Environmental Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

June 9, 2021

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203

Re: Periodic Review Report – April 2021; DEC Site #C915320

166 Chandler Street Site, 166 Chandler Street, Buffalo, New York

Dear Ms. Kuczka:

In accordance with the Site Management Plan (NYSDEC Site Number: C915320), Section 5.2 Periodic Review Report, and NYSDEC's March 8, 2021 letter to Mr. Rocco Termini regarding the preparation and submittal of a Site Management Periodic Review Report and IC/EC Certification, please find attached a Periodic Review Report that includes the appropriate certifications and the 2020-2021 Routine Progress Report.

This report includes edits requested by you in a June 1, 2021 email to me. If you have further comments or questions regarding the contents of these documents, please contact me directly.

Very truly yours,

ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

President

Attachments

cc: J. Rothschild

01103\CY2020-2021\166 Chandler St. Site – BCP #C915320 – PRR 2020-2021 RV1 – 060921

Ph: 716-667-3130 Fax: 716-667-3156

Periodic Review Report

166 Chandler Street Site 166 Chandler Street Buffalo, New York 14203

NYSDEC Site Number: C915320

Prepared by: Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

TABLE OF CONTENTS

VIEW	1
nary	1
edial History	1
al Controls	2
g and Sampling Requirements	3
TION AND MONITORING RESULTS	3
ction	3
Sampling Results	3
oility Summary	4
Data Deliverables	5
on Status	5
E ACTION WORK PLAN	5
R CONCLUSIONS AND RECOMENDATIONS	5
Figures	
Tables	
Laboratory Analytical Results	
Institutional Controls/Engineering Controls Certification	
	riary

1.0 SITE OVERVIEW

1.1 Site Summary

The 166 Chandler Street Site ("subject site") is an approximate 0.49 acre property located at 166 Chandler Street in the City of Buffalo, Erie County, New York. Site location and boundaries are provided in Figure 1, presented in Appendix A. The Site consists of an approximate 58,000-square foot four-story building which covers the entirety of the parcel. The Site is zoned D-C Flex Commercial, which permits Residential, Retail & Service, and Light Industrial uses. The neighborhood surrounding the Site primarily includes light industrial, commercial and residential properties.

1.2 <u>Site Remedial History</u>

The Site building was originally constructed in 1907 as a dairy machine manufacturer with additions to the building in 1909, 1919, 1927, and 1931. Former uses at the subject site also included a grocery, Linde Air Products, Sponge Air Seat Co., and Barcalo Manufacturing, a furniture manufacturer. Several fires occurred during the 1980s and 1990s which resulted in demolition of the western portion of the building. The building was vacant for over 20 years.

Brownfield Cleanup Agreement (BCA Index No. C915320-07-17) was executed on December 11, 2017 for the Site, identified as New York State Department of Environmental Conservation (NYSDEC) Site # C915320, under the Brownfield Cleanup Program (BCP). Hazard Evaluations Inc. (HEI), in association with Wittman GeoSciences, PLLC (WGS) and Schenne & Associates (S&A), completed remedial investigation (RI) activities, as well as interim remedial measures (IRM) activities, in accordance with the NYSDEC approved RI/IRM Work Plan, dated April 2018. A series of IRM work tasks were performed at the Site in order to remediate the on-site concerns, described as follows:

The entire western portion of the Site was excavated to the property limits. The area was occupied by a former building and foundation. Former foundation walls were exposed and located along the northern, western, and southern property limits, as well as various interior foundation walls. The bottom of the excavation extended to a solid concrete floor or continued to the native underlying silty clay soil, generally ranging in depth from five to eight feet below grade. The eastern excavation limit was defined by the western wall of the original portion of the current Site building. A total of 2,157 cubic yards (cy) or 3,235 tons of soil was removed from the western portion of the Site and disposed off-site at the Town of Tonawanda landfill.

The excavations were completed to and beyond property limits to the north, south, and west. The eastern limit extended to the western wall of the original portion of the current Site building, exposing the building foundation along the entire length of the excavation. Therefore, no on-site sidewall confirmatory soil samples were necessary. Nine bottom confirmatory samples were collected from beneath the concrete floor, or from the underlying native silty clay. No VOCs, SVOCs, metals, PCBs, herbicides or pesticides were detected in the confirmation samples at concentrations above RRUSCO.

An old, damaged underground storage tank (UST) was uncovered in the southwestern corner of the vacant lot. The UST was severely corroded, and was estimated to be approximately 300 gallons in size. The tank contained a limited amount of water, estimated at approximately 20 gallons. Also, a limited amount of standing water existed around the exterior of the tank. These minor liquids were pumped and generated approximately one 55-gallon drum, which was disposed off-site by ESG. The cleaned tank remnants were taken off-site by ESG for recycling.

No visual or olfactory evidence of impact was observed in the soil profile in the vicinity of the UST. However, due to the presence of the historical fill, additional excavation extended beyond the limits of the UST. Confirmatory soil samples were collected and the eastern and western walls were defined by former building foundations that were fully exposed. No contaminant parameters were detected at concentrations exceeding their respective UUSCO.

Several SVOCs were detected in the soil sample from MW102 (0-4') at 0 exceeding RRUSCO, including benzo(a)anthracene, concentrations benzo(a)pyrene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene. In order to address the presence of SVOCs impacts, the concrete floor was removed and an approximate 11-foot by 11-foot excavation was completed in the area of MW102; however, the western and southern limits of the excavation were limited due to concrete foundations. Approximately 18 tons of soil was removed from the area of MW102, and disposed off-site at the Town of Tonawanda landfill. Four sidewall and bottom samples were collected from the excavation area. The analytical testing results did not identify SVOCs at concentrations exceeding UUSCO in the confirmatory samples.

A Certificate of Completion was issued on December 20, 2018.

1.3 <u>Institutional Controls</u>

Since remaining contamination exists at the Site, Institutional Controls (ICs) are required to protect human health and the environment. ICs at the Site include the following:

- The property may be used for restricted residential, commercial, and/or industrial uses;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- A provision for evaluation of the potential for soil vapor intrusion in the existing building and for any new buildings developed on the Site, including provisions for implementing actions recommended to address exposures related to soil vapor intrusion;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;

- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Access to the Site must be provided to agents, employees or other representatives
 of the State of New York with reasonable prior notice to the property owner to
 assure compliance with the restrictions identified by the Environmental Easement;
 and
- Vegetable gardens and farming on the Site are prohibited.

1.4 Monitoring and Sampling Requirements

The SMP describes the measures for evaluating the overall performance and effectiveness of the remedy. The Monitoring Plan includes the following:

- Site-wide inspections will be performed at a minimum of once per year, as noted in SMP.
- Indoor air sampling will be collected from the Site's indoor air for at least two consecutive heating seasons to evaluate the potential for soil vapor intrusion.

2.0 SITE INSPECTION AND MONITORING RESULTS

2.1 <u>Site Inspections</u>

EA completed the annual Site-wide inspection on February 18, 2021. A copy of the Site-wide inspection report is included in Appendix B. The following observations were noted during the inspection:

- The building is developed into various tenant spaces, including a brewery occupied by Thin Man Brewery and a restaurant occupied by Tappo Pizza on the first floor, and a fitness gym occupied by F45 Training on the second floor, and a hair salon occupied by Salon in the City Suites on the fourth floor.
- Organic vapor monitoring (OVM) readings of the ambient air within the building ranged from 0.0 parts per million (ppm) to 1 ppm, with the highest reading in the vicinity of the IA-1 and IA-2 sampling locations.
- The OVM reading of the ambient air outside of the building remained at 0.0 ppm.

2.2 <u>Indoor Air Sampling Results</u>

Indoor air sampling was required to be completed for two consecutive heating seasons to evaluate the potential for soil vapor intrusion. As per the NYSDEC's August 17, 2020 letter, NYSDEC and the New York State Department of Health (NYSDOH) requested that one additional round of sampling be completed during the 2020-2021 heating season, as the previous indoor air samples were collected in April 2020 due to COVID-19 exposure concerns, which was approximately one month outside of the NYSDOH official heating season (November 1 to March 31). Four indoor air samples and one outdoor air sample were collected over an 8-hour period on February 18, 2021. Sampling locations from the February 2021 sampling event are depicted in Figure 2.

Analytical results are summarized on Tables 1 and 2 presented in Appendix C and the laboratory reports are included in Appendix D. As indicated in Table 1, up to 20 VOCs were detected within the four indoor air samples and one outdoor air sample collected on February 18, 2021. Most compounds were detected at concentrations either below their respective USEPA commercial indoor air background levels or NYSDOH Air Guideline Values as noted in NYSDOH's Guidance for Evaluating Soil Vapor Intrusion in the State of New York¹; however, the following results were noted:

- Chloroform was detected in each of the four indoor air samples collected; however, only indoor air sample locations IA-1 and IA-4 were noted at concentrations above the USEPA identified commercial indoor air background level of 1.1 ug/m³. The concentrations were recorded at 1.34 ug/m³ and 1.21 ug/m³, respectively. Currently, there are no NYSDOH Air Guideline Values for chloroform.
- Ethanol was detected in each of the four indoor air samples collected at concentrations above the USEPA identified commercial indoor air background level of 210 ug/m³. The concentrations ranged from 14,200 ug/m³ to 28,300 ug/m³, with the highest concentration recorded at indoor air sample IA-1. Ethanol was also detected in the one outdoor air sample collected at a concentration above the identified commercial outdoor air background level (57 ug/m³), recorded at 60.3 ug/m³. Currently, there are no NYSDOH Air Guideline Values for ethanol. It should be noted that this compound is a typical by-product from brewing operations.
- Ethyl acetate and methyl ethyl ketone were detected in each of the four indoor air samples collected at concentrations above their USEPA identified commercial indoor air background levels of 5.4 ug/m³ and 12 ug/m³, respectively. The concentrations ranged from at 53.7 ug/m³ to 112 ug/m³ and 162 ug/m³ to 301 ug/m³, respectively. The highest concentration of ethyl acetate was recorded at indoor air sample IA-1, while the highest concentration of methyl ethyl ketone was recorded at indoor air sample IA-4. Currently, there are no NYSDOH Air Guideline Values for either ethyl acetate or methyl ethyl ketone. It should be noted that both compounds are typical by-products from brewing operations.
- Trichloroethene (TCE) was detected in each of the four indoor air samples collected. However, the concentrations ranged from 0.188 ug/m³ to 0.516 ug/m³, which is below the NYSDOH Air Guideline Value of 2 ug/m³. Additionally, tetrachloroethene (PCE) was detected in one for the indoor air samples (IA-1) as well as in the duplicate indoor air sample (IA-3), recorded at 0.149 ug/m³ and 0.156 ug/m³, respectively, which are below NYSDOH Air Guideline Value of 30 ug/m³. TCE and PCE were not detected in the outdoor air sample collected.

