

2024

Periodic Review Report

240 - 260 Lakefront Boulevard Site NYSDEC Site #C915340 240 Lakefront Boulevard City of Buffalo, Erie County, New York

Prepared for:

Lakefront Boulevard, LLC 50 Fountain Plaza Buffalo, New York 14202

> January 2024 Revision 1

Reporting Period: December 4, 2022 to December 4, 2023

TABLE OF CONTENTS

EXECUTI	VE SUMMARY	1		
<u>1</u> <u>SITE</u>	OVERVIEW	3		
1.1 G EO	DLOGY AND HYDROGEOLOGY	4		
1.2 SITE	HISTORY	5		
1.3 SUN	MMARY OF SELECTED REMEDY	5		
	TURE AND EXTENT OF REMAINING CONTAMINATION	6		
1.4.1 Sc		7		
	ROUNDWATER	8		
1.4.3 Sc	DIL VAPOR	8		
<u>2</u> <u>IC/E</u>	C PLAN COMPLIANCE REPORT	10		
2.1 IC/I	EC REQUIREMENTS AND COMPLIANCE	10		
-	STITUTIONAL CONTROLS	10		
	IGINEERING CONTROLS	11		
2.2 IC/I	EC CERTIFICATION	12		
3 SITE	INSPECTION	12		
24 -				
	IEW OF INSTITUTIONAL CONTROLS	12 13		
	3.2 REVIEW OF ENGINEERING CONTROLS 3.3 REPORTING PERIOD CONSTRUCTION ACTIVITIES			
3.3 REP	ORTING PERIOD CONSTRUCTION ACTIVITIES	13		
<u>4</u> <u>CON</u>	NCLUSIONS	14		
4.1 Con	иPLIANCE WITH SITE MANAGEMENT PLAN	14		
4.2 PER	FORMANCE AND EFFECTIVENESS OF THE REMEDY	14		
FIGURES	5			
FIGURE 1	Project Area and Site Boundaries			
FIGURE 2	Remaining Soil Contamination			
FIGURE 3	SITE WIDE COVER SYSTEM			

January 2023 ii | P a g e

FIGURE 4 CONSTRUCTION ACTIVITIES

APPENDICES

APPENDIX A	Environmental Easement
Appendix B	SITE INSPECTION FORMS
APPENDIX C	2023 Construction Work
APPENDIX C-1	EXCAVATION WORK PLAN NOTIFICATION AND APPROVAL
APPENDIX C-2	
APPENDIX C-3	
APPENDIX C-4	
APPENDIX C-5	
APPENDIX C-6	
APPENDIX DINSTITU	TIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

ACRONYM LIST

AAR ALTERNATIVES ANALYSIS REPORT

BCA BROWNFIELD CLEANUP AGREEMENT

BCP BROWNFIELD CLEANUP PROGRAM

BGS BELOW GROUND SURFACE

DD DECISION DOCUMENT

DER DEPARTMENT OF ENVIRONMENTAL REMEDIATION

EC ENGINEERING CONTROLS

HFM HISTORIC FILL MATERIAL

IC INSTITUTIONAL CONTROLS

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PAH POLYCYCLIC AROMATIC HYDROCARBONS

January 2024 iii | P a g e

PCBS POLYCHLORINATED BIPHENYLS

PPM PARTS PER MILLION

RAOS REMEDIAL ACTION OBJECTIVES

RI REMEDIAL INVESTIGATION

SCOs SOIL CLEANUP OBJECTIVES

SITE 2.094-ACRE PORTION OF 240 LAKEFRONT BOULEVARD, BUFFALO, NEW

York

SMP SITE MANAGEMENT PLAN

SVOCS SEMI-VOLATILE ORGANIC COMPOUNDS

VOCS VOLATILE ORGANIC COMPOUNDS

January 2024 iv | P a g e

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2024 Periodic Review Report for a 2.094-acre portion of the 240 Lakefront Boulevard (hereinafter referred to as the Site) located at 240 Lakefront Boulevard in Buffalo, New York.

Lakefront Boulevard, LLC entered into a Brownfield Cleanup Agreement (BCA) on February 13, 2019 with the NYSDEC to remediate the Site. A figure showing the site location and boundaries of this site is provided in **Figure 1**. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in **Appendix A**.

Contamination consists of historic unregulated deposition of urban fill throughout the entire Site. The remedy for the Site consisted of the following:

- Removal and disposal of two feet of soil from across the Site;
- Placement of a two-foot clean cover across the Site;
- Removal and disposal of urban fill excavated during utility and foundation installations;
- Removal and disposal of a hotspot around TP-02 and EB-14; and
- Installation of passive soil vapor systems for all townhome buildings.

Areas with remaining contamination will be monitored and maintained as specified in the approved Site Management Plan (SMP).

The SMP was prepared by C&S Engineers, Inc. (C&S) on behalf of Lakefront Boulevard, LLC., in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. The SMP addresses the means for implementing the Intuitional Controls (ICs) and/or Engineering Controls (ECs) that are required by the Environmental Easement for the Site. A summary of the SMP is provided below.

January 2024 1 | P a g e

Site Identification:	240 Lakefront Boulevard (SBL: 110.59-1-3.11) BCP Site No. C915340		
Institutional Controls:	1. The property may be used for restricted residential use.		
	2. All ECs must be inspected at a frequency and in a manner defined in the SMP.		
	3. The use of groundwater underlying the Site is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department. 4. The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries, and any potential impacts that are identified must be monitored or mitigated. 5. Compliance with the Department approved Site Management Plan and Periodic Review Reporting		
	is required. 6. The remedial party or site owner is required to complete and submit a periodic certification of institutional and engineering controls to the Department in accordance with 6NYCRR Part 375-1.8(h)(3).		
Engineering Controls:	1. Soil Cover System: A site cover has been installed over the site in all areas exceeding applicable SCOs. The cover consists of two feet of clean soil in grassed areas and a hardscape (asphalt pavement and concrete floor slab) cover.		

2 | P a g e

Site Identification:	240 Lakefront Boulevard (SBL: 110.59-1-3.11) BCP Site No. C915340				
	2. Passive Soil Vapor Sylunderneath building floor slab vapor barrier and a network of collect and passively exhaust be conducted for each building passive system will need to active system.	s consists of a 10 mil f perforated pipes to sub-slab air. SVI will ng to evaluate if the			
Inspections:	Frequency				
1. Soil Cover and S	Annually				
2. Shoring Wall Ins	Annually				
Monitoring:					
1. None					
Maintenance:					
1. Asphalt pavement, conc	As needed				
Reporting: 1. Periodic Review Rep	Annually				

The Institutional and Engineering Controls Certification form is provided in **Appendix D**.

1 SITE OVERVIEW

The Site is located in Buffalo, Erie County, New York and is comprised of a 2.09-acre portion of 240 Lakefront Boulevard (SBL: 110.59-1-3.11, total parcel size is approximately 2.43 acres) (also see **Figure 1**).

The Site is an approximately a 2.09-acre area and is bounded by the Lakefront Boulevard to the northeast, Marina Parks townhomes to the south, Ojibwa Circle to the east, and Erie Basin Marina to the west. The boundaries of the site are more fully described in **Appendix A –Environmental Easement**.

The owner of the site parcels at the time of issuance of this PRR is/are:

Lakefront Boulevard, LLC.

50 Fountain Plaza, Suite 500

January 2024 3 | P a g e

Buffalo, NY 14202

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include residential properties.

1.1 Geology and Hydrogeology

Topsoil thickness varied throughout the Site. Generally, topsoil was approximately two to ten inches thick. Underneath the topsoil, the Site contains historic fill material (HFM) to approximate depths ranging from 24 to 32 (top of bedrock) feet below grade. HFM is defined as material coming from anthropogenic sources re-worked to build a site to a defined grade.

HFM is defined as material coming from anthropogenic sources of the material re-worked to build a site to a defined grade. The HFM material at the Site contains:

Crushed Rock

Construction Debris

Sand

Lumber

• Silt

Ash/Cinders

Clay

Ceramics

Plastics

Bricks

Metal

The HFM at this Site consisted of dark grey to black silt, clay and gravel with lesser amounts of fine to coarse sand and varying amounts of anthropogenic materials. Multiple refusals of soil borings throughout the Site indicate random pieces of concrete or brick present in the subsurface.

In some locations, fine-grained fill materials were observed. This fill material contains predominantly silty clay with trace fragments of construction material (crushed concrete or brick). In some cases, fine-grained fill materials were sandwiched between layers of urban fill.

In some instances, native material was encountered; however, these were highly variable in location and depth. When encountered, native soils consisted of moderately plastic silty clay or silty sand. On the eastern portion of the Site, silty

January 2024 4 | P a g e

sand with decomposing peat and organic matter was observed above the bedrock.

Many of the deep soil borings indicate that urban fill extends to bedrock at 32 feet below grade. The January 2018 geotechnical study identified the bedrock as Onondaga Limestone, which is described as a moderately hard, slightly weathered, light grey, medium bedded porous and calcareous limestone.

The principal groundwater bearing zone beneath the Site is located between six to eleven feet below grade. Groundwater beneath the Site generally flows to the northeast and is highly influenced by Lake Erie conditions.

1.2 Site History

According to historical records, the Site was initially part of a commercial harbor (Erie Basin Marina) with most of the area consisting of waterway for freight shipments. A portion of a railway dock intersected the center of the Site with a marina and the Niagara Slip to the Erie Canal to the north.

The marina and Site were backfilled in the late 1960s, such that the Site remained vacant land.

1.3 Summary of Selected Remedy

As excerpted from the DD, elements of the selected remedy for the property include:

- A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31.
- 2. Cover System A site cover will be required to allow for restricted residential use of the site in areas where the upper two feet of exposed surface soil will exceed the restricted residential SCOs. Where a soil cover is to be used it will be a minimum of two feet of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative cover. Soil cover material, including any fill material brought to the site, will meet the SCOs for cover material for the use of the site as set forth in 6 NYCRR Part 375-6.7(d). Substitution of other

January 2024 5 | P a g e

materials and components may be allowed where such components already exist or are a component of the tangible property to be placed as part of site redevelopment. Such components may include, but are not necessarily limited to: pavement, concrete, paved surface parking areas, sidewalks, building foundations and building slabs.

- 3. Institutional Control Imposition of an institutional control for the Track 4 areas in the form of an Environmental Easement for the controlled property which will:
 - a. require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
 - b. allow the use and development of the controlled property for restricted residential, commercial use or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
 - c. restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and
 - d. require compliance with the Department approved Site Management Plan.
- 4. Site Management Plan A Site Management Plan is required for the Track 4 areas, which includes the following:
 - a. an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective.

1.4 Nature and Extent of Remaining Contamination

The 240-260 Lakefront Boulevard Site was remediated to address SVOCs, metals and PCBs to achieve a Track 4 Restricted Residential Use Cleanup, which is consistent with the intended use of the Site.

Residual contamination remaining at the Site includes HFM located beneath the Site-wide soil cover system. Potential exposure is mitigated due to the depth of the contaminant, hotspot removals, and placement of a soil cover system.

Areas with remaining contamination will be monitored and maintained with a soil cover system.

January 2024 6 | P a g e

1.4.1 Soil

Remaining contaminated urban fill is present throughout the Site from underneath the demarcation layer (2 feet below grade) to a depth of 32 feet below grade. Contaminated urban fill extends horizontally across the entire BCP boundary. The approximate area of contaminated material is 91, 040 square feet (2.09-acres).

Analytical results from the RI are summarized in the table below.

Table 1-1: Summary of Exceedances in Remaining Fill Material

	Samples with					Low	High
Analyte	Detections above				•	Concentration	
	SCOs		_	(ppm)	(ppm)		
	UR	RS	RR	СМ	I N		
VOCs							
Acetone	3					0.053	0.11
SVOCs / PAHs							
Benzo(a)anthracene			12			1	4.8
Benzo(a)pyrene				2	8	1	3.5
Benzo(b)fluoranthene			12			1.1	4.1
Benzo(k)fluoranthene	3	2				0.84	1.7
Chrysene		12				1	3.7
Dibenz(a,h)anthracene			2			0.45	0.48
Indeno(1,2,3-cd)pyrene		1	12			0.51	1.9
PCBs							
Total PCB	15					0.11	0.977
Pesticides							
4,4'-DDE	1					0.00766	0.00766
4,4'-DDD	1					0.00153	0.0153
4,4'-DDT	1					0.00128	0.0128
Metals							
Chromium	1					62.8	62.8
Copper	1					61.2	73
Lead	17					66.4	1510
Mercury	17		2		1	0.191	13.8
Zinc	9					110	508

7 | P a g e

Notes: UR = Unrestricted Use SCOs

RS = Residential Use SCOs

RR = Restricted Residential Use SCOs

CM = Commercial Use SCOs IN = Industrial Use SCOs

Sample locations documenting remaining contamination is presented in **Figure 2**.

1.4.2 Groundwater

No post remedial action groundwater sampling was conducted on-site. RI results identified marginal concentrations of VOCs (acetone and benzene), SVOCs (phenol and PAHs), PCBs and metals (aluminum, iron, lead, magnesium and manganese) that exceed NYSDEC standards. Remaining concentrations of metals above NYSDEC standards are primarily limited to naturally occurring metals commonly found in regional groundwater. Depth to groundwater ranges from six to eleven feet. Due to the depth of contamination, city wide groundwater use ban and the placement of the soil cover system, the potential exposure to remaining groundwater contamination is unlikely.

1.4.3 Soil Vapor

Contaminated soil vapor may be present throughout the Site. During the RI, two soil vapor samples were collected in areas adjacent to neighboring buildings. Samples were placed in the locations requested by the NYSDOH. One sample was located on the northern portion of the Site adjacent to Portside Condominiums; the second location was placed adjacent to the Marina Park Condominiums tennis court. Chlorinated VOCs were detected. Other VOCs were detected in the two soil vapor samples.

VOCs

- Sample SVI-01: only one chlorinated VOC, methylene chloride, was detected at 1.7 micrograms per cubic meter (ug/m3). Total concentration of other VOCs in this sample is 2,515 ug/m3. Acetone was detected at 1,900 mg/m3 in this sample; however, acetone is a common laboratory contaminant. This acetone concentration may indicate a residual laboratory artifact.
- Sample SVI-02: two chlorinated VOCs, methylene chloride and vinyl chloride, were both detected at 1.8 ug/m3. Total concentration of other VOCs in this sample is 1,215 ug/m3. Acetone was detected at 870 mg/m3 in this sample.

January 2024 8 | P a g e

The NYSDOH regulates soil vapor intrusion mostly for chlorinated volatile organic compounds (CVOC). Concentrations of regulated CVOCs in the fill material were either marginal or not detected.

January 2024 9 | P a g e

2 IC/EC PLAN COMPLIANCE REPORT

2.1 IC/EC Requirements and Compliance

As stated in the 2020 Decision Document, the remedial action objectives (RAO) selected for this Site are:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

Soil

RAOs for Public Health Protection

Prevent ingestion/direct contact with contaminated soil.

RAOs for Environmental Protection

 Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.1.1 Institutional Controls

The institutional controls for this Site are:

- The property may be used for : restricted residential use;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.

January 2024 10 | P a g e

- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the site are prohibited;

The Site has not changed owners and the land use of the Site has not change. All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.

2.1.2 Engineering Controls

The engineering controls for this Site are:

- Cover System: A site cover has been installed and/or maintained over the Site in all areas exceeding applicable SCOs. The cover consists of a two foot thick clean soil cover and hardscape (asphalt pavement and concrete floor slab).
- Passive Soil Vapor System: The system underneath all building floor slabs consists of a 10 mil vapor barrier and a network of perforated pipes to collect and passively exhaust sub-slab air. After each building is enclosed, indoor air samples and air samples from the vent piping will be collected to evaluate if the passive system will need to be converted to an active system.

January 2024 11 | P a g e

All engineering controls for this Site are in accordance with requirements of the Environmental Easement.

2.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix D**.

3 SITE INSPECTION

Site reconnaissance of the property was performed on December 4, 2023. C&S conducted the site walkover to:

- Perform the annual site inspection, which included:
 - Review previous annual inspections
 - Meet with the site representative to solicit comments/concerns regarding the operation of the Engineering Controls over the past 12 months.
 - Inspection of the property exterior cover system.
 - o Floor inspection on accessible townhomes in the eight-unit building, Building A and Building B.
 - An evaluation of the shoring wall condition:
 - Visual observation of the exposed portions of the sheet piling wall and surrounding area that front the Erie Basin Marina. Limits of the observation will be from western property boundary, approximately 121 linear feet.
 - Visual observation will include assess the wall for physical damage, corrosion, signs of subsidence and structural failure.
 - If any of the above, the observation will be noted in the PRR and notification will be sent to the owner of the shoring wall. Contact information will be updated for every reporting period.

3.1 Review of Institutional Controls

The following observations, related to the Site's ICs were noted at the time of the site reconnaissance:

January 2024 12 | P a g e

- The Site is still under construction. The large townhome complex was completed in 2020.
- No groundwater was observed being used at the property. No potable or groundwater supply wells were observed.
- The next two smaller townhomes (Buildings A and B) are under construction and expect to be occupied in 2024.
- No vegetable gardens or farming is being conducted at the property.

3.2 Review of Engineering Controls

The following observations, related to the ECs were noted during the site reconnaissance:

- The asphalt surfaces of the parking lots were in good condition with no evidence of cracks, settlement, or deterioration.
- The exterior concrete surfaces were in good condition with no evidence of cracks, settlement, or deterioration.
- Green space areas with the two-foot soil cover was in good condition with no evidence of erosion, settlement, or deterioration.
- The shoring wall appeared to be in good condition with no evidence of physical damage, corrosion, signs of subsidence and structural failure.
- Interior concrete surfaces that could be observed were in good condition with no evidence of cracks, settlement, or deterioration.
- On December 4, 2023, C&S conducted soil vapor sampling on Building A only in accordance with the approved Soil Vapor Intrusion Sampling Work Plan. Building B was not ready for soil vapor sampling. Building B is expected to be ready for sampling by late January 2024. A report detailing the sampling activities will be prepared for both buildings in February 2024 for NYSDEC and NYSDOH review.

A copy of the Site Inspection Checklist is provided in **Appendix B**. A Photo Log is provided in **Appendix B**.

3.3 Reporting Period Construction Activities

During the reporting period no intrusive activities below the demarcation layer were performed. Onsite activities consisted of vertical construction of the two 4-unit townhomes (Building A and Building B), importation of topsoil (11/9/23 to 11/10/23) and

January 2024 13 | P a g e

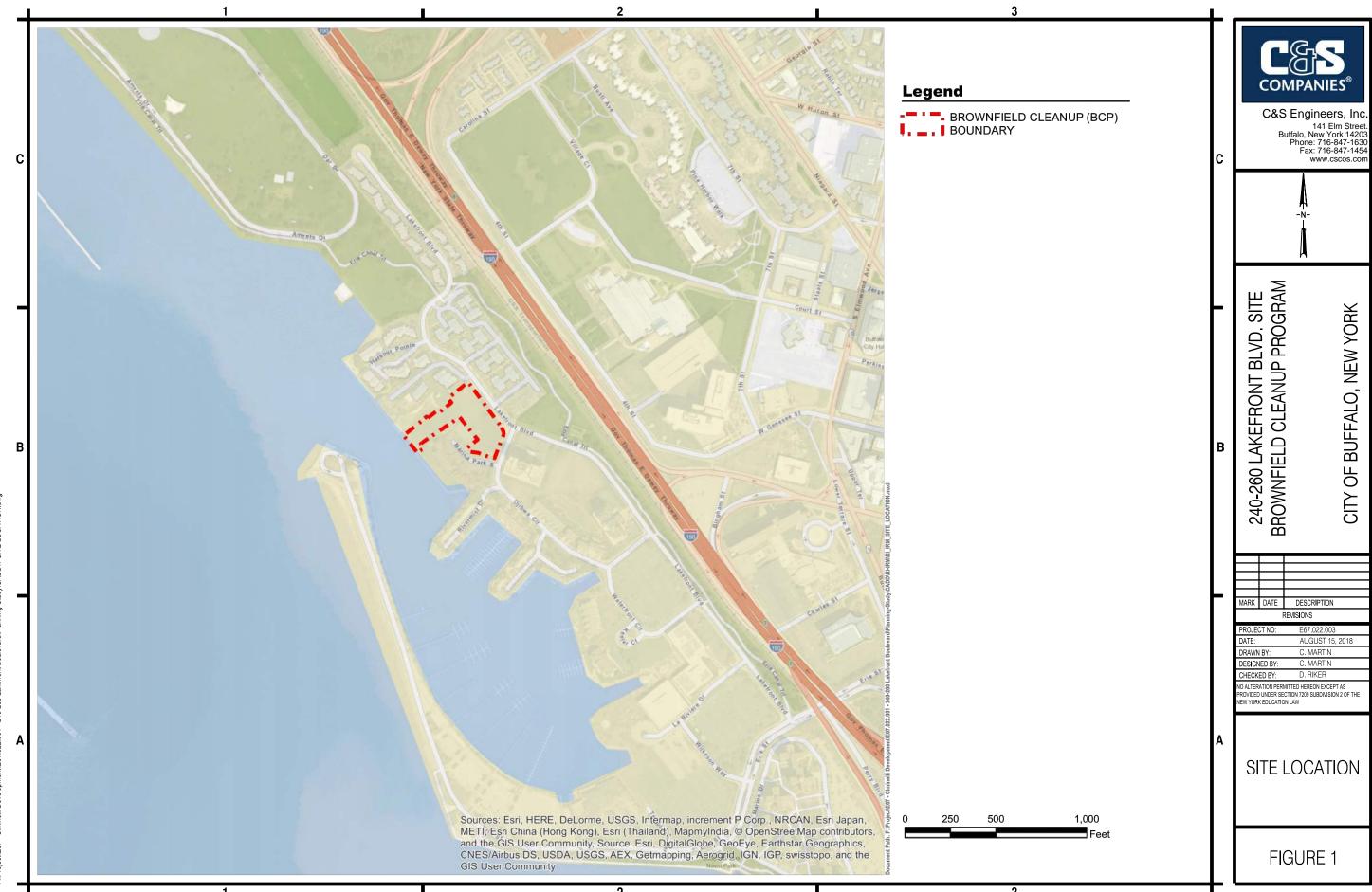
installation of landscaping 11/13/23 to 11/17/23); including installing plantings within the soil cover.

For the imported topsoil and sod, documentation was provided to the NYSDEC as to the source of the material and the consistency of the material in accordance with in DER-10. A total of 102.8 tons of topsoil and 41 cubic yards of sod was imported to the Site. **Appendix C-1** provides a copy of the import request and approval from the NYSDEC. **Appendix C-2** provides the truck tickets for the imported material. **Figure 4** shows the extent of the construction activities.

4 CONCLUSIONS

4.1 Compliance with Site Management Plan

The requirements of the Site Management Plan appear to be satisfied.


4.2 Performance and Effectiveness of the Remedy

The cover system remains fully intact and continues to provide protection for human health and the environment, as designed.

F:\Project\E67 - Ciminelli Development\E67.022.008 - Lakefront SMP Conformance\2024\240-260 Lakefront Blvd (C915340) 2024 Periodic Review Report.docx

January 2024 14 | P a g e

ect\E67 - Ciminelli Development\E67.022.001 - 240.260 Lakefront Boulevard\Planning-Study\CADD\1 SITE LOCAT

C&S Engineers, Inc.

141 Elm Street.

Buffalo, New York 14203

Phone: 716-847-1630

Fax: 716-847-1454

www.cscos.com

O

BUFF/

O

CIT

240 - 260 LAKEFRONT BOULEVARD SITE BROWNFIELD CLEANUP PROGRAM SITE NO. C915340

PROJECT NO:	E67.022.002
DATE:	02/7/2019
DRAWN BY:	C. MARTIN
DESIGNED BY:	C. MARTIN
CHECKED BY:	D. RIKER
NO ALTERATION PERMITT	ED HEREON EXCEPT AS DN 7209 SUBDIVISION 2 OF THE

NO ALTERATION PERMITTED HEREON EXCEPT AS PROVIDED UNDER SECTION 7209 SUBDIVISION 2 OF THE NEW YORK EDUCATION LAW

REMAINING SOIL CONTAMINATION

FIGURE 2

C&S Engineers, Inc.

141 Elm Street.
Buffalo, New York 14203
Phone: 716-847-1630
Fax: 716-847-1454
www.cscos.com

240 - 260 LAKEFRONT BOULEVARD SITE BROWNFIELD CLEANUP PROGRAM SITE NO. C915340

BUFFALO

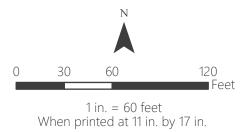
PF

PROJECT NO:	E67.022.002
DATE:	03/21/2019
DRAWN BY:	C. MARTIN
DESIGNED BY:	C. MARTIN
CHECKED BY:	D. RIKER

NO ALTERATION PERMITTED HEREON EXCEPT AS PROVIDED UNDER SECTION 7209 SUBDIVISION 2 OF THE NEW YORK EDUCATION LAW

SOIL COVER SYSTEM

FIGURE 3


Figure 4

Construction Activities

Property Boundary

240 - 260 Lakefront Boulevard Site BCP Site #C915340

Sources: . Created by C&S Engineers, Inc.

APPENDICES

ENVIRONMENTAL EASEMENT

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Office of the General Counsel

625 Broadway, 14th Floor, Albany, New York 12233-1500 P: (518) 402-9185 | F: (518) 402-9018 www.dec.nv.gov

September 18, 2019

SENT VIA CERTIFIED MAIL **RETURN RECEIPT REQUESTED** AND ELECTRONIC MAIL cslater@cslaterlaw.com

Craig A. Slater, Esq. The Slater Law Firm 500 Seneca Street, Suite 504 Buffalo, NY 14204

RE:

Environmental Easement Package

Site Name: 204 – 260 Lakefront Boulevard Site

Site No.: C915340

Dear Mr. Slater:

Enclosed, please find a fully executed Environmental Easement and TP-584 tax form referencing the site located at 240 - 260 Lakefront Boulevard, Buffalo, County of Erie, New York.

Once the Environmental Easement is recorded, the local municipality will need to be notified via Certified Mail, Return Receipt Requested.

Please return a copy of the recorded easement marked by the County Clerk's Office with the date and location of recording, and a certified copy of the municipal notice. The information from the recorded easement and notices are necessary to process the Certificate of Completion.

If you have any further questions or concerns relating to this matter, please contact our office at (518) 408-0409.

Sincerely.

Jennifer Andaloro, Esq.

Section Chief A

Remediation Bureau

ec: B. Burns, Esq., NYSDEC

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index: C915340-01-19 as

amended May 17, 2019

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 240 Lakefront Boulevard in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel numbers: Section 110.59 Block 1 Lot 4.1, being a portion of the property conveyed to Grantor by deed dated May 10, 2019 and recorded in the Erie County Clerk's Office in Liber and Page 11344/2108.

WHEREAS, Grantor, is the owner of real property located at the address of 260 Lakefront Boulevard in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel numbers: Section 110.59 Block 1 Lot 3.1, being a portion of the property conveyed to Grantor by deed dated May 10, 2019 and recorded in the Erie County Clerk's Office in Liber and Page 11344/2108.

WHEREAS, the property subject to this Environmental Easement (the "Controlled

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index : C915340-01-19 as amended May 17, 2019

Property") comprises approximately 2.08 +/- acres, and is hereinafter more fully described in the Land Title Survey dated October 20, 2016 and last revised August 1, 2019 prepared by John E. McIntosh, III, L.L.S. of McIntosh & McIntosh, P.C., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C915340-01-19 as amended May 17, 2019, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. Purposes. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index: C915340-01-19 as amended May 17, 2019

Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department:

- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
 - E. Grantor covenants and agrees that until such time as the Environmental Easement

is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls:
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. Reserved Grantor's Rights. Grantor reserves for itself, its assigns, representatives, and

successors in interest with respect to the Property, all rights as fee owner of the Property, including:

- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

- A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.
- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C915340 Office of General Counsel NYSDEC 625 Broadway County: Erie Site No: C915340 Brownfield Cleanup Agreement Index: C915340-01-19 as amended May 17, 2019

Albany New York 12233-5500

With a copy to:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.
- 11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index : C915340-01-19 as amended May 17, 2019

Remainder of Page Intentionally Left Blank

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index: C915340-01-19 as amended May 17, 2019

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Lakefront Boule	vard, LLC:
Print Name:	Paul F. Ciminelli Managing Member
Title:	Date: 2/3/ 19

Grantor's Acknowledgment

STATE OF NEW YORK)
COUNTY OF TRIE) ss:)

On the _______ day of ______, in the year 20 ff, before me, the undersigned, personally appeared _______, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(iee), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

KATHLEEN A. GUENTHER #03GU4675162
NOTARY PUBLIC, STATE OF NEW YORK
QUALIFIED IN ERIE COUNTY
My Commission Expires August 31, 20

County: Erie Site No: C915340 Brownfield Cleanup Agreement Index : C915340-01-19 as amended May 17, 2019

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss:
COUNTY OF ALBANY)

On the 17th day of Letensia, in the year 2019, before me, the undersigned, personally appeared Michael J. Ryah, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Poetic, State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146

Qualified in Schenectady County Commission Expires August 22, 2022 County: Erie Site No: C915340 Brownfield Cleanup Agreement Index: C915340-01-19 as amended May 17, 2019

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie, State of New York, and being part of Lots 5 and 14 of the New York State Mile Reserve and also being part of Sublots 19 and 20 as shown on a map prepared by Bissell Merrill Associates titled "Waterfront Village Part II" as filed in the Erie County Clerk's Office under Map Cover No. 2433, bounded and described as follows:

BEGINNING AT A POINT on the southeast line of lands conveyed to Twin Lakes Associates, L.P. by deed recorded in the Erie County Clerk's Office in Liber 9859 of Deeds at Page 572 at a distance of 5.01 feet southwesterly measured along the southeast line of said Twin Lakes Associates, L.P. lands, from its intersection with the southwest line of Lakefront Boulevard;

RUNNING THENCE: S-36°-07'-00"-E, parallel with the southwest line of Lakefront Boulevard and 5.0 feet southwesterly therefrom as measured at right angles thereto, a distance of 296.53 feet to a point;

RUNNING THENCE: S-53°-53'-00"-W, a distance of 5.0 feet to a point;

RUNNING THENCE: S-36°-07'-00"-E, a distance of 10.0 feet to a point;

RUNNING THENCE: N-53°-53'-00"-E, a distance of 4.74 feet to a point;

RUNNING THENCE: S-22°-48"-28"-E, parallel with the southwest line of Lakefront Boulevard and 5.0 feet southwesterly therefrom as measured at right angles thereto, a distance of 37.89 feet to a point;

RUNNING THENCE: S-21°-03'-33"-W, parallel with the northwest line of Ojibwa Circle and 5.0 feet northwesterly therefrom as measured at right angles thereto, a distance of 144.82 feet to a point;

RUNNING THENCE: N-68°-57'-01"-W, a distance of 28.0 feet to a point;

RUNNING THENCE: S-21°-04'-04"-W, a distance of 5.0 feet to a point;

RUNNING THENCE: N-68°-53'-24"-W, a distance of 63.29 feet to a point;

RUNNING THENCE: N-80°-50'-33"-W, a distance of 48.76 feet to a point on a northerly line of lands conveyed to Third Jeffersonian Associates by deed recorded in the Erie County Clerk's Office in Liber 9355 of Deeds at Page 302;

RUNNING THENCE: N-39°-21'-04"-W, along a northerly line of said Third Jeffersonian Associates, a distance of 23.10 feet to a point;

RUNNING THENCE: N-50°-48'-32"-E, parallel with a southeast line of said Third Jeffersonian

Associates lands and 3.0 feet southeasterly therefrom as measured at right angles thereto, a distance of 75.99 feet to a point;

RUNNING THENCE: N-39°-11'-28"-W, parallel with a northeast line of said Third Jeffersonian Associates lands and 3.0 feet northeasterly therefrom as measured at right angles thereto, a distance of 158.86 feet to a point;

RUNNING THENCE: S-55°-22'-10"-W, parallel with the northwest line of said Third Jeffersonian Associates lands and 30.0 feet northwesterly therefrom as measured at right angles thereto, a distance of 258.70 feet to a point;

RUNNING THENCE: S-34°-37'-50"-E, a distance of 30.0 feet to a point on the northwesterly line of said Third Jeffersonian Associates lands;

RUNNING THENCE: S-55°-22'-10"-W, along the northwest line of said Third Jeffersonian Associates lands, a distance of 42.97 feet to a point on the northeast face of a concrete wall;

RUNNING THENCE: N-38°-50'-37"-W, along the northeast face of said concrete wall, a distance of 121.38 feet to a point on the southeast line of said Twin Lake Associates, L.P. lands;

RUNNING THENCE: The following seven (7) courses and distances along the southeast line of said Twin Lakes Associates, L.P. lands:

- 1. N-50°-58'-38"-E, a distance of 164.97 feet to an angle point therein;
- 2. S-39°-01'-22"-E, a distance of 10.0 feet to an angle point therein;
- 3. N-50°-58'-38"-E, a distance of 70.0 feet to an angle point therein;
- 4. S-39°-01'-22"-E, a distance of 15.0 feet to an angle point therein;
- 5. N-50°-58'-38"-E, a distance of 83.0 feet to an angle point therein;
- 6. N-39°-01'-22"-W, a distance of 30.0 feet to an angle point therein;
- N-50°-58'-38"-E, a distance of 143.57 feet to the POINT OR PLACE OF BEGINNING, containing 2.09 Acres, be the same, more or less.

