INDOOR AIR SAMPLING REPORT **FEBRUARY 2022**

April 25, 2022

Lakeside Village Apartments 65-67 Lake Avenue Lancaster, New York BCP Site #C915344

> Prepared For: 65 Lake Avenue LLC

> > Prepared By:

Christine M. Curtis, P.E.

Project Engineer

Steven L. Marchetti Senior Project Manager Sean R. Carter, P.E.

Principal Engineer

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND	1
2.1 Site Location and Description	1
2.2 Geology and Hydrogeology	
2.3 Previous Studies	
3.0 SSD SYSTEMS DESCRIPTION	
4.0 SAMPING METHODOLOGY	3
5.0 RESULTS	3
5.1 Indoor Air	
5.2 Outdoor Air	4
6.0 CONCLUSIONS AND RECOMMENDATIONS	4

ATTACHMENTS

Figure 1: Site Location Map

Figure 2: Site Plan and SSD Systems Layout and Piping Diagram

Figure 3: Air Sample Locations

Table 1: Air Monitoring Results

Appendix A: Building Questionnaire and Product Inventory Survey

Appendix B: Laboratory Analytical Reports

1.0 INTRODUCTION

Matrix Environmental Technologies Inc. (METI) has prepared this Indoor Air Sampling Report on behalf of 65 Lake Avenue LLC for the Lakeside Village Apartments Site ("Site"). This report includes the results of the indoor air sampling event completed on February 1, 2022 at 65 Lake Avenue (Building A) and 67 Lake Avenue (Building 1) in Lancaster, New York. The Site was accepted into the Brownfield Cleanup Program (BCP) and designated as BCP Site #C915344 in 2019. Sub-slab depressurization (SSD) systems were subsequently installed and are currently operating in Building 1 and Building A.

2.0 BACKGROUND

2.1 Site Location and Description

The Site is currently utilized as a residential apartment complex in a moderately developed residential area in the Town of Lancaster, Erie County, New York. The Site includes two parcels totaling approximately 1.18 acres of land: SBL #115.27-1-22.21 addressed as 65 Lake Avenue and SBL #115.27-1-23.11 addressed as 67 Lake Avenue. On-Site structures include three (3) two-story townhomes constructed in 2006 (65 Lake Avenue) and a one-story apartment building constructed in 1903 (67 Lake Avenue). The Site is bordered by undeveloped land and apartment buildings to the south; residences to the north and west; and Lake Avenue to the east. Properties beyond those adjacent to the Site, including to the south, consist mostly of private residences. Cayuga Creek is located approximately 200 feet to the southwest. The location of the site is shown on **Figure 1**.

Historically, the eastern portion of the Site was utilized as a dry cleaner from at least 1949. The former dry cleaning building was located on the eastern portion of 65 Lake Avenue and the northern portion of 67 Lake Avenue. The building was reportedly destroyed by a fire in the late 1970s and was removed or demolished by at least 1995. According to members of the Young family, who owned both properties from at least 1882 through 2005, historical use of the properties has remained residential since at least 1900 with the exception of the dry cleaner. Buildings utilized for vehicle storage were present in the current location of Building A and a private residence was located in the current vicinity of Buildings B and C. The storage buildings and the residence were reportedly demolished at approximately the same time as the dry cleaning building.

2.2 Geology and Hydrogeology

Characterization of soil samples collected during the remedial investigation depict the subsurface environment as fill material (sand with gravel and silt) from ground surface to approximately 4 to 5.5 feet below grade underlain by lacustrine deposits (laminated silt and clay) from approximately 4 to 11.3 feet below grade and alluvium (silty sand with gravel) from approximately 11.3 to 20 feet below grade. According to the Geologic Map of New York, 1970 (Richard and Fisher), the bedrock underlying the Site is shale and/or limestone of the Skaneateles Formation (Hamilton Group) from the Upper Devonian Period (383 to 358 million years ago). Weathered and dry to moist, 2 to 3-inch lenses of limestone were identified in several soil borings ranging from 16 to 20 feet below grade. Auger and sample refusal was also documented in that depth range suggesting the surface of competent bedrock begins at approximately 20 feet below grade.

Average depth to groundwater at the Site is approximately 8 feet below grade. This is consistent with observations made during the Remedial Investigation indicating that the water table exists within the clay and silt lacustrine sediments. Groundwater elevation data show that the groundwater flow direction is generally to the west with components of flow to the west northwest and southwest. The gradient is moderate at 0.035. Between the Site and Cayuga Creek, the gradient is estimated to be steeper (e.g. 0.1 feet) due to the difference in topographic elevation (28 feet).

2.3 Previous Studies

Following the discovery of chlorinated VOCs in groundwater during an investigation completed in 2018, vapor intrusion studies were completed in February and April 2019 within the four (4) residential buildings. Vapor intrusion testing results identified chlorinated solvents, specifically tetrachloroethylene (PCE) and trichloroethene (TCE), within both sub-slab and indoor air samples in Buildings 1 and A. Based on guidance from the New York State Department of Health (NYSDOH), the concentrations of these solvents required mitigation in Building A on 65 Lake Avenue and Building 1 on 67 Lake Avenue. Mitigation was not required in Building B or Building C. For additional details, refer to the February 28, 2019 "Soil Vapor Intrusion Assessment Report" (METI) and the May 7, 2019 "Soil Vapor Intrusion Assessment Report" (METI).

SSD systems were installed to mitigate potential vapor migration into the basement areas of Building 1 and Building A by maintaining a negative pressure of at least 0.004 inches water column (WC) in the sub-slab as detailed in the February 16, 2022 "Sub-Slab Depressurization Systems Start-Up Report and Operations & Maintenance Plan" (METI). The design was developed in accordance with the applicable standards, criteria, and guidance contained in or referenced in NYSDOH's "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006 and its updates. The systems were activated on November 12, 2019.

Confirmation indoor air sampling was completed from January 15-16, 2020 in Building A and Building 1. Results indicated that the Table C1 Indoor Air Background Level (Upper Fence Value) for PCE (2.5 $\mu g/m^3$) was exceeded at a concentration of 16 $\mu g/m^3$. The basement of Building 1 was subsequently encapsulated with a waterproof barrier using RadonSeal Plus Concrete Sealer. Building 1 was resampled from April 6-7, 2020 and all compounds identified in the NYSDOH soil vapor/indoor air decision matrices were not detected or below Indoor Air Background Levels in the Building 1 air sample.

3.0 SSD SYSTEMS DESCRIPTION

Installation of the SSD systems was completed by METI from October through November 2019. Seven (7) separate SSD systems were installed in the following basement areas:

- Building 1 West
- Building 1 Central
- Building 1 East
- Building A, Apartment 1
- Building A, Apartment 2
- Building A, Apartment 3

• Building A, Apartment 4

Locations of the basement treatment areas and associated system piping, extraction points and monitoring points are shown in **Figure 2**.

The SSD systems create negative pressure under the building floor slab relative to the indoor air pressure, thereby minimizing the potential for soil gas to migrate into the building. The systems use a fan to apply vacuum to vapor extraction points installed throughout the building floor slab. The systems were designed to create a minimum negative pressure of at least 0.004 inches WC in the subslab in each area. Vacuum influence is verified using permanent vapor monitoring points. The collected sub-slab vapor is discharged to the atmosphere.

4.0 SAMPING METHODOLOGY

Air monitoring was completed from January 31 – February 1, 2022 in Building A and Building 1. Indoor air samples were collected from the basement area of each apartment in Building A and from the basement area of Building 1 as shown in **Figure 3**. In addition, one ambient outdoor air sample was collected from between Building 1 and Building A. The home heating systems and SSD systems were operational at the time of sampling.

Prior to sampling, a product inventory survey was completed in each basement area. Surveys are included in **Appendix A**. Samples were then collected simultaneously over a 24-hour period using six-liter Summa canisters equipped with calibrated flow regulators in accordance with NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York". Indoor air samples were collected from a central location at a height of approximately 2-3 feet above the basement floor and the outdoor air sample was collected from a height of approximately 3-4 feet above ground surface. Samples were submitted to Centek Laboratories of Syracuse, New York for analysis of VOCs using EPA Method TO-15.

5.0 RESULTS

The indoor and background air sampling results were compared to the Table C1 Indoor and Outdoor Air Background Levels (upper fence values) included in the NYSDOH Soil Vapor Guidance. Background levels and results are summarized in **Table 1**. Results are also shown on **Figure 3**. The laboratory analytical report is included in **Appendix B**.

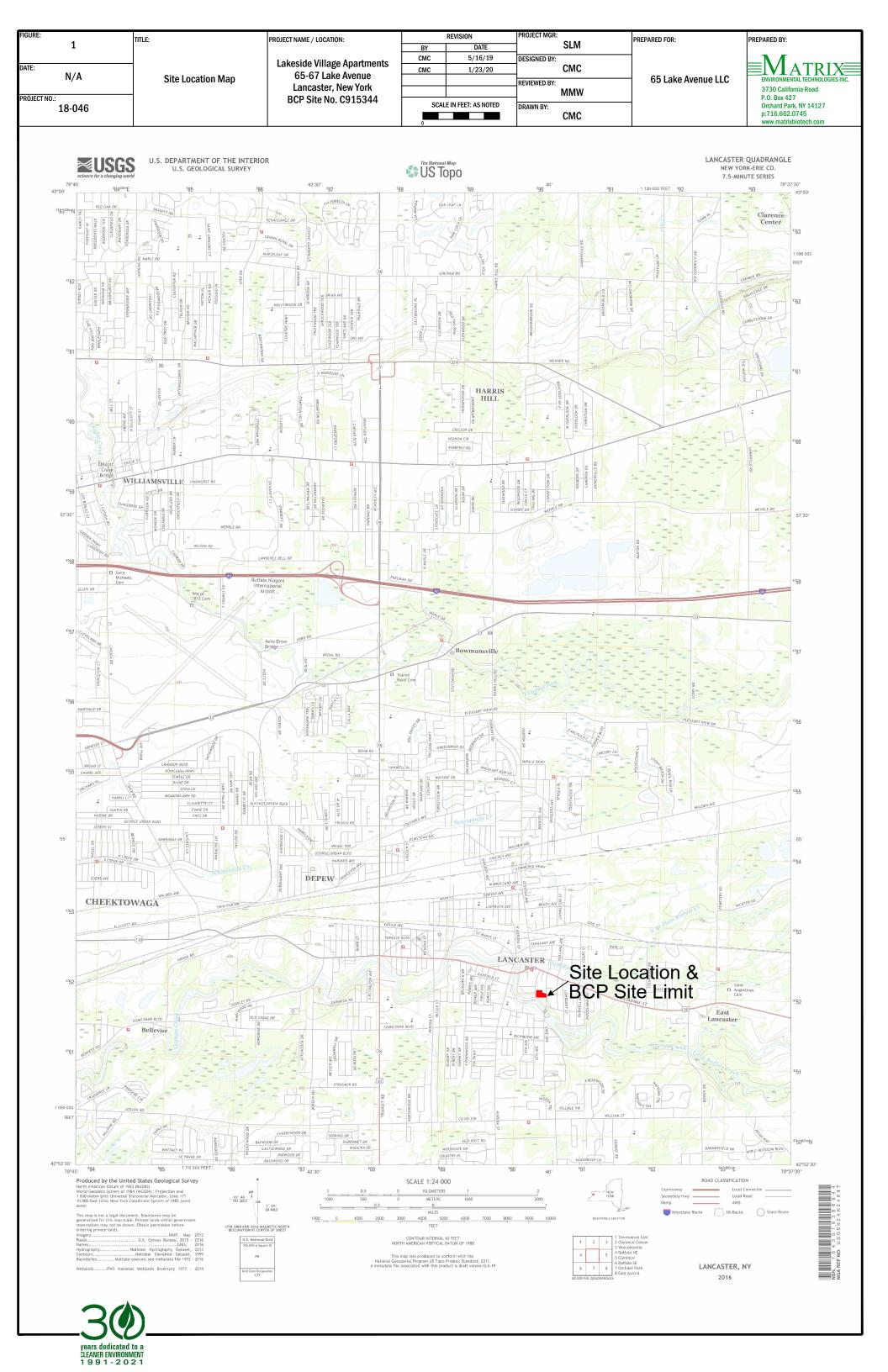
5.1 Indoor Air

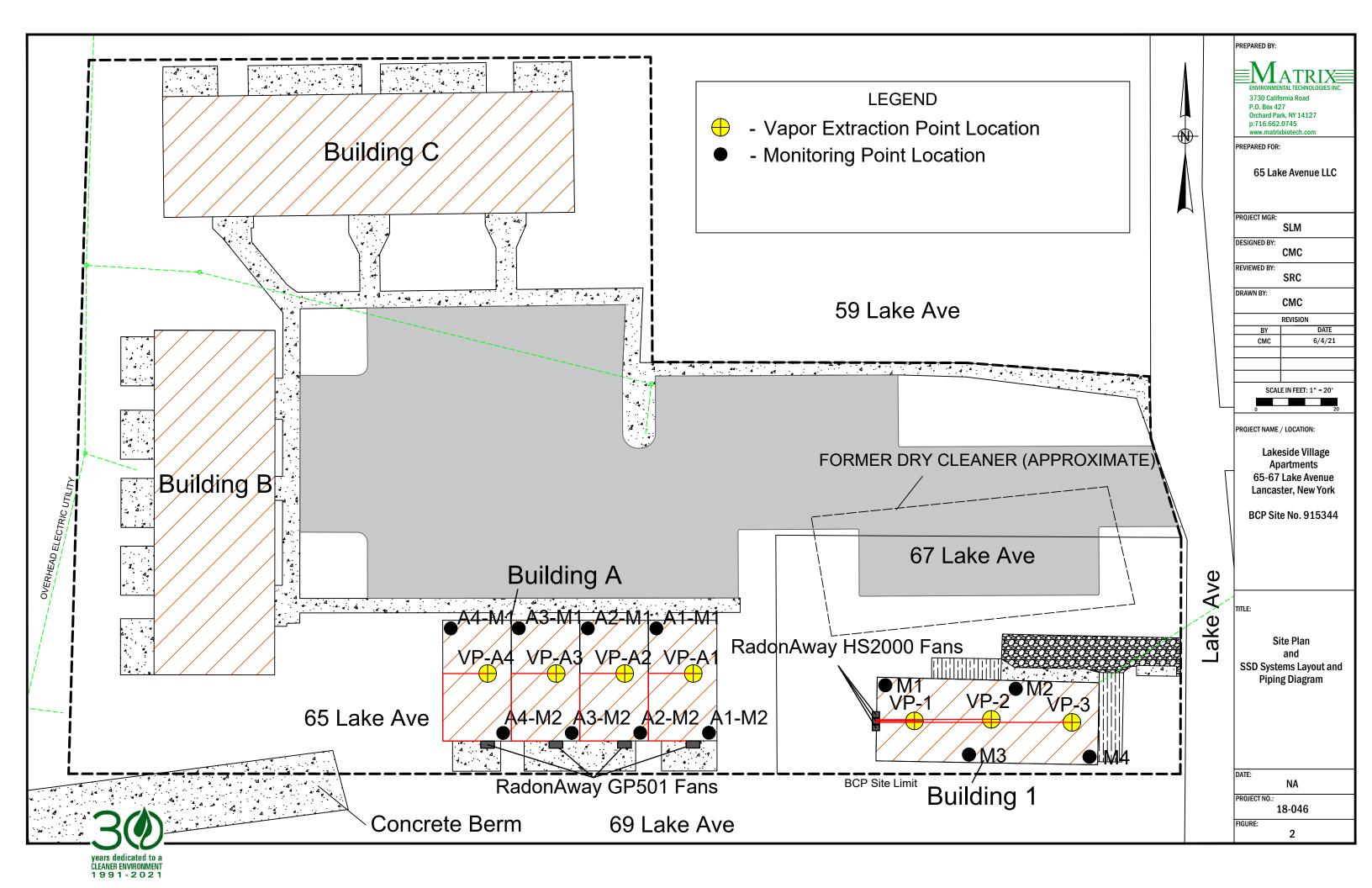
PCE was detected in the samples collected from Apartment A-3, Apartment A-4, and Building 1 and slightly exceeded background levels in Building 1 at a concentration of 3.0 μ g/m³. Using NYSDOH decision matrices and the sub-slab vapor concentration of 36 μ g/m³ recorded in Building 1 in 2019, no further action is recommended based on this result. Prior to activation of the SSD systems, the PCE concentration in indoor air in Building 1 was 35 μ g/m³.

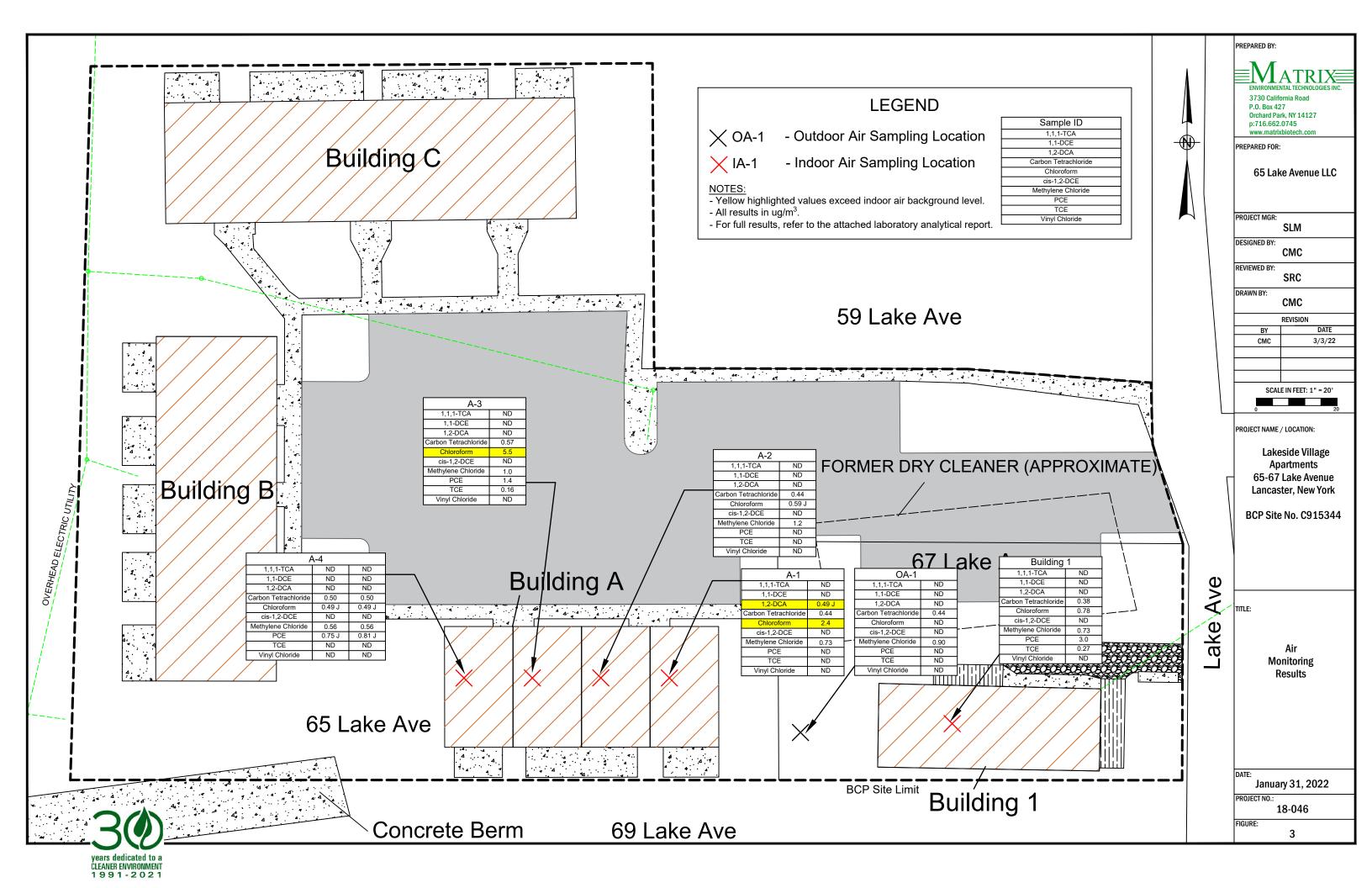
Of the compounds subject to the NYSDOH decision matrices, three VOCs - TCE, methylene chloride, and carbon tetrachloride - were detected at one or more sampling locations at a

concentration lower than background levels. The remaining compounds (1,1,1-trichloroethane, cis-1,2-DCE, 1,1-DCE, and vinyl chloride) were not detected.

Minor exceedances of background levels were recorded for 1,2-dichloroethane and chloroform in Apartment A-1 and for chloroform in Apartment A-3. The result for 1,2-dichloroethane was flagged as estimated in the laboratory report. While the source of the detections is not definitively known, it is suspected that the chloroform concentrations may be related to the use of chlorinated water in the washing machines located in the basements of both apartments.


5.2 Outdoor Air


A total of 15 compounds were detected in the outdoor air samples at concentrations below background levels.


6.0 CONCLUSIONS AND RECOMMENDATIONS

Results of the February 2022 air sampling event indicate that implementation of SSD systems met the objective of lowering the concentrations of chlorinated solvents in indoor air in Building 1 and Building A at the Site. Where detected, concentrations of target VOCs remain below or near background levels established in guidance from NYSDOH. Continued systems operation and documentation of vacuum data as outlined in the Operations & Maintenance Plan is recommended.

FIGURES

TABLE

Table 1 Soil Vapor Intrusion Testing Analytical Results

65-67 Lake Avenue, Lancaster, New York

January 31, 2022

PARAMETER	Table C1 Indoor Air Background Level (Upper Fence Value)	A-1	A-2	A-3	A-4	A-4 Duplicate	Building 1	Table C1 Outdoor Air Background Level (Upper Fence Value)	OA-1
1,1,1-Trichloroethane	2.5	ND<0.82	ND<0.82	ND<0.82	ND<0.82	ND<0.82	ND<0.82	0.6	ND<0.82
1,1-Dichloroethene	0.4	ND<0.16	ND<0.16	ND<0.16	ND<0.16	ND<0.16	ND<0.16	0.4	ND<0.16
1,2,4-Trimethylbenzene	9.8	0.93	0.64 J	ND<0.74	0.54 J	0.54 J	ND<0.74	0.5	ND<0.74
1,2-Dichloroethane	0.4	0.49 J	ND<0.61	ND<0.61	ND<0.61	ND<0.61	ND<0.61	0.4	ND<0.61
1,4-Dichlorobenzene	1.2	1.0	ND<0.90	ND<0.90	0.66 J	ND<0.90	ND<0.90	0.5	ND<0.90
2,2,4-trimethylpentane		0.84	0.47 J	0.56 J	0.65 J	0.61 J	0.61 J		0.56 J
Acetone	115	31	38	110	29	25	8.6	30	19
Benzene	13	3.7	2.5	1.2	1.3	1.2	1.7	4.8	0.93
Carbon disulfide		ND<0.47	ND<0.47	0.31 J	ND<0.47	ND<0.47	ND<0.47		ND<0.47
Carbon tetrachloride	1.3	0.44	0.44	0.57	0.50	0.50	0.38	1.2	0.44
Chloroform	1.2	2.4	0.59 J	5.5	0.49 J	0.49 J	0.78	0.5	ND<0.73
Chloromethane	4.2	3.9	ND<0.31	ND<0.31	0.99	1.0	1.4	4.3	0.87
cis-1,2-Dichloroethene	0.4	ND<0.16	ND<0.16	ND<0.16	ND<0.16	ND<0.16	ND<0.16	0.4	ND<0.16
Cyclohexane	6.3	ND<0.52	ND<0.52	ND<0.52	ND<0.52	ND<0.52	ND<0.52	0.9	0.55
Ethyl acetate		4.9	1.8	1.4	0.90	0.76	ND<0.54		ND<0.54
Ethylbenzene	6.4	1.1	0.69	0.43 J	0.56 J	0.52 J	0.65	1.0	ND<0.65
Freon 11		1.3	1.1	1.1	1.1	1.3	1.2		1.4
Freon 12		2.2	2.2	2.3	2.3	2.3	2.2		2.4
Heptane		1.7	2.0	1.1	1.1	0.98	0.86		0.49 J
Hexane		1.9	1.4	1.3	1.4	1.3	1.2		0.88
Isopropyl alcohol		ND<0.37	19	ND<0.37	7.4	6.4	3.7		1.7
m&p-Xylene	11	3.4	1.9	1.4	1.8	1.6	2.0	1.0	1.0 J
Methyl Ethyl Ketone	16	3.2	2.2	2.0	0.86 J	0.88	1.2	5.3	0.65 J
Methylene chloride	16	0.73	1.2	1.0	0.56	0.56 J	0.73	1.6	0.90
o-Xylene	7.1	1.0	0.65	0.52 J	0.56 J	0.56	0.61 J	1.2	ND<0.65
Styrene	1.4	0.81	0.60 J	ND<0.64	ND<0.64	ND<0.64	ND<0.64	0.5	ND<0.64
Tetrachloroethylene	2.5	ND<1.0	ND<1.0	1.4	0.75 J	0.81	3.0	0.7	ND<1.0
Toluene	57	7.5	6.1	3.1	4.0	3.5	5.4	5.1	2.4
Trichloroethene	0.5	ND<0.16	ND<0.16	0.16	ND<0.16	ND<0.16	0.27	0.4	ND<0.16
Vinyl chloride	0.4	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.4	ND<0.10

NOTES:

- 1. Analytical testing for VOCs via EPA Method TO-15 by Centek Laboratories, LLC.
- 2. Results present in $\mu g/m^3$ (microgram per cubic meter).
- 3. Indoor and outdoor air background levels as presented in Appendix C, Table C1: NYSDOH 2003: Study of volatile organic chemicals in air of fuel oil heated homes, of "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006).
- 4. ND = Not Detected
- 5. Yellow highlighed values represent exceedance of Table C1 background level.
- 6. Compounds detected in one or more samples and select VOCs are included in this table. For a list of all compounds, refer to the attached analytical report.

APPENDIX A Building Questionnaire and Product Inventory Survey

Soil Vapor Intrusion	n - Structure Sampling B	uilding Question	naire	Structure ID : <u>A1</u>
Site No. : 18-0	046 / C915344	Site Name :	Lakeside Villa	age Apartments
	1/22		8:30 AM	<u></u>
Structure Address			aster NY	
Preparer's Name &	Affiliation : Steven M			
Residential ? 💢 Y	∕es □ No Owner Occup	pied? ⊠ Yes □		
Commercial ?	Yes 🗓 No Industrial ?	□ Yes 💢 No	Mixed Uses ? ☐ Yes	s 💢 No
Identify all non-resi	idential use(s) :			
Owner Name : Ma	ark Aquino		Owner Phone: (71	6) 681 - 1450
	•	Secondary O	wner Phone : ()
Owner Address (if o	different) :			
)
)
Number & Age of A	II Persons Residing at this I			,
_	Occupant Information :			
			partment build	ding
Approximate Year B	uilt : 2006		Is the building Insulated	d? □X Yes □ No
Lowest level :	☐ Slab-on-grade	Basement □	☐ Crawlspace	
Describe Lowest Le	_			
Floor Type: XCor	ncrete Slab Dirt M	lixed: carpete	ed	
Floor Condition :	☐ Good (few or no cra	acks)	(some cracks) \square Poo	r (broken concrete or dirt)
Sumps/Drains?	∑ Yes □ No	Describe:	sump	
Identify other floor	penetrations & details : 2	monitoring	points/1 vapo	r extraction point
associated	with SSD system	1		
Wall Construction :	☐ Concrete Block	M Poured Concrete	e ☐ Laid-Up Stone	
Identify any wall pe	enetrations : <u>SSD sys</u>	tem proces	s piping on so	uth wall
,				
Identify water, mois	sture, or seepage: location &	& severity (sump, cr	acks, stains, etc) :no	ne
Heating Fuel :	□ Oil 💢 Gas	□ Wood □ E	lectric	
Heating System :	▼ Forced Air □	Hot Water □ 0	Other :	
Hot Water System :		Electric □ Boile		
Clothes Dryer :	□ Electric 又 Gas	S Where is drye	er vented to? OUTSIC	de south wall
If combustion occu	ırs, describe where air is dra		-	air, etc.) :
external a	ır			

Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) : ______

SSD fans to exhaust stack

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop): ☐ Yes 🗶 No ☐ Yes ☐ No Attached garage? Air fresheners? New carpet or furniture ? ☐ Yes 💢 No What/Where ? Where ? : _____ Recent painting or staining? ☐ Yes Any **solvent** or **chemical-like** odors ? 🗶 No ☐ Yes Describe : Last time **Dry Cleaned** fabrics brought in? _____ What / Where? _____ Do any building occupants use solvents at work ? $\ \square$ Yes $\ \square$ No Describe : Any testing for Radon? ☐ Yes Ľ**X** No Results: If yes, describe below Radon System/Soil Vapor Intrusion Mitigation System present? X Yes ☐ No 1 vapor extraction point/RadonAway GP501 fan **Lowest Building Level Layout Sketch** SSD system process piping > west east

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
ws	Wood Stoves	● SS-1	Location & label of sub-slab vapor samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

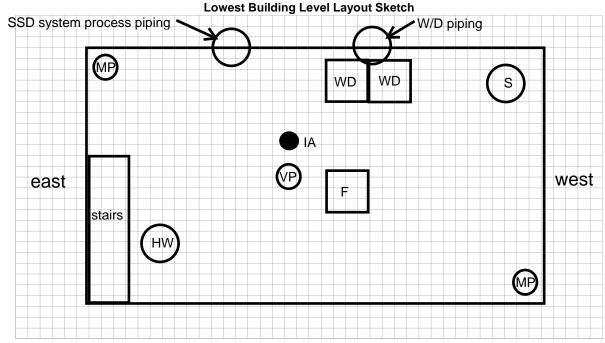
Page	1	of	1

Structure Sampling - Product Inventory

Homeowner Name & Address:	65 Lake Ave, Lancaster, NY 14086	Date:	1/31/22
Samplers & Company:	Steve Marchetti, METI	Structure ID:	A1
Site Number & Name:	Lakeside Village Apts/C915344	Phone Number:	
Make & Model of PID:	MiniRAE 3000/10.7 eV lamp	e of PID Calibration:	
Identify any Changes fro	om Original Building Questionnaire :	•	

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
personal storage				
too numerous to list				
				_

Site No.: 18-046 / C915344	AM IY	015344 Jakosi	
Structure Address: 65 Lake Avenue, Lancaster NY Preparer's Name & Affiliation: Steven Marchetti / METI Residential? X Yes No Owner Occupied? Y Yes No Owner Interviewed? Yes No Identify all non-residential use(s): Owner Name: Mark Aquino Owner Phone: (716) 681 - 1450 Secondary Owner Phone: (716) 681 1450 Occupant Name: Occupant Phone: ()	AM IY	3 I J J J H	Site No.: 18-046 / C91534
Structure Address: 65 Lake Avenue, Lancaster NY Preparer's Name & Affiliation: Steven Marchetti / METI Residential? X Yes No Owner Occupied? Yes No Owner Interviewed? Yes X No Commercial? Yes X No Industrial? Yes X No Mixed Uses? Yes X No Identify all non-residential use(s): Owner Name: Mark Aquino Owner Phone: (716) 681 - 1450 Secondary Owner Phone: ()			
Preparer's Name & Affiliation: Steven Marchetti / METI Residential? X Yes			
Residential? X Yes No Owner Occupied? Y Yes No Owner Interviewed? Yes X No Commercial? Yes X No Industrial? Yes X No Mixed Uses? Yes X No Identify all non-residential use(s): Owner Name: Mark Aquino Owner Phone: (716) 681 - 1450 Secondary Owner Phone: ()		•	
Commercial?			
Owner Name: Mark Aquino Secondary Owner Phone: (716) 681 - 1450 Secondary Owner Phone: ()			
Owner Address (if different): Occupant Name: Secondary Occupant Phone: ()		s):	Identify all non-residential use(s):
Occupant Name: Secondary Occupant Phone: () Number & Age of All Persons Residing at this Location: Additional Owner/Occupant Information: Describe Structure (style, number floors, size):	one: (716) <u>681</u> - <u>1450</u>	ino Owner Pho	Owner Name : Mark Aquino
Occupant Phone : ()	e : ()	Secondary Owner Phone	·
Number & Age of All Persons Residing at this Location :			Owner Address (if different) :
Number & Age of All Persons Residing at this Location: Additional Owner/Occupant Information: Describe Structure (style, number floors, size):tWO-story apartment building Approximate Year Built:	Phone : ()	Occupant	Occupant Name :
Additional Owner/Occupant Information: Describe Structure (style, number floors, size):two-story apartment building Approximate Year Built:	none : ()	Secondary Occupant Ph	
Additional Owner/Occupant Information: Describe Structure (style, number floors, size):two-story apartment building Approximate Year Built:		esiding at this Location :	Number & Age of All Persons Residing
Approximate Year Built: 2006			
Lowest level: ☐ Slab-on-grade ☒ Basement ☐ Crawlspace Describe Lowest Level (finishing, use, time spent in space): _unfinished basement utilized for	ent building	er floors, size) : <u>two-story apartme</u>	Describe Structure (style, number floors,
Lowest level: ☐ Slab-on-grade ☒ Basement ☐ Crawlspace Describe Lowest Level (finishing, use, time spent in space): _unfinished basement utilized for			
Describe Lowest Level (finishing, use, time spent in space): _unfinished basement utilized forstorage, washer/dryer, spare bedroom Floor Type: □X Concrete Slab □ Dirt □ Mixed:	ling Insulated ?	06 Is the buildi	Approximate Year Built :
storage, washer/dryer, spare bedroom Floor Type: XConcrete Slab	ce	lab-on-grade	Lowest level : ☐ Slab-on-gr
Floor Type: X Concrete Slab	basement utilized for	, use, time spent in space) : <u>unfinished</u>	Describe Lowest Level (finishing, use, time
Floor Condition : ☐ Average (some cracks) ☐ Poor (broken concrete or dirt)		□ Dirt □ Mixed :	Floor Type: Concrete Slab
		ood (few or no cracks)	Floor Condition : X Good (few
Sumps/Drains?	ks) 🔲 Poor (broken concrete or dirt)	oca (rem er ne eraene) — i riverage (come eraen	7
Identify other floor penetrations & details: 2 monitoring points/1 vapor extraction poin		es 🗆 No Describe : Sump	Sumps/Drains?
associated with SSD system		es No Describe: Sump & details: 2 monitoring points/	Sumps/Drains?
Wall Construction : ☐ Concrete Block 🔀 Poured Concrete ☐ Laid-Up Stone		es No Describe: Sump & details: 2 monitoring points/	Sumps/Drains?
Identify any wall penetrations: <u>sewer penetration in northwest corner; SSD syste</u>	/1 vapor extraction point	Describe: Sump S & details: 2 monitoring points/ BD system Oncrete Block M Poured Concrete Laid-	Sumps/Drains?
process piping on south wall	/1 vapor extraction point	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block M Poured Concrete Laid- Sewer penetration in northy	Sumps/Drains?
Identify water, moisture, or seepage: location & severity (sump, cracks, stains, etc) :	/1 vapor extraction point	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block M Poured Concrete Laid- Sewer penetration in northy	Sumps/Drains?
	/1 vapor extraction point -Up Stone west corner; SSD system	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block M Poured Concrete Laid- Sewer penetration in northy South wall	Sumps/Drains?
Heating Fuel: □ Oil	/1 vapor extraction point -Up Stone west corner; SSD system	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block M Poured Concrete Laid- Sewer penetration in northy South wall	Sumps/Drains?
Heating System : ☐ Forced Air ☐ Hot Water ☐ Other :	/1 vapor extraction point -Up Stone west corner; SSD system , etc): none	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block Poured Concrete Laid- Sewer penetration in northy South wall page: location & severity (sump, cracks, stains,	Sumps/Drains? Identify other floor penetrations & detail associated with SSD sy Wall Construction: Identify any wall penetrations: Sew process piping on south Identify water, moisture, or seepage: local control of the process of
Hot Water System : ☐ Combustion 🔀 Electric ☐ Boilermate ☐ Other:	/1 vapor extraction point -Up Stone west corner; SSD system -(, etc):	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block Poured Concrete Laid- Sewer penetration in northy South Wall Deage: location & severity (sump, cracks, stains,	Sumps/Drains? Identify other floor penetrations & detail associated with SSD sy Wall Construction: Identify any wall penetrations: Sew process piping on south Identify water, moisture, or seepage: local loca
Clothes Dryer: ☐ Electric ☒ Gas Where is dryer vented to? Outside south wall	/1 vapor extraction point -Up Stone west corner; SSD system -(, etc):	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block Poured Concrete Laid-I Sewer penetration in northy South wall Deage: location & severity (sump, cracks, stains, Ill Gas Wood Electric Orced Air Hot Water Other:	Sumps/Drains? Identify other floor penetrations & detail associated with SSD sy Wall Construction: Identify any wall penetrations: Sew process piping on south Identify water, moisture, or seepage: local loca
If combustion occurs, describe where air is drawn from (cold air return, basement, external air, etc.):	/1 vapor extraction point -Up Stone west corner; SSD system -(, etc):	Describe: Sump S & details: 2 monitoring points/ SD system Oncrete Block Poured Concrete Laid-I Sewer penetration in northy South wall Page: location & severity (sump, cracks, stains, il Q Gas Wood Electric Orced Air Hot Water Other: Ombustion Electric Boilermate	Sumps/Drains? Identify other floor penetrations & detail associated with SSD sy Wall Construction: Identify any wall penetrations: Sew Process piping on south Identify water, moisture, or seepage: local l


Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) :

SSD fans to exhaust stack

 $_{\text{Structure ID}}:~A2$

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

Attached garage ?	□ Yes	X No	Air freshen	ers?	□ Ye	es 🗆 No	
New carpet or furniture ?	☐ Yes	⊠ No	What/Wher	e?			
Recent painting or staining	g ?	☐ Yes	ĭX No		Where?:_		
Any solvent or chemical-li	ike odors?	☐ Yes	X I No				
Last time Dry Cleaned fabr	rics brought	in ?		W	hat / Where	?	
Do any building occupants	use solvents	at work?	☐ Yes		lo	Describe : _	
Any testing for Radon?	□ Yes	□ X No	Resul	lts :			
Radon System/Soil Vapor In			m present ?		X Yes	□ No	
1 vapor extract	tion po	int/Rac	ionaway	GP:	ou i fan		

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
ws	Wood Stoves	● SS-1	Location & label of sub-slab vapor samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

Page	1	of	1

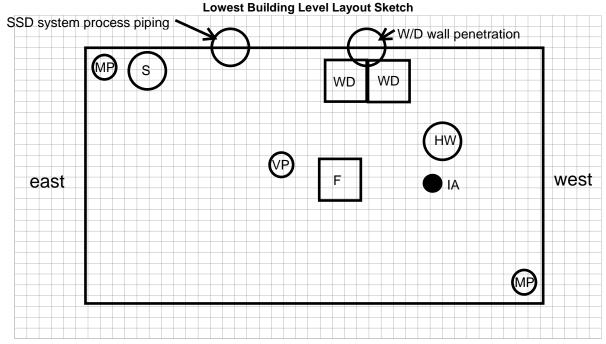
Structure Sampling - Product Inventory

Homeowner Name & Address:	65 Lake Ave, Lancaster, NY 14086	Date:	2/1/22
Samplers & Company:	Steve Marchetti, METI	Structure ID:	A2
Site Number & Name:	Lakeside Village Apts/C915344	Phone Number:	
Make & Model of PID:	MiniRAE 3000/10.7 eV lamp	Date of PID Calibration:	
Identify any Changes fro	om Original Building Questionnaire :		

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
personal storage				
too numerous to list				
				_

				A 0
Soil Vapor Intrusion - S	tructure Sampling Build	ding Questior	nnaire	Structure ID : <u>A3</u>
Site No. : 18-046	6 / C915344	Site Name :	Lakeside Village	e Apartments
Date: <u>1/31/2</u>	2	Time:	9:00 AM	
Structure Address :	65 Lake Aven	<u>ue, Lanc</u>	aster NY	
Preparer's Name & Affil	iation : <u>Steven Ma</u>	rchetti / N	METI	
Residential ? X Yes	☐ No Owner Occupied	d? X Yes □	No Owner Interviewed	? □ Yes □X No
Commercial ? \square Yes	☐X No Industrial ? □	Yes 💢 No	Mixed Uses? ☐ Yes ☐	⊼ No
Identify all non-resident	ial use(s) :			
Owner Name : Mark	Aquino		Owner Phone: (716)	<u>681</u> - <u>1450</u>
		Secondary C	Owner Phone : ()	
Owner Address (if different	ent) :			
			Occupant Phone : ()
				·
Number & Age of All Pe	rsons Residing at this Loc	_		
_	pant Information :			
Describe Structure (style	e, number floors, size) : <u>tv</u>	vo-story a	apartment buildin	ıg
Approximate Year Built :	2006		Is the building Insulated?	∑XYes □ No
Lowest level :	☐ Slab-on-grade	Basement [☐ Crawlspace	
Describe Lowest Level	(finishing, use, time spent in	space) : <u>StOra</u>	age, bedroom	
Floor Type: X Concret	e Slab □ Dirt □ Mixed	d:		
Floor Condition :	☐ Good (few or no crack	s) 🗆 Average	(some cracks) \square Poor (b	roken concrete or dirt)
Sumps/Drains?	⊠ Yes □ No	Describe :	sump	
Identify other floor pend			points/1 vapor e	extraction point
associated with	th SSD system			-
Wall Construction :	☐ Concrete Block 🛚	Poured Concrete	e □ Laid-Up Stone	
Identify any wall penetr			n northwest corn	er; SSD system
process piping	on south wall			
Identify water, moisture	, or seepage: location & se	everity (sump, c	racks, stains, etc) :none	9
Heating Fuel :	□ Oil ∑ Gas □	Wood □ E	Electric	
-	^	_		
Heating System :	▼ Forced Air ☐ Ho	t Water □	Other :	
Hot Water System :	☐ Combustion X Ele	ectric Boil	ermate Other:	
Clothes Dryer :	☐ Electric	Where is drye	er vented to? Outside	south wall
If combustion occurs, d	escribe where air is drawn	from (cold air re	eturn, basement, external air, e	etc.) :

Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) :


external air

SSD fans to exhaust stack

 $_{\text{Structure ID}} \cdot \text{A3}$

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

Attached garage ?	☐ Yes	X No	Air freshen	iers?	☐ Yes	s 🗆 No	
New carpet or furniture ?	☐ Yes	∑ No	What/Wher	re ?			
Recent painting or stainin	g ?	☐ Yes	ĭX No	W	here ? :		
Any solvent or chemical-li	ike odors ?	☐ Yes	X I No				
Last time Dry Cleaned fabr	rics brought	in ?		What	/ Where ?		
Do any building occupants	use solvents	at work?	☐ Yes	□ No		Describe :	
Any testing for Radon?	□ Yes	□ X No	Resul	lts :			
Radon System/Soil Vapor II 1 vapor extract			m present ?	[X Yes	□ No	

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
ws	Wood Stoves	● SS-1	Location & label of sub-slab vapor samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

Page	1	of	1

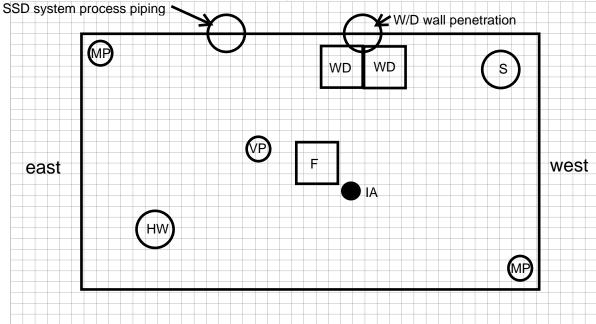
Structure Sampling - Product Inventory

Homeowner Name & Address:	65 Lake Ave, Lancaster, NY 14086	Date:	1/31/22
Samplers & Company:	Steve Marchetti, METI	Structure ID:	A3
Site Number & Name:	Lakeside Village Apts/C915344	Phone Number:	
Make & Model of PID:	MiniRAE 3000/10.7 eV lamp	Date of PID Calibration:	
Identify any Changes fro	m Original Building Questionnaire :		

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
personal storage				
too numerous to list				
				_

oil Vapor Intrusion - St	ructure Sampling Bu	uilding Question	nnaire	Structure ID : A4
Site No.: 18-046	6 / C915344	Site Name :	Lakeside Villa	ige Apartments
·	2		9:20 AM	
			aster NY	
		•		
Residential ? X Yes				
Commercial ? ☐ Yes	☐X No Industrial ?	□ Yes 💢 No	Mixed Uses ? ☐ Yes	□ □ No
Identify all non-residenti	al use(s) :			
Owner Name : Mark	Aquino		Owner Phone: (71	6) <u>681</u> - <u>1450</u>
		Secondary (Owner Phone : ()
Owner Address (if differe	nt) :			
Occupant Name :			Occupant Phone : ()
		Secondary (Occupant Phone : ()
Number & Age of All Per	sons Residing at this L	ocation :		
Additional Owner/Occup				
Describe Structure (style	, number floors, size) :	two-story a	apartment build	ling
Approximate Year Built :	2006		Is the building Insulated	? □XYes □ No
Lowest level :	☐ Slab-on-grade	X Basement [☐ Crawlspace	
Describe Lowest Level (f	finishing, use, time spent	in space) : <u>unfi</u>	nished baseme	ent utilized for
Floor Type: \(\times \) Concrete	eSlab 🗆 Dirt 🗆 Mix	xed :		
Floor Condition :	☐ Good (few or no cra	cks) Average	e (some cracks)	(broken concrete or dirt)
Sumps/Drains?	∑ Yes □ No	Describe :	sump	
		_	points/1 vapor	extraction point
associated wit	h SSD system	1		
Wall Construction :	☐ Concrete Block	X Poured Concret	e □ Laid-Up Stone	
Identify any wall penetra	itions :			
Identify water, moisture,	or seepage: location &	severity (sump, c	racks, stains, etc) : <u>NO</u>	ne
Heating Fuel :	□ Oil 💢 Gas	□ Wood □ E	Electric Other:	
Heating System :	▼ Forced Air □	Hot Water ⊔	Other :	
Heating System : Hot Water System :				
		Electric Boil		

Fans & Vents (identify where fans/vents pull air from and where they vent/exhaust to) : _____


SSD fans to exhaust stack

Structure ID : A2

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop):

Attached garage ?	☐ Yes	X No	Air freshen	ers 1	? 🗆 Ye	es 🗆 No	
New carpet or furniture ?	☐ Yes	⊠ No	What/Wher	e?			
Recent painting or stainin	g ?	☐ Yes	ĭX No		Where?:_		
Any solvent or chemical-li	ke odors?	☐ Yes	X No		Describe :		
Last time Dry Cleaned fabi	rics brought	in ?			What / Where	?	
Do any building occupants	use solvents	at work?	☐ Yes		No	Describe : _	
Any testing for Radon?	□ Yes	□ X No	Resul	lts:			
Radon System/Soil Vapor II 1 vapor extract			em present?		X Yes	□ No	If yes, describe below

Lowest Building Level Layout Sketch

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
ws	Wood Stoves	● SS-1	Location & label of sub-slab vapor samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

Structure Sampling - Product Inventory

Homeowner Name & Address:	65 Lake Ave, Lancaster, NY 14086	Date:	1/31/22
Samplers & Company:	Steve Marchetti, METI	Structure ID:	A4
Site Number & Name:	Lakeside Village Apts/C915344	Phone Number:	
Make & Model of PID:	MiniRAE 3000/10.7 eV lamp	Date of PID Calibration:	
Identify any Changes fro	om Original Building Questionnaire		

Quantity 1	Chemical Ingredients	PID Reading 0	Location

1		_	
		0	
			Ī

Soil Vapor Intrusion - Structure Sampling Building Questionnaire Structure ID : Building 1

Site No. : 18-04	<u>6 / C9153</u> 44	Site Name :	Lakeside Village Apa	rtments
Date: 1/31/2	22	Time:	8:00 AM	
Structure Address :	67 Lake Aver	nue, Lanc	aster NY	
Preparer's Name & Affi	liation: Steven Ma	rchetti / N	1ETI	
Residential ? X Yes	☐ No Owner Occupied	d? ⊠ Yes □	No Owner Interviewed ? ☐ Ye	s 💢 No
Commercial ? Yes	□X No Industrial ? □	Yes 💢 No	Mixed Uses? ☐ Yes 💢 No	
Identify all non-residen	ntial use(s) :			
Owner Name : Marl	k Aquino		Owner Phone : (716) <u>681</u>	- <u>1450</u>
	-	Secondary C	Owner Phone : ()	
Owner Address (if different	rent) :			
•				
Number & Age of All De	areone Posiding at this Loc	_	, ,	
-	ipant Information :			
	-		apartment building; 4 a	partments
	ne common base		partmont banding, Ta	partmonto
	4000	JIII CIII		
Approximate Year Built	1903		Is the building Insulated ?	□ No
Lowest level :		Basement [
Describe Lowest Level	(finishing, use, time spent in	space) : _unfi	nished basement utiliz	ed for
storage, was	her/dryer			
Floor Condition :	☐ Good (few or no crack	s) 💢 Average	(some cracks)	rete or dirt)
Sumps/Drains?	☐ Yes 💢 No	Describe :		
	netrations & details : <u>3 va</u> ith SSD systems		ection points, 4 monitor	ring points
Wall Construction :	☐ Concrete Block 💆		e □ Laid-Up Stone	
	• •		n wall; SSD system pro	ocess pipina
on west wall	alions. Gryon voine	0 011 00 011	Trian, COD Cyclom pro	<u> </u>
	e, or seepage: location & se	everity (sump, ci	racks, stains, etc) : <u>some mois</u>	ture
along edges		• (1 /	, , ,	
Heating Fuel :	□ Oil 💢 Gas □	l Wood □ E	Electric	
Heating System :	∑ Forced Air ☐ Ho	ot Water	Other :	
Hot Water System :	☐ Combustion 💢 Ele	ectric Boil	ermate Other:	
Clothes Dryer :	☐ Electric	Where is drye	er vented to? OUTGOORS	
If combustion occurs, cold air retu		n from (cold air re	eturn, basement, external air, etc.):	
			_{ent/exhaust to)} : <u>furnace to ch</u> to exhaust stack	nimney;

ws

W/D

s

@

Wood Stoves

Floor Drains

Sumps

Washer / Dryer

SS-1

● IA-1

OA-1

PFET-1

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, workshop): ☐ Yes Attached garage? ☐ Yes X No Air fresheners? ☐ No What/Where? ☐ Yes **X** No New carpet or furniture? Recent painting or staining? ☐ Yes Where ?: Any **solvent** or **chemical-like** odors? ☐ Yes X No Describe : What / Where ? _____ Last time Dry Cleaned fabrics brought in ? Do any building occupants use solvents at work ? \Box Yes \Box No Describe : Any testing for Radon? ☐ Yes □**X** No Results: Radon System/Soil Vapor Intrusion Mitigation System present? X Yes □ No If yes, describe below 3 vapor extraction points/3 RadonAway HS2000 fans **Lowest Building Level Layout Sketch** W/D wall penetration MP stairs west east SSD systems process piping MP electric ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch. ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater Perimeter Drains (draw inside or outside outer walls as appropriate) XXXXXX FP Fireplaces ###### Areas of broken-up concrete

Location & label of sub-slab vapor samples

Location and label of any pressure field test holes.

Location & label of indoor air samples

Location & label of outdoor air samples

Page	1	of	1
ı aye	<u> </u>	_ 01 .	•

Structure Sampling - Product Inventory

Homeowner Name & Address:	67 Lake Ave, Lancaster NY 1408	Date:	1/31/22
Samplers & Company:	Steve Marchetti, METI	Structure ID:	Building 1
Site Number & Name:	Lakeside Village Apts/C915344	Phone Number:	
Make & Model of PID:	MiniRAE 3000/10.7 eV lamp	Date of PID Calibration:	
Identify any Changes fro	om Original Building Questionnaire : NONE		

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
paint cans (closed)	5		0	west
washer detergent	2		0	south

	P			

APPENDIX B Laboratory Analytical Reports

Centek Laboratories TO-15 Package Review CheckList

Centex Laboratories	Client:	Matrix Environmental	Project:	Aquino 65-67 Lake SDG	: C2202013
<u>,</u>				<u>YES</u> N	O NA
Analytical Results		Present and Complete		· \	
TIC's Present		Present and Complete		<u> </u>	<u></u>
		Holdin Times Met			
Comments:					
Chain of Custody		Present and Complete		<u> </u>	
Surrogate		Present and Complete		_	
5511.0841.0		Recoveries within Limits			***************************************
		Sample(s) reanalyzed		***************************************	
Internal Standards		Present and Complete		***	
Recovery		Recoveries within Limits			
		Sample(s) reanalyzed			
Comments:					
		14-44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4			***************************************
Lab Control Sample		Present and Complete		`	
(LCS)		Recoveries within Limits			7744
Lab Control Sample Du	pe	Present and Complete			
(LCSD)		Recoveries within Limits			TABLE AND ADDRESS.
MS/MSD		Present and Complete		WHO WHEN PARKET	
		Recoveries within Limits		AMAY AMIN'S YEARY MALIA AMI	<u> </u>
Comments:	***************************************	* NO MS/MS	0		
		44444			1888-1994-1994-1994-1994-1994-1994-1994-
Sample Raw Data		Present and Complete		<u> </u>	
		Spectra present			
Comments:					
*	TTAILE				
	-11-1				

Centek Laboratories TO-15 Package Review CheckList

	Client:	Matrix Environmental	Project:	Aquino 65-67 Lake SDG	C2202013
Centek Laboratories					
				YES N	0 814
Standards Data				<u>YES</u> <u>N</u>	<u>O</u> <u>NA</u>
Intial Calibration		Present and Complete		`	
		Calibration meets criteria			
Continuing Calibration	ו	Present and Complete			
		Calibration meets criteria			
Standards Raw Data		Present and Complete		***************************************	
Comments:	11101-1411 (11101111 - 11101111 (111011 M T M T M T M T M T M T M T M T M T M				

Raw Quality Control I	`				
Tune Criteria Report	<u>- 4 LU</u>	Present and Complete		~	
Method Blank Data		MB Results <pql< td=""><td></td><td></td><td></td></pql<>			
		Associated results flagged "B"			
LCS Sample Data		Present and Complete			
LCSD Sample Data		Present and Complete			
MS/MSD Sample Data	ı	Present and Complete		STANLES AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS	
Comments:					

<u>Łogbooks</u>					***************************************
Injection Log				<u> </u>	****
Standards Log					
Can Cleaning Log					THE STREET
Calculation Sheet				_	
IDL's				<u>``\</u>	
Canister Order Form				<u> </u>	
Sample Tracking Form					
Additional Comments	, ,				
			47-11-4-7-1-4-7-1	······	
Section Supervisor:	W	ch Dak	Date	== 2/25/2022	
QC Supervisor:			Date	a•	

Page 2 of 302

Midder Park Drive * Syracuse, NY 13206
 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752
 NYSDOH ELAP Certificate No. 11830

Analytical Report

Friday, February 04, 2022 Order No.: C2202013

Christine Curtis
Matrix Environmental Technologies, Inc
3730 California Rd.
Orchard Park, NY 14127

TEL: (716) 662-0745

FAX

RE: Aquino 65-67 Lake Ave

Dear Christine Curtis:

following report.

Centek Laboratories, LLC received 7 sample(s) on 2/3/2022 for the analyses presented in the

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek/SanAir Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek/SanAir Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Centek/SanAir Laboratories

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek/SanAir as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran. 4-PCH, sulfur derived and silcon series compounds.

Centek/SanAir Laboratories - Terms and Conditions

Chain of Custody

Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT)

Internal Chain of Custody provided when you notify Centek/SanAir Laboratories

Sample Submission

All samples sent to Centek/SanAir Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.Centek/SanAirLabs.us. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in a canister or a Tedlar bag. Depending on your analytical needs, Centek/SanAir Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek/SanAir Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any damages of equipment.

Centek/SanAir Laboratories

Any sampling equipment that exceeds holding times, cancellation of job or non-notice of rescheduling is subject to restocking fees

Turn Around time (TAT)

Centek/SanAir Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis (add 10%/sample for Cat B). Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples:

Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek/SanAir Laboratories is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek/SanAir Laboratories warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek/SanAir Laboratories. In no event shall Centek/SanAir Laboratories be liable for direct, indirect, special, punitive, incidental, exemplary

Centek/SanAir Laboratories

or consequential damages, or any damages whatsoever, even if Centek/SanAir Laboratories has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Roview Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- s. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form I (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 25-Feb-22

CLIENT:

Matrix Environmental Technologies, Inc.

Project:

Aquino 65-67 Lake Ave

Lab Order:

C2202013

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Page | of |

Company: Spipov Spipov Level		Centek Labs - Chain of Custody	ain of Custody	Site Name: Ayuno	65-67 Laborator	Detection Limit	Report Level
Single-like	Cantak Laboratorias			18,046			Tower I
Management Check Final Pick Check C	1		On a minustry and	PO#:			Tevel II
Check Host of Sample Company Does Company Does Company Check Host of Same Company Company Check Host of Same Company Check Host of Same Company Check Host of Same Check Host of Same Company Check Host of Same Check Ho	·	www.CentekLabs.com	epor musicum e ma				
Business Days Control		Rush TAT Surchange %	Mchi		Company: Check Here If Same:	×	
2 Bestiness Days 9 Comments	5 Business Days 4 Business Days	X 0%	Report to:		Invoice to:		
Substitute Dept.	3 Business Days	ŝ	City, State, Zip		City, State, Zip		
Same Day	2 Business Days Thext Day by 50m	75%	とながら	CANALON SOFT	ic Email:		
Same bill State	*Next Day by Noon	150%		611 W			
Summer S	*Same Day				Phone:		
Building 1 13/22 1179 441 7015 8831 751.5 Registry bidden of catedy State of the District	For Same and Next Day 1A1 P. Sample ID	resse natry Lab Date Sampled		Analysis	Field Vacuum Start / Stop	Labs Vacuum** RecV/Analysis	Comments
A Direct 1/31/22 200 379 70 15 28 10 -1 -2 8:30 start A 2 2 2/1/22 1/36 44.7 70/5 30 6 -1 -2 8:40 start A 3 1/3/22 1/36 44.7 70/5 30 6 -1 -2 8:40 start A 4 Direct 1/3/22 5/32 1/36 70/5 28 10 -1 -2 9:10 start A 4 Direct 1/3/22 8/3 1/46 70/5 28 10 -1 -2 9:10 start A 4 Direct 1/3/22 8/3 1/46 70/5 28 10 -1 -2 9:10 start A 4 Direct 1/3/22 8/3 1/46 70/5 28 10 -1 -2 9:10 start A 5 1/3 1/32 8/3 1/46 70/5 28 10 -1 -2 9:10 start A 4 Direct 1/3/22 8/3 1/46 70/5 28 10 -1 -2 9:10 start A 5 1/3 1/3 2 8/3 1/46 70/5 28/3 1/4	10 10g	/ 1		11 70 15	30 1 7	1.5	I.
A Dingle 1/3/22 1/36 1447 7015 30 15 -1, -2, 43,40 5	. 5	2	<u>`</u> ~	P-	28 1 0	-	3
A 4 Diu P	<u>A</u> I	7,131,122	1	1 60.7	O 1 及	7.11-	4.20 4.4
A 4 Diu P	A 2	``		0 TO15	30 / 5	:	O'thing star
A 4 Diu P	A3	22/(2))	1195 H3	4 7018	30 10		7:00 sty
A 4 Din Pt	۲,۲	1/15/1/22	188 14	6 TO15	0 1 82	11	19:10 start
Chain of Custody Sampled by: Relinquished by: Received at Lab by: Anti Custodia #: Signature Signature Anti Custodia #: Anti	AY Dimer	22/1/5//	hi 891	6 TOIS	0 / 62	1 1	1245 01:12
Chain of Custody Print Name Sampled by: Relinquished by: Sampled by:		4			*****	71	
Chain of Custody Print Name Signature Print Name Signature Bedinguished by: Relinquished by: Received at Lab by:					1	,	
Chain of Custody Relinquished by: Received at Lab by: Chain of Custody Print Name Signafure S					1	****	
Chain of Custody Print Name 1 Chain of Custody Print Name 1 Sampled by: Stp./e. Mg/Clw.ft. 37.132 Relinquished by: Str./l. Mg/Clw.ft. 37.322 Received at Lab by: Motter Custoffixx 1					***	74.46	
Chain of Custody Print Name Signature I Chain of Custody Print Name Signature I Sampled by: Struct Marchatt I I Relinquished by: Start Marchatt I I Received at Lab by: White Austrian I I					,	••	
Chain of Custody Print Name Signafure I Sampled by: Struck Ulg/Clust; Alg/Clust; Alg/Clust; Relinquished by: Struck Ulg/List; Alg/Clust; Alg/Clust; Received at Lab by: Alg/List; Alg/List; Alg/List;					1		
Chain of Custody Print Name Signafure I Sampled by: Strue_ Marcha #; Marcha #; Signafure 3/1/32 Relinquished by: Strue_ Marcha #; Marcha #; Strue_ Marcha #; 3/1/32 Received at Lab by: Whith Ausfaliata Marcha #; Strue_ Marcha #; Strue_ Marcha #;					•	•	
Chain of Custody Print Name Signafure Signafure Sampled by: Strue Marcharth. Signafure A 222 Sampled by: Strue Marcharth.					-	**	
Chain of Custody Print Name Signafure Signafure Sampled by: Struck Warchutt, Struck Marchutt, Struck Marchut						-	
Chain of Custody Print Name Signafure A 2/1/32 Sampled by: Strue Marchatt. Relinquished by: Strue Marchatt. Received at Lab by: Whith Ausfalian	Pä				1	<i>t</i>	
Sampled by: Start Marchatt. Relinquished by: Start Marchatt. Received at Lab by: Africa Gusplico.	Chain of Custody	Name	Signati	Ife / M	Date/Time	Courier: CIRCLE ONE	, , , , , , , , , , , , , , , , , , ,
How Cushin Gold Keller 21/37	Sampled by:	200		The state of the	1132	Kedex) UPS Pickupi	Uropott
KIMIN CUISILLIU DOLLE-LUMACO DI SIBF	Relinquished by:		R		12/24	For LAB USE ONLY	112112
	Received at Lab by:	77.54	2	the - Marker	137	Work Order # _ @ @	VAL.

***Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT)
*** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Date: 25-Feb-22

CLIENT:

Matrix Environmental Technologies, Inc.

Project:

Aquino 65-67 Lake Ave

Lab Order:

C2202013

Work Order Sample Summary

Lab Order:	C2202013			
Lah Sample ID C2202013-001A	Client Sample 1D Building 1	Tag Number	Collection Date 1/31/2022	Date Received 2/3/2022
C2202013-002A	Outside	200,379	1/31/2022	2/3/2022
C2202013-003A	Ai	1186,447	1/31/2022	2/3/2022
C2202013-004A	A2	1176,440	2/1/2022	2/3/2022
C2202013-005A	A3	195,434	1/31/2022	2/3/2022
C2202013-006A	A4	88,146	1/31/2022	2/3/2022
C2202013-007A	A4 Dupe	98.146	1/31/2022	2/3/2022

Sample Receipt Checklist

\ *******************					
Client Name: MATRIX ENVIRONMENTAL			Date and Tin	ne Received	2/3/2022
Work Order Number C2202013	`		Received by	RG	
Checklist completed by	Merca 2/3	1/22	Reviewed by	<u> </u>	2/3/2022
Matrix:	Carrier name:	FedEx Gro	<u>unđ</u>		1
Shipping container/cooler in good condition?		Yes 🔽	No 🗔	Not Present	
Custody seals intact on shippping container/cod	oler?	Yes 🔲	No 🗔	Not Present	V
Custody seals intact on sample bottles?		Yes 🗌	No 🗔	Not Present	lacksquare
Chain of custody present?		Yes 🗹	No 🗆		
COC signed when relinquished and received?		Yes 🗹	No 🗀		
COC agrees with sample labels?		Yes 🗹	No 🗆		
COC completely filled out?		Yes 🗹	No 🗆		
Sample containers intact?		Yes 🗹	No 🗆		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔		
All samples received within holding time?		Yes 🔽	No 🗔		
Container/Temp Blank temperature in complian	nce?	Yes 🔽	No 🗔		9
Water - VOA vials have zero headspace?	No VOA viets subm	itted 🗹	Yes 🗌	No 🗔	
Water - pH acceptable upon receipt?		Yes 🗌	No 🗹		
	Adjusted?		Checked by		_
Any No and/or NA (not applicable) response m	ust be detailed in the co	mments sec	ition bel		
Client contacted: 475 Contacted by: Dobry	Date contacted: 2	13/22	Pers	on contacted:	Christine
		+ 4	cvuify		B calcuel I
Corrective Action: Clrcn+ rcg	Aursteal	<i>C4</i> 7	76		
	OC.9	By:			DATE:

Ų
-
,
oratories,
Lab
Centek]

Lab Order:	C2202013					
Client:	Matrix Environmental Technologies, Inc	I Technologies, Inc			DATES REPORT	
Project:	Aquino 65-67 Lake Ave	ıve				
Sample ID	Clical Sample 10	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C2202013-001A	Building 1	13372022	Air	hugin3 w/0.2ug/M3 CT-TCE-VC-DCE- L1DCE	avid skrustik sia silvi kritar kessi uspra esekutalasis estu kari usur kasutakan kanamin segara.	2,4,2022
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		2332022
C2202013-002A	Ostside			Regim3 w/ 0.2eg/M3 CT-TCE-VC-DCE- 1,1DCE		2:4/2023
				Tugin3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		2352022
C2202013-003A	A1			Tugim3 w/ 0.2ug/M3 CT-TCE-VC-DCE- L,1DCE		2/4/2022
				Tug/m3 w/ 0,2ug/M3 CT-TCE-VC-DCE- 1,1DCE		2:3/2022
C2202013-004A	A2	2/1/2022		lugim3 w/ 0.2ug/M3 CT-7CE-VC-DCE- 1, IDCE		24,2022
				Jugim3 w/ 0.2ug/M3 CT-3TCE-VC-DCE- LJDCE		2/3/2022
C2202013-005A	83	1/31/2022		Tugim3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		2/4/2022
				Togim3 w/0.2ug/M3 CT-TCE-VC-DCE- 1.1DCE		2/5/2022
C2202013-006A	Λ4			Tugim3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1.1DCE		2/4/2022
				Tugin3 w 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		2/3/2022
C2202013-007A	A4 Dupe			Tugin3 w/ 0.2ug/M3 CT-TCE-VC-DCE- T, IDCE		274/2022
				login3 w/0.2ug/M3 CT-TCE-VC-DCE- 1 DCF		2/3/2022

CENTEK LABORATORIES, LLC 143 Midler Park Drive * Syracuse, NY 13206

CANISTER ORDER

Dr Quality Testing Ark or the

TEL: 315-431-9730 * FAX: 315-431-9731

9162

25-Feb-22

SHIPPED TO:

Company: Matrix Environmental Technologies, Inc.

Contact: Steve Marchetti Address:

3730 California Rd.

Orchard Park, NY 14127

Phone: (716) 662-0745

0

Quote ID:

Project:

PO:

Submitted By:

MadeBy: rjp

Ship Date: 1/21/2022

VIA: UPS - Ground

Due Date: 1/25/2022

Bottle Code	Bottle Type	TEST(s)	QTY
MC1000CC	1L Mini-Can	1ug/m3 w/ 0.2ug/M3 CT-TCE-VC-DC	7

Can rivey to	Description		
88	1L Mini-Gan - 1107 VI		

98	1L Mini∗Can - 1099 VI
146	Time-Set Reg - 641 Vt
195	1L Mini-Can - 1150 VI
200	1L Mini-Can - 1155 VI
379	Time-Set Reg - 753 Vt
1186	1L Mini-Can - 1235 VI
434	Time-Set Reg - 813 V!
440	Time-Set Reg - 819 VI
441	Time-Set Reg - 820 VI
447	Time-Set Reg - 826 VI
1176	1£ Mini-Can - 1253 VI
1179	1L Mini-Can - 1249 VI

Comments: 6 IL @ 24hr + 1 dupe WAC 120921 G-O

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
ANALYTICAL RESULTS

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building 1

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
		-			Analyst:
FIELD PARAMETERS Lab Vacuum In	-5	FLD	"Hg		2/3/2022
Lab Vacuum Out	-30		"Hg		2/3/2022
			_		
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	•	TO-1	_		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 ₱M
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,1-Dichtoroethène	< 0.040	0.040	Vdqq	1	2/3/2022 5:16:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	₽₽bV	1	2/3/2022 5:16:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	Vđqq	1	2/3/2022 5:16:00 PM
1,2-Dichtoroethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vđạq	1	2/3/2022 5:16:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	∨dqq	1	2/3/2022 5:16:00 PM
1,3-butadiene	< 0.15	0.15	₽₽bV	1	2/3/2022 5:16:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	2/3/2022 5:16:00 PM
2,2,4-trimethylpentane	0.13	0.15	Vđqq L	1	2/3/2022 5:16:00 PM
4-ethyttoluene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Acetone	3.6	1.2	ρρb∨	4	2/4/2022 4:51:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Benzene	0.52	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Benzyl chloride	< 0.15	0.15	₽pb∨	1	2/3/2022 5:16:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Bromoform	< 0.15	0.15	₽₽bV	1	2/3/2022 5:16:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Carbon disulfide	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Carbon tetrachloride	0.060	0.030	ppb∨	1	2/3/2022 5:16:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Chloroform	0.16	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Chloromethane	0.66	0.15	ppb∨	1	2/3/2022 5:16:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	Vđạq	1	2/3/2022 5:16:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Cyclohexane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Ethyl acetate	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM

Qualifiers:

SC Sub-Contracted

B. Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page Lof 14

CLIENT: Matrix Environmental Technologies, Inc.

