: (#d#	erent than Project	Manager)						
Fax:				-						+		
Other Project	Cenvalvan tage. com ave been previously analyzed by Alpha Specific Requirements/Comm c Target Compound List:	Date Due:	Time:		8			/	CH week	NALYSI	S	
	Al	l Columns E	Selow Must	Be Fille	d Ou	ıt			SIM	d Merca	/	
ALPHA Lab ID (Lab Use Only)	Sample ID	COLLEC End Date Start Time End	TION Initial Final Time Vacuum Vacuum	Sample Sample Matrix* Initia		I D Can	I D - Flow Controller	70.15	APH Submer New Fixed Gases	Sepone	Sample Com	ments (i.e. PID
69445-01	AREA A-PRE(120922)			SV JK		-	-	x		_	TEDLAR	
02	AREA A - POST (120922)	12/09/22		SV SK	2.00	-	-	X			TEDLA	e BAG
											T.	
	A	A = Ambient Air (Indoor/Outdo	(T)					&				
*SAMPL	Ju- (Y = Soil Vapor/Landfill Gas/SV her = Please Specify Relinquished By:	Date/Time /2/09/22 14:W 12/09/22 14:W 12/09/22 6 0c	1314	Container ceived By: AA for Og	Туре	1	D 2/09		y', K, S	ompletely. San gged in and tu ock will not sta uities are resol	nt until any ambi- ved. All samples abject to Alpha's litions.

ANALYTICAL REPORT

Lab Number: L2256028

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304 Report Date: 10/21/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028 **Report Date:** 10/21/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2256028-01	MW-3 (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 09:58	10/07/22
L2256028-02	MW-11 (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 10:32	10/07/22
L2256028-03	MW-11 (100722) DUPLICATE	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 10:32	10/07/22
L2256028-04	MW-12 (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 11:20	10/07/22
L2256028-05	MW-13 (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 12:00	10/07/22
L2256028-06	TRIP BALNK (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 12:30	10/07/22
L2256028-07	RINSATE BLANK (100722)	WATER	MOD-PAC-CORP. BUFFALO,NY	10/07/22 12:20	10/07/22

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:CY2022 SMP GW SAMPLINGLab Number:L2256028Project Number:01304Report Date:10/21/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2256028-01: The collection date and time on the chain of custody was 07-OCT-22 09:48; however, the collection date/time on the container label was 07-OCT-22 09:58. At the client's request, the collection date/time is reported as 07-OCT-22 09:58.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/21/22

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

L2256028

10/07/22 09:58

Not Specified

10/07/22

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Report Date: 10/21/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2256028-01 D

Client ID: MW-3 (100722)

Sample Location: MOD-PAC-CORP. BUFFALO,NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/19/22 19:40

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	borough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	0.34	J	ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	7.2		ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	0.76	J	ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	6.5		ug/l	5.0	1.4	2	
Trichloroethene	350		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-01 D Date Collected: 10/07/22 09:58

Client ID: MW-3 (100722) Date Received: 10/07/22 Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2			
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2			
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2			
p/m-Xylene	ND		ug/l	5.0	1.4	2			
o-Xylene	ND		ug/l	5.0	1.4	2			
cis-1,2-Dichloroethene	92		ug/l	5.0	1.4	2			
Styrene	ND		ug/l	5.0	1.4	2			
Dichlorodifluoromethane	ND		ug/l	10	2.0	2			
Acetone	7.6	J	ug/l	10	2.9	2			
Carbon disulfide	ND		ug/l	10	2.0	2			
2-Butanone	6.5	J	ug/l	10	3.9	2			
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2			
2-Hexanone	ND		ug/l	10	2.0	2			
Bromochloromethane	ND		ug/l	5.0	1.4	2			
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2			
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2			
Isopropylbenzene	ND		ug/l	5.0	1.4	2			
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2			
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2			
Methyl Acetate	ND		ug/l	4.0	0.47	2			
Cyclohexane	ND		ug/l	20	0.54	2			
1,4-Dioxane	ND		ug/l	500	120	2			
Freon-113	ND		ug/l	5.0	1.4	2			
Methyl cyclohexane	ND		ug/l	20	0.79	2			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	110		70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