2.3 <u>Data Usability Summary</u>

The analytical data from the February 18, 2021 sampling event were submitted for independent review. Vali-Data of WNY, LLC, located in West Falls, New York, completed

¹ "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", prepared by New York State Department of Health, dated October 2006 with announcements relating to lowered ambient air guideline values in September 2013 and August 2015

the data usability summary report (DUSR). The DUSR is included in Appendix E and was prepared using guidance from the USEPA Region 2 Validation Standard Operating Procedures, USEPA National Functional Guidelines for Data Review, and professional judgement. Indoor air samples were both collected as described above and evaluated as described below:

Alpha Lab Sample L2108107

The results for four indoor air samples, one blind duplicate, and one outdoor air sample were processed for VOCs via EPA Method TO-15. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in laboratory control samples and initial calibration;
- All results were recorded to the reporting limits except in the TO-15 SIM analysis;
 and
- All samples except OA-1 (021821) were diluted to high target analyte concentrations.

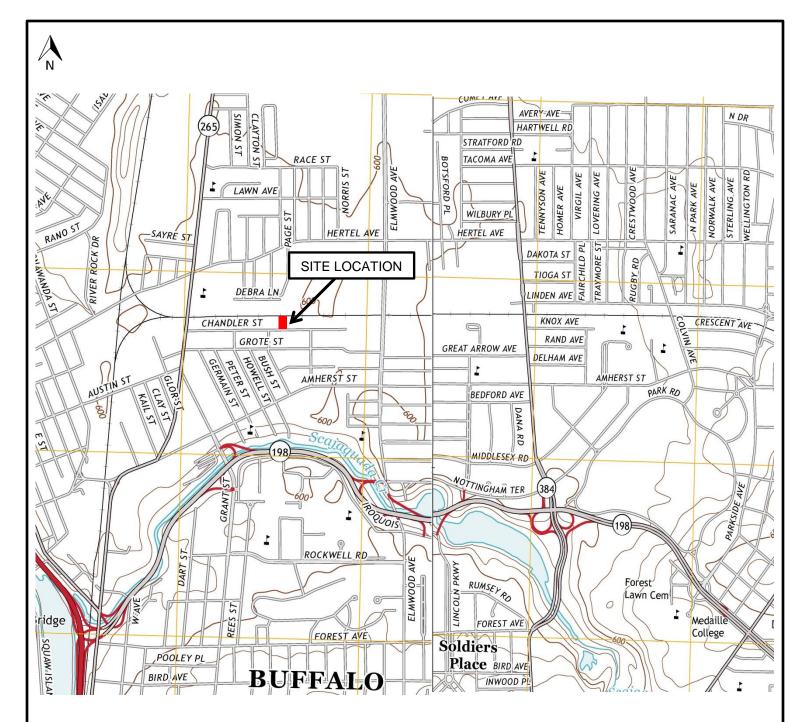
2.4 Electronic Data Deliverables

As per NYSDEC directives, all aforementioned data have been submitted electronically to the NYSDEC EQuIS system. A confirmation email of successful data submission has been received, and is provided in Appendix F.

2.5 Certification Status

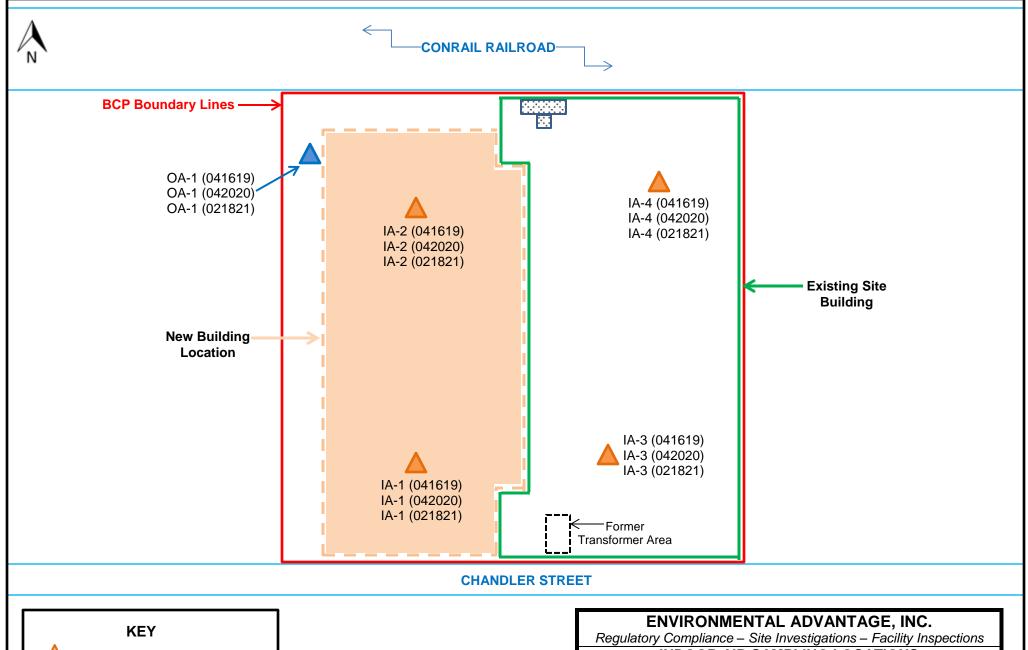
A completed Institutional and Engineering Controls Certification Form is presented in Appendix G. It should be noted that there are no Engineering Controls required for this BCP Site. Certification is provided based upon an evaluation of the information and data collected during the 2020-2021 reporting period as presented above.

3.0 CORRECTIVE ACTION WORK PLAN


Four VOCs (chloroform, ethyl alcohol, ethyl acetate, and methyl ethyl ketone) were detected in the four indoor air sample locations and one VOC (ethyl acetate) was detected in the one outdoor air sample location, all at concentrations exceeding the identified commercial background level; however, no compounds were detected at concentrations exceeding their respective NYSDOH Air Guideline Values, if applicable. No changes to the SMP are recommended at this time.

4.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

All components of the Site Management Plan have been met during the reporting period, including Institutional Controls and Monitoring and Sampling Plan. Based on activities conducted at the Site during the reporting period, the Site remedy continues to be protective of public health and the environment. The requirements for Site closure have


not yet been met, and no changes to the frequency of PRR submittals are recommended at this time. **Please Note**: Indoor air sampling has been collected from the Site's indoor air for a minimum of two consecutive heating seasons to evaluate the potential for soil vapor intrusion. Based on the analytical results described above and in last year's PRR, soil vapor intrusion does not appear to be a concern to the health and safety of the Site's occupants. Therefore, EA recommends discontinuing the annual indoor air sampling requirement.

APPENDIX A FIGURES

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, BUFFALO NE & NW, NEW YORK 2013 QUADRANGLE

ENVIRONMENTAL ADVANTAGE, INC.								
	ance – Site Investigations –	•						
	SITE LOCATION MAP							
•	166 CHANDLER STREET							
	BUFFALO, NEW YORK							
166 (CHANDLER HOLDINGS,	LLC						
	BUFFALO, NEW YORK							
DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: 01103						
CHECKED BY: CMH	DATE: 02/2021	FIGURE NO: 1						

Regulatory Compliance – Site Investigations – Facility Inspections INDOOR AIR SAMPLING LOCATIONS 166 CHANDLER STREET BUFFALO, NEW YORK 166 CHANDLER HOLDINGS, LLC BUFFALO, NEW YORK DRAWN BY: MB SCALE: NOT TO SCALE PROJECT: 01103 CHECKED BY: CMH DATE: 06/2021 FIGURE NO: 2

APPENDIX B SITE-WIDE INSPECTION FORMS and FIELD NOTES

Site-Wide Inspection Form

Site: 166 Chandler Street Buffalo, NY	Date: <u>2/18/2021</u>
Inspector: Eric Betzold Eni Botto	Weather: 27°F Cloudy
General site conditions at the time of the inspector western portion of the site and active restaurants.	
Are site management activities being cor confirmation sampling and a health and safety i	• • • • • • • • • • • • • • • • • • • •
Do the implemented institutional controls continute environment? <u>Yes.</u>	nue to be protective of human health and
Is the site currently in compliance with requirer Easement? Yes.	ments of the SMP and the Environmental
Are site records complete and up-to-date? Deficiencies Observed / Corrective Actions Rec	

Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use;
- 2. The use of groundwater is prohibited at the property;
- 3. Vegetable gardens and farming are prohibited at the property;
- 4. A provision for evaluation of the potential for soil vapor intrusion in the existing building and for any new buildings developed on the property, including provisions for implementing actions recommended to address exposures related to soil vapor intrusion;
- 5. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 6. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP; and
- 7. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.

