

July 23, 2025

Mr. Bradley Demo
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 9
700 Delaware Avenue
Buffalo, New York 14209

Re: 2nd Quarter 2025 Remediation System Status Report
MOD-PAC CORP.
1801 Elmwood Avenue
Buffalo, New York 14207
NYSDEC BCP Site #C915314
METI Project #15-017

Mr. Demo:

Enclosed please find the Remediation System Status Report for the above referenced site. This report includes an analysis of system operational data collected from April through June 2025.

The sub-slab depressurization (SSD) systems were 100% operational in Area A, Area B, and Area C during the 2nd quarter of 2025. The SSD systems will continue to operate in the onsite building to reduce VOC concentrations in indoor air.

The next quarterly system status report will be provided in October 2025. Should you have any questions or require any additional information, please contact METI at 716-662-0745.

Sincerely,
Matrix Environmental Technologies Inc.

Mary M. Szustak
Project Manager

Christine M. Curtis, P.E.
Senior Engineer

Enclosure

REMEDIATION SYSTEM STATUS REPORT
April 2025 – June 2025

MOD-PAC CORP.
1801 Elmwood Avenue
Buffalo, New York 14207
NYSDEC BCP Site #C915314

REMEDIATION INFORMATION:

Sub-Slab Depressurization (SSD) Systems:

AREA A:

System Activation Date: September 2019
Extraction Points: EW-1A, EW-2A, EW-3A, EW-4A, EW-5A, EW-6A, EW-7A, EW-8A, EW-9A, EW-10A
Equipment: GAST R6P355A 6hp blower
Method of Air Treatment: Vapor-phase granular activated carbon (GAC)

AREA B:

System Activation Date: September 2019
Extraction Points: EW-1B, EW-2B, EW-3B, EW-4B, EW-5B, EW-6B, EW-7B, EW-8B
Equipment: GAST R6P355A 6HP blower
Method of Air Treatment: None

AREA C:

System Activation Date: October 2019
Extraction Points: EW-1C, EW-2C, EW-3C
Equipment: GAST R4P115 1.5HP blower (EW-1C and EW-2C)
RadonAway HS5000 (EW-3)
Method of Air Treatment: None

MONITORING REQUIREMENTS

In accordance with the Site Management Plan (SMP)¹ for NYSDEC Site #C915314, SSD system checks are completed on a monthly basis. Monthly system checks include operational status checks of blowers and fans; visual inspection of each system for the identification and repair of any leaks; and the collection of pre- and post-carbon photoionization detector (PID) readings in Area A, blower effluent PID readings in Area B, and blower and fan effluent PID readings in Area C.

On a quarterly basis in March, June, September, and December, system checks also include the documentation of manifold settings and vacuum pressure at each extraction well (EW) and documentation of vacuum at each vapor monitoring point (VMP). Pre- and post-carbon air samples are collected from the Area A system to evaluate the effectiveness of the vapor phase carbon treatment. Samples are submitted for laboratory analysis of volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) Method TO-15. Non-routine maintenance, including carbon changeouts, is completed as necessary based on the analytical data.

For any VMP that fails to achieve the minimum vacuum of at least 0.002 inches water column (WC) during quarterly inspections, vacuum data is collected on a monthly basis until the required influence is achieved in the affected VMP(s). Monitoring points VMP-6A, VMP-8A, and VMP-5B are considered inactive and are not subject to more frequent monitoring.

The locations of the SSD systems are shown on **Figure 1**.

SITE ACTIVITIES COMPLETED DURING PERIOD

4/11/25 Semi-annual groundwater monitoring event. Groundwater samples were collected utilizing low flow sampling techniques from monitoring wells MW-3, MW-11, MW-12, and MW-13. Quality Assurance and Quality Control (QA/QC) samples also collected.

4/16/25 Annual system inspection. The systems were operational. Recorded system data. The system effluent PID reading was 0 ppm in Area A, 0.5 ppm in Area B, 0.1 ppm at the blower in Area C, and 0 ppm at the EW-3C fan in Area C. The required vacuum influence was achieved in all vapor monitoring points except for VMP-1B.

4/16/25 Annual cover inspection.

5/28/25 Monthly system inspection. The systems were operational. Recorded system data. The system effluent PID reading was 0 ppm in Area A, Area B, and Area C. The required vacuum influence was achieved in VMP-1B.

¹ "Site Management Plan for MOD-PAC Site, 1801 Elmwood Avenue, City of Buffalo, Erie County, New York, Site No. C915314" prepared by C&S Engineers, Inc., December 2019, revised March 2022 by Environmental Advantage, Inc.

6/30/25 Quarterly system inspection. The systems were operational. Recorded system data. The system effluent PID reading was 0 ppm in Area A, Area B, and Area C. The required vacuum influence was achieved in all vapor monitoring points.

Area-specific findings during the 2nd quarter of 2025 monitoring event are summarized in **Table 1** with historical data presented in **Table 2A** for Area A, **Table 2B** for Area B, and **Table 2C** for Area C. SSD System layout for each area is shown on **Figure 2A** for Area A, **Figure 2B** for Area B, and **Figure 2C** for Area C.

SYSTEM PERFORMANCE ASSESSMENT

SSD AREA A – FINISHED PRODUCT STORAGE AREA

During the 2nd quarter of 2025, the target vacuum of at least 0.002 inches WC was achieved at all active VMPs in Area A. Inactive points VMP-6A and VMP-8A are no longer monitored. VMP-8AR, located approximately 5 feet from VMP-8A, achieved the target vacuum throughout the 2nd quarter.

A comparison of pre- and post-carbon analytical data shows an average overall target chlorinated VOC (cVOC)² reduction of 96.67%. Concentrations of chloroform, chloromethane, iso-propyl alcohol, tetrahydrofuran (non-chlorinated compounds), and trans-1,2-dichloroethene were higher in the post-carbon sample compared to pre-carbon; however, the removal efficiency of carbon is reduced at lower influent concentrations, which is likely playing a role in many of the low-level post-carbon increases occasionally observed at this Site. Pre- and post-carbon air sample results for the 2nd quarter of 2025 are summarized in **Table 3** and historical air sample results are summarized in **Table 4**. The complete analytical laboratory report is provided in **Appendix A**.

SSD AREA B - ROLL STORAGE AREA

During the 2nd quarter of 2025, the target vacuum of at least 0.002 inches WC was achieved at all active VMPs in Area B with the exception of VMP-1B in April. Inactive point VMP-5B is no longer monitored. VMP-5BR, located approximately 8 feet from VMP-5B, achieved the target vacuum throughout the 2nd quarter.

SSD AREA C – MAINTENANCE AREA

During the 2nd quarter of 2025, the target vacuum of at least 0.002 inches WC was achieved at all active VMPs in Area C.

GROUNDWATER MONITORING

With NYSDEC approval, the groundwater monitoring frequency has been reduced to annually for MW11 through MW13 and semi-annually for MW3 as detailed in the SMP. Semi-annual

² NYSDOH Target cVOCs are included in this calculation, specifically those listed in the NYSDOH “Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York”, May 2017 Update:1,1,1-Trichloroethane, 1,1-Dichloroethene, Carbon tetrachloride, cis-1,2-Dichloroethene, Methylene chloride, Tetrachloroethene, Trichloroethene, and Vinyl chloride

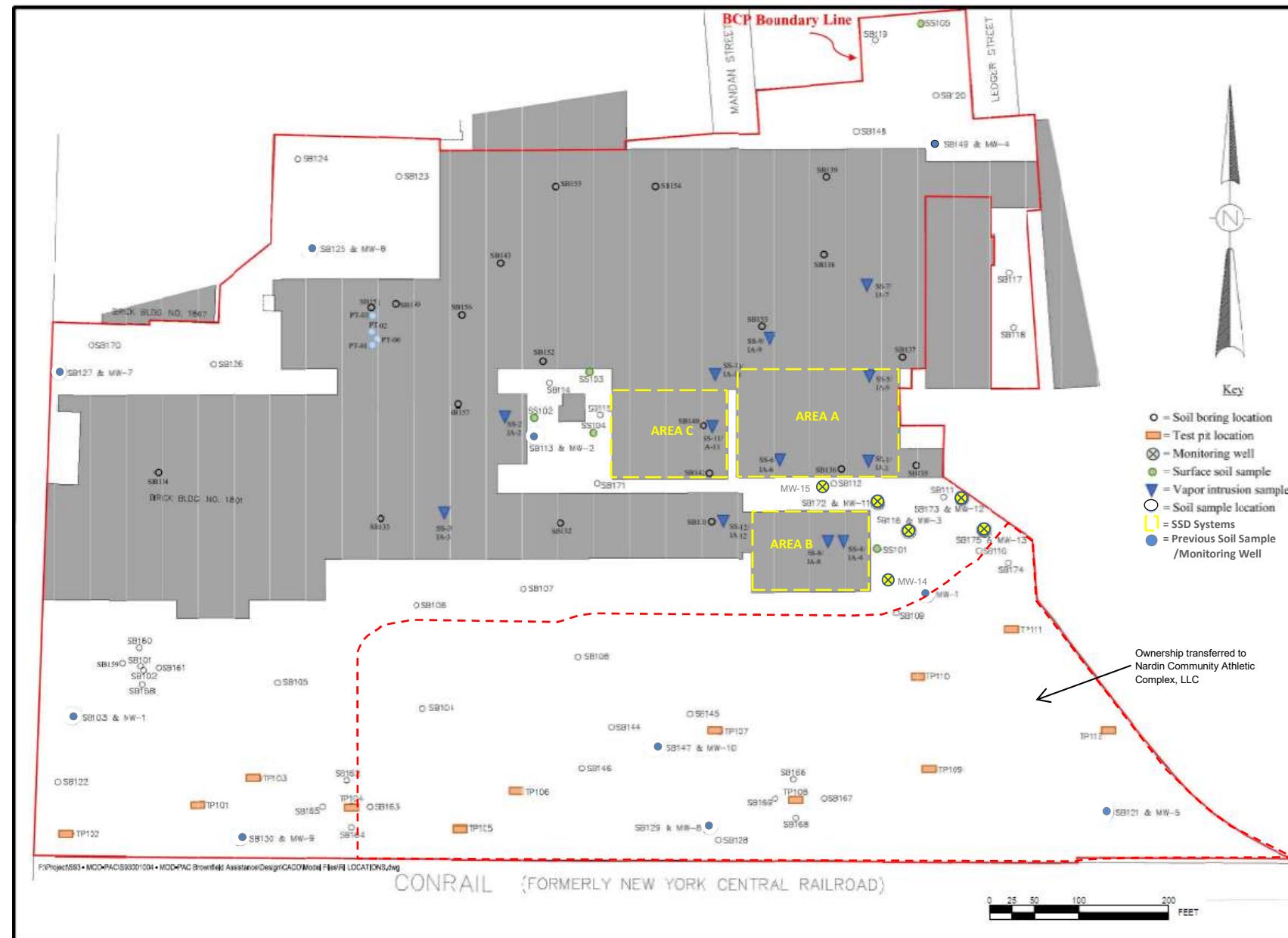
groundwater sampling was completed at monitoring wells MW-3, MW-11, MW-12, and MW-13 in April 2025. Groundwater monitoring is no longer addressed in quarterly reports.