C2202013 Lab Order:

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A Date: 04-Feb-22

Client Sample ID: Building 1

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AIR

Company Comp	Analyses	Result	DL Q	ual Units	ÐF	Date Analyzed
Freen 11 0.22 0.15 ppbV 1 2/3/2022 5:16:00 PM Freen 113 < 0.15	1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15			Analyst: RJF
Freon 113 < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Freon 114 < 0.15	Ethylbenzene	0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Freon 114 < 0,15 0,15 ppbV 1 2/3/2022 5:16:00 PM Freon 12 0.44 0.15 ppbV 1 2/3/2022 5:16:00 PM Heptane 0.21 0.15 ppbV 1 2/3/2022 5:16:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 11	0.22	0.15	ppb∨	1	2/3/2022 5:16:00 PM
Fron 12 0.44 0.15 ppbV 1 2/3/2022 5:16:00 PM Heptane 0.21 0.15 ppbV 1 2/3/2022 5:16:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 113	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Haptane 0.21 0.15 ppbV 1 2/3/2022 5:16:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 114	< 0.15	0.15	Vđqq	1	2/3/2022 5:16:00 PM
Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Hexane 0.35 0.15 ppbV 1 2/3/2022 5:16:00 PM Isopropyl alcohol 1.5 0.15 ppbV 1 2/3/2022 5:16:00 PM Methyl Butyl Ketone 0.46 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Ethyl Ketone 0.41 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.41 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.030 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.030 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.015 0.15 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.016 0.15 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.016 0.15 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.016	Freon 12	0.44	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Hexane 0.35 0.15 ppbV 1 2/3/2022 5:16:00 PM Isopropyl alcohol 1.5 0.15 ppbV 1 2/3/2022 5:16:00 PM m&p-Xylene 0.46 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Butyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.41 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone 0.21 0.21 <td>Heptane</td> <td>0.21</td> <td>0.15</td> <td>ppbV</td> <td>1</td> <td>2/3/2022 5:16:00 PM</td>	Heptane	0.21	0.15	ppbV	1	2/3/2022 5:16:00 PM
Sopropyl alcohol 1.5	Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
m&p-Xylene 0.46 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Butyl Ketone < 0.30	Hexane	0.35	0.15	Vdqq	1	2/3/2022 5:16:00 ₽M
Methyl Butyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Ethyl Ketone 0.41 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone < 0.30	Isopropyt alcohol	1.5	0.15	Vdqq	Ŧ	2/3/2022 5:16:00 PM
Methyl Ethyl Ketone 0.41 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl Isobutyl Ketone < 0.30	m&p-Xylene	0.46	0.30	ppbV	1	2/3/2022 5:16:00 PM
Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 5:16:00 PM Methyl tert-butyl ether < 0.15	Methyl Butyl Ketone	< 0.30	0.30	Vdqq	1	2/3/2022 5:16:00 PM
Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Methylene chloride 0.21 0.15 ppbV 1 2/3/2022 5:16:00 PM o-Xylene 0.14 0.15 J ppbV 1 2/3/2022 5:16:00 PM Propylene < 0.15	Methyl Ethyl Ketone	0.41	0.30	ppbV	1	2/3/2022 5:16:00 PM
Methylene chloride 0.21 0.15 ppbV 1 2/3/2022 5:16:00 PM c-Xylene 0.14 0.15 J ppbV 1 2/3/2022 5:16:00 PM Propylene < 0.15	Methyl Isobutyl Ketone	< 0.30	0.30	Vđqq	1	2/3/2022 5:16:00 PM
c-Xylene 0.14 0.15 J ppbV 1 2/3/2022 5:16:00 PM Propylene < 0.15	Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Propylene < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Styrene < 0.15	Methylene chloride	0.21	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Styrene < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Tetrachloroethylene 0.44 0.15 ppbV 1 2/3/2022 5:16:00 PM Tetrahydrofuran < 0.15	a-Xylene	0.14	0.15	Vdqq L	1	2/3/2022 5:16:00 PM
Tetrachloroethylene 0.44 0.15 ppbV 1 2/3/2022 5:16:00 PM Tetrahydrofuran < 0.15	Propylene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Tetrahydrofuran < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Toluene 1.4 0.15 ppbV 1 2/3/2022 5:16:00 PM trans-1,2-Dichloroethene < 0.15	Styrene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Toluene 1.4 0.15 ppbV 1 2/3/2022 5:16:00 PM trans-1,2-Dichloroethene < 0.15	Tetrachloroethylene	0.44	0.15	ppb∨	1	2/3/2022 5:16:00 PM
trans-1,2-Dichloroethene < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM trans-1,3-Dichloropropene < 0.15	Tetrahydrofuran	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Trichloroethene 0.050 0.030 ppbV 1 2/3/2022 5:16:00 PM Vinyl acetate < 0.15	Toluene	1.4	0.15	ppbV	1	2/3/2022 5:16:00 PM
Trichloroethene 0.050 0.030 ppbV 1 2/3/2022 5:16:00 PM Vinyl acetate < 0.15	trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Vinyl acetate < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Vinyl Bromide < 0.15	trans-1,3-Dichloropropene	< 0.15	0.15	Vďqq	1	2/3/2022 5:16:00 PM
Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 5:16:00 PM Vinyl chloride < 0.040	Trichloroethene	0.050	0.030	Vđạq	1	2/3/2022 5:16:00 PM
Vinyl chloride < 0.040 0.040 ppbV 1 2/3/2022 5:16:00 PM	Vinyl acetate	< 0.15	0.15	∨dqq	7	2/3/2022 5:16:00 PM
The state of the s	Vinyl Bromide	< 0.15	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Surr: Bromofluorobenzene 91.0 47-124 %REC 1 2/3/2022 5:16:00 PM	Vinyl chloride	< 0.040	0.040	Vdqq	1	2/3/2022 5:16:00 PM
	Surr: Bromofluorobenzene	91.0	47-124	%REC	†	2/3/2022 5:16:00 PM

Oun	lifiers:	

- SC Sub-Contracted
- 13 Analyte detected in the associated Method Blank
- И Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Detection Limit

Page 2 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building I

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DŁ Qi	aal Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJI
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	2/3/2022 5:16:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	2/3/2022 5:16:00 PM
1,1,2-Trichtoroethane	< 0.82	0.82	ug/m3	1	2/3/2022 5:16:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/3/2022 5:16:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 5:16:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/3/2022 5:16:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 5:16:00 PM
1,2-Dibromoethane	< 1.2	1.2	в д/m3	1	2/3/2022 5:16:00 PM
1,2-Dichtorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 5:16:00 PM
1,2-Dichtoroethane	< 0.61	0.61	ug/m3	1	2/3/2022 5:16:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/3/2022 5:16:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 5:16:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/3/2022 5:16:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 5:16:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ψg/m3	1	2/3/2022 5:16:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	2/3/2022 5:16:00 PM
2,2,4-trimethylpentane	0.61	0.70	J ug/m3	1	2/3/2022 5:16:00 PM
4-ethyltaluene	< 0.74	0.74	ug/m3	1	2/3/2022 5;16:00 PM
Acetone	8.6	2.8	ug/m3	4	2/4/2022 4:51:00 AM
Alfyl chloride	< 0.47	0.47	ug/m3	1	2/3/2022 5:16:00 PM
Benzene	1.7	0.48	ug/m3	1	2/3/2022 5:16:00 PM
Benzyl chloride	< 0.86	0.86	սց/m3	1	2/3/2022 5:16:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/3/2022 5:16:00 PM
Bromoform	< 1. 6	1.6	սց/m3	1	2/3/2022 5:16:00 PM
Bromomethane	< 0.58	0.58	ug/m3	7	2/3/2022 5:16:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	2/3/2022 5:16:00 PM
Carbon tetrachloride	0.38	0.19	ug/m3	1	2/3/2022 5:16:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	2/3/2022 5:16:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	2/3/2022 5:16:00 PM
Chloroform	0.78	0.73	ug/m3	1	2/3/2022 5:16:00 PM
Chloromethane	1.4	0.31	ug/m3	1	2/3/2022 5:16:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 5:16:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/3/2022 5:16:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	2/3/2022 5:16:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/3/2022 5:16:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/3/2022 5:16:00 PM
Ethylbenzene	0.65	0.65	ug/m3	1	2/3/2022 5:16:00 PM
Freon 11	1.2	0.84	មg/m3	1	2/3/2022 5:16:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	2/3/2022 5:16:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	2/3/2022 5:16:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

8 Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

H Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL

Detection Limit

Detection Limit

Page 1 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building 1

Tag Number: 1179,441

Collection Date: 1/31/2022

Matrix: AIR

			0					
Analyses	Result	DL	Quai	Units	DF	Date Analyzed		
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	TO)-15	•		Analyst: RJP		
Freon 12	2.2	0.74		ug/m3	1	2/3/2022 5:16:00 PM		
Heptane	0.86	0.61		ug/m3	1	2/3/2022 5:16:00 PM		
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 5:16:00 PM		
Hexane	1.2	0.53		աց/m3	1	2/3/2022 5:16:00 PM		
Isopropyl alcohol	3,7	0.37		ug/m3	1	2/3/2022 5:16:00 PM		
m&p-Xylene	2.0	1.3		ug/m3	1	2/3/2022 5:16:00 PM		
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 5:16:00 PM		
Methyl Ethyl Ketone	1,2	0,88		ug/m3	1	2/3/2022 5:16:00 PM		
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 5:16:00 PM		
Methyl tert-butyl ether	< 0.54	0.54		սց/m3	1	2/3/2022 5:16:00 PM		
Methylene chloride	0.73	0.52		ug/m3	1	2/3/2022 5:16:00 PM		
o-Xylene	0.61	0.65	J	ug/m3	1	2/3/2022 5:16:00 PM		
Propylene	< 0.26	0.26		սց/m3	1	2/3/2022 5:16:00 PM		
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 5:16:00 PM		
Tetrachloroethylene	3.0	1.0		սց/m3	1	2/3/2022 5:16:00 PM		
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 5:16:00 PM		
Toluene	5.4	0.57		ug/m3	1	2/3/2022 5:16:00 PM		
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 5:16:00 PM		
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 5:16:00 ₽M		
Trichloroethene	0.27	0.16		սց/m3	1	2/3/2022 5:16:00 PM		
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 5:16:00 PM		
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 5:16:00 PM		
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 5:16:00 PM		
•								

Qualifiers:	SC	Sub-Contracted	

Analyte detected in the associated Method Blank
 Holding times for preparation or analysis exceeded

3N Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 2 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aguino 65-67 Lake Ave

Lab ID: C2202013-002A

Date: 04-Feb-22

Client Sample 1D: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AIR

Result Qual Units DF Date Analyzed DU Analyses FIELD PARAMETERS FLD Analyst: "Ho 2/3/2022 Lab Vaccum In -1 2/3/2022 "Hg Lab Vacuum Out -30 Analyst: RJP TO-15 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE Vdqq 1 2/3/2022 6:00:00 PM 1,1,1-Trichtoroethane < 0.15 0.15 2/3/2022 6:00:00 PM < 0.150.15 Vagq 1 1,1,2,2-Tetrachloroethane 1 2/3/2022 6:00:00 PM 1,1,2-Trichtoroethane < 0.15 0.15Vdag 1 2/3/2022 6:00:00 PM 1,1-Dichloroethane < 0.15 0.15ppbV < 0.040 0.040 ppbV 1 2/3/2022 6:00:00 PM 1,1~Dichloroethene 1 2/3/2022 6:00:00 PM 1,2,4-Trichlorobenzene < 0.15 0.15 Vdqq 2/3/2022 6:00:00 PM < 0.15 0.15 ppbV 1 1,2,4-Trimethylberizene 1 2/3/2022 6:00:00 PM < 0.15 0.15 ppb∨ 1,2-Dibromoethane 1 ppbV 2/3/2022 6:00:00 PM < 0.15 0.151,2-Dichlorobenzene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM 1,2-Dichtoroethane 1 2/3/2022 6:00:00 PM < 0.15 0.15 ppbV 1,2-Dichtoropropane 2/3/2022 6:00:00 PM 1,3,5-Trimethylbenzene < 0.15 0.15 ppbV 1 0.15 1 2/3/2022 6:00:00 PM < 0.15 ppbV 1,3-butadiene 0.15Vdqq 1 2/3/2022 6:00:00 PM 1.3-Dichlorobenzene < 0.15 1 2/3/2022 6:00:00 PM 0.15 1,4-Dichlorobenzene < 0.15ppbV 1.4-Dioxane < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM 1 2/3/2022 6:00:00 PM 0.12 J 2,2,4-trimethylpentane 0.15 ₽pbV 4-ethyltojuene < 0.15 0.15 Vdqq 1 2/3/2022 6:00:00 PM 10 2/4/2022 5:32:00 AM 7,9 3.0 ppbV Acetone Allyl chloride 1 2/3/2022 6:00:00 PM < 0.15 0.15Vđạq 1 2/3/2022 6:00:00 PM Banzene 0.29 0.15 ppbV < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Benzyl chloride 1 2/3/2022 6:00:00 PM Bromodichloromethane < 0.15 0.15 ppbV < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Bromoform 2/3/2022 6:00:00 PM < 0.15 0.15 **V**dqq 1 Bromomethane 2/3/2022 6:00:00 PM **Vdqq** 1 < 0.150.15Carbon disulfide 2/3/2022 6:00:00 PM 1 Carbon tetrachloride 0.070 0.030 ppbV ppbV 1 2/3/2022 6:00:00 PM < 0.15 0.15 Chlorobenzene < 0.15 0.15ppbV 1 2/3/2022 6:00:00 PM Chioroethane 4 2/3/2022 6:00:00 PM < 0.15 0.15 ppbV Chloroform 1 2/3/2022 6:00:00 PM 0.15 Vdag Chloromethane 0.42 1 2/3/2022 6:00:00 PM 0.040 Vđqq cis-1,2-Dichloroethene < 0.040cis-1,3-Dichloropropene < 0.150.15 Vdgg 1 2/3/2022 6:00:00 PM 0.15 Vdqq 1 2/3/2022 6:00:00 PM Cyclohexane 0.16 2/3/2022 6:00:00 PM < 0.15 0.15 Vdqq 1 Dibromochloromethane 2/3/2022 6:00:00 PM Ethyl acetate < 0.15 0.15 ppbV

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection
- DL. Detection Limit

Page 3 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-002A

Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AIR

		W- 4.					
Ethylbenzene < 0.15	Analyses	Result	DŁ	Qual	Units	DF	Date Analyzed
Freon 11 0.25 0.15 ppbV 1 2/3/2022 6:00:00 PM Freon 113 < 0.16	IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO	-15			Analyst: RJP
Freon 113 < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Freon 114 < 0.15	Ethylbenzene	< 0.15	0.15		∨dqq	1	2/3/2022 6:00:00 PM
Freon 114 < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Freon 12 0.49 0.15 ppbV 1 2/3/2022 6:00:00 PM Heptane 0.12 0.15 J ppbV 1 2/3/2022 6:00:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 11	0.25	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Freon 12 0.49 0.15 ppbV 1 2/3/2022 6:00:00 PM Heptane 0.12 0.15 J ppbV 1 2/3/2022 6:00:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 113	< 0.15	0.15		Vđqq	1	2/3/2022 6:00:00 PM
Heptane 0.12 0.15 J ppbV 1 2/3/2022 6:00:00 PM Hexachloro-1,3-butadiene < 0.15	Freon 114	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Hexane 0.25 0.15 ppbV 1 2/3/2022 6:00:00 PM Isopropyl alcohol 0.71 0.15 ppbV 1 2/3/2022 6:00:00 PM m&p-Xylene 0.23 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Butyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.030 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.030 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.05 0.15 ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.05 0.15 ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone 0.015	Freon 12	0.49	0.15		Vđqq	1	2/3/2022 6:00:00 PM
Hexane	Heptane	0.12	0.15	J	ppb∨	1	2/3/2022 6:00:00 PM
Sepropyl alcohol 0.71 0.15 ppbV 1 2/3/2022 6:00:00 PM m&p-Xylene 0.23 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Butyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl Ethyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride 0.26 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride 0.26 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride 0.26 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.030 0.030 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride < 0.05 0.05 ppbV 1 2/3/2022 6:00:00 PM Methylene chlor	Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
m&p-Xylene 0.23 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Butyl Ketone < 0.30	Hexane	0.25	0.15		ppbV	1	2/3/2022 6:00:00 PM
Methyl Butyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl Ethyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone < 0.30	isopropyi alcohol	0.71	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Methyl Ethyl Ketone 0.22 0.30 J ppbV 1 2/3/2022 6:00:00 PM Methyl Isobutyl Ketone < 0.30	m&p-Xylene	0.23	0.30	£	₽pb∨	1	2/3/2022 6:00:00 PM
Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 6:00:00 PM Methyl tert-butyl ether < 0.15	Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 6:00:00 PM
Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Methylene chloride 0.26 0.15 ppbV 1 2/3/2022 6:00:00 PM o-Xylene < 0.15	Methyl Ethyl Ketone	0.22	0.30	J	ppbV	1	2/3/2022 6:00:00 PM
Methylene chloride 0.26 0.15 ppbV 1 2/3/2022 6:00:00 PM o-Xylene < 0.15	Methyl Isobutyl Ketone	< 0.30	0.30		∨dqq	1	2/3/2022 6:00:00 PM
o-Xylene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Propylene < 0.15	Methyl tert-butyl ether	< 0.15	0.15		Vđạq	1	2/3/2022 6:00:00 PM
Propylene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Styrene < 0.15	Methytene chloride	0.26	0.15		ppbV	1	2/3/2022 6:00:00 PM
Styrene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Tetrachloroethylene < 0.15	o-Xylene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Tetrachloroethylene < 0.15 0.16 ppbV 1 2/3/2022 6:00:00 PM Tetrahydrofuran < 0.15	Propylene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Tetrahydrofuran < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Toluene 0.65 0.16 ppbV 1 2/3/2022 6:00:00 PM trans-1,2-Dichloroethene < 0.15	Styrene	< 0.15	0.15		Vớgg	1	2/3/2022 6:00:00 PM
Toluene 0.65 0.15 ppbV 1 2/3/2022 6:00:00 PM trans-1,2-Dichloroethene < 0.15	Tetrachioroethylene	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
trans-1,2-Dichloroethene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM trans-1,3-Dichloropropene < 0.15	Tetrahydrofuran	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Trichloroethene < 0.030	Toluene	0.65	0.15		Vđạq	1	2/3/2022 6:00:00 PM
Trichforcethene < 0.030 0.030 ppbV 1 2/3/2022 6:00:00 PM Vinyl acetate < 0.15	trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
Vinyl acetate < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Vinyl Bromide < 0.15	trans-1,3-Dichloropropene	< 0.15	0.15		₽₽₽V	1	2/3/2022 6:00:00 PM
Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 6:00:00 PM Vinyl chloride < 0.040	Trichloroethene	< 0.030	0.030		ррbV	1	2/3/2022 6:00:00 PM
Vinyl chloride < 0.040 0.040 ppbV 1 2/3/2022 6:00:00 PM	Vinyl acetate	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
The state of the s	Vinyl Bromide	< 0.15	0.15		₽₽bV	1	2/3/2022 6:00:00 PM
Surr: Bromofluorobenzene 90.0 47-124 %REC 1 2/3/2022 6:00:00 PM	Vinyl chloride	< 0.040	0.040		Vdqq	1	2/3/2022 6:00:00 PM
	Surr: Bromofluorobenzene	90.0	47-124		%REC	1	2/3/2022 6:00:00 PM

O	152	ŧ	ŧ	ſĭ	c	ì.	×	ï	

Sub-Contracted

SC

B. Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 4 of 14

Matrix Environmental Technologies, Inc Clien

Lab Order: C2202013

CLIENT:

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-002A

Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15	3		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/3/2022 6:00:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0	ug/m3	1	2/3/2022 6:00:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	2/3/2022 6:00:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	2/3/2022 6:00:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 6:00:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/3/2022 6:00:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/3/2022 6:00:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/3/2022 6:00:00 PM
1,3-Dichforobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 6:00:00 PM
1,4-Dichtorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 6:00:00 PM
1,4-Dioxane	< 1.1	1,1	ug/m3	1	2/3/2022 6:00:00 PM
2,2,4-trimethylpentane	0.56	0.70	J ug/m3	1	2/3/2022 6:00:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
Acetone	19	7.1	ug/m3	10	2/4/2022 5:32:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	2/3/2022 6:00:00 PM
Benzene	0.93	0.48	ug/m3	1	2/3/2022 6:00:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/3/2022 6:00:00 PM
Bromodichloromethane	< 1.0	1.0	ug/n13	1	2/3/2022 6:00:00 PM
Bromoform	< 1.6	1.6	шд/т3	1	2/3/2022 6:00:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	2/3/2022 6:00:00 PM
Carbon disuffide	< 0.47	0.47	ug/m3	1	2/3/2022 6:00:00 PM
Carbon tetrachloride	0.44	0.19	ug/m3	1	2/3/2022 6:00:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	2/3/2022 6:00:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	2/3/2022 6:00:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	2/3/2022 6:00:00 PM
Chloromethane	0.87	0.31	ug/m3	1	2/3/2022 6:00:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 6:00:00 PM
cis-1,3-Dichtoropropene	< 0.68	0.68	ug/m3	1	2/3/2022 6:00:00 PM
Cyclohexane	0.55	0.52	ug/m3	1	2/3/2022 6:00:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/3/2022 6:00:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/3/2022 6:00:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	2/3/2022 6:00:00 PM
Freon 11	1.4	0.84	ug/m3	1	2/3/2022 6:00:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	2/3/2022 6:00:00 PM
Freon 114	< 1,0	1.0	ug/m3	1	2/3/2022 6:00:00 PM

Qualitiers:

Sub-Contracted

SC

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E. Estimated Value above quantitation range

J. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

Page 3 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

C2202013-002A Lab ID:

Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TC)-15			Analyst: RJP
Freon 12	2,4	0.74		ug/m3	1	2/3/2022 6:00:00 PM
Heptane	0.49	0.61	J	ug/m3	‡	2/3/2022 6:00:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 6:00:00 PM
Hexane	0.88	0.53		ug/m3	1	2/3/2022 6:00:00 PM
Isopropyl alcohol	1.7	0.37		ug/m3	1	2/3/2022 6:00:00 PM
m&p-Xylene	1.0	1.3	J	ug/m3	1	2/3/2022 6:00:00 PM
Methyl Butyl Ketone	< 1.2	1.2		սց/m3	1	2/3/2022 6:00:00 PM
Methyl Ethyl Ketone	0.65	0.88	J	ug/m3	1	2/3/2022 6:00:00 PM
Methyl Isobotyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 6:00:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 6:00:00 PM
Methylene chloride	0.90	0.52		ug/m3	1	2/3/2022 6:00:00 PM
o-Xylene	< 0.65	0.65		սց/m3	1	2/3/2022 6:00:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 6:00:00 PM
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 6:00:00 PM
Tetrachloroethylene	< 1.0	1.0		սց/m3	1	2/3/2022 6:00:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 6:00:00 PM
Toluene	2.4	0.57		ug/m3	1	2/3/2022 6:00:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 6:00:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		սց/m3	1	2/3/2022 6:00:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 6:00:00 PM
Vinyl acetate	< 0.53	0.53		սց/m3	1	2/3/2022 6:00:00 PM
Vinyl Bromide	< 0,66	0.66		սց/m3	1	2/3/2022 6:00:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 6:00:00 PM

Qualifiers:	\mathbf{sc}	Sub-Contracted

В Analyte detected in the associated Method Blank

Results reported are not blank corrected Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 4 of 14

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		2/3/2022
Lab Vacuum Out	-30		"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,3-Trichioroethane	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,1-Dichloroethene	< 0.040	0.040	Vdqq	1	2/3/2022 6:45:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,2,4-Trimethylbenzene	0.19	0.15	Vđạq	1	2/3/2022 6:45:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
1,2-Dichloroethane	0.12	0.15	Vdqq l	1	2/3/2022 6:45:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vđqq	1	2/3/2022 6:45:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
1,3-Dichtorobenzene	< 0.15	0.15	γραφο	1	2/3/2022 6:45:00 PM
1,4-Dichlorobenzene	0.17	0.15	Vđqq	1	2/3/2022 6:45:00 PM
1,4-Dioxane	< 0.30	0.30	Vđạq	1	2/3/2022 6:45:00 PM
2,2,4-trimethylpentane	0.18	0.15	Vđqq	1	2/3/2022 6:45:00 PM
4-ethyltoluene	< 0.15	0.15	₽₽₽V	1	2/3/2022 6:45:00 PM
Acetone	13	3.0	Vdqq	10	2/4/2022 6:15:00 AM
Allyl chloride	< 0.15	0.15	ppb∨	1	2/3/2022 6:45:00 PM
Benzene	1.2	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	2/3/2022 6:46:00 PM
Carbon disulfide	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Carbon tetrachloride	0.070	0.030	ppbV	1	2/3/2022 6:45:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Chioroethane	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Chloroform	0.49	0.15	Vđợq	1	2/3/2022 6:45:00 PM
Chloromethane	1.9	0.15	ppbV	1	2/3/2022 6:45:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	Vdqq	1	2/3/2022 6:45:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Cyclohexane	< 0.15	0.15	ρρb∨	1	2/3/2022 6:45:00 PM
Dibromochioromethane	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Ethyl acetate	1,4	0.15	ppbV	1	2/3/2022 6:45:00 PM

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Dt. Detection Limit

Page 5 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐŁ	Qual Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1.1DCE	TO-	15		Analyst: RJP
Ethylbenzene	0.25	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Freon 11	0.24	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Freon 113	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Freon 114	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Freon 12	0.44	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Heptane	0.42	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM
Hexane	0.54	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Isopropyl alcohol	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
m&p-Xylene	0.78	0.30	Vdqq	1	2/3/2022 6:45:00 PM
Methyl Butyl Ketone	< 0.30	0.30	₽pb∨	1	2/3/2022 6:45:00 PM
Methyl Ethyl Ketone	1.1	0.30	Vdqq	1	2/3/2022 6:45:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	2/3/2022 6:45:00 PM
Methyl tert-butyl ether	< 0.15	0.15	∨dqq	1	2/3/2022 6:45:00 PM
Methylene chloride	0.21	0.15	ppbV	1	2/3/2022 6:45:00 PM
o-Xylene	0.23	0.15	ppbV	1	2/3/2022 6:45:00 PM
Propylene	< 0.15	0.15	γρbV	1	2/3/2022 6:45:00 PM
Styrene	0.19	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Tetrachioroethylene	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Tetrahydrofuran	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Toluene	2.0	1.5	Vđạq	10	2/4/2022 6:15:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vđqq	1	2/3/2022 6:45:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	γρφV	1	2/3/2022 6:45:00 PM
Trichloroethene	< 0.030	0.030	Vđạq	1	2/3/2022 6:45:00 PM
Vinyl acetate	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Vinyl Bromide	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM
Vinyl chloride	< 0.040	0.040	₽₽bV	1	2/3/2022 6:45:00 PM
Surr: Bromofluorobenzene	96.0	47-124	%REC	1	2/3/2022 6:45:00 PM

134	\$ 6	fiers

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routing analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Ol. Detection Limit

Page 6 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample 1D: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Đate Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TC	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 6:45:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	2/3/2022 6:45:00 PM
1,1,2-Trichtoroethane	< 0.82	0.82		ug/m3	1	2/3/2022 6:45:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 6:45:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 6:45:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1		ug/m3	1	2/3/2022 6:45:00 PM
1,2,4-Trimethylbenzene	0.93	0.74		ug/m3	1	2/3/2022 6:45:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 6:45:00 PM
1,2-Dichtorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 6:45:00 PM
1,2-Dichloroethane	0.49	0.61	J	ug/m3	1	2/3/2022 6:45:00 PM
1,2-Dichloropropage	< 0.69	0.69		սց/ու3	1	2/3/2022 6:45:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 6:45:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 6:45:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 6:45:00 PM
1,4-Dichiorobenzene	1.0	0.90		ug/m3	1	2/3/2022 6:45:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 6:45:00 PM
2,2,4-trimethylpentane	0.84	0.70		ug/m3	1	2/3/2022 6:45:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 6:45:00 PM
Acetone	31	7.1		ug/m3	10	2/4/2022 6:15:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 6:45:00 PM
Benzene	3.7	0.48		ug/m3	1	2/3/2022 6:45:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 6:45:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 6:45:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	2/3/2022 6:45:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 6:45:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 6:45:00 PM
Carbon tetrachloride	0.44	0.19		ug/m3	1	2/3/2022 6:45:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 6:45:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 6:45:00 PM
Chioroform	2.4	0.73		ug/m3	1	2/3/2022 6:45:00 PM
Chloromethane	3.9	0.31		ug/m3	1	2/3/2022 6:45:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 6:45:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 6:45:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 6:45:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	2/3/2022 6:45:00 PM
Ethyl acetate	4.9	0.54		ug/m3	1	2/3/2022 6:45:00 PM
Ethylbenzene	1.1	0.65		ug/m3	1	2/3/2022 6:45:00 PM
Freon 11	1.3	0.84		սց/m3	1	2/3/2022 6:45:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 6:45:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 6:45:00 PM

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- # Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL. Detection Limit

Page 5 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR.

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	2.2	0.74		ug/m3	1	2/3/2022 6:45:00 PM
Heptane	1.7	0.61		ug/m3	1	2/3/2022 6:45:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 6:45:00 PM
Hexane	1,9	0.53		ug/m3	1	2/3/2022 6:45:00 PM
Isopropyl alcohol	·s 0.37	0.37		սց/m3	1	2/3/2022 6:45:00 PM
m&p-Xylene	3.4	1.3		ug/m3	1	2/3/2022 6:45:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 6:45:00 PM
Methyl Ethyl Ketone	3.2	0.88		ug/m3	1	2/3/2022 6:45:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 6:45:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 6:45:00 PM
Methylene chloride	0.73	0.52		ug/m3	1	2/3/2022 6:45:00 PM
o-Xylene	1.0	0.65		ug/m3	1	2/3/2022 6:45:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 6:45:00 PM
Styrene	0.81	0.64		ug/m3	1	2/3/2022 6:45:00 PM
Tetrachtoroethylene	< 1.0	1.0		ug/m3	1	2/3/2022 6:45:00 PM
Tetrahydrofuran	< 0.44	0.44		սց/m3	1	2/3/2022 6:46:00 PM
Totuene	7.5	5.7		ug/m3	10	2/4/2022 6:15:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		սց/m3	1	2/3/2022 6:45:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 6:45:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 6:45:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 6:45:00 PM
Vinyt Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 6:45:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 6:45:00 PM

Qua	lifier	8:

SC Sub-Contracted

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 6 of 14

B. Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR.

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		F	LD			Analyst:
Lab Vacuum In	-3			"Hg		2/3/2022
Lab Vacuum Out	-30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	тс	-15			Analyst: RJP
1,1,1-Trichioroethane	< 0.15	0.15		₽₽bV	1	2/3/2022 7:29:00 PM
1,1,2,2-Tetrachloroethane	< 0,15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,1-Dichloroethane	< 0.15	0.15		Vđqq	1	2/3/2022 7:29:00 ₽M
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 7:29:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15		Vđạq	1	2/3/2022 7:29:00 PM
1,2,4-Trimethylbenzene	0.13	0.15	j	ppbV	1	2/3/2022 7:29:00 PM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
1,3-butadiene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,4-Dioxane	< 0.30	0.30		ppbV	1	2/3/2022 7:29:00 PM
2,2,4-trimethylpentane	0.10	0.15	J	∨dqq	1	2/3/2022 7:29:00 PM
4-ethyltoluene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Acetone	16	3.0		ppb∨	10	2/4/2022 6:58:00 AM
Allyl chloride	< 0.15	0.15		₽₽bV	1	2/3/2022 7:29:00 PM
Benzene	0.79	0.15		ppbV	1	2/3/2022 7:29:00 PM
Benzyl chloride	< 0.15	0.15		Vđqq	1	2/3/2022 7:29:00 PM
Bromodichloromethane	< 0.15	0.15		∨dqq	1	2/3/2022 7:29:00 PM
Bromoform	< 0.15	0,15		ppbV	1	2/3/2022 7:29:00 PM
Bromomethene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
Carbon disulfide	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Carbon tetrachloride	0.070	0.030		ppbV	1	2/3/2022 7:29:00 PM
Chlorobenzene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 ₽M
Chloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Chloroform	0.12	0.15	J	ppbV	1	2/3/2022 7:29:00 PM
Chloromethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 7:29:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
Cyclohexane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Dibromochloromethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Ethyl acetate	0.49	0.15		ppbV	1	2/3/2022 7:29:00 PM

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL. Detection Limit

Page 7 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-004A

Date: 04-Feb-22

Client Sample 1D: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	то	-15		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analyst: RJF
Ethylbenzene	0.16	0.15		ppbV	1	2/3/2022 7:29:00 PM
Freon 11	0.19	0.15		Vdqq	1	2/3/2022 7;29:00 PM
Freon 113	< 0.15	0.15		₽₽bV	1	2/3/2022 7:29:00 PM
Freon 114	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Freon 12	0.44	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Heptane	0.49	0.15		ppb∨	1	2/3/2022 7:29:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		∨dqq	1	2/3/2022 7:29:00 PM
Hexane	0.41	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Isopropyi alcohol	7.8	1.5		Vdqq	10	2/4/2022 6:58:00 AM
m&p-Xylene	0.44	0.30		Vdqq	1	2/3/2022 7:29:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 7:29:00 PM
Methyl Ethyl Ketone	0.74	0.30		Vdqq	1	2/3/2022 7:29:00 PM
Methyl Isobutyl Ketone	< 0.30	0,30		ρρbV	1	2/3/2022 7:29:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Methylene chloride	0.35	0.15		ppbV	1	2/3/2022 7:29:00 PM
o-Xylene	0.15	0.15		ρρb∨	1	2/3/2022 7:29:00 PM
Propylene	< 0.15	0.15		Vđqq	1	2/3/2022 7:29:00 PM
Styrene	0.14	0.15	J	Vđqq	1	2/3/2022 7:29:00 PM
Tetrachloroethylene	≺ 0.15	0.15		Vđạq	1	2/3/2022 7:29:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Toluene	1.6	0.15		ppbV	1	2/3/2022 7:29:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
trans-1,3-Dichtoropropene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Trichloroethene	< 0.030	0.030		Vdqq	1	2/3/2022 7:29:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	2/3/2022 7:29:00 PM
Surr: Bromofluorobenzene	97.0	47-124		%REC	1	2/3/2022 7:29:00 PM

O	4	+:	14		_4
.,	1151	41		ŗ.	

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- 8 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 8 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	D-DCE-1,1DCE	то	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 7:29:00 PM
1,1,2,2-Tetrachtoroethane	< 1.0	1.0		ug/m3	1	2/3/2022 7:29:00 PM
1,1,2-Trichtoroethane	< 0.82	0.82		ug/m3	†	2/3/2022 7:29:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 7:29:00 ₽M
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 7:29:00 PM
1,2,4-Trichtorobenzene	< 1.1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
1,2,4-Trimethylbenzene	0.64	0.74	J	ug/m3	1	2/3/2022 7:29:00 PM
1.2-Dibromoethane	< 1,2	1.2		սց/m3	1	2/3/2022 7:29:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 7:29:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 7:29:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	2/3/2022 7:29:00 PM
1,3,5-Trimethy/benzene	< 0.74	0.74		ug/m3	1	2/3/2022 7:29:00 PM
1,3-butadiene	< 0.33	0.33		սց/ու3	1	2/3/2022 7:29:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 7:29:00 PM
1,4-Dichtorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 7:29:00 ₽M
1.4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
2,2,4-trimethylpentane	0.47	0.70	J.	ug/m3	1	2/3/2022 7:29:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 7:29:00 PM
Acetone	38	7.1		ug/m3	10	2/4/2022 6:58:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 7:29:00 PM
Benzene	2.5	0.48		ug/m3	1	2/3/2022 7:29:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 7:29:00 PM
Bromodichloromethane	< 1.0	1.0		սց/m3	1	2/3/2022 7:29:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	2/3/2022 7:29:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 7:29:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 7:29:00 PM
Carbon tetrachloride	0.44	0.19		ug/m3	1	2/3/2022 7:29:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 7:29:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 7:29:00 PM
Chloroform	0.59	0.73	J	ug/m3	1	2/3/2022 7:29:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	2/3/2022 7:29:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 7:29:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 7:29:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 7:29:00 PM
Dibromochtoromethase	< 1.3	1.3		ug/m3	1	2/3/2022 7:29:00 PM
Ethyl acetate	1.8	0.54		ug/m3	1	2/3/2022 7:29:00 PM
Ethylbenzene	0.69	0.65		ug/m3	1	2/3/2022 7:29:00 PM
Freon 11	1.1	0.84		ug/m3	1	2/3/2022 7:29:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 7:29;00 PM

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H. Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

Page 7 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Aquino 65-67 Lake Ave Project:

C2202013-004A Lab ID:

Date: 04-Feb-22

Client Sample 1D: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	DE Q	pal Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-1	5		Analyst: RJP	
Freon 12	2.2	0.74	ug/m3	1	2/3/2022 7:29:00 PM	
Heptane	2.0	0.61	ug/m3	1	2/3/2022 7:29:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/3/2022 7:29:00 PM	
Hexane	1.4	0.53	ug/m3	1	2/3/2022 7:29:00 PM	
isopropyl alcohol	19	3.7	ug/m3	10	2/4/2022 6:58:00 AM	
m&p-Xylene	1.9	1.3	ug/m3	1	2/3/2022 7:29:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 7:29:00 PM	
Methyl Ethyl Ketone	2.2	0.88	սց/m3	1	2/3/2022 7:29:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 7:29:00 PM	
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/3/2022 7:29:00 PM	
Methylene chloride	1.2	0.52	ug/m3	1	2/3/2022 7:29:00 PM	
o-Xylene	0.65	0.65	ug/m3	1	2/3/2022 7:29:00 PM	
Propylene	< 0.26	0.26	սց/m3	1	2/3/2022 7:29:00 PM	
Styrene	0.60	0.64	J ug/m3	†	2/3/2022 7:29:00 PM	
Tetrachtoroethylene	< 1.0	1.0	ug/m3	1	2/3/2022 7:29:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/3/2022 7:29:00 PM	
Toluene	6.1	0.57	ug/m3	1	2/3/2022 7:29:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	2/3/2022 7:29:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	սց/m3	1	2/3/2022 7:29:00 PM	
Trichtoroethene	< 0.16	0.16	ug/m3	1	2/3/2022 7:29:00 PM	
Vinyl acetate	< 0.53	0.53	ug/m3	1	2/3/2022 7:29:00 PM	
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/3/2022 7:29:00 PM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	2/3/2022 7:29:00 PM	

Oua	12.5		
7.7034	111	ıcı	

- SC Sub-Contracted
- Analyte detected in the associated Method Blank 13
- lŧ Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Estimated Value above quantitation range
- Analyte detected below quantitation limit 1
- Not Detected at the Limit of Detection ND

Detection Limit DL.

Page 8 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Date: 04-Feb-22

Client Sample ID: A3

Tag Number: 195,434

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Resuit	DL Q	aal Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		2/3/2022
Lab Vacuum Out	-30		"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15	,		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	₽₽b∨	1	2/3/2022 8:13:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vđqq	1	2/3/2022 8:13:00 PM
1.1,2-Trichloroethane	< 0.15	0.15	ρρb∨	1	2/3/2022 8:13:00 PM
1,1-Dichloroethane	< 0.15	0.15	∨dqq	1	2/3/2022 8:13:00 PM
1,1-Dichtoroethene	< 0.040	0.040	Vđạq	1	2/3/2022 8:13:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	₽₽bV	1	2/3/2022 8:13:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	Váqq	1	2/3/2022 8:13:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1.2-Dichloropropane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	∨dqq	1	2/3/2022 8:13:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,3-Dichlorobenzene	⊀ 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,4-Dichlorobenzese	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	2/3/2022 8:13:00 PM
2,2,4-trimethylpentane	0.12	0.15	Vdqq L	1	2/3/2022 8:13:00 PM
4-ethyltoluene	< 0.15	0.15	₽₽bV	1	2/3/2022 8:13:00 PM
Acetone	45	12	Vdqq	40	2/4/2022 8:23:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Benzene	0.38	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Benzyl chloride	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Bromodichloromethane	< 0.15	0.15	Vdqq	†	2/3/2022 8:13:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Carbon disulfide	0.10	0.15	J ppbV	1	2/3/2022 8:13:00 PM
Carbon tetrachioride	0.090	0.030	Vdqq	1	2/3/2022 8:13:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Chloroform	1.1	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
çis-1,2-Dichloroethene	< 0.040	0.040	Vdqq	1	2/3/2022 8:13:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	t	2/3/2022 8:13:00 PM
Cyclohexane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Ethyl acetate	0.38	0.15	Vdqq	1	2/3/2022 8:13:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

15 Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 9 of 14

Date: 04-Feb-22

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-005A

Client Sample ID: A3
Tag Number: 195,434

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐL	Oual	Units	DF	Date Analyzed
-						
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	•)-15			Analyst: RJP
Ethylbenzene	0.10	0.15	J	ppb∨	1	2/3/2022 8:13:00 PM
Freon 11	0.20	0.15		ppbV	1	2/3/2022 8:13:00 PM
Freon 113	< 0.15	0.15		Vdqq	1	2/3/2022 8:13:00 PM
Freen 114	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Freon 12	0.47	0.15		ppbV	1	2/3/2022 8:13:00 PM
Heptane	0.27	0.15		Vđqq	1	2/3/2022 8:13:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vđqq	1	2/3/2022 8:13:00 PM
Hexane	0.36	0.15		Vdqq	1	2/3/2022 8:13:00 PM
Isopropyl alcohol	< 0.15	0.15		∨dqq	1	2/3/2022 8:13:00 PM
m&p-Xylene	0.32	0.30		Vđqq	1	2/3/2022 8:13:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 8:13:00 PM
Methyl Ethyl Ketone	0.68	0.30		Vdqq	1	2/3/2022 8:13:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		Vdqq	1	2/3/2022 8:13:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Methylene chloride	0.29	0.15		Vđqq	1	2/3/2022 8:13:00 PM
o-Xylene	0.12	0.15	Ţ	Vđqq	1	2/3/2022 8:13:00 PM
Propylene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Styrene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Tetrachioroethylene	0.21	0.15		ppbV	1	2/3/2022 8:13:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Toluene	0.82	0.15		ppbV	1	2/3/2022 8:13:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		₽₽bV	1	2/3/2022 8:13:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM
Trichloroethene	0.030	0.030		ppbV	1	2/3/2022 8:13:00 PM
Vinyl acetate	< 0.15	0.15		Vaqq	1	2/3/2022 8:13:00 PM
Vinyl Bromide	< 0.15	0.15		Vaqq	1	2/3/2022 8:13:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	2/3/2022 8:13:00 PM
Surr: Bromofluorobenzene	93.0	47-124		%REC	1	2/3/2022 8:13:00 PM

			ľie	
w	u	111	ПC	1.5

- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit.
- ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 10 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Date: 04-Feb-22

Client Sample ID: A3

Tag Number: 195,434 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual (Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1.1DCE	то	-15	remederar "vival alakadırı Makela kilde Makela kilde Makela		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 8:13:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	l	.ig/m3	1	2/3/2022 8:13:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ι	.g/m3	1	2/3/2022 8:13:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ŧ	.g/m3	1	2/3/2022 8:13:00 PM
1,1-Dichloroethene	< 0.16	0.16	ŧ	ug/m3	1	2/3/2022 8:13:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	1	ug/m3	1	2/3/2022 8:13:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ų	ug/m3	1	2/3/2022 8:13:00 PM
1,2-Dibromoethane	< 1,2	1.2	ι	.g/m3	1	2/3/2022 8:13:00 PM
1,2-Dichlorobenzena	< 0.90	0.90	· ·	ug/m3	1	2/3/2022 8:13:00 PM
1,2-Dichloroethane	< 0.61	0.61	(.g/m3	1	2/3/2022 8:13:00 PM
1,2-Dichloropropane	< 0.69	0.69	(ug/m3	1	2/3/2022 8:13:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	Ę	ag/m3	1	2/3/2022 8:13:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 8:13:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	1	ug/m3	7	2/3/2022 8:13:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	(ug/m3	1	2/3/2022 8:13:00 PM
1,4-Dioxane	< 1,1	1.1	ı	ug/m3	1	2/3/2022 8;13:00 PM
2,2,4-trimethylpentane	0.56	0.70	3 (ug/m3	1	2/3/2022 8:13:00 FM
4-ethyltoluene	< 0.74	0.74	ı	սց/m3	1	2/3/2022 8:13:00 PM
Acetone	110	28	;	ug/m3	40	2/4/2022 8:23:00 AM
Allyl chloride	< 0.47	0.47		սց/m3	1	2/3/2022 8:13:00 PM
Benzene	1.2	0.48	,	ug/m3	1	2/3/2022 8:13:00 PM
Benzyl chloride	< 0.86	0.86	•	ug/m3	1	2/3/2022 8:13:00 PM
Bromodichloromethane	< 1.0	1.0	(ug/n13	1	2/3/2022 8:13:00 PM
Bromoform	< 1.6	1.6	;	ug/m3	1	2/3/2022 8:13:00 PM
Bromomethane	< 0.58	0.58	•	ug/m3	1	2/3/2022 8:13:00 PM
Carbon disulfide	0.31	0.47	J	ug/m3	1	2/3/2022 8:13:00 PM
Carbon tetrachloride	0.57	0.19	1	ug/m3	1	2/3/2022 8:13:00 PM
Chiorobenzene	< 0.69	0.69	1	ug/m3	1	2/3/2022 8:13:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 8:13:00 PM
Chioroform	5.5	0.73		ug/m3	1	2/3/2022 8:13:00 PM
Chloromethane	< 0.31	0.31	1	ug/m3	1	2/3/2022 8:13:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:13:00 PM
cis-1,3-Dichloropropene	< 0.68	9,68		ug/m3	1	2/3/2022 8:13:00 PM
Cyclohexane	< 0,52	0.52		ug/m3	1	2/3/2022 8:13:00 PM
Dibromochloromothane	< 1.3	1,3		սց/m3	1	2/3/2022 8:13:00 PM
Ethyl acetate	1,4	0.54	1	ug/m3	1	2/3/2022 8:13:00 PM
Ethylbenzene	0.43	0.65		ug/m3	1	2/3/2022 8:13:00 PM
Freon 11	1.1	0.84		ug/m3	1	2/3/2022 8:13:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 8:13:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 8:13:00 PM

Qualifiers:

- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

DL.

Page 9 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Date: 04-Feb-22

Client Sample 1D: A3

Tag Number: 195,434

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	2.3	0.74		ug/m3	1	2/3/2022 8:13:00 PM
Heptane	1.1	0.61		ug/m3	1	2/3/2022 8:13:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 8:13:00 PM
Hexane	1.3	0.53		ug/m3	1	2/3/2022 8:13:00 PM
Isopropyi alcohol	< 0.37	0.37		ug/m3	1	2/3/2022 8:13:00 PM
m&p-Xytene	1.4	1.3		սց/m3	1	2/3/2022 8:13:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 8:13:00 PM
Methyl Ethyl Ketone	2.0	0.88		սց/m3	1	2/3/2022 8:13:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 8:13:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	3	2/3/2022 8:13:00 PM
Methylene chloride	1.0	0.52		ug/n:3	1	2/3/2022 8:13:00 PM
o-Xylene	0.52	0.65	J	ug/m3	1	2/3/2022 8:13:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 8:13:00 PM
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 8:13:00 PM
Tetrachioroethylene	1.4	1.0		ug/m3	1	2/3/2022 8:13:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 8:13:00 PM
Toluene	3.1	0.57		ug/m3	1	2/3/2022 8:13:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 8:13:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 8:13:00 PM
Trichtoroethene	0.16	0.16		ug/m3	1	2/3/2022 8:13:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 8:13:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 8:13:00 PM
Vinyl chloride	< 0.10	0.10		ម ្វ/m 3	1	2/3/2022 8:13:00 PM

Oua	liti	crs	3

SC Sub-Contracted

B Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit Page 10 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		F	LD			Analyst:
Lab Vaccum In	-7			"Hg		2/3/2022
Lab Vacuum Out	-30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO	-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,1,2-Trichtoroethane	< 0.15	0.15		Váqq	1	2/3/2022 8:58:00 PM
1,1-Dichloroethane	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 8:58:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,2,4-Trimethylbenzene	0.11	0.15	J	ppbV	1	2/3/2022 8:58:00 PM
1.2-Dibromoethane	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
1,2-Dichloroethane	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		Vđqq	1	2/3/2022 8:58:00 PM
1,3-butadiene	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,4-Dichlorobenzene	0.11	0.15	J	₽₽₽V	1	2/3/2022 8:58:00 PM
1,4-Dioxane	< 0.30	0.30		Vdqq	1	2/3/2022 8:58:00 PM
2,2,4-trimethylpentane	0.14	0.15	J	ppbV	1	2/3/2022 8:58:00 PM
4-ethyltoluene	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Acetone	12	3.0		ppbV	10	2/4/2022 12:06:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 ₽M
Benzene	0.40	0.15		ppbV	1	2/3/2022 8:58:00 PM
Benzyl chloride	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Bromodichloromethane	< 0.15	0,15		ppbV	1	2/3/2022 8:58:00 PM
Bromoform	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Bromomethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Carbon disulfide	< 0.15	0.15		ppo∨	1	2/3/2022 8:58:00 PM
Carbon tetrachloride	0.080	0.030		ppb∨	1	2/3/2022 8:58:00 PM
Chlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Chloroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Chloroform	- 0.10	0.15	J	Vdqq	1	2/3/2022 8:58:00 PM
Chloromethane	0.48	0.15		ppbV	1	2/3/2022 8:58:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 8:58:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
Cyclohexane	< 0.15	0.15		ρρύν	1	2/3/2022 8:58:00 PM
Dibromochloromethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Ethyl acetate	0.25	0.15		ppbV	1	2/3/2022 8:58:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 11 of 14

Date: 04-Feb-22

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-006A

Client Sample ID: A4 Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AIR

0.00						
Analyses	Result	ÐL		Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TC)-15			Analyst: RJP
Ethylbenzene	0.13	0.15	J	ppb∨	1	2/3/2022 8:58:00 PM
Freon 11	0.20	0.15		₽₽₽V	1	2/3/2022 8:58:00 PM
Freon 113	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
Freen 114	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Freon 12	0.47	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Heptane	0.26	0.15		ppbV	1	2/3/2022 8:58:00 PM
Hexachtoro-1,3-butadiene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Hexane	0.39	0.15		₽₽₽V	1	2/3/2022 8:58:00 PM
Isopropyl alcohol	3.0	1.5		Vaqq	10	2/4/2022 12:06:00 PM
m&p-Xylene	0.42	0.30		Vđqq	1	2/3/2022 8:58:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 8:58:00 PM
Methyl Ethyl Ketone	0.29	0.30	J	ppbV	1	2/3/2022 8:58:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		Vdqq	1	2/3/2022 8:58:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Methylene chloride	0.16	0.15		ppbV	1	2/3/2022 8:58:00 ₽M
o-Xylene	0.13	0.15	J	Vđqq	1	2/3/2022 8:58:00 PM
Propylene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Styrene	< 0.15	0.15		₽₽₽V	1	2/3/2022 8:58:00 PM
Tetrachloroethylene	0.11	0.15	J	ppbV	1	2/3/2022 8:58:00 PM
Tetrahydrofuran	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
Toluene	1,1	0.15		ppbV	1	2/3/2022 8:58:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ρρb∨	1	2/3/2022 8:58:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Trichloroethene	< 0.030	0.030		Vdqq	1	2/3/2022 8:58:00 PM
Vinyl acetate	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Vinyl Bromide	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
Vinyl chloride	< 0.040	0.040		Vđqq	1	2/3/2022 8:58:00 PM
Surr: Bromofluorobenzene	94.0	47-124		%REC	1	2/3/2022 8:58:00 PM

Qualifiers:	SC	Sub-Contracted
12 12 11 11 11 11 11 11 11 11	117 411	

B. Analyte detected in the associated Method Blank

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

Page 12 of 14

¹⁴ Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Resuit	DL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TC	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 8:58:00 PM
1,1,2,2-Tetrachtoroethane	< 1.0	1.0		ug/m3	1	2/3/2022 8:58:00 PM
1,1,2-Trichtoroethane	< 0.82	0.82		սց/ռո3	1	2/3/2022 8:58:00 PM
1,1-Dichloroethane	< 0.61	0.61		սց/m3	1	2/3/2022 8:58:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:58:00 PM
1,2,4-Trichtorobenzene	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
1,2,4-Trimethylbenzene	0.54	0.74	٤	ug/m3	1	2/3/2022 8:58:00 PM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 8:58:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 8:58:00 PM
1,2-Dichloroethane	< 0.61	0.61		սց/m3	1	2/3/2022 8:58:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	2/3/2022 8:58:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 8:58:00 PM
1,3-buladiene	< 0.33	0.33		ug/m3	1	2/3/2022 8:58:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 8:58:00 PM
1,4-Dichlorobenzene	0.66	0.90	J	ug/m3	1	2/3/2022 8:58:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
2,2,4-trimethylpentane	0.65	0,70	J	ug/m3	1	2/3/2022 8:58:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 8:58:00 PM
Acetone	29	7.1		ug/m3	10	2/4/2022 12:06:00 PM
Allyt chloride	< 0.47	0.47		ug/m3	1	2/3/2022 8:58:00 PM
Benzere	1.3	0.48		ug/m3	1	2/3/2022 8:58:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 8:58:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 8:58:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	2/3/2022 8:58:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 8:58:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 8:58:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	2/3/2022 8:58:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 8:58:00 PM
Chioroethane	< 0.40	0.40		ug/m3	1	2/3/2022 8:58:00 PM
Chloroform	0.49	0.73	j	ug/m3	1	2/3/2022 8:58:00 PM
Chioromethane	0.99	0.31		սց/m3	1	2/3/2022 8:58:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:58:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 8:58:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 8:58:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	2/3/2022 8:58:00 PM
Ethyl acetate	0.90	0.54		ug/m3	1	2/3/2022 8:58:00 PM
Ethylbenzene	0.56	0.65	J	ug/m3	1	2/3/2022 8:58:00 PM
Freon 11	1.1	0.84		и g/m 3	1	2/3/2022 8:58:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
Freon 114	< 1.0	1,0		ug/m3	1	2/3/2022 8:58:00 PM

Qualifiers:

SCSub-Contracted

13 Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded 11

JN

Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range

.) Analyte detected below quantitation limit

Not Detected at the Limit of Detection ND

DŁ.

Page 11 of 14 Detection Limit

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: Ci

C2202013

Project: Aquino 65-67 Lake Ave

Lab ID:

C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146
Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TC)-15			Analyst: RJP
Freon 12	2.3	0.74		មg/m3	1	2/3/2022 8:58:00 PM
Heptane	1.1	0.61		ug/m3	1	2/3/2022 8:58:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 8:58:00 PM
Hexane	1.4	0.53		ug/m3	1	2/3/2022 8:58:00 PM
Isopropyl alcohol	7.4	3.7		ug/m3	10	2/4/2022 12:06:00 PM
m&p-Xylene	1.8	1.3		սց/m3	1	2/3/2022 8:58:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 8:58:00 PM
Methyl Ethyl Ketone	0.86	98.0	j	ug/m3	1	2/3/2022 8:58:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		սց/m3	1	2/3/2022 8:58:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 8:58:00 PM
Methylene chloride	0.56	0.52		ug/m3	1	2/3/2022 8:58:00 PM
o-Xylene	0.56	0.65	J	ug/m3	1	2/3/2022 8:58:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 8:58:00 PM
Styrene	< 0.64	0.64		սց/m3	1	2/3/2022 8:58:00 PM
Tetrachloroethylene	0.75	1.0	j	ug/m3	1	2/3/2022 8:58:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 8:58:00 PM
Toluene	4.0	0.57		ug/m3	1	2/3/2022 8:58:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	t	2/3/2022 8:58:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 8:58:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:58:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 8:58:00 PM
Vinyi Bromide	< 0.66	0.66		սց/m3	1	2/3/2022 8:58:00 PM
Vinyt chloride	< 0.10	0.10		ug/m3	1	2/3/2022 8:58:00 PM

Oua	1:37		SC
Qua	1111	ers:	. N.

- Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DI.

Detection Limit Page 12 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-007A

Date: 04-Feb-22

Client Sample ID: A4 Dupe

Tag Number: 98,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Quat	Units	DF	Date Analyzed
FIELD PARAMETERS		F	LD			Analyst:
Lab Vacuum In	-1			"Hg		2/3/2022
Lab Vacuum Out	-30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-\	/C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,1,2,2-Tetrachioroethane	< 0.15	0.15		Váqq	1	2/3/2022 9:42:00 PM
1,1,2-Trichioroethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,1-Dichloroethene	< 0.040	0,040		ppbV	1	2/3/2022 9:42:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,2,4-Trimethylbenzene	0.11	0.15	J	₽₽₽V	1	2/3/2022 9:42:00 PM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
1,2-Dichloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
1,2-Dichloropropane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
1,3-butadiene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,4-Dioxane	< 0.30	0.30		ppbV	1	2/3/2022 9:42:00 PM
2,2,4-trimethylpentane	0.13	0.15	į,	Vdqq	1	2/3/2022 9:42:00 PM
4-ethyltokiene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Acetone	11	3.0		Vdqq	10	2/4/2022 12:49:00 PM
Allyl chloride	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Benzene	0.38	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Benzyl chloride	< 0.15	0.15		ρρb∨	1	2/3/2022 9:42:00 PM
Bromodichloromethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Bromoform	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Bromomethane	< 0.15	0.15		ρpbV	1	2/3/2022 9:42:00 PM
Carbon disulfide	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Carbon tetrachloride	0.080	0.030		ppbV	1	2/3/2022 9:42:00 PM
Chłorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Chloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Chloroform	0.10	0.15	J	ppb∨	1	2/3/2022 9:42:00 PM
Chloromethane	0,50	0.15		ppbV	1	2/3/2022 9:42:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		Vdqq	1	2/3/2022 9:42:00 PM
cis-1,3-Dichtoropropene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Cyclohexane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Dibromochloromethane	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Ethyl acetate	0.21	0.15		∨dqq	1	2/3/2022 9:42:00 PM

Qualifiers:

SC Sub-Contracted

B. Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

DŁ.

Page 13 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-007A

Date: 04-Feb-22

Client Sample ID: A4 Dupc

Tag Number: 98,146 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TC	TO-15			Analyst: RJP
Ethylbenzene	0.12	0.15	J	ppb∨	1	2/3/2022 9:42:00 PM
Freon 11	0.23	0.15		ppbV	1	2/3/2022 9:42:00 PM
Freon 113	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Freon 114	< 0.15	0.15		₽₽bV	1	2/3/2022 9:42:00 PM
Freon 12	0.47	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Heptane	0.24	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Hexachtoro-1,3-butadiene	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Hexane	0.37	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Isopropyl alcohol	2.6	1.5		ppb∨	10	2/4/2022 12:49:00 PM
m&p-Xylene	0.36	0.30		Vdqq	1	2/3/2022 9:42:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 9:42:00 PM
Methyl Ethyl Ketone	0.30	0.30		∨dqq	1	2/3/2022 9:42:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	2/3/2022 9:42:00 PM
Methyl tert-butyl other	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Methylene chloride	0.16	0.15		ppb∨	1	2/3/2022 9:42:00 PM
o-Xylene	0.13	0.15	J	ppbV	1	2/3/2022 9:42:00 PM
Propylene	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
Styrene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Tetrachioroethylene	0.12	0.15	J	ppbV	1	2/3/2022 9:42:00 PM
Tetrahydrofuran	< 0.15	0.15		₽₽bV	1	2/3/2022 9:42:00 PM
Toluene	0.93	0.15		ppbV	1	2/3/2022 9:42:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Trichtoroethene	< 0.030	0.030		ppbV	1	2/3/2022 9:42:00 PM
Vinyl acetate	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	2/3/2022 9:42:00 PM
Surr: Bromofluorobenzene	93.0	47-124		%REC	1	2/3/2022 9:42:00 PM

Qualifiers:	SC	Sub-Contracted

B Analyte detected in the associated Method Blank

DL Detection Limit

Page 14 of 14

¹¹ Holding times for preparation or analysis exceeded.

JN Non-routine analyte. Quantitation estimated.

⁵ Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

¹³ Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 04-Feb-22

CLIENT:

Matrix Environmental Technologies, Inc.

Lab Order:

C2202013

Project:

Aquino 65-67 Lake Ave

Lab ID:

C2202013-007A

Client Sample ID: A4 Dupe

Tag Number: 98,146 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1.1DCE	то)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 9:42:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	2/3/2022 9:42:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		սց/m3	1	2/3/2022 9:42:00 PM
1,1-Dichloroethane	< 0.61	0.61		սց/m3	1	2/3/2022 9:42:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 9:42:00 PM
1,2,4-Trichiorobenzene	< 1.1	1,1		ug/m3	1	2/3/2022 9:42:00 PM
1,2,4-Trimethylbenzene	0.54	0.74	ز	ug/m3	1	2/3/2022 9:42:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 9:42:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		սց/m3	1	2/3/2022 9:42:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 9:42:00 PM
1,2-Dichloropropane	< 0.69	0.69		ນ໘/ຄາ3	1	2/3/2022 9:42:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 9:42:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 9:42:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 9:42:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 9:42:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 9:42:00 PM
2,2,4-trimethylpentane	0,61	0.70	J	ug/m3	1	2/3/2022 9:42:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	†	2/3/2022 9:42:00 PM
Acetone	25	7. t		սց/m3	10	2/4/2022 12:49:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 9:42:00 PM
Benzene	1.2	0.48		սց/m3	1	2/3/2022 9:42:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 9:42:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 9:42:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	2/3/2022 9:42:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 9:42:00 PM
Carbon disulfide	< 0.47	0.47		սց/m3	1	2/3/2022 9:42:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	2/3/2022 9:42:00 PM
Chlorobenzene	< 0.69	0.69		սց/m3	1	2/3/2022 9:42:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 9:42:00 PM
Chloroform	0.49	0.73	,J	ug/m3	1	2/3/2022 9:42:00 PM
Chloromethane	1.0	0.31		ug/m3	1	2/3/2022 9:42:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 9:42:00 PM
cis-1,3-Dichtoropropene	< 0.68	0.68		ug/m3	1	2/3/2022 9:42:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 9:42:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	2/3/2022 9:42:00 PM
Ethyl acetate	0.76	0.54		นg/กา3	1	2/3/2022 9:42:00 PM
Ethylbenzene	0.52	0.65	J	ug/m3	1	2/3/2022 9:42:00 PM
Freon 11	1.3	0.84		ug/m3	1	2/3/2022 9:42:00 PM
Freon 113	< 1.1	1,1		ug/m3	1	2/3/2022 9:42:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 9:42:00 PM

- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Df. Detection Limit

Page 13 of 14

Date: 04-Feb-22

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-007A

Client Sample ID: A4 Dupe

Tag Number: 98,146

Collection Date: 1/31/2022

Matrix: AIR

						the state of the s		
Analyses	Result	ĎЪ	Quat	Units	ÐF	Date Analyzed		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TC)-15			Analyst: RJP		
Freon 12	2.3	0.74		ug/m3	1	2/3/2022 9:42:00 PM		
Heptane	0.98	0.61		ug/m3	1	2/3/2022 9:42:00 PM		
Hexachloro-1,3-butadiene	< 1.6	1,6		ug/m3	1	2/3/2022 9:42:00 PM		
Hexane	1.3	0.53		ug/m3	1	2/3/2022 9:42:00 PM		
Isopropyl alcohol	6.4	3.7		ug/m3	10	2/4/2022 12:49:00 PM		
m&p-Xylene	1.6	1,3		ug/m3	1	2/3/2022 9:42:00 PM		
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 9:42:00 PM		
Methyl Ethyl Ketone	0.88	0.88		ug/m3	1	2/3/2022 9:42:00 PM		
Methyl Isobutyl Ketone	< 1.2	1,2		ug/m3	1	2/3/2022 9:42:00 PM		
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 9:42:00 PM		
Methylene chloride	0.56	0.52		ug/m3	1	2/3/2022 9:42:00 PM		
o-Xylene	0.56	0.65	J	ug/m3	1	2/3/2022 9:42:00 PM		
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 9:42:00 PM		
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 9:42:00 PM		
Tetrachloroethylene	0.81	1.0	J	ug/m3	1	2/3/2022 9:42:00 PM		
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 9:42:00 ₽M		
Toluene	3.5	0.57		ug/m3	1	2/3/2022 9:42:00 PM		
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 9:42:00 PM		
trans-1,3-Dichloropropene	< 0.68	0.68		บดู/กา3	1	2/3/2022 9:42:00 PM		
Trichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 9:42:00 PM		
Vinyl acetate	< 0.53	0.53		սց/m3	1	2/3/2022 9:42:00 PM		
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 9:42:00 PM		
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 9:42:00 PM		

	2 4 424	
Qualifiers:	SC	Sub-Contracted

B. Analyte detected in the associated Method Blank

Results reported are not blank corrected

f: Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

DL.