Client: 166 chardler Holdings LLC, Project No.: 01/03
Site Name & Address: 166 chandler St. Buffalo. NY
Person(s) Performing Sampling:
Sample Identification: $\frac{\mathcal{I}A-1(o21821)}{}$
Sample Type: ☐ Indoor Air (ambient) ☐ Outdoor Air ☐ Soil Vapor ☐ Sub-slab Vapor
Date of Collection: 2/18/2021 Setup Time: 7:55am Stop Time: 3:55 p
Sample Depth:
Sample Height: 4
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulat
Purge Volume:
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister # Regulator #
Vacuum Pressure of Canister Prior to Sampling: 29.76'
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis:
Comments: 1.0 PPM · Ambient Indoor Air.
Sampler's Signature Sui / Button Date: 2/18/21

Client: 166 chardler Holdings LLC, Project No.: 0/103
Site Name & Address: 166 chandler st. Buffalo, NY
Person(s) Performing Sampling:
Sample Type: Indoor Air (ambient) Outdoor Air Soil Vapor Sub-slab Vapor Date of Collection: 2/18/2021 Setup Time: 7:58 and Stop Time: 3:58 pm
Sample Depth:
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulator
Purge Volume:
Sample Volume: 2.7 L;ter
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister #
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
⊠Yes □ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytica 1
Analysis: TO -15
Comments: 1.0 ppm; Ambrent Indoor Arr.
·
Sampler's Signature Line March Date: 2/18/21

Client: 166 chardler Holdings LLC, Project No.: 01103
Site Name & Address: 166 Chardler St. Buffalo, NY
**
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>TA-3 (021821)</u>
Sample Type: ☑Indoor Air (ambient) ☐Outdoor Air ☐Soil Vapor ☐Sub-slab Vapor
Date of Collection: 2/18/21 Setup Time: 8:00 am Stop Time: 4:00 PM
Sample Depth:
Sample Height: 5'
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulator
Purge Volume:
Sample Volume: 2.7 Liter
Sampling Canister Type & Size (if applicable): 2.7 L; ter Summa Canister
Canister# 3204 Regulator# 01796
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
¥Yes □ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: TO-15
Comments:
Comments: 0.9 ppm; Ambient Indoor Air
Sampler's Signature / Miller Date: 2/18/21

Client: 166 chandler Holdings LLC. Project No.: 01103
Site Name & Address: 166 Chandler St. Buffalo, NY
Person(s) Performing Sampling: Est Betzold
Sample Identification: <u>TA-3 (0</u> 21821) Duplicate
Sample Type: ☑ Indoor Air (ambient) ☐ Outdoor Air ☐ Soil Vapor ☐ Sub-slab Vapor
Date of Collection: 2/18/21 Setup Time: 9:000 Stop Time: 4100 pm
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulat
Purge Volume:
Sample Volume: 2.7 L; ter
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa can: Ster
Canister# 2022 Regulator# 01601
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:/o w
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
Yes ☐ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis:
Comments: 0.9 ppm; Ambient Indoor Air.
Sampler's Signature Six Besulto Date: 2/18/21

Client: 166 chardler Holdings LLC, Project No.: 01103
Site Name & Address:
Person(s) Performing Sampling: Eric Betzold
Sample Identification: <u>TA-4(021821)</u>
Sample Type: ☐ Indoor Air (ambient) ☐ Outdoor Air ☐ Soil Vapor ☐ Sub-slab Vapor
Date of Collection: 2/18/21 Setup Time: 9', 05am Stop Time: 4 v05pm
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s): 2.7 Liter Summa Cenister & Regulator
Purge Volume:
Sample Volume: 2,7 Liter
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister
Canister# 138 Regulator# 01464
Vacuum Pressure of Canister Prior to Sampling:
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
✓Yes □ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis: To - 15
Comments: 0.5 ppm; Ambient Indoor Air
Sampler's Signature Jui Machi Date: 2/18/21

Person(s) Performing Sampling:	Person(s) Performing Sampling:	Client: 166 chandler Holdings LLC. Project No.: 01103
Sample Identification:	Sample Identification:	Site Name & Address: 166 chardle 57. Buffalo, NY
Sample Type: Indoor Air (ambient) Qoutdoor Air Soil Vapor Sub-slab Vapor Date of Collection: 2/18/21 Setup Time: Silogm Stop Time: 4 ! 10 Pm Sample Depth:	Sample Type: Indoor Air (ambient)	Person(s) Performing Sampling: Eric Betzold
Date of Collection:	Date of Collection: 2/19/21 Setup Time: 8:109M Stop Time: 4:10PM Sample Depth:	Sample Identification: DA-I (021821)
Sample Depth:	Sample Depth:	Sample Type: ☐ Indoor Air (ambient)
Purge Volume:	Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulator Purge Volume: Sample Volume: Sampling Canister Type & Size (if applicable):	Date of Collection: 2/18/21 Setup Time: 8:109M Stop Time: 4:10PM
Purge Volume:	Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regulator Purge Volume: Sample Volume: Sampling Canister Type & Size (if applicable):	Sample Depth:
Purge Volume:	Purge Volume:	Sample Height: 4 1
Sample Volume: Sampling Canister Type & Size (if applicable): Canister # 2038 Regulator # 01772 Vacuum Pressure of Canister Prior to Sampling: 29.86 " Vacuum Pressure of Canister After Sampling: -1.00" Temperature in Sampling Zone: 25°F Apparent Moisture Content of Sampling Zone: #/3 h Soil Type in Sampling Zone: Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory: Alpha Analytical Analytical	Sample Volume:	Sampling Method(s) & Device(s): 2.7 Liter Summa Canister & Regul
Sampling Canister Type & Size (if applicable): 2.7 Liter Summa Canister Canister # 2038 Regulator # 01772 Vacuum Pressure of Canister Prior to Sampling: -19.80 " Vacuum Pressure of Canister After Sampling: -1.00" Temperature in Sampling Zone: 25°F Apparent Moisture Content of Sampling Zone: #9 h Soil Type in Sampling Zone: Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory: XYes	Sampling Canister Type & Size (if applicable):	Purge Volume:
Canister #	Canister #	Sample Volume:
Vacuum Pressure of Canister Prior to Sampling:	Vacuum Pressure of Canister Prior to Sampling:	Sampling Canister Type & Size (if applicable): 2.7 Liter Symma Canister
Vacuum Pressure of Canister After Sampling:	Vacuum Pressure of Canister After Sampling:	
Temperature in Sampling Zone:	Temperature in Sampling Zone:	Vacuum Pressure of Canister Prior to Sampling:
Temperature in Sampling Zone:	Temperature in Sampling Zone:	Vacuum Pressure of Canister After Sampling:
Soil Type in Sampling Zone:	Soil Type in Sampling Zone:	Temperature in Sampling Zone: 25°F
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory: Ves	Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory: X Yes	Apparent Moisture Content of Sampling Zone:
Laboratory Name: Alpho Analytical Analysis: To-15	Laboratory Name: Alpha Analytical Analysis: To-15 Comments: 0.0 ppm; Ambient Outdoor Air Regulator battery died.	Soil Type in Sampling Zone:
Laboratory Name: Alpho Analytical Analysis: To-15	Laboratory Name: Alpha Analytica 1 Analysis: To-15 Comments: 0.0 ppm : Ambient outdoor Air Regulator battery died.	Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory.
Analysis:	Analysis: To-15 Comments: 0.0 ppm; Ambrent outdoor Air Regulator battery died.	
	Comments: 0.0 ppm; Ambrent Outdoor Air Regulator battery died.	Laboratory Name: Alpha Analytical
Comments: 0.0 ppm; Ambrent Outdoor Air Regulator battery died.	Regulator battery died.	Analysis:
Regulator battery died.		Comments: Ambient Orders Air
Media tot Oct 10 / At Cot.		Realistac he there died
		Megharot Jario / Micon.
	9.00	
	9.00	

APPENDIX C TABLES

Table 1 Soil Vapor Intrusion Analytical Testing Results 166 Chandler Street, Buffalo, NY February 2021

	Guidance Values -	Indoor Air	IA-1	IA-2	IA	1-3	IA-4	OA-1	Outdoor Air
LOCATION	Table C2 Commercial Indoor Air Background	NYSDOH Air Guideline	IA-1 (021821) Indoor Air	IA-2 (021821) Indoor Air	IA-3 (021821) Indoor Air	IA-3 (021821) Duplicate Indoor Air	IA-4 (021821) Indoor Air	OA-5 (021821) Outdoor Air	Table C2 Outdoor Air Guidance
SAMPLING DATE	(90%)	Value	2/18/2021	2/18/2021	2/18/2021	2/18/2021	2/18/2021	2/18/2021	Values
LAB SAMPLE ID	(90 %)	value	L2108107-01	L2108107-02	L2108107-03	L2108107-04	L2108107-05	L2108107-06	values
Acetone	98.9		57.2	46.1	39	31.6	44.7	4.8	43.7
Benzene	9.4		0.658	0.661	0.642	0.655	ND	ND	6.6
Carbon tetrachloride	<1.3		0.421	0.39	0.403	0.472	0.44	0.403	0.7
Chloroform	1.1		1.34	1.07	1.01	1.03	1.21	ND	0.6
Chloromethane	3.7		1.13	1.12	1.17	1.17	1.16	1.14	3.7
cis-1,2-Dichloroethene	<1.9		ND	ND	0.107	0.25	ND	ND	<1.8
Cyclohexane	NV		1.47	1.47	ND	ND	ND	ND	NV
Dichlorodifluoromethane	16.5		2.32	2.32	2.34	2.35	2.45	2.29	8.1
Ethanol	210		28,300	18,800	14,200	14,400	17,600	60.3	57
Ethyl acetate	5.4		112	61.6	53.7	54.4	68.1	ND	1.5
Ethylbenzene	5.7		ND	ND	ND	ND	1.1	ND	3.5
Isopropanol	NV		2,450	1,610	2,120	2,140	2,040	15.5	NV
m&p-Xylene	22.2		1.79	3.04	ND	ND	4.25	ND	12.8
Methyl Ethyl Ketone	12		275	294	162	165	301	ND	11.3
o-Xylene	7.9		ND	ND	ND	ND	1.04	ND	4.6
Tetrachloroethene	15.9	30	0.149	ND	ND	0.156	ND	ND	6.5
Tetrahydrofuran	NV		2.01	1.79	1.62	1.63	1.71	ND	NV
Toluene	43		1.86	1.42	1.44	1.42	1.52	0.784	33.7
Trichloroethene	4.2	2	0.188	0.188	0.226	0.516	0.188	ND	1.3
Trichlorofluoromethane	18.1		1.34	1.29	1.33	1.32	1.34	1.31	4.3