CORRECTIVE MEASURES

There are no corrective measures to report for the 2nd quarter 2025.

CONCLUSIONS

During the 2nd quarter of 2025, the target vacuum of at least 0.002 inches WC was achieved at all active VMPs with the exception of VMP-1B in April; however, the target vacuum was achieved at this location the following month.


Overall target chlorinated VOC (cVOC) reduction in Area A was 96.67% and concentrations of VOCs in the Area A system effluent are well below applicable emissions limits. Therefore, carbon replacement is not needed at this time. There are no corrective actions to report for the monitoring period.

The SSD systems in Area A, Area B, and Area C appear to be functioning as designed. System inspections, monitoring, and sampling will continue according to the frequencies detailed in the SMP. The external piping to the blower in Area C will be insulated before winter 2025 to reduce the likelihood of freezing water in the system process piping. As per the April 9, 2025 Site Management (SM) – Periodic Review Report (PRR) Response Letter, VMP-6A, VMP-8A, and VMP-5B will be decommissioned during the 3rd quarter of 2025.

LIST OF ATTACHMENTS

- Table 1: Q2 2025 Summary
- Table 2A: SSD System Post Installation Monitoring Results Area A
- Table 2B: SSD System Post Installation Monitoring Results Area B
- Table 2C: SSD System Post Installation Monitoring Results Area C
- Table 3: Summary of Air Analytical Testing Results June 2025
- Table 4: Summary of Area A Pre/Post Carbon and Area B Effluent Air Analytical Testing Results

- Figure 1: BCP Site Plan
- Figure 2A: Area A SSD System Layout and Piping Diagram
- Figure 2B: Area B SSD System Layout and Piping Diagram
- Figure 2C: Area C SSD System Layout and Piping Diagram

- Appendix A: Laboratory Analytical Report

FIGURES

MATRIX ENVIRONMENTAL TECHNOLOGIES, INC.

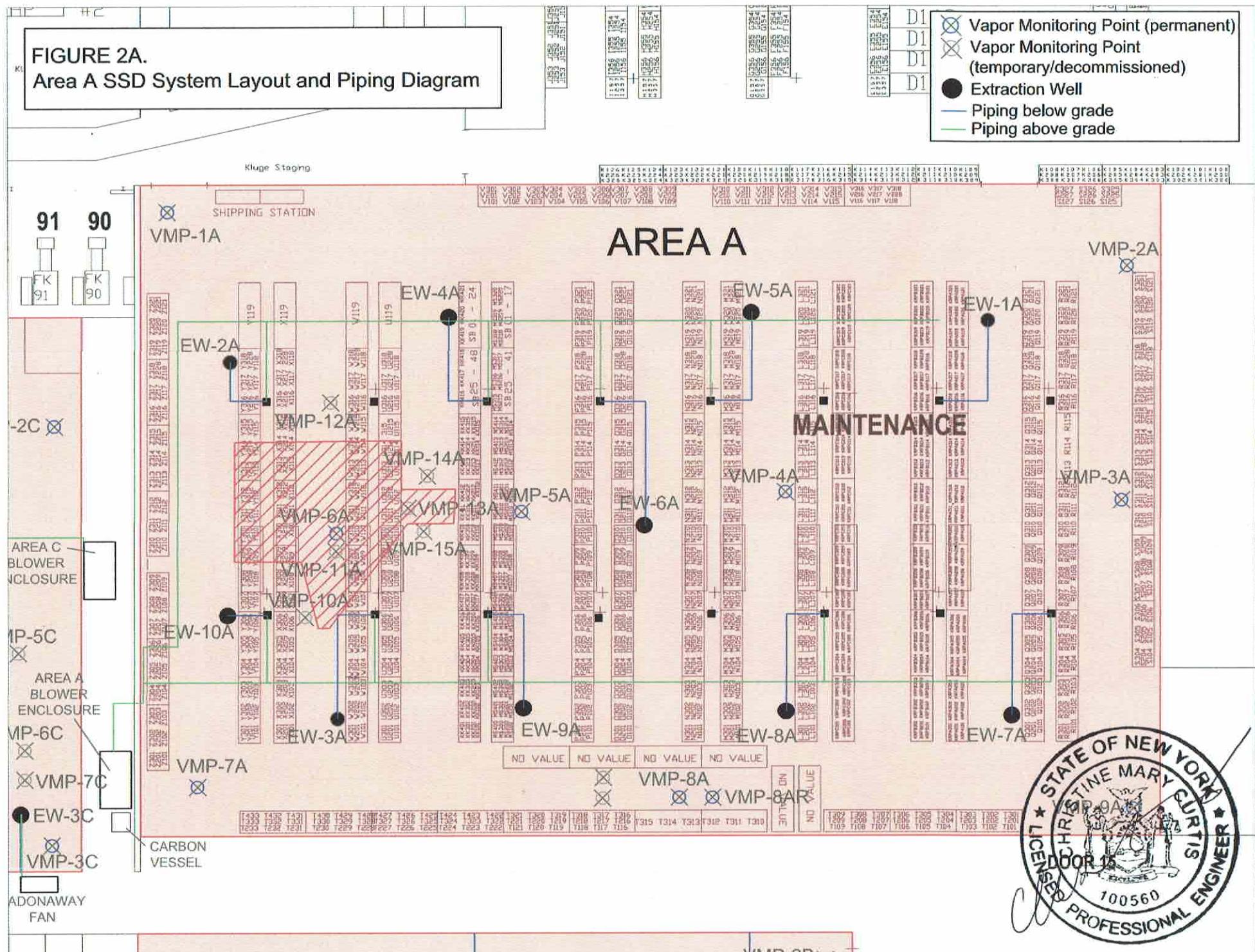
BCP SITE PLAN MOD-PAC, CORP.

1801 ELMWOOD AVENUE
BUFFALO, NEW YORK

DRAW

WN BY: MS SCALE: NOT TO SCALE

PROJECT: 15-017


CHECKED BY: C

RECORDED BY: CC DATE: 04/2025

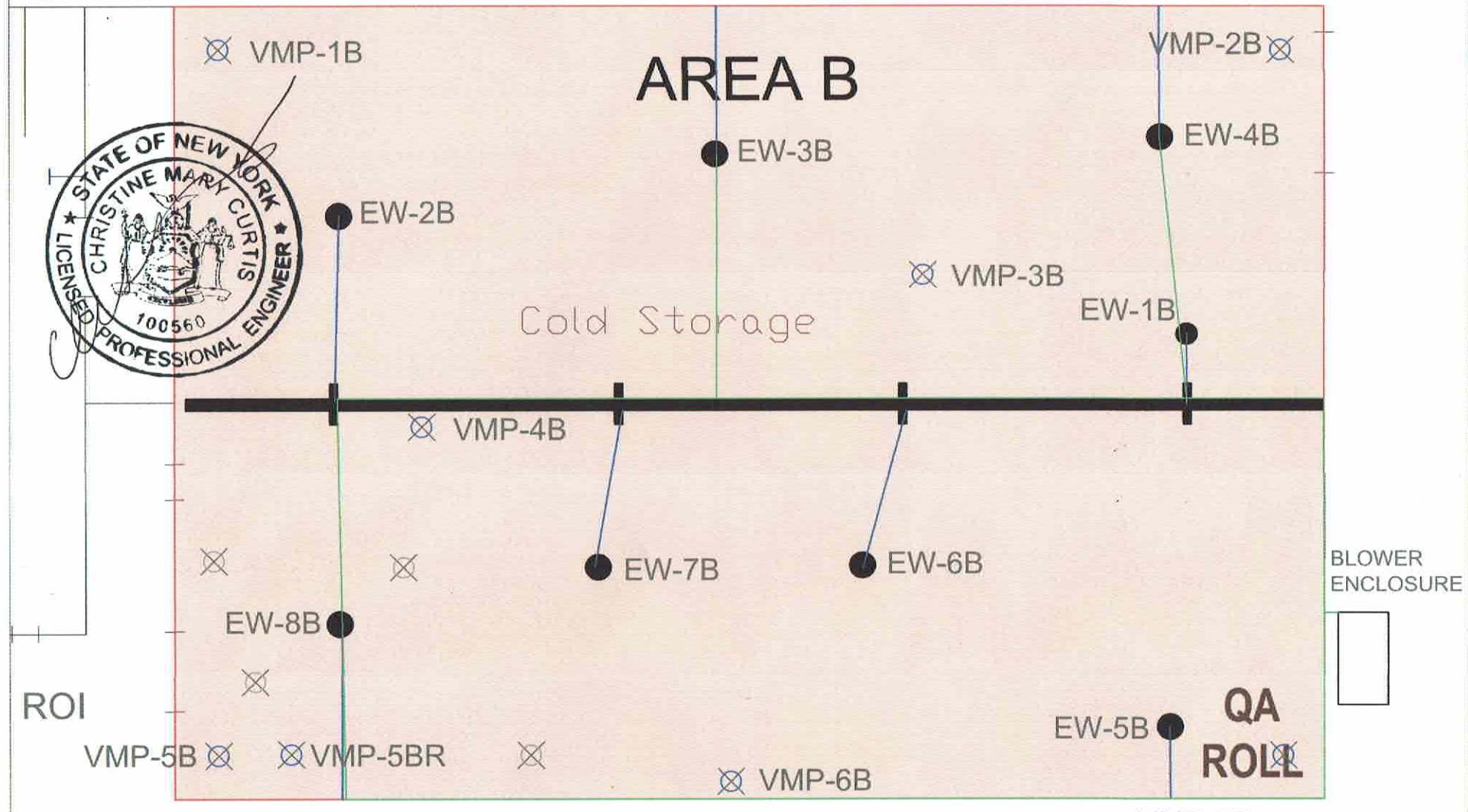

FIGURE NO: 1

Figure adapted from Figure 3 within the Site Management Plan for MOD-PAC BCP Site No. C915314

FIGURE 2A.
Area A SSD System Layout and Piping Diagram

FIGURE 2B.
Area B SSD System Layout and Piping Diagram

- ⊗ Vapor Monitoring Point (permanent)
- ⊗ Vapor Monitoring Point (temporary/decommissioned)
- Extraction Well
- Piping below grade
- Piping above grade

TABLES

Table 1
MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY
SSDS Post Installation Monitoring Results
June Q2 2025 Summary

