REMEDIAL INVESTIGATION/ALTERNATIVES ANALYSIS REPORT

February 23, 2022

Lakeside Village Apartments 65-67 Lake Avenue Lancaster, New York Site #C915344

> Prepared For: 65 Lake Avenue LLC

> > Prepared By:

Christine M. Curtis, P.E. Project Engineer

Sean R. Carter, P.E. Principal Engineer

se

Craig D. Zink, C.P.G., P.G. Senior Geologist

CERTIFICATION STATEMENT

I, Christine M. Curtis, P.E., certify that I am currently a NYS Professional Engineer as defined in 6 NYCRR Part 375 and that this Remedial Investigation/Alternatives Analysis Report for the Lakeside Village Apartments site located at 65-67 Lake Avenue, Lancaster, New York was prepared in accordance with all applicable statutes and regulations and in substantial conformance with DER Technical Guidance for Site Investigation and Remediation (DER-10).

Christine M. Curtis, P.E. #100560 Matrix Environmental Engineers, PLLC

2/23/2022 Date

SEAL

TABLE OF CONTENTS

ABBREV	IATIONS AND ACRONYMS	.111
CERTIFI	CATION	.iv
1.0 INTR	ODUCTION	. 1
	Project Background	
1.1.1	, 6	
1.1.2		
	Purpose and Scope	
	ESTIGATION METHODS	
	Surface Soil Investigation	
	Subsurface Soil Investigation	
	Groundwater Investigation	
2.3.1	6	
2.3.2	0	
2.3.3	8 1	
	Soil Vapor Investigation	
	Field Specific Quality Assurance/Quality Control Sampling	
	Air Monitoring	
	nvestigation-Derived Waste Management	
	Site Mapping	
	Personnel Decontamination	
	Decontamination of Equipment	
	Disposal of Contaminated Materials	
	PHYSICAL CHARACTERISTICS	
	Geology and Hydrogeology	
3.2.1		
3.2.2		
3.2.3		
	ESTIGATION RESULTS	
	Standards, Criteria, and Guidance	
	Surface Soil	
	Subsurface Soil	
	Groundwater	
	Soil Vapor	
	Data Usability Summary	
	TAMINANT FATE AND TRANSPORT	
	LITATIVE EXPOSURE ASSESSMENT	
-	Potential Human Health Risks	
6.1.1	Source of Contamination	
6.1.2	5	
6.1.3		

6.1	.4 Route of Exposure	
6.1	.5 Receptor Population	
6.2	Potential Ecological Risks	
7.0 RE	MEDIAL ALTERNATIVES ANALYSIS	
7.1	Remedial Action Objectives (RAOs)	
7.2	BCP Cleanup Track	
7.3	Screening of Remedial Alternatives	
7.4	Evaluation of Remedial Alternatives for Cleanup Track 2	
7.5	Recommended Remedial Measures	
8.0 SUI	MMARY AND CONCLUSIONS	
9.0 RE	FERENCES	

FIGURES

Figure 1:	Site Location Map
Figure 2:	BCP Site Limits
Figure 3:	Aerial View Site Plan
Figure 4A:	Historical Soil Data Summary
Figure 4B:	Historical Groundwater Data Summary
Figure 5:	Remedial Investigation Surface Soil VOC and SVOC Results
Figure 6:	Remedial Investigation Subsurface Soil VOC and SVOC Results
Figure 7A:	Remedial Investigation Groundwater VOC Results – August 10-11, 2020
Figure 7B:	Remedial Investigation Groundwater VOC Results – August 31, 2021
Figure 8:	Soil Vapor Sampling Results
Figure 9A:	Groundwater Elevation Contour Map – August 10-11, 2020
Figure 9B:	Groundwater Elevation Contour Map – August 31, 2021
Figure 10A:	Total VOCs Isoconcentration Map – August 10-11, 2020
Figure 10B:	Total VOCs Isoconcentration Map – August 31, 2021
Figure 11:	Cross Sectional References
Figure 12:	Cross Section A-A'
Figure 13:	Cross Section B-B'
Figure 14:	Proposed Soil Excavation Extents
Figure 15:	Proposed Remedy

TABLES

Table 1:	Historical Soil Data Summary
Table 2:	Historical Groundwater Data Summary
Table 3:	Analytical Testing Program Summary
Table 4:	Surface Soil Sample Descriptions
Table 5:	Monitoring Well Locations and Ground Surface Elevations
Table 6:	Groundwater Elevation Data
Table 7:	Remedial Investigation Soil VOC Concentrations
Table 8:	Remedial Investigation Soil SVOC Concentrations
Table 9:	Remedial Investigation Soil Inorganics Concentrations
Table 10:	Remedial Investigation Soil Pesticides and Herbicides Concentrations

D	
Page	111

Table 11:	Remedial Investigation Soil PCB Concentrations
Table 12:	Remedial Investigation Soil Cyanide Concentrations
Table 13:	Remedial Investigation Soil PFAS Concentrations
Table 14:	Remedial Investigation Groundwater VOC Concentrations
Table 15:	Remedial Investigation Groundwater SVOC Concentrations
Table 16:	Remedial Investigation Groundwater Inorganics Concentrations
Table 17:	Remedial Investigation Groundwater Pesticides and Herbicides
	Concentrations
Table 18:	Remedial Investigation Groundwater PCB Concentrations
Table 19:	Remedial Investigation Groundwater Cyanide Concentrations
Table 20:	Remedial Investigation Groundwater PFAS Concentrations
Table 21:	Remedial Investigation Soil Vapor Analytical Results
Table 22:	Project Schedule

APPENDICES

Appendix A:	Soil Boring Logs
Appendix B:	Monitoring Well Construction Details
Appendix C:	Well Development Logs
Appendix D:	Disposal Documentation
Appendix E:	Groundwater Sampling Water Quality Data
Appendix F:	CAMP Data
Appendix G:	Laboratory Analytical Reports
Appendix H:	Data Usability Summary Reports

Page iv

A A				
AA BCP	Alternatives Analysis Brownfield Cleanup Program			
CAMP				
	Community Air Monitoring Plan			
CLP	Contract Laboratory Protocol			
COC	Certificate of Completion			
CRZ	Contaminated Reduction Zone			
DCE	Dichloroethene			
DNAPL	Dense non-aqueous phase liquid			
DO	Dissolved Oxygen			
DUSR	Data Usability Summary Report			
ELAP	Environmental Laboratory Approval Program			
FEMA	Federal Emergency Management Agency			
FER	Final Engineering Report			
HASP	Health and Safety Plan			
HDPE	High density polyethylene			
ID	Inner Diameter			
LDPE	Low density polyethylene			
METI	Matrix Environmental Technologies Inc.			
MNA	Monitored Natural Attenuation			
MS/MSD	Matrix Spike/Matrix Spike Duplicate			
NYCRR	6 New York Codes, Rules, and Regulations			
NYSDEC	New York State Department of Environmental Conservation			
NYSDOH	New York State Department of Health			
ORP	Oxidation-Reduction Potential			
OVM	Organic Vapor Meter			
PCBs	Polychlorinated biphenyls			
PCE	Tetrachloroethylene			
PFAS	Per- and polyfluoroalkyl substances			
PFC	Perfluorinated compound			
PID	Photoionization Detector			
PPE	Personal protective equipment			
PTFE	Polytetrafluoroethylene			
PVC	Polyvinyl chloride			
QAPP	Quality Assurance Project Plan			
QA/QC	Quality assurance/Quality control			
RI	Remedial Investigation			
SCG	Standards, criteria and guidance			
SSD	Sub-Slab Depressurization			
SVOC	Semivolatile Organic Compound			
TAL	Target Analyte List			
TIC	Tentatively Identified Compound			
TCE	Trichloroethylene			
TCL	Target Compound List			
USEPA	United States Environmental Protection Agency			
VC	Vinyl Chloride			
VOC	Volatile Organic Compound			
	I see to the second sec			

1.0 INTRODUCTION

This Remedial Investigation/Alternatives Analysis (RI/AA) Report has been prepared by Matrix Environmental Technologies Inc. (METI) on behalf of 65 Lake Avenue LLC for the Lakeside Village Apartments Site located at 65-67 Lake Avenue, Town of Lancaster, Erie County, New York (Site). Work is being completed under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). Brownfield Cleanup Agreement (BCA) #C915344 was executed on December 16, 2019. The activities discussed in this report were completed under the approved Remedial Investigation Work Plan (METI, June 12, 2020).

1.1 Project Background

1.1.1 Property and Site Description

The Site is currently utilized as a residential apartment complex in a moderately developed residential area in the Town of Lancaster, Erie County, New York. The Site includes two parcels totaling approximately 1.18 acres of land: SBL #115.27-1-22.21 addressed as 65 Lake Avenue and SBL #115.27-1-23.11 addressed as 67 Lake Avenue. On-site structures include three (3) two-story townhomes constructed in 2006 (65 Lake Avenue) and a one-story apartment building constructed in 1903 (67 Lake Avenue). The Site is bordered by undeveloped land and apartment buildings to the south; residences to the north and west; and Lake Avenue to the east. Properties beyond those adjacent to the Site, including to the south, consist mostly of private residences. Cayuga Creek is located approximately 200 feet to the southwest. The location of the Site and the Site boundaries are shown on **Figures 1-3**.

Historically, the eastern portion of the Site was utilized as a dry cleaner from at least 1949. The former dry cleaning building was located on the eastern portion of 65 Lake Avenue and the northern portion of 67 Lake Avenue. The building was reportedly destroyed by a fire in the late 1970s and was removed or demolished by at least 1995. According to members of the Young family, who owned both properties from at least 1882 through 2005, historical use of the properties has remained residential since at least 1900 with the exception of the dry cleaner. Buildings utilized for vehicle storage were present in the current location of Building A and a private residence was located in the current vicinity of Buildings B and C. The storage buildings and the residence were reportedly demolished at approximately the same time as the dry cleaning building.

1.1.2 Previous Investigations

Subsurface investigations were completed at the Site in August 2005 and May 2018 by Lender Consulting Services, Inc. (LCS) and in February 2019 by METI. Chlorinated solvents were identified in soil and groundwater samples associated with past on-site dry cleaning operations during the 2018 and 2019 investigations. Soil samples collected in 2018 from one or more soil borings located near the approximate location of the former dry cleaning building identified acetone, cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) in exceedance of NYSDEC 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) for unrestricted use. Concentrations of nine (9) volatile organic compounds (VOCs) and two (2) semi-volatile organic compounds (SVOCs) in groundwater samples collected from temporary monitoring wells installed in three (3) of the completed soil borings exceeded NYSDEC 6 NYCRR Part 703 Class GA Groundwater Criteria.

Laboratory analytical results from the 2019 investigation indicated that VOCs and SVOCs were nondetect or below unrestricted use SCOs in samples collected from soil borings across the Site at depths ranging from 4 to 18 feet below grade at an elevation of approximately 649 to 663 feet. Based on the results from the three (3) subsurface investigations, soil impacts were most elevated in shallow soils from 4 to 6 feet below grade (elevation of 662.5 to 664.5 feet) to in the approximate footprint of the former dry cleaner.

Due to the detections of chlorinated VOCs, vapor intrusion studies were completed in February and April 2019 within the four (4) residential buildings. Vapor intrusion testing results identified chlorinated solvents, specifically PCE and TCE, within both sub-slab and indoor air samples in Buildings 1 and A. Based on guidance from the New York State Department of Health (NYSDOH), the concentrations of these solvents required mitigation in Building A on 65 Lake Avenue and Building 1 on 67 Lake Avenue. Mitigation was not required in Building B or Building C. As a result, sub-slab depressurization (SSD) systems were installed within Building A and Building 1 in November and December 2019 to mitigate vapor intrusion.

A summary of historical soil and groundwater data is included in Figures 4A - 4B and Tables 1-2.

1.2 **Purpose and Scope**

The specific objectives of the RI included the following:

- Define the nature and extent of on-site contamination in both soil and groundwater.
- Determine if contamination has migrated off-site and if so, fully investigate and characterize the nature and extent of the off-site contamination.
- Identify on-site source areas of contamination, if any.
- Collect data of sufficient quantity and quality to evaluate potential threats to public health and the environment.
- Collect data of sufficient quantity and quality to evaluate remedial alternatives.

2.0 INVESTIGATION METHODS

The proposed RI scope of work included investigation for potential contamination in fill, native soils, groundwater, and soil vapor at the Site as well as in sub-slab vapor and indoor air in residences immediately south of the Site and in soil vapor and groundwater at a nearby property to the east (1 Franklin Street).

The scope of work for the on-site investigation included completion of 13 soil borings, nine (9) of which were completed as permanent monitoring wells and one of which was utilized for soil vapor sampling, as well as the collection of nine (9) surface soil samples. Off Site sample locations included two soil borings, once of which was completed as a temporary well and one of which was utilized for soil vapor sampling. Sampling locations are included in **Figure 5-8** and a summary of the analytical testing program is included in **Table 3**.

The proposed scope of work for the off-site investigation also included the completion of vapor intrusion assessments in the two (2) apartment buildings located at 69 Lake Avenue. The assessments will be completed per NYSDOH guidance contingent upon site access from the property owner. To date, access to the property has not been granted.

2.1 Surface Soil Investigation

Grass and gravel/sand fill surface areas are present immediately around the apartment buildings. Nine (9) surface soil samples were collected from the grass and gravel/sand fill areas as shown in **Figure 5**.

Surface soil samples were collected from 0 to 2 inches below vegetative cover or gravel/sand fill, or from 0 to 6 inches for samples submitted for laboratory analysis of VOCs. The sampled depth interval was screened for VOCs with a calibrated organic vapor meter (OVM) equipped with a PID with an 11.7 eV lamp. OVM results and soil descriptions were recorded and are included in **Table 4**.

All surface soil samples were submitted for laboratory analysis for the following:

- Target Compound List (TCL) VOCs
- TCL SVOCs
- Target Analyte List (TAL) metals
- Polychlorinated biphenyls (PCBs)
- Pesticides and herbicides
- 1,4-Dioxane
- Per- and polyfluoroalkyl substances (PFAS)

The samples were collected using dedicated stainless-steel sampling tools. Select representative soil samples were placed in pre-cleaned laboratory-provided sample bottles, labeled and cooled to 4°C in the field, and transported under chain-of-custody to Hampton-Clarke, Inc. of Fairfield, New Jersey.

Surface soil sample collection procedure for PFAS were followed in accordance with NYSDEC protocol as detailed in Appendix B of "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs" (NYSDEC, January 2020).

2.2 Subsurface Soil Investigation

Previous investigations have identified the presence of VOCs, specifically chlorinated solvents, in Site soils and groundwater. Subsurface soil sampling included locations within the estimated footprint of the former dry cleaning building and in assumed upgradient, cross gradient and downgradient directions. Nine (9) of the soil boring locations were converted to groundwater monitoring wells. Soil boring locations are shown on **Figure 6**.

The soil boring locations were advanced using a drill rig capable of advancing hollow-stem augers for installing 2-inch inner diameter (ID) monitoring wells in select locations. The on-site borings were completed with continuous sampling to the top of competent bedrock, as assumed by auger refusal, at depths ranging from 14.5 to 20 feet below grade (an elevation of 645 to 653.5 feet).

Discrete subsurface soil samples were collected in approximate two-foot depth intervals and screened with a calibrated OVM equipped with a PID with an 11.7 eV lamp. Screening results and soil descriptions were recorded on the field soil boring logs included as **Appendix A**.

Soil samples were selected for laboratory analysis based on field screening results and visual and olfactory observations. The sample interval identified as the most impacted (i.e., highest PID reading, visual/olfactory evidence of odors, staining, or NAPL) were selected for analysis. In the event that no impacts were identified, samples from the bottom of the boring or from immediately above the confirmed confining layer were selected for analysis. Data collected in previous investigations suggested that perched groundwater conditions exist in the shallow overburden and the fine-grained soils may create a smear zone, and this zone may serve as a source of vapor intrusion in the on-site buildings.

From soil boring SB102 in the footprint of the former dry cleaner (source area), three (3) soil samples were submitted for laboratory analysis for vertical delineation of overburden soils. The sample depths included shallow fine-grained soils above the water table, soils that intercept the water table and weathered bedrock at the bottom of the boring. The depth-discrete data will be used to evaluate the need for remedial action in the source area and if necessary, for remedial design purposes.

Subsurface soil samples collected from the soil borings were submitted for analysis for the following:

- Fourteen (14) soil samples for TCL VOCs: One (1) sample per boring from SB101 and SB103-SB112; three (3) samples from SB102.
- Four (4) soil samples for TCL SVOCs: One (1) sample per boring from SB102, SB105, SB108, and SB109.
- Four (4) soil samples for TAL metals: One (1) sample per boring from SB101, SB105, SB108, and SB109.
- Four (4) soil samples for PCBs: One (1) sample per boring from SB101, SB105, SB108, and SB109.
- Four (4) soil samples for pesticides and herbicides: One (1) sample per boring from SB101, SB105, SB108, and SB109.
- Four (4) samples for 1,4-dioxane: One (1) sample per boring from SB101, SB105, SB108, and SB109.

• Four (4) samples for PFAS: One sample (1) per boring from SB101, SB105, SB108, and SB109.

Subsurface soil samples were collected using stainless-steel sampling tools. Select representative soil samples were placed in pre-cleaned laboratory-provided sample bottles, labeled and cooled to 4°C in the field, and transported under chain-of-custody to Hampton-Clarke, Inc. of Fairfield, New Jersey and Eurofins Test America of Amherst, New York.

Personnel and sampling equipment were decontaminated in a dedicated decontamination area between sampling locations. Equipment was decontaminated by steam cleaning or washing with a laboratory grade detergent (e.g. Alconox). All borings not completed as monitoring wells were decommissioned by tremie grouting with a slurry of Portland cement and bentonite.

Soil sample collection procedure for PFAS was completed in accordance with NYSDEC protocol as detailed in Appendix B of "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs" (NYSDEC, January 2020).

2.3 Groundwater Investigation

2.3.1 Monitoring Well Installation

Nine (9) soil boring locations were completed as permanent monitoring wells. The soil borings were advanced with a drill rig using hollow-stem augers capable of installing 2-inch ID monitoring wells. The wells are utilized for measurement of groundwater depth and collection of groundwater samples using low-flow sampling techniques. The monitoring well locations, as shown in **Figure 7A-7B**, were selected based on data from previous investigations and to evaluate plume migration in the overburden.

After completion of the soil borings to depths of approximately 14.5 to 20 feet below grade (elevation of 645 to 653.5 feet), a 2-inch ID schedule 40 PVC monitoring well was installed at each location. A 10 to 15-foot length of 0.010-inch machine slotted well screen was installed at each location to intercept the top of the water table followed by a riser pipe to the ground surface. The well screen depth was backfilled with silica sand filter pack (size #00) from the base to approximately 1 to 1.5 feet above the well screen. A 1-foot bentonite seal was placed above the sand and hydrated to prevent contamination from surface infiltration. The top of the well riser was cut just below the ground surface and completed with a locking J-plug. The wells were finished with a flush-mounted road box in a concrete pad. Refer to the attached Monitoring Well Construction Details, included as **Appendix B**.

2.3.2 Monitoring Well Development

Approximately 24-48 hours following installation on July 22-28, 2020 and August 17, 2021, the monitoring wells were developed via surge blocking. Development water and suspended sediments were removed with a bailer. Development water was containerized and sampled for future off-site disposal. Monitoring Well Development logs are included in **Appendix C**. Disposal documentation is included in **Appendix D**.

2.3.3 Groundwater Sampling

Well top of casing elevations were surveyed to a common vertical datum using a 16-foot fiberglass measuring rod and a Spectra LL300 Laser Level. The location of the vertical datum is the north side of the northwest corner of the porch at the 67 Lake Avenue apartment building (Building 1).

Prior to sample collection, static groundwater levels were measured at each of the monitoring wells with a water level indicator. Groundwater samples were collected using low flow sampling techniques (e.g. peristaltic pump with dedicated polyethylene tubing). The wells were purged and field measurements of pH, specific conductivity, temperature and turbidity were recorded and monitored for stabilization prior to sampling. Data was recorded in Groundwater Evaluation Sheets, included in **Appendix E.**

The nine (9) groundwater samples were analyzed for the following parameters:

• TCL VOCs

Groundwater samples collected from three (3) of the monitoring well locations (MW1, MW5, and MW7) were also analyzed for the following parameters:

- TCL SVOCs
- TAL metals (total)
- TAL metals (dissolved phase)
- PCBs
- Pesticides and herbicides
- 1,4-dioxane
- PFAS

Groundwater samples were placed in pre-cleaned laboratory-provided sample bottles, labeled and preserved in accordance with USEPA SW-846 methodology, and transported under chain-of-custody to Hampton-Clarke, Inc. of Fairfield, New Jersey and Eurofins Test America of Amherst, New York.

Groundwater sample collection procedure for PFAS was followed in accordance with NYSDEC protocol as detailed in Appendix B of "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs" (NYSDEC, January 2020).

2.4 Soil Vapor Investigation

Soil vapor samples were collected at 1 Franklin Street and on Site between Building 1 and the southern property boundary on August 17, 2021 as shown in **Figure 8**. Samples were collected 24 hours following after the installation of temporary probes in accordance with the procedures detailed in Section 2.7 of the New York State Department of Health "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006 and its updates). The temporary probes were installed to a depth of 4 feet below grade using a direct-push drill rig. One to three implant volumes (i.e., the volume of the sample probe and tube) were purged prior to collecting the samples. Flow rates for both purging and collecting did not exceed 0.2 liters per minute to minimize outdoor air infiltration

during sampling. A tracer gas was used to verify that an adequate surface seal was created. Samples were collected over a two-hour duration. Samples were submitted to Centek Laboratories of Syracuse, New York for analysis of Target Compound List (TCL) Volatile Organic Compounds (VOCs) by EPA Method TO-15.

2.5 Field Specific Quality Assurance/Quality Control Sampling

Field-specific quality assurance/quality control (QA/QC) samples were collected during soil and groundwater sampling activities. The samples were analyzed as summarized in **Table 3** to support the third-party data usability assessment effort. Site-specific QA/QC samples included a field duplicate (blind), matrix spike/matrix spike duplicate (MS/MSD), equipment rinsate blank, and trip blank.

2.6 Air Monitoring

Particulate and volatile organic vapor monitoring was performed in accordance with the Community Air Monitoring Plan (CAMP) to protect the community during the investigative activities. Instrument air monitoring data from field activities completed in 2020 is included in **Appendix F**. Instrument air monitoring data from field activities completed in 2021 was inadvertently destroyed prior to download and is unavailable; however, readings remained below the action levels outlined in the CAMP.

Particulate air monitoring data was recorded using TSI DustTrakTM II aerosol monitors. PM-10 particulate levels at the downwind monitoring location in exceedance of the action level of 100 μ g/m³ above background levels (as measured at the upwind monitoring location) were not observed. At the time of the first recorded reading at approximately 8:00 AM on July 27, 2020 PM-10 levels at the upwind and downwind monitoring locations were 101 μ g/m³ and 118 μ g/m³ respectively. At the next recorded interval 15 minutes later, PM-10 levels decreased to 38 μ g/m³ upwind and 47 μ g/m³ downwind.

VOC monitoring data was recorded using MiniRAE 3000 organic vapor meters equipped with a PID with an 11.7 eV lamp. Exceedances of action levels for VOCs in ambient air up to 2x10⁶ ppm were recorded by the PIDs beginning in the afternoon on July 21, 2020. The exceedances were due to false readings of the PIDs caused by high humidity and rain. All prior PID readings were less than 1 ppm. The PIDs were reset multiple times in a climate-controlled area but continued to record erroneously high readings. No odors or evidence of gross hydrocarbon impacts were observed at any point upwind of, downwind of, or within the work area.

2.7 Investigation-Derived Waste Management

Following the completion of soil borings, drill cuttings and other soil generated during the investigation were managed according to DER-10 Section 3.3(e)(1). Drill cuttings were containerized in 55-gallon drums for off-site disposal. The drums were stored temporarily in the northeastern portion of the parking lot in an area cordoned off using plastic construction fencing.

Groundwater generated during well development, purging and sampling activities was containerized in 55-gallon drums for testing and future off-site disposal. Disposal documentation is included in **Appendix D**.

2.8 Site Mapping

A Site base map was generated from surface and subsurface soil borings and monitoring well locations that were measured to on-site infrastructure. As referenced in Section 2.3, elevations of the top of well casings were measured for each monitoring well.

2.9 Personnel Decontamination

Decontamination procedures were carried out in such a manner as to avoid gross contamination of Site workers, personal protective equipment, machinery and equipment. Between sampling locations (or sometimes between samples at one sampling location), and upon the completion of the daily field activities, Site workers proceeded to the Contaminated Reduction Zone (CRZ) or mobile reduction zone area. This area was located in the northeastern portion of the parking lot in an area cordoned off using plastic construction fencing to restrict access.

Equipment (e.g., sampling tubes, shovels, tools, etc.) were decontaminated in this area. Due to the Site use as an apartment complex, CAMP monitoring occurred during all decontamination procedures in order to prevent potential migration of site impacts to off-site or occupied areas. Prior to leaving the Site for breaks, at the end of the work shift, or when PPE had been grossly contaminated, disposable boot covers, gloves, and suits were removed and placed in a drum designated for the disposal of these materials. After removing PPE, each Site worker washed with soap and fresh water prior to donning new PPE or leaving the Site for the day. All wash water and rinse water were collected and disposed of in accordance with appropriate regulations.

2.10 Decontamination of Equipment

Equipment decontamination efforts were conducted in the CRZ or mobile reduction zone areas, as described in Section 2.8, between borings and at the conclusion of drilling and sampling activities. Gross contamination was removed with plastic scrapers or other appropriate tools. The equipment was decontaminated at a temporary equipment decontamination pad in the CRZ via hand washing or pressure washing. Downhole tools and augers were hand washed and pressure washed. CAMP monitoring was completed during all decontamination activities.

The decontamination of the drilling rig was undertaken at the end of the workday. Heavy soils were removed prior to washing. Washing was completed by hand and pressured washer as needed. After the investigation was completed, the decontamination pad was removed for disposable and the decontamination area was deactivated. All fluids generated during decontamination activities were containerized for off-Site disposal.

2.11 Disposal of Contaminated Materials

Potentially contaminated materials (gloves, clothing, sample sleeves, etc.) were bagged and segregated for proper disposal. Investigation-derived waste was managed in accordance with NYSDEC regulations. All fluids collected during groundwater sampling and decontamination, and soils generated during drilling, were containerized in DOT rated drums for off-site disposal at American Recyclers Company in Tonawanda, NY. Waste manifests for the investigation-derived wastes in 2020 and 2021 are included in **Appendix D**.

3.0 SITE PHYSICAL CHARACTERISTICS

3.1 General Site Features and Site Topography

Cayuga Creek, a tributary of the Buffalo River which discharges into Lake Erie, is located approximately 200 feet southwest of the Site. The direction of flow in Cayuga Creek (closest to the Site) is to the west. The topographic elevation at the Site is approximately 668 feet above sea level. The elevation of Cayuga Creek closest to the Site is 644 feet above sea level. The Site is generally flat with a gentle slope to the west and southwest towards the Cayuga Creek floodplain. Ground elevations at each monitoring well location are included in **Table 5**.

The Site and surrounding area are serviced by municipal utilities. There are no known groundwater supply wells located within a one-mile radius of the Site.

The Site does not have state or federal wetlands within property limits, nor is the Site located in a floodplain. Nearby wetlands include the federal riverine wetland located along Cayuga Creek approximately 140 feet southwest of the Site. The adjacent property to the south, 69 Lake Avenue, is within a FEMA 100-year floodplain.

3.2 Geology and Hydrogeology

3.2.1 Overburden

According to the Surficial Geologic Map of New York, Niagara Sheet (1988) by Donald H. Cadwell and the U.S. Department of Agriculture Soil Conservation Service General Soil Map of Erie County, New York, soils underlying the Site consist of proglacial lake deposits, namely laminated clays and silts.

Characterization of soil samples collected during the remedial investigation depict the subsurface environment as:

- Surface to 4 to 5.5 feet below grade (elevation of 663-664.5 to 668.5 feet) sand with gravel and silt (fill material)
- 4 to 11.3 feet below grade (elevation of 657.1 to 664.5 feet) laminated clay and silt (lacustrine)
- 11.3 to 20 feet below grade (elevation of 648.5 to 657.1 feet) silty sand with gravel (alluvium), occasional 2- to-3-inch lenses of dry, weathered limestone

The laminated clay and silt are proglacial lake sediments as indicated in the references described above. It is likely the silty sand with gravel is alluvium due to the proximity of Cayuga Creek. The two (2) northern-most borings (SB106 and SB110) showed the average bottom of clay and top of silty sand was deeper (13.75 feet below grade, or an elevation of approximately 654.8 feet) than the other borings (11.3 feet below grade, or an elevation of approximately 657 feet). SB106 and SB110 are furthest from the Cayuga Creek channel which is located to the south and west of the Site.

3.2.2 Bedrock

According to the Geologic Map of New York, 1970 (Richard and Fisher), the bedrock underlying the Site is shale and/or limestone of the Skaneateles Formation (Hamilton Group) from the Upper Devonian Period (383 to 358 million years ago). Weathered and dry to moist, 2 to 3-inch lenses of limestone were identified in several borings ranging from 16 to 20 feet below grade (elevation of 645 to 649 feet). Auger and sample refusal was also documented in that depth range suggesting the surface of competent bedrock begins at approximately 20 feet below grade (elevation of 645.16 to 653.42 feet).

3.2.3 Hydrogeology

During the groundwater sampling events in August 2020 and August 2021, the average depth to groundwater was 8.04 feet below grade and 7.89 feet below grade respectively (approximately 659 feet elevation). This is consistent with what was observed from soil sample characterization indicating the water table exists within the clay and silt lacustrine sediments. Groundwater elevation data show that the groundwater flow direction is generally to the west with components of flow to the west northwest and southwest. The gradient is moderate at 0.035. Between the Site and Cayuga Creek the gradient is estimated to be steeper (e.g. 0.1 feet) due to the difference in topographic elevation (28 feet).

Groundwater elevation data from August 10, 2020 and August 31, 2021 are included in **Table 6** and groundwater elevation contour maps are included as **Figure 9A-9B**.

4.0 INVESTIGATION RESULTS

4.1 Standards, Criteria, and Guidance

Applicable NYSDEC standards, criteria and guidance (SCG) values will be used for this project. These goals are applicable when considering remedial alternatives. For purposes of the RI, the following SCG will be utilized:

- 6 NYCRR Part 375-3 Brownfield Cleanup Program dated December 14, 2006.
- NYSDEC Policy CP-51/Soil Cleanup Guidance dated October 21, 2010.
- NYSDEC "DER-10 Technical Guidance for Investigation and Remediation" dated May 2010.
- NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) document "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" dated June 1998, amended January 1999 Errata Sheet, April 2000 Addendum and June 2004 Addendum.
- NYSDEC "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs" dated January 2020.
- NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006 and its addendums.

Sample analytical results are compared to SCOs for protection of groundwater (for PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride only) or restricted residential use under the BCP cleanup Track 2 as described in Section 7.1.

4.2 Surface Soil

Concentrations of VOCs, SVOCs, metals, pesticides, herbicides, PCBs, and cyanide in surface soil samples did not exceed the applicable 6 NYCRR Part 375 SCOs. Concentrations of PFAS in surface soil samples did not exceed NYSDEC guidance values.

Refer to **Tables 7-13** and **Figure 5** for surface soil sampling results. Laboratory analytical reports are included in **Appendix G**.

4.3 Subsurface Soil

Concentrations of VOCs, SVOCs, metals, pesticides, herbicides, PCBs, and cyanide in subsurface soil samples did not exceed the applicable 6 NYCRR Part 375 SCOs with the exception of PCE and cis-1,2-DCE in one (1) sample collected from SB102 in the source area. Concentrations of PFAS in subsurface soil samples did not exceed NYSDEC guidance values.

Refer to **Tables 7-13** and **Figure 6** for subsurface soil sampling results. Laboratory analytical reports are included in **Appendix G**.

4.4 Groundwater

Concentrations of one (1) or more chlorinated VOCs, including PCE, TCE, cis-1,2-DCE, trans-1,2-DCE and vinyl chloride, exceeded NYS TOGS 1.1.1 standards in MW1, MW2, MW3, and MW5 as summarized below in Table 4.1 and 4.2. Additionally, concentrations of sodium exceeded NYS TOGS 1.1.1 standards in MW1, MW5 and MW7.

VOC	Standard	MW1 MW1 Duplicate		MW2	MW5
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
PCE	5	180	150	2,200	480
TCE	5	not exceeded	not exceeded	160	not exceeded
cis-1,2-DCE	5	not exceeded	not exceeded	670	140
trans-1,2-DCE	5	not exceeded	not exceeded	11	5.3
Vinyl chloride	2	not exceeded	not exceeded	20	not exceeded

 Table 4.1. Groundwater VOCs Exceeding NYS TOGS 1.1.1 Standards (1st Sampling Event)

Table 4.2. Groundwater VOCs Exceeding	NYS TOGS 1.1.1 Standards (2 nd Sampling Event)
- asie million and the second	

VOC	Standard (µg/L)	MW1 (µg/L)	MW2 (µg/L)	MW3 (μg/L)	MW3 Duplicate (µg/L)	MW5 (μg/L)
PCE	5	85	3,200	15	16	580
TCE	5	not exceeded	160	18	19	30
cis-1,2-DCE	5	not exceeded	830	23	24	56
trans-1,2-DCE	5	not exceeded	not exceeded	not exceeded	not exceeded	not exceeded
Vinyl chloride	2	not exceeded	not exceeded	not exceeded	not exceeded	not exceeded

The 5 μ g/L standard for PCE was exceeded in these four wells, ranging from 15 μ g/L in MW3 to 3,200 μ g/L in MW2 in August 2021. The most elevated concentrations of the five target compounds were detected in MW2 located in the source area. Groundwater VOCs were non-detect in four wells located downgradient of the source area (MW4, MW6, MW7 and MW8) and the upgradient off-site well TW1. Two (2) chlorinated VOCs were detected below standards from MW9 located on the leading edge of the groundwater plume.

The groundwater plume is well defined with a two order of magnitude range in VOC concentrations and numerous non-detect samples. The footprint of the plume and magnitude of the VOC concentrations are similar in the two sampling events.

Refer to **Tables 14-20** and **Figures 7** and **10** for groundwater sampling results. Laboratory analytical reports are included in **Appendix G**.

4.5 Soil Vapor

Results of the soil vapor sampling event completed on August 17, 2021 are summarized in **Table 21** and **Figure 8**. A total of 24 compounds from the Target Compound List were detected at VP1 (1 Franklin Street) and 23 compounds were detected at VP2 (downgradient property boundary), the

source of which is not known. Concentrations were similar to or below background levels for indoor air. TCE, DCE, and VC were not detected at either sample location. PCE was detected at a concentration of 0.68 μ g/m³ in the sample collected from VP1 and was not detected in the sample collected from VP2.

4.6 Data Usability Summary

Laboratory analytical data were validated by Vali-Data of WNY. All data was found to be acceptable for use, although some results should be flagged as estimates based on QA/QC measurement performance criteria. Equipment blanks were non-detect for target analytes except for SVOC TICs. The trip blank was non-detect for VOCs. Field precision as indicated by field duplicate samples met the project quality assurance goals. Analytical results for QA/QC samples collected by METI are included in **Tables 14-20**.

Copies of the Data Summary Reports (DUSRs) provided by Vali-Data are included in **Appendix H**. A summary of the findings, grouped by Sample Development Group (SDG), is below:

- Samples Collected July 20-21, 23, and 27-28, 2020 (SDG #AD18292, AD18350, AD18388, 18416): The data are acceptable for use. All holding times and SOP and method criteria were met.
- Samples Collected July 28 and August 11-12, 2020 (SDG #AD18416, AD18730): The data are acceptable for use. All holding times and SOP and method criteria were met.
- Samples Collected July 21, 2020 (SDG #AD18291): The data are acceptable for use except where qualified in laboratory control samples, MS/MSD, surrogate spike recoveries, initial calibration and continuing calibration. Certain target analytes should be qualified as estimated, including (but not limited to):
 - TCE and cis-1,2-DCE in SB102 (4.5'-5.5") MS/MSD percent recovery was outside limits, low.
 - Percent dilution for trans-1,2-DCE, TCE, was outside QC limits in SB101(5'-7'), SB102(4.5'-5.5') and SB102(19.6'-20.0'). Samples were diluted due to high target analyte concentration.
 - All holding times were met. Refer to Data Usability Summary Report 10162020.
- Samples Collected July 23, 2020 (SDG #AD18348): The data are acceptable for use except where qualified in surrogate spike recoveries, laboratory control samples, method blank, internal standard, compound quantitation, initial calibration and continuing calibration. All holding times were met. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Field duplicate: All criteria were met except that methylene chloride was detected in the field duplicate but was not detected in SS4. A TIC was detected in SS4 but was not detected in the field duplicate. Benzo(b)fluoranthene, chrysene, fluoranthene and pyrene were detected in the field duplicate but were not detected in SS4.
 - The RPD of 4,4'-DDT was outside QC limits in the field duplicate and SS4, and should be qualified as estimated.
- Samples Collected July 22, 2020 (SDG #AD18313): The data are acceptable for use except

where qualified below in the method blank, initial calibration and continuing calibration. All holding times were met.