Page 14 of 14

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 04-Feb-22

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Matrix Environmental Technologies, Inc

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

Test No: TO-15 Matrix: A

Sample ID	BR4FBZ	
ALCS1UG-020322	94.0	
ALCS1UG-020422	112	
ALCSTUGD-020322	110	
AMB1UG-020322	78.0	
AMB1UG-020422	91.0	
C2202013-001A	91.0	
C2202013-002A	90.0	
C2202013-003Å	96.0	
C2202013-004A	97.0	
C2202013-005A	93.0	
C2202013-006A	94.0	
C2202013-007A	93.0	

	Acronym	Surrogate		QC Limits
;	BR4FBZ	── Bromofluorober	ene	47-124
:				
:				
:				

Tune File : C:\HPCHEM\1\DATA\AT020302.D

Tune Time : 3 Feb 2022 9:11 am

Daily Calibration File : C:\HPCHEM\1\DATA\AT020302.D

(BFB) (IS1) (IS2) (IS3) 35677 152077 130970

File S	ample	DL	Surrogate	Recovery %	Internal S	tandard Resp	onses
AT020303.D A	LCS1UG-02032:	5	94		38268	167276	155326
AT020304.D A	MB1UG-020322		78		37307	165431	152624
AT020313.D C	2202013-001A		91	and the said the said talk that and the said	38077	1.69475	137317
AT020314.D C	2202013-002A		90		34150	148273	131747
AT020315.D C	2202013-003A		96		36988	157207	148338
AT020316.D C	2202013-004A		97		38494	160577	143772
AT020317.D C	2202013-005A	m 20 m m 10 m	93	את ניי דוד פע ייני על ניי מי מי מי דע ייני על ייני	35722	154976	136802
AT020318.D C	2202013-006A		94		36427	152645	137506
AT020319.D C	2202013-007A		93		35817	149732	132572
AT020320.D A	LCS1UGD-0203:	55	130		32837	145184	127813
AT020329.D C	2202013-001A	4 X	89		29654	123490	108365
AT020330.D C	2202013-002A	1.0X	80	to 10 da va de to to 10 to 10	29342	121637	107144
AT020331.D C	2202013-003A	1.0X	87		29386	120007	108498
AT020332.D C	2202013-004A	3 O X	86		28915	122898	105107
AT020334.D C	2202013-005A	40X	85		28678	118900	97566

t - fails 24hr time check * - fails criteria

Created: Fri Feb 04 14:37:39 2022 MSD #1/

Tune File : C:\HPCHEM\1\DATA\AT020402.D

Tune Time : 4 Feb 2022 9:56 am

Daily Calibration File : C:\HPCHEM\1\DATA\AT020402.D

(BFB) (IS1) (IS2) (IS3) 30828 123419 109910

File	Sample		Surrogate	-				Responses	
	ALCS1UG-02042		112	ME CT 1011 ALE 1027 INC 1027 INC. CO. AND	*** *** **	29135	12598		
AT020404.D	AMB1UG-020422		91.			31342	14313	0 11445	9
AT020405.D	C2202013-006A	. 10X	82			27900	11388	30 10242	5
AT020406.D	C2202013-007A	. 10X	85		m ·c m	28841	11527	73 10067	7

t - fails 24hr time check * - fails criteria

Created: Fri Feb 04 14:39:55 2022 MSD #1/

ANALYTICAL QC SUMMARY REPORT

Matrix Environmental Technologies, Inc CLIENT:

C2202013 Work Order:

Sample ID: AMB1LIG-020322 SampType: MBLK Client ID: ZZZZZ Batch ID: R18586 Analyte Resulf 1,1,1-Trichloroethane < 0.15 1,1,2-Tetrachloroethane < 0.15 1,1,2-Trichloroethane < 0.15 1,2-Trichloroethane < 0.15 1,2-Dichloroethane < 0.15 1,2-Dichloroethane < 0.15 1,3-Dichlorobenzene < 0.15 1,3-Dichlorobenzene < 0.15 1,3-Dichlorobenzene < 0.15 1,4-Dicklorobenzene < 0.15 1,4-Dicklorobenzene < 0.15 4-ethyltoluene < 0.15 Acetone < 0.15 Benzene < 0.15 Benzene < 0.15	9 7 10 10 10 10 10 10 10 10 10 10 10	TestCode: 0.20_NYS Units: ppbV			Punhlor 18586	
rice thane broothane broot	POL 0.15 0.15 0.15 0.040 0.15 0.15 0.15 0.15	(1	Prep Date		COLLEGE, 1939	
ichloroethane ichloroethane ichloroethane ichloroethane ichloroethane ichlorothenzene ichlorothane ichloroethane ilnoroethane innethylbenzene innethylbenzene innethylbenzene innethylbenzene innethylbenzene innethylbenzene innethylpentane olusne e chlorote ichloromethane	POL 0.15 0.15 0.040 0.15 0.15 0.15 0.15	-O-15	Analysis Date: 2/3/2022	2022	SeqNo: 211744	
	C.S	SPK value SPK Ref Val	%REC LowLinit HighLimit	iit RPD Ref Val	%RPD RPDLimit	Quai
						
, do de de	ų,					
v dv dv dv	4 ,3					
v do do do						
a, do 00 do						
a) D) a)						
t) a						
a) a)						
t) to						
OD a)						
υ a						
a	15 0.15					
a)	15 0.15					
a)	15 0.15					
d i	15 0.15					
d i	30 0.30					
	15 0.15					
	15 0.15					
	30 0.30					
	.15 0.15					
	.15 0.15					
	15 0.15					
	t5 0.15					
Bramoform < 0.15	.15 0.15					
Bromomethane < 0.15	.15 0.15					
Qualifiers: Results reported are not blank corrected	exted	E Estimated Value above quantitation range		Holding times for j	Holding times for preparation or analysis exceeded	73
J Assiste detected below quantitation limit	ın Timif	ND Not Detected at the Limit of Detection	Detection	RPD outside accep	RPD outside accepted recovery limits	
Spike Recovery oatside accepted recovery limits	ecovery limits	DI, Detection Limit			- Jan	Page 1 of 5

datrix Environmental Technologies, Inc
CLIENT: Matrix Environ

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

TestCode: 0.20 NYS

Client ID: ZZZZZ		Toethlo	TestNo: TO-15				2/3/2022	O 4 - 1 - 1 - 1 - 1 - 1 - 1	
_	Satch ID: R18586	103630			Analysis Date:			2848/0. Z11/44	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC LowLimit	t Haplimit	1 RPD Ref Val	%RPD RPDSimit	ait Quai
Carbon disulfide	< 0.15	0.15							
Carbon tetrachloride	< 0.030	0.030							
Chlorobenzene	< 0.15	0.15							
Chloroethane	< 0.15	0.15							
Chloroform	< 0.15	0.15							
Chforomethane	< 0.15	0.15							
cis-1,2-Dichloraethene	< 0.040	0.040							
cis-1,3-Dichloropropene	< 0.15	0.15							
Сусюћехапе	< 0.15	0.15							
Dibromochloromethane	< 0.15	0.15							
Ethyl acetate	< 0.15	0.15							
Ethylbenzene	< 0.15	0.15							
Freon 11	< 0.15	0.15							
Freon 113	< 0.15	0.15							
Freon 114	< 0.15	0.15							
Freon 12	< 0.15	0.15							
Heptane	< 0.15	0.15							
Hexachloro-1,3-butadiene	< 0.15	0.15							
Hexane	< 0.15	0.15							
Isopropy! akontol	< 0.15	0.15							
m&p-Xylene	< 0.30	0.39							
Methyl Butyl Ketone	< 0.30	0.30							
Methyl Ethyl Ketone	< 0.30	0.30							
Methyf Isobutyl Ketone	< 0.30	0.30							
Methyl tert-butyl ether	< 0.15	0.15							
Methylene chloride	< 0.15	0.15 0.15							
o-Xylene	< 0.15	0.15							
Propylene	< 0.15	0.15							
Styrene	< 0.15	0.15							
Tetrachloroethyiene	< 0.15	0.15							
Tetrahydrofuran	< 0.15	0.15							:
Oualifiers: Results repor	Results reported are not binnk corrected		Estena	Estimated Value above quantitation range	ation range	144	Holding times for p	Holding times for preparation or analysis exceeded	seeded
г.	Analyte detected below quantitation limit		ND Not Do	Not Detected at the Limit of Detection	etection	œ	RPD narside accep	RPD natside accepted recovery limits	

Page 2 of 5

Dl. Delection Limit

Spike Recovery outside accepted recovery limits

Matrix Environmental Technologies, Inc

CLIENT:

			-				
Sample ID: AMB1UG-020322	SampType: MBLK	TestCode: 0.20_NYS	Units: ppbV	Prep Date:		RunNo: 18586	
Client ID: ZZZZZ	Batch ID: R18586	FestNo: TO-15		Analysis Date: 2/3/2022	22	SeqNo: 211744	
Anaŝyte	Result	POL SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Toluene	< 0.15	0.15					
frans-f,2-Dichloroethene	< 0.15	0.15					
trans-1,3-Dichloropropene	< 0.15	0.35					
Frichforoethene	< 0.030	0.030					
Vinyl acetate	< 0.15	0.15					
Vinyl Bromide	< 0.15	0.15					
Vinyi chloride	< 0.040	0.040					
Sample ID: AMB1UG-020422	SampType: MBLK	TestCode: 0.20_NYS	Units: ppbV	Prep Date:		RunMa: 18587	
Client ID: ZZZZZ	Batch ID: R18587	FestNo: TO-1\$		Analysis Date; 2/4/2022	23	SeqNo: 211775	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Vai	%RPO RPDLimit	Qua
1,1,1-Frichloroethane	< 0.15	0.15					
1,1,2,2-Tetrachloroethane	< 0.15	0.15					
f,1,2-Trichloroethane	< 0.15	0.15					
1,1-Dichloroethane	< 0.15	0.15					
1, 1-Dichloroethene	< 0.040	0.040					
₹,2,4-Trichlorobenzene	< 0.15	0.15					
1,2,4-Trimethylbenzene	< 0.15	0.15					
1,2-Dibromoethane	< 0.15	0.15					
1,2-Dichlorobenzene	< 0.15	0.15					
1,2-Dichloroethane	< 0.15	0.15					
1,2-Dichloropropane	< 0.15	0.15					
1,3,5-Trimethy!benzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlombenzene	< 0.15	0.15					
1,4-Dichlorobenzene	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2,2,4-trimethylpentane	< 0.15	0.15					
4-ethyttoluene	< 0,1\$	0.15					
Qualifiers: Results reported	Results reported are not blank corrected	Estim	Estimated Value above quantitation range	*****	Holding times for p	Holding times for preparation or analysis exceeded	:
J Analyte delecte	Analyte detected below quantitation limit	C NOW ON	Not Detected at the Linkit of Detection	etection R	RPD outside accepted recovery limits	ed recovery limits	

ľnc
l'echnologies,
Environmental
Matrix
CLIENT;

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

TestCode: 0.20 NVS

Sample ID: AMB1UG-020422	SampType: MBLK	TestCod	TestCode: 0.20_NYS	Units: ppbV	Prep Date:		RunNo: 18587	
Client ID: ZZZZZ	Batch ID: R18587	TestM	Testivo: TO-15		Analysis Date:	2/4/2022	SeqNo: 211775	
Analyte	Result	PO	SPK value	SPK Ref Val	%REC LowLimit H	Hight.imit RPD Ref Val	%RPD RPDLimit Q	Qual
Acetone	< 0.30	0:30						
Allyl chloride	< 0.15	0.15						
Велгеле	< 0.15	0.15						
Benzyl chloride	< 0.15	0.15						
Bromodichloromethane	< 0.15	0.15						
Бготобот	< 0.15	0.15						
Bromomethane	< 0.15	0.15						
Carbon disulfide	< 0.15	0.15						
Carbon tetrachloride	< 0.030	0.030						
Chlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chieroform	< 0.15	0.15						
Chioromethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.040	0.040						
cis-1,3-Dichtoropropene	< 0.15	0.15						
Cycloflexane	< 0.15	0.15						
Dibromochioromethane	< 0.15	0.15						
Ethyl acetate	< 0.15	0.15						
Ethylbenzene	< 0.15	0.15						
Freon 1	< 0.15	0.15						
Freon 113	< 0.15	0.15						
Freon \$14	< 0,15	0.15						
Freon 12	< 0.15	0.55						
Heptane	< 0.15	0.15						
Hexachloro-1,3-butadiene	< 0.15	0.15						
Hexane	< 0.15	0.15						
Isopropyl alcohol	< 0.15	0.15						
m&p-Xyle₁e	< 0.30	0.30						
Methyi Butyi Ketone	< 0.30	0.39						
Methyl Ethyl Kelone	< 0.30	0:30						
Methyt Isobutyl Ketone	< 0.30	0.30		;				:
Qualifiers: Results report	Results reported are not blank corrected		E Estimate	Estimated Value above quantitation range	र्गाग्म त्याष्ट्रस	H Holding rieses for	Holding times for preparation or analysis execeded	
) Analyte detec	Analyte desected below quantitation limit			Not Detected at the Limit of Detection	tection	R RPD outside acce	RPD outside accepted recovery limits	
S Spike Record	Spike Recurery outside accepted recovery limits	imits	DL Detection Limit	n Limit			Page	Page 4 of 5

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

CLIENT: Work Order:

Project:

TestCode: 0.20 NYS

Sample ID: AMB1UG-020422	SampType: MBLK	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ai		RuniNo: 18587	567	
Client ID: ZZZZ	Batch ID: R18587	TestNk	TestNo: TO-15		₫.	Analysis Date:	e: 2/4/2022		SeqNo: 211775	1775	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowCinst	HighLimit RPD F	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl text-butyl ether	<0,15	0.15									
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene	< 0.15	0.15									
Slyrene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Tetrahydrofuran	< 0.15	0.15									
Toillene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
frans-1,3-Dichloropropene	< 0.15	0.15									
Trichioroethene	< 0.030	0.030									
Vinyl acetale	< 0.15	0.15									
Vinvi Bromide	< 0.15	0.15									
Vinyi chlorete	< 0.040	5.040									
Qualifiers: Results repor	Results reported are not blank corrected			Estimated Value alowe quantitation range	titetion rare		:	times for pr	reparation or a	Holding times for preparation or analysis exceeded	od
J Analyte deter	Analyte detected below quantitation binit	i initia	ND Not De	Not Detected at the Limit of Detection Detection Jimis	Detection		R RPD out	tside accepa	RPD metside accepted recovery limits		1,
	יכול מתופותה מההפשבת וההמורול	1217267		400						-	rage o oj o

ANALYTICAL QC SUMMARY REPORT

CLIENT: Matrix Environmental Technologies, Inc

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

TestCode: 0.20 NYS

Sample ID: ALCS1UG-020322	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 18586	
Client ID: ZZZZZ	Batch (D: R18586	Festiv	TestNo: TO-15		~	Analysis Date:	2/3/2022	SegNo: 211745	
Analyte	Resuft	PQ.	SPK value	SPK Ref Val	%REC	LowLimi! H	HighLimit RPD Ref Val	%RPD RPDLimit	Quat
1,1,1-Trichloroethane	0.9500	0.15	-	0	0.96	91.3	127		
1,1,2,2-Tetrachloroethane	0.8500	0.15	_	0	85.0	78.7	121		
1,1,2.Trichloroethane	0.9400	0.15	-	0	94.0	38.1	136		
1,1-Dichloroethane	0.9500	0.15	-	0	95.0	36.1	123		
f.1-Dicfiloroethene	0.9900	0.040	_	0	9.68	76	94		Ś
1,2,4-Trichlorobenzene	0.8700	0.15	+	0	87.0	76.7	112		
1,2,4-Trimethylbenzene	0.9300	0.15	-	0	93.0	74.3	123		
1,2-Dibromoethane	0.9400	0.15	#11.	O	94.0	80.4	125		
1,2-Dichlorobenzene	0.8400	0.15	41.2	O	84.0	79.5	143		
1,2-Dichloroethane	0.9900	0.15	her	0	0.66	70.9	133		
1,2-DісһІсгофгорапе	0.9400	0.15	ķ in	¢	94.0	ő	134		
1,3.5-Trimethylbenzene	0.8800	0.15	(m	Û	88.0	77.4	138		
1,3-butadiene	0.9500	0.15	**	0	95.0	73	144		
1,3-Dichiprobenzene	0.8900	0.15	-	0	89.0	84 .7	128		
1,4-Dichiorobenzene	0.9000	0.15	-	0	90.0	77.9	131		
1,4-Dioxane	0.9600	0.30	-	0	96.0	60.9	133		
2,2,4-inmethylpentane	0.9500	0.15	-	0	95.0	86.9	125		
4-ethyltoluene	0.8900	0.15	-	0	89.0	77.5	133		
Acetone	1.070	0.30	7	0	107	46.7	165		
Allyl chloride	0.9400	0.15	+	0	94.0	86.6	147		
Вепzепе	0.9500	0.15	ų	0	95.0	88.9	122		
Benzył chloride	0.9300	0.15	der	0	93.0	73.6	120		
Bromodichloromethane	0.9700	0.15	*	ූ	97.0	84.3	133		
Bramoform	0.8700	6.15	V ru	Ç	87.0	44.5	149		
Вгояполет	0.9800	0.15	¥.rr	φ	98.0	78.7	144	,	
Qualifiers: Results repor	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	itation rang		,	Holding times for preparation or analysis exceeded	deđ
J Analyte detec	Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	Detection		R RPD outside ace	RPD outside accepted recovery limits	

Matrix Environmental Technologies, Inc CLIENT:

C2202013 Work Order:

Aquino 65-67 Lake Ave Project:

TestCode: 0.20 NYS

F	,	ŀ	10 to	41.76.		i d		00000	
Salighe ID. ACCO 10G-020322	Saulpiybe, tros	- ENDOR	estudie: 0.20 1413	Andd Sills		rich vale		NUTERVO. 10300	
Client ID: ZZZZ	Batch ID: R18586	FestN	FestNo: 70-15			Analysis Date:	2/3/2022	SegNo: 211745	
Analyte	Result	PQ	SPK value	SPK Ref Vai	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Carbon disulfide	0.9000	0.15	400	0	90.0	76.9	109		
Carbon tetrachkoride	0.8900	0.030	****	0	89.0	71	120		
Chlorobenzene	0.9500	0.15	Y -11-	0	95.0	82.6	121		
Chloroethane	0.9900	0.15	ψm	0	99.0	57.1	146		
Chloroform	0.9700	0.15	***	0	97.0	82.5	125		
Chloromethane	0.9400	0.15	•	0	94.0	71.1	154		
cis-1,2-Dichloroethene	0.9500	0.040	¥m-	0	95.0	71.2	152		
cis-f.3-Dichloropropene	0.9800	0.15	v	0	98.0	90.3	137		
Cyclohexane	0.9800	0.15	•	0	98.0	87	122		
Dibromochloromethane	0.9360	0.15	•	0	93.0	62.8	132		
Ethyl acetate	0.9600	0.15	-	0	96.0	86.9	134		
Ethylbenzene	0.9700	0.15	-	0	97.0	76.9	123		
Freon \$1	1.940	0.15	_	0	10≰	54.4	150		
Freon 313	0.9500	0.15	-	0	95.0	83.4	124		
Freon 114	0026:0	0.15	٢	0	97.0	70.2	133		
Freon 12	0.9500	0.15	-	0	95.0	86.3	135		
Неріале	0.9800	0.15	-	0	98.0	86.5	137		
Hexachloro-1,3-buladiene	0.8500	0.15	-	0	86.0	78.7	120		
Hexane	0.8500	0.15	-	0	85.0	77.3	128		
Isopropyl alcohoi	1.020	6.15	+	O	102	80.2	122		
m&p-Xylene	1.910	0.30	2	Đ	95.5	77.9	132		
Methyi Butyl Ketone	0.9500	0.30		යා	95.0	69.4	131		
Methyl Ethyl Ketone	0.9700	0.30	400	c	97.0	71.5	117		
Methyl sobuty! Ketone	0.9200	0.30	400	G	92.0	63.5	141		
Methyl tert-butyf ether	0.9800	0.15	- Wall	0	38.0	80.8	113		
Methylene chloride	0.9400	0.15	ugno	Ф	94.0	87.8	123		
o-Xylene	0.8800	0.15	*	Ф	88.0	80.5	139		
Propylene	0.8400	0.15	-	0	84.0	73.8	124		
Styrene	0.8660	0.15	•	0	86.0	82.7	138		
Tetrachtoroethylene	0.9260	0,15	-	0	92.0	85.9	122		
Fetrahydrofuran	0.9500	0.15	-	0	95.0	65.5	134		:
Qualifiers: Results repor	Results reported are not blank entrected		E Estina	Estimated Value above quantitation range	Halion ras	33	H Holding times for	Holding times for preparation or analysis exceeded	
-	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	Detection		R RPD outside acce	RPD outside accepted recovery limits	
S Spike Recove	Spike Recuvery outside accepted recovery limits	mits	Dt. Detect	Detection Limit				Page 2 of 7	20,5

C2202013 Work Order:

Aquino 65-67 Lake Ave Project:

TestCode: 0.20 NYS

Sample ID: ALCS1UG-020322	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 18586
Client ID: ZZZZZ	Batch ID: R18586	TestN	TestNo: TO-15			Analysis Date:	2/3/2022	SeqNo: 211745
Analyte	Result	Pa	SpK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Toluene	0.9200	0.15	-	Ð	92.0	77.8	127	
trans-1,2-Dichloroethene	0.9500	0.15	-	٥	95.0	83.3	116	
trans-1,3-Dichloropropene	1.080	0.15	_	0	‡08	84.8	134	
Trichloroethene	0.9000	0.030	-	Φ	0.06	79.3	117	
Vinyl acetate	0.9300	0.15	1	c	93.0	70.5	101	
Vinyl Bromide	0.9500	0.15	-	Ф	95.0	81.4	142	
Vinyl chloride	0.9500	0.040	+	¢	95.0	70.4	138	
Sample ID: ALCS1UG-020422	SampType: LCS	TestCod	TestCode: 0.20 NYS	Units: ppbV		Prep Date:		Runtho: 18587
Client ID: ZZZZ	Batch ID: R18587	FestN	TestNo: TO-15			Analysis Dale:	2/4/2022	SeqNo: 211776
Analyte	Result	POL	SPK value	SPK Ref Vai	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1, 1, 1- Frichloroethane	1.080	0.15	ų,r	0	108	91.3	127	
1,1,2,2-Tetrachioroethane	1.020	0.15	•	0	100	7.8.7	121	
1,1,2-Trichloroethane	1.910	0.15	_	0	101	88.1	136	
1,1-Dichtoroethane	1.040	0.15	-	0	104	199	123	
1,1-Dichloroethene	1.050	0.040	-	0	106	70	84	ഗ
1,2,4-Trichiorebenzene	1.110	0.15	_	0	111	76.7	112	
1.2,4-Trimethylbenzene	1.070	0.15	~	0	107	74.3	123	
1,2-Dibromoethane	1.000	0.15	-	0	100	80.4	125	
1,2-Dichlorobenzene	1.080	0.15	-	0	108	79.5	* * 43	
1,2-Dichloroethane	1.100	0.15	-	O	110	70.9	133	
1,2-Dichloropropane	1,010	0.15	-	0	103	91	34	
1,3,5-Trimethylbenzene	1.070	0.15	₩	Ç	107	77.4	138	
1,3-butadiene	1.180	0.15	#-	¢	118	71	144	
1,3-Dichlorobenzene	060";	0.15	Y	¢	1 09	84.7	128	
1,4-Dichlorobenzene	1.090	0.15	H on	0	\$00	77.9	131	
1.4-Dioxane	0.9790	0.30	•	0	97.0	60.9	133	
2,2.4-trimethylpentane	0.9800	0.15	y im	0	98.0	86.9	126	
4-ethyltoluene	1.090	0.15		0	103	77.5	133	
Qualifiers: Results report	Results reported are not blank corrected		E Estina	Estimated Value above quantitativa mage	idalina ma	ລ້າ	H Hotding traves for	Holding times for preparation or analysis exceeded
Analyte detec	Analyte desected below quantitation limit		ND Not Da	Not Detected at the Limit of Detection	Detection		R RPD ourside accu	RPD ourside accepted recovery limits
S Spike Rocove	Spike Recovery outside accepted recovery limits	inik	Di. Detect	Detection Limit				Puge 3 of 7

Matrix Environmental Technologies, Inc CLJENT:

TestCode: 0.20 NYS

C2202013 Work Order:

Aquino 63-67 Lake Ave Project:

Sample ID: 41 CS111G-020422	Samnituner 1 CS	TestOnde 0.70 NYS	N N US U	Hnike nabb		eten Date		RupNo: 18587
)							
Client ID: 2222	Batch ID: R18587	Testino: TO-15	TO-15		•	Analysis Date:	2/4/2022	SeqNo: 211776
Analyle	Resuit	s TOd	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDUmit Qual
Acetone	1.060	0.30	-	0	106	46.7	165	
Allyl chloride	1.020	0.15	-	0	102	86.6	117	
Велгеле	1.030	0.15	-	0	103	88.9	122	
Benzyl chloride	1.120	0.15	_	0	113	73.6	120	
Bromodichtoromethane	1.090	0.15	-	0	159	84.3	133	
Bromoform	1.020	0.15	-	0	102	44.6	349	
Bromomethane	1.220	0.15	_	0	122	78.7	144	
Carbon disulfide	1.010	0.15	-	0	101	76.9	103	
Carbon letrachloride	1.030	0.030	-	Ó	103	Z.	120	
Chlorobenzene	1,020	0.15	_	Đ	102	82.5	121	
Chloroethane	1.340	0.15	-	O	134	67.1	146	
Chioroform	1.090	6.15	+	φ	109	82.5	125	
Chioromethane	1,220	0.15		0	122	71.1	154	
cis-1,2-Dichtoroethепе	\$,000	0.040		O	‡00	71.2	112	
cis-1,3-Dichloropropene	1.040	0.35	•~	¢	104	90.3	137	
Cyclohexane	0.9900	0.15	ţu	Q	0.66	87	122	
Dibromochioromethane	1.020	0.15	war	Ç	‡05	62.8	132	
Ethyl acetate	1.020	0.15	war	0	102	6.38	134	
Ethylbenzene	1.030	0.15	gra	Ф	103	76.9	123	
Freon 11	1.350	0.15	•	0	135	54.4	150	
Freon 113	1.090	0.15	-	0	109	83.4	124	
F1601 114	1.250	0.15	-	0	125	70.2	133	
Freon 12	1.170	0.15	-	0	117	86.3	135	
Heptane	0.9900	0.15	-	0	99.0	86.5	137	
Hexachtoro-1,3-butadiene	1.100	0.15	-	0	110	78.7	120	
Нехапе	1.040	0.15	-	0	104	77.3	128	
Isopropyl atcoho!	1.230	0.15	-	O	123	80.2	122	ഗ
m&p-Ху/ene	2.100	0.30	5	0	105	77.9	132	
Methyl Butyl Ketone	0.9700	6.30	•	O	0.79	69.4	131	
Methyl Ethyl Ketone	0.9400	6.30	₩.	0	94.0	71.5	117	
Methyl Isobutyl Ketone	0.9400	9.30	₩.	0	94,0	63.5	141	
Qualifiers: Results repor	Results reported are not blank corrected		E Estémate	Estimated Value above quantitation range	Ititiation rang	4.	H Holding times for	Holding times for preparation or analysis exceeded
J Analyte detex	Anakyte detected below quantitation limit	<i>y</i>	ND Not Det	Not Detected at the Limit of Detection	Detection		R RPD outside accep	RPD outside accepted recovery limits
S Spike Recov	Spike Recovery outside accepted recovery limits		DL Detection	Detection Linuit				Page 4 of 7

Matrix Environmental Technologies, Inc
tal Technologies
Matrix Environmen
CLIENT:

Aquino 65-67 Lake Ave C2202013 Work Order: Project:

TestCode: 0.20_NYS

Samole (D: ALCS1UG-020422	Samp Type: LCS	TestCoc	TestCode: 0.20 NYS	Units: poby		Prep Date			RunNo: 18587		
Client ID: 72722	Batch ID: R18587	Tesik	- No: TO-15		-	Analysis Date:	214/2022	(7	SeaNo: 211776	g	
) } •					ī		ı	
Analyte	Result	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HghLimit	RPD Ref Vat	%RPD R	RPDLimit C	Qual
Methyl tert-butyl ether	1.040	0.15	-	0	104	89.8	113				
Methylene chłoride	1.030	0.15	-	Ð	103	87.8	123				
o-Xylene	1.060	0.15	-	O	106	80.5	139				
Propylene	1.010	0.15	-	Ō	101	73.8	124				
Slyrene	1.070	0.15	-	O	107	82.7	138				
Tetrachloroethylene	1.000	0.15	_	Ö	100	85.9	122				
Tetrahydrofuran	0.9700	6,15	-	0	97.0	65.5	\$				
Toluene	1.010	0.15	+-	⇔	101	77.8	127				
trans-1,2-Dichtoroetherse	1.030	0.15	, .	¢,	103	83.3	116				
trans-1,3-Dicfiloropropene	1.020	0.55	+	Q	102	84.8	134				
Trichloroethene	0.9500	0.030	-free	0	95.0	79.3	117				
Vinyl acetate	1.010	0.15	qua	Ф	101	70.5	101				
Vinyl Bromide	1.190	0.15	₩.en	ф	\$19	81.4	142				
Vinyl chloride	1.160	0.040	specia	Q	116	70.4	138				
Sample ID: ALCS1UGD-020322	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	jat		RunNo: 18586		
Client ID: ZZZZZ	Batch (D): R18586	Test	TestNo: TO-15			Analysis Date:	2/3/2022	2	SeqNo: 211746	ψ	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit C	Oual
1,1,1-Trichloroethane	1.040	0.15	-	0	104	91.3	127	96'0	3.00	0	
1,1,2,2-Tetrachloroethane	0.9600	0.15	-	0	96.0	78.7	121	0.85	12.2	¢	
\$.1,2-Trichloroethane	0.9800	0.15	-	Ö	98.0	88.1	136	0.94	4.17	0	
1,1-Dichloroethane	1.070	0.15	_	0	107	86.1	123	0.95	11.9	0	
1,1-Dichloroethene	1.030	0.040	~~	Ф	103	70	94	0.99	3,96	Û	s
1,2,4-Trichlorobenzene	1.010	0.15	,	Φ	10	76.7	112	0.87	14.9	0	
1,2,4-Trimethylbenzene	1,020	0.15	·	0	102	74.3	123	0.93	9.23	0	
1,2-Dibromoethane	1.010	0.15	·	ф	101	80.4	125	0.94	7.58	0	
1,2-Dichlorobenzene	1.020	0.15	•	0	102	79.5	143	0.84	19.4	0	
1,2-Dichloroethane	1,090	0.15	A m.	Q	109	70.9	133	0.99	9.62	0	
1,2-Dichloropropane	0.9800	0.15	V OT	0	98.0	91	134	6.0	4.17	o	
Qualifiers: Results report	Results reported are not blank corrected		E Estimat	Estimated Value above quantitation range	tisation ran	Đ.	=	Jolding times for	Holding times for preparation or analysis exceeded	ysis exceeded	
J Analyte detec	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	Detection		ಷ	RPD outside accep	RPD natside accepted recovery limits		
S Spike Recove	Spike Recovery outside accepted necovery limits	imits	Dt. Detection	Detection Limit						Pag	Page 5 of 7

Matrix Environmental Technologies, Inc CLIENT:

TestCode: 0.20 NYS

C2202013 Work Order:

Aquino 63-67 Lake Ave Project:

Sample ID: ALCS1UGD-020322	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	, ,		RunNo: 18586	98	
Client ID: 22222	Batch ID: R18586	Test	TestNo: TO-15			Analysis Date:	2/3/2022	2	SeqNo: 211746	746	* 1 - mile + 111 mmm
Anaiyie	Resuit	Pal	SPK value	SPK Ref Val	%REC	LowLimit	ŀšighLimiŧ	RPD Ref Val	%RPD	RPOLimit	Cua
1,3,5-Trimethylbenzene	1.030	0.15	-	0	103	77.4	138	9.88	15.7	0	
1,3-butadiene	1.090	0.15	-	0	109	71	144	0.95	13.7	0	
1,3-Dichlorobenzene	1.050	0.15	-	0	105	84.7	128	0.89	16.5	0	
1.4-Dichlorobenzene	1.630	0.15	-	0	103	77.9	1 31	0.9	13.5	0	
1,4-Dioxane	0.9600	0.30	-	0	96.0	6.09	133	0.96	0	0	
2,2,4-trimethy/pentane	0.9900	0.15	_	0	0.56	86.9	126	0.95	4.12	0	
4-ethyltofuene	1.030	0.15	-	0	103	77.5	133	0.89	14.6	0	
Acetone	1.080	0.30	-	0	108	46.7	165	1.07	0.930	0	
Allyl chloride	1.010	0.15	_	0	101	86.5	117	0.94	7.18	0	
Benzene	1.000	0.15	-	O	100	88.9	122	0.95	5.13	0	
Benzyl chloride	1.030	0.15	_	ō	103	73.6	120	0.93	10.2	0	
Bromodichloromethane	1.020	6.15	٣-	O	102	84.3	133	0.97	5.03	0	
Bromoform	0.9800	0.55	τ"	0	0.86	44.6	149	0.87	11.9	0	
Bromomethane	1,130	0.15	ą.	O	113	78.7	144	0.98	14.2	O	
Carbon disulfide	0.9900	0.15	400	0	0.99	76.9	109	6.0	9.52	0	
Carbon tefrachioride	0.9900	0.030	ų.n	G)	0.69	*	120	0.89	10.6	0	
Chlorobenzene	1,000	0.15	upon.	o	100	82.6	121	0.95	5.13	O	
Chloroethane	1.170	0.15	~	0	117	67.1	146	0.99	16.7	¢	
Chloroform	1.050	0.15	•	0	105	82.5	125	76.0	7.92	Φ	
Chloromethane	1.160	0.15	-	0	116	74.1	154	0.94	21.0	Ф	
cis-1,2-Dichloroethene	1.910	0.040	-	0	101	71.2	112	0.95	6.12	0	
cis-1,3-Dichloropropene	1.010	0.15	_	0	161	90.3	137	0.98	3.62	0	
Cyclohexane	0.9900	0.15	-	0	99.0	87	122	0.98	1.02	Q	
Dibromochloromethane	0.9900	0.15	-	0	0.86	62.8	132	0.93	6.25	O.	
Ethyl acetate	1.010	0.15	1	0	101	86.9	134	96.0	5.08	0	
Ethylbenzene	1,010	0.15		0	101	76.9	123	0.97	4.04	٥	
Freon 11	1.230	0.15	- Ann	Û	123	54.4	150	1.04	15.7	0	
Freon 113	£.063	0.15	Muse	0	1 06	83.4	124	0.95	10.9	0	
Freon 114	1,150	0.15	K our	O	£15	70.2	133	0.97	17.0	0	
Freon 12	1.120	0.15	4111	O.	112	86.3	135	0.95	16.4	0	
Heplane	0.9800	0.15	4	0	98.0	86.5	137	0.98	0	0	
Onalifiers: Results report	Results reported are not blank corrected		E Estim	Estimated Value above quantitation range	ntstation ran		*	Holding times for preparation or analysis exceeded	preparation or a	nalysis exceede	757
\neg	Analyte detected below quantitation limit		O NO ON	Not Described at the Limit of Detection	Detection		±	RPD oatside accepted recovery limits	pred recovery lin	nits	
S Spike Recove	Spike Recovery outside accepted recovery limits	imits	Df. Delect	Detection Limit						P.	Page 6 of 7

Ü
line.
Technologies,
Environmental
Matrix
CLIENT:

C2202013 Work Order:

Aquino 65-67 Lake Ave Project:

TestCode: 0.20_NYS

	1										
Sample ID: ALCS1UGD-U20322	z samplype: LCSU	1estCode	TestCode: U.ZU_NYS	Accdd Silun Si		rrep Date			KURINO, 18388	380	
Clent ID: ZZZZZ	Batch (D.: R18586	TestN	TestNo: TO-15			Analysis Date:	2/3/2022	73	SeqNo: 211746	1746	
Analyte	Resuit	Pal	SPK value	e SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi	Qual
Hexachtoro-1,3-butadiene	1.020	0.15		1 0	102	48.1	160	0.86	17.0	0	
Hexane	0.9600	0.15		1 0	96.0	77.3	128	0.85	12.2	0	
Isopropyl atcohol	1.050	0.15		1 0	105	86.2	122	1.02	2.90	0	
т&р-Хујеле	2.080	0.30		2 0	104	77.9	132	1.91	8.52	ς;;	
Methyt Butyt Ketone	0.9900	0.30		1 0	99.0	69.4	131	0.95	4.12	0	
Methyl Ethyl Ketone	1.050	0.30		1 0	105	71.5	117	76.0	7.92	Ç	
Methyl Isobulyl Kelone	0.9600	6.30		1 0	96.0	63.5	141	0.92	4.26	₽	
Methyl text-bulyl ether	1.040	0.15		1	104	80.8	113	0.98	5.94	C	
Methylene chloride	1.030	0.15		1 0	103	87.8	123	0.94	9.14	O	
o-Xylene	1.010	0.15		1 0	301	80.5	139	0.88	13.8	û	
Propylene	1,000	0.15		1	\$00	73.8	124	0.84	47.4	Q	
Styrene	1,010	0.15		Ç.)	101	82.7	138	0.86	16.0	0	
Tetrachtoroethylene	0.9800	0.15		©	98.0	85.9	122	0.92	6.32	Û	
Tetrahydrofuran	0.9766	0.15		1	97.0	65.5	2	0.95	2.08	Û	
Toluene	0.9800	0.15		1 0	98.0	77.8	127	0.92	6.32	0	
trans-1,2-Dichloroethene	1.050	0.15		1 0	105	83.3	116	0.95	10.0	0	
trans-1,3-Dichloropropene	1.040	0.15		1 0	104	84.8	134	1.08	3.77	0	
Trichloroethere	0.9300	0.030		1	93.0	79.3	des. Pri	0.9	3.28	0	
Vinvl acetate	1.010	0.15		0	101	70.5	101	0.93	8.25	0	
Vind Bromide	1 130	0.15		1 0	113	81.4	142	0.95	17.3	0	
VIII Y CHANGE	001.	2 6			- 4	· •		40.0	4	· C	
Vinyl chtoride	1.120	0.040		5	71	4. 5	,	o n n	<u>0</u>	0	
								,			
	Results reported are not blank corrected		EST CEN	Estimated Value above quantitation cange	afitation cum	: : : 24.	II 6	Holding times for preparation or analysis exceeded RPD ausside accesses simits	preparation or a	BIALYSIS EXCERC	paj
3 Analyte De S Spike Reed	Anaryte neweste below quantilation mata. Spike Recovery outside accepted recovery limits	Timits		Detection Limit							Page 7 of 7

1ug/m3 Detection Limit JULY 2021

Centek Laboratories IDL Study

Compound	Amt	릴	IDL #2	DL#3	IDL #4	IDL #5	IDL #6	1DF #1	AVG	StdDev	%Rec	IDF	
Propylene	0.3	0,31	0.32	0.3	0.35	0.35	0.33	0.32	0.33	0.02	108.6%	0.060	
Freon 12	0.3	0.3	0.33	0.3	0.34	0.34	0.35	0.35	0.33	0.02	110.0%	0.068	
Chloromethane	0.3	0.33	0.35	0.3	0.36	0.36	0.35	0.37	0.35	0.02	115.2%	0.075	
Freon 114	0.3	0.3	0.34	0.31	0.34	0.36	0.35	0.36	0.34	0.02	112.4%	0.074	
Vinyl Chloride	0.3	0.31	0.35	0.31	0.34	0.36	0.35	0.35	0.34	0.02	112.9%	0.064	
Butane	0.3	0.31	0.34	0.31	0.33	0.33	0.38	0.38	0.34	0.03	113.3%	0.093	
1,3-butadiene	0.3	0.32	0.34	0.32	0.35	0.37	0.36	0.39	0.35	0.03	116.7%	0.081	
Bromomethane	0.3	0.35	0.35	0.35	0.34	0.36	0.37	0.37	0.36	0.01	118.6%	0.036	
Chloroethane	0.3	0.32	0.37	0.34	0.34	0.4	0.34	0.37	0.35	0.03	118.1%	0.085	
Ethanol	0.3	0.36	0.41	0.37	0.34	0.39	0.33	0.38	0.37	0.03	122.9%	0.088	
Acrolein	0,3	0.33	0.37	0.29	0.33	0.38	0.37	0.39	0.35	0.04	117.1%	0.112	
Vinyl Bromide	0.3	0.3	0.33	0.32	0.35	0.35	0.35	0.37	0.34	0.02	112.9%	0.074	
Freon 11	0.3	0.3	0.34	0.3	0.34	0.39	0.37	0.39	0.35	0.04	115.7%	0.120	
Acetone	0.3	0.28	0.34	0.25	0.35	0.33	0.38	0.33	0.32	0.04	107.6%	0.138	
Pentane	0.3	0.23	0.32	0.3	0.32	0.33	0.33	0.35	0.31	0.04	103.8%	0.122	
Isopropyl alcohol	0.3	0.27	0.3	0.26	0.34	0.36	0.33	0.36	0.32	0.04	105.7%	0.129	
1,1-dichloroethene	0.3	0.29	0.29	0.28	0.3	0.3	0.29	0.3	0.29	0.01	97.6%	0.024	
Freon 113	0.3	0.3	0.32	0.29	0.33	0.33	0.32	0.34	0.32	0.02	106.2%	0.056	
t-Butyl alcohol	6.3	0.31	0.29	0.32	0.34	0.35	0.35	0.37	0.33	0.03	111.0%	0.086	
Methylene chloride	0.3	0.31	0.33	0.33	0.33	0.34	0.36	0.36	0.34	0.02	112.4%	0.057	
Allyl chloride	0.3	0.29	0.34	0.32	0.31	0.36	0.34	0.33	0.33	0.02	109.0%	0.072	
Carbon disulfide	0.3	0.33	0.35	0,33	0.35	0.35	0.36	0.37	0.35	0.01	116.2%	0.046	
trans-1,2-dichloroethene	0.3	0.3	0.3	0.3	0.33	0.33	0.31	0.33	0.31	0.02	104.8%	0.048	
methyl tert-butyl ether	0.3	0.31	0.31	0.31	0.34	0.35	0.34	0.36	0,33	0.02	110.5%	0.066	
1,1-dichloroethane	0.3	0.3	0.33	0.3	0.34	0.34	0.33	0.35	0.33	0.02	109.0%	0.062	
Vinvl acetate	0.3	0.28	0.3	0.3	0.33	0.33	0.32	0.34	0.31	0.02	104.8%	0.068	
Methyl Ethyl Ketone	0.3	0.3	0.29	0.29	0.33	0.33	0.29	0.33	0.31	0.02	101.9%	0.057	
cis-1,2-dichloroethene	0.3	0.28	0.3	0.29	0.31	0.31	0.3	0.32	0.30	0.01	100.5%	0.042	
Hexane	0.3	0.27	0.29	0.3	0.3	0.28	0.3	0.34	0.29	0.01	97.6%	0.043	
Ethyl acetate	0.3	0.3	0.3	0.32	0.33	0.34	0.33	0.34	0.32	0.02	107.6%	0.054	
Chloroform	0.3	0.3	0.32	0.31	0.33	0.34	0.34	0.35	0.33	0.02	109.0%	0.057	
Tefrahydrofuran	0.3	0.3	0.31	0.27	0.31	0.31	0.31	0.33	0,31	0.02	101.9%	0,057	
1.2-dichloroethane	0.3	0.31	0.33	0.3	0.34	0.34	0.34	0.35	0.33	0.02	110.0%	0.057	
1.1.1-trichloroethane	0.3	0.32	0.32	0.31	0.4	0,38	0.41	0.41	0.36	0.05	121.4%	0.144	
Cyclohexane	0.3	0.27	0.29	0.28	0.31	0,3	0.31	0.31	0.30	0.02	98.6%	0.051	
Carbon tetrachloride	0.3	0.29	0.31	0.29	0.38	0.38	0.4	0.42	0.35	0.05	117.6%	0.172	
Benzene	0.3	0.3	0.3	0.3	0.33	0.32	0.31	0.32	0.31	0.01	103.8%	0.038	
Methyl methacivate	0.3	0.3	0.29	0.3	0.32	0.33	0,33	0.33	0.3	0.02	104.8%	0.054	
1,4-dioxane	0.3	0.29	0.32	0.33	0.31	0.32	0.32	0.31	0.31	0.01	104.8%	0.046	

1ug/m3 Detection Limit	11.11 Y 2021

Centek Laboratories

IDL Study

Method TO-15 Units=ppb

0.031 0.059 0.108 0.054 0.025 0.043 0.097 0.190 0.028 0.091 0.086 0.036 0.062 0.036 0.042 0.053 0.119 0.062 0.057 0.053 0.053 0.060 0.062 0.062 0.034 0.028 0.071 0.142 110.0% 101.4% 102.9% 113.3% 110.5% 104.8% 105.2% 114.3% 100.7% 107.1% 101.4% 102.4% 101.0% 100.0% 97.6% 98.6% 98.6% 96.2% 99.5% 97.6% 94.3% 97.6% 97.1% 110.5% 0.06 0.03 0.03 0.05 0.01 0.01 0.01 0.01 0.02 0.01 0.01 2.01 0.02 0.28 0.34 0.34 0.35 0.30 0.30 0.34 0.33 0.42 0.31 0.32 0.37 0.31 0.35 0.33 9.0 0.29 0.34 0.33 0.33 1.03 0.34 0.3 0.32 0.32 0.31 0.35 0.28 0.43 0.37 0.3 0.32 0.32 0.34 0.31 0.31 0.33 0.33 0.3 1.02 0.34 0.32 0,32 0,3 0,31 0.39 0.35 0.29 0.35 0.32 0.32 0.3 0.3 0.3 0.36 0.36 0.32 0.29 0.32 0.28 0.29 0.29 0.28 0.26 0.56 0.28 0.31 0.28 0.98 0.26 0.27 0.27 0.27 0.32 0.3 0.29 0.28 0.56 0.28 0.28 0.28 0.29 0.26 0.32 0.31 0.29 0.31 0.27 0.27 0.3 0.31 4exachloro-1,3-butadiene trans-1,3-dichloropropene 1,1,2,2-tetrachloroethane cis-1,3-dichloropropene Bromodichloromethane Dibromochloromethane ,3,5-trimethylbenzene 2,3-trimethylbenzene Methyl Isobutyl Ketone 2,4-trimethylbenzene 2,4-trichlorobenzene 2,2,4-trimethylpentane Sromofluorobenzene 1,2-trichloroethane 4-dichlorobenzene Compound f,2-dichloropropane 3-dichlorobenzene 2-dichlorobenzene Methyl Butyl Ketone **Tetrachloroethylene** ,2-dibromoethane 2-Chlorotoluene Trichloroethene penzyl chloride Chlorobenzene Propylbenzene 4-ethyltoluene Ethylbenzene m&p-xylene Bromoform Cumene Heptane o-xylene oluene Styrene Nonane

Centek Laboratories IDL Study				0.04	.04ug/m3 Detection Limit JULY 2021	ction Limit 221					Meth	fethod TO-15 Units=ppb	
Compound	Amt	10T #4	IDL #1 IDL #2 IDL	IDL #3	IDL #4	IDL#8	101. #6	IDL #7	AVG	StdDev	%Rec	ם	
Vinyl Chloride	0.15	0.17	0.18	0.18	0.15	0.16	0.16	0.17	0.17	0.01	111.4%	0.035	
1,1-dichloroethene	0.15	0.16	0.16	0.17	0.17	0.18	0.18	0.19	0.17	0.01	115.2%	0.035	
cis-1,2-dichloroethene	0.15	0.21	0.22	0.22	0.22	0.22	0.23	0.22	0.22	0.01	146.7%	0.018	
Carbon tetrachloride	0.15	0.11	0.11	0.11	0.03	0.09	0.09	0.09	0.10	0.01	65.7%	0.034	
Trichloroethene	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.18	0.16	0.01	108.6%	0.024	
Tetrachloroethylene	0.15	0.16	0.16	0.16	0.15	0.14	0.15	0.15	0.15	0.01	101.9%	0.024	
Naphthalene	0.15	0.13	0.13	0.13	0.16	0.19	0.17	0.17	0.15	0.02	102.9%	0.077	

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the obstracteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df - Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
SAMPLE DATA

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building !

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL Qu	al Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD	***************************************		Analyst:
Lab Vacuum in	- 5		"Hg		2/3/2022
Lab Vacuum Out	-30		"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	D-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	∨dqq	1	2/3/2022 5:16:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	Vđqq	1	2/3/2022 5:16:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vdgq	1	2/3/2022 5:16:00 PM
1,1-Dichloroethene	< 0.040	0.040	∨dqq	1	2/3/2022 5:16:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppb∨	1	2/3/2022 5:16:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	7	2/3/2022 5:16:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1,3-butadiene	< 0.15	0.15	ppb∨	1	2/3/2022 5:16:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
1,4-Dichlorobenzese	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
1.4-Dioxane	< 0.30	0.30	ppbV	1	2/3/2022 5:16:00 PM
2,2,4-trimethylpentane	0.13	0.15 J		1	2/3/2022 5:16:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Acetone	3.6	1.2	ppb∨	4	2/4/2022 4:51:00 AM
Allyl chloride	< 0.15	0.15	Vaqq	1	2/3/2022 5:16:00 PM
Benzene	0.52	0.15	ppbV	1	2/3/2022 5:16:00 PM
Benzył chloride	< 0.15	0.15	∨dqq	1	2/3/2022 5:16:00 PM
Bromodichloromethane	< 0.15	0.15	ppb∨	1	2/3/2022 5:16:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Carbon tetrachtoride	0.060	0.030	ppbV	1	2/3/2022 5:16:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	2/3/2022 5:16:00 PM
Chloroform	0.16	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Chloromethane	0.66	0.15	ppb∨	1	2/3/2022 5:16:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	PpbV	1	2/3/2022 5:16:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Oibromochloromethane	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Ethyl acetate	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM

Qualifiers:

- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 1 of 14

CLIENT: Matrix Environmental Technologies, Inc

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building I

Tag Number: 1179,441

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL C	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-	15		Analyst: RJF
Ethylbenzene	0.15	0.15	₽₽bV	1	2/3/2022 5:16:00 PM
Freon 11	0.22	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Freon 113	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Freon 114	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
Freon 12	0.44	0.15	₽₽bV	1	2/3/2022 5:16:00 PM
Heptane	0.21	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppb∨	1	2/3/2022 5:16:00 PM
Hexane	0.35	0.15	Vdqq	1	2/3/2022 5:16:00 PM
isopropyl alcohol	1.5	0.15	₽₽₽V	1	2/3/2022 5:16:00 PM
m&p-Xylene	0.46	0.30	∨dqq	1	2/3/2022 5:16:00 PM
Methyl Butyl Ketone	< 0.30	0.30	Vdqq	1	2/3/2022 5:16:00 PM
Methyl Ethyl Ketone	0.41	0.30	ppbV	1	2/3/2022 5:16:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	2/3/2022 5:16:00 PM
Methyl tert-butyl ether	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Methylene chloride	0.21	0.15	Vdqq	1	2/3/2022 5:16:00 PM
a-Xylene	0.14	0.15	Vdqq L	1	2/3/2022 5:16:00 PM
Propylene	< 0.15	0.15	Vđąq	1	2/3/2022 5:16:00 PM
Styrene	< 0.15	0.15	PpbV	1	2/3/2022 5:16:00 PM
Tetrachloroethylene	0.44	0.15	ppbV	1	2/3/2022 5:16:00 PM
Tetrahydrofuran	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Toluene	1.4	0.15	Vdqq	1	2/3/2022 5:16:00 PM
trans-1,2-Dichtoroethene	< 0.15	0.15	ppbV	1	2/3/2022 5:16:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Trichloroethene	0.050	0.030	ppbV	1	2/3/2022 5:16:00 PM
Vinyl acetate	< 0.15	0.15	Vđqq	1	2/3/2022 5:16:00 PM
Vinyl Bromide	< 0.15	0.15	Vdqq	1	2/3/2022 5:16:00 PM
Vinyl chloride	< 0.040	0.040	Vđqq	1	2/3/2022 5:16:00 PM
Surr: Bromofluorobenzene	91.0	47-124	%REC	1	2/3/2022 5:16:00 PM

~	٠.	 2:	17	ers

- SC Sob-Contracted
- B. Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- # Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Dr. Detection Limit

Page 2 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building I

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐL	Qual Unit	s DF	Date Analyzed		
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-	-15		Analyst: RJI		
1,1,1-Trichloroethane	< 0.82	0.82	ug/m	3 1	2/3/2022 5:16:00 PM		
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m	3 1	2/3/2022 5:16:00 PM		
1,1,2-Trichloroethane	< 0.82	0.82	ug/m	3 1	2/3/2022 5:16:00 PM		
1,1-Dichtoroethane	< 0.61	0.61	սց/m	3 1	2/3/2022 5:16:00 PM		
1,1-Dichloroethene	< 0.16	0.16	ug/m	3 1	2/3/2022 5:16:00 PM		
1,2,4-Trichlorobenzene	< 1.1	1,1	ug/m	3 1	2/3/2022 5:16:00 PM		
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m	3 1	2/3/2022 5:16:00 PM		
1,2-Dibromoethane	< 1.2	1.2	ug/m	3 1	2/3/2022 5:16:00 PM		
1,2-Dichlorobenzene	< 0.90	0.90	ng/m	3 1	2/3/2022 5:16:00 PM		
1,2-Dichloroethane	< 0.61	0.61	ug/m	3 1	2/3/2022 5:16:00 PM		
1,2-Dichloropropane	< 0.69	0.69	ug/m	3 1	2/3/2022 5:16:00 PM		
1,3,6-Trimethylbenzene	< 0.74	0.74	ug/m	3 1	2/3/2022 5:16:00 PM		
1,3-butadiene	< 0.33	0.33	ug/m	3 1	2/3/2022 5:16:00 PM		
1,3-Dichlorobenzene	< 0.90	0.90	ug/m	3 1	2/3/2022 5:16:00 PM		
1.4-Dichtorobenzene	< 0.90	0.90	ug/m	3 1	2/3/2022 5:16:00 PM		
1,4-Dioxane	< 1.1	1.1	ug/m	3 1	2/3/2022 5:16:00 PM		
2,2,4-trimethylpentane	0.61	0.70	J ug/m	3 1	2/3/2022 5:16:00 PM		
4-ethyltoluene	< 0.74	0.74	ug/m	3 1	2/3/2022 5:16:00 PM		
Acetone	8.6	2.8	ug/m	3 4	2/4/2022 4:51:00 AM		
Allyl chloride	< 0.47	0.47	սց/ո	3 1	2/3/2022 5:16:00 PM		
Benzene	1.7	0.48	ug/m	3 1	2/3/2022 5:16:00 PM		
Benzył chłoride	< 0.86	0.86	ug/m	3 1	2/3/2022 5:16:00 PM		
Bromodichloromethane	< 1.0	1.0	ug/m	3 1	2/3/2022 5:16:00 PM		
Bromoform	< 1.6	1.6	ug/m	3 1	2/3/2022 5:16:00 PM		
Bromomethane	< 0.58	0.58	ug/m	3 1	2/3/2022 5:16:00 PM		
Carbon disulfide	< 0.47	0.47	ug/m	3 1	2/3/2022 5:16:00 PM		
Carbon tetrachloride	0.38	0.19	ug/m	3 1	2/3/2022 5:16:00 PM		
Chlorobenzene	< 0.69	0.69	սց/m	3 1	2/3/2022 5:16:00 PM		
Chloroethane	< 0.40	0.40	ug/m	3 1	2/3/2022 5:16:00 PM		
Chloroform	0.78	0.73	ug/m	3 1	2/3/2022 5:16:00 PM		
Chloromethane	1.4	0.31	ug/m	3 1	2/3/2022 5:16:00 PM		
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m	3 1	2/3/2022 5:16:00 PM		
cis-1,3-Dichtoropropene	< 0.68	0.68	ug/m	3 1	2/3/2022 5:16:00 PM		
Cyclohexane	< 0.52	0.52	ug/m	3 1	2/3/2022 5:16:00 PM		
Dibromochtoromethane	< 1.3	1.3	ug/m	3 1	2/3/2022 5:16:00 PM		
Ethyl acetate	< 0.54	0.54	դ ∂/ ւդ	3 1	2/3/2022 5:16:00 PM		
Ethylbenzene	0.65	0.65	ug/m	3 1	2/3/2022 5:16:00 PM		
Freon 11	1.2	0.84	ug/n	3 1	2/3/2022 5:16:00 PM		
Freon 113	< 1.1	1,1	սց/ տ	3 1	2/3/2022 5:16:00 PM		
Freon 114	< 1.0	1.0	ug/n	3 1	2/3/2022 5:16:00 PM		

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Desection Limit

Page I of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Avc

Lab 1D: C2202013-001A

Date: 04-Feb-22

Client Sample ID: Building 1

Tag Number: 1179,441 Collection Date: 1/31/2022

Matrix: AIR

		•					
Analyses	Result	ÐL Q	ual Units	DF	Date Analyzed		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	D-DCE-1,1DCE	TO-15	i		Analyst: RJP		
Freon 12	2.2	0.74	ug/m3	1	2/3/2022 5:16:00 PM		
Heptane	0.86	0.61	ug/m3	1	2/3/2022 5:16:00 PM		
Hexachtoro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/3/2022 5:16:00 PM		
Hexane	1,2	0.53	ug/m3	1	2/3/2022 5:16:00 ₽M		
Isopropyl alcohol	3.7	0.37	սց/m3	1	2/3/2022 5:16:00 PM		
m&p-Xylene	2.0	1.3	ug/m3	1	2/3/2022 5:16:00 PM		
Methyl Butyl Ketone	< 1.2	1,2	սց/m3	1	2/3/2022 5:16:00 PM		
Methyl Ethyl Ketone	1.2	0.88	ug/m3	1	2/3/2022 5:16:00 PM		
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 5:16:00 PM		
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/3/2022 5:16:00 PM		
Methylene chloride	0.73	0.52	ug/m3	1	2/3/2022 5:16:00 PM		
o-Xylene	0.61	0.65	J ug/m3	1	2/3/2022 5:16:00 PM		
Propylene	< 0.26	0.26	ug/m3	1	2/3/2022 5:15:00 PM		
Styrene	< 0.64	0.64	ug/m3	1	2/3/2022 5:16:00 PM		
Tetrachloroethylene	3.0	1.0	ug/m3	1	2/3/2022 5:16:00 PM		
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/3/2022 5:16:00 PM		
Toluene	5.4	0.57	սց/m3	1	2/3/2022 5:16:00 PM		
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/3/2022 5:16:00 PM		
trans-1,3-Dichloropropene	< 0.68	0.68	£m/gu	1	2/3/2022 5:16:00 PM		
Trichloroethene	0.27	0.16	ug/m3	1	2/3/2022 5:16:00 PM		
Vinyl acetate	< 0.53	0.53	ug/m3	1	2/3/2022 5:16:00 PM		
Vinyi Bromide	< 0.66	0.66	ug/m3	1	2/3/2022 5:16:00 PM		
Vinyt chloride	< 0.10	0.10	ug/m3	1	2/3/2022 5:16:00 PM		

Oua	lifiers:	

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 42 Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

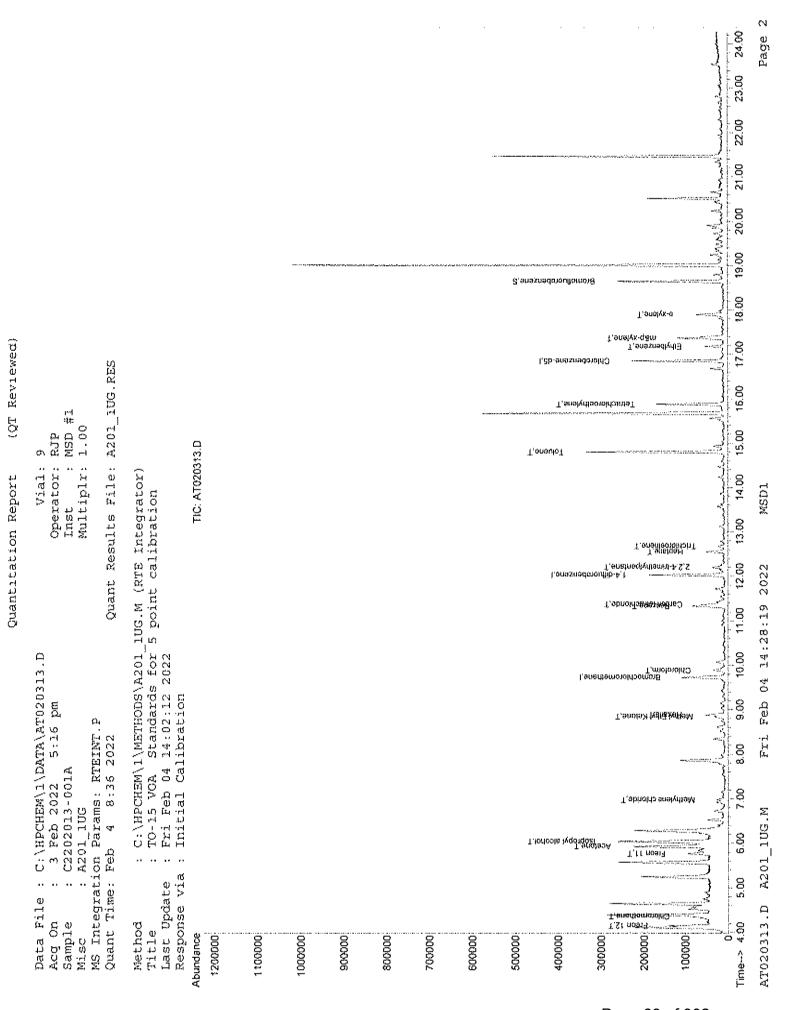
DI. Detection Limit

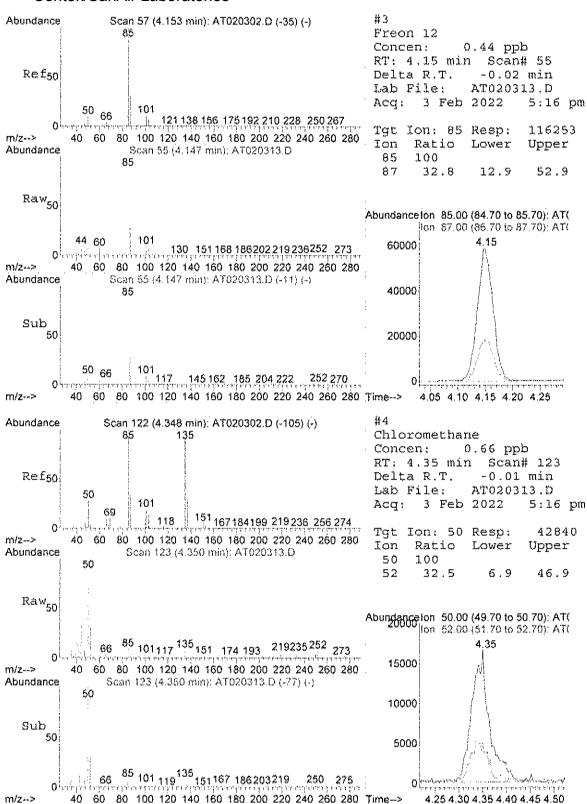
Page 2 of 14

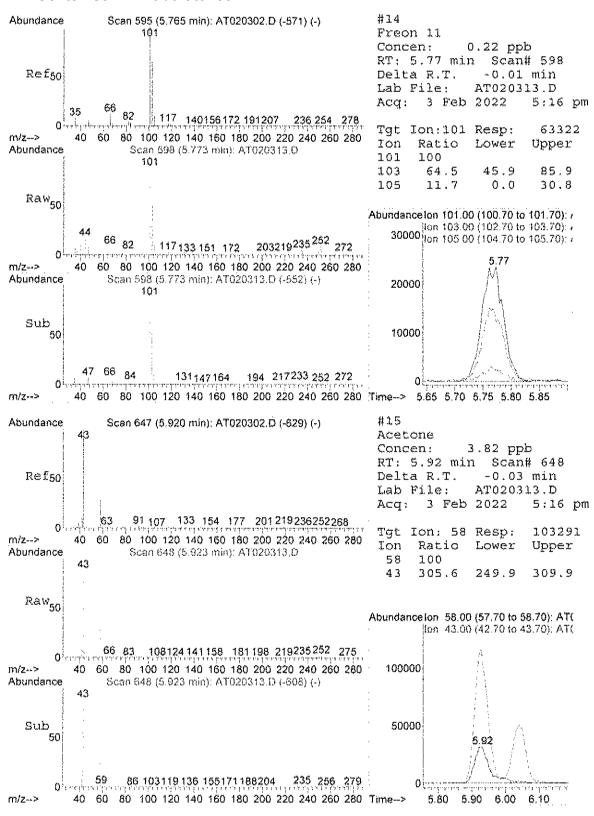
Centek/SanAir Laboratories (QT Reviewed)

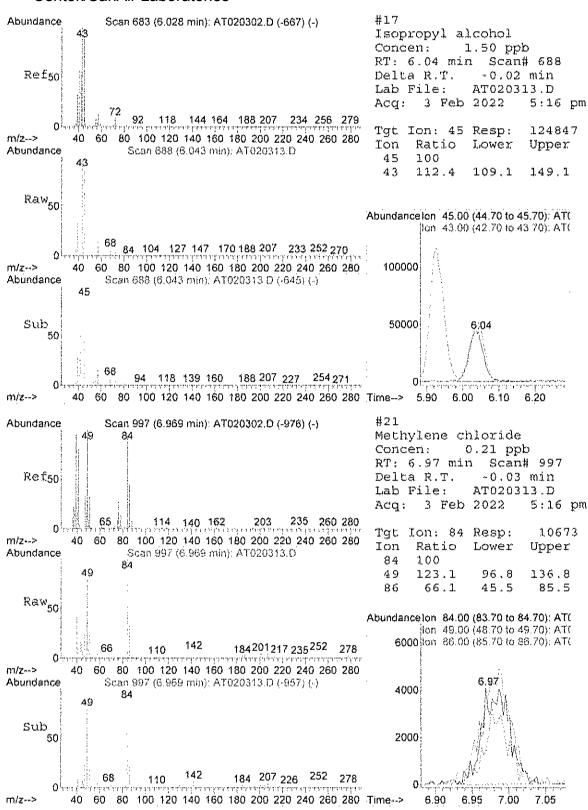
Data File : C:\HPCHEM\1\DATA\AT020313.D Vial: 9 Acq On : 3 Feb 2022 5:16 pm Operator: RJP Sample : C2202013-001A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

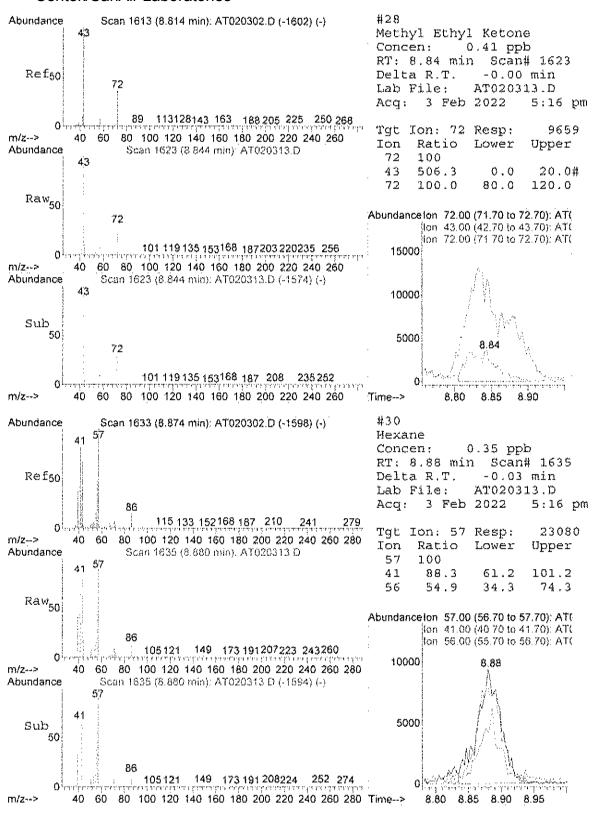
MS Integration Params: RTEINT.P

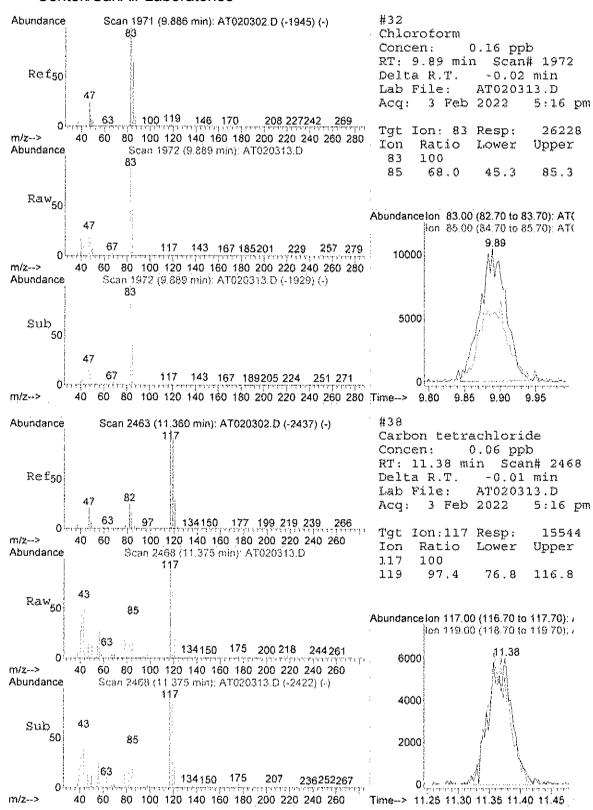

Quant Time: Feb 04 08:24:31 2022 Quant Results File: A201 1UG.RES

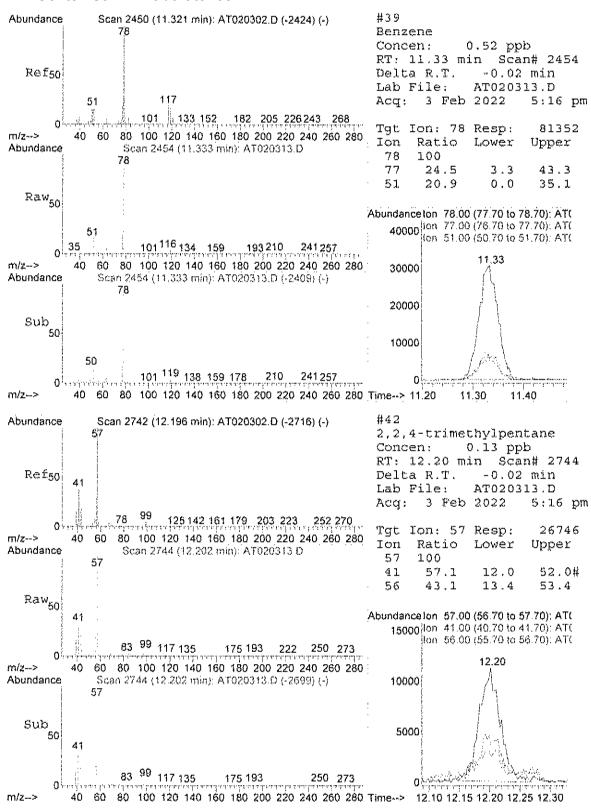

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022

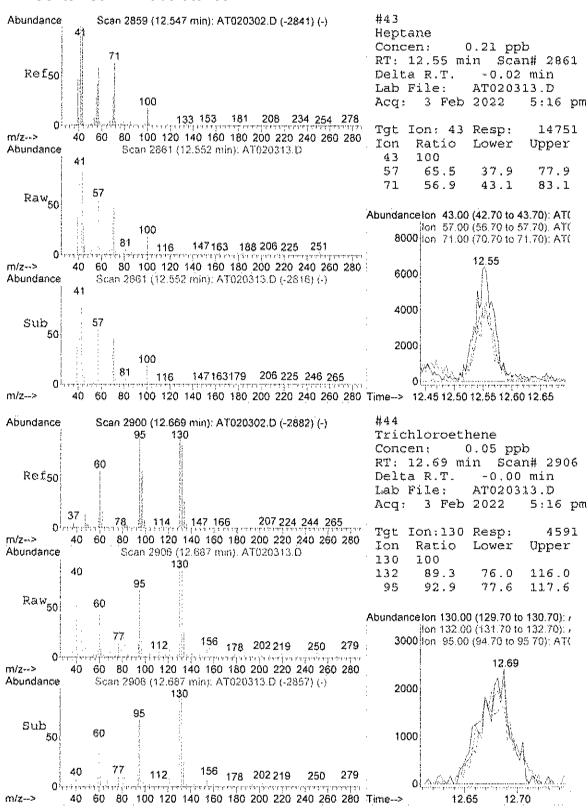

Response via : Initial Calibration

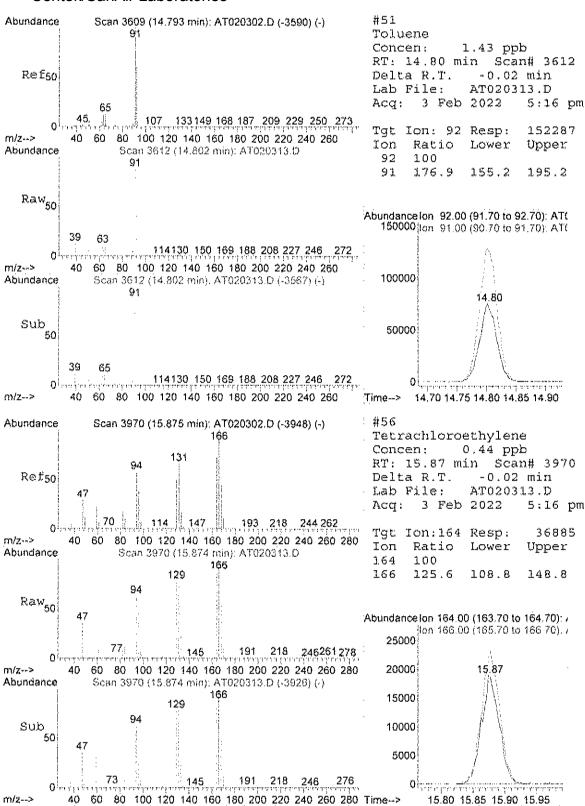

DataAcq Meth : 1UG_ENT

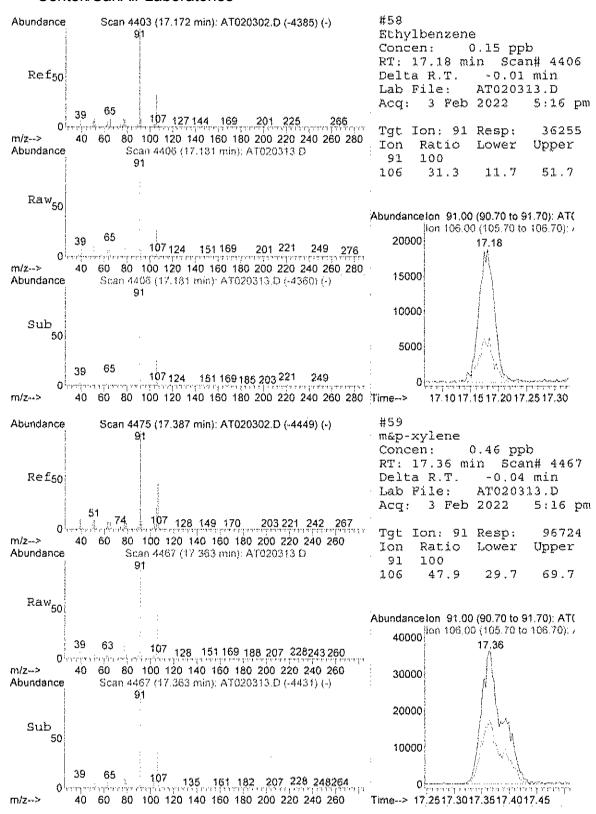

Internal Standards	R.T.	QIon	Response (Conc Ur	nits	Dev(Min)
1) Bromochloromethane	9.73	128	38077	1.00	dqq	-0.02
35) 1,4-difluorobenzene	12.03	114	169475	1.00	ppb	-0.01
50) Chlorobenzene-d5	16.85	117	137317	1.00	dqq	-0.02
System Monitoring Compounds						
65) Bromofluorobenzene	18.64	95	91823	0.91	daa	-0.01
Spiked Amount 1.000		- 130				.00%
Target Compounds						Ovalue
3) Freon 12	4,15	85	116253	0.44	daa	100
4) Chloromethane	4.35	50	42840	0.66		
14) Freon 11	5.77	101	63322	0.22		98
15) Acetone	5.92	58	103291	3.82		86
17) Isopropyl alcohol	6.04	4.5	124847	1.50		86
21) Methylene chloride	6.97	84	10673	0.21		96
28) Methyl Ethyl Ketone	8,84	72	9659	0.41		
30) Hexane	8.88	57	23080	0.35	dqq	95
32) Chloroform	9.89	83	26228	0.16		97
38) Carbon tetrachloride	11.38	117	15544	0.06	dqq	99
39) Benzene	11.33		81352	0.52		93
42) 2,2,4-trimethylpentane	12.20	57	26746	0.13	qqqq	# 69
43) Heptane	1.2.55	43	14751	0.21		91
44) Trichloroethene	12.69	130	4591	0.05		94
51) Toluene	14.80	92	152287	1.43		99
56) Tetrachloroethylene	15.87	164	36885	0.44		97
58) Ethylbenzene	17.18					99
59) m&p-xylene	17.36			0.46		97
63) o-xylene	17.90	91	31805	0.14	ppb	93

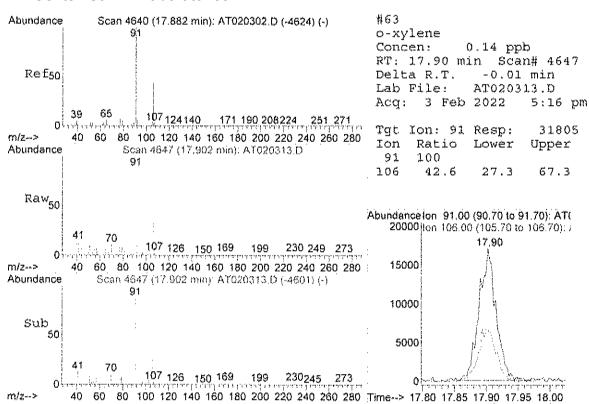








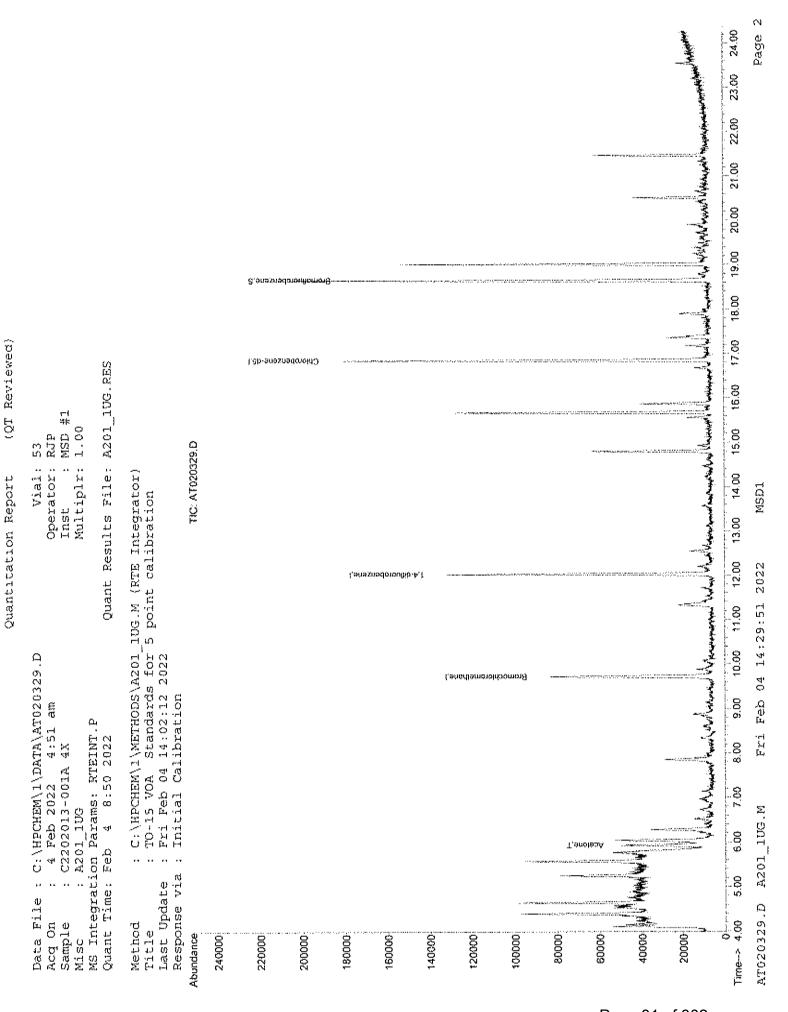




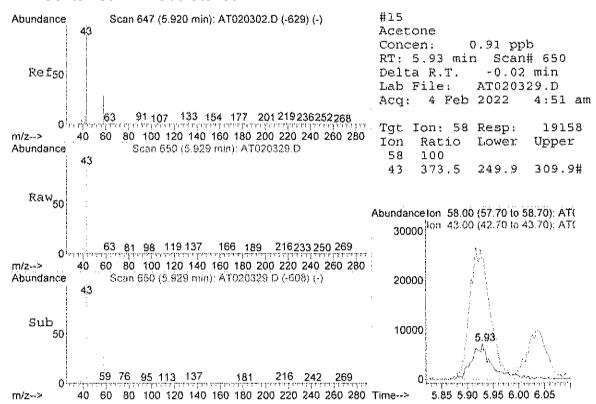
Centek/SanAir Laboratories (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020329.D Vial: 53 Acq On : 4 Feb 2022 4:51 am Operator: RJP Sample : C2202013-001A 4X Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: A201_1UG.RES Quant Time: Feb 04 08:24:47 2022

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response C	onc Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.02 16.85	128 114 117	29654 123490 108365	3.00 1.00 1.00	ppb -0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.64 Range 70	95 - 130	70756 Recovery		ppb -0.02 89.00%
Target Compounds	5.93	58	19158	0.91	Qvalue ppb # 50

Page 81 of 302

Date: 04-Feb-22

CLIENT:

Matrix Environmental Technologies, Inc.