Area A - Finished Product Storage Area

Date	Extraction Wells (in WC)										Blower (in WC)	Pre-carbon PID Reading (ppm)	Post-carbon PID Reading (ppm)
	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A			
6/30/2025	20.0	20.0	20.0	20.0	20.0	0.0	20.0	21.0	20.0	20.0	32.0	0.0	0.0

Date	Vapor Monitoring Points (in WC)							
	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-7A	VMP-8AR	VMP-9A
6/30/2025	-0.103	-0.076	-0.111	-0.162	-0.071	-0.049	-0.022	-0.128

Area B - Cold Storage Garage

Date	Extraction Wells (in WC)								Blower (in WC)	System Effluent PID Reading (ppm)
	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B		
6/30/2025	39.0	40.0	40.0	40.0	40.0	41.0	39.0	39.0	54.0	0.0

Date	Vapor Monitoring Points (in WC)						
	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5BR	VMP-6B	VMP-7B
6/30/2025	-0.015	-0.044	-0.381	-0.403	-0.002	-0.014	-0.330

Area C - Maintenance Area

Date	Extraction Wells (in WC)			Blower (in WC)	System Effluent PID Reading (ppm)		
	EW-1C	EW-2C	EW-3C		EW-1C	EW-2C	EW-3C
6/30/2025	43.0	45.0	29.0	52.0	0.0	0.0	0.0

Date	Vapor Monitoring Points (in WC)					
	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
6/30/2025	-0.062	-0.102	-0.020	-0.079	-0.128	-0.048

Note:

1. in WC = inches water column; ppm = parts per million;

Table 2A
 MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY
 SSDS Monitoring Results
 Area A - Finished Product Storage Area

Date	Extraction Wells (in WC)										Blower (in WC)	Pre-carbon PID Reading (ppm)	Post-carbon PID Reading (ppm)
	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A			
9/26/2019	14.5	14.5	15.5	14.5	15.0	1.0	14.5	15.0	14.5	15.5	12.0	3.3	1.5
10/3/2019	14.0	14.0	15.0	14.0	14.0	1.0	14.0	15.0	14.0	15.0	12.0	52.6	12.7
10/9/2019	13.0	13.5	14.0	13.5	13.5	1.0	13.5	14.0	13.5	14.5	13.0	0.0	0.0
11/5/2019	11.5	12.0	12.5	11.5	12.0	1.0	12.0	12.0	11.5	12.5	10.0	4.7	0.5
12/3/2019	11.0	11.5	12.0	11.0	11.5	1.0	11.5	11.5	11.5	12.0	10.0	1.0	0.1
1/2/2020												0.2	0.0
2/1/2020	10.0	10.5	11.0	10.5	11.0	1.0	11.0	11.0	10.5	11.5	9.0	0.5	0.0
3/27/2020	10.0	10.0	11.0	10.5	11.0	1.0	10.5	10.5	10.0	11.0	8.0	47.8	27.1
6/29/2020	13.0	13.0	13.5	13.0	13.0	1.0	13.0	13.0	13.0	13.5	14.0	0.4	0.4
7/3/2020												0.0	0.0
9/5/2020	13.5	14.0	14.5	14.0	14.0	1.0	14.0	14.5	14.5	15.0	14.0	2.7	1.1
10/5/2020												7.8	4.6
11/4/2020												0.0	0.0
12/8/2020	12.5	13.0	13.5	13.0	13.0	1.0	13.0	14.0	13.0	14.0	12.0	0.6	0.0
1/4/2021												0.4	0.0
2/18/2021												1.0	0.0
3/30/2021	13.0	14.0	14.0	14.0	14.0	0.0	14.0	14.0	14.0	15.0	12.0	0.0	0.0
4/14/2021												0.4	0.0
5/20/2021												0.4	0.0
6/11/2021	16.0	16.0	16.0	16.0	16.0	0.0	16.0	17.0	17.0	17.0	15.0	0.1	0.0
7/1/2021												16.0	0.0
8/25/2021												18.0	0.0
9/8/2021	17.0	17.0	18.0	18.0	17.0	0.0	18.0	18.0	18.0	18.0	16.0	0.3	0.0
10/20/2021												0.0	0.0
11/19/2021												0.0	0.0
12/10/2021	16.0	16.0	17.0	16.0	17.0	0.0	17.0	17.0	17.0	17.0	15.0	7.6	0.0
1/11/2022												19.0	0.0
2/2/2022												0.08	0.0
3/10/2022	15.5	16.5	17.0	16.5	16.5	1.0	16.5	17.0	17.0	17.0	12.0	0.0	0.0
4/21/2022												19.0	0.0
5/16/2022												18.0	0.0
6/6/2022	16.0	17.0	17.0	16.0	17.0	0.0	17.0	17.0	17.0	17.0	19.0	0.0	0.0
7/28/2022												19.0	1.4
8/26/2022												19.0	0.5
9/2/2022	18.0	18.0	19.0	18.0	18.0	0.0	18.0	19.0	19.0	19.0	18.0	1.2	0.1
10/13/2022	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	19.0	19.0	0.2	0.0
11/7/2022	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	18.0	19.0	0.0	0.0
12/9/2022	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	18.0	19.0	0.0	0.0
1/31/2023	16.0	17.0	18.0	17.0	17.0	0.0	17.0	18.0	17.0	17.0	18.0	0.0	0.0
2/21/2023	16.0	17.0	18.0	17.0	17.0	0.0	17.0	18.0	17.0	17.0	18.0	0.0	0.0
3/10/2023	18.0	18.0	18.0	18.0	18.0	0.0	18.0	18.0	18.0	18.0	19.0	0.0	0.0
4/6/2023												20.0	0.0
5/17/2023												20.0	0.0
6/20/2023	17.0	18.0	19.0	18.0	18.0	0.0	18.0	19.0	18.0	19.0	20.0	0.3	0.1
7/5/2023												20.0	0.0
8/17/2023												21.0	0.0
9/3/2023	19.0	20.0	20.0	20.0	19.0	0.0	20.0	20.0	20.0	20.0	20.0	0.2	0.0
10/3/2023												22.0	0.2
11/11/2023												20.0	0.1
12/12/2023	17.0	18.0	19.0	18.0	19.0	0.0	18.0	20.0	17.0	19.0	20.0	0.1	0.0
1/12/2024												21.0	1.4
2/8/2024												21.0	1.1
3/12/2024	17.0	18.0	19.0	18.0	18.0	0.0	18.0	20.0	19.0	19.0	21.0	0.3	0.0
4/9/2024												22.0	0.6
4/15/2024	18.0	19.0	20.0	19.0	18.0	0.2	19.0	20.0	19.0	20.0	23.0	0.1	0.0
5/20/2024												21.0	0.1
6/13/2024	17.0	17.0	18.0	17.0	17.0	0.0	18.0	19.0	17.0	18.0	21.0	0.0	0.0
7/1/2024												21.0	0.5
8/6/2024												21.0	5.1
9/8/2024	18.0	19.0	19.0	19.0	18.0	0.0	18.0	20.0	19.0	19.0	21.0	1.3	0.2
10/16/2024												20.0	0.5
11/15/2024												21.0	1.5
12/23/2024	12.0	13.0	13.0	12.0	12.0	0.0	13.0	14.0	13.0	13.0	12.0	1.2	0.0
1/23/2025												17.0	0.1
2/19/2025												18.0	0.0
3/2/2025	16.0	16.0	17.0	16.0	16.0	1.0	15.0	17.0	16.0	17.0	19.0	0.0	0.0
4/16/2025	12.0	17.0	18.0	17.0	17.0	0.0	17.0	18.0	17.0	17.0	22.0	0.2	0.0
5/28/2025												24.0	0.0
6/30/2025	20.0	20.0	20.0	20.0	20.0	0.0	20.0	21.0	20.0	20.0	32.0	0.0	0.0

Date	Vapor Monitoring Points (in WC)								VMP-5A	VMP-7A	VMP-8A	VMP-9A
	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-6A	VMP-7A	VMP-8A				
9/26/2019	-0.066	-0.044	-0.075	-0.161	-0.116	-0.128	-0.025		-0.173			
10/3/2019	-0.065	-0.037	-0.053	-0.139	-0.116	-0.016	-0.025		-0.105			
10/9/2019	-0.061	-0.034	-0.045	-0.110	-0.103	-0.020			-0.100			
11/5/2019	-0.041	-0.029	-0.023	-0.067	-0.062	-0.013			-0.067			
12/3/2019	0.045	-0.025	-0.031	-0.065	-0.056	-0.010			-0.054			
2/11/2020	0.037	-0.020	0.015	-0.045	-0.036	+ 0.000			-0.037			
3/27/2020	0.025	-0.023	0.016	-0.032	-0.032	+ 0.000			-0.022			
6/29/2020	0.053	-0.064	0.063	-0.124	-0.080	-0.010			-0.094			
9/15/2020	-0.053	-0.052	0.043	-0.098	-0.033	-0.017			-0.058			
12/8/2020	-0.048	-0.033	-0.026	-0.152	-0.05	+ 0.000			-0.065			
3/30/2021	-0.038	-0.052	-0.032	-0.063	-0.022	-0.020			-0.047			
6/1/2021	-0.073	-0.065	-0.055	-0.105	-0.074	-0.026			-0.074			
9/8/2021	-0.091	-0.088	-0.075	-0.140	-0.086	-0.028			-0.149			
12/10/2021	-0.065	-0.056	-0.043	-0.068	-0.052	-0.017			-0.088			
3/10/2022	-0.045	-0.04	-0.045	-0.080	-0.04	-0.010			-0.097			
6/6/2022	-0.068	-0.060	-0.068	-0.097	-0.056	-0.027			-0.110			
9/22/2022	-0.100	-0.098	-0.105	-0.157	-0.082	-0.032			-0.149			
10/13/2022	-0.069	-0.063	-0.071	-0.126	-0.071	-0.025			-0.122			
11/7/2022	-0.077	-0.063	-0.084	-0.122	-0.059	-0.021			-0.115			
12/9/2022	-0.074	-0.043	-0.046	-0.089	-0.048	-0.022			-0.110			
1/31/2023	-0.059	-0.040	-0.042	-0.067	-0.039	-0.014			-0.078			
2/21/2023	-0.059	-0.048	-0.061	-0.083	-0.040	-0.019			-0.100			
3/10/2023	-0.052	-0.032	-0.054	-0.067	-0.032	+ 0.000			-0.039			
4/12/2023												-0.025
5/17/2023												-0.032
6/20/2023	-0.083	-0.066										

Table 2B
MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY
SSDS Monitoring Results
Area B - Cold Storage Garage