- Samples Collected July 27, 2020 (SDG #AD18396): The data are acceptable for use except where qualified below in laboratory control samples, initial calibration and continuing calibration. All holding times were met. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Several metals (Se, Cd, Co, Sb, Be, Tl, As, Ag, Na, Cu, Ni, Ag) concentrations in SB108 should be qualified as estimated high. Refer to Data Usability Summary Report 10222020.
- Samples Collected July 28, 2020 (SDG #AD18415): The data are acceptable for use except where qualified below in the method blank, MS/MSD laboratory control samples, initial calibration and continuing calibration. All holding times were met. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Field duplicate: All criteria were met for VOCs except methylcyclohexane and three (3) TICs were detected in the SB109(14'-15') grab sample but one TIC was detected in the field duplicate subsurface grab. All criteria were met for SVOCs except 20 TICs were detected in the SB 109(14'-15') composite sample but six (6) TICs were detected in the field duplicate subsurface composite sample. Cr, Pb and K were detected in the SB 109(14'-15') composite sample.
- Samples Collected July 20, 2020 (SDG #AD18267): The data are acceptable for use except where qualified in laboratory control samples, surrogate spike recoveries, MS/MSD, serial dilution, initial calibration and continuing calibration. All holding times were met. Refer to Data Usability Summary Report 10162020. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Percent recovery of Sb was outside QC limits, low in the SS1 MS/MSD and should be qualified as estimated. The RPD of As, Be and V was outside QC limits between SS1 and SS1 duplicate sample. These target analytes should be qualified as estimated in SS1.
 - Percent dilution of Sb, Se, Co and K were outside QC limits in SS1SD. These target analytes should be qualified as estimated in SS1.
- Samples Collected August 10-12, 2020 (SDG #AD18701): The data are acceptable for use except where qualified in laboratory control samples, MS/MSD, initial calibration and continuing calibration. Refer to Data Usability Summary Report 10292020. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Percent recovery of several metals were outside QC limits and should be flagged as estimates (need to look into this further; match continuing calibration samples to batch and determine which of our samples are affected).
- Samples Collected August 11, 2020 (SDG #AD18688): The data are acceptable for use except where qualified in Data Usability Summary Report 10272020. Certain target analytes should be qualified as estimated, including (but not limited to):
 - Percent recovery of several metals were outside QC limits and should be flagged as estimates.
- Samples Collected August 10-August 3, 2020 (SDG #AD18554): The data are acceptable for use except where qualified in laboratory control samples, MS/MSD, initial

calibration and continuing calibration. Refer to Data Usability Summary Report 10262020. Certain target analytes should be qualified as estimated, including (but not limited to):

- Percent recovery of several metals were outside QC limits and should be flagged as estimates.
- Samples Collected August 16, 2021 (SDG #480-188381-1): The data are acceptable for use except where qualified. in laboratory control samples, MS/MSD, initial calibration and continuing calibration. Refer to Data Usability Summary Report 12052021.
- Samples Collected August 31, 2021 (SDG #480-188962-1): The data are acceptable for use except where qualified. in laboratory control samples, initial calibration and continuing calibration. Refer to Data Usability Summary Report 12052021.
- Samples Collected August 17, 2021 (#C2108030): The data are acceptable for use except where qualified. in laboratory control samples and continuing calibration. Refer to Data Usability Summary Report 12062021.

5.0 CONTAMINANT FATE AND TRANSPORT

The results of the RI identified an area of shallow soil VOC contamination above the water table in the former footprint of the dry cleaner. This "source area" includes soil and fill material from ground surface to a depth of approximately 5.5 feet below grade (664 feet elevation). Below the shallow soils are 6 to 7 feet of laminated silt and clay that has impeded the downward migration of VOCs. Soil samples collected above the top of bedrock in the groundwater plume were non-detect for VOCs and DNAPL was not found. Soil cross sections are included in **Figures 11-13**.

A groundwater plume of chlorinated VOCs has been delineated and samples from the four (4) down gradient wells and one (1) up gradient well were non-detect. The plume has migrated down gradient from the source area in a westerly direction in the alluvium soils located below the silt and clay layer. In the groundwater plume the alluvium soils are found from approximately 8 feet to the assumed bedrock surface at a depth of 18 to 20 feet. Currently the plume appears to be stable and there is no evidence of vertical migration into bedrock or off-site migration.

The chemical nature of the plume has changed over time due to the reductive dechlorination of PCE to TCE, DCE, and VC by bacteria under anaerobic conditions. The redox conditions in the plume as measured during the RI are aerobic and the ratios of the chlorinated VOCs are similar in the source area well and down gradient plume well. These results suggest that reductive dechlorination is inhibited, likely due to depletion and/or absence of electron donor, and the biodegradation of the VOC plume is slow. The footprint of the plume and magnitude of the VOC concentrations are similar in the 2020 and 2021 sampling events. This data indicates that the plume will persist in the absence of remediation.

Chlorinated VOCs have been detected in indoor air and vapor mitigation systems are operating in Buildings 1 and A. PCE was also detected in two (2) groundwater samples collected from sumps in Building A. Based on the elevation of the sumps and the observed water level of 7.12 feet below grade (approximately 660 feet in elevation), water is being recovered from above the laminated silt and clay layer. These buildings are located in close proximity to the source area and groundwater plume. Based on the findings of the RI, shallow soils in the source area and the groundwater plume are a source of vapor contamination to indoor air in the on-site buildings. Underground utilities installed through the source area to service Buildings A, B and C, and backfill material at the Site are considered preferential pathways for vapor migration as they provide a permeable pathway above the water table from the contaminated soils to the buildings impacted with vapor intrusion Given that these underground utility lines do not extend beyond the on-site buildings and the limited extents of the soil and groundwater plumes as defined by samples collected at the down gradient property boundary, preferential pathways for vapor migration to off-site properties, including 69 Lake Avenue, were not identified during the RI.

6.0 QUALITATIVE EXPOSURE ASSESSMENT

6.1 Potential Human Health Risks

The following assessment has been completed in accordance with the New York State Department of Health Qualitative Human Health Exposure Assessment (Appendix 3B of DER-10). The purpose of the exposure assessment is to evaluate how people might be exposed to Site-related contaminants and identify and characterize the potentially exposed population(s) now and under the reasonably anticipated future use of the Site. The exposure pathway elements discussed in Sections 6.1.1 through 6.1.5 are summarized in Table 6.1 below:

Environmental Media	Timing of Exposure	Human Exposure Assessment	
& Exposure Route		-	
Direct contact with	Current, during	People may come into contact where surface	
surface soils	remedial actions	soils are not covered by pavement,	
		vegetation, structures, etc.	
Direct contact with	During remedial	People may come into contact if intrusive	
subsurface soils	actions	work is completed at the Site.	
Direct contact with	Current, during	People may come into contact with	
groundwater	remedial actions	groundwater from the basement sumps or if	
		intrusive work is completed at the Site.	
Ingestion of groundwater	Current, during	Contaminated water is not being used for	
	remedial actions	drinking water as the area is served by public	
		water supply. People may come into contact	
		if private wells are installed on the Property	
		and used for potable or non-potable purposes	
		(e.g. irrigation). The use of groundwater will	
		be restricted by an environmental easement	
	0 1 1	post-remedy.	
Inhalation of air	Current, during	Sub-slab depressurization systems have been	
	remedial actions, post-	installed in two on-site buildings. Pending	
	remedy	approval of the property owner a soil vapor	
		intrusion assessment will be completed on the	
	downgradient adjacent property.		
		intrusive remedial activities, air quality is	
		monitored according to the CAMP.	

 Table 6.1. Qualitative Exposure Assessment Summary

6.1.1 Source of Contamination

Although the exact source of contamination is unknown, the source of impacts to soil and groundwater is assumed to be associated with historical use of the Site for dry cleaning operations. Products containing chlorinated VOCs may have been released through improper disposal or storage of chemicals.

6.1.2 Environmental Media and Transport Mechanisms

Affected media at the Site include soil, groundwater, and soil vapor. Shallow soil and fill material present from ground surface to approximately 5.5 feet bgs in the vicinity of the former dry cleaner serve as the primary source to impacts to groundwater. The groundwater plume has migrated down gradient from the source area in a westerly direction. Shallow soils in the source area and the groundwater plume are a source of vapors to indoor air in the apartment buildings. SSD systems have been installed in Building 1 and Building A to mitigate the effects of exposure to indoor air.

The plume appears to be stable, based on similar data from the two sampling events, and there is no evidence of vertical migration into bedrock. Data used to make this conclusion includes:

- Depth discrete soil samples from SB102 in the source area show decreasing concentrations of PCE and TCE with depth;
- Soil samples collected from 10 soil borings at depths ranging from 14 to 20 feet bgs were non-detect for chlorination VOCs; and
- DNAPL was not found in the any of the monitoring wells.

6.1.3 Point of Exposure

The primary potential points of exposure are direct contact with impacted soils and/or groundwater, and inhalation of soil vapor. Groundwater at the site is not used for consumption; however, impacted soil and/or groundwater may be encountered during intrusive work. Access to the sumps is currently restricted by a concrete cover that is sealed with silicone around the edges. A label reading "DO NOT DISCONNECT" is placed on the cover. Potential exposures are also addressed through air monitoring and by fencing off work areas to restrict access during intrusive work.

6.1.4 Route of Exposure

Routes of exposure includes direct contact, ingestion, and/or inhalation of impacted media. Surface soils may be contacted directly where not covered by asphalt, concrete, or buildings. As the current and anticipated future Site use is for residential apartment buildings, exposure can be minimized through restrictions prohibiting vegetable gardening, single-family housing, and active recreational uses. Exposure to groundwater via the basement sumps is limited by a sealed concrete cover. The SSD systems operating in Building 1 and Building A mitigate potential exposure via inhalation of indoor air.

6.1.5 Receptor Population

Receptor populations include residents and on-site workers conducting remedial work or construction activities.

6.2 Potential Ecological Risks

The Site is located in a developed residential and commercial area and is predominately covered by apartment buildings and a paved parking lot which provides little to no wildlife habitat or food value. Cayuga Creek is located approximately 200 feet to the southwest. Remedial work will be completed in

accordance with an approved CAMP as appropriate to minimize any short-term risks. Therefore, no unacceptable ecological risks are reasonably anticipated.

7.0 REMEDIAL ALTERNATIVES ANALYSIS

The purpose of remedy selection is to identify, evaluate, and select a remedy or alternative remedies to address the contamination identified in the RI. Remedy selection is in accordance with Section 4.2 of DER-10. The overall remedial goals are to prevent migration of the groundwater plume and to remediate the source(s) of vapors to indoor air in protection of human health.

7.1 Remedial Action Objectives (RAOs)

RAOs for the remedy selection process are established from the generic SCG values for protection of groundwater or restricted residential use applicable to the contaminants identified in the RI. In consideration of potential human exposures and environmental impacts resulting from contamination identified in groundwater, RAOs are established from the generic NYS Water Quality Standard or Guidance Value identified in TOGS 1.1.1.

The RAOs for the Site include:

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil
- Prevent inhalation exposure to contaminants volatilizing from soil

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater contamination

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater
- RAOs for Environmental Protection
 - Restore the groundwater aquifer to pre-release conditions, to the extent practicable
 - Remove the source of groundwater contamination

Soil vapor

RAOs for Public Health Protection

• Mitigate impacts to public health from existing, or the potential for, soil vapor intrusion into buildings

Surface water and sediment are not present at the Site and therefore RAOs are not applicable.

7.2 BCP Cleanup Track

Remedies in the BCP are selected from four cleanup tracks:

Track 1: no restrictions on the use of the property;

Track 2: restricted use with generic soil cleanup objectives (SCOs) based on the intended use of the property-residential, restricted residential (single family houses not allowed), commercial, or industrial;

Track 3: restricted use with modified SCOs based on the same uses described in Track 2 above;

Track 4: restricted use with site-specific soil cleanup objectives, where the shallow exposed soils must meet the generic SCOs used for Track 2 above.

The selected cleanup track and remedial action are evaluated based on the following criteria:

- Overall protection of public health and the environment
- Compliance with standards, criteria, and guidance (SCG)
- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, or volume of contamination with treatment
- Short-term impact and effectiveness
- Implementability
- Cost effectiveness
- Land use
- Community Acceptance

The Site has been developed with apartment buildings and engineering controls have already been implemented. The current and anticipated future land use is for residential apartment buildings. Although Cleanup Track 1 meets the criteria of protectiveness, compliance with SCG, long-term and short-term effectiveness, and reduction of toxicity, it is not considered practical as the removal and relocation of underground utilities servicing the apartment buildings would be required, as well as the demolition of one or more buildings for Site remediation and to eliminate exposure pathways.

Based on the plume characteristics and geologic conditions, modified (Track 3) or site-specific SCOs (Track 4) would not provide benefits over generic SCOs in achieving the RAOs. Therefore, Cleanup Track 2 based on intended restricted residential use is selected for the Site using generic SCOs for protection of groundwater and restricted residential use. This track fully satisfies the RAOs and is fully protective of human health and the environment.

7.3 Screening of Remedial Alternatives

Alternatives are evaluated using the criteria set forth in 6 NYCRR 375-1.8(f) and DER-10 Section 4.2(b) through 4.2(j). Remedial technologies were screened for applicability to the Site contaminants and geologic conditions, RAOs for protectiveness of public health and environment, and cost effectiveness.

No Action

Shallow soil in the source area and the groundwater plume are sources of VOC vapors to indoor air in Building 1 and Building A. Shallow soil is also an ongoing source of VOCs to groundwater. The groundwater plume appears stable and is not migrating off-site, and soil vapor data collected at the downgradient property boundary and the off-site property to the east suggest that the potential for vapor intrusion in off-site buildings is low. However, natural attenuation of the plume is a slow process and biodegradation appears to be inhibited. Engineering controls are currently in operation in two (2) on-site buildings and it is recommended that a vapor intrusion assessment be completed at two (2) off-site buildings. Based on these conditions, the RAOs for public health protection and environmental protection cannot be achieved with No Action and it is therefore not further evaluated as an alternative.

Institutional and Engineering Controls

Institutional controls applicable for the Site include deed restrictions to prevent the use of groundwater and to limit activities such as farming or vegetable gardening that would result in potential human exposure to contaminants. Engineering controls are currently in place at the Site, including the operation of SSD systems and associated annual indoor air monitoring in Buildings 1 and A. Pending an access agreement, vapor intrusion assessments will be completed at two (2) apartment buildings at 69 Lake Avenue. Groundwater monitoring using the network of nine groundwater monitoring wells is also applicable to the Site. Institutional and engineering controls can achieve some of the RAOs for public health protection but not for environmental protection.

Physical Remediation

Physical remediation alternatives include soil excavation and replacement with clean fill, extraction and treatment of subsurface soil vapors, and pumping and treatment of groundwater.

Soil excavation can achieve the soil RAOs for public health protection and environmental protection.

Soil vapor extraction (SVE) has limitations at the Site based on the geologic conditions. This technology would not be effective in the silt and clay soil above the water table and would have limited effectiveness in the fill material located in the source area.

Groundwater pumping and treatment would not be a cost-effective alternative to achieve the RAOs based on the long-term operation required to remediate the upper zone of the water table that is located in silt and clay soils. In addition, the groundwater plume appears stable, thus negating hydraulic control as a primary benefit of pumping.

In Situ Remediation

The groundwater plume in the overburden is 10 to 12 feet in thickness and extends from the top of the water table in the silt and clay layer to the bedrock surface at a depth of 18 to 20 feet. In the saturated zone conductivity is higher in the alluvium soils, described as silty sand with gravel, located between the silt and clay layer and the assumed bedrock surface. DNAPL was not found at the Site and the groundwater contaminants are soluble phase. Based on the Site contaminants and geologic

conditions, *in situ* remediation is applicable for the groundwater plume and can achieve the RAOs for public health protection and environmental protection. *In situ* remediation technologies screened for the Site include air sparging, bioremediation, and chemical remediation methods.

Air sparging is not applicable as vapor extraction is required to collect vapors above the water table, and as previously described, SVE would not be effective in the silt and clay soil. *In situ* bioremediation has limited potential for the Site. The primary Site contaminant, PCE, does not biodegrade under aerobic conditions and TCE degradation is limited. The lower chlorinated VOCs, DCE and VC, are biodegradable under aerobic conditions. Therefore, aerobic bioremediation would only be applicable following the removal or degradation of PCE and TCE.

Anaerobic bioremediation involves the injection of electron donor to stimulate reductive dechlorination. Electron donors are commonly referred to as organic substrates and when injected in groundwater stimulate bioremediation by providing a source of hydrogen for dechlorinating bacteria and enhancing anaerobic conditions by lowering the oxidation-reduction potential. The area of impacted groundwater exceeding NYS Water Quality Standards extends from MW2 in the source area to downgradient well MW5. The contaminant profiles in the wells on a concentration basis are nearly identical:

	MW2	MW5
PCE	72%	73%
TCE	5%	5%
DCE	22%	21%
VC	<1%	0%

 Table 7.1. Groundwater Contaminant Profiles

Anaerobic biodegradation via reductive dechlorination has occurred but similar contaminant profiles throughout the plume indicate the process has become limited, most likely due to the depletion of electron donor. ORP levels and DO concentrations are higher in MW5 compared to MW2, and the data indicates aerobic conditions in the plume that are not ideal for reductive dechlorination. The rate limiting step is the complete transformation of PCE to non-chlorinated compounds without increasing the concentration of VC. Anaerobic bioremediation is not feasible as a stand-alone technology based on the potential for increasing VC in groundwater and indoor air. A remedial design involving the sequential use of anaerobic followed by aerobic bioremediation is evaluated further in Section 7.4.

In situ chemical remediation methods that are suitable for the Site geologic conditions and effective for chlorinated VOCs include chemical reduction (ISCR) and chemical oxidation (ISCO). ISCR is often used as a barrier technology to intercept a migrating groundwater plume and is most effective at sites with high contaminant concentrations and/or DNAPL. ISCO is feasible for remediation of an entire groundwater plume and is effective at degrading soluble phase contaminants including VC. Although both chemical remediation methods are applicable to achieve groundwater RAOs, the VOC plume characteristics at the Site are more suitable for ISCO.

7.4 Evaluation of Remedial Alternatives for Cleanup Track 2

Alternative #1: Institutional and Engineering Controls

Engineering controls have been implemented at the Site. This includes SSD systems in Building 1 and Building A and monitoring of indoor air in all four (4) buildings. Additional engineering controls to be implemented include completing a vapor intrusion assessment of the apartment buildings at 69 Lake Avenue, potential installation and operation of SSD systems at 69 Lake Avenue, and development of a Groundwater Monitoring Plan for the long-term monitoring of the groundwater plume.

Institutional controls for the Site include future deed restrictions on the use of groundwater and activities including farming or vegetable gardening. Once fully implemented, Alternative #1 would achieve all RAOs for public health protection but would not achieve soil and groundwater RAOs for environmental protection.

Alternative #1 has been partially implemented and is an important part of achieving goals and compliance with SCGs. It provides both short-term impact and long-term effectiveness within the current and future land use of the Site. The selected remedy for the Site will includes the continued operation of the SSD systems in Buildings 1 and A. The systems will remain functional until the selected remedy is completed and indoor air testing indicates that vapor intrusion is no longer occurring.

The estimated capital and annual costs are listed below with ranges based on the results of the vapor intrusion assessments at the two (2) off-site apartment buildings.

Estimated capital cost	\$25,000 to \$40,000
Estimated annual cost (Year 1-30)	\$10,000 to \$15,000

Alternative #2: Physical Remediation - Soil Excavation

Soils will be excavated and loaded directly on to trucks (no staging) for off-site disposal at an approved facility. Clean backfill material and topsoil will be transported from an off-site location, in compliance with DER-10 regulations for importing backfill and soil cover. The backfill will be compacted to prevent settling and the surface finished with asphalt and/or topsoil based on location at the Site. Soil excavation would achieve all soil RAOs but result in potential short term human exposure to particulates and VOC vapors during Site work. Therefore, a community air monitoring plan (CAMP) would be implemented during Site work and the work area fenced to prevent access by the public.

The overburden soils at the Site are found in three distinct depth intervals as described in Section 3.2.1. The most impacted interval is from ground surface to a depth of 5.5 feet. As described in Section 5.0 this is considered the source area and is an on-going source of chlorinated VOCs to groundwater and indoor air. This depth interval is a priority for remediation based on the soil RAOs and would provide the highest level of long-term effectiveness and permanence. Once excavated and replaced with clean backfill, the source area would be removed from the Site providing a significant short-term impact, including the removal of approximately 8.5 pounds of VOCs and the attainment of SCOs for the protection of groundwater for the target chlorinated VOCs.

Excavation of the silt and clay interval is much less of a priority based on the low soil VOC analytical results and would be completed at substantial cost with a minimal increase in effectiveness. The deepest interval consisting of alluvium soils to the assumed bedrock surface, does not meet criteria for excavation as soil samples measured non-detect for VOCs and DNAPL was not found. This depth interval is located in the groundwater plume and would more effectively treated with *in situ* remediation. Implementing Alternative #2 in each depth interval is described as follows:

Ground surface to top of water table

An area of shallow soil contamination above the water table has been identified in the former footprint of the dry cleaner. This source area includes soil and fill material from ground surface to a depth of approximately 5.5 feet below grade. Below the shallow soils are 6 to 7 feet of laminated silt and clay that has impeded the downward migration of VOCs. Excavation of the VOC-impacted soils above the silt and clay would remove the ongoing source of VOCs to groundwater, reduce the source of vapors to indoor air, and reduce the time required to remediate the groundwater plume.

Additional soil borings in the source area are required to delineate the areal extents of the excavation and collect samples for the approval process with off-site disposal at a landfill. The depth to the water table was measured at or just below the bottom of the shallow soil interval. Excavation of soil to the top of the water table, or slightly into the water table, would result in an excavation depth of 6 to 8 feet. This would improve the effectiveness of soil excavation and prevent leaving a thin layer of silt and clay soil above the water table that would be difficult to remediate. Based on current data the area for soil excavation is estimated at 20 feet by 75 feet with a volume of 400 cubic yards as shown in **Figure 14**. A more detailed figure showing all elements of the proposed remedy (i.e. groundwater treatment area, SSD systems, parcels subject to easement(s), etc.) will be provided in the RAWP.

The estimated capital cost includes surface restoration. There is no annual cost associated with this alternative.

Estimated capital cost	\$77,000
Estimated annual cost	\$0

Silt and clay soil below the water table

Excavation of the silt and clay soils below the water table would follow excavation of the shallow soils with a total excavation depth of approximately 12 feet. The water table is at a depth of 6 to 8 feet therefore dewatering is required and based on the total depth of the excavation shoring is required. Both shoring and dewatering would significantly increase the construction work space at the Site and time needed to complete the work. As previously described, excavation of this depth interval would provide a minimal increase in effectiveness and excavation of the shallow source area soils includes the silt and clay soil above the water table.

The estimated capital cost includes shoring, dewatering with treatment or disposal and surface restoration. There is no annual cost associated with this alternative.

Estimated capital cost.....\$208,000

Estimated annual cost......\$0

Alluvium soil to bedrock surface

Excavation of the alluvium soils would result in the removal of all overburden soil to the assumed bedrock surface at a depth of approximately 20 feet. Excavation to this depth is not necessary based on the soil analytical results and is not cost effective. Implementability would be significantly more difficult and require shoring socketed into bedrock, larger construction equipment for soil removal and frac tanks for dewatering. The disturbance to the public including noise and vibration from driving shoring would likely not meet community acceptance.

The estimated capital cost includes shoring, dewatering with treatment or disposal and surface restoration. There is no annual cost associated with this alternative.

Estimated capital cost	\$360,000
Estimated annual cost	

Alternative #3: In Situ Bioremediation

This alternative is a groundwater remediation method that includes anaerobic bioremediation to transform PCE and TCE to lower chlorinated VOCs which are then biodegraded to non-toxic end products under aerobic conditions. It is a slower process compared to ISCO and is best suited for stable or shrinking groundwater plumes. Bioremediation of chlorinated VOCs can be cost effective if a longer time frame is compatible with the Site use and SCOs, and for dilute groundwater plumes that do not require a more aggressive remedial method. Remediation of the source area soils above the water table must be completed before implementing bioremediation. Also, bioremediation can follow ISCO as part of a long-term remedial plan. The major limitation of bioremediation for the Site is the potential to increase VC in the groundwater plume which can then migrate to indoor air. VC is a human carcinogen with lower regulatory standards for both groundwater and indoor air compared to PCE and TCE.

To effectively remediate the groundwater plume, an estimated five years of bioremediation followed by five years of MNA is required. The first two years would involve annual injections of electron donor in approximately 15 soil borings to remove PCE and TCE from the plume. This would be followed by periodic injections of an electron acceptor to increase dissolved oxygen concentrations and maintain aerobic conditions in the plume to biodegrade the remaining lower chlorinated VOCs. This phase of aerobic bioremediation would take approximately three years to effectively reduce DCE and VC to below groundwater quality standards. A number of commercially available injection products are available for both the electron donor and electron acceptor.

Due to the longer time frame to implement this alternative and risk of increasing VC to above regulatory standards, community acceptance may be low for this alternative. It does have long-term effectiveness, but the short-term impact is low and as previously discussed, there may be a short-term increase in toxicity of the plume due to an increase in VC. However, the risk of VC exposure to residents in Buildings 1 and A is minimal due to the operation of the SSD systems.

The estimated cost over 10 years is \$282,500 as summarized below:

Table 7.2. Projected Costs for In Situ Bioremediation						
	Year 1	Year 2	Year 3	Year 4	Year 5	Annual Cost
						Year 6-10
Anaerobic Bio Injections	\$105,000	\$52,500	\$ 0	\$ 0	\$ 0	\$ 0
Aerobic Bio Injections	\$0	\$0	\$25,000	\$25,000	\$25,000	\$0
MNA	\$ 0	\$10,000				
Total	\$105,000	\$52,500	\$25,000	\$25,000	\$25,000	\$40,000

Alternative #4: In Situ Chemical Oxidation (ISCO)

ISCO is feasible for remediation of an entire groundwater plume and is effective at degrading soluble phase contaminants including VC. Major factors that determine the effectiveness of an ISCO application include reaction kinetics, which are influenced by several variables including pH, contaminant concentrations, catalysts, reaction byproducts, natural organic matter and oxidant scavengers, and delivery technique. The VOC plume characteristics at the Site are suitable for ISCO and oxidants are evaluated below.

Hydrogen Peroxide/Fenton's Reagant

With its high reaction and decomposition rates, hydrogen peroxide is not likely to address contaminants found in low permeability soil. Fenton's reagent or modified Fenton's reagent uses hydrogen peroxide in the presence of ferrous sulfate to generate hydroxyl radicals, increasing the oxidative strength of the peroxide. This alternative would be effective in the lower portion of the plume located in the alluvium soils but would have limited effectiveness in the upper portion of the plume located in the silt and clay soils. Therefore, Hydrogen Peroxide/Fenton's Reagant is not an effective oxidant for the Site, but design considerations and estimated costs are provided for comparison to the other oxidants.

Approximately 20 dual nested injection wells would be installed at the top of bedrock and top of the water table in the silt and clay layer. The oxidant would be gravity fed to the injection wells on a quarterly basis. Maintenance of the wells, including development and periodic repair or replacement of flush mounted curb boxes, is required. Five years of MNA would follow the injection events to monitor the plume conditions and determine if additional injections are needed. In addition to the limitation of this oxidant for the Site conditions, community acceptance may also be limited for conducting injections into 20 wells each quarter for five years.

The estimated cost over 10 years is \$235,000 as summarized below:

	Capital Cost	Annual Cost Year 1-5	Annual Cost Year 6-10
Injection Wells	\$60,000	\$5,000	\$ 0
QTR Injection Events	\$0	\$20,000	\$ 0
MNA	\$ 0	\$ 0	\$10,000
Total	\$60,000	\$25,000	\$10,000

Table 7.3. Projected Costs for Hydrogen Peroxide ISCO

Sodium/Potassium Permanganate

There are two common forms of permanganate: potassium permanganate, which is available as a solid with a solubility of approximately 6 percent, and sodium permanganate, which is available as an aqueous solution that is relatively more soluble (40 percent). For a design that requires high oxidant mass over a limited pore volume, sodium permanganate use may be appropriate based on its solubility. Both forms of permanganate are strong oxidizing agents with an affinity for oxidizing organic compounds containing carbon-carbon double bonds such as PCE, aldehyde groups, and/or hydroxyl groups. Permanganate is applicable under a wide range of environmental conditions and tends to persist in the subsurface, allowing for more contaminant contact.

Permanganate injections would be completed through direct-push batch injections using a Geoprobe[®] and injection tooling to disperse the oxidant into the formation. An estimated eight to ten borings spaced 15 feet in the groundwater plume are required. Injection using the "bottom-up" method is recommended from the bedrock surface to the top of the water table. It is assumed that approximately 5,000 pounds of remediation-grade permanganate will be injected into the formation during the first injection event. Based on stoichiometric calculations and prior experience at similar sites, it is estimated that 70% to 80% of the source of VOCs to indoor air in the on-site buildings would be eliminated following excavation of shallow soils and the initial permanganate injection event.

A second injection event would likely be required. It is assumed that injection rates and dosing will remain unchanged but that the plume footprint will be reduced by 50% from the first injection. Following evaluation of the second injection event, the groundwater conditions will be monitored under the Groundwater Monitoring Plan.

The estimated cost over two years is \$54,000 as summarized below:

	Year 1	Year 2
1 st Injection Event	\$36,000	\$ 0
2 nd Injection Event	\$0	\$18,000
Total	\$36,000	\$18,000

 Table 7.4. Projected Costs for Permanganate ISCO

Sodium Persulfate

Persulfate is a strong oxidant with a higher oxidation potential than hydrogen peroxide and a potentially lower soil oxidant demand (SOD) than permanganate or peroxide. Persulfate reaction is slow unless placed in the presence of a catalyst, such as ferrous iron, or heated to produce sulfate free radicals that are highly reactive and capable of degrading many organic compounds.

Persulfate injections would be completed through direct-push batch injections using a Geoprobe[®] and injection tooling to disperse the oxidant into the formation. An estimated eight to ten borings spaced 15 feet in the groundwater plume are required. Injection using the "bottom-up" method is recommended from the bedrock surface to the top of the water table. It is assumed that approximately 5,000 pounds of sodium persulfate will be injected into the formation during the first injection event.

A second and third injection event are assumed using the same injection rates but with the plume footprint reduced from the previous injection. Following evaluation of the third injection event, the groundwater conditions will be monitored under the Groundwater Monitoring Plan.

The estimated cost over two years is \$126,000 as summarized below:

	Year 1	Year 2
1 st Injection Event	\$56,000	\$0
2 nd Injection Event	\$ 0	\$42,000
3rd Injection Event	\$ 0	\$28,000
Total	\$56,000	\$70,000

 Table 7.5. Projected Costs for Persulfate ISCO

7.5 Recommended Remedial Measures

A combined remedy of shallow soil excavation in the source area (Alternative #2) and groundwater remediation with ISCO (Alternative #4) along with the continued operation of the SSD systems (Alternative #1) is the recommended remedial measure as described below. This approach will remove subsurface contamination from the Site and reduce human exposure from vapor migration in the shortest time frame while meeting the Remedial Action Objectives and BCP Cleanup Track 2 criteria. Final design for Alternative #2 and #4 will follow additional data collection in the source area. This additional work will be described in a Work Plan and will include soil borings to define the limits of soil excavation, collection of additional depth discrete soil data (< 15' bgs) to support a Track 2 remedy and laboratory analysis of select soil samples to calculate chemical oxidant dosing.

- Continued operation of the SSD systems in Buildings 1 and A.
- Excavation of impacted shallow source area soils to the top of the water table followed by remediation of the groundwater plume using ISCO is recommended for the Site.
- Soil borings to delineate the extents of soil excavation and an ISCO pilot test to determine the radius of influence and oxidant dosing are recommended for remedial design.
- ISCO of the groundwater plume would immediately follow soil excavation and be completed before surface restoration. The remedial work would be completed on an accelerated schedule of approximately two (2) weeks to minimize disturbance at the Site. It is estimated that

approximately 70% to 80% of the source of VOCs to indoor air in the on-site buildings would be removed following the excavation and first injection.

- The recommended remedial measures result in attainment of the project RAOs.
- The recommended remedial measures achieve the project goals in the shortest timeframe, remove the source of VOC impacts to groundwater and soil vapor (i.e. have long-term effectiveness and permanence), and include aggressive remediation of the groundwater VOC plume (i.e. have short-term impact and effectiveness).
- The timeframe for engineering controls is reduced.
- The recommended remedial measure is cost effective.
- Soil excavation will be managed to minimize disturbance at the Site and protect the public from exposure to contaminants through CAMP monitoring and limiting access to the work area.
- The benefits of the recommended remedial measures are most likely to be met with community acceptance. Community acceptance will be assessed during the public comment period on the proposed remedy.

8.0 SUMMARY AND CONCLUSIONS

The Site is currently utilized as a residential apartment complex in a moderately developed residential area in the Town of Lancaster, Erie County, New York. Due to the detections of chlorinated VOCs, vapor intrusion studies were completed in 2019 within the four (4) apartment buildings. Vapor intrusion testing results identified chlorinated solvents, specifically PCE and TCE, within both sub-slab and indoor air samples. Based on guidance from the New York State Department of Health (NYSDOH), the concentrations of these solvents required mitigation in Building A on 65 Lake Avenue and Building 1 on 67 Lake Avenue. Mitigation was not required in Building B or Building C. As a result, sub-slab depressurization systems (SSDS) were installed within Building A and Building 1 in November and December 2019 to mitigate vapor intrusion.

The remedial investigation included nine (9) surface soil samples, eleven (11) soil borings from ground surface to the top of bedrock and the installation of eight (8) groundwater monitoring wells. Sample analytical results are compared to SCOs for protection of groundwater (select chlorinated VOCs only) or restricted residential use under the BCP cleanup Track 2. Concentrations of SVOCs, metals, pesticides, herbicides, PCBs, and cyanide in surface and subsurface soil samples did not exceed 6 NYCRR Part 375 SCOs for restricted residential use and concentrations of PFAS did not exceed 8 NYSDEC guidance values. Concentrations of VOCs in surface soil samples did not exceed 6 NYCRR Part 375 SCOs and in subsurface soil only one sample, located in the source area at a depth of 4.5 to 5.5 feet, exceeded the SCOs for PCE and cis-1,2-DCE.

Concentrations of one or more chlorinated VOCs exceeded NYS TOGS 1.1.1 groundwater standards in MW1, MW2, MW3, and MW5. Concentrations of sodium exceeded NYS TOGS 1.1.1 standards in all monitoring wells. The groundwater VOC plume has migrated down gradient from the source area in a westerly direction. The plume appears to be stable and there is no evidence of vertical migration into bedrock or off-site migration.