Lab Order:

C2202013

Project:

Aquino 65-67 Lake Ave

Lab ID:

C2202013-002A

Client Sample ID: Outside Tag Number: 200,379

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		Fl	a_			Analyst:
Lab Vacuum In	-1			"Hg		2/3/2022
Lab Vacuum Out	~30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
1,1,2.2-Tetrachloroethane	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 6:00:00 PM
1,2,4-Trichtorobenzese	< 0.15	0.15		₽₽₽V	1	2/3/2022 6:00:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15		Vđqq	1	2/3/2022 6:00:00 PM
1,2-Dibromoethane	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		∨dqq	1	2/3/2022 6:00:00 PM
1,2-Dichloroethane	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
1,2-Dichloropropane	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
1,3-butadiene	< 0.16	0.15		ppbV	1	2/3/2022 6:00:00 PM
1,3-Dichtorobenzene	< 0.15	0.15		∨dqq	1	2/3/2022 6:00:00 PM
1,4-Dichlorobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
1,4-Dioxane	< 0.30	0.30		Vdqq	1	2/3/2022 6:00:00 PM
2,2,4-trimethylpentane	0.12	0.15	J	ppbV	\$	2/3/2022 6:00:00 PM
4-ethyltoluene	< 0.15	0.15		₽pb∨	1	2/3/2022 6:00:00 PM
Acetone	7.9	3.0		ppb∨	10	2/4/2022 5:32:00 AM
Allyl chloride	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Benzene	0.29	0.15		Vđqq	1	2/3/2022 6:00:00 PM
Benzyl chloride	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Bromodichloromethane	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Bromoform	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Bromomethane	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Carbon disulfide	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Carbon tetrachloride	0.070	0.030		Vđạq	1	2/3/2022 6:00:00 PM
Chlorobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Chloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Chloroform	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Chloromethane	0.42	0.15		Vdqq	1	2/3/2022 6:00:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		PpbV	1	2/3/2022 6:00:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 5:00:00 PM
Cyclohexane	0.16	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Dibromochloromethane	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Ethyl acetate	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM

Qualifiers:

- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E fistimated Value above quantitation range
- J. Analyte detected below quantitation limit.
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 3 of 14

CLIENT: Matrix Environmental Technologies, Inc

Lab Order: C2202013

Aquino 65-67 Lake Ave Project:

Lab ID: C2202013-002A Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AIR

the second secon						
Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	το)-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ρρb∨	1	2/3/2022 6:00:00 PM
Freon 11	0.25	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Freon 113	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
Freon 114	< 0.15	0.15		₽₽bV	1	2/3/2022 6:00:00 PM
Freon 12	0.49	0.15		ppbV	1	2/3/2022 6:00:00 PM
Heptane	0.12	0.15	J	ppbV	1	2/3/2022 6:00:00 PM
Hexachtoro-1,3-butadiene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Hexane	0.25	0.15		Vdgq	7	2/3/2022 6:00:00 PM
Isopropyl alcohol	0.71	0.15		ppb∨	1	2/3/2022 6:00:00 PM
m&p-Xylene	0.23	0.30	ţ.	₽₽bV	1	2/3/2022 6:00:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 6:00:00 PM
Methyl Ethyl Ketone	0.22	0.30	j	Vdqq	1	2/3/2022 6:00:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		₽₽₽V	1	2/3/2022 6:00:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Methylene chloride	0.26	0.15		₽₽b∨	1	2/3/2022 6:00:00 PM
o-Xylene	< 0.15	0.15		₽₽bV	1	2/3/2022 6:00:00 PM
Propylene	< 0.15	0.15		₽₽bV	1	2/3/2022 6:00:00 PM
Styrene	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
Tetrachloroethylene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
Toluene	0.65	0.15		₽₽bV	1	2/3/2022 6:00:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	2/3/2022 6:00:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	2/3/2022 6:00:00 PM
Trichloroethene	< 0.030	0.030		Vdqq	1	2/3/2022 6:00:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	2/3/2022 6:00:00 PM
Vinyl Bromide	< 0.16	0.15		ppbV	1	2/3/2022 6:00:00 PM
Vinyl chłoride	< 0.040	0.040		ppbV	1	2/3/2022 6:00:00 PM
Surr: Bromofluorobenzene	90.0	47-124		%REC	1	2/3/2022 6:00:00 PM

Qualiflers:	SC	Sub-Contracted
7,4144141714170	1,78 84.7	-34461-20141614446664

¹³ Analyte detected in the associated Method Blank

Detection Limit DL

Page 4 of 14

Holding times for preparation or analysis exceeded И

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range

¹ Analyte detected below quantitation limit

Not Detected at the Limit of Detection

CLIENT: Matrix Environmental Technologies, Inc.

C2202013 Lab Order:

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-002A Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379

Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	DL (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TQ-1	15		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/3/2022 6:00:00 PM
1,1,2,2-Tetrachtoroethane	< 1.0	1.0	ug/m3	1	2/3/2022 6:00:00 PM
1,1,2-Trichloroethane	< 0.82	0,82	ug/m3	1	2/3/2022 6:00:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/3/2022 6:00:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 6:00:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/3/2022 6:00:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	սց/m3	1	2/3/2022 6:00:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/3/2022 6:00:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/3/2022 6:00:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/3/2022 6:00:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 6:00:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/3/2022 6:00:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	2/3/2022 6:00:00 PM
2,2,4-trimethylpentane	0.56	0.70	J ug/m3	1	2/3/2022 6:00:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	2/3/2022 6:00:00 PM
Acetone	19	7.1	ug/m3	10	2/4/2022 5:32:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	2/3/2022 6:00:00 PM
Benzene	0.93	0.48	ug/m3	1	2/3/2022 6:00:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/3/2022 6:00:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/3/2022 6:00:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	2/3/2022 6:00:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	2/3/2022 6:00:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	2/3/2022 6:00:00 PM
Carbon tetrachloride	0.44	0.19	ug/m3	1	2/3/2022 6:00:00 PM
Chlorobenzene	< 0.69	0.69	սց/m3	1	2/3/2022 6:00:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	2/3/2022 6:00:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	2/3/2022 6:00:00 PM
Chloromethane	0.87	0.31	ug/m3	1	2/3/2022 6:00:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 6:00:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/3/2022 6:00:00 PM
Cyclohexane	0.55	0.52	ug/m3	†	2/3/2022 6:00:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/3/2022 6:00:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/3/2022 6:00:00 PM
Ethylbenzene	< 0.65	0.65	սց/m3	i	2/3/2022 6:00:00 PM
Freon 11	1,4	0.84	ug/m3	1	2/3/2022 6:00:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	2/3/2022 6:00:00 PM
Freon 114	< 1.0	1,0	ug/m3	1	2/3/2022 6:00:00 PM

Qualifiers:

- Sub-Contracted SC
- Analyte detected in the associated Method Blank 13
- Holding times for preparation or analysis exceeded 11
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 17 Estimated Value above quantitation range
- Analyte detected below quantitation limit
- NĐ Not Detected at the Limit of Detection Detection Limit

DL

Page 3 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-002A

Date: 04-Feb-22

Client Sample ID: Outside

Tag Number: 200,379 Collection Date: 1/31/2022

Matrix: AlR.

Analyses	Result	ÐŁ	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	D-DCE-1,1DCE	ΤÇ)- 1 5			Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	2/3/2022 6:00:00 PM
Heptane	0.49	0.61	J	ug/m3	1	2/3/2022 6:00:00 PM
Hexachloro-1,3-butadiene	< 1.5	1.6		ug/m3	1	2/3/2022 6:00:00 PM
Hexane	0.88	0.53		ug/m3	1	2/3/2022 6:00:00 PM
Isopropyl alcohol	1.7	0.37		ug/m3	1	2/3/2022 6:00:00 PM
m&p _* Xylene	1.0	1.3	J	ug/m3	1	2/3/2022 6:00:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 6:00:00 PM
Methyl Ethyl Ketone	0.65	88.0	J	eg/m3	1	2/3/2022 6:00:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		սց/m3	1	2/3/2022 6:00:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 6:00:00 PM
Methylene chloride	0.90	0.52		ug/m3	1	2/3/2022 6:00:00 PM
o-Xylene	< 0.65	0.66		ug/m3	1	2/3/2022 6:00:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 6:00:00 PM
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 6:00:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	2/3/2022 6:00:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 6:00:00 PM
Toluene	2.4	0.57		ug/m3	1	2/3/2022 6:00:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		นg/กา3ั	1	2/3/2022 6:00:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		սց/m3	1	2/3/2022 6:00:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 6:00:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 6:00:00 ₽M
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 6:00:00 PM
Vinyt chloride	< 0.10	0.10		սց /m3	1	2/3/2022 6:00:00 PM

Qualifiers:	SC	Sub-Contracted
-------------	----	----------------

B. Analyte detected in the associated Method Blank

Results reported are not blank corrected

45 Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection DL Detection Limit

Page 4 of 14

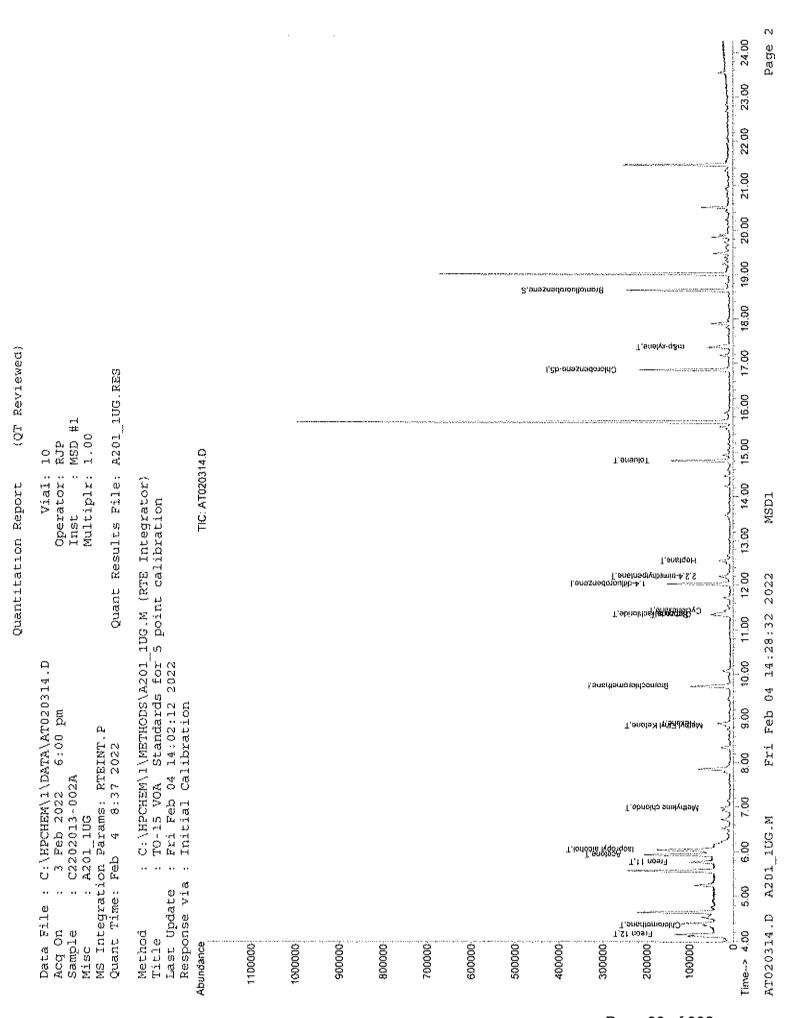
H Holding times for preparation or analysis exceeded

³N Non-routine analyte. Quantitation estimated.

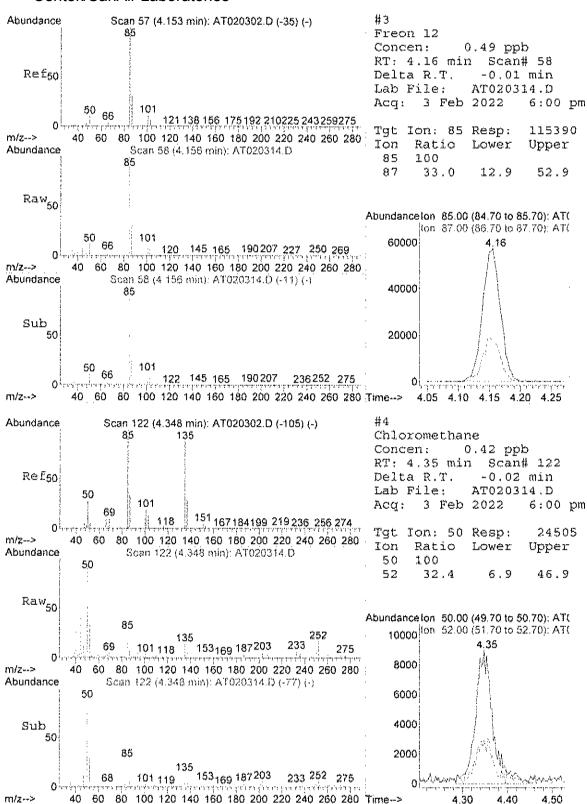
S Spike Recovery outside accepted recovery limits

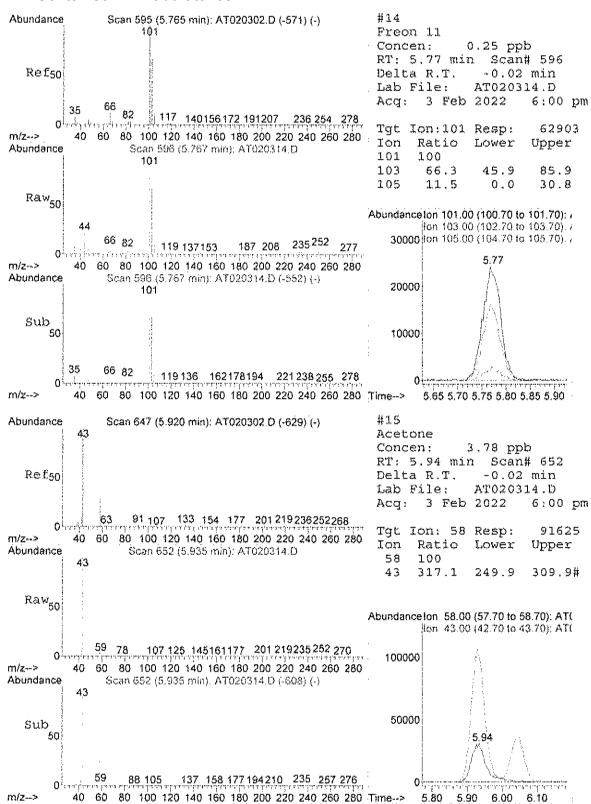
(QT Reviewed)

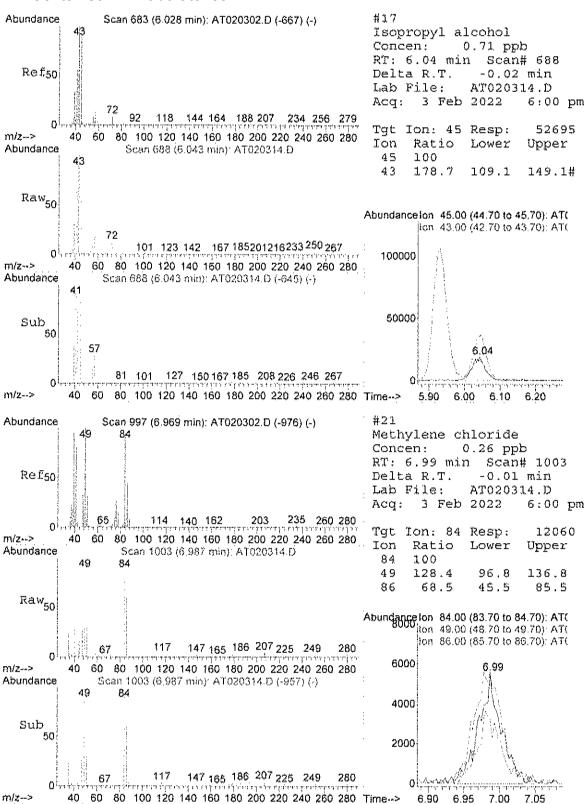
Data File : C:\HPCHEM\1\DATA\AT020314.D Vial: 10 Acq On : 3 Feb 2022 6:00 pm Operator: RJP Sample : C2202013-002A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

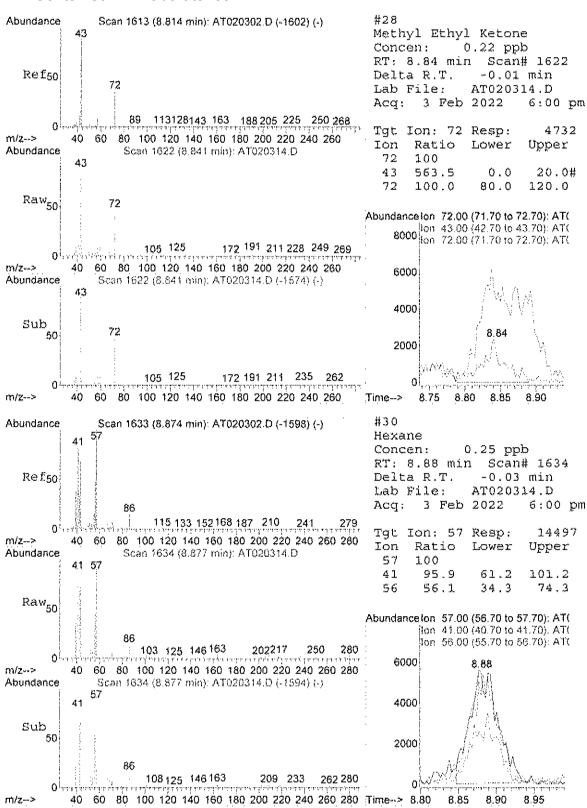

MS Integration Params: RTEINT.P

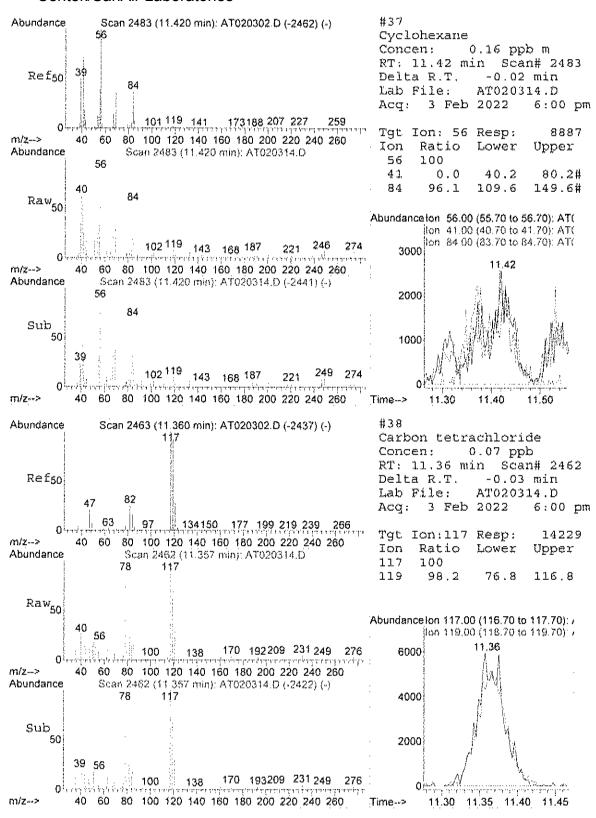
Quant Time: Feb 04 08:24:32 2022 Quant Results File: A201 1UG.RES

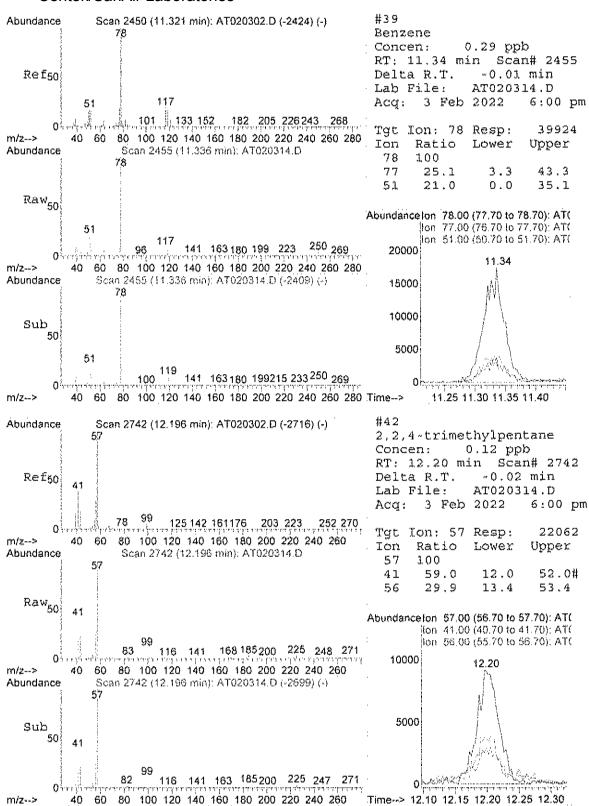

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022 Response via : Initial Calibration

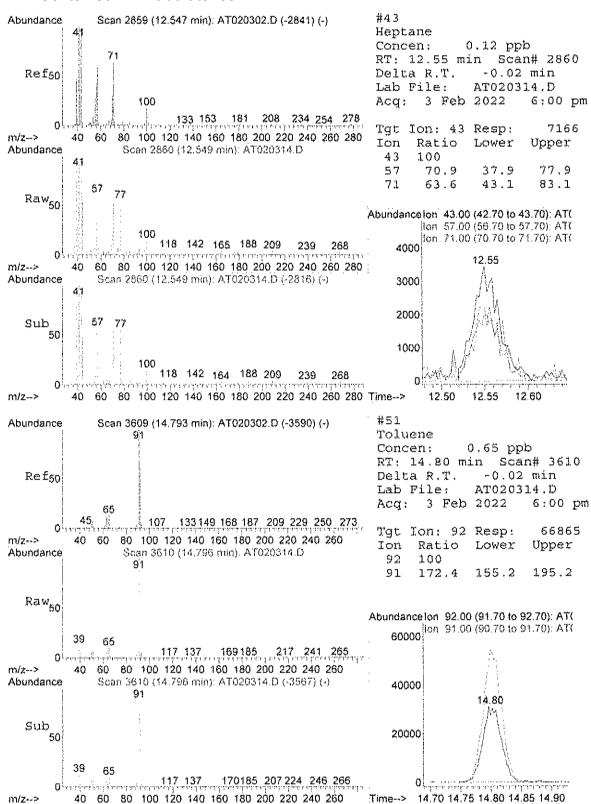

DataAcq Meth : 1UG_ENT

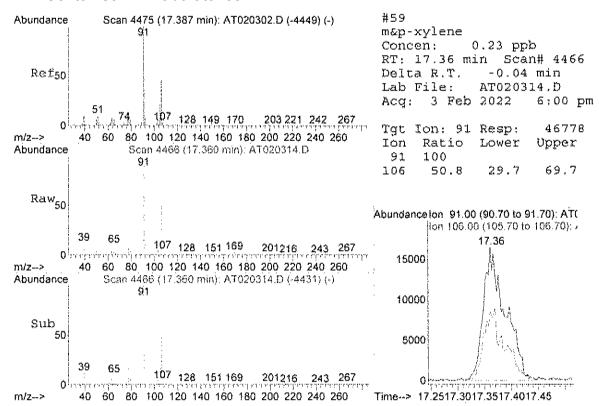

Internal Standards	R.T.		Response C		nits	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.74 12.03	128 114	34150 148273	1.00	ppb	-0.01 0.00 -0.02
System Monitoring Compounds 65) Bromofluorobenzene	18.64	95	87152	0.90	ppb	~0.02
Spiked Amount 1.000	Range 70	- 1.30	Recovery	, =-	90.	.00%
Target Compounds						Qvalue
3) Freon 12	4.16	85	115390			
4) Chloromethane	4.35	50	24505	0.42	dqq	89
14) Freon 11	5,77	101	62903	0.25	bbp	99
15) Acetone	5.94	58	91625			
17) Isopropyl alcohol					dqq	# 57
21) Methylene chloride			12060			92
28) Methyl Ethyl Ketone	8,84	72	4732	0.22		
30) Hexane	8,88	57	14497			89
37) Cyclohexane	11.42	56	8887m / /	0.16	dqq	
38) Carbon tetrachloride	11.36	117	14229	0.07		99
39) Benzene	11.34	78	39924			92
42) 2,2,4-trimethylpentane	12.20	57	22062			
43) Heptane			7166	0,12		
51) Toluene	14.80	92	66865	0.65		
59) m&p-xylene	17.36		46778			




Page 88 of 302



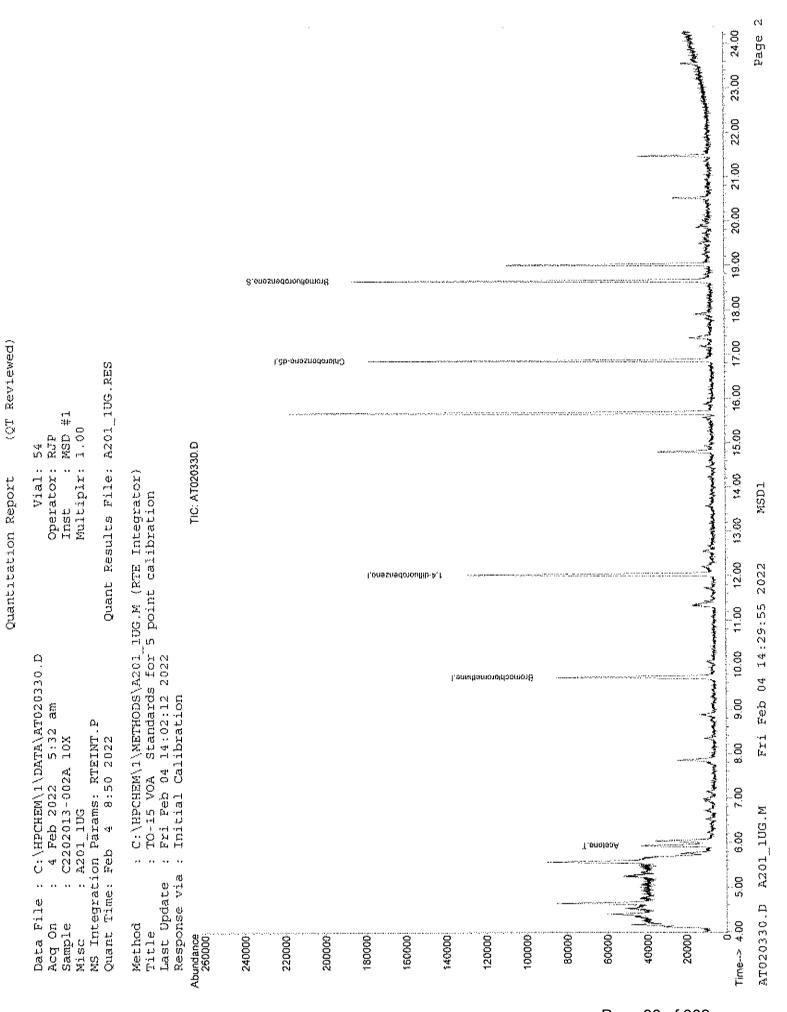




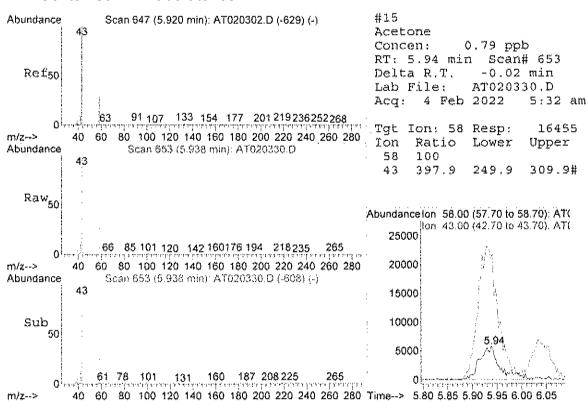
Centek/SanAir Laboratories (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020330.D Vial: 54 Acq On : 4 Feb 2022 5:32 am Operator: RJP Sample : C2202013-002A 10X Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: A201_1UG.RES Quant Time: Feb 04 08:24:48 2022

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : lUG_ENT

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.03 16.85	128 114 117	29342 121637 107144	1.00 pp 1.00 pp 1.00 pp	b -0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.64	95 - 130			10.0- do
Target Compounds 15) Acetone	5.94	58	16455	0.79 pp	Qvalue bb # 37

Page 98 of 302

MSD1

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐL (Qual Uı	nits	ÐF	Date Analyzed
FIELD PARAMETERS		FLE				Analyst:
Lab Vacuum In	-1		"H:	g		2/3/2022
Lab Vacuum Out	-30		"H	g		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-1	5			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	рp	b∨	1	2/3/2022 6:45:00 PM
1,1,2.2-Tetrachloroethane	< 0.15	0.15	pp	bΛ	1	2/3/2022 6:45:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	фþ	b∨	1	2/3/2022 6:45:00 PM
1,1-Dichloroethane	< 0.15	0.15	pp	b∨	1	2/3/2022 6:45:00 PM
1,1-Dichloroethene	< 0.040	0.040	рр	bV	1	2/3/2022 6:45:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ģq	bV	1	2/3/2022 6:45:00 PM
1,2,4-Trimethylbenzene	0.19	0.15	qq	b∨	1	2/3/2022 6:45:00 PM
1,2-Dibromoethane	< 0.15	0.15	рр	bV	1	2/3/2022 6:45:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	pp	bV	1	2/3/2022 6:45:00 PM
1,2-Dichloroethane	0.12	0.15	J pp	þV	1	2/3/2022 6:45:00 PM
1,2-Dichloropropane	< 0.15	0.15		bV	1	2/3/2022 6:45:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		bV	1	2/3/2022 6:45:00 PM
1.3-butadiene	< 0.15	0.15		bV	1	2/3/2022 6:45:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	pp	bV	1	2/3/2022 6:45:00 PM
1,4-Dichlorobenzene	0.17	0.15	pp	bV	1	2/3/2022 6:45:00 PM
1.4-Dioxane	< 0.30	0.30		bV	1	2/3/2022 6:45:00 PM
2,2,4-trimethylpentane	0.18	0.15	qq	Vd	1	2/3/2022 6:45:00 PM
4-ethyltoluene	< 0.15	0.15		bV	1	2/3/2022 6:45:00 PM
Acetone	13	3.0	qq	bV	10	2/4/2022 6:15:00 AM
Allyl chloride	< 0.15	0.15	рр	bV	1	2/3/2022 6:45:00 PM
Benzene	1.2	0.15	pp	bV	1	2/3/2022 6:45:00 PM
Benzyl chloride	< 0.15	0.15		bV	1	2/3/2022 6:45:00 PM
Bromodichloromethane	< 0.15	0.15	pp	bV	1	2/3/2022 6:45:00 PM
Bromoform	< 0.15	0.15		φV	1	2/3/2022 6:45:00 PM
Bromomethane	< 0.15	0.15		νbV	1	2/3/2022 6:45:00 PM
Carbon disulfide	< 0.15	0.15	ממ	b∨	1	2/3/2022 6:45:00 PM
Carbon tetrachloride	0.070	0.030		Vde	1	2/3/2022 6:45:00 PM
Chlorobenzene	< 0.15	0.15	, -	ъV	1	2/3/2022 6:45:00 PM
Chloroethane	< 0.15	0.15	gg	υpΛ	1	2/3/2022 6:45:00 PM
Chloroform	0.49	0.15		bV	1	2/3/2022 6:45:00 PM
Chloromethane	1.9	0.15		b∨	1	2/3/2022 6:45:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	. ,	bV	1	2/3/2022 6:45:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	, ,	bV	1	2/3/2022 6:45:00 PM
Cyclohexane	< 0.15	0.15		ьV	1	2/3/2022 6:45:00 PM
Dibromochloromethane	< 0.15	0.15		b∨	1	2/3/2022 6:45:00 PM
Ethyl acetate	1,4	0,15		bV	1	2/3/2022 6:45:00 PM

A STREAM OF THE CONTROL OF THE STREAM OF THE CONTROL OF THE CONTRO

Qualitiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 5 of 14

CLIENT: Matrix Environmental Technologies, Inc

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

		The state of the s					
Analyses	Resuit		ial Units	DF	Date Analyzed		
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15			Analyst: RJF		
Ethylbenzene	0.25	0.15	∨dqq	1	2/3/2022 6:45:00 PM		
Freon 11	0.24	0.15	₽₽bV	1	2/3/2022 6:45:00 PM		
Freon 113	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM		
Freon 114	< 0.15	0.15	∨dqq	1	2/3/2022 6:45:00 PM		
Freon 12	0.44	0.15	Vđạq	1	2/3/2022 6:45:00 PM		
Heptane	0.42	0.15	ppbV	1	2/3/2022 6:45:00 PM		
Hexachloro-1,3-butadiene	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM		
Hexane	0.54	0.15	Vdqq	1	2/3/2022 6:45:00 PM		
Isopropyt alcohol	< 0.15	0.15	Vdqq	1	2/3/2022 6:45:00 PM		
m&p-Xylene	0.78	0.30	Vdqq	1	2/3/2022 6:45:00 PM		
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	2/3/2022 6:45:00 PM		
Methyl Ethyl Ketone	1.1	0.30	∨dqq	1	2/3/2022 6:45:00 PM		
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	2/3/2022 6:45:00 PM		
Methyl tert-butyl ether	< 0.15	0.15	ρpbV	1	2/3/2022 6:45:00 PM		
Methylene chloride	0.21	0.15	Vdqq	1	2/3/2022 6:45:00 PM		
o-Xylene	0.23	0.15	ppbV	1	2/3/2022 6:45:00 PM		
Propylene	< 0.15	0.15	$\nabla \sigma$ qqq	1	2/3/2022 6:45:00 PM		
Styrene	0.19	0.15	Vđạq	1	2/3/2022 6:45:00 PM		
Tetrachloroethylene	< 0.15	0.15	Vđqq	1	2/3/2022 6:45:00 PM		
Tetrahydrofuran	< 0.15	0.15	Vđạq	1	2/3/2022 6:45:00 PM		
Toluene	2.0	1.5	Vdqq	10	2/4/2022 6:15:00 AM		
trans-1,2-Dichtoroethene	< 0.15	0.15	ρρbV	1	2/3/2022 6:45:00 PM		
trans-1,3-Dichtoropropene	< 0.15	0.15	ppbV	1	2/3/2022 6:45:00 PM		
Trichloroethene	< 0.030	0.030	Vdqq	1	2/3/2022 6:45:00 PM		
Vinyl acetate	< 0.15	0,15	Vđqq	1	2/3/2022 6:45:00 PM		
Vinyl Bromide	< 0.15	0.15	∨dqq	1	2/3/2022 6:45:00 PM		
Vinyl chłoride	< 0.040	0.040	Vđqq	1	2/3/2022 6:45:00 PM		
Surr: Bromofluorobenzene	96.0	47-124	%REC	1	2/3/2022 6:45:00 PM		

Quali	fiers:
A	

SC Sub-Contracted

B. Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 6 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample ID: Al

Tag Number: 1186,447

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DŁ	Qual t	inits	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		то	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	u	g/m3	1	2/3/2022 6:45:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	u	g/m3	1	2/3/2022 6:45:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	Ų	g/m3	1	2/3/2022 6:45:00 PM
1,1-Dichloroethane	< 0.61	0.61	U	g/m3	1	2/3/2022 6:45:00 PM
1,1-Dichtoroethene	< 0.16	0.16	u	g/m3	1	2/3/2022 6:45:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	g/m3	1	2/3/2022 6:45:00 PM
1,2,4-Trimethylbenzene	0.93	0.74	u	g/m3	1	2/3/2022 6:45:00 PM
1,2-Dibromoethane	< 1.2	1.2	u	g/m3	1	2/3/2022 6:45:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	Ų	g/m3	1	2/3/2022 6:45:00 PM
1,2-Dichloroethane	0.49	0.61	J u	g/m3	1	2/3/2022 6:45:00 PM
1,2-Dichloropropane	< 0.69	0.69	u	g/m3	1	2/3/2022 6:45:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ដ	g/m3	1	2/3/2022 6:45:00 PM
1,3-butadiene	< 0.33	0.33	IJ	ig/m3	1	2/3/2022 6:45:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	2/3/2022 6:45:00 PM
1,4-Dichlorobenzene	1.0	0.90	u	ıg/m3	1	2/3/2022 6:45:00 PM
1.4-Dioxane	< 1.1	1.1	u	g/m3	1	2/3/2022 6:45:00 PM
2,2,4-trimethylpentane	0.84	0.70	ប	ig/m3	1	2/3/2022 6:45:00 PM
4-ethyltoluene	< 0.74	0.74	u	ıg/m3	1	2/3/2022 6:45:00 PM
Acetone	31	7.1	บ	ıg/m3	10	2/4/2022 6:15:00 AM
Alfyl chloride	< 0.47	0.47	u	ıg/m3	1	2/3/2022 6:45:00 PM
Benzene	3.7	0.48	ŧ,	ig/m3	1	2/3/2022 6:45:00 PM
Benzyl chloride	< 0.86	0.86	u	ig/m3	1	2/3/2022 6:45:00 PM
Bromodichloromethane	< 1.0	1.0	u	ig/m3	1	2/3/2022 6:45:00 PM
Bromoform	< 1,6	1.6	ш	ig/m3	1	2/3/2022 6:45:00 PM
Bromomethane	< 0.58	0.58	ų	ig/m3	1	2/3/2022 6:45:00 PM
Carbon disulfide	< 0.47	0.47	u	ıg/m3	1	2/3/2022 6:45:00 PM
Carbon tetrachloride	0.44	0.19		rg/m3	1	2/3/2022 6:45:00 PM
Chlorobenzene	< 0.69	0.69	Ų	ıg/m3	1	2/3/2022 6:45:00 PM
Chloroethane	< 0.40	0.40	ti	ig/m3	1	2/3/2022 6:45:00 PM
Chloroform	2.4	0.73	Ų	g/m3	1	2/3/2022 6:45:00 PM
Chloromethane	3.9	0.31	Ł	ıg/m3	1	2/3/2022 6:45:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ıg/m3	1	2/3/2022 6:45:00 PM
cis-1,3-Dichtoropropene	< 0.68	0.68		ig/m3	1	2/3/2022 6:45:00 PM
Cyclohexane	< 0.52	0.52		ıg/m3	1	2/3/2022 6:45:00 PM
Dibromochtoromethane	< 1.3	1,3		ıg/m3	1	2/3/2022 6:45:00 PM
Ethyl acetate	4.9	0.54		.g/m3	1	2/3/2022 6:45:00 PM
Ethylbenzene	1.1	0.65		ıg/m3	1	2/3/2022 6:45:00 PM
Freon 11	1,3	0.84		ıg/m3	1	2/3/2022 6:45:00 PM
Freon 113	< 1.1	1.1		;g/m3	1	2/3/2022 6:45:00 PM
Freon 114	< 1.0	1.0		ıg/m3	1	2/3/2022 6:45:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E. Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Dt. Detection Limit

Page 5 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-003A

Date: 04-Feb-22

Client Sample ID: A1

Tag Number: 1186,447 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL C	Qual Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	15		Analyst: RJP	
Freon 12	2.2	0.74	ug/m3	1	2/3/2022 6:45:00 PM	
Heptane	1.7	0.61	ug/m3	1	2/3/2022 6:45:00 PM	
Hexachtoro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/3/2022 6:45:00 PM	
Hexane	1.9	0.53	ug/m3	1	2/3/2022 6:45:00 PM	
Isopropyl atcohol	< 0.37	0.37	sg/m3	1	2/3/2022 6:45:00 PM	
m&p-Xylene	3.4	1.3	սց/m3	1	2/3/2022 6:45:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 6:45:00 PM	
Methyl Ethyl Ketone	3.2	0.88	บg/กา3	1	2/3/2022 6:45:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 6:45:00 PM	
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/3/2022 6:45:00 PM	
Methylene chloride	0.73	0.52	ug/m³	1	2/3/2022 6:45:00 PM	
o-Xylene	1.0	0.65	ug/m3	1	2/3/2022 6:45:00 PM	
Propylene	< 0.26	0.26	ug/m3	1	2/3/2022 6:45:00 PM	
Styrene	0.81	0.64	ug/m3	1	2/3/2022 6:45:00 PM	
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	2/3/2022 6:45:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/3/2022 6:45:00 PM	
Toluene	7.5	5.7	<u>ს</u> g/m3	10	2/4/2022 6:15:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/3/2022 6:45:00 PM	
trans-1.3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/3/2022 6:45:00 PM	
Trichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 6:45:00 PM	
Vinyl acetate	< 0.53	0.53	սց/m3	1	2/3/2022 6:45:00 PM	
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/3/2022 6:45:00 PM	
Vinyl chloride	< 0.10	0.10	սց/m3	1	2/3/2022 6:45:00 PM	

(3)	41:3	126	30	MAC.

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 6 of 14

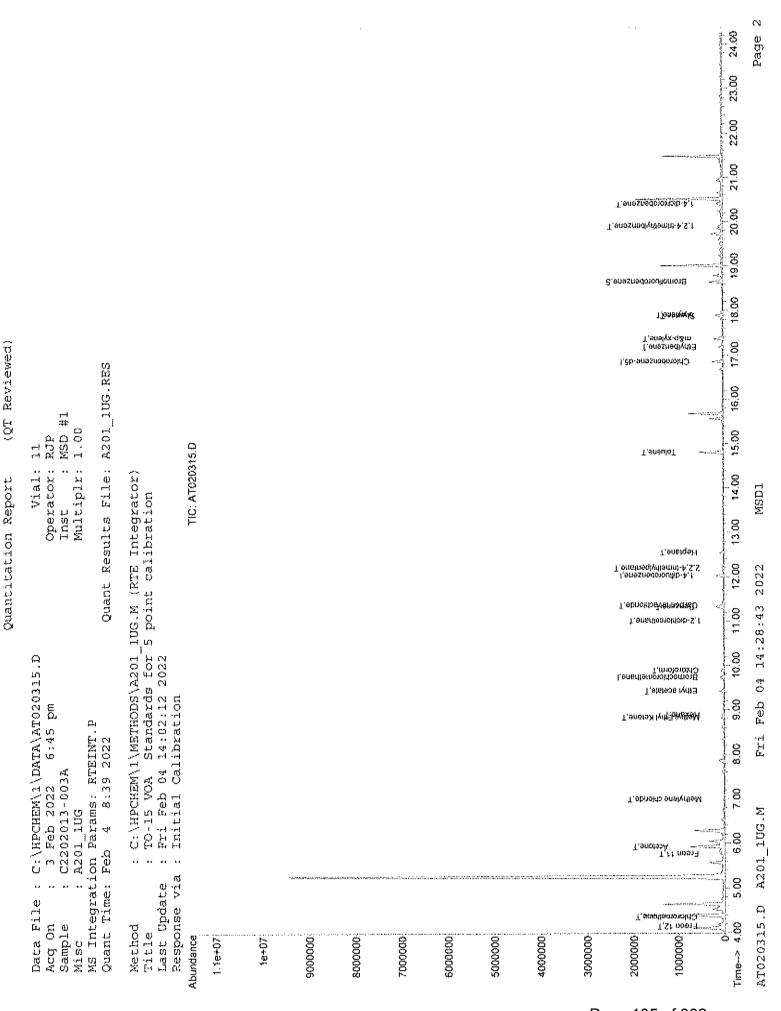
Centek/SanAir Laboratories Quantitation Report

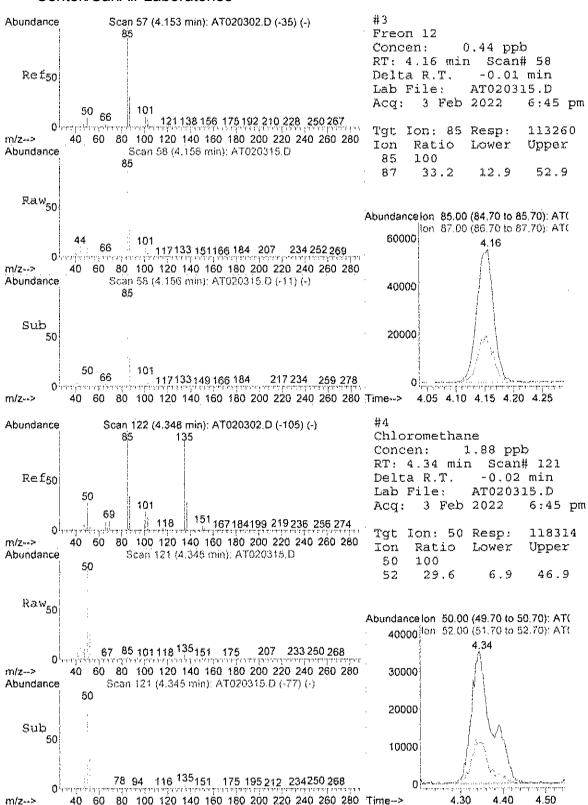
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020315.D Vial: 11 Acq On : 3 Feb 2022 6:45 pm Operator: RJP Sample : C2202013-003A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

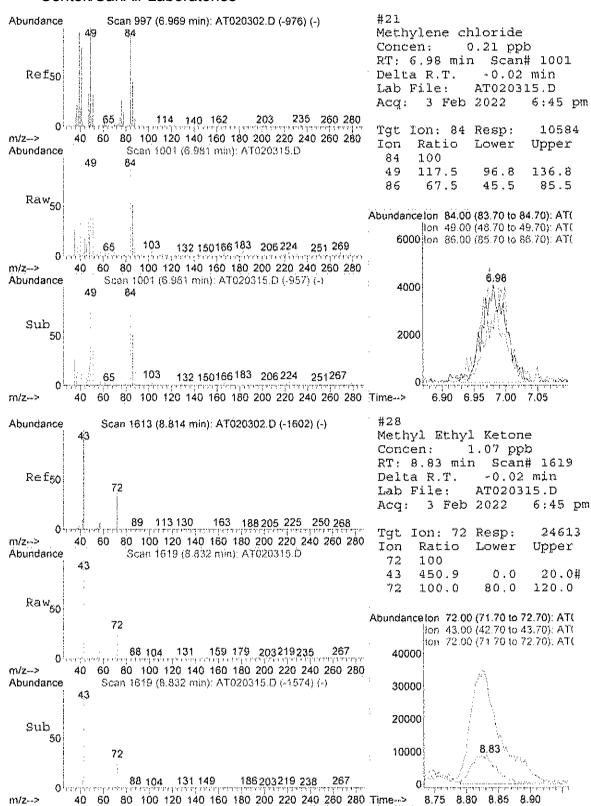
MS Integration Params: RTEINT.P

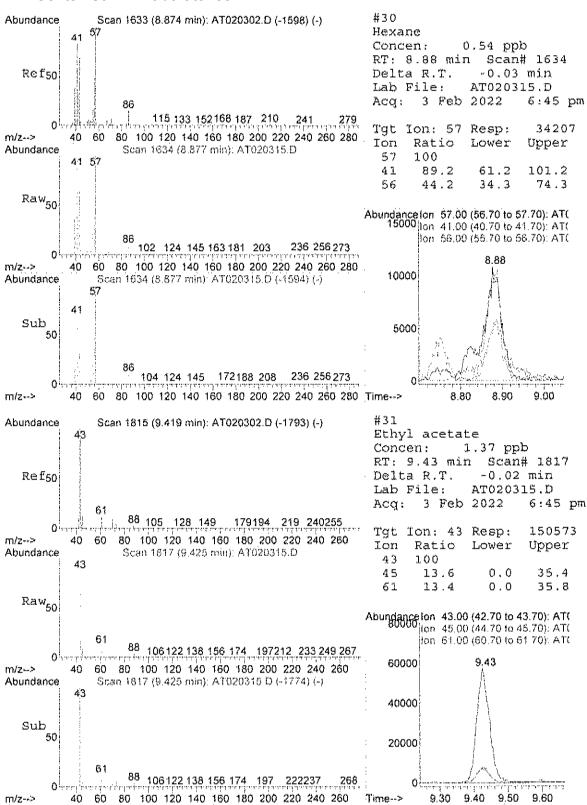
Quant Time: Feb 04 08:24:33 2022 Quant Results File: A201_1UG.RES

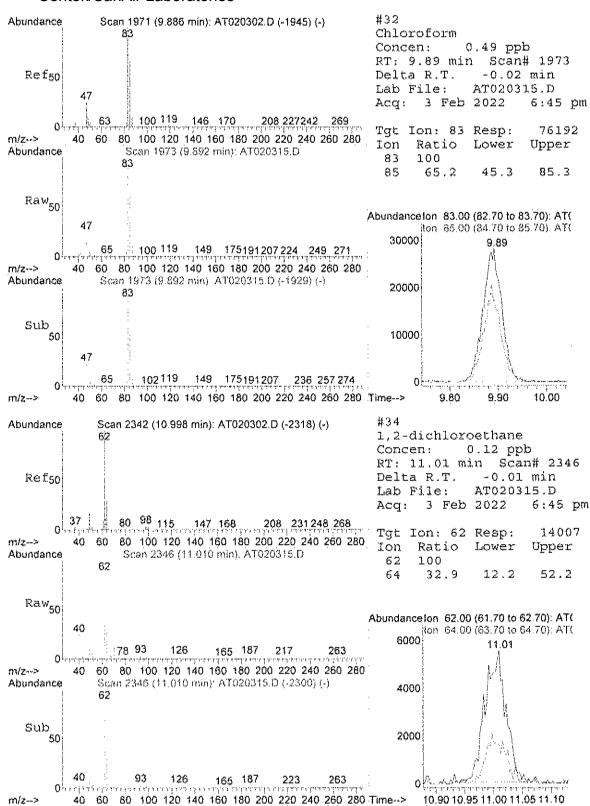

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

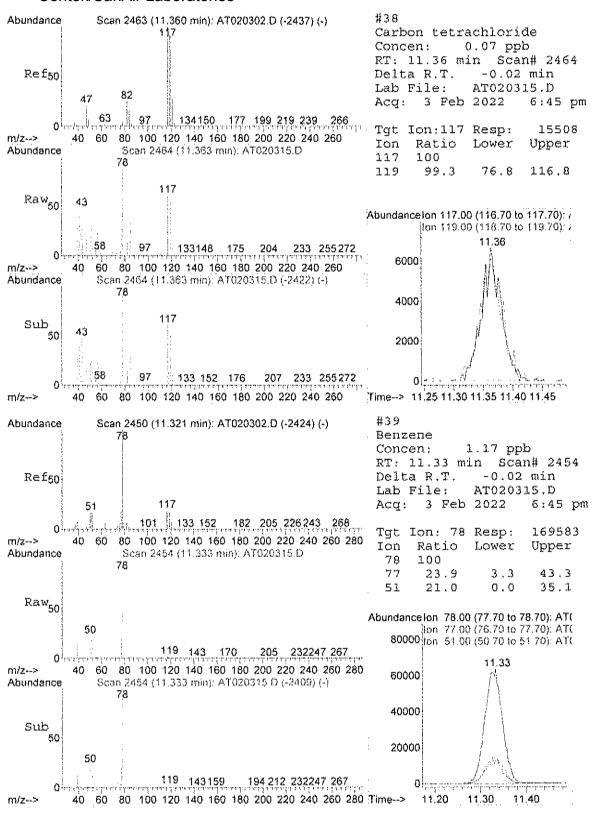

Last Update : Wed Feb 02 07:40:12 2022

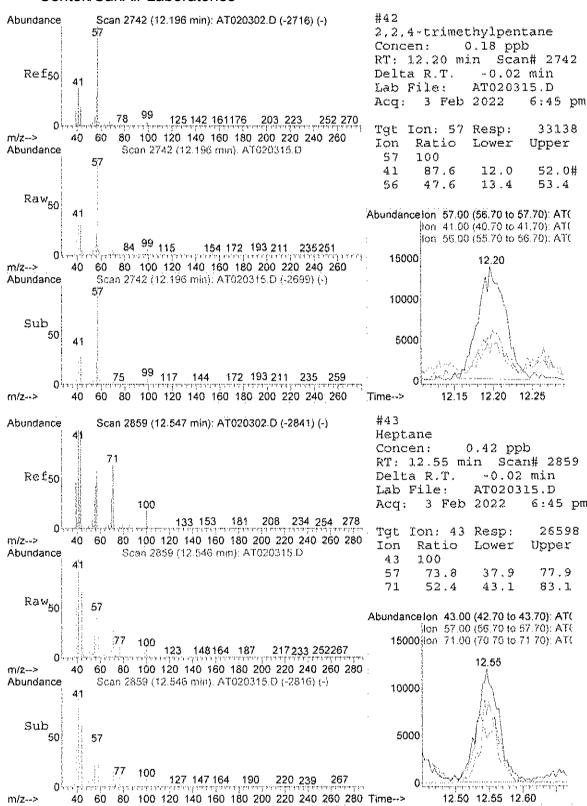
Response via : Initial Calibration

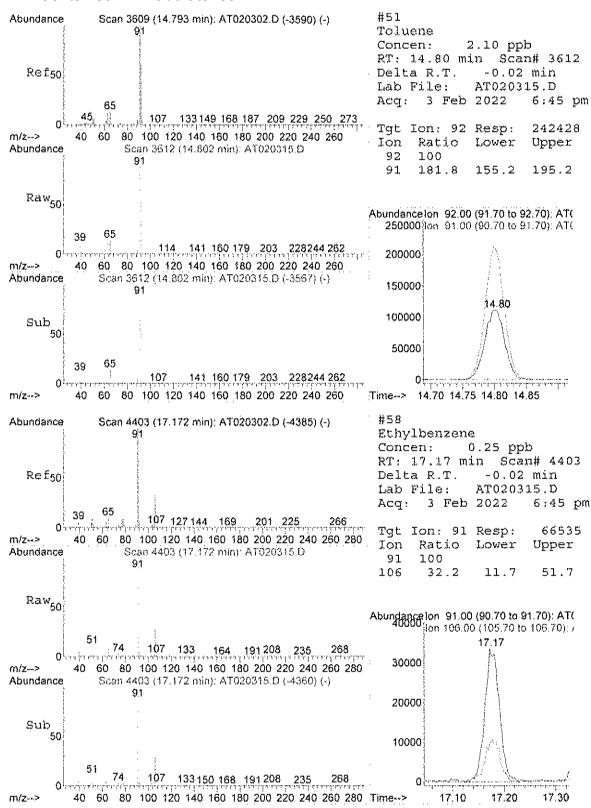

DataAcq Meth : 1UG ENT

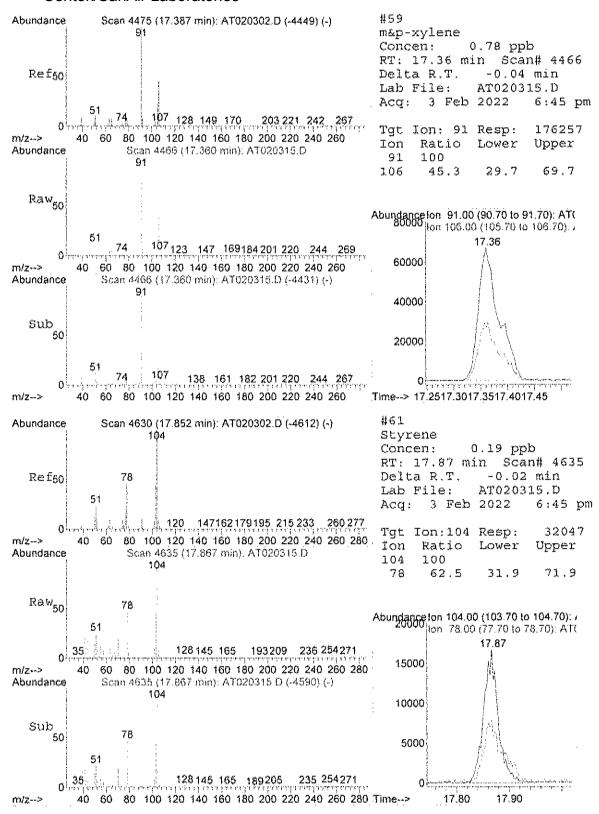

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
1) Bromochloromethane	9.72	128	36988	1.00	dgg		-0.02
35) 1,4-difluorobenzene	12,03	1.14	157207	1.00			-0.02
50) Chlorobenzene-d5	16.85	117	148338	1.00			-0.02
System Monitoring Compounds							
65) Bromofluorobenzene	18.64	95	104506	0.96	daa		0.01
Spiked Amount 1.000						÷00.	
Target Compounds						Ova	alue
3) Freon 12	4.16	85	113260	0.44	dqq	~	99
4) Chloromethane	4.34	50	118314	188			95
14) Freon 11	5,76	101	65907	0.24			99
15) Acetone	5.92	58	389323	14.83	ppb	#	60
21) Methylene chloride	6.98	84	10584	0.21	dqq		99
28) Methyl Ethyl Ketone	8.83	72	24613	1.07		#	1.00
30) Hexane	8.88		34207				89
31) Ethyl acetate	9.43		150573	1.37			95
32) Chloroform	9.89		76192	0.49			100
34) 1,2-dichloroethane	11.01	62	14007	0.12			99
38) Carbon tetrachloride	11.36		15508	0.07			97
39) Benzene	11.33	78	169583	1.17			94
42) 2,2,4-trimethylpentane	12.20		33138	0.18		#	38
43) Heptane	12.55		26598	0.42			83
51) Toluene	14.80		242428	2.10			95
58) Ethylbenzene	17.17		66535	0.25			99
59) m&p-xylene	17.36	91	176257	0.78			94
61) Styrene	17.87		32047	0.19			85
63) o-xylene	17.90		57591	0.23			93
71) 1,2,4-trimethylbenzene	19.90	105	47778 30469	0.19			99
74) 1,4-dichlorobenzene	20.39	146	30469	0.17	dqq		90

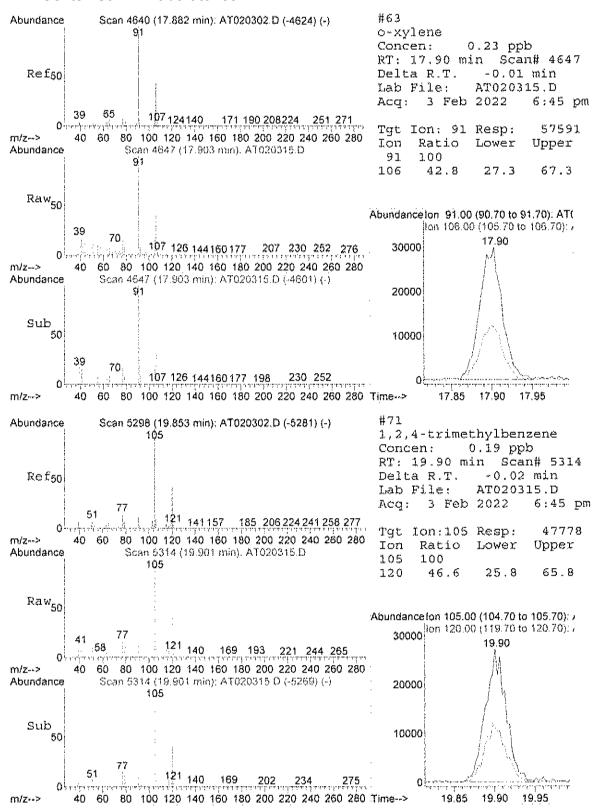


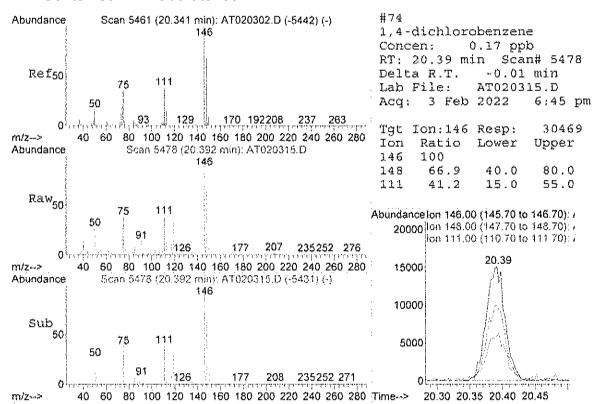








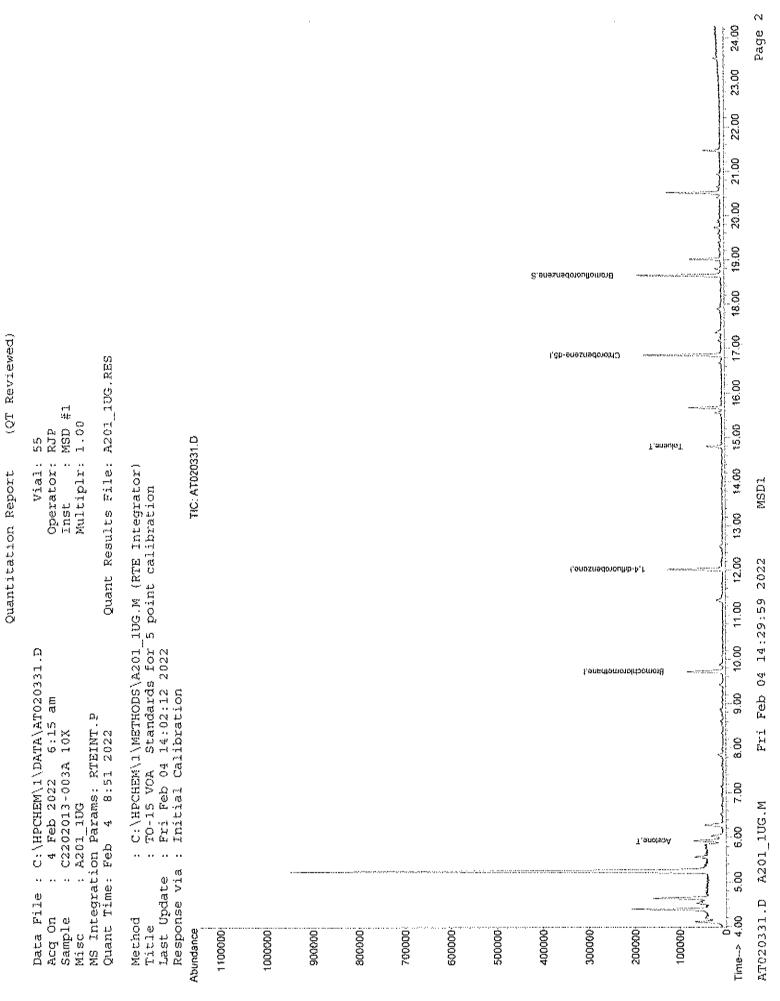




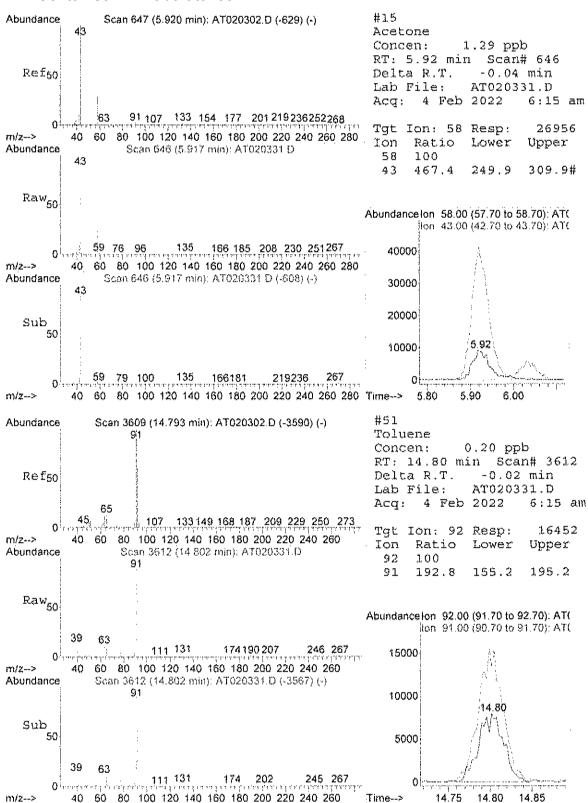
Centek/SanAir Laboratories (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020331.D Vial: 55 Acq On : 4 Feb 2022 6:15 am Operator: RJP Sample : C2202013-003A 10X Misc : A201_1UG Inst : MSD #1 Multiplx: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 04 08:24:49 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response C	onc 1	Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.03 16.85	128 114 117	29386 120007 1.08498	1.0	dqq 0 dqq 0 dqq 0	-0.03 -0.02 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.65 Range 70	95 ~ 130	69313 Recovery		7 ppb 87.	
Target Compounds 15) Acetone 51) Toluene	5.92 14.80	58 92	26956 16452		dąą e dąą 0	

Page 118 of 302

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	DĻ	Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		۶L	.D			Analyst:
Lab Vacuum เก	-3			"Нд		2/3/2022
Lab Vacuum Out	-30			"Hg		2/3/2022
(UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	то	-15			Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,1,2-Trichloroethane	< 0.15	0.15		Vđqq	1	2/3/2022 7:29:00 PM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,1-Dichloroethene	< 0.040	0.040		ppb∨	1	2/3/2022 7:29:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,2,4-Trimethylbenzene	0.13	0.15	J	ppbV	1	2/3/2022 7:29:00 PM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,2-Dichtorobenzene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
1,2-Dichloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
1,2-Dichtoropropane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		₽₽b∨	1	2/3/2022 7:29:00 PM
1,3-butadiene	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
1,4-Dichlarobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
1,4-Dioxane	< 0.30	0.30		ppbV	1	2/3/2022 7:29:00 PM
2.2,4-trimethylpentane	0.10	0.15	J	Vdqq	1	2/3/2022 7:29:00 PM
4-ethyltoluene	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Acetone	16	3.0		₽₽bV	10	2/4/2022 6:58:00 AM
Allyl chloride	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Benzene	0.79	0.15		Vdgq	1	2/3/2022 7:29:00 PM
Benzyl chloride	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 ₽M
Bromodichloromethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Bromoform	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Bromomethane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Carbon disulfide	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Carbon tetrachloride	0.070	0.030		PpbV	1	2/3/2022 7:29:00 PM
Chlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Chloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM
Chloroform	0.12	0.15	j	ppbV	1	2/3/2022 7:29:00 PM
Chloromethane	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
cls-1,2-Dichlargethene	< 0.040	0.040		ppb∨	1	2/3/2022 7:29:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM
Cyclohexane	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM
Dibromochloromethane	< 0.16	0.15		ppbV	1	2/3/2022 7:29:00 PM
Ethyl acetate	0.49	0.15		ppb∨	1	2/3/2022 7:29:00 PM

Qualifiers:

SC Sub-Contracted

B. Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 7 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Company Comp									
Ethylbenzene 0.16 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 11 0.19 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 13 < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 114 < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heptane 0.49 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15 0.15 ppbV	Analyses	Result	DL	Qual	Units	DF	Date Analyzed		
Ethylbenzene 0.16 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 11 0.19 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 11 0.19 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 12 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Freon 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heron 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heron 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heron 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heron 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heron 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P 1 0.2/3/2022 7:29:00 P 1 0.15	IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO	-15			Analyst: RJP		
Freon 113			0.15		∨dqq	1	2/3/2022 7:29:00 PM		
Freon 114	Freon 11	0.19	0.15		ppbV	1	2/3/2022 7:29:00 PM		
Freon 12 0.44 0.15 ppbV 1 2/3/2022 7:29:00 P Heptane 0.49 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene 0.41 0.15 ppbV 1 2/3/2022 7:29:00 P Hexane 0.41 0.30 ppbV 1 2/3/2022 7:29:00 P Hespane 0.44 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Butyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Topylene 0.16 0.15 ppbV 1 2/3/2022 7:29:00 P Totylene 0.14 0.15 ppbV 1 2/3/2022 7:29:00 P Tetrahydrofuran 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Tetrahydrofuran 0.16 0.15 ppbV 1 2/3/2022 7:29:00 P Trichloroethene 0.15 0.16 ppbV 1 2/3/2022 7:29:00 P Trichloroethene 0.05 0.15 ppbV 1 2/3/2022 7:29:00 P	Freon 113	< 0.15	0.15		√dqq	1	2/3/2022 7:29:00 PM		
Heptane 0.49 0.15 ppbV 1 2/3/2022 7:29:00 P Hexachloro-1,3-butadiene < 0.15	Freon 114	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Hexachloro-1,3-butadiene < 0.15 0.16 ppbV 1 2/3/2022 7:29:00 P P Hexane 0.41 0.15 ppbV 1 2/3/2022 7:29:00 P 2/3/2022 7:29:00 P <td>Freon 12</td> <td>0.44</td> <td>0.15</td> <td></td> <td>ppb∨</td> <td>1</td> <td>2/3/2022 7:29:00 PM</td>	Freon 12	0.44	0.15		ppb∨	1	2/3/2022 7:29:00 PM		
Hexene 0.41 0.15 ppbV 1 2/3/2022 7:29:00 P Isopropyl alcohol 7.8 1.5 ppbV 10 2/4/2022 6:68:00 A Magp-Xylene 0.44 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Butyl Ketone 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.030 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.030 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.030 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.030 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.030 0.030 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.015 0.015 ppbV 1 2/3/2022 7:29:00 P 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Heptane	0.49	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Isopropyl alcohol	Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	2/3/2022 7:29:00 PM		
m&p-Xylene 0.44 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Butyl Ketone 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Propylene 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Styrene 0.14 0.15 J ppbV 1 2/3/2022 7:29:00 P Tetrachloroethylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Tetrahydrofuran < 0.15 0.	Hexane	0.41	0.15		ρpbV	1	2/3/2022 7:29:00 PM		
Methyl Butyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Ethyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone < 0.30 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chloride 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Propylene 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Styrene 0.14 0.15 J pbV 1 2/3/2022 7:29:00 P Tetrachloroethylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Toluene 1.6 0.15 ppbV	Isopropyl alcohol	7.8	1.5		Vdqq	10	2/4/2022 6:58:00 AM		
Methyl Ethyl Ketone 0.74 0.30 ppbV 1 2/3/2022 7:29:00 P Methyl Isobutyl Ketone < 0.30	m&p-Xylene	0.44	0.30		ppb∨	1	2/3/2022 7:29:00 PM		
Methyl Isobutyl Kelone < 0.30	Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	2/3/2022 7:29:00 PM		
Methyl tert-butyl ether < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Methylene chtoride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P o-Xylene 0.16 0.15 ppbV 1 2/3/2022 7:29:00 P Propylene < 0.15	Methyl Ethyl Ketone	0.74	0.30		ppb∨	1	2/3/2022 7:29:00 PM		
Methylene chtoride 0.35 0.15 ppbV 1 2/3/2022 7:29:00 P 0-Xylene 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Propylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P P Styrene 0.14 0.15 J ppbV 1 2/3/2022 7:29:00 P T Tetrachloroethylene < 0.15	· ·	< 0.30	0.30		ppbV	1	2/3/2022 7:29:00 PM		
o-Xylene 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Propylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Styrene 0.14 0.15 J ppbV 1 2/3/2022 7:29:00 P Tetrachloroethylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Tetrahydrofuran < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Toluene 1.6 0.15 ppbV 1 2/3/2022 7:29:00 P Trans-1,2-Dichloroethene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Trichloroethene < 0.030 0.030 ppbV 1 2/3/2022 7:29:00 P Vinyl acetate < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P	Methyl tert-butyl ether	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Propylene < 0.15 0.45 ppbV 1 2/3/2022 7:29:00 P Styrene 0.14 0.15 J ppbV 1 2/3/2022 7:29:00 P Tetrachloroethylene < 0.15	Methylene chloride	0.35	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Styrene 0.14 0.15 J ppbV 1 2/3/2022 7:29:00 P Tetrachloroethylene < 0.15	o-Xylene	0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM		
Tetrachloroethylene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Tetrahydrofuran < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Toluene 1.6 0.15 ppbV 1 2/3/2022 7:29:00 P trans-1,2-Dichloroethene < 0.15 0.16 ppbV 1 2/3/2022 7:29:00 P trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Trichloroethene < 0.030 0.030 ppbV 1 2/3/2022 7:29:00 P Trichloroethene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Vinyl acetale < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P	Propylene	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Tetrahydrofuran < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Toluene 1.6 0.15 ppbV 1 2/3/2022 7:29:00 P trans-1,2-Dichloroethene < 0.15	Styrene	0,14	0.15	J	ppbV	1	2/3/2022 7:29:00 PM		
Toluene 1.6 0.15 ppbV 1 2/3/2022 7:29:00 P trans-1,2-Dichloroethene < 0.15 0.16 ppbV 1 2/3/2022 7:29:00 P trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Trichloroethene < 0.030 0.030 ppbV 1 2/3/2022 7:29:00 P Vinyl acetate < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P	Tetrachloroethylene	< 0.15	0.15		∨dqq	1	2/3/2022 7:29:00 PM		
trans-1,2-Dichloroethene < 0.15 0.16 ppbV 1 2/3/2022 7:29:00 P trans-1,3-Dichloropropene < 0.15	Tetrahydrofuran	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM		
trans-1,3-Dichloropropene < 0.15	Toluene	1.6	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Trichloroethene < 0.030 0.030 ppbV 1 2/3/2022 7:29:00 P Vinyl acetale < 0.15	trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM		
Vinyl acetate < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P Vinyl Bromide < 0.15	trans-1,3-Dichloropropene	< 0.15	0.15		Vdqg	1	2/3/2022 7:29:00 PM		
Vinyl Bromide < 0.15 0.15 ppbV 1 2/3/2022 7:29:00 P	Trichloroethene	< 0.030	0.030		Vdqq	1	2/3/2022 7:29:00 PM		
The second secon	Viny! acetate	< 0.15	0.15		ppbV	1	2/3/2022 7:29:00 PM		
•	Vinyl Bromide	< 0.15	0.15		Vdqq	1	2/3/2022 7:29:00 PM		
Villy Choride Code Code Code Code Code Code Code Co	Vinyt chtoride	< 0.040	0.040		Vdqq	1	2/3/2022 7:29:00 PM		
· ·	*	97.0	47-124		%REC	1	2/3/2022 7:29:00 PM		

Charlithana	SC	Vols Continues
Qualifiers:	.51	Sun-Contracted

B Analyte detected in the associated Method Blank

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

DL Detection Limit

Page 8 of 14

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated,

S Spike Recovery outside accepted recovery limits

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	то	-15	······································		Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 7:29:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	2/3/2022 7:29:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 7:29:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 7:29:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 7:29:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
1,2,4-Trimethylbenzene	0.64	0.74	J	ug/m3	1	2/3/2022 7:29:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 7:29:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ид/т3	1	2/3/2022 7:29:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 7:29:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	2/3/2022 7:29:00 PM
1.3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 7:29:00 PM
1,3-butadiene	< 0.33	0.33		սց/m3	1	2/3/2022 7:29:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 7:29:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 7:29:00 PM
1,4-Dioxane	< 1,1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
2,2,4-trimethylpentane	0.47	0.70	J	ug/m3	1	2/3/2022 7:29:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 7:29:00 PM
Acetone	38	7.1		ug/m3	10	2/4/2022 6:58:00 AM
Attyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 7:29:00 ₱M
Benzene	2.5	0.48		ug/m3	1	2/3/2022 7:29:00 PM
Benzyi chtoride	< 0.86	0.86		ug/m3	1	2/3/2022 7:29:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 7:29:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	2/3/2022 7:29:00 ₽M
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 7:29:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 7:29:00 PM
Carbon tetrachloride	0.44	0.19		ug/m3	1	2/3/2022 7:29:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 7:29:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 7:29:00 PM
Chloreform	0.59	0.73	ţ	ug/m3	1	2/3/2022 7:29:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	2/3/2022 7:29:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 7:29:00 PM
cis-1,3-Dichloropropene	< 0.68	88.0		ម g/m 3	1	2/3/2022 7:29:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 7:29:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	2/3/2022 7:29:00 PM
Ethyl acetate	1.8	0.54		ug/m3	1	2/3/2022 7:29:00 PM
Ethylbenzene	0.69	0.65		ug/m3	1	2/3/2022 7:29:00 PM
Freon 11	1.1	0.84		ug/m3	1	2/3/2022 7:29:00 PM
Freon 113	< 1,1	1.1		ug/m3	1	2/3/2022 7:29:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 7:29:00 PM

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

Page 7 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-004A

Date: 04-Feb-22

Client Sample ID: A2

Tag Number: 1176,440

Collection Date: 2/1/2022

Matrix: AIR

Analyses	Result	DL Qu	ial Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJ	
Freon 12	2.2	0.74	ug/m3	1	2/3/2022 7:29:00 PM	
Heptane	2.0	0.61	ug/m3	1	2/3/2022 7:29:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6	սց/m3	1	2/3/2022 7:29:00 PM	
Нехале	1.4	0.53	ug/m3	1	2/3/2022 7:29:00 PM	
isopropyl alcohol	19	3.7	ug/m3	10	2/4/2022 6:58:00 AM	
m&p-Xylene	1.9	1.3	սց/m3	1	2/3/2022 7:29:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 7:29:00 PM	
Methyl Ethyl Ketone	2.2	0.88	ug/m3	1	2/3/2022 7:29:00 PM	
Methyl Isobutyl Ketone	< 1,2	1.2	ц д/m3	1	2/3/2022 7:29:00 PM	
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/3/2022 7:29:00 PM	
Methylene chloride	1.2	0.52	ug/m3	1	2/3/2022 7:29:00 ₽M	
o-Xylene	0.65	0.65	ug/m3	1	2/3/2022 7;29:00 PM	
Propylene	< 0.26	0.26	սց/m3	1	2/3/2022 7:29:00 PM	
Styrene	0.60	0.64	I սց/m3	1	2/3/2022 7:29:00 PM	
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	2/3/2022 7:29:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/3/2022 7:29:00 PM	
Toluene	6.1	0.57	ug/m3	1	2/3/2022 7:29:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/3/2022 7:29:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/3/2022 7:29:00 PM	
Trichloroethene	< 0.16	0.16	ug/m3	1	2/3/2022 7:29:00 PM	
Vinyl acetate	< 0.53	0.53	սց/m3	1	2/3/2022 7:29:00 PM	
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/3/2022 7:29:00 PM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	2/3/2022 7:29:00 PM	

Qualifiers:	SC	Sub-Contracted
Quantitie 1 81	123	Denty-sa. Children

B Analyte detected in the associated Method Blank

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 8 of 14

¹⁴ Holding times for preparation or analysis exceeded

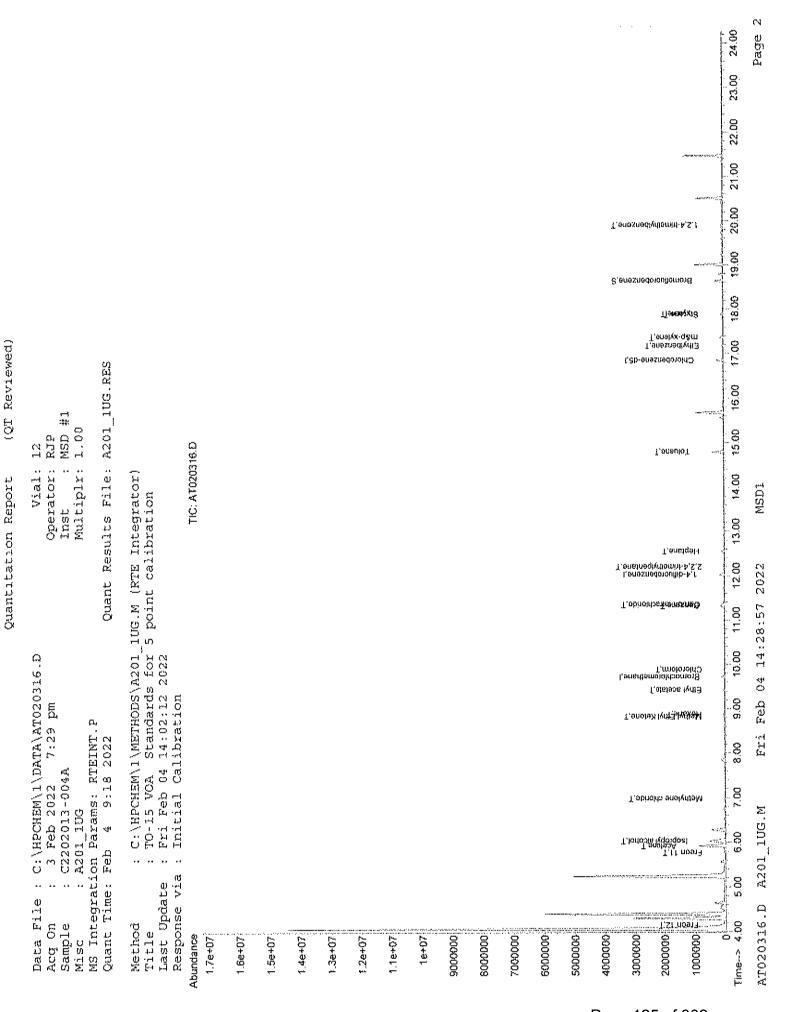
JN Non-routine analyte, Quantitation estimated,

S Spike Recovery outside accepted recovery limits

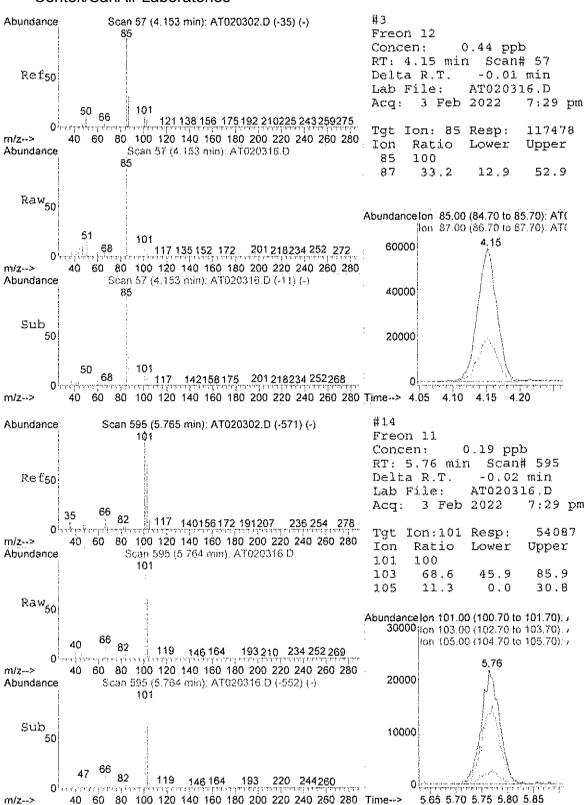
Centek/SanAir Laboratories (QT Reviewed)

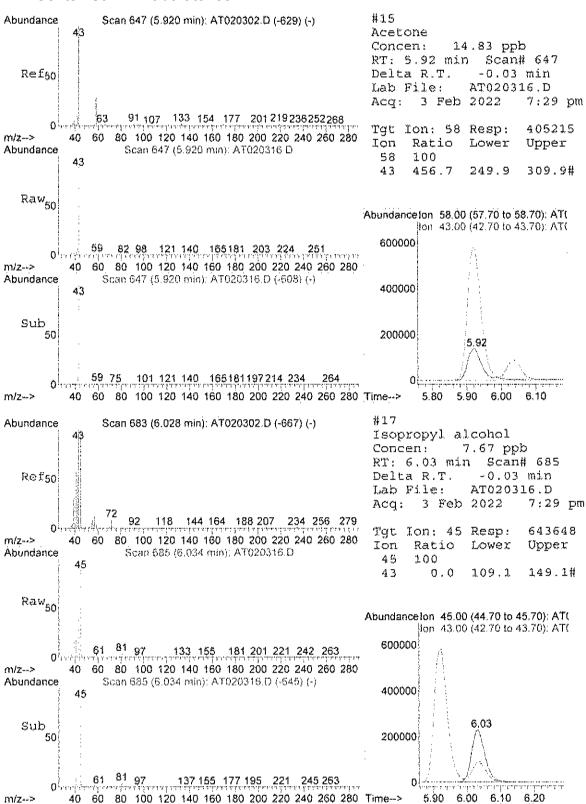
Data File : C:\HPCHEM\1\DATA\AT020316.D Vial: 12 Acq On : 3 Feb 2022 7:29 pm Operator: RJP Sample : C2202013~004A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

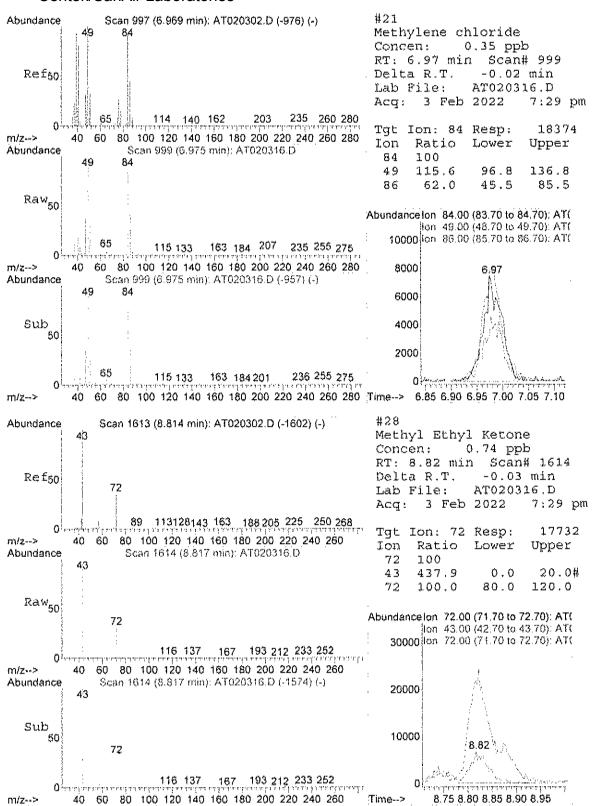
MS Integration Params: RTEINT.P

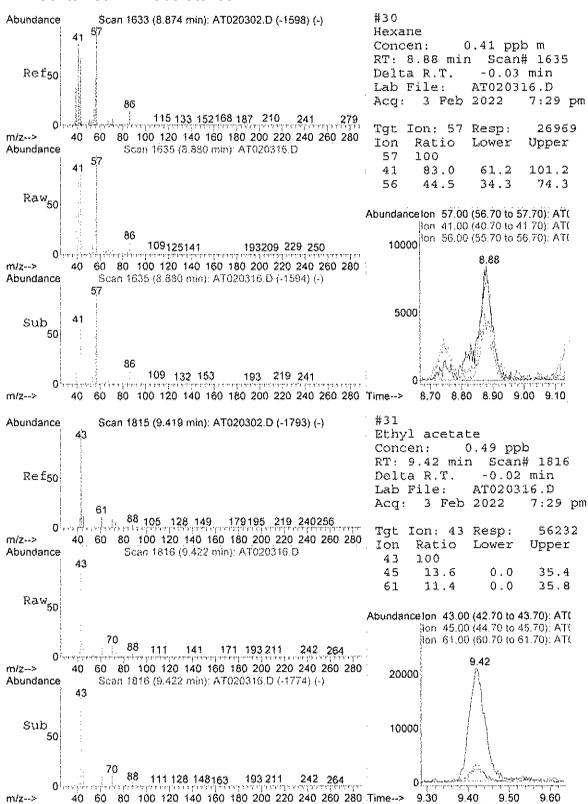

Quant Time: Feb 04 08:24:34 2022 Quant Results File: A201 1UG.RES

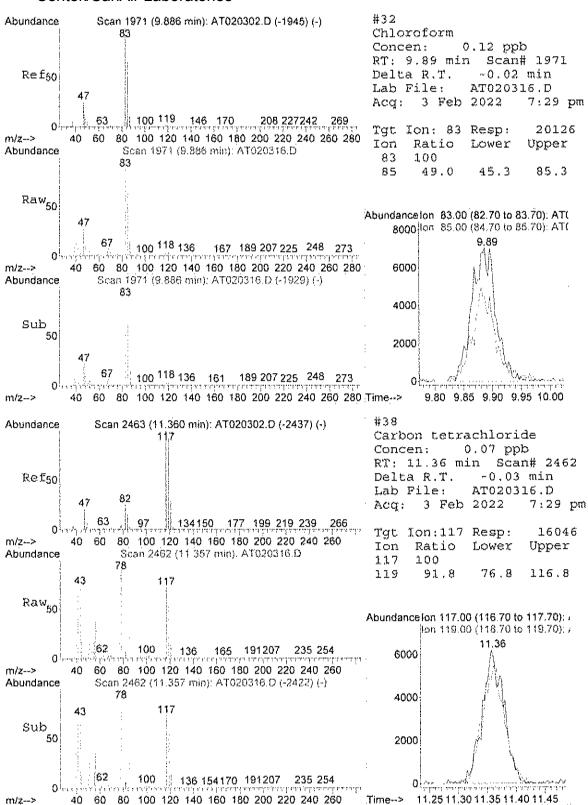
Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022

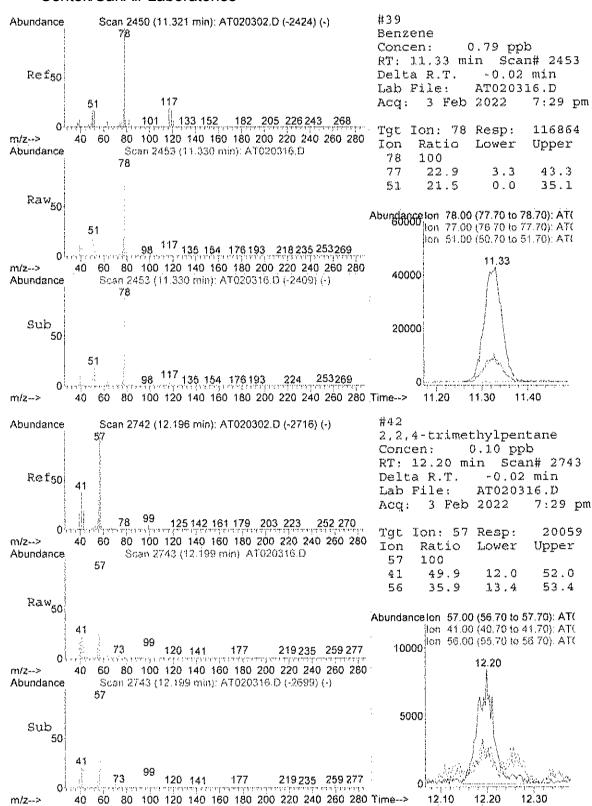

Response via : Initial Calibration

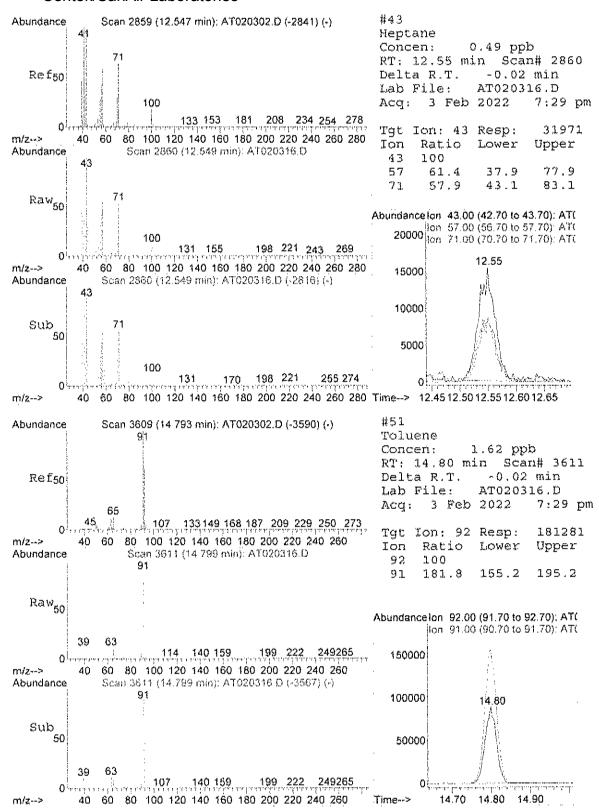

DataAcq Meth : 1UG_ENT

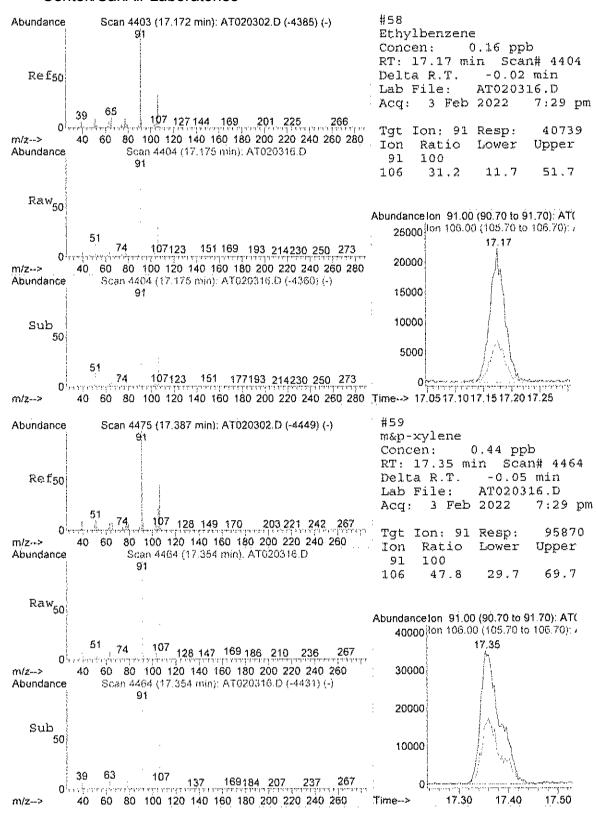

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
1) Bromochloromethane	9.72	128	38494	1.00	dqq	-0.03
35) 1,4-difluorobenzene	12.02	114	160577	1.00	dqq	-0.02
50) Chlorobenzene-d5	16.88	1.1.7	143772	1.00	ppb	-0.02
System Monitoring Compounds						
65) Bromofluorobenzene	18.64	95	103099	0.97	dqq	-0.01
Spiked Amount 1.000	Range 70	- 130	Recove	ry =	97.	.00%
Taxget Compounds						Qvalue
3) Freon 12	4.15	85	117478	0.44	dqq	99
14) Freon 11	5.76	101	54087	0.19		97
15) Acetone	5.92	58	405215			
17) Isopropyl alcohol	6.03	45	643648	7.67	dqq	# 1
21) Methylene chloride	6.97	84	18374			
28) Methyl Ethyl Ketone	8.82	72	17732	0.74	dqq	# 100
30) Hexane	8.88	57	26969m j	0.41	cídd	
31) Ethyl acetate	9,42	43	56232 🖊	0.49	dqq	93
32) Chloroform	9.89	83	20126			
38) Carbon tetrachloride	11.36	117	16046		dqq	95
39) Benzene	11.33	78	116864			
42) 2,2,4-trimethylpentane	12.20	57	20059	0.10		82
43) Heptane	12.55	43	31971	0.49		
51) Toluene	14.80	92	181281	1.62		
58) Ethylbenzene		91		0.16		
59) m&p-xylene		91	95870	0.44		
61) Styrene	17.87		22228	0.14		
63) o-xylene	17.90		35546	0.15		
71) 1,2,4-trimethylbenzene	19.90	1.05	31821	0.13	ppb	100

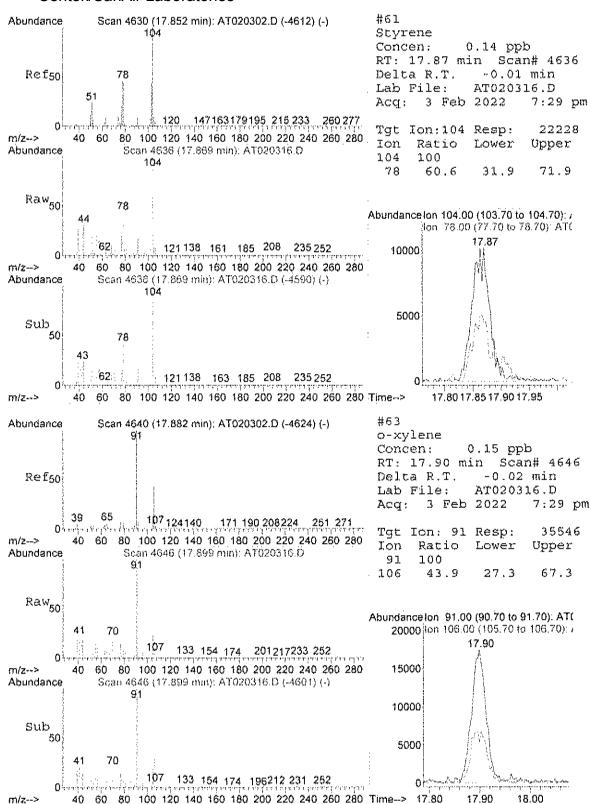


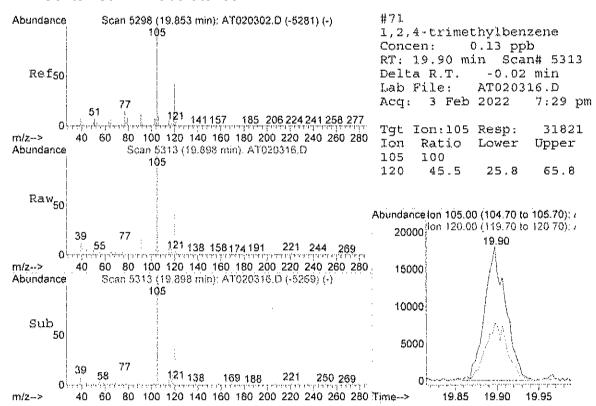

Page 125 of 302



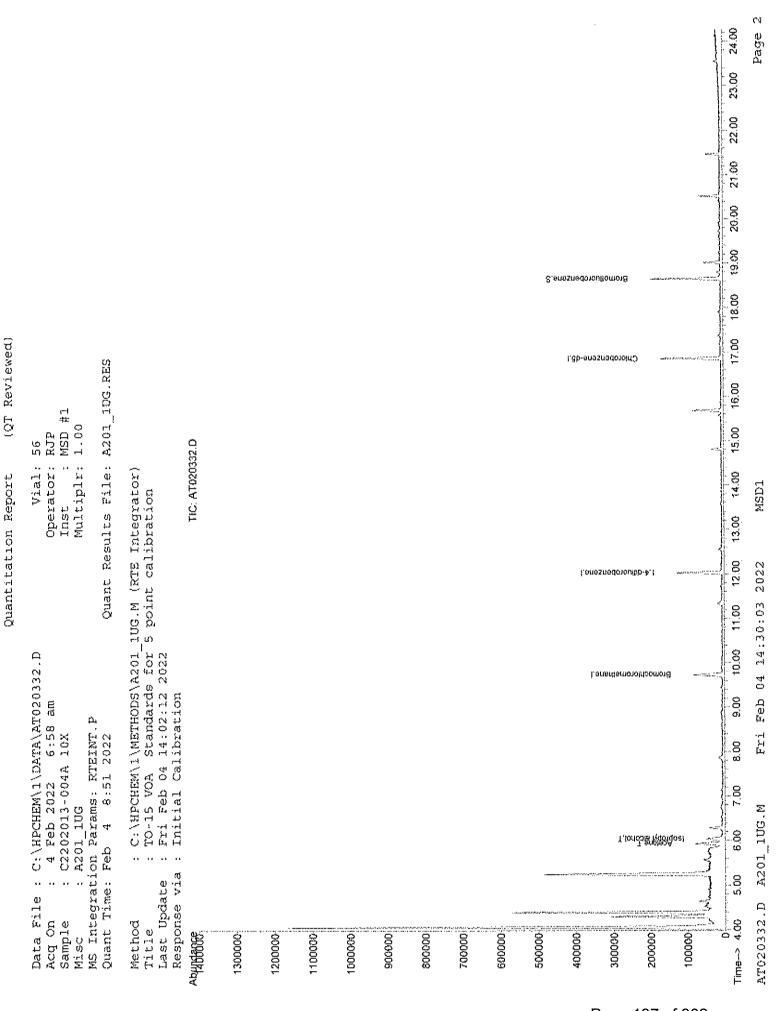




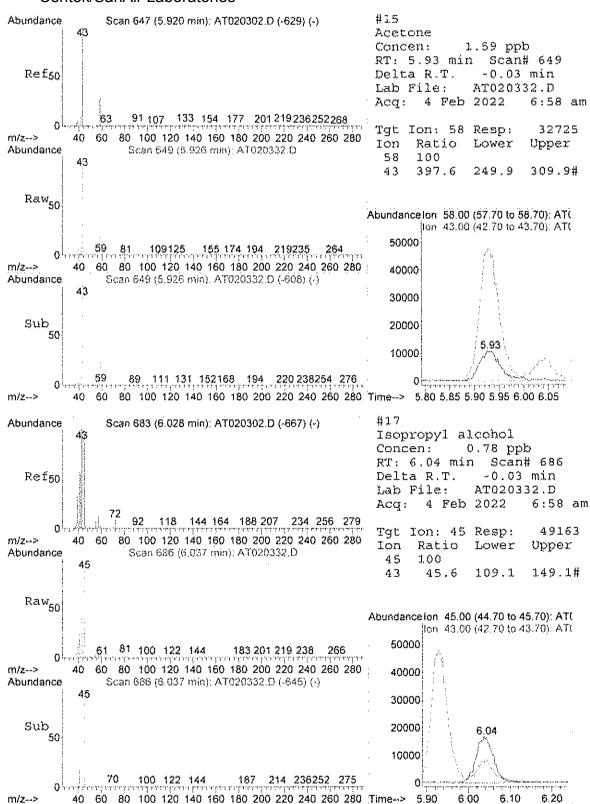




Centek/SanAir Laboratories Report (QT Reviewed)


Data File : C:\HPCHEM\1\DATA\AT020332.D Vial: 56 Acq On : 4 Feb 2022 6:58 am Operator: RJP Sample : C2202013-004A 10X Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 04 08:24:50 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration
DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.03 16.85	128 114 117	28915 122898 105107	1.00	ppb	-0.02 -0.02 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.65 Range 70	95 ~ 130	66497 Recovery		dqq ə8	"0.01 .00%
Target Compounds 15) Acetone 17) Isopropyl alcohol	5 ₋ 93 6.04	58 45	32725 49163	1.59 0.78		Qvalue # 37 # 28

Page 137 of 302

Date: 04-Feb-22

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Client Sample 1D: A3

Tag Number: 195,434 Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL (Qual Units	DF	Date Analyzed
FIELD PARAMETERS			D		Analyst:
Lab Vacuum In	-1		"Hg		2/3/2022
Lab Vacuum Out	-30		"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то-	15		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,1,2-Trichtoroethane	< 0.15	0.15	Vđqq	1	2/3/2022 8:13:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,1-Dichloroethene	< 0.040	0.040	Vdqq	1	2/3/2022 8:13:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15	Vđqq	1	2/3/2022 8:13:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	₽₽bV	1	2/3/2022 8:13:00 ₽M
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
1,3-butadiene	< 0.15	0.15	₽₽bV	1	2/3/2022 8:13:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Vđqq	1	2/3/2022 8:13:00 PM
1,4-Dioxane	< 0.30	0.30	Vdqq	1	2/3/2022 8:13:00 PM
2,2,4-trimethylpentane	0.12	0.15	J ppbV	1	2/3/2022 8:13:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Acetone	45	12	ppbV	40	2/4/2022 8:23:00 AM
Allyt chloride	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Benzene	0.38	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Benzyl chloride	< 0.15	0.15	∨dqq	1	2/3/2022 8:13:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Bromomethane	< 0.15	0.15	ppb∨	1	2/3/2022 8:13:00 PM
Carbon disulfide	0.10	0.15	J ppbV	1	2/3/2022 8:13:00 PM
Carbon tetrachloride	0.090	0.030	ppbV	1	2/3/2022 8:13:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Chloroform	1.1	0.15	Vdqq	1	2/3/2022 8:13:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	₽pb∨	1	2/3/2022 8:13:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	2/3/2022 8:13:00 PM
Dibromochloromethane	< 0.15	0.15	Váqq	1	2/3/2022 8:13:00 PM
Ethyl acetate	0.38	0.15	ppbV	1	2/3/2022 8:13:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 9 of 14

Date: 04-Feb-22

CLIENT: Ma

Lab Order:

Matrix Environmental Technologies, Inc.

C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Client Sample ID: A3

Tag Number: 195,434 Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	DŁ	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TC	-15			Analyst: RJP	
Ethylbenzene	0.10	0.15	J	Vdqq	1	2/3/2022 8:13:00 PM	
Freon 11	0.20	0.15		ppb∨	7	2/3/2022 8:13:00 PM	
Freon 113	< 0.15	0.15		Vdqq	1	2/3/2022 8:13:00 PM	
Freon 114	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Freon 12	0.47	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Heptane	0.27	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Hexachtoro-1,3-butadiene	< 0.15	0.15		ppb∨	1	2/3/2022 8:13:00 PM	
Hexane	0.36	0.15		Vdqq	1	2/3/2022 8:13:00 PM	
Isopropyl alcohol	< 0.15	0.15		Vdqq	1	2/3/2022 8:13:00 PM	
m&p-Xylene	0.32	0.30		ppbV	1	2/3/2022 8:13:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		₽₽bV	1	2/3/2022 8:13:00 PM	
Methyl Ethyl Ketone	0.68	0.30		ppbV	1	2/3/2022 8:13:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	2/3/2022 8:13:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Methylene chloride	0.29	0.15		ppbV	1	2/3/2022 8:13:00 PM	
o-Xylene	0.12	0.15	j	₽₽₽V	1	2/3/2022 8:13:00 PM	
Propylene	< 0.15	0.15		Vđqq	1	2/3/2022 8:13:00 PM	
Styrene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Tetrachtoroethylene	0.21	0.15		₽₽₽V	1	2/3/2022 8:13:00 PM	
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	2/3/2022 8:13:00 PM	
Toluene	0.82	0.15		ρρbV	1	2/3/2022 8:13:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Trichloroethene	0.030	0.030		ppbV	1	2/3/2022 8:13:00 PM	
Vinyl acetate	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Vinyl Bromide	< 0.15	0.15		ppbV	1	2/3/2022 8:13:00 PM	
Vinyl chloride	< 0.040	0.040		ppbV	1	2/3/2022 8:13:00 PM	
Surr: Bromofluorobenzene	93.0	47~124		%REC	1	2/3/2022 8:13:00 PM	

Qualifiers:	SC	Sub-Contracted
Catalania se	4 7 %	. 1110-6 (4)1111116 26.62

B Analyte detected in the associated Method Blank

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

Page 10 of 14

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab 1D: C2202013-005A

Date: 04-Feb-22

Client Sample ID: A3

Tag Number: 195,434

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	ÐŁ	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		աց/m3	1	2/3/2022 8:13:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	2/3/2022 8:13:00 PM
1.1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 8:13:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 8:13:00 ₽M
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:13:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		սց/m3	1	2/3/2022 8:13:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		սց/m3	1	2/3/2022 8:13:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 8:13:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 8:13:00 PM
1,2-Dichloroethane	< 0.61	0.61		սց/m3	1	2/3/2022 8:13:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	2/3/2022 8:13:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 8:13:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 8:13:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 8:13:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		นg/ภา3	1	2/3/2022 8:13:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 8:13:00 PM
2,2,4-trimethylpentane	0.56	0.70	Ų	սց/m3	1	2/3/2022 8:13:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 8:13:00 PM
Acetone	110	28		ug/m3	40	2/4/2022 8:23:00 AM
Altyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 8:13:00 PM
Benzene	1.2	0.48		ug/m3	1	2/3/2022 8:13:00 PM
Benzyl chloride	< 0.86	0.86		មg/n13	1	2/3/2022 8:13:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 8:13:00 PM
Bromoform	< 1.6	1.6		սց/m3	1	2/3/2022 8:13:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 8:13:00 PM
Carbon disulfide	0.31	0.47	Ţ	ug/m3	1	2/3/2022 8:13:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	2/3/2022 8:13:00 PM
Chlorobenzene	< 0.69	0.69		սց/m3	1	2/3/2022 8:13:00 PM
Chloroethane	< 0.40	0.40		ид/m3	1	2/3/2022 8:13:00 PM
Chloroform	5.5	0.73		ug/m3	1	2/3/2022 8:13:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	2/3/2022 8:13:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:13:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 8:13:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 8:13:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	2/3/2022 8:13:00 PM
Ethyl acetate	1.4	0.54		ug/m3	1	2/3/2022 8:13:00 PM
Ethylbenzene	0,43	0.66	£	ug/m3	1	2/3/2022 8:13:00 PM
Freon 11	1.1	0.84		ug/m3	1	2/3/2022 8:13:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 8:13:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 8:13:00 PM

Qualifiers:

Sub-Contracted

SC

B Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

3N Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 9 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-005A

Date: 04-Feb-22

Client Sample ID: A3

Tag Number: 195,434

Collection Date: 1/31/2022

Matrix: AIR

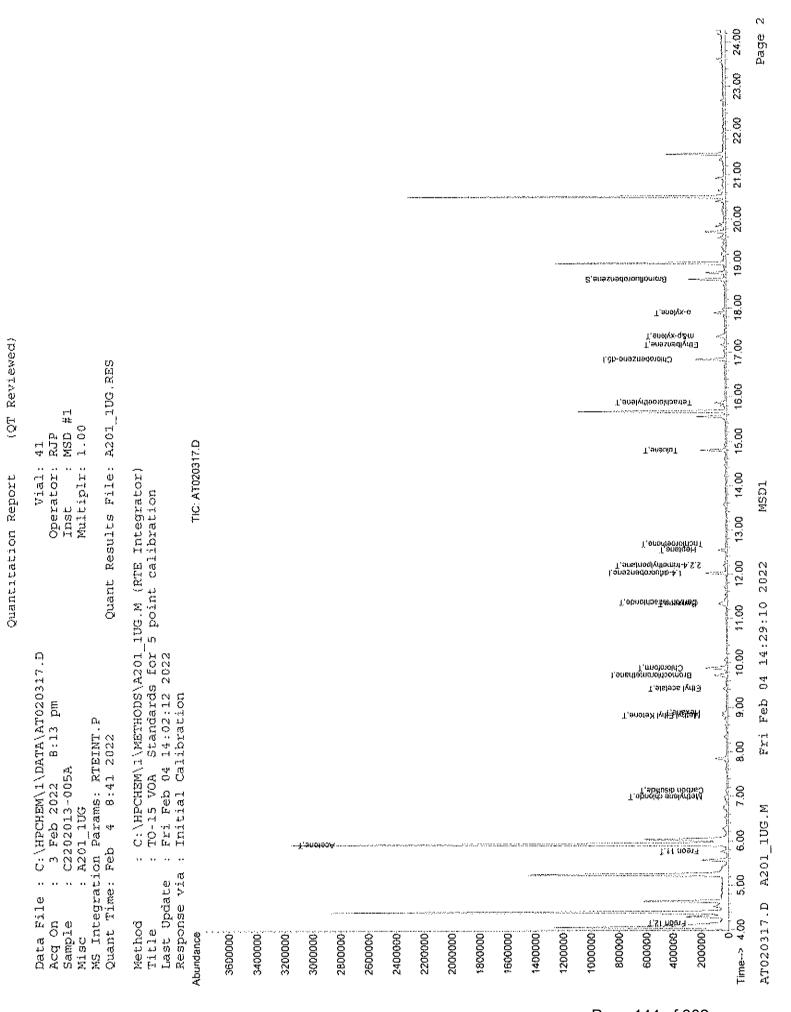
and the second s	and the second second second					
Analyses	Result	DL Qu	al Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJP	
Freon 12	2.3	0.74	ug/m3	1	2/3/2022 8:13:00 PM	
Heptane	1.1	0.61	ug/m3	4	2/3/2022 8:13:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/3/2022 8:13:00 PM	
Hexane	1.3	0.53	ug/m3	1	2/3/2022 8:13:00 PM	
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	2/3/2022 8:13:00 ₽M	
m&p-Xylene	1.4	1.3	ug/m3	1	2/3/2022 8:13:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 8:13:00 PM	
Methyl Ethyl Ketone	2.0	0.88	ug/m3	1	2/3/2022 8:13:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/3/2022 8:13:00 PM	
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/3/2022 8:13:00 ₽M	
Methylene chloride	1.0	0,52	ug/m3	1	2/3/2022 8:13:00 PM	
o-Xylene	0.52	0.65	ug/m3	1	2/3/2022 8:13:00 PM	
Propylene	< 0.26	0.26	ug/m3	1	2/3/2022 8:13:00 PM	
Styrene	< 0.64	0.64	មg/m3	1	2/3/2022 8:13:00 PM	
Tetrachloroethylene	1.4	1.0	ug/m3	1	2/3/2022 8:13:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/3/2022 8:13:00 PM	
Toluene	3.1	0.57	ug/m3	1	2/3/2022 8:13:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/3/2022 8:13:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/3/2022 8:13:00 PM	
Trichloroethene	0.16	0.16	ug/m3	1	2/3/2022 8:13:00 PM	
Vinyl acetate	< 0.53	0.53	ug/m3	1	2/3/2022 8:13:00 PM	
Vinyl Bromide	< 0.66	0.66	սց/m3	1	2/3/2022 8:13:00 FM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	2/3/2022 8:13:00 PM	

	٠.	. u			
Oua	h	١ì	ť,	ĽS	

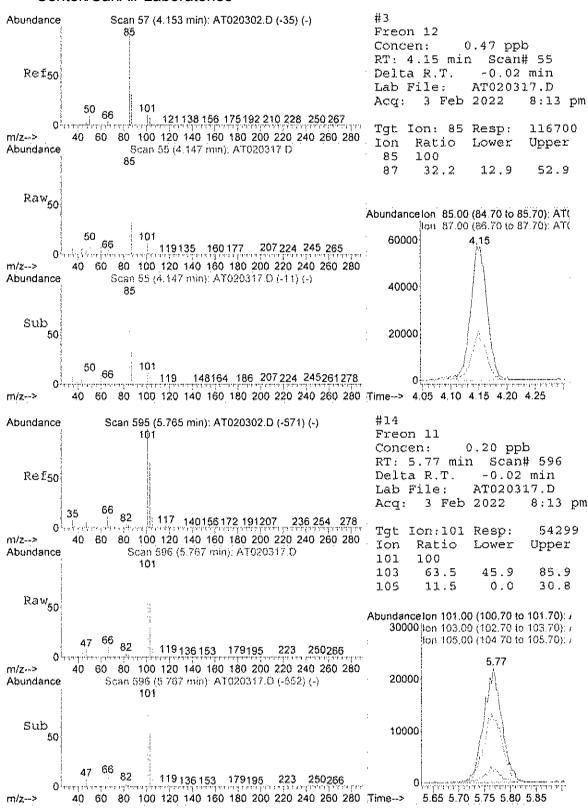
- SC Sub-Contracted
- B. Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

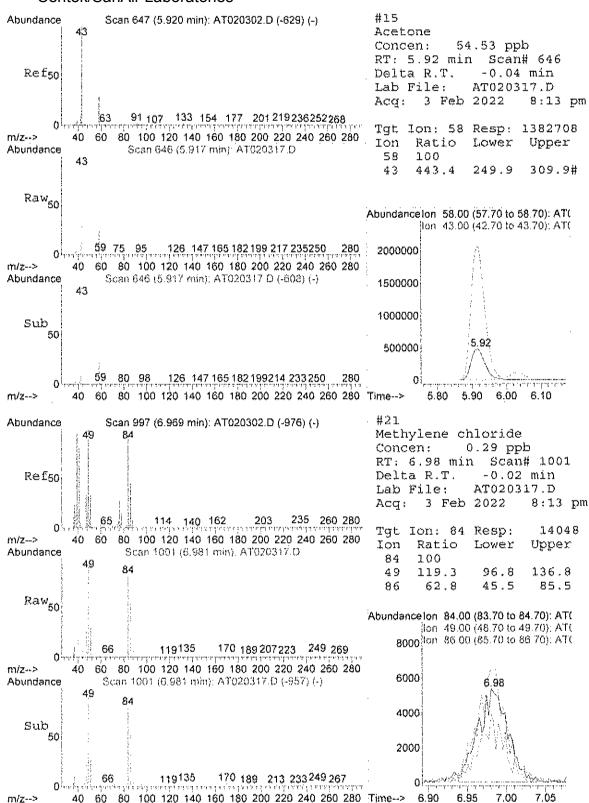
Page 10 of 14

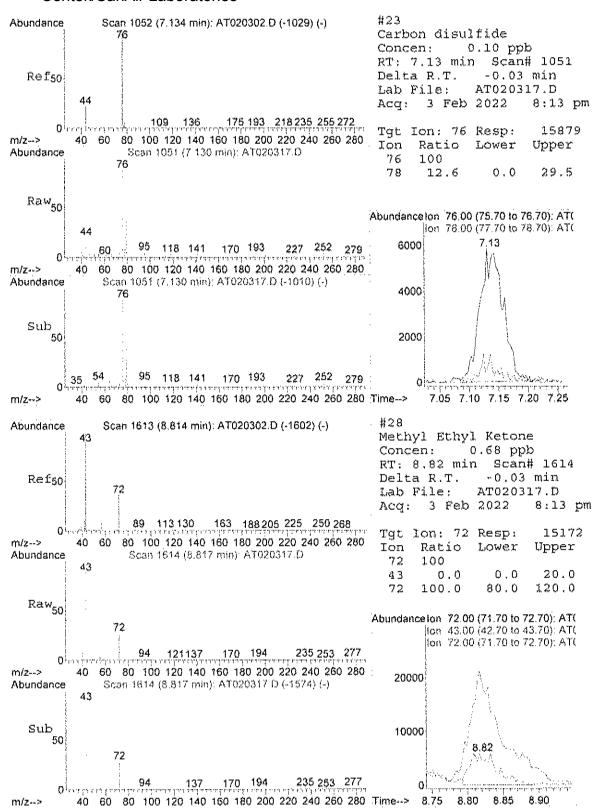
Centek/SanAir Laboratories (QT Reviewed)

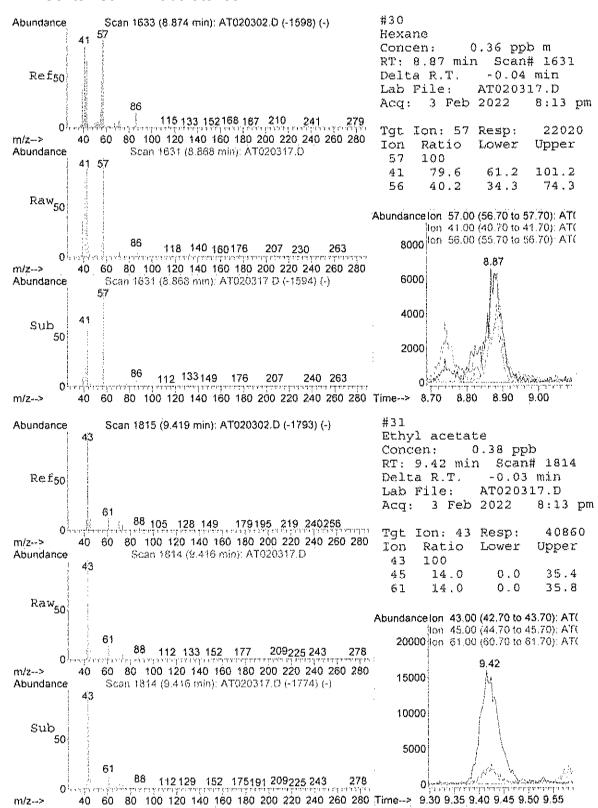

Data File : C:\HPCHEM\1\DATA\AT020317.D Vial: 41 Acq On : 3 Feb 2022 8:13 pm Operator: RJP Sample : C2202013-005A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

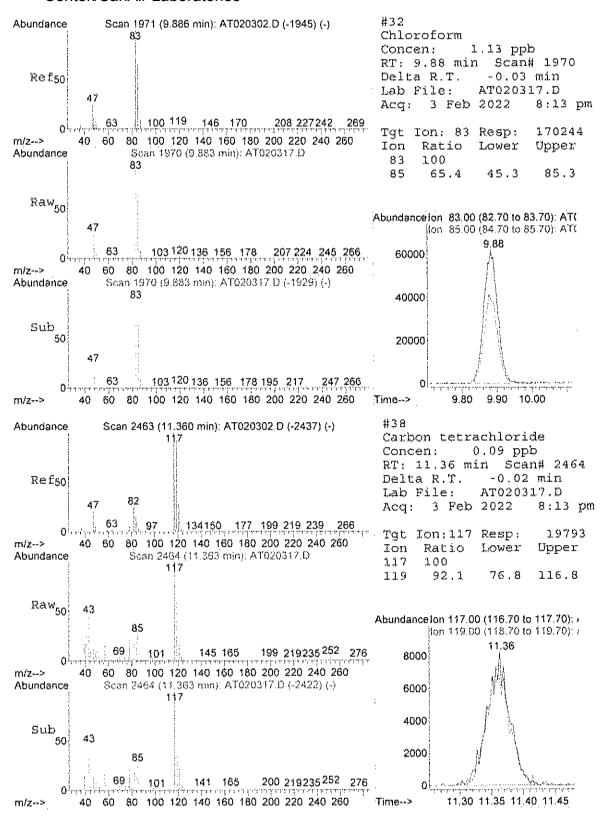
MS Integration Params: RTEINT.P

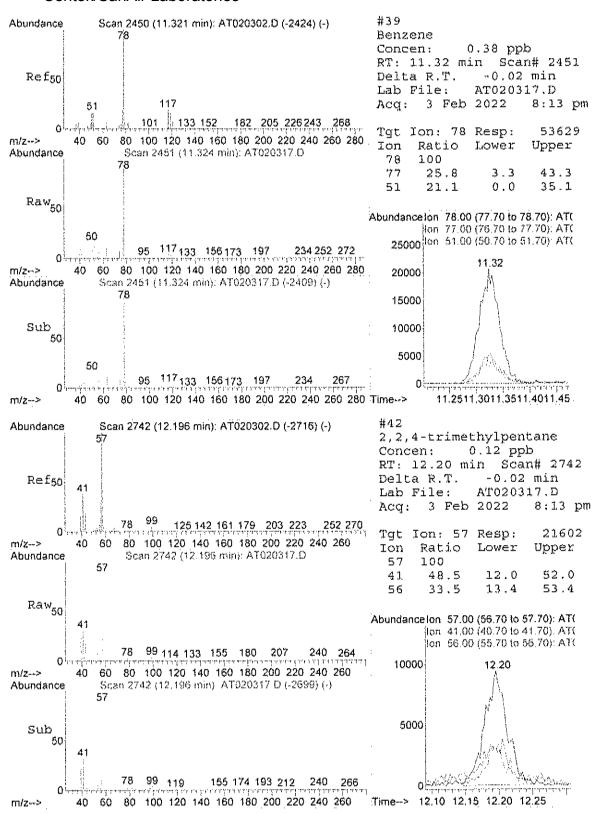

Quant Time: Feb 04 08:24:35 2022 Quant Results File: A201 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022 Response via : Initial Calibration DataAcq Meth : IUG_ENT

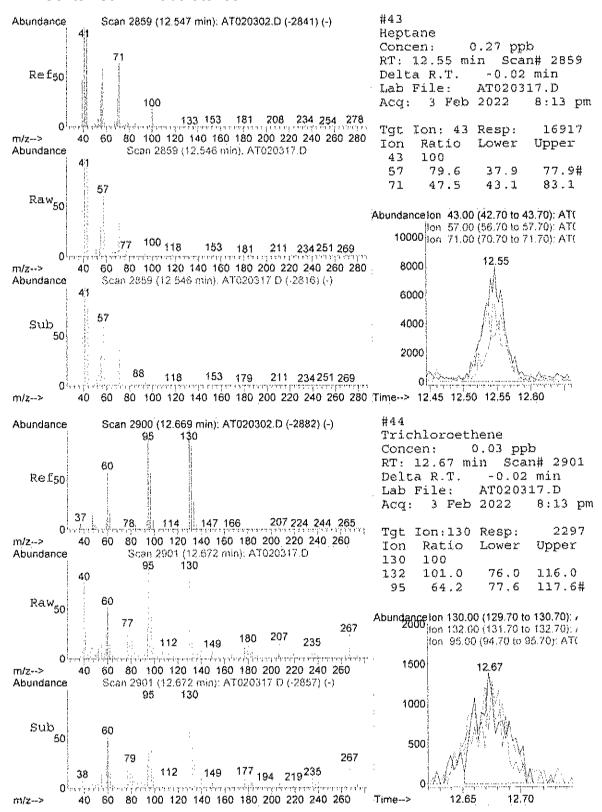

Internal Standards	R.T.	QIon	Response	Conc U		Dev(Min)
1) Bromochloromethane	9.72	128	35722	1.00	ppb	-0.03
35) l,4-difluorobenzene	12.02	114	154976			
50) Chlorobenzene-d5	16.84	117	136802	1.00	ppb	-0.02
System Monitoring Compounds						
65) Bromofluorobenzene	18.64	95	94266	0.93	dqq	-0.02
Spiked Amount 1.000		- 130				.00%
Target Compounds						Qvalue
3) Freon 12	4.15	85	116700	0.47	dqq	99
14) Freon 11	5.77	101	54299	0.20		97
15) Acetone	5.92	58	1382708	54.53	dqq	# 13
21) Methylene chloride	6.98	84	14048	0.29	ppb	97
23) Carbon disulfide	7.13	76	15879	0.10	ppb	92
28) Methyl Ethyl Ketone	8.82	72	15172	0.68	dqq	# 100
30) Hexane	8.87	57	22020m /			
31) Ethyl acetate	9.42	43	40860	0.38		96
32) Chloroform	9.88	83	170244			100
38) Carbon tetrachloride	11.36	117	19793	0.09		95
39) Benzene	11.32	78	53629	0.38		91.
42) 2,2,4-trimethylpentane	12.20	57	21602	0.12		85
43) Heptane	12.55	43	16917	0.27	ppp	# 76
44) Trichloroethene	12.67	130	2297	0.03		# 80
51) Toluene	14.80		87645	0.82		98
56) Tetrachloroethylene	15.87		18110	0.21		95
58) Ethylbenzene	1.7.17	91.		0.10		98
59) m&p-xylene	17.35		66339	0.32		95
63) o-xylene	17.89	9.1	27163	0.12	bbp	90

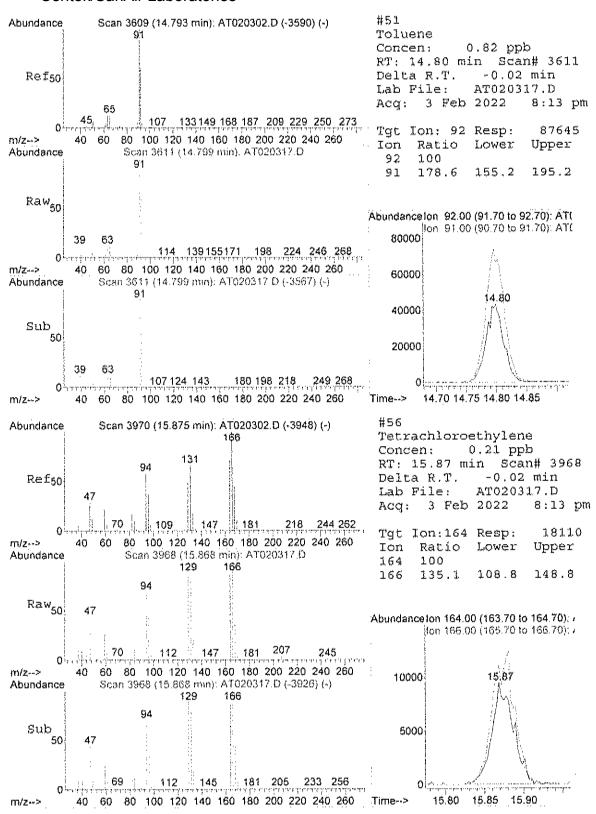

Page 144 of 302

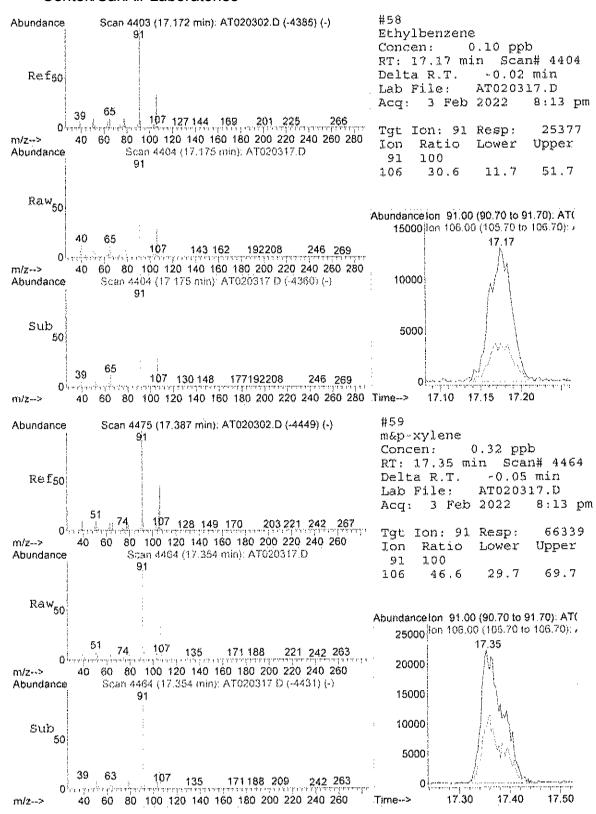


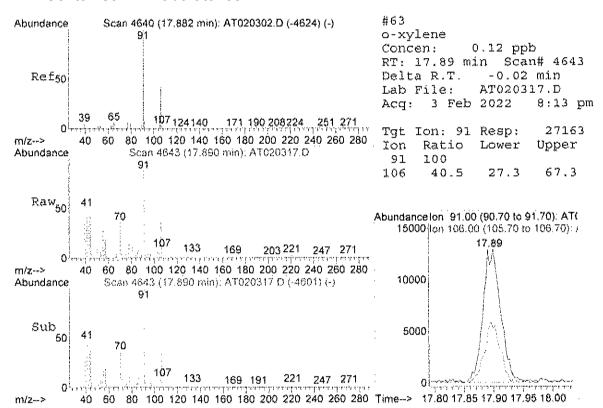


MSD1




MSDl



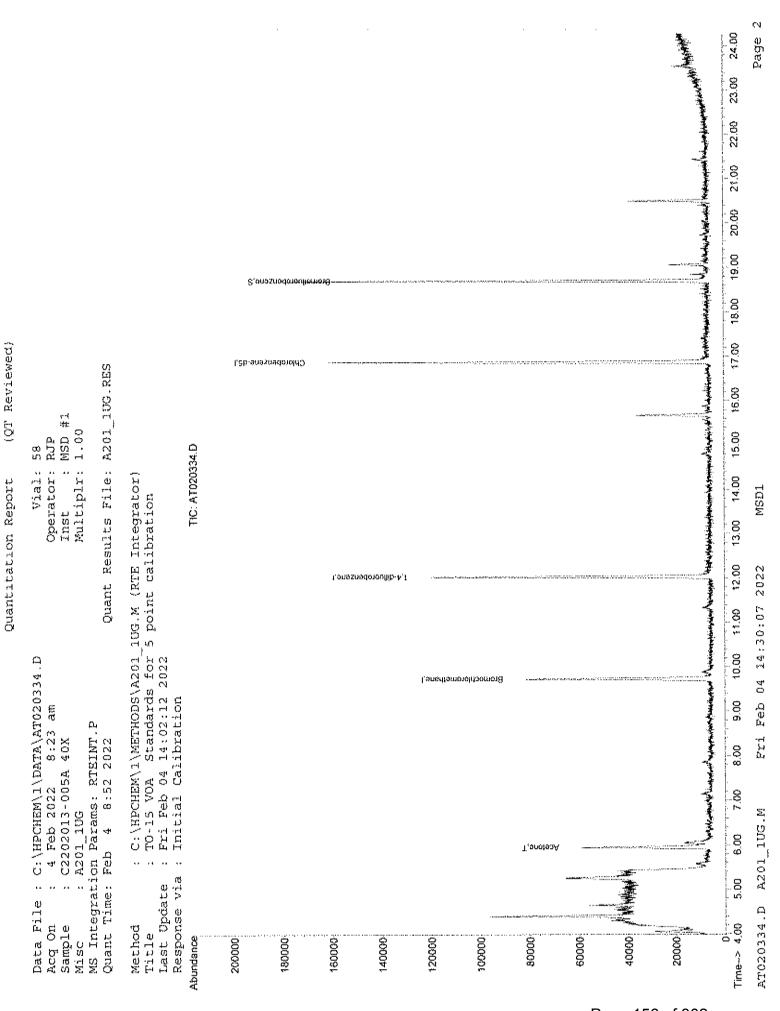

MSD1

MSDl

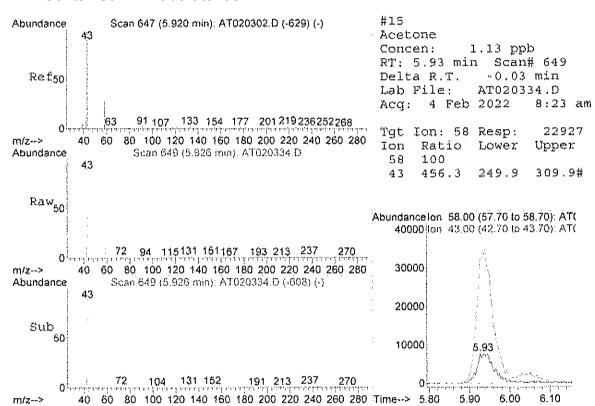
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020334.D Vial: 58 Acq On : 4 Feb 2022 8:23 am Sample : C2202013-005A 40X Misc : A201 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 04 08:52:32 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response C	Conc Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.03 16.87	128 114 117	28678 118900 97566	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.69 Range 70	95 - 130		0.85 ppb / = 85	
Target Compounds 15) Acetone	5.93	58	22927	1,13 ppb	Qvalue # 6

Page 156 of 302

MSD1

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Resuit	ÐL	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		F	LD			Analyst:
Lab Vacuum In	-1			"Hg		2/3/2022
Lab Vacoum Out	-30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15		Vđqq	1	2/3/2022 8:58:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,1,2-Trichioroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,1-Dichloroethane	< 0.15	0.15		Vđqq	1	2/3/2022 8:58:00 PM
1,1-Dichloroethene	< 0.040	0.040		ppb∨	1	2/3/2022 8:58:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
1,2,4-Trimethylbenzene	0.11	0.15	J	Vdqq	1	2/3/2022 8:58:00 PM
1,2-Dibromoethane	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,2-Dichtoropropane	< 0.15	0.15		₽₽bV	1	2/3/2022 8:58:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,3-butadiene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
1,3-Dichlorobenzese	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
1,4-Dichlorobenzene	0,11	0.15	J	Vđqq	1	2/3/2022 8:58:00 PM
1.4-Dioxane	< 0.30	0.30		Vđqq	1	2/3/2022 8:58:00 PM
2,2,4-trimethylpentane	0.14	0.15	Ĺ	ppbV	1	2/3/2022 8:58:00 PM
4-ethyltoluene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Acetone	12	3.0		ppbV	10	2/4/2022 12:06:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Benzene	0.40	0.15		ppbV	1	2/3/2022 8:58:00 PM
Benzyl chloride	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Bromodichloromethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Bromoform	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Bromomethane	< 0.15	0.15		ρρbV	1	2/3/2022 8:58:00 PM
Carbon disuffide	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Carbon tetrachloride	0.080	0.030		ppbV	1	2/3/2022 8:58:00 PM
Chlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Chioroethane	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Chloroform	0.10	0.15	j	ppbV	1	2/3/2022 8:58:00 PM
Chloromethane	0.48	0.15		ppbV	1	2/3/2022 8:58:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	2/3/2022 8:58:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Cyclohexane	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Dibromochloromethane	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Ethyl acetate	0.25	0.15		ppbV	1	2/3/2022 8:58:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Dt. Detection Limit

Page 11 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Ethylbenzene	0.13	0.15	J	∨dqq	1	2/3/2022 8:58:00 PM
Freon 11	0.20	0.15		ppb∨	1	2/3/2022 8:58:00 PM
Freon 113	< 0.15	0.15		Vđạq	1	2/3/2022 8:58:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
Freon 12	0.47	0.15		ppbV	1	2/3/2022 8:58:00 PM
Heptane	0.26	0.15		₽₽bV	1	2/3/2022 8:58:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		₽₽bV	1	2/3/2022 8:58:00 PM
Hexane	0.39	0.15		₽pbV	1	2/3/2022 8:58:00 PM
Isopropyl alcohol	3.0	1.5		Vdqq	10	2/4/2022 12:06:00 PM
m&p-Xylene	0.42	0.30		ppb∨	1	2/3/2022 8:58:00 PM
Methyl Butyl Ketone	< 0.30	0.30		₽₽b∨	1	2/3/2022 8:58:00 PM
Methyl Ethyl Ketone	0.29	0.30	J	ppbV	1	2/3/2022 8:58:00 ₽M
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	2/3/2022 8:58:00 PM
Methyl tert-butyl ether	< 0.15	0.15		∨dqq	1	2/3/2022 8:58:00 PM
Methylene chloride	0.16	0.15		₽₽bV	1	2/3/2022 8:58:00 PM
o-Xylene	0.13	0.15	J	₽₽bV	1	2/3/2022 8:58:00 PM
Propylene	< 0.15	0.15		∨dqq	1	2/3/2022 8:58:00 PM
Styrene	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Tetrachloroethylene	0.11	0.15	J	Vdqq	1	2/3/2022 8:58:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Toluene	1.1	0.15		₽₽bV	1	2/3/2022 8:58:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	2/3/2022 8:58:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	2/3/2022 8:58:00 PM
Tríchloroethene	< 0.030	0.030		ppbV	1	2/3/2022 8:58:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	2/3/2022 8:58:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	2/3/2022 8:58:00 PM
Surr: Bromofluorobenzene	94.0	47-124		%REC	1	2/3/2022 8:58:00 PM