SUBJECT to easements, rights of way and restrictions of record.

Combined Real Estate Transfer Tax Return, Credit Line Mortgage Certificate, and Certification of Exemption from the Payment of Estimated Personal Income Tax

Recording office time stamp

See Form TP-584-I, Ins	stru	ctions for Form T	P-584.	before completing t	his form Print or tv	/ne			
Schedule A - Infor	ma	tion relating to	conv	еуапсе		<i>p</i> c.			
Grantor/Transferor		Name (if individual, last, first, middle initial) (check if more than one grantor) Social security number							
☐ Individual	Lakefront Boulevard, LLC					0001	a security manager		
☐ Corporation	М	ailing address				 		Socie	al security number
Partnership	5) Fountain Plaza,	Suite	500				1000	a society rightings
☐ Estate/Trust	C			State			IP code	Federal EIN	
Single member LLC	В	uffalo		NY		_	14202	1.000	38-4047638
☐ Other	Si	ngle member's nam	ne if gra	ntor is a single member	LLC (see instructions)			Singl	e member EIN or SSN
Grantee/Transferee	Na	ime (if individual, last,	first, mi	ddle initial) (📗 check if m	pore than one grantee)			Socie	i security number
Individual	N	ew York State De	partme	ent of Environmental	Conservation			00012	a security number
Corporation		iling address	·					Socia	I security number
☐ Partnership	62	25 Broadway						30010	i security manager
Estate/Trust	Cit			State		7	P code	Forte	ral EIN
Single member LLC	A	bany		NY			2233	FOGE	14-6013200
▼ Other			e if grai	ntee is a single membe	FLIC (see instructions)		2200	Single	member EIN or SSN
			g.,		· LLO (See Manuchons)			Single	a member 514 of 224
ocation and descriptio	n o	f property convey	⁄ed	-				· · · · · · · · · · · · · · · · · · ·	
Tax map designation – Section, block & lot (include dots and dashes)		SWIS code (six digits)	Stree	t address		City,	town, or vi	llage	County
110.59-1-4.1;110.59-1-		140200	1	260 Lakefront Boule	vard	Buff	9lo 		Erie
			1						
One- to three-fam			;	mmercial/Industrial	Date of convey	ance	Pe	rcentag	e of real property
Residential coope				artment building	A9 11	7 1 204	COI	nveyed i	which is residential
3 Residential condominium 7		Office building C9 2019 real property		ty0%					
☐ Vacant land		<u>8</u>	Oth	ner Easement	month day	/ year		(se	e instructions)
condition of conveyance. Conveyance of fee			1	Conveyance which omere change of iden	tity or form of	1. 🗆 C	ption assig	gnment	or surrender
			•	ownership or organiz Form TP-584.1, Schedu	zation (attach	m. 🗆 L	easehold a	ssianm	ent or surrender
. Acquisition of a con	trolli	ng interest (state		Dini ii Sot. i, Oblieda	10 T J			g	one or carrange,
percentage acquired	ď	·····%	ļ	Conveyance for which previously paid will b	e claimed (attach	n. 🗆 L	easehold g	rant	
. Transfer of a contr	ollin	g interest (state	,	Form TP-584.1, Schedu	ule G)		onveyance	of an o	acomont
percentage transfe		-	h. 🔲 (Conveyance of cooper	rative apartment(s)	0. 69 0	Onveyance	r UI alli E	asement
. Conveyance to co corporation		ŕ		Syndication		fr	onveyance om transfe chedule B,	r tax cla	ch exemption imed <i>(complete</i>)
☐ Conveyance pursu	ıant	to or in lieu of	j. □ (Conveyance of air rig development rights	ghts or	q. 🗆 C	onveyance nd partly or	of prop	erty partly within ne state
foreclosure or enfo interest (attach Form	TP-s	ment of security 584.1, Schedule E)	k. 🗌 (Contract assignment	:	r. □ C s. [x] O	onveyance ther (descri	pursuant bel Eas	to divorce or separation
or recording officer's use		Amount received	<u></u>	<u> </u>	Date received	<u></u>		-	ion number
		Schedule B., Part		*				,	
		Conscious D., Part	או 🌣						

~	chodule P. Deal colored transfer Land To Land Mile City				
-	chedule B - Real estate transfer tax return (Tax Law, Article 31)				
	art I - Computation of tax due				
	1 Enter amount of consideration for the conveyance (if you are claiming a total exemption from tax, check the	l i			
	exemption claimed box, enter consideration and proceed to Part III)	1.			
	2 Continuing lien deduction (see instructions if property is taken subject to mortgage or lien)	2.			
	3 Taxable consideration (subtract line 2 from line 1)	3.			
	4 Tax: \$2 for each \$500, or fractional part thereof, of consideration on line 3	4.			
	5 Amount of credit claimed for tax previously paid (see instructions and attach Form TP-584.1, Schedule G)	5.			
	5 Total tax due* (subtract line 5 from line 4)	6.			
Đ.	art II - Computation of additional tax due on the conveyance of residential real property for \$1 million or more				
•	1 Enter amount of consideration for conveyance (from Part I, line 1)	_		1	
	2 Toyohla consideration (multiply light to the appropriate of the appropriate to the appr	1.			
	 Taxable consideration (multiply line 1 by the percentage of the premises which is residential real property, as shown in Schedule A) Total additional transfer tax due* (multiply line 2 by 1% (.01))	2. 3.			
			·-··		
	art III - Explanation of exemption claimed on Part I, line 1 (check any boxes that apply)				
TI	ne conveyance of real property is exempt from the real estate transfer tax for the following reason:				
a.	Conveyance is to the United Nations, the United States of America, the state of New York, or any of their instru-	ment	alities.		
	agencies, or political subdivisions (or any public corporation, including a public corporation created pursuant to	agre	ement or	7	
	compact with another state or Canada)		a	\times	
b.	. Conveyance is to secure a debt or other obligation				
C.	Conveyance is without additional consideration to confirm, correct, modify, or supplement a prior conveyance		С		
ri	Conveyance of real property is without consideration and not in connection with a cole, including conveyance				
٠.	. Conveyance of real property is without consideration and not in connection with a sale, including conveyances conveying realty as bona fide gifts				
	The state of the s		U	<u></u> 1	
e.	Conveyance is given in connection with a tax sale		_		
	The state of the s		e	Li	
ŧ.	Conveyance is a mere change of identity or form of ownership or organization where there is no change in bene	ficial			
	ownership. (This exemption cannot be claimed for a conveyance to a cooperative housing corporation of real programment of the conveyance of the cooperative housing corporation of the cooperative housing corporatio	, includi	+ 1.0		
	comprising the cooperative dwelling or dwellings.) Attach Form TP-584.1, Schedule F	opei	ty f		
	gor, and a second of the secon	*			
a.	Conveyance consists of deed of partition		~		
٠.			y	Ш	
٦.	Conveyance is given pursuant to the federal Bankruptcy Act		h		
	Conveyance consists of the execution of a contract to sell real property, without the use or occupancy of such property.	rope	erty, or		
	the granting of an option to purchase real property, without the use or occupancy of such property		I		
•	Conveyance of an option or contract to purchase real property with the use or occupancy of such property whe	re the	€		
	consideration is less than \$200,000 and such property was used solely by the grantor as the grantor's personal	resid	ence		
	and consists of a one-, two-, or three-family house, an individual residential condominium unit, or the sale of sto	ck			
	in a cooperative housing corporation in connection with the grant or transfer of a proprietary leasehold covering	an		·····	
	individual residential cooperative apartment		j		
			ŕ		
ί.	Conveyance is not a conveyance within the meaning of Tax Law, Article 31, section 1401(e) (attach documents				
	supporting such claim)		k		

*The total tax (from Part I, line 6 and Part II, line 3 above) is due within 15 days from the date conveyance. Please make check(s) payable to the county clerk where the recording is to take place. If the recording is to take place in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, make check(s) payable to the **NYC Department of Finance**. If a recording is not required, send this return and your check(s) made payable to the **NYS Department of Taxation and Finance**, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Sche	dule C - Credit Line Mortgage Certificate (Tax Law, Article 11)
	plete the following only if the interest being transferred is a fee simple interest. certify that: (check the appropriate box)
1. X	The real property being sold or transferred is not subject to an outstanding credit line mortgage.
2. 🗌	The real property being sold or transferred is subject to an outstanding credit line mortgage. However, an exemption from the tax is claimed for the following reason:
	The transfer of real property is a transfer of a fee simple interest to a person or persons who held a fee simple interest in the real property (whether as a joint tenant, a tenant in common or otherwise) immediately before the transfer.
	The transfer of real property is (A) to a person or persons related by blood, marriage or adoption to the original obligor or to one or more of the original obligors or (B) to a person or entity where 50% or more of the beneficial interest in such real property after the transfer is held by the transferor or such related person or persons (as in the case of a transfer to a trustee for the benefit of a minor or the transfer to a trust for the benefit of the transferor).
	The transfer of real property is a transfer to a trustee in bankruptcy, a receiver, assignee, or other officer of a court.
	The maximum principal amount secured by the credit line mortgage is \$3,000,000 or more, and the real property being sold or transferred is not principally improved nor will it be improved by a one- to six-family owner-occupied residence or dwelling.
	Please note: for purposes of determining whether the maximum principal amount secured is \$3,000,000 or more as described above, the amounts secured by two or more credit line mortgages may be aggregated under certain circumstances. See TSB-M-96(6)-R for more information regarding these aggregation requirements.
	Other (attach detailed explanation).
з. 🗌	The real property being transferred is presently subject to an outstanding credit line mortgage. However, no tax is due for the following reason:
	A certificate of discharge of the credit line mortgage is being offered at the time of recording the deed.
	A check has been drawn payable for transmission to the credit line mortgagee or his agent for the balance due, and a satisfaction of such mortgage will be recorded as soon as it is available.
4.	The real property being transferred is subject to an outstanding credit line mortgage recorded in
	is being paid herewith. (Make check payable to county clerk where deed will be recorded or, if the recording is to take place in New York City but not in Richmond County, make check payable to the NYC Department of Finance.)
Signa	ture (both the grantor(s) and grantee(s) must sign)
attachr	dersigned certify that the above information contained in schedules A, B, and C, including any return, certification, schedule, or ment, is to the best of his/her knowledge, true and complete, and authorize the person(s) submitting such form on their behalf to a copy for purposes of recording the deed or other instrument effecting the conveyance.
-4	Gantonsignature Managing Member Graphee signature My DEC Attorney Graphee signature
	Grantor signature Title Grantee signature Title
Remin	der: Did you complete all of the required information in Schedules A. B, and C? Are you required to complete Schedule D? If you

Ren checked e, f, or g in Schedule A, did you complete Form TP-584.1? Have you attached your check(s) made payable to the county clerk where recording will take place or, if the recording is in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, to the NYC Department of Finance? If no recording is required, send your check(s), made payable to the Department of Taxation and Finance, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Schedule D - Certification of exemption from the payment of estimated personal income tax (Tax Law, Article 22, section 663)

Complete the following only if a fee simple interest or a cooperative unit is being transferred by an individual or estate or trust.

If the property is being conveyed by a referee pursuant to a foreclosure proceeding, proceed to Part II, and check the second box under Exemptions for nonresident transferor(s)/seller(s) and sign at bottom.

Part I - New York State residents

If you are a New York State resident transferor(s)/seller(s) listed in Schedule A of Form TP-584 (or an attachment to Form TP-584), you must sign the certification below. If one or more transferors/sellers of the real property or cooperative unit is a resident of New York State, each resident transferor/seller must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all resident transferors/sellers.

C	ertification	of	resident	transferor(5	:)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) as signed below was a resident of New York State, and therefore is not required to pay estimated personal income tax under Tax Law, section 663(a) upon the sale or transfer of this real property or cooperative unit.

Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date

Note: A resident of New York State may still be required to pay estimated tax under Tax Law, section 685(c), but not as a condition of recording a deed.

Part II - Nonresidents of New York State

If you are a nonresident of New York State listed as a transferor/seller in Schedule A of Form TP-584 (or an attachment to Form TP-584) but are not required to pay estimated personal income tax because one of the exemptions below applies under Tax Law, section 663(c), check the box of the appropriate exemption below. If any one of the exemptions below applies to the transferor(s)/seller(s), that transferor(s)/seller(s) is not required to pay estimated personal income tax to New York State under Tax Law, section 663. Each nonresident transferor/seller who qualifies under one of the exemptions below must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all nonresident transferors/sellers.

If none of these exemption statements apply, you must complete Form IT-2663, Nonresident Real Property Estimated Income Tax Payment Form, or Form IT-2664, Nonresident Cooperative Unit Estimated Income Tax Payment Form. For more information, see Payment of estimated personal income tax, on page 1 of Form TP-584-1.

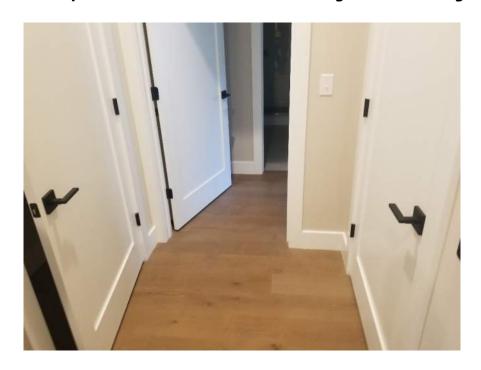
Exemption for nonresident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) (grantor) of this real pro sec

perty or cooperative tion 663 due to on	we unit was a nonresident of New York State, but is not required to pay estimated personal income tax under Tax Law, see of the following exemptions:
The real pr (within the	roperty or cooperative unit being sold or transferred qualifies in total as the transferor's/seller's principal residence meaning of Internal Revenue Code, section 121) from to (see instructions).
The transfe	eror/seller is a mortgagor conveying the mortgaged property to a mortgagee in forectosure, or in lieu of foreclosure with nal consideration.
New York,	eror or transferee is an agency or authority of the United States of America, an agency or authority of the state of the Federal National Mortgage Association, the Federal Home Loan Mortgage Corporation, the Government National Association, or a private mortgage insurance company.
natura	

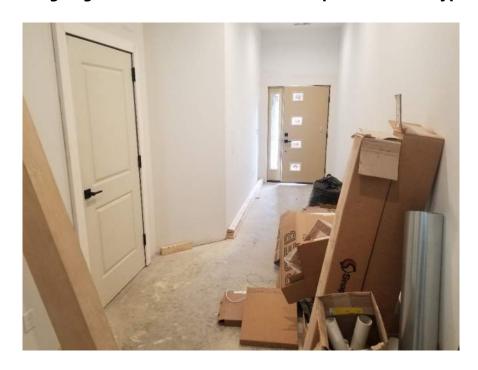

Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date

APPENDIX B


SITE INSPECTION FORMS

240 - 260 Lakefront Boulevard Site	
240 Lakefront Boulevard, Buffalo, New York	
Inspector's Name: Cody Martin	Weather Conditions: Overcast
Ingrestion Data December 4, 2022	m
Inspection Date: December 4, 2023 Inspection Time: 9:00 am	Temperature (°F): 35
Comments:	_
Inspection conducted during SVI sampling of Building A.	
hispection conducted during SVI sampling of Building A.	
Pre Inspection Checklist	
Review previous annual inspections	
 Meet with the site representative to solicit comments/concerns 	regarding the
Comments:	
Met with Construction Manager for ARC Building Partners - Mitch Ry	berg
NYSDEC was onsite during the site inspection	
*	
Cover System - Floor Inspection	
1. Walk all freely accessable floors	
 Any visible cracks or settlement in the ground floors? 	
 Any other visible openings (unintended) in the ground floors? 	
 Draw approximate location of floor cracks/openings on site ma 	ıp.
 Note the length of the crack/opening. 	
Comments:	
Was given access to only one un-occupied townhome garage for inspec	tion in the eight unit building. No cracks or settlement observed
No cracks or settlement was observed in garages of Buildings A and B.	tion in the eight unit building. 100 clacks of settlement observed.
The crawns of severence was easily on in garages of Barranige 11 and Br	
Cover System - Exterior Inspection	
1. Walk and inspect the entire perimeter of the Site.	
2. Walk and inspect all of the paved areas (concrete and asph	alt) of the Site.
 Are there any signs of significant cracks, settlement or deterior 	
Has any of the pavement material been removed?	
 Have any structures been constructed on the unpaved areas? 	
 Are there any signs of soil washing or erosion (gullies, soil was 	hed out onto the pavement)?
 Are there any signs of intrusive activities (drilling, digging, tren 	* *
Comments:	
None.	
Repair	
Summarize needed/completed repairs to the Engineering Controls	S:
N	
None	
Shoring Wall	
1. Walk and inspect the western property boundary along the	e Erie Basin Marina.
· Are there any visual signs of physical damage, corrosion, subsid	lence or structural failure ?
Comments	
Comments:	
No. The shoring wall appears to be in good condition.	
Inspector's Signature:	
mopoetor o organiture:	

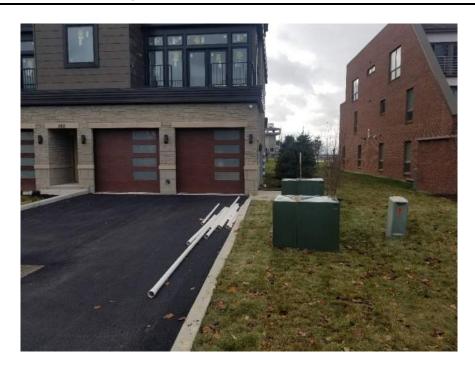
Unoccupied townhome (Unit 272) in the eight-unit building.



Finished interior in Unit 272.

View of garage floor inside Unit 272 hardscape (Soil Cover Type A).

Building A – typical interior of the first-floor entrance.



Building A – typical interior of the garage.

Building A – hardscape (Soil Cover Type A) and landscape areas (Soil Cover Type B).

Building A - view of Track 4 cover system along northern boundary. Soil Cover Type A and B.

Building A - view of Track 4 cover system of the Site along Lakefront Boulevard (Soil Cover Type A and B).

Building B – view of Track 4 cover system of the Site along Lakefront Boulevard (Soil Cover Type A and B).

View of the Track 4 cover – driveway (Soil Cover Type A) and landscape areas (Soil Cover Type B).



View of Track 4 cover system behind Building B. Soil Cover Type A (building foundations and concrete pad) and landscaped areas.

View of Track 4 cover system behind Building A. Soil Cover Type A (building foundations and concrete pad) and landscaped areas.

View of the Track 4 cover consisting of eight-unit townhome (Soil Cover Type A) and landscape areas (Soil Cover Type B).

View of the Track 4 cover – landscape areas (Soil Cover Type B).

View of the shoring wall looking north.

View of the Track 4 cover – eight-unit building (Soil Cover Type A) and landscape areas (Soil Cover Type B).

View of Track 4 cover system adjacent to Ojibwa Circle. Showing Soil Cover Type A (hardscape) and Soil Cover Type B (landscape).

View of the Track 4 cover – hardscape areas (Soil Cover Type A) for future townhome development.

View of the Track 4 cover – hardscape areas (Soil Cover Type A) for future townhome development.

View of Track 4 cover system adjacent to Ojibwa Circle. Showing Soil Cover Type A (hardscape) and Soil Cover Type B (landscape).

APPENDIX C-1

IMPORT REQUEST AND APPROVAL

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220| F: (716) 851-7226 www.dec.ny.gov

November 15, 2023

Cody Martin C&S Engineers, Inc. 141 Elm Street, Suite 100 Buffalo, NY 14203

Re: Site Management (SM) –

Import Request

240 – 260 Lakefront Boulevard Site, Buffalo

Erie County, Site No.: C915340

Dear Cody Martin:

The Department has reviewed your request received November 14, 2023 to import approximately 50 cubic yards of topsoil from C.J. Krantz Organics. Based on the information provided, the request is hereby approved.

The proposed fill material meets the Restricted Residential soil cleanup objectives as provided in Appendix 5 of DER-10 and the guidance document "Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs". Therefore, this material may be placed below or above the demarcation layer. Testing in accordance with DER-10 and approval by the Department is required for any additional material imported from this source.

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Megan Kuczka

Environmental Program Specialist – 1

ec: Erik Wagner – Lakefront Boulevard, LLC Paul Ciminelli – Lakefront Boulevard, LLC

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.

SECTION 1 - SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that passes a size 100 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING			
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):			
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.			
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.			
2, Zeotogican reson ees nave veen taeingtea ase me 2, Zeotogican resonnees are 1 resent.			
SECTION 4 – SOURCE OF FILL			
Name of person providing fill and relationship to the source:			
Location where fill was obtained:			
Identification of any state or local approvals as a fill source:			
If no approvals are available, provide a brief history of the use of the property that is the fill source:			
Provide a list of supporting documentation included with this request:			

The information provided on this form is acc	curate and complete.
Coly Alfred	
Signature	Date
Print Name	
Firm	

ANALYTICAL REPORT

Lab Number: L2363965

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Report Date: 11/13/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

11/13/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2363965-01	TS-01	SOIL	Not Specified	10/27/23 08:40	10/27/23

L2363965

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Case Narrative (continued)

Report Submission

November 13, 2023: This final report includes the results of all requested analyses.

November 07, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Volatile Organics

The WG1849227-5 Method Blank, associated with L2363965-01, has a concentration above the reporting limit for bromomethane. Since the associated sample concentration is non-detect to the RL for this target analyte, no corrective action is required.

Total Metals

L2363965-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Skustow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 11/13/23

ORGANICS

VOLATILES

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

SAMPLE RESULTS

Lab Number: L2363965

Report Date: 11/13/23

Lab ID: L2363965-01

Client ID: TS-01

Sample Location: Not Specified

Field Prep:

Date Collected:

Date Received:

10/27/23 08:40 10/27/23 Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 11/06/23 16:58

Analyst: JIC Percent Solids: 77%

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg	6.5	3.0 0.19	1
1,1-Dichloroethane Chloroform	ND ND ND	ug/kg	1.3		
Chloroform	ND ND	0 0		0.19	1
	ND	ug/kg			T .
Carbon tetrachloride			2.0	0.18	1
Carbon tetracinonae	ND	ug/kg	1.3	0.30	1
1,2-Dichloropropane		ug/kg	1.3	0.16	1
Dibromochloromethane	ND	ug/kg	1.3	0.18	1
1,1,2-Trichloroethane	ND	ug/kg	1.3	0.35	1
Tetrachloroethene	ND	ug/kg	0.65	0.26	1
Chlorobenzene	ND	ug/kg	0.65	0.16	1
Trichlorofluoromethane	ND	ug/kg	5.2	0.91	1
1,2-Dichloroethane	ND	ug/kg	1.3	0.34	1
1,1,1-Trichloroethane	ND	ug/kg	0.65	0.22	1
Bromodichloromethane	ND	ug/kg	0.65	0.14	1
trans-1,3-Dichloropropene	ND	ug/kg	1.3	0.36	1
cis-1,3-Dichloropropene	ND	ug/kg	0.65	0.21	1
Bromoform	ND	ug/kg	5.2	0.32	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.65	0.22	1
Benzene	ND	ug/kg	0.65	0.22	1
Toluene	ND	ug/kg	1.3	0.71	1
Ethylbenzene	ND	ug/kg	1.3	0.18	1
Chloromethane	ND	ug/kg	5.2	1.2	1
Bromomethane	ND	ug/kg	2.6	0.76	1
Vinyl chloride	ND	ug/kg	1.3	0.44	1
Chloroethane	ND	ug/kg	2.6	0.59	1
1,1-Dichloroethene	ND	ug/kg	1.3	0.31	1
trans-1,2-Dichloroethene	ND	ug/kg	2.0	0.18	1
Trichloroethene	ND	ug/kg	0.65	0.18	1
1,2-Dichlorobenzene	ND	ug/kg	2.6	0.19	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

1,3-Dichlorobenzene ND ug/kg 2.6 0.19 1 1,4-Dichlorobenzene ND ug/kg 2.6 0.22 1 Methyl tert butyl ether ND ug/kg 2.6 0.26 1 p/m-Xylene ND ug/kg 2.6 0.73 1 o-Xylene ND ug/kg 1.3 0.38 1 o-Xylene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.26 1 Dichlorodifluoromethane ND ug/kg 13 1.2 1 Acetone ND ug/kg 13 5.9 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 1.7 1 4-Hexthyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanon	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
1.4-Dichlorobenzene ND ug/kg 2.6 0.22 1	Volatile Organics by GC/MS - Westborough Lab									
1,4-Dichlorobenzene ND ug/kg 2.6 0.22 1 Methyl tert butyl ether ND ug/kg 2.6 0.26 1 p/m-Xylene ND ug/kg 2.6 0.73 1 o-Xylene ND ug/kg 1.3 0.38 1 cis-1,2-Dichlorothene ND ug/kg 1.3 0.26 1 Styrene ND ug/kg 1.3 0.26 1 Dichlorodifluoromethane ND ug/kg 1.3 0.26 1 Acetone ND ug/kg 1.3 0.26 1 Carbon disulfide ND ug/kg 1.3 5.9 1 2-Butanone ND ug/kg 1.3 5.9 1 4-Methyl-2-pentanone ND ug/kg 1.3 1.5 1 1,2-Dibromothane ND ug/kg 1.3 0.36 1 1,2-Dibromothane ND ug/kg 1.3 0.14 1 <	1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1			
Methyl tert butyl ether ND ug/kg 2.6 0.26 1 p/m-Xylene ND ug/kg 2.6 0.73 1 o-Xylene ND ug/kg 1.3 0.38 1 o-Xylene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.23 1 Dichlorodifluoromethane ND ug/kg 13 1.2 1 Acetone ND ug/kg 13 5.9 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 5.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 4-Hexanone ND ug/kg 13 0.36 1 1,2-Dibromosthane ND ug/kg 1.3 0.19 1 1,2-Dibromosthane	1,4-Dichlorobenzene	ND			2.6	0.22	1			
p/m-Xylene ND ug/kg 2.6 0.73 1 o-Xylene ND ug/kg 1.3 0.38 1 cis-1,2-Dichloroethene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.26 1 Dichlorodifluoromethane ND ug/kg 1.3 1.2 1 Acetone ND ug/kg 13 6.3 1 Carbon disulfide ND ug/kg 13 6.3 1 2-Butanone ND ug/kg 13 5.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Butanone ND ug/kg 13 1.5 1 1-2-Ditromoethane ND ug/kg 1.3 0.36 1 1-2-Ditromoethane ND ug/kg 1.3 0.22 1 1-2-Ditromoethane ND ug/kg 1.3 0.19 1 1-2-	Methyl tert butyl ether	ND			2.6	0.26	1			
cis-1,2-Dichloroethene ND ug/kg 1.3 0.23 1 Styrene ND ug/kg 1.3 0.26 1 Dichlorodifluoromethane ND ug/kg 13 1.2 1 Acetone ND ug/kg 13 6.3 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 4-Methyl-2-pentanone ND ug/kg 13 1.5 1 1-2-bitanone ND ug/kg 13 1.5 1 1-2-bitanone ND ug/kg 1.3 0.36 1 1-Butylbenzene ND ug/kg 1.3 0.19 1 1-Perbylbenzene ND ug/kg 1.3 0.19 1 1-2-Dibromo-3-chloropropane ND ug/kg 1.3 0.14 1 <tr< td=""><td>p/m-Xylene</td><td>ND</td><td></td><td></td><td>2.6</td><td>0.73</td><td>1</td></tr<>	p/m-Xylene	ND			2.6	0.73	1			
Styrene ND ug/kg 1.3 0.26 1 Dichlorodifluoromethane ND ug/kg 13 1.2 1 Acetone ND ug/kg 13 6.3 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1	o-Xylene	ND		ug/kg	1.3	0.38	1			
Dichlorodiffluoromethane ND ug/kg 13 1.2 1 Acetone ND ug/kg 13 6.3 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 tert-Butylbenzene ND ug/kg 3.9 1.3 1 tert-Butylbenzene ND ug/kg 3.9 1.3 1	cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.23	1			
Acetone ND ug/kg 13 6.3 1 Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropylbenzene ND ug/kg 5.2 0.85 1	Styrene	ND		ug/kg	1.3	0.26	1			
Carbon disulfide ND ug/kg 13 5.9 1 2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 2.6 0.35 1	Dichlorodifluoromethane	ND		ug/kg	13	1.2	1			
2-Butanone ND ug/kg 13 2.9 1 4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 tert-Butylbenzene ND ug/kg 3.9 1.3 1 lsopropylbenzene ND ug/kg 3.9 1.3 1 lsopropylbenzene ND ug/kg 1.3 0.14 1 P-Isopropylbenzene ND ug/kg 5.2 0.85 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1	Acetone	ND		ug/kg	13	6.3	1			
4-Methyl-2-pentanone ND ug/kg 13 1.7 1 2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 1,2-Dibromoethane ND ug/kg 1.3 0.22 1 1,2-Butylbenzene ND ug/kg 1.3 0.22 1 1,2-Butylbenzene ND ug/kg 1.3 0.19 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 1,2-Dibromo-3-chloropropane ND ug/kg 1.3 0.14 1 1,2-Disopropyltoluene ND ug/kg 1.3 0.14 1 1,2-Pisopropyltoluene ND ug/kg 1.3 0.14 1 1,3-Frimethylbenzene ND ug/kg 2.6 0.35 1 1,3-Frimethylbenzene ND ug/kg 2.6 0.35 1 1,3-Frimethylbenzene ND ug/kg 2.6 0.25 1 1,2-4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 0.90 1	Carbon disulfide	ND		ug/kg	13	5.9	1			
2-Hexanone ND ug/kg 13 1.5 1 1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 2.6 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.25 1 Methyl Acetate ND ug/kg 5.2 0.90	2-Butanone	ND		ug/kg	13	2.9	1			
1,2-Dibromoethane ND ug/kg 1.3 0.36 1 n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 2.6 0.35 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 0.90 <t< td=""><td>4-Methyl-2-pentanone</td><td>ND</td><td></td><td>ug/kg</td><td>13</td><td>1.7</td><td>1</td></t<>	4-Methyl-2-pentanone	ND		ug/kg	13	1.7	1			
n-Butylbenzene ND ug/kg 1.3 0.22 1 sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 0.90	2-Hexanone	ND		ug/kg	13	1.5	1			
sec-Butylbenzene ND ug/kg 1.3 0.19 1 tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 0.90 1	1,2-Dibromoethane	ND		ug/kg	1.3	0.36	1			
tert-Butylbenzene ND ug/kg 2.6 0.15 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 1,2,4-Trimethylbenzene ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 1.2 1 Freon-113 ND ug/kg 5.2 0.90 1	n-Butylbenzene	ND		ug/kg	1.3	0.22	1			
1,2-Dibromo-3-chloropropane ND ug/kg 3.9 1.3 1 Isopropylbenzene ND ug/kg 1.3 0.14 1 p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 0.90 1	sec-Butylbenzene	ND		ug/kg	1.3	0.19	1			
Isopropylbenzene ND ug/kg 1.3 0.14 1 1 1 1 1 1 1 1 1	tert-Butylbenzene	ND		ug/kg	2.6	0.15	1			
p-Isopropyltoluene ND ug/kg 1.3 0.14 1 Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 5.2 1.2 1 Freon-113 ND ug/kg 5.2 0.90 1	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.9	1.3	1			
Naphthalene ND ug/kg 5.2 0.85 1 n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	Isopropylbenzene	ND		ug/kg	1.3	0.14	1			
n-Propylbenzene ND ug/kg 1.3 0.22 1 1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1			
1,2,4-Trichlorobenzene ND ug/kg 2.6 0.35 1 1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	Naphthalene	ND		ug/kg	5.2	0.85	1			
1,3,5-Trimethylbenzene ND ug/kg 2.6 0.25 1 1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	n-Propylbenzene	ND		ug/kg	1.3	0.22	1			
1,2,4-Trimethylbenzene ND ug/kg 2.6 0.44 1 Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.35	1			
Methyl Acetate ND ug/kg 5.2 1.2 1 Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.25	1			
Cyclohexane ND ug/kg 13 0.71 1 Freon-113 ND ug/kg 5.2 0.90 1	1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.44	1			
Freon-113 ND ug/kg 5.2 0.90 1	Methyl Acetate	ND		ug/kg	5.2	1.2	1			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cyclohexane	ND		ug/kg	13	0.71	1			
Methyl cyclohexane ND ug/kg 5.2 0.79 1	Freon-113	ND		ug/kg	5.2	0.90	1			
	Methyl cyclohexane	ND		ug/kg	5.2	0.79	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	117		70-130	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/06/23 09:16