Date	Extraction Wells (in WC)								Blower (in WC)	System Effluent PID Reading (ppm)
	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B		
9/26/2019	13.0	13.5	13.5	14.5	13.5	14.0	13.0	12.0	10.5	1.3
10/3/2019	13.0	13.5	13.5	14.0	13.5	14.0	13.0	12.0	10.0	1.4
10/9/2019	12.5	13.0	13.0	13.5	13.0	13.5	12.0	12.0	10.0	0.0
11/5/2019	12.0	13.0	12.5	13.0	12.5	13.0	11.5	11.0	9.0	0.5
12/3/2019	11.0	11.0	11.0	11.5	11.0	11.5	10.5	10.0	8.0	0.1
1/2/2020										0.0
2/11/2020	12.5	13.0	13.0	13.5	13.0	13.5	12.0	11.5	9.0	0.0
3/27/2020	14.0	15.0	14.0	15.0	15.0	15.0	14.0	13.5	10.0	0.0
6/29/2020	16.0	12.0	17.0	12.5	17.0	17.0	16.0	15.5	16.0	0.0
7/31/2020										0.0
8/28/2020										0.0
9/15/2020	17.0	18.0	17.0	18.0	18.0	18.0	17.0	16.5	16.0	2.7
10/15/2020										0.3
11/4/2020										0.0
12/8/2020	16.5	17.0	17.0	17.0	17.0	16.5	16.0	13.0	0.4	0.0
1/4/2021										0.0
2/18/2021										0.0
3/30/2021	16.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	12.0	0.0
4/14/2021										0.0
5/20/2021										0.1
6/11/2021	18.0	18.0	19.0	20.0	19.0	19.0	18.0	18.0	18.0	0.0
7/1/2021										0.0
8/25/2021										0.0
9/8/2021	20.0	21.0	22.0	23.0	22.0	22.0	21.0	21.0	19.0	0.0
10/20/2021										0.0
11/19/2021										0.0
12/10/2021	20.0	20.0	21.0	21.0	21.0	21.0	20.0	20.0	16.0	0.0
1/11/2022										0.0
2/2/2022										0.0
3/10/2022	22.0	23.0	23.0	23.5	22.5	23.0	22.5	22.0	20.0	0.0
4/21/2022										0.0
5/16/2022										0.0
6/6/2022	26.0	27.0	27.0	28.0	27.0	27.0	26.0	19.0	0.0	0.5
7/28/2022										0.0
8/26/2022										0.0
9/22/2022	28.0	29.0	30.0	30.0	29.0	30.0	29.0	28.0	26.0	2.6
10/13/2022	31.0	32.0	33.0	33.0	32.0	34.0	32.0	32.0	20.0	0.8
11/7/2022	31.0	32.0	33.0	33.0	33.0	34.0	32.0	32.0	18.0	0.0
12/8/2022	32.0	33.0	34.0	34.0	33.0	34.0	33.0	32.0	19.0	0.0
1/31/2023	31.0	32.0	33.0	33.0	32.0	33.0	32.0	32.0	19.0	0.0
2/21/2023	30.0	31.0	32.0	32.0	31.0	32.0	31.0	30.0	26.0	0.0
3/10/2023	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	19.0	0.0
4/6/2023										0.0
5/17/2023										0.0
6/20/2023	31.0	32.0	32.0	33.0	32.0	33.0	32.0	32.0	30.0	0.0
7/5/2023										0.0
8/17/2023										0.0
9/13/2023	37.0	33.0	38.0	36.0	37.0	39.0	37.0	38.0	34.0	0.0
10/3/2023										0.7
11/11/2023										0.0
12/12/2023	36.0	37.0	37.0	38.0	37.0	39.0	37.0	37.0	31.0	0.0
1/12/2024										0.2
2/8/2024										0.1
3/12/2024	36.0	37.0	37.0	38.0	37.0	39.0	37.0	32.0	31.0	0.0
4/9/2024										0.0
4/15/2024	36.0	37.0	38.0	38.0	37.0	38.0	37.0	37.0		0.0
5/8/2024										0.1
6/13/2024	37.0	38.0	38.0	39.0	38.0	39.0	38.0	37.0	21.0	0.0
7/1/2024										0.0
8/6/2024										2.7
9/6/2024	39.0	39.0	40.0	40.0	39.0	40.0	39.0	39.0	39.0	0.0
10/16/2024										1.3
11/15/2024										0.1
12/23/2024	39.0	40.0	40.0	40.0	39.0	41.0	39.0	39.0	33.0	0.2
1/23/2025										0.0
2/19/2025										0.0
3/3/2025	38.0	38.0	39.0	38.0	37.0	40.0	38.0	38.0	50.0	0.0
4/16/2025	38.0	39.0	39.0	40.0	39.0	40.0	37.0	38.0	52.0	0.5
5/28/2025										0.0
6/30/2025	39.0	40.0	40.0	40.0	40.0	41.0	39.0	39.0	54.0	0.0

Date	Vapor Monitoring Points (in WC)							VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B							
9/26/2019	-0.065	-0.419						-0.016	-0.200					
10/3/2019	-0.023	-0.062	-0.303	-0.383				-0.018	-0.196					
10/9/2019	-0.018	-0.055	-0.258	-0.329				-0.010	-0.178					
11/5/2019	-0.016	-0.018	-0.217	-0.271				+0.000	-0.171					
12/3/2019	-0.014	-0.032	-0.114	-0.156				+0.000	-0.136					
2/11/2020	+0.000	-0.040		-0.161				+0.000	-0.072					
3/27/2020	+0.000	-0.040	-0.163	-0.171				-0.010	-0.152					
6/29/2020	-0.018	-0.064	-0.354	-0.343				-0.022	-0.0198					
9/15/2020	-0.017	-0.041	-0.118	-0.361				-0.005	-0.160					
12/8/2020	+0.000	-0.02	-0.137	-0.208				+0.000	-0.203					
3/30/2021	-0.010	-0.045	-0.162	-0.219				-0.010	-0.197					
6/11/2021	-0.045	-0.051	-0.262	-0.903				-0.016	-0.201					
9/8/2021	-0.045	-0.058	-0.285	-1.020				-0.041	-0.060					
12/10/2021	-0.010	-0.40	-0.189	-0.177				+0.000	-0.190					
1/11/2022								-0.012						
3/10/2022	-0.012	-0.032	-0.141	-0.262				+0.000	-0.133					
3/31/2021								-0.014						
6/6/2022	-0.014	-0.050	-0.211	-0.299				-0.016	-0.026					
9/22/2022	-0.019	-0.057	-0.238	-0.328				-0.020	-0.263					
10/13/2022	-0.045	-0.063	-0.123	-0.215				-0.018	-0.131					
11/7/2022	-0.014	-0.057	-0.218	-0.312				-0.016	-0.232					
12/8/2022	-0.017	-0.043	-0.153	-0.298				-0.015	-0.156					
1/31/2023	-0.009	-0.044	-0.187	-0.279				-0.012	-0.158					
2/21/2023	-0.10	-0.045		-0.299				-0.014	-0.165					
3/10/2023	-0.015	-0.030	-0.046	-0.266				-0.015	-0.035					
6/20/2023	-0.012	-0.045	-0.237	-0.350				-0.017	-0.207					
9/13/2023	-0.016	-0.062	-0.433					-0.018	-0.284					
11/11/2023				-0.087										
12/12/2023	-0.016	-0.035	-0.089	-0.319				-0.018	-0.257					
3/12/2024	+0.000	-0.001	-0.006	-0.012				+0.000	-0.009					
4/9/2024	+0.000							-0.016						
4/15/2024	-0.036	-0.101	-0.652	-0.864	-0.058	-0.038	-0.695							
6/13/2024	-0.018	-0.047	-0.293	-0.376	-0.026	-0.020	-0.290							
9/6/2024	-0.018	-0.052	-0.350	-0.373	-0.029	-0.015	-0.297							
12/23/2024	-0.088	-0.108	-0.362	-0.403	-0.012	-0.014	-0.308							
2/19/2025	-0.165													
3/3/2025	-0.028	-0.107	-0.207	-0.221	+0.000	-0.166								
4/16/2025	+0.000	-0.028	-0.204	-0.025	-0.015	-0.010	-0.167							
5/28/2025	-													

Table 2C
MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY
SSDS Monitoring Results
Area C - Maintenance Area