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratori
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during a 8-hour sample duration.
- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.
- 6. Air Guidance Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health.
- 7. NYSDOH does not currently have standards, criteria or guidance values for concentrations in sub-slab vapor. The detection of VOCs in sub-slab vapor samples does not necessarily indicate soil vapor intrusion is occurring or action should be taken to address exposures.
- 8. Grey shaded values represent exceedance of table C2 indoor/outdoor guidance values; yellow shaded values represent exceedance of NYSDOH Air Guidance Values
- 9. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- 10. ND = Non Detect; NV = No Value

Table 2 Soil Vapor Intrusion Analytical Testing Results 166 Chandler Street, Buffalo, NY Historical Data

	Guidance Values -	- Indoor Air		IA-1		1	IA-2		1		IA	1-3				IA-4			OA-1		Outdoor Air
	Table C2	NYSDOH	IA-1 (041619)		IA-1 (021821)	IA-2 (041619)	IA-2 (042020)	IA-2 (021821)	IA-3 (041619)	IA-3 (041619)	IA-3 (042020)	IA-3 (042020)	IA-3 (021821)	IA-3 (021821)	IA-4 (041619)	IA-4 (042020)	IA-4 (021821)	OA-1 (041619)		OA-5 (021821)	Table C2
LOCATION	Commercial Indoor	Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Duplicate	Indoor Air	Duplicate	Indoor Air	Duplicate	Indoor Air	Indoor Air	Indoor Air	Outdoor Air	Outdoor Air	Outdoor Air	Outdoor Air
SAMPLING DATE	Air Background	Guideline	4/16/2019	4/20/2020	2/18/2021	4/16/2019	4/20/2020	2/18/2021	4/16/2019	4/16/2019	4/20/2020	4/20/2020	2/18/2021	2/18/2021	4/16/2019	4/20/2020	2/18/2021	4/16/2019	4/20/2020	2/18/2021	Guidance
LAB SAMPLE ID	(90%)	Value	L1915616-01	L2016426-01	L2108107-01	L1915616-02	L2016426-02	L2108107-02	L1915616-03	L1915616-04	L2016426-03	L2016426-04	L2108107-03	L2108107-04	L1915616-05	L2016426-05	L2108107-05	L1915616-06	L2016426-06	L2108107-06	Values
1.1.1-Trichloroethane	20.6	value	ND	ND	ND	0.169	ND	ND	0.131	0.175	ND	ND	ND	ND	0.338	ND	ND	ND	ND	ND	2.6
1,2,4-Trimethylbenzene	9.5		ND	ND	ND	1.57	ND ND	ND	ND	ND	ND	ND	ND	ND ND	1.64	ND ND	ND	ND ND	ND	ND	5.8
Acetone	98.9		565	33.7	57.2	461	40.4	46.1	278	287	32.3	17.4	39	31.6	278	37.3	44.7	5.18	4.3	4.8	43.7
Benzene	9.4		0.898	ND	0.658	1.40	ND	0.661	0.847	0.815	ND	ND	0.642	0.655	1.11	ND ND	ND	ND	ND	ND	6.6
Carbon tetrachloride	<1.3		0.629	0.635	0.421	0.560	0.522	0.39	0.604	0.616	0.679	0.616	0.403	0.472	0.554	0.654	0.44	0.629	0.629	0.403	0.7
Chloroform	11		ND	ND	1 34	ND	ND	1.07	ND	ND	ND	ND	1.01	1.03	ND	ND.	1.21	ND	ND	ND	0.6
Chloromethane	3.7		1.25	1.08	1.13	1.27	1.19	1.12	1.21	1.26	1.14	1.14	1.17	1.17	1.32	1.13	1.16	1.34	1.15	1.14	3.7
cis-1.2-Dichloroethene	<1.9		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.107	0.25	0.103	ND	ND	ND	ND	ND	<1.8
Cyclohexane	NV		3.44	1.3	1.47	2.74	0.768	1.47	2.49	2.41	0.688	ND	ND	ND	2.19	ND	ND	ND	ND	ND	NV
Dichlorodifluoromethane	16.5		2.38	2.62	2.32	2.31	2.77	2.32	2.37	2.42	2.71	2.67	2.34	2.35	2.38	2.61	2.45	2.34	2.83	2.29	8.1
Ethanol	210		57.1	6,200	28,300	86.3	4,540	18,800	117	117	2,360	923	14,200	14,400	149	3,600	17,600	ND	14.9	60.3	57
Ethyl acetate	5.4		ND	32.8	112	ND	29.7	61.6	7.39	7.82	17.1	13.9	53.7	54.4	2.98	31.2	68.1	ND	ND	ND	1.5
Ethylbenzene	5.7		3.90	ND	ND	4.56	1.03	ND	8.43	8.60	ND	0.886	ND	ND	7.43	1.68	1.1	ND	ND	ND	3.5
Heptane	NV		1.33	ND	ND	2.73	ND	ND	1.54	1.43	ND	ND	ND	ND	2.43	ND	ND	ND	ND	ND	NV
Hexane	NV		12.6	ND	ND	9.80	ND	ND	7.30	6.98	ND	ND	ND	ND	6.52	ND	ND	ND	ND	ND	6.4
Isopropanol	NV		71.8	9,370	2,450	55.1	2,390	1,610	92.2	86.5	1,630	205	2,120	2,140	147	1,270	2,040	3.32	3.39	15.5	NV
m&p-Xylene	22.2		15.5	3.5	1.79	17.5	4.14	3.04	32.5	33.7	3.61	3.9	ND	ND	28.7	6.99	4.25	ND	ND	ND	12.8
Methyl Ethyl Ketone	12		118	22.4	275	87.3	37.2	294	51.6	53.1	12.7	12.7	162	165	46.3	21.5	301	ND	ND	ND	11.3
o-Xylene	7.9		3.84	0.934	ND	4.69	1.09	ND	8.73	8.99	1.09	1.22	ND	ND	7.08	1.71	1.04	ND	ND	ND	4.6
Styrene	1.9		ND	ND	ND	1.35	ND	ND	0.903	ND	ND	ND	1.3								
Tetrachloroethene	15.9	30	0.156	ND	0.149	0.170	ND	ND	0.170	ND	ND	ND	ND	0.156	0.149	ND	ND	ND	ND	ND	6.5
Tetrahydrofuran	NV		1,080	1.76	2.01	835	2.63	1.79	475	498	1.78	1.93	1.62	1.63	481	1.99	1.71	ND	ND	ND	NV
Toluene	43		14.5	0.95	1.86	12.1	1.11	1.42	10.7	9.38	0.904	1.22	1.44	1.42	8.14	0.788	1.52	1.82	ND	ND	33.7
trans-1,2-Dichloroethene	NV		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.975	ND	ND	ND	ND	ND	NV
Trichloroethene	4.2	2	0.570	0.21	0.188	0.677	0.204	0.188	0.672	0.580	0.204	0.451	0.226	0.516	1.27	0.22	0.188	0.134	ND	ND	1.3
Trichlorofluoromethane	18.1		ND	1.57	1.34	1.13	1.57	1.29	1.33	1.25	1.66	1.7	1.33	1.32	1.17	1.61	1.34	1.14	1.68	ND	4.3

Notos

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during a 8-hour sample duration.
- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.
- 6. Air Guidance Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health.
- 7. NYSDOH does not currently have standards, criteria or guidance values for concentrations in sub-slab vapor. The detection of VOCs in sub-slab vapor samples does not necessarily indicate soil vapor intrusion is occurring or action should be taken to address exposures.
- 8. Blue shaded values represent the data most recently collected.
- 9. Grey shaded values represent exceedance of table C2 indoor/outdoor guidance values; yellow shaded values represent exceedance of NYSDOH Air Guidance Values
- 10. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- 11. ND = Non Detect; NV = No Value

APPENDIX D LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L2108107

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mary Szustak

Phone: () -

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date: 02/26/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2108107-0	1 IA-1 (021821)	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 15:55	02/18/21
L2108107-0	2 IA-2 (021821)	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 15:58	02/18/21
L2108107-0	3 IA-3 (021821)	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 16:00	02/18/21
L2108107-0	14 IA-3 (021821) DUP.	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 16:00	02/18/21
L2108107-0	5 IA-4 (021821)	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 16:05	02/18/21
L2108107-0	OA-1 (021821)	AIR	166 CHANDLER ST. BUFFALO, NY	02/18/21 16:10	02/18/21

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 **Report Date:** 02/26/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:02262115:54

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107
Project Number: 00103 Report Date: 02/26/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 15, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Christopher J. Anderson

Title: Technical Director/Representative Date: 02/26/21

ANALYTICAL

AIR

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-01

Client ID: IA-1 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 15:55 Date Received: 02/18/21