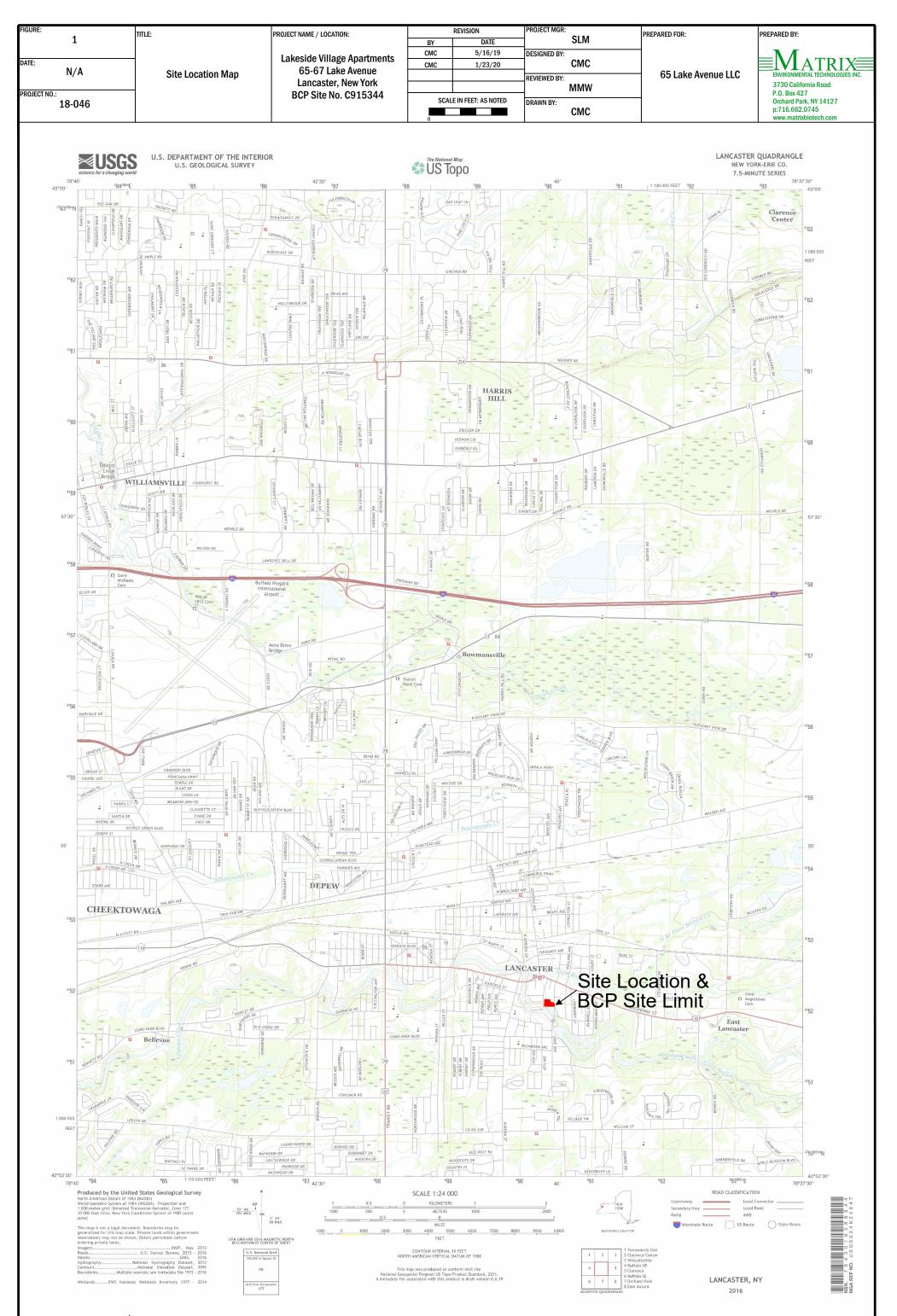
The overall remedial goals are to prevent migration of the groundwater plume and to remediate the source(s) of vapors to indoor air in protection of human health. Shallow soils in the source area and the groundwater plume, including the preferential pathways, are sources of vapor contamination to indoor air in the apartment buildings. Excavation of impacted shallow source area soils followed by *in situ* remediation of the groundwater plume using chemical oxidation (ISCO) is recommended for the Site. Soil borings to delineate the excavation extents and collect data for remedial design are recommended.

ISCO of the groundwater plume would immediately follow soil excavation and be completed before surface restoration. The remedial work would be completed on an accelerated schedule of approximately two (2) weeks to minimize disturbance at the Site. Remedial work would continue during the subsequent year with a second ISCO injection event followed by implementation of the Groundwater Management Plan. The SSD systems will continue to operate until the selected remedy is completed and indoor air testing indicates that vapor intrusion is no longer occurring. A figure showing all elements of the proposed remedy (i.e. groundwater treatment area, SSD systems, parcels subject to easement(s), etc.) is included as **Figure 15**. Details of the remedy may be revised in future work plans as additional data is collected.

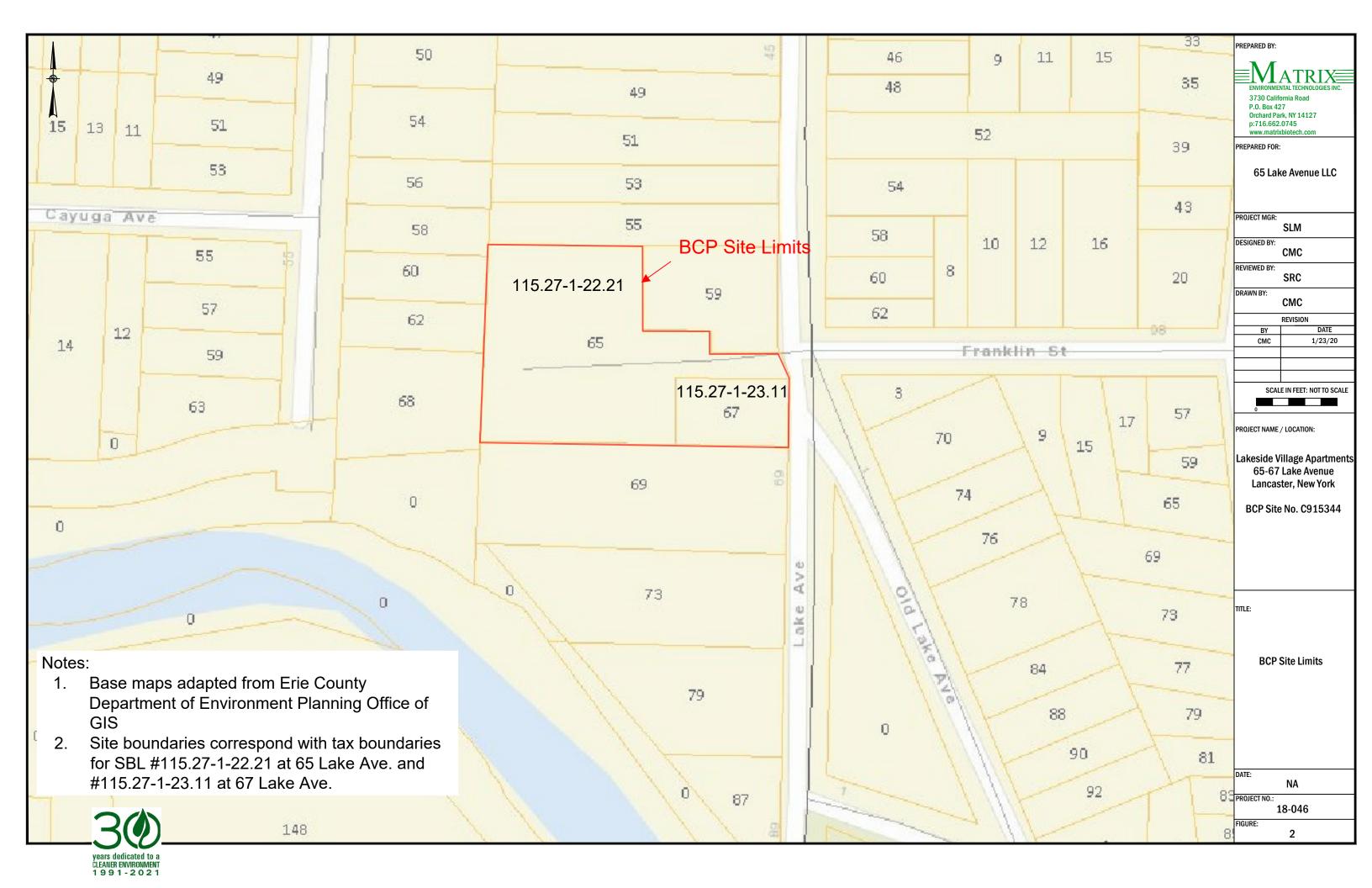
A project schedule to complete the requirements of the BCP is included as Table 22.

9.0 REFERENCES

Matrix Environmental Technologies Inc. Remedial Investigation Work Plan. June 2020.


New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.

New York State Department of Environmental Conservation. Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs. January 2020.


New York State Department of Health. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.

United States Department of Agriculture (USDA), Soil Conservation Service. *Soil Survey of Erie County, New York.* December 1986.

FIGURES

and the second second	PREPARED BY:	
	EWVIRONMENTAL TECHNOLOGIES INC. 3730 California Road P.O. Box 427 Orchard Park, NY 14127 p:716.662.0745 www.matrixbiotech.com PREPARED FOR: 65 Lake Avenue LLC	
	PROJECT MGR: SLM	
A STATE	DESIGNED BY: CMC	
	REVIEWED BY:	
and the	DRAWN BY: CMC	
States and the	REVISION	
at 1 the second	BY DATE	_
Fine C Harmen	CMC 3/19/20	_
£1000 m		
	SCALE IN FEET: NOT TO SCAL	LE
	PROJECT NAME / LOCATION:	
	Lakeside Village Apartmei 65-67 Lake Avenue Lancaster, New York	nts
	BCP Site No. C915344	
	TITLE:	
	Aerial View Site Plan	
Contraction in the	date: NA	
A DESCRIPTION OF THE OWNER OF THE	PROJECT NO.: 18-046	
and the second second	FIGURE:	

		A CONTRACTOR	and States In State	A LOAN AND AND AND AND AND AND AND AND AND A	to the second	PREPARED BY:
Boring ID	February 2019 Soil Sampling Location	and the second	States - Non Manager	The second second	and a second	
Sample Interval (ft.		- Patricella	A CONTRACTOR	And a state of the	A CONTRACTOR	ENVIRONMENTAL TECHNOLOGIES INC.
below grade)	May 2018 Sampling Location	A MAN DANSE	A LO AND AND AND A	A Start of Carton	4	3730 California Road P.O. Box 427 Orchard Park, NY 14127
Total VOCs	NOTES:	SB5				Orchard Park, NY 14127 p:716.662.0745 www.matrixbiotech.com
Total SVOCs	All concentrations shown in μg/kg.	10'-12'			THOUGH IN	PREPARED FOR:
PCE	Gold shaded values indicate analyte	27.6			Cart -	65 Lake Avenue LLC
TCE	exceeds Part 375 Residental SCOs.	24.4	BH5	SB2	SB1	3
1,2-DCE (Total)	Yellow shaded values indicate analyte	ND	10'-12'	16'-18'	14'-15.8'	PROJECT MGR:
Acetone	exceeds Part 375 Unrestricted Use SCOs.	ND	130	10.3	16.8	SLM DESIGNED BY:
K		ND	588	136.4	154.8	CMC REVIEWED BY:
Da starts	12995	27.6	110	ND	ND	SRC DRAWN BY:
S Inta :			2.44	ND	ND	СМС
O LANS	A State of the second sec	and the second	1.64	ND	ND	REVISION BY DATE
farman -	G1	THE REAL PROPERTY	ND	10.3	16.8	
ALC: NOT ALC: NOT		En el el		FORMER DRY CLEANER (ÁPPROXIMATE)	
the states of a	SB8					SCALE IN FEET: 1" = 20'
MEC.	4'-6'				A CONTRACTOR	0 20
at a set	ND /				SB3	PROJECT NAME / LOCATION:
the second and	ND SP7	SB4	Bern Martin and		12'-13.5'	Lakeside Village Apartments 65-67 Lake Avenue
	ND SB7	8'-10'	The Aller and and the		22.5	Lancaster, New York
5 . AS	ND 12'-14'	117.7	the states		9.8	BCP Site No. C915344
	ND 19.2	32.3			ND	
The second s	ND 55.6 ND	ND	R		ND	
A CONTRACT OF THE OWNER	ND	ND			ND	
and a state of the second	ND ND	87.9			12.7	
States and	19.2	29.8			BH1	TITLE:
Contraction in a	13.2		And the second second		4'-6'	
Station and the state	a weather and a stream	BH6			24,025	Historical Soil Data Summary
Standing of the	A REAL PROPERTY AND A REAL PROPERTY A REAL	12'-14'	SB6	BH4	408.9	
and a state of the		47.4	6'-8'	4'-6' 8'-10'	13,000	
the second second	and the state of the state	ND	ND	1,557 135	8,260	
And the second second		2.71	ND	7,160 434 118 20.4	2,693	
		1.19	ND ND	241 6.68	ND	DATE: AS NOTED
and the second second	- Manager M. P. Franker Harris M. B. Dury Kit	2.03	ND ND	733 7.28	1 9 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	PROJECT NO.: 18-046
20	Shirt have been a ser	18.3	the state of the s	417 44.7	The states in	FIGURE:
	Store in a company of the second s	all and the deal	ND	44./	18 1 B	4A
years dedicated to a CLEANER ENVIRONMENT 1 9 9 1 - 2 0 2 1						

		Contraction of the second	Bell Store Page	
SAMPLE LOCATION PCE	• Temporary Monitoring Well	A start the		T
TCE	Location (May 2018)		State of the second	- FARTANA
cis-1,2-DCE	Basement Sump Sample Location (February 2019)	States and	The second second	The I have been a second
Vinyl Chloride	Eocation (February 2019)	1 1 1 1 1 1 1	State State State	and the second se
Benzene	NOTEO	and the second second	TPMW3	
Toluene	NOTES:		116	
m,p-Xylene	All concentrations shown in μ g/L.		<3.98	
o-Xylene	ND = Not Detected	A2	11.2	
1,2,4-Trimethylbenzene	Yellow shaded values indicate	4.0	<2.59	in a second and
Benzo(a)anthracene	analyte exceeds NYSDEC	ND	19.5	
Benzo(b)fluoranthene	Groundwater Criteria (Class GA).	ND	40.8	
]	ND	20.3	ALA
0.0002	The second se	ND	8.82	
AMALAN T		ND	5.3	1 日 日
		ND	0.400	FORMER DRY CLEA
the state of the second s	A4	ND	0.416	
11-C 10	11.9	ND	7	
	ND		· · · · · · · · · · · · · · · · · · ·	
BUILDING B	ND	ND	The second second	
	ND		The All States	STATE STATE
5 . A . P.	ND			
	ND			A CONTRACTOR OF THE REAL OF
1 B. 1	ND			
A CONTRACT OF THE	ND		L	
and the second second	ND	- Children de	TPMW4	TPMW2
Southern Comments	ND	140/20 A.	Page and a state state	4.45
Carlos Salar	ND	C BERSEL	And a set of the set	<0.796
South Barlet	A CONTRACTORIES	「「「「「		6.76 UILDIN
The second second		Contraction of the second second		<u>10.7</u>
NIL MILLING AND AND THE	the second second second	LASSING MORAL LASSING		<0.662
AND THE REAL PROPERTY OF	BUILDING A		a state and	<0.824
2-1 - C T 12 1 - 1	BUILDINGA		1 . The fat at	<1.44
and the	in the same in the state with the	A STATE AND A STATE AND A	the state the	<0.682
The second second		Contraction of the second	WHI ISA EN Y STO	<0.746
		Contra a Contra a	ALL STORY	0.200
30		All and the second second	the product of the second	0.132

years dedicated to a CLEANER ENVIRONMENT 1991-2021

PREPARED BY: -

_

M atrix≡
ENVIRONMENTAL TECHNOLOGIES INC.
3730 California Road
P.O. Box 427
Orchard Park, NY 14127
p:716.662.0745
www.matrixbiotech.com

PREPARED FOR:

65 Lake Avenue LLC

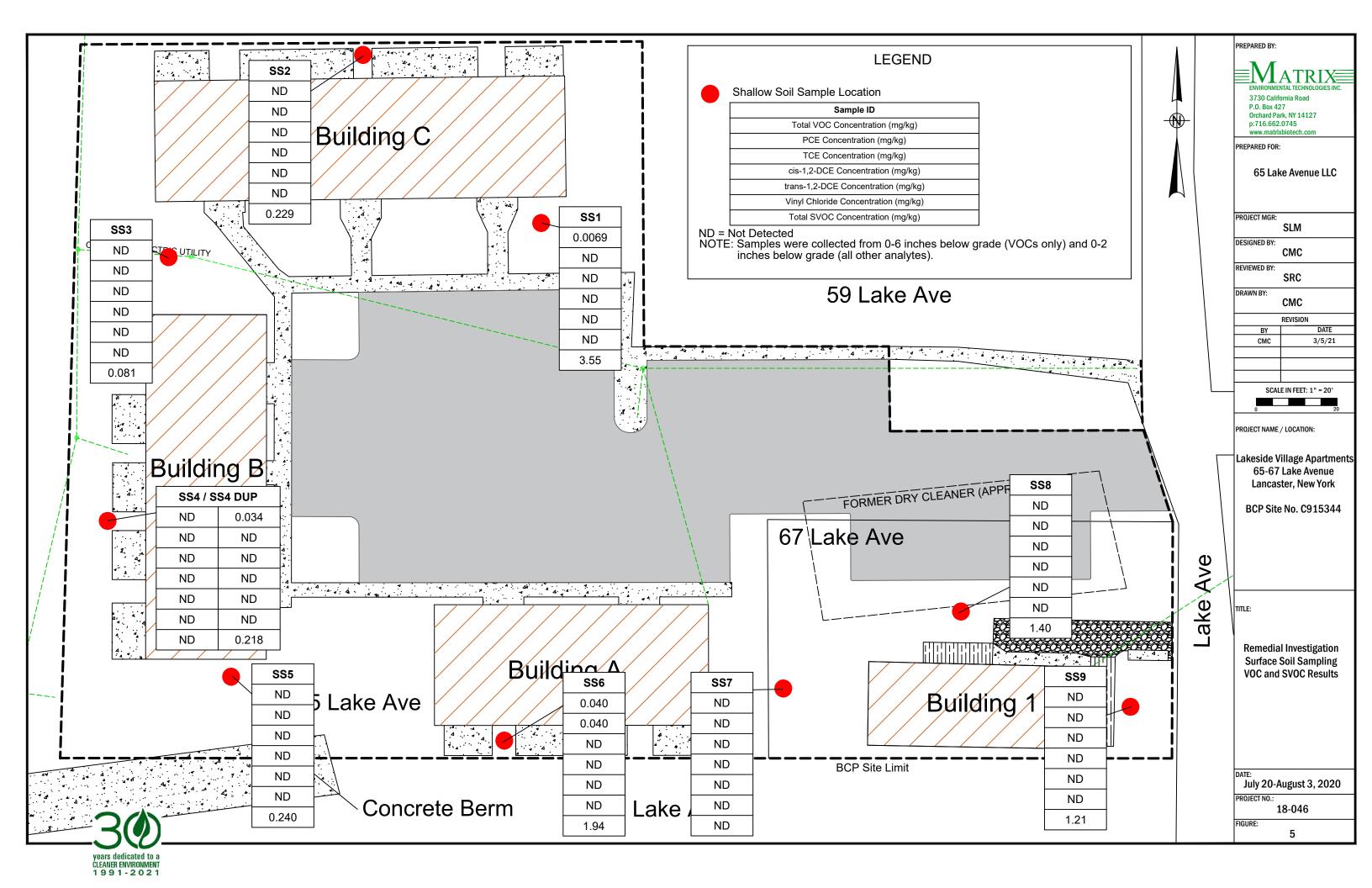
l	PROJECT MGR:
	SLM
1	DESIGNED BY:
	CMC
ł	REVIEWED BY:
	SRC
l	DRAWN BY:
	CMC
	REVISION
	BY DATE
	SCALE IN FEET: 1" = 20'
	0 20

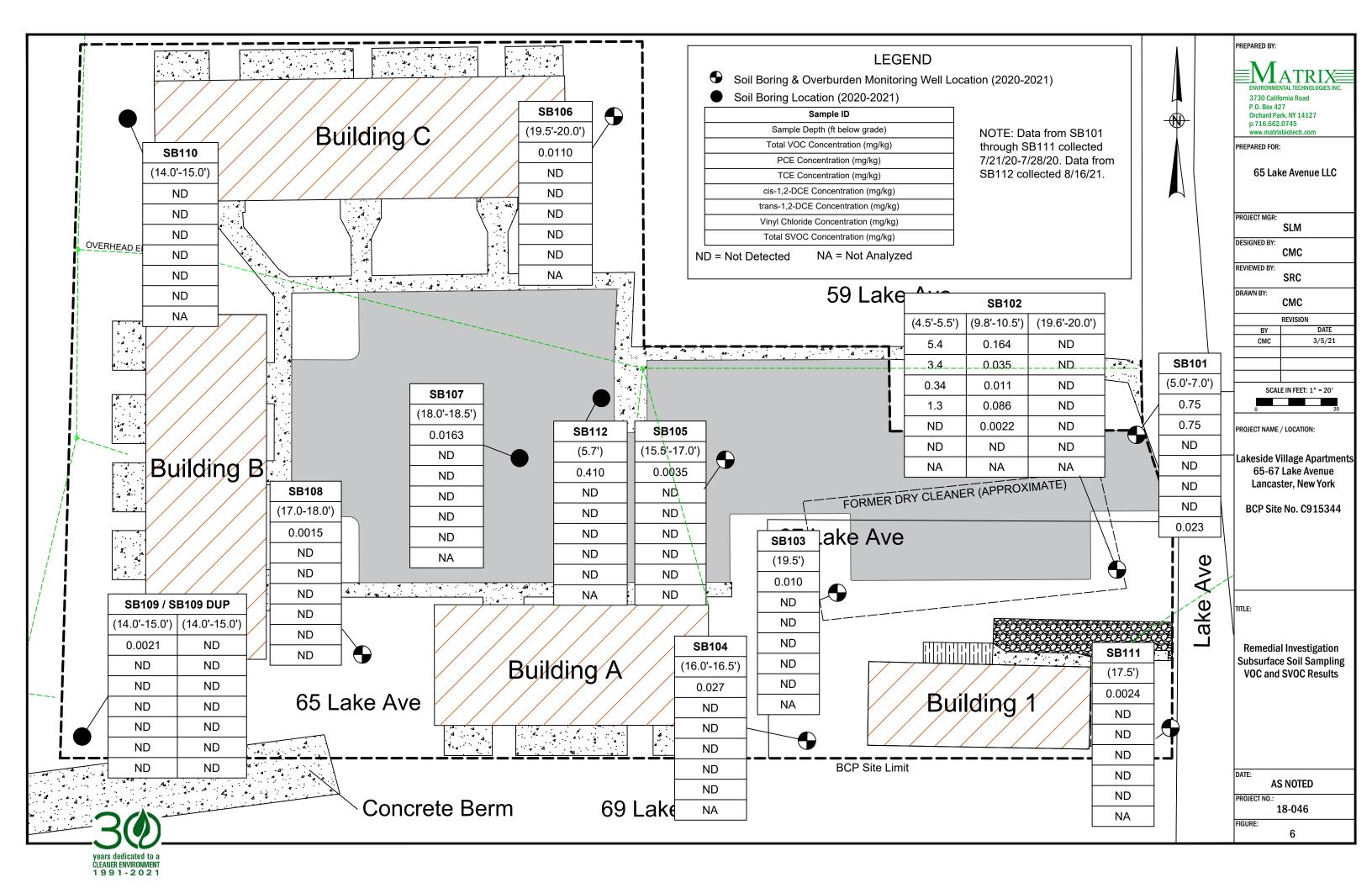
EANER (APPROXIMATE)

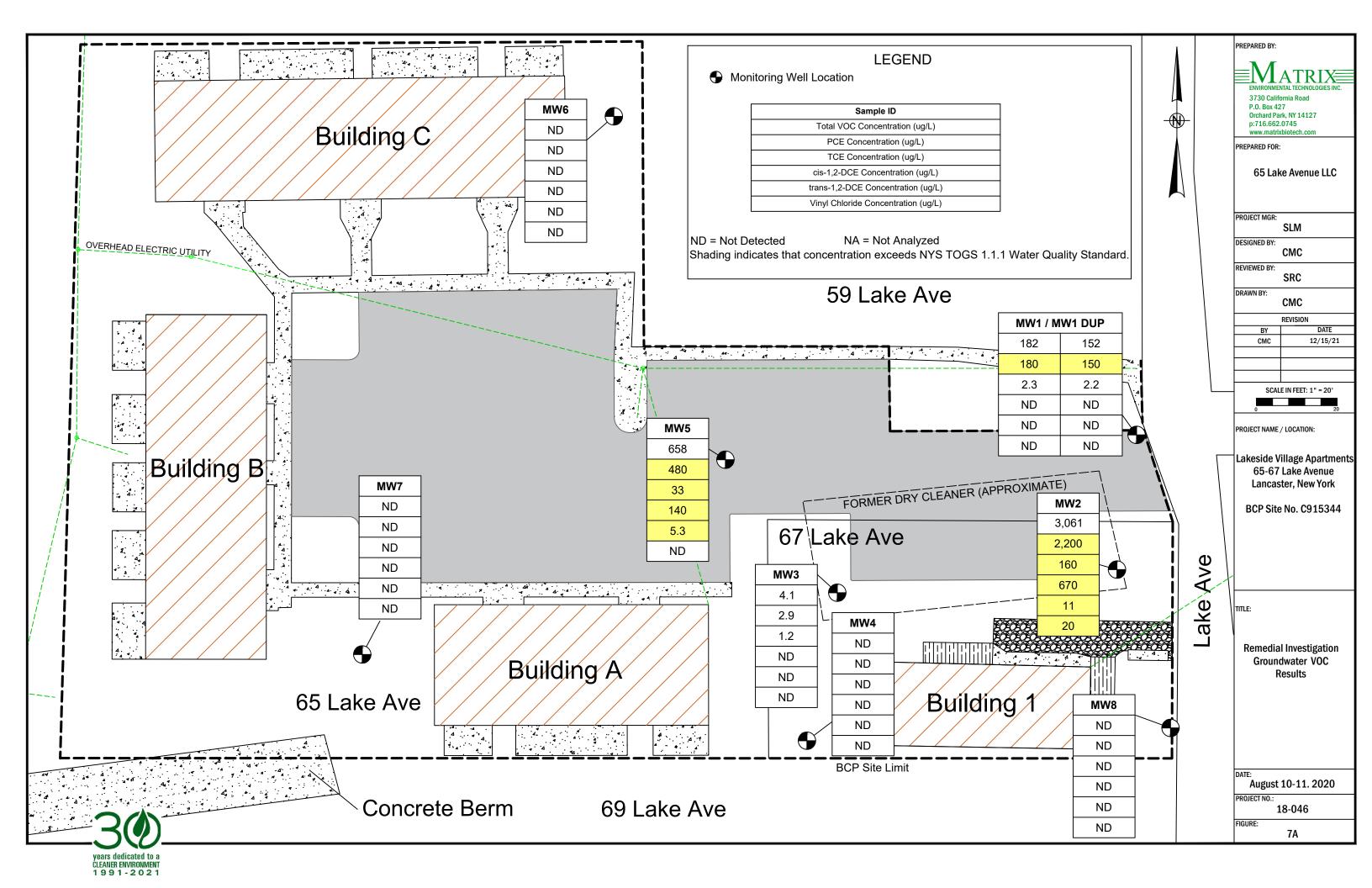
PROJECT NAME / LOCATION:

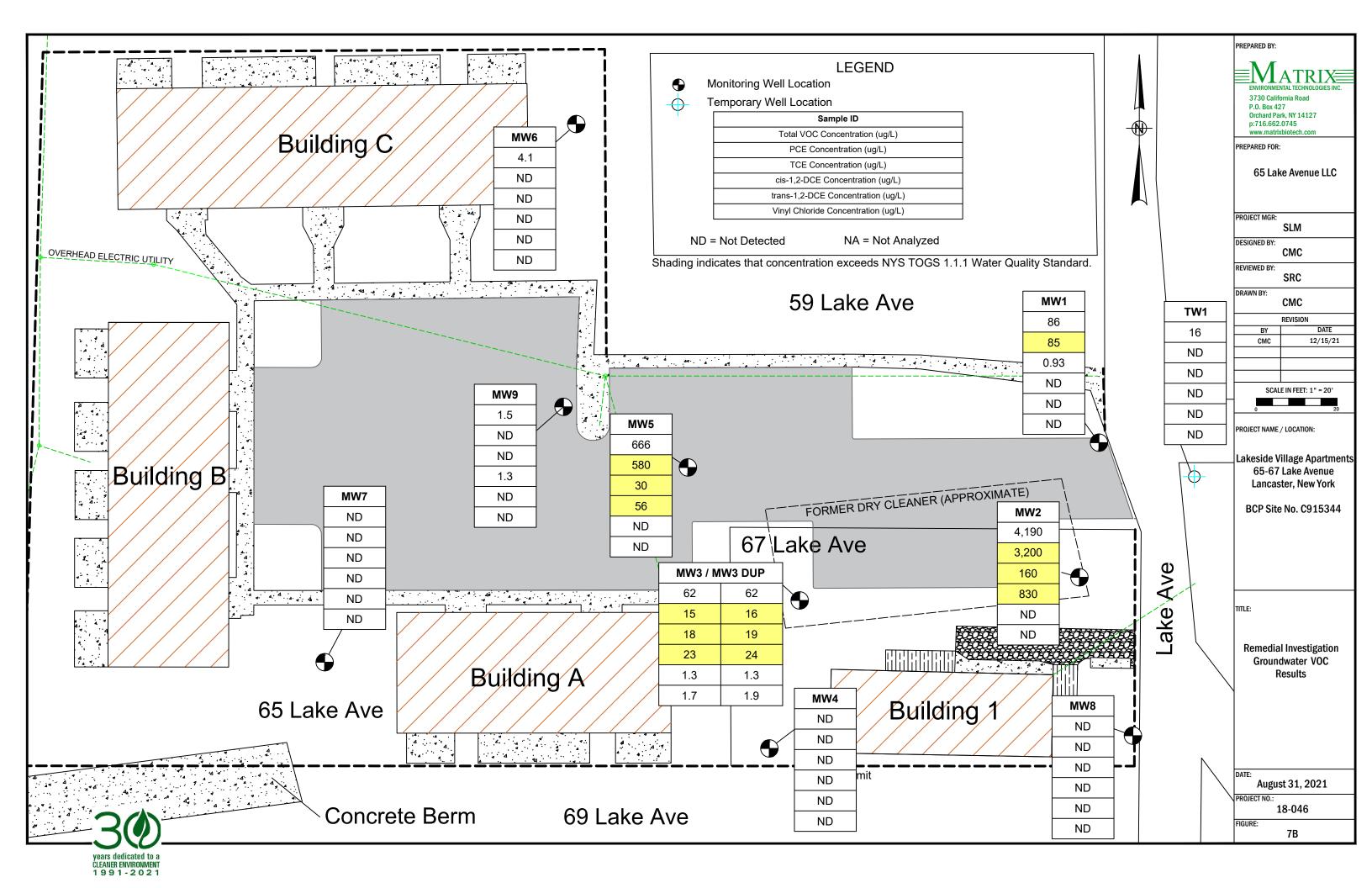
Lakeside Village Apartments 65-67 Lake Avenue Lancaster, New York

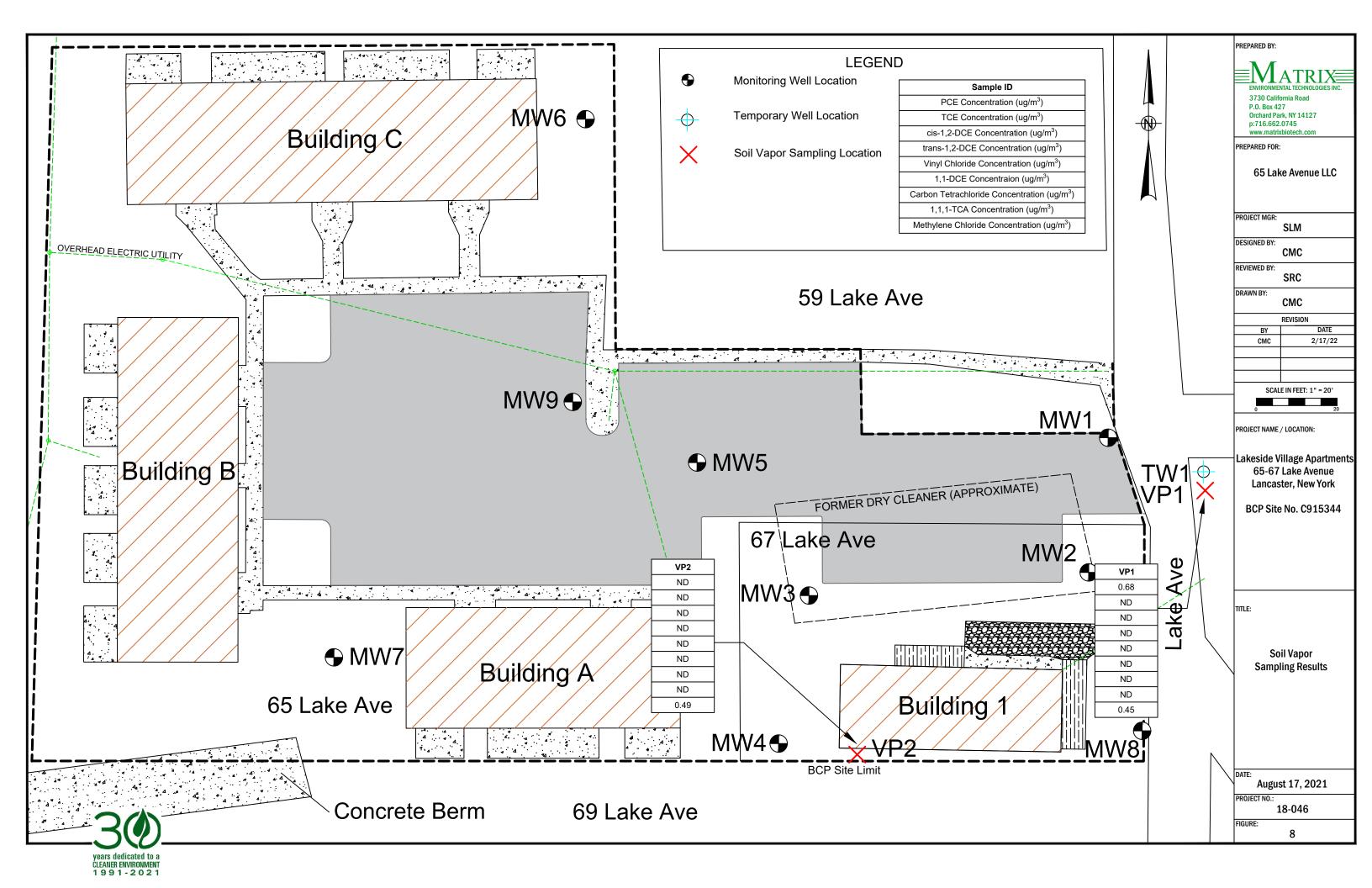
BCP Site No. C915344

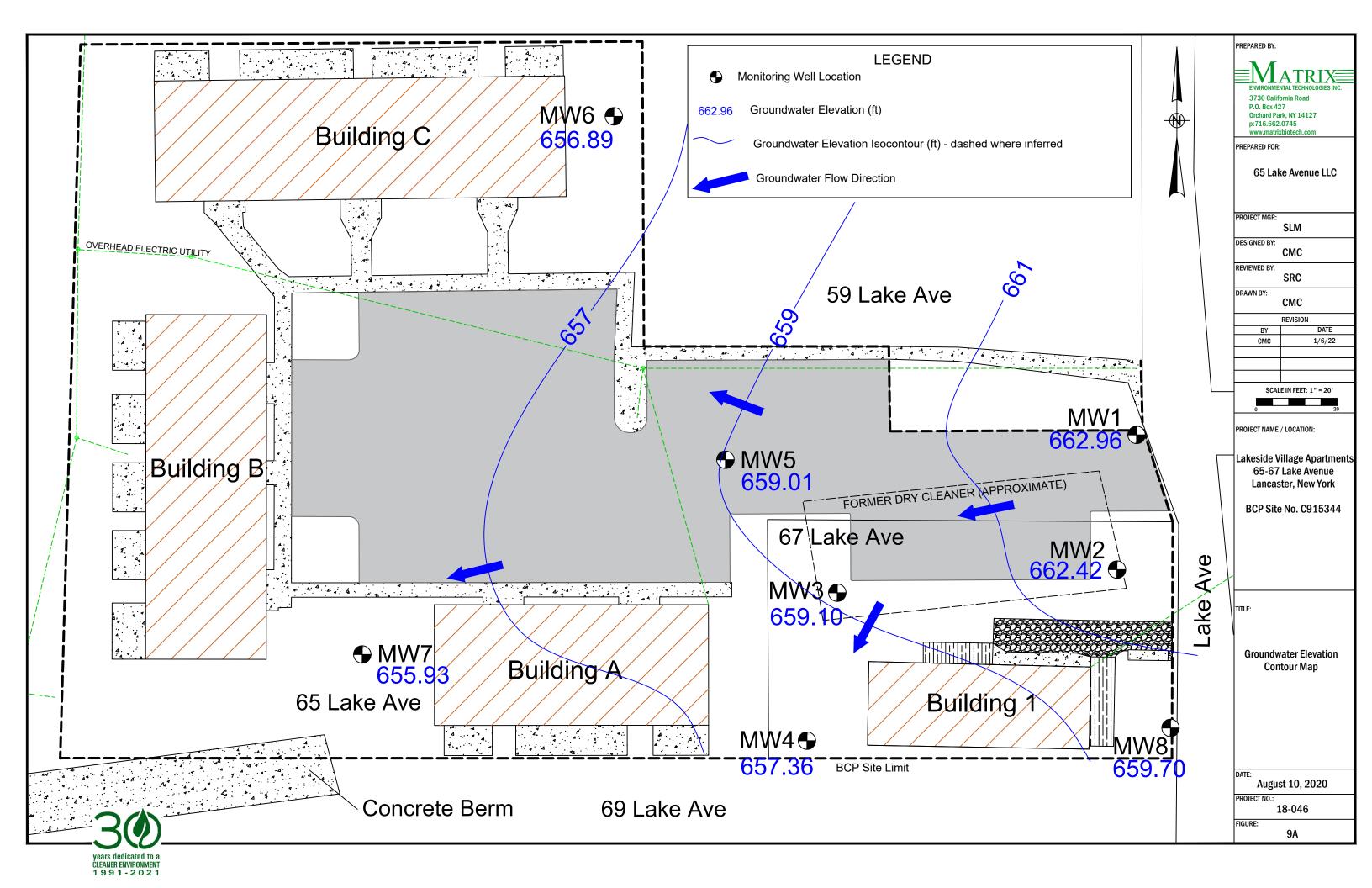

TITLE:

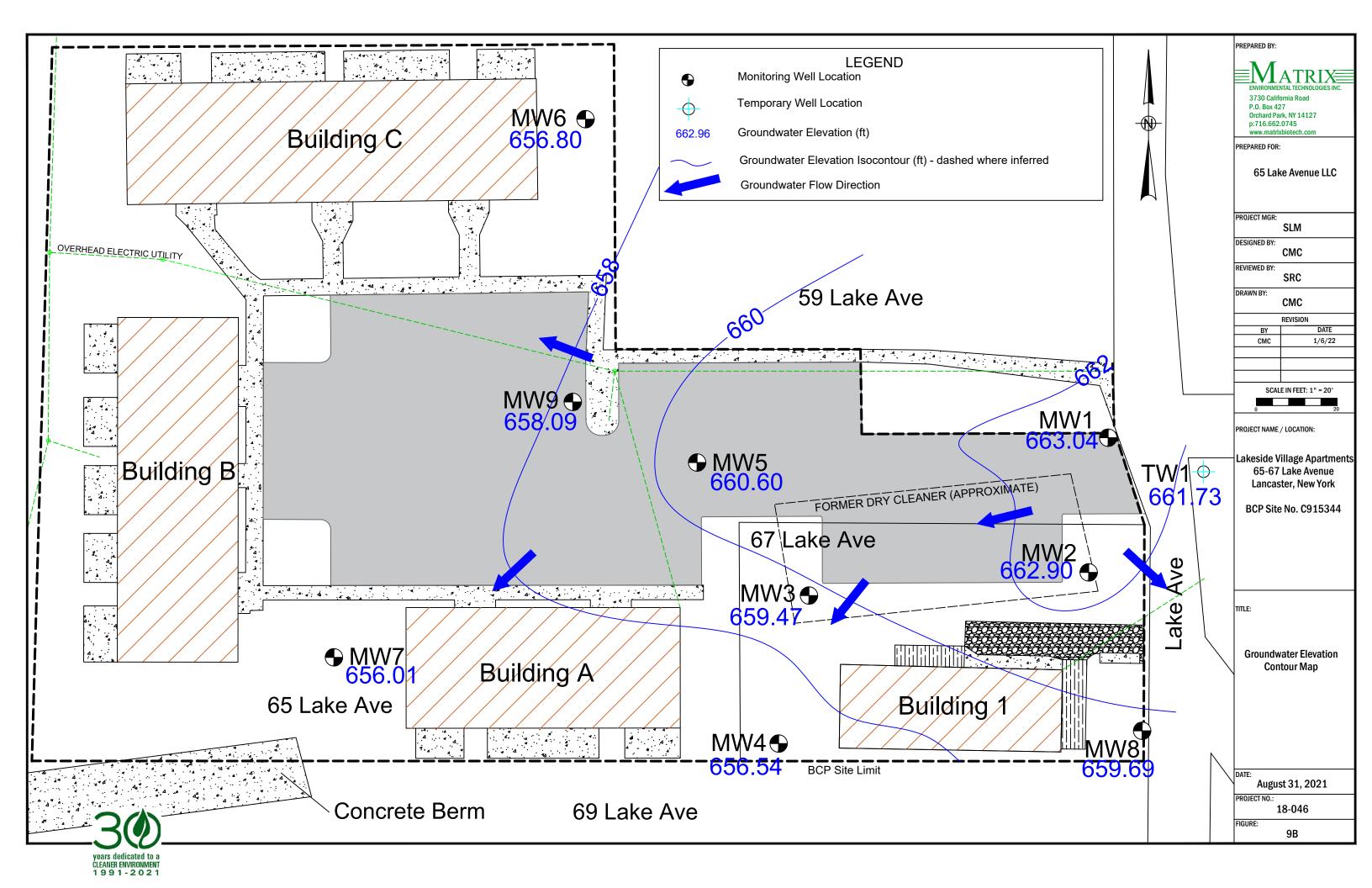

Historical Groundwater Data Summary

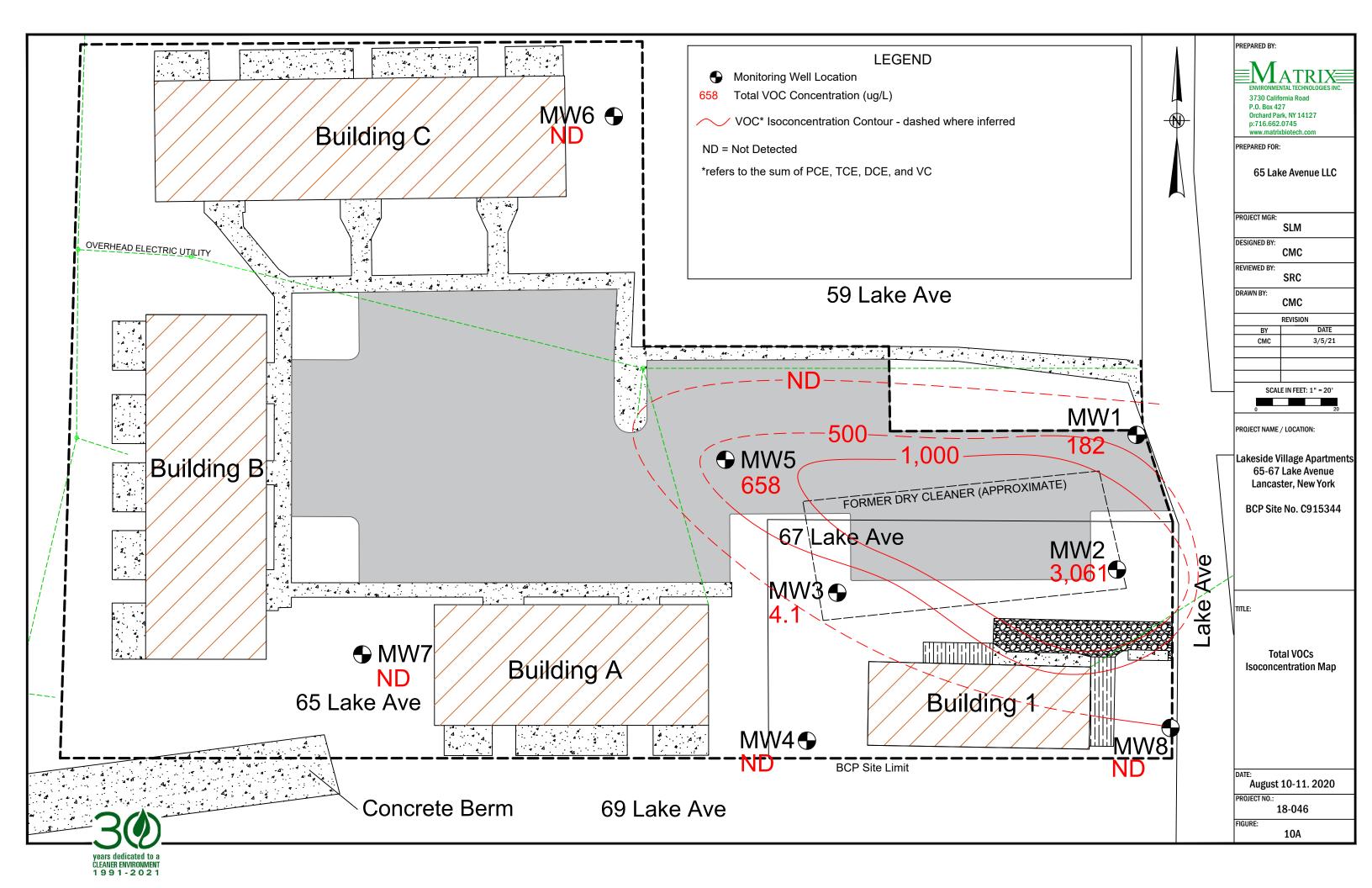

DATE:		
DATE:	AS NOTED	
PROJECT N	0.:	
	18-046	
FIGURE:		
	4B	

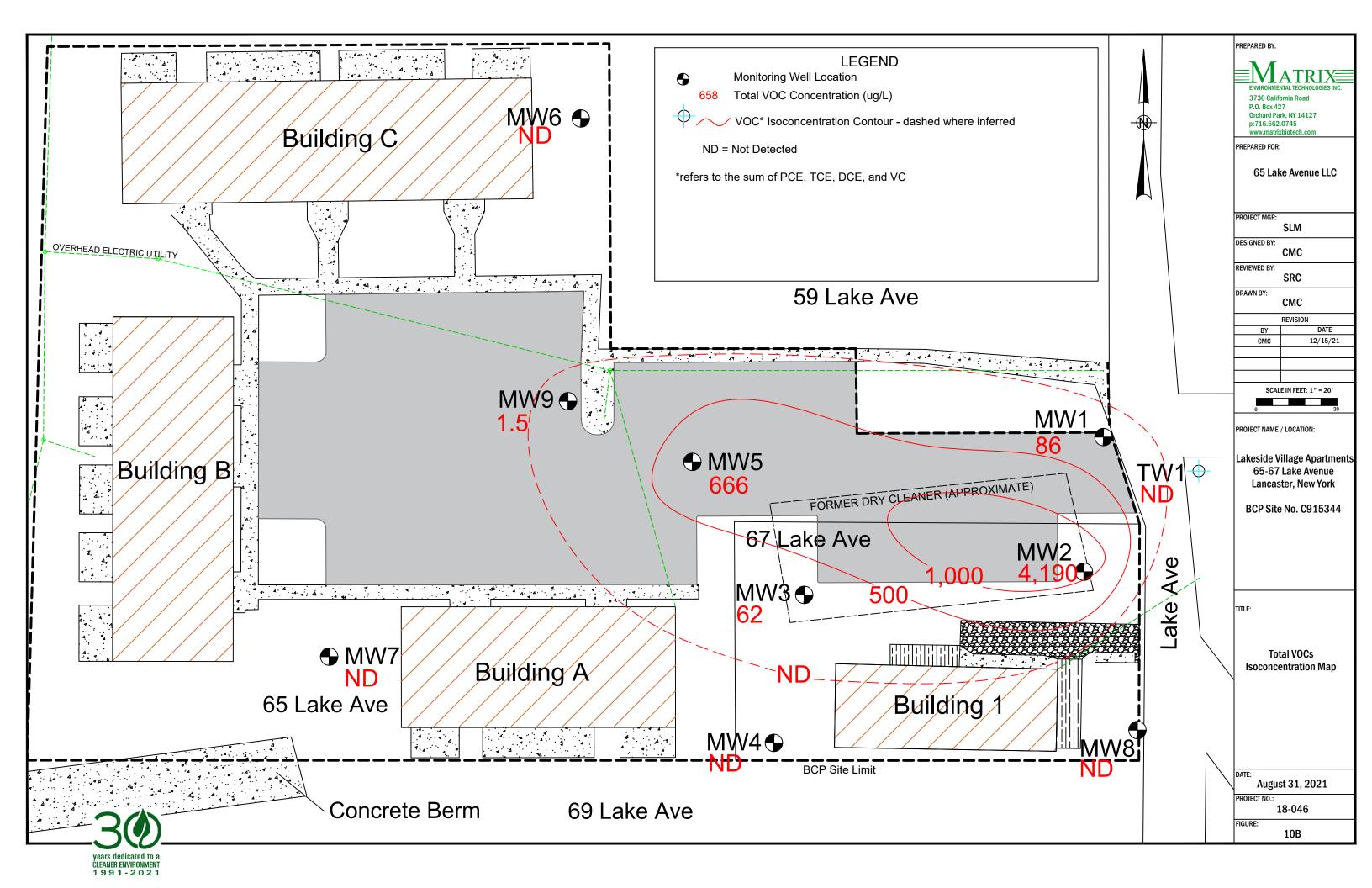

1 Course and
TPMW1
1,860
72.8
168
0.666
<0.331
<0.412
<0.719
<0.341
<0.373
<0.108
<0.994

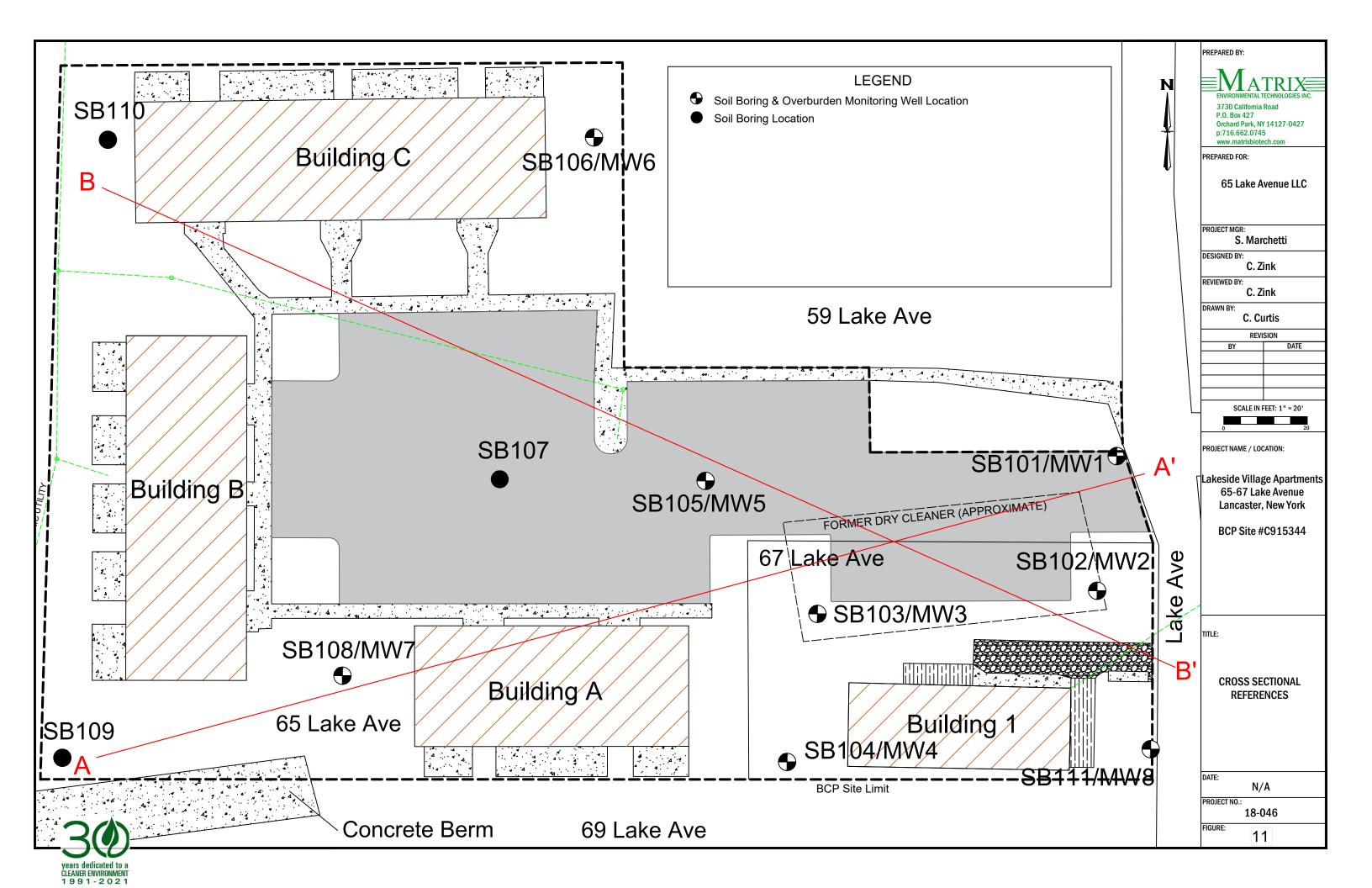

Ν

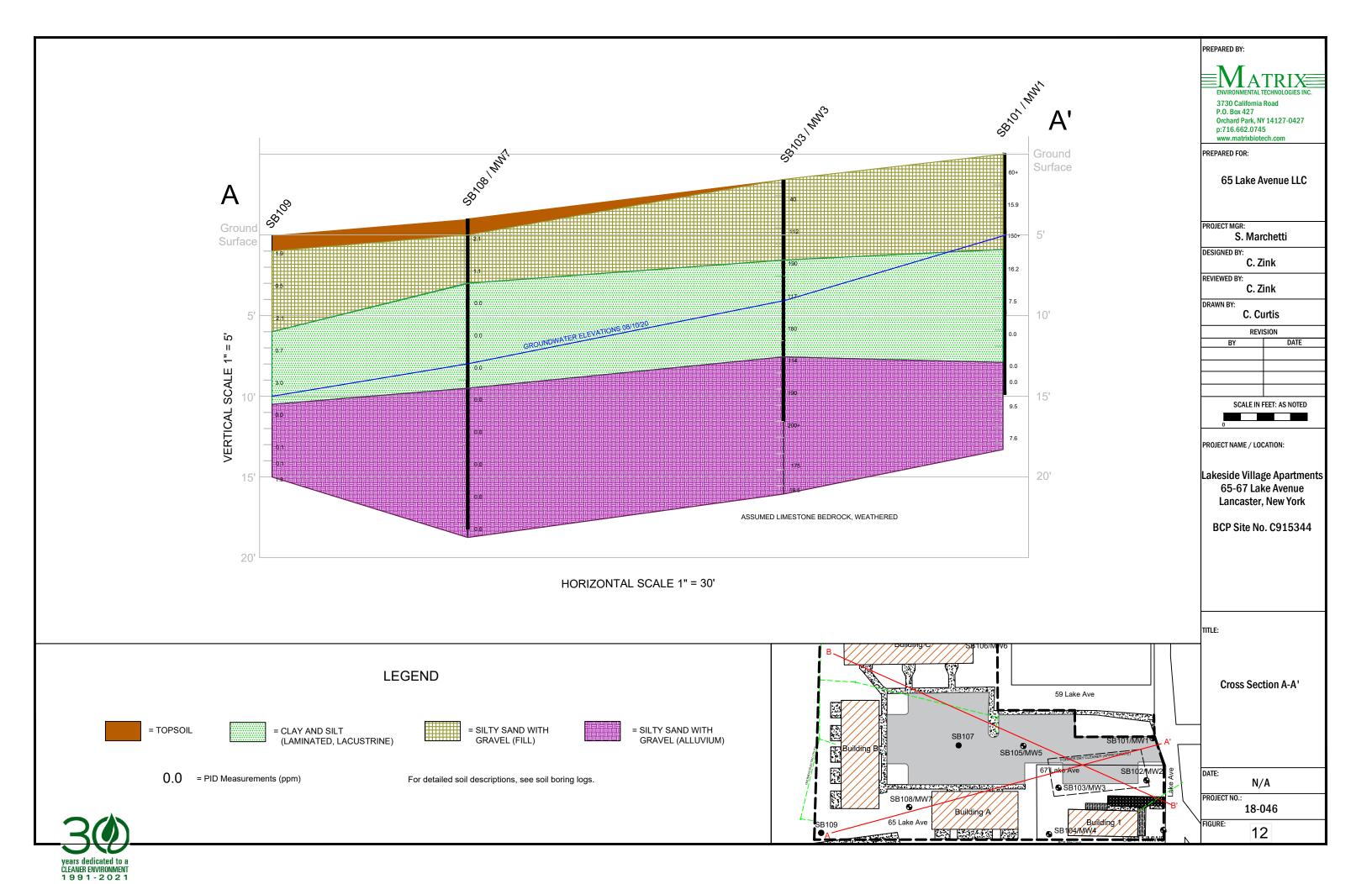


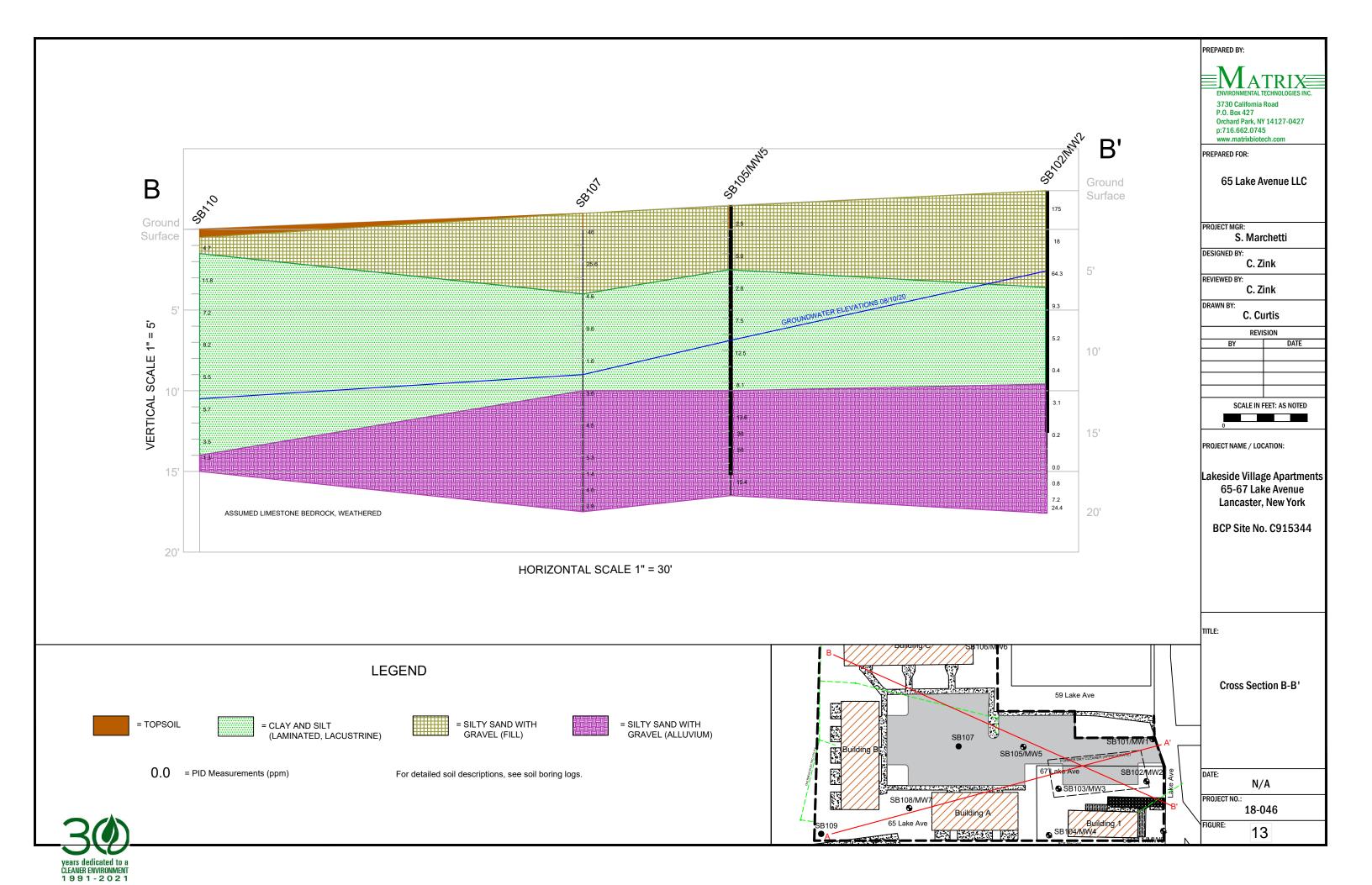


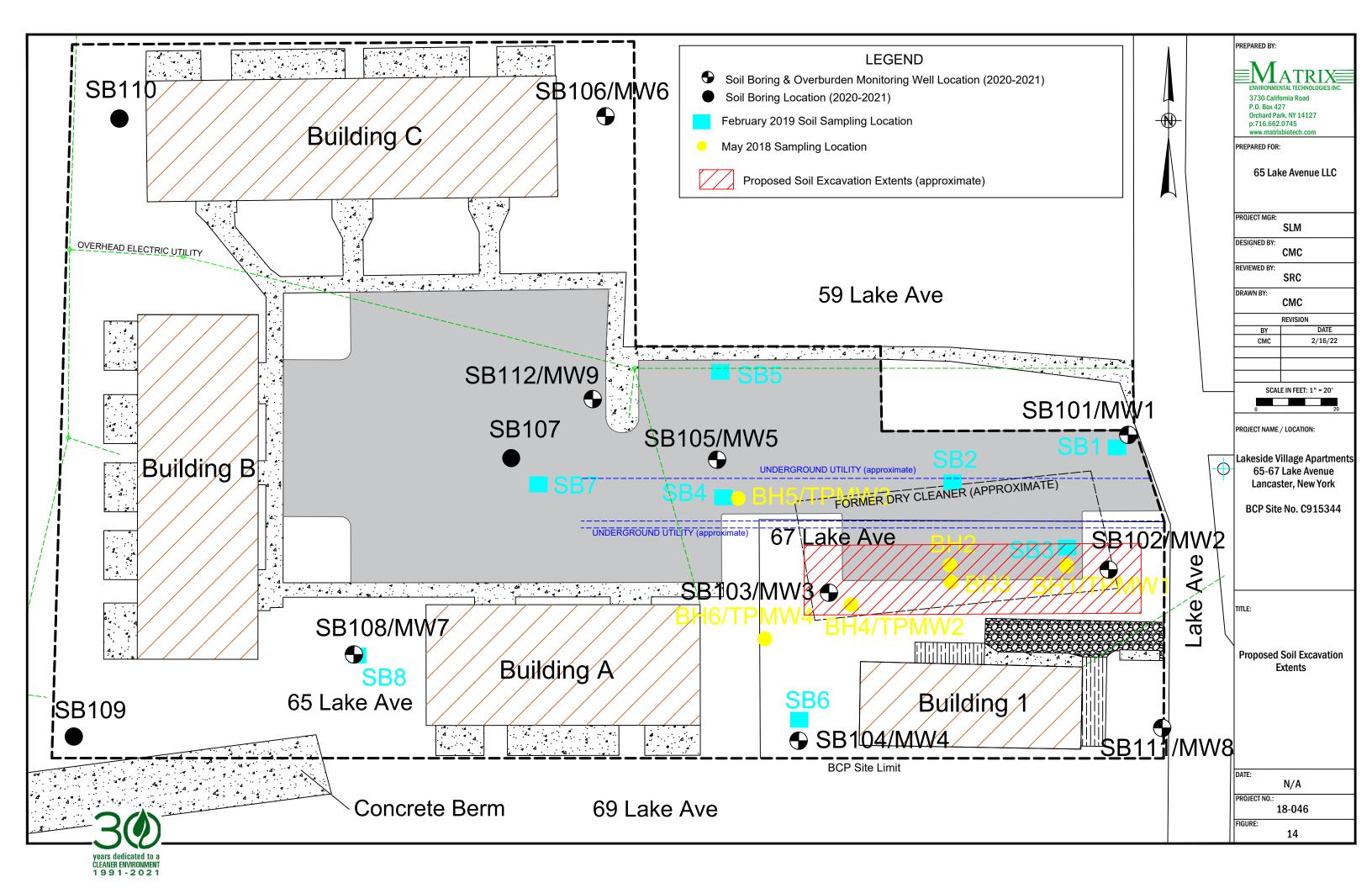


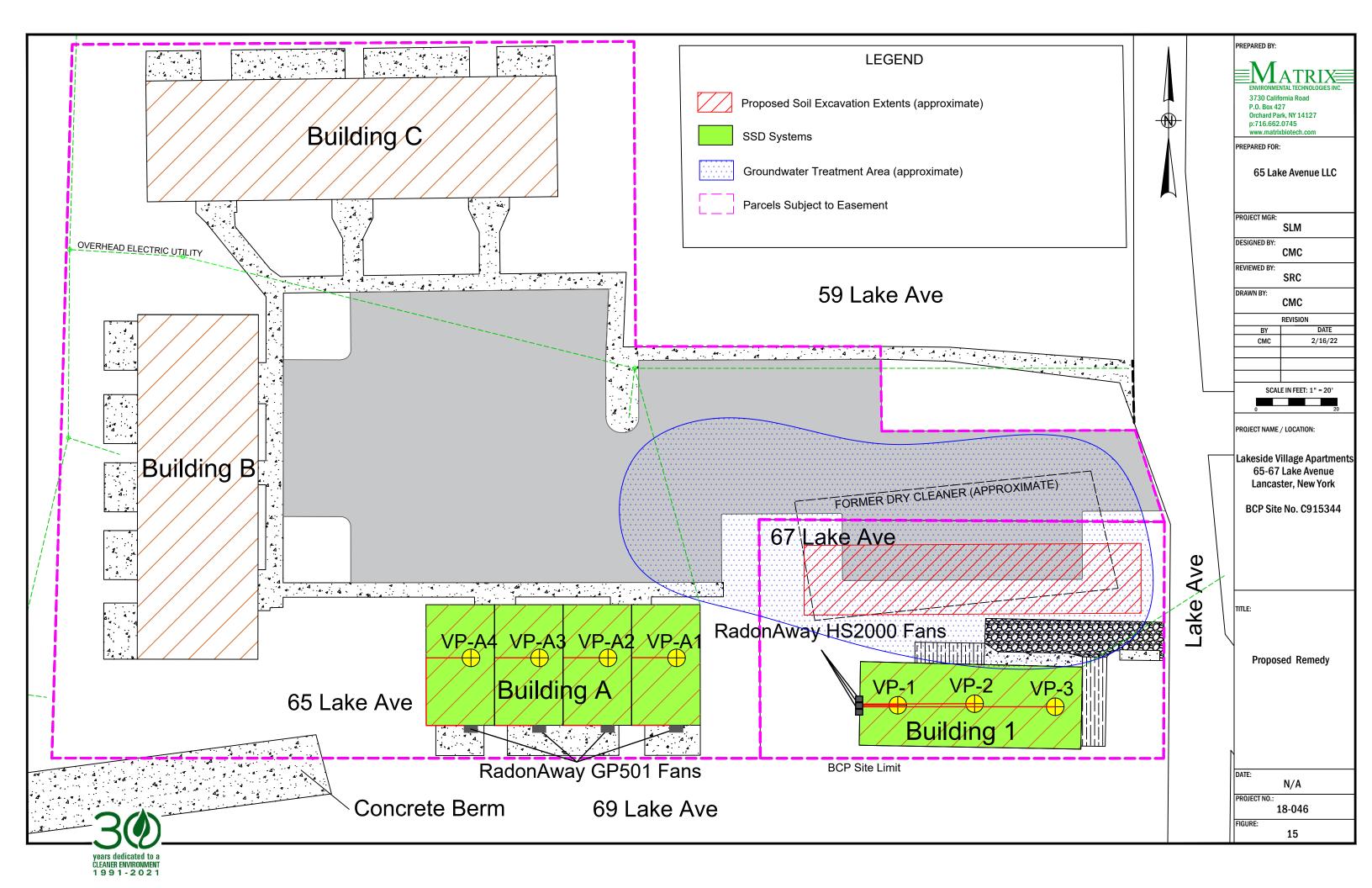












TABLES

TABLE 1Historical Soil Data Summary

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, NY NYSDEC Brownfield Cleanup Program Site #C915344

Target Compound List (TCL) VOCs	BH1 4'-6'	BH4 4'-6'	BH4 8'-10'	BH5 10'-12'	BH6 12'-14'	SB1 14-15.8'	SB2 16-18'	SB3 12-13.5'	SB4 8-10'	SB5 10-12'	SB6 6-8'	SB7 12-14'	SB8 4-6'
Sampling Date	5/1/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019
1,1-Dichloroethane	3.47	1.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	2.4J	2.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	18.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	417	44.7	ND	18.3 J	16.8	10.3	12.7	29.8	27.6	ND	19.2	ND
Benzene	0.975 J	2.44	2.47	ND	0.864 J	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	3.67	5.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene (Cumene)	ND	ND	1.79 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	1.03 J	0.898 J	0.893 J	0.905 J	1.21 J	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	13,000	118	20.4	110	2.71 J	ND	ND	9.8	ND	ND	ND	ND	ND
Toluene	2.05 J	5.6 J	4.52 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	8,260	241	6.68	2.44	1.19 J	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	3.6	2.54 J	ND	0.998 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	2,690	733	7.28	1.64 J	2.03 J	ND	ND	ND	81.7	ND	ND	ND	ND
m&p-Xylene	ND	5.5	5.08 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	ND	2.64 J	4.72 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	ND	1.32 J	1.95 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	3.07J	ND	ND	ND	ND	ND	ND	ND	6.2	ND	ND	ND	ND
				-					-		-	-	
Target Compound List (TCL) SVOCs	BH1 4'-6'	BH4 4'-6'	BH4 8'-10'	BH5 10'-12'	BH6 12'-14'	SB1 14-15.8'	SB2 16-18'	SB3 12-13.5'	SB4 8-10'	SB5 10-12'	SB6 6-8'	SB7 12-14'	SB8 4-6'
Sampling Date	5/1/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019	2/11/2019
Acenaphthene	ND	68.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	ND	69.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	13.8 J	216	20.6 J	13.1 J	ND	ND	11	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	22.0 J	475	29.3 J	33.2 J	ND	8.6	ND	9.9	ND	ND	ND	ND	ND
Benzo(a)pyrene	18.9 J	506	27.5 J	27.9 J	ND	ND	ND	10.8	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	32.6 J	739	43.5	44.1	ND	14	ND	20.4	ND	ND	ND	7.7	ND
Benzo(g,h,i)perylene	22.8 J	440	23.2 J	29.3 J	ND	ND	ND	11.1	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	11.7 J	212	16.0 J	16.5 J	ND	12.7	ND	ND	ND	ND	ND	ND	ND
Chrysene	45.6	634	51.8	48.9	ND	25.0	52.1	32.3	32.3	14.4	ND	18.8	ND
Dibenz(a,h)anthracene	ND	61.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	90.1	1,300	93.8	164	ND	25.7	ND	22	ND	ND	ND	11.1	ND
Fluorene	ND	126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	14.6 J	375	17.0 J	19.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	247	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	69.3	808	26.1 J	78.7	ND	34.9	59.6	11	ND	ND	ND	7.5	ND
	67.5	882	85.3	113	ND	33.9	13.7	21.6	ND	10	ND	10.5	ND

NOTES:

1. Results present in ug/kg.

2. ND = Not Detected

3. Results are shown for detected compounds only.

TABLE 2 Historical Groundwater Data Summary

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, NY NYSDEC Brownfield Cleanup Program Site #C915344

Target Compound List (TCL) VOCs	TPMW1	TPMW2	TPMW3	TPMW4	Sump A2	Sump A4
Sampling Date	5/11/2028	5/11/2018	5/11/2018	5/11/2018	2/11/2019	2/11/2019
1,2,4-Trimethylbenzene	ND	ND	5.3 J	ND	ND	ND
Benzene	ND	ND	19.5	ND	ND	ND
Chloroform	0.742 J	ND	ND	ND	ND	ND
Tetrachloroethene	1,860	4.45	116	ND	4.0	11.9
Toluene	ND	ND	40.8	ND	ND	ND
Trichloroethene	72.8	ND	ND	ND	ND	ND
Vinyl chloride	0.666 J	10.7	ND	ND	ND	ND
cis-1,2-Dichloroethene	168	6.76	11.2	ND	ND	ND
m&p-Xylene	ND	ND	20.3	ND	ND	ND
o-Xylene	ND	ND	8.82	ND	ND	ND
trans-1,2-Dichloroethene	3.85	ND	ND	ND	ND	ND

Target Compound List (TCL) SVOCs	TPMW1	TPMW2	TPMW3	TPMW4	Sump A2	Sump A4
Sampling Date	5/11/2028	5/11/2018	5/11/2018	5/11/2018	2/11/2019	2/11/2019
Benzo(a)anthracene	ND	0.200 J	0.400 J	ND	ND	ND
Benzo(a)pyrene	ND	0.132 J	0.416 J	ND	ND	ND
Fluoranthene	ND	0.655 J	1.71 J	ND	ND	ND
Naphthalene	ND	0.0672 J	ND	ND	ND	ND
Phenanthrene	ND	ND	0.855 J	ND	ND	ND
Pyrene	ND	0.476 J	1.08 J	ND	ND	ND

- 1. Results present in ug/L.
- 2. ND = Not Detected
- 3. Results are shown for detected compounds only.

