

CORPORATE/ BUFFALO OFFICE

5167 South Park Avenue Hamburg, NY 14075 Phone: (716)-649-8110 Fax: (716) 649-8051

ALBANY OFFICE

P.O. Box 2199 Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE

60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

ROCHESTER OFFICE

535 Summit Point Drive Henrietta, NY 14467 Phone: (585) 359-2730 Fax: (585) 359-9668 Project No. BEV-14-003 March 3, 2014

Sleep Inn 1159 Main Street Buffalo, New York 14202

Attention: Mr. Fadi Dagher Mr. Fred Bou Jaoude

 Phone:
 716-725-2731

 Fax:
 716-884-6541

 Email:
 fdager1@yahoo.com

 Fbj007@gmail.com

Reference: Phase II Environmental Site Assessment Summary Report for Subsurface Investigation 1159 Main Street Buffalo, New York 14202

Dear Mr. Dagher and Mr. Bou Jaoude,

As authorized by Sleep Inn, Empire Geo-Services Inc. (Empire) completed a Phase II Environmental Site Assessment (ESA) subsurface soil investigation at the referenced site (subject site) on February 17, 2014. The purpose of the investigation was to determine if the presence of petroleum impacts associated with the historical gasoline filling station were on site. The findings of our work are presented in this summary report.

BACKGROUND

Empire recently completed a Phase I ESA of the referenced subject site. The findings of the ESA concluded an ASTM recognized environmental condition (REC) due to the historical operation of the subject property as a gasoline filling station prior to modern state and federal regulations for storage containers of hazardous materials. In addition, a controlled recognized environmental condition (CREC) was identified on the adjacent property to the east, which is owned and operated by Osmose, Inc. The adjacent property has had numerous spills. However, remediation of these spills is complete with ongoing treatment and monitoring of the groundwater occurring.

Therefore the purpose of this Phase II subsurface soil investigation was to explore for evidence of subsurface petroleum impacts, if any, associated with the former gasoline filling station in addition to any environmental impacts associated with the adjacent property.

www.sjbegs.com info@sjbempire.net

DIRECT PUSH BORINGS

The subsurface soil investigation was completed on February 17, 2014 and included the advancement of nine (9) direct push soil probes, designated as DP-1 through DP-9. The soil probes were generally located throughout the site with a greater concentration near the location of the former USTs from the historical filling station and along the eastern limits of the subject property. Refer to the Subsurface Investigation Plan (Figure 2) included in Appendix A for exact locations of the direct push borings.

A track mounted Geoprobe[®] 6620DT direct push rig was used to complete the borings in general accordance with ASTM D6282, *Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations*. At each boring location, continuous soil samples were collected from the ground surface to the termination depth using the Geoprobe[®] Macro-Core (MC) soil sampler. The MC soil sampler recovers a 1.5-inch diameter soil sample with a maximum length of 48 inches. The sampler is fitted with a clear PVC liner and a removable cutting shoe. The liners are replaced after each sample collection. The MC soil sampler and cutting shoe were decontaminated between boring locations and sampling intervals to minimize the potential for cross-contamination.

The recovered soil samples were visually classified by an Empire geologist who prepared a subsurface log for each probe location. The geologist examined the soil samples for visual and olfactory indications of petroleum and screened the samples with a MiniRAE 3000 photoionization detector (PID). The PID is capable of detecting volatile organic vapor concentrations at a practical threshold of 1.0 part per million. PID readings recorded along with soil classifications are found on the subsurface logs in Appendix B.

SUBSURFACE CONDITIONS

A total of 37 soil samples were recovered from the nine direct push probes. Each probe was terminated at a depth of 16 feet with the exception of probe location DP-3, which was terminated at a depth of 20 feet.

Subsurface conditions encountered at the nine probe locations generally consisted of approximately 3 to 8 feet of silt, sand and gravel fill materials overlying native soils. In general, the fill soils got deeper across the site from west to east. The native soils typically consisted of sand and gravel with layers of silts and clays throughout.

Apparent perched groundwater was encountered at direct push borings DP-7 and DP-8 at a depth of approximately 10 to 11 feet below the ground surface.

PID measurements were at background levels on all recovered soil samples from all nine soil probe locations.

SAMPLING AND ANALYSIS

The soil sampling model was to collect soil samples for laboratory analysis that displayed the highest PID readings and/or had visual or olfactory evidence of petroleum impacts. Since no evidence of petroleum impacts was obtained on any of the recovered soil samples, one soil sample was collected in the vicinity of the former USTs associated with the historical filling station and one sample along the eastern property limit closest to the adjacent property to the

east with known spills. Each soil sample was collected at a depth of 8-12 feet, since this is the depth interval just below the bottom of a typical underground petroleum fuel storage tank. The soil samples for lab analysis were placed into pre-cleaned 4 and 8 ounce glass containers, labeled with the date, time, location of project, and placed in an iced cooler at approximately 4 degrees Celsius for transport to Alpha Analytical, Inc. (Alpha) located in Westborough, Massachusetts. Alpha is a New York State Department of Health (NYSDOH) certified analytical testing laboratory. Chain-of-custody documentation accompanied the samples.

The two soil samples were analyzed by Alpha for volatile organic compounds (VOCs) utilizing Analytical Method 8260C for New York State Department of Environmental Conservation (NYSDEC) Spill Technology and Remediation Series (STARS) listed compounds. The soil samples were also analyzed for STARS listed semi-volatile organic compounds (SVOCs) utilizing Analytical Method 8270D for NYSDEC STARS listed compounds.

No STARS listed VOCs were detected in either of the two soil samples.

Three individual SVOCs were detected at concentrations above the laboratory detection limits at sample DP-3. However, all three concentrations were estimated by the laboratory and well below the guidelines determined by the Unrestricted Use Soil Cleanup Objectives for the NYSDEC Policy CP-51. Therefore, all STARS listed SVOCs were below the required regulatory limits.

Summary tables of the analytical laboratory results are attached with this report and the analytical report prepared by Alpha Analytical is included in Appendix C.

CONCLUSIONS

The Phase II subsurface soil investigation completed by Empire on February 17, 201 at 1159 Main Street in Buffalo, New York indicated no evidence of petroleum impacts on any soil samples recovered at the nine soil probe locations. Laboratory analysis of two soil samples indicated no detections above the regulatory limits for STARS VOCs or SVOCs. *In Empire's opinion, the subject site does not appear to have been impacted by the historical presence of a filling station on site or spills occurring on the adjacent property based on the information obtained for this Phase II subsurface investigation.*

CLOSING

This project and report have been completed for the exclusive use of Sleep Inn and it's assigns in accordance with generally accepted environmental practices. Empire appreciates the opportunity to provide these services. If you have any questions or if we can provide further assistance, please contact our office at 716-649-8110.