Date	Extraction Wells (in WC)			Effluent PID Reading (ppm)		
	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C
9/26/2019	43.0	40.0		1.4	0.7	
10/3/2019	44.0	45.0		1.0	4.5	
10/9/2019	44.5	45.5		0.0	0.0	
11/5/2019	44.0	46.0		0.0	0.4	
12/3/2019		39.0	28.0		1.2	0.4
1/22/2020					0.4	0.0
2/11/2020	31.0	30.0	27.5	0.2	0.0	0.0
3/27/2020	29.0	32.0	28.0	0.0	0.0	0.0
6/29/2020	27.0	31.0	29.0	0.0	0.0	0.0
7/31/2020				0.0	0.0	0.0
8/26/2020				0.0	0.0	0.0
9/15/2020	28.5	31.0	29.0	0.0	0.0	0.0
10/15/2020				0.0	0.0	0.0
11/4/2020				0.0	0.0	0.0
12/8/2020	31.0	31.0	29.0	0.0	0.0	0.0
1/4/2021				0.0	0.0	0.0
2/18/2021					0.0	
3/30/2021		32.0	30.0		0.0	0.0
4/14/2021					0.1	0.0
5/20/2021				0.0	0.0	0.0
6/11/2021	23.0	31.0	30.0	0.0	0.0	0.0
7/1/2021				0.0	0.0	0.0
8/25/2021				0.0	0.0	0.0
9/8/2021	29.0	31.0	30.0	0.0	0.0	0.0
10/20/2021				0.0	0.0	0.0
11/19/2021				0.0	0.0	0.0
12/1/2021	30.0	32.0	30.0	4.7	0.0	0.0
1/11/2022				0.0	0.0	0.0
2/2/2022				0.0	0.0	0.0
3/10/2022	11.0	32.0	31.0	0.0	0.0	0.0
4/21/2022				0.0	0.0	0.0
5/16/2022				0.0	0.0	0.0
6/6/2022	28.0	31.0	32.0	0.0	0.0	0.0
7/28/2022				1.5	0.7	0.1
8/26/2022				0.1	0.0	0.0
9/22/2022	29.0	31.0	32.0	0.0	0.0	0.0
10/1/2022	29.0	31.0	0.0	0.0	0.0	0.0
11/7/2022	29.0	31.0	0.0	0.0	0.0	0.0
12/9/2022	30.0	30.0	30.0	0.0	0.0	0.0
1/31/2023	0.0	0.0	30.0			0.0
3/10/2023	0.0	0.0	30.0	0.0	0.0	0.0
4/6/2023				28.0		0.0
5/17/2023				27.0		0.0
6/20/2023	0.0	0.0	29.0	0.0	0.0	0.0
7/5/2023			29.0			0.0
8/17/2023			29.0			0.3
9/13/2023	0.0	0.0	29.0	0.0	0.0	0.0
10/3/2023	35.0	38.0	30.0	27.9	6.7	1.0
11/1/2023	33.0	36.0	29.0	1.1	2.1	0.0
12/1/2023	34.0	37.0	29.0	4.7	2.5	0.1
1/12/2024	34.0	35.0	30.0	2.3	1.8	0.4
2/8/2024	43.0	46.0	30.0	1.6	1.2	0.2
3/12/2024	43.0	46.0	31.0	3.8	2.8	0.5
4/9/2024	44.0	46.0	30.0	0.4	0.0	0.0
4/15/2024	43.0	45.0	30.0	0.0	0.0	0.0
5/8/2024	43.0	45.0	30.0	0.4	0.3	10.3
Date	Extraction Wells (in WC)			Blower (in WC)	Effluent PID Reading (ppm)	
	EW-1C	EW-2C	EW-3C	Blower	EW-1C	EW-2C
6/13/2024	42.0	45.0	29.0	44.0	1.5	0.8
7/1/2024	44.0	45.0	30.0	45.0	0.1	0.0
8/6/2024	44.0	45.0	29.0	45.0	1.7	1.8
9/6/2024	42.0	45.0	30.0	46.0	0.7	0.8
10/16/2024	44.0	47.0	30.0	48.0	2.1	0.6
Date	Extraction Wells (in WC)			Blower (in WC)	Effluent PID Reading (ppm)	
	EW-1C	EW-2C	EW-3C	Blower	EW-1C	EW-3C
1/1/2024	44.0	47.0	31.0	47.0		
1/23/2024	5.0	9.0	30.0	10.0	9.8	0.2
2/19/2025	8.0	11.0	32.0	60.0		
3/9/2025	18.0	40.0	30.0	54.0	0.0	0.0
4/16/2025	33.0	35.0	30.0	40.0	6.1	0.0
5/28/2025	43.0	45.0	30.0	40.0	0.0	0.0
6/30/2025	43.0	45.0	29.0	52.0	0.0	0.0
Date	Vapor Monitoring Points (in WC)					
	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
9/26/2019	- 0.046	+ 0.085	+ 0.060	- 0.061		
10/3/2019	- 0.055	- 0.062	+ 0.069	- 0.081		
10/9/2019	- 0.037	+ 0.075	+ 0.090	- 0.060		
11/5/2019	- 0.042	+ 0.067	+ 0.090	- 0.067		
12/3/2019	+ 0.000	0.027	- 0.026	+ 0.004	- 0.045	+ 0.018
2/11/2020	- 0.019	- 0.026	- 0.032	- 0.038	- 0.045	- 0.020
3/27/2020	- 0.019	- 0.033	- 0.038	- 0.029	- 0.060	- 0.021
6/28/2020	- 0.019	- 0.050	- 0.040	- 0.040	- 0.018	- 0.061
9/15/2020	- 0.012	- 0.040	- 0.038	- 0.024	- 0.039	- 0.017
12/8/2020	- 0.012	- 0.038	- 0.026	- 0.021	- 0.038	- 0.016
3/30/2021	+ 0.000	- 0.022	- 0.037	+ 0.000	- 0.025	- 0.020
6/11/2021	- 0.020	- 0.054	- 0.039	- 0.024	- 0.058	- 0.097
9/8/2021	- 0.049	- 0.042	- 0.040	- 0.075	- 0.066	- 0.022
12/1/2021	- 0.026	- 0.040	- 0.038	- 0.021	- 0.059	- 0.025
2/2/2022	+ 0.000	- 0.028	- 0.038	- 0.012	- 0.034	- 0.019
3/10/2022	+ 0.000	- 0.031	- 0.038	+ 0.000	- 0.042	- 0.022
3/31/2022	- 0.021			- 0.030		
6/6/2022	- 0.019	- 0.058	- 0.037	- 0.024	- 0.076	- 0.039
9/22/2022	- 0.021	- 0.059	- 0.041	- 0.018	- 0.086	- 0.046
10/1/2022	- 0.033	- 0.042	+ 0.000	- 0.044	- 0.044	+ 0.000
11/7/2022	- 0.016	- 0.048	+ 0.000	- 0.023	- 0.055	+ 0.000
12/8/2022	- 0.041	- 0.030	- 0.039	- 0.045	- 0.056	- 0.022
3/10/2023	+ 0.000	+ 0.000	- 0.031	+ 0.000	- 0.045	- 0.019
6/20/2023	+ 0.000	+ 0.000	- 0.029	+ 0.000	- 0.024	- 0.040
9/13/2023	+ 0.000	+ 0.000	- 0.03	+ 0.000	- 0.019	- 0.038
10/3/2023	- 0.036	- 0.063		- 0.040		
11/1/2023	- 0.024	- 0.044	- 0.046	- 0.043	- 0.162	- 0.108
12/1/2023	- 0.016	- 0.046	- 0.024	- 0.028	- 0.063	- 0.032
3/12/2024	- 0.051	- 0.073	- 0.028	- 0.069	- 0.067	- 0.025
4/15/2024	- 0.091	- 0.203	- 0.059	- 0.163	- 0.214	- 0.078
6/13/2024	- 0.035	- 0.081	- 0.021	- 0.066	- 0.102	- 0.042
9/6/2024	- 0.051	- 0.094	- 0.023	- 0.073	- 0.124	- 0.047
12/23/2024	+ 0.000	- 0.008	- 0.013	+ 0.000	- 0.600	- 0.028
2/19/2025	- 0.013			+ 0.000		
3/3/2025	- 0.023	- 0.044	+ 0.000	- 0.010	- 0.019	+ 0.000
4/16/2025	- 0.047	- 0.048	- 0.019	- 0.059	- 0.057	- 0.016
6/30/2025	- 0.062	- 0.102	- 0.020	- 0.079	- 0.128	- 0.048

Note:

1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC

2. Blank space indicates that data was not collected

3. in WC = inches water column; ppm = parts per million;

4. Please note: The extraction system in area C was operated by fans from 2019-2023. In

August 2023, the fans at EW-1C and EW-2C were removed, and a 1.5 hp blower was

installed. EW-3C continues to be operated by a fan.

Table 3
MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY
Summary of Air Analytical Testing Results

Parameter	June 2025 - L2540965	
	AREA A-PRE (063025)	AREA A-POST (063025)
Volatile Organic Compounds (ug/m³)		
1,1,1-Trichloroethane	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND
1,1,2-Trichloroethane	ND	ND
1,1-Dichloroethane	ND	ND
1,1-Dichloroethene	ND	ND
1,2,4-Trichlorobenzene	ND	ND
1,2,4-Trimethylbenzene	7.18	ND
1,2-Dibromoethane	ND	ND
1,2-Dichlorobenzene	ND	ND
1,2-Dichloroethane	ND	ND
1,2-Dichloropropane	0.966	ND
1,3,5-Trimethylbenzene	1.87	ND
1,3-Butadiene	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
1,4-Dioxane	1.59	ND
2,2,4-Trimethylpentane	1.36	ND
2-Butanone	7.73	2.03
2-Hexanone	ND	ND
3-Chloropropene	ND	ND
4-Ethyltoluene	ND	ND
4-Methyl-2-pentanone	ND	ND
Acetone	133	31.8
Benzene	1.45	0.898
Benzyl chloride	ND	ND
Bromodichloromethane	ND	ND
Bromoform	ND	ND
Bromomethane	ND	ND
Carbon disulfide	3.36	1.19
Carbon tetrachloride	ND	ND
Chlorobenzene	ND	ND
Chloroethane	ND	ND
Chloroform	1.99	2.35
Chloromethane	0.65	0.661
cis-1,2-Dichloroethene	3.43	8.13
cis-1,3-Dichloropropene	ND	ND
Cyclohexane	102	ND
Dibromochloromethane	ND	ND
Dichlorodifluoromethane	2.47	2.25
Ethyl Alcohol	25.2	22
Ethyl Acetate	50.5	28.8
Ethylbenzene	1.5	ND
Freon-113	ND	ND
Freon-114	ND	ND
Heptane	1.59	ND
Hexachlorobutadiene	ND	ND
iso-Propyl Alcohol	536	563
Methyl tert butyl ether	ND	ND
Methylene chloride	ND	ND
n-Hexane	ND	ND
Naphthalene	81.8	4.37
o-Xylene	2.11	ND
p/m-Xylene	4.86	ND
Styrene	5.11	ND
tert-Butyl Alcohol	12.4	ND
Tetrachloroethene	2.49	1.75
Tetrahydrofuran	1.77	1.78
Toluene	34.9	3.37
trans-1,2-Dichloroethene	ND	1.88
trans-1,3-Dichloropropene	ND	ND
Trichloroethene	291	ND
Trichlorofluoromethane	112	26.9
Vinyl bromide	ND	ND
Vinyl chloride	ND	ND

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in the Appendix.
2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
3. Results present in ug/m³ or microgram per cubic meter.
4. Parameters shaded in red indicate analytes of concern (Target cVOCs)
5. Results in red indicate higher post-carbon readings over pre-carbon readings
6. Blank results = No Value Above Detection Limit

Table 4
MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY
Summary of Area A Pre/Post Carbon and Area B Effluent Air Analytical Testing Results

Parameter	October 2019 - L1946093			November 2019 - L1952487			December 2019 - L1957660			February 2020 - L2006152			June 2020 - L2027736			September 2020 - L2038512			October 2020 - L2054640			December 2020 - L2115934			June 2021 - L2131935			September 2021 - L2148116			December 2021 - L2168195			March 2022 - L212728		
	AREA A - PRE	AREA A - POST	AREA B	AREA A - PRE (110519)	AREA A - POST (110519)	AREA-B (110519)	AREA A - PRE (120319)	AREA A - POST (120319)	AREA B (120319)	AREA A - PRE (02120)	AREA A - POST (021120)	AREA B (120319)	AREA A - PRE (063020)	AREA A - POST (063020)	AREA B (091520)	AREA A - PRE (091520)	AREA A - POST (091520)	09/23/2020	AREA A - PRE (120820)	AREA A - POST (033021)	AREA A - PRE (033021)	AREA A - POST (061121)	AREA A - PRE (090821)	AREA A - POST (090821)	09/20/2021	AREA A - PRE (121021)	AREA A - POST (121021)	AREA A - PRE (031022)	AREA A - POST (031022)							
Volatile Organics in Air (ug/m³)																																				
1,1,1-Trichloroethane	1.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,1-Dichloroethene	94.8	ND	4.52	35.5	ND	ND	41.6	5.55	0.979	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,2,4-Triethylbenzene	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,3,5-Trimethylbenzene	1	ND	ND	ND	ND	ND	ND	ND	ND	7.87	4.7	10.2	5.7	4.75	14.5	17.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
1,3-Butadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
2,2,4-Trimethylpentane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
2-Butanone	9.88	ND	3.07	4.13	ND	ND	5.28	ND	ND	4.04	ND	ND	6.25	2.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
3-Chloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
4-Ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Acetone	59.4	10.5	22.7	49.9	ND	ND	69.8	75.5	4.44	13.3	87.4	ND	ND	53.4	100	10.6	26.6	9.95	195	12.3	73.6	12.5	73.6	20.7	38.2	40.4	108	29.2	134	10.6	10.6	10.6				
Benzene	0.891	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Benzyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Bromofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Carbon disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Chloroform	14.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Chloromethane	0.591	0.745	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
cis-1,2-Dichloroethene	88.8	ND	ND	33.5	ND	ND	41.6	5.55	0.979	ND	ND	22.5	ND	ND	26.1	63	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Cyclohexane	4.23	ND	ND	2	ND	ND	2.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Dibromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Dichlorodifluoromethane	1.99	1.78	1.98	2.13	ND	ND	2.1	2.93	ND	ND	1.47	1.99	ND	ND	2.15	ND	1.61	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
Ethyl Alcohol	14.3	23.4	16	22.2	ND	ND	61.6	43.5	34.5	10.3	63.7	20	60.4	6.65	5.13	17.9	13.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Ethylbenzene	1.58	ND	0.973	2.32	ND	ND	3.54	ND	ND	37.6	20	60.4	6.65	5.13	17.9	13.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Freon-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Freon-114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
Heptane	14.3	ND																																		