/\	11	fiers	-
1711	44.15	11113	

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E. Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL. Detection Limit

Page 12 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	τc)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 8:58:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	2/3/2022 6:58:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 8:58:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 8:58:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 8:58:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
1,2,4-Trimethylbenzene	0.54	0.74	j	ug/m3	1	2/3/2022 8:58:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 8:58:00 PM
1,2-Dichlorobenzene	∹ 0.90	0.90		ug/m3	1	2/3/2022 8:58:00 PM
1,2-Dichloroethane	< 0.61	0.61		սց/m3	1	2/3/2022 8:58:00 PM
1,2-Dichloropropane	< 0.69	0.69		սց/m3	1	2/3/2022 8:58:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 8:58:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 8:58:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 8:58:00 PM
1,4-Dichlorobenzene	0.66	0.90	J	ug/m3	1	2/3/2022 8:58:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
2,2,4-trimethylpentane	0.65	0.70	į,	ug/m3	1	2/3/2022 8:58:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 8:58:00 PM
Acetone	29	7.1		ug/m3	10	2/4/2022 12:06:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 8:58:00 PM
Benzene	1.3	0.48		ug/m3	1	2/3/2022 8:58:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 8:58:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	2/3/2022 8:58:00 PM
Bromoform	< 1.6	1,6		ug/m3	1	2/3/2022 8:58:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 8:58:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 8:58:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	2/3/2022 8:58:00 PM
Chłorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 8:58:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 8:58:00 PM
Chloroform	0,49	0,73	J	ug/m3	1	2/3/2022 8:58:00 PM
Chloromethana	0.99	0.31		ug/m3	1	2/3/2022 8:58:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	3	2/3/2022 8:58:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	2/3/2022 8:58:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 8:58:00 PM
Dibromochloromethane	< 1.3	1.3		ид/т3	1	2/3/2022 8:58:00 PM
Ethyl acetate	0.90	0.54		ug/m3	1	2/3/2022 8:58:00 PM
Ethylbenzene	0.56	0.65	J	ug/m3	1	2/3/2022 8:58:00 PM
Freon 11	1,1	0.84		ug/m3	1	2/3/2022 8:58:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 8:58:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 8:58:00 PM

Qualifiers:

SC Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.
 Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

F. Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection DL Detection Limit

Page 11 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-006A

Date: 04-Feb-22

Client Sample ID: A4

Tag Number: 88,146

Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	ÐĽ	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1.1DCE	TO	-15			Analyst: RJF
Freon 12	2.3	0.74		ug/m3	1	2/3/2022 8:58:00 PM
Heptane	1.1	0.61		ug/m3	1	2/3/2022 8:58:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 8:58:00 PM
Hexane	1.4	0.53		ug/m3	1	2/3/2022 8:58:00 PM
Isopropyl alcohol	7.4	3.7		ug/m3	10	2/4/2022 12:06:00 PM
m&p-Xylene	1.8	1.3		ug/m3	1	2/3/2022 8:58:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 8:58:00 PM
Methyl Ethyl Ketone	0.86	0.88	j	ug/m3	1	2/3/2022 8:58:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 8:58:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 8:58:00 PM
Methylene chloride	0.56	0.52		ug/m3	1	2/3/2022 8:58:00 PM
o-Xylene	0.56	0.65	J	ug/m3	1	2/3/2022 8:58:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 8:58:00 PM
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 8:58:00 PM
Tetrachtoroethylene	0.75	1.0	J	ug/m3	1	2/3/2022 8:58:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 8:58:00 PM
Toluene	4.0	0.57		ug/m3	1	2/3/2022 8:58:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 8:58:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		սց/m3	1	2/3/2022 8:58:00 PM
Trichloroethеле	< 0.16	0.16		սց/m3	1	2/3/2022 8:58:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 8:58:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 8:58:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 8:58:00 PM

Quatifiers:	SC	Sub-Contracted
-------------	----	----------------

B.—Analyte detected in the associated Method Blank

Results reported are not blank corrected

E. Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 12 of 14

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

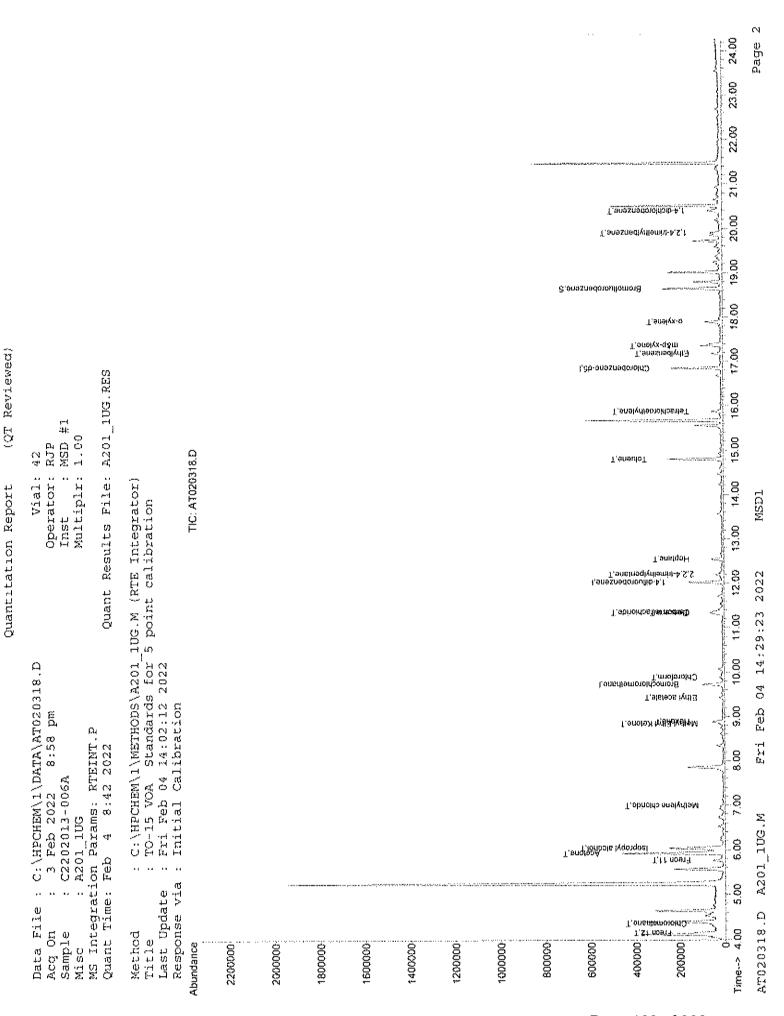
S Spike Recovery outside accepted recovery limits

Centek/SanAir Laboratories

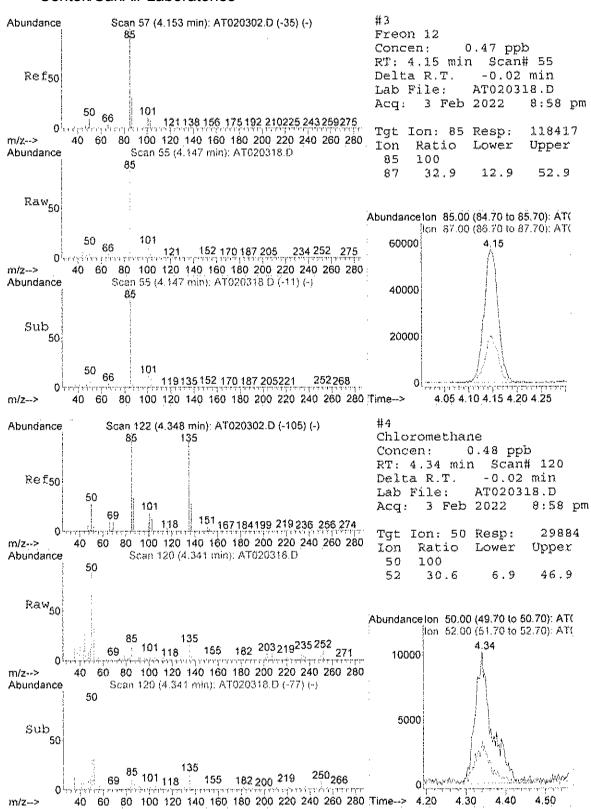
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020318.D Vial: 42 Acq On : 3 Feb 2022 8:58 pm Sample : C2202013-006A Misc : A201_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

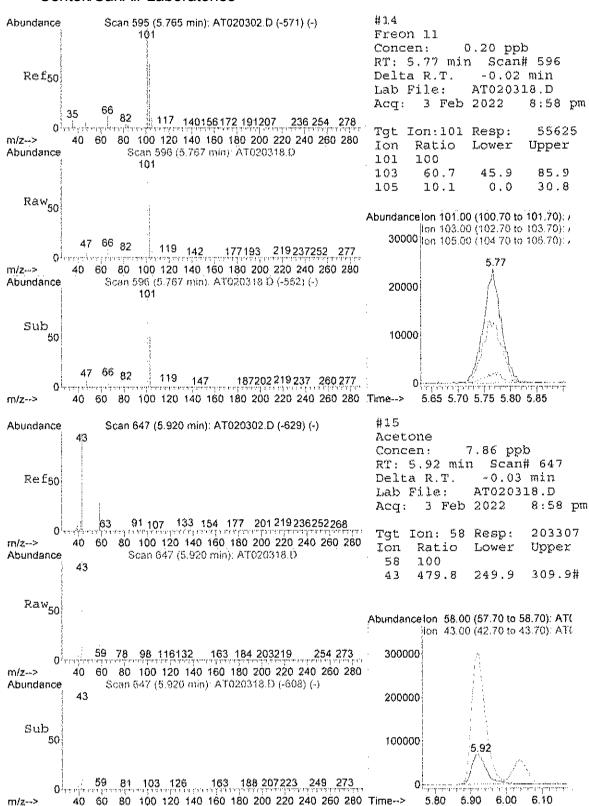
MS Integration Params: RTEINT.P Quant Time: Feb 04 08:24:36 2022 Quant Results File: A201_1UG.RES

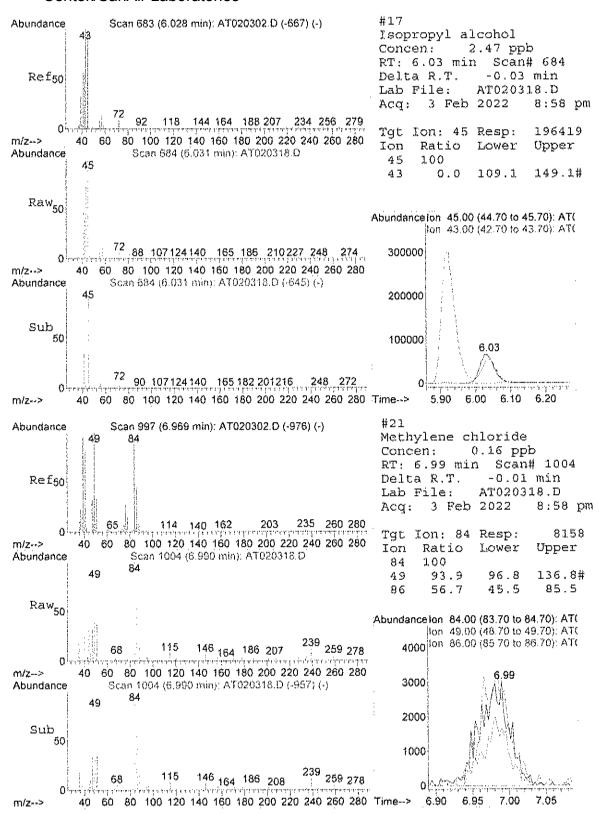

Quant Method : C:\HPCHEM\1\METHODS\A201 1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

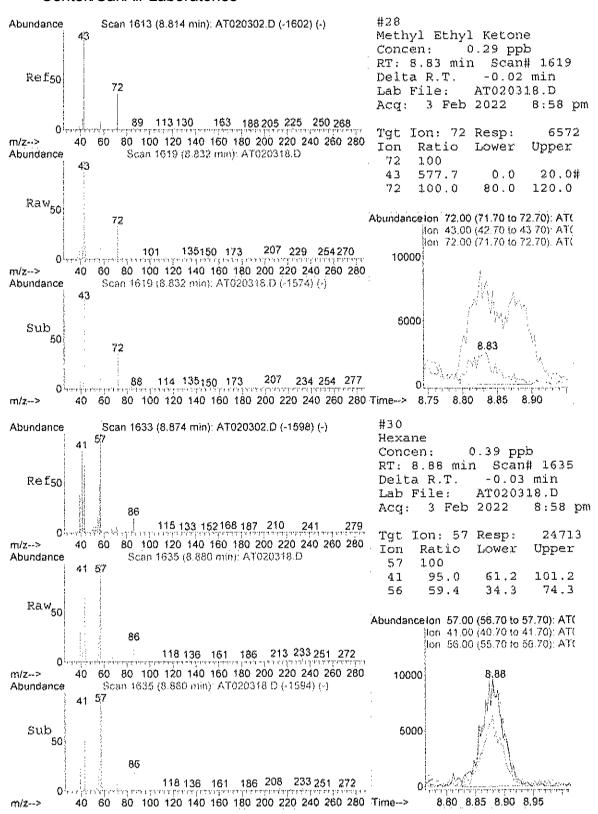
Last Update : Wed Feb 02 07:40:12 2022

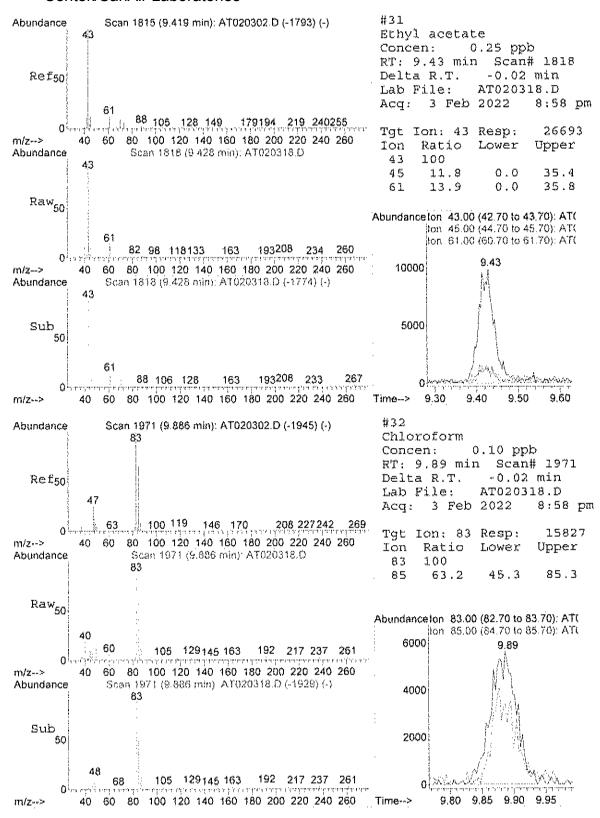

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

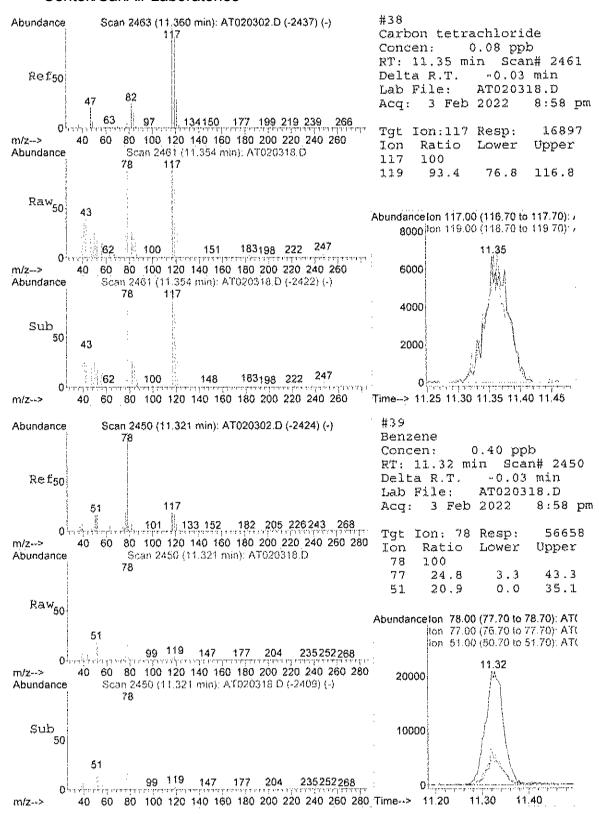

Internal Standards	R.T.		Response (Conc Un	nits	Dev(Min)
			36427	1.00	dqq	-0.03
35) 1,4-difluorobenzene	12.02	114	152645	1.00	dqq	-0.02
50) Chlorobenzene-d5	16.85			1.00	ppb	-0.02
System Monitoring Compounds						
65) Bromofluorobenzene		95				-0.02
Spiked Amount 1.000	Range 70	~ 1.30	Recover	λ =	94	.00%
Target Compounds						Qvalue
3) Freon 12	4.15		118417	0.47		
 Chloromethane 	4.34		29884		ppb	93
14) Freon 11	5.77		55625			
15) Acetone	5.92		203307	7.86	dqq	# 1
17) Isopropył alcohol	6.03					
21) Methylene chloride	6.99		8158			
28) Methyl Ethyl Ketone	8.83	72	6\$72	0.29		
30) Hexane	8,88	57	24713 26693	0.39		
31) Ethyl acetate	9.43	4.3	26693	0.25		
32) Chloroform	9.89					
38) Carbon tetrachloride	11.35					
39) Benzene	11.32		56658	0.40		
42) 2,2,4-trimethylpentane		57				
43) Heptane		43				
51) Toluene		92		1.07		
56) Tetrachloroethylene	15.87	164	9473			
58) Ethylbenzene	17.17			0.13		
59) m&p-xylene		91				
63) o-xylene	17.90	91	30043			
71) 1,2,4-trimethylbenzene	19.90	105 146	26181		-, -	
74) 1,4-dichlorobenzene	20.39	146	17800	0.11	ppb	96

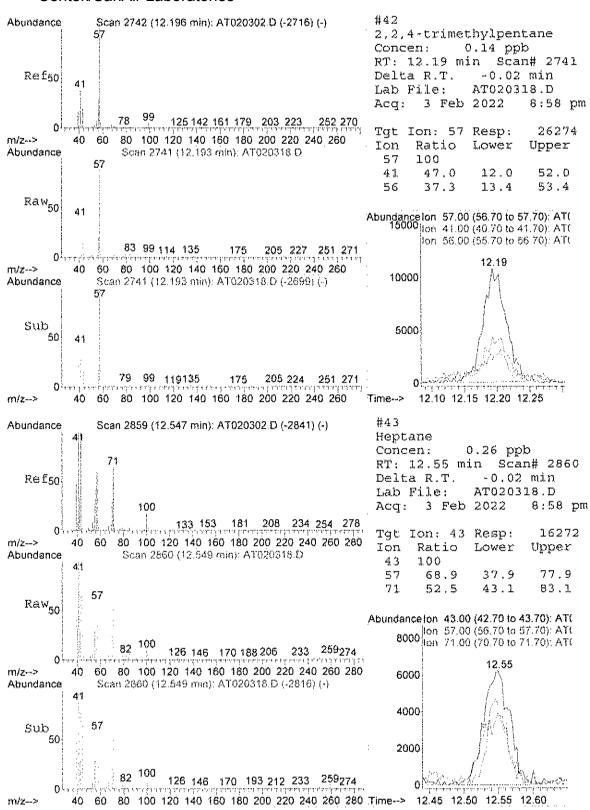


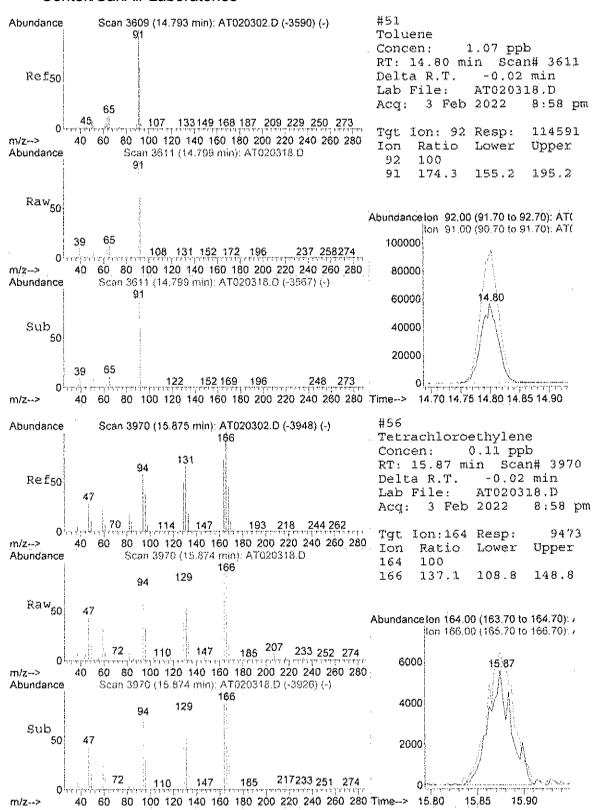

Page 163 of 302



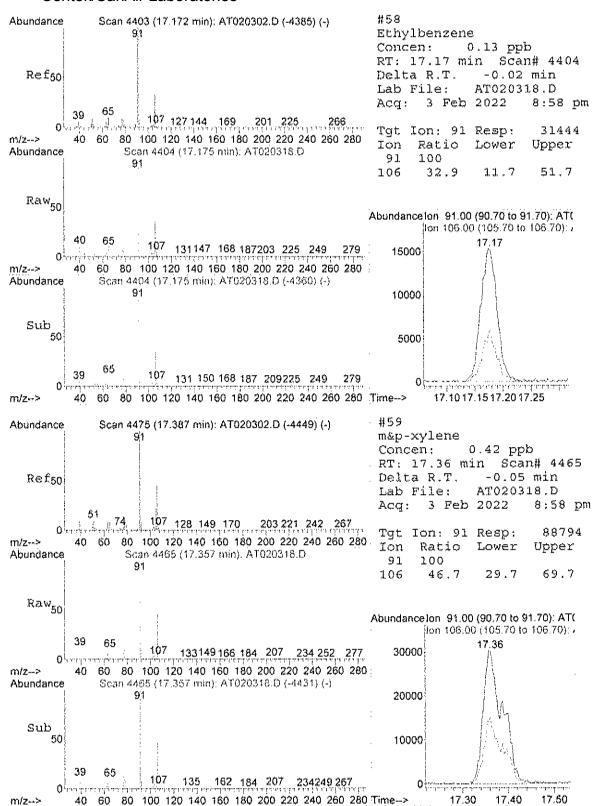
MSD1



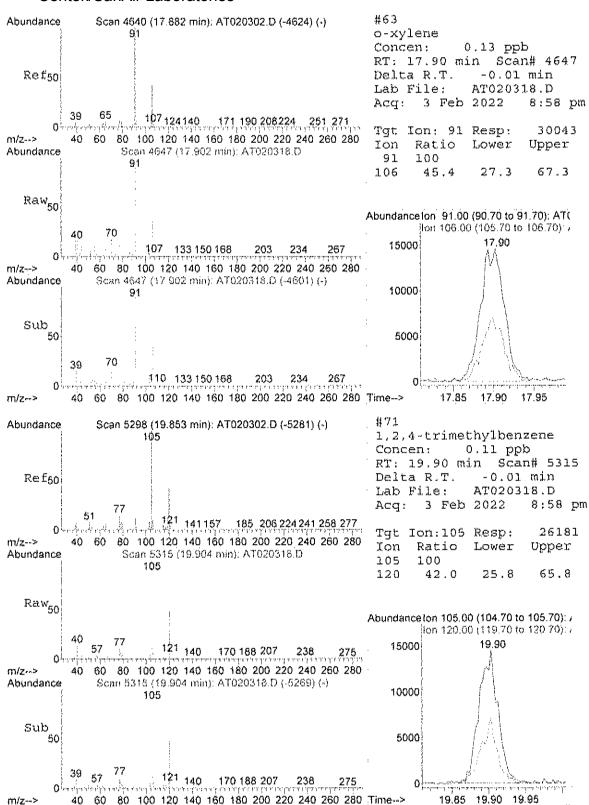


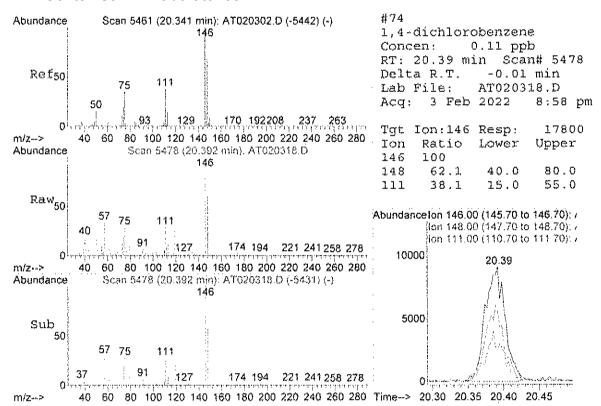


MSD1



MSD1





MSDl

MSD1

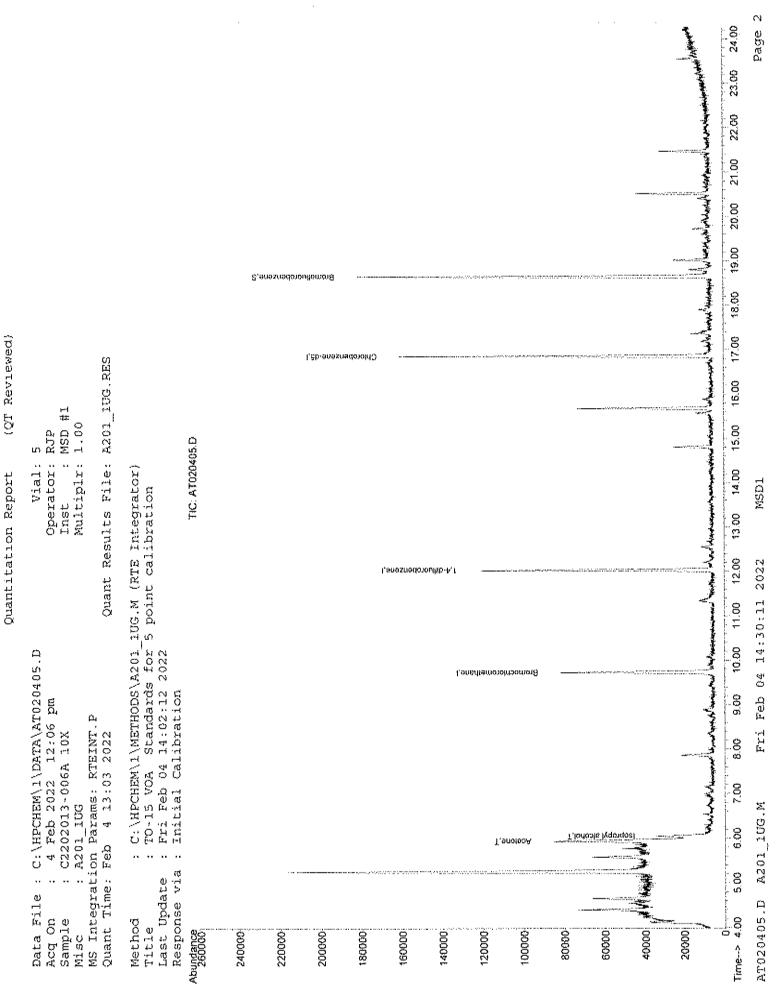
Centek/SanAir Laboratories Quantitation Report

(QT Reviewed)

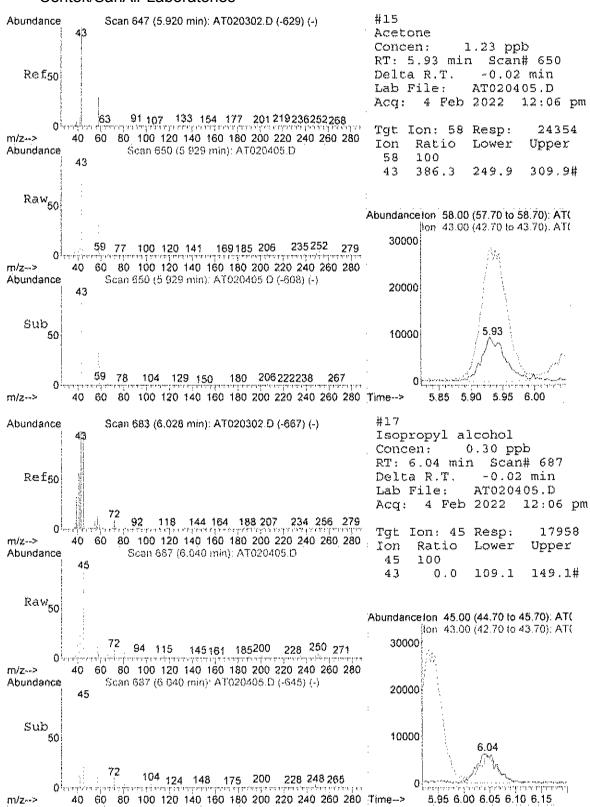
Data File : C:\HPCHEM\1\DATA\AT020405.D Vial: 5 Acq On : 4 Feb 2022 12:06 pm Operator: RJP Sample : C2202013-006A 10X Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 13:02:54 2022 Quant Results File: A201_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : 1UG ENT

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.74 12.03 16.85	128 114 117	27900 113880 102425		ppb dqq dqq	-0.01 -0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.65 Range 70	95 - 130	62138 Recovery	0.82	ppb 82	
Target Compounds 15) Acetone 17) Isopropyl alcohol	5.93 6.04	58 45	24354 17958		dqq dqq	

Page 176 of 302

CLIENT: Matrix Environmental Technologies, Inc

Lab Order:

C2202013

Project:

Aquino 65-67 Lake Ave

Lab ID:

C2202013-007A

Date: 04-Feb-22

Client Sample ID: A4 Dupe

Tag Number: 98,146

Collection Date: 1/31/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		F	LD			Analyst:
Lab Vacuum In	-3			"Hg		2/3/2022
Lab Vacuum Out	-30			"Hg		2/3/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	ŦC)-15			Analyst: RJP
1.1,1-Trichloroethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		Vđqq	1	2/3/2022 9:42:00 PM
1,1,2-Trichloroethane	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
1,1-Dichloroethane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
1,1-Dichloroethene	< 0.040	0.040		Vdqq	1	2/3/2022 9:42:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15		₽₽bV	7	2/3/2022 9:42:00 PM
1,2,4-Trimethylbenzene	0.11	0.15	J	Vdqq	1	2/3/2022 9:42:00 PM
1,2-Dibromoethane	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
1,2-Dichlorobenzene	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
1,2-Dichioroethane	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
1,2-Dichtoropropane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM
1,3-butadiene	< 0.15	0.15		Vđqq	1	2/3/2022 9:42:00 PM
1,3-Dichlorobenzene	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
1,4-Dioxane	< 0.30	0.30		Vdqq	1	2/3/2022 9:42:00 PM
2,2,4-trimethylpentane	0.13	0.15	J	Vdqq	1	2/3/2022 9:42:00 PM
4-ethyltoluene	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Acetone	11	3.0		ppbV	10	2/4/2022 12:49:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Benzene	0.38	0.15		ppbV	1	2/3/2022 9:42:00 PM
Benzyl chloride	< 0.15	0.15		₽₽₽V	1	2/3/2022 9:42:00 PM
Bromodichloromethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Bromoform	< 0.15	0.15		Vđqq	1	2/3/2022 9:42:00 ₽M
Bromomethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Carbon disulfide	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM
Carbon tetrachloride	0.080	0.030		₽₽₽V	1	2/3/2022 9:42:00 PM
Chłorobenzene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Chloroethane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Chloroform	0.10	0.15	J.	Vdqq	1	2/3/2022 9:42:00 PM
Chloromethane	0.50	0.15		ppbV	1	2/3/2022 9:42:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040		PpbV	7	2/3/2022 9:42:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Cyclohexane	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM
Dibromochioromethane	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM
Ethyl acetate	0.21	0.15		ppbV	1	2/3/2022 9:42:00 PM

Qualifiers:

SCSub-Contracted

13 Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JNNon-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

6 Estimated Value above quantitation range

Analyte detected below quantitation limit 3

Not Detected at the Limit of Detection ND Detection Limit

131.

Page 13 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order:

C2202013

Aquino 65-67 Lake Ave

Project: Lab ID:

C2202013-007A

Date: 04-Feb-22

Client Sample 1D: A4 Dupc

one structure OO 146

Tag Number: 98,146 Collection Date: 1/31/2022

Matrix: AIR

			and the second s				
Analyses	Result	DL	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TC)-15			Analyst: RJP	
Ethylbenzene	0.12	0.15	J	ppb∨	1	2/3/2022 9:42:00 PM	
Freon 11	0.23	0.15		∨dqq	1	2/3/2022 9:42:00 PM	
Freon 113	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM	
Freon 114	< 0.15	0.15		₽₽bV	1	2/3/2022 9:42:00 PM	
Freon 12	0.47	0.15		∨dqq	1	2/3/2022 9:42:00 PM	
Heptane	0.24	0.15		₽₽bV	7	2/3/2022 9:42:00 PM	
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM	
idexane	0.37	0.15		Vdqq	1	2/3/2022 9:42:00 PM	
Isopropyl alcohol	2.6	1,5		ppbV	10	2/4/2022 12:49:00 PM	
m&p-Xylene	0.36	0.30		Vdqq	1	2/3/2022 9:42:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		∨dqq	1	2/3/2022 9:42:00 PM	
Methyl Ethyl Ketone	0.30	0.30		ppbV	1	2/3/2022 9:42:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	2/3/2022 9:42:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		Vđạq	1	2/3/2022 9:42:00 PM	
Methylene chloride	0.16	0.15		Vđạq	1	2/3/2022 9:42:00 PM	
o-Xylene	0.13	0.15	Ĺ	ppb∨	1	2/3/2022 9:42:00 PM	
Propylene	< 0,15	0.15		Vdqq	1	2/3/2022 9:42:00 PM	
Styrene	< 0.15	0.15		Vdqq	1	2/3/2022 9:42:00 PM	
Tetrachioroethylene	0.12	0.15	J	Vđqq	1	2/3/2022 9:42:00 PM	
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	2/3/2022 9:42;00 PM	
Toluene	0.93	0.15		ppbV	1	2/3/2022 9:42:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	Z/3/2022 9:42:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	2/3/2022 9:42:00 PM	
Trichloroethene	< 0.030	0.030		Vdqq	1	2/3/2022 9:42:00 PM	
Vinyl acetate	< 0.15	0.15		₽₽b∨	1	2/3/2022 9:42:00 PM	
Vinyl Bromide	< 0.15	0.15		ppb∨	1	2/3/2022 9:42:00 PM	
Vinyl chloride	< 0.040	0.040		Vdqq	1	2/3/2022 9:42:00 PM	
Surr; Bromofluorobenzene	93.0	47-124		%REC	1	2/3/2022 9:42:00 PM	

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 14 of 14

CLIENT: Matrix Environmental Technologies, Inc

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-007A

Date: 04-Feb-22

Client Sample ID: A4 Dupe

Tag Number: 98,146 Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	DL.	Di. Qual		DF	Date Analyzed		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJf		
1,1,1-Trichloroethene	< 0.82	0.82		ug/m3	1	2/3/2022 9:42:00 PM		
1,1,2,2-Tetrachioroethane	< 1,0	1,0		ug/m3	1	2/3/2022 9:42:00 PM		
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	2/3/2022 9:42:00 PM		
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 9:42:00 PM		
1,1-Dichloroethene	< 0.16	0.16		սց/m3	1	2/3/2022 9:42:00 PM		
1,2,4-Trichlorobenzene	< 1,1	1.1		ug/m3	1	2/3/2022 9:42:00 PM		
1,2,4-Trimethylbenzene	0.54	0.74	J	սց/m3	1	2/3/2022 9:42:00 ₽M		
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	2/3/2022 9:42:00 PM		
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 9:42:00 PM		
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	2/3/2022 9:42:00 PM		
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	2/3/2022 9:42:00 PM		
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	2/3/2022 9:42:00 PM		
1,3-butadiene	< 0.33	0.33		ug/m3	1	2/3/2022 9:42:00 PM		
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 9:42:00 PM		
1,4-Dichtorobenzene	< 0.90	0.90		ug/m3	1	2/3/2022 9:42:00 PM		
1,4-Dioxane	< 1.1	1.1		ug/m3	1	2/3/2022 9:42:00 PM		
2,2,4-trimethylpentane	0.61	0.70	J	ug/m3	1	2/3/2022 9:42:00 PM		
4-ethyltoluene	< 0.74	0.74		ug/m3	1	2/3/2022 9:42:00 PM		
Acetone	25	7.1		ug/m3	10	2/4/2022 12:49:00 PM		
Allyl chloride	< 0.47	0.47		ug/m3	1	2/3/2022 9:42:00 PM		
Benzene	1,2	0.48		ug/m3	1	2/3/2022 9:42:00 PM		
Benzyl chloride	< 0.86	0.86		ug/m3	1	2/3/2022 9:42:00 PM		
Bromodichloromethane	0,1 >	1.0		ug/m3	1	2/3/2022 9:42:00 PM		
Bromoform	< 1.6	1.6		սց/m3	1	2/3/2022 9:42:00 PM		
Bromomethane	< 0.58	0.58		ug/m3	1	2/3/2022 9:42:00 PM		
Carbon disulfide	< 0.47	0.47		ug/m3	1	2/3/2022 9:42:00 PM		
Carbon tetrachloride	0.50	0.19		ug/m3	1	2/3/2022 9:42:00 PM		
Chlorobenzene	< 0.69	0.69		ug/m3	1	2/3/2022 9:42:00 PM		
Chloroethane	< 0.40	0.40		ug/m3	1	2/3/2022 9:42:00 PM		
Chloroform	0.49	0.73	J	ug/m3	1	2/3/2022 9:42:00 PM		
Chloromethane	1.0	0.31		ug/m3	1	2/3/2022 9:42:00 PM		
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	2/3/2022 9:42:00 PM		
cis-1,3-Dichloropropene	< 0.68	88,0		ug/m3	1	2/3/2022 9:42:00 PM		
Cyclohexane	< 0.52	0.52		ug/m3	1	2/3/2022 9:42:00 PM		
Dibromochloromethane	< 1.3	1,3		ug/m3	1	2/3/2022 9:42:00 PM		
Ethyl acetate	0.76	0.54		ug/m3	1	2/3/2022 9:42:00 PM		
Ethylbenzene	0.52	0.65	J	ug/m3	1	2/3/2022 9:42:00 PM		
Freon 11	1.3	0.84	-	ug/m3	1	2/3/2022 9:42:00 PM		
Freon 113	< 1.1	1.1		ug/m3	1	2/3/2022 9:42:00 PM		
Freon 114	< 1.0	1.0		ug/m3	1	2/3/2022 9:42:00 PM		

Qualifiers:

Sub-Contracted

SC

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 13 of 14

CLIENT: Matrix Environmental Technologies, Inc.

Lab Order: C2202013

Project: Aquino 65-67 Lake Ave

Lab ID: C2202013-007A

Date: 04-Feb-22

Client Sample ID: A4 Dupe

Tag Number: 98,146

Collection Date: 1/31/2022

Matrix: AlR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	2.3	0.74		սց/m3	1	2/3/2022 9:42:00 PM
Heptane	0.98	0.61		ug/m3	1	2/3/2022 9:42:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	2/3/2022 9:42:00 PM
Hexane	1.3	0.53		ug/m3	1	2/3/2022 9:42:00 PM
Isopropyl alcohol	6.4	3.7		սց/ու3	10	2/4/2022 12:49:00 PM
m&p-Xylene	1.6	1.3		ug/m3	1	2/3/2022 9:42:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	2/3/2022 9:42:00 PM
Methyl Ethyl Ketone	0.88	88.0		ug/m3	1	2/3/2022 9:42:00 PM
Methyl Isabutyl Ketone	< 1.2	1.2		ug/m3	7	2/3/2022 9:42:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	2/3/2022 9:42:00 PM
Methylene chloride	0.56	0.52		ug/m3	1	2/3/2022 9:42:00 PM
o-Xylene	0.56	0.65	٦,	ug/m3	1	2/3/2022 9:42:00 PM
Propylene	< 0.26	0.26		ug/m3	1	2/3/2022 9:42:00 PM
Styrene	< 0.64	0.64		ug/m3	1	2/3/2022 9:42:00 PM
Tetrachloroethylene	0.81	1.0	J	ug/m3	1	2/3/2022 9:42:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	2/3/2022 9:42:00 PM
Toluene	3.5	0.57		ug/m3	1	2/3/2022 9:42:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	2/3/2022 9:42:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		սց/m3	1	2/3/2022 9:42:00 PM
Trichtoroethene	< 0.16	0.16		ug/m3	1	2/3/2022 9:42:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	2/3/2022 9:42:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	2/3/2022 9:42:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	2/3/2022 9:42:00 PM

Qualifiers:	
A	

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

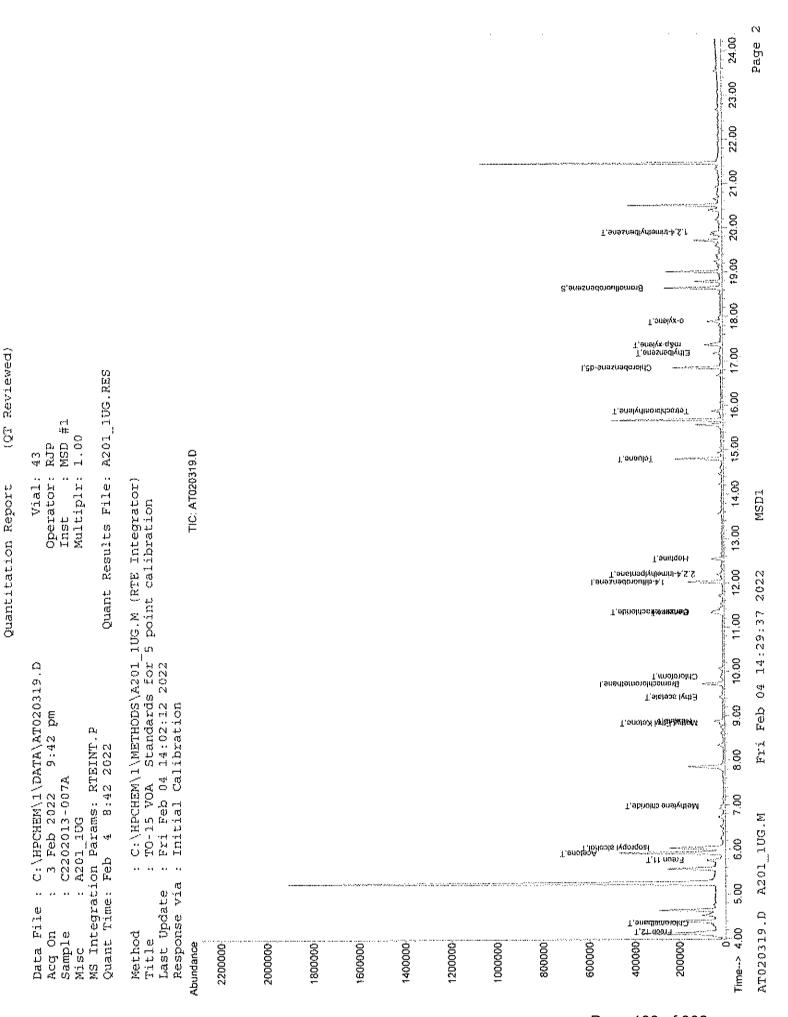
Page 14 of 14

Centek/SanAir Laboratories
Quantitation Report (QT Reviewed)

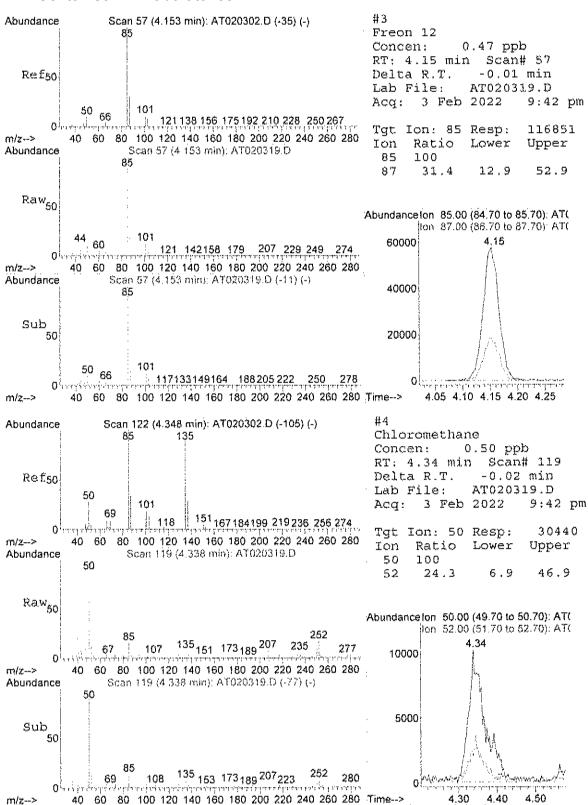
Data File : C:\HPCHEM\1\DATA\AT020319.D Vial: 43 Acq On : 3 Feb 2022 9:42 pm Operator: RJP Sample : C2202013-007A Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

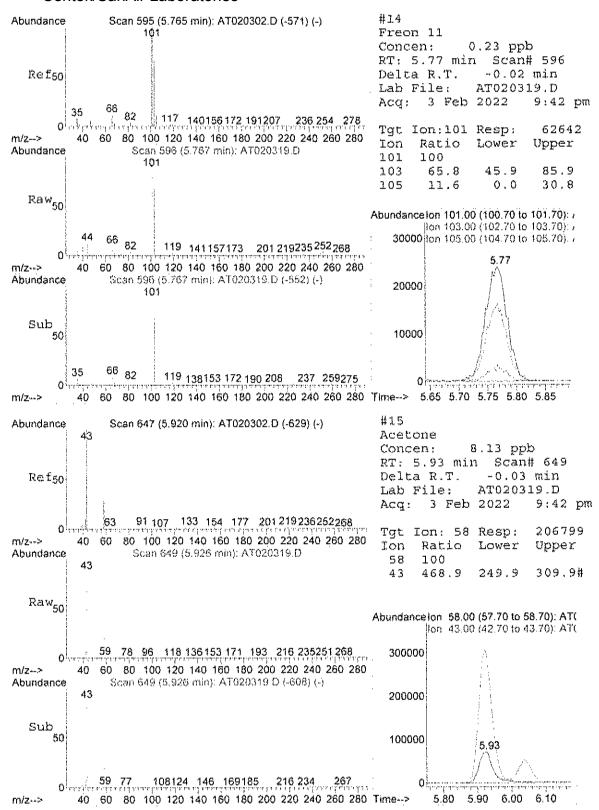
MS Integration Params: RTEINT.P

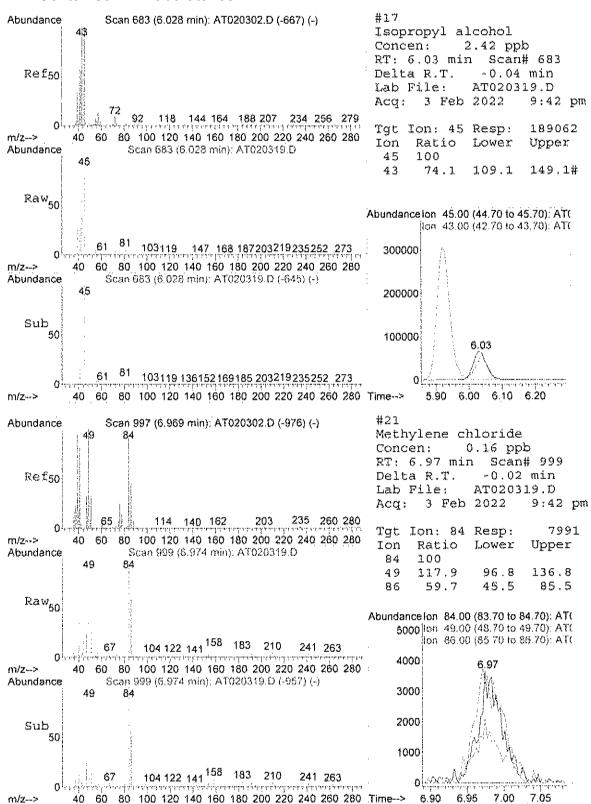
Quant Time: Feb 04 08:24:37 2022 Quant Results File: A201 1UG.RES

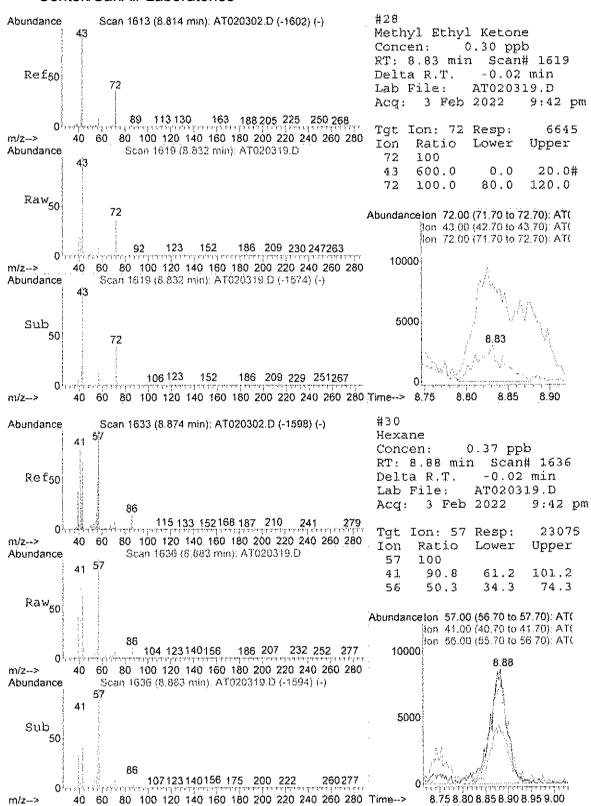

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

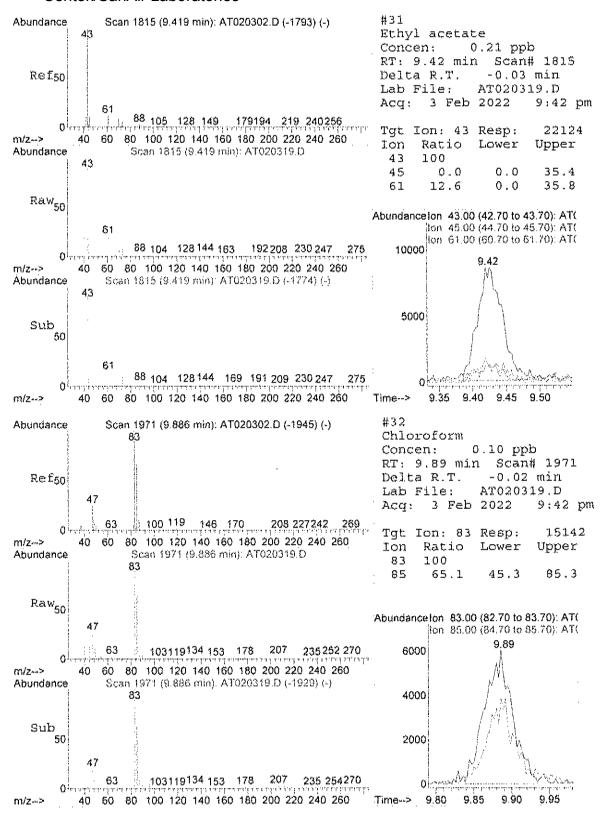
Last Update : Wed Feb 02 07:40:12 2022

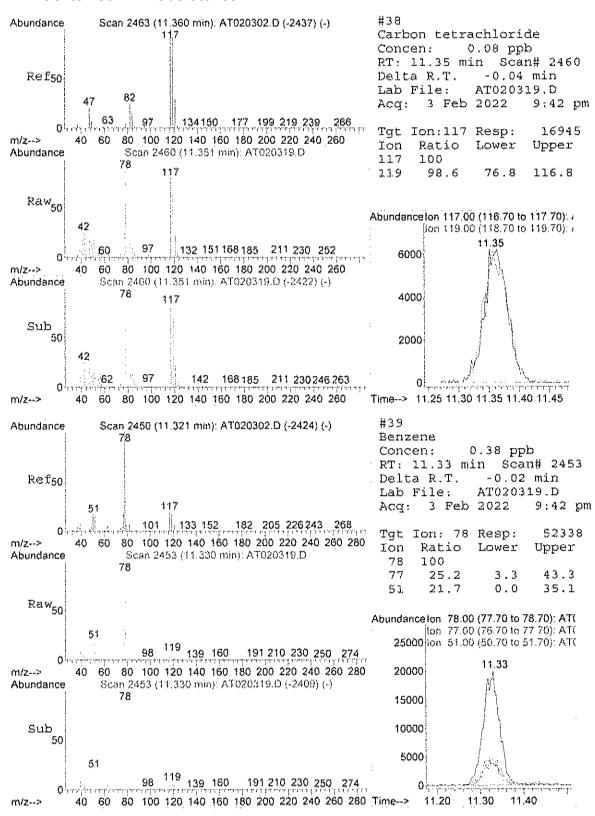

Response via : Initial Calibration

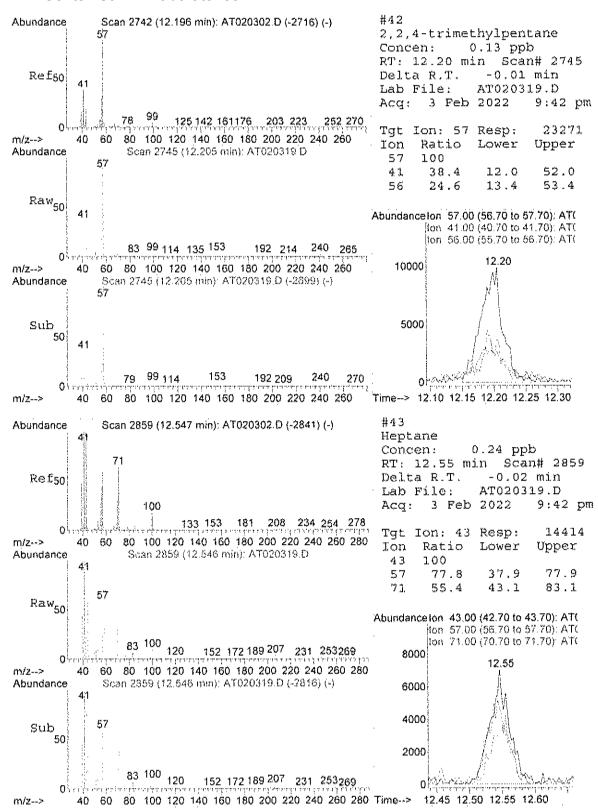

DataAcq Meth : 1UG_ENT

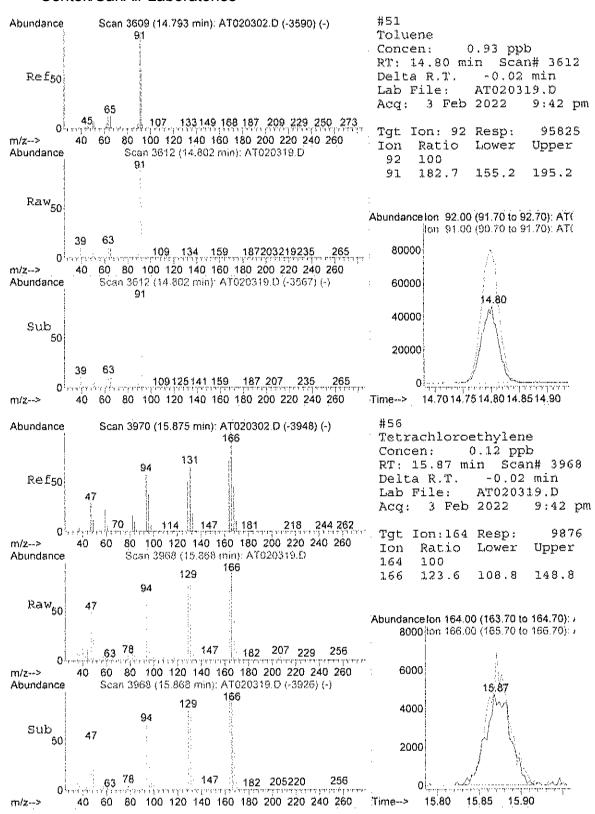

Inter	nal Standards	R.T.	QIon	Response (
	Bromochloromethane			35817	1.00	daa		-0.03
	1,4-difluorobenzene							
50)	Chlorobenzene-d5	16.84	117	132572	1.00	daa		-0.02
	14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
Syster	n Monitoring Compounds							
Ĝ5) I	Bromofluorobenzene	18.64	95	90834	0.93	ppb		-0.02
Spil	Bromofluorobenzene ked Amount 1.000	Range 70	- 130	Recovery	y	93.	900	
	t Compounds					_	_	alue
	Freon 12		85					97
	Chloromethane	4.34	50	30440	0.50	agg		95
		5.77	101	62642	0.23	ppp	.,	
	Acetone	5.93	58	206799	8.13	ggg	#	1
	Isopropył alcohol							53
21) t	Methylene chloride	6.97	84	7991	0.16			97
28) 1	Methyl Ethyl Ketone Hexane	8.83	72	6645	0.30			700
30) 3	Hexane	8.88	57	23075	0.37			91
31.)	Ethyl acetate	9.42	43	22124	0.21			
	Chloroform	9,89	83	15142	0.10			100
	Carbon tetrachloride	11.35		16945				98
	Benzene	11.33						
	2,2,4-trimethylpentane	12.20	57	23271 14414	0.13			86
	Heptane	12.55	43	14414	0.24			
	Toluene	14.80	92	95825	0.93			
	Tetrachloroethylene	15.87	164	9876 28315	0.12	ppp		96
	Ethylbenzene	17,18	91	28315	0.12	ppp		99 97
	w%b-xAjeue			73135				
63) (o-xylene 1,2,4-trimethylbenzene	17.90	91	28357 24203	0.11	agg		92 94
71)	1,2,4-trimethylbenzene	19.90	T 0.2	24203	0.11	ದಿದಿದ		34

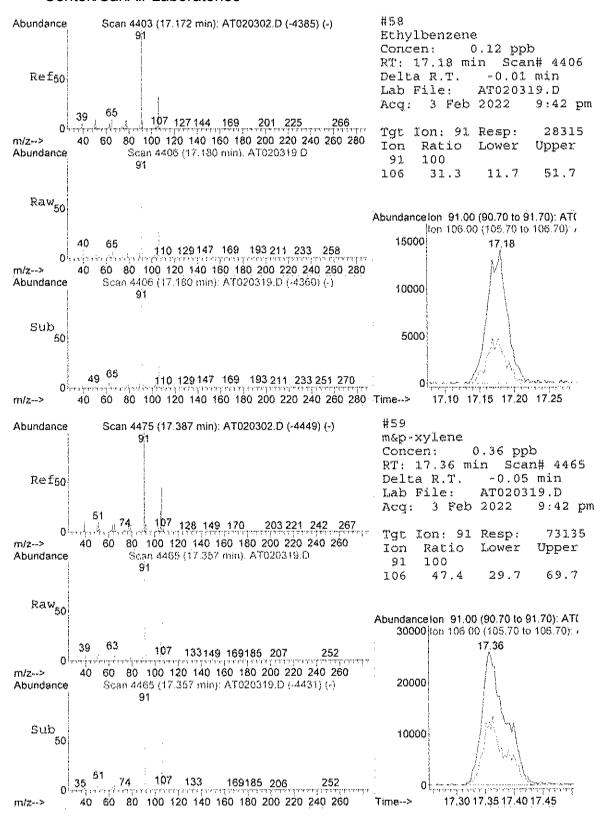

Page 183 of 302

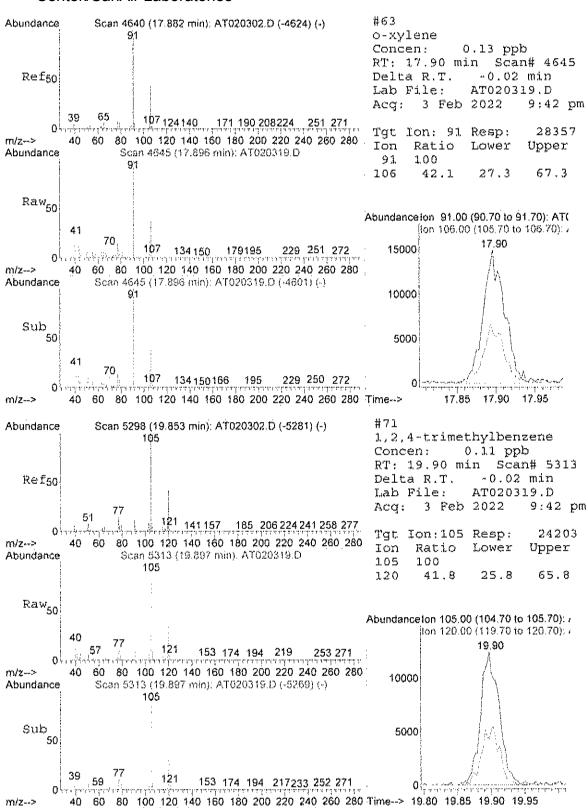







MSD1





MSDl

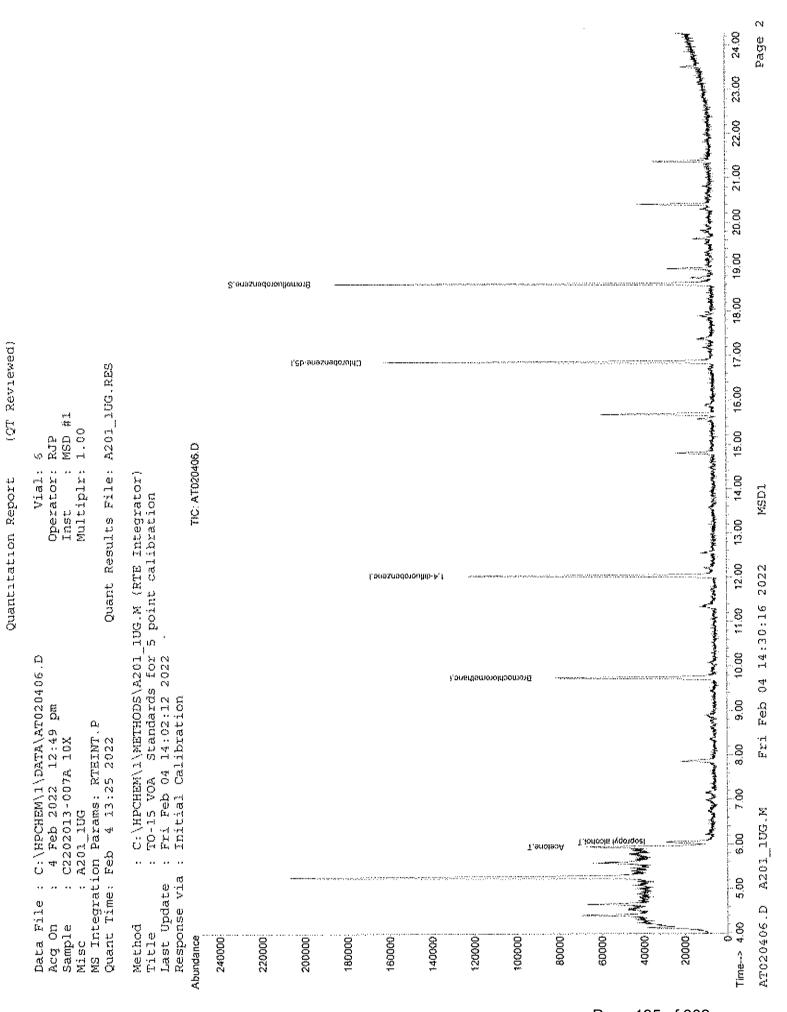
Centek/SanAir Laboratories Quantitation Report

(QT Reviewed)

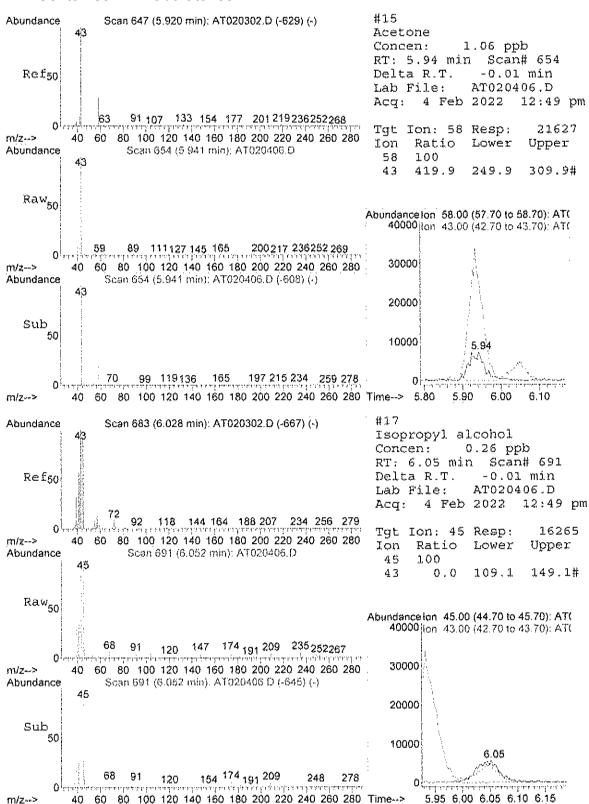
Data File : C:\HPCHEM\1\DATA\AT020406.D Vial: 6 Acq On : 4 Feb 2022 12:49 pm Operator: RJP Sample : C2202013-007A 10X Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 13:24:27 2022 Quant Results File: A201 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 07:40:12 2022


Response via : Initial Calibration

DataAcq Meth : 1UG ENT

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.73 12.03 16.85	128 114 117	28841 115273 100677	1.00	ppb dqq dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 3.000	18.60 Range 70	95 - 130	62814 Recovery		dqq 28	
Target Compounds 15) Acetone 17) Isopropyl alcohol	5.94 6.05	58 45	21627 16265		dqq dqq	

Page 195 of 302

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
INITIAL CALIBRATION

Response Factor Report MSD #1

```
Method : C:\HECHEM\1\METHODS\AZO1_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
      Last Update : Wed Feb 02 07:40:12 2022
      Response via : Initial Calibration
      Calibration Files
     2.0 =AT020103.D 1.50 =AT020104.D 1.25 =AT020105.D 1.0 #AT020106.D 0.75 *AT020107.D 0.50 *AT020108.D
                                   2.0 1.50 1.25 1.0 0.75 0.50 Avg %RSD
  Propylene 0.836 0.812 0.808 0.820 0.863 0.913 0.885 10.00 Freen 12 6.740 6.458 6.279 6.606 6.753 6.974 6.918 8.91

        Propylene
        0.836
        0.812
        0.808
        0.820
        0.863
        0.913
        0.885
        10.00

        Freon 12
        6.740
        6.458
        6.279
        6.606
        6.753
        6.974
        6.918
        8.91

        Chloromethane
        1.615
        1.533
        1.517
        1.611
        1.712
        1.753
        1.705
        11.45

        Freon 114
        5.360
        5.204
        5.159
        5.451
        5.420
        5.653
        5.624
        9.61

        Vinyl Chloride
        1.489
        1.436
        1.439
        1.427
        1.558
        1.559
        1.627
        17.26

        Butane
        1.726
        1.717
        1.639
        1.745
        1.816
        1.897
        1.923
        19.72

        1.3-butadiene
        1.386
        1.289
        1.315
        1.469
        1.423
        1.522
        1.466
        12.11

        Bromomethane
        1.940
        1.914
        1.801
        2.002
        2.017
        2.038
        2.061
        13.30

        Chloroethane
        0.669
        0.672
        0.651
        0.675
        0.697
        0.716
        0.713
 2) T
 3) T
  4) T
 5) T
 6 ) T
 7) T
 8) T
 9) T
10) T
11) T
12) T
13) T
14) T
15) T
16) T
17) T
              | Isopropyl alcoh | 2.177 2.045 2.028 2.190 2.137 1.997 2.180 | 10.05
78) T
              1,1-dichloroeth 1.467 1.425 1.381 1.487 1.531 1.473 1.509
              Freon 113 3.772 3.582 3.495 3.820 3.808 3.864 3.813 6.80 t-Eutyl alcohol 2.822 2.651 2.561 2.890 2.689 2.757 2.799 6.52 Mothylene chlor 1.302 1.280 1.221 1.358 1.331 1.357 1.364 8.80 Allyl chloride 1.359 1.340 1.250 1.409 1.362 1.324 1.386 7.70 Carbon disulfid 4.125 3.970 3.856 4.218 4.241 4.355 4.419 15.45 trans-1,2-dichl 2.159 2.022 1.965 2.156 2.176 2.103 2.168 8.64
19) T
20) t
21) T
22) T
23) T
24) T
               methyl tert-but 3.889 3.702 3.555 3.844 3.725 3.730 3.833
25) T
               1,1-dichloroeth 2.673 2.653 2.504 2.686 2.647 2.681 2.715
                                                                                                                                         5.93
26) T
               Vinyl acetate 2.052 1.929 1.819 2.005 1.902 1.934 1.964 Methyl Ethyl Ke 0.639 0.601 0.600 0.609 0.645 0.522 0.623
                                                                                                                                         5.62
27) T
                                                                                                                                         10.78
28) T
              Cis-1,2-dichlor 1.984 1.901 1.883 1.988 1.975 1.951 2.056

Hoxang 1.972 1.747 1.703 1.648 1.749 1.726

Ethyl acetate 3.050 2.771 2.797 2.997 2.916 2.940 2.975

Chloroform 4.099 3.827 4.101 4.194 4.156 4.206
                                                                                                                                        14.47
39} I
30) T
                                                                                                                                        5.68
T (IE
                                                                                                                                         6.82
32) T
33) T
               Tetrahydrofuran 1.137 1.051 1.007 1.078 1.076 1.059 1.100
                                                                                                                                         11.38
              1,2-dichloroeth 3,072 2,967 2,878 2,985 3,064 3,079 3,107
34) T
               1,4-difluorobenzene ------ISTD-----
35) I

      1,1,1-trichloro
      1.045
      1.047
      1.029
      1.067
      1.074
      1.092
      1.111
      9.59

      Cyclobexane
      0.374
      0.367
      0.358
      0.357
      0.373
      0.347
      0.366
      4.95

      Carbon tetrachl
      1.276
      1.285
      1.267
      1.275
      1.301
      1.315
      1.433
      23.49

      Benzene
      0.896
      0.893
      0.905
      0.897
      0.898
      0.877
      0.921
      6.10

36) T
37) T
38) T
39) T
               Methyl methacry 0.414 0.411 0.395 0.403 0.397 0.385 0.402 1.4-dioxane 0.230 0.234 0.228 0.231 0.231 0.222 0.240
40) T
41) T
                2,2,4-trimethyl 1.185 1.168 1.174 1.165 1.169 1.146 1.191
42) T
               Heptane 0.401 0.407 0.406 0.401 0.402 0.392 0.406
                                                                                                                                         2.98
43) T
               Trichloroethene 0.499 0.490 0.487 0.470 0.498 0.488 0.565
44) T
                                                                                                                                        23.15
               45) T
45) T
47) T
48) T
49) T
                                                        50) I
               Chlorobenzene-d5
                                                 0.772 0.753 0.765 0.775 0.778 0.765 0.777
51) T
               Toluana
```

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### A201_1UG.M Fri Peb 04 14:00:24 2022 MSD1

Response Factor Report MSD #1

: C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Peb 02 07:40:12 2022 Response Via : Initial Calibration

Calibration files

#AT'020103.D 1.50 2.0 =AT020104.D 1.25 #AT020105, D 1.0 =AT020106.D 0.75 =AT020107.D 0.50 =AT020108.D

	Compound	2.0	1.50	1.25	1.0	0.75	0.50	Avg	ERSD
52) T	Methyl Isobutyl	カーカー	0.699		 ^ 711	 	0.697	 ስ ኃላዩ	2.56
53) T	Dibromochlorome				1.184			1.215	5.44
54) T	Methyl Butyl Ke		0.671						6.16
55) T	1.2-dibromoetha		0.787	0.794	0.796	0.798	0.793	0.802	2.78
56) T	Tetrachloroethy		0.586	0.600	0.607	0.605		0.617	6.86
57) 7	Chlorobenzene		1.092			1.129	- 1 - 1	1,139	4.29
58) T	Ethyl benzene		1.799	1.804	1.791	1.776		1.792	2,11
59) T	m&p-xylene	1.583	1.548	1.551		1.523		1.523	2.92
50) T	Nonane		0.748		0.740	0.721		0.724	4.71
61) T	Styrene		1.110						0.96
62) T	Bromoform			1.121	1.139	1.129			3,45
63) T	o-xylene		1.647			1.666	1.678	1.670	1.18
64) T	Cumene		2.118	2.145	2.098	2.054	1.961		3,24
65) S	Bromofluorobenz		0.804		0.812	0.782	0.744		9.56
66) T	1.1.2.2-tetrach		1.032		1.069	1.055			6.12
67) T	Propylbenzene		0.573	0.565	0.578				$\frac{3.12}{2.16}$
68) T	2-Chlorotoluene		0.565	0.575	0.561				2.15
69) T						2.095			3.29
70) T	4-ethyltoluene		2 147		2.112				
71) T	1,3,5 trimethyl		1,928						2.06
	1,2,4-trimethyl	1.870		1.842		1.733			6.24 1.75
,	1,3-dichloroben	1.223	1.209	1.232	1.214				8.79
,	benzyl chloride	1.069	1.033	1.009	0,979				
74) T	1,4-dichloroben		1.219	1.206	1.215	1.180			4.14
75) T	-1,2,3, trimethy:		3.973	1,955			1.834	1,897	5.33
76) T	1,2-dichloroben		1.235	3.226	1.223	1,202		1.219	1.90
77) T	1.2.4 trichloro		0.671	0.652	0.606	0.560			17.60
78) T	Naphthalene		,	1.666	1.589	1.424			15.67
79) T	Hexachloro-1,3-	1.129	1.106	1.121	1.112	1,093	1.075	1.105	1.52

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020103.D Vial: 2 Acq On : 7. Feb 2022 7:48 pm Sample : Alug 2.0 Misc : A201 10G Operator: RJP Inst : MSD #1 Multiplr: 1.00

Quant Time: Feb 02 04:51:39 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\MSTHODS\A301_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

MS Integration Params: RTEINT.P

DataAcq Meth : lUG_ENT

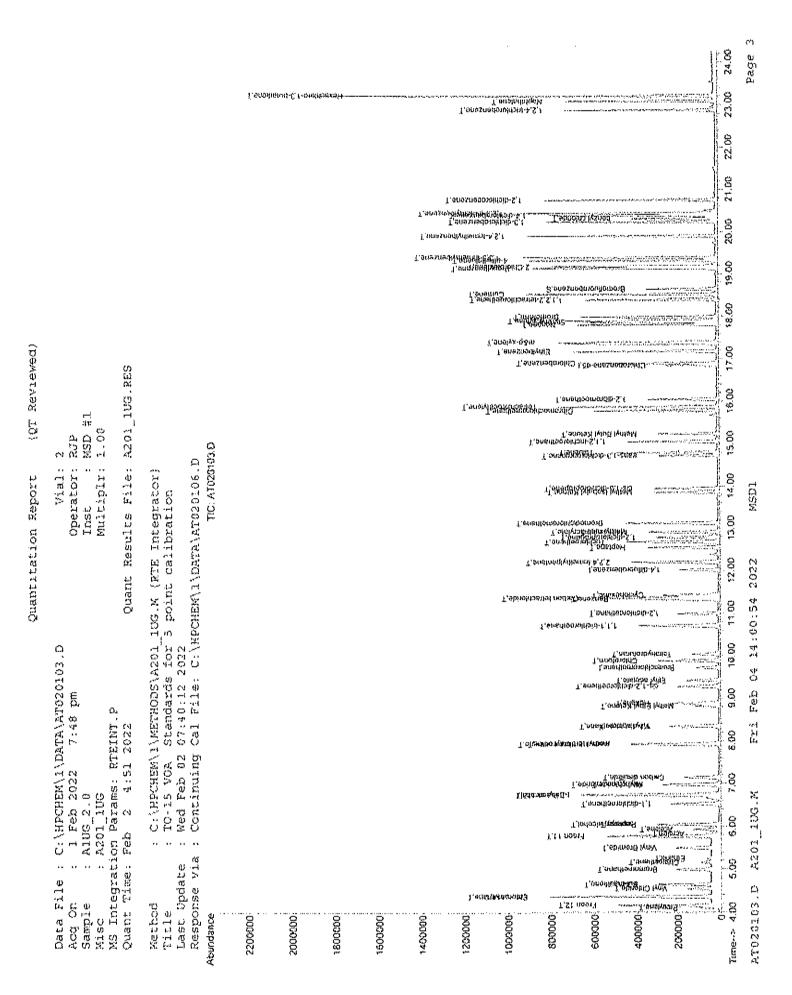
Internal Standards	R.T.	QIon	Response	Cone Un	iits	Dev	(Min)
4.3. 95							
1) Bromochloromethane	9.72	128	39822	1.00			-0,03
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.02	1.14	176823 153633	1.00			0.02
50) Chitoropenzene-ds	16.65	1.1.7	153633	1.00	bbn	•	.0.01
System Monitoring Compounds							
65) Bromofluorobenzene	18.54						0.02
Spiked Amount 1.000	Range 70	- 130	Recove	:ry =	98.	00%	
Target Compounds						OV	alue
2) Propylenc	4.10	41.	66565	2.04	$d\alpha a$	W	87
3) Freon 12	4.15		536798	2.04			99
4) Chloromethane	4.35		128604	2.00			93
5) Freon 114	4.35	85	426893	1.97			96
6) Vinyl Chloride	4,54			2.09			20
7) Butane	4.64		118556 127448	1.98	ďãa		99
8) 1,3-butadiene	4.64	39	110408				97
9) Bromomethane	4.99		154470		daa		98
10) Chloroethane	5.16	64	154470 53268	1.98			87
11) Sthanol	5.24		28768				90
12) Acrolein	5.83	56	35085				98
13) Vinyl Browide	5.49	106	35085 167924	2.03			97
14) Freon 11	5,77		598622				1.00
15) Acetone	5.93	6.0	54266	ነ ፀዳ			50
16) Pentane	6.04	42	99160	1.97			8 9
17) Isopropyl alcohol	6,03	45	173380	1.99			82
18) 1,1-dichlorosthene	6.52		116859				84
19) Freom 113	6.72		300408	1.97			97
20) t-Butyl alcohol	6.74		224778	1.95			95
21) Methylene chloride	6.98	84	103674	1.92			93
22) Allyl chloride	6.96		108215	1.93			96
23) Carbon disulfide	7.13		328557	1.96			3.00
24) trans-1,2-dichloroethene	7 92	61	171988				92
25) methyl tert-butyl ether		73	309702				90
26) 1,1-dichloroethane	8.34	63	212921	1.99			96
27) Vinyl acetate	8.33		163442	2.05	daa		99
28) Methyl Ethyl Ketone	8.82		50871	2.10	dag	##	100
29) cis-1,2-dichloroethene	9.27						90
30) Hexane	8.88	57	158038 149082	2,27			95
31) Ethyl acetate	9.42		242893	2.04			96
32) Chloroform	9.88	83					100
33) Tetrahydrofuran	10.04	4.2	326451 90589	2.11			88
34) 1,2-dichloroethane	11.00		244685	2,06	מממ		99
36) 1,1,1-trichloroethane	3.0.70		369698	1.95	daa		99
37) Cyclohexane	11.42		132309	2.09	વવવ	11	8.3
38) Carbon tetrachloride	1.1.36			2.00			100
39) Benzene	11.32		316871	2.00			93
40) Methyl methacrylate	1,2,90		146537	2.05			93
41) 1,4-dioxane	12.91		81511				92
42) 2,2,4-crimethylpentane	12.19						91
43) Heptane	12,54	43	419142 141790	2.00			97
44) Trichloroethene	12.67		176367				96
45) 1,2-dichloropxopane	12.78		107660				100
All and the second section of the second section of the second section section section sections and the second section sections are second sections.							