Respectfully submitted, EMPIRE GEOSERVICES, INC.

e c mp

Jacob C Metzger, PE Environmental Engineer

Attachments

Analytical Summary Tables

Appendices

- A Site Drawings
- B Subsurface Direst Push Logs
- C Alpha Analytical Laboratory Report

	TABLE	I	
SUMMAR	Y OF STARS VOLATILE	ORGANIC COMPOUND	os
	Sleep In	n	
1	159 Main Street - Buffal	o, New York 14202	
Sample Identification	DP-3	DP-7	Unrestricted Use
Depth	8-12'	8-12'	Cleanup Objectives -
Date	02/17/14	02/17/14	NYSDEC Policy CP-51
Analyte			
Benzene	ND	ND	60
n-Butylbenzene	ND	ND	12,000
sec-Butylbenzene	ND	ND	11,000
tert-Butylbenzene	ND	ND	5,900
Ethylbenzene	ND	ND	1,000
n-Propylbenzene	ND	ND	3,900
Isopropylbenzene	ND	ND	NA
p-lsopropyltoluene	ND	ND	10,000
Naphthalene	ND	ND	12,000
Toluene	ND	ND	700
1,2,4-Trimethylbenzene	ND	ND	3,600
1,3,5-Trimethylbenzene	ND	ND	8,400
Total Xylenes	ND	ND	260
Methyl tert butyl ether (MTBE)	ND	ND	930

NOTES:

1) All concentrations are presented in ug/kg or parts per billion (ppb).

- 2) ND denotes Not Detected above the laboratory detection limit.
- 3) All samples were analyzed for VOC's by EPA Method 8260

4) Guidance values were obtained from the Unrestricted Use Soil Cleanup Objective Table in the NYSDEC Policy CP-51

	TABLE 2		
SUMMARY OF ST	ARS SEMI-VOLATIL	E ORGANIC COMPOU	JNDS
	Sleep Inn		
1159 M	lain Street - Buffalo,	New York 14202	
Sample Identification	DP-3	DP-7	Unrestricted Use Soil
Depth	8-12'	8-12'	Cleanup Objectives -
Date	02/17/14	02/17/14	NYSDEC Policy CP-51
Analyte			
Anthracene	ND	ND	100,000
Acenaphthene	ND	ND	20,000
Benzo(a)anthracene	ND	ND	1,000
Benzo(a)pyrene	ND	ND	1,000
Benzo(b)fluoranthene	ND	ND	1,000
Benzo(g,h,i)perylene	ND	ND	100,000
Benzo(k)fluoranthene	ND	ND	800
Chrysene	ND	ND	1,000
Dibenzo(a,h)anthracene	ND	ND	330
Fluoranthene	62	ND	100,000
Fluorene	ND	ND	30,000
Indeno(1,2,3-cd)pyrene	ND	ND	500
Naphthalene	ND	ND	12,000
Phenanthrene	60	ND	100,000
Pyrene	42	ND	100,000

NOTES:

1) All concentrations are presented in ug/kg or parts per billion (ppb).

2) ND denotes Not Detected above the laboratory detection limit.

3) All samples were analyzed for semi-VOCs by EPA Method 8270

4) Guidance values were obtained from the Unrestricted Use Soil Cleanup Objective Table in the NYSDEC Policy CP-51

5) The SCOs for unrestricted use of individual chemicals not listed in Policy CP-51 were capped at a maximum value of 100,000 ppb as per the Technical Support Document (Section 9.3 in Table 9.3.1)

5) Concentrations observed in **BOLD** were estimated by the laboratory

APPENDIX A

Site Drawings

APPENDIX B

Subsurface Direct Push Logs

DATE: START FINISH SHEET	2/17/20 ⁻ 2/17/20 ⁻ <u>1</u> OF	14 14 	SJB DIR	SERVICES, INC. ECT PUSH LOG	HOLE NO. DP-1 SURF. ELEV NA G.W. DEPTH
PROJE	CT: <u>Slee</u> p	o Inn		LOCATION: See Subsurface	Investigation Plan
	1159	Main Stre	et - Buff	alo, NY 14202 (Figure 2)	-
DEPTH FT.	SMP NO.	L REC (inches)	PID (ppm)	CLASSIFICATION SOIL OR ROCK	NOTES
	1	30	BG	Topsoil Brown sandy SILT, some gravel (moist, FILL) Brown f-c SAND, little silt (moist, SM-SP)	-
4 	2	30		same	
	3	24		same	
	4	26		Brown f-c SAND and f-c GRAVEL (moist, SP-GP)	
16 20 20				End of Boring at 16.0'	
24 					PID=Photo Ionization Detector BG=Background Levels
DRILLER METHOD	: <u>Art K</u> OF INVES	oske TIGATION	ASTM	_ DRILL RIG TYPE : <u>Geoprobe 6620DT Track Rig</u> CL 6282 - Direct Push Sampling	ASSIFICATION: Visual by Environmental Scientist

DATE: START <u>2/17/2014</u> FINISH <u>2/17/2014</u> SHEET <u>1</u> OF <u>1</u>			1	SJB DIR	SERVICES, INC. ECT PUSH LOG	HOLE NO. DP-2 SURF. ELEV NA G.W. DEPTH
PROJE	CT:	Sleep Ir	nn		LOCATION: See Subsurface	Investigation Plan
		1159 M	ain Stre	et - Buff	alo, NY 14202 (Figure 2)	1
DEPTH FT.		SMPL NO.	REC (inches)	PID (ppm)	SOIL OR ROCK	NOTES
			(Topsoil	
<u> </u>				BG	Black-brown sand SILT triorganics trioravel (moist FILL)	
		1	30			
					Brown fine SAND, little silt (moist, SW)	
4						
<u> </u>						
<u> </u>		2	30		same	
					-	
8						
Ū					same	
<u> </u>		3	36			
					Brown f-c SAND and f-c GRAVEL (moist, SP-GP)	
12						
					same	
<u> </u>		4	30		Same	
16				¥		
					End of Boring at 16.0'	
\vdash \dashv					1	
20					4	
\vdash \dashv					4	
7						
					1	PID=Photo Ionization
24					1	
┝ ─┤					4	Detector
┝─ ─┥					4	BG=Background Levels
DRILLER METHOD	: OF	Art Kos	<i>ke</i> GATION	ASTM	DRILL RIG TYPE : Geoprobe 6620DT Track Rig CL 6282 - Direct Push Sampling	ASSIFICATION: Visual by Environmental Scientist