TABLE 3 Analytical Testing Program Summary

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, NY NYSDEC Brownfield Cleanup Program Site #C915344

Location	Number of Proposed Locations	Matrix	TCL VOCS	TCL SVOCs	TAL Metals (Total)	TAL Metals (Dissolved)	TCL PCBs	Pesticides/ Herbicides	1,4-dioxane	PFAS
	EPA Method	Soil	8260	8270	6010, 7470	6010, 7470	8082	8081/8151	8270-SIM	537M
	EPA Method	Water/ Groundwater	8260C	8270D	6010C, 7471A	6010C, 7471A	8082A	8081/8151	8270-SIM	537M
	EPA Method	Air	TO-15	-	-	-	-	-	-	-
Surface Soil Samples				•						
Surface Soil Sample	9	Soil	9	9	9	-	9	9	9	9
Field Duplicate		Soil	1	1	1	-	1	1	1	1
MS/MSD		Soil	2	2	2	-	2	2	2	2
Equipment Blank		Water	1	1	1	-	1	1	1	1
Total			13	13	13	0	13	13	13	13
Soil Borings - Subsurfa	ace Samples									
Soil Borings	13	Soil	14	4	4	-	4	4	4	4
Field Duplicate		Soil	1	1	1	-	1	1	1	1
MS/MSD		Soil	2	2	2	-	2	2	2	2
Equipment Blank		Water	1	1	1	-	1	1	1	1
Total			18	8	8	0	8	8	8	8
Soil Borings - Soil Vap	or Samples									
Soil Vapor Samples	2	Air	2	-	-	-	-	-	-	-
Total			2	0	0	0	0	0	0	0
Monitoring Wells - 1st			-				-			
Monitoring Well	8	Groundwater	8	3	3	3	3	3	3	3
Field Duplicate		Groundwater	1	1	1	1	1	1	1	1
MS/MSD		Groundwater	2	2	2	2	2	2	2	2
Equipment Blank		Water	1	1	1	1	1	1	1	1
Trip Blank		Water	1	-	-	-	-	-	-	-
Total			13	7	7	7	7	7	7	7
Monitoring Wells - 2nd		0 1	10	1						
Monitoring Well	10	Groundwater	10	-	-	-	-	-	-	-
Field Duplicate		Groundwater	1	-	-	-	-	-	-	-
		Groundwater	-	-	-	-	-	-	-	-
MS/MSD				-	-	-	-	-	-	-
MS/MSD Equipment Blank		Water	-						1	
MS/MSD Equipment Blank Trip Blank			1	-	-	-	-	-	-	-
MS/MSD Equipment Blank		Water					- 0	- 0	- 0	- 0
MS/MSD Equipment Blank Trip Blank		Water Water	1 12	- 0	- 0	- 0	0	0	0	0
MS/MSD Equipment Blank Trip Blank		Water Water SOIL SAMPLES	1 12 29	-	-	-				
MS/MSD Equipment Blank Trip Blank		Water Water	1 12	- 0	- 0	- 0	0	0	0	0

Notes:

TCL VOCs - Target Compound List Volatile Organic Compounds.

TCL SVOCs - Target Compound List Semi-volatile Organic Compounds.

TAL Metals - Target Analyte List Metals.

TCL PCBs - Target Compound List Polychlorinated Biphenyls. PFAS - Polyfluoroalkyl Substances MS/MSD - Matrix Spike/Matrix Spike Duplicate

Table 4Surface Soil Sample Descriptions

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

July 20 - August 3, 2020

Surface Soil Sample Designation	Material at Surface	Sample Depth (ft. below grade)	Soil Description	USCS Group Symbol	OVM Reading (ppm)
	<i>.</i> .		POORLY GRADED SAND WITH SILT AND		
SS1	grass/sod	0.25 to 0.42	GRAVEL, dry, loose to medium dense	SP-SM	0.0
	gravel, sand overlying		POORLY GRADED SAND WITH SILT AND		
SS2	synthetic fabric	0.25 to 0.42	GRAVEL, dry to moist, medium dense	SP-SM	0.0
			POORLY GRADED GRAVEL WITH SAND, dry,		
SS3	grass/sod	0.25 to 0.42	medium dense	GP	0.0
	gravel, sand overlying		POORLY GRADED SAND WITH SILT AND		
SS4	synthetic fabric	0.25 to 0.42	GRAVEL, dry to moist, medium dense	SP-SM	0.0
			POORLY GRADED SAND WITH SILT AND		
SS5	grass/sod	0.25 to 0.42	GRAVEL, dry, medium dense	SP-SM	0.0
	gravel, sand overlying		POORLY GRADED GRAVEL WITH SAND, dry,		
SS6	synthetic fabric	0.25 to 0.42	medium dense	GP	0.0
SS7	grass/sod	0.25 to 0.42	SILT WITH SAND, dry to moist, medium dense	ML	0.0
			SILTY SAND WITH GRAVEL, dry to moist, loose to		
SS8	grass/sod	0.25 to 0.42	medium dense	SM	0.0
			SILTY SAND, trace gravel, dry to moist, loose to		
SS9	grass/sod	0.25 to 0.42	medium dense	SM	0.0

Table 5 Monitoring Well Locations and Ground Surface Elevations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

Well ID	Latitude (°N)	Longitude (°W)	Casing Elevation (ft)	Ground Surface Elevation (ft)
MW1	42.89664117	78.66792550	668.47	668.93
MW2	42.89657217	78.66796733	667.97	668.47
MW3	42.89654717	78.66821483	666.81	667.16
MW4	42.89643383	78.66833550	667.44	667.88
MW5	42.89662517	78.66834900	667.06	667.33
MW6	42.89693833	78.66852017	668.09	668.55
MW7	42.89651733	78.66875300	664.37	664.91
MW8	42.89643550	78.66787517	667.48	667.92
MW9	42.89671950	78.66845833	666.47	666.97
TW1	42.89660333	78.66763583	668.85	669.28
Sump A4			658.74	658.74

Table 6Groundwater Elevations Summary (feet)

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

Well ID	Casing Elevation	Depth to Product	Depth to Water	Product Thickness	Adj. Depth to Water	Groundwat er Elevations
MW1	668.47	-	5.51	-	5.51	662.96
MW2	667.97	-	5.55	-	5.55	662.42
MW3	666.81	-	7.71	-	7.71	659.10
MW4	667.44	-	10.08	-	10.08	657.36
MW5	667.06	-	8.05	-	8.05	659.01
MW6	668.09	_	11.20	-	11.20	656.89
MW7	664.37	_	8.44	-	8.44	655.93
MW8	667.48	-	7.78	-	7.78	659.70

August 10, 2020

Well ID	Casing Elevation	Depth to Product	Depth to Water	Product Thickness	Adj. Depth to Water	Groundwat er Elevations
MW1	668.47	-	5.43	-	5.43	663.04
MW2	667.97	-	5.07	-	5.07	662.90
MW3	666.81	-	7.34	-	7.34	659.47
MW4	667.44	-	10.90	-	10.90	656.54
MW5	667.06	-	6.46	-	6.46	660.60
MW6	668.09	-	11.29	-	11.29	656.80
MW7	664.37	-	8.36	-	8.36	656.01
MW8	667.48	-	7.79	-	7.79	659.69
MW9	666.47	-	8.38	-	8.38	658.09
TW1	668.85	-	7.12	_	7.12	661.73

August 31, 2021

Table 7 Remedial Investigation Soil VOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Protection of Groundwater SCO	Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 DUP				
	Sa	ampling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020				
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	ND	ND	ND	ND	ND				
2-Butanone	0.3	100	ND	ND	ND	ND	ND				
Acetone	0.05	100	ND	ND	ND	ND	ND				
Chloroform	0.37	49	0.0069	ND	ND	ND	ND				
cis-1,2-Dichloroethene	0.25	100	ND	ND	ND	ND	ND				
Cyclohexane	NA	NA	ND	ND	ND	ND	ND				
Isopropylbenzene	NA	NA	ND	ND	ND	ND	ND				
m&p-Xylenes	NA	100	ND	ND	ND	ND	ND				
Methyl Acetate	NA	NA	ND	ND	ND	ND	ND				
Methylcyclohexane	NA	NA	ND	ND	ND	ND	ND				
Methylene chloride	0.05	100	ND	ND	ND	ND	0.0034				
Tetrachloroethene	1.3	19	ND	ND	ND	ND	ND				
trans-1,2-Dichloroethene	0.19	100	ND	ND	ND	ND	ND				
Trichloroethene	0.47	21	ND	ND	ND	ND	ND				
Vinyl chloride	0.02	0.9	ND	ND	ND	ND	ND				
Xylenes (Total)	1.6	100	ND	ND	ND	ND	ND				
		Total	0.0069	ND	ND	ND	0.0034				

Tentatively Identified Compounds (TICs)	ND	ND	ND	0.0056J	ND

- 1. Analytical testing for VOCs via EPA Method 8260C by Hampton Clarke.
- 2. Results present in mg/kg.
- 3. ND = Not Detected; NA = Not Applicable
- 4. Regulatory standards and results are shown for detected compounds only. Vinyl chloride is also shown.
- 5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 6. "J" = estimated value
- 7. The applicable SCO (Protection of Groundwater or Restricted Residential) for each compound is shaded.
- 8. Yellow highlighted values exceed the applicable Protection of Groundwater SCO or Restricted Residential SCO.

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Protection of Groundwater SCO	Restricted- Residential Use SCO	SS5	SS6	SS7	SS8	SS9		
	Sa	ampling Date	7/21/2020	7/21/2020	7/20/2020	7/20/2020	7/20/2020		
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	ND	ND	ND	ND	ND		
2-Butanone	0.3	100	ND	ND	ND	ND	ND		
Acetone	0.05	100	ND	ND	ND	ND	ND		
Chloroform	0.37	49	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethene	0.25	100	ND	ND	ND	ND	ND		
Cyclohexane	NA	NA	ND	ND	ND	ND	ND		
Isopropylbenzene	NA	NA	ND	ND	ND	ND	ND		
m&p-Xylenes	NA	100	ND	ND	ND	ND	ND		
Methyl Acetate	NA	NA	ND	ND	ND	ND	ND		
Methylcyclohexane	NA	NA	ND	ND	ND	ND	ND		
Methylene chloride	0.05	100	ND	ND	ND	ND	ND		
Tetrachloroethene	1.3	19	ND	0.040	ND	ND	ND		
trans-1,2-Dichloroethene	0.19	100	ND	ND	ND	ND	ND		
Trichloroethene	0.47	21	ND	ND	ND	ND	ND		
Vinyl chloride	0.02	0.9	ND	ND	ND	ND	ND		
Xylenes (Total)	1.6	100	ND	ND	ND	ND	ND		
		Total	ND	0.040	ND	ND	ND		

	Tentatively Identified Compounds (TICs)	ND	0.0027J	ND	ND	ND
--	---	----	---------	----	----	----

- 1. Analytical testing for VOCs via EPA Method 8260C by Hampton Clarke.
- 2. Results present in mg/kg.
- 3. ND = Not Detected; NA = Not Applicable
- 4. Regulatory standards and results are shown for detected compounds only. Vinyl chloride is also shown.
- 5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 6. "J" = estimated value
- 7. The applicable SCO (Protection of Groundwater or Restricted Residential) for each compound is shaded.
- 8. Yellow highlighted values exceed the applicable Protection of Groundwater SCO or Restricted Residential SCO.

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Protection of Groundwater SCO	Restricted- Residential Use SCO	SB101 (5.0'-7.0')	SB102 (4.5'-5.5')	SB102 (9.8'-10.5')	SB102 (19.6'-20.0')	SB103 (19.5')
	Sa	ampling Date	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/22/2020
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	ND	0.37	ND	ND	ND
2-Butanone	0.3	100	ND	ND	ND	ND	ND
Acetone	0.05	100	ND	ND	0.024	ND	ND
Chloroform	0.37	49	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	100	ND	1.3	0.086	ND	ND
Cyclohexane	NA	NA	ND	ND	ND	ND	ND
Isopropylbenzene	NA	NA	ND	ND	ND	ND	ND
m&p-Xylenes	NA	100	ND	ND	ND	ND	ND
Methyl Acetate	NA	NA	ND	ND	0.0057	ND	ND
Methylcyclohexane	NA	NA	ND	ND	ND	ND	ND
Methylene chloride	0.05	100	ND	ND	ND	ND	0.010
Tetrachloroethene	1.3	19	0.75	3.4	0.035	ND	ND
trans-1,2-Dichloroethene	0.19	100	ND	ND	0.0022	ND	ND
Trichloroethene	0.47	21	ND	0.34	0.011	ND	ND
Vinyl chloride	0.02	0.9	ND	ND	ND	ND	ND
Xylenes (Total)	1.6	100	ND	ND	ND	ND	ND
	Total	0.75	5.4	0.164	ND	0.010	
Tentativel	Tentatively Identified Compounds (TICs)				0.0043J	55J	0.11J

NOILO.

- 1. Analytical testing for VOCs via EPA Method 8260C by Hampton Clarke.
- 2. Results present in mg/kg.
- 3. ND = Not Detected; NA = Not Applicable
- 4. Regulatory standards and results are shown for detected compounds only. Vinyl chloride is also shown.
- 5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 6. "J" = estimated value
- 7. The applicable SCO (Protection of Groundwater or Restricted Residential) for each compound is shaded.
- 8. Yellow highlighted values exceed the applicable Protection of Groundwater SCO or Restricted Residential SCO.

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Protection of Groundwater SCO	Restricted- Residential Use SCO	SB104 (16.0'-16.5')	SB105 (15.5'-17.0')	SB106 (19.5'-20.0')	SB107 (18.0'-18.5')	SB108 (17.0'-18.0')
	Sa	ampling Date	7/23/2020	7/23/2020	7/27/2020	7/28/2020	7/27/2020
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	ND	ND	ND	ND	ND
2-Butanone	0.3	100	ND	ND	ND	ND	ND
Acetone	0.05	100	0.019	ND	ND	ND	ND
Chloroform	0.37	49	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	100	ND	ND	ND	ND	ND
Cyclohexane	NA	NA	ND	ND	ND	0.0037	ND
Isopropylbenzene	NA	NA	ND	ND	0.0048	ND	ND
m&p-Xylenes	NA	100	ND	ND	ND	0.0012	ND
Methyl Acetate	NA	NA	ND	ND	ND	ND	ND
Methylcyclohexane	NA	NA	ND	ND	ND	0.0036	0.0015
Methylene chloride	0.05	100	0.0080	0.0035	0.0062	0.0066	ND
Tetrachloroethene	1.3	19	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.19	100	ND	ND	ND	ND	ND
Trichloroethene	0.47	21	ND	ND	ND	ND	ND
Vinyl chloride	0.02	0.9	ND	ND	ND	ND	ND
Xylenes (Total)	1.6	100	ND	ND	ND	0.0012	ND
Total			0.027	0.0035	0.0110	0.0163	0.0015
Tentativel	oounds (TICs)	0.0025J	ND	0.73J	0.019J	0.0036J	

Tentatively Identified Compounds (TICs)	0.0025J	ND	0.73J	0.019J	0.0
					-

- 1. Analytical testing for VOCs via EPA Method 8260C by Hampton Clarke.
- 2. Results present in mg/kg.
- 3. ND = Not Detected; NA = Not Applicable
- 4. Regulatory standards and results are shown for detected compounds only. Vinyl chloride is also shown.
- 5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 6. "J" = estimated value
- 7. The applicable SCO (Protection of Groundwater or Restricted Residential) for each compound is shaded.
- 8. Yellow highlighted values exceed the applicable Protection of Groundwater SCO or Restricted Residential SCO.

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

1,1,2-Trichloro-1,2,2-trifluoroethaneNANANDNDNDNDNDND2-Butanone0.3100NDNDNDNDNDND0.410.Acetone0.05100NDNDNDNDNDNDNDChloroform0.3749NDNDNDNDNDNDcis-1,2-Dichloroethene0.25100NDNDNDNDNDCyclohexaneNANANANDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDND	PARAMETER	Protection of Groundwater SCO	Restricted- Residential Use SCO	SB109 (14.0'-15.0')	SB109 (14.0'-15.0') DUP	SB110 (14.0'-15.0')	SB111 (17.5')	SB112 (5.7')
2-Butanone0.3100NDNDNDND0.410.Acetone0.05100NDNDNDNDNDNDNDChloroform0.3749NDNDNDNDNDNDNDcis-1,2-Dichloroethene0.25100NDNDNDNDNDNDCyclohexaneNANANANDNDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDND		Sa	ampling Date	7/28/2020	7/28/2020	7/28/2020	7/22/2020	8/16/2021
Acetone0.05100NDNDNDNDNDNDChloroform0.3749NDNDNDNDNDNDcis-1,2-Dichloroethene0.25100NDNDNDNDNDCyclohexaneNANANANDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDM&p-XylenesNA100NDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDNDND	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	ND	ND	ND	ND	ND
Chloroform0.3749NDNDNDNDNDNDcis-1,2-Dichloroethene0.25100NDNDNDNDNDNDCyclohexaneNANANANDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDMethylcyclohexaneNANANA0.0021NDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDNDND	2-Butanone	0.3	100	ND	ND	ND	ND	0.410J
cis-1,2-Dichloroethene0.25100NDNDNDNDNDNDCyclohexaneNANANANDNDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDNDMethylcyclohexaneNANA0.0021NDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDND	Acetone	0.05	100	ND	ND	ND	ND	ND
CyclohexaneNANANANDNDNDNDNDNDIsopropylbenzeneNANANANDNDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDNDMethylcyclohexaneNANANA0.0021NDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDND	Chloroform	0.37	49	ND	ND	ND	ND	ND
IsopropylbenzeneNANANANDNDNDNDNDNDm&p-XylenesNA100NDNDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDNDMethylcyclohexaneNANANA0.0021NDNDNDNDNDMethylene chloride0.05100NDNDNDNDNDNDTetrachloroethene1.319NDNDNDNDNDtrans-1,2-Dichloroethene0.4721NDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDNDND	cis-1,2-Dichloroethene	0.25	100	ND	ND	ND	ND	ND
m&p-XylenesNA100NDNDNDNDNDNDMethyl AcetateNANANANDNDNDNDNDNDMethylcyclohexaneNANA0.0021NDNDNDNDNDNDMethylene chloride0.05100NDNDNDND0.0024NDTetrachloroethene1.319NDNDNDNDNDNDtrans-1,2-Dichloroethene0.19100NDNDNDNDNDTrichloroethene0.020.9NDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDND	Cyclohexane	NA	NA	ND	ND	ND	ND	ND
Methyl AcetateNANANANDNDNDNDNDNDMethylcyclohexaneNANANA0.0021NDNDNDNDNDMethylene chloride0.05100NDNDNDND0.0024NDTetrachloroethene1.319NDNDNDNDNDNDtrans-1,2-Dichloroethene0.19100NDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDND	Isopropylbenzene	NA	NA	ND	ND	ND	ND	ND
MethylcyclohexaneNANA0.0021NDNDNDNDMethylene chloride0.05100NDNDNDND0.0024NDTetrachloroethene1.319NDNDNDNDNDNDtrans-1,2-Dichloroethene0.19100NDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDXylenes (Total)1.6100NDNDNDNDND	m&p-Xylenes	NA	100	ND	ND	ND	ND	ND
Methylene chloride0.05100NDNDND0.0024NDTetrachloroethene1.319NDNDNDNDNDNDtrans-1,2-Dichloroethene0.19100NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDND	Methyl Acetate	NA	NA	ND	ND	ND	ND	ND
Tetrachloroethene1.319NDNDNDNDNDNDtrans-1,2-Dichloroethene0.19100NDNDNDNDNDNDTrichloroethene0.4721NDNDNDNDNDNDVinyl chloride0.020.9NDNDNDNDNDNDXylenes (Total)1.6100NDNDNDNDNDND	Methylcyclohexane	NA	NA	0.0021	ND	ND	ND	ND
trans-1,2-Dichloroethene 0.19 100 ND ND <t< td=""><td>Methylene chloride</td><td>0.05</td><td>100</td><td>ND</td><td>ND</td><td>ND</td><td>0.0024</td><td>ND</td></t<>	Methylene chloride	0.05	100	ND	ND	ND	0.0024	ND
Trichloroethene 0.47 21 ND	Tetrachloroethene	1.3	19	ND	ND	ND	ND	ND
Vinyl chloride 0.02 0.9 ND	trans-1,2-Dichloroethene	0.19	100	ND	ND	ND	ND	ND
Xylenes (Total) 1.6 100 ND	Trichloroethene	0.47	21	ND	ND	ND	ND	ND
	Vinyl chloride	0.02	0.9	ND	ND	ND	ND	ND
Total 0.0021 ND ND 0.0024 0.410	Xylenes (Total)	1.6	100	ND	ND	ND	ND	ND
			Total	0.0021	ND	ND	0.0024	0.410

	Tentatively Identified Compounds (TICs)	0.0095J	0.0075J	ND	0.003J	
--	---	---------	---------	----	--------	--

NOTES:

1. Analytical testing for VOCs via EPA Method 8260C by Hampton Clarke.

2. Results present in mg/kg.

- 3. ND = Not Detected; NA = Not Applicable
- 4. Regulatory standards and results are shown for detected compounds only. Vinyl chloride is also shown.
- 5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 6. "J" = estimated value
- 7. The applicable SCO (Protection of Groundwater or Restricted Residential) for each compound is shaded.

8. Yellow highlighted values exceed the applicable Protection of Groundwater SCO or Restricted Residential SCO.

Table 8Remedial Investigation Soil SVOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 DUP	SS5	SS6	SS7
	Sampling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020
Benzo[a]anthracene	1	0.22	ND	ND	ND	ND	ND	0.16	ND
Benzo[a]pyrene	1	0.27	ND	ND	ND	ND	ND	0.17	ND
Benzo[b]fluoranthene	1	0.39	0.059	ND	ND	0.053	0.069	0.25	ND
Benzo[g,h,i]perylene	100	0.22	ND	ND	ND	ND	ND	0.12	ND
Benzo[k]fluoranthene	3.9	0.15	ND	ND	ND	ND	ND	0.089	ND
bis(2-Ethylhexyl)phthalate	NA	ND	ND	ND	ND	ND	ND	0.10	ND
Carbazole	NA	0.041	ND	ND	ND	ND	ND	ND	ND
Chrysene	3.9	0.330	0.046	ND	ND	0.042	0.044	0.19	ND
Dibenzo[a,h]anthracene	0.33	0.045	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	NA	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	0.73	0.063	0.042	ND	0.065	0.066	0.31	ND
Indeno[1,2,3-cd]pyrene	0.5	0.19	ND	ND	ND	ND	ND	0.10	ND
Naphthalene	100	ND	ND	ND	ND	ND	ND	0.010	ND
Phenanthrene	100	0.34	ND	ND	ND	ND	ND	0.15	ND
Pyrene	100	0.62	0.061	0.039	ND	0.058	0.061	0.29	ND
	Total	3.55	0.229	0.081	ND	0.218	0.240	1.94	ND
Tentatively Identified Compounds (TICs)		8.8J	6.0J	7.2J	8J	8.4J	9.0J	7.5J	4.1J

- 1. Analytical testing for SVOCs via EPA Method 8270D by Hampton Clarke.
- 2. Results present in mg/kg.
- 3. ND = Not Detected
- 4. NA = Not Applicable
- 5. Regulatory standards and results are shown for detected compounds only.
- 6. Soil Cleanup Objectives (SCOs) from NYCRR Part 375
- 7. "J" = estimated value

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SS8	SS9	SB101 (5.0'-7.0')	SB105 (15.5'-17.0')	SB108 (17.0'-18.0')	SB109 (14.0'-15.0')	SB109 (14.0'-15.0') DUP
Sa	ampling Date	7/20/2020	7/20/2020	7/21/2020	7/23/2020	7/27/2020	7/28/2020	7/28/2020
Benzo[a]anthracene	1	0.099	0.10	ND	ND	ND	ND	ND
Benzo[a]pyrene	1	0.11	0.11	ND	ND	ND	ND	ND
Benzo[b]fluoranthene	1	0.18	0.17	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	100	0.097	0.081	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	3.9	0.056	0.049	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	NA	0.07	0.066	ND	ND	ND	ND	ND
Carbazole	NA	ND	ND	ND	ND	ND	ND	ND
Chrysene	3.9	0.13	0.12	ND	ND	ND	ND	ND
Dibenzo[a,h]anthracene	0.33	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	NA	ND	ND	0.023	ND	ND	ND	ND
Fluoranthene	100	0.24	0.19	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.08	0.071	ND	ND	ND	ND	ND
Naphthalene	100	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	0.12	0.073	ND	ND	ND	ND	ND
Pyrene	100	0.22	0.18	ND	ND	ND	ND	ND
	Total	1.40	1.21	0.023	ND	ND	ND	ND
Tentatively Identified Compounds (TICs)		7.1J	7.7J	6.2J	11J	13J	8.9J	5.3J

NOTES:

1. Analytical testing for SVOCs via EPA Method 82

2. Results present in mg/kg.

3. ND = Not Detected

4. NA = Not Applicable

5. Regulatory standards and results are showr

6. Soil Cleanup Objectives (SCOs) from NYCF

7. "J" = estimated value

Table 9Remedial Investigation Soil Inorganics Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Analytical Method	Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 DUP	SS5	SS6	SS7
	Sa	mpling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020
Cr (Hexavalent) 7196A 110		ND	ND	ND	ND	ND	ND	ND	ND	
CR(Trivalent)	CALC	180	12	13	11	11	13	14	16	13
Mercury	7471B	0.81	ND	ND	ND	ND	ND	ND	0.17	ND
Aluminum	6010D	NA	8,600	8,400	7,000	8,300	9,300	9,500	7,500	7,700
Barium	6010D	400	54	56	41	52	57	58	49	66
Calcium	6010D	NA	13,000	22,000	55,000	3,400	4,900	8,400	11,000	64,000
Cobalt	6010D	NA	6.1	7.6	6.7	7.5	8.0	10	5.6	7.1
Copper	6010D	270	20	22	17	14	17	17	25	16
Iron	6010D	NA	18,000	18,000	17,000	16,000	19,000	25,000	20,000	17,000
Lead	6010D	400	64	47	33	37	42	40	76	20
Magnesium	6010D	NA	4,900	5,400	7,200	3,400	4,200	4,100	3,200	21,000
Manganese	6010D	2,000	340	430	310	560	450	580	400	460
Nickel	6010D	310	16	20	18	15	16	18	16	16
Potassium	6010D	NA	860	910	900	920	1100	870	730	1,400
Sodium	6010D	NA	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	6010D	10,000	100	88	65	82	83	74	160	100
Antimony	6020B	NA	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	6020B	16	5.5	5.7	7.1	5.9	7.2	7.4	5.1	3.1
Beryllium	6020B	72	0.34	0.31	0.35	0.38	0.39	0.45	0.40	0.29
Cadmium	6020B	4.3	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	6020B	180	ND	ND	ND	ND	ND	ND	ND	ND
Silver	6020B	180	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	6020B	NA	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	6020B	NA	14	14	15	17	18	18	16	13

NOTES:

1. Analytical testing via EPA Methods 6010D, 6020B, 7471B, 7196A by Hampton Clarke as noted.

2. Results present in mg/kg.

3. ND = Not Detected

4. NA = Not Applicable

5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375

Table 9 (Continued)Remedial Investigation Soil Inorganics Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Analytical Method	Restricted- Residential Use SCO	SS8	SS9	SB101 (5.0'-7.0')	SB105 (15.5'-17.0')	SB108 (17.0'-18.0')	SB109 (14.0'-15.0')	SB109 (14.0'-15.0') DUP
	Sa	mpling Date	7/20/2020	7/20/2020	7/21/2020	7/23/2020	7/27/2020	7/28/2020	7/28/2020
Cr (Hexavalent)	7196A	110	ND	ND	ND	ND	ND	ND	ND
CR(Trivalent)	CALC	180	23	12	6.8	ND	6.7	8.2	ND
Mercury	7471B	0.81	ND	0.16	ND	ND	ND	ND	ND
Aluminum	6010D	NA	8,000	6,500	5,300	2,300	3,200	3,600	2,400
Barium	6010D	400	80	68	38	27	19	31	18
Calcium	6010D	NA	54,000	5,000	24,000	120,000	100,000	92,000	120,000
Cobalt	6010D	NA	6.2	6.7	4.6	4.2	4.6	6.9	3.3
Copper	6010D	270	30	28	17	11	17	17	7.8
Iron	6010D	NA	16,000	16,000	14,000	8,500	9,500	12,000	8,500
Lead	6010D	400	100	300	290	ND	ND	6.1	ND
Magnesium	6010D	NA	13,000	3,000	3,600	25,000	21,000	14,000	20,000
Manganese	6010D	2,000	340	370	470	220	150	190	200
Nickel	6010D	310	17	20	16	16	16	24	12
Potassium	6010D	NA	730	ND	ND	640	670	840	ND
Sodium	6010D	NA	ND	ND	ND	ND	ND	ND	ND
Zinc	6010D	10,000	170	140	55	29	37	46	35
Antimony	6020B	NA	ND	ND	ND	ND	ND	ND	ND
Arsenic	6020B	16	7.4	9.7	5.2	3.2	3.3	3.9	2.4
Beryllium	6020B	72	0.40	0.48	0.30	ND	ND	ND	ND
Cadmium	6020B	4.3	0.49	0.86	ND	ND	ND	ND	ND
Selenium	6020B	180	ND	ND	ND	ND	ND	ND	ND
Silver	6020B	180	0.36	ND	ND	ND	ND	ND	ND
Thallium	6020B	NA	ND	ND	ND	ND	ND	ND	ND
Vanadium	6020B	NA	11	15	12	8.0	8.0	7.6	7.4

NOTES:

1. Analytical testing via EPA Methods 6010D, 6020B, 7471I

2. Results present in mg/kg.

3. ND = Not Detected

4. NA = Not Applicable

5. Soil Cleanup Objectives (SCOs) from NYCRR Part

Table 10 Remedial Investigation Soil Herbicides and Pesticides Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 Field DUP	SS5	SS6	SS7	SS8	SS9
Sa	mpling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020	7/20/2020	7/20/2020
Herbicides											
2,4,5-T	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-D	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dicamba	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silvex	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides											
a-Chlordane	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0.097	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane (Total)	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p'-DDD	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p'-DDE	8.9	0.0075	0.0080	ND	0.0065	0.0068	ND	ND	ND	0.0037	0.17
p,p'-DDT	7.9	ND	ND	ND	0.0038d	0.0037d	ND	ND	ND	0.0095	0.073
Toxaphene	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
y-Chlordane	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for herbicides via EPA Method 8151A and for pesticides via EPA Method 8081B by Hampton Clarke.

2. Results present in mg/kg.

3. ND = Not Detected

4. NA = Not Applicable

5. Soil Cleanup Objectives (SCOs) from NYCRR Part 375

6. "d" = result was obtained from the analysis of a dilution

Table 10 (Continued) Remedial Investigation Soil Herbicides and Pesticides Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SB101 (5.0'-7.0')	SB105 (15.5'-17.0')	SB108 (17.0'-18.0')	SB109 (14.0'-15.0')	SB109 (14.0'-15.0') DUP
Sa	mpling Date	7/21/2020	7/23/2020	7/27/2020	7/28/2020	7/28/2020
Herbicides						
2,4,5-T	NA	ND	ND	ND	ND	ND
2,4-D	NA	ND	ND	ND	ND	ND
Dicamba	NA	ND	ND	ND	ND	ND
Silvex	100	ND	ND	ND	ND	ND
Pesticides						
a-Chlordane	4.2	ND	ND	ND	ND	ND
Aldrin	0.097	ND	ND	ND	ND	ND
Alpha-BHC	0.48	ND	ND	ND	ND	ND
beta-BHC	0.36	ND	ND	ND	ND	ND
Chlordane (Total)	4.2	ND	ND	ND	ND	ND
delta-BHC	100	ND	ND	ND	ND	ND
Dieldrin	0.2	ND	ND	ND	ND	ND
Endosulfan I	24	ND	ND	ND	ND	ND
Endosulfan II	24	ND	ND	ND	ND	ND
Endosulfan Sulfate	24	ND	ND	ND	ND	ND
Endrin	11	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	ND	ND	ND	ND	ND
Endrin Ketone	NA	ND	ND	ND	ND	ND
gamma-BHC	1.3	ND	ND	ND	ND	ND
Heptachlor	2.1	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	ND	ND	ND	ND	ND
Methoxychlor	NA	ND	ND	ND	ND	ND
p,p'-DDD	13	ND	ND	ND	ND	ND
p,p'-DDE	8.9	ND	ND	ND	ND	ND
p,p'-DDT	7.9	ND	ND	ND	ND	ND
Toxaphene	NA	ND	ND	ND	ND	ND
y-Chlordane	4.2	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for herbicides via EPA Metho

2. Results present in mg/kg.

3. ND = Not Detected

4. NA = Not Applicable

5. Soil Cleanup Objectives (SCOs) from NYC

6. "d" = result was obtained from the analysis

Table 11 Remedial Investigation Soil PCB Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 DUP	SS5	SS6	SS7	SS8
	Sampling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020	7/20/2020
Aroclor (Total)	1	ND	ND	ND	ND	ND	ND	0.062	ND	ND
Aroclor-1016	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	1	ND	ND	ND	ND	ND	ND	0.062	ND	ND
Aroclor-1260	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1262	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1268	1	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for PCBs via EPA Method 8082A by Hampton Clarke.

2. Results present in mg/kg.

3. ND = Not Detected

4. Soil Cleanup Objectives (SCOs) from NYCRR Part 375

Table 11 (Continued)Remedial Investigation Soil PCB Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted- Residential Use SCO	SS9	SB101 (5.0'-7.0')	SB105 (15.5'-17.0')	SB108 (17.0'-18.0')	SB109 (14.0'-15.0')	SB109 (14.0'-15.0') DUP
Sa	ampling Date	7/20/2020	7/21/2020	7/23/2020	7/27/2020	7/28/2020	7/28/2020
Aroclor (Total)	1	ND	ND	ND	ND	ND	ND
Aroclor-1016	1	ND	ND	ND	ND	ND	ND
Aroclor-1221	1	ND	ND	ND	ND	ND	ND
Aroclor-1232	1	ND	ND	ND	ND	ND	ND
Aroclor-1242	1	ND	ND	ND	ND	ND	ND
Aroclor-1248	1	ND	ND	ND	ND	ND	ND
Aroclor-1254	1	ND	ND	ND	ND	ND	ND
Aroclor-1260	1	ND	ND	ND	ND	ND	ND
Aroclor-1262	1	ND	ND	ND	ND	ND	ND
Aroclor-1268	1	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for PCBs via EPA Me

2. Results present in mg/kg.

3. ND = Not Detected

4. Soil Cleanup Objectives (SCOs) fro

Table 12 Remedial Investigation Soil Cyanide Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

Restricted- Residential Use SCO	SS1	SS2	SS3	SS4	SS4 Field Duplicate	SS5	SS6	SS7	SS8	SS9	SB101 (5.0'-7.0')
	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020	7/20/2020	7/20/2020	7/21/2020
27	ND	ND	ND	ND	ND	ND	0.52	ND	ND	ND	ND

Restricted- Residential Use SCO	SB105 (15.5'- 17.0')	SB108 (17.0'- 18.0')	SB109 (14.0'- 15.0')	SB109 (14.0'- 15.0') DUP
	7/23/2020	7/27/2020	7/28/2020	7/28/2020
27	ND	ND	ND	ND

NOTES:

1. Analytical testing for cyanide via EPA Method 9012B by Hampton Clarke.

2. Results present in mg/kg.

3. ND = Not Detected

4. Soil Cleanup Objectives (SCOs) from NYCRR Part 375

Table 13Remedial Investigation Soil PFAS Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	Restricted Residential Use Guidance Value	SS1	SS2	SS3	SS4	SS4 Field Duplicate	SS5	SS6	SS7
	Sampling Date	7/20/2020	8/3/2020	7/20/2020	7/23/2020	7/23/2020	7/21/2020	7/21/2020	7/20/2020
Perfluorooctanoic acid	33	0.40	0.65	ND<0.56	ND<0.63	ND<0.66	ND<0.60	ND<0.59	ND<0.49
Perfluorooctanesulfonic acid	44	0.61	0.34	0.30	0.42	0.39	ND<0.60	0.53	ND<0.49

PARAMETER	Restricted Residential Use Guidance Value	SS8	SS9	SB101 (5.0'-7.0')	SB105 (15.5'- 17.0')	SB108 (17.0'- 18.0')	SB109 (14.0'- 15.0')	SB109 (14.0'- 15.0') DUP
	Sampling Date	7/20/2020	7/20/2020	7/21/2020	7/23/2020	7/27/2020	7/28/2020	7/28/2020
Perfluorooctanoic acid	33	0.76	0.34	ND<0.68	ND<0.48	ND<0.52	ND<0.45	ND<0.53
Perfluorooctanesulfonic acid	44	1.5	0.98	ND<0.68	ND<0.48	ND<0.52	ND<0.45	ND<0.53

NOTES:

1. Analytical testing for PFOA/PFOS via EPA Method

2. Results present in ug/kg.

3. ND = Not Detected

4. NYSDEC Guidance Values from *Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part* 375 *Remedial Programs*, January 2021.