(#) = qualifier out of range (m) = manual integration

AT020103.D A201_1UG.M Fri Feb 04 14:00:53 2022

(QT Reviewed) Quantitation Report

Data File : C:\BPCHEM\l\DATA\AT020103.D Acq On : 1 Feb 2022 7:48 pm Sample : Alug 2.0 Misc : A201 lug Vial: 2 Operator: RJP Inst : MSD #1 Multiple: 1.00


Quant Time: Feb 02 04:51:39 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_iUG.M (RTR Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

MS Integration Params: RTEINT.P

DataAcq Meth : LUG_ENT

	Compound	R.T.	QTon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	357527	2.00 ppb	99
47)		13.94	75	202347	2.04 ppb	98
	trans-1,3-dichloropropene	14.72	75	189941	2.15 ppb	94
49)	1,1,2-trichloroethane	15.04	97	145709	dqq 80.1	99
51,)	Toluene	14.79	92	237340	dag ee.ı	98
52)	Methyl Isobutyl Ketone	13.85	43	222967	2.04 ppb	97
53)	Dibromochloromethane	15.78	129	354942	1.95 ppb	100
54)	Methyl Butyl Ketone	15,22	4.3	213031	2.11 ppb	95
55)	1.2-dibromoethane	16.04	1.07	244194	dgg 00.\$	9 €
56)	Tetrachloroethylene	15.87	154	179478	1.92 ppb	99
57)	Chlorobenzene	16.90	1.1.2	340087	1 93 ppb	95
58)	Ethylbenzene	17.17	91	564427	2.05 ppb	98
59)	m&p-xylane	17.39	91	973027	4.07 ppb	93
60)	Nohané	17,80	43	233344	2,05 ppb	98
61)	Styrene	17.86	104	342997	1.97 ppb	84
62)	Bromoform	17.98	173	347993	dqq 98.1	100
53)	o-xylene	17.90	91	515305	2.00 ppb	93
64)	Cumens	18,52	1.05	665266	2.06 ppb	98
66)	1,1,2,2-tetrachioroethane	18.39	83	317940	1.94 pp្គ	99
67)	Propylbenzene	19.12	120	177787	2.00 ppb	91
68)	2-Chlorotoluene	19.17	126	174599	dqq £0,£	# 54
69)	<pre>4 - ethyltoluene</pre>	19.31	1.05	679066	2.06 დებ	74
70)	1,3,5-trimethylbenzene	19.39	1,05	598562	2.03 ppb	96
71)	1,2,4-trimethylbenzene	19.89	105	574454	2.12 ppb	95
72)	1,3-dichlorobenzene	20.23	1.46	375910	2.02 ppb	97
73)	benzyl chloride	20.31	91	328536	2.18 ppb	100
74)	1,4-dichlorobenzene	20.39	146	381174	2.04 ppb	93
75)	1,2,3-trimethylbenzene	20.43	105	623048	dqq e0.S	96
76)	1,2-dichlorobenzene	20.75	146	307897	2.06 ppb	95
77)	1,2,4-trichlorobenzene	22.87	180	226407	2.43 ppb	98
78)	Naphthalene	23.07	128	584539	2,40 ppb	99
79)	Hexachloro-1,3-butadiene	23,20	225	346929	2.03 ppb	95

Quantitation Report (QT Reviewed)

Data File : C:\HFCHEM\1\DATA\AT020104.D Vial: 3

Acq On : 1 Feb 2022 8:34 pm Operator: RJP

Sample : A1UG_1.50 Inst : MSD #1

Misc : A201_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:50:57 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\ATO20106.D

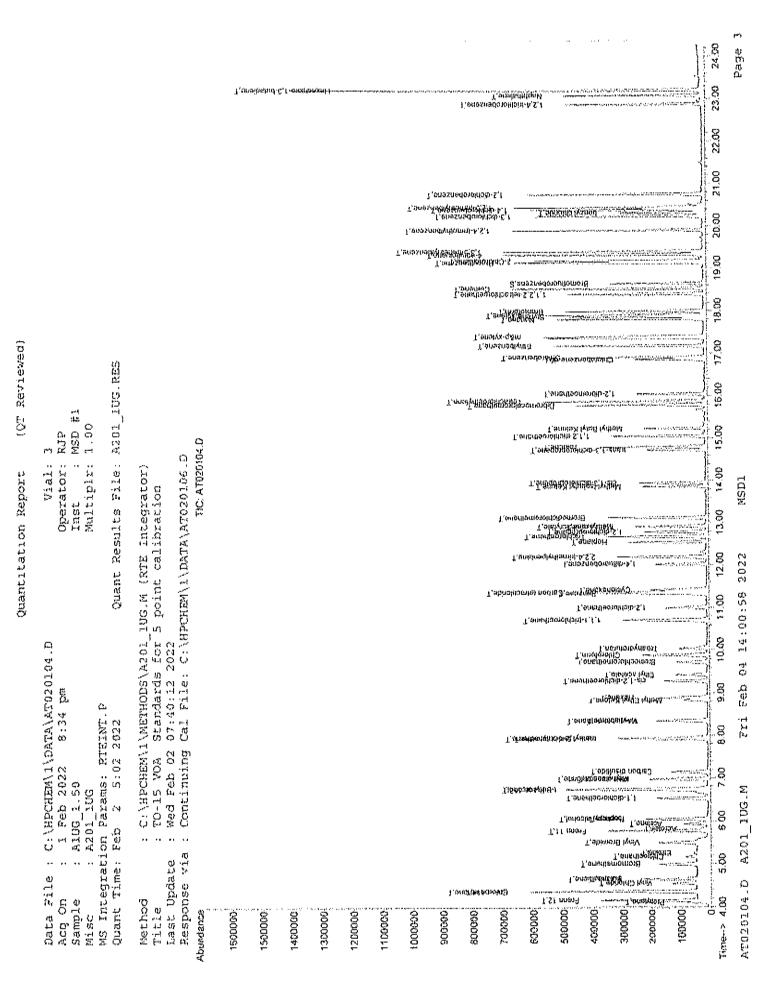
DataAcq Meth : 100_ENT

Inte	runal Standards	g.T.	QIon	Response (Conc U			(Min)
1)	Bromochloromethane	9.72	128	41070	2.00	dag		-0.03
	1,4-difluorobenzene					dqq		-0.02
50)	Chlorobenzene-d5	16.85	117	152535	1.00	qqq		-0.02
Syst	em Monitoring Compounds							
65)	Bromofluorobenzene	18.64				ಧರ್ಷ		-0.02
Sy	iked Amount 1.000	Range 70	J30	Recovery	/ =	99	.00%	
	et Compounds							alue
	Propylene	4.10		50050		reid		84
- •	Freon 12	4.15		397867		qqqq		100
	Chloromethane	4.35		94459		dgg		94
	Freen 114	4.35		320607	3.43	त्वव		96
	Vinyl Chloride	4.54		88493	1.51	dqq		95
	Butane	4.64		105783	1.48	ppp		97
	1,3-butadiene	4.64		19350	T . ") (5	ppb		99
	Bromomethane Chloroethane	4,99		117908		dag		99
	Ethanol	5.16	54 45	41421 21249		qqq		90
	Acrolein	5.25 5.82	€ C	20720 13	4 23	dag		84
	Vinyl Bromide	5.49	106	30138m /0 129895 415920	7.55	र्यवयु		92
	Freon 11	5.76	100	A15000	1 22	dqq		99
	Acetone	5.92	58	37565	3.33 3.35	dqq .	#	46
	Pentane	6.04	42	71844		dqq		88
	Isopropyl alcohol	6.03	4 5	125968	3 40	dqq		83
	1,1-dichlorocthene	6.53	96	87811	1.44	dqq		87
	Freen 113	6.72	101	220672		ppp		φ"γ
	t-Butyl alcohol	6.74	59	1.63332		dqq		97
	Mathylene chloride	6,98	84	78838		dqq		93
22)	Allyl chloride	6.96	41	82527		તવુવુ		98
	Carbon disulfide	7.14	76	244548		dgg		99
	trans-1,2-dichloroethene	7.92	61	124568		લવુવ		9.3
25)	methyl tert-butyl ether	7.92 7.93 8.34	7.3	228063	1.44	ppb		90
26)		8.34	63	163417	1.48	ppb		95
	Vinyl acetate	8.33	43	118850		द्यद्भुद		99
	Methyl Ethyl Ketone	6,82	72	37034	1.48	qqq		1.00
	cis-1,2-dichloroethene		61	117092	1.43	तव्यव		91
	Hexape	8.88	57 43	107637	1.59	तंत्रव		94
	Ethyl acetate	9.42		エンひノエノ	7.77	ББр		98
	Chloroform	9.89	83			तवव		99
	Tetrahydrofuran	10.04	42	64748	1.46	ppb		90
	1,2-dichlorosthans			182777		વવવ		99
	1,1,1-trichloroethane	30.70	97	273970	1.47	bbp	44	98
	Cyclohexane	11.42	56	96080		ppb		83
	Carbon tetrachloride	11.36	117	336345		ppb		98
	Benzene Matteri	11.32	78	233760		ppb		94 92
	Methyl methacrylate	12.91	41.	107590		dag		93
	1,4-dioxane 2,2,4-trimethylpentane	12.91 12.20	88 57	61133		ppb		91
	Heptane			305502		dqq dqq		99
	Trichlorosthene	12.55 12.67	43 130	106604 128140		ddd add		97
	1,2-dichloropropane	12.78		80490		ದ್ವರ್ಥ ಕ್ಷಕ್ತ		98
	and an analysis and an analysi					50 Kr. 17		

(#) = qualifier out of range (m) = manual integration AT020104.D A201_1UG.M Pri Feb 04 14:00:57 2022 MSD1

Page 1

Quantitation Report (QT Reviewed)


Data File : C:\HPCHEM\1\DATA\AT020104.D Vial: 3 Acq On : 1 Feb 2022 8:34 pm Operator: RJP Sample : AIUG 1.50 Misc : A301 lUG Inst : MSO #1 Multiply: 1.00

MS Integration Params: RTEINT.P Ouant Time: Feb 02 04:50:57 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

	Compound	R.T.	QTon	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.12	83	267158	dqq 18.t	1.00
47)	cis-1,3-dichloropropene	13.94	75	147772	1.51 ppb	97
48}	trans-1,3-dichloropropene	14.72	*75	137657	1.58 ppb	98
49)	1,1,2-trichloroethane	15.05	97	109677	dag 18.1	99
51)	Toluene	14.80	92	172273	1.46 ppb	8 13
S2)	Methyl Isobutyl Ketone	13.85	43	159909	1.47 ppb	96
53)	Dibromochloromethane	15.78	129	264213	1.46 ppb	700
54)	Methyl Butyl Ketone	15.23	4.3	153413	1.53 ppb	97
55)	l,2-dibromoethane	16.04	107	180085	1.48 ppb	97
56)	Totrachloroethylene	15,87	1,64	134111	1.45 ppb	98
57)	Chlorobenzene	16.90	112	249745	1.43 ppb	95
58)	Ethylbenzene	17.17	91	411561	1,51 ppb	97
59}	m&p-xylene	17.39	93.	708444	2.99 ppb	94
60)	Nonane	17.80	43	1.71,223	1.52 ppb	99
61)	Styrene	17.86	104	253936	1.47 ppb	85
62)	Buomoform	17.99	173	255267	1.47 ppb	100
63)	o-xylene	17.89	93,	376852	1.47 ppb	92
54)	Cumene	18.52	105	484714	1.51 ppb	98
66)	I,1,2,2-tetrachloroethane	18.39	83	236180	1.,45 ppb	100
67)	Propylbenzene	19,13	120	131099	1.49 ppb	91
68)	2 - Chlorotaluene	19.17	1.26	129197	1.51 ppb	# 55
69)	4-ethyltoluene	19.32	3.05	491346	1.52 ppb	76
70)	1,3,5-trimethylbenzene	19.39	105	441239	1.50 ppb	95
71.)	1.2.4-trimethylbenzene	19.90	105	413906	1,54 ppb	95
72)	1,3-dichlorobenzene	20.23	3.46	276633	1.49 ppb	97
73)	benzyl chioride	20.31	91	231934	1.55 ppb	98
74)	l,4-dichlorobenzene	20.38	146	278888	1.51 ppb	93
75)	1,2,3-trimethylbenzene	20.44	105	451352	1.53 ppb	96
76)	l,2-di⊂hlorobenzone	20.75	146	282472	1.5% ppb	95
77)	1,2,4-twichlorobenzene	22.86	180	153436	1.66 ppb	98
78)	Naphthalene	23.07	128	389763	1.61 ppb	وو
79)	Hexachloro-1.3-butadiene	23.20	225	252980	1.49 ppb	94

Page 206 of 302

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020105.D Vial: 4 Acq On : 1 Feb 2022 9:18 pm Sample : AlUG 1.25 Misc : A201 lUG Operator: RJP Inst : MSD #1 Multiply: 1.00

MS Integration Params: RTEINT.P Quant Time: Feb 02 04:50:26 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal Vile: C:\MPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	Q∓on	Response	Cone U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.71	128	42432	1.00	dag	_	0.04
35) l,4-difluorobenzere	12.02	1.1.4	175158	1.00	dqq		0.02
50) Chlorobenzene-d5	16.85	1.1.7	150477	1.00	सर्वेर्ष	-	0.02
System Monitoring Compounds							
65) Bromofluorobenzene	1.8.64	95	120481	0.99	dqq	-	0.02
Spiked Amount 1.000	Range 70	- 130	Recover	λ =	99.	.00%	
Target Compounds						Qva	lue
2) Propylene	4.10	4.1	42840 333064 80462	1.23	ರಕ್ಷದ		92
3) Freon 12	4.15	85	333064	1.19	दव्यद		99
4) Chloromethane	4.35	50	80462	1.18	ppb		95
5) Freon 114	4.34	85	273647 76327 86948	1.18	વવવ		98
6) Vinyl Chloride	4.53	62	76327	1.26	dag		92
7) Butane	4.64	43	86948	1,17	daa		99
8) 1,3-butadiene	4.64	39	69766	1.16			92
9) Bromomethane	4.99	94	69766 95532 34555	1.12			97
10) Chloroethane	5.16	64	34555	1.21			91
11) Éthanol		45	17517	1.07			94
12) Acrolein	5.82	45 56	17517 19608	0.97			93
13) Vinyl Bromide	5.49	1.06	105876	1,20			96
14) Freon 11	5.76	101	347912	1.08			99
15) Acetone	5.93	5.8	$347912 \\ 34022$	1.10			59
16) Pentane	6,04	42	60790 107556 73272	1.14			89
17) Isopropyl alcohol		45	107556	1.16			
18) 1,1-dichloroethene	6.03 6.53	96	73272	1.16	daa	† ∤	86
19) Freon 113	6.72	101	185380	1.14	वंदादा		97
20) t-Butyl alcohol		59		1 1.1			97
21) Methylene chloride	6.74 6.98	84	135821 64754	1.12	daa		92
22) Allyl chloride	6.96	4.1	66278	1.11			96
23) Carbon disulfide	6.96 7.14	76	66278 204509 304240	1.14			100
24) trans-1,2-dichloroethene	7.91	6.1.	3.04240	1.14	તવવ		93
25) methyl tert-butyl ether	7 93	73	188571	1.16			91
26) 1,1-dichloroethane	8.34		132829	1.17			97
27) Vinyl acetate	9.34 8.32	43	132829 96479	1.13			98
28) Methyl Ethyl Ketone	8.81	72	31824	1.23			100
29) cis-1,2-dichloroethene	9.27	61	99891	1.18			98
30) Hexane	8.88	57	99891. 90340	1.29			94
31) Ethyl acetate	9,41	4.3	148379 202959 53404	1.17			96
32) Chlorotorm	9.88	83	202959	1.17			99
33) Tetrahydrofuran	10.04	42	53404	1,17	daa		89
34) 1,2-dichloroethane	10.99	62	152640	1.21			1.00
36) 1,1,1-trichloroethane	10.71	97	225196	1.20			99
37) Cyclohexane	11.41	క్ర	78322	1.25		#}	78
38) Carbon retrachloride	11,36	117	277435	1.24			700
39) Benzene	11.32	78	198119	1.26			92
40) Methyl methacrylate	12,91	41	86524	1,22			96
41) 1,4-dioxane	12.92	88	19867	1.23			95
42) 2,2,4-trimethylpentane	12.20	57	257121	1.26	4,4,4,4		92
43) Heptane	12.55	43	88930	1.27			98
44) Trichloroethene	12.55	1.30	106725	1,30			96
45) 1,2-dichloropropane				1.28			98
	12.77	63	68253				. W. M. W.

(#) = qualifier out of range (m) = manual integration AT020105.D A201_1UG.M Fri Feb 04 14:01:00 2022

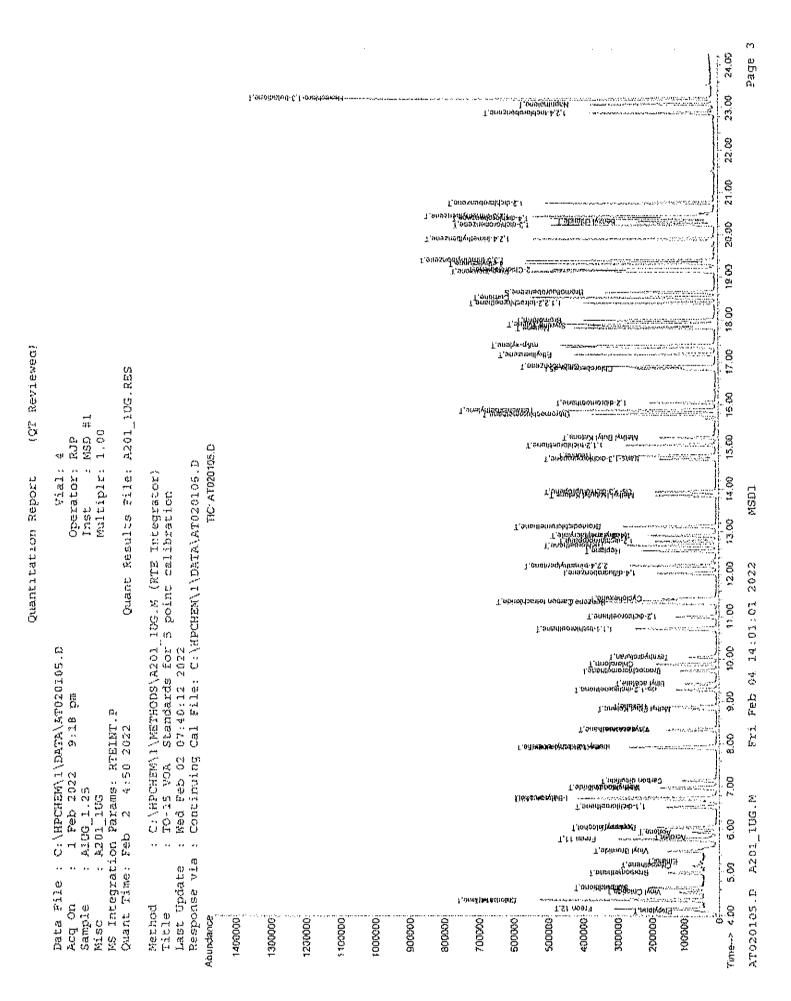
MSD1

Page 1

Quantitation Report (QT Reviewed)

Data File : C:\MPCHEM\1\DATA\AT020105.D Acq On : 1 Feb 2022 9:18 pm Vial: 4 Operator: RJP Sample : A1UG 1.25 Misc : A201 1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P


Quant Time: Feb 02 04:50:26 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

	Compound	к.т.	Qlon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,12	83	222224	1.25 ppb	100
47)	cis-1,3-dichloropropene	13.94	75	121718	1.24 ppb	98
48)	trans-1,3-dichloropropens	14.72	75	113944	1.30 ppb	98
49)	1, 1, 2-trichloroethane	15.05	97	92146	वर्ष्यु ३६.६	99
\$ 1.)	Toluene	14.79	92	143903	1.23 ppb	96
52)	Methyl Isobutyl Ketone	13.85	4.3	132254	1.24 ppb	98
53)	Dibromochloromethane	15.78	129	222702	1.25 ppb	99
54)	Methyl Butyl Ketone	15.23	43	129928	1.31 ppb	95
55)	1,2-dibromoethane	16.04	107	149276	1,25 ppb	98
56)	Tetrachloroethylene	15.87	164	112844	1.24 ppb	タフ
57}	Chlorobenzene	16.90	1.1.2	23.0627	1.22 ppb	95
58)	Ethylbenzene	17.17	91	339393	1.26 ppb	98
59)	map-xylene	17.39	91	563376	2.49 ppb	94
60)	Nonane	17.80	4.3	143088	1,29 ppb	98
61)	Styrene	17.86	1.04	212055	1.24 ppb	85
62)	BromoEorm	17.99	173	210794	1.23 ppb	99
G3)	o-xylene	17.89	91	312249	1.24 ppb	93
64)	Cumerie	18.52	205	403497	1.28 ppb	97
66)	1,1,2,2-tetrachloroethane	18.39	83	192514	1.20 ppb	98
67)	Propylbenzene	19.12	120	106269	1.22 ppb	95
68)	2 - Chlorotoluene	19.18	226	108079	1.28 ტლებ	# 57
69)	4-ethyltoluene	19.32	1.05	401,269	1.26 ppb	75
70)	1,3,5-trimethylbenzeme	19.39	105	364406	1.26 թթԽ	96
71)	1,2,4-trimethylbenzene	19,89	105	346565	dqq 18.E	95
72)	1,3-dichlorobenzene	20.23	146	231700	1,27 ppb	97
73)	benzyl chloride	20.33	93.	189803	1.29 ppb	700
74)	1,4-dichlorobenzene	20.38	116	226801	1.24 ppb	94
75)	1,2,3-trimethylbenzene	20.43	3, Q.5	367669	1.26 ညည်း	96
76)	1,2-dichlorobenzene	20.75	146	230548	1.25 ppb	93
77)	1,2,4-trichlorobenzene	22.87	T80	122724	1.35 ppb	98
78)	Naphthalene	23.08	128	313388	dag IE.i	99
79)	Hexachloro-1,3-butadiene	23.20	225	210762	1.26 թթե	94

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020106.D Vial: 5 Acq On : 1 Feb 2022 10:02 pm Sample : AlUG 1.0 Misc : A201 30G Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P

Quant Time: Feb 02 04:50:07 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point celibration
Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response	Conc Ur	níts	Dev	(Min)
*							
1) Bromochloromethane	9.72	1.28	40292	1.00	dqq	-	0.03
1) Bromochloromethane 35) 1,4-difluorobeuzeno 50) Chlorobeuzene-d5	12.02	114		1.00	bbp	-	0.02
50) Chlorobenzene-d5	16.84	117	148005	1.00	ĎĎΏ	-	0.02
System Monitoring Compounds							
65) Bromofluorobenzene	18.64	95	120169	0.0	aaa	,,	0.02
	Range 70		Recover				
				1			
Target Compounds						Qva	alue
2) Propylene	4.10	41	33056	1,00	dqq		85
3) Freon 12	4.15	85	266177	1.00			100
4) Chloromethane	4.35	50	64927	1.00			94
5) Freen 114	4,35		219629	1.00			96
Vinyl Chloride	4.54		57478	1.00			99
7) Butane	4.64	43	70307	$L \cdot 00$			94
8) 1,3-butadiene	4.64		59173m 🕖	1.03			
9) Bromomethane	4.99		80671	1.00			97
10) Chloroethane	5.16		27204	1.00			87
11) Schanol	5.24		15589				97
12) Acrolein	5.82		19281	1.00			89
13) Vinyl Bromide	5.49		83734	1.00			99
14) Freon 11	5.76	xox	306857 29499	1.00	ppb		99
15) Acetone	5.92	58	29499	1.00	dqq	##	77
16) Pentane	6.03	4.2	50808				6 7
17) Isopropyl alcohol	6.02	45	88235	1.00	dqq		87
<pre>18) 1,1-dichloroethene</pre>	6.52	96	59898	1.00			82
19) Preon 113	6.72	101	153913	1,00			∌ ₿
20) t-Butyl alcohol	5.75 6.97	89	116431	1.00			96
21) Methylene chloride	6.97	84	54707	1.00			94
22) Allyl chloride	6.96	41	56765	1.00			96
23) Carbon disulfide	7.13		169942	1,00			99
24) trans-1,2-dichloroethene			ឥ៩៩७%	1,00	dag		94
25) methyl tert-butyl ether			154891	1.00			93.
26) 1,1-dichloroethane	8.34		308206	1.00			96
27) Vinyl acetate	8.33		80796	1.00			98
28) Methyl Ethyl Ketone	8.82		24538	1,00			100
29) cis-1,2-dichloroethene			86008	1.00			89
30) Hexane	8.87		66396	1.00			88
31) Ethyl acetate	9.42		120759 165232 43424	1.00			95
32) Chloroform	9.89	83	165232	1.00			100
33) Tetrahydrofuran	3.0.04	42					93
34) 1,2-dichloroethane	11.00		120259	1.00			99
36) 1,1,1-crichloroechane			187578	1.00			99
37) Cyclohexane	11.42	56	62830	1.00			79
38) Carbon tetrachloride	11.36	117	224137	1.00			99
39) Benzene	11.32	78	157609	1.00			95
40) Methyl methacrylate	12.90		70890	1.00			94
41) 1,4-dioxane	12.92	9.8	40617	1.00			89
42) 2,2,4-trimethylpencane	12.19		204862	1.00			91
43) Hebrane	12.55		70541	1.00			97
44) Trichloroethene	12.67		#2574	1.00			91
45) 1,2-dichloropropane	12,77		53714	1.00			100
		1- % M M II -7			T 1		

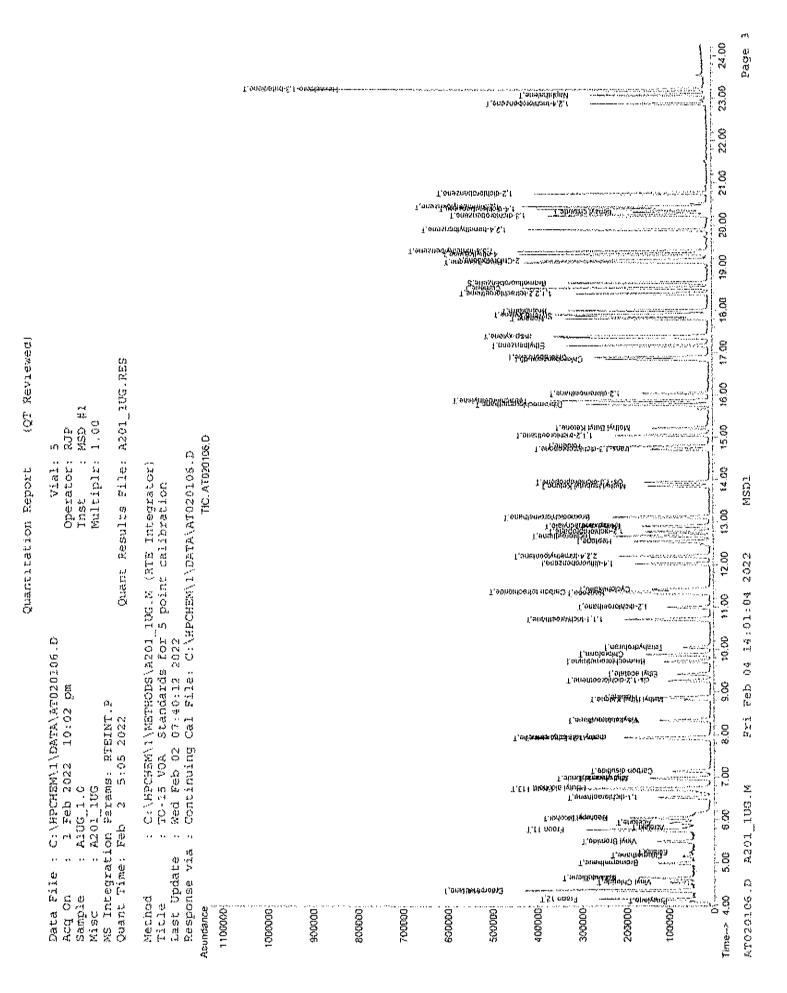
(#) = qualifier out of range (m) = manual integration

AT020106.D A201_1UG.M Fri Feb 04 14:01:03 2022

MSDI

Quantitation Report (QT Reviewed)

Data File : C:\HFCHEM\l\DATA\AT020106.D Acq On : 1 Feb 2022 10:02 pm Sample : AlUG_1.0 Misc : A201_1UG Vial: 5 Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:50:07 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\MRTHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG ENT

	Compound	Η.Т.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	178151	1.00 ppb	99
47)	cis-1,3-dichloropropene	13.94	75	98755	1,00 ppb	97
48)	trans-1,3-dichloropropens	14,71,	75	87886	1.00 ppb	98
49)	1,1,2-trichloroethane	15.05	97	73114	1.00 ppb	100
55 2.)	Toluene	34.80	92	114725	agg co.r	99
52)	Methyl Isobutyl Ketone	13.85	43	105290	1.00 ppb	97
53)	Dibromochloromethane	15.78	129	175229	1,00 ppb	100
54)	Methyl Butyl Ketone	15.23	4.3	97438	dag 00.1	94
55)	1.2-dibromoethane	16.04	107	117821	1.00 ppb	97
56)	Tetrachloroethylene	15.87	3.64	89836	1,00 ppb	96
57)	Chlorobenzene	16.90	112	169690	1.00 ဉာဉ်	95
58)	Ethylbenzene	17.18	91	265011	dqq 00.1	99
59)	m&p-xylene	17.39	91	460100	2.00 ppb	94
60)	Morrane	17.80	43	109474	1.00 ppb	98
61)	Styrene	17.86	3,04	167956	1.00 ppb	87
62)	Bromoform	17.98	173	168640	1.00 pp):	99
63)	o-xylene	17.89	ÐI	248190	1.00 ppb	94
64)	Cumene	18.52	105	310545	dqq 00.1	99
66)	1,1,2,2-tetrachlorocthane	18.39	8.3	158276	1,00 ppb	99
67)	Propylbenzene	19.13	130	85577	dqq 00.1	90
68)	2-Chlorotoluene	19.17	126	82968	1.00 ppb	# 52
69)	4-ethyltoluene	19.32	105	31.2633	1.00 ppb	76
70)	1,3,5-trimethylbenzene	19.39	1.05	284633	1.00 ppb	98
フュ }	1,2,4-trimethylbenzene	19.90	1.05	260921	1,00 ppb	95
72)	1,3-dichlorobenzene	20.23	146	179606	1.00 ppb	97
73)	benzyl chloride	20.31	92	144871	1.00 ppb	98
74)	1,4-dichlorobenzene	20.38	146	179775	dqq 00.1	94
75)	1,2,3-trimethylbenzene	20.44	1.05	286925	1.00 ဂူးချ	96
76)	1,2-dichlorobenzene	20.75	145	181010	dqq 00.1	94
77)	1,2,4-trichlorohenzene	22,87	1,80	89618	dqq 00.1	97
78)	Naphthalene	23.08	128	235112	dgg 00.1	99
79)	Mexachloro-1,3-butadiene	23,20	225	164635	1.00 ppb	94

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AT020107.D
 Vial: 6

 Acq On : 1 Feb 2022 10:45 pm
 Operator: RJP

 Sample : A1UG_0.75
 Inst : MSD #1

 Misc : A201_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Feb 02 04:52:19 2022 Quant Results

Quant Time: Feb 02 04:52:19 2022 Quant Results File: A201_1UG.RBS

Quant Method : C:\HPCHEM\i\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\MPCMEM\1\DATA\AT020106.D

DataAcq Meth : IUG_ENT

1 Rromochloromethane	Internal Standards	R.T.	Qīon	Response	Cone U	nits .	Dev	(Min)
350 1.4-difluorobenzene	1) Recomposition competitions	9 72	128	40026	1 00	מלמוני		60.03
System Monitoring Compounds 65) Bromofluorobenzene 80) Recovery 80) Propylene 818.64 811	35) 1.4-difluorobenzene	12.02	114	172455	1.00	daa		
## System Monitoring Compounds 65) Bromofluorobenzene ## Spiked Amount	50) Chlorobenzene-d5				1.00	dag	,	
Spiked Amount	,					4 X		
Target Compounds								
Propylene						ppb		-0.01
23 Propylene	Spiked Amount 1,000	Range 70	- 130	Recove	х.	96.	00%	
23 Propylene	Many the second of the Many and the second of the						^	-1
3) Freon 12		4 11	4.1	26414	0.20	mmh	Ųνε	
4) Chloromethane 4) 35 50 51382 0.80 ppb 93 5) Freon 114 4,35 85 162698 0.75 ppb 98 6) Vinyl Chloride 4.54 62 46764 0.82 ppb 95 7) Butane 4.64 43 54524 0.78 ppb 99 8) 1,2-hutadiene 4.64 33 42718 0.75 ppb 98 9) Bromomethane 4.96 94 60554 0.76 ppb 98 10) Chloroethane 5.15 64 20926 0.77 ppb 88 11) Ethanol 5.24 45 10926 0.77 ppb 88 11) Ethanol 5.82 56 14040m 0 0.73 ppb 12) Accolein 5.82 56 14040m 0 0.73 ppb 13) Vinyl Bromide 5.49 106 65159 0.78 ppb 97 14) Freon 11 5.77 101 237585 0.78 ppb 100 15) Acetone 5.93 58 21689 0.74 ppb \$57 16) Pentane 6.04 42 37319 0.74 ppb \$68 17) Isopropyl alcohol 6.03 45 64140 0.73 ppb 88 18) 1,1-dichloroethene 6.52 96 45957 0.77 ppb 98 19) Freon 112 6.75 59 80732 0.70 ppb 100 12) Heavine chloride 6.98 84 39958 0.74 ppb 98 120) t-Butyl alcohol 6.98 84 39958 0.74 ppb 99 121) Allyl chloride 6.96 41 40876 0.72 ppb 96 122) Allyl chloride 6.96 41 40876 0.72 ppb 96 123) Carbon disulfide 7.14 76 127222 0.75 ppb 99 124) trans-1,2-dichloroethene 7.92 61 65320 0.76 ppb 99 125) methyl test-butyl ether 7.93 73 11836 0.73 ppb 96 126) 1,1-dichloroethane 8.33 43 57085 0.71 ppb 96 127) Vinyl acetate 8.82 72 19357 0.79 ppb 98 128) Heyna catate 8.83 75 52519 0.80 ppb 90 130) Hexane 8.86 57 52519 0.80 ppb 90 131) Ethyl acetate 9.43 38751 0.73 ppb 98 132) Chloroform 9.88 83 125915 0.77 ppb 98 133) Tetrahydrofuuan 10.05 42 32301 0.75 ppb 98 134) 1,2-dichloroethane 10.71 97 138369 0.76 ppb 99 135) Chloroform 9.88 83 125915 0.77 ppb 98 136) Carbon tetrachloride 11.36 117 168327 0.77 ppb 98 137) Cyclohexane 11.42 56 48272 0.78 ppb 93 138 Carbon tetrachloride 11.36 117 168327 0.77 ppb 98 140) Heyane 11.42 56 48272 0.78 ppb 93 15 Ethyl acetate 9.43 43 87551 0.75 ppb 98 15 Ethyl acetate 9.43 43 87551 0.75 ppb 98 15 Ethyl acetate 9.43 43 87551 0.75 ppb 98 15 Ethyl acetate 9.43 43 87551 0.75 ppb 98 16 1,1.1-trichloroethane 10.71 97 138369 0.76 ppb 99 17 Cyclohexane 11.42 56 48272 0.77 ppb 99 18 10.72 ppb 93 18 Ethyl methacrylate 12.91 41 51285 0.74 ppb 93 18 Heptane 12.92 80 29844 0.75 ppb 98 18 17 Chloroethane 12.9								
S								
6) Vinyl Chloride 7) Butane 8								
8 1,3-butadieme			62	46764	0.82	pph		
9) Bromomethane						daa		
9) Bromomethane			39	42718	0.75			
10 Chloroethane			94	60554				
11							#1	
12 Acrolein								
131 Vinyl Bromide			56		6 0.73			
14 Freon 11								97
15 Acetone								100
16) Pentane 16. Pentane 17. Isopropyl alcohol 18. 1.1-dichloroethene 18. 2. 37319 18. 2. 37319 18. 37319 18. 37319 18. 37319 38. 37319 38. 37319 38. 37319 38. 38. 38. 38. 38. 38. 38. 38. 38. 38.			5.8	21689			† ‡	57
17) Isopropyl alcohol 6.03 45 64140 0.73 ppb 84 18) 1.1-dichloroethene 6.52 96 45957 0.77 ppb 88 19) Freon 113 6.72 101 114304 0.75 ppb 98 20) t-Butyl alcohol 6.75 59 80732 0.70 ppb 100 21) Methylene chloride 6.98 84 39988 0.74 ppb 94 22) Allyl chloride 6.96 41 40876 0.72 ppb 96 23) Carbon disulfide 7.14 76 127322 0.75 ppb 99 24) trans-1.2-dichloroethene 7.92 61 65320 0.76 ppb 92 25) methyl tert-butyl ether 7.93 73 111836 0.73 ppb 91 26) 1.1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 43 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb 91 20) cis-1.2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.88 57 52619 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofutan 10.05 42 32301 0.75 ppb 89 34) 1.2-dichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb 98 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 98 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 98 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 93 39) Benzene 11.42 56 48272 0.78 ppb 94 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 94 42) 2,2,4-trimethylpentane 12.97 151206 0.75 ppb 89 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98	16) Pentane		4.0					88
19) Freon 112		6.03	45					
19) Freon 112		6.52	96	45957	0.77	dag		8.8
21) Methylene chloride 6.98 84 39958 0.74 ppb 94 22) Allyl chloride 6.96 41 40876 0.72 ppb 96 23) Carbon disulfide 7.14 76 127322 0.75 ppb 96 24) trans-1,2-dichloroethene 7.92 61 65320 0.76 ppb 92 25) methyl text-butyl ether 7.93 73 111836 0.73 ppb 91 26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 43 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb 91 30) Hexane 8.88 72 19357 0.79 ppb 91 30) Hexane 8.88 57 52919 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuvan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1-trichloroethane 10.91 62 91990 0.77 ppb 99 36) 1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40 Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 94 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 94 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroetopropane 12.78 63 39872 0.76 ppb 98		€.72	7 (4 7					98
21) Methylene chloride 6.98 84 39958 0.74 ppb 94 22) Allyl chloride 6.96 41 40876 0.72 ppb 96 23) Carbon disulfide 7.14 76 127322 0.75 ppb 96 24) trans-1,2-dichloroethene 7.92 61 65320 0.76 ppb 92 25) methyl text-butyl ether 7.93 73 111836 0.73 ppb 91 26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 43 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb 91 30) Hexane 8.88 72 19357 0.79 ppb 91 30) Hexane 8.88 57 52919 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuvan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1-trichloroethane 10.91 62 91990 0.77 ppb 99 36) 1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40 Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 94 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 94 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroetopropane 12.78 63 39872 0.76 ppb 98		6,75	59	80732	0.70			100
22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl text-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Methyl Ethyl Ketone 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 29,27 61 59294 30) Hexane 30) Hexane 31) Ethyl acetate 31) Tetrahydrofuran 32) Chloroform 33) Heyand 34) 1,2-dichloroethane 35) Hexane 36) Tetrahydrofuran 36) Tetrahydrofuran 37) Cyclohexane 38) Carbon tetrachloride 38) Carbon tetrachloride 38) Carbon tetrachloride 31,4-dioxane 32,4-trimethylpentane 33,63 79451 39872 399b 391 30) Hexane 30,071 ppb 30 31) Ethyl Acetate 30,43 43 57085 31,2-dichloroethane 30,27 61 59294 31,2-dichloroethane 310,05 42 32301 32	21) Methylene chloride	6.98	84					94
24) trans-1,2-dichloroethene 7.92 61 65320 0.76 ppb 92 25) methyl tert-butyl ether 7.93 73 111836 0.73 ppb 91 26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 41 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb 91 30) Hexane 8.88 57 52519 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofutan 10.05 42 32301 0.75 ppb 99 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 34) 1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb 98 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100	22) Allyl chloride		41	40876				96
25) methyl text-butyl ether 7.93 73 111836 0.73 ppb 91 26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 41 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb # 100 29) cis-1,2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.88 57 52619 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuwan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 96 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 98 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98	23) Carbon disulfide			127322				99
26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 41 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.83 72 19357 0.79 ppb # 100 29) cis-1,2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.68 57 52619 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuran 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.93 57 151206 0.75 ppb 90 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.78 63 39872 0.76 ppb 98		7.92	61	65320				
26) 1,1-dichloroethane 8.33 63 79451 0.74 ppb 96 27) Vinyl acetate 8.33 41 57085 0.71 ppb 96 28) Methyl Ethyl Ketone 8.83 72 19357 0.79 ppb # 100 29) cis-1,2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.68 57 52619 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuran 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.93 57 151206 0.75 ppb 90 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.78 63 39872 0.76 ppb 98	25) methyl tent-butyl ether	7,93	カユ	111836				
28) Methyl Ethyl Ketone 8.82 72 19357 0.79 ppb # 100 29) cis-1,2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.88 57 52519 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofutan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 16) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 96 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 95 1.2-dichloroethene 12.78 63 39872 0.76 ppb 98		8.33	63	79451				
29) cis-1,2-dichloroethene 9.27 61 59294 0.75 ppb 91 30) Hexane 8.88 57 52519 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuran 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 96 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 96 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 94 55 1,2-dichloropropane								
30) Hexane 8.88 57 52519 0.80 ppb 90 31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuran 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 90 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98	28) Methyl Ethyl Ketone	8.82	72				##	
31) Ethyl acetate 9.43 43 87551 0.73 ppb 98 32) Chloroform 9.88 83 125915 0.77 ppb 98 33) Tetrahydrofuran 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 90 43) Heptane 12.55 43 51935 0.75 ppb 98 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98								
33) Tetrahydrofuvan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98			57	52519	0.80			
33) Tetrahydrofuvan 10.05 42 32301 0.75 ppb 89 34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98		9.43	4.3	87551	0.73	ppp		
34) 1,2-dichloroethane 10.99 62 91990 0.77 ppb 99 36) 1,1.1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98		9,88	83	125915				
36) 1,1,1-trichloroethane 10.71 97 138969 0.76 ppb 100 37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 pph 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloroethene 12.67 130 64409 0.80 ppb 98		10.05	4 4	32301	0.75	bbp		
37) Cyclohexane 11.42 56 48272 0.78 ppb # 83 38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 98 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98	34) 1,2-dichloroethane				0.77	oqq		
38) Carbon tetrachloride 11.36 117 168327 0.77 ppb 100 39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98					0.76	ppp		
39) Benzene 11.32 78 116191 0.75 ppb 96 40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98					0.78	ppp	11	
40) Methyl methacrylate 12.91 41 51285 0.74 ppb 93 41) 1,4-dioxane 12.92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98					0.77	ppp		
41) 1,4-dioxane 12,92 88 29814 0.75 ppb 90 42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98								
42) 2,2,4-trimethylpentane 12.19 57 151206 0.75 ppb 89 43) Heptane 12.55 43 51935 0.75 ppb 98 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1,2-dichloropropane 12.78 63 39872 0.76 ppb 98					0.74	aqq		
43) Heptane 12.55 43 51935 0.75 ppb 96 44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1.2-dichloropropane 12.78 63 39872 0.76 ppb 98					0.75	bbb		
44) Trichloroethene 12.67 130 64409 0.80 ppb 94 45) 1.2-dichloropropane 12.78 63 39872 0.76 ppb 98								
				ひょブジラ				
			てつ	20072				

(#) = qualifier out of range (m) = manual integration AT020107.D A201 1UG.M Fri Feb 04 14:01:07 2022 MSD1

Page 1

Quantitation Report (QT Reviewed)

 Data File: C:\HPCHEM\1\DATA\AT020107.D
 Vial: 6

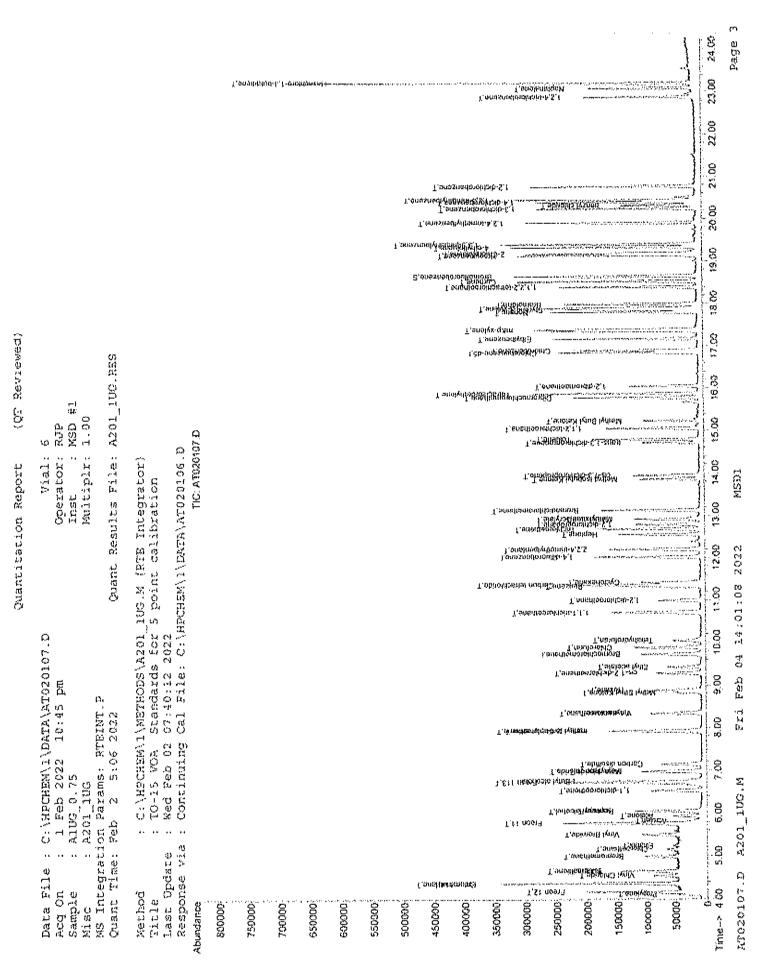
 Acq On: 1 Feb 2022 10:45 pm
 Operator: RJP

 Sample: AlUG 0.75
 Inst: MSD #1

 Misc: A201 lUG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:52:19 2022 Quant Results File: A201_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A201_LUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\MPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethans	13.11	83	131192	0.75 ppb	98
47)	cis-1,3-dichloropropene	13.94	75	70471	0.73 ppb	99
48)	trans-1.3-dichloropropene	14.72	75	65601	0.76 ppb	취취
49)	1,1,2-trichloroethane	15.04	97	55591	0.77 ppb	ਰ ਦ
51)	Toluene	14,80	92	85876	0.75 ppb	100
52)	Methyl Isobutyl Ketone	13.85	4.3	74636	0.71 ppb	98
53)	Dibromochioromethane	15.78	129	129857	0.75 թթե	99
54)	Methyl Butyl Ketone	15.23	4.3	69839	0.72 ppb	94
55)	1,2-dibromoethane	16.04	107	87847	0.75 ppb	98
56)	Tetrachloroethylene	15.57	1.64	66732	0.75 დლს	100
57)	Chlorobenzene	16,90	112	124627	0.74 ლენ	96
58)	Echylbenzene	17.17	ទារ	196004	0.74 ppb	98
	m&p-xylene	17.39	9 l	336211	1.47 ppb	93
60)	Nonane	17.89	4.3	79526	0,73 ppb	98
61)	Styrene	17.86	104	124480	0.75 ppb	97
62)	Broweform	17.98	173	124579	0.74 ppb	98
63)	o-xylene	17.89	91	183853	0.75 ppb	94
64)	Cumene	18.52	1.05	226603	0.73 ppb	99
66)	1,1,2,2-tetrachloroethane	18.39	83	116368	0.74 ppb	95
67)	Propylbenzene	19.13	120	62803	0.73 ppb	92
68)	2-Chlorotoluene	19.18	7.26	62643	0.75 ppb	# 61
៨៦)	4-ethyltoluene	19.32	1,05	231140	0.74 ppb	75
70)	1.3.5-trimethylbenzene	19.39	105	207789	0.73 ppb	96
71)		19.90	105	191240	0.74 ppb	97
72}	1,3-dichlorobenzene	20.23	146	131496	0.74 ppb	98
73)	benzyl chlamide	20.31	91	106985	0.74 ppb	1.00
74)	1,4-dichlorobenzene	20.38	1.16	130154	dqq £7.0	94
75)	1,2,3-trimethylbenzene	20.43	105	209917	0.74 ppb	98
76)	•	20.75	146	132662	0.74 ppb	95
77)		22.87	180	61793	0.69 ppb	98
78)	Naphthalene	23.08	128	157091	0.67 ppb	99
79)	Hexachloro-1,3-butadiene	23.20	225	120629	0.74 ppb	94

Page 215 of 302

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\T\DATA\AT020108.D Vial: 7 Acq On : 1 Feb 2022 11:27 pm Operator: RJP Sample : A1UG 0.50 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:53:00 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAog Meth : 1UG ENT

			Response	Conc Un	its :	Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5		700	20500	1.00			-0.03
1) Bromochioromethane	2.74	120	22020	1.00	pho	·	-0.03
50) Zhlarabaneara.ds	15.04	117	1,44743	1.00	かいか	_	-0.02
30) Chiolopenzene da	10,04	ata ala	4,44,45	4.50	PPB		
System Monitoring Compounds							
65) Bromofluorobenzene		95					-0.0%
Spiked Amount 1.000	Range 70	- 130	Recove	*.	92.	00%	
						٥	- 3
Taxget Compounds			******	0.56	en water	QV	alue 90
2) Propylene	4.09		18075	0.56 0.53	ppp		98 98
3) Fracti 12	4.15		138060 34697	0.54	THE STATES		96
4) Chloromethane	4.35 4.35			0.52			95
5) Freon 114	4.53		30865	0.55			94
6) Vinyl Chloride	4.64		30005 30624	0.53	E-T-15		100
7) Butane 8) 1,3-butadiene	4.64	39	37549 30122	0,54	nap Sps		93
8) 1,3-bucadiene 9) Bromomethane	4.98		30122 40345	0.51			100
10) Chlorosthane	5.14		14171				83
11) Ethanol	5.25	4.5	9475	A 0.55		17	0.5
	5.83	47.00	8475m 8602	0.45			94
12) Acrolein	5.49		42273	0.51			99
13) Vinyl Bromide 14) Froon 11	5.77 5.77		142008	0.47			99
	5.94	58	13551	0.47			37
15) Acetone	5.04		34702	0.49			39
16) Pentane 17) Isopropyl Alcobol	6.04		39531	0.46		17	90
17) Isopropyl Alcobol 18) 1,1-dichloroethene	6,53		29162	0.50		##	84
19) Freon 113	6.72		76484			.,	95
20) E-Butyl alcohol	6.74		54578				97
21) Wellhishe chicride	6.97	84	26852	0.50			93
22) Allyl chloride	6.96	4 i	26203				93
23) Carbon disulfide	7,14		86206	0.52			1.00
24) trans-1,2-dichloroethene			41634	0,49			96
25) methyl tert-butyl ether			73833	0.49			92
26) 1,1-dichloroethane	8,33		53068	0.50			99
27) Vinyl acetate	8.32		38280				97
28) Methyl Ethyl Ketone	8.82		10333	0.43			100
29) cis-1,2-dichloroethene			38624	0.49			50
30) Hexane	6.88		35373				96
31) Ethyl acetate	9.42		58206 62267	0.49			98
32) Chloroform	9.88		62267	0.51			99
33) Tetrahydrofuran	10.08		20964	0.49			" 91
34) 1,2-dichloroenhane	11.00		60950	0.52			99
36) 1,1,1-trichloroethane	30.70		94283	0.51	ppb		97
37) Cyclohexane	11.42		29945	0.49	द्यद्य	\$Ē	74
38) Carbon tetrachloride	11.36		113517	0.52	alaga		99
39) Benzene	11.32		75720	0.49	ppb		96
40) Methyl methacrylate	12.90		33274	0.49			93
41) 1,4-dioxane	12.93		19129	0.48	dqq		9 3,
42) 2,2,4-trimethylpentane	12.35		98957	0.49	ogq		91
43) Heptane	12.54	4.3	33834		totop		97
44) Trichloroethene	12.67	130	42108	0.52	ppb		95
45) 1.2-dichloropyopane	12.77	נט	20997	0.51	ppp		98
To the second se							

(#) - qualifier out of range (m) = manual integration

AT020108.D A201_1UG.M Fri Peb 04 14:01:10 2022

MSDl

Quantitation Report (QT Reviewed)

 Data File: C:\HPCHEM\1\DATA\AT020108.D
 Vial: 7

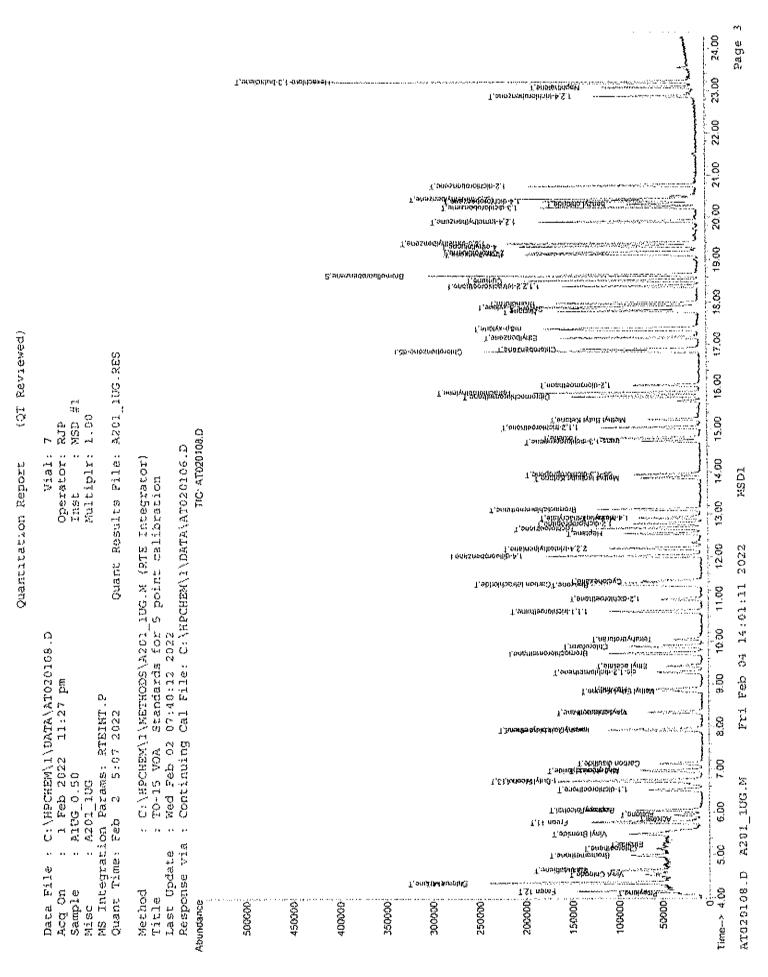
 Acq On: 1 Feb 2022 11:27 pm
 Operator: RJP

 Sample: AlUG_0.50
 Inst: MSD #1

 Misc: A201_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT P

Quant Time: Feb 02 04:53:00 2022 Quant Results File: A201_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A201_LUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HFCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	87311	ರ್.50 ಅಭಿ	97
47)	cis-1,3-dichloropropene	13.94	75	47085	0.49 စုတွဲထ	98
48)	trans-1,3-dichloropropene	14.72	75	43258	0 50 ppb	98
49)	1, 1, 2 trichloroschane	15.05	97	37418	0.52 ppb	100
51)	Toluene	34.80	9.3	55367	0.49 pph	97
52)	Mathyl Isobutyl Rotone	13.85	4.3	50420	0.49 ppb	97
53)	Dibromochloromethane	15,78	129	87491	0.51 ppb	99
54)	Methyl Butyl Ketone	15.22	43	44845	0.47 ppb	95
55)	1,2-dibromoethane	16.04	107	57385	0.50 ppb	97
56)	Tetrachloroethylene	15.67	3.64	43226	0.49 ppb	99
57)	Chloropenzene	16,90	132	7951.5	0.48 ppb	94
	Ethylbenzene	ュフ・エツ	93	123844	0.48 ppb	99
59)	wwb-xAjeue	17.39	91	312871	0.96 ppb	93
60)	Norrane	17.80	43	50998	0.48 ppb	95
61)	Styrene	17.86	1.04	80994	0.49 ppb	85
62)	Bromoform	17.98	173	83458	0.51 ppb	99
63)	o-xylene	17.89	<u> </u>	121462	0.50 ppb	94
64)	Cumene	18.52	1.05	141926	0.47 ppb	97
66)	1,1,2,3-tetrachloroothane	18.39	83	75990	0.49 pph	99
67)	Propylbenzene	19.13	120	39263	0.47 ppb	<i>इ.</i> स
6B)	2-Chlorotoluene	19.18	732	38985	0.48 ppb	# 54
	4-ethyltoluone	19.32	3.05	144861	0.47 ppb	76
	1,3.5-trimethylbenzene	19.39	105	138388	ರ್.50 ಭರ್	94
	1.2,4-crimethylbenzene	19.89	1.05	117236	0.46 ppb	៦៩
72)	1,3-dichlorobenzene	20.23	146	85479	0.49 ppb	96
73)	benzyl chloride	20.31	91	62787	0.44 ppb	94
74)	 4-dichlorobenzene 	20.38	146	82416	0.47 ppb	\$3.4
75)	1,2,3-trimethylbenzene	20.43	105	132714	0.47 ppb	98
	1,2-dichlorobenzene	20.75	146	86293	0.49 ppb	96
77)	1,2,4-trichlorobenzene	22.87	180	36579	0.42 ppb	95
78)	Naphchalene	23.07	128	92747	0.40 ppb	98
79)	Hexachloro-1,3-butadiene	23.20	225	77759	0.48 ppb	95

Page 218 of 302

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AT020109.D Vial: 8 Acq On : 2 Feb 2032 12:08 am Operator: RJP Sample : Alug_0.30 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:53:35 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) : TO-15 VOA standards for 5 point calibration Title

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : lUG_ENT

Inter	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
	//www.ablawanabhana		100	40050	1 00			
7)	Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	9.72	1.4.0	40050	1.00	ppp		-0 05 -0 05
8 \\ 3 \(\)	Chlorobanzana-dE	16.06	+ + + + + +	140937	3.00	محتج		"D 05
50)	Cutoropensene-do	70.00	4.4.7	140910	1.,00	Firm		0.02
Syste	em Monitoring Compounds							
	Bromofluorobenzene	18.63	95	105075				
:억은	iked Amount 1.000	Range 70	- 130	Recover	:y =	92	. 00%	
	_							- 3
46.7	et Compounds	4 10	4.0	2225	0.36	un \$1.	QV	alu∈
	Propylene	4.10		11735	0.36	ppp		90 98
	Freon 12	4,16 4,35	85 50	87707 21299	0.33 0.33	D.C.		98
	Chloromethane	4.35	200	21222	0.33	PP2		97
	Freon 114 Vinyl Chloride	4.50		71245 19009	0.33	EATH-		92
	Butane	4.64		24406	0.35	52575		95
	1,3-butadiene		30					94
	Bromomethane	$\frac{4.64}{4.98}$	39 94	1.7621 24911	0.31			99
	Chloroethane	5.16		9838	0.36	ctore	ti	81
	Ethanol	5,24	45	7054	0.46	מממ	••	80
	Acrolein	5.82		7054 7833m <mark>/</mark>	ለ 41	daa		W -#
	Vinyl Bromide	5.49		30060mb	0.36			
	Freon 11	5.77	101	89040	0.29	daa		99
	Acetone	5.93		89040 8210	0.28	daa	tt	46
	Pentane	6.04		14386	0.28			75
	Isopropyl alcohol	6.04	45	26192	0.30	daa		89
18)	1,1-dichloroethene	6.53		26192 17996	0.30	હેવવ	##	81
19)	Frech 113	6.73		45608	0.30	שכזכן		100
	t-Butyl alcohol			45608 34462 17531	0.30	dag		98
211	Methylene chloride	ត.75 6.98	94	17531	0.32	dag		90.
22)	Allyl chloride	6.97		17250	0.31	दंदद्ध		98
23)	Carbon disulfide	7.33	76	54923	0.33			99
24)	trans-1,2-dichloroethene	7.91	61	54923 26116 45214	0.30	dag		95
25)	methyl tert-butyl ether	7.93	73	45214	0.29			94
26)	1,1-dichlorocthane	8.33		33996	0.32	dqq		96
271	Vinvi accesate	9.32						96
28)	Methyl Ethyl Ketone	8.83	72	7260	0.30	ppb	Ħ	100
29)	cis-1,2-dichloroethene	9.27	61	23423	0.29	વવવ		94
30)	Hexane	8.87	57	22751 7260 23423 18534	0.28			83
31)	Ethyl acetate	9.42	40.3	34891 53484 12019	0.29			98
32)	Chloroform	9.88	83	53484	0.33			97
33)	Tetrahydrofuran	10.05	42	12019	0.28			80
	1,2-dichloroethans	11.00	62	38388	0.32	dqq		96
36)	1,1,1-trichloroethane	10.71	97	59671				98
	Cyclohexane	11.42	5.€	17540	0.29			68
38)	Carbon tetrachlorida	11.35		69240	0.33			98
	Benzene	11.32		47894		ppb		96
	Methyl methacrylate	12.91		20176		bbp		92
	1,4 dioxane	1,2,93		12627		dqq		92
	2,2,4-trimethylpentane	12.20		59280		संयुद्ध		91
	Heptane		4.3	20315		तंत्रव		98
	Trichloroethene	12.57		26282	0.34			93
45)	1,2-dichloropropane	1,2,78	63	17341		લંવુલ્	1	93
	- malifier out of rough							