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch:	WG1849227-5
Methylene chloride	ND	ug/kṣ	g 5.0	2.3
1,1-Dichloroethane	ND	ug/kṣ	g 1.0	0.14
Chloroform	ND	ug/k	g 1.5	0.14
Carbon tetrachloride	ND	ug/k	g 1.0	0.23
1,2-Dichloropropane	ND	ug/k	g 1.0	0.12
Dibromochloromethane	ND	ug/k	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/k	g 1.0	0.27
Tetrachloroethene	ND	ug/k	g 0.50	0.20
Chlorobenzene	ND	ug/k	g 0.50	0.13
Trichlorofluoromethane	ND	ug/kṣ	g 4.0	0.70
1,2-Dichloroethane	ND	ug/kṣ	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/kṣ	g 0.50	0.17
Bromodichloromethane	ND	ug/kṣ	g 0.50	0.11
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	g 0.50	0.16
Bromoform	ND	ug/k	g 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kṣ	g 0.50	0.17
Benzene	ND	ug/kṣ	g 0.50	0.17
Toluene	ND	ug/kṣ	g 1.0	0.54
Ethylbenzene	ND	ug/kṣ	g 1.0	0.14
Chloromethane	ND	ug/kṣ	g 4.0	0.93
Bromomethane	2.2	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	g 0.50	0.14
1,2-Dichlorobenzene	ND	ug/k	g 2.0	0.14
1,3-Dichlorobenzene	ND	ug/k	g 2.0	0.15

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/06/23 09:16

Analyst: AJK

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01	Batch:	WG1849227-5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
Methyl tert butyl ether	ND	ug/kg	2.0	0.20
p/m-Xylene	ND	ug/kg	2.0	0.56
o-Xylene	ND	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
Styrene	ND	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND	ug/kg	10	0.92
Acetone	ND	ug/kg	10	4.8
Carbon disulfide	ND	ug/kg	10	4.6
2-Butanone	ND	ug/kg	10	2.2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3
2-Hexanone	ND	ug/kg	10	1.2
1,2-Dibromoethane	ND	ug/kg	1.0	0.28
n-Butylbenzene	ND	ug/kg	1.0	0.17
sec-Butylbenzene	ND	ug/kg	1.0	0.15
tert-Butylbenzene	ND	ug/kg	2.0	0.12
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0
Isopropylbenzene	ND	ug/kg	1.0	0.11
p-Isopropyltoluene	ND	ug/kg	1.0	0.11
Naphthalene	ND	ug/kg	4.0	0.65
n-Propylbenzene	ND	ug/kg	1.0	0.17
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND	ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND	ug/kg	2.0	0.33
Methyl Acetate	ND	ug/kg	4.0	0.95
Cyclohexane	ND	ug/kg	10	0.54
Freon-113	ND	ug/kg	4.0	0.69
Methyl cyclohexane	ND	ug/kg	4.0	0.60

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/06/23 09:16

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1849227-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	105		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	93		70-130		
Dibromofluoromethane	103		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Report Date: 11/13/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	849227-3	WG1849227-4		
Methylene chloride	103		100		70-130	3	30
1,1-Dichloroethane	94		91		70-130	3	30
Chloroform	97		95		70-130	2	30
Carbon tetrachloride	107		102		70-130	5	30
1,2-Dichloropropane	95		92		70-130	3	30
Dibromochloromethane	100		98		70-130	2	30
1,1,2-Trichloroethane	97		98		70-130	1	30
Tetrachloroethene	112		111		70-130	1	30
Chlorobenzene	99		98		70-130	1	30
Trichlorofluoromethane	118		109		70-139	8	30
1,2-Dichloroethane	95		93		70-130	2	30
1,1,1-Trichloroethane	104		101		70-130	3	30
Bromodichloromethane	101		97		70-130	4	30
trans-1,3-Dichloropropene	100		100		70-130	0	30
cis-1,3-Dichloropropene	104		101		70-130	3	30
Bromoform	93		92		70-130	1	30
1,1,2,2-Tetrachloroethane	89		88		70-130	1	30
Benzene	99		96		70-130	3	30
Toluene	98		98		70-130	0	30
Ethylbenzene	104		104		70-130	0	30
Chloromethane	88		84		52-130	5	30
Bromomethane	113		111		57-147	2	30
Vinyl chloride	108		98		67-130	10	30

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Report Date: 11/13/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 0	1 Batch: WG1	849227-3	WG1849227-4		
Chloroethane	106		97		50-151	9	30
1,1-Dichloroethene	112		109		65-135	3	30
trans-1,2-Dichloroethene	104		98		70-130	6	30
Trichloroethene	105		101		70-130	4	30
1,2-Dichlorobenzene	100		98		70-130	2	30
1,3-Dichlorobenzene	102		101		70-130	1	30
1,4-Dichlorobenzene	100		98		70-130	2	30
Methyl tert butyl ether	104		94		66-130	10	30
p/m-Xylene	108		109		70-130	1	30
o-Xylene	108		109		70-130	1	30
cis-1,2-Dichloroethene	99		96		70-130	3	30
Styrene	101		101		70-130	0	30
Dichlorodifluoromethane	104		100		30-146	4	30
Acetone	144	Q	138		54-140	4	30
Carbon disulfide	108		100		59-130	8	30
2-Butanone	81		79		70-130	3	30
4-Methyl-2-pentanone	94		91		70-130	3	30
2-Hexanone	81		82		70-130	1	30
1,2-Dibromoethane	102		101		70-130	1	30
n-Butylbenzene	110		108		70-130	2	30
sec-Butylbenzene	108		106		70-130	2	30
tert-Butylbenzene	103		101		70-130	2	30
1,2-Dibromo-3-chloropropane	95		93		68-130	2	30

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

11/13/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: Wo	G1849227-3	WG1849227-4			
Isopropylbenzene	89		88		70-130	1		30
p-Isopropyltoluene	95		93		70-130	2		30
Naphthalene	101		99		70-130	2		30
n-Propylbenzene	106		101		70-130	5		30
1,2,4-Trichlorobenzene	112		108		70-130	4		30
1,3,5-Trimethylbenzene	108		104		70-130	4		30
1,2,4-Trimethylbenzene	108		105		70-130	3		30
Methyl Acetate	116		96		51-146	19		30
Cyclohexane	104		101		59-142	3		30
Freon-113	118		112		50-139	5		30
Methyl cyclohexane	106		103		70-130	3		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	98	70-130
Toluene-d8	97	99	70-130
4-Bromofluorobenzene	100	94	70-130
Dibromofluoromethane	99	97	70-130

SEMIVOLATILES

L2363965

10/27/23 08:40

Not Specified

10/29/23 23:43

10/27/23

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

SAMPLE RESULTS

Report Date: 11/13/23

Extraction Method: EPA 3546

Lab Number:

Date Collected:

Date Received:

Extraction Date:

Field Prep:

Lab ID: L2363965-01

Client ID: TS-01

Sample Location: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270E

Analytical Date: 11/01/23 05:56

Analyst: ALS Percent Solids: 77%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbor	rough Lab					
Acenaphthene	ND		ug/kg	170	22.	1
Hexachlorobenzene	ND		ug/kg	130	24.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1
2-Chloronaphthalene	ND		ug/kg	210	21.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	57.	1
2,4-Dinitrotoluene	ND		ug/kg	210	43.	1
2,6-Dinitrotoluene	ND		ug/kg	210	37.	1
Fluoranthene	52	J	ug/kg	130	24.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	23.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	33.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	36.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	21.	1
Hexachlorobutadiene	ND		ug/kg	210	31.	1
Hexachlorocyclopentadiene	ND		ug/kg	610	190	1
Hexachloroethane	ND		ug/kg	170	35.	1
Isophorone	ND		ug/kg	190	28.	1
Naphthalene	ND		ug/kg	210	26.	1
Nitrobenzene	ND		ug/kg	190	32.	1
NDPA/DPA	ND		ug/kg	170	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	33.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	74.	1
Butyl benzyl phthalate	ND		ug/kg	210	54.	1
Di-n-butylphthalate	ND		ug/kg	210	40.	1
Di-n-octylphthalate	ND		ug/kg	210	73.	1
Diethyl phthalate	ND		ug/kg	210	20.	1
Dimethyl phthalate	ND		ug/kg	210	45.	1
Benzo(a)anthracene	28	J	ug/kg	130	24.	1
Benzo(a)pyrene	ND		ug/kg	170	52.	1

Project Name: Lab Number: 240 LAKEFRONT BLVD L2363965

Project Number: Report Date: E62.022.009 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzo(b)fluoranthene	38	J	ug/kg	130	36.	1
Benzo(k)fluoranthene	ND		ug/kg	130	34.	1
Chrysene	31	J	ug/kg	130	22.	1
Acenaphthylene	ND		ug/kg	170	33.	1
Anthracene	ND		ug/kg	130	42.	1
Benzo(ghi)perylene	ND		ug/kg	170	25.	1
Fluorene	ND		ug/kg	210	21.	1
Phenanthrene	31	J	ug/kg	130	26.	1
Dibenzo(a,h)anthracene	ND		ug/kg	130	25.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	170	30.	1
Pyrene	43	J	ug/kg	130	21.	1
Biphenyl	ND		ug/kg	490	28.	1
4-Chloroaniline	ND		ug/kg	210	39.	1
2-Nitroaniline	ND		ug/kg	210	41.	1
3-Nitroaniline	ND		ug/kg	210	40.	1
4-Nitroaniline	ND		ug/kg	210	88.	1
Dibenzofuran	ND		ug/kg	210	20.	1
2-Methylnaphthalene	ND		ug/kg	260	26.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
Acetophenone	ND		ug/kg	210	26.	1
2,4,6-Trichlorophenol	ND		ug/kg	130	40.	1
p-Chloro-m-cresol	ND		ug/kg	210	32.	1
2-Chlorophenol	ND		ug/kg	210	25.	1
2,4-Dichlorophenol	ND		ug/kg	190	34.	1
2,4-Dimethylphenol	ND		ug/kg	210	71.	1
2-Nitrophenol	ND		ug/kg	460	80.	1
4-Nitrophenol	ND		ug/kg	300	87.	1
2,4-Dinitrophenol	ND		ug/kg	1000	100	1
4,6-Dinitro-o-cresol	ND		ug/kg	560	100	1
Pentachlorophenol	ND		ug/kg	170	47.	1
Phenol	ND		ug/kg	210	32.	1
2-Methylphenol	ND		ug/kg	210	33.	1
3-Methylphenol/4-Methylphenol	53	J	ug/kg	310	34.	1
2,4,5-Trichlorophenol	ND		ug/kg	210	41.	1
Carbazole	ND		ug/kg	210	21.	1
Atrazine	ND		ug/kg	170	75.	1
Benzaldehyde	ND		ug/kg	280	58.	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	210	65.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	210	43.	1
1,4-Dioxane	ND		ug/kg	32	9.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	25-120
Phenol-d6	64	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	57	30-120
2,4,6-Tribromophenol	56	10-136
4-Terphenyl-d14	54	18-120

L2363965

10/27/23 08:40

10/27/23

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

SAMPLE RESULTS

Report Date: 11/13/23

Lab ID: L2363965-01

Client ID: TS-01

Sample Location: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 144,1633

Analytical Date: 11/11/23 00:28

Analyst: AC 77% Percent Solids:

Field Prep: Not Specified

Lab Number:

Date Collected:

Date Received:

Extraction Method: EPA 1633

Extraction Date: 11/01/23 09:15 Cleanup Method: EPA 1633

Cleanup Date: 11/01/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	0.132	J	ng/g	0.788	0.050	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.394	0.055	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.197	0.043	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.788	0.080	1
Perfluorohexanoic Acid (PFHxA)	0.053	J	ng/g	0.197	0.046	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.197	0.023	1
Perfluoroheptanoic Acid (PFHpA)	0.049	J	ng/g	0.197	0.023	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.197	0.058	1
Perfluorooctanoic Acid (PFOA)	0.236		ng/g	0.197	0.051	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.788	0.276	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.197	0.036	1
Perfluorononanoic Acid (PFNA)	0.089	J	ng/g	0.197	0.077	1
Perfluorooctanesulfonic Acid (PFOS)	0.469		ng/g	0.197	0.078	1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.197	0.074	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.788	0.381	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.197	0.042	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.197	0.098	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.197	0.050	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.197	0.032	1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/g	0.197	0.043	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.197	0.081	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.197	0.040	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.197	0.052	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/g	0.197	0.105	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/g	0.788	0.097	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/g	0.788	0.144	1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/g	0.197	0.038	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab					
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/g	0.788	0.193	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	ND		ng/g	0.788	0.165	1
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND		ng/g	0.197	0.098	1
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND		ng/g	0.197	0.110	1
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND		ng/g	1.97	0.246	1
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	ND		ng/g	1.97	0.502	1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/g	0.394	0.040	1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/g	0.394	0.031	1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/g	0.394	0.082	1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/g	0.394	0.094	1
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	ND		ng/g	0.984	0.142	1
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	ND		ng/g	4.92	0.497	1
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	ND		ng/g	4.92	1.73	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	80	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	75	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	77	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	69	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	80	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	74	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	87	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	81	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	78	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	79	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	77	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	86	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	100	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	60	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	90	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	71	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	69	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	82	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	77	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	77	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	54	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	55	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	67	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	63	20-150

L2363965

Project Name: 240 LAKEFRONT BLVD Lab Number:

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 11/01/23 03:17 Extraction Date: 10/29/23 19:51

Analyst: IM

Acenaphthene ND ug/kg 130 17. Acenaphthene ND ug/kg 99 18. Hexachlorobenzene ND ug/kg 99 18. Bis(2-chloroethyl)ether ND ug/kg 150 22. 2-Chloronaphthalene ND ug/kg 160 16. 3,3*-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 160 28. Fluoranthene ND ug/kg 160 28. Fluoranthene ND ug/kg 160 25. Bis(2-chlorophenyl phenyl ether ND ug/kg 160 25. Bis(2-chlorosphyl)phenyl ether ND ug/kg 160 25. Bis(2-chlorosphynyl)phenyl ether ND ug/kg 160 25. Bis(2-chlorosphynyl)phenyl ether <	arameter	Result	Qualifier	Units		RL	MDL
Hexachlorobenzene ND ug/kg 99 18. Bis(2-chloroethyl)ether ND ug/kg 150 22. 2-Chloronaphthalene ND ug/kg 160 16. 3,3'-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 28. Fluoranthene ND ug/kg 160 28. 4-Chlorophenyl phenyl ether ND ug/kg 160 28. 4-Bromophenyl phenyl ether ND ug/kg 160 25. 4-Bromophenyl phenyl ether ND ug/kg 160 28. 4-Bromophenyl phenyl ether ND ug/kg 160 28. Bis(2-chloroethoxy)methane ND ug/kg 160 24. Hexachlorobutadien	semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	01	Batch:	WG1845749-1
Bis(2-chloroethyl)ether ND ug/kg 150 22. 2-Chloronaphthalene ND ug/kg 160 16. 3,3'-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 28. Fluoranthene ND ug/kg 160 28. 4-Chlorophenyl phenyl ether ND ug/kg 160 25. 4-Bromophenyl phenyl ether ND ug/kg 160 25. 4-Bromophenyl phenyl ether ND ug/kg 160 25. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloriosporyul) phenyl ether ND ug/kg 160 24. Hexachlorotospylmethalene ND ug/kg 160 24. H	Acenaphthene	ND		ug/kg		130	17.
2-Chloronaphthalene ND ug/kg 160 16. 3,3'-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorocyclopentadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 150 21. NDPA/DPA ND ug/kg 150 24. NDPA/DPA ND	Hexachlorobenzene	ND		ug/kg		99	18.
3,3'-Dichlorobenzidine	Bis(2-chloroethyl)ether	ND		ug/kg		150	22.
2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 150 21. Naphthalene ND ug/kg 150 24. NDPA/DPA ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND <td>2-Chloronaphthalene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td></td> <td>160</td> <td>16.</td>	2-Chloronaphthalene	ND		ug/kg		160	16.
2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chlorosthoxy)methene ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Hexachlorocyclopentadiene ND ug/kg 150 21. Hexachlorocyclopentadiene ND ug/kg 150 21. Hexachlorocyclopentadiene ND ug/kg 160 20. Isophorone ND ug/kg 150 21. Naphthalene	3,3'-Dichlorobenzidine	ND		ug/kg		160	44.
Fluoranthene ND ug/kg 99 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 25. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-butylphthalate ND	2,4-Dinitrotoluene	ND		ug/kg		160	33.
4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-butylphthalate ND ug/kg 160 31. Di-n-cctylphthalate N	2,6-Dinitrotoluene	ND		ug/kg		160	28.
4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-butylphthalate ND ug/kg 160 35. Diethyl phthalate <td< td=""><td>Fluoranthene</td><td>ND</td><td></td><td>ug/kg</td><td></td><td>99</td><td>19.</td></td<>	Fluoranthene	ND		ug/kg		99	19.
Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-otylphthalate ND ug/kg 160 31. Di-n-otylphthalate ND ug/kg 160 35. Diethyl phthalate ND <	4-Chlorophenyl phenyl ether	ND		ug/kg		160	18.
Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 35. Dimethyl phthalate ND ug/k	4-Bromophenyl phenyl ether	ND		ug/kg		160	25.
Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 36. Diethyl phthalate ND ug/kg 160 35. Dimethyl phthalate ND ug/kg 99 18. Benzo(a)anthracene ND ug/k	Bis(2-chloroisopropyl)ether	ND		ug/kg		200	28.
Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg	Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.
Hexachloroethane ND ug/kg 130 27. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-cylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Hexachlorobutadiene	ND		ug/kg		160	24.
Isophorone ND	Hexachlorocyclopentadiene	ND		ug/kg		470	150
Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 35. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Hexachloroethane	ND		ug/kg		130	27.
Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Isophorone	ND		ug/kg		150	21.
NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Naphthalene	ND		ug/kg		160	20.
n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Nitrobenzene	ND		ug/kg		150	24.
Bis(2-ethylhexyl)phthalate ND ug/kg 160 57. Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	NDPA/DPA	ND		ug/kg		130	19.
Butyl benzyl phthalate ND ug/kg 160 42. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.
Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	57.
Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Butyl benzyl phthalate	ND		ug/kg		160	42.
Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Di-n-butylphthalate	ND		ug/kg		160	31.
Dimethyl phthalate ND ug/kg 160 35. Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Di-n-octylphthalate	ND		ug/kg		160	56.
Benzo(a)anthracene ND ug/kg 99 18. Benzo(a)pyrene ND ug/kg 130 40.	Diethyl phthalate	ND		ug/kg		160	15.
Benzo(a)pyrene ND ug/kg 130 40.	Dimethyl phthalate	ND		ug/kg		160	35.
	Benzo(a)anthracene	ND		ug/kg		99	18.
Benzo(b)fluoranthene ND ug/kg 99 28.	Benzo(a)pyrene	ND		ug/kg		130	40.
	Benzo(b)fluoranthene	ND		ug/kg		99	28.

10/29/23 19:51

Project Name: Lab Number: 240 LAKEFRONT BLVD L2363965

Project Number: Report Date: E62.022.009 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546 Analytical Date: 11/01/23 03:17 Extraction Date:

Analyst: IM

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1845749-1	
Benzo(k)fluoranthene	ND		ug/kg		99	26.	
Chrysene	ND		ug/kg		99	17.	
Acenaphthylene	ND		ug/kg		130	25.	
Anthracene	ND		ug/kg		99	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		99	16.	
Biphenyl	ND		ug/kg		380	21.	
4-Chloroaniline	ND		ug/kg		160	30.	
2-Nitroaniline	ND		ug/kg		160	32.	
3-Nitroaniline	ND		ug/kg		160	31.	
4-Nitroaniline	ND		ug/kg		160	68.	
Dibenzofuran	ND		ug/kg		160	16.	
2-Methylnaphthalene	ND		ug/kg		200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.	
Acetophenone	ND		ug/kg		160	20.	
2,4,6-Trichlorophenol	ND		ug/kg		99	31.	
p-Chloro-m-cresol	ND		ug/kg		160	24.	
2-Chlorophenol	ND		ug/kg		160	19.	
2,4-Dichlorophenol	ND		ug/kg		150	26.	
2,4-Dimethylphenol	ND		ug/kg		160	54.	
2-Nitrophenol	ND		ug/kg		360	62.	
4-Nitrophenol	ND		ug/kg		230	67.	
2,4-Dinitrophenol	ND		ug/kg		790	77.	
4,6-Dinitro-o-cresol	ND		ug/kg		430	79.	
Pentachlorophenol	ND		ug/kg		130	36.	

L2363965

Project Name: 240 LAKEFRONT BLVD

Project Number: Report Date: E62.022.009 11/13/23

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 11/01/23 03:17

Analyst: IM Extraction Method: EPA 3546 10/29/23 19:51 **Extraction Date:**

arameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01 Batch:	WG1845749-1
Phenol	ND	ug/kg	160	25.
2-Methylphenol	ND	ug/kg	160	26.
3-Methylphenol/4-Methylphenol	ND	ug/kg	240	26.
2,4,5-Trichlorophenol	ND	ug/kg	160	32.
Carbazole	ND	ug/kg	160	16.
Atrazine	ND	ug/kg	130	58.
Benzaldehyde	ND	ug/kg	220	44.
Caprolactam	ND	ug/kg	160	50.
2,3,4,6-Tetrachlorophenol	ND	ug/kg	160	33.
1,4-Dioxane	ND	ug/kg	25	7.6

Surrogate	%Recovery Qu	Acceptance ralifier Criteria
2-Fluorophenol	75	25-120
Phenol-d6	79	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	69	30-120
2,4,6-Tribromophenol	66	10-136
4-Terphenyl-d14	72	18-120

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 11/10/23 23:50

Analyst: AC

Extraction Method: EPA 1633
Extraction Date: 11/01/23 09:15
Cleanup Method: EPA 1633
Cleanup Date: 11/01/23

arameter	Result	Qualifier	Units	RL		MDL	
erfluorinated Alkyl Acids by EPA 16	633 - Manst	ield Lab fo	r sample(s):	01	Batch:	WG1846606-1	
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.800		0.050	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.400		0.056	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.200		0.043	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/g	0.800		0.081	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.200		0.046	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.200		0.023	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.200		0.023	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.200		0.059	
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.200		0.052	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.800		0.280	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.200		0.037	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.200		0.078	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.200		0.079	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.200		0.075	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.800		0.387	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.200		0.042	
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.200		0.100	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.200		0.051	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.200		0.032	
Perfluorooctanesulfonamide (PFOSA)	ND		ng/g	0.200		0.043	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.200		0.082	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.200		0.041	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.200		0.053	
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/g	0.200		0.106	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/g	0.800		0.098	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/g	0.800		0.146	
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/g	0.200		0.038	

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 11/10/23 23:50

Analyst: AC

Extraction Method: EPA 1633
Extraction Date: 11/01/23 09:15
Cleanup Method: EPA 1633
Cleanup Date: 11/01/23

Parameter	Result	Qualifier	Units	RL	MDL
Perfluorinated Alkyl Acids by EPA 16	33 - Mansf	ield Lab fo	r sample(s):	01 Batch	: WG1846606-1
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/g	0.800	0.196
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND		ng/g	0.800	0.167
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND		ng/g	0.200	0.100
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND		ng/g	0.200	0.112
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND		ng/g	2.00	0.250
N-Ethyl Perfluorooctanesulfonamido Ethano (NEtFOSE)	ol ND		ng/g	2.00	0.510
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/g	0.400	0.041
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/g	0.400	0.031
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/g	0.400	0.083
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/g	0.400	0.095
3-Perfluoropropyl Propanoic Acid (3:3FTCA	ND		ng/g	1.00	0.144
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	ND		ng/g	5.00	0.505
3-Perfluoroheptyl Propanoic Acid (7:3FTCA) ND		ng/g	5.00	1.76

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 11/10/23 23:50

Analyst: AC

Extraction Method: EPA 1633
Extraction Date: 11/01/23 09:15
Cleanup Method: EPA 1633
Cleanup Date: 11/01/23

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab for sample(s): 01 Batch: WG1846606-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	86	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	85	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	77	20-150
H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	78	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	89	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	84	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	89	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	88	20-150
H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	80	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	77	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	82	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	94	20-150
H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	100	20-150
I-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	66	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	82	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	76	20-150
I-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	60	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	73	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	61	20-150
etrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	84	20-150
I-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	46	20-150
I-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	46	20-150
I-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	64	20-150
I-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	63	20-150

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01 Batch:	WG1845749-2	WG1845749-3		
Acenaphthene	67		64		31-137	5	50
Hexachlorobenzene	64		61		40-140	5	50
Bis(2-chloroethyl)ether	79		70		40-140	12	50
2-Chloronaphthalene	70		66		40-140	6	50
3,3'-Dichlorobenzidine	63		59		40-140	7	50
2,4-Dinitrotoluene	74		69		40-132	7	50
2,6-Dinitrotoluene	73		72		40-140	1	50
Fluoranthene	73		70		40-140	4	50
4-Chlorophenyl phenyl ether	67		63		40-140	6	50
4-Bromophenyl phenyl ether	65		63		40-140	3	50
Bis(2-chloroisopropyl)ether	98		89		40-140	10	50
Bis(2-chloroethoxy)methane	78		72		40-117	8	50
Hexachlorobutadiene	67		62		40-140	8	50
Hexachlorocyclopentadiene	62		57		40-140	8	50
Hexachloroethane	73		67		40-140	9	50
Isophorone	77		70		40-140	10	50
Naphthalene	73		66		40-140	10	50
Nitrobenzene	80		72		40-140	11	50
NDPA/DPA	71		67		36-157	6	50
n-Nitrosodi-n-propylamine	83		74		32-121	11	50
Bis(2-ethylhexyl)phthalate	85		80		40-140	6	50
Butyl benzyl phthalate	81		79		40-140	3	50
Di-n-butylphthalate	78		75		40-140	4	50

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s):	01 Batch:	WG1845749-2	2 WG1845749-3		
Di-n-octylphthalate	90		85		40-140	6	50
Diethyl phthalate	73		68		40-140	7	50
Dimethyl phthalate	70		69		40-140	1	50
Benzo(a)anthracene	72		69		40-140	4	50
Benzo(a)pyrene	73		68		40-140	7	50
Benzo(b)fluoranthene	70		66		40-140	6	50
Benzo(k)fluoranthene	72		68		40-140	6	50
Chrysene	74		70		40-140	6	50
Acenaphthylene	68		66		40-140	3	50
Anthracene	72		69		40-140	4	50
Benzo(ghi)perylene	72		67		40-140	7	50
Fluorene	70		66		40-140	6	50
Phenanthrene	71		68		40-140	4	50
Dibenzo(a,h)anthracene	74		70		40-140	6	50
Indeno(1,2,3-cd)pyrene	82		76		40-140	8	50
Pyrene	72		70		35-142	3	50
Biphenyl	69		66		37-127	4	50
4-Chloroaniline	72		66		40-140	9	50
2-Nitroaniline	77		74		47-134	4	50
3-Nitroaniline	58		60		26-129	3	50
4-Nitroaniline	73		71		41-125	3	50
Dibenzofuran	69		66		40-140	4	50
2-Methylnaphthalene	73		68		40-140	7	50

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Wes	tborough Lab Associa	ated sample(s):	01 Batch:	WG1845749-2	WG1845749-3			
1,2,4,5-Tetrachlorobenzene	67		63		40-117	6	50	
Acetophenone	74		67		14-144	10	50	
2,4,6-Trichlorophenol	73		71		30-130	3	50	
p-Chloro-m-cresol	80		76		26-103	5	50	
2-Chlorophenol	81		73		25-102	10	50	
2,4-Dichlorophenol	79		73		30-130	8	50	
2,4-Dimethylphenol	64		60		30-130	6	50	
2-Nitrophenol	81		70		30-130	15	50	
4-Nitrophenol	86		82		11-114	5	50	
2,4-Dinitrophenol	43		36		4-130	18	50	
4,6-Dinitro-o-cresol	77		74		10-130	4	50	
Pentachlorophenol	69		64		17-109	8	50	
Phenol	81		74		26-90	9	50	
2-Methylphenol	78		71		30-130.	9	50	
3-Methylphenol/4-Methylphenol	78		73		30-130	7	50	
2,4,5-Trichlorophenol	74		71		30-130	4	50	
Carbazole	73		71		54-128	3	50	
Atrazine	73		74		40-140	1	50	
Benzaldehyde	97		89		40-140	9	50	
Caprolactam	96		92		15-130	4	50	
2,3,4,6-Tetrachlorophenol	69		66		40-140	4	50	
1,4-Dioxane	56		53		40-140	6	50	

Project Name: 240 LAKEFRONT BLVD

Lab Number:

L2363965

Project Number: E62.022.009

Report Date:

11/13/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1845749-2 WG1845749-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	78	71	25-120
Phenol-d6	77	72	10-120
Nitrobenzene-d5	73	66	23-120
2-Fluorobiphenyl	65	62	30-120
2,4,6-Tribromophenol	65	64	10-136
4-Terphenyl-d14	65	64	18-120

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

11/13/23

rameter	Low Level LCS %Recovery	_	ow Le LCSI Recov)	% Qual	6Recovery Limits	RPD	Qual	RPD Limits	
rfluorinated Alkyl Acids by EPA 1633 - I	Mansfield Lab Asso	ociated sample(s)	: 01	Batch:	WG1846606	6-2 LOW LE	VEL			
Perfluorobutanoic Acid (PFBA)	98		-			40-150	-		30	
Perfluoropentanoic Acid (PFPeA)	105		-			40-150	-		30	
Perfluorobutanesulfonic Acid (PFBS)	93		-			40-150	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	130		-			40-150	-		30	
Perfluorohexanoic Acid (PFHxA)	96		-			40-150	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	100		-			40-150	-		30	
Perfluoroheptanoic Acid (PFHpA)	104		-			40-150	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	108		-			40-150	-		30	
Perfluorooctanoic Acid (PFOA)	93		-			40-150	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	92		-			40-150	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	93		-			40-150	-		30	
Perfluorononanoic Acid (PFNA)	116		-			40-150	-		30	
Perfluorooctanesulfonic Acid (PFOS)	131		-			40-150	-		30	
Perfluorodecanoic Acid (PFDA)	108		-			40-150	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	112		-			40-150	-		30	
Perfluorononanesulfonic Acid (PFNS)	94		-			40-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	104		-			40-150	-		30	
Perfluoroundecanoic Acid (PFUnA)	97		-			40-150	-		30	
Perfluorodecanesulfonic Acid (PFDS)	85		-			40-150	-		30	
Perfluorooctanesulfonamide (PFOSA)	90		-			40-150	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	92		-			40-150	-		30	
Perfluorododecanoic Acid (PFDoA)	104		-			40-150	-		30	