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 18:02

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.470	0.200		2.32	0.989			1
Chloromethane	0.549	0.200		1.13	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	4690	5.00		8840	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	24.1	1.00		57.2	2.38			1
Trichlorofluoromethane	0.239	0.200		1.34	1.12			1
Isopropanol	868	0.500		2130	1.23		Е	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	119	0.500		351	1.47		E	1
Ethyl Acetate	31.0	0.500		112	1.80			1
Chloroform	0.275	0.200		1.34	0.977			1
Tetrahydrofuran	0.683	0.500		2.01	1.47			1

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-01 Client ID: IA-1 (021821)

166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 15:55

Date Received: 02/18/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

•		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.206	0.200		0.658	0.639			1
Cyclohexane	0.426	0.200		1.47	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.494	0.200		1.86	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	0.411	0.400		1.79	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2108107

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: Report Date: 00103 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-01 Client ID: IA-1 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY Date Collected: 02/18/21 15:55

Date Received: 02/18/21

Lab Number:

Field Prep: Not Specified

Sample Depth:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

L2108107

Lab Number:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-01 Date Collected: 02/18/21 15:55

Client ID: IA-1 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

48,TO-15-SIM Anaytical Method: Analytical Date: 02/24/21 18:02

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.067	0.020		0.421	0.126			1
Trichloroethene	0.035	0.020		0.188	0.107			1
Tetrachloroethene	0.022	0.020		0.149	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-01 D Date Collected: 02/18/21 15:55

Client ID: IA-1 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/26/21 08:17

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Ethanol	15000	283		28300	533			56.56
Isopropanol	997	28.3		2450	69.6			56.56
2-Butanone	93.2	28.3		275	83.5			56.56

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	90		60-140

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

Field Prep:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-02

Client ID: IA-2 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 15:58 Date Received: 02/18/21

ed: 02/18/21 Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/24/21 18:43

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.470	0.200		2.32	0.989			1
Chloromethane	0.544	0.200		1.12	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	3320	5.00		6260	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	19.4	1.00		46.1	2.38			1
Trichlorofluoromethane	0.230	0.200		1.29	1.12			1
Isopropanol	569	0.500		1400	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	104	0.500		307	1.47		E	1
Ethyl Acetate	17.1	0.500		61.6	1.80			1
Chloroform	0.219	0.200		1.07	0.977			1
Tetrahydrofuran	0.607	0.500		1.79	1.47			1

L2108107

02/18/21 15:58

Lab Number:

Date Collected:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: Report Date: 00103

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-02 Client ID: IA-2 (021821)

Date Received: 02/18/21 Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Campio Dopiiii		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.207	0.200		0.661	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.376	0.200		1.42	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	0.700	0.400		3.04	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-02

Client ID: IA-2 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 15:58

Date Received: 02/18/21

Lab Number:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	99		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number:

Project Number: 00103 Report Date: 02/26/21

•

SAMPLE RESULTS

Lab ID: Date Collected: 02/18/21 15:58

Client ID: IA-2 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/24/21 18:43

	<u> </u>	ppbV			ug/m3	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.062	0.020		0.390	0.126			1
Trichloroethene	0.035	0.020		0.188	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	98		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-02 D Date Collected: 02/18/21 15:58

Client ID: IA-2 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/26/21 08:49

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Ethanol	10000	303		18800	571			60.53
Isopropanol	654	30.3		1610	74.5			60.53
2-Butanone	99.8	30.3		294	89.4			60.53

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	89		60-140

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-03

Client ID: IA-3 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 16:00

Date Received: 02/18/21
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 19:24

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.473	0.200		2.34	0.989			1
Chloromethane	0.565	0.200		1.17	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	2780	5.00		5240	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	16.4	1.00		39.0	2.38			1
Trichlorofluoromethane	0.236	0.200		1.33	1.12			1
Isopropanol	616	0.500		1510	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	54.8	0.500		162	1.47			1
Ethyl Acetate	14.9	0.500		53.7	1.80			1
Chloroform	0.207	0.200		1.01	0.977			1
Tetrahydrofuran	0.548	0.500		1.62	1.47			1

Project Number: 00103 Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-03 Client ID: IA-3 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY Date Collected: 02/18/21 16:00

Date Received: 02/18/21 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.201	0.200		0.642	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.383	0.200		1.44	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
l-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-03

Client ID: IA-3 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 16:00

Date Received: 02/18/21

Lab Number:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	98		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number:

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: Date Collected: 02/18/21 16:00

Client ID: IA-3 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/24/21 19:24

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.027	0.020		0.107	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.064	0.020		0.403	0.126			1
Trichloroethene	0.042	0.020		0.226	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-03 D

Client ID: IA-3 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 03

02/18/21 16:00

Date Received: Field Prep:

02/18/21 Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/26/21 09:09

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Ethanol	7560	315		14200	594			62.97
Isopropanol	863	31.5		2120	77.4			62.97

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	113		60-140
Bromochloromethane	119		60-140
chlorobenzene-d5	114		60-140

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-04

Client ID: IA-3 (021821) DUP.

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 0

02/18/21 16:00

Date Received: Field Prep:

02/18/21 Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/24/21 20:04

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.476	0.200		2.35	0.989			1
Chloromethane	0.565	0.200		1.17	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	2790	5.00		5260	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	13.3	1.00		31.6	2.38			1
Trichlorofluoromethane	0.235	0.200		1.32	1.12			1
Isopropanol	616	0.500		1510	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	55.9	0.500		165	1.47			1
Ethyl Acetate	15.1	0.500		54.4	1.80			1
Chloroform	0.210	0.200		1.03	0.977			1
Tetrahydrofuran	0.553	0.500		1.63	1.47			1

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-04

Client ID: IA-3 (021821) DUP.

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected:

02/18/21 16:00

Date Received: Field Prep:

02/18/21 Not Specified

Sample Depth:

ppbV ug/m3 Dilution
ts RL MDL Results RL MDL Qualifier Factor

				Dilution				
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.205	0.200		0.655	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.378	0.200		1.42	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-04

Client ID: IA-3 (021821) DUP.

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 16:00

Date Received: 02/18/21

Field Prep: Not Specified

Campio Bopuii.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	98		60-140

Lab Number:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-04 Date Collected: 02/18/21 16:00

Client ID: IA-3 (021821) DUP. Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/24/21 20:04

		pbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.063	0.020		0.250	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.075	0.020		0.472	0.126			1
Trichloroethene	0.096	0.020		0.516	0.107			1
Tetrachloroethene	0.023	0.020		0.156	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-04 D Date Collected: 02/18/21 16:00

Client ID: IA-3 (021821) DUP. Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/26/21 06:10

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Ethanol	7660	313		14400	590			62.66
Isopropanol	872	31.3		2140	76.9			62.66

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	114		60-140
Bromochloromethane	116		60-140
chlorobenzene-d5	120		60-140

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-05

Client ID: IA-4 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 16:05 Date Received: 02/18/21

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/24/21 21:27

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.496	0.200		2.45	0.989			1
Chloromethane	0.562	0.200		1.16	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	3640	5.00		6860	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	18.8	1.00		44.7	2.38			1
Trichlorofluoromethane	0.238	0.200		1.34	1.12			1
Isopropanol	617	0.500		1520	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	105	0.500		310	1.47		E	1
Ethyl Acetate	18.9	0.500		68.1	1.80			1
Chloroform	0.248	0.200		1.21	0.977			1
Tetrahydrofuran	0.580	0.500		1.71	1.47			1

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-05

Client ID: IA-4 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02

02/18/21 16:05

Date Received: Field Prep:

02/18/21 Not Specified

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
ND	0.200		ND	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.403	0.200		1.52	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
0.254	0.200		1.10	0.869			1
0.978	0.400		4.25	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
0.240	0.200		1.04	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND N	ND 0.200 ND 0.200	ND 0.200 ND 0.200	ND 0.200 ND ND ND 0.200 ND ND 0.200 ND ND 0.200 ND ND ND 0.200 ND ND ND 0.200	ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09 0.403 0.200 ND 1.52 ND 0.200 ND 0.820 ND 0.200 ND 1.70 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND 0.200 ND 1.70 ND 0.200 ND 1.70 ND 0.200 ND 1.54 ND 0.200 ND 0.921 0.254 0.200 ND 0.921 0.254 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.240 0.200 ND 1.37 0.240 0.200 ND 1.37	ND 0.200 ND 0.809 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09 ND 0.200 ND 1.52 0.754 ND 0.200 ND 1.54 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.859 ND 0.200 ND 0.869	ND

Project Name: Lab Number: CY21 INDOOR AIR SAMPLING

Project Number: Report Date: 00103 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-05 Date Collected: 02/18/21 16:05

Client ID: IA-4 (021821) Date Received: 02/18/21 Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number:

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: Date Collected: 02/18/21 16:05

Client ID: IA-4 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/24/21 21:27

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.070	0.020		0.440	0.126			1
Trichloroethene	0.035	0.020		0.188	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	96		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-05 D Date Collected: 02/18/21 16:05

Client ID: IA-4 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/26/21 06:51

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Ethanol	9340	308		17600	580			61.58
Isopropanol	828	30.8		2040	75.7			61.58
2-Butanone	102	30.8		301	90.8			61.58

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	113		60-140
Bromochloromethane	116		60-140
chlorobenzene-d5	116		60-140

Project Number: 00103 Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-06 Client ID:

OA-1 (021821)

166 CHANDLER ST. BUFFALO, NY

Date Collected: Date Received: 02/18/21 16:10 02/18/21

Field Prep:

Not Specified

Sample Depth:

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 02/24/21 17:21

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.464	0.200		2.29	0.989			1
Chloromethane	0.554	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	32.0	5.00		60.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.02	1.00		4.80	2.38			1
Trichlorofluoromethane	0.233	0.200		1.31	1.12			1
Isopropanol	6.29	0.500		15.5	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 00103

Lab Number:

L2108107

Report Date:

02/26/21

SAMPLE RESULTS

Lab ID: L2108107-06

Client ID: OA-1 (021821)