PROJECT: DEPTH FT.	Sleep Ir 1159 M				G.W. DEPTH
DEPTH FT.	1123 10			LOCATION: See Subsurface	Investigation Plan
FT.					 T
	NO.	REC (inches)	(ppm)	CLASSIFICATION	NOTES
	1	24	BG	Topsoil Brown-black sandy SILT, some gravel (moist, FILL) Brown silty CLAY, tr organics (moist, FILL)	-
4 —	2	24		Brown fine SAND, little silt (moist, SW)	· · · · · · · · · · · · · · · · · · ·
	3	30		Brown f-c SAND and f-c GRAVEL (moist, SP-GP)	Composite Analytical Sample Obtained from 8-12'
	4	42		Brown f-c SAND (moist, SP)	-
- 16 <u></u>	5	48		same	
- 20				End of Boring at 20.0'	
					-
- 24					PID=Photo Ionization Detector BG=Background Levels

START 2/1 FINISH 2/1 SHEET 1	7/2014 7/2014 OF	1	SJB DIR	SERVICES, INC. ECT PUSH LOG	HOLE NO. DP-4 SURF. ELEV NA G.W. DEPTH
PROJECT	1159 M	ain Stree	et - Buff	alo, NY 14202 (Figure 2)	
DEPTH	SMPL	REC	PID	SOIL OR ROCK	
FT.	NO.	(inches)	(ppm)	CLASSIFICATION Asphalt	NOTES
			BG	Brown-black f-c SAND, some gravel, little silt, tr clay	-
	1	36		(moist, FILL)	
4				Brown f-c SAND, little gravel (moist, FILL)	-
	2	40		Red brick fragments (FILL)	-
	2	42		Brown CLAY, some f-c gravel, tr silt (moist, CL)	_
- 8					-
	3	30		Brown f-c SAND, tr silt (moist, SP)	
					-
					-
	4	36		same	-
16			\checkmark	Brown f-c SAND and f-c GRAVEL (moist, SP-GP)	
				End of Boring at 16.0'	_
					-
20					-
					-
					-
24					PID=Photo Ionization
					BG=Background Levels
					_

DATE: START FINISH SHEET	DATE: START <u>2/17/2014</u> FINISH <u>2/17/2014</u> SHEET <u>1</u> OF <u>1</u>		SJB DIR	SERVICES, INC. ECT PUSH LOG	HOLE NO. DP-5 SURF. ELEV <u>NA</u> G.W. DEPTH	
PROJE	CT:	Sleep In	nn ain Stree	ot - Buff	LOCATION: See Subsurface	Investigation Plan
DEPTH		SMDI	PEC			
FT.		NO.	(inches)	(ppm)		NOTES
				BG	Asphalt	-
<u> </u>					Brown-black f-c SAND, some gravel, tr slag, tr brick	
<u> </u>		1	36		fragments (moist EUL)	
<u> </u>						_
4					Brown line SAND, little slit (moist, Svv)	
<u> </u>						
<u> </u>		2	36		same	
<u> </u>					-	
8						
					same	
		2	40			
		3	42		Brown-red sandy SILT. little clay. tr gravel (moist. ML)	
					Brown f-c SAND (moist SP)	-
12						
<u> </u>						
<u> </u>		4	48		contains "little gravel"	
<u> </u>						
16				¥		
<u> </u>					End of Boring at 16.0'	
L						
20						
20						
<u> </u>						
<u> </u>					-	 PID_Photo Ionization
24					4	
├					4	
┝ ─					4	BG=Background Levels
⊨ —					4	_
DRILLER METHOD	:: D OF	Art Kos	<i>ke</i> GATION	ASTM	_ DRILL RIG TYPE : <u>Geoprobe 6620DT Track Rig</u> CL 6282 - Direct Push Sampling	ASSIFICATION: <u>Visual by</u> Environmental Scientist

FINISH <u>2/17/2014</u> SHEET <u>1</u> OF <u>1</u>	_	SJB DIRI	ECT PUSH LOG	HOLE NO. DP-6 SURF. ELEV NA G.W. DEPTH
PROJECT: Sleep Inn	o Stroo		LOCATION: See Subsurface	Investigation Plan
		L - Dull		
FT. NO. (ir	REC nches)	PID (ppm)	CLASSIFICATION	NOTES
	,	BC	Asphalt	
	_		Black f-c SAND, little gravel, tr silt (moist, FILL)	-
	36			-
	Ļ			_
- 4			Red brick fragments, some gravel (moist, FILL)	
2			Black sandy SILT, little gravel (moist, FILL)	
			Brown fine SAND. little silt (moist. SW)	_
	36			-
	ŀ			-
8 - 2				-
			same	-
	12			
	42		Red-brown silty CLAY, tr gravel (moist, CL-ML)	
	F			-
12 4				-
·	-			-
	0		same	No Recovery S-4
				_
40		\checkmark		
16			End of Boring at 16 0'	-
·	-			-
	-			-
	ŀ			-
- 20				-
· _	_			-
	F			-
24				
	ļ		-	Detector _
				BG=Background Levels
	-		1	-

DATE.	

START 2/17/2014

FINISH 2/17/2014

SHEET <u>1</u> OF <u>1</u>

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. DP-7 SURF. ELEV NA G.W. DEPTH_____

DEPTH FT.	SMPL NO.	REC (inches)	PID (ppm)	SOIL OR ROCK	NOTES
			BG	Asphalt	
				Black sandy SILT, little gravel, tr brick frags (moist, FILL)	
	1	24		Brown fine SAND little silt_tr clay (moist_FILL)	
4					
				Dark brown-tan silty CLAY, tr ash, tr sand, tr organics	
	2	30		(moist, FILL)	
				-	
8					
				Olive-brown fine SAND, some silt (moist, SM)	
	3	30		-	Composite Analytical
	Ū	5 50		(wet)	Sample Obtained from
10					8-12'
12				Red-brown silty CLAY, tr gravel (moist, CL-ML)	
	4	42		same	
16			*		_
		-		End of Boring at 16.0	
		-		-	
		_			
20				4	
		4		4	
		4		4	
		_			
24					PID=Photo Ionization
					Detector
					BG=Background Levels
]			
		1		1	
	Antila				
	AIL NOS		ASTM	_ DRILL RIG TIPE : Geoprope 0020DT Track Rig (6282 - Direct Push Sampling	Environmental Scientis