L2256028-02

MW-11 (100722)

MOD-PAC-CORP. BUFFALO,NY

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 10:32

Lab Number:

Report Date:

Date Received: 10/07/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/18/22 14:53

Analyst: MJV

Volatile Organics by GC/MS - Westboroug	h l ah					
	II Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.22	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	7.2		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	15		ug/l	2.5	0.70	1
Trichloroethene	34		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-02 Date Collected: 10/07/22 10:32

Client ID: MW-11 (100722) Date Received: 10/07/22 Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	98	70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

L2256028-03

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 10:32

Lab Number:

Report Date:

SAMI LE REGOLIO

MW-11 (100722) DUPLICATE Date Received: 10/07/22 MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/18/22 15:14

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.24	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	10		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.26	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	19		ug/l	2.5	0.70	1
Trichloroethene	34		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: CY2022 SMP GW SAMPLING L2256028

Project Number: Report Date: 01304 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-03 Date Collected: 10/07/22 10:32

Date Received: 10/07/22 Client ID: MW-11 (100722) DUPLICATE Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	15		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

L2256028-04

MW-12 (100722)

MOD-PAC-CORP. BUFFALO,NY

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 11:20

18

Lab Number:

Report Date:

Date Received: 10/07/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/18/22 16:18

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: CY2022 SMP GW SAMPLING L2256028

Project Number: Report Date: 01304 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-04 Date Collected: 10/07/22 11:20

Date Received: 10/07/22 Client ID: MW-12 (100722) Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	106	70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 12:00

Lab ID: L2256028-05

Client ID: MW-13 (100722)

Sample Location: MOD-PAC-CORP. BUFFALO,NY

Date Received: 10/07/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/18/22 15:35

Analyst: MJV

1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.14 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westl	oorough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.16	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Chloroberthane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND Ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.17 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl choride 39 ug/l 1.0 0.07 1	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 ttrans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 <	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Tirichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride 39 ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene 0.53 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Vinyl chloride	39		ug/l	1.0	0.07	1
trans-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 Trichloroethene 72 ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene 72 ug/l 0.50 0.18 1	1,1-Dichloroethene	0.53		ug/l	0.50	0.17	1
v	trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	72		ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-05 Date Collected: 10/07/22 12:00

Client ID: MW-13 (100722) Date Received: 10/07/22 Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	85		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	1.9	J	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	95	70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

L2256028-06

TRIP BALNK (100722)

MOD-PAC-CORP. BUFFALO,NY

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 12:30

Date Received: 10/07/22 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/18/22 14:11

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-06 Date Collected: 10/07/22 12:30

Client ID: TRIP BALNK (100722) Date Received: 10/07/22 Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	100		70-130	

L2256028

10/21/22

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Date Collected: 10/07/22 12:20

Lab Number:

Report Date:

Lab ID: L2256028-07

Client ID: RINSATE BLANK (100722)
Sample Location: MOD-PAC-CORP. BUFFALO,NY

Date Received: 10/07/22
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/18/22 15:56

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.27	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

SAMPLE RESULTS

Lab ID: L2256028-07 Date Collected: 10/07/22 12:20

Client ID: RINSATE BLANK (100722) Date Received: 10/07/22 Sample Location: MOD-PAC-CORP. BUFFALO,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	101	70-130	

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/18/22 08:54

Analyst: MJV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-07 Batch:	WG1701609-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/18/22 08:54

Analyst: MJV

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-07 Batch:	WG1701609-5	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/18/22 08:54

Analyst: MJV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-07 Batch: WG1701609-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 101 70-130 Toluene-d8 97 70-130 4-Bromofluorobenzene 105 70-130 Dibromofluoromethane 99 70-130

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/19/22 12:16

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s): 01	Batch:	WG1701952-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/19/22 12:16

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s):	01 Batch:	WG1701952-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: CY2022 SMP GW SAMPLING Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/19/22 12:16

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1701952-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	120	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	114	70-130
Dibromofluoromethane	109	70-130