Sample Location: 166 CHANDLER ST. BUFFALO, NY

Date Collected: 02/18/21 16:10

Date Received: 02/18/21
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.208	0.200		0.784	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: Lab Number: CY21 INDOOR AIR SAMPLING

Report Date:

Project Number: 00103 02/26/21

SAMPLE RESULTS

Lab ID: L2108107-06 Date Collected: 02/18/21 16:10 Client ID:

OA-1 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

SAMPLE RESULTS

Lab ID: Date Collected: 02/18/21 16:10

Client ID: OA-1 (021821) Date Received: 02/18/21

Sample Location: 166 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/24/21 17:21

		ppbV			ug/m3		Γ	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.064	0.020		0.403	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	95		60-140

L2108107

Project Name: CY21 INDOOR AIR SAMPLING Lab Number:

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	-06 Batch	: WG14678	356-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-06 Batch	: WG14678	56-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01-	·06 Batch	n: WG14678	56-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	e(s): 01-0	6 Batch: W	G146785	57-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

L2108107

Lab Number:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	le(s): 01	Batch:	WG1468316-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

L2108107

Lab Number:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	le(s): 01	Batch:	WG1468316-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 01	Batch:	WG1468316-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

L2108107

Project Name: CY21 INDOOR AIR SAMPLING Lab Number:

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 03-	05 Batch	: WG14683	38-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 03-	05 Batch	n: WG14683	38-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 03-	-05 Batch	: WG14683	38-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

L2108107

Lab Number:

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 02	Batch:	WG1468342-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 02	Batch:	WG1468342-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Method Blank Analysis Batch Quality Control

		ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	le(s): 02	Batch:	WG1468342-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Report Date: 02/26/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG146785	6-3				
Dichlorodifluoromethane	98		-		70-130	-		
Chloromethane	104		-		70-130	-		
Freon-114	98		-		70-130	-		
Vinyl chloride	103		-		70-130	-		
1,3-Butadiene	106		-		70-130	-		
Bromomethane	104		-		70-130	-		
Chloroethane	102		-		70-130	-		
Ethanol	85		-		40-160	-		
Vinyl bromide	110		-		70-130	-		
Acetone	82		-		40-160	-		
Trichlorofluoromethane	109		-		70-130	-		
Isopropanol	92		-		40-160	-		
1,1-Dichloroethene	105		-		70-130	-		
Tertiary butyl Alcohol	85		-		70-130	-		
Methylene chloride	110		-		70-130	-		
3-Chloropropene	112		-		70-130	-		
Carbon disulfide	104		-		70-130	-		
Freon-113	116		-		70-130	-		
trans-1,2-Dichloroethene	100		-		70-130	-		
1,1-Dichloroethane	104		-		70-130	-		
Methyl tert butyl ether	104		-		70-130	-		
2-Butanone	112		-		70-130	-		
cis-1,2-Dichloroethene	103		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG146785	6-3				
Ethyl Acetate	104		-		70-130	-		
Chloroform	98		-		70-130	-		
Tetrahydrofuran	109		-		70-130	-		
1,2-Dichloroethane	100		-		70-130	-		
n-Hexane	107		-		70-130	-		
1,1,1-Trichloroethane	112		-		70-130	-		
Benzene	102		-		70-130	-		
Carbon tetrachloride	107		-		70-130	-		
Cyclohexane	107		-		70-130	-		
1,2-Dichloropropane	118		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	113		-		70-130	-		
Trichloroethene	116		-		70-130	-		
2,2,4-Trimethylpentane	111		-		70-130	-		
Heptane	121		-		70-130	-		
cis-1,3-Dichloropropene	117		-		70-130	-		
4-Methyl-2-pentanone	124		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	119		-		70-130	-		
Toluene	107		-		70-130	-		
2-Hexanone	118		-		70-130	-		
Dibromochloromethane	118		-		70-130	-		
1,2-Dibromoethane	105		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG146785	56-3				
Tetrachloroethene	107		-		70-130	-		
Chlorobenzene	102		-		70-130	-		
Ethylbenzene	109		-		70-130	-		
p/m-Xylene	110		-		70-130	-		
Bromoform	114		-		70-130	-		
Styrene	105		-		70-130	-		
1,1,2,2-Tetrachloroethane	111		-		70-130	-		
o-Xylene	113		-		70-130	-		
4-Ethyltoluene	102		-		70-130	-		
1,3,5-Trimethylbenzene	105		-		70-130	-		
1,2,4-Trimethylbenzene	111		-		70-130	-		
Benzyl chloride	119		-		70-130	-		
1,3-Dichlorobenzene	109		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		
1,2-Dichlorobenzene	108		-		70-130	-		
1,2,4-Trichlorobenzene	126		-		70-130	-		
Hexachlorobutadiene	116		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sa	ample(s):	01-06 Batch: WG	G1467857-3	3				
Vinyl chloride	98		-		70-130	-		25	
1,1-Dichloroethene	101		-		70-130	-		25	
cis-1,2-Dichloroethene	99		-		70-130	-		25	
1,1,1-Trichloroethane	108		-		70-130	-		25	
Carbon tetrachloride	102		-		70-130	-		25	
Trichloroethene	110		-		70-130	-		25	
Tetrachloroethene	101		-		70-130	-		25	

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batch	: WG1468316-3					
Dichlorodifluoromethane	89		-		70-130	-		
Chloromethane	78		-		70-130	-		
Freon-114	90		-		70-130	-		
Vinyl chloride	87		-		70-130	-		
1,3-Butadiene	92		-		70-130	-		
Bromomethane	86		-		70-130	-		
Chloroethane	84		-		70-130	-		
Ethanol	84		-		40-160	-		
Vinyl bromide	77		-		70-130	-		
Acetone	61		-		40-160	-		
Trichlorofluoromethane	85		-		70-130	-		
Isopropanol	66		-		40-160	-		
1,1-Dichloroethene	92		-		70-130	-		
Tertiary butyl Alcohol	81		-		70-130	-		
Methylene chloride	88		-		70-130	-		
3-Chloropropene	79		-		70-130	-		
Carbon disulfide	82		-		70-130	-		
Freon-113	83		-		70-130	-		
trans-1,2-Dichloroethene	82		-		70-130	-		
1,1-Dichloroethane	84		-		70-130	-		
Methyl tert butyl ether	96		-		70-130	-		
2-Butanone	88		-		70-130	-		
cis-1,2-Dichloroethene	86		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batch	n: WG1468316-3					
Ethyl Acetate	89		-		70-130	-		
Chloroform	98		-		70-130	-		
Tetrahydrofuran	84		-		70-130	-		
1,2-Dichloroethane	85		-		70-130	-		
n-Hexane	96		-		70-130	-		
1,1,1-Trichloroethane	100		-		70-130	-		
Benzene	111		-		70-130	-		
Carbon tetrachloride	106		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	94		-		70-130	-		
Bromodichloromethane	108		-		70-130	-		
1,4-Dioxane	102		-		70-130	-		
Trichloroethene	99		-		70-130	-		
2,2,4-Trimethylpentane	100		-		70-130	-		
Heptane	100		-		70-130	-		
cis-1,3-Dichloropropene	121		-		70-130	-		
4-Methyl-2-pentanone	99		-		70-130	-		
trans-1,3-Dichloropropene	104		-		70-130	-		
1,1,2-Trichloroethane	102		-		70-130	-		
Toluene	95		-		70-130	-		
2-Hexanone	108		-		70-130	-		
Dibromochloromethane	106		-		70-130	-		
1,2-Dibromoethane	115		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	ociated sample(s)	01 E	Batch: WG1468316-3					
Tetrachloroethene	97		-		70-130	-		
Chlorobenzene	110		-		70-130	-		
Ethylbenzene	101		-		70-130	-		
p/m-Xylene	102		-		70-130	-		
Bromoform	106		-		70-130	-		
Styrene	115		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	102		-		70-130	-		
4-Ethyltoluene	110		-		70-130	-		
1,3,5-Trimethylbenzene	96		-		70-130	-		
1,2,4-Trimethylbenzene	114		-		70-130	-		
Benzyl chloride	109		-		70-130	-		
1,3-Dichlorobenzene	113		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		
1,2-Dichlorobenzene	110		-		70-130	-		
1,2,4-Trichlorobenzene	127		-		70-130	-		
Hexachlorobutadiene	124		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab As	ssociated sample(s):	03-05	Batch: WG146833	8-3				
Dichlorodifluoromethane	108		-		70-130	-		
Chloromethane	105		-		70-130	-		
Freon-114	110		-		70-130	-		
Vinyl chloride	116		-		70-130	-		
1,3-Butadiene	115		-		70-130	-		
Bromomethane	112		-		70-130	-		
Chloroethane	116		-		70-130	-		
Ethanol	104		-		40-160	-		
Vinyl bromide	106		-		70-130	-		
Acetone	76		-		40-160	-		
Trichlorofluoromethane	102		-		70-130	-		
Isopropanol	87		-		40-160	-		
1,1-Dichloroethene	110		-		70-130	-		
Tertiary butyl Alcohol	93		-		70-130	-		
Methylene chloride	101		-		70-130	-		
3-Chloropropene	117		-		70-130	-		
Carbon disulfide	97		-		70-130	-		
Freon-113	108		-		70-130	-		
trans-1,2-Dichloroethene	119		-		70-130	-		
1,1-Dichloroethane	118		-		70-130	-		
Methyl tert butyl ether	116		-		70-130	-		
2-Butanone	105		-		70-130	-		
cis-1,2-Dichloroethene	124		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	03-05	Batch: WG146833	8-3				
Ethyl Acetate	130		-		70-130	-		
Chloroform	116		-		70-130	-		
Tetrahydrofuran	105		-		70-130	-		
1,2-Dichloroethane	108		-		70-130	-		
n-Hexane	118		-		70-130	-		
1,1,1-Trichloroethane	117		-		70-130	-		
Benzene	101		-		70-130	-		
Carbon tetrachloride	126		-		70-130	-		
Cyclohexane	119		-		70-130	-		
1,2-Dichloropropane	118		-		70-130	-		
Bromodichloromethane	116		-		70-130	-		
1,4-Dioxane	122		-		70-130	-		
Trichloroethene	115		-		70-130	-		
2,2,4-Trimethylpentane	124		-		70-130	-		
Heptane	100		-		70-130	-		
cis-1,3-Dichloropropene	128		-		70-130	-		
4-Methyl-2-pentanone	102		-		70-130	-		
trans-1,3-Dichloropropene	121		-		70-130	-		
1,1,2-Trichloroethane	118		-		70-130	-		
Toluene	108		-		70-130	-		
2-Hexanone	100		-		70-130	-		
Dibromochloromethane	129		-		70-130	-		
1,2-Dibromoethane	117		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	03-05	Batch: WG146833	38-3				
Tetrachloroethene	113		-		70-130	-		
Chlorobenzene	111		-		70-130	-		
Ethylbenzene	116		-		70-130	-		
p/m-Xylene	114		-		70-130	-		
Bromoform	140	Q	-		70-130	-		
Styrene	109		-		70-130	-		
1,1,2,2-Tetrachloroethane	122		-		70-130	-		
o-Xylene	117		-		70-130	-		
4-Ethyltoluene	105		-		70-130	-		
1,3,5-Trimethylbenzene	105		-		70-130	-		
1,2,4-Trimethylbenzene	112		-		70-130	-		
Benzyl chloride	186	Q	-		70-130	-		
1,3-Dichlorobenzene	114		-		70-130	-		
1,4-Dichlorobenzene	112		-		70-130	-		
1,2-Dichlorobenzene	115		-		70-130	-		
1,2,4-Trichlorobenzene	134	Q	-		70-130	-		
Hexachlorobutadiene	127		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	02 Batch	: WG1468342-3					
Dichlorodifluoromethane	87		-		70-130	-		
Chloromethane	92		-		70-130	-		
Freon-114	92		-		70-130	-		
Vinyl chloride	91		-		70-130	-		
1,3-Butadiene	93		-		70-130	-		
Bromomethane	90		-		70-130	-		
Chloroethane	90		-		70-130	-		
Ethanol	94		-		40-160	-		
Vinyl bromide	89		-		70-130	-		
Acetone	69		-		40-160	-		
Trichlorofluoromethane	87		-		70-130	-		
Isopropanol	78		-		40-160	-		
1,1-Dichloroethene	101		-		70-130	-		
Tertiary butyl Alcohol	93		-		70-130	-		
Methylene chloride	104		-		70-130	-		
3-Chloropropene	106		-		70-130	-		
Carbon disulfide	97		-		70-130	-		
Freon-113	103		-		70-130	-		
trans-1,2-Dichloroethene	96		-		70-130	-		
1,1-Dichloroethane	100		-		70-130	-		
Methyl tert butyl ether	102		-		70-130	-		
2-Butanone	100		-		70-130	-		
cis-1,2-Dichloroethene	102		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	02 Batch	: WG1468342-3					
Ethyl Acetate	91		-		70-130	-		
Chloroform	104		-		70-130	-		
Tetrahydrofuran	101		-		70-130	-		
1,2-Dichloroethane	95		-		70-130	-		
n-Hexane	103		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
Benzene	102		-		70-130	-		
Carbon tetrachloride	110		-		70-130	-		
Cyclohexane	104		-		70-130	-		
1,2-Dichloropropane	102		-		70-130	-		
Bromodichloromethane	105		-		70-130	-		
1,4-Dioxane	109		-		70-130	-		
Trichloroethene	105		-		70-130	-		
2,2,4-Trimethylpentane	105		-		70-130	-		
Heptane	104		-		70-130	-		
cis-1,3-Dichloropropene	114		-		70-130	-		
4-Methyl-2-pentanone	106		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	105		-		70-130	-		
Toluene	103		-		70-130	-		
2-Hexanone	114		-		70-130	-		
Dibromochloromethane	116		-		70-130	-		
1,2-Dibromoethane	108		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number: L2108107