DATE: START FINISH SHEET	2/1 2/1 1	7/2014 7/2014 OF	1	SJB DIR	SERVICES, INC. ECT PUSH LOG	HOLE NO. <u>DP-8</u> SURF. ELEV <u>NA</u> G.W. DEPTH
PROJE	CT: <u>(</u>	Sleep Ir	nn ain Stra	ot Duff	LOCATION: See Subsurface	Investigation Plan
	-	1159 10		el - Dull		 T
FT.		NO.	REC (inches)	(ppm)	CLASSIFICATION	NOTES
				BG	Asphalt	
		1	20		Gray f-c GRAVEL, some sand, tr silt (moist, FILL)	_
		I	20		Red brick fragments (moist, FILL)	_
4					Brown f-c SAND, some gravel, tr silt (moist, FILL)	
<u> </u>		2	24		Red-brown sandy SILT, little gravel (moist, FILL)	
					Black-brown f-c SAND, some gravel, tr red brick fragments,	
8					tr ash (moist, FILL)	.
					Olive-brown fine SAND, little silt (moist, SM)	_
		3	24			
					(wet)	_
<u> </u>				¥	Red-brown silty CLAY (moist, CL-ML)	_
<u> </u>						
<u> </u>		4	36		-	
<u> </u>				\downarrow	-	–
16						
<u> </u>	_				End of Boring at 16.0	
						_
						–
20						
24					-	PID=Photo Ionization
						Detector
						BG=Background Levels
\vdash \dashv					4	
		Art Kos		Λςτιλ	_ DRILL RIG TYPE : <u>Geoprobe 6620DT Track Rig</u> CL	ASSIFICATION: Visual by

ſ

FINISH SHEET	2/1 1 CT:	DIRECT PUSH LOG		SURF. ELEV NA G.W. DEPTH Investigation Plan		
	_	1159 M	ain Stree	et - Buff	alo, NY 14202 (Figure 2)	
DEPTH		SMPL	REC	PID	SOIL OR ROCK	NOTEO
F1.		NO.	(inches)	(ppm)		NOTES
				BG	Plack condu SILT triglov, trigd brick frogmonte (maiot, Ell.)	-
		1	30			
					Black-brown f-c SAND, little gravel, some silt, tr organics,	
4 —					tr red brick fragments (moist, FILL)	
		2	30		-	
						-
8 —					Red-brown silty CLAY, little sand, occasional seams of silt	
					(moist, CL-ML)	
		•				
		3	36			
					-	
12 —					-	
					-	
		4	30			_
					Brown f-c SAND, little silt (moist, SM)	
				\checkmark		
16 —					End of Boring at 16 0'	-
	F					
	ŀ		-			
	-		-		-	
20 —						
-						
	ļ		1		1	
	ŀ					DID_Dhote Ionization
24 —	-				4	
	╞				4	Detector
	ļ		-			BG=Background Level
	ſ					

APPENDIX C

Alpha Analytical Laboratory Report

ANALYTICAL REPORT

Lab Number:	L1403650
Client:	SJB Services, Inc 5167 South Park Ave. Hamburg, NY 14705
ATTN: Phone:	Dave Steiner (716) 649-8110
Project Name:	SLEEP INN
Project Number:	BEV-14-003
Report Date:	02/24/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number:	L1403650
Report Date:	02/24/14

Project Name:	SLEEP INN
Project Number:	BEV-14-003

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1403650-01	DP-3 @ 8-12'	BUFFALO, NY (1159 MAIN ST)	02/17/14 10:15
L1403650-02	DP-7 @ 8-12'	BUFFALO, NY (1159 MAIN ST)	02/17/14 13:15

Project Name: SLEEP INN Project Number: BEV-14-003

 Lab Number:
 L1403650

 Report Date:
 02/24/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:SLEEP INNProject Number:BEV-14-003

 Lab Number:
 L1403650

 Report Date:
 02/24/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Uning Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 02/24/14

ORGANICS

VOLATILES

		Serial_No	02241414:46
Project Name:	SLEEP INN	Lab Number:	L1403650
Project Number:	BEV-14-003	Report Date:	02/24/14
	SAMPLE RESULTS		
Lab ID:	L1403650-01	Date Collected:	02/17/14 10:15
Client ID:	DP-3 @ 8-12'	Date Received:	02/17/14
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified
Matrix:	Soil		-
Analytical Method:	1,8260C		
Analytical Date:	02/20/14 10:05		
Analyst:	BN		
Percent Solids:	95%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Benzene	ND		ug/kg	1.0	0.12	1	
Toluene	ND		ug/kg	1.6	0.12	1	
Ethylbenzene	ND		ug/kg	1.0	0.15	1	
Methyl tert butyl ether	ND		ug/kg	2.1	0.11	1	
p/m-Xylene	ND		ug/kg	2.1	0.34	1	
o-Xylene	ND		ug/kg	2.1	0.28	1	
n-Butylbenzene	ND		ug/kg	1.0	0.21	1	
sec-Butylbenzene	ND		ug/kg	1.0	0.22	1	
tert-Butylbenzene	ND		ug/kg	5.2	0.59	1	
Isopropylbenzene	ND		ug/kg	1.0	0.18	1	
p-Isopropyltoluene	ND		ug/kg	1.0	0.20	1	
Naphthalene	ND		ug/kg	5.2	0.81	1	
n-Propylbenzene	ND		ug/kg	1.0	0.13	1	
1,3,5-Trimethylbenzene	ND		ug/kg	5.2	0.15	1	
1,2,4-Trimethylbenzene	ND		ug/kg	5.2	0.60	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	97		70-130	

		Serial_No	02241414:46
Project Name:	SLEEP INN	Lab Number:	L1403650
Project Number:	BEV-14-003	Report Date:	02/24/14
	SAMPLE RESULTS		
Lab ID:	L1403650-02	Date Collected:	02/17/14 13:15
Client ID:	DP-7 @ 8-12'	Date Received:	02/17/14
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified
Matrix:	Soil		-
Analytical Method:	1,8260C		
Analytical Date:	02/20/14 10:33		
Analyst:	BN		
Percent Solids:	85%		

Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab							
ND		ug/kg	1.2	0.14	1		
ND		ug/kg	1.8	0.13	1		
ND		ug/kg	1.2	0.17	1		
ND		ug/kg	2.4	0.12	1		
ND		ug/kg	2.4	0.38	1		
ND		ug/kg	2.4	0.32	1		
ND		ug/kg	1.2	0.23	1		
ND		ug/kg	1.2	0.24	1		
ND		ug/kg	5.9	0.66	1		
ND		ug/kg	1.2	0.20	1		
ND		ug/kg	1.2	0.23	1		
ND		ug/kg	5.9	0.91	1		
ND		ug/kg	1.2	0.15	1		
ND		ug/kg	5.9	0.17	1		
ND		ug/kg	5.9	0.68	1		
	Result Dugh Lab ND ND ND ND ND ND ND ND ND ND	ResultQualifierND	ResultQualifierUnitsDugh Labug/kgNDug/kg	ResultQualifierUnitsRLDugh Labug/kg1.2NDug/kg1.8NDug/kg1.2NDug/kg2.4NDug/kg2.4NDug/kg2.4NDug/kg1.2NDug/kg1.2NDug/kg1.2NDug/kg1.2NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9NDug/kg5.9	Result Qualifier Units RL MDL bugh Lab ug/kg 1.2 0.14 ND ug/kg 1.8 0.13 ND ug/kg 1.2 0.17 ND ug/kg 1.2 0.17 ND ug/kg 2.4 0.12 ND ug/kg 2.4 0.38 ND ug/kg 2.4 0.32 ND ug/kg 1.2 0.23 ND ug/kg 1.2 0.23 ND ug/kg 1.2 0.23 ND ug/kg 1.2 0.24 ND ug/kg 1.2 0.24 ND ug/kg 1.2 0.23 ND ug/kg 5.9 0.66 ND ug/kg 1.2 0.23 ND ug/kg 5.9 0.91 ND ug/kg 5.9 0.91 ND ug/kg 5.9 0.17		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	98		70-130	

Project Name: SLEEP INN Project Number: BEV-14-003
 Lab Number:
 L1403650

 Report Date:
 02/24/14

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:02/20/14 09:09Analyst:BN

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG671580-3
Benzene	ND	ug/kg	1.0	0.12
Toluene	ND	ug/kg	1.5	0.11
Ethylbenzene	ND	ug/kg	1.0	0.15
Methyl tert butyl ether	ND	ug/kg	2.0	0.10
p/m-Xylene	ND	ug/kg	2.0	0.32
o-Xylene	ND	ug/kg	2.0	0.27
n-Butylbenzene	ND	ug/kg	1.0	0.20
sec-Butylbenzene	ND	ug/kg	1.0	0.20
tert-Butylbenzene	ND	ug/kg	5.0	0.56
Isopropylbenzene	ND	ug/kg	1.0	0.17
p-Isopropyltoluene	ND	ug/kg	1.0	0.19
Naphthalene	ND	ug/kg	5.0	0.77
n-Propylbenzene	ND	ug/kg	1.0	0.12
1,3,5-Trimethylbenzene	ND	ug/kg	5.0	0.14
1,2,4-Trimethylbenzene	ND	ug/kg	5.0	0.57

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	101		70-130		
Toluene-d8	100		70-130		
4-Bromofluorobenzene	106		70-130		
Dibromofluoromethane	95		70-130		

SLEEP INN **Project Name:** Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	a Lab Associated sample(s):	01-02 Batch:	WG671580-1	WG671580-2			
Methylene chloride	104	101		70-130	3		30
1,1-Dichloroethane	101	100		70-130	1		30
Chloroform	102	99		70-130	3		30
Carbon tetrachloride	101	98		70-130	3		30
1,2-Dichloropropane	105	101		70-130	4		30
Dibromochloromethane	96	94		70-130	2		30
2-Chloroethylvinyl ether	105	101		70-130	4		30
1,1,2-Trichloroethane	102	100		70-130	2		30
Tetrachloroethene	97	92		70-130	5		30
Chlorobenzene	100	97		70-130	3		30
Trichlorofluoromethane	101	99		70-139	2		30
1,2-Dichloroethane	103	102		70-130	1		30
1,1,1-Trichloroethane	99	96		70-130	3		30
Bromodichloromethane	102	100		70-130	2		30
trans-1,3-Dichloropropene	99	98		70-130	1		30
cis-1,3-Dichloropropene	102	99		70-130	3		30
1,1-Dichloropropene	102	100		70-130	2		30
Bromoform	90	92		70-130	2		30
1,1,2,2-Tetrachloroethane	100	102		70-130	2		30
Benzene	100	97		70-130	3		30
Toluene	97	94		70-130	3		30

Project Name: SLEEP INN Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated sample(s):	01-02 Batch:	WG671580-1	WG671580-2			
Ethylbenzene	100	97		70-130	3	30	
Chloromethane	82	80		52-130	2	30	
Bromomethane	119	114		57-147	4	30	
Vinyl chloride	87	86		67-130	1	30	
Chloroethane	97	94		50-151	3	30	
1,1-Dichloroethene	97	94		65-135	3	30	
trans-1,2-Dichloroethene	97	96		70-130	1	30	
Trichloroethene	102	99		70-130	3	30	
1,2-Dichlorobenzene	102	101		70-130	1	30	
1,3-Dichlorobenzene	104	103		70-130	1	30	
1,4-Dichlorobenzene	105	104		70-130	1	30	
Methyl tert butyl ether	93	93		66-130	0	30	
p/m-Xylene	100	96		70-130	4	30	
o-Xylene	98	96		70-130	2	30	
cis-1,2-Dichloroethene	100	96		70-130	4	30	
Dibromomethane	101	100		70-130	1	30	
Styrene	100	97		70-130	3	30	
Dichlorodifluoromethane	66	67		30-146	2	30	
Acetone	112	108		54-140	4	30	
Carbon disulfide	93	90		59-130	3	30	
2-Butanone	102	104		70-130	2	30	