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028

Report Date: 10/21/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-07 Batch: W	G1701609-3 WG1701609-4		
Methylene chloride	85		86	70-130	1	20
1,1-Dichloroethane	87		89	70-130	2	20
Chloroform	90		90	70-130	0	20
Carbon tetrachloride	86		89	63-132	3	20
1,2-Dichloropropane	87		88	70-130	1	20
Dibromochloromethane	86		84	63-130	2	20
1,1,2-Trichloroethane	94		92	70-130	2	20
Tetrachloroethene	93		94	70-130	1	20
Chlorobenzene	89		92	75-130	3	20
Trichlorofluoromethane	86		88	62-150	2	20
1,2-Dichloroethane	91		90	70-130	1	20
1,1,1-Trichloroethane	90		90	67-130	0	20
Bromodichloromethane	82		83	67-130	1	20
trans-1,3-Dichloropropene	83		82	70-130	1	20
cis-1,3-Dichloropropene	75		76	70-130	1	20
Bromoform	79		80	54-136	1	20
1,1,2,2-Tetrachloroethane	81		80	67-130	1	20
Benzene	88		90	70-130	2	20
Toluene	89		91	70-130	2	20
Ethylbenzene	87		89	70-130	2	20
Chloromethane	86		89	64-130	3	20
Bromomethane	81		83	39-139	2	20
Vinyl chloride	84		85	55-140	1	20

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028

Report Date: 10/21/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-07 Batch:	WG1701609-3	3 WG1701609-4		
Chloroethane	95		92		55-138	3	20
1,1-Dichloroethene	85		88		61-145	3	20
trans-1,2-Dichloroethene	84		87		70-130	4	20
Trichloroethene	91		93		70-130	2	20
1,2-Dichlorobenzene	88		88		70-130	0	20
1,3-Dichlorobenzene	91		95		70-130	4	20
1,4-Dichlorobenzene	91		93		70-130	2	20
Methyl tert butyl ether	85		87		63-130	2	20
p/m-Xylene	95		95		70-130	0	20
o-Xylene	90		95		70-130	5	20
cis-1,2-Dichloroethene	86		88		70-130	2	20
Styrene	100		100		70-130	0	20
Dichlorodifluoromethane	75		79		36-147	5	20
Acetone	80		86		58-148	7	20
Carbon disulfide	81		84		51-130	4	20
2-Butanone	77		75		63-138	3	20
4-Methyl-2-pentanone	79		80		59-130	1	20
2-Hexanone	83		79		57-130	5	20
Bromochloromethane	85		87		70-130	2	20
1,2-Dibromoethane	88		91		70-130	3	20
1,2-Dibromo-3-chloropropane	71		74		41-144	4	20
Isopropylbenzene	85		87		70-130	2	20
1,2,3-Trichlorobenzene	85		85		70-130	0	20

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number:

L2256028

Report Date:

10/21/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD		PD nits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02-07 Batch:	WG1701609-3	WG1701609-4			
1,2,4-Trichlorobenzene	81		84		70-130	4		20
Methyl Acetate	83		83		70-130	0	:	20
Cyclohexane	86		89		70-130	3		20
1,4-Dioxane	84		88		56-162	5		20
Freon-113	88		90		70-130	2		20
Methyl cyclohexane	84		88		70-130	5	:	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	101	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	97	95	70-130
Dibromofluoromethane	96	97	70-130

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028

Report Date: 10/21/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	′ Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 01	Batch: W	G1701952-3	WG1701952-4			
Methylene chloride	120		110		70-130	9	20	
1,1-Dichloroethane	120		120		70-130	0	20	
Chloroform	120		110		70-130	9	20	
Carbon tetrachloride	120		110		63-132	9	20	
1,2-Dichloropropane	120		120		70-130	0	20	
Dibromochloromethane	92		90		63-130	2	20	
1,1,2-Trichloroethane	100		98		70-130	2	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	110		100		75-130	10	20	
Trichlorofluoromethane	98		92		62-150	6	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	110		100		67-130	10	20	
trans-1,3-Dichloropropene	100		99		70-130	1	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
Bromoform	82		82		54-136	0	20	
1,1,2,2-Tetrachloroethane	91		95		67-130	4	20	
Benzene	110		110		70-130	0	20	
Toluene	110		100		70-130	10	20	
Ethylbenzene	110		100		70-130	10	20	
Chloromethane	140	Q	130		64-130	7	20	
Bromomethane	67		71		39-139	6	20	
Vinyl chloride	140		120		55-140	15	20	