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

11/13/23

arameter	Low Level LCS %Recovery	_	Level SD overy	% Qual	Recovery Limits	RPD	Qual	RPD Limits
erfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab Asso	ciated sample(s): 0°	Batch:	WG1846606	-2 LOW LE\	/EL		
Perfluorotridecanoic Acid (PFTrDA)	92		-		40-150	-		30
Perfluorotetradecanoic Acid (PFTeDA)	104		-		40-150	-		30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	94		-		40-150	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	97		-		40-150	-		30
Perfluorododecanesulfonic Acid (PFDoS)	73		-		40-150	-		30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	108		-		40-150	-		30
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	97		-		40-150	-		30
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	98		-		40-150	-		30
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	97		-		40-150	-		30
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	100		-		40-150	-		30
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	110		-		40-150	-		30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	121		-		40-150	-		30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	95		-		40-150	-		30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	98		-		40-150	-		30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	84		-		40-150	-		30
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	89		-		40-150	-		30
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	86		-		40-150	-		30
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	69		-		40-150	-		30

L2363965

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD Lab Number:

Project Number: E62.022.009 Report Date:

11/13/23

Low Level Low Level

LCSD LCS %Recovery RPD %Recovery **Parameter** %Recovery Qual Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01 Batch: WG1846606-2 LOW LEVEL

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	84				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	94				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	99				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	65				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	105				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	89				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	79				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	82				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	76				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	80				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	83				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	77				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	85				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	70				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	78				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	77				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	68				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	68				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	58				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	97				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	52				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	46				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	68				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	65				20-150

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Qual Limits	/ RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab Ass	ociated sample(s): 01	Batch:	WG1846606-3		
Perfluorobutanoic Acid (PFBA)	95	-		40-150	-	30
Perfluoropentanoic Acid (PFPeA)	91	-		40-150	-	30
Perfluorobutanesulfonic Acid (PFBS)	97	-		40-150	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	95	-		40-150	-	30
Perfluorohexanoic Acid (PFHxA)	87	-		40-150	-	30
Perfluoropentanesulfonic Acid (PFPeS)	100	-		40-150	-	30
Perfluoroheptanoic Acid (PFHpA)	98	-		40-150	-	30
Perfluorohexanesulfonic Acid (PFHxS)	92	-		40-150	-	30
Perfluorooctanoic Acid (PFOA)	91	-		40-150	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	100	-		40-150	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	79	-		40-150	-	30
Perfluorononanoic Acid (PFNA)	102	-		40-150	-	30
Perfluorooctanesulfonic Acid (PFOS)	94	-		40-150	-	30
Perfluorodecanoic Acid (PFDA)	94	-		40-150	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	98	-		40-150	-	30
Perfluorononanesulfonic Acid (PFNS)	89	-		40-150	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	88	-		40-150	-	30
Perfluoroundecanoic Acid (PFUnA)	101	-		40-150	-	30
Perfluorodecanesulfonic Acid (PFDS)	78	-		40-150	-	30
Perfluorooctanesulfonamide (PFOSA)	94	-		40-150	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	83	-		40-150	-	30
Perfluorododecanoic Acid (PFDoA)	87	-		40-150	-	30

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

arameter	LCS %Recovery		LCSD ecovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
erfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Asso	ociated sample(s):	01 Batch:	WG1846606-3			
Perfluorotridecanoic Acid (PFTrDA)	76		-	40-150	-	30	
Perfluorotetradecanoic Acid (PFTeDA)	94		-	40-150	-	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	96		-	40-150	-	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	94		-	40-150	-	30	
Perfluorododecanesulfonic Acid (PFDoS)	68		-	40-150	-	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	112		-	40-150	-	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	89		-	40-150	-	30	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	100		-	40-150	-	30	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	95		-	40-150	-	30	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	103		-	40-150	-	30	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	108		-	40-150	-	30	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	111		-	40-150	-	30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	98		-	40-150	-	30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	94		-	40-150	-	30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	67		-	40-150	-	30	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	92		-	40-150	-	30	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	84		-	40-150	-	30	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	71		-	40-150	-	30	

Project Name: 240 LAKEFRONT BLVD

Lab Number: L2363965

Project Number: E62.022.009

Report Date:

11/13/23

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01 Batch: WG1846606-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	78				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	81				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	83				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	69				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	84				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	76				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	79				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	84				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	73				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	85				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	86				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	81				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	78				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	72				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	78				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	79				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	76				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	72				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	54				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	81				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	54				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	49				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	68				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	67				20-150

PCBS

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 10/29/23 16:46
Analytical Date: 10/30/23 16:46 Cleanup Method: EPA 3665A

Cleanup Date: 10/20/23

Analyst: MEO Cleanup Date: 10/30/23
Percent Solids: 77% Cleanup Method: EPA 3660B
Cleanup Date: 10/30/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westl	oorough Lab						
Aroclor 1016	ND		ug/kg	63.8	5.67	1	Α
Aroclor 1221	ND		ug/kg	63.8	6.40	1	Α
Aroclor 1232	ND		ug/kg	63.8	13.5	1	Α
Aroclor 1242	ND		ug/kg	63.8	8.61	1	Α
Aroclor 1248	ND		ug/kg	63.8	9.58	1	Α
Aroclor 1254	ND		ug/kg	63.8	6.98	1	Α
Aroclor 1260	ND		ug/kg	63.8	11.8	1	В
Aroclor 1262	ND		ug/kg	63.8	8.11	1	Α
Aroclor 1268	ND		ug/kg	63.8	6.62	1	Α
PCBs, Total	ND		ug/kg	63.8	5.67	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	56		30-150	Α
Decachlorobiphenyl	45		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	53		30-150	В
Decachlorobiphenyl	38		30-150	В

L2363965

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 1,8082A 10/30/23 14:57

Analyst: MEO

Extraction Method: EPA 3546
Extraction Date: 10/29/23 16:46
Cleanup Method: EPA 3665A
Cleanup Date: 10/30/23
Cleanup Method: EPA 3660B
Cleanup Date: 10/30/23

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Westborough	Lab for sample(s):	01 Batch:	WG184570	9-1
Aroclor 1016	ND	ug/kg	46.5	4.13	Α
Aroclor 1221	ND	ug/kg	46.5	4.66	Α
Aroclor 1232	ND	ug/kg	46.5	9.85	Α
Aroclor 1242	ND	ug/kg	46.5	6.26	А
Aroclor 1248	ND	ug/kg	46.5	6.97	А
Aroclor 1254	ND	ug/kg	46.5	5.08	Α
Aroclor 1260	ND	ug/kg	46.5	8.59	Α
Aroclor 1262	ND	ug/kg	46.5	5.90	Α
Aroclor 1268	ND	ug/kg	46.5	4.81	Α
PCBs, Total	ND	ug/kg	46.5	4.13	Α

		Acceptance			
Surrogate	%Recovery Qualifier	Criteria	Column		
0.450.7.4.11	_,	00.450			
2,4,5,6-Tetrachloro-m-xylene	74	30-150	Α		
Decachlorobiphenyl	86	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	73	30-150	В		
Decachlorobiphenyl	68	30-150	В		

Project Name: 240 LAKEFRONT BLVD

Project Number:

E62.022.009

Lab Number:

L2363965

Report Date:

11/13/23

	LCS		LCSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ted sample(s):	01 Batch:	WG1845709-2	WG1845709-3				
Aroclor 1016	82		77		40-140	6		50	Α
Aroclor 1260	87		80		40-140	8		50	Α

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	78	78	30-150 A
Decachlorobiphenyl	87	86	30-150 A
2,4,5,6-Tetrachloro-m-xylene	74	73	30-150 B
Decachlorobiphenyl	69	67	30-150 B

PESTICIDES

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/29/23 19:35

Analytical Date: 10/31/23 10:55

Analyst: MMG

Percent Solids: 77%

Cleanup Method: EPA 3620B

Cleanup Date: 10/30/23

Cleanup Method: EPA 3660B

Percent Solids: 77% Cleanup Method: EPA 3660 Cleanup Date: 10/30/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Organochlorine Pesticides by GC - Westborough Lab										
Delta-BHC	ND		ug/kg	1.94	0.381	1	Α			
Lindane	ND			0.810	0.362	1				
			ug/kg				Α			
Alpha-BHC	ND		ug/kg	0.810	0.230	1	Α			
Beta-BHC	ND		ug/kg	1.94	0.738	1	Α			
Heptachlor	ND		ug/kg	0.973	0.436	1	Α			
Aldrin	ND		ug/kg	1.94	0.685	1	Α			
Heptachlor epoxide	ND		ug/kg	3.65	1.09	1	Α			
Endrin	ND		ug/kg	0.810	0.332	1	Α			
Endrin aldehyde	ND		ug/kg	2.43	0.851	1	Α			
Endrin ketone	ND		ug/kg	1.94	0.501	1	Α			
Dieldrin	ND		ug/kg	1.22	0.608	1	Α			
4,4'-DDE	0.912	J	ug/kg	1.94	0.450	1	Α			
4,4'-DDD	ND		ug/kg	1.94	0.694	1	Α			
4,4'-DDT	ND		ug/kg	1.94	1.56	1	Α			
Endosulfan I	ND		ug/kg	1.94	0.460	1	Α			
Endosulfan II	ND		ug/kg	1.94	0.650	1	Α			
Endosulfan sulfate	ND		ug/kg	0.810	0.386	1	Α			
Methoxychlor	ND		ug/kg	3.65	1.13	1	Α			
Toxaphene	ND		ug/kg	36.5	10.2	1	Α			
cis-Chlordane	ND		ug/kg	2.43	0.678	1	Α			
trans-Chlordane	ND		ug/kg	2.43	0.642	1	А			
Chlordane	ND		ug/kg	16.2	6.44	1	Α			

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	Α
Decachlorobiphenyl	61		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 8151A
Analytical Method: 1,8151A Extraction Date: 10/30/23 18:02

Analytical Date: 10/31/23 21:49 Analyst: AKM

Percent Solids: 77%

Methylation Date: 10/31/23 06:01

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC - Westb	orough Lab						
2,4-D	ND		ug/kg	212	13.4	1	Α
2,4,5-T	ND		ug/kg	212	6.59	1	Α
2,4,5-TP (Silvex)	ND		ug/kg	212	5.65	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	118		30-150	Α
DCAA	103		30-150	В

L2363965

Project Name: 240 LAKEFRONT BLVD Lab Number:

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/31/23 10:05

Analyst: MMG

Extraction Method: EPA 3546
Extraction Date: 10/29/23 18:50
Cleanup Method: EPA 3620B
Cleanup Date: 10/30/23
Cleanup Method: EPA 3660B
Cleanup Date: 10/30/23

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by GC -	Westboroug	h Lab for	sample(s):	01 Batch:	WG184573	5-1
Delta-BHC	ND		ua/ka	1.58	0.309	Α
			ug/kg			
Lindane	ND		ug/kg	0.658	0.294	Α
Alpha-BHC	ND		ug/kg	0.658	0.187	Α
Beta-BHC	ND		ug/kg	1.58	0.599	Α
Heptachlor	ND		ug/kg	0.789	0.354	Α
Aldrin	ND		ug/kg	1.58	0.556	Α
Heptachlor epoxide	ND		ug/kg	2.96	0.888	Α
Endrin	ND		ug/kg	0.658	0.270	Α
Endrin aldehyde	ND		ug/kg	1.97	0.691	Α
Endrin ketone	ND		ug/kg	1.58	0.406	Α
Dieldrin	ND		ug/kg	0.987	0.493	Α
4,4'-DDE	ND		ug/kg	1.58	0.365	Α
4,4'-DDD	ND		ug/kg	1.58	0.563	Α
4,4'-DDT	ND		ug/kg	1.58	1.27	Α
Endosulfan I	ND		ug/kg	1.58	0.373	Α
Endosulfan II	ND		ug/kg	1.58	0.528	Α
Endosulfan sulfate	ND		ug/kg	0.658	0.313	Α
Methoxychlor	ND		ug/kg	2.96	0.921	Α
Toxaphene	ND		ug/kg	29.6	8.29	Α
cis-Chlordane	ND		ug/kg	1.97	0.550	Α
trans-Chlordane	ND		ug/kg	1.97	0.521	Α
Chlordane	ND		ug/kg	13.2	5.23	А

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/31/23 10:05

Analyst: MMG

Extraction Method: EPA 3546
Extraction Date: 10/29/23 18:50
Cleanup Method: EPA 3620B
Cleanup Date: 10/30/23
Cleanup Method: EPA 3660B
Cleanup Date: 10/30/23

ParameterResultQualifierUnitsRLMDLColumnOrganochlorine Pesticides by GC - Westborough Lab for sample(s):01Batch:WG1845735-1

		Acceptance			
Surrogate	%Recovery Qua	alifier Criteri	a Column		
2.4.5.6. Totrochloro m vulono	76	30-150	Δ		
2,4,5,6-Tetrachloro-m-xylene	76	30-130	Α		
Decachlorobiphenyl	69	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	89	30-150	В		
Decachlorobiphenyl	80	30-150	В		

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8151A Analytical Date: 10/31/23 20:54

Analyst: AKM

Methylation Date: 10/31/23 06:01

Extraction Method: EPA 8151A Extraction Date: 10/30/23 18:02

Parameter	Result	Qualifier	Units		RL	MDL	Column
Chlorinated Herbicides by GC - Wes	stborough L	ab for sam	ple(s):	01	Batch:	WG1846132-1	
2,4-D	ND		ug/kg		164	10.3	Α
2,4,5-T	ND		ug/kg		164	5.08	Α
2,4,5-TP (Silvex)	ND		ug/kg		164	4.36	Α

		Acceptance			
Surrogate	%Recovery Qualifie	r Criteria	Column		
DCAA	98	30-150	Α		
DCAA	101	30-150	В		

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC	- Westborough Lab Assoc	iated sample(s):	01 Batch:	WG1845735-2	2 WG1845735-3	3			
Delta-BHC	78		64		30-150	20		30	Α
Lindane	73		61		30-150	18		30	А
Alpha-BHC	77		64		30-150	18		30	А
Beta-BHC	84		70		30-150	18		30	А
Heptachlor	69		60		30-150	14		30	А
Aldrin	73		62		30-150	16		30	Α
Heptachlor epoxide	65		55		30-150	17		30	А
Endrin	70		58		30-150	19		30	Α
Endrin aldehyde	65		52		30-150	22		30	Α
Endrin ketone	73		59		30-150	21		30	Α
Dieldrin	80		65		30-150	21		30	Α
4,4'-DDE	76		63		30-150	19		30	А
4,4'-DDD	78		64		30-150	20		30	А
4,4'-DDT	70		58		30-150	19		30	А
Endosulfan I	72		60		30-150	18		30	Α
Endosulfan II	73		60		30-150	20		30	Α
Endosulfan sulfate	66		54		30-150	20		30	Α
Methoxychlor	67		57		30-150	16		30	А
cis-Chlordane	69		58		30-150	17		30	А
trans-Chlordane	79		68		30-150	15		30	Α

Project Name: 240 LAKEFRONT BLVD

Lab Number:

L2363965

Project Number: E62.022.009

Report Date:

11/13/23

	LCS				%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1845735-2 WG1845735-3

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column		
2,4,5,6-Tetrachloro-m-xylene	74	62	30-150 A		
Decachlorobiphenyl	68	55	30-150 A		
2,4,5,6-Tetrachloro-m-xylene	86	72	30-150 B		
Decachlorobiphenyl	77	62	30-150 B		

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Chlorinated Herbicides by GC - Westborou	gh Lab Associated	d sample(s):	01 Batch: \	WG1846132-2	WG1846132-3				
2,4-D	104		106		30-150	2		30	Α
2,4,5-T	113		114		30-150	1		30	А
2,4,5-TP (Silvex)	109		110		30-150	1		30	А

Surrogate	LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria	Column
DCAA	99	102	30-150	A
DCAA	98	103	30-150	B

METALS

10/27/23 08:40

Date Collected:

Project Name: 240 LAKEFRONT BLVD Lab Number: L2363965

SAMPLE RESULTS

Lab ID: L2363965-01

Client ID: TS-01 Date Received: 10/27/23

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 77%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 14200 mg/kg 9.82 2.65 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM ND 0.373 2 1,6010D Antimony, Total mg/kg 4.91 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM Arsenic, Total 6.86 mg/kg 0.982 0.204 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM 2 Barium, Total 103 0.982 0.171 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM mg/kg 0.032 2 1,6010D Beryllium, Total 0.686 mg/kg 0.491 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM J 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 0.096 1,6010D Cadmium, Total 0.312 mg/kg 0.982 MAM Calcium, Total 3520 9.82 3.44 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D mg/kg MAM 2 1,6010D 18.2 0.982 0.094 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM Chromium, Total mg/kg 2 1,6010D Cobalt, Total 11.0 mg/kg 1.96 0.163 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM 2 1,6010D Copper, Total 11.4 0.982 0.253 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM mg/kg 4.91 2 1,6010D Iron, Total 23700 0.886 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM mg/kg 2 1,6010D Lead, Total 23.4 mg/kg 4.91 0.263 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM Magnesium, Total 3980 9.82 1.51 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM mg/kg 508 0.982 2 1,6010D Manganese, Total mg/kg 0.156 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM J Mercury, Total 0.071 mg/kg 0.091 0.059 1 10/31/23 02:57 11/03/23 20:34 EPA 7471B 1,7471B **MJR** Nickel, Total 18.0 2.45 0.238 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM mg/kg 948 2 1,6010D Potassium, Total mg/kg 245 14.1 10/31/23 02:30 11/03/23 23:10 EPA 3050B MAM Selenium, Total 0.318 J mg/kg 1.96 0.253 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM Silver, Total ND mg/kg 0.491 0.278 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM Sodium, Total 53.9 J mg/kg 196 3.09 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM Thallium, Total 0.490 J mg/kg 1.96 0.309 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM Vanadium, Total 26.9 0.982 0.199 2 10/31/23 02:30 11/03/23 23:10 EPA 3050B 1,6010D MAM mg/kg

2

10/31/23 02:30 11/03/23 23:10 EPA 3050B

0.288

4.91

mg/kg

1,6010D

MAM

Zinc, Total

77.4

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date: 11/13/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	mple(s):	01 Batch	n: WG18	346104-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Antimony, Total	0.371	J	mg/kg	2.00	0.152	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Arsenic, Total	ND		mg/kg	0.400	0.083	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Barium, Total	ND		mg/kg	0.400	0.070	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Beryllium, Total	ND		mg/kg	0.200	0.013	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Cadmium, Total	ND		mg/kg	0.400	0.039	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Calcium, Total	ND		mg/kg	4.00	1.40	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Chromium, Total	ND		mg/kg	0.400	0.038	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Cobalt, Total	ND		mg/kg	0.800	0.066	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Copper, Total	ND		mg/kg	0.400	0.103	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Iron, Total	1.04	J	mg/kg	2.00	0.361	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Lead, Total	ND		mg/kg	2.00	0.107	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Magnesium, Total	ND		mg/kg	4.00	0.616	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Manganese, Total	ND		mg/kg	0.400	0.064	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Nickel, Total	ND		mg/kg	1.00	0.097	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Potassium, Total	ND		mg/kg	100	5.76	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Selenium, Total	ND		mg/kg	0.800	0.103	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Silver, Total	ND		mg/kg	0.200	0.113	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Sodium, Total	ND		mg/kg	80.0	1.26	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Thallium, Total	ND		mg/kg	0.800	0.126	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Vanadium, Total	ND		mg/kg	0.400	0.081	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF
Zinc, Total	ND		mg/kg	2.00	0.117	1	10/31/23 02:30	10/31/23 07:57	1,6010D	JMF

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Man	nsfield Lab for sample(s):	01 Batch	n: WG18	346106-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	10/31/23 02:57	10/31/23 20:12	1,7471B	GMG

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch	n: WG1846104-2	SRM Lot N	lumber: D11	19-540			
Aluminum, Total	77		-		48-152	-		
Antimony, Total	181		-		10-190	-		
Arsenic, Total	98		-		83-117	-		
Barium, Total	94		-		82-118	-		
Beryllium, Total	99		-		83-117	-		
Cadmium, Total	100		-		82-117	-		
Calcium, Total	94		-		81-118	-		
Chromium, Total	100		-		82-119	-		
Cobalt, Total	98		-		83-117	-		
Copper, Total	98		-		84-116	-		
Iron, Total	99		-		60-140	-		
Lead, Total	97		-		82-118	-		
Magnesium, Total	89		-		76-124	-		
Manganese, Total	96		-		82-118	-		
Nickel, Total	99		-		82-117	-		
Potassium, Total	87		-		70-130	-		
Selenium, Total	99		-		79-121	-		
Silver, Total	96		-		80-120	-		
Sodium, Total	101		-		74-126	-		
Thallium, Total	100		-		81-119	-		
Vanadium, Total	95		-		79-121	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associa	ited sample(s): 01 Batch: WG1846	6104-2 SRM Lot Numbe	r: D119-540		
Zinc, Total	100	-	80-120	-	
Total Metals - Mansfield Lab Associa	ited sample(s): 01 Batch: WG1846	6106-2 SRM Lot Numbe	r: D119-540		
Mercury, Total	88	-	73-127	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number: L2363965

Report Date: 11/13/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	o Associated sar	mple(s): 01	QC Batch	ID: WG184610)4-3 (QC Sample	: L2364340-01	Clien	t ID: MS Sa	mple		
Aluminum, Total	9170	184	11200	1100	Q	-	-		75-125	-		20
Antimony, Total	17.1	46	77.3	131	Q	-	-		75-125	-		20
Arsenic, Total	25.6	11	39.3	124		-	-		75-125	-		20
Barium, Total	193	184	386	105		-	-		75-125	-		20
Beryllium, Total	0.757	4.6	5.23	97		-	-		75-125	-		20
Cadmium, Total	0.563	4.87	4.71	85		-	-		75-125	-		20
Calcium, Total	3410	920	4040	68	Q	-	-		75-125	-		20
Chromium, Total	13.9	18.4	32.3	100		-	-		75-125	-		20
Cobalt, Total	3.98	46	44.9	89		-	-		75-125	-		20
Copper, Total	48.8	23	66.6	77		-	-		75-125	-		20
Iron, Total	22500	92	24800	2500	Q	-	-		75-125	-		20
Lead, Total	769	48.7	1130	741	Q	-	-		75-125	-		20
Magnesium, Total	1330	920	2340	110		-	-		75-125	-		20
Manganese, Total	111	46	157	100		-	-		75-125	-		20
Nickel, Total	15.8	46	57.1	90		-	-		75-125	-		20
Potassium, Total	1270	920	2300	112		-	-		75-125	-		20
Selenium, Total	1.08	11	12.3	102		-	-		75-125	-		20
Silver, Total	0.147J	4.6	4.60	100		-	-		75-125	-		20
Sodium, Total	113	920	1020	99		-	-		75-125	-		20
Thallium, Total	0.711J	11	10.3	93		-	-		75-125	-		20
Vanadium, Total	23.8	46	68.7	98		-	-		75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01	QC Batch	ID: WG1846104-3	QC Sample	: L2364340-01	Client ID: MS Sar	mple	
Zinc, Total	71.8	46	116	96	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1846106-3	QC Sample	: L2364171-11	Client ID: MS Sa	mple	
Mercury, Total	0.290	1.61	1.97	104	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	Native Sample [Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1846104	4-4 QC Sample:	L2364340-01	Client ID: D	UP Sample	
Lead, Total	769	639	mg/kg	18		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1846106	6-4 QC Sample:	L2364171-11	Client ID: D	UP Sample	
Mercury, Total	0.290	0.475	mg/kg	48	Q	20

INORGANICS & MISCELLANEOUS

L2363965

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Project Number: Report Date: 11/13/23 E62.022.009

SAMPLE RESULTS

Lab ID: L2363965-01 Date Collected: 10/27/23 08:40

Client ID: TS-01 Date Received: 10/27/23

Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lat)								
Solids, Total	77.3		%	0.100	NA	1	-	10/30/23 23:38	121,2540G	WJM
Cyanide, Total	ND		mg/kg	1.2	0.26	1	11/02/23 11:30	11/02/23 15:24	1,9010C/9012B	JER
Chromium, Hexavalent	ND		mg/kg	1.03	0.207	1	11/01/23 09:45	11/07/23 10:30	1,7196A	DTH

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2363965

> Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	r sample(s): 01	Batch:	WG18	47390-1				
Cyanide, Total	ND	mg/kg	0.91	0.19	1	11/02/23 11:30	11/02/23 15:20	1,9010C/9012	2B JER
General Chemistry -	Westborough Lab for	r sample(s): 01	Batch:	WG18	47461-1				
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	11/01/23 09:45	11/07/23 10:30	1,7196A	DTH

Lab Control Sample Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG18473	90-2 WG184	7390-3				
Cyanide, Total	91	101		80-120	13		35	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG18474	61-2					
Chromium, Hexavalent	82	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	_	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
General Chemistry - Westbord Sample	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG184739	90-4 WG	1847390-5 C	C Samp	ole: L236480	04-01	Client ID: MS
Cyanide, Total	ND	10	11	110		9.3	94		75-125	17	35
General Chemistry - Westbore	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG184746	61-4 Q	C Sample: L23	363965-0	01 Client I	D: TS	-01
Chromium, Hexavalent	ND	1180	1250	106		-	-		75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E62.022.009

Lab Number:

L2363965

Report Date:

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1846182-1 Q	C Sample: L2363	965-01 (Client ID: T	S-01
Solids, Total	77.3	76.9	%	1		20
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1847461-6 Q	C Sample: L2363	965-01 (Client ID: T	S-01
Chromium, Hexavalent	ND	ND	mg/kg	NC		20

Project Name: 240 LAKEFRONT BLVD

Lab Number: L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation	Initial Final Temp Froze					Frozen		
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2363965-01A	Vial Large Septa unpreserved (4oz)	Α	NA		2.7	Υ	Absent		NYTCL-8260-R2(14)
L2363965-01B	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2363965-01C	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.7	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),TL-TI(180),AL- TI(180),CU-TI(180),SB-TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CD- TI(180),NA-TI(180),K-TI(180),CA-TI(180)
L2363965-01D	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14),TCN-9010(14),HERB- APA(14),NYTCL-8081(14),NYTCL- 8082(365),HEXCR-7196(30)
L2363965-01E	Plastic 8oz unpreserved	Α	NA		2.7	Υ	Absent		A2-1633-DRAFT(90)
L2363965-01F	Glass 500ml/16oz unpreserved	A	NA		2.7	Υ	Absent		NYTCL-8270(14),TCN-9010(14),HERB- APA(14),NYTCL-8081(14),NYTCL- 8082(365),HEXCR-7196(30)
L2363965-01X	Vial MeOH preserved split	Α	NA		2.7	Υ	Absent		NYTCL-8260-R2(14)
L2363965-01Y	Vial Water preserved split	Α	NA		2.7	Υ	Absent	02-NOV-23 12:35	NYTCL-8260-R2(14)
L2363965-01Z	Vial Water preserved split	Α	NA		2.7	Υ	Absent	02-NOV-23 12:35	NYTCL-8260-R2(14)
	Container ID L2363965-01A L2363965-01B L2363965-01C L2363965-01D L2363965-01E L2363965-01F L2363965-01X L2363965-01Y	L2363965-01A Vial Large Septa unpreserved (4oz) L2363965-01B Plastic 2oz unpreserved for TS L2363965-01C Metals Only-Glass 60mL/2oz unpreserved L2363965-01D Glass 120ml/4oz unpreserved L2363965-01E Plastic 8oz unpreserved L2363965-01F Glass 500ml/16oz unpreserved L2363965-01X Vial MeOH preserved split L2363965-01Y Vial Water preserved split	Container ID Container Type Cooler L2363965-01A Vial Large Septa unpreserved (4oz) A L2363965-01B Plastic 2oz unpreserved for TS A L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A L2363965-01D Glass 120ml/4oz unpreserved A L2363965-01E Plastic 8oz unpreserved A L2363965-01F Glass 500ml/16oz unpreserved A L2363965-01X Vial MeOH preserved split A L2363965-01Y Vial Water preserved split A	Container ID Container Type Cooler pH L2363965-01A Vial Large Septa unpreserved (4oz) A NA L2363965-01B Plastic 2oz unpreserved for TS A NA L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA L2363965-01D Glass 120ml/4oz unpreserved A NA L2363965-01E Plastic 8oz unpreserved A NA L2363965-01F Glass 500ml/16oz unpreserved A NA L2363965-01X Vial MeOH preserved split A NA L2363965-01Y Vial Water preserved split A NA	Container ID Container Type Cooler pH Initial pH L2363965-01A Vial Large Septa unpreserved (4oz) A NA L2363965-01B Plastic 2oz unpreserved for TS A NA L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA L2363965-01D Glass 120ml/4oz unpreserved A NA L2363965-01E Plastic 8oz unpreserved A NA L2363965-01F Glass 500ml/16oz unpreserved A NA L2363965-01X Vial MeOH preserved split A NA L2363965-01Y Vial Water preserved split A NA	Container ID Container Type Cooler pH Hillar pH Tital pH Jermin deg C L2363965-01A Vial Large Septa unpreserved (4oz) A NA 2.7 L2363965-01B Plastic 2oz unpreserved for TS A NA 2.7 L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA 2.7 L2363965-01D Glass 120ml/4oz unpreserved A NA 2.7 L2363965-01E Plastic 8oz unpreserved A NA 2.7 L2363965-01F Glass 500ml/16oz unpreserved A NA 2.7 L2363965-01X Vial MeOH preserved split A NA 2.7 L2363965-01Y Vial Water preserved split A NA 2.7	Container ID Container Type Cooler pH rintal pH remp deg C Pres L2363965-01A Vial Large Septa unpreserved (4oz) A NA 2.7 Y L2363965-01B Plastic 2oz unpreserved for TS A NA 2.7 Y L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA 2.7 Y L2363965-01D Glass 120ml/4oz unpreserved A NA 2.7 Y L2363965-01E Plastic 8oz unpreserved A NA 2.7 Y L2363965-01F Glass 500ml/16oz unpreserved A NA 2.7 Y L2363965-01X Vial MeOH preserved split A NA 2.7 Y L2363965-01Y Vial Water preserved split A NA 2.7 Y	Container ID Container Type Cooler PH PH deg C Pres Seal L2363965-01A Vial Large Septa unpreserved (4oz) A NA 2.7 Y Absent L2363965-01B Plastic 2oz unpreserved for TS A NA 2.7 Y Absent L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA 2.7 Y Absent L2363965-01D Glass 120ml/4oz unpreserved A NA 2.7 Y Absent L2363965-01E Plastic 8oz unpreserved A NA 2.7 Y Absent L2363965-01F Glass 500ml/16oz unpreserved A NA 2.7 Y Absent L2363965-01X Vial MeOH preserved split A NA 2.7 Y Absent L2363965-01Y Vial Water preserved split A NA 2.7 Y Absent	Container ID Container Type Cooler PH PH deg C Pres Seal Date/Time L2363965-01A Vial Large Septa unpreserved (4oz) A NA 2.7 Y Absent L2363965-01B Plastic 2oz unpreserved for TS A NA 2.7 Y Absent L2363965-01C Metals Only-Glass 60mL/2oz unpreserved A NA 2.7 Y Absent L2363965-01D Glass 120ml/4oz unpreserved A NA 2.7 Y Absent L2363965-01E Plastic 8oz unpreserved A NA 2.7 Y Absent L2363965-01F Glass 500ml/16oz unpreserved A NA 2.7 Y Absent L2363965-01X Vial MeOH preserved split A NA 2.7 Y Absent L2363965-01Y Vial Water preserved split A NA 2.7 Y Absent L2363965-01Y Vial Water preserved split A NA 2.7 Y Absent