Project Name: SLEEP INN Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated sample(s):	01-02 Batch:	WG671580-1	WG671580-2			
Vinyl acetate	91	91		70-130	0	30	
4-Methyl-2-pentanone	92	96		70-130	4	30	
1,2,3-Trichloropropane	101	98		68-130	3	30	
2-Hexanone	82	83		70-130	1	30	
Bromochloromethane	98	97		70-130	1	30	
2,2-Dichloropropane	100	95		70-130	5	30	
1,2-Dibromoethane	95	94		70-130	1	30	
1,3-Dichloropropane	98	97		69-130	1	30	
1,1,1,2-Tetrachloroethane	98	96		70-130	2	30	
Bromobenzene	97	96		70-130	1	30	
n-Butylbenzene	114	113		70-130	1	30	
sec-Butylbenzene	106	103		70-130	3	30	
tert-Butylbenzene	101	100		70-130	1	30	
o-Chlorotoluene	113	111		70-130	2	30	
p-Chlorotoluene	107	105		70-130	2	30	
1,2-Dibromo-3-chloropropane	94	99		68-130	5	30	
Hexachlorobutadiene	99	98		67-130	1	30	
Isopropylbenzene	100	99		70-130	1	30	
p-Isopropyltoluene	105	104		70-130	1	30	
Naphthalene	95	99		70-130	4	30	
Acrylonitrile	93	98		70-130	5	30	

SLEEP INN **Project Name:** Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	%F Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated sample(s)	: 01-02 Batch:	WG671580-1 WG	G671580-2			
Isopropyl Ether	98	96		66-130	2		30
tert-Butyl Alcohol	91	96		70-130	5		30
n-Propylbenzene	104	103		70-130	1		30
1,2,3-Trichlorobenzene	100	102		70-130	2		30
1,2,4-Trichlorobenzene	107	108		70-130	1		30
1,3,5-Trimethylbenzene	103	102		70-130	1		30
1,2,4-Trimethylbenzene	105	103		70-130	2		30
Methyl Acetate	90	91		51-146	1		30
Ethyl Acetate	84	79		70-130	6		30
Acrolein	85	90		70-130	6		30
Cyclohexane	103	99		59-142	4		30
1,4-Dioxane	107	105		65-136	2		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	103	100		50-139	3		30
1,4-Diethylbenzene	110	108		70-130	2		30
4-Ethyltoluene	106	104		70-130	2		30
1,2,4,5-Tetramethylbenzene	106	104		70-130	2		30
Tetrahydrofuran	84	88		66-130	5		30
Ethyl ether	93	94		67-130	1		30
trans-1,4-Dichloro-2-butene	106	109		70-130	3		30
Methyl cyclohexane	103	99		70-130	4		30
Ethyl-Tert-Butyl-Ether	97	95		70-130	2		30

Project Name:SLEEP INNProject Number:BEV-14-003

 Lab Number:
 L1403650

 Report Date:
 02/24/14

Parameter	LCS %Recovery	Qual	l %R	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG671580-1	WG671580-2				
Tertiary-Amyl Methyl Ether	94			93		70-130	1		30	

	LCS	LCS LCSD			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	103		102		70-130	
Toluene-d8	99		98		70-130	
4-Bromofluorobenzene	100		103		70-130	
Dibromofluoromethane	100		101		70-130	

SEMIVOLATILES

	Serial_No:02241414:46			
Project Name:	SLEEP INN	Lab Number:	L1403650	
Project Number:	BEV-14-003	Report Date:	02/24/14	
	SAMPLE RESULTS			
Lab ID:	L1403650-01	Date Collected:	02/17/14 10:15	
Client ID:	DP-3 @ 8-12'	Date Received:	02/17/14	
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified	
Matrix:	Soil	Extraction Method:	EPA 3546	
Analytical Method:	1,8270D	Extraction Date:	02/19/14 11:48	
Analytical Date:	02/21/14 15:30			
Analyst:	JB			
Percent Solids:	95%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbor	ough Lab					
Acenaphthene	ND		ug/kg	140	35.	1
Fluoranthene	62	J	ug/kg	100	31.	1
Naphthalene	ND		ug/kg	170	56.	1
Benzo(a)anthracene	ND		ug/kg	100	33.	1
Benzo(a)pyrene	ND		ug/kg	140	41.	1
Benzo(b)fluoranthene	ND		ug/kg	100	34.	1
Benzo(k)fluoranthene	ND		ug/kg	100	32.	1
Chrysene	ND		ug/kg	100	33.	1
Anthracene	ND		ug/kg	100	28.	1
Benzo(ghi)perylene	ND		ug/kg	140	35.	1
Fluorene	ND		ug/kg	170	48.	1
Phenanthrene	60	J	ug/kg	100	33.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	33.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	38.	1
Pyrene	42	J	ug/kg	100	33.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	79		23-120	
2-Fluorobiphenyl	83		30-120	
4-Terphenyl-d14	96		18-120	

	Serial_No:02241414:46				
Project Name:	SLEEP INN	Lab Number:	L1403650		
Project Number:	BEV-14-003	Report Date:	02/24/14		
	SAMPLE RESULTS				
Lab ID:	L1403650-02	Date Collected:	02/17/14 13:15		
Client ID:	DP-7 @ 8-12'	Date Received:	02/17/14		
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Method:	EPA 3546		
Analytical Method:	1,8270D	Extraction Date:	02/19/14 11:48		
Analytical Date:	02/21/14 15:58				
Analyst:	JB				
Percent Solids:	85%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	160	40.	1
Fluoranthene	ND		ug/kg	120	36.	1
Naphthalene	ND		ug/kg	190	64.	1
Benzo(a)anthracene	ND		ug/kg	120	38.	1
Benzo(a)pyrene	ND		ug/kg	160	47.	1
Benzo(b)fluoranthene	ND		ug/kg	120	39.	1
Benzo(k)fluoranthene	ND		ug/kg	120	37.	1
Chrysene	ND		ug/kg	120	38.	1
Anthracene	ND		ug/kg	120	32.	1
Benzo(ghi)perylene	ND		ug/kg	160	40.	1
Fluorene	ND		ug/kg	190	56.	1
Phenanthrene	ND		ug/kg	120	38.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	38.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	43.	1
Pyrene	ND		ug/kg	120	38.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	65		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	55		18-120	

Project Name:	SLEEP INN	Lab Number:	L1403650
Project Number:	BEV-14-003	Report Date:	02/24/14

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D
Analytical Date:	02/21/14 08:36
Analyst:	JB

Extraction Method: EPA 3546 Extraction Date: 02/19/14 11:48

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG671186-1
Acenaphthene	ND		ug/kg	130		34.
Fluoranthene	ND		ug/kg	98		30.
Naphthalene	ND		ug/kg	160		54.
Benzo(a)anthracene	ND		ug/kg	98		32.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		33.
Benzo(k)fluoranthene	ND		ug/kg	98		31.
Chrysene	ND		ug/kg	98		32.
Anthracene	ND		ug/kg	98		27.
Benzo(ghi)perylene	ND		ug/kg	130		34.
Fluorene	ND		ug/kg	160		47.
Phenanthrene	ND		ug/kg	98		32.
Dibenzo(a,h)anthracene	ND		ug/kg	98		32.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		36.
Pyrene	ND		ug/kg	98		32.