Table 14 Remedial Investigation Groundwater VOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	MW1	MW1 Duplicate	MW2	MW3	MW4	MW5	MW6	MW7	MW8
	Sampling Date	8/11/2020	8/11/2020	8/10/2020	8/11/2020	8/10/2020	8/11/2020	8/12/2020	8/12/2020	8/10/2020
cis-1,2-Dichloroethene	5	ND	ND	670	ND	ND	140	ND	ND	ND
Tetrachloroethene	5	180	150	2,200	2.9	ND	480	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	11	ND	ND	5.3	ND	ND	ND
Trichloroethene	5	2.3	2.2	160	1.2	ND	33	ND	ND	ND
Vinyl chloride	2	ND	ND	20	ND	ND	ND	ND	ND	ND
	Total	182	152	3061	4.1	ND	658	ND	ND	ND
Tentatively Identifie	ND	ND	ND	34J	ND	ND	ND	ND	ND	

NOTES:

1. Analytical testing for VOCs via EPA Method 8260 by Hampton Clarke.

2. Results present in ug/L.

3. ND = Not Detected

4. Results and regulatory stanards are shown for detected compounds only.

5. NA = Not Applicable

6. Yellow highlighting indicates exceedance of NYS Ambient Water Quality Standard (TOGS 1.1.1) for Class GA waters.

Table 14 (Continued) Remedial Investigation Groundwater VOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)	Equipment Blank (Groundwater)	Trip Blank
	Sampling Date	7/22/2020	7/23/2020	8/12/2020	8/12/2020
cis-1,2-Dichloroethene	5	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND
	Total	ND	ND	ND	ND
Tentatively Identifie	ed Compounds (TICs)	ND	ND	ND	ND

NOTES:

1. Analytical testing for VOCs via EPA Method 8260 by Hampton Cla

2. Results present in ug/L.

3. ND = Not Detected

4. Results and regulatory stanards are shown for detected cc

5. NA = Not Applicable

6. Yellow highlighting indicates exceedance of NYS Ambient

Table 14 (Continued) Remedial Investigation Groundwater VOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	MW1	MW2	MW3	MW3 Duplicate	MW4	MW5	MW6	MW7	MW8	MW9	TW1	Trip Blank
	Sampling Date	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021	8/31/2021
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21	ND	ND
Acetone	NA	ND	ND	3.0	ND	ND	ND	4.1	ND	ND	ND	16	ND
cis-1,2-Dichloroethene	5	ND	830	23	24	ND	56	ND	ND	ND	1.3	ND	ND
Tetrachloroethene	5	85	3,200	15	16	ND	580	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	1.3	1.3	ND							
Trichloroethene	5	0.93	160	18	19	ND	30	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	1.7	1.9	ND							
	Total	86	4,190	62	62	ND	666	4.1	ND	ND	1.5	16	ND

NOTES:

1. Analytical testing for VOCs via EPA Method 8260 by eurofins Test America in Buffalo, NY.

2. Results present in ug/L.

3. ND = Not Detected

4. Results and regulatory stanards are shown for detected compounds only.

5. NA = Not Applicable

6. Yellow highlighting indicates exceedance of NYS Ambient Water Quality Standard (TOGS 1.1.1) for Class GA waters.

Table 15 Remedial Investigation Groundwater SVOC Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

12.4.5 NO NO <th< th=""><th>PARAMETER</th><th>NYS Water Quality Standard or Guidance Value</th><th>MW1</th><th>MW1 Duplicate</th><th>MW5</th><th>MW7</th><th>Equipment Blank (Subsurface Soil)</th><th>Equipment Blank (Surface Soil)</th><th>Equipment Blank (Groundwater)</th></th<>	PARAMETER	NYS Water Quality Standard or Guidance Value	MW1	MW1 Duplicate	MW5	MW7	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)	Equipment Blank (Groundwater)
11-Bip Input S ND		Sampling Date	8/11/2020	8/11/2020	8/11/2020	8/12/2020	7/22/2020	7/23/2020	8/12/2020
14.Dioxame 1.0 ND	1,1'-Biphenyl								
23.4.6.FirstRingspherel NA ND	1,2,4,5-Tetrachlorobenzene	5	ND	ND	ND	ND	ND	ND	ND
24.5 Thick ND ND <t< td=""><td>1,4-Dioxane</td><td>1.0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	1,4-Dioxane	1.0	ND	ND	ND	ND	ND	ND	ND
24.6 - Trichlorophenol 1 NO NO </td <td>2,3,4,6-Tetrachlorophenol</td> <td>NA</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	2,3,4,6-Tetrachlorophenol	NA	ND	ND	ND	ND	ND	ND	ND
24-Dichtoppinnel 1 NO	2,4,5-Trichlorophenol	1	ND	ND	ND	ND	ND	ND	ND
24-Omeruphenol 1 NO	2,4,6-Trichlorophenol	1	ND	ND	ND	ND	ND	ND	ND
24-Dirticiplend 1 NO ND	2,4-Dichlorophenol	1	ND	ND	ND	ND	ND	ND	ND
24-Dirticolume 5. NO ND	2,4-Dimethylphenol	1	ND	ND	ND	ND	ND	ND	ND
5.4 ND	2,4-Dinitrophenol	1	ND	ND	ND	ND	ND	ND	ND
5.4 ND	2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND
Chicoprised 1 NO ND	2,6-Dinitrotoluene			ND	ND				ND
Chicoprised 1 NO ND	2-Chloronaphthalene	NA	ND	ND	ND	ND	ND	ND	ND
Zhetterythenol NA ND	2-Chlorophenol			ND					
2.Metryliphenol 1 ND	-								
Altronghene 5 ND									
2-Mitopheni 1 ND ND ND ND ND ND ND 33-Definitions/encidine 5 ND									
3&A-Matrixphenol 1 ND									
3.3-Definitionsbenzialine 5 ND N									
Shitoanine 5 ND									
4-Bronophen/-pheny/elhen/ NA ND									
4 Chicora-smethylphenol 1 ND ND<	• • • • • • • • • • • • • • • • • • • •								
4C)Noronine 5 ND									
4Chtoropheryl-pherylether NA ND ND ND ND ND ND ND 4Hitrophilenol 1 ND ND ND ND ND ND ND Antirophilenol 1 ND ND ND ND ND ND ND Acenapithene 20 ND ND ND ND ND ND ND Acetophenone NA ND ND ND ND ND ND ND ND Artarizene 7.5 ND									
4-Nitroamine 5 ND Advitophenol 1 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4-Mitophenol 1 ND									
AcenaphtPhene 20 ND									
Acengaptitylene NA ND									
Acetopherone NA ND	Acenaphthene		ND	ND	ND	ND	ND	ND	ND
Anthrácene 50 ND ND ND ND ND ND ND Benzaldehyde NA ND ND <td>Acenaphthylene</td> <td>NA</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Acenaphthylene	NA	ND	ND	ND	ND	ND	ND	ND
Afrazine 7.5 ND	Acetophenone	NA	ND	ND	ND	ND	ND	ND	ND
Benzalehyde NA ND	Anthracene	50	ND	ND	ND	ND	ND	ND	ND
Benza(p,h)perylene NA ND	Atrazine	7.5	ND	ND	ND	ND	ND	ND	ND
bislg2-Discretingeringeringering 5 ND	Benzaldehyde	NA	ND	ND	ND	ND	ND	ND	ND
Dis[2-Chicorethoxy]methane 5 ND		NA	ND	ND	ND	ND	ND	ND	ND
bis(2-Chicosethy)lether 1 ND ND<		5	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroisopropy)/etter 5 ND ND <th< td=""><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td></th<>			ND	ND	ND	ND			ND
Dis(2) Ethylhexyl)phthalate 5 ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Butybenzylphthalate NA ND ND ND ND ND ND ND Caprolactam NA ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Caprolaciam NA ND									
Carbazole NA ND									
Chrysene 0.002 ND									
Diberzofuran NA ND									
Diethylphthalate NA ND									
Dimethylphthalate NA ND									
Di-n-butylphthalate 50 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Di-n-octylphthalate NA ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Fluoranthene 50 ND									
Fluorene 50 ND <									
Hexachlorocyclopentadiene 5 ND N									
Isophorone NA ND									
Naphthalene10NDNDNDNDNDNDNDNDNDNitrobenzene0.4NDNDNDNDNDNDNDNDNDN-Nitroso-di-n-propylamineNANDNDNDNDNDNDNDNDN-Nitroso-diphenylamineNANDNDNDNDNDNDNDNDPhenanthrene50NDNDNDNDNDNDNDNDPhenol1NDNDNDNDNDNDNDNDPyrene50NDNDNDNDNDNDNDNDA-6-Dinitro-2-methylphenol1NDNDNDNDNDNDNDNDBenzo[a]anthraceneNANDNDNDNDNDNDNDNDNDBenzo[a]pyreneNDNDNDNDNDNDNDNDNDNDNDBenzo[a]pyrene0.002NDNDNDNDNDNDNDNDNDNDBenzo[f]fluoranthene0.002NDNDNDNDNDNDNDNDNDNDDibenzo[a,h]anthraceneNAND <td><i>,</i> ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<i>,</i> ,								
Nitrobenzene0.4NDNDNDNDNDNDNDNDN-NitrosodiphenylamineNANDNDNDNDNDNDNDNDN-NitrosodiphenylamineNANDNDNDNDNDNDNDNDPhenanthrene50NDNDNDNDNDNDNDNDPhenol1NDNDNDNDNDNDNDNDPyrene50NDNDNDNDNDNDNDNDA.6-Dinitro-2-methylphenol1NDNDNDNDNDNDNDBenzo[a]anthraceneNANDNDNDNDNDNDNDNDBenzo[a]apyreneNDNDNDNDNDNDNDNDNDBenzo[k]fluoranthene0.002NDNDNDNDNDNDNDNDDibenzo[a,h]anthraceneNANDNDNDNDNDNDNDNDHexachlorobenzene0.04NDNDNDNDNDNDNDNDNDHexachlorobetafiene0.5NDNDNDNDNDNDNDNDNDHexachlorobetafiene0.5NDNDNDNDNDNDNDNDNDHexachlorobetafiene0.5NDNDNDNDNDNDNDND									
N-Nitroso-di-n-propylamine NA ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
N-Nitrosodiphenylamine NA ND ND<		÷							
Phenanthrene 50 ND	N-Nitroso-di-n-propylamine								
Phenol 1 ND									
Pyrene 50 ND ND <th< td=""><td>Phenanthrene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Phenanthrene								
4,6-Dinitro-2-methylphenol 1 ND	Phenol		ND	ND	ND	ND	ND	ND	ND
Benzo[a]anthracene NA ND	Pyrene	50	ND	ND	ND	ND	ND	ND	ND
Benzo[a]anthracene NA ND	4,6-Dinitro-2-methylphenol	1	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pyrene ND	Benzo[a]anthracene	NA	ND		ND				ND
Benzo[b]fluoranthene 0.002 ND	Benzo[a]pyrene								
Benzo[k]fluoranthene 0.002 ND	Benzo[b]fluoranthene								
Dibenzo[a,h]anthracene NA ND ND<									
Hexachlorobenzene 0.04 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hexachlorobutadiene 0.5 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hexachloroethane 5 ND									
Indeno[1,2,3-cd]pyrene 0.002 ND									
N-Nitrosodimethylamine NA ND ND ND ND ND ND ND ND Pentachlorophenol 1 ND ND ND ND ND ND ND ND ND Total ND									
Pentachlorophenol 1 ND									
Total ND ND ND ND ND ND ND									
	Pentachiorophenol								
		Total	ND	ND	ND	ND	ND	ND	ND
		titled Common sets (TIC)	58J	77J	140J	ND	ND	53J	ND

NOTES: 1. Analytical testing for SVOCs via EPA Method 8270 by Hampton Clarke. 2. Results present in ug/L. 3. ND = Not Detected 4. NA = Not Applicable

Table 16 Remedial Investigation Groundwater Inorganics Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	M	W1	MW1 D	uplicate	M\	N5
	Sampling Date	8/11/2020	8/11/2020	8/11/2020	8/11/2020	8/11/2020	8/11/2020
	Total/Dissolved	Т	D	Т	D	Т	D
Cr (Hexavalent)	50	ND		ND		ND	
Mercury	0.7	ND	ND	ND	ND	ND	ND
Aluminum	NA	ND	ND	ND	ND	ND	ND
Barium	1,000	74	75	74	75	91	85
Calcium	NA	180,000	190,000	180,000	180,000	120,000	110,000
Chromium	50	ND	ND	ND	ND	ND	ND
Cobalt	200	ND	ND	ND	ND	ND	ND
Copper	300	ND	ND	ND	ND	ND	ND
Iron	300	ND	ND	ND	ND	ND	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	NA	18,000	18,000	18,000	18,000	15,000	15,000
Manganese	300	ND	ND	ND	ND	46	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NA	15,000	15,000	15,000	14,000	24,000	22,000
Sodium	20,000	190,000	190,000	190,000	190,000	110,000	110,000
Zinc	2,000	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NA	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for metals via EPA Methods 6010, 6020 by Hampton Clarke.

2. Results present in ug/L.

3. ND = Not Detected

4. NA = Not Applicable

5. Yellow highlighting indicates exceedance of NYS Ambient Water Quality Standard (TOGS 1.1.1) for Class GA waters.

6. T= Total; D = Dissolved

Table 16 (Continued) Remedial Investigation Groundwater Inorganics Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	M\	N7	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)		ent Blank dwater)
	Sampling Date	8/12/2020	8/12/2020	7/22/2020	7/23/2020	8/12/2020	8/12/2020
	Total/Dissolved	Т	D	Т	Т	Т	D
Cr (Hexavalent)	50	ND		ND	ND		
Mercury	0.7	ND	ND	ND	ND	ND	ND
Aluminum	NA	ND	ND	ND	ND	ND	ND
Barium	1,000	71	75	ND	ND	ND	ND
Calcium	NA	150,000	160,000	ND	ND	ND	ND
Chromium	50	ND	ND	ND	ND	ND	ND
Cobalt	200	ND	ND	ND	ND	ND	ND
Copper	300	ND	ND	ND	ND	ND	ND
Iron	300	ND	ND	ND	ND	ND	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	NA	28,000	31,000	ND	ND	ND	ND
Manganese	300	74	76	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NA	12,000	11,000	ND	ND	ND	ND
Sodium	20,000	88,000	86,000	ND	ND	ND	ND
Zinc	2,000	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NA	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for metals via EPA Methods 6010, 6020 by Han

2. Results present in ug/L.

3. ND = Not Detected

4. NA = Not Applicable

5. Yellow highlighting indicates exceedance of NYS Ambient

6. T= Total; D = Dissolved

Table 17 Remedial Investigation Groundwater Pesticides Herbicides Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	MW1	MW1 Duplicate	MW5	MW7	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)	Equipment Blank (Groundwater)
	Sampling Date	8/11/2020	8/11/2020	8/11/2020	8/12/2020	7/22/2020	7/23/2020	8/12/2020
Herbicides								
2,4,5-T	35	ND	ND	ND	ND	ND	ND	ND
2,4-D	50	ND	ND	ND	ND	ND	ND	ND
Dicamba	0.44	ND	ND	ND	ND	ND	ND	ND
Silvex	0.26	ND	ND	ND	ND	ND	ND	ND
Pesticides	-							
a-Chlordane	0.05	ND	ND	ND	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.01	ND	ND	ND	ND	ND	ND	ND
beta-BHC	0.04	ND	ND	ND	ND	ND	ND	ND
Chlordane (Total)	0.05	ND	ND	ND	ND	ND	ND	ND
delta-BHC	0.04	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.004	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	NA	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	NA	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	NA	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	5	ND	ND	ND	ND	ND	ND	ND
Endrin Ketone	5	ND	ND	ND	ND	ND	ND	ND
gamma-BHC	0.05	ND	ND	ND	ND	ND	ND	ND
Heptachlor	0.04	ND	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	0.03	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	35	ND	ND	ND	ND	ND	ND	ND
p,p'-DDD	0.3	ND	ND	ND	ND	ND	ND	ND
p,p'-DDE	0.2	ND	ND	ND	ND	ND	ND	ND
p,p'-DDT	0.2	ND	ND	ND	ND	ND	ND	ND
Toxaphene	0.06	ND	ND	ND	ND	ND	ND	ND
y-Chlordane	0.05	ND	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for herbicides via EPA Method 8151 and for pesticides via EPA Method 8081 by Hampton Clarke.

2. Results present in ug/L.

3. ND = Not Detected

4. NA = Not Applicable

Table 18 Remedial Investigation Groundwater PCBs Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYS Water Quality Standard or Guidance Value	MW1	MW1 Duplicate	MW5	MW7	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)	Equipment Blank (Groundwater)
	Sampling Date	8/11/2020	8/11/2020	8/11/2020	8/12/2020	7/22/2020	7/23/2020	8/12/2020
Aroclor (Total)	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1016	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1262	0.09	ND	ND	ND	ND	ND	ND	ND
Aroclor-1268	0.09	ND	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for PCBs via EPA Method 8082 by Hampton Clarke.

2. Results present in ug/L.

3. ND = Not Detected

4. NA = Not Applicable

Table 19 Remedial Investigation Groundwater Cyanide Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

NY TOGS WaterQualStds	MW1	MW1 Duplicate	MW5	MW7	Equipment Blank (Subsurface Soil)	Equipment Blank (Surface Soil)	Equipment Blank (Groundwater)
	8/11/2020	8/11/2020	8/11/2020	8/11/2020	7/22/2020	7/23/2020	8/12/2020
200	ND	ND	ND	ND	ND	ND	ND

NOTES:

1. Analytical testing for cyanide via EPA Method 9012 by Hampton Clarke.

2. Results present in ug/L.

3. ND = Not Detected

Table 20 Remedial Investigation Groundwater PFAS Concentrations

Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, New York BCP Site No. C915344

PARAMETER	NYSDEC Water Quality Standard	MW1	MW1 Duplicate	MW5	MW7	Equipment Blank
5	Sampling Date	8/11/2020	8/11/2020	8/11/2020	8/12/2020	8/12/2020
Perfluorobutanoic acid		3.6 (J)	3.6 (J)	2.7 (J)	ND<7.4	ND<7.4
Perfluoropentanoic acid		ND<3.7	ND<3.7	2.7 (J)	ND<3.7	ND<3.7
Perfluorohexanoic acid		1.0 (J)	ND<3.7	1.3 (J)	ND<3.7	ND<3.7
Perfluoroheptanoic acid		1.4 (J)	1.3 (J)	ND<1.9	ND<1.9	ND<1.9
Perfluorooctanoic acid	10	4.6	4.4	2.0	ND<1.9	ND<1.9
Perfluorobutanesulfonic acid		5.0	5.5	2.8	ND<1.9	ND<1.9
Perfluorooctanesulfonic acid	10	2.6	2.6	5.9	ND<1.9	ND<1.9

NOTES:

1. Analytical testing for PFOA/PFOS via EPA Method 537M by SGS North America Inc.

2. Results present in ng/L.

3. ND = Not Detected

4. Results shown for detected compounds only. For a full list of analytes, refer to the analytical report.

Table 21 Remedial Investigation Soil Vapor Analytical Results

August 17, 2021

PARAMETER	1 Franklin Street VP1	Property Line VP2
1,2,4-Trimethylbenzene	9.3	10
1,3,5-Trimethylbenzene	4.4	3.8
2,2,4-trimethylpentane	6.9	1.7
4-ethyltoluene	3.4	2.9
Acetone	42	22
Benzene	6.7	3.1
Carbon disulfide	2.7	1.7
Chloroform	2.0	ND
Chloromethane	0.97	0.87
Cyclohexane	7.9	8.6
Ethyl acetate	ND	1.2
Ethylbenzene	5.2	3.3
Freon 11	4.0	3.0
Freon 12	3.0	3.0
Heptane	19	8.6
Hexane	18	21
Isopropyl alcohol	19	7.4
m&p-Xylene	18	12
Methyl Ethyl Ketone	27	25
Methyl Isobutyl Ketone	3.2	1.5
Methylene chloride	0.45	0.49
o-Xylene	8.5	5.7
Styrene	1.2	0.85
Tetrachloroethylene	0.68	ND
Toluene	26	57

NOTES:

1. Analytical testing for VOCs via EPA Method TO-15 by Centek

2. Results present in μ g/m³ (microgram per cubic meter).

3. ND = Not Detected

4. Compounds detected in one or more samples are included in this table. For a list of all compounds, refer to the attached analytical report.

TABLE 22 Project Schedule Lakeside Village Apartments 65-67 Lake Avenue, Lancaster, NY NYSDEC Brownfield Cleanup Program Site #C915344

																					202	2																									\neg
Task			nua				ebrua				arch				pril				Мay				lune			Ju				Aug				epter				Octol					nber			cemt	
	3	10	17	24	31	7	14 2	1 23	8 7	14	21	28	4	11	18	25	2	9	16	23	30	6 1	3 20) 27	7 4	11	18	25	1	8 1	5 22	29	5	12	19 2	26 3	3 10) 17	24	31	7	14	21 2	28 3	5 1	2 19	26
III. Remedial Investigation/ Alternatives Analysis																																															
(RI/AA) Report																																															
RI/AA Report Comments and Revisions																																															
NYSDEC Review																																															
RI/AA Report Approval																																															
IV. Remedial Action Work Plan (RAWP)																																															
Submittal of Work Plan																																															
NYSDEC Review of Work Plan																																															
Soil Borings/Data Collection																				`																											
Submittal of RAWP																																															
NYSDEC Review											T																																				
45 Day Public Comment Period																																															
RAWP Comments and Revisions																																															
NYSDEC Review																																															
RAWP Approval																																															
V. Cleanup Action																																															
VI. Site Management Plan (SMP) & Final																																															
Engineering Report (FER)																																															
Submittal of SMP																																															
NYSDEC Review of SMP																																															
SMP Comments and Revisions																																															
NYSDEC Review of SMP																													Î						Ì												
SMP Approval											l																																				
Submittal of FER																													Î						Ì							Î					
NYSDEC Review of FER											L												L																								

APPENDIX A

Soil Boring Logs

iviati i		onmer	ital lech	nologies	inc.	SUBSURFACE LOG
	& LOCAT	ION:	65-67 Lake		er, NY	PROJECT No. 18-046
CLIENT:			65 Lake Ave	nue LLC		WELL/BORING ID: SB101 / MW1
TART D	ATE:		7/21/2020		OMPLETIO	DN DATE: 7/21/2020 RECORDED BY: C. Zink GROUNDWATER DEPTH AFTER
ROUNE	OWATER [DEPTH WH	ILE DRILLING	:	Appro	
VEATHE	R:		Sunny 75 - 8	0°	CONT	RACTOR/DRILLERS: Matrix Environmental Technologies / P. Bliek
	-					Direct Push 2 1/2"
ORILL RIG	5:		Geoprobe 6	620 DT	DRI	ILL SIZE & TYPE: NPT HAMMER Type: Hydraulic Sampler Type: macrocore (L=60", OD=2.125")
						SOIL DESCRIPTION AND DRILLING COMMENTS
Sample	Sample	Sample	OVM	Recovery	USCS	Unified Soil Classification System
Depth	No.	Interval	Reading	(inches)	Group	f-fine m-medium c-coarse
(ft)		(feet)	(ppm)	,	Symbol	sr - subrounded, r - rounded, sa - subangular, a - angular
	1	0.0-5.0		29	GP	Asphalt over gray, POORLY GRADED GRAVEL (cf) WITH SAND (cf), loose, dry, Quaternary Fill
1			60 +			
T					SM	Brown SILTY SAND (mf) WITH GRAVEL (cf), medium dense, moist, Quaternary Fill
2			<u> </u>	1		
-			45.0			
3			15.9			
-						
				1		
4			450			
5	2	5.0-10.0	150 +	50		
5	-	510 1010		50	SP-SM	Brown POORLY GRADED SAND WITH SILT AND GRAVEL (cf), moist, medium dense, Quaterny Fil
6						Colluvium
			16.2			
7			10.2			
8					CL,ML	Brown CLAY and gray SILT, laminated, wet, dense, Lacustrine
•			7.5			
9						
10	3	10.0-15.0		60		
			0.0			
11			0.0		CL, ML	As above
	L			4	,	
12						
13			0.0			
12					ML	Gray SANDY SILT WITH GRAVEL (cf, sa to a), saturated, soft, Alluvium
14			0.0	1		,
			0.0		ML	Gray SILTY SAND, trace f Gravel, dry, medium dense, Alluvium
15	4	15.0-20.0		38		
10			9.5			
16					ML	Dark gray SILT WITH SAND, trace Gravel (f, a), wet, very dense, Alluvium.
17				†		
			7.6			
18						
19						
Notes	PID read	ing may ha	ive been affe	cted by mois	ture in sar	imple headspace caused by humid weather conditions. Bottom of borehole 18.4'. Sample from 5

Matri	<u>x Envi</u> i	ronmer	ntal Tech	nologies	Inc.		SUBSURFACE	LOG
	& LOCAT		65-67 Lake				PROJECT No.	18-046
CLIENT:			65 Lake Ave	nue LLC			WELL/BORING ID:	SB102 / MW2
START D	ATE:		7/21/2020	CC	OMPLETIO	N DATE: 7/21/2020	RECORDED BY:	C. Zink
GROUNE	OWATER [DEPTH WH	ILE DRILLING	i:	Approx	. 6.5'	GROUNDWATER DEPTH AFTER COMPLETION:	not measured
	D .		C		CONT	DRILLING		
VEATHE	к:		Sunny 75 - 8	50°	CONTR	ACTOR/DRILLERS: <u>Matrix E</u> Direct Push 2	nvironmental Technologies / P. Bliek	
ORILL RIG	3:		Geoprobe 6	620 DT	DRI	L SIZE & TYPE: <u>NPT</u> Sampler Type:	HAMMER Type: macrocore (L=60", OD=2	Hydraulic
						, ,,	ESCRIPTION AND DRILLING COMM	
Sample	Sample	Sample	OVM	Recovery	USCS		Unified Soil Classification System	
Depth (ft)	No.	Interval (feet)	Reading (ppm)	(inches)	Group Symbol	sr - sub	f-fine m-medium c-coarse prounded, r - rounded, sa - subangular, a - a	ngular
	1	0.0-5.0		32	GP	Asphalt over gravel fill over sa	nd and gravel fill.	
1			175 +		GP	Gray POORLY GRADED GRAVE	L (cf) WITH SAND (cf), loose, dry, odor o	of asphalt, Quaternary Fill
				-	CL	Reddish brown SILTY CLAY, ver	ry stiff, moist, Quaternary Fill	
2					a-	Brown and gray POORLY GRAD	DED SAND WITH SILT AND GRAVEL, med	lium dense, moist,
			18		SP	Quaternary Fill or Colluvium.		
3								
4								
			64.3		SW	Brown, tan and brownish gray dense, moist, Quaternary Fill o	, WELL GRADED SAND WITH GRAVEL (n	nf, sr), trace Silt, medium
5	2	5.0-10.0		60		dense, moist, Quaternary rin c		
6						Reddish brown and olive brow	n laminated SILTY CLAY, moist to wet, s	tiff (6") overlying olive
7			9.3		CL, ML	brown CLAYEY SILT, medium s		
8								
9			5.2					
5					CL,ML	Reddish brown CLAY laminate	d with Gray SILT, stiff, saturated, Lacusi	ine.
10	3	10.0-15.0		48	,		, . , . , ,	
11			0.4					
12				-				
13			3.1					
12					МН	Gray SILT WITH GRAVEL (cf, sr with depth.), trace Sand (f), saturated, medium stil	f, Alluvium, sand increase
14								
15	4	15.0-20.0	0.2	60				
16					SM	Gray SILTY SAND (mf) WITH G	RAVEL (mf, sa to a), saturated, medium	dense, Alluvium.
			0.0					
17								
18			0.8	1	ML	Dark gray SILT WITH SAND, we	et, very dense, Alluvium.	
19			7.2	-				
			24.4]				
						nple headspace caused by hum atory analysis. Monitoring well	id weather conditions. Bottom of borel	nole 20'. Soil samples fror

viatri	X EIIVII	onmer	ital leti	nologies	s inc.	SUBSURFACE LOG
	r & locat	ION:		Ave., Lancas	ter, NY	PROJECT No. 18-046
LIENT:			65 Lake Ave	enue LLC		WELL/BORING ID: SB103 / MW3
TART D	ATE:		7/22/2020		OMPLETION	IN DATE: 7/22/2020 RECORDED BY: C. Zink GROUNDWATER DEPTH AFTER
ROUNI	DWATER I	DEPTH WH	ILE DRILLING	G:	Approx	
			Raining on/	off, cloudy,		DRILLING
VEATHE	ER:		hot, humid		CONTR	RACTOR/DRILLERS: Matrix Environmental Technologies / P. Bliek
ORILL RI	c.		Geoprobe 6	620 DT	וופרו	Direct Push 2 1/2" ILL SIZE & TYPE: NPT HAMMER Type: Hydraulic
	G.		Geoprope d	020 D1		Sampler Type: macrocore (L=60", OD=2.125")
Sample		Comple	оум		USCS	SOIL DESCRIPTION AND DRILLING COMMENTS
Depth	Sample	Sample Interval	Reading	Recovery	Group	Unified Soil Classification System f-fine m-medium c-coarse
(ft)	No.	(feet)	(ppm)	(inches)	Symbol	
	1	0.0-5.0		46		
	-	0.0-5.0	40			
1			40		UL/UH, CL	L4 inches ORGANIC SOIL (topsoil) over 16 inches reddish brown CLAY, dry, stiff, Quaternary
	-			-		
2						Dark brown GRAVELLY ORGANIC SOIL WITH SAND, moist, overy lying 3 inches of reddish b
3	-		112		OL/OH, CL	L CLAY overlying 6 inches of bricks with silt and sand, dry, medium dense, Quaternary Fill
4						
4			190			
5	2	5.0-10.0		57	-	
6	-			-		
0			447		ML, CL	Gray CLAYEY SILT laminated with Brown CLAY, moist, occasional fine Sand lenses (1/8"), d
7			117		IVIL, CL	varies from medium stiff in 5' to 6' and where there is sand to very stiff, Lacustrine
_	-			_		
8						
9	-		180		ML, CL	Gray CLAYEY SILT, bedded with brown CLAY, moist to wet, stiff to very stiff, Lacustrine
10	3	10.0-15.0		60	ML, CL	Grayish brown SILTY CLAY, saturated, stiff, Lacustrine
11	-		114			
				_		
12					ML	Crow CANDY CILT WITH CRAVEL (of CA to CR) cotwated stiff Allowing
13	-		190		IVIL	Gray SANDY SILT WITH GRAVEL (cf, SA to SR), saturated, stiff, Alluvium
10						
14						
15	4	15.0-20.0	200+	52	SP	Gray POORLY GRADED SAND WITH GRAVEL, trace (+) Silt, moist to wet, dense, Alluvium
10	-	13.0-20.0		52		
16					ML	19 " resample over Dark gray SANDY SILT WITH GRAVEL (mf, SA to A), moist, stiff to very s
17	-					inch SILTY SAND (cf) lenses at 16' and 16'5"), Alluvium
1/			175			
18						Gray SILTY SAND WITH GRAVEL (cf, sa), moist, dense, more gravel or weathered limestone
10				4	SM	(saprolite) in bottom of sample, Alluvium
19			19.5			
	1		19.9	1		

ROJECT & LIENT: TART DA ROUND VEATHER RILL RIG	TE: WATER [R:	DEPTH WH	65 Lake Ave 7/23/2020		ter, NY			PROJECT No WELL/BORING ID:	18-046 SB104 / MW4		
TART DA	WATER [R:	DEPTH WH	7/23/2020						5B104 / WW4		
/EATHER	R:				OMPLETIO	N DATE: 7/23/2020		RECORDED BY:	C. Zink		
RILL RIG			ILE DRILLING	- i:	approx	. 7.5'	G	ROUNDWATER DEPTH AFTER COMPLETION:	not measured		
RILL RIG		-	Sunny, 80°		DRILLING CONTRACTOR/DRILLERS: Matrix Environmental Technologies / P. Bliek						
	:		17			· _	Push 2 1/2"				
amnle		-	Geoprobe 6	620 DT	DRI	LL SIZE & TYPE: Sampler Type:	NPT	_ HAMMER Type: macrocore (L=60", OD=2	Hydraulic 1.125")		
		Samula	OVM		USCS			RIPTION AND DRILLING COMM	IENTS		
Depth (ft)	Sample No.	Sample Interval (feet)	Reading (ppm)	Recovery (inches)	Group Symbol			Jnified Soil Classification System f-fine m-medium c-coarse ded, r - rounded, sa - subangular, a - a	ngular		
	1	0.0-5.0		26	01 01		<u> </u>				
1			2.3		OL, SM, SP-SM			AND (cf), with roots, loose, dry ov RAVEL (mf, a), loose, dry, Quaterr	• •		
2											
3											
4											
5	2	5.0-10.0	0.0	52	SM	6" resample over Brow	n SILTY SANI	D (f), medium dense, moist, Quate	rnary Fill		
6				-		Brown SILTY SAND (mf)) WITH GRAV	/EL, medium dense, moist, occasic	nal 2" lenses of reddish		
7			1.5		SM, CL	brown CLAY, Lacustine					
8			2.1		CL, ML	Brown CLAY varved st	iff wet lens	e of brown SANDY SILT, stiff at 9.7	-99' Lacustrine		
9				_			in, wet, iens				
10	3	10.0-15.0	1.4	58	ML, CL	6" resample over Gray saturated, Lacustine	SILT laminat	ed with reddish brown CLAY, very	stiff, medium plasticity,		
11			1.4		ML	Gray SILT, trace CLAY, t	trace GRAVE	L (f), stiff, non-plastic, saturated, L	acustrine		
12			5.0								
13			5.3		ML	Gray SANDY SILT WITH	GRAVEL (cf,	a to sa, black), trace CLAY, mediu	m stiff, saturated, Alluviu		
14			9.2								
15	4	15.0-20.0	6.6	52	SM) (mf) WITH GRAVEL (cf, a to sa, bl	ack), trace CLAY, medium		
16			12.6	-		stiff, saturated, Alluviur	m.				
17											
18											
19											
Notes F	PID readi	ng may ha	ve been affe	cted by mois	sture in sar	nple headspace caused l	by humid we	eather conditions. Sample and bor	ehole refusal at 16.5'.		