Serial_No:11132314:44 **Lab Number:** L2363

Project Name:240 LAKEFRONT BLVDLab Number:L2363965Project Number:E62.022.009Report Date:11/13/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA/PFTeDA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
IH,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
IH,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
IH,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
IH,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		2000 01 0
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
I 1-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
GIIIUUIU-4-IVIGIIIUXYDUIAIIUIU AUIU		

Serial_No:11132314:44 **Lab Number:** L2363

L2363965

11/13/23

Project Number: E62.022.009

240 LAKEFRONT BLVD

Project Name:

Report Date:

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
FLUOROTELOWER CARBOATLIC ACIDS (FTCAS)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Project Name: Lab Number: 240 LAKEFRONT BLVD L2363965

Project Number: E62.022.009 **Report Date:** 11/13/23

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:240 LAKEFRONT BLVDLab Number:L2363965Project Number:E62.022.009Report Date:11/13/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:240 LAKEFRONT BLVDLab Number:L2363965Project Number:E62.022.009Report Date:11/13/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:240 LAKEFRONT BLVDLab Number:L2363965Project Number:E62.022.009Report Date:11/13/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. Draft EPA Method 1633, EPA Document 821-D-22-001, June 2022.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Ce	Way	105	Pag	of /			Rec'd Lab	lo	1281	123		ALPHA Job# L23639	65
Westborough, MA 01581		Project Information		2000	Marie San	0	Deliv	re rable	S	2000	B	19610	1500	Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		o Lake	Part	Rhen		X		7000		ASF	P-B	2000	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	24116	4.000	Dire		1/3		S (1 Fil	۵۱		JIS (4 F	File\	PO#	
Client Information		Project # £62	177	257			┨	Othe		0)		10 (4)	no)		
Client	-nginees,		- Income	w/			200	NAME OF TAXABLE PARTY.	Requir	omont	BURNS	-	MATERIAL PROPERTY.	Disposal Site Information	
6-11	TE IN OF	(Use Project name as P	roject#)	Marti	0		LX68	NY TO		ennent.	MINT	art 375		2 210-120-120-120-120-120-120-120-120-120-	
Address:	7 10	Project Manager: ALPHAQuote #:	any 1	"lasti	-		+		Standar	de.		P-51	S	Please identify below location applicable disposal facilities.	
Dha Tay	0121						▍∺				Othe	10000	3	Disposal Facility:	
Phone:		Turn-Around Time	· Ch		with the same		1 1		stricted		Otne		B		
Fax:		Standard Bush (set all	- may	Due Date:		2. 5			restricte				20	□ NJ NY	
Email:		Rush (only if pre approved	20 114	5 # of Days:	00	ay			Sewer Di	schärge			7	Other:	40
	been previously analyze						ANA	LYSIS		++	× 1	-	N	Sample Filtration	0
Other project specific	c requirements/comm	ents:					1	< 1	3	00 0	7	(7	13	Done	t
							10.	B	3	20	31	-	1	Lab to do	a .
							12	3		*	3/8	3	m	Preservation Lab to do	
Please specify Metals	s or TAL.						3	03	4	3/	3/15	7	5	Lab to do	В
							1.	-1	7	0-	126		85	(Please Specify below)	1
ALPHA Lab ID	0	1.15	Colle	ection	Sample	Sampler's	1.3	U	T.	1	2 3	2	1		t
(Lab Use Only)	Sar	mple ID	Date	Time	Matrix	Initials	1	1-	A	_===	FP	C	12	Sample Specific Comments	
63965-01	T5-01		10/27/23	9:40	50	OW	X	X	1	X	1	+	X	1	1
			Maller	0.10		0. (1				,	1	-	State	00
						^			\rightarrow	-	+			Elandard	4
						1			+	_	+			TO T DUCC	1
				A ₁		~	\vdash	-	-	-	+	\vdash	-	THE SICE	3
							\vdash	\dashv	-	_	+	-	-	LOV THAT	
							\vdash	-	-	\rightarrow	+		_	rush lodge	4
LIZE CONTRACTOR							-	_	_	_		\vdash	_		9
							\Box	- 1	_	- 0	4				+
											_	\perp			\perp
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification N	o: MA935	1	Con	tainer Type	A	1	0	11	1	1	1	Please print clearly, leg	ibly
B = HCI		Mansfield: Certification N	o: MA015		Con	ianiei Type		1	1 7	TIM	M	4	M	and completely. Sample	
	V = Vial		1	//	-		0	1	1	1	1 1	1	1	not be logged in and	
	G = Glass B = Bacteria Cup	111	/ /	/	Р	reservative	4	7	9	47 /	1/2	TI	1	turnaround time clock w start until any ambiguitie	100000000000000000000000000000000000000
= MeOH	C = Cube	Belinguished B	0/	/ Date/T	ime	F	Receive	ed By:			Date	/Time		resolved. BY EXECUTION	
7	O = Other E = Encore	and Alla	1	11/2/10		50 9	2		AN	10	127		30	THIS COC, THE CLIEN	
	D = BOD Bottle	4 Reent!	MAL	10/21	1502	1	4			_	128/2	1 1100	2	HAS READ AND AGRE	
) = Other		1 desert	114-	10127	JUL	-/				- 1"	10016	005	0	TO BE BOUND BY ALF TERMS & CONDITION:	00.7 (00.00)
arm No. 01 25 U.C / 22	Seed 2042)	0	-				_		-	+			-	(See reverse side.)	Ĩ.
orm No: 01-25 HC (rev. 30	-sept-2013)													. 25	

LOCATION SAMPLING DATE LAB SAMPLE ID	TS-01 10/27/2023 L2363965-01	10/27/2023 L2363965-01					
SAMPLE TYPE				SOIL			
SAMPLE DEPTH (ft.)	CasNum	NY-DER1	Units	Results	RL		
lorinated Herbicides by GC							
2,4-D	94-75-7		mg/kg	ND ND	0.212		
2,4,5-T 2,4,5-TP (Silvex)	93-76-5 93-72-1	20	mg/kg mg/kg	ND ND	0.212 0.212		
eneral Chemistry	93-72-1	3.0	ilig/kg	IND	0.212		
Solids, Total	NONE		%	77.3	0.1		
Cyanide, Total	57-12-5	27	mg/kg	ND	1.2		
Chromium, Hexavalent	18540-29-9		mg/kg	ND	1.03		
ganochlorine Pesticides by GC							
Delta-BHC	319-86-8		mg/kg	ND	0.00194		
Lindane	58-89-9		mg/kg	ND	0.00081		
Alpha-BHC	319-84-6		mg/kg	ND ND	0.00081		
Beta-BHC Heptachlor	319-85-7 76-44-8		mg/kg mg/kg	ND ND	0.00194 0.000973		
Aldrin	309-00-2		mg/kg	ND ND	0.000975		
Heptachlor epoxide	1024-57-3	0.007	mg/kg	ND	0.00365		
Endrin	72-20-8	0.06	mg/kg	ND	0.00081		
Endrin aldehyde	7421-93-4		mg/kg	ND	0.00243		
Endrin ketone	53494-70-5		mg/kg	ND	0.00194		
Dieldrin	60-57-1		mg/kg	ND	0.00122		
4,4'-DDE	72-55-9		mg/kg	0.000912J	0.00194		
4,4'-DDD	72-54-8		mg/kg	ND	0.00194		
4,4'-DDT	50-29-3		mg/kg	ND	0.00194		
Endosulfan I	959-98-8		mg/kg	ND ND	0.00194		
Endosulfan II Endosulfan sulfate	33213-65-9 1031-07-8		mg/kg	ND ND	0.00194 0.00081		
Methoxychlor	72-43-5		mg/kg mg/kg	ND ND	0.00081		
Toxaphene	8001-35-2		mg/kg	ND ND	0.00365		
cis-Chlordane	5103-71-9	29	mg/kg	ND ND	0.00243		
trans-Chlordane	5103-74-2		mg/kg	ND ND	0.00243		
Chlordane	57-74-9		mg/kg	ND	0.0162		
lychlorinated Biphenyls by GC							
Aroclor 1016	12674-11-2		mg/kg	ND	0.0638		
Aroclor 1221	11104-28-2		mg/kg	ND	0.0638		
Aroclor 1232	11141-16-5		mg/kg	ND	0.0638		
Aroclor 1242	53469-21-9		mg/kg	ND ND	0.0638		
Aroclor 1248	12672-29-6		mg/kg	ND ND	0.0638		
Aroclor 1254	11097-69-1		mg/kg	ND ND	0.0638 0.0638		
Aroclor 1260 Aroclor 1262	11096-82-5 37324-23-5		mg/kg mg/kg	ND ND	0.0638		
Aroclor 1262 Aroclor 1268	11100-14-4		mg/kg mg/kg	ND ND	0.0638		
PCBs, Total	1336-36-3		mg/kg	ND ND	0.0638		
mivolatile Organics by GC/MS	1 22 23 3	<u> </u>	<u> </u>		2.3000		
Acenaphthene	83-32-9	98	mg/kg	ND	0.17		
Hexachlorobenzene	118-74-1	1.2	mg/kg	ND	0.13		
Bis(2-chloroethyl)ether	111-44-4		mg/kg	ND	0.19		
2-Chloronaphthalene	91-58-7		mg/kg	ND	0.21		
3,3'-Dichlorobenzidine	91-94-1		mg/kg	ND	0.21		
2,4-Dinitrotoluene	121-14-2		mg/kg	ND ND	0.21		
2,6-Dinitrotoluene Fluoranthene	606-20-2 206-44-0	100	mg/kg mg/kg	ND 0.052J	0.21 0.13		
4-Chlorophenyl phenyl ether	7005-72-3	100	mg/kg mg/kg	0.052J ND	0.13		
4-Bromophenyl phenyl ether	101-55-3		mg/kg	ND ND	0.21		
Bis(2-chloroisopropyl)ether	108-60-1	 	mg/kg	ND ND	0.21		
Bis(2-chloroethoxy)methane	111-91-1		mg/kg	ND ND	0.23		
Hexachlorobutadiene	87-68-3		mg/kg	ND	0.21		
Hexachlorocyclopentadiene	77-47-4		mg/kg	ND	0.61		
Hexachloroethane	67-72-1		mg/kg	ND	0.17		
Isophorone	78-59-1		mg/kg	ND	0.19		
Naphthalene	91-20-3	12	mg/kg	ND	0.21		
Nitrobenzene	98-95-3		mg/kg	ND ND	0.19		
NDPA/DPA	86-30-6		mg/kg	ND ND	0.17		
n-Nitrosodi-n-propylamine	621-64-7 117-81-7		mg/kg	ND ND	0.21 0.21		
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	85-68-7		mg/kg mg/kg	ND ND	0.21		
Di-n-butylphthalate	84-74-2		mg/kg	ND ND	0.21		
Di-n-octylphthalate	117-84-0		mg/kg	ND ND	0.21		
Diethyl phthalate	84-66-2		mg/kg	ND ND	0.21		
Dimethyl phthalate	131-11-3		mg/kg	ND	0.21		
Benzo(a)anthracene	56-55-3	1	mg/kg	0.028J	0.13		
Benzo(a)pyrene	50-32-8		mg/kg	ND	0.17		
Benzo(b)fluoranthene	205-99-2	1	mg/kg	0.038J	0.13		
Benzo(k)fluoranthene	207-08-9	1.7	mg/kg	ND	0.13		
Chrysene	218-01-9		mg/kg	0.031J	0.13		
Acenaphthylene	208-96-8		mg/kg	ND	0.17		
	120-12-7		mg/kg	ND ND	0.13		
Anthracene				ı MD	0.17		
Anthracene Benzo(ghi)perylene	191-24-2		mg/kg	ND ND			
Anthracene Benzo(ghi)perylene Fluorene	191-24-2 86-73-7	100	mg/kg	ND	0.21		
Anthracene Benzo(ghi)perylene	191-24-2	100 100					

	Pyrene	129-00-0	100	ma/ka	0.043J	0.13
			100	mg/kg		
	Biphenyl	92-52-4		mg/kg	ND	0.49
	4-Chloroaniline	106-47-8		mg/kg	ND	0.21
	2-Nitroaniline	88-74-4		mg/kg	ND	0.21
	3-Nitroaniline	99-09-2		mg/kg	ND	0.21
	4-Nitroaniline	100-01-6		mg/kg	ND	0.21
	Dibenzofuran	132-64-9	59	mg/kg	ND	0.21
	2-Methylnaphthalene	91-57-6		mg/kg	ND	0.26
	1,2,4,5-Tetrachlorobenzene	95-94-3		mg/kg	ND	0.21
		98-86-2			ND ND	
	Acetophenone			mg/kg		0.21
	2,4,6-Trichlorophenol	88-06-2		mg/kg	ND	0.13
	p-Chloro-m-cresol	59-50-7		mg/kg	ND	0.21
	2-Chlorophenol	95-57-8		mg/kg	ND	0.21
	2,4-Dichlorophenol	120-83-2		mg/kg	ND	0.19
	2,4-Dimethylphenol	105-67-9		mg/kg	ND	0.21
	2-Nitrophenol	88-75-5		mg/kg	ND	0.46
	<u> </u>					
	4-Nitrophenol	100-02-7		mg/kg	ND	0.3
	2,4-Dinitrophenol	51-28-5		mg/kg	ND	1
	4,6-Dinitro-o-cresol	534-52-1		mg/kg	ND	0.56
	Pentachlorophenol	87-86-5	0.8	mg/kg	ND	0.17
	Phenol	108-95-2	0.33	mg/kg	ND	0.21
	2-Methylphenol	95-48-7		mg/kg	ND	0.21
	3-Methylphenol/4-Methylphenol	108-39-4/106-44-5		mg/kg	0.053J	0.31
			0.55			
	2,4,5-Trichlorophenol	95-95-4		mg/kg	ND	0.21
	Carbazole	86-74-8		mg/kg	ND	0.21
	Atrazine	1912-24-9		mg/kg	ND	0.17
	Benzaldehyde	100-52-7		mg/kg	ND	0.28
	Caprolactam	105-60-2		mg/kg	ND	0.21
	2,3,4,6-Tetrachlorophenol	58-90-2		mg/kg	ND	0.21
	1,4-Dioxane	123-91-1	0.1	mg/kg	ND ND	0.032
Tat '	,	120-31-1	U. I	my/ky	טאר	0.032
ıota	l Metals	7.400.00.7		n !	4.555	
	Aluminum, Total	7429-90-5		mg/kg	14200	9.82
	Antimony, Total	7440-36-0		mg/kg	ND	4.91
	Arsenic, Total	7440-38-2	16	mg/kg	6.86	0.982
	Barium, Total	7440-39-3		mg/kg	103	0.982
	Beryllium, Total	7440-41-7		mg/kg	0.686	0.491
	Cadmium, Total	7440-43-9	4.2	mg/kg	0.312J	
	,		4.3	mg/kg		0.982
	Calcium, Total	7440-70-2		mg/kg	3520	9.82
	Chromium, Total	7440-47-3		mg/kg	18.2	0.982
	Cobalt, Total	7440-48-4		mg/kg	11	1.96
	Copper, Total	7440-50-8	270	mg/kg	11.4	0.982
	Iron, Total	7439-89-6		mg/kg	23700	4.91
	Lead, Total	7439-92-1	400	mg/kg	23.4	4.91
	,		400			
	Magnesium, Total	7439-95-4	2222	mg/kg	3980	9.82
	Manganese, Total	7439-96-5		mg/kg	508	0.982
	Mercury, Total	7439-97-6	0.73	mg/kg	0.071J	0.091
	Nickel, Total	7440-02-0	130	mg/kg	18	2.45
	Potassium, Total	7440-09-7		mg/kg	948	245
	Selenium, Total	7782-49-2	1	mg/kg	0.318J	1.96
	Silver, Total	7440-22-4		mg/kg	ND	0.491
	Sodium, Total	7440-23-5		mg/kg	53.9J	196
	Thallium, Total	7440-28-0		mg/kg	0.49J	1.96
	Vanadium, Total	7440-62-2		mg/kg	26.9	0.982
	Zinc, Total	7440-66-6	2480	mg/kg	77.4	4.91
Volat	tile Organics by GC/MS			•		
	Methylene chloride	75-09-2	0.05	mg/kg	ND	0.0065
	1,1-Dichloroethane	75-34-3		mg/kg	ND	0.0013
	Chloroform	67-66-3		mg/kg	ND ND	
						U UUO
	Carbon tetrachloride	56-23-5	U./6		NID.	0.002
	4.0.00.11			mg/kg	ND	0.0013
	1,2-Dichloropropane	78-87-5		mg/kg	ND	0.0013 0.0013
	Dibromochloromethane	124-48-1		mg/kg mg/kg	ND ND	0.0013 0.0013 0.0013
				mg/kg	ND	0.0013 0.0013
	Dibromochloromethane	124-48-1		mg/kg mg/kg	ND ND	0.0013 0.0013 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	124-48-1 79-00-5 127-18-4	1.3	mg/kg mg/kg mg/kg mg/kg	ND ND ND ND	0.0013 0.0013 0.0013 0.0013 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene	124-48-1 79-00-5 127-18-4 108-90-7	1.3 1.1	mg/kg mg/kg mg/kg mg/kg mg/kg	ND ND ND ND	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4	1.3	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ND ND ND ND ND ND	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2	1.3 1.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ND ND ND ND ND ND	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6	1.3 1.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ND ND ND ND ND ND ND	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4	1.3 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6	1.3 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.00065 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5	1.3 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6	1.3 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.00065 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2	1.3 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5	1.3 1.1 0.02 0.68	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.0052
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2	1.3 1.1 0.02 0.68	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.0052 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3	1.3 1.1 0.02 0.68 0.06 0.7	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4	1.3 1.1 0.02 0.68 0.06 0.7	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.0052 0.00065 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3	1.3 1.1 0.02 0.68 0.06 0.7	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.00065 0.00065 0.0013 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9	1.3 1.1 0.02 0.68 0.7 1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.00065 0.0013 0.00065 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4	1.3 1.1 0.02 0.68 0.7 1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.00065 0.00065 0.00065 0.00065 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9	1.3 1.1 0.02 0.68 0.7 1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.00065 0.0013 0.00065 0.00065 0.00065
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3	1.3 1.1 0.02 0.68 0.06 0.7 1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Uinyl chloride Chloroethane 1,1-Dichloroethene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4	0.02 0.68 0.06 0.7 1 0.02	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Bromomethane Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6	1.3 1.1 0.02 0.68 0.7 1 0.02 0.33 0.19 0.47	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0052 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.0052 0.0013 0.00065 0.0013 0.00065 0.0052 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0052 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1 2.4	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0013
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Uinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1 541-73-1 106-46-7	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1 2.4 1.8	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0013 0.0026 0.0026 0.0026 0.0026
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Uinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1 541-73-1 106-46-7 1634-04-4	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1 2.4 1.8	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0026 0.0026 0.0026 0.0026
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1 541-73-1 106-46-7 1634-04-4 179601-23-1	0.02 0.68 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1 2.4 1.8	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026
	Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Uinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether	124-48-1 79-00-5 127-18-4 108-90-7 75-69-4 107-06-2 71-55-6 75-27-4 10061-02-6 10061-01-5 75-25-2 79-34-5 71-43-2 108-88-3 100-41-4 74-87-3 74-83-9 75-01-4 75-00-3 75-35-4 156-60-5 79-01-6 95-50-1 541-73-1 106-46-7 1634-04-4	0.02 0.08 0.06 0.7 1 0.02 0.33 0.19 0.47 1.1 2.4 1.8 0.93	mg/kg	ND N	0.0013 0.0013 0.0013 0.0013 0.00065 0.00065 0.00065 0.00065 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.00065 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0026 0.0013 0.0026 0.0026 0.0026 0.0026 0.0026

Dichlorodifluoromethane	75-71-8		mg/kg	ND	0.013
Acetone	67-64-1	0.05	mg/kg	ND	0.013
Carbon disulfide	75-15-0		mg/kg	ND	0.013
2-Butanone	78-93-3	0.12	mg/kg	ND	0.013
4-Methyl-2-pentanone	108-10-1		mg/kg	ND	0.013
2-Hexanone	591-78-6		mg/kg	ND	0.013
1,2-Dibromoethane	106-93-4		mg/kg	ND	0.0013
n-Butylbenzene	104-51-8	12	mg/kg	ND	0.0013
sec-Butylbenzene	135-98-8	11	mg/kg	ND	0.0013
tert-Butylbenzene	98-06-6	5.9	mg/kg	ND	0.0026
1,2-Dibromo-3-chloropropane	96-12-8		mg/kg	ND	0.0039
Isopropylbenzene	98-82-8		mg/kg	ND	0.0013
p-Isopropyltoluene	99-87-6		mg/kg	ND	0.0013
Naphthalene	91-20-3	12	mg/kg	ND	0.0052
n-Propylbenzene	103-65-1	3.9	mg/kg	ND	0.0013
1,2,4-Trichlorobenzene	120-82-1		mg/kg	ND	0.0026
1,3,5-Trimethylbenzene	108-67-8	8.4	mg/kg	ND	0.0026
1,2,4-Trimethylbenzene	95-63-6	3.6	mg/kg	ND	0.0026
Methyl Acetate	79-20-9		mg/kg	ND	0.0052
Cyclohexane	110-82-7		mg/kg	ND	0.013
Freon-113	76-13-1		mg/kg	ND	0.0052
Methyl cyclohexane	108-87-2		mg/kg	ND	0.0052

NY-DER10-RRU: New York DER-10 Restricted Residential Use Allowable Constituent Levels for Imported Fill & Soil Criteria per DER-10 Technical Guidance for Site Investigation & Remediation issued May 3, 2010.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.

SECTION 1 - SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that passes a size 100 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.
2, Zeotogican reson ees nave veen taeingtea ase me 2, Zeotogican resonnees are 1 resent.
SECTION 4 – SOURCE OF FILL
Name of person providing fill and relationship to the source:
Location where fill was obtained:
Identification of any state or local approvals as a fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:
Provide a list of supporting documentation included with this request:

The information provided on this form is	accurate and complete.
Cochy AMINT	
Signature	Date
Print Name	
ГШШ	

	SAMPLE ID:	S	OD-01-120523
	LAB ID:		_2371484-01
	COLLECTION DATE:		12/5/2023
	SAMPLE DEPTH:		12/0/2020
	SAMPLE MATRIX:		SOIL
	NY-RESRR		
ANALYTE	(mg/kg)	Result	Flg RL
VOLATILE ORGANICS BY EPA 5035	, , ,		<u> </u>
Methylene chloride	100	ND	0.0057
1,1-Dichloroethane	26	ND	0.0011
Chloroform	49	ND	0.0017
Carbon tetrachloride	2.4	ND	0.0011
1,2-Dichloropropane	NA	ND	0.0011
Dibromochloromethane	NA	ND	0.0011
1,1,2-Trichloroethane	NA	ND	0.0011
Tetrachloroethene	19	ND	0.00057
Chlorobenzene	100	ND	0.00057
Trichlorofluoromethane	NA	ND	0.0046
1,2-Dichloroethane	3.1	ND	0.0011
1,1,1-Trichloroethane	100	ND	0.00057
Bromodichloromethane	NA	ND	0.00057
trans-1,3-Dichloropropene	NA	ND	0.0011
cis-1,3-Dichloropropene	NA	ND	0.00057
Bromoform	NA	ND	0.0046
1,1,2,2-Tetrachloroethane	NA	ND	0.00057
Benzene	4.8	ND	0.00057
Toluene	100	ND	0.0011
Ethylbenzene	41	ND	0.0011
Chloromethane	NA	ND	0.0046
Bromomethane	NA	ND	0.0023
Vinyl chloride	0.9	ND	0.0011
Chloroethane	NA	ND	0.0023
1,1-Dichloroethene	100	ND	0.0011
trans-1,2-Dichloroethene	100	ND	0.0017
Trichloroethene	21	ND	0.00057
1,2-Dichlorobenzene	100	ND	0.0023
1,3-Dichlorobenzene	49	ND	0.0023
1,4-Dichlorobenzene	13	ND	0.0023
Methyl tert butyl ether	100	ND	0.0023
p/m-Xylene	NA	ND	0.0023
o-Xylene	NA	ND	0.0011
cis-1,2-Dichloroethene	100	ND	0.0011
Styrene	NA	ND	0.0011
Dichlorodifluoromethane	NA	ND	0.011
Acetone	100	ND	0.011
Carbon disulfide	NA	ND	0.011
2-Butanone	100	ND	0.011
4-Methyl-2-pentanone	NA	ND	0.011
2-Hexanone	NA	ND	0.011
1,2-Dibromoethane	NA	ND	0.0011

	SAMPLE ID:	S	OD-01-12052	3
	LAB ID:		L2371484-01	-
	COLLECTION DATE:		12/5/2023	
	SAMPLE DEPTH:		,	
	SAMPLE MATRIX:		SOIL	
	NY-RESRR		-	
ANALYTE	(mg/kg)	Result	Flg	RL
n-Butylbenzene	100	ND		0.0011
sec-Butylbenzene	100	ND		0.0011
tert-Butylbenzene	100	ND		0.0023
1,2-Dibromo-3-chloropropane	NA	ND		0.0034
Isopropylbenzene	NA	ND		0.0011
p-Isopropyltoluene	NA	ND		0.0011
Naphthalene	100	ND		0.0046
n-Propylbenzene	100	ND		0.0011
1,2,4-Trichlorobenzene	NA	ND		0.0023
1,3,5-Trimethylbenzene	52	ND		0.0023
1,2,4-Trimethylbenzene	52	ND		0.0023
Methyl Acetate	NA	ND		0.0046
Cyclohexane	NA	ND		0.011
Freon-113	NA	ND		0.0046
Methyl cyclohexane	NA	ND		0.0046
PERFLUORINATED ALKYL ACIDS BY E	PA 1633			
Perfluorobutanoic Acid (PFBA)	NA	ND		0.000789
Perfluoropentanoic Acid (PFPeA)	NA	ND		0.000395
Perfluorobutanesulfonic Acid (PFBS)	NA	ND		0.000197
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2F	NA	ND		0.000789
Perfluorohexanoic Acid (PFHxA)	NA	ND		0.000197
Perfluoropentanesulfonic Acid (PFPeS)	NA	ND		0.000197
Perfluoroheptanoic Acid (PFHpA)	NA	ND		0.000197
Perfluorohexanesulfonic Acid (PFHxS)	NA	ND		0.000197
Perfluorooctanoic Acid (PFOA)	0.033	0.000051	J	0.000197
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2F	NA	0.000898		0.000789
Perfluoroheptanesulfonic Acid (PFHpS)	NA	ND		0.000197
Perfluorononanoic Acid (PFNA)	NA	ND		0.000197
Perfluorooctanesulfonic Acid (PFOS)	0.044	0.000169	J	0.000197
Perfluorodecanoic Acid (PFDA)	NA	ND		0.000197
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:28	NA	ND		0.000789
Perfluorononanesulfonic Acid (PFNS)	NA	ND		0.000197
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NA	ND		0.000197
Perfluoroundecanoic Acid (PFUnA)	NA	ND		0.000197
Perfluorodecanesulfonic Acid (PFDS)	NA	ND		0.000197
Perfluorooctanesulfonamide (PFOSA)	NA	ND		0.000197
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NA	ND		0.000197
Perfluorododecanoic Acid (PFDoA)	NA	ND		0.000197
Perfluorotridecanoic Acid (PFTrDA)	NA	ND		0.000197
Perfluorotetradecanoic Acid (PFTeDA)	NA	ND		0.000197
Hexafluoropropylene Oxide Dimer Acid (HFPO-D	NA	ND		0.000789
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	NA	ND		0.000789
Perfluorododecanesulfonic Acid (PFDoS)	NA	ND		0.000197
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic A	NA	ND		0.000789

	SAMPLE ID:	S	OD-01-12052	3
	LAB ID:		L2371484-01	
	COLLECTION DATE:		12/5/2023	
	SAMPLE DEPTH:		12,0,2020	
	SAMPLE MATRIX:		SOIL	
	NY-RESRR		OOIL	
ANALYTE	(mg/kg)	Result	Flg	RL
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfoni	NA	ND		0.000789
N-Methyl Perfluorooctane Sulfonamide (NMeFO	NA	ND		0.000197
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA) NA	ND		0.000197
N-Methyl Perfluorooctanesulfonamido Ethanol (N	NA	ND		0.00197
N-Ethyl Perfluorooctanesulfonamido Ethanol (NE	NA	ND		0.00197
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	NA	ND		0.000395
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	NA	ND		0.000395
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFES.	NA	ND		0.000395
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	NA	ND		0.000395
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	NA	ND		0.000987
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	NA	ND		0.00493
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	NA	ND		0.00493
SEMIVOLATILE ORGANICS BY GC/MS				
Acenaphthene	100	ND		0.48
Hexachlorobenzene	1.2	ND		0.36
Bis(2-chloroethyl)ether	NA	ND		0.54
2-Chloronaphthalene	NA	ND		0.6
3,3'-Dichlorobenzidine	NA	ND		0.6
2,4-Dinitrotoluene	NA	ND		0.6
2,6-Dinitrotoluene	NA	ND		0.6
Fluoranthene	100	ND		0.36
4-Chlorophenyl phenyl ether	NA	ND		0.6
4-Bromophenyl phenyl ether	NA	ND		0.6
Bis(2-chloroisopropyl)ether	NA	ND		0.73
Bis(2-chloroethoxy)methane	NA	ND		0.65
Hexachlorobutadiene	NA	ND		0.6
Hexachlorocyclopentadiene	NA	ND		1.7
Hexachloroethane	NA	ND		0.48
Isophorone	NA	ND		0.54
Naphthalene	100	ND		0.6
Nitrobenzene	NA	ND		0.54
NDPA/DPA	NA	ND		0.48
n-Nitrosodi-n-propylamine	NA	ND		0.6
Bis(2-ethylhexyl)phthalate	NA	ND		0.6
Butyl benzyl phthalate	NA	ND		0.6
Di-n-butylphthalate	NA	ND		0.6
Di-n-octylphthalate	NA	ND		0.6
Diethyl phthalate	NA	ND		0.6
Dimethyl phthalate	NA	ND		0.6
Benzo(a)anthracene	1	ND		0.36
Benzo(a)pyrene	1	ND		0.48
Benzo(b)fluoranthene	1	ND		0.36
Benzo(k)fluoranthene	3.9	ND		0.36
Chrysene	3.9	ND		0.36

	SAMPLE ID:	SOD	-01-120523
	LAB ID:	L23	371484-01
	COLLECTION DATE:	12	2/5/2023
	SAMPLE DEPTH:		
	SAMPLE MATRIX:		SOIL
	NY-RESRR		
ANALYTE	(mg/kg)	Result	Flg RL
Acenaphthylene	100	ND	0.48
Anthracene	100	ND	0.36
Benzo(ghi)perylene	100	ND	0.48
Fluorene	100	ND	0.6
Phenanthrene	100	ND	0.36
Dibenzo(a,h)anthracene	0.33	ND	0.36
Indeno(1,2,3-cd)pyrene	0.5	ND	0.48
Pyrene	100	ND	0.36
Biphenyl	NA	ND	1.4
4-Chloroaniline	NA	ND	0.6
2-Nitroaniline	NA	ND	0.6
3-Nitroaniline	NA	ND	0.6
4-Nitroaniline	NA	ND	0.6
Dibenzofuran	59	ND	0.6
2-Methylnaphthalene	NA	ND	0.73
1,2,4,5-Tetrachlorobenzene	NA	ND	0.6
Acetophenone	NA	ND	0.6
2,4,6-Trichlorophenol	NA NA	ND	0.36
p-Chloro-m-cresol	NA NA	ND	0.6
2-Chlorophenol	NA NA	ND	0.6
2,4-Dichlorophenol	NA NA	ND	0.54
2,4-Dimethylphenol	NA NA	ND	0.6
2-Nitrophenol	NA NA	ND	1.3
4-Nitrophenol	NA NA	ND	0.85
2,4-Dinitrophenol	NA NA	ND	2.9
4,6-Dinitro-o-cresol	NA NA	ND	1.6
Pentachlorophenol	6.7	ND	0.48
Phenol	100	ND	0.6
2-Methylphenol	100	ND	0.6
3-Methylphenol/4-Methylphenol	100	ND	0.87
2,4,5-Trichlorophenol	NA	ND	0.6
Carbazole	NA NA	ND	0.6
Atrazine	NA NA	ND	0.48
Benzaldehyde	NA NA	ND ND	0.8
Caprolactam	NA NA	ND ND	0.6
2,3,4,6-Tetrachlorophenol	NA NA	ND ND	0.6
1,4-Dioxane	13	ND	0.091
CHLORINATED HERBICIDES BY GC	10	ND	0.031
2,4,5-TP (Silvex)	100	ND	0.214
ORGANOCHLORINE PESTICIDES BY G		ND	0.214
Delta-BHC	100	ND	0.00616
Lindane	1.3	ND ND	0.00257
Alpha-BHC	0.48	ND	0.00257
Beta-BHC	0.36	ND	0.00616

	SAMPLE ID:	S	OD-01-12052	3
	LAB ID:		L2371484-01	-
	COLLECTION DATE:		12/5/2023	
	SAMPLE DEPTH:		, 0, _ 0 _ 0	
	SAMPLE MATRIX:		SOIL	
	NY-RESRR		-	
ANALYTE	(mg/kg)	Result	Flg	RL
Heptachlor	2.1	ND		0.00308
Aldrin	0.097	ND		0.00616
Heptachlor epoxide	NA	ND		0.0116
Endrin	11	ND		0.00257
Endrin aldehyde	NA	ND		0.0077
Endrin ketone	NA	ND		0.00616
Dieldrin	0.2	ND		0.00385
4,4'-DDE	8.9	ND		0.00616
4,4'-DDD	13	ND		0.00616
4,4'-DDT	7.9	ND		0.00616
Endosulfan I	24	ND		0.00616
Endosulfan II	24	ND		0.00616
Endosulfan sulfate	24	ND		0.00257
Methoxychlor	NA	ND		0.0116
Toxaphene	NA	ND		0.116
cis-Chlordane	4.2	ND		0.0077
trans-Chlordane	NA	ND		0.0077
Chlordane	NA	ND		0.0514
POLYCHLORINATED BIPHENYLS BY G	iC			
Aroclor 1016	1	ND		0.065
Aroclor 1221	1	ND		0.065
Aroclor 1232	1	ND		0.065
Aroclor 1242	1	ND		0.065
Aroclor 1248	1	ND		0.065
Aroclor 1254	1	ND		0.065
Aroclor 1260	1	ND		0.065
Aroclor 1262	1	ND		0.065
Aroclor 1268	1	ND		0.065
PCBs, Total	1	ND		0.065
TOTAL METALS				
Aluminum, Total	NA	7680		10.2
Antimony, Total	NA	0.41	J	5.1
Arsenic, Total	16	3.42		1.02
Barium, Total	400	53.3		1.02
Beryllium, Total	72	0.431	J	0.51
Cadmium, Total	4.3	0.195	J	1.02
Calcium, Total	NA	5290		10.2
Chromium, Total	NA	9.16		1.02
Cobalt, Total	NA	3.92		2.04
Copper, Total	270	6.79		1.02
Iron, Total	NA	13000		5.1
Lead, Total	400	13		5.1
Magnesium, Total	NA	2130		10.2
Manganese, Total	2000	152	•	1.02

SAMPLE ID:	S	OD-01-1205	23
LAB ID:		L2371484-01	1
COLLECTION DATE:		12/5/2023	
SAMPLE DEPTH:			
SAMPLE MATRIX:		SOIL	
NY-RESRR			
(mg/kg)	Result	Flg	RL
0.81	0.069	JB	0.094
310	9.53		2.55
NA	803		255
180	ND		2.04
180	ND		0.51
NA	31.7	J	204
NA	ND		2.04
NA	15.2		1.02
10000	43.4		5.1
NA	76.2		0.1
27	ND		1.2
110	ND		1.05
	LAB ID: COLLECTION DATE: SAMPLE DEPTH: SAMPLE MATRIX: NY-RESRR (mg/kg) 0.81 310 NA 180 NA 180 NA 180 NA NA NA NA NA NA 10000	LAB ID: COLLECTION DATE: SAMPLE DEPTH: SAMPLE MATRIX: NY-RESRR (mg/kg) 0.81 0.069 310 9.53 NA 803 180 ND 180 ND 180 ND NA 180 ND NA 15.2 10000 43.4	LAB ID: L2371484-0° COLLECTION DATE: 12/5/2023 SAMPLE DEPTH: SOIL SAMPLE MATRIX: SOIL NY-RESRR Fig 0.81 0.069 JB 310 9.53 NA 803 180 ND ND ND 180 ND NA 31.7 J NA ND NA 15.2 10000 43.4 NA 76.2 ND ND<

^{*} Comparison is not performed on parameters with non-numeric criteria.