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

Project Name:	SLEEP INN		Lab Number:	L1403650
Project Number:	BEV-14-003		Report Date:	02/24/14
		Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	02/21/14 08:36	Extraction Date:	02/19/14 11:48
Analyst:	JB		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for sa	ample(s):	01-02	Batch:	WG671186-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	82	0-136
4-Terphenyl-d14	81	18-120

SLEEP INN **Project Name:** Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associated sampl	e(s): 01-02 Batch:	WG671186-2 WG671186-3	3	
Acenaphthene	82	86	31-137	5	50
Benzidine	21	24		13	50
n-Nitrosodimethylamine	70	71		1	50
1,2,4-Trichlorobenzene	82	87	38-107	6	50
Hexachlorobenzene	86	91	40-140	6	50
Bis(2-chloroethyl)ether	75	81	40-140	8	50
2-Chloronaphthalene	82	87	40-140	6	50
1,2-Dichlorobenzene	80	83	40-140	4	50
1,3-Dichlorobenzene	80	83	40-140	4	50
1,4-Dichlorobenzene	80	83	28-104	4	50
3,3'-Dichlorobenzidine	71	76	40-140	7	50
2,4-Dinitrotoluene	84	89	28-89	6	50
2,6-Dinitrotoluene	77	83	40-140	8	50
Fluoranthene	88	91	40-140	3	50
4-Chlorophenyl phenyl ether	84	89	40-140	6	50
4-Bromophenyl phenyl ether	84	89	40-140	6	50
Azobenzene	80	88	40-140	10	50
Bis(2-chloroisopropyl)ether	66	70	40-140	6	50
Bis(2-chloroethoxy)methane	74	80	40-117	8	50
Hexachlorobutadiene	82	87	40-140	6	50
Hexachlorocyclopentadiene	61	67	40-140	9	50

Project Name: SLEEP INN Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	tborough Lab Associated sample(s)	: 01-02 Batch	n: WG671186-2 WG671186-	-3	
Hexachloroethane	74	77	40-140	4	50
Isophorone	72	78	40-140	8	50
Naphthalene	79	84	40-140	6	50
Nitrobenzene	80	83	40-140	4	50
NitrosoDiPhenylAmine(NDPA)/DPA	84	89		6	50
n-Nitrosodi-n-propylamine	73	77	32-121	5	50
Bis(2-Ethylhexyl)phthalate	89	96	40-140	8	50
Butyl benzyl phthalate	85	87	40-140	2	50
Di-n-butylphthalate	89	92	40-140	3	50
Di-n-octylphthalate	91	96	40-140	5	50
Diethyl phthalate	83	89	40-140	7	50
Dimethyl phthalate	82	88	40-140	7	50
Benzo(a)anthracene	90	96	40-140	6	50
Benzo(a)pyrene	84	96	40-140	13	50
Benzo(b)fluoranthene	86	90	40-140	5	50
Benzo(k)fluoranthene	88	92	40-140	4	50
Chrysene	88	95	40-140	8	50
Acenaphthylene	77	82	40-140	6	50
Anthracene	88	91	40-140	3	50
Benzo(ghi)perylene	92	97	40-140	5	50
Fluorene	82	89	40-140	8	50

Project Name: SLEEP INN Project Number: BEV-14-003

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - We	stborough Lab Associated sampl	e(s): 01-02 Batch	: WG671186-2 WG671186-	-3	
Phenanthrene	87	90	40-140	3	50
Dibenzo(a,h)anthracene	91	95	40-140	4	50
Indeno(1,2,3-cd)Pyrene	91	95	40-140	4	50
Pyrene	87	90	35-142	3	50
Biphenyl	105	111		6	50
Aniline	47	55	40-140	16	50
4-Chloroaniline	69	69	40-140	0	50
2-Nitroaniline	80	86	47-134	7	50
3-Nitroaniline	36	41	26-129	13	50
4-Nitroaniline	85	90	41-125	6	50
Dibenzofuran	85	91	40-140	7	50
2-Methylnaphthalene	82	87	40-140	6	50
1,2,4,5-Tetrachlorobenzene	104	108	40-117	4	50
Acetophenone	94	98	14-144	4	50
2,4,6-Trichlorophenol	82	89	30-130	8	50
P-Chloro-M-Cresol	81	88	26-103	8	50
2-Chlorophenol	81	86	25-102	6	50
2,4-Dichlorophenol	84	89	30-130	6	50
2,4-Dimethylphenol	74	80	30-130	8	50
2-Nitrophenol	76	83	30-130	9	50
4-Nitrophenol	87	95	11-114	9	50

Project Name: SLEEP INN Project Number: BEV-14-003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associa	ated sample(s):	01-02 Batc	h: WG671	186-2 WG671186-	3			
2,4-Dinitrophenol	80		85		4-130	6		50	
4,6-Dinitro-o-cresol	85		93		10-130	9		50	
Pentachlorophenol	91		92		17-109	1		50	
Phenol	80		84		26-90	5		50	
2-Methylphenol	77		83		30-130.	8		50	
3-Methylphenol/4-Methylphenol	79		86		30-130	8		50	
2,4,5-Trichlorophenol	83		88		30-130	6		50	
Benzoic Acid	63		65			3		50	
Benzyl Alcohol	77		81		40-140	5		50	
Carbazole	93		94		54-128	1		50	
Benzaldehyde	90		95			5		50	
Caprolactam	94		98			4		50	
Atrazine	105		106			1		50	
2,3,4,6-Tetrachlorophenol	85		89			5		50	
Pyridine	61		60		10-93	2		50	
Parathion, ethyl	86		94		40-140	9		50	

Project Name:SLEEP INNProject Number:BEV-14-003

Lab Number: L1403650

Report Date: 02/24/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	igh Lab Associat	ed sample(s):	: 01-02 Bat	ch: WG6711	86-2 WG671186-3	3			

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	93		98		25-120	
Phenol-d6	89		92		10-120	
Nitrobenzene-d5	85		88		23-120	
2-Fluorobiphenyl	89		93		30-120	
2,4,6-Tribromophenol	104		108		0-136	
4-Terphenyl-d14	97		97		18-120	