Table 4
MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY
Summary of Area A Pre/Post Carbon and Area B Effluent Air Analytical Testing Results

Parameter	June 2022 - L2229574		September 2022 L2252350		December 2022 - L2269445		March 2023 - L231615		June 2023 - L2335506		September 2023 - L235358		December 2023 - L2373555		March 2024 - L2413550		June 2024 - L2434419		September 2024 - L2453073		December 2024 - L2475127		March 2025 - L2511625		June 2025 - L2540965				
	AREA A - PRE (060622)	AREA A - POST (060622)	AREA A - PRE (092222)	AREA A - POST (092222)	AREA A - PRE (120922)	AREA A - POST (120922)	AREA A - PRE (030823)	AREA A - POST (030823)	AREA A - PRE (062023)	AREA A - POST (062023)	AREA A - PRE (091323)	AREA A - POST (091323)	AREA A - PRE (121223)	AREA A - POST (121223)	AREA A - PRE (031224)	AREA A - POST (031224)	AREA A - PRE (061824)	AREA A - POST (061824)	07/18/2024	AREA A - PRE (091624)	AREA A - POST (091624)	AREA A - PRE (121924)	AREA A - POST (120325)	AREA A - PRE (063025)	AREA A - POST (063025)				
CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT	CARBON CHANGEOUT			
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2,4-Trimethylbenzene	ND	9.83	4.33	4.39	2.89	3.58	2.16	ND	5.8	4.78	4.35	3.34	4.24	2.3	10.9	3.06	9.98	23.2	16.4	14.4	3.29	1.56	34.5	7.18	ND	ND	ND		
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethane	ND	0.999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,3-Dibromopropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,4-Dibromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,2,4-Trimethylpentane	ND	ND	1.22	ND	2.08	ND	4.13	ND	4.98	1.79	4.16	2.01	1.86	ND	2.66	ND	6.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Butanone	ND	3.27	2.92	3.16	3.30	ND	3.71	ND	5.15	1.34	5.19	4.32	3.85	3.16	2.34	4.24	6.54	24.8	4.26	2.88	2.96	2.12	3.43	1.65	ND	ND	ND		
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
3-Chloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Ethyltoluene	ND	1.85	ND	ND	ND	ND	ND	ND	1.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Methyl-2-pentanone	ND	ND	3.43	ND	ND	ND	ND	ND	2.42	ND	5.49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Acetone	668	58.7	69.6	33.5	196	17.3	466	23.6	112	19.1	62.5	15.9	80.8	18.3	236	37.8	143	130	195	32.5	55.8	18.5	195	14.8	133	31.8	ND		
Benzene	ND	1.53	1.56	ND	1.83	0.757	1.45	ND	1.8	1.04	1.29	0.652	0.706	ND	1.04	ND	1.87	5.81	2.18	3.51	4.12	ND	ND	ND	ND	1.45	0.898	ND	
Benzyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon disulfide	7.51	3.74	8.16	6.26	4.20	0.782	ND	3.21	7.29	2.3	6.17	1.89	3.89	1.4	0.772	0.866	5.89	24.2	3.67	10.3	0.897	3.21	1.19	0.688	3.36	1.19	ND		
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chlorobenzene	ND	ND	0.953	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chloroform	21.6	1.67	14	31.3	24.4	ND	18.9	ND	15.1	3.97	15.1	3.63	9.96	1.87	4.44	5.57	26.2	2.51	ND	1.33	1.2	1.99	2.35	ND	ND	ND	ND		
Chloromethane	ND	0.812	0.849	0.518	0.748	0.731	ND	0.772	0.776	0.653	0.586	0.69	0.578	1.39	0.64	2.03	3.63	2.16	2.88	0.98	0.549	0.595	0.679	0.781	0.65	0.661	ND		
cis-1,2-Dichloroethene	ND	0.599	5.27	6.03	3.30	ND	3.71	ND	5.15	1.34	5.19	4.32	3.85	3.16	2.34	4.24	6.54	24.8	4.28	2.88	2.96	2.12	3.43	8.13	ND	ND	ND		
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Cyclohexane	ND	ND	0.981	ND	0.898	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dichlorodifluoromethane	ND	3.12	3.2	2.27	2.61	ND	2.53	ND	2.84	3.19	2.91	2.33	1.44	2.62	2.2	2.19	2.85	4.03	7.22	2.36	2.32	2.18	2.37	2.22	2.11	2.47	2.25	ND	
Ethyl Alcohol	148	119	126	63.8	127	ND	144	ND	170	178	161	51.8	43	28.6	52	107	87.1	50.9	166	59.7	62.7	45.6	52.2	46.9	53.3	25.2	22	ND	
Ethyl Acetate	ND	3.6	4.42	ND	3.95	4.24	ND	4.08	2.24	4.24	4.23	1.51	1.51	3.14	1.45	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	ND	
Ethylbenzene	ND	3.71	2.21	4.12	ND	2.41	2.69	ND	4.08	2.24	4.24	4.23	1.51	1.51	3.14	1.45	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	ND	
Freon-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Freon-114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Heptane	ND	1.75	1.79	ND	9.02	ND	18	ND	1.36	ND	1.23	ND	2.19	ND	8.11	0.91	3.75	4.67	11.4	2.75	5.33	42.6	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
iso-Propyl Alcohol	5090	733 D	56.5	157	457	50.9	637	280	551	94.9	317	56.8	160	217	438	178	1150	3.65	20.6	4.02	10.6	ND	ND	ND	ND	ND	ND	ND	
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methylene chloride	ND	ND	3.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Styrene	ND	ND	0.856	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
tert-Butyl Alcohol	20.3	ND	6.55	4.79	1.48	ND	ND	ND	4.18	ND	4.55	2.37	3.3	4.37	8.61	11.1	20.6	49.1	10.9	ND	4.02	10.6	ND	ND	ND				

Note

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in appendix.

2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.

3. Results present in $\mu\text{g}/\text{m}^3$ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. Parameters shaded in red indicate analytes of concern (Target eVOCs). NYSDOH Target eVOCs are included in this calculation, specifically those listed in the NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", May 2017 Update. Specifically: 1,1,1-Trichloroethane, 1,1-Dichloroethene, Carbon tetrachloride, cis-1,2-Dichloroethene, Methylene chloride, Tetrachloroethene, Trichloroethene, and Vinyl chloride

6. Results in red indicate post carbon result higher than pre carbon result.
7. ND = No Value; Above Detection Limit (Non-detect); NA = Not Analyzed

7. ND = No Value Above Detection Limit (Non-detect); NA = Not Analyzed
8. In some instances where the pre-sample is ND and the post-sample

8. In some instances where the pre-sample is ND and the post sample

APPENDIX A

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number:	L2540965
Client:	Matrix Environmental Technologies 3730 California Road Orchard Park, NY 14127
ATTN:	Mary Szustak
Phone:	(716) 662-0745
Project Name:	MOD-PAC BCP QUARTER CARBON-
Project Number:	Q2
Report Date:	15-017 07/16/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NH ELAP (2249).

120 Forbes Boulevard, Mansfield, MA 02048-1806
508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.pacelabs.com

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2540965-01	PRE-CARBON	SOIL_VAPOR	1810 ELMWOOD AVE., BUFFALO NY	06/30/25 11:37	06/30/25
L2540965-02	POST-CARBON	SOIL_VAPOR	1810 ELMWOOD AVE., BUFFALO NY	06/30/25 11:45	06/30/25

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Case Narrative (continued)

Volatile Organics in Air

L2540965-01 and -02: Samples were transferred from a Tedlar bag into a fused silica lined canister upon receipt in order to extend the holding time for analysis.

The WG2090986-2 CC recovery associated with L2540965-01 and -02 is above the upper 130% acceptance limit for Freon 113 and butyl acetate. All samples associated with this CC do not have reportable amounts of this analyte or are reported with high bias.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christopher J. Anderson Christopher J. Anderson

Title: Technical Director/Representative

Date: 07/16/25

AIR

Project Name: MOD-PAC BCP QUARTER CARBON-Q2**Lab Number:** L2540965**Project Number:** 15-017**Report Date:** 07/16/25**SAMPLE RESULTS**

Lab ID: L2540965-01
 Client ID: PRE-CARBON
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY

Date Collected: 06/30/25 11:37
 Date Received: 06/30/25
 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor
 Anaytical Method: 48,TO-15
 Analytical Date: 07/16/25 06:11
 Analyst: RAY