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028

Report Date: 10/21/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	701952-3	WG1701952-4				
Chloroethane	86		81		55-138	6		20	
1,1-Dichloroethene	110		98		61-145	12		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	110		100		70-130	10		20	
1,2-Dichlorobenzene	95		94		70-130	1		20	
1,3-Dichlorobenzene	100		99		70-130	1		20	
1,4-Dichlorobenzene	97		94		70-130	3		20	
Methyl tert butyl ether	93		92		63-130	1		20	
p/m-Xylene	110		100		70-130	10		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Styrene	105		100		70-130	5		20	
Dichlorodifluoromethane	120		110		36-147	9		20	
Acetone	96		120		58-148	22	Q	20	
Carbon disulfide	120		110		51-130	9		20	
2-Butanone	69		80		63-138	15		20	
4-Methyl-2-pentanone	71		80		59-130	12		20	
2-Hexanone	63		78		57-130	21	Q	20	
Bromochloromethane	100		97		70-130	3		20	
1,2-Dibromoethane	93		92		70-130	1		20	
1,2-Dibromo-3-chloropropane	66		72		41-144	9		20	
Isopropylbenzene	110		100		70-130	10		20	
1,2,3-Trichlorobenzene	83		83		70-130	0		20	

Project Name: CY2022 SMP GW SAMPLING

Lab Number: L2256028

Project Number: 01304 Report Date: 10/21/22

<u>Para</u>	ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Vola	atile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG	1701952-3	WG1701952-4				
	1,2,4-Trichlorobenzene	88		85		70-130	3		20	
	Methyl Acetate	91		93		70-130	2		20	
	Cyclohexane	130		120		70-130	8		20	
	1,4-Dioxane	82		84		56-162	2		20	
	Freon-113	120		110		70-130	9		20	
	Methyl cyclohexane	100		98		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	106	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	112	114	70-130
Dibromofluoromethane	101	102	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number:

L2256028

Report Date:

10/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qua	MSD I Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-12 (100722)	·Westborough	Lab Asso	ociated sample(s): 02-07	QC Batch	ID: WG17016	609-6 WG170	1609-7	QC Sample	e: L2256	6028-04	Client ID:
Methylene chloride	ND	10	8.0	80		8.9	89		70-130	11		20
1,1-Dichloroethane	ND	10	8.3	83		9.4	94		70-130	12		20
Chloroform	ND	10	8.2	82		9.4	94		70-130	14		20
Carbon tetrachloride	ND	10	8.6	86		9.6	96		63-132	11		20
1,2-Dichloropropane	ND	10	7.8	78		8.9	89		70-130	13		20
Dibromochloromethane	ND	10	8.1	81		9.3	93		63-130	14		20
1,1,2-Trichloroethane	ND	10	8.4	84		9.8	98		70-130	15		20
Tetrachloroethene	ND	10	8.6	86		9.8	98		70-130	13		20
Chlorobenzene	ND	10	8.2	82		9.6	96		75-130	16		20
Trichlorofluoromethane	ND	10	8.8	88		9.8	98		62-150	11		20
1,2-Dichloroethane	ND	10	8.6	86		9.6	96		70-130	11		20
1,1,1-Trichloroethane	ND	10	8.6	86		9.7	97		67-130	12		20
Bromodichloromethane	ND	10	7.6	76		8.7	87		67-130	13		20
trans-1,3-Dichloropropene	ND	10	7.0	70		8.3	83		70-130	17		20
cis-1,3-Dichloropropene	ND	10	5.7	57	Q	6.5	65	Q	70-130	13		20
Bromoform	ND	10	7.1	71		8.7	87		54-136	20		20
1,1,2,2-Tetrachloroethane	ND	10	7.9	79		9.3	93		67-130	16		20
Benzene	ND	10	8.2	82		9.3	93		70-130	13		20
Toluene	ND	10	8.2	82		9.3	93		70-130	13		20
Ethylbenzene	ND	10	7.9	79		9.5	95		70-130	18		20
Chloromethane	ND	10	8.3	83		9.5	95		64-130	13		20
Bromomethane	ND	10	6.8	68		8.4	84		39-139	21	Q	20
Vinyl chloride	ND	10	8.2	82		9.4	94		55-140	14		20