INORGANICS & MISCELLANEOUS

Lab Number: L1403650 Report Date: 02/24/14

Project Name:SLEEP INNProject Number:BEV-14-003

SAMPLE RESULTS

Lab ID:	L1403650-01	Date Collected:	02/17/14 10:15
Client ID:	DP-3 @ 8-12'	Date Received:	02/17/14
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Date Analytical Analyzed Method	
General Chemistry - Westborough Lab										
Solids, Total	95.2		%	0.100	NA	1	-	02/18/14 15:52	30,2540G	SB

Lab Number: L1403650 Report Date: 02/24/14

Project Name:SLEEP INNProject Number:BEV-14-003

SAMPLE RESULTS

Lab ID:	L1403650-02	Date Collected:	02/17/14 13:15
Client ID:	DP-7 @ 8-12'	Date Received:	02/17/14
Sample Location:	BUFFALO, NY (1159 MAIN ST)	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	84.6		%	0.100	NA	1	-	02/18/14 15:52	30,2540G	SB

Project Name:	SLEEP INN	La	La	ab Numbe	r: L1403650		
Project Number:	BEV-14-003				R	eport Date	e: 02/24/14
Parameter		Native Sample	Dunlicate Sample	Units	PPD	Qual	RPD Limite

raiametei	Native Samp	ne Dupilcale Samp		NF D	Qual		
General Chemistry - Westborough Lab Associated	sample(s): 01-02	QC Batch ID: WG671230-1	QC Sample: L	1403611-01	Client ID: [DUP Sample	
Solids, Total	94.5	80.3	%	16		20	

Serial_No:02241414:46

Lab Number: L1403650 **Report Date:** 02/24/14

Project Name: SLEEP INN Project Number: BEV-14-003

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Information

Container Infoi			Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1403650-01A	Glass 120ml unpreserved	А	N/A	2.4	Y	Absent	NYTCL-8260(14)
L1403650-01B	Amber 250ml unpreserved	А	N/A	2.4	Y	Absent	NYTCL-8270(14),TS(7)
L1403650-02A	Glass 120ml unpreserved	А	N/A	2.4	Y	Absent	NYTCL-8260(14)
L1403650-02B	Amber 250ml unpreserved	А	N/A	2.4	Y	Absent	NYTCL-8270(14),TS(7)

Serial_No:02241414:46

Project Name: SLEEP INN

Project Number: BEV-14-003

Lab Number: L1403650

Report Date: 02/24/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with 'J' Qualifiers

Serial_No:02241414:46

02/24/14

Project Name: SLEEP INN **Project Number:** BEV-14-003

Lab Number: L1403650 **Report Date:**

Data Qualifiers

- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- S - Analytical results are from modified screening analysis.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: SLEEP INN Project Number: BEV-14-003

 Lab Number:
 L1403650

 Report Date:
 02/24/14

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	C		DE CU	STO)Ý		05		32). 		in lie	Ju	()** 27. d 27. d 2	E.			Serial	<u>⊢No</u> .t #• /)224141 1Uハ2	4:46 /oSA	
Дрна						AGE	_OF	Date	Rec	'd in L	ab:	2/14	IJЧ									
WESTBORO, MA	MANSFIELD, MA		Project	Informati	on		· ·	Rep	oort	Infor	natio	n - Da	ta De	livera	bles		Billing	g Inforn	nation			
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-930 FAX: 508-822-328)0 88	Project I	Name: \$ 6	eq Im	·			FAX		X	EMAIL	-	ahlaa) Same	e as Cliei	nt info	PO #: [6144	
Client Information			Project l	ocation: D	uffalo, M	(1159	Maih St)	U/ Rogr	\DEx	Dr.			Jeliver	aples	imits							
Client: Empire Ge	o Services		Project i	EEV-1	4-003			State			ram	GIIBGIIR	злер	Criteri	a							· .
Address: 5167 Sou	th Park A	R	Project I	Vanager: D	ave Ste	iner		Jiaib														
Hamburg	MY 1407	5	ALPHA	Quote #:										- 1								
Phone: 716-645-	-8110		Turn-	Around Tir	ne																	
Fax: 716-699.	-8051																					
Email: inetzer	@ sibenzin	e.net	Stand	ard L		confirmed if pre-a	approved!)		201	7	/			1. 1			7					T O T
These samples have	been previously	/ analyzed by Al	Date Di oha	ue: 3-cq //Y	14	Time:		Ś	5			/ /	/ /			/	/ /	1.	/ SA	MPLE HA	NDLING	A
Other Project Sp	ecific Requi	irements/Co	omments/D	etection L	imits:			3	/੯	; <u>ک</u> ر	7/				/					Done		#
								 \	2	2	' /		/	/ /	/ /	/ /		/ /		lot neede .ab to do	1	В
								/	₹/;	<i>₹</i> /				' /			/ /	/ /	Pre	servation _ab to do		
AL RHAL ab ID			·	Coll	ection	Sample	Sampler's	/2	5/2	•	/				/				(Piea	se specify below	ı)	
(Lab Use Only)		Sample ID		Date	Time	Matrix	Initials	<u> </u>	/	/	<u> </u>	/ /	_/	/	<u> </u>	/ /		/ Sa	imple S	pecific Co	mments	S
03650-01	DP-3	@ 8-13,		2-17-14	10:12	Soil	JCM	×	×												<u>. </u>	
-02	0P-7	6 8-19,		9-17-14	13:12	201	JCM	X	X				_									
					:																	
	<u> </u>													-								
						 										_	_					
				-				-						-		-		_				
														· · · ·						·		
		<u> </u>						-		<u> </u>	-			-	_			_				
																	_					
						Cor	ntainer Type											Plea	ase prir	nt clearly, l	egibly and	d com-
Preservative			<u> </u>	þ	<u> </u>	7							in a	ery, se nd turn	around tim	ie clock V	vill not					
			Relino	uished By:			ate/Time		A	R	deive	d By:			2/1	Date/	Time	Star	τ until a sample	iny ampigi s submitte	nues are d are sub	iesolve ject to
		Jac	ob Metzger	- yee	W4<	2-17	A 16:07	┼┹	ম ব	19	la.		$\overline{2}$	1	fir.	104	187	く Alpl	ha's Te e revers	rms and C e side.	onditions	
FORM NO: 01-01 (rev. 14-00	CT-07)	4	Ha	مسك		5118/19	12240		(m)	Con	Q		<u>~</u> č	ЭĮĨ	¥1	42	22/	Ŭ _				
Page 34 of 34	<u> </u>	Å	ni Cal	د	6	419/2	4 00:38	V.s	JØ.	lo			-	2	[19]	14 0	D3	8				

and the second of the second o