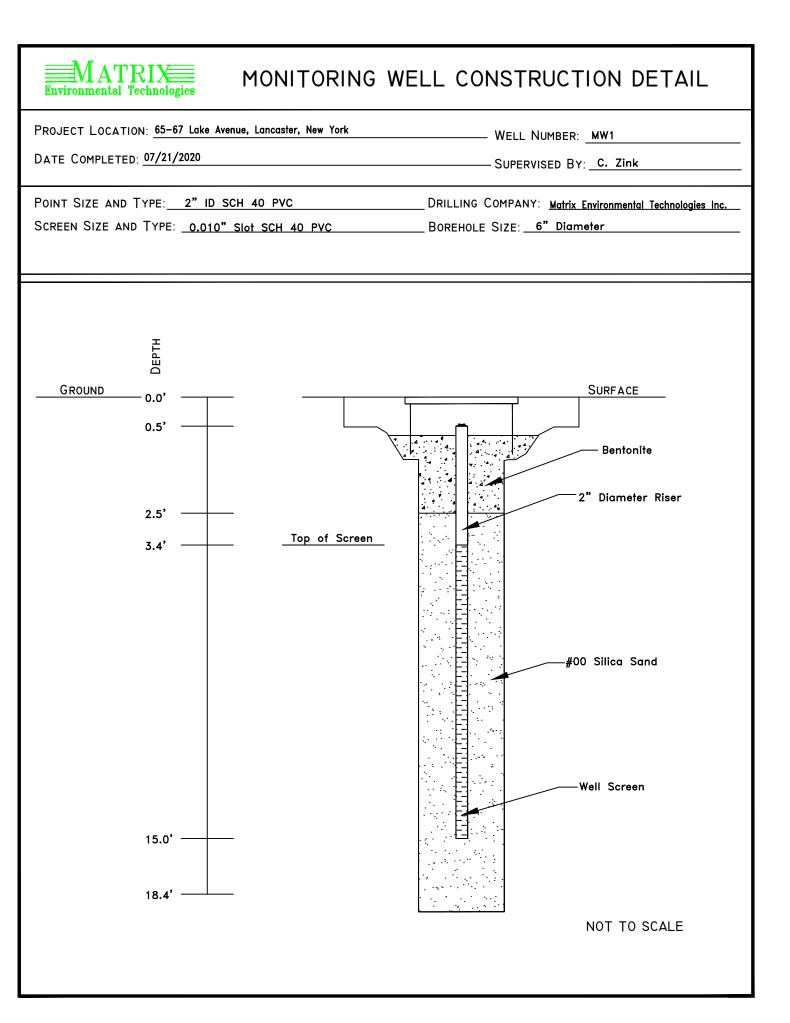
ivia (i i		onnei	ital leth	nologies	me.			SUBSURFACE	LUG
	& LOCAT	ION:		Ave., Lancas	ter, NY			PROJECT No.	18-046
LIENT:			65 Lake Ave	enue LLC				WELL/BORING ID:	SB105 / MW5
TART D	ATE:		7/23/2020	CC	OMPLETIO	N DATE: 7/23/2020		RECORDED BY:	C. Zink
ROUNE)WATER [DEPTH WH	ILE DRILLING	i:	appro	x. 8'	GROUNDWA	ATER DEPTH AFTER COMPLETION:	not measured
						DRILLING			
VEATHE	R:		Rain, 80°, hu	umid	CONTR	RACTOR/DRILLERS:	Matrix Environmental T	echnologies / P. Bliek	
							t Push 2 1/2"		
ORILL RIG	G:		Geoprobe 6	620 DT	DRI	LL SIZE & TYPE: Sampler Type:		IER Type: nacrocore (L=60", OD=2	Hydraulic 125")
						Sumpler Type:		AND DRILLING COMM	
Sample	Sample	Sample	OVM	Recovery	USCS		Unified Soil	Classification System	
Depth	No.	Interval	Reading	(inches)	Group			medium c-coarse	
(ft)		(feet)	(ppm)		Symbol		sr - subrounded, r - rour	nded, sa - subangular, a - ai	ngular
	1	0.0-5.0		36					
		010 010	2.5		SP	Asphalt over sand and	d gravel fill overlying tan	POORLY GRADED SAND	, wet, loose to medium
1			2.5		51	dense, Quaternary Fil	Ι.		
				_					
2						Brown WELL GRADED	SAND (cf) WITH GRAVE	L, trace Silt, moist, loose	e, Quaternary Fill.
			5.0		SW	Gravish Brown WELL		AV/EL (mf cr) moist mo	edium dense, Quaternary Fi
3					SW	or Colluvium.	GRADED SAND WITH GR	AVEL (IIII, SI), IIIOISI, IIIE	culuin dense, Quaternary Fi
					-				
4					CL	Tan CLAY, dry to mois	st, very stiff, Lacustrine		
			2.8						
5	2	5.0-10.0		55					
-									
6									
			7.5+						
7					CL, ML		e over Reddish brown CL		
0				_		laminations (1/32 to	1/2") get thicker with de	epth, some mottling also	J
8									
9			12.5+						
10	3	10.0-15.0		53					
			8.1		ML, CL	Brown CLAYEY SILT, w	vet, medium stiff, Lacust	ine	
11									
12				-					
			13.6		SW-SM	Gray WELL GRADED S	AND WITH SILT AND GR	AVEL, saturated, loose,	Alluvium
13			15.0						
14				-	SP-SM	3 inches of gray SAND SILT, trace Gravel (mf,	, ,	nse, over 8 inches gray I	POORLY GRADED SAND WIT
14			30+			SILT, trace Graver (mi,	, sa), Alluvium		
15	4	15.0-20.0		26					
			50+		ML		trace Gravel (cf) wet	Alluvium	
16			45.5	1	IVIL	GIAY SILI WITH SAND), trace Gravel (cf), wet, /	וועזעועווו	
-			15.4						
17									
10									
18									
19									
			ive been affe	*		å			

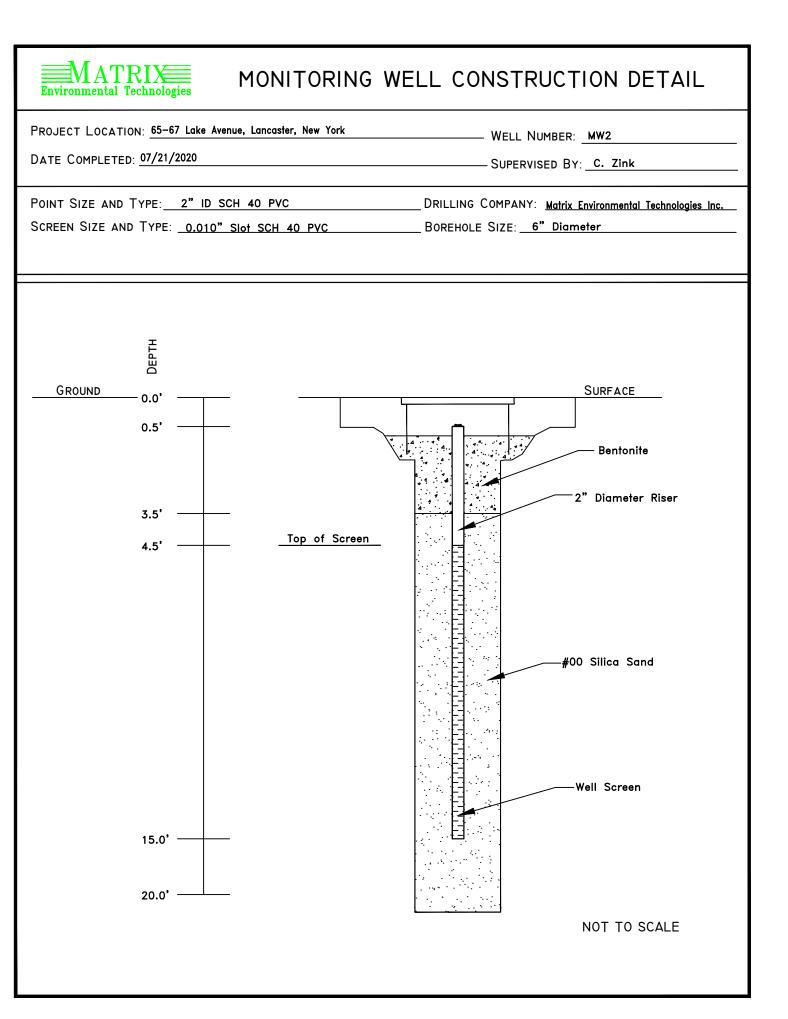
			ntal Tech			SUBSURFA				
PROJECT	& LOCAT	ION:	65-67 Lake Ave	1	ter, NY	PROJECT No WELL/BORING ID:	18-046 SB106 / MW6			
							-			
START D	ATE:		7/27/2020	CC	OMPLETION	DATE: <u>7/27/2020</u> RECORDED BY: GROUNDWATER DEPTH AFTER	C. Zink			
GROUNE	WATER I	DEPTH WH	ILE DRILLING	i:	appro		not measured			
			Partly cloud	y, hot,		DRILLING				
WEATHE	R:		humid, 80+		CONTR	ACTOR/DRILLERS: Matrix Environmental Technologies / P. Blie	k			
	_		C	620 DT		Direct Push 2 1/2"	II. J.S. P.			
ORILL RIC	J:		Geoprobe 6	620 D I	DRI	_ SIZE & TYPE: HAMMER Type: HAMMER Type: macrocore (L=60", OI	Hydraulic D=2.125")			
			_				SOIL DESCRIPTION AND DRILLING COMMENTS			
Sample	Sample	Sample	OVM	Recovery	USCS	Unified Soil Classification System				
Depth (ft)	No.	Interval (feet)	Reading (ppm)	(inches)	Group Symbol	f-fine m-medium c-coarse sr - subrounded, r - rounded, sa - subangular, a	- angular			
		((-,-,-,		-,		~ ·			
	1	0.0-5.0		44	OL	Grass over brown ORGANIC SOIL (topsoil), dry				
			3.5		SP	Brown POORLY GRADED SAND WITH GRAVEL, trace Silt, moist, so	ft to medium dense,			
1						Quaternary Fill Brown SILTY SAND, moist, medium dense, Quaternary Fill				
					SM	Orangish brown SILTY SAND, trace Gravel (mf), moist, Quaternary	Fill			
SW Brown WELL GR					SW	Brown WELL GRADED SAND WITH GRAVEL (cf, sr to sa), moist, Qu				
3			38		CL, ML	Brown CLAY laminated with SILT (1/32"), moist, Lacustrine.				
4										
4			0.0							
5	2	5.0-10.0		64						
6										
7			1.1			Gray and reddish brown CLAY with laminations of 1/8", bottom 2	of sample has 1/32"			
,					CL, ML	laminations of gray SILT, dry to moist, very stiff, Lacustrine	or sumple nos 2, 52			
8				-						
			2.5							
9										
oi	3	10.0-15.0		52						
	ر د	10.0-13.0		52		7 inches of resample overyling Reddish brown CLAY with gray SILT	laminations (1/2"), wet,			
11			0.1			medium dense, Lacustrine				
					CL, ML					
12						as above, moist, stiff, Lacustrine				
13			2.3							
14					SM	Gray POORLY GRADED SILTY SAND WITH GRAVEL (cf, sr to sa), we	t, medium dense, Alluvium			
15		15 0 20 0	0.4	62						
15	4	15.0-20.0		62	SM	6 inches resample then AS ABOVE, wet, loose to mediium dense,	Alluvium			
16				1	SP-SM	Gray POORLY GRADED SAND WITH SILT, saturated, loose, Alluviur	n			
10			5.1		31-3101					
17			5.1							
						Gray POORLY GRADED SILTY SAND WITH GRAVEL (mf, sa to a), dry	to moist (4") then dry, very			
18					SM	dense, Alluvium	SILTI SAND WITT GRAVEL (III, sa to a), dry to moist (4.7 then dry, very			
19			5.2							

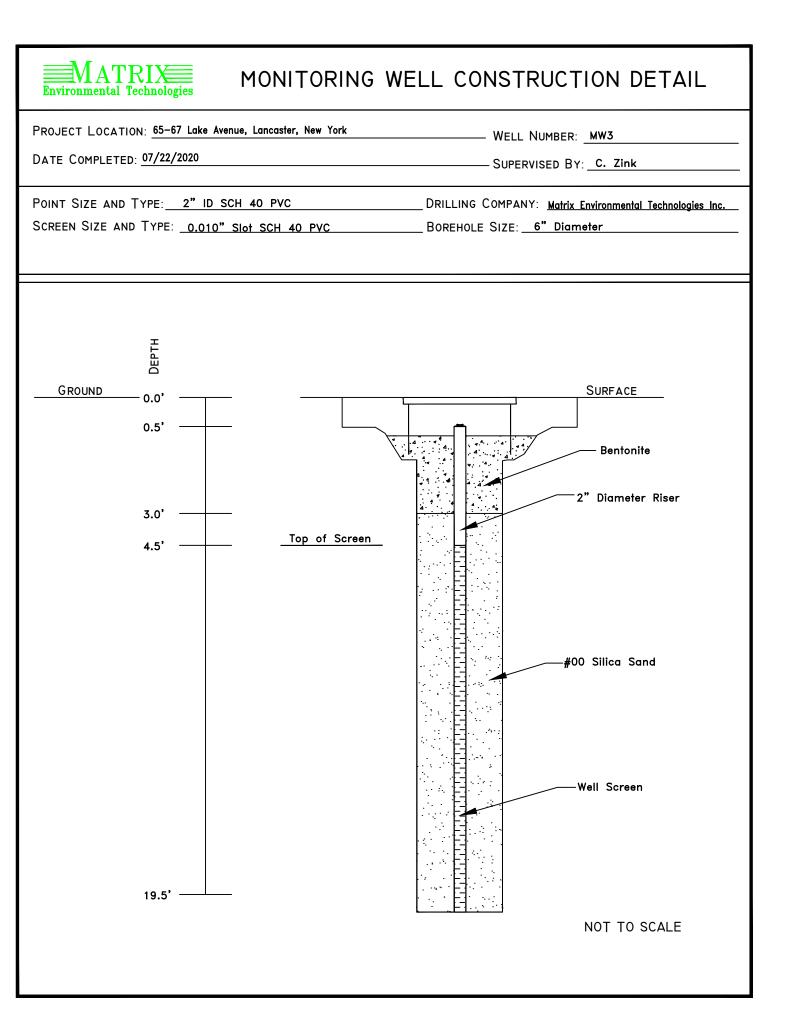
Matri	x Envir	onmer	ntal Tech	nologies	inc.			SUBSURFA	ACE LOG
PROJECT	& LOCAT	ION:	65-67 Lake	Ave., Lancas	ter, NY			PROJECT No.	18-046
CLIENT:			65 Lake Ave					WELL/BORING ID:	SB107
START D	ATE:		7/28/2020	CC	OMPLETION	DATE: 7/28/2020		RECORDED BY:	C. Zink
GROUND	WATER [DEPTH WH	ILE DRILLING	i:			GR	COUNDWATER DEPTH AFTER	not measured
WEATHE	R:		Partly cloud humid, 80+	y, hot,	CONTR	DRILLING ACTOR/DRILLERS:	Matrix Enviro	nmental Technologies / P. Blie	ek
ORILL RIC	6:		Geoprobe 6	620 DT	DRIL	L SIZE & TYPE: Direc	t Push 2 1/2" NPT	HAMMER Type:	Hydraulic
				r	-	Sampler Type:		macrocore (L=60", O	D=2.125")
Sample		Sample	оум	Recovery	USCS			IPTION AND DRILLING COL	MMENTS
Depth (ft)	No.	Interval (feet)	Reading (ppm)	(inches)	Group Symbol			Inified Soil Classification System f-fine m-medium c-coarse ded, r - rounded, sa - subangular, a	a - angular
	1	0.0-5.0	46	36					
1									
2			25.6	-	SP, SM,		-	ay POORLY GRADED SAND WI h brown POORLY GRADED SA	TH GRAVEL over 6 inches dark
					SP-SM	dense, moist, Quater	0	IT DIOWITFOORET GRADED SA	
3									
4			4.6	_					
7			4.0						
					CL	Reddish brown and b noted in sample 4.5 t	•	ottled, some laminations), mo	bist, medium stiff, gravel (cf)
5	2	5.0-10.0		49		noted in sample 4.5 t	0 4.0 , Lacustii		
6			9.6		SP, ML, CL		n CLAYEY SILT t	hinnly bedded with reddish b	dded with reddish brown CLAY rown CLAY, medium dense,
8			1.6	-					
9					CL	Brownish olive CLAY	thinly bedded	with reddish brown CLAY, me	dium stiff, wet, Lacustrine
	3	10.0-15.0	3.0	38	CL	As above, saturated,	loose and soft		
11					SM	Gray SILTY SAND (f) V	VITH GRAVEL (sr to sa), medium stiff, satura	ted, Alluvium
12			4.5	1		Gray POORLY GRADE	D SAND (f), tra	ce Silt, wet, loose to medium	dense, Alluvium
13					SP	Gray POOLY GRADED	SAND (f) WITH	H GRAVEL (mf, sa to a), wet, ve	ery dense, Alluvium
14			5.3	-					
15	4	15.0-20.0		58	SP-SM	Gray POORLY GRADE weathered limestone		TH SILT, trace Gravel (f, sr), sat	turated, soft, overlying 2"
16			1.4	1	SM	Gray SILTY SAND (mf)	WITH GRAVE	L (mf, sa to a), wet, medium d	ense, Alluvium
17			4.0		SP	(1/16"), moist to wet			, sa to a), occasional lense of si ered limestone, medium dense
18			2.9	-		Alluvium			
19									
		• •	ve been affe ubmitted for			mple headspace cause	ed by humid w	eather conditions. Sample and	d borehole refusal 18.5'. Samp

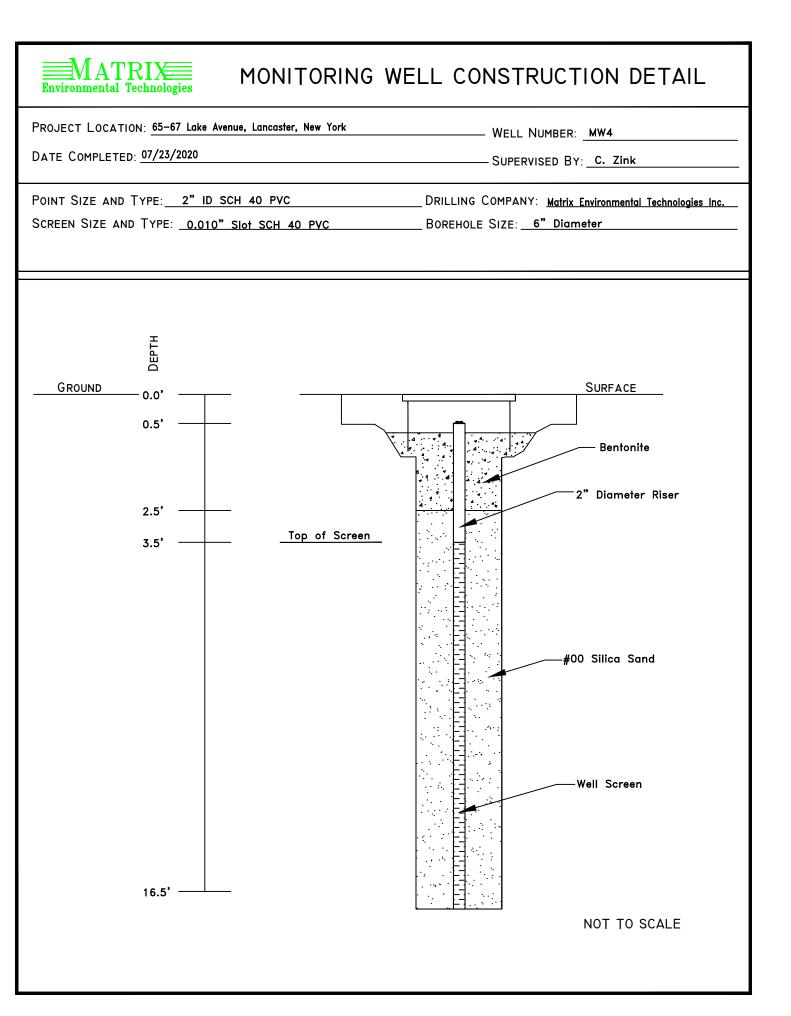
watri	atrix Environmental Technologies Inc. JECT & LOCATION: 65-67 Lake Ave., Lancaster, NY							SUBSURFA	CE LOG
PROJECT	& LOCAT	ION:	65-67 Lake	Ave., Lancas	ter, NY			PROJECT No.	18-046
CLIENT:			65 Lake Ave	enue LLC				SB108 / MW7	
START D	ATE:		7/27/2020	CC	MPLETIO	N DATE: 7/27/2020	-	RECORDED BY:	C. Zink
GROUNE	OWATER I	DEPTH WH	IILE DRILLING): :	Appro	x. 9'	GF	OUNDWATER DEPTH AFTER COMPLETION:	not measured
WEATHE	R:		Partly cloud humid, 80+	ly, hot,	CONT	DRILLING RACTOR/DRILLERS:	Matrix Enviro	– nmental Technologies / P. Blie	k
ORILL RI	G:		Geoprobe 6	620 DT	DRI	LL SIZE & TYPE: Dire	ct Push 2 1/2" NPT	HAMMER Type:	Hydraulic
						Sampler Type:		macrocore (L=60", OI	
Sample Depth (ft)	Sample No.	Sample Interval (feet)	OVM Reading (ppm)	Recovery (inches)	USCS Group Symbol		ι	IPTION AND DRILLING COM Jnified Soil Classification System f-fine m-medium c-coarse ded, r - rounded, sa - subangular, a	
	1	0.0-5.0		51					
1			2.1	_	OL, SP- SM			ng 24 inches of Brown, grayish avel (cf, sr), dry, medium dense	
			1.1						
3					ML	Brown SANDY SILT, r	noist, dense, Q	uaternary Fill	
4									
5	2	5.0-10.0	0.0	57		12" recample overlyi	ng Olive brown	n CLAYEY SILT thinly bedded wi	th reddish brown CLAV, dens
6					ML, CL	moist, Lacustrine			an readistr brown elect, actis
7			0.0		CL	Olive brown CLAY th	inly bedded wi	th reddish brown CLAY, moist,	medium stiff
8			0.0		SM, CL	Olive brown SILTY SA CLAY WITH GRAVEL (edded with and sometimes m pist, soft, Lacustrine	ottled with Reddish brown
	3	10.0-15.0		60	SM, CL	As above			
11			0.0		SM	Gray SILTY SAND WIT	TH GRAVEL (sr 1	to sa), medium dense, saturate	ed, Alluvium
12 13			0.0	_	SM, ML			edded with gray SANDY SILT V ense of SAND (2" to 3", mf) at	· · · ·
14	4	15.0-20.0	0.0	60					
15	+	13.0-20.0	 		SP-SM	Gray POOLY GRADED dense, Alluvium	SAND WITH S	ILT, trace Gravel (mf), saturate	d, soft in first 12" then mediu
17			0.0			, , , , , , , , , , , , , , , , , , , ,			
18			0.0	-	SM	Gray SILTY SAND WI dense to very dense,	• •	a to sa), occasional weathered	l limestone lense, dry to mois
19									
Notes	Sample f	• •	18' submitte					eather conditions. Sample refu licate samples also collected a	

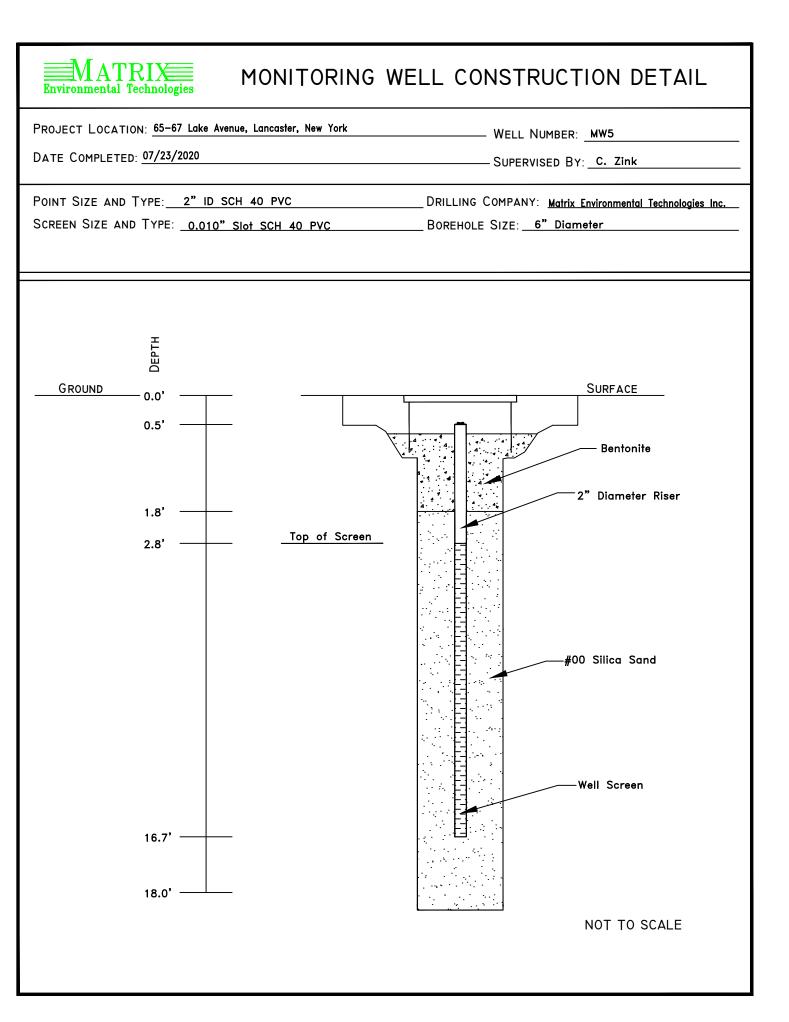
X ENVI	ronmer	ntal Tech	nologies	Inc.			SUBSURFACI	ELOG		
& LOCAT	FION:	65-67 Lake A	Ave., Lancast	ter, NY			PROJECT No.	18-046		
		65 Lake Ave					WELL/BORING ID:	SB109		
ATE:		7/28/2020	CC	OMPLETION	N DATE: 7/28/2020		RECORDED BY:	C. Zink		
OWATER	DEPTH WH	ILE DRILLING	: Approx. 9.5'			GF	OUNDWATER DEPTH AFTER COMPLETION:	not measured		
R:		Sunny, 75	-	CONTR	DRILLING RACTOR/DRILLERS:	Matrix Enviro	nmental Technologies / P. Bliek			
G:		Geoprobe 6	620 DT	DRII	LL SIZE & TYPE: Direct	Push 2 1/2" NPT	HAMMER Type:	Hydraulic		
					Sampler Type: macrocore (L=60", OD=2.125")					
•	•	0.044						IENTS		
No.			(inches)	•		ι	-			
	(feet)	-		Symbol						
		(ppm)				sr - subroun	ded, r - rounded, sa - subangular, a - ai	ngular		
1	0.0-5.0		46	OL	ORGANIC SOIL WITH S	AND, moist,	medium dense, roots			
		1.9								
				CD C14				1		
				SP-SIVI	Brown POORLY GRADE	D SAND WH	H SILT, trace Gravel (f), moist, me	dium dense, Quaternary I		
		0.5								
		010		SM	Dark Brown SILTY SAN	D, trace Grav	el, moist, medium dense, Quater	nary Fill		
2	5.0-10.0	2.1	44	SP-SM		D SAND WIT	H SILT, trace Gravel (f), wet, medi	um dense, Quaternary Fil		
				51 5141	Colluvium					
			-	ML, CL	Reddish brown SILTY (LAY laminate	ed with gray SILT, moist, dense, La	custrine		
		0.7		МІ	Brown SANDY SILT W/	TH GRAVEL (r	nf sa) moist Lacustrine			
				IVIL, CL	Redaish brown SILTY C	LAY, trace G	ravel (r), trace sand (r), dry to mol	st, dense, Lacustrine		
		3.0								
3	10.0-15.0		52	ML, CL	As above, saturated, s	oft				
		0.0		SM	Brown SILTY SAND WI	TH GRAVEL (r	nf. sa to a), saturated, medium de	ense. Alluvium		
		2.0					, to ajj sata acca, mealan ac			
		0.1			Brown SILTY SAND WI	TH GRAVEL (r	nf. sa to a). saturated except for I	ast 5" which is moist. den		
				SM	Alluvium		,,,			
		0 1								
1		1.3	4							
	E LOCAT ATE: DWATER Sample No. 1	* & LOCATION: ATE: DWATER DEPTH WH :R: G: Sample No. Interval (feet) 1 0.0-5.0 2 5.0-10.0	Sample Sample OVM No. Sample OVM Sample Sample QVM No. Interval (feet) OVM 2 5.0-10.0 1.9 0.5 0.5 0.7 3 10.0-15.0 3.0 3 10.0-15.0 0.0	Sample No. Sample Interval (feet) OVM Reading (ppm) Recovery (inches) 1 0.0-5.0 46 1.9 46 1.9 44 2 5.0-10.0 2.1 3 10.0-15.0 0.7 3 10.0-15.0 52 0.0 0.7 52 0.1 0.0 52	65 Lake Avenue LLC ATE: 7/28/2020 COMPLETION DWATER DEPTH WHILE DRILLING: Approx S: Sunny, 75 CONTR Geoprobe 6620 DT Geoprobe 6620 DT DRI Sample No. Sample Interval (feet) OVM Reading (ppm) Recovery (inches) USCS Group Symbol 1 0.0-5.0 46 OL 1 0.0-5.0 46 OL 1 0.0-5.0 46 OL 1.9 46 OL 2 5.0-10.0 2.1 44 SP-SM 0.5 SM SM ML, CL ML, CL 0.7 44 SP-SM ML, CL ML, CL 3 10.0-15.0 0.0 52 ML, CL 3 10.0-15.0 0.0 SM SM	& LOCATION: 65-67 Lake Ave., Lancaster, NY 65 Lake Ave., Lancaster, NY 66 Diteral 66 Other Sample Sample Interval 0.0 - 5.0 1 0.0 - 5.0 1.9 1.9 0.5 SM 0.5 0.5 SM 0.5 SM 0.6 0.7 ML, CL Reddish brown SILTY SAN 0.0 SM Brown SILTY SAND Wit	8. LOCATION: 65-67 Lake Ave., Lancaster, NY 65 Lake Avenue LLC ATE: 7/28/2020 COMPLETION DATE: 7/28/2020 OWATER DEPTH WHILE DRILLING: Approx. 9.5' GF G: Sunny, 75 DRILLING Geoprobe 6620 DT DRILL SIZE & TYPE: Direct Push 2 1/2" NPT NPT Sample No. Sample (reet) OVM (reet) Recovery (inches) USCS Group Symbol Matrix Enviro CONTRACTOR/DRILERS: DRILLING Matrix Enviro NPT 1 0.0-5.0 46 OL ORGANIC SOIL WITH SAND, moist, 1 1.9 1.9 SP-SM Brown POORLY GRADED SAND WITH Colluvium 0.5 2 5.0-10.0 2.1 44 SP-SM Brown POORLY GRADED SAND WITH Colluvium 1 0.7 44 SP-SM Brown SILTY SAND, trace Grav Colluvium 1 0.7 44 SP-SM Brown SILTY CLAY laminate Colluvium 1 0.7 52 ML, CL Reddish brown SILTY CLAY laminate Colluvium 1 0.0 52 ML, CL As above, saturated, soft 3 0.0 52 ML, CL As above, saturated, soft <	SubCATION: 65-67 Lake Ave., Lancaster, NY PROJECT No. 41 Fill Light Avenue LLC WRELL/BORING ID: 7/28/2020 COMPLETION DATE: 7/28/2020 SWATER DEPTH WHILE BILLING: Approx. 9.5' GROUNDWATER DEPTH AFTER Geoprobe 6620 DT DRILLING COMPLETION CONTRACTOR/DRILLERS: Matrix Environmental Technologies / P. Bliek Geoprobe 6620 DT DRILLING CONTRACTOR/DRILLERS: Matrix Environmental Technologies / P. Bliek Sample Sample (feet) OVM Recovery USCS Sampler Type: macrocore (L=60°, OD=2 No. Internet OVM Recovery USCS Sampler Type: macrocore (L=60°, OD=2 Sample Sample (feet) 0.0 Recovery USCS Sampler Type: macrocore (L=60°, OD=2 1 0.0-5.0 46 OL ORGANIC SOIL WITH SAND, moist, medium dense, roots Filme m-medium coarse sr - subrounded, r - rounded, sa - subangular, a - ar 1 0.0-5.0 1.9 SP-SM Brown POORLY GRADED SAND WITH SILT, trace Gravel (f), moist, medium dense, Quatern filme m-medium coarse 2 5.0-10.0 2.1 44 SP-SM Brown SILTY CLAY laminated with gray SILT, moi		

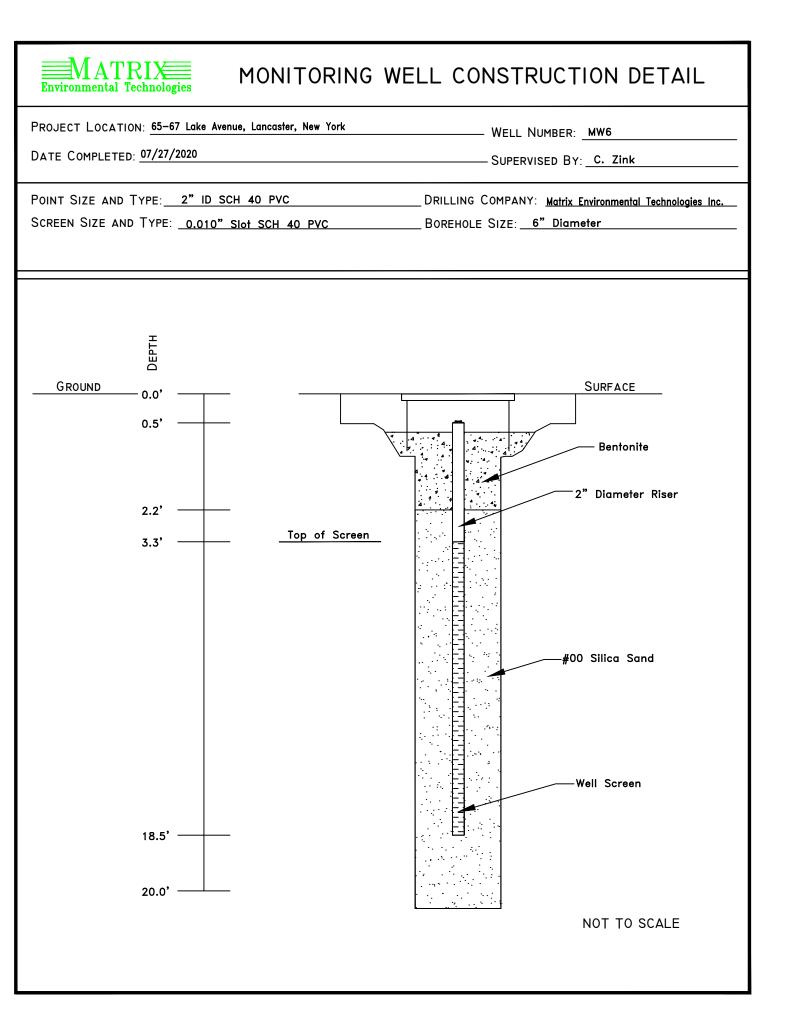

DOIECT												
ROJECT	& LOCAT	ION:	65-67 Lake	Ave., Lancas	ter, NY			PROJECT No.	18-046			
LIENT:			65 Lake Ave				_	WELL/BORING ID:	SB110			
TART DA	ATE:		7/28/2020	C(OMPLETION	N DATE: 7/28/2020		RECORDED BY:	C. Zink			
ROUND	OWATER [DEPTH WH	ILE DRILLING	i:	Approx	. 9.5'	GF	OUNDWATER DEPTH AFTER COMPLETION:	not measured			
VEATHEI	R:		Partly cloud humid, 80+	y, hot,	CONTR	DRILLING RACTOR/DRILLERS:	Matrix Enviro	nmental Technologies / P. Bliek				
RILL RIG	G:		Geoprobe 6	620 DT		LL SIZE & TYPE: Dire	ct Push 2 1/2"	HAMMER Type:	Hydraulic			
			Geoprope o	020 D1		. <u></u>	NPT	(•			
Samala	Sample	Sample		Recovery	USCS	Sampler Type		macrocore (L=60", OD=2				
Depth	No.	Interval	OVM	(inches)	Group			IPTION AND DRILLING COMM Inified Soil Classification System	EINTS			
-	NO.		Reading	(inches)	•		L L	f-fine m-medium c-coarse				
(ft)		(feet)	(ppm)		Symbol		sr - subround	ded, r - rounded, sa - subangular, a - an	aular			
			(ppiii)				31 - 300100110	ieu, i - iounueu, sa - subangulai, a - an	gua			
	1	0.0-5.0		44		8" Brown Organic So	oil overlving Bro	wn SILTY SAND (cf) WITH GRAVEL	. (f). dry to moist. mediun			
			4.7		OL, SM	dense	, 0					
1												
2				_								
					ML, CL	Reddish brown CLA	((varved) bedd	ed with gray SILT, dry to moist, La	custrine			
3			11.8		,		(14.104) 2044					
4				-								
			7.2									
5	2	5.0-10.0	7.2	62								
6												
7			8.2			Brown, reddish brown and grayish brown CLAY and SILT (laminated) with very thin (1/32") san lenses, moist, very dense, Lacustrine						
/					ML, CL							
8				_		ichises, moise, very e						
-			5.5									
9			5.5									
	3	10.0-15.0		62								
-	5	10.0-13.0		02	ML, CL,	, , ,	4" brown POOF	RLY GRADED SAND WITH SILT, moi	st to wet, medium dense			
11			5.7		SP-SM	Lacustrine						
12						Reddish brown CLA	/ laminated wit	h grayish brown SILT, trace Sand,	moist to wet, dense,			
13			3.5		ML, CL	Lacustrine		,	. ,			
12												
14			1.3		ML	Gray SANDY SILT WI	TH GRAVEL (cf)	, wet, very dense, Alluvium				