Matrix Spike Analysis Batch Quality Control

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2256028

Report Date: 10/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits		Qual	RPD Limits
Volatile Organics by GC/MS MW-12 (100722)	•									Client ID:
Chloroethane	ND	10	9.4	94	10	100	55-138	6		20
1,1-Dichloroethene	ND	10	8.4	84	9.6	96	61-145	13		20
rans-1,2-Dichloroethene	ND	10	8.2	82	9.2	92	70-130	11		20
Frichloroethene	ND	10	8.2	82	9.8	98	70-130	18		20
,2-Dichlorobenzene	ND	10	7.9	79	9.5	95	70-130	18		20
,3-Dichlorobenzene	ND	10	8.2	82	9.7	97	70-130	17		20
,4-Dichlorobenzene	ND	10	8.0	80	9.4	94	70-130	16		20
Methyl tert butyl ether	ND	10	7.8	78	9.2	92	63-130	16		20
/m-Xylene	ND	20	17	85	20	100	70-130	16		20
p-Xylene	ND	20	16	80	20	100	70-130	22	Q	20
sis-1,2-Dichloroethene	ND	10	7.9	79	9.0	90	70-130	13		20
Styrene	ND	20	18	90	21	105	70-130	15		20
Dichlorodifluoromethane	ND	10	7.8	78	8.8	88	36-147	12		20
Acetone	ND	10	7.3	73	11	110	58-148	40	Q	20
Carbon disulfide	ND	10	8.0	80	8.9	89	51-130	11		20
2-Butanone	ND	10	6.5	65	9.5	95	63-138	38	Q	20
1-Methyl-2-pentanone	ND	10	7.2	72	8.4	84	59-130	15		20
2-Hexanone	ND	10	7.5	75	9.3	93	57-130	21	Q	20
Bromochloromethane	ND	10	8.1	81	9.1	91	70-130	12		20
1,2-Dibromoethane	ND	10	8.2	82	9.4	94	70-130	14		20
,2-Dibromo-3-chloropropane	ND	10	6.9	69	8.9	89	41-144	25	Q	20
sopropylbenzene	ND	10	7.6	76	9.4	94	70-130	21	Q	20
1,2,3-Trichlorobenzene	ND	10	7.2	72	8.8	88	70-130	20		20

Matrix Spike Analysis Batch Quality Control

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Lab Number:

L2256028

Report Date:

10/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-12 (100722)	- Westborough I	Lab Assoc	iated sample(s): 02-07 Q	C Batch ID:	WG17016	609-6 WG1701	609-7	QC Sample	: L2256	6028-04	Client ID:
1,2,4-Trichlorobenzene	ND	10	6.6	66	Q	8.3	83		70-130	23	Q	20
Methyl Acetate	ND	10	7.1	71		8.2	82		70-130	14		20
Cyclohexane	ND	10	8.4J	84		9.6J	96		70-130	13		20
1,4-Dioxane	ND	500	330	66		400	80		56-162	19		20
Freon-113	ND	10	8.2	82		9.5	95		70-130	15		20
Methyl cyclohexane	ND	10	7.4J	74		8.5J	85		70-130	14		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	105	101	70-130
4-Bromofluorobenzene	97	98	70-130
Dibromofluoromethane	99	93	70-130
Toluene-d8	94	94	70-130

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

YES

Lab Number: L2256028 **Report Date:** 10/21/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Inforn	nation		Initial	Final	Temp			Frozen	
Container ID C	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2256028-01A V	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-01B V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-01C V	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-02A V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-02B V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-02C V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-03A V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-03B V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-03C V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04A V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04A1 V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04A2 V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04B V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04B1 V	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04B2 V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04C V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04C1 V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-04C2 V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-05A V	/ial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-05B V	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-05C V	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2256028-06A V	vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2256028

Report Date: 10/21/22

Project Name: CY2022 SMP GW SAMPLING

Project Number: 01304

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2256028-06B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)		
L2256028-07A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)		
L2256028-07B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)		
L2256028-07C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)		