Parameter	Results	ppbV		ug/m3		Qualifier	Dilution Factor
		RL	MDL	Results	RL	MDL	
Volatile Organics in Air - Mansfield Air Lab							
Dichlorodifluoromethane	0.499	0.200	--	2.47	0.989	--	1
Chloromethane	0.315	0.200	--	0.650	0.413	--	1
Freon-114	ND	0.200	--	ND	1.40	--	1
Vinyl chloride	ND	0.200	--	ND	0.511	--	1
1,3-Butadiene	ND	0.200	--	ND	0.442	--	1
Bromomethane	ND	0.200	--	ND	0.777	--	1
Chloroethane	ND	0.200	--	ND	0.528	--	1
Ethanol	13.4	5.00	--	25.2	9.42	--	1
Vinyl bromide	ND	0.200	--	ND	0.874	--	1
Acetone	56.1	1.00	--	133	2.38	--	1
Trichlorofluoromethane	20.0	0.200	--	112	1.12	--	1
Isopropanol	218	1.00	--	536	2.46	--	1
1,1-Dichloroethene	ND	0.200	--	ND	0.793	--	1
Tertiary butyl Alcohol	4.10	0.500	--	12.4	1.52	--	1
Methylene chloride	ND	0.500	--	ND	1.74	--	1
3-Chloropropene	ND	0.200	--	ND	0.626	--	1
Carbon disulfide	1.08	0.200	--	3.36	0.623	--	1
Freon-113	ND	0.200	--	ND	1.53	--	1
trans-1,2-Dichloroethene	ND	0.200	--	ND	0.793	--	1
1,1-Dichloroethane	ND	0.200	--	ND	0.809	--	1
Methyl tert butyl ether	ND	0.200	--	ND	0.721	--	1
2-Butanone	2.62	0.500	--	7.73	1.47	--	1
cis-1,2-Dichloroethene	0.864	0.200	--	3.43	0.793	--	1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2**Lab Number:** L2540965**Project Number:** 15-017**Report Date:** 07/16/25**SAMPLE RESULTS**

Lab ID: L2540965-01 Date Collected: 06/30/25 11:37
 Client ID: PRE-CARBON Date Received: 06/30/25
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY Field Prep: Not Specified

Sample Depth:

Parameter	Results	ppbV		ug/m3		Qualifier	Dilution Factor
		RL	MDL	RL	MDL		
Volatile Organics in Air - Mansfield Air Lab							
Ethyl Acetate	14.0	0.500	--	50.5	1.80	--	1
Chloroform	0.407	0.200	--	1.99	0.977	--	1
Tetrahydrofuran	0.600	0.500	--	1.77	1.47	--	1
1,2-Dichloroethane	ND	0.200	--	ND	0.809	--	1
n-Hexane	23.2	0.200	--	81.8	0.705	--	1
1,1,1-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Benzene	0.453	0.200	--	1.45	0.639	--	1
Carbon tetrachloride	ND	0.200	--	ND	1.26	--	1
Cyclohexane	29.6	0.200	--	102	0.688	--	1
1,2-Dichloropropane	0.209	0.200	--	0.966	0.924	--	1
Bromodichloromethane	ND	0.200	--	ND	1.34	--	1
1,4-Dioxane	0.441	0.200	--	1.59	0.721	--	1
Trichloroethene	54.2	0.200	--	291	1.07	--	1
2,2,4-Trimethylpentane	0.291	0.200	--	1.36	0.934	--	1
Heptane	0.389	0.200	--	1.59	0.820	--	1
cis-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
4-Methyl-2-pentanone	ND	0.500	--	ND	2.05	--	1
trans-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
1,1,2-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Toluene	9.25	0.200	--	34.9	0.754	--	1
2-Hexanone	ND	0.200	--	ND	0.820	--	1
Dibromochloromethane	ND	0.200	--	ND	1.70	--	1
1,2-Dibromoethane	ND	0.200	--	ND	1.54	--	1
Tetrachloroethene	0.367	0.200	--	2.49	1.36	--	1
Chlorobenzene	ND	0.200	--	ND	0.921	--	1
Ethylbenzene	0.346	0.200	--	1.50	0.869	--	1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2**Lab Number:** L2540965**Project Number:** 15-017**Report Date:** 07/16/25**SAMPLE RESULTS**

Lab ID: L2540965-01
 Client ID: PRE-CARBON
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY

Date Collected: 06/30/25 11:37
 Date Received: 06/30/25
 Field Prep: Not Specified

Sample Depth:

Parameter	Results	ppbV		ug/m3		Qualifier	Dilution Factor
		RL	MDL	RL	MDL		
Volatile Organics in Air - Mansfield Air Lab							
p/m-Xylene	1.12	0.400	--	4.86	1.74	--	1
Bromoform	ND	0.200	--	ND	2.07	--	1
Styrene	1.20	0.200	--	5.11	0.852	--	1
1,1,2,2-Tetrachloroethane	ND	0.200	--	ND	1.37	--	1
o-Xylene	0.486	0.200	--	2.11	0.869	--	1
4-Ethyltoluene	ND	0.200	--	ND	0.983	--	1
1,3,5-Trimethylbenzene	0.381	0.200	--	1.87	0.983	--	1
1,2,4-Trimethylbenzene	1.46	0.200	--	7.18	0.983	--	1
Benzyl chloride	ND	0.200	--	ND	1.04	--	1
1,3-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,4-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2,4-Trichlorobenzene	ND	0.200	--	ND	1.48	--	1
Naphthalene	ND	0.190	--	ND	0.996	--	1
Hexachlorobutadiene	ND	0.200	--	ND	2.13	--	1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	101		60-140

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

SAMPLE RESULTS

Lab ID: L2540965-02 Date Collected: 06/30/25 11:45
 Client ID: POST-CARBON Date Received: 06/30/25
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor
 Anaytical Method: 48,TO-15
 Analytical Date: 07/16/25 02:56
 Analyst: RAY

Parameter	ppbV			ug/m3			Qualifier	Dilution Factor
	Results	RL	MDL	Results	RL	MDL		
Volatile Organics in Air - Mansfield Air Lab								
Dichlorodifluoromethane	0.456	0.200	--	2.25	0.989	--		1
Chloromethane	0.320	0.200	--	0.661	0.413	--		1
Freon-114	ND	0.200	--	ND	1.40	--		1
Vinyl chloride	ND	0.200	--	ND	0.511	--		1
1,3-Butadiene	ND	0.200	--	ND	0.442	--		1
Bromomethane	ND	0.200	--	ND	0.777	--		1
Chloroethane	ND	0.200	--	ND	0.528	--		1
Ethanol	11.7	5.00	--	22.0	9.42	--		1
Vinyl bromide	ND	0.200	--	ND	0.874	--		1
Acetone	13.4	1.00	--	31.8	2.38	--		1
Trichlorofluoromethane	4.78	0.200	--	26.9	1.12	--		1
Isopropanol	229	1.00	--	563	2.46	--		1
1,1-Dichloroethene	ND	0.200	--	ND	0.793	--		1
Tertiary butyl Alcohol	ND	0.500	--	ND	1.52	--		1
Methylene chloride	ND	0.500	--	ND	1.74	--		1
3-Chloropropene	ND	0.200	--	ND	0.626	--		1
Carbon disulfide	0.382	0.200	--	1.19	0.623	--		1
Freon-113	ND	0.200	--	ND	1.53	--		1
trans-1,2-Dichloroethene	0.473	0.200	--	1.88	0.793	--		1
1,1-Dichloroethane	ND	0.200	--	ND	0.809	--		1
Methyl tert butyl ether	ND	0.200	--	ND	0.721	--		1
2-Butanone	0.688	0.500	--	2.03	1.47	--		1
cis-1,2-Dichloroethene	2.05	0.200	--	8.13	0.793	--		1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2

Lab Number: L2540965

Project Number: 15-017

Report Date: 07/16/25

SAMPLE RESULTS

Lab ID: L2540965-02
 Client ID: POST-CARBON
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY

Date Collected: 06/30/25 11:45
 Date Received: 06/30/25
 Field Prep: Not Specified

Sample Depth:

Parameter	Results	ppbV		ug/m3		Qualifier	Dilution Factor
		RL	MDL	RL	MDL		
Volatile Organics in Air - Mansfield Air Lab							
Ethyl Acetate	7.98	0.500	--	28.8	1.80	--	1
Chloroform	0.482	0.200	--	2.35	0.977	--	1
Tetrahydrofuran	0.603	0.500	--	1.78	1.47	--	1
1,2-Dichloroethane	ND	0.200	--	ND	0.809	--	1
n-Hexane	1.24	0.200	--	4.37	0.705	--	1
1,1,1-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Benzene	0.281	0.200	--	0.898	0.639	--	1
Carbon tetrachloride	ND	0.200	--	ND	1.26	--	1
Cyclohexane	ND	0.200	--	ND	0.688	--	1
1,2-Dichloropropane	ND	0.200	--	ND	0.924	--	1
Bromodichloromethane	ND	0.200	--	ND	1.34	--	1
1,4-Dioxane	ND	0.200	--	ND	0.721	--	1
Trichloroethene	ND	0.200	--	ND	1.07	--	1
2,2,4-Trimethylpentane	ND	0.200	--	ND	0.934	--	1
Heptane	ND	0.200	--	ND	0.820	--	1
cis-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
4-Methyl-2-pentanone	ND	0.500	--	ND	2.05	--	1
trans-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
1,1,2-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Toluene	0.894	0.200	--	3.37	0.754	--	1
2-Hexanone	ND	0.200	--	ND	0.820	--	1
Dibromochloromethane	ND	0.200	--	ND	1.70	--	1
1,2-Dibromoethane	ND	0.200	--	ND	1.54	--	1
Tetrachloroethene	0.258	0.200	--	1.75	1.36	--	1
Chlorobenzene	ND	0.200	--	ND	0.921	--	1
Ethylbenzene	ND	0.200	--	ND	0.869	--	1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2**Lab Number:** L2540965**Project Number:** 15-017**Report Date:** 07/16/25**SAMPLE RESULTS**

Lab ID: L2540965-02
 Client ID: POST-CARBON
 Sample Location: 1810 ELMWOOD AVE., BUFFALO NY

Date Collected: 06/30/25 11:45
 Date Received: 06/30/25
 Field Prep: Not Specified

Sample Depth:

Parameter	Results	ppbV		ug/m3		Qualifier	Dilution Factor
		RL	MDL	RL	MDL		
Volatile Organics in Air - Mansfield Air Lab							
p/m-Xylene	ND	0.400	--	ND	1.74	--	1
Bromoform	ND	0.200	--	ND	2.07	--	1
Styrene	ND	0.200	--	ND	0.852	--	1
1,1,2,2-Tetrachloroethane	ND	0.200	--	ND	1.37	--	1
o-Xylene	ND	0.200	--	ND	0.869	--	1
4-Ethyltoluene	ND	0.200	--	ND	0.983	--	1
1,3,5-Trimethylbenzene	ND	0.200	--	ND	0.983	--	1
1,2,4-Trimethylbenzene	ND	0.200	--	ND	0.983	--	1
Benzyl chloride	ND	0.200	--	ND	1.04	--	1
1,3-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,4-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2,4-Trichlorobenzene	ND	0.200	--	ND	1.48	--	1
Naphthalene	ND	0.190	--	ND	0.996	--	1
Hexachlorobutadiene	ND	0.200	--	ND	2.13	--	1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	102		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	97		60-140

Project Name: MOD-PAC BCP QUARTER CARBON-Q2

Lab Number: L2540965

Project Number: 15-017

Report Date: 07/16/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 48,TO-15
 Analytical Date: 07/15/25 17:48