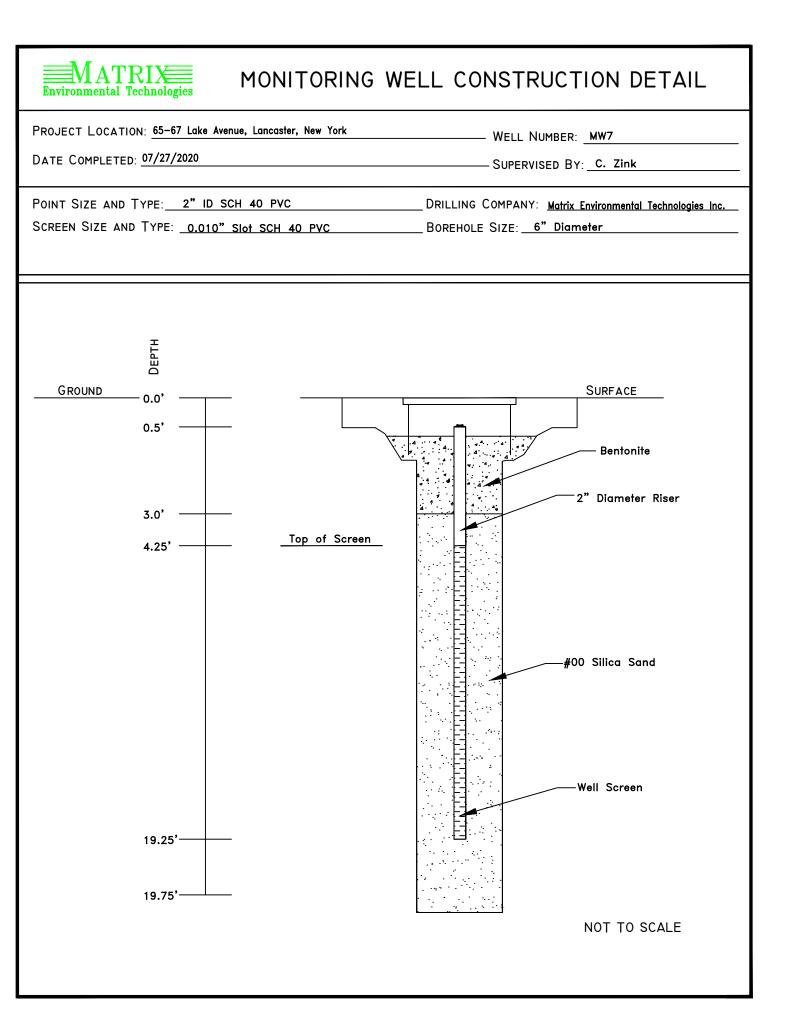

Matri	x Envir	onmer	ntal Tech	nologies	Inc.			SUBSURFAC	CE LOG
PROJECT	& LOCAT	ION:	65-67 Lake	Ave., Lancast	ter, NY			PROJECT No.	18-046
LIENT:			65 Lake Ave					WELL/BORING ID:	SB111 / MW8
START D	ATE:		7/22/2020	CC	MPLETIO	N DATE: 7/22/2020	_	RECORDED BY:	C. Zink
GROUNE	OWATER [DEPTH WH	IILE DRILLING	E DRILLING: Approx. 9.5'				ROUNDWATER DEPTH AFTER COMPLETION:	not measured
VEATHE	R:		Raining on/ hot	off, humid,	CONT	DRILLING RACTOR/DRILLERS:	Matrix Enviro	onmental Technologies / P. Bliek	
ORILL RI	3:		Geoprobe 6	620 DT	DRI	DRILL SIZE & TYPE: Direc		HAMMER Type:	Hydraulic
			- T			Sampler Type		macrocore (L=60", OD	
ample Depth (ft)	Sample No.	Sample Interval (feet)	OVM Reading (ppm)	Recovery (inches)	USCS Group Symbol			RIPTION AND DRILLING COM Unified Soil Classification System f-fine m-medium c-coarse ided, r - rounded, sa - subangular, a -	
	1	0.0-5.0	124	39	OL/SM	Brown ORGANIC SO Gravel (mc), moist, l		vist, medium dense overlying 9" ary Fill	Brown SILTY SAND, trace
1			134		OL	Brown ORGANIC SO	IL (with roots),	trace Sand (f), moist, soft, Quat	ernary Fill
2 3			49		SW	Brown WELL GRADE	D SAND WITH	GRAVEL, moist, loose, Quaterna	ry Fill
4				_					
5	2	5.0-10.0	2.4	60	SW	As above			
5	-	5.0 10.0		00	500				
6 7			3.1		ML, CL	Reddish brown CLAY		l gray SILTY CLAY, laminated in s	ome sections, not in others,
8			1.3				,		
	3	10.0-15.0		60	ML, CL	Gray SILTY CLAY, we	t, soft to medi	um stiff, Lacustine	
11			33	_	SW, ML,			TH GRAVEL (cf, sa to sr) trace Silt SILT WITH SAND, trace Gravel (c	
12			47		CL	Alluvium			
13 14				_	SP-SM	Gray POORLY GRADI Alluvium	ED SAND WITH	SILT AND GRAVEL, trace Clay, w	et, dense to very dense,
15	4	15.0-20.0	50+	60					
16			100+	_	SP-SM	30 " of resample of		POORLY GRADED SAND WITH G st, dense to very dense, Allluviun	
17									
18									
	PID read	ing may b	ave been affe	ected by mai	sture in ca	mple headspace caus	ed by burnid w	veather conditions. Sample refu	sal 17.5' horebole refusal
Notes						lysis. Monitoring wel			sai 17.5, DOLEHOLE TELUSAL

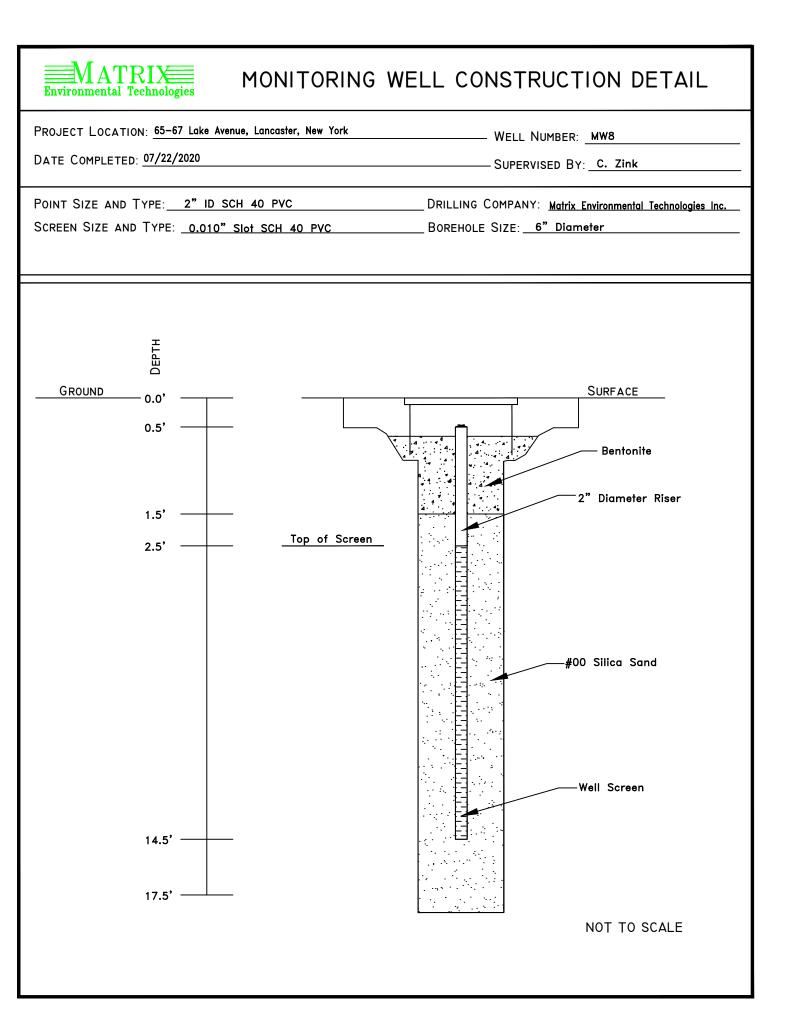

Matri	x Envi	ronment	tal Techn	ologies	lnc.	SUBSURFACE LOG			
PROJECT	& LOCA	TION:	65-67 Lake A	Ave., Lancas	ter, NY			PROJECT No.	18-046
CLIENT:	ATE.		Aquino				-	WELL/BORING ID:	SB112 / MW9
START D			8/16/2021	-	OMPLETION DATE: 8/16/2021				C. Zink
GROUNL	OWATER		E DRILLING:		5.5		GF	ROUNDWATER DEPTH AFTER COMPLETION:	not measured
WEATHE	R:		Cloudy, mod winds, 75° F		CONTR	DRILLING ACTOR/DRILLERS:	Matrix Enviro	nmental Technologies / P. Bliek	
DRILL RIG	G:		Geoprobe 6	620 DT	DRII	L SIZE & TYPE: Direc	t Push 2 1/2" NPT	HAMMER Type:	Hydraulic
					-	Sampler Type:		macrocore (L=60", OD	=2.125")
Sample	Sample	Sample		Recovery	USCS		SOIL DESCR	IPTION AND DRILLING COM	IMENTS
Depth (ft)	No.	Interval (feet)	OVM Reading (ppm)	(inches)	Group Symbol			Jnified Soil Classification System f-fine m-medium c-coarse ded, r - rounded, sa - subangular, a -	angular
	1	0.0-5.0	0	36	sw	Grayish brown POOR	LY GRADED SA	ND WITH GRAVEL, dry, loose, C	Quaternary Fill.
1			0	-	SP	Brown POORLY GRAD Fill.	DED SAND, trac	e Silt, trace Gravel (mf, sf), moi	ist, medium dense, Quaternary
2			0	+	CL, ML	Brown, reddish brow	• ·	XY, very thin laminations (1/16 /32"), moist, dense, Lacustrine.	to 1/32"), occasional lense of
3				-					
4									
5	2	5.0-10.0	-	60		Olive POORLY GRADE	D SAND (f). th	innly bedded with reddish brow	vn CLAY, grades to olive brown
6			0		SP, CL, ML			ddish brown CLAY, moist, medi	
7				-					
8			0		CL, ML	Gray SILTY CLAY lamii Lacustine.	nated with red	ldish brown CLAY (1/4 to 1/2" la	aminations), moist, very stiff,
9			0			Crew CLAY Is ministered		CLAY maint hand (find h	
	3	10.0-15.0		60	CL	Gray CLAY laminated	with reduish t	prown CLAY, moist, hard (fine la	aminations 1/32), Lacustine
11			0		ML	3" resample over Gra	IY SANDY SILT I	WITH GRAVEL (mf, sa to a), wet	, stiff, Alluvium.
12 13			0	+	SM	Gray SILTY SAND WIT	H GRAVEL (mf	, sr to sa), wet, dense, Alluvium	
14			0	-	SP	Gray POORLY GRADE	D SAND (f), tra	nce Silt, trace f Gravel (a to sa),	wet, medium dense, Alluvium.
15	4	15.0-20.0	0	54	ML	3" resample over Gra	N SIIT WITH S	AND (mf), trace f Gravel (a), we	t stiff Alluvium
16			0		IVIL				, still, Alluviulli.
17					SW			AVEL (mf, sa to a), trace silt, we	
10			0		SM			to a), moist to wet, medium de	
18				-	SP			GRAVEL, (f,a), trace (+) Silt, mo hered dolomite, last 4" is weat	
19			0			веагоск.			
20	5	20.0-25.0			-				
21									
22									
Notes		<u> </u>		<u> </u>		<u> </u>			
	Sample a	and borehol	e refusal 19.5	5'. Sample f	rom 5' - 7' s	submitted for laborate	ory analysis. M	Ionitoring well installed in borir	ng (2" dia.).

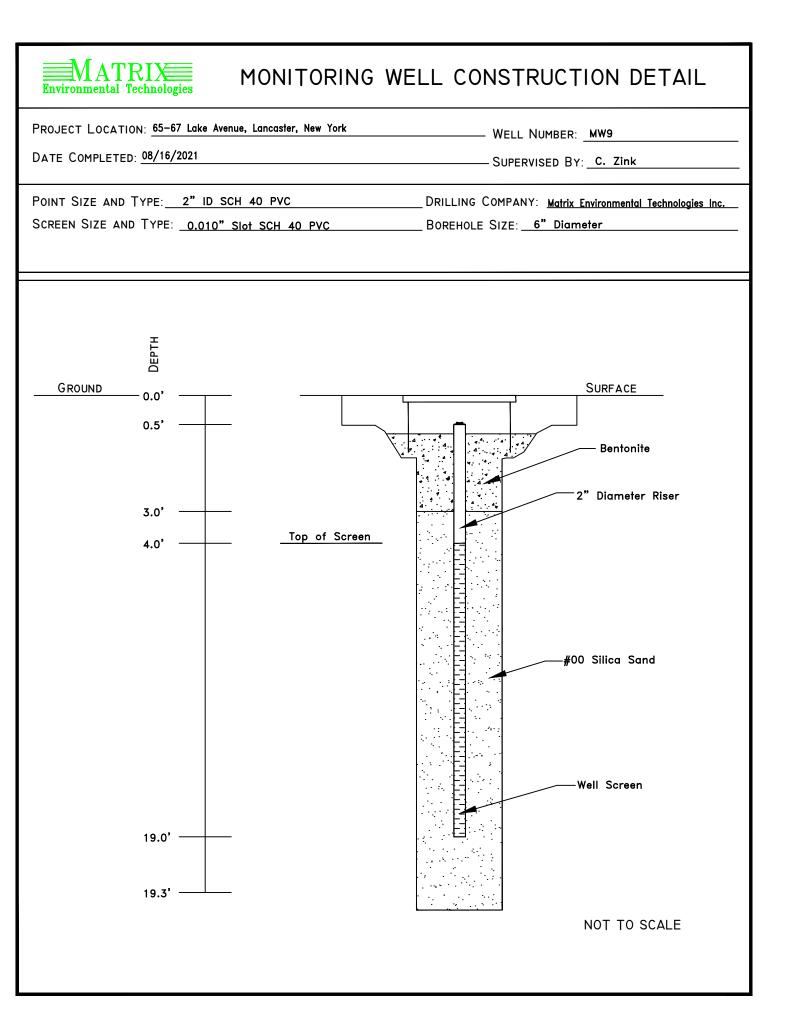

APPENDIX B


Monitoring Well Construction Details









APPENDIX C

Well Development Logs

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW1
DATE DEVELOPED:	7/22/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	15.0 ft
Static Depth to Groundwater:	not recorded
Screen Length:	11.6 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<1.89 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	18.7

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW2
DATE DEVELOPED:	7/22/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	15.0 ft
Static Depth to Groundwater:	not recorded
Screen Length:	10.5 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<1.71 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	16.1

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW3
DATE DEVELOPED:	7/23/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	19.5 ft
Static Depth to Groundwater:	not recorded
Screen Length:	15.0 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.45 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	13.4

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW4
DATE DEVELOPED:	7/24/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	16.5 ft
Static Depth to Groundwater:	not recorded
Screen Length:	13.0 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.12 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	17.4

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW5
DATE DEVELOPED:	7/24/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	18.0 ft
Static Depth to Groundwater:	not recorded
Screen Length:	15.2 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

\square 2" Well (H x 0.163 gal/ft) =	<2.48 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- \square Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	21.4

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW6
DATE DEVELOPED:	7/28/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	18.3 ft
Static Depth to Groundwater:	not recorded
Screen Length:	15.0 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.45 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	16.1

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW7
DATE DEVELOPED:	7/28/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	19.25 ft
Static Depth to Groundwater:	not recorded
Screen Length:	15.0 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.45 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	16.1

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW8
DATE DEVELOPED:	7/23/20
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	14.5 ft
Static Depth to Groundwater:	not recorded
Screen Length:	12.5 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.04 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	16.1

PROJECT:	Lakeside Village Apartments
PROJECT NUMBER:	18-046
SITE LOCATION:	65-67 Lake Avenue, Lancaster NY
WELL ID:	MW9
DATE DEVELOPED:	8/17/21
DEVELOPED BY:	C. Zink/S. Marchetti/P. Bliek

MONITORING WELL INFORMATION

Total Depth:	19.0 ft
Static Depth to Groundwater:	not recorded
Screen Length:	15.0 ft
Height of Water Column (H):	not recorded

CALCULATION OF ONE WELL VOLUME

☑ 2" Well (H x 0.163 gal/ft) =	<2.45 gal
\Box 4" Well (H x 0.653 gal/ft) =	

METHOD OF DEVELOPMENT

- □ Peristaltic pump
- □ Low-flow submersible pump
- ☑ Bailer dedicated or disposable

Time	Flow Rate	Turbidity	DTW	Vol. Purged
hr:min	mL/min	NTU	feet	gal
not recorded	not recorded	not recorded	not recorded	16.1

APPENDIX D

Disposal Documentation

	WASTE MANIFEST	1		mergency Response Phone 4. Waste Tracking Number 00-535-5053 35715					
	5. Generator's Name and Mailing Address NYSDEC Site # C915344 65-67 Lake Ave Lancaster, NY 14086		Generator's Site Address	(if different th	an mailing addre	ess)			
6	Generator's Phone: 6. Transporter 1 Company Name Environmental Service Group, J	Inc 716.	695.6720	k alambaal – ac	U.S. EPA ID	86903	3904		
	7. Transporter 2 Company Name				U.S. EPA ID	Number			
8	8. Designated Facility Name and Site Address American Recyclers Company 177 Wales Avenue	a pagati di ng ngagi	and St. State We		U.S. EPA ID	Number			
F	Tonawanda, NY 14150 Facility's Phone:	716.695.6	720	nadar (dan sala) Malangga Karaw	NYRO	00030	0809		
	9. Waste Shipping Name and Description		10. Conta No.	ainers Type	11. Total Quantity	12. Unit Wt./Vol.			
GENERATOR	4 Non RCRA Non DOT Regulated , water)	(Ground	0000	Dm	40	Dr	mse.	1	
	2. Non RCRA Non DOT Regulated ; Cuttings)	(Soil	012	DM	8400 12-C	$\frac{p}{Dr}$	Estin	nate	2
	3.								
	13. Special Handling Instructions and Additional Information ERG: Approval #: 1 - 1 - E-17211IE 2 - 2 - A-17210L 3 - 3 - 4 - 4 -	Handling 1 - None 2 - None 3 - 4 -	INFO ESG)	TRAC (ergency Caller	Must :	ID		
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the marked and labeled/placarded, and are in all respects in proper condition f Generator's/Offeror's Printed/Typed Name	or transport according to applic	able international and nat	ional governm	nental regulations	iipping name 	Month	Day	Year
▼	15. International Shipments	Export from	Det of ou	ntry/exit:			8	51	20
	Transporter Signature (for exports only):			ving U.S.:					
SPORTE	16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name			m	-		Month	Day 31 Day	Year 20 Year
	17. Discrepancy								
$\left \int \right $	17a. Discrepancy Indication Space Quantity	Туре	Residue Manifest Reference	Number:	Partial Re	jection	F	ull Rejecti	ion
ACILITY	17b. Alternate Facility (or Generator) Facility's Phone:				U.S. EPA ID	Number			
- DESIGNATED FACILITY	17c. Signature of Alternate Facility (or Generator)						Month	Day	Year
	18. Designated Facility Owner or Operator: Certification of receipt of materials Printed/Typed Name Justin Rain/Cill O	Si	ot as noted in Item 17a gnature	ist	DESIGNAT			Day 311 ENER	Year 2020 ATOR

	NO	N-HAZARDOUS	1. Generator ID Numbe	r		2. Page 1 c	of 3. Eme	rgency Respon	se Phone	4. Waste	Tracking Nu	mber	
T				1999 - A.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4		*		than mailing add			
	65-6	Dec ^N Shan#VC9 7 Lake Ave					Gonora				,		
	Lanc	aster, NY 1400	86				1						
		or's Phone: porter 1 Company Name	9							U.S. EPA ID			
		iromental		Group,	Inc	716.	695.	6720		NYD9		904	
	7. Trans	sporter 2 Company Name	9							U.S. EPA ID) Number		
	8. Desic	nated Facility Name and	Site Address	10210						U.S. EPA ID	Number		
	177	Wales Av											· · ·
		awanda, NS s Phone:	r 14150		716	. 695 . 6	720			NYRO	00030	809	×
		9. Waste Shipping Name	and Description					10. Cor		11. Total	12. Unit Wt./Vol.		
	1	Non RCRA No	n DOT Regu	lated ,	(Ground			No.	Туре	Quantity	VVI./VOI.		
ATOR		water)	_					001	DM	55	P		
GENERATOR		Non RCRA No	n DOT Requ	lated .	(Soil	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			0				
- GE		Cuttings)		,	-			001	DM	SUD	P	EST	
	3							000	11.		U	251	
													1 de la
													-
	4	h.									1		
			LA 1991 11-6	11									
		cial Handling Instructions		tion	1	Handling 1 - None				ergency			2
	1-2-		H-17211IN		4	2 - None		INFO ESG)	TRAC (Caller	Must 1	D	
	3-	3 -				-		,					
	4 -	- 4-		ereby declare the		is consignment	t are fully a	nd accurately d	escribed abov	e by the proper s	hinning nam	e and are classifier	nackaged
	mar	ked and labeled/placarde	ed, and are in all respect	ts in proper cond	lition for transport ac	ccording to app	licable inte	rnational and n	ational govern	mental regulation	IS.	Month	1
4	Genera	tor's/Offeror's Printed/Typ		(AS	Agent		Signature	In	K				Day Year
INT'L	15. Inte	rnational Shipments	Import to U.S.		gen J	Export from	n U.S.	Port of	entry/exit:				
		orter Signature (for expor nsporter Acknowledgmer					/	Date lea	aving U.S.:				
TRANSPORTER		ofter 1 Printed/Typed Nat		1		S	Signature	10	5			Month	Day Year
Ods	Tranon	orter 2 Printed/Typed Nar	CVACA	<u>H</u>			Signature	el la	4	~		Month	Day Year
TRA	Tanopo	nor z r nineurrypeu Nai							Ca				
4		crepancy											
	1/a. Di	screpancy Indication Spa	Quantity		Туре		L	Residue		Partial R	ejection	L] Fi	ull Rejection
				1445 MP			Mai	nifest Reference	e Number:		N News		
LITY	17b. Alt	ernate Facility (or Gener	ator)							U.S. EPA IE) Number		
DESIGNATED FACILITY	Facility'	s Phone:				,			······································				
ATED	17c. Sig	nature of Alternate Facil	ity (or Generator)			T						Month	Day Year
SIGN													
- DE													-
	18. Des	ignated Facility Owner o	r Operator: Certification	of receipt of mate	erials covered by th	e manifest exc	ept as note	d in Item 1	Nt	ten			
		Typed Name	00	strapo	11		Signature	R	1H	HO		Month	Day Year
V	1	Sulla	11/10	21140					M	1~		01	72 01
										DESIGNAT	ED FAC	ILITY TO GE	NERATOR

APPENDIX E

Groundwater Sampling Water Quality Data

GROUNDWATER EVALUATION SHEET Thitsel gruging all wells Date Work Performed: <u>9-10-20</u> Project No. _____ Project Name: <u>65-67 Labe Ave</u> Performed By: <u>CBZ & SLM</u>

Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled
MW1	12:12 Ph	-	5.51					
MwZ	12:15pm	~	5.55					
mw3	12:12 pm 12:15 pm 12:25 12:29	-	7.71					
mwy	12:29		10.08					
MW5	12:34	~	8.05					
mwb	12:43	~	11.20					
Miw7	12:47 12:20	\sim	B.44					
MWG	12:20	~	7.78					
	4							
	1							
				7			-	
					. p			2 5
				7.				
	\$						-	
							Alto	
Notes A	lul mw	5m2c	et all	nersi de	re anno	in D		

GROUNDWATER EVALUATION SHEET - MW2 With Sampling

Date Work Performed: 8-10-20

	JIK I el lottileu								In The
Project 1	No	Projec	t Name: <u>65</u>	67 Lah	e Aue Per	formed By	y: COL	-ESCIA	(NTL) Sursa
	Time	DTP	DTW	DO	ORP	PH	· · · · ·	Conductivity Sampled	The way
Well ID	Time						31		12.53
Mw2	12:57		5.57	2.93	- 37	7.01			
	1:02	~	5.94					1.520	4.86
	1:07		6.01		-44,6				
	1:14		6.37	0.53	- 9.5	6.96	20.6	1.596	5.79
	1:19	~	6.57		0.3			1.587	9.40
	1:26	~	6.81	0.43	-0.8		20.3		1379.8
								~	
	Sample	Raf 1=	29 m						
	volum	e remove	0=68	ters					
		-							
						· ·			
				_					
					No				
							-		-
							+		-
									_
		1							_
									_
									_

Notes:

Units for conduction ms/cm

GROUNDWATER EVALUATION SHEET

Date Work Performed: <u>6-10-20</u>

Project No. 18-046 Project Name: 65-67 Lake Ane, Performed By: CB2-5LM

								Conductivity	
Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Conductivity Sampled	NTG
MWY	2:51	5	10,04	5.66	+ 104	7.16	19.7	0.923	4.13
	2:58	_	10,64	4.04 4.14	17.2	7.14	16.0	0.900 D-896 0.904	10.6
	3:07	5	10.88	4.14	19.8	7,08	16.4	D- 896	25.1
	3:16	-	11.19	4.22	22.5	7.05	16.2	0.904	33.5
	3:25	-	11.36		18.6	7.05	16.4	0.907	30.1
				,					
									-
									-
									-
									1
									-
									-
									_
									-
									_
	ر <u>د </u>								
Notes:	Sampl	ed at	3:28	pm					-
	Total	volume	3:2B removed	=650) For s				_
				0					

GROUNDWATER EVALUATION SHEET MWB - intial GW Sampling Date Work Performed: <u>B-10-20</u> Project No. <u>1B-046</u> Project Name: <u>GS-67 Labe Ave.</u> Performed By: <u>CP2 ÷ SLM</u> **GROUNDWATER EVALUATION SHEET**

Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled	NTU
								Codeductivitz	Tursid
MWB	1:54	_	7.76	5.81	+ 69.1	6.97	24.0	1-3-1-134	p 101.4;
	2:07	_	8.(7	4.80	+35,4	6.86	20.0	1.126	31.39
	2:09	~	8.47	4.65	+36.0	6.86	20.3	1.119	24.65
2:19-	3778	~	8.70	cf.47	+26.3	6.85	19.9	1.132 4	FG.47
	2:26	<u>,</u>	9.68	4.42	t 35.1	6,86	19.9	1.145 "	19.33
	Same	led at	2:24	spm.					-
	Rei	hed at	5 liters	from w	ell befe	me so	npri	10	-
	1				e e				
			×						_
									_
	1 a								_
									_
									-
						_			
					-	_			
Notos:	Tital d	lepth of m	00 IU	C_{1}	Condu	Anh	nh B	is msk	m
Notes:	101-0	alm alm	-4 /1.			· · · · · · · · · · · · · · · · · · ·	7.00		-
									-

MWI initial sampling

GROUNDWATER EVALUATION SHEET

Date Work Performed: 8-11-20

Date Work Performed: <u>6-11-2</u> Project No. _____ Project Name: <u>65-67 Lake Ave.</u> Performed By: <u>CD2</u>

								Condiction	•
Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled	Nin
MNI	8:10	~	5.52	5.55	+97.7	7.26	20.2	1:734	19.01
F (8:19	-	5.63	3.61	+ 137.8	6.87	18.8	1.759	4.43
	8:27		5.64	3.58	+144.4	6.87	18.7	1.762	2.90
	8:35		5.65	3.58	+148.4	6.87	19.2	1.765 .	3-81
28	8:49		5.65	3.56	+149.6	6.87	19.3	1-764	3.82
			- <u>-</u>						
	Samp	led at 8	3:51 Am						
	C.II	d Pla	171	11 / 1	\int				
	rela	ant, ca	teor Col	ected 1	Tom				
	this	Wel	6						
							1		
	Ret	med to	get Sh	mple 1	In Hox	aval	nf		
		Chr	milin	~t 2	=43pm				
								1	
									11230
									~
Notes:	7 Life.	s of f	urje w	ghs Rema	st.			<u></u>	_

D	NDWATEI	B-11-2	j)	EET /	Mw3	init Sa	hal	ing	
	No			cial.	1. A.				
Project 1	No	Projec	rt Name: 🖉	5-61 LA	le pre Perf	ormed B	y: _>	<u>M</u>	A. /7 -
Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled	~4
MW3	2:31		7.72	2.71	-49.8	7.58	20.0	1.027	31.65
	12:48		9.21	0.28	-64.4	7.29	17.5	0.941	9.36
	12:54	-	9.37	0.23	-68.0	7.28	17.3	0.956	8-97 7.01
	1:07	~	9.41	0.21	-69.8	7.28	17.3 17.6	0.960	7.01
	Sam	fled a		18					
			v (-
									-
									-
									-
									-
		·	ent t t.						
						• •••••			
									-
		- 1 - 1 - 0		lan -	A		<u> </u>	-1.00	
Notes:	Voun	me per	rover O	uring 1	Anging	~	<u> </u>	. 1915	
		A. 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19							

GROUNDWATER EVALUATION SHEET

MWS in tial sampling

Date Work Performed: 8-/1-20

					Λ				
Project 1	No	Projec	t Name: 65	-67 Lak	- Hu Perfo	ormed By	: Cra	2	
(<u></u>	1	T		ſ			and -	r. Conduct	
Well ID	Time	DTP	DTW	DO	ORP	PH	20%	Sampled	M
MW5	10:51	-	5.36	3.11	+108.9	7.37	(17) ²² 3	1.142	1485
	10:58	-9.06	()10/3	1.69	F124.4	7.06	21.6	1.119	82/0
	11:09		9.27	1.43	+122.6	7.07	21.5	1.121	53.57
	11:16		9.36	1=21	#111.6	7.07	21.5	1.127	1482 82.18 53.57 36-24
	11:26		9.39	1.30	+ 111.8	7.07	J.5	1.124	34.10
	Bah	Samply	2+ /1:	30					_
				×					
	went b	cch for r	NWS to Chromi	Set S	mple of	m			_
	Hex	avalut	Chrom	im at	2:15	Spn			_
				V		V			
									2
						1			
Notes: K	lomored	8 liter	rs of w	ater de	ur, ty sa	mpli	ho.		-
<i>ų</i>			<u></u>		0	ľ	Ō		
				· · · · · · · · · · · · · · · · · · ·				and the second s	-

GROU	NDWATER ork Performed No. 1 <u>K-04</u> (REVALUA Ø- 12 -	TION SHI	EET Chitr	Sample	ning 1	NW	6	
Date Wo	ork Performed			1-1-6	ý A	0		le de	
Project 1	No. 1 <u>6 - 076</u>	Projec	t Name:(<u>)</u> -	6/Lan	e Ave Perf	formed By		Contact	5
Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled	M
MW6	1:12		11.43	6.28	+61.3	7.24	24.9	1.085	1576
	1:19		11.95	5.17	465.2	6-82	18.9	1.018	12.47
	1:25	/	12.25	4-89	159.0	6.88	18.9	1.014	36.4
	1:33	-	12.56	4:79	+56.2	6.91	18.7	1.008	18-32
	1:41		12.68	4.71	+57.7	6.90	19.0	1.005	18-01
	Ϋ́								
			a.						
									_
									_
									-
									-
									-
NIetori	Seco	la timo	-	Alle ·	1:45		J		al.
Notes:	Notes: Sample Time = 1:43 Amount removed Durize sempling = 6 liters								
	frnund	revno			- ya wig	0	$_\sigma$		-
· · · · · · · · · · · · · · · · · · ·									-

(mo

years dedicated to a CLEANER ENVIRONMENT T 10 10 - 2 O 1 6

GROUNDWATER EVALUATION SHEET MW7 intral sampling

Date Work Performed	: 8-12-21	D
Date Work I errornied	. ~	_

in

Project 1	No	Projec	t Name: 🙆	-67 Lak	e Ave Perf	ormed By	y: <u>S</u>	CM/CDZ	
Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled	NTV
MW7	8:58		8,60	Before	punpin	8			
60	8:58	/	8.62	1.80	+60.2	7.35	15.9	1.364	269.15
ANA M	9:09	-	8.85	0.42	+35.0	6.90	15.3	1.321	43.67
	9:22	/	8.93	0.37	+28.9	688	15.3	1.295	38-18
OWANT	9:28	/	8.97	0.36	141.0	6.88	15.6	1.274	3269
	9:33	/	8.99	0.36	ry0.2	6-87	15.5	1.268	33. SJ
	•								
						•			
									1
Notes:	n loll so	in plade	f : 9	: 35	J	J		I	<u>_</u>
Notes:	Well Sa Gmoun	tet	- ton	A Gran Dial	2=6	Liter			_
	Lynoun	() as prove	y writer	- Control					-
			<u>/</u>						-

ION SHEET **GROUNDWATER EVA**

Equipment Blanke for Grondwater Samplig

Date Work Performed: 0 - 12 - 20Project No. 18-046 Project Name: 65-67 Lake Anderformed By: SLM /CM

Well ID	Time	DTP	DTW	DO	ORP	PH	°C	Sampled

Notes: Sample time = 12:24pm Samplied using down well tubing (Hdre) using Parasteltac directly into DI water bottles Provided by Lab. 9 Pump. Put Jubbry Rottles.

Aquino Lancester 8-31-21

	MWS	Time	DTW	8	00	cond	PH	ORP	Turb
	9-1			24.8	4.92	0.918	7.20	94.9	20.21
	*/	8:41	7.10	24.8	4.41	0.899	7.19	98.5	15.87
	2	8:46	7.30	25.0	4.37	0.899	7.19	99-1	10.40
		8:51	7.48	250	4.40	0.904	7.19	92.7	10.38
,	Sanlfed at		8.52-	18	17.	1.1.176	16.95	1.3.5.	
	1/2 gallon R			-	11.06				*
	1 serles	9:08	5.56	17.9	gapon	2.001	6.99	102	9.29
1	MWI	1:13	1	18.7	1	1.969	694	101.1	4. 89
C_		918	5.53	1.	3.30	1.207	6.24	97,7	
	A AND AND AND AND AND AND AND AND AND AN	9:23		1	3.33	1.964	694	96.9	2.96
	Same bed	9t 9:			Q.			1 77	707
	1/2 gallon		1 25	117	115	19 12		11 860	-13/22
	mw2	9:34	5.29	19.5	3.07	1.753	7.04	86	3.52
	Triw 2	9:39	5.46		0.74		6.97	85.5	2.86
	1115	9:44	5.62		0.55		6.97	87.6	2-81
	245 245	9:49	5.72		0.52	1	697	80.1	2.90
	Sampled a				3 10	5.0.7	17.2	4-28	55.90
	1/2 galle	111.94	197.94		4 1/	159 0.7	15 7/2	3 -32	24-61
-	/2 79 lle	4				04810.7	11/7:	1-2	1 22:59
	-	115				1710.7	1 7	211-53	21.57
	s. this								
	ichine in	152							
	Surfut PM								

1 /1	Lance stor	
4041-0	Layly Str	

8-3-21

ZWM	WAR 1	Time S	OTY J	°C 1	00 00	cond (TH 1	ORP	Terrb
	mw 8	10:02		21.7	and the second data and the se	1.261	6.99	92.3	3.03
		10:07		18.3	3.53	1.208	6.91	96.4	506
		10:12	8.40	18.4	3.15	1.192	6.92	48.1	3-81
		10:17	8.50	18.4	2.41	1.177	695	3.6	2.75
1. Nal	Garde	10.22	8.62	18.7	2.39	6.176		3.5	2.71
: 1/2 gg/1.	Sanfud at	10:22							
	1/2 galler	143	11.51	23		51/0	516	93 8	4 19.45
1.6112		T.B.	7.12	122	2.48	1.891	7.15	- 83	27.86
	G A 1	1.12	1:18	- 20.5	144	1	1019	5112	11185
		10:58	11:26	15.9	2.41	0.764	7.15	57.9	7.36
June?	103-1	11:03	11.27			0.757	699	79.2	7.07
1/2 gallo		11:08	11:35		5.69	0.773			9,22
LUM	Two T	11:13	11:46			8 0.771			9.24
~	Safud at		8.63	187	10			991	12 18 27
i. I.	11:13	183	8.20	198	0	-3-1/		647	2. 21.31
	MW3	11:32	8.00	17.8	2.11	0.730	7.30	-0.4	41.83
July 2	Sul 1-9	11:37		16.9	1	0,719	7.24	-28	155.90
la cl	1.3	11:42	8.84	16.4	0.50		7.23	-32	24-61
141	-	11:47	9,69	17.3	0.4	8 0.714	723	-25	22.58
		11:50		17.4	0.4-		7.24	-23	21.51
	Scipled								
	9711:	152							-

Agnino Laxastr

8-31-21

	EAL A MOR	Time	DT.	[°C]	00	Condl	PH]	URPI	Turb
	MULTAN		DTW		3.88			47	
WM	mwg	12:40	8.77	18.5		1.658	7.29	49	1765
		12:45	8.80	19.6	3.44	1.663	7.27		\$39/
	1/2 galand	12:50	8.84	20.1	31/3	1.661	7.27	54.6	215
		12:55	8.87	20.2	3.12	1.645	7.26	58.5	
	Sanda	1:00	19.91	20.4	2.94	1.657	7 7.26	61	193.0
· Samler	1,00 33								
1/29	MW6	1:13	11.51	23.6	1.15	1.015			
WT	-	1:18	11.68	20.2	0.57	1.05		100-1	
S and a	-	1:23	11-83	20.4	0.60	1.05	U G.9	9 81.1	14:35
MM	Sandad an	F				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-	
	1:23								
	mwT	1:33	8.53	14.3	1,30	1.28			
Sing		1:38	8.63	18:7	0.66	1.26	7 6-9	8 4	5.8 46.27
11:13	1/2 Calent	1:43	8.70	19.5	0.5	5 1.25			4.7 21.38
MW	1/21	1:48	8.79	19.0	0.4	8 1.28	05 6.9	8 3	11 21.41
10 A	Souther	gt			16. ar				
	Sandand 1:48								
Savel									11
tp	-								

APPENDIX F

CAMP DATA

APPENDIX G

LABORATORY ANALYTICAL REPORTS

APPENDIX H

DATA USABILITY SUMMARY REPORTS