NY-RESRR: New York NYCRR Part 375 Restricted-Residential Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 I

ANALYTICAL REPORT

Lab Number: L2371484

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Report Date: 12/19/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2371484-01	SOD-01-120523	SOIL	Not Specified	12/05/23 13:30	12/05/23

L2371484

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609 **Report Date:** 12/19/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Case Narrative (continued)

Report Submission

December 19, 2023: This final report includes the results of all requested analyses.

December 13, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2371484-01: The collection date and time on the chain of custody was 05-DEC-23 13:30; however, the collection date/time on the container label was 05-DEC-23 09:50. At the client's request, the collection date/time is reported as 05-DEC-23 13:30.

Semivolatile Organics

L2371484-01: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

Perfluorinated Alkyl Acids by 1633

The WG1863550-2 LCS recovery, associated with L2371484-01, is above the acceptance criteria for nonafluoro-3,6-dioxaheptanoic acid (nfdha) (159%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1863550-3 LCS recovery, associated with L2371484-01, is above the acceptance criteria for nonafluoro-3,6-dioxaheptanoic acid (nfdha) (166%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

Pesticides

L2371484-01: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Case Narrative (continued)

Total Metals

L2371484-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

The WG1861116-1 Method Blank, associated with L2371484-01, has a concentration above the reporting limit for mercury. Since the associated sample concentration is non-detect to the RL for this target analyte, no corrective action is required. Any results detected below the reporting limit are qualified with a "B".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sew Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 12/19/23

ORGANICS

VOLATILES

L2371484

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

SAMPLE RESULTS

Lab Number:

Report Date: 12/19/23

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: Date Received: 12/05/23 SOD-01-120523 Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 12/12/23 11:29

Analyst: AJK 76% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	ow - Westborough Lab						
Methylene chloride	ND		ug/kg	5.7	2.6	1	
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1	
Chloroform	ND		ug/kg	1.7	0.16	1	
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1	
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1	
Dibromochloromethane	ND		ug/kg	1.1	0.16	1	
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1	
Tetrachloroethene	ND		ug/kg	0.57	0.22	1	
Chlorobenzene	ND		ug/kg	0.57	0.14	1	
Trichlorofluoromethane	ND		ug/kg	4.6	0.79	1	
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1	
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1	
Bromodichloromethane	ND		ug/kg	0.57	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.31	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.57	0.18	1	
Bromoform	ND		ug/kg	4.6	0.28	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.57	0.19	1	
Benzene	ND		ug/kg	0.57	0.19	1	
Toluene	ND		ug/kg	1.1	0.62	1	
Ethylbenzene	ND		ug/kg	1.1	0.16	1	
Chloromethane	ND		ug/kg	4.6	1.1	1	
Bromomethane	ND		ug/kg	2.3	0.66	1	
Vinyl chloride	ND		ug/kg	1.1	0.38	1	
Chloroethane	ND		ug/kg	2.3	0.52	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1	
Trichloroethene	ND		ug/kg	0.57	0.16	1	
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.16	1	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.64	1
o-Xylene	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.5	1
Carbon disulfide	ND		ug/kg	11	5.2	1
2-Butanone	ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.5	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.32	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.6	0.74	1
n-Propylbenzene	ND		ug/kg	1.1	0.20	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.31	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.38	1
Methyl Acetate	ND		ug/kg	4.6	1.1	1
Cyclohexane	ND		ug/kg	11	0.62	1
Freon-113	ND		ug/kg	4.6	0.79	1
Methyl cyclohexane	ND		ug/kg	4.6	0.69	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 1,8260D 12/12/23 10:12

Analyst: AJK

arameter	Result	Qualifier	Units	RL		MDL	
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1862938-5	
Methylene chloride	ND		ug/kg	5.0		2.3	
1,1-Dichloroethane	ND		ug/kg	1.0		0.14	
Chloroform	ND		ug/kg	1.5		0.14	
Carbon tetrachloride	ND		ug/kg	1.0		0.23	
1,2-Dichloropropane	ND		ug/kg	1.0		0.12	
Dibromochloromethane	ND		ug/kg	1.0		0.14	
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27	
Tetrachloroethene	ND		ug/kg	0.50		0.20	
Chlorobenzene	ND		ug/kg	0.50		0.13	
Trichlorofluoromethane	ND		ug/kg	4.0		0.70	
1,2-Dichloroethane	ND		ug/kg	1.0		0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17	
Bromodichloromethane	ND		ug/kg	0.50		0.11	
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27	
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16	
Bromoform	ND		ug/kg	4.0		0.25	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17	
Benzene	ND		ug/kg	0.50		0.17	
Toluene	ND		ug/kg	1.0		0.54	
Ethylbenzene	ND		ug/kg	1.0		0.14	
Chloromethane	ND		ug/kg	4.0		0.93	
Bromomethane	ND		ug/kg	2.0		0.58	
Vinyl chloride	ND		ug/kg	1.0		0.34	
Chloroethane	ND		ug/kg	2.0		0.45	
1,1-Dichloroethene	ND		ug/kg	1.0		0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14	
Trichloroethene	ND		ug/kg	0.50		0.14	
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 1,8260D 12/12/23 10:12

Analyst: AJK

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 L	.ow - Westbord	ough Lab for	sample(s):	01	Batch:	WG1862938-5
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
Methyl Acetate	ND		ug/kg	4.0		0.95
Cyclohexane	ND		ug/kg	10		0.54
Freon-113	ND		ug/kg	4.0		0.69
Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/12/23 10:12

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 01 Batch: WG1862938-5

			Acceptance	
	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	82		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	102		70-130	

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample(s):	01 Batch:	WG186293	8-3 WG18629	38-4		
Methylene chloride	87		87		70-130	0		30
1,1-Dichloroethane	88		90		70-130	2		30
Chloroform	89		90		70-130	1		30
Carbon tetrachloride	89		93		70-130	4		30
1,2-Dichloropropane	88		88		70-130	0		30
Dibromochloromethane	86		85		70-130	1		30
1,1,2-Trichloroethane	88		87		70-130	1		30
Tetrachloroethene	81		86		70-130	6		30
Chlorobenzene	81		82		70-130	1		30
Trichlorofluoromethane	91		97		70-139	6		30
1,2-Dichloroethane	95		92		70-130	3		30
1,1,1-Trichloroethane	87		91		70-130	4		30
Bromodichloromethane	92		89		70-130	3		30
trans-1,3-Dichloropropene	87		86		70-130	1		30
cis-1,3-Dichloropropene	94		91		70-130	3		30
Bromoform	83		86		70-130	4		30
1,1,2,2-Tetrachloroethane	92		94		70-130	2		30
Benzene	87		88		70-130	1		30
Toluene	80		82		70-130	2		30
Ethylbenzene	81		84		70-130	4		30
Chloromethane	94		99		52-130	5		30
Bromomethane	83		85		57-147	2		30
Vinyl chloride	81		88		67-130	8		30

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recover ry Qual Limits	ry RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - West	borough Lab Ass	ociated sample(s): 01 E	Batch: WG1862938-3 WG1	862938-4	
Chloroethane	88	93	50-151	6	30
1,1-Dichloroethene	93	98	65-135	5	30
trans-1,2-Dichloroethene	91	94	70-130	3	30
Trichloroethene	91	93	70-130	2	30
1,2-Dichlorobenzene	81	81	70-130	0	30
1,3-Dichlorobenzene	80	82	70-130	2	30
1,4-Dichlorobenzene	80	81	70-130	1	30
Methyl tert butyl ether	99	95	66-130	4	30
p/m-Xylene	80	83	70-130	4	30
o-Xylene	82	83	70-130	1	30
cis-1,2-Dichloroethene	90	92	70-130	2	30
Styrene	86	86	70-130	0	30
Dichlorodifluoromethane	132	142	30-146	7	30
Acetone	109	105	54-140	4	30
Carbon disulfide	83	88	59-130	6	30
2-Butanone	109	106	70-130	3	30
4-Methyl-2-pentanone	99	97	70-130	2	30
2-Hexanone	102	102	70-130	0	30
1,2-Dibromoethane	92	91	70-130	1	30
n-Butylbenzene	77	82	70-130	6	30
sec-Butylbenzene	79	85	70-130	7	30
tert-Butylbenzene	78	83	70-130	6	30
1,2-Dibromo-3-chloropropane	97	95	68-130	2	30

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by EPA 5035 Low -	Westborough Lab Assoc	ciated sample	e(s): 01 Batch	: WG18629	38-3 WG18629	38-4			
Isopropylbenzene	78		84		70-130	7		30	
p-Isopropyltoluene	80	84			70-130			30	
Naphthalene	94	102			70-130			30	
n-Propylbenzene	78	84			70-130			30	
1,2,4-Trichlorobenzene	92		98		70-130	6		30	
1,3,5-Trimethylbenzene	78		85		70-130	9		30	
1,2,4-Trimethylbenzene	80	84			70-130	5		30	
Methyl Acetate	109	106			51-146	3		30	
Cyclohexane	90	95			59-142			30	
Freon-113	94		101		50-139	7		30	
Methyl cyclohexane	89		94		70-130	5		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	99	70-130
Toluene-d8	94	96	70-130
4-Bromofluorobenzene	99	101	70-130
Dibromofluoromethane	104	103	70-130

SEMIVOLATILES

L2371484

12/05/23 13:30

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 12/19/23

Lab ID: L2371484-01

Client ID: SOD-01-120523 Sample Location: Not Specified

Date Received: 12/05/23 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

1,8270E Analytical Method:

Analytical Date: 12/08/23 05:43

Analyst: **EJL** 76% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 12/07/23 00:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	480	63.	1
Hexachlorobenzene	ND		ug/kg	360	68.	1
Bis(2-chloroethyl)ether	ND		ug/kg	540	82.	1
2-Chloronaphthalene	ND		ug/kg	600	60.	1
3,3'-Dichlorobenzidine	ND		ug/kg	600	160	1
2,4-Dinitrotoluene	ND		ug/kg	600	120	1
2,6-Dinitrotoluene	ND		ug/kg	600	100	1
Fluoranthene	ND		ug/kg	360	70.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	600	65.	1
4-Bromophenyl phenyl ether	ND		ug/kg	600	92.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	730	100	1
Bis(2-chloroethoxy)methane	ND		ug/kg	650	61.	1
Hexachlorobutadiene	ND		ug/kg	600	89.	1
Hexachlorocyclopentadiene	ND		ug/kg	1700	550	1
Hexachloroethane	ND		ug/kg	480	98.	1
Isophorone	ND		ug/kg	540	79.	1
Naphthalene	ND		ug/kg	600	74.	1
Nitrobenzene	ND		ug/kg	540	90.	1
NDPA/DPA	ND		ug/kg	480	69.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	600	94.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	600	210	1
Butyl benzyl phthalate	ND		ug/kg	600	150	1
Di-n-butylphthalate	ND		ug/kg	600	110	1
Di-n-octylphthalate	ND		ug/kg	600	200	1
Diethyl phthalate	ND		ug/kg	600	56.	1
Dimethyl phthalate	ND		ug/kg	600	130	1
Benzo(a)anthracene	ND		ug/kg	360	68.	1
Benzo(a)pyrene	ND		ug/kg	480	150	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	360	100	1
Benzo(k)fluoranthene	ND		ug/kg	360	97.	1
Chrysene	ND		ug/kg	360	63.	1
Acenaphthylene	ND		ug/kg	480	94.	1
Anthracene	ND		ug/kg	360	120	1
Benzo(ghi)perylene	ND		ug/kg	480	71.	1
Fluorene	ND		ug/kg	600	59.	1
Phenanthrene	ND		ug/kg	360	74.	1
Dibenzo(a,h)anthracene	ND		ug/kg	360	70.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	480	84.	1
Pyrene	ND		ug/kg	360	60.	1
Biphenyl	ND		ug/kg	1400	79.	1
4-Chloroaniline	ND		ug/kg	600	110	1
2-Nitroaniline	ND		ug/kg	600	120	1
3-Nitroaniline	ND		ug/kg	600	110	1
4-Nitroaniline	ND		ug/kg	600	250	1
Dibenzofuran	ND		ug/kg	600	57.	1
2-Methylnaphthalene	ND		ug/kg	730	73.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	600	63.	1
Acetophenone	ND		ug/kg	600	75.	1
2,4,6-Trichlorophenol	ND		ug/kg	360	110	1
p-Chloro-m-cresol	ND		ug/kg	600	90.	1
2-Chlorophenol	ND		ug/kg	600	72.	1
2,4-Dichlorophenol	ND		ug/kg	540	97.	1
2,4-Dimethylphenol	ND		ug/kg	600	200	1
2-Nitrophenol	ND		ug/kg	1300	230	1
4-Nitrophenol	ND		ug/kg	850	250	1
2,4-Dinitrophenol	ND		ug/kg	2900	280	1
4,6-Dinitro-o-cresol	ND		ug/kg	1600	290	1
Pentachlorophenol	ND		ug/kg	480	130	1
Phenol	ND		ug/kg	600	91.	1
2-Methylphenol	ND		ug/kg	600	94.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	870	95.	1
2,4,5-Trichlorophenol	ND		ug/kg	600	120	1
Carbazole	ND		ug/kg	600	59.	1
Atrazine	ND		ug/kg	480	210	1
Benzaldehyde	ND		ug/kg	800	160	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	600	180	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	600	120	1
1,4-Dioxane	ND		ug/kg	91	28.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	25-120
Phenol-d6	59	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	55	30-120
2,4,6-Tribromophenol	54	10-136
4-Terphenyl-d14	58	18-120

L2371484

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

SAMPLE RESULTS

Report Date: 12/19/23

Lab Number:

Lab ID: L2371484-01

Client ID: SOD-01-120523 Sample Location: Not Specified

Date Collected: 12/05/23 13:30 Date Received: 12/05/23

Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 144,1633 Analytical Date: 12/16/23 14:54

Analyst: ANH 76% Percent Solids:

Extraction Method: EPA 1633 **Extraction Date:** 12/14/23 10:07 Cleanup Method: EPA 1633 Cleanup Date: 12/14/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 - N	Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.789	0.050	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.395	0.055	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.197	0.043	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.789	0.080	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.197	0.046	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.197	0.023	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.197	0.023	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.197	0.058	1
Perfluorooctanoic Acid (PFOA)	0.051	J	ng/g	0.197	0.051	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.898		ng/g	0.789	0.276	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.197	0.036	1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.197	0.077	1
Perfluorooctanesulfonic Acid (PFOS)	0.169	J	ng/g	0.197	0.078	1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.197	0.074	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.789	0.382	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.197	0.042	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.197	0.099	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.197	0.051	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.197	0.032	1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/g	0.197	0.043	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.197	0.081	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.197	0.040	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.197	0.052	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/g	0.197	0.105	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/g	0.789	0.097	1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/g	0.789	0.144	1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/g	0.197	0.038	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab					
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/g	0.789	0.193	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/g	0.789	0.165	1
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND		ng/g	0.197	0.099	1
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND		ng/g	0.197	0.110	1
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND		ng/g	1.97	0.247	1
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	ND		ng/g	1.97	0.504	1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/g	0.395	0.040	1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/g	0.395	0.031	1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/g	0.395	0.082	1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/g	0.395	0.094	1
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	ND		ng/g	0.987	0.142	1
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	ND		ng/g	4.93	0.498	1
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	ND		ng/g	4.93	1.74	1

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

oro-n-[13C4]Butanoic Acid (13C4-PFBA)	65 67	20-150
	67	
oro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	07	20-150
pro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	72	20-150
,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	83	20-150
oro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	66	20-150
oro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	60	20-150
oro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	73	20-150
oro-n-[13C8]Octanoic Acid (13C8-PFOA)	70	20-150
,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	64	20-150
oro-n-[13C9]Nonanoic Acid (13C9-PFNA)	71	20-150
oro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	68	20-150
oro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	51	20-150
,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	120	20-150
hyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	64	20-150
oro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	62	20-150
oro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	62	20-150
vl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	76	20-150
oro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	53	20-150
oro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	60	20-150
uoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	64	20-150
hyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	53	20-150
rl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	52	20-150
hyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	75	20-150
rl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	68	20-150

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 12/08/23 01:58 Extraction Date: 12/07/23 00:51

Analyst: EJL

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1860742	2-1
Acenaphthene	ND		ug/kg		130	17.	
Hexachlorobenzene	ND		ug/kg		98	18.	
Bis(2-chloroethyl)ether	ND		ug/kg		150	22.	
2-Chloronaphthalene	ND		ug/kg		160	16.	
3,3'-Dichlorobenzidine	ND		ug/kg		160	43.	
2,4-Dinitrotoluene	ND		ug/kg		160	32.	
2,6-Dinitrotoluene	ND		ug/kg		160	28.	
Fluoranthene	ND		ug/kg		98	19.	
4-Chlorophenyl phenyl ether	ND		ug/kg		160	17.	
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.	
Bis(2-chloroisopropyl)ether	ND		ug/kg		200	28.	
Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.	
Hexachlorobutadiene	ND		ug/kg		160	24.	
Hexachlorocyclopentadiene	ND		ug/kg		460	150	
Hexachloroethane	ND		ug/kg		130	26.	
Isophorone	ND		ug/kg		150	21.	
Naphthalene	ND		ug/kg		160	20.	
Nitrobenzene	ND		ug/kg		150	24.	
NDPA/DPA	ND		ug/kg		130	18.	
n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.	
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	56.	
Butyl benzyl phthalate	ND		ug/kg		160	41.	
Di-n-butylphthalate	ND		ug/kg		160	31.	
Di-n-octylphthalate	ND		ug/kg		160	55.	
Diethyl phthalate	ND		ug/kg		160	15.	
Dimethyl phthalate	ND		ug/kg		160	34.	
Benzo(a)anthracene	ND		ug/kg		98	18.	
Benzo(a)pyrene	ND		ug/kg		130	40.	
Benzo(b)fluoranthene	ND		ug/kg		98	27.	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 12/08/23 01:58 Extraction Date: 12/07/23 00:51

Analyst: EJL

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01	Batch:	WG1860742-1	
Benzo(k)fluoranthene	ND		ug/kg		98	26.	
Chrysene	ND		ug/kg		98	17.	
Acenaphthylene	ND		ug/kg		130	25.	
Anthracene	ND		ug/kg		98	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		98	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		98	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		98	16.	
Biphenyl	ND		ug/kg		370	21.	
4-Chloroaniline	ND		ug/kg		160	30.	
2-Nitroaniline	ND		ug/kg		160	31.	
3-Nitroaniline	ND		ug/kg		160	31.	
4-Nitroaniline	ND		ug/kg		160	67.	
Dibenzofuran	ND		ug/kg		160	15.	
2-Methylnaphthalene	ND		ug/kg		200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.	
Acetophenone	ND		ug/kg		160	20.	
2,4,6-Trichlorophenol	ND		ug/kg		98	31.	
p-Chloro-m-cresol	ND		ug/kg		160	24.	
2-Chlorophenol	ND		ug/kg		160	19.	
2,4-Dichlorophenol	ND		ug/kg		150	26.	
2,4-Dimethylphenol	ND		ug/kg		160	54.	
2-Nitrophenol	ND		ug/kg		350	61.	
4-Nitrophenol	ND		ug/kg		230	66.	
2,4-Dinitrophenol	ND		ug/kg		780	76.	
4,6-Dinitro-o-cresol	ND		ug/kg		420	78.	
Pentachlorophenol	ND		ug/kg		130	36.	

L2371484

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 12/08/23 01:58 Extraction Date: 12/07/23 00:51

Analyst: EJL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1860742- Phenol ND ug/kg 160 24. 2-Methylphenol ND ug/kg 160 25. 3-Methylphenol/4-Methylphenol ND ug/kg 230 25. 2,4,5-Trichlorophenol ND ug/kg 160 31. Carbazole ND ug/kg 160 16.	
2-Methylphenol ND ug/kg 160 25. 3-Methylphenol/4-Methylphenol ND ug/kg 230 25. 2,4,5-Trichlorophenol ND ug/kg 160 31.	
3-Methylphenol/4-Methylphenol ND ug/kg 230 25. 2,4,5-Trichlorophenol ND ug/kg 160 31.	
2,4,5-Trichlorophenol ND ug/kg 160 31.	
7,75 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Carbazole ND ug/kg 160 16.	
Atrazine ND ug/kg 130 57.	
Benzaldehyde ND ug/kg 210 44.	
Caprolactam ND ug/kg 160 49.	
2,3,4,6-Tetrachlorophenol ND ug/kg 160 33.	
1,4-Dioxane ND ug/kg 24 7.5	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	78	25-120
Phenol-d6	84	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	82	30-120
2,4,6-Tribromophenol	82	10-136
4-Terphenyl-d14	84	18-120

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 12/16/23 12:34

Analyst: ANH

Extraction Method: EPA 1633
Extraction Date: 12/14/23 10:07
Cleanup Method: EPA 1633
Cleanup Date: 12/14/23

arameter	Result	Qualifier	Units	RL	MDL
erfluorinated Alkyl Acids by EPA 16	33 - Mans	field Lab for	sample(s):	01 Batch:	WG1863550-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.800	0.050
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.400	0.056
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.200	0.043
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/g	0.800	0.081
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.200	0.046
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.200	0.023
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.200	0.023
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.200	0.059
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.200	0.052
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.800	0.280
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.200	0.037
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.200	0.078
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.200	0.079
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.200	0.075
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.800	0.387
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.200	0.042
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.200	0.100
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.200	0.051
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.200	0.032
Perfluorooctanesulfonamide (PFOSA)	ND		ng/g	0.200	0.043
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.200	0.082
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.200	0.041
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.200	0.053
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/g	0.200	0.106
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/g	0.800	0.098
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/g	0.800	0.146
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/g	0.200	0.038

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 12/16/23 12:34

Analyst: ANH

Extraction Method: EPA 1633
Extraction Date: 12/14/23 10:07
Cleanup Method: EPA 1633
Cleanup Date: 12/14/23

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by EPA 16	33 - Mans	field Lab fo	r sample(s):	01	Batch:	WG1863550-1	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/g	0.800)	0.196	
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/g	0.800		0.167	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND		ng/g	0.200)	0.100	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND		ng/g	0.200		0.112	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND		ng/g	2.00		0.250	
N-Ethyl Perfluorooctanesulfonamido Ethano (NEtFOSE)	ol ND		ng/g	2.00		0.510	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/g	0.400		0.041	
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/g	0.400		0.031	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/g	0.400)	0.083	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/g	0.400)	0.095	
3-Perfluoropropyl Propanoic Acid (3:3FTCA	ND		ng/g	1.00		0.144	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	ND		ng/g	5.00		0.505	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA) ND		ng/g	5.00		1.76	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 144,1633 Analytical Date: 12/16/23 12:34

Analyst: ANH

Extraction Method: EPA 1633
Extraction Date: 12/14/23 10:07
Cleanup Method: EPA 1633
Cleanup Date: 12/14/23

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab for sample(s): 01 Batch: WG1863550-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	80	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	97	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	87	20-150
IH,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	86	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	88	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	85	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	85	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	87	20-150
IH,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	79	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	85	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	71	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	78	20-150
IH,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	84	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	58	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	74	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	63	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	53	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	66	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	61	20-150
Fetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	84	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	58	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	54	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	69	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	71	20-150

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

Acenaphthene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	65 72 64 75	iated sample(s	98	WG1860742-2	WG1860742-3			
Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine	72 64 75		111		31-137			
Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine	64 75					40		50
2-Chloronaphthalene 3,3'-Dichlorobenzidine	75				40-140	43		50
3,3'-Dichlorobenzidine			103		40-140	47		50
<u>'</u>	44		113		40-140	40		50
2,4-Dinitrotoluene			68		40-140	43		50
	75		115		40-132	42		50
2,6-Dinitrotoluene	80		118		40-140	38		50
Fluoranthene	71		109		40-140	42		50
4-Chlorophenyl phenyl ether	73		112		40-140	42		50
4-Bromophenyl phenyl ether	73		112		40-140	42		50
Bis(2-chloroisopropyl)ether	57		93		40-140	48		50
Bis(2-chloroethoxy)methane	71		109		40-117	42		50
Hexachlorobutadiene	78		124		40-140	46		50
Hexachlorocyclopentadiene	36	Q	63		40-140	55	Q	50
Hexachloroethane	63		102		40-140	47		50
Isophorone	73		111		40-140	41		50
Naphthalene	70		108		40-140	43		50
Nitrobenzene	69		105		40-140	41		50
NDPA/DPA	70		105		36-157	40		50
n-Nitrosodi-n-propylamine	72		113		32-121	44		50
Bis(2-ethylhexyl)phthalate	78		123		40-140	45		50
Butyl benzyl phthalate	76		116		40-140	42		50
Di-n-butylphthalate								

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	ated sample(s):	01 Batch:	WG1860742-2	WG1860742-3		
Di-n-octylphthalate	79		125		40-140	45	50
Diethyl phthalate	70		108		40-140	43	50
Dimethyl phthalate	74		111		40-140	40	50
Benzo(a)anthracene	76		112		40-140	38	50
Benzo(a)pyrene	85		122		40-140	36	50
Benzo(b)fluoranthene	76		112		40-140	38	50
Benzo(k)fluoranthene	78		112		40-140	36	50
Chrysene	74		112		40-140	41	50
Acenaphthylene	73		109		40-140	40	50
Anthracene	72		110		40-140	42	50
Benzo(ghi)perylene	78		111		40-140	35	50
Fluorene	68		104		40-140	42	50
Phenanthrene	70		108		40-140	43	50
Dibenzo(a,h)anthracene	79		117		40-140	39	50
Indeno(1,2,3-cd)pyrene	78		114		40-140	38	50
Pyrene	72		107		35-142	39	50
Biphenyl	76		115		37-127	41	50
4-Chloroaniline	28	Q	40		40-140	35	50
2-Nitroaniline	81		119		47-134	38	50
3-Nitroaniline	41		62		26-129	41	50
4-Nitroaniline	66		97		41-125	38	50
Dibenzofuran	70		106		40-140	41	50
2-Methylnaphthalene	73		112		40-140	42	50

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery 0		LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS - West	borough Lab Associated	d sample(s): 01	1 Batch:	WG1860742-2	2 WG1860742-3		
1,2,4,5-Tetrachlorobenzene	81		124	Q	40-117	42	50
Acetophenone	81		122		14-144	40	50
2,4,6-Trichlorophenol	83		123		30-130	39	50
p-Chloro-m-cresol	78		118	Q	26-103	41	50
2-Chlorophenol	71		110	Q	25-102	43	50
2,4-Dichlorophenol	78		117		30-130	40	50
2,4-Dimethylphenol	76		112		30-130	38	50
2-Nitrophenol	84		128		30-130	42	50
4-Nitrophenol	67		94		11-114	34	50
2,4-Dinitrophenol	41		66		4-130	47	50
4,6-Dinitro-o-cresol	70		106		10-130	41	50
Pentachlorophenol	46		72		17-109	44	50
Phenol	80		122	Q	26-90	42	50
2-Methylphenol	72		107		30-130.	39	50
3-Methylphenol/4-Methylphenol	74		111		30-130	40	50
2,4,5-Trichlorophenol	79		117		30-130	39	50
Carbazole	73		110		54-128	40	50
Atrazine	66		100		40-140	41	50
Benzaldehyde	79		130		40-140	49	50
Caprolactam	72		100		15-130	33	50
2,3,4,6-Tetrachlorophenol	69		110		40-140	46	50
1,4-Dioxane	47		67		40-140	35	50

Project Name: 240 LAKEFRONT BLVD

Lab Number:

L2371484

Project Number: E67.022.609

Report Date:

12/19/23

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1860742-2 WG1860742-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	72	107	25-120
Phenol-d6	79	116	10-120
Nitrobenzene-d5	75	112	23-120
2-Fluorobiphenyl	77	112	30-120
2,4,6-Tribromophenol	78	114	10-136
4-Terphenyl-d14	77	113	18-120

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

ameter	Low Level LCS %Recovery	Low L LCS Qual %Reco	SD		covery mits	RPD	Qual	RPD Limits	
fluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab Asso	ociated sample(s): 01	Batch: \	WG1863550-2	LOW LEVEL				
Perfluorobutanoic Acid (PFBA)	123	-		40	-150	-		30	
Perfluoropentanoic Acid (PFPeA)	119	-		40	-150	-		30	
Perfluorobutanesulfonic Acid (PFBS)	126	-		40	-150	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	141	-		40	-150	-		30	
Perfluorohexanoic Acid (PFHxA)	118	-		40	-150	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	112	-		40	-150	-		30	
Perfluoroheptanoic Acid (PFHpA)	149	-		40	-150	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	119	-		40	-150	-		30	
Perfluorooctanoic Acid (PFOA)	143	-		40	-150	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	133	-		40	-150	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	109	-		40	-150	-		30	
Perfluorononanoic Acid (PFNA)	138	-		40	-150	-		30	
Perfluorooctanesulfonic Acid (PFOS)	116	-		40	-150	-		30	
Perfluorodecanoic Acid (PFDA)	117	-		40	-150	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	150	-		40	-150	-		30	
Perfluorononanesulfonic Acid (PFNS)	100	-		40	-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	107	-		40	-150	-		30	
Perfluoroundecanoic Acid (PFUnA)	129	-		40	-150	-		30	
Perfluorodecanesulfonic Acid (PFDS)	96	-		40	-150	-		30	
Perfluorooctanesulfonamide (PFOSA)	122	-		40	-150	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	126	-		40	-150	-		30	
Perfluorododecanoic Acid (PFDoA)	123	-		40	-150	-		30	

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

rameter	Low Level LCS %Recovery		w Level LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
rfluorinated Alkyl Acids by EPA 1633	· Mansfield Lab Asso	ciated sample(s):	01 Bate	ch: WG1863	3550-2 LOW LEVI	ΞL			
Perfluorotridecanoic Acid (PFTrDA)	130		-		40-150	-		30	
Perfluorotetradecanoic Acid (PFTeDA)	122		-		40-150	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	119		-		40-150	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	117		-		40-150	-		30	
Perfluorododecanesulfonic Acid (PFDoS)	102		-		40-150	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	129		-		40-150	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	112		-		40-150	-		30	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	110		-		40-150	-		30	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	118		-		40-150	-		30	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	110		-		40-150	-		30	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	116		-		40-150	-		30	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	132		-		40-150	-		30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	110		-		40-150	-		30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFESA)	118		-		40-150	-		30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	159	Q	-		40-150	-		30	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	123		-		40-150	-		30	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	110		-		40-150	-		30	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	107		-		40-150	-		30	

Project Name: 240 LAKEFRONT BLVD

Lab Number:

L2371484

Project Number: E67.022.609

Report Date:

RPD

12/19/23

Low Level Low Level

LCS

LCSD

%Recovery

RPD

Parameter

%Recovery Qual

%Recovery

Qual

Limits

Qual

Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01 Batch: WG1863550-2 LOW LEVEL

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
	77				20.450
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	77 77				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)					20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	80				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	73				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	80				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	70				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	81				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	76				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	75				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	67				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	78				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	74				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	75				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	58				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	76				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	61				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	55				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	57				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	57				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	77				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	57				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	54				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	71				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	71				20-150

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery	LCS Qual %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
erfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab Asso	ciated sample(s): 01	Batch:	WG18635	550-3				
Perfluorobutanoic Acid (PFBA)	128	-			40-150	-		30	
Perfluoropentanoic Acid (PFPeA)	125	-			40-150	-		30	
Perfluorobutanesulfonic Acid (PFBS)	123	-			40-150	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	120	-			40-150	-		30	
Perfluorohexanoic Acid (PFHxA)	138	-			40-150	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	121	-			40-150	-		30	
Perfluoroheptanoic Acid (PFHpA)	145	-			40-150	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	126	-			40-150	-		30	
Perfluorooctanoic Acid (PFOA)	125	-			40-150	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	133	-			40-150	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	112	-			40-150	-		30	
Perfluorononanoic Acid (PFNA)	118	-			40-150	-		30	
Perfluorooctanesulfonic Acid (PFOS)	118	-			40-150	-		30	
Perfluorodecanoic Acid (PFDA)	149	-			40-150	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	145	-			40-150	-		30	
Perfluorononanesulfonic Acid (PFNS)	115	-			40-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	134	-			40-150	-		30	
Perfluoroundecanoic Acid (PFUnA)	126	-			40-150	-		30	
Perfluorodecanesulfonic Acid (PFDS)	108	-			40-150	-		30	
Perfluorooctanesulfonamide (PFOSA)	112	-			40-150	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	130	-			40-150	-		30	
Perfluorododecanoic Acid (PFDoA)	115	-			40-150	-		30	

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits	
erfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Ass	ociated sample(s): 01	Batch: WG1863	550-3			
Perfluorotridecanoic Acid (PFTrDA)	112	-		40-150	-	30	
Perfluorotetradecanoic Acid (PFTeDA)	135	-		40-150	-	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	130	-		40-150	-	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	126	-		40-150	-	30	
Perfluorododecanesulfonic Acid (PFDoS)	111	-		40-150	-	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	121	-		40-150	-	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	122	-		40-150	-	30	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	122	-		40-150	-	30	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	126	-		40-150	-	30	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	113	-		40-150	-	30	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	131	-		40-150	-	30	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	139	-		40-150	-	30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	138	-		40-150	-	30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	133	-		40-150	-	30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	166	Q -		40-150	-	30	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	122	-		40-150	-	30	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	118	-		40-150	-	30	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	118	-		40-150	-	30	

Project Name: 240 LAKEFRONT BLVD

Lab Number: L2371484

Project Number: E67.022.609

Report Date:

12/19/23

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01 Batch: WG1863550-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	74				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	78				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	80				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	79				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	79				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	68				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	83				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	82				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	79				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	72				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	72				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	69				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	74				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	55				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	79				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	64				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	62				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	75				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	59				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	76				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	54				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	52				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	75				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	69				20-150

PCBS

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 12/07/23 01:33

Analytical Date: 12/08/23 13:41 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 12/07/23
Percent Solids: 76% Cleanup Method: EPA 3660B

Percent Solids: 76% Cleanup Method: EPA 3660 Cleanup Date: 12/08/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column					
Polychlorinated Biphenyls by GC - We	Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/kg	65.0	5.77	1	Α					
Aroclor 1221	ND		ug/kg	65.0	6.52	1	Α					
Aroclor 1232	ND		ug/kg	65.0	13.8	1	Α					
Aroclor 1242	ND		ug/kg	65.0	8.77	1	Α					
Aroclor 1248	ND		ug/kg	65.0	9.75	1	Α					
Aroclor 1254	ND		ug/kg	65.0	7.11	1	Α					
Aroclor 1260	ND		ug/kg	65.0	12.0	1	Α					
Aroclor 1262	ND		ug/kg	65.0	8.26	1	Α					
Aroclor 1268	ND		ug/kg	65.0	6.74	1	Α					
PCBs, Total	ND		ug/kg	65.0	5.77	1	Α					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	59		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	54		30-150	В

L2371484

Project Name: 240 LAKEFRONT BLVD Lab Number:

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 12/08/23 10:13

Analyst: MEO

Extraction Method: EPA 3546
Extraction Date: 12/07/23 01:33
Cleanup Method: EPA 3665A
Cleanup Date: 12/07/23
Cleanup Method: EPA 3660B
Cleanup Date: 12/08/23

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	01	Batch:	WG1860747	-1
Aroclor 1016	ND		ug/kg	4	47.3	4.20	Α
Aroclor 1221	ND		ug/kg	-	47.3	4.74	Α
Aroclor 1232	ND		ug/kg	•	47.3	10.0	Α
Aroclor 1242	ND		ug/kg	4	47.3	6.38	Α
Aroclor 1248	ND		ug/kg	4	47.3	7.10	Α
Aroclor 1254	ND		ug/kg	4	47.3	5.18	Α
Aroclor 1260	ND		ug/kg	4	47.3	8.75	Α
Aroclor 1262	ND		ug/kg	4	47.3	6.01	Α
Aroclor 1268	ND		ug/kg	4	47.3	4.90	Α
PCBs, Total	ND		ug/kg	4	47.3	4.20	Α

	Acceptar						
Surrogate	%Recovery Qualifie	r Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	79	30-150	Α				
Decachlorobiphenyl	71	30-150	Α				
2,4,5,6-Tetrachloro-m-xylene	78	30-150	В				
Decachlorobiphenyl	67	30-150	В				

Project Name: 240 LAKEFRONT BLVD

Project Number:

E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

	LCS		LC	SD	%	Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	overy	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associ	ated sample(s):	: 01	Batch:	WG1860747-2	WG1860747-3	3			
Aroclor 1016	88			88		40-140	0		50	Α
Aroclor 1260	84			86		40-140	2		50	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Columi	า
2,4,5,6-Tetrachloro-m-xylene	86	82	30-150 A	_
Decachlorobiphenyl	80	81	30-150 A	
2,4,5,6-Tetrachloro-m-xylene	86	81	30-150 B	
Decachlorobiphenyl	77	75	30-150 B	

PESTICIDES

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8081B Extraction Date: 12/07/23 02:20

Analytical Method: 1,8081B Extraction Date: 12/07/23 02:20
Analytical Date: 12/07/23 19:38 Cleanup Method: EPA 3620B
Analyst: Cleanup Date: 12/07/23

Analyst: JAG
Percent Solids: 76%
Cleanup Date: 12/07/23
Cleanup Method: EPA 3660B
Cleanup Date: 12/07/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - We	estborough Lab						
Delta-BHC	ND		ug/kg	6.16	1.21	1	Α
Lindane	ND		ug/kg	2.57	1.15	1	Α
Alpha-BHC	ND		ug/kg	2.57	0.729	1	Α
Beta-BHC	ND		ug/kg	6.16	2.34	1	Α
Heptachlor	ND		ug/kg	3.08	1.38	1	Α
Aldrin	ND		ug/kg	6.16	2.17	1	А
Heptachlor epoxide	ND		ug/kg	11.6	3.47	1	А
Endrin	ND		ug/kg	2.57	1.05	1	Α
Endrin aldehyde	ND		ug/kg	7.70	2.70	1	Α
Endrin ketone	ND		ug/kg	6.16	1.59	1	Α
Dieldrin	ND		ug/kg	3.85	1.93	1	Α
4,4'-DDE	ND		ug/kg	6.16	1.42	1	Α
4,4'-DDD	ND		ug/kg	6.16	2.20	1	Α
4,4'-DDT	ND		ug/kg	6.16	4.96	1	Α
Endosulfan I	ND		ug/kg	6.16	1.46	1	Α
Endosulfan II	ND		ug/kg	6.16	2.06	1	Α
Endosulfan sulfate	ND		ug/kg	2.57	1.22	1	Α
Methoxychlor	ND		ug/kg	11.6	3.60	1	Α
Toxaphene	ND		ug/kg	116	32.4	1	Α
cis-Chlordane	ND		ug/kg	7.70	2.15	1	Α
trans-Chlordane	ND		ug/kg	7.70	2.03	1	Α
Chlordane	ND		ug/kg	51.4	20.4	1	Α

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Date Collected: 12/05/23 13:30

Client ID: SOD-01-120523 Date Received: 12/05/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	87		30-150	Α
Decachlorobiphenyl	85		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	89		30-150	В
Decachlorobiphenyl	92		30-150	В

Project Name: Lab Number: 240 LAKEFRONT BLVD L2371484

Report Date: **Project Number:** E67.022.609 12/19/23

SAMPLE RESULTS

12/08/23 14:03

Lab ID: Date Collected: 12/05/23 13:30 L2371484-01

Date Received: Client ID: SOD-01-120523 12/05/23 Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 8151A Matrix: Soil **Extraction Date:** 12/07/23 09:57 Analytical Method: 1,8151A

Analyst: PEG 76% Percent Solids:

Methylation Date: 12/08/23 07:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Chlorinated Herbicides by GC - Westborough Lab										
2,4,5-TP (Silvex)	ND		ug/kg	214	5.71	1	Α			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	97		30-150	Α
DCAA	92		30-150	В

Project Name: 240 LAKEFRONT BLVD **Lab Number**: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 12/07/23 17:19

Analyst: JAG

Extraction Method: EPA 3546
Extraction Date: 12/07/23 02:20
Cleanup Method: EPA 3620B
Cleanup Date: 12/07/23
Cleanup Method: EPA 3660B
Cleanup Date: 12/07/23

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by GC -	Westboroug	h Lab for	sample(s):	01 Batch:	WG186076	8-1
Delta-BHC	ND		ug/kg	1.54	0.302	А
Lindane	ND		ug/kg	0.644	0.288	Α
Alpha-BHC	ND		ug/kg	0.644	0.183	Α
Beta-BHC	ND		ug/kg	1.54	0.586	Α
Heptachlor	ND		ug/kg	0.772	0.346	Α
Aldrin	ND		ug/kg	1.54	0.544	Α
Heptachlor epoxide	ND		ug/kg	2.90	0.869	Α
Endrin	ND		ug/kg	0.644	0.264	Α
Endrin aldehyde	ND		ug/kg	1.93	0.676	А
Endrin ketone	ND		ug/kg	1.54	0.398	А
Dieldrin	ND		ug/kg	0.965	0.483	Α
4,4'-DDE	ND		ug/kg	1.54	0.357	Α
4,4'-DDD	ND		ug/kg	1.54	0.551	А
4,4'-DDT	ND		ug/kg	1.54	1.24	Α
Endosulfan I	ND		ug/kg	1.54	0.365	А
Endosulfan II	ND		ug/kg	1.54	0.516	Α
Endosulfan sulfate	ND		ug/kg	0.644	0.306	Α
Methoxychlor	ND		ug/kg	2.90	0.901	Α
Toxaphene	ND		ug/kg	29.0	8.11	Α
cis-Chlordane	ND		ug/kg	1.93	0.538	А
trans-Chlordane	ND		ug/kg	1.93	0.510	Α
Chlordane	ND		ug/kg	12.9	5.12	Α

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 12/07/23 17:19

Analyst: JAG

Extraction Method: EPA 3546
Extraction Date: 12/07/23 02:20
Cleanup Method: EPA 3620B
Cleanup Date: 12/07/23
Cleanup Method: EPA 3660B
Cleanup Date: 12/07/23

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 Column

 Organochlorine Pesticides by GC - Westborough Lab for sample(s):
 01
 Batch:
 WG1860768-1

		Acceptance			
Surrogate	%Recovery Q	ualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	66		30-150	Α	
Decachlorobiphenyl	66		30-150	A	
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В	
Decachlorobiphenyl	78		30-150	В	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8151A Analytical Date: 12/08/23 12:30

Analyst: EJL

Methylation Date: 12/08/23 07:21

Extraction Method: EPA 8151A Extraction Date: 12/07/23 09:07

Parameter	Result	Qualifier	Units		RL	MDL	Column
Chlorinated Herbicides by GC -	· Westborough L	ab for sam	ple(s):	01	Batch:	WG1860947-1	
2,4,5-TP (Silvex)	ND		ug/kg		164	4.38	Α

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
DCAA	91		30-150	Α		
DCAA	97		30-150	В		

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westbo	orough Lab Assoc	iated sample(s	s): 01 Batch:	WG1860768-2	2 WG1860768-3				
Delta-BHC	87		102		30-150	16		30	Α
Lindane	87		102		30-150	16		30	А
Alpha-BHC	84		98		30-150	15		30	А
Beta-BHC	85		99		30-150	15		30	Α
Heptachlor	84		96		30-150	13		30	А
Aldrin	85		98		30-150	14		30	А
Heptachlor epoxide	85		98		30-150	14		30	Α
Endrin	89		102		30-150	14		30	А
Endrin aldehyde	74		84		30-150	13		30	А
Endrin ketone	86		101		30-150	16		30	А
Dieldrin	95		110		30-150	15		30	А
4,4'-DDE	88		101		30-150	14		30	А
4,4'-DDD	93		109		30-150	16		30	А
4,4'-DDT	90		103		30-150	13		30	А
Endosulfan I	84		95		30-150	12		30	Α
Endosulfan II	85		100		30-150	16		30	А
Endosulfan sulfate	85		98		30-150	14		30	Α
Methoxychlor	89		98		30-150	10		30	А
cis-Chlordane	81		93		30-150	14		30	А
trans-Chlordane	99		111		30-150	11		30	Α

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609 Lab Number:

L2371484

Report Date:

12/19/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1860768-2 WG1860768-3

Surragata	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
Surrogate	%Recovery Qua	ii %Recovery Quar	
2,4,5,6-Tetrachloro-m-xylene	67	77	30-150 A
Decachlorobiphenyl	61	71	30-150 A
2,4,5,6-Tetrachloro-m-xylene	74	84	30-150 B
Decachlorobiphenyl	76	85	30-150 B

Project Name: 240 LAKEFRONT BLVD

Lab Number:

L2371484

12/19/23

Project Number: E67.022.609

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recover	LCSD %Recovery Qual		%Recovery Limits RPD		RPD Qual Limits Columi	
Chlorinated Herbicides by GC -	Westborough Lab Associated sample	(s): 01 Batch:	WG1860947-2	WG1860947-3				
2,4,5-TP (Silvex)	109	105		30-150	4		30	Α

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria	Column
DCAA	90	86	30-150	A
DCAA	107	106	30-150	B

METALS

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

SAMPLE RESULTS

Lab ID:L2371484-01Date Collected:12/05/23 13:30Client ID:SOD-01-120523Date Received:12/05/23Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 76%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 7680 mg/kg 10.2 2.76 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC J 2 1,6010D DMC Antimony, Total 0.410 mg/kg 5.10 0.388 12/11/23 22:53 12/12/23 08:02 EPA 3050B Arsenic, Total 3.42 mg/kg 1.02 0.212 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC 2 Barium, Total 53.3 1.02 0.178 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC mg/kg J 0.510 0.034 2 1,6010D DMC Beryllium, Total 0.431 mg/kg 12/11/23 22:53 12/12/23 08:02 EPA 3050B J 1.02 0.100 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC Cadmium, Total 0.195 mg/kg 12/11/23 22:53 12/12/23 08:02 EPA 3050B Calcium, Total 5290 10.2 3.57 2 1,6010D mg/kg **DMC** 2 1,6010D DMC Chromium, Total 9.16 1.02 0.098 12/11/23 22:53 12/12/23 08:02 EPA 3050B mg/kg 2 1,6010D Cobalt, Total 3.92 mg/kg 2.04 0.169 12/11/23 22:53 12/12/23 08:02 EPA 3050B **DMC** 2 1,6010D Copper, Total 6.79 mg/kg 1.02 0.263 12/11/23 22:53 12/12/23 08:02 EPA 3050B DMC 2 1,6010D DMC Iron, Total 13000 5.10 0.921 12/11/23 22:53 12/12/23 08:02 EPA 3050B mg/kg 2 1,6010D Lead, Total 13.0 mg/kg 5.10 0.273 12/11/23 22:53 12/12/23 08:02 EPA 3050B DMC Magnesium, Total 2130 10.2 1.57 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC mg/kg 1.02 0.162 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D **DMC** Manganese, Total 152 mg/kg JB Mercury, Total 0.069 mg/kg 0.094 0.062 1 12/11/23 23:30 12/12/23 12:11 EPA 7471B 1,7471B **GMG** Nickel, Total 9.53 2.55 0.247 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC mg/kg 803 255 14.7 2 1,6010D DMC Potassium, Total mg/kg 12/11/23 22:53 12/12/23 08:02 EPA 3050B Selenium, Total ND mg/kg 2.04 0.263 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC Silver, Total ND mg/kg 0.510 0.289 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D **DMC** J Sodium, Total 31.7 mg/kg 204 3.21 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC Thallium, Total ND mg/kg 2.04 0.321 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC Vanadium, Total 15.2 1.02 0.207 2 12/11/23 22:53 12/12/23 08:02 EPA 3050B 1,6010D DMC mg/kg 2 1,6010D 43.4 5.10 0.299 DMC Zinc, Total mg/kg 12/11/23 22:53 12/12/23 08:02 EPA 3050B

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date: 12/19/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batcl	h: WG18	361115-	1				
Aluminum, Total	ND	mg/kg	4.00	1.08	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Antimony, Total	ND	mg/kg	2.00	0.152	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Arsenic, Total	ND	mg/kg	0.400	0.083	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Barium, Total	ND	mg/kg	0.400	0.070	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Beryllium, Total	ND	mg/kg	0.200	0.013	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Calcium, Total	ND	mg/kg	4.00	1.40	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Chromium, Total	0.093 J	mg/kg	0.400	0.038	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Cobalt, Total	ND	mg/kg	0.800	0.066	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Copper, Total	ND	mg/kg	0.400	0.103	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Iron, Total	ND	mg/kg	2.00	0.361	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Lead, Total	ND	mg/kg	2.00	0.107	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Magnesium, Total	ND	mg/kg	4.00	0.616	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Manganese, Total	ND	mg/kg	0.400	0.064	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Nickel, Total	ND	mg/kg	1.00	0.097	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Potassium, Total	ND	mg/kg	100	5.76	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Selenium, Total	ND	mg/kg	0.800	0.103	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Silver, Total	ND	mg/kg	0.200	0.113	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Sodium, Total	ND	mg/kg	80.0	1.26	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Thallium, Total	ND	mg/kg	0.800	0.126	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Vanadium, Total	ND	mg/kg	0.400	0.081	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC
Zinc, Total	ND	mg/kg	2.00	0.117	1	12/11/23 22:53	12/12/23 07:49	1,6010D	DMC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Metals - Mans	Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1861116-1									
Mercury, Total	0.154	mg/kg	0.083	0.054	1	12/11/23 23:30	12/12/23 11:34	1,7471B	GMG	

Project Name: 240 LAKEFRONT BLVD **Lab Number:** L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	sfield Lab Associated sample(s): 01 Batch: WG1861115-2				22-540			
Aluminum, Total	71		-		52-148	-		
Antimony, Total	135		-		6-194	-		
Arsenic, Total	98		-		81-119	-		
Barium, Total	105		-		83-117	-		
Beryllium, Total	101		-		83-117	-		
Cadmium, Total	95		-		83-117	-		
Calcium, Total	95		-		83-117	-		
Chromium, Total	96		-		82-118	-		
Cobalt, Total	96		-		84-117	-		
Copper, Total	91		-		84-116	-		
Iron, Total	92		-		65-135	-		
Lead, Total	96		-		83-117	-		
Magnesium, Total	86		-		80-120	-		
Manganese, Total	116		-		82-118	-		
Nickel, Total	100		-		83-117	-		
Potassium, Total	84		-		76-123	-		
Selenium, Total	101		-		81-119	-		
Silver, Total	104		-		80-120	-		
Sodium, Total	102		-		75-125	-		
Thallium, Total	92		-		81-119	-		
Vanadium, Total	97		-		80-120	-		

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: WG186	S1115-2 SRM Lot Number	: D122-540		
Zinc, Total	95	-	82-119	-	
Total Metals - Mansfield Lab Associated sam	pple(s): 01 Batch: WG186	S1116-2 SRM Lot Number	: D122-540		
Mercury, Total	106	-	73-127	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number: L2371484

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sar	nple(s): 01	QC Batch	ID: WG186111	5-3 W	G1861115-4	QC Sample	: L2371	685-01	Client ID:	MS S	ample
Aluminum, Total	11200	228	12500	570	Q	13100	829	Q	75-125	5		20
Antimony, Total	0.722J	57	44.3	78		44.1	77		75-125	0		20
Arsenic, Total	15.0	13.7	29.8	108		22.0	51	Q	75-125	30	Q	20
Barium, Total	101	228	316	94		309	91		75-125	2		20
Beryllium, Total	0.883	5.7	6.37	96		6.44	97		75-125	1		20
Cadmium, Total	0.118J	6.05	5.50	91		5.45	90		75-125	1		20
Calcium, Total	1670	1140	2610	82		2660	86		75-125	2		20
Chromium, Total	13.5	22.8	35.2	95		35.8	97		75-125	2		20
Cobalt, Total	14.0	57	65.5	90		65.7	90		75-125	0		20
Copper, Total	18.4	28.5	42.4	84		41.8	82		75-125	1		20
Iron, Total	27900	114	31300	2980	Q	29700	1570	Q	75-125	5		20
Lead, Total	19.5	60.5	70.6	84		68.7	81		75-125	3		20
Magnesium, Total	3760	1140	5000	109		5580	159	Q	75-125	11		20
Manganese, Total	373	57	494	212	Q	399	45	Q	75-125	21	Q	20
Nickel, Total	27.7	57	78.5	89		80.2	92		75-125	2		20
Potassium, Total	882	1140	2010	99		2140	110		75-125	6		20
Selenium, Total	ND	13.7	12.2	89		11.9	86		75-125	2		20
Silver, Total	ND	5.7	5.67	99		5.62	98		75-125	1		20
Sodium, Total	29.0J	1140	1100	96		1110	97		75-125	1		20
Thallium, Total	0.403J	13.7	11.7	85		11.7	85		75-125	0		20
Vanadium, Total	15.9	57	69.3	94		68.3	91		75-125	1		20

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	/ RPD	RPD Limits
Total Metals - Mansfield L	ab Associated sam	ple(s): 01	QC Batch I	D: WG1861115-3	WG1861115-4	QC Sample:	L2371685-01	Client ID:	MS Sample
Zinc, Total	72.7	57	127	95	127	95	75-125	0	20
Total Metals - Mansfield L	ab Associated sam	ple(s): 01	QC Batch I	D: WG1861116-3	WG1861116-4	QC Sample:	L2200086-79	Client ID:	MS Sample
Mercury, Total	0.215B	1.36	1.41	88	1.51	90	80-120	7	20

Lab Serial Dilution Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

L2371484 Report Date: 12/19/23

Lab Number:

Parameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG186111	5-6 QC Sample:	L2371685-01	Client ID:	DUP Sample	
Aluminum, Total	11200	12100	mg/kg	8		20
Barium, Total	101	109	mg/kg	8		20
Calcium, Total	1670	1850	mg/kg	11		20
Iron, Total	27900	31200	mg/kg	12		20
Magnesium, Total	3760	4060	mg/kg	8		20
Manganese, Total	373	417	mg/kg	12		20

INORGANICS & MISCELLANEOUS

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date: 12/19/23

SAMPLE RESULTS

Lab ID: L2371484-01 Client ID: SOD-01-120523

Sample Location: Not Specified

Date Collected:

12/05/23 13:30

Date Received:

12/05/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	76.2		%	0.100	NA	1	-	12/06/23 17:10	121,2540G	SJB
Cyanide, Total	ND		mg/kg	1.2	0.26	1	12/11/23 19:00	12/13/23 00:03	1,9010C/9012B	ANT
Chromium, Hexavalent	ND		mg/kg	1.05	0.210	1	12/11/23 13:30	12/12/23 16:04	1,7196A	DTH

L2371484

Lab Number:

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609 **Report Date:** 12/19/23

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab fo	r sample(s): 01	Batch:	WG18	62488-1				
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	12/11/23 13:30	12/12/23 16:04	1,7196A	DTH
General Chemistry - W	Vestborough Lab fo	r sample(s): 01	Batch:	WG18	63067-1				
Cyanide, Total	ND	mg/kg	0.90	0.19	1	12/11/23 19:00	12/12/23 23:59	1,9010C/9012I	3 ANT

Project Name: 240 LAKEFRONT BLVD

Project Number:

E67.022.609

Lab Number:

L2371484

12/19/23

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery C	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 01 B	atch: WG1862488-2				
Chromium, Hexavalent	86	-	80-120	-		20
General Chemistry - Westborough Lab As	sociated sample(s): 01 B	Satch: WG1863067-2	WG1863067-3			
Cyanide, Total	90	90	80-120	2		35

Matrix Spike Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recover		Recovery Limits	RPD		RPD imits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1862	488-4 C	QC Sample: L	2371484-	01 Client	ID: SC	D-01-12	0523
Chromium, Hexavalent	ND	1240	1400	113		-	-		75-125	-		20
General Chemistry - Westborou Sample	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1863	067-4 WC	G1863067-5	QC Sam	ole: L23716	37-19	Client I	D: MS
Cyanide, Total	ND	11	12	110		11	100		75-125	9		35
General Chemistry - Westborou Sample	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1863	067-6 WC	91863067-7	QC Sam	ole: L23716	37-18	Client I	D: MS
Cyanide, Total	ND	11	12	110		10	91		75-125	18		35

Lab Duplicate Analysis Batch Quality Control

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

Lab Number:

L2371484

Report Date:

12/19/23

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch II	D: WG1860654-1	QC Sample: L237	'1685-01(Client ID:	DUP Sample
Solids, Total	67.2	69.8	%	4		20
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch I	D: WG1862488-6	QC Sample: L237	'1484-01(Client ID:	SOD-01-120523
Chromium, Hexavalent	ND	ND	mg/kg	NC		20

240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2371484-01A	Vial MeOH preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260HLW-R2(14)
L2371484-01B	Vial water preserved	Α	NA		2.3	Υ	Absent	06-DEC-23 16:23	NYTCL-8260HLW-R2(14)
L2371484-01C	Vial water preserved	Α	NA		2.3	Υ	Absent	06-DEC-23 16:23	NYTCL-8260HLW-R2(14)
L2371484-01D	Plastic 2oz unpreserved for TS	Α	NA		2.3	Υ	Absent		TS(7)
L2371484-01E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.3	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),TL-TI(180),CR-TI(180),NI-TI(180),AL- TI(180),SB-TI(180),PB-TI(180),SE-TI(180),CU- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),HG- T(28),MG-TI(180),FE-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L2371484-01F	Glass 250ml/8oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),HEXCR-7196(30)
L2371484-01G	Glass 500ml/16oz unpreserved	Α	NA		2.3	Υ	Absent		NYTCL-8270(14),HERB-APA(14),NYTCL-8081(14),NYTCL-8082(365)
L2371484-01H	Plastic 8oz unpreserved	Α	NA		2.3	Υ	Absent		A2-1633-DRAFT(90)

Serial_No:12192310:41 **Lab Number:** L237

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA/PFTeDA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
•	PFHxA	
Perfluorohexanoic Acid		307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
	4.21 10	737124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
DEDELLIODOETHED/DOLVETHED CARROVVIIC ACIDS (DEDCAS)		
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)	DEMP :	
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Serial_No:12192310:41 **Lab Number:** L237

L2371484

Report Date: 12/19/23

Project Name: 240 LAKEFRONT BLVD

Project Number: E67.022.609

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
FLUCKOTELOWER CARBOATLIC ACIDS (FTCAS)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Project Name: Lab Number: 240 LAKEFRONT BLVD L2371484

Project Number: E67.022.609 **Report Date:** 12/19/23

GLOSSARY

Acronyms

LOD

MS

MSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

 Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

> adjustments from dilutions, concentrations or moisture content, where applicable. - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

> which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

> than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Serial_No:12192310:41

Project Name:240 LAKEFRONT BLVDLab Number:L2371484Project Number:E67.022.609Report Date:12/19/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:12192310:41

Project Name:240 LAKEFRONT BLVDLab Number:L2371484Project Number:E67.022.609Report Date:12/19/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:12192310:41

Project Name: 240 LAKEFRONT BLVD Lab Number: L2371484

Project Number: E67.022.609 Report Date: 12/19/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. Draft EPA Method 1633, EPA Document 821-D-22-001, June 2022.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12192310:41

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walket Tonawanda, NY 14150: 275 (Way	105	Pag	of /		Date	Rec'	d /	2/6	0/0	3	ALPHA JOB#	24
Westborough, MA 01581	Mansfield, MA 02048	Project Information	1500 1500			0	Deli	verabl	es					Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: 24	D lake	strant.	Rlm	2		ASP	-A		X	ASP.	В	Same as Client I	Info
FAX: 508-896-9193	FAX: 508-822-3288	Project Location:	Coll	11200	60100		1	EQu	IS (1 F	File)	7	EQui	S (4 File)	PO#	
Client Information	POTO NE SESTI	Project # £67.	022.0	209			17	Othe	123	- 52			20 11		
Client 25 /	ngineers,	(Use Project name as I		,	_		Reg	-	Requ	ireme	nt	100	HAZZI	Disposal Site Informa	tion
Address: LH Z	On St	Project Manager:	10,000	Martin				NYT		W. C. L.	X	NY Pa	rt 375	Please identify below loc	
indicas.	in all.	ALPHAQuote #:	207 1	Car Jox	(1 =		Standa	ards		NY CF		applicable disposal facilit	
Phone:					-	and the same			estricte			Other		Disposal Facility:	
LONG MARKET COMME	H-20	Turn-Around Time	X		C. U.S. S. W.	The same			nrestric			Other		D NI A	50
ax:	Docco	Standa		Due Date							-	1		H41	WY.
Email: CMarto		Rush (only if pre approve	0)	# of Days	8				Sewer	Discha	rge (C	<u> </u>		Other:	
	een previously analyz						ANA	LYSIS	3		Q)	-		Sample Filtration	
ther project specific	requirements/comm	nents:					100	0	5	3	00			Done	
							10	12	8	3	09			Lab to do	
							13	3	3	3	12	5		Lab to do	
lease specify Metals	or TAL.						824	-	1		1	1)			
								12	1	S	5	1		(Please Specify belo	w)
ALPHA Lab ID		mala ID	Coll	ection	Sample	Sampler's	18	13	4	17	77	3			
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix	Initials	>	5	12	4	33	1	- 1	Sample Specific Comme	ents
71484 01	SOD-01-	120523	12/5/23	1:30	50	CM	X	X	X	X	X	X			-
			111		00	-	,	-	_	-	-				
								\vdash				\vdash			
											_	\vdash			\rightarrow
											\vdash				\rightarrow
							_	-		-	_	\vdash	_	-	\rightarrow
									-	-		\vdash	_		\rightarrow
	=		_				-	_	_	_	_				-
			-					_	_	_	_				-
							Щ	\Box							\rightarrow
and the Code	Castalana Carta									0					
	Container Code P = Plastic	Westboro: Certification N	lo: MA935		Con	tainer Type	./	A	A	W	1	1		Please print clearly,	legibly
= HCI	A = Amber Glass	Mansfield: Certification N	lo: MA015	- 1		idinor Typo	V	7	n	1	F	PI		and completely. San	
	V = Vial		,			nmar construit ##mis	^	1	1	1	Λ	Λ		not be logged in and	
1 (min 1 min	G = Glass B = Bacteria Cup	00.		/	Р	reservative	H	A	n	41	n	HI		turnaround time cloc	
1100011	C = Cube	Mainquishad	1. 1	/ Pate/T	ime		Receiv	ad By				Date/	Time	start until any ambiguresolved. BY EXECL	
= NaHSO ₄	O = Other	Relinquished	1 hoto	10662	7209				-	200	10.			THE COC THE OLD	
14020203	E = Encore D = BOD Bottle	Soll AN	My L	19/10	U	ju	Org	7)4	legt	70		940	14:05	111.10 11111111111111111111111111111111	
= ZD AC/NOCIH		Moun 4000	(AAL)	2/1/23	14:05	0,1					12/1	123	0240	TO BE BOUND BY A	ALPHA'S
= Zn Ac/NaOH '	1	The state of the s	-	-,-,-	/ -						-	1000		TERMS & CONDITIO	2012

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.