Project Name: Lab Number: CY2022 SMP GW SAMPLING L2256028 **Report Date: Project Number:** 01304

10/21/22

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2022 SMP GW SAMPLINGLab Number:L2256028Project Number:01304Report Date:10/21/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2022 SMP GW SAMPLINGLab Number:L2256028Project Number:01304Report Date:10/21/22

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:CY2022 SMP GW SAMPLINGLab Number:L2256028Project Number:01304Report Date:10/21/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

_ ID No.:**17873**

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	e 105	Pag	ge of]	Da	te Rec'd	0/8,	12:	2	ALPHA Job # 1_22560	28	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	35.50		THE S	To the same	Delivera	bles	DESCRIPTION OF THE PERSON OF T	E ST	- 1168 7	Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: CY	2022 SM	P GROUNDH	ATTER SA	MPLING	□ AS	SP-A	X	ASP-	В	Same as Client Inf	o	
FAX. 506-696-9193	FAX: 506-622-3288	Project Location: Mo	D-PAC C	ORP BUI	FANCO N	Y	T I E	QuIS (1 File)			S (4 File)	PO# 01304		
Client Information		Project # 01304			1.1.	-	1 1 0	her	100		5/10 15/10	01301		
Client: ENV. ADV	INTHEL INC	(Use Project name as F	Project #)				Regulate	ory Requirer	nent		955	Disposal Site Information	n	
Address: 3636 /		Project Manager: MA	PLK HAM	M+MHRY	SZUSYT	HK	□ NY	TOGS		NY Pa	art 375	Please identify below location of		
ORCHARD PARI	L NY 14127	ALPHAQuote #:					□ AV	/Q Standards		2-51	applicable disposal facilities			
Phone: 716-66	7-3130	Turn-Around Time			The state of the s			Restricted Us	ie 🗆	Other		Disposal Facility:	***************************************	
Fax: 716-66	7-3152	Standar	rd 🗷	Due Date	3:		□ NY	Unrestricted	Use			□ NJ □ NY	ê	
Email: mhanna@e	mhanna Cenraduantuge, con Rush (only if pre approved) # of Days:								harge			Other:		
	ese samples have been previously analyzed by Alpha							SIS				Sample Filtration	I	
The state of the s	MAIL RESULTS	rey group & co To mszustaka					8260 Tel					Done Lab to do Preservation Lab to do (Please Specify below)	t a l B	
ALPHA Lab ID			Co	llection	Camala	Complete	3		_		_	(Flease Specify below)	t to	
(Lab Use Only)	Sa	mple ID	Date Time		Sample Matrix	Sampler's Initials	500	1 1		1 1		Sample Specific Commen	_ 0	
56028-01	MW-3(10072	27)	10/07/22	-	GW	SK	X	++-	+	\vdash	_	Sample Specific Commen		
-02	MW-11 (1007		10,0112	1032	GW	3K	X	+-+	+	\vdash	_		3	
-03		22) DUPLICATE		1032	GW	JK	X	++	_				3	
-04	mw-12(1007			1120	aW	元	2	_	+	-			_	
-04	MV-12(1007)			1120	GW	SIL	X	++	+	\vdash			3	
-04	MV-12/10072		 	1120	GW	TK	x	+	+	\vdash	_		3	
-05	mw-13/1007			1200	GW	3/4	X		+		_		3	
-06	TRIP BLANK			1230	WA	514	X	+++	+	+			2	
-07	RMSATE BLA		1	1220	GW	JK	×	+	+		_		3	
	10.07.10.10.1	(0-1-1-0)	-	1220	0.0	示		+	+	\vdash	_			
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N			ntainer Type Preservative	V B					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are			
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ G = Zn Ac/NaOH G = Other Form No: 01-25 HC (rev. 30) Page 43 of 43	C = Cube O = Other E = Encore D = BOD Bottle	Relinguisted	By:	Date/ 10/7/22 - 10/7/2	1400	9-R	Received	By: AAL		Start until ar resolved. BY THIS COC, HAS READ TO BE BOUL TERMS & C (See reverse			TING ENT REES LPHA'S	