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	02 B	atch: WG1468342-3					
Tetrachloroethene	104		-		70-130	-		
Chlorobenzene	107		-		70-130	-		
Ethylbenzene	108		-		70-130	-		
p/m-Xylene	108		-		70-130	-		
Bromoform	120		-		70-130	-		
Styrene	109		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	110		-		70-130	-		
4-Ethyltoluene	105		-		70-130	-		
1,3,5-Trimethylbenzene	107		-		70-130	-		
1,2,4-Trimethylbenzene	112		-		70-130	-		
Benzyl chloride	120		-		70-130	-		
1,3-Dichlorobenzene	112		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		
1,2-Dichlorobenzene	113		-		70-130	-		
1,2,4-Trichlorobenzene	138	Q	-		70-130	-		
Hexachlorobutadiene	123		-		70-130	-		

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107 02/26/21

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	3
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1467856-5	QC Sample:	L2108107-04	Client ID: IA-3 ((021821)
Dichlorodifluoromethane	0.476	0.476	ppbV	0	25	
Chloromethane	0.565	0.566	ppbV	0	25	
Freon-114	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethanol	2790E	2810E	ppbV	1	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	13.3	13.4	ppbV	1	25	
Trichlorofluoromethane	0.235	0.238	ppbV	1	25	
Isopropanol	616E	619E	ppbV	0	25	
Tertiary butyl Alcohol	ND	ND	ppbV	NC	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	ND	ND	ppbV	NC	25	
Freon-113	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	
2-Butanone	55.9	56.2	ppbV	1	25	
Ethyl Acetate	15.1	15.0	ppbV	1	25	

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
platile Organics in Air - Mansfield Lab JP.	Associated sample(s): 01-06	QC Batch ID: WG1467856-5	QC Sample:	L2108107-0	04 Client ID: IA-3 (021821)
Chloroform	0.210	0.216	ppbV	3	25
Tetrahydrofuran	0.553	0.548	ppbV	1	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Benzene	0.205	0.209	ppbV	2	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.378	0.386	ppbV	2	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Lab Number:

L2108107

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1467856-5	QC Sample:	L2108107-	04 Client ID:	IA-3 (021821)
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Project Name: CY21 INDOOR AIR SAMPLING

Project Number: 00103

Quality Control Lab Number:

L2108107

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield Lab 021821) DUP.	Associated sample(s): 01-06	QC Batch ID: WG14	67857-5	QC Sample:	L2108107-04	Client ID: IA	3
Vinyl chloride	ND	ND	ppbV	NC		25	
1,1-Dichloroethene	ND	ND	ppbV	NC		25	
cis-1,2-Dichloroethene	0.063	0.060	ppbV	5		25	
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25	
Carbon tetrachloride	0.075	0.066	ppbV	13		25	
Trichloroethene	0.096	0.100	ppbV	4		25	
Tetrachloroethene	0.023	0.024	ppbV	4		25	

CY21 INDOOR AIR SAMPLING Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2108107-01	IA-1 (021821)	01478	Flow 4	02/15/21	343083		-	-	-	Pass	4.5	4.1	9
L2108107-01	IA-1 (021821)	3192	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.7	-6.9	-	-	-	-
L2108107-02	IA-2 (021821)	01667	Flow 4	02/15/21	343083		-	-	-	Pass	4.5	3.9	14
L2108107-02	IA-2 (021821)	2376	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.5	-8.4	-	-	-	-
L2108107-03	IA-3 (021821)	01796	Flow 4	02/15/21	343083		-	-	-	Pass	4.5	3.8	17
L2108107-03	IA-3 (021821)	3204	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.8	-9.1	-	-	-	-
L2108107-04	IA-3 (021821) DUP.	01601	Flow 5	02/15/21	343083		-	-	-	Pass	4.5	4.1	9
L2108107-04	IA-3 (021821) DUP.	2022	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.3	-6.2	-	-	-	-
L2108107-05	IA-4 (021821)	01464	Flow 4	02/15/21	343083		-	-	-	Pass	4.5	4.0	12
L2108107-05	IA-4 (021821)	138	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.9	-8.6	-	-	-	-
L2108107-06	OA-1 (021821)	01772	Flow 4	02/15/21	343083		-	-	-	Pass	4.5	3.8	17
L2108107-06	OA-1 (021821)	2038	2.7L Can	02/15/21	343083	L2106543-01	Pass	-29.8	-3.9	-		-	-

Project Name:

L2106543

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

Project Number: CANISTER QC BAT Report Date: 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01 Date Collected: 02/10/21 16:00

Client ID: **CAN 1739 SHELF 1** Date Received: 02/11/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 02/11/21 17:08

Analyst: ΕW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2106543

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Date Collected: 02/10/21 16:00 Client ID: **CAN 1739 SHELF 1** Date Received: 02/11/21

Sample Location:

Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2106543

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Date Collected: 02/10/21 16:00 Client ID: **CAN 1739 SHELF 1** Date Received: 02/11/21

Sample Location:

Field Prep: Not Specified

Запре Верш.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2106543

02/10/21 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Date Collected: Client ID: **CAN 1739 SHELF 1**

Date Received: 02/11/21 Field Prep: Not Specified

Sample Location:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2106543

Project Number: CANISTER QC BAT **Report Date:** 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Date Collected: 02/10/21 16:00 Client ID: **CAN 1739 SHELF 1** Date Received: 02/11/21

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	88		60-140

L2106543

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01 Date Collected: 02/10/21 16:00

Client ID: CAN 1739 SHELF 1 Date Received: 02/11/21 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/11/21 17:08

Analyst: EW

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2106543

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Date Collected: 02/10/21 16:00 Client ID: **CAN 1739 SHELF 1** Date Received: 02/11/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2106543