SECTION 1 - SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that passes a size 100 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.
2, Zeotogican reson ees nave veen taeingtea ase me 2, Zeotogican resonnees are 1 resent.
SECTION 4 – SOURCE OF FILL
Name of person providing fill and relationship to the source:
Location where fill was obtained:
Identification of any state or local approvals as a fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:
Provide a list of supporting documentation included with this request:

The information provided on this form is accurate a	nd complete.
Coly Alfret	
Signature	Date
Print Name	
Firm	

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 1

Lab Sample ID:232636-36Date Sampled: 6/15/2023Matrix:SoilDate Received 6/19/2023

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 8.95	ug/Kg	6/22/2023 20:24
1,1-Dichloroethane	< 8.95	ug/Kg	6/22/2023 20:24
1,1-Dichloroethene	< 8.95	ug/Kg	6/22/2023 20:24
1,2,4-Trimethylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
1,2-Dichlorobenzene	< 8.95	ug/Kg	6/22/2023 20:24
1,2-Dichloroethane	< 8.95	ug/Kg	6/22/2023 20:24
1,3,5-Trimethylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
1,3-Dichlorobenzene	< 8.95	ug/Kg	6/22/2023 20:24
1,4-Dichlorobenzene	< 8.95	ug/Kg	6/22/2023 20:24
1,4-Dioxane	< 44.8	ug/Kg	6/22/2023 20:24
2-Butanone	< 44.8	ug/Kg	6/22/2023 20:24
Acetone	52.3	ug/Kg	6/22/2023 20:24
Benzene	< 8.95	ug/Kg	6/22/2023 20:24
Carbon Tetrachloride	< 8.95	ug/Kg	6/22/2023 20:24
Chlorobenzene	< 8.95	ug/Kg	6/22/2023 20:24
Chloroform	< 8.95	ug/Kg	6/22/2023 20:24
cis-1,2-Dichloroethene	< 8.95	ug/Kg	6/22/2023 20:24
Ethylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
m,p-Xylene	< 8.95	ug/Kg	6/22/2023 20:24
Methyl tert-butyl Ether	< 8.95	ug/Kg	6/22/2023 20:24
Methylene chloride	< 22.4	ug/Kg	6/22/2023 20:24
n-Butylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
n-Propylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
o-Xylene	< 8.95	ug/Kg	6/22/2023 20:24
sec-Butylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
tert-Butylbenzene	< 8.95	ug/Kg	6/22/2023 20:24
Tetrachloroethene	< 8.95	ug/Kg	6/22/2023 20:24
Toluene	< 8.95	ug/Kg	6/22/2023 20:24

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 1

 Lab Sample ID:
 232636-36
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

trans-1,2-Dichloroethene	< 8.95	ug/Kg	6/22/2023 20:24
Trichloroethene	< 8.95	ug/Kg	6/22/2023 20:24
Vinyl chloride	< 8.95	ug/Kg	6/22/2023 20:24

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4	107	72.3 - 128		6/22/2023	20:24
4-Bromofluorobenzene	89.1	70 - 123		6/22/2023	20:24
Pentafluorobenzene	104	80.7 - 124		6/22/2023	20:24
Toluene-D8	100	82.1 - 121		6/22/2023	20:24

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z17741.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: Scott Lawn Yard Inc

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 2

 Lab Sample ID:
 232636-37
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analy	vzed
1,1,1-Trichloroethane	< 8.44	ug/Kg		6/22/2023	20:44
1,1-Dichloroethane	< 8.44	ug/Kg		6/22/2023	20:44
1,1-Dichloroethene	< 8.44	ug/Kg		6/22/2023	20:44
1,2,4-Trimethylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
1,2-Dichlorobenzene	< 8.44	ug/Kg		6/22/2023	20:44
1,2-Dichloroethane	< 8.44	ug/Kg		6/22/2023	20:44
1,3,5-Trimethylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
1,3-Dichlorobenzene	< 8.44	ug/Kg		6/22/2023	20:44
1,4-Dichlorobenzene	< 8.44	ug/Kg		6/22/2023	20:44
1,4-Dioxane	< 42.2	ug/Kg		6/22/2023	20:44
2-Butanone	< 42.2	ug/Kg		6/22/2023	20:44
Acetone	53.5	ug/Kg		6/22/2023	20:44
Benzene	< 8.44	ug/Kg		6/22/2023	20:44
Carbon Tetrachloride	< 8.44	ug/Kg		6/22/2023	20:44
Chlorobenzene	< 8.44	ug/Kg		6/22/2023	20:44
Chloroform	< 8.44	ug/Kg		6/22/2023	20:44
cis-1,2-Dichloroethene	< 8.44	ug/Kg		6/22/2023	20:44
Ethylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
m,p-Xylene	< 8.44	ug/Kg		6/22/2023	20:44
Methyl tert-butyl Ether	< 8.44	ug/Kg		6/22/2023	20:44
Methylene chloride	< 21.1	ug/Kg		6/22/2023	20:44
n-Butylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
n-Propylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
o-Xylene	< 8.44	ug/Kg		6/22/2023	20:44
sec-Butylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
tert-Butylbenzene	< 8.44	ug/Kg		6/22/2023	20:44
Tetrachloroethene	< 8.44	ug/Kg		6/22/2023	20:44
Toluene	< 8.44	ug/Kg		6/22/2023	20:44

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 2

 Lab Sample ID:
 232636-37
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

1,2-Dichloroethane-d4		105	72.3 - 128		6/22/2023	20:44
<u>Surrogate</u>	<u>Perc</u>	<u>ent Recovery</u>	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
Vinyl chloride	< 8.44	ug/Kg			6/22/20	23 20:44
Trichloroethene	< 8.44	ug/Kg			6/22/20	23 20:44
trans-1,2-Dichloroethene	< 8.44	ug/Kg			6/22/20	23 20:44

<u>i ei cent Recovery</u>	LIIIILS	<u>outilets</u>	Date All	<u>aiyzeu</u>
105	72.3 - 128		6/22/2023	20:44
85.4	70 - 123		6/22/2023	20:44
101	80.7 - 124		6/22/2023	20:44
103	82.1 - 121		6/22/2023	20:44
	105 85.4 101	105 72.3 - 128 85.4 70 - 123 101 80.7 - 124	105 72.3 - 128 85.4 70 - 123 101 80.7 - 124	105 72.3 - 128 6/22/2023 85.4 70 - 123 6/22/2023 101 80.7 - 124 6/22/2023

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z17742.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: Scott Lawn Yard Inc

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 3

Lab Sample ID: 232636-22 **Date Sampled:** 6/15/2023

Matrix: Soil Date Received 6/19/2023

Hexavalent Chromium

Analyte Result Units Qualifier Date Analyzed

Chrome, Hexavalent <3.0 mg/Kg 6/26/2023

Method Reference(s): EPA 7196A (3060A)

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total <0.6 mg/Kg 6/21/2023

Method Reference(s): EPA 9012B **Subcontractor ELAP ID:** 10709

Part 375 Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
Arsenic	7.89	mg/Kg		6/27/2023	08:07
Barium	50.6	mg/Kg		6/27/2023	08:07
Beryllium	< 0.286	mg/Kg		6/27/2023	08:07
Cadmium	< 0.286	mg/Kg		6/27/2023	08:07
Chromium	10.6	mg/Kg		6/27/2023	08:07
Copper	22.5	mg/Kg		6/27/2023	08:07
Lead	11.4	mg/Kg		6/27/2023	08:07
Manganese	542	mg/Kg		6/27/2023	08:07
Nickel	16.0	mg/Kg		6/27/2023	08:07
Selenium	< 1.14	mg/Kg		6/27/2023	08:07
Silver	< 0.572	mg/Kg		6/27/2023	08:07
Zinc	76.7	mg/Kg		6/27/2023	08:07

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 6/22/2023 Data File: 230627A

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 3

 Lab Sample ID:
 232636-22
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0375	mg/Kg		6/22/2023 15:03

Method Reference(s):EPA 7471BPreparation Date:6/22/2023Data File:Hg230622B

PCBs

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date An	alyzed
PCB-1016	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1221	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1232	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1242	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1248	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1254	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1260	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1262	< 0.163	mg/Kg			6/27/202	23 15:58
PCB-1268	< 0.163	mg/Kg			6/27/202	23 15:58
<u>Surrogate</u>	<u>Percen</u>	t Recovery	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
Tetrachloro-m-xylene	1	79.0	10 - 110		6/27/2023	15:58

Method Reference(s): EPA 8082A

EPA 3546 6/26/2023

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
2-Methylphenol	< 332	ug/Kg		6/27/2023 21:59
3&4-Methylphenol	< 332	ug/Kg		6/27/2023 21:59
Acenaphthene	< 332	ug/Kg		6/27/2023 21:59
Acenaphthylene	< 332	ug/Kg		6/27/2023 21:59
Anthracene	< 332	ug/Kg		6/27/2023 21:59
Benzo (a) anthracene	< 332	ug/Kg		6/27/2023 21:59

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Preparation Date:

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 3

 Lab Sample ID:
 232636-22
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

C	D	t D	T ::4	041:	Data A	
Pyrene	< 332	ug/Kg			6/27/2023	21:59
Phenol	< 332	ug/Kg			6/27/2023	21:59
Phenanthrene	< 332	ug/Kg			6/27/2023	21:59
Pentachlorophenol	< 663	ug/Kg			6/27/2023	21:59
Naphthalene	< 332	ug/Kg			6/27/2023	21:59
Indeno (1,2,3-cd) pyrene	< 332	ug/Kg			6/27/2023	21:59
Hexachlorobenzene	< 332	ug/Kg			6/27/2023	21:59
Fluorene	< 332	ug/Kg			6/27/2023	21:59
Fluoranthene	< 332	ug/Kg			6/27/2023	21:59
Dibenzofuran	< 332	ug/Kg			6/27/2023	21:59
Dibenz (a,h) anthracene	< 332	ug/Kg			6/27/2023	21:59
Chrysene	< 332	ug/Kg			6/27/2023	21:59
Benzo (k) fluoranthene	< 332	ug/Kg			6/27/2023	21:59
Benzo (g,h,i) perylene	< 332	ug/Kg			6/27/2023	21:59
Benzo (b) fluoranthene	< 332	ug/Kg			6/27/2023	21:59
Benzo (a) pyrene	< 332	ug/Kg			6/27/2023	21:59

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed	
2,4,6-Tribromophenol	49.8	35.1 - 95.9		6/27/2023	21:59	
2-Fluorobiphenyl	48.3	10 - 156		6/27/2023	21:59	
2-Fluorophenol	42.8	36 - 81.3		6/27/2023	21:59	
Nitrobenzene-d5	43.2	31.5 - 83.8		6/27/2023	21:59	
Phenol-d5	47.7	37.7 - 84		6/27/2023	21:59	
Terphenyl-d14	41.1	40.5 - 99.5		6/27/2023	21:59	

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 6/26/2023 **Data File:** B665021.D

Herbicides

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
2,4,5-TP (Silvex)	<360	ug/Kg		6/22/2023

Client: Scott Lawn Yard Inc

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 3

 Lab Sample ID:
 232636-22
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

Method Reference(s):EPA 8321BSubcontractor ELAP ID:10709

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD	<4.0	ug/Kg		6/22/2023
4,4-DDE	<4.0	ug/Kg		6/22/2023
4,4-DDT	<4.0	ug/Kg		6/22/2023
Aldrin	<2.0	ug/Kg		6/22/2023
alpha-BHC	<2.0	ug/Kg		6/22/2023
beta-BHC	<2.0	ug/Kg		6/22/2023
cis-Chlordane	<2.0	ug/Kg		6/22/2023
delta-BHC	<2.0	ug/Kg		6/22/2023
Dieldrin	<4.0	ug/Kg		6/22/2023
Endosulfan I	<2.0	ug/Kg		6/22/2023
Endosulfan II	<4.0	ug/Kg		6/22/2023
Endosulfan Sulfate	<4.0	ug/Kg		6/22/2023
Endrin	<4.0	ug/Kg		6/22/2023
gamma-BHC (Lindane)	<2.0	ug/Kg		6/22/2023
Heptachlor	<2.0	ug/Kg		6/22/2023

Method Reference(s):EPA 8081BSubcontractor ELAP ID:10709

Serial_No:07182316:49

Project Name: BELL SLIP IMPORTED SOIL Lab Number: L2334953

Project Number: BELL SLIP IMPORTED Report Date: 07/18/23

SAMPLE RESULTS

Lab ID: L2334953-07 Date Collected: 06/15/23 00:00

Client ID: PLANTING SOIL MIX 4 Date Received: 06/19/23
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 1633
Analytical Method: 144,1633 Extraction Date: 07/13/23 17:45

Analytical Date: 07/15/23 04:09 Cleanup Method: EPA 1633
Analyst: CHB Cleanup Date: 07/14/23

Analyst: CHB Cleanup Date:
Percent Solids: 73%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab								
D. (I (DEDA)	0.074		,	0.707	2.252			
Perfluorobutanoic Acid (PFBA)	0.071	J	ng/g	0.787	0.050	1		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.394	0.055	1		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.197	0.043	1		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.197	0.046	1		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.197	0.023	1		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.197	0.058	1		
Perfluorooctanoic Acid (PFOA)	0.087	J	ng/g	0.197	0.051	1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.787	0.276	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.197	0.036	1		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.197	0.077	1		
Perfluorooctanesulfonic Acid (PFOS)	0.150	J	ng/g	0.197	0.078	1		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.197	0.074	1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.787	0.381	1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.197	0.098	1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.197	0.050	1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.197	0.032	1		
Perfluorooctanesulfonamide (PFOSA)	ND		ng/g	0.197	0.043	1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.197	0.081	1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.197	0.040	1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.197	0.052	1		
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/g	0.197	0.105	1		
PFOA/PFOS, Total	0.237	J	ng/g	0.197	0.051	1		

Serial_No:07182316:49

Project Name: BELL SLIP IMPORTED SOIL Lab Number: L2334953

Project Number: BELL SLIP IMPORTED Report Date: 07/18/23

SAMPLE RESULTS

Lab ID: L2334953-07 Date Collected: 06/15/23 00:00

Client ID: PLANTING SOIL MIX 4 Date Received: 06/19/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	77		20-150	
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	70		20-150	
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	71		20-150	
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	74		20-150	
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	75		20-150	
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	75		20-150	
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	85		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	65		20-150	
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	71		20-150	
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	78		20-150	
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	78		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	177	Q	20-150	
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	99		20-150	
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	75		20-150	
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	70		20-150	
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	72		20-150	
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	82		20-150	
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	89		20-150	

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 5

 Lab Sample ID:
 232636-24
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 8.57	ug/Kg	6/22/2023 17:50	0
1,1-Dichloroethane	< 8.57	ug/Kg	6/22/2023 17:50	0
1,1-Dichloroethene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,2,4-Trimethylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,2-Dichlorobenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,2-Dichloroethane	< 8.57	ug/Kg	6/22/2023 17:50	0
1,3,5-Trimethylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,3-Dichlorobenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,4-Dichlorobenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
1,4-Dioxane	< 42.9	ug/Kg	6/22/2023 17:50	0
2-Butanone	< 42.9	ug/Kg	6/22/2023 17:50	0
Acetone	< 42.9	ug/Kg	6/22/2023 17:50	0
Benzene	< 8.57	ug/Kg	6/22/2023 17:50	0
Carbon Tetrachloride	< 8.57	ug/Kg	6/22/2023 17:50	0
Chlorobenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
Chloroform	< 8.57	ug/Kg	6/22/2023 17:50	0
cis-1,2-Dichloroethene	< 8.57	ug/Kg	6/22/2023 17:50	0
Ethylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
m,p-Xylene	< 8.57	ug/Kg	6/22/2023 17:50	0
Methyl tert-butyl Ether	< 8.57	ug/Kg	6/22/2023 17:50	0
Methylene chloride	< 21.4	ug/Kg	6/22/2023 17:50	0
n-Butylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
n-Propylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
o-Xylene	< 8.57	ug/Kg	6/22/2023 17:50	0
sec-Butylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
tert-Butylbenzene	< 8.57	ug/Kg	6/22/2023 17:50	0
Tetrachloroethene	< 8.57	ug/Kg	6/22/2023 17:50	0
Toluene	< 8.57	ug/Kg	6/22/2023 17:50	0

Client: <u>Scott Lawn Yard Inc</u>

Project Reference: Bell Slip Imported Soil

Sample Identifier: Planting Soil Mix - 5

 Lab Sample ID:
 232636-24
 Date Sampled: 6/15/2023

 Matrix:
 Soil
 Date Received 6/19/2023

trans-1,2-Dichloroethene	< 8.57	ug/Kg	6/22/2023	17:50
Trichloroethene	< 8.57	ug/Kg	6/22/2023	17:50
Vinyl chloride	< 8.57	ug/Kg	6/22/2023	17:50

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4	109	72.3 - 128		6/22/2023	17:50
4-Bromofluorobenzene	88.1	70 - 123		6/22/2023	17:50
Pentafluorobenzene	103	80.7 - 124		6/22/2023	17:50
Toluene-D8	100	82.1 - 121		6/22/2023	17:50

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z17733.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220| F: (716) 851-7226 www.dec.ny.gov

July 28, 2023

Mark Wendel Erie County Harbor Development Corporation 95 Perry Street Suite 500 Buffalo, NY 14203

Re: Site Management (SM) -

Import Request

NFTA Outer Harbor Greenbelt, Buffalo

Erie County, Site No.: B00149

Dear Martin Wesolowski:

The Department has reviewed your request dated July 28, 2023 to import approximately 100 cubic yards of limestone dust from New Enterprise Stone & Lime Co. and approximately 1100 cubic yards of -3/4" gravel, approximately 500 cubic yards of turf soil, approximately 200 yards of planting soil, approximately 200 cubic yards of sand for soil mixes, and approximately 100 cubic yards of biorentention soil from Gernatt Asphalt Products, Inc. Based on the information provided, the request is hereby approved.

Testing in accordance with DER-10 and approval by the Department is required for any additional material imported from this source.

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Megan Kuczka

Environmental Program Specialist – 1

ec: Chris Catanzaro – ECHDC
Stephen Franks – The LiRo Group

James Mazur – Turner Construction Company

13870 Taylor Hollow Rd, Collins, New York, 14034 - 716-532-3371 - Fax 716-532-9000

Via EMail:

10/30/2023

ARC BUILDING PARTNERS
100 S. ELMWOOD AVENUE
BUFFALO
NY

ATTENTION: Danielle Zientek

RE: Material Submittal Planting Soil Mix - 240-260 Lakefront Blvd., Buffalo, New York Job DEC site #C915340

14202

Dear Ms Zientek

This is to certify that the Planting Soil Mix proposed for use on the above listed project conforms to the requirements of the Project specifications. The Planting Soil Mix will be supplied from the remaining stockpile tested for Job: Bell Slip, Buffalo New York. The Planting Soil Mix was homogeneously blended at our Collins Plant located on Taylor Hollow Road, Collins, NY which is both a NYSDOT and NYSDEC approved source: NYSDOT source 5-81F, DEC Mine ID 90089 and DEC permit # 9043-30 -0089.

Sincerely,

Gernatt Asphalt Products, Inc.

David M. Gier

Inside Sales Representative

APPENDIX C-2

TRUCK TICKETS

13870 TAYLOR HOLLOW ROAD - COLLINS, NY 14034

www.gernatt.com
OFFICE PHONE
(716) 532-3371

(716) 532-9000 FAX
Ticket #**
Date: 1

Date: 11/09/23 Time: 08:45 6M

Delivery *** JOB INFORMA

DI 1883-02 INFORMATION

BUFFALO

Name: 2023 WEST END

Phone: 716-684-7730

Phaser 7

Truck Weights

 Gross
 Tare
 Net

 67820 1b
 27440 1b
 40380 1b

 33.910 TN
 13.720 TN
 20.190 TN

 30.763 Mg
 12.447 Mg
 18.316 Mg

Fuck ID: DIGIO2 LIC: LIC:

CHEEKTOWAGA,

hod

4225

MICHAEL

SERREIN

TRUCKING

INF DRMATION

825E

MUNICHORG

Descript: WHITE WESTERN STAR

Mage: DIGIT TRUCKING

Weighwaster:

PRODUCT AND LOAD TOTALS

1/TODAY

20.190TN

7110 # 1

日本の日

PLINATING

1108

XIM

0

-

492

THE

nati

13870 TAYLOR HOLLOW ROAD - COLLINS, NY 14034

www.gernatt.com (716) 532-9000 FAX OFFICE PHONE (716) 532-3371 Ticket Date: H H K

09/23 PE

Delivery 本本本

常容容

ID 四四 10 th 20 3529 -883 ICHAEL BROADWAY SERAFINI TRUCKING

diam.

HEEKTOWAGA, 14000

> 1883-02 INFORMATION

Names ID Address: 24 2023 WEST END BUFFALO での事業

phone 92 716-684-7730

Phase "

MONT Weights

35.000 Gr055 70000 DM N I 13, 930 27860 Tare 区区 Z 10 21.070 42140 Net BA ZE

MO Social Social ghma 切 2 BI 100

Descr

921

HITE

60

X DUT

100

DIG

10

1er

Inf

自由自由自

山口下

14

DIG

TRUCKING

BUN

XIM 192 MG

D MME 200 幸 53

Nam

BULLNETA

TIOS

13870 TAYLOR HOLLOW ROAD - COLLINS, NY 14034

ENGINEER'S COPY

www.gernatt.com OFFICE PHONE (716) 532-3371

(716) 532-9000 FAX

uck and Carrier Information

CE CHARGE OF 11/2% PER MONTH (18% Our trucking responsibility ends ARV. NUAL) (\$1.00 Minimum Service Fee) will be charged at the curb. A charge will be so not paid within normal terms. Acceptance of made for holding truck on the stitutes acceptance of these terms.

job for over 20 minutes.

WARNING: Hot mix asphalt may release hydrogen sulfide (H,S) which can be toxic in large concentrations. Avoid breathing fumes unnecessarily. Contact with hot asphalt can produce burns. Avoid contact with skin. Lakeside Sod Supply Co., Inc.

6660 Goodrich Road Clarence Center, NY 14032

APPROVED APPROVILLE Miller Ryan Miller

Invoice

Date	Invoice #
11/22/2023	77473

	Bill To				Ship To	9	
840	01 Pack	Associate WNY ard Road lls, NY 14304					
P.O. Num	nber	Terms	Ship	Via	Rep	S.O. No.	
West Er	nd	Net 30	11/22/2023	Pick up		16108	
Quantity		Item Code	D	escription		Price Each	Amount
	700 So 1 D-	d-KBG Picked Up Pallet	Kentucky Bluegrass Picker Pallet deposit a 5050.7 L13-1			0.30	210.00T 0.00
agents and way, or car responsibil	rying m ity for a	ud, dirt, etc. onto pall damages caused	of this invoice by the owner responsibility for any damage avenent by vehicles ordered to property as foresaid. less and indemnify Lakeside	ges caused by move	ng vehicles beyond d roads or rights o	d the limits of improved rof way. The undersigned tal	ade or rights of
						Total	\$228.38

Payments/Credits

Balance Due

\$0.00

\$228.38

Phone #

Signature

(716) 741-2877

Lakeside Sod Supply Co., Inc.

6660 Goodrich Road Clarence Center, NY 14032

Invoice

Date	Invoice #
11/17/2023	77461

Bill To

Landscape Associate WNY 8401 Packard Road Niagara Falls, NY 14304 Ship To

240 Lakefront Blvd Buffalo New York 14202 chad 716-578-0270

P.O. Number	Terms	Ship	Via	Rep	S.O. No.	
Net 30		11/17/2023	11/17/2023 Our truck del		16098	
Quantity	Item Code	Item Code Description			Price Each	Amount
1	Sod-KBG Delivered Shipping Charge D-Pallet	Kentucky Bluegrass Deliv Shipping Charge Pallet deposit	ered		0.30 225.00 0.00	3,150.00T 225.00T 0.00
				APPROVER Ryan Milia		
		0.5050.7	1031-CX-333			
					Sales Tax (8.7	\$295.31
vay, or carrying	tractors of any and all ig mud, dirt, etc. onto	of this invoice by the owner responsibility for any dam pavement by vehicles order to property as foresaid. The property as a foresaid of the property as foresaid.	ages caused by mov	ed roads or rights	of way. The undersigned	roads of rights of

Total

\$3,670.31

Payments/Credits

\$0.00

Signature

Balance Due

\$3,670.31

Phone #

(716) 741-2877

6660 Goodrich Road Clarence Center, NY 14032

Packing Slip

Date	s.o. No.
11/9/2023	16059

Rill	1-
LIII	TO

Landscape Associate WNY 8401 Packard Road Niagara Falls, NY 14304 Ship To

3705 Main Street (NY-36 & NY-63) Piffard, NY 14533 Chad 716-578-0270

P.O. No. Terms Rep Ship Date Ship Via

York Travel Center Net 30

Rep Ship Date Ship Via

11/10/2023 Our truck del

Ordered	Item	Description	Shipped
24	Sod-KBG Delivered D-Pallet Shipping Charge	Kentucky Bluegrass Delivered Pallet deposit Shipping Charge	
		Load 1 - 10500 sq ft Load 2 - 6300 sq ft Sales Tax	

Acceptance by signature or payment of this invoice by the owner, contractor or their representative(s) relieves Lakeside Sod Supply Co. Inc., its agents and contractors of any and all responsibility for any damages caused by moving vehicles beyond the limits of improved roads or rights of way, or carrying mud, dirt, etc. onto pavement by vehicles ordered off said improved roads or rights of way. The undersigned takes full responsibility for all damages caused to property as foresaid.

Customer further agrees to hold harmless and indemnify Lakeside Sod Supply Co. Inc. for any claim for any such damage.

0:		-1	1	
2	gn	21		Α .
	9"	u		U .

Phone #

716-741-2877

APPENDIX D

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
Site Management Periodic Review Report Notice
Institutional and Engineering Controls Certification Form

Site	e No. C91	5340	Site Details		Box 1		
Site	e Name 240 - 26	0 Lakefront Boulevar	rd Site				
City	e Address: 240 L y/Town: Buffalo unty: Erie e Acreage: 2.094	akefront Boulevard	Zip Code: 14203				
Rep	porting Period: D	ecember 04, 2022 to D	December 04, 2023				
					YES	NO	
1.	Is the informatio	n above correct?			X		
	If NO, include ha	andwritten above or on	a separate sheet.				
2.		of the site property been ment during this Report	en sold, subdivided, merged, or u ting Period?	ndergone a		×	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? □					×	
4.	Have any federa for or at the prop	een issued		X			
			thru 4, include documentation ously submitted with this certific				
5.	Is the site currer	ntly undergoing develop	pment?		X		
					Box 2		
					YES	NO	
6.		e use consistent with the dential, Commercial, ar	he use(s) listed below? nd Industrial		X		
7.	Are all ICs in pla	ace and functioning as	designed?	X			
A C	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
Sig	nature of Owner, I	Remedial Party or Desig	gnated Representative	Date			

			Box 2	Α
			YES	NO
	rmation revealed that assumptions made rding offsite contamination are no longer			X
	YES to question 8, include documentation has been previously submitted with			
	ons in the Qualitative Exposure Assessm Exposure Assessment must be certified e		X	
	NO to question 9, the Periodic Review ive Exposure Assessment based on the			
SITE NO. C915340			Воз	x 3
Description of Ins	titutional Controls			
Parcel	Owner	Institutional Contr	<u>ol</u>	
Portion of 110.59-1-3.11	Lakefront Boulevard, LLC	Ground Water Use Landuse Restriction Monitoring Plan Site Management IC/EC Plan	on	tion
Groundwater use is proh Landuse is restricted to Adherence to Site Mana Implementation of an IC	Restricted Residential gement Plan			
			Во	x 4
Description of Eng	gineering Controls			
Parcel	Engineering Control			
Portion of 110.59-1-3.1				
Cover System per 6NYC	125005			
	Passive Soil Vapor Sy	stem		

Вох	5

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	f x
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	× □
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915340

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print	name	- A-County		print bu	siness add	dress				
am certifying as _	Lakefront	Bouleva:	rd L	LC		(O	wner o	r Remedial I	Party)	
or the Site name	d in the Site Deta	ails Section	n of th	his form.						
or the Site name	d in the Site Deta	ails Section	n of th	his form.		Janua	ary 2	, 2024		

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

John T. Camp	499 Col Eileen Collins Blvd Syracuse, NY 13212
print name	print business address
am certifying as a Qualified Envi	ronmental Professional for the Lakefront Boulevard, LLC (Owner or Remedial Party)
	SHE OF NEW TOP

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Stamp (Required for PE) 1/3/2024 Date