Parameter	ppbV			ug/m3			Dilution Factor
	Results	RL	MDL	Results	RL	MDL	
Volatile Organics in Air - Mansfield Air Lab for sample(s): 01-02 Batch: WG2090986-4							
Dichlorodifluoromethane	ND	0.200	--	ND	0.989	--	1
Chloromethane	ND	0.200	--	ND	0.413	--	1
Freon-114	ND	0.200	--	ND	1.40	--	1
Vinyl chloride	ND	0.200	--	ND	0.511	--	1
1,3-Butadiene	ND	0.200	--	ND	0.442	--	1
Bromomethane	ND	0.200	--	ND	0.777	--	1
Chloroethane	ND	0.200	--	ND	0.528	--	1
Ethanol	ND	5.00	--	ND	9.42	--	1
Vinyl bromide	ND	0.200	--	ND	0.874	--	1
Acetone	ND	1.00	--	ND	2.38	--	1
Trichlorofluoromethane	ND	0.200	--	ND	1.12	--	1
Isopropanol	ND	1.00	--	ND	2.46	--	1
1,1-Dichloroethene	ND	0.200	--	ND	0.793	--	1
Tertiary butyl Alcohol	ND	0.500	--	ND	1.52	--	1
Methylene chloride	ND	0.500	--	ND	1.74	--	1
3-Chloropropene	ND	0.200	--	ND	0.626	--	1
Carbon disulfide	ND	0.200	--	ND	0.623	--	1
Freon-113	ND	0.200	--	ND	1.53	--	1
trans-1,2-Dichloroethene	ND	0.200	--	ND	0.793	--	1
1,1-Dichloroethane	ND	0.200	--	ND	0.809	--	1
Methyl tert butyl ether	ND	0.200	--	ND	0.721	--	1
2-Butanone	ND	0.500	--	ND	1.47	--	1
cis-1,2-Dichloroethene	ND	0.200	--	ND	0.793	--	1
Ethyl Acetate	ND	0.500	--	ND	1.80	--	1
Chloroform	ND	0.200	--	ND	0.977	--	1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2

Lab Number: L2540965

Project Number: 15-017

Report Date: 07/16/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 48,TO-15
 Analytical Date: 07/15/25 17:48

Parameter	ppbV			ug/m3			Dilution Factor
	Results	RL	MDL	Results	RL	MDL	
Volatile Organics in Air - Mansfield Air Lab for sample(s): 01-02 Batch: WG2090986-4							
Tetrahydrofuran	ND	0.500	--	ND	1.47	--	1
1,2-Dichloroethane	ND	0.200	--	ND	0.809	--	1
n-Hexane	ND	0.200	--	ND	0.705	--	1
1,1,1-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Benzene	ND	0.200	--	ND	0.639	--	1
Carbon tetrachloride	ND	0.200	--	ND	1.26	--	1
Cyclohexane	ND	0.200	--	ND	0.688	--	1
1,2-Dichloropropane	ND	0.200	--	ND	0.924	--	1
Bromodichloromethane	ND	0.200	--	ND	1.34	--	1
1,4-Dioxane	ND	0.200	--	ND	0.721	--	1
Trichloroethene	ND	0.200	--	ND	1.07	--	1
2,2,4-Trimethylpentane	ND	0.200	--	ND	0.934	--	1
Heptane	ND	0.200	--	ND	0.820	--	1
cis-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
4-Methyl-2-pentanone	ND	0.500	--	ND	2.05	--	1
trans-1,3-Dichloropropene	ND	0.200	--	ND	0.908	--	1
1,1,2-Trichloroethane	ND	0.200	--	ND	1.09	--	1
Toluene	ND	0.200	--	ND	0.754	--	1
2-Hexanone	ND	0.200	--	ND	0.820	--	1
Dibromochloromethane	ND	0.200	--	ND	1.70	--	1
1,2-Dibromoethane	ND	0.200	--	ND	1.54	--	1
Tetrachloroethene	ND	0.200	--	ND	1.36	--	1
Chlorobenzene	ND	0.200	--	ND	0.921	--	1
Ethylbenzene	ND	0.200	--	ND	0.869	--	1
p/m-Xylene	ND	0.400	--	ND	1.74	--	1

Project Name: MOD-PAC BCP QUARTER CARBON-Q2

Lab Number: L2540965

Project Number: 15-017

Report Date: 07/16/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 48,TO-15

Analytical Date: 07/15/25 17:48

Parameter	ppbV			ug/m3			Dilution Factor
	Results	RL	MDL	Results	RL	MDL	
Volatile Organics in Air - Mansfield Air Lab for sample(s): 01-02 Batch: WG2090986-4							
Bromoform	ND	0.200	--	ND	2.07	--	1
Styrene	ND	0.200	--	ND	0.852	--	1
1,1,2,2-Tetrachloroethane	ND	0.200	--	ND	1.37	--	1
o-Xylene	ND	0.200	--	ND	0.869	--	1
4-Ethyltoluene	ND	0.200	--	ND	0.983	--	1
1,3,5-Trimethylbenzene	ND	0.200	--	ND	0.983	--	1
1,2,4-Trimethylbenzene	ND	0.200	--	ND	0.983	--	1
Benzyl chloride	ND	0.200	--	ND	1.04	--	1
1,3-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,4-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2-Dichlorobenzene	ND	0.200	--	ND	1.20	--	1
1,2,4-Trichlorobenzene	ND	0.200	--	ND	1.48	--	1
Naphthalene	ND	0.190	--	ND	0.996	--	1
Hexachlorobutadiene	ND	0.200	--	ND	2.13	--	1

Lab Control Sample Analysis
Batch Quality Control

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Air Lab Associated sample(s): 01-02 Batch: WG2090986-3								
Dichlorodifluoromethane	105		-		70-130	-		
Chloromethane	89		-		70-130	-		
Freon-114	116		-		70-130	-		
Vinyl chloride	99		-		70-130	-		
1,3-Butadiene	92		-		70-130	-		
Bromomethane	114		-		70-130	-		
Chloroethane	102		-		70-130	-		
Ethanol	69		-		40-160	-		
Vinyl bromide	111		-		70-130	-		
Acetone	84		-		40-160	-		
Trichlorofluoromethane	123		-		70-130	-		
Isopropanol	77		-		40-160	-		
1,1-Dichloroethene	107		-		70-130	-		
Tertiary butyl Alcohol	84		-		70-130	-		
Methylene chloride	115		-		70-130	-		
3-Chloropropene	101		-		70-130	-		
Carbon disulfide	110		-		70-130	-		
Freon-113	127		-		70-130	-		
trans-1,2-Dichloroethene	114		-		70-130	-		
1,1-Dichloroethane	118		-		70-130	-		
Methyl tert butyl ether	115		-		70-130	-		
2-Butanone	94		-		70-130	-		
cis-1,2-Dichloroethene	111		-		70-130	-		

Lab Control Sample Analysis
Batch Quality Control

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Air Lab Associated sample(s): 01-02 Batch: WG2090986-3								
Ethyl Acetate	90		-		70-130	-		
Chloroform	117		-		70-130	-		
Tetrahydrofuran	98		-		70-130	-		
1,2-Dichloroethane	111		-		70-130	-		
n-Hexane	102		-		70-130	-		
1,1,1-Trichloroethane	107		-		70-130	-		
Benzene	106		-		70-130	-		
Carbon tetrachloride	104		-		70-130	-		
Cyclohexane	98		-		70-130	-		
1,2-Dichloropropane	102		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	104		-		70-130	-		
Trichloroethene	109		-		70-130	-		
2,2,4-Trimethylpentane	101		-		70-130	-		
Heptane	93		-		70-130	-		
cis-1,3-Dichloropropene	111		-		70-130	-		
4-Methyl-2-pentanone	96		-		70-130	-		
trans-1,3-Dichloropropene	117		-		70-130	-		
1,1,2-Trichloroethane	107		-		70-130	-		
Toluene	119		-		70-130	-		
2-Hexanone	102		-		70-130	-		
Dibromochloromethane	118		-		70-130	-		
1,2-Dibromoethane	124		-		70-130	-		

Lab Control Sample Analysis
Batch Quality Control

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Air Lab Associated sample(s): 01-02 Batch: WG2090986-3								
Tetrachloroethene	119		-		70-130	-		
Chlorobenzene	116		-		70-130	-		
Ethylbenzene	106		-		70-130	-		
p/m-Xylene	106		-		70-130	-		
Bromoform	111		-		70-130	-		
Styrene	110		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	110		-		70-130	-		
4-Ethyltoluene	114		-		70-130	-		
1,3,5-Trimethylbenzene	113		-		70-130	-		
1,2,4-Trimethylbenzene	115		-		70-130	-		
Benzyl chloride	76		-		70-130	-		
1,3-Dichlorobenzene	113		-		70-130	-		
1,4-Dichlorobenzene	117		-		70-130	-		
1,2-Dichlorobenzene	112		-		70-130	-		
1,2,4-Trichlorobenzene	104		-		70-130	-		
Naphthalene	93		-		70-130	-		
Hexachlorobutadiene	103		-		70-130	-		

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Serial_No:07162515:39
Lab Number: L2540965
Report Date: 07/16/25

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
NA	Absent

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L2540965-01A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)
L2540965-01X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)
L2540965-02A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)
L2540965-02X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A** - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F** - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G** - The concentration may be biased high due to matrix interferences (i.e. co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- J** - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

Data Qualifiers

ND - Not detected at the reporting limit (RL) for the sample.

NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

P - The RPD between the results for the two columns exceeds the method-specified criteria.

Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

V - The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Z - The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: MOD-PAC BCP QUARTER CARBON-Q2
Project Number: 15-017

Lab Number: L2540965
Report Date: 07/16/25

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at its own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO₂, NO₃.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: **EPA RSK-175 Dissolved Gases**

Biological Tissue Matrix: EPA 3050B

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: **EPA RSK-175 Dissolved Gases**

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B**

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: **SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.**

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, **SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.**

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: **SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.**

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, Na, Sr, Ti, V, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Sample Delivery Group Summary

Pace Job Number : L2540965

Received : 30-JUN-2025

Reviewer : Christopher J Anderson

Account Name : Matrix Environmental Technologies

Project Number : 15-017

Project Name : MOD-PAC BCP QUARTER CARBON-Q2

Delivery Information

Samples Delivered By : Pace Courier

Chain of Custody : Present

Cooler Information

Cooler	Seal/Seal#	Preservation	Temperature(°C)	Additional Information
NA	Absent/			

Condition Information

1) All samples on COC received?	YES
2) Extra samples received?	NO
3) Are there any sample container discrepancies?	NO
4) Are there any discrepancies between COC & sample labels?	NO
5) Are samples in appropriate containers for requested analysis?	YES
6) Are samples properly preserved for requested analysis?	YES
7) Are samples within holding time for requested analysis?	YES
8) All sampling equipment returned?	YES

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?	NA
--	-----------