Project Number: CANISTER QC BAT Report Date: 02/26/21

Air Canister Certification Results

Lab ID: L2106543-01

Client ID: CAN 1739 SHELF 1

Sample Location:

Date Collected:

02/10/21 16:00

Date Received:

02/11/21

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	89		60-140

Project Name: CY21 INDOOR AIR SAMPLING

Lab Number: L2108107

Project Number: 00103 Report Date: 02/26/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pH pH d		deg C	Pres	Seal	Date/Time	Analysis(*)
L2108107-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2108107-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2108107-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2108107-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2108107-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2108107-06A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107
Project Number: 00103 Report Date: 02/26/21

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

SRM

Project Name: CY21 INDOOR AIR SAMPLING Lab Number: L2108107
Project Number: 00103 Report Date: 02/26/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:CY21 INDOOR AIR SAMPLINGLab Number:L2108107Project Number:00103Report Date:02/26/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:CY21 INDOOR AIR SAMPLINGLab Number:L2108107Project Number:00103Report Date:02/26/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 18

Published Date: 2/16/2021 5:32:02 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	AIR AN	ALYS	IS	PAGE		F_L_	Date Rec	d in Lab:	all	7/2	1	4	LPHA	Job#:	La108107
20 Forbes Blvd, Man EL: 508-822-9300	rsfield, MA 02048 FAX: 508-822-3288	Project In	e: CY2	Indu			D FAX	Informat				200	Billing I Same a	The second	nfo PO# 00103
	N. Buffato Rl. NY 14127 07-3130	Discouling the same	on 103 ager: Ma ote #: ound Time	ck Hen	Na t	Mary S	OI OI Addi	iteria Chec Default based ther Forma	on Regulat ets: rd pdf re verables:	port)	a indicated)	_	State/Fed	f Pr	quirements/Report Limit ogram Res / Comm
mail: Mhana(These samples have Other Project Sp	e been previously analyzed by Alpha Decific Requirements/Comm Target Compound List:	Date Due:	0 11	RUSH (anly con	ime:	soved)							Special services	NALYS	IS
		l Colu						Sampler's			I D - Flow	70.15 70.15 c	APH Successive	unfales & Men	Sample Comments (i.e. Pl
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	Start Time	End Time	Initial Vacuum	Vacuum	Matrix*	Initials	Size	Cent	01478)		1		1.0 ppm
08107 -d	IA-1(021821)	2/18/21	7:5500	13.55%	727.10	-1.04	.AA	EB							1.0 ffm
-09	IA-2(021821)	2/18/21	1:50am	3 30 Pm	-30.18	-7.16	AA	EB			01667		++		0.9 ppm
-02	TA-3(021821)	2/18/21	8:00am	4:00Pm	-30.12	-7.00	AA	EB	1000000	11.	01796		$\pm \pm$	+	0.9 ppm
-04	IA-3(02,821) DUP.	2/18/21	8.00am	4:00Pm	-29.30	-635	AA	EB	The second second		01601		-		05 PPm
-05	IA-4 (021821)	2/18/21	8:05am	4:05 Pm	-3017	- 1.50	AM	EB	_		01464		+	++	0.0ppm
-06	0A-1 (021821)	2/3/21	8:10 am	4:1080	-27.80	- [.02	AA	EB	2.76	-2050	01772	^			V. 0 (17)
*SAMPL	E MATRIX CODES	AA = Ambier SV = Soil Va Other = Please Relinqui	por/Landfill (r/Outdoor) Gas/SVE		ate/Time			Containe			cs	ate/Time		Please print clearly, legibly an completely. Samples can not logged in and turnaround time clock will not start until any an guittes are resolved. All samp

APPENDIX E DATA USABILITY SUMMARY REPORTS

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

166 Chandler St., Buffalo, NY SDG#L2108107 April 2, 2021 Sampling date: 2/18/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 166 Chandler St., Buffalo, NY, Alpha Analytical, SDG#L2108107 submitted to Vali-Data of WNY, LLC on March 8, 2021. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15 and TO-15-SIM, January 1999.

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD/Duplicate
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check
- -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Laboratory Control Samples and Initial Calibration.

All results were recorded to the reporting limits except in the TO-15 SIM analysis. All samples except OA-1(021821) were diluted due to high target analyte concentrations.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Acetone was outside QC limits, low in WG1468316-3 and WG1468342-3 and should be qualified as estimated. This target analyte should be qualified as estimated in the associated samples.

The %Rec of Benzyl chloride, Bromoform and 1,2,4-Trichlorobenzene was outside QC limits, high in WG1468338-3 and should be qualified as estimated. The %Rec of 1,2,4-Trichlorobenzene was outside QC limits, high in WG1468342-3 and should be qualified as estimated. These target analytes should be qualified as estimated in the associated samples in which they were detected.

MS/MSD/DUPLICATE

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the %D of Acetone was outside QC limits in WG1456889. This target analyte should be qualified as estimated in the associated samples, blanks and spikes.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.

APPENDIX F EQUIS DATA SUBMITTAL CONFIRMATIONS

Mallory

From: dec.sm.NYENVDATA <NYENVDATA@dec.ny.gov>

Sent: Friday, April 23, 2021 1:14 PM

To: Mallory

Cc: ebetzold@envadvantage.com; mhanna@envadvantage.com; Kuczka, Megan E (DEC)

Subject: RE: 166 Chandler Street Site BCP #C915320 - Electronic Data Deliverable

Mallory,

Thank you for your EDD submission. NYSDEC has successfully uploaded the data from the EDD "20210407 1333.C915320.NYSDEC_MERGE" to 166 Chandler Street in the NYSDEC database and the data is available for use within the system.

Aaron
(he/him/his)
NYSDEC EIMS Team

NEW
YORK
STATE
Environmental
Conservation

From: Mallory <mbehlmaier@envadvantage.com>

Sent: Wednesday, April 07, 2021 1:37 PM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov>

Cc: ebetzold@envadvantage.com; mhanna@envadvantage.com; Kuczka, Megan E (DEC) < Megan.Kuczka@dec.ny.gov>

Subject: 166 Chandler Street Site BCP #C915320 - Electronic Data Deliverable

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Aaron.

Please find attached one zip file containing the following data set for BCP Site C915320 – 166 Chandler Street Site

L2108107

Thank you, Mallory

Mallory Behlmaier, Environmental Scientist Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, NY 14127 Phone (716) 667-3130 ext. 116 Fax (716) 667-3156 mbehlmaier@envadvantage.com www.envadvantage.com

~~**********************************

CONFIDENTIALITY NOTICE

This electronic transmission, including any attachments, may contain confidential information belonging to the sender and is intended only for receipt by the individual or entity named. If you believe you have received this transmission in error, please notify the sender immediately by return e-mail and delete and erase this transmission from your system. Further, you are hereby notified that any disclosure, copying, distribution, use or dissemination of the transmission or its contents, or the taking of any action in reliance on the contents of this transmission, is strictly prohibited. WARNING: Electronic transmissions are not guaranteed to be timely, error-free, secure, or free of malicious code, and the sender accepts no liability for any damage caused by viruses, malicious code, or errors or omissions contained in or resulting from this transmission.

APPENDIX G

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915320	Site Details	Box 1	
Sit	e Name 16	6 Chandler Street			
Cit Co	e Address: y/Town: Bu unty:Erie e Acreage:		Zip Code: 14207		
Re	porting Perio	od: April 20, 2020 to Ap	oril 20, 2021		
				YES	NO
1.	Is the inform	mation above correct?		×	
	If NO, inclu	ide handwritten above o	or on a separate sheet.		
2.		or all of the site property nendment during this Re	y been sold, subdivided, merged, or under eporting Period?	gone a	×
3.		peen any change of use RR 375-1.11(d))?	at the site during this Reporting Period		×
4.		ederal, state, and/or loc e property during this Re	al permits (e.g., building, discharge) been eporting Period?	issued	X
			ns 2 thru 4, include documentation or every eviously submitted with this certification		
5.	Is the site of	currently undergoing dev	velopment?		X
				Box 2	
				YES	NO
6.		ent site use consistent w Residential, Commercia	rith the use(s) listed below? al, and Industrial	X	
7.	Are all ICs	in place and functioning	g as designed?	×	
	IF TI		R QUESTION 6 OR 7 IS NO, sign and date THE REST OF THIS FORM. Otherwise con		
Α (Corrective M	easures Work Plan mus	st be submitted along with this form to ad	ldress these iss	ues.
Sic	nature of Ow	ner, Remedial Party or D	Designated Representative	Date	

				Box 2	Α		
				YES	NO		
8.	8. Has any new information revealed that assumptions made in the Qualitative Ex Assessment regarding offsite contamination are no longer valid?				X		
9.	X						
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.						
SITE	E NO. C915320			Вох	x 3		
	Description of Institutiona	ıl Controls					
arce		<u>ner</u>	Institutional Contro	<u>l</u>			
77.84	-4-5 166	6 Chandler Holdings, LLC	Site Management F	Plan			
			Ground Water Use		tion		
			Landuse Restriction	n			
			Monitoring Plan IC/EC Plan				
ndoo	r air sampling		10/2011411				
				Вох	x 4		
	Description of Engineering	g Controls					
No	ne Required						
No	t Applicable/No EC's						

R	ΛY	5

	Periodic Review Report (PRR) Certification Statements						
1.	I certify by checking "YES" below that:						
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;						
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 						
	YES NO						
	X						
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:						
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;						
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.						
	YES NO						
	X						
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
	Market Serve 05/12/2021						
,	Signature of Owner, Remedial Party or Designated Representative Date						

IC CERTIFICATIONS SITE NO. C915320

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

ı C. Mark Hanna print name	at 3636 N. Buffalo Rd., print business ac	:			
am certifying as <u>desginated repres</u>	entative	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.					
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative	05/12/2021 Date			