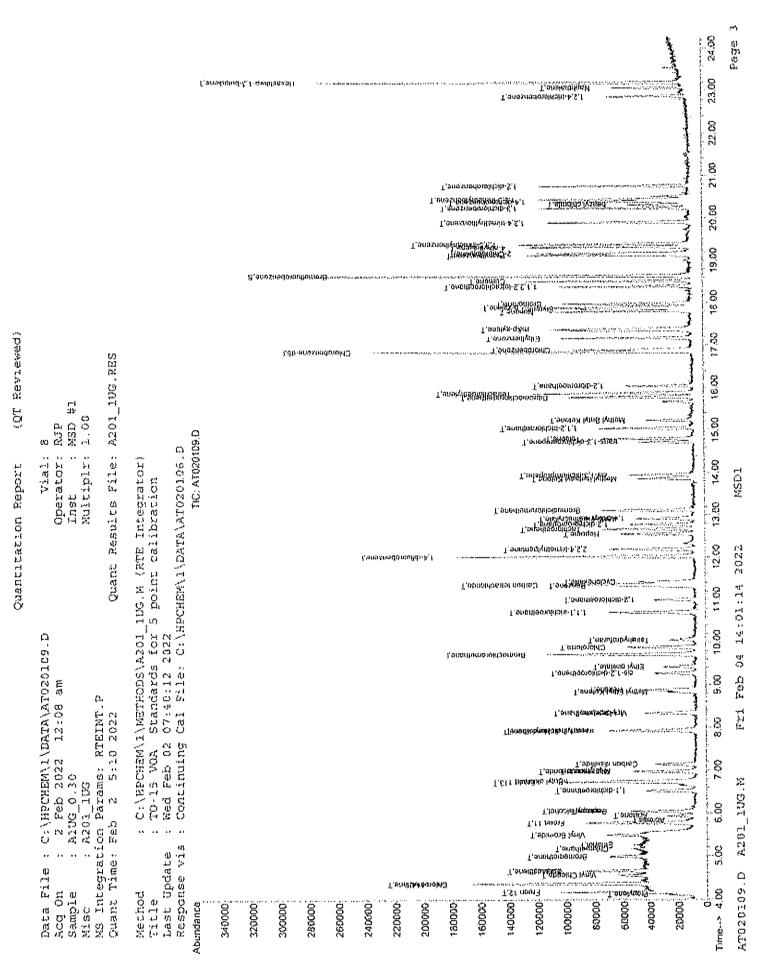
(#) = qualifier out of range (m) = manual integration

AT020109.D A201 1UG.M Fri Feb 04 14:01:13 2022

M5D1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020109.D Vial: 8 Acq On : 2 Feb 2022 12:08 am Sample : AlUG 0.30 Misc : A201 lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT, P Quant Time: Peb 02 04:53:35 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\MPCHEM\1\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022

Response Via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG ENT

	Compound	R.T.	Olon	Response	Conc Unit	Ovalue
46)	Bromodichloromethane	13.11	83	54586	ಡ್ವq SE.0	99
47)	cis-1,3-dichloropropene	13.94	75	27709	0.30 ppb	97
48)	trans-1,3-dichloropropene	14,72	75	26087	dag 18.0	96
49)	1, 1, 2-trichloroethane	15.04	97	22763	0.33 ppb	96
51)	Toluene	14.80	92	33227	dgg 08.0	99
52)	Methyl Isobutyl Ketone	13.85	43	29499	0.29 ppb	95
53)	Dibromochloromethane	15.78	129	53768	0.32 ppb	100
54)	Methyl Butyl Ketone	15,23	4.3	24926	0.27 ppb	99
55)	1,2-dibromoethane	16.04	107	33659	0.30 ppb	សូត
56)	Tetrachlorosthylens	15.87	164	27347	0.32 ppb	98
57)	Chlorobenzene "	16.90	112	49863	dgg 18.0	92
58)	Ethylbenzene	17.17	93	75706	0.30 წენ	98
59)	m&p~xylene	17.39	91	124336	0.57 ppb	96
60)	Monane	17.80	4.3	28953	0.28 ppb	97
61)	Styrene	17.86	1.04	48034	0.30 ppb	8.9
62)	Bromoform	17.98	173	48618	0.30 ppb	95
63)	o-xylene	17.89	94.	72141	dqq 18.0	92
64)	Cumene	18.52	105	85404	0.29 ppb	99
66)	1,1,2,2-tetrachloroethane	38.39	83	47353	0.31 ppb	99
67)	Propylbenzene	19.13	120	23618	0.29 ppb	88
68)	2-Chlorotoluene	1.9.1.7	126	23956	0.30 ppb	# 55
69)	4-ethyltoluene	19.32	105	85102	0.29 ppb	79
70)	1,3,5-trimethylbenzene	19.39	105	78621	ರಸ್ತರ 95.0	97
71)	1,2,4-trimethylbenzene	39.90	105	683.58	0.27 ppb	55
72)	1,3-dichlorobenzene	20.23	146	50707	င်းလူဌ ဝင်း ဝ	95
73)	benzył chloride	20.31	91	37325	0.27 բթե	97
74)	1,4-dichlorobenzene	20.39	146	47833	0.28 ppb	93
75)	1,2,3-trimethylbenzene	20.43	105	73217	0.27 ppb	100
76)	1,2-dichlorobenzene	20.75	146	50526	dqq es.o	95
77)	1,2,4-trichlorobenzene	22,87	180	20349	0.24 ppb	95
78)	Naphthalene	23.08	758	53272m /	N 0,24 ppb	
79)	Mexachloro-1,3-butadiene	23,20	225	46487	dgg 96.0	94

Page 221 of 302

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020110.D Vial: 9 Acq On : 2 Feb 2022 12:51 am Operator: RJP Sample : A1UG 0.15 Misc : A201 1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:54:07 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HFCHEM\1\DATA\AT020106.D DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response	Cone Un	its	Dev (M	lin)
1) The consequence of the conse							
1) Bromochloromethane	9.72	128	37077	1.00	bbp.	- 0	03
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.02	114	159192	1.00	ಬದೆಚ	0	.02
su/ Chroxobensene-da	16.85	J. J. 7	159192 136809	1.00	agg	- 0	0.02
System Monitoring Compounds							
65) Bromofluorobenzene	18.64	95	97404	០.ខេខ	qqqq	– C	0.01
Spiked Amount 1.000	Range 70	· 130	Recover	г у =	88	€00 .	
Physics and the second of the							
Target Compounds 2) Propylene	4.10	* 7	5842m	9 (1.10	n n la	Qvaĭ	.u∉
3) Freen 12	4.15	41 85	20470	0.19			100
4) Chloromothane	4.35	50	45800 11831	0.20	PPD		1.00
5) Freon 114	4.35	85					95
6) Vinyl Chloride	4.54	62	11131	0.19 0.21			99
7) Butane	4.64	43	4000				93
8) 1,3-butadiene	4.65			0.24			33
9) Bromomethane	4.98	35	10344111	0,20			86
10) Chloroethane	5.17	5 A	15051) 4464m	0.20			00
11) Ethanol	5.25	45	23030	0.18			
12) Agrolein				0.23			
	5.83	56 106	3302m W	0.19			96
13) Vinyl Bromide 14) Freon 11	5,49 5,77		15614	0.20			98
·		101	48258			A.S.	65
15) Acctone 16) Pentane	5.94	58		0.19			
	6.04	4.2	8753	0.19			8.4 8.4
	6.04	45 96	14956	0.18			88
18) 1,1-dichloroethene	6.53	90	10027 24309	0.18			
19) Freon 113	6.73		24309	0.17			96
20) t-Butyl alcohol	6.75	59	17553	0.16			96
21) Methylene chloride	e.១៩	64	8940	0.18			82
22) Allyl chloride	6,96	41	8962	0.17			84
23) Carbon disulfide	7.14 7.91	76	33474	0.21			99
24) trans-1,2-dichloroethene 25) methyl tert-butyl ether	7.9.	6 l	14408	0.18			93
25) methyl tert-butyl ether	7.93	73	24787	0.17			92
26) 1,1-dichloroethane	8,33	63	16960	0.17			96
27) Vinyl acetate 28) Methyl Ethyl Køtone	8.33	43	12000	0.10			99
28) Methyl Ethyl Kotone	8.83	72					100
29) cis-1,2-dichloroethene		51	12903 9767	0.18			90
30) Hexane	8.88	5/	1001	0.36			82
31) Ethyl acetate 32) Chloroform	9.42	43	19027				96
· •	9.88	63.3	27416 7735	0.18			99
33) Tetrahydrofuran 34) 1,2-dichloroethane	10.06				bbb		91 99
	11.00	62	20089	0.19	ppp		98
36) 1,1,1-trichloroethane	10.70			0.19	pho		77
37) Cyclohexane 38) Carbon tetrachloride	11.42	56 313	9642	0.17		#4	99
	11.36	117	37329	0.18			
39) Senzene	11.32	78	25032	0.18			92 94
40) Methyl methacrylate	12,91	41	9757 6072	0.15			98
41) 1.4 dioxane	12.93	88	5972 31903	0.19			
42) 2,2,4-trimethylpencane	12.19	57	31909	0.17			91
43) Heptane 44) Trichloroethene	12.54	4.3	10352	0.16			99
	12.68	130	13667 9052	0.18			98 8¢
45) 1,2-dichloropropane	12.77	63		0.19	٥٥٠٠		70
(4) - mark of same							

(#) = qualifier out of range (m) = manual integration AT020110.D A201_1UG.M Fri Feb 04 14:01:17 2022

Page 1

MSDl

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:54:07 2022 Quant Results File: A201_lUG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG_ENT

	Compound	R.T.	QIon	Responee	Conc Unit	Qvalue
AT N 44 W. 1						
66)	Bromodichloromethane	13.12	83	29738	0.18 ppb	98
47)	cis-1,3-dichloropropene	13.94	75	14347	0.16 ಧರ್ಮ	98
48)	trans-1,3-dichloropropene	14.72	75	13778	0.17 ppb	98
49)	1,1,2-trichloroethane	15.04	97	12259	0.19 ppb	96
51)	Toluene	14.79	92	16826	0.16 ppb	97
52)	Methyl Isobutyl Ketone	13.85	43	15060	0.15 ppb	97
53)	Dibromochloromethane	15.78	129	28429	0,18 ಧರ್ಮ	5 8
54)	Methyl Butyl Ketone	15.22	4.3	12333	0.14 ppb	97
55)	1,2-dibromoethane	16.05	107	17572	0.l6 ppb	95
56)	Tetrachloroethylene	15.87	1.64	14572	0.18 ppb	93.
57)	Chlorobenzene	16,91	112	25389	0.16 ppb	93
58)	Ethylbenzene	17.37	93.	37438	0.15 ညာသ	100
59)	m&p-xylene	17.39	91	59896	0.28 ppb	97
60)	Monane	17.80	4.3	13774	0.14 ppb	9.9
61)	Styrene	17.86	104	22744	0.15 ppb	92
62)	Buomoform	17.98	3 73	2544€	0.16 ppb	99
63)	o-xylene	17.90	91	33783	ი.15 გლბ	95
54)	Citanerie:	18.52	1.05	42494	ರವರ ಕ.೯೦	99
66)	1,1,2,2-tetrachloroethane	18.39	とら	25045	dqq 71.0	95
67)	Propylbenzene	19.13	120	11448	0 14 ppb	85
68)	2-Chlorotoluene	1.9.17	3.26	12119	dqq 31.0	# 78
69)	4-ethyltoluene	19.32	105	41388	0.14 ppb	77
70)	1,3,5-trimethylbenzene	19,39	1,05	37721	0.14 ppb	100
71)	1.2.4 - trimethylbenzene	19.90	105	32886	0.14 ppb	99
72)	1,3-dichlorobenzene	20.23	3.46	24008	0 14 ppb	96
サヨ)	benzyl chloride	20.31	91	16995	dgg £1.0	93
74)	1,4-dichlorobenzene	20.38	146	22683	0.14 ppb	94
75)	3,2,3-trimethylbenzene	20.44	105	37261	0.14 ppb	93
	1,2-dichlorobenzene	20.75	146	24991	0.15 ppb	91
	1,2,4-trichlorobenzene	22,87	180	9073	0.11 ppb	97
78)	Naphthalene	23.07		26402m /		
79)	Hexachloro-1,3-butadiene	23,20	225	22613 1	0.15 ppb	93

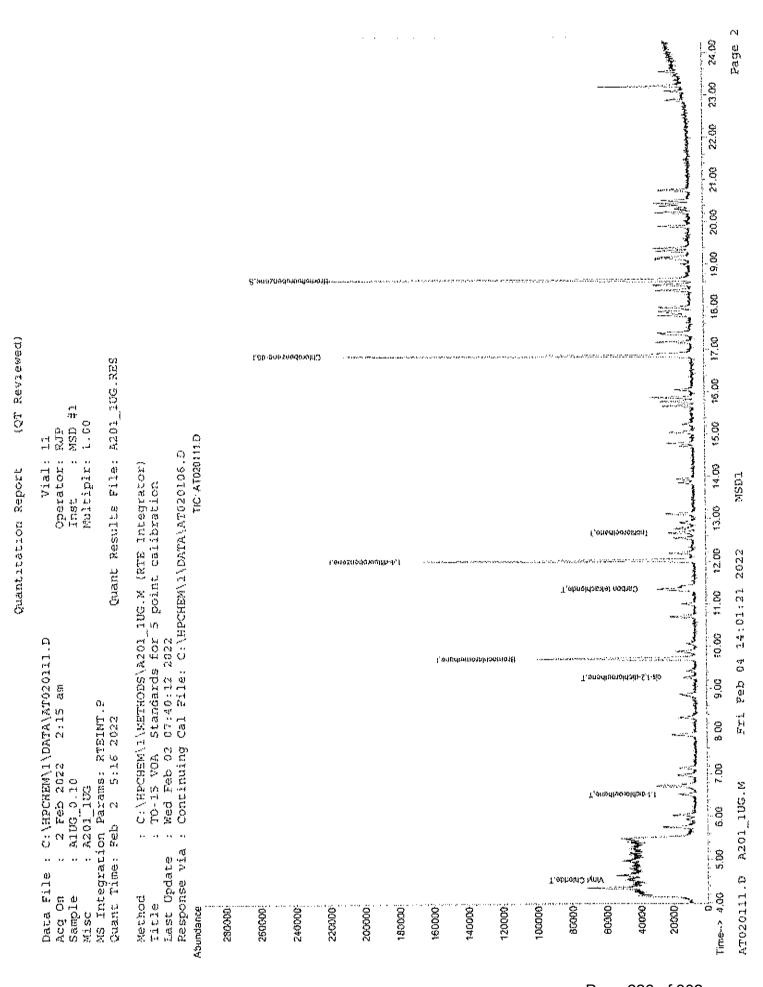
Page 224 of 302

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020111.D Vial: 11 Acq On : 2 Feb 2022 2:15 am Sample : Alug 0.10 Misc : A201 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 02 04:58:18 2022 Quant Results File: A201_1UG_RES


Quant Method : C:\HPCHEM\1\METHOD\$\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\MPCHEM\1\DATA\AT020106.D

DataAcq Meth : lUG_ENT

Internal Standards	R.T.	QTon	Response C	one U	nits	Dev(Min)
 Bromochloromethane 	9.73	1.28	36339	300	gqqq	-0.04
35) 1,4-difluorobenzene	12.02	114	156940	1.00	वंपय	-0.02
50) Chlorobenzene-d5	16.85	1.1.7	129167	1.00	द्यद्युत्यु	-0.02
System Monitoring Compounds						
65) Bromofluorobenzone	18.64	98	86083	0.82	dqq	-0.02
Spiked Amount 1.000	Range 70	- 130	Recovery			-00%
Target Compounds			45			Qvalue
6) Vinyl Chloride	4,53	6.5	5441m 🖍	0.12	$_{\rm DDD}$	
18) 1.1 dichloroethene	6.52	96	4884m	0.09	dag	
29) cis-1,2-dichloroethene	9.27	61	6493m		dad	
38) Carbon tetrachloride	11.36	117	15439		ágg	
44) Trichloroethane	12.67	130	6455m A		dqq	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AT020111.D A201_1UG.M Fri Feb 04 14:01:20 2022 MSD1

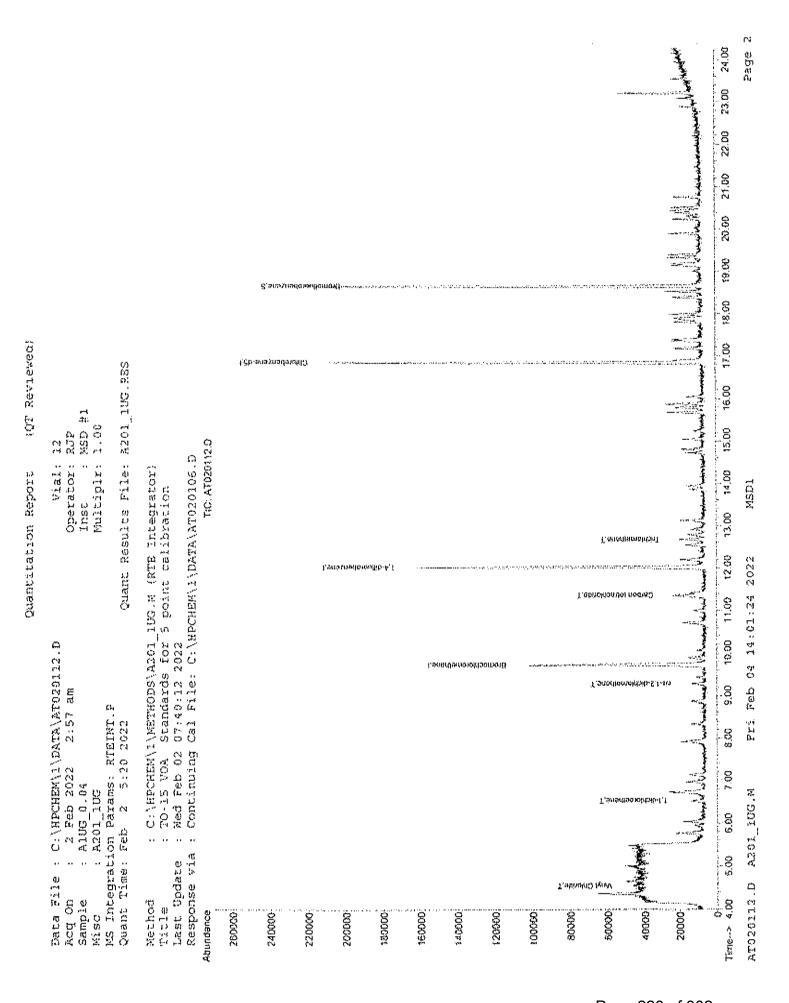
Page 226 of 302

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020112.D Vial: 12 Acq On : 3 Feb 2022 2:57 am Operator: RJP Sample : AIUG_0.04 Misc : ANOL_IUG Inst : MSD #1 Multiply: 1.00

MS Integration Params: RTEINT, P

Quant Time: Peb 02 05:17:52 2022 Quant Results File: A201 1UG.RES


Quant Method : C:\HPCNEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 04:49:48 2022

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AT020106.D

DataAcq Meth : 1UG ENT

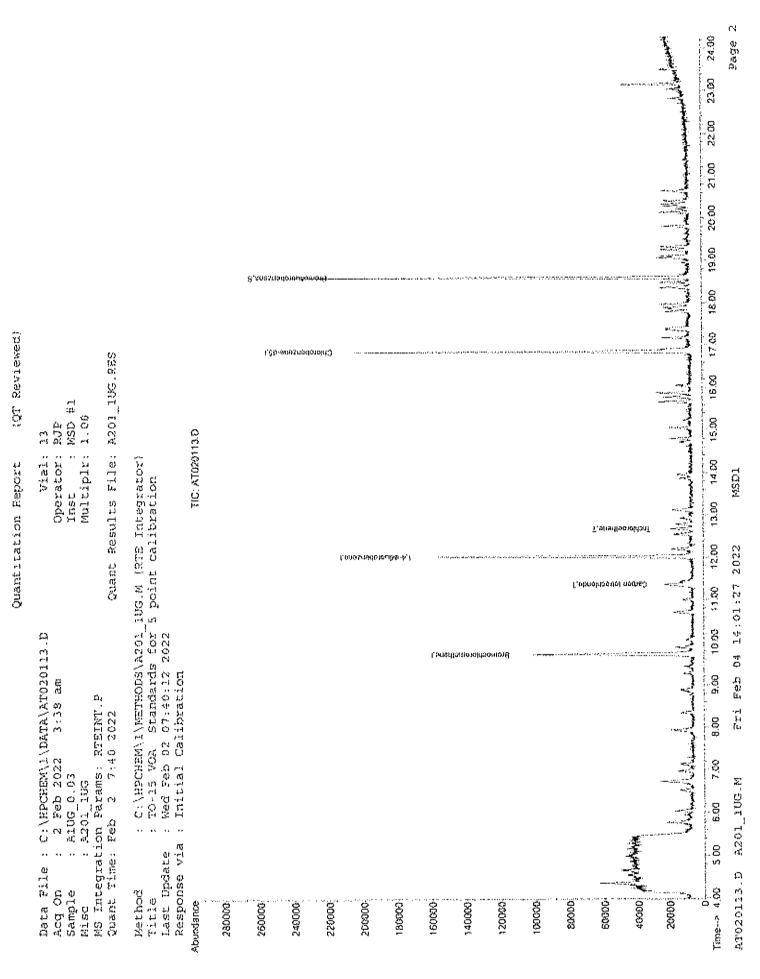
Internal Standards	R.T.	QIon	Response (Jone t	Jaics	Dev(Min)
1) Bromochloromethane	9.72	128	36916		dgg (
35) 1,4-difluorobenzene	12.02	114	155743	1.00	वव्यु ६	-0.02
50) Chlorobenzene-d5	16.95	117	1,26414	1.00	dqq C	-0.02
System Monitoring Compounds						
65) Bromofluorobenzene	18.65	95	78922	0.77	מסק ל	- U . O l
Spiked Amount 1.000	Range 70	- 130	Recovery		77.77	
Target Compounds			Λ			Qvalue
6) Vinyl chloride	4.54	62	3260m /a	0.00	dqq a	
18) 1,1-dichlorgethene	6.52	96	2400m V	0.04	နှင့်တွင် န	
29) cis-1,2-dichloroethene	9.27	61	4035		dqq B	and the second s
38) Carbon tetrachloride	11.36	117	12726	0.0	dag a	94
44) Trichloroethene	12.67	130	4410	0.0	dag a	29.3

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AT020112.D A201_1UG.M Fri Feb 04 14:01:23 2022 MSD1

Page 228 of 302

Quantitation Report (QT Reviewed)

Vial: 13 Data File : C:\HPCHEM\1\DATA\AT020113.D Acq On : 2 Feb 2022 3:38 am Sample : AlUG 0.03 Misc : A201 lUG Operator: RJP Inst : MSD #1 Multiple: 1.00


MS Integration Params: RTEINT, P

Quant Results File: A201_1UG.RES Quant Time: Feb 03 07:37:40 2022

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:37:26 2022
Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response C	Jona Ur	iite	Dev(Min)
1) Bromochloromethane	9.72	128	36069	1.00	ppb	-0.02
35) 1.4-difluorobenzene	12.02	114	147869	1.00	dag	-0.02
50) Chlorobenzene-d5	16.84	117	125961	1.00	dqq	~0.02
System Monitoring Compounds 65) Bromofluorobenzene	18.59	១១	79202	0.85	daa	-0.06
Spiked Amount 1.000	Range 70	- 130				.00%
Target Compounds			. n .			Qvalue
38) Carbon tetrachloride	12.36	137	9199m 🏲	0.04	dqq	
44) Trichloroethene	12,67	1.30	9199m X 3779m\X	0.05	ववव	

Page 230 of 302

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AT020302.D Vial: 2 Operator: RJP : 3 Feb 2022 9:11 am Acq On Sample : AlUG 1.0 Misc : A201 lUG Inst : MSD #1 Multiplu: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
: TO-15 VOA Standards for 5 point calibration Method Title

Last Update : Fri Feb 04 14:02:12 2022 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev	Arcas	Dev(min)
1. X	Bromochloromethane		1.000			0.00
2 T	Propylene	0.885	0.769			0.00
3 T	Freon 12	6.918	6.928	-0.1		0.00
4 T	Chloromethane	1.705	1.715	~0.6	94	0.00
5 T	Freon 114	5.624	5.726	-1.8		0.00
6 T	Vinyl Chloride	1.627	1.516			0.00
7 T	Butane	1.923	1.864	3.1	95	0.00
8 T	1,3-butadiene	1.466	1.428	2.6	86	0.00
9 T	Bromomethane	2.061		3.6	88	0.00
10 T	Chloroethane	0.713	0.752	-5.5		0.00
11 T	Ethanol	0.424	0.383	9.7		0.00
1.2 T	Acrolein	0.492	0.470	4.5		0.00
13 T	Vinyl Bromide	2.238	2,233	0.2	95	0.00
1.4 T	Freon 11			-9.6	95	0.00
1.5 T	Acetone	7.452 0.710	0.836	-17.7	101	0.00
16 T	Pentane	1.260	1.436	-14.0		0.00
17 T	Isopropyl alcohol	2.180	2.363			0.00
18 T	1,1-dichloroethene	1.509		3.3	87	0.00
19 T	Freon 1.13	3.813	3.773	1.0	87	0.00
20 t	t-Butyl alcohol	2.799	2,740	2.1	84	0.00
21 T	Methylene chloride		1.332			0.00
22 T	Allyl chloride	1.386	1.306			0.00
23 T	Carbon disulfide	$\frac{1.386}{4.419}$	1.306 4.147	6.2	87	0.00
24 T	trans-1,2-dichloroethene	2.168	2.126	1.9		0.00
25 T	methyl tert-butyl ether	3,833	3,860			0.00
26 T	1,1-dichloroethane	2.715	2.634	3.0	87	0.00
27 T	Vinyl acetate	1,964	1.850	5.8		0.00
28 T	Methyl Ethyl Ketone	0.623	0.597	4.2	87	0.00
29 T	cis-1,2-dichloroethene		1.922		86	0.00
30 T	Hexane	1.726	1.749	-1.3		0,00
31 T	Ethyl acetate	2.975	2.873	3.4	85	0.00
32 T	Chloroform	4.206	4.178	0.7	90	0.00
33 T	Tetrahydrofuran	1.100 3,107	1.026	6.7	84	0.00
34 T	1,2-dichloroethane	3,107	3.094	0.4	92	0.00
35 I	1,4-difluorobenzene	1,000	1.000	0.0		0.00
36 T	1,1,1-trichloroethane	1.111 0.366	1.120	-0.8	91	0.00
37 T	Cyclohexane	0.366	0.353	3.6		
38 T	Carbon tetrachloride	1.433	1.358	5.2		0.00
39 T	Benzene	0.921	0.913	0.9		0.00
40 T			0,390	3.0		0.00
41 T	1,4-dioxane	0.240	0.223	7.1		0.00
42 T	2,2,4-trimethylpentane	1.191	1.136	4.6		0.00
43 T	Heptane	0.406	0.386	4.9		0.00
44 T	Trichloroethene	0.545	0.511	6.2		0.00
45 T	1,2-dichloropropane	0.322	0.302	6,2		0.00
46 T	Bromodichloromethane	1.053	1.031	2.1		0.00
47 T	cis-1,3-dichloropropene	0.562	0.574	-2.1		0.00
48 T	trans-1,3-dichloropropene	0.524	0.520	0.8		0.00
49 T	1,1,2-trichloroethane	0.437	0.432	1.1	90	0.00

^{(#) =} Out of Range AT020302.D A201_1UG.M Fri Feb 04 14:36:43 2022 MSD1

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AT020302.D Vial: 2 Acq On : 3 Feb 2022 9:11 am Operator: RJP Sample : AlUG_1.0 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\l\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Feb 04 14:02:12 2022 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF		Area%	Dev(min)
51	т	Toluene	0.777	0.770	0.9	88	0.00
52		Methyl Isobutyl Ketone	0.705	0.664	5.8		0.00
53		Dibromochloromethane	1.215	1.207	0.7		0.00
54	Ţ	Methyl Butyl Ketone	0.645	0.631	2.2		0.00
55	T	1,2-dibromoethane	0.802	0.804	-0.2		0,00
56	T	Tetrachloroethylene	0.617	0.594	3.7	87	0.00
57	${f T}$	Chlorobenzene	1.139	1.154	-1.3	89	0.00
58	Τ,	Ethylbenzene	1.792	1.773	1.1	88	0.00
59	\mathbf{T}	m&p-xylene	1.523	1.564	-2.7	89	0.00
60	T	Nonane	0.724	0.701	3.2	84	0.00
61	T	Styrene	1.123	1.160	-3.3	90	0.00
62	${f T}$	Bromoform	1.148	1,171	-2.0	91	0.00
63	\mathbf{r}	o-xylene	1.670	1.713	-2.6		0.00
64	_	Cumene	2.079	2.146	-3.2		0.00
65	s	Bromofluorobenzene	0.737	0.810	-9.9		0.00
66	\mathbf{T}	1,1,2,2-tetrachloroethane	1.076	3 043	3.1	86	0.00
67	T'	Propylbenzene	0.564	0.590	-4.6		0.00
68	\mathbf{T}	2-Chlorotoluene	0.566	0.581	-2.7		0.00
69	T	4-ethyltoluene	2.088	2.160	-3-4		0.00
70	${f T}$	1,3,5-trimethylbenzene	1,904	2.026	-6.4		0.00
71	T	1,2,4-trimethylbenzene	1.731	1,767	-2.1		0.00
72	Ŧ'	1,3-dichlorobenzene	1.202	1.230	-2.3		0.00
73		benzyl chloride	0.952	1.042	-9.5		0.00
74		l,4-dichlorobenzene	1.179	1.261	-7.0		0.00
75		1,2,3-trimethylbenzene	1.897	2.020	~6.5		0.00
76	T	1,2-dichlorobenzene	1.219	1.264	-3.7		0,00
77	_	1,2,4-trichlorobenzene	0.582	0.621	-6.7		0.00
78	T,	Naphthalene	1.514	1.554	-2.6		0.00
79	T	Hexachloro-1,3-butadiene	1.105	1.175	-6.3	93	0.00

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AT020302.D
 Vial: 2

 Acq On : 3 Feb 2022 9:11 am
 Operator: RJP

 Sample : AlUG_1.0
 Tnst : MSD #1

 Misc : A201_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 08:24:20 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 07:40:12 2022

Response via : Initial Calibration

DataAcq Meth : lUG_ENT

Inter	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
~			w v= v= m/ =- ·			vu au ro en	
1)	Bromochloromethane	9.72	128	35677	1.00 ppb		
35)	1,4-difluorobenzene	12.02	114	152077	1.00 ppb 1.00 ppb	1	-0.02
50)	Chlorobenzene-d5	16.85	117	130970	1.00 pps		~U.UZ
Syste	em Monitoring Compounds						
	Bromofluorobenzene		95		1.10 ppb		
Spi	iked Amount 1.000	Range 70	- 130	Recove	ry = 110	.00%	
fYt in amora						Ov	alue
	et Compounds Propylene	4.10	4.7	27441	daa 78.0		87
	Freon 12	4.15	85	247153	0.87 ppb 1.00 ppb 1.01 ppb	1	98
	Chloxomethane	4.35	50	61169	1.01 ppb		94
-	Freon 114	4,35	85	204287	1.02 ppb		97
	Vinyl Chloride	4.53	62	54074	daa 56.0		3.00
	Butane	4.64		66487	0.93 ppb 0.97 ppb 0.97 ppb)	98
	1,3-butadiene	4.64	39	50939	0.97 pph	•	99
	Bromomethane	4.98	94	70860	0.96 ppb)	97
	Chloroethane	5.16	64	26826	1.05 ppb		89
	Ethanol	5.24		26826 13647 16783	0.90 ppb		90
	Acrolein	5.83	56	16783	0.96 ppb		95
	Vinyl Bromide	5.49	106	79666	1.00 pph		100
	Freon 11	5.76	101	291265	1.10 ppb		99
	Acetone	5.92	58	79666 291265 29819 51246 84321 52050 134612	1.18 pph		87
	Pentane	6,04	42	51246	1.14 ppb		92
	Isopropyl alcohol		45	84321	1.08 pph		87
	1,1-dichloroethene		96	52050	0.97 ppt		84
	Freon 113	6.72	101	134612	0.99 ppk		96
	t-Butyl alcohol	6.75	59	97757	0.98 ppb		98
	Methylene chloride		84	47505	0.98 ppk		93
	Allyl chloride	6.96	41	47505 46582 147943	0.94 pph		95
	Carbon disulfide	7.13	76	147943	0.94 ppk		98
	trans-1,2-dichloroethene		61	75849	0.98 ppk		91
	methyl tert-butyl ether			137704	1.01 ppk		90
26)	1,1-dichloroethane	8.34	63	93959	0.97 ppt		98
27)	Vinyl acetate	8.34 8.33	43	65995	0,94 ppl)	100
28)	Methyl Ethyl Ketone	8.81	72	21293	0.96 ppt) #	100
29)	cis-1,2-dichloroethene	9.28	61	68580	0.94 ppk	>	92
	Hexane	9.28 8.87	57	62415	1.01 ppt)	96
	Ethyl acetate	9.42	43	102516	0.96 ppk 0.94 ppk 1.01 ppk 0.97 ppk)	94
	Chloroform	9.89	83	149052	0.99 pph	5	99
	Tetrahydrofuran			36614	0.93 ppk	>	88
	1,2-dichloroethane	11.00		110382	1.00 pph)	99
	1,1,1-trichloroethane	10.71		170369	1.01 ppk		97
	Cyclohexane	11.42		53647	0.96 pph		74
	Carbon tetrachloride	11.36		206573	0.95 ppk		100
	Benzene	11.32		138835	0.99 pph)	96
	Methyl methacrylate	12.91		59316			91
	1,4-dioxane	12.92		33891	0.93 ppl)	91
	2,2,4-trimethylpentane	12.20					89
	Heptane	12.55		58726			96
	Trichloroethene	12.67		77692			97
45)	1,2-dichloropropane	12.78	63	45875	0.94 pp)	99
							* 1/1 m m = -

^{(#) =} qualifier out of range (m) = manual integration AT020302.D A201_1UG.M Fri Feb 04 14:36:47 2022

MSD1

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Feb 04 08:24:20 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 07:40:12 2022

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	156818	0.98 ppb	97
47)	cis-1,3-dichloropropene	13.95	75	87332	1.02 ppb	98
48)	trans-1,3-dichloropropene	14.72	75	79148	0.99 ppb	87
49)	1,1,2-trichloroethane	15.04	97	65679	તવુવ ૯૯.૦	99
51)	Toluene	14.79	92	100839	0,99 ppb	
52)	Methyl Isobutyl Ketone	13.86	43	86988	0.94 ppb	97
53)	Dibromochloromethane	15.78	129	158066	0.99 ppb	99
54)	Methyl Butyl Ketone	15.23	43	82664	0.98 წმენ	
55)	1,2-dibromoethane	16.05	107	1.05305	1.00 ppb	
56)	Tetrachloroethylene	15.87	164	77803	0.96 დებ	
57)	Chlorobenzene	16.90	112	151177	dqq 10.1	
58)	Ethylbenzene	17.17	91	232150	dqq ee.o	
59)	m&p-xylene	17.39	93.	409679	2.05 ppb	
60)	Nonane	17.79	4.3	91799	0.97 ppt	
61)	Styrene	17.85	1.04	151906	1.03 ppb	
62)	Bromoform	17.97	173	153315	1.02 pph	
63)	o-xylene	17.88	91	224297	1.03 pph	
64)	Cumene	18.48		281008	1.03 ppb	
66)	1,1,2,2-tetrachloroethane	18.35	83	136545	ರ.७७ ಧರ್	
67)	Propylbenzene	19.08	120	77304	1.05 ppb	
68)	2-Chlorotoluene	19.12	126	76092	1.03 pph	, # 61
69)	4-ethyltoluene	19.27		282841m		
70)		19.34		265394	1 06 ppb	
71)	1,2,4-trimethylbenzene	19.85	1.05	231420	1.02 ppb	
72)	1,3-dichlorobenzene	20.19		161053	1.02 ppb	
73)	benzyl chloride	20.27	91	136462	1.09 ppb	
74)	1,4-dichlorobenzene	20.34		165114	1.07 ppk	
75)	1,2,3-trimethylbenzene	20.39		264533	1.06 ppb	
76)		20.71		165569	1.04 ppb	
77)	1,2,4-trichlorobenzene	22.90		81385	1.07 ppk	
78)	Naphthalene	23.10		203498	1.03 ppb	
79)	Hexachloro-1,3-butadiene	23.22	225	153883	1.06 ppb	95

Reviewed)

IO)

Quantitation Report

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AT020402.D Vial: 2 Operator: RJP Acq On : 4 Feb 2022 9:56 am Sample : A1UG_1.0 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Method Title

Last Update : Fri Feb 04 14:02:12 2022 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev A	Area%	Dev(min)
3. I	Bromochloromethane	1.000	1.000	0.0		0.01
2 T	Propylene	0.885	0.705	20.3		0.00
3 T	Freon 12	6.918	7.344	-6.2		0.00
4 T	Chloromethane	1.705	1.887	-10.7		0.00
5 T	Freon 114	5.624	6,513	-15.8	91	0.00
6 T	Vinyl Chloride	1.627	1.745	-7.3		0.00
7 T	Butane	1.923	2.046	·· 6 - 4	90	0.00
8 T	1,3-butadiene	1.466	1.644	-12.1		0.00
9 T	Bromomethane	2.061	2.332	-13-1		0.01
10 T	Chloroethane	0.713	0.825			0.00
11 T	Ethanol	0.424	0.417	1.7		0.02
12 T	Acrolein	0.492 2.238	0.501	-1.8		0.00
13 T	Vinyl Bromide					0.00
14 T	Freon 11	7.452	9.261			0.00
1,5 T	Acetone	0.710	0.847	-19.3	88	0.01
16 T	Pentane	1.260	1.556	~23.5		0.00
17 T	Isopropyl alcohol	2.180				0.00
18 T	1,1-dichloroethene	1.509	1.516	-0.5		0.00
19 T	Freen 113	3.813	3.914 2.729	-2.6 2.5	78 72	0.00
20 t	t-Butyl alcohol	2.799		¥ + D	75	0.00
21 T	Methylene chloride	1.364	1.333	2.3		0.00
22 T	Allyl chloride	1.386	1.314	5.2 5.8	71 75	0.00
23 T	Carbon disulfide	4.419	4.161	0.9	75 76	0.00
24 T	trans-1,2-dichloroethene	2.168			80	0.03
25 T	methyl tert-butyl ether 1,1-dichloroethane	3.833		-4.4 3.5	75	0.00
26 T	1,1-dichiorogenane	2.715	2.620	5.3 5.4	71	0.00
27 T	Vinyl acetate	1.964 0.623	1.858 0.610	2.1	77	0.01
28 T	Methyl Ethyl Ketone	2.056		5.0	75	0.00
29 T	cis-1,2-dichloroethene	1.726	1.678	2.8	78	0.00
30 T	Hexane	2.975		1.0	75	0.00
31 T	Ethyl acetate	4.206		-2.1	80	0.00
32 T	Chloroform	1.100		6.4	73	0.01
33 T 34 T	Tetrahydrofuran 1,2-dichloroethane	3,107	3.143	-1.2	81	0.01
3 th 1	1,2-dichioroechane	3.207	3.143			0.0%
35 I	1,4-difluorobenzene	1.000	1.000	0.0	70	0.00
36 T	1,1,1-trichloroethane	1.111	1.218	~9.6	80	0.00
37 T	Cyclohexane	0.366	0.361	1.4		0.00
38 T	Carbon tetrachloride	1.433	1.485	-3.6	82	0.00
39 T	Benzene	0.921	0.928	-0.8	73	0.01
40 T	Methyl methacrylate	0.402	0.392	2.5	68	0.00
41 T	1,4-dioxane	0.240	0.232	3.3	73.	0.00
42 T	2,2,4-trimethylpentane	1.191	1.146	3.8	69	0.00
43 T	Heptane	0.406	0.402	1.0	70	0.00
44 T	Trichloroethene	0.545	0.523	4.0	78	0.01
45 T	1,2-dichloropropane	0.322	0.308	4.3	3.7	0.00
46 T	Bromodichloromethane	1.053	1,120	-6.4	78	0.00
47 T	cis-1,3-dichloropropene	0.562	0.592	-5.3	74	0.00
48 T	trans-1,3-dichloropropene	0.524	0,535	-2.1	75	0.00
49 T	1,1,2-trichloroethane	0.437	0.465	-6.4	79	0.01

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AT020402.D Vial: 2 Operator: RJP Acq On : 4 Feb 2022 9:56 am Sample : AlUG_1.0 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Feb 04 14:02:12 2022

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF			Dev(min)
	,					
51 T	Toluene	0.777	0.765	1.5	73	0.01
52 T	Methyl Isobutyl Ketone	0.705	0.671	4.8	70	0.00
53 T	Dibromochloromethane	1.215	1.217	-0.2		0.01
54 T	Methyl Butyl Ketone	0.645	0.623	3.4	70	0.00
55 T	1,2-dibromoethane	0.802	0.814	~ 1 5	76	0.00
56 T	Tetrachloroethylene	0.617	0.619	-0.3	76	0.00
57 T	Chlorobenzene	1.139	1.344	-0.4	74	0.01
58 T	Ethylbenzene	1,792	1.828	-2.0		0.00
59 T	m&p-xylene	1.523	1.630	-7.0		0.00
60 T	Nonane	0.724	0.723	L . O		0.01
61 T	Styrene	1.123	1.169	-4.1	76	0.01
62 T	Bromoform	1.148	1.172	-2.1	76	0.02
63 T	o-xylene	1.670	1.777	-6.4	79	0.02
64 T	Cumene	2.079	2.133	-2.6	75	0.04
65 S	Bromofluorobenzene	0.737	0.813	-10.3	74	0.05
66 T	1,1,2,2-tetrachloroethane	1.076	1.094	-1.7	76	0.04
67 T	Propylbenzene	0.564	0.572	-1.4	73	0.06
68 T	2-Chlorotoluene	0.566	0.600	-6.0	79	0.06
69 T	4-ethyltoluene	2.088	2.262	~8.3	80	0.06
70 T	1,3,5 trimethylbenzene	1.904	2.035	-6.9	79	0.06
71. T	1,2,4-trimethylbenzene	1,731	1.839	-6.2	77	0.05
72 T	1,3-dichlorobenzene	1.202	1.299	-8.1	80	0.05
73 T	benzyl chloride	0.952	1.071	-12.5	81	0.05
74 T	1,4-dichlorobenzene	1.179	1.313	-11.4		0.05
75 T	1,2,3-trimethylbenzene	1.897	2.080	-9.6		0.05
76 T	1,2-dichlorobenzene	1.219	1.290	-5.8	78	0.04
77 T	1,2,4-trichlorobenzene	0.582	0.634	-8.9		-0.03
78 T	Naphthalene	1.514	1.606	-6.1		-0.02
70 I	Hexachloro-1,3-butadiene	1.105	1,238	-12.0	83	-0.02
, , ,	The same of the sa					

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020402.D Vial: 2 Operator: RJP Acq On : 4 Feb 2022 9:56 am Sample : AlUG_1.0 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 11:43:17 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

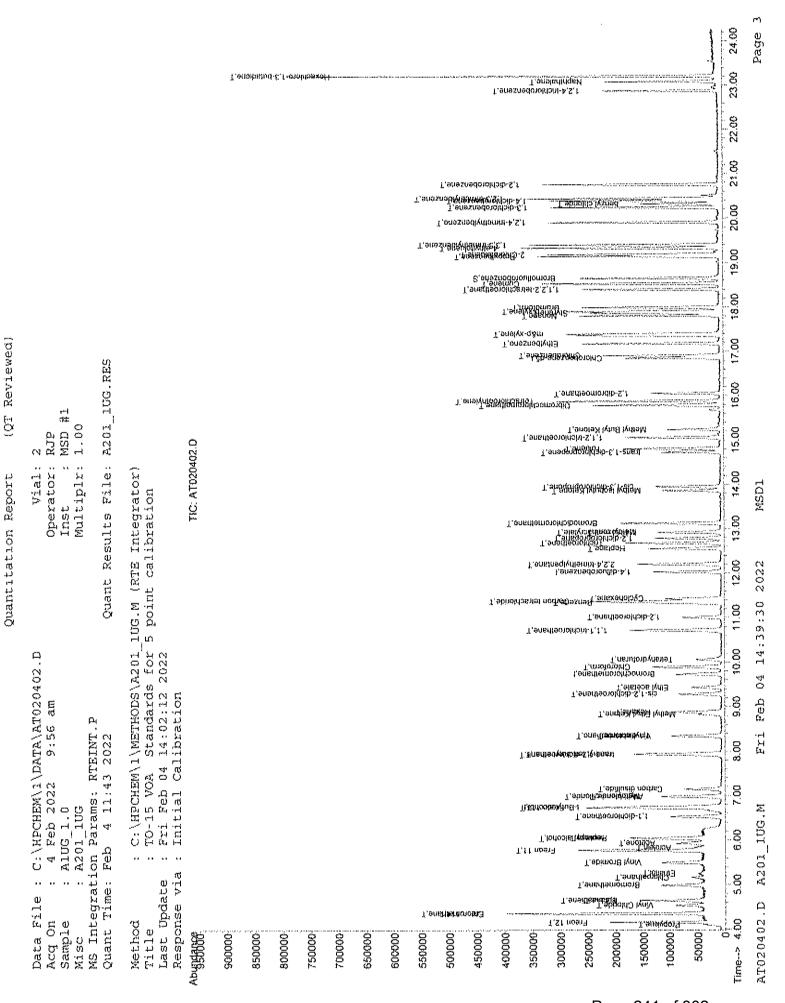
Taskos	rnal Standards	ידי בז	OTOR	Response	Conc On	ite	Dev	(Min)
TIICE1		A.I.						
1)	Bromochloromethane	9.73	128	30828	1.00	dqq	-	0.02
35)	1,4-difluorobenzene	12.03	114	123419	1.00	ppb	,	0.01
50)	Chlorobenzene-d5	16.85	117	109910	1.00	dqq		-0.01
	em Monitoring Compounds							0.00
	Bromofluorobenzene	18.65		89324				0.00
ig8	iked Amount 1.000	Range 70	- 130	Recove	cλ ≖	110.	00%	
Tovac	t Compounds						O378	alue
	et Compounds Propylene	4.10	41	21744	0.80	daa	~ ~ ~ ~	81
	Freon 12	4.15		226408	1.06			99
	Chloromethane	4.34		58187	1.11			97
,	Preon 114	4.35		200779	1.16			95
	Vinyl Chloride	4.54		53794				94
	Butane	4.65	43	63079				99
	1,3-butadiene	4.64	39	63079 50669	1.12			95
	Bromomethane	4.99		71896				100
	Chloroethane	5.16	64	25447	1.16	dqq	ŧŧ	83
	Ethanol	5.26	64 45 56	12861	0.98			84
	Acrolein	5.83	56	15452	1.02			93
	Vinyl Bromide	5.49		77326	1.12	ppb		96
	Freon 11	5.77	101	285505	1.24	dqq		99
,	Acetone	5.93	58	26097 47969	1.19		#	80
	Pentane	6.05	42	47969	1.23			88
	Isopropyl alcohol	6.03		75101	1.12			97
	1,1-dichloroethene	6.53		46749 120648	1.01		#	85
19)	Freon 113	6.72	101	120648	1.03			97
20)	t-Butyl alcohol	6.75	5 59	84132				98
21)	Methylene chloride			41096	0.98			91
	Allyl chloride	6.97		40507	0.95			95
	Carbon disulfide	7.14		128261	0.94			99
	trans-1,2-dichloroethene			66216				93
25)	methyl tert-butyl ether	7.94		123367	1.04			89
26)	1,1-dichloroethane	8.35		80779	0.97			97
27)	Vinyl acetate	8.33	43	57288	0.95			99
28)	Methyl Ethyl Ketone	8.83	72	18818				100
•	cis-1,2-dichloroethene		6.1	60205	0.95			90
	Hexane	8.88	57	60205 51742 90831				92 95
	Ethyl acetate	9.43		90831	0.99			99
	Chloroform	9.89			1.02			89
	Tetrahydrofuran	10.06			0.94			99
	1,2-dichloroethane	1.1.0		96896 150273	1.01 1.10			99
	1,1,1-trichloroethane	10.73						68
	Cyclohexane	11.40		44509 183302	0.98 1.04			99
	Carbon tetrachloride	11.3			1.01			93
	Benzene	11.34 12.93		114502 48378	0.97			97
	Methyl methacrylate	12.9		28646	0.97			89
	1,4-dioxane	12.20			0.96	ppp		89
	2,2,4-trimethylpentane			49593	0.99			99
	Heptane Trichloroethene	10 69	3 120	64589	0.96			94
	1,2-dichloropropane		3 63	37999	0.96			100
43/			, 0,,					

(#) = qualifier out of range (m) = manual integration Fri Feb 04 14:39:29 2022 AT020402.D A201_1UG.M

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\MPCHEM\1\DATA\AT020402.D Vial: 2 Acq On : 4 Feb 2022 9:56 am Operator: RJP Sample : AlUG_1.0 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

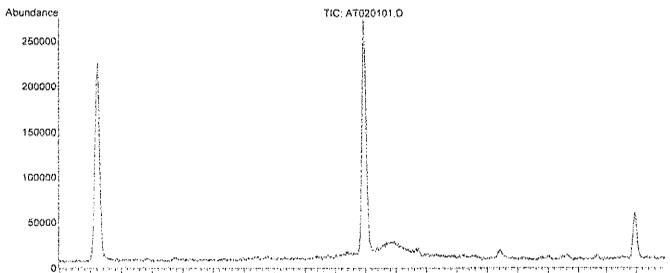
Quant Time: Feb 04 11:43:17 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration

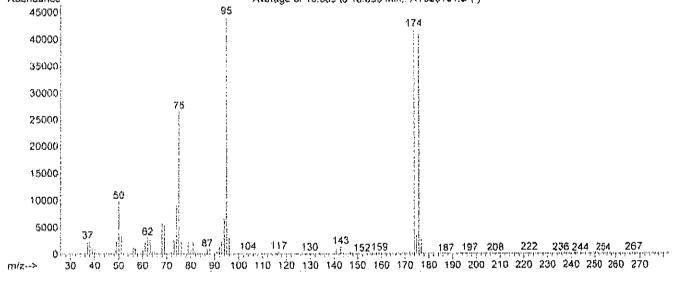
DataAcq Meth : lUG_ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,12	83	138193	dqq 30.1	99
47)	cis-1,3-dichloropropene	13.95		73058	1.05 ppb	98
48)	trans-1,3-dichloropropene	14.73		66028	1.02 ppb	98
49)	1,1,2-trichloroethane	15.06	97	57408	1.06 ppb	98
51)	Toluene	14.81	92	84054	dqq 8e.0	97
52)	Methyl Isobutyl Ketone	13.86		73737	dgg 28.0	98
53)	Dibromochloromethane	15.79		133764	1.00 ppb	100
54)	Methyl Butyl Ketone	15,23	43	68508	0.97 ppb	94
55)	1,2-dibromoethane	16.05		89462	1.02 ppb	94
56)	Tetrachloroethylene	15.88	164	67982	1.00 ppb	99
57)	Chlorobenzene	16.91	3.3.2	125747	1.00 ppb	95
58)	Ethylbenzene	17.18	91	200879	1.02 ppb	97
59)	m&p-xylene	17.39	91	358205	2.14 ppb	91
60)	Nonane	17.81	43	79496	dqq 00.1	98
61)	Styrene	17.86	1.04	128478	1.04 ppb	80
62)	Bromoform	17.99	173	128837	1.02 ppb	99
63)	o-xylene	17.90	91	195330	1.06 ppb	91
64)	Cumene	18.52	105	234386	1.03 ppb	98
66)	1,1,2,2-tetrachloroethane	18.39	83	120262	1.02 ppb	99
67)	Propylbenzene	19.14		62818	dqq 10.1	97
68)		19.18	126	65921	1.06 ppb	# 63
69)		19.33	105	248612	1,08 ppb	76
70)	1,3,5-trimethylbenzene	19.40	105	223721	1.07 ppb	96
71)	1,2,4-trimethylbenzene	19.91		202132	1.06 ppb	97
72)	1,3-dichlorobenzene	20.24		142797	1.08 ppb	97
73)	benzyl chloride	20.32	91	117762	1.13 ppb	98
74)		20.39		144266	1.11 ppb	94
75)	1,2,3-trimethylbenzene	20.44		228576	1.10 ppb	95
76)	1,2-dichlorobenzene	20.75	146	141760	1.06 ppb	94
77)	1,2,4-trichlorobenzene	22.87		69658	1.09 ppb	96
78)	Naphthalene	23.08	128	176532	1.06 ppb	98
79)	Hexachloro-1,3-butadiene	23.20	225	136041	1.12 ppb	94

GC/MS VOLATILES-WHOLE AIR


METHOD TO-15

RAW DATA

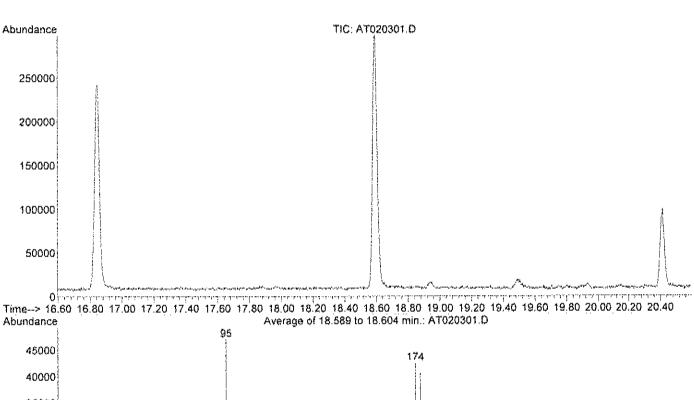

BFB

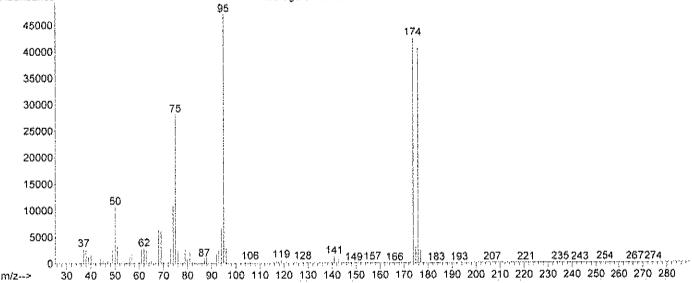
MS Integration Params: RTEINT,P

Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Time--> 16.60 16.80 17.00 17.20 17.40 17.60 18.00 18.20 16.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 20.40 Abundance Average of 18.589 to 18.595 min. AT020101.0 (-)

Spectrum Information: Average of 18.589 to 18.595 min.

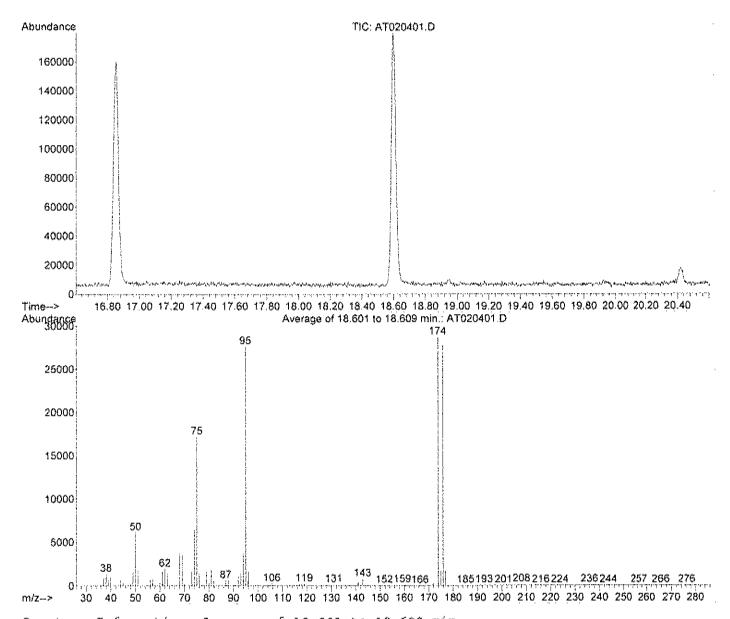

Target Mass	Rel. to Mass	Lower Limit*	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
1 50 1	95	8 !	40	22.3	9863	PASS
75	95	30	66	60.1	26571	PASS
95	95	100	1.00	100.0	44189	PASS
96	95	5	9	7.0	3111	PASS
3.73	1.74	0.00	2	0.5	221	22Aq
1 174	95	50	120	94.7	41842	Pass
175	174	4	9	8.4	3501	PASS
1.76	1.74	95	101	98.1	41053	PASS
177	176	5	9	6.8	2793	PASS


AT020101.D A201_1UG.M

Fri Feb 04 14:00:12 2022 MSD1

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Spectrum Information: Average of 18.589 to 18.604 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	8 1	40	22.7	10675	PASS
- 1	75	95	30	66	59.8	28112	PASS
- 1	95	95	100	100	100.0	47016	PASS
}	96	95	5	9	6.3	2943	PASS
i	173	174	0.00	2	0.4	178	PASS
- 1	174	95	50	120	90.4	42506	PASS
	1.75	174	4	9	7.3	3094	PASS
	176	174	95	101	95.3	40498	PASS
İ	177	176	5	9	6.7	2706	PASS
,		•					

BFB

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.601 to 18.609 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	50	95	8	40	22.3	6148	PASS
	75	95	30	66	62.2	17194	PASS
ļ	95	95	100	100	100.0	27622	PASS
	96	95	5	9	5.8	1604	PASS
	173	174	0.00	2	0.3	80	REAG
	174	95	50	120	103.9	28712	PASS
ĺ	175	174	4	9	5.9	1708	PASS
-	176	174	95	101	96.9	27820	PASS
	177	176	5	9	6.0	1660	SZAG

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
RAW QC DATA

ANALYTICAL QC SUMMARY REPORT

Date: 04-Feb-22

Marrix Environmental Technologies, Inc CLIENT:

C2202013 Work Order:

Aquino 65-67 Lake Ave **Project**:

Sample ID: AMB1UG-020322	SampType: MBLK	TestCode: (le: 0.20_NYS	Units: ppbV	Pre	Prep Date:		RunNo: 18586	
Client ID: ZZZZZ	Batch ID: R18586	TestNo:	lo: TO-15		Analysi	Analysis Date: 2/3/2022	1022	SeqNo: 211744	
Anaìy≀e	Result	POL SI	SPK value	SPK Ref Val	%REC LowLimit	mit Higภินิเคมิ	it RPD Ref Vai	%RPD RPOLimit	mit Qual
1, t. 1- Frichloroethane	< 0.15	0.15							
1, §, 2, 2-Tetrachloroethane	< 0.15	0.15							
1,1,2-Trichloroethane	< 0.15	0.15							
f,1-Dichloroethane	< 0.15	0.15							
1.1-Dichloroethene	< 0.040	0.040							
1,2,4-Trichlorobenzene	< 0.15	0.15							
1,2,4-Trimethylbenzene	< 0.15	0.15							
1,2-Dibrompethane	< 0.15	0.15							
1,2-Dichlorobenzene	< 0.15	0.15							
t,2-Dichloroethane	< 0.15	0.15							
t,2-Dichloropropane	< 0.15	0.15							
1,3,5-Trimethylbenzene	< 0.15	0.15							
1,3-butadiene	< 0.15	0.15							
1,3-Dichlorobenzene	< 0.15	0.15							
1,4-Dichlorobenzene	< 0,15	0.15							
1,4-Dioxane	< 0.30	0.30							
2,2,4-trimethyfpentane	< 0.15	0.15							
4-ethyltoluene	< 0.15	0.15							
Acetone	< 6.30	0.30							
Allyl chloride	< 0.15	0.15							
Benzene	< 0.15	0.15							
Benzył chloride	< 0.15	0.15							
Bromodichloromethane	< 0.15	0.15							
Bromoform	< 0.15	0.15							
Bromomethane	< 0.15	0.15				;			
Qualifiers: Results re	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	ion range	Ξ	Holding times for	Holding times for preparation or analysis exceeded	sceeded
3 Analyte d	Analyte detected below quantitation limit	,e	ND Not DA	Not Detected at the Limit of Detection	ection	*	RPD outside acce	RPD outside accepted recovery limits	
S Cariford Dec	Smite Recovery agride segment recovery limits		Dl. Detect	Detection Limit					Pour toff

ogies, Inc
Matrix Environmental Technologies, Inc
CLJENT:

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

Analyte Result Carbon disuffide < 0.15 Carbon tetrachloride < 0.030 Chlorobenzene < 0.05 Chlorobenzene < 0.15 Chlorothane < 0.15 Chlorothexane < 0.15 Cyclohexane < 0.15 Cyclohexane < 0.15 Ethyl acetate < 0.15 Ethyl acetate < 0.15 Ethyl benzene < 0.15 Freon 13 < 0.15 Freon 14 < 0.15 Freon 13 < 0.15 Freon 14 < 0.15 Hexachloro-1.3-butadiene < 0.15 Hexachloro-1.3-butadiene < 0.15 Hexachloro-1.3-butadiene < 0.15 Methyl Butyl Ketone < 0.15 Methyl Isbutyl Ketone < 0.30 Methyl istr-butyl ether < 0.15 Avylene < 0.15 < 0	TestNo: TO POL SPK 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	SPK value SPK Ref Val	Analysis Date: 2/3/2022	uit RPD Ref Val	Seqivo: 211744 %RPD RPDLimit
disuffide tetrachloride enzene thane orm nethane Dichloroethene Oichloropropene exane ochforomethane tetate nzene 1 14 2 8 aloro-1.3-butadiene bisobutyi Ketone tetate serate ser			Eow/Imit	1	
ride cather ride c	0.15 0.030 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1				
ride sthene solvene ethane butadiene butadiene ketone ketone ether ide	\$0.00 0.15 0.15 0.00 0.15 0.15 0.15 0.15				
ą.	51.0 0.15 0.00 0.15 0.15 0.15 0.15 0.15				
g.	0.15 0.00 0.15 0.15 0.15 0.15 0.15 0.15				
gy.	0.15 0.00 0.15 0.15 0.15 0.15 0.15 0.15				
ų.	0.00 0.00 0.15 0.15 0.15 0.15 0.15 0.15				
gy.	0,000 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0				
egy and the state of the state	0.15 0.15 0.15 0.15 0.15 0.15 0.15				
a	0.15 0.15 0.15 0.15 0.15 0.15 0.15				
a	0.15 0.15 0.15 0.15 0.15 0.15 0.15				
3-butadiene ohol Ketone iyl Ketone utyl ether	0.15 0.15 0.15 0.15 0.15 0.15				
ene o-1,3-butadiene akohol se iyi Ketone butyi Ketone t-butyi ether	0.15 0.15 0.15 0.15 0.15				
o-1.3-butadiene akohol ae iyi Ketone butyi Ketone t-butyi ether	0.15 0.15 0.15 0.15 0.15				
o-1,3-butadiene akcahol ae iyi Kefone iyi Ketone butyi Ketone i-butyi ether	0.15 0.15 0.15 0.15				
o-1,3-butadiene akcahol ae iyi Kefone bujyi Ketone bujyi ether	0.15 0.15 0.15				
	0.15 0.15 0.15				
	0.15				
	0.15				
fi akcahol sene Sutyt Kefone Subutyt Ketone sobutyt ketone art-butyl ether ne chloride					
94 F6	0.15				
92 JG	0.15				
92 %	0.30				
92 H	0.30				
	0.30				
	0.15				
	0.15				
Propylene < 0.15	0.15				
Styrene < 0.15	0.15				
Tetrachloroeity/ene < 0.15	0.15				
Tetrahydrofuran < 0.15	0.15				
Qualifiers: Results reported are not blank corrected	ъ.	Estimated Vaiue above quantitation range			Rolding times for preparation or analysis exceeded
	CM nim	Not Detected at the Linsit of Detection	etection &	RPD outside accep	RPD outside accepted recovery limits
S Snike Recovery outside accepted recovery fimits	very family DE.	Detection Limit			Page 2 of 5

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

Work Order:

Project:

CLIENT:

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

Sample ID: AMB1UG-020422	SampType: MBLK	TestCode	TestCode: 0.20_NYS	Units: ppbV	Prep Date:		RunNo: 18587
Client ID: ZZZZ	Batch ID: R18587	TestNo.	10-15		Analysis Date:	2/4/2022	SeqNo: 211775
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Acelone	< 0.30	0.30					
Allyl chloride	< 0.15	0.15					
Benzene	< 0.15	0.15					
Benzyl chloride	< 0.15	0.15					
Bromodichloromethane	< 0.15	0.15					
Bromoform	< 0.15	0.15					
Bromomethane	< 0.15	0.15					
Carbon disuifide	< 0.15	0.15					
Carbon telfachloride	< 0.030	0.030					
Chiorobenzene	< 0.15	0.15					
Chloroethane	< 0.15	0.15					
Chlaroform	< 0.15	0.15					
Chloromethare	< 0.15	0.15					
cis-1,2-Dichlaraethene	< 0.040	0.040					
cis-1,3-Dichloropropene	< 0.15	0.15					
Сусюнехале	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Ethył acetate	< 0.15	0.15					
Ethyibenzene	< 0.15	0.15					
Freon 11	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Freon 114	< 0.15	0.15					
Freon 12	< 0.15	0.15					
Heptane	< 0.15	0.15					
Hexachloro-1,3-butadiene	< 0.15	0.15					
Hexane	< 0.15	0.15					
Isopropyl alcohol	< 0.15	0.15					
m&p-Xylene	< 0.30	0.30					
Methyi Butyi Ketone	< 0.30	0.36					
Methyl Ethyl Ketone	< 5.30	0.30					
Methyl Isobutyl Ketone	< 0.30	0.30					
Qualifiers: Results repo	Results reported are not blank corrected	:	E Estin	Estimated Value above quantitation range	मंत्रीति एक एक	H Holding times for	Holding times for preparation or analysis exceeded
J Analyse dete	Analyse detected below quantitation limit		ND Not i	Not Detected at the Limit of Detection	Detection	R RPD outside accep	RPD outside accepted recovery limits
S Spike Recov	Spike Recovery outside accepted recovery limits	imits	DL. Dere	Derection Light			Page 4 of 5
							,

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

CLIENT: Work Order:

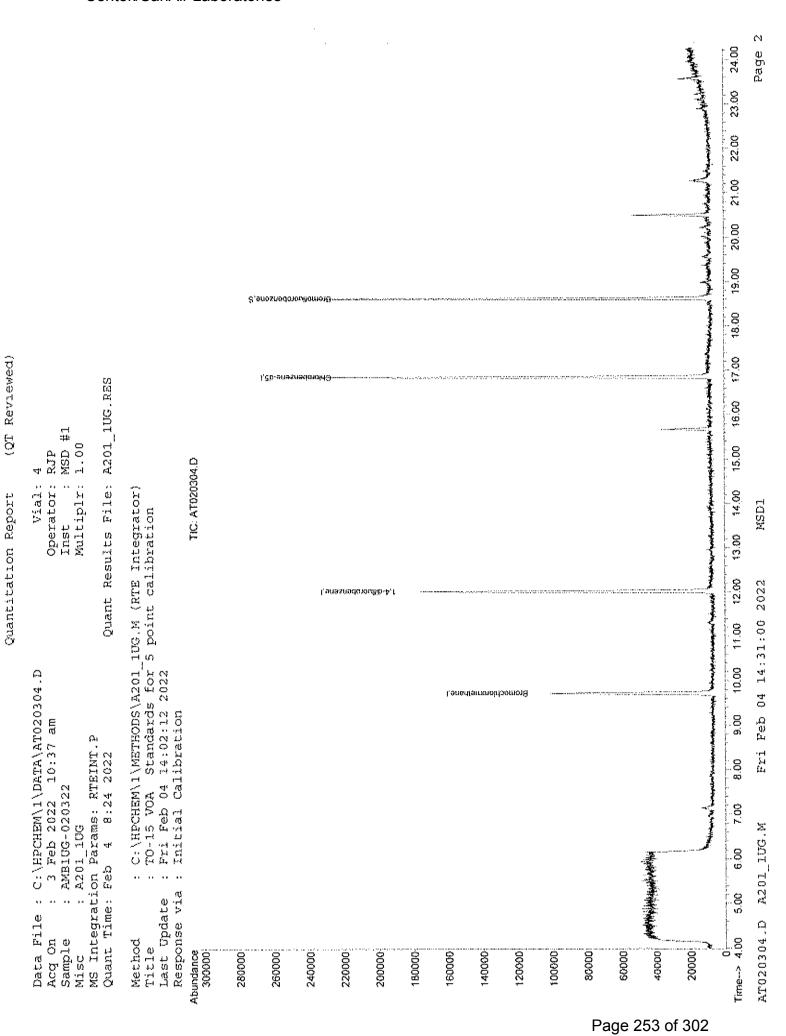
Project:

Sample ID: AMB1UG-020422	UG-020422	Sampīype: MBLK	TestCod	TestCode: 0.20_NYS	'S Units: ppbV		Prep Date:	ie.		RunNo: 18587	187	
Client ID: 22222		Batch D. R18587	TestN	TestNo: TO-15		,	Analysis Date:	le: 2/4/2022	22	SeqNo: 211775	1775	
Analyte		Result	Pal	SPK value	e SPK Ref Vaf	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	her her	< 0.15	0.15					:				
Methylene chioride		< 0.15	0.15									
o-Xylene		< 0.15	0.15									
Propylene		< 0.15	9.15									
Styrene		< 0.15	0.15									
∓etrachloroethylene	ф	< 0.15	0.15									
Tetrahydrofuran		< 0,15	0.15									
Toluene		< 0.15	0.15									
trans-1,2-Dichloroethene	ethene	< 0.15	0.15									
trans-1,3-Dichloropropene	эгорепе	< 0.15	0.15									
Trichloroethene		< 0.030	0.030									
Vinyl acetale		< 0.15	0.15									
Vinyl Bromide		< 0.15	0.15									
Vinyl chloride		< 0.040	0.040									
Qualifiers	i i	Results reported are and blank corrected		E ESU	Estimated Value above quantitation range	stilation ran Peredion	35	= ax	Holding times for prepartation or analysis exceeded RPO natisfa accounted presurery limits.	s for preparation or atalysis	galysis exceed	pa ₁
. S.		Analyse detected octow quantanism intiti Spike Recovery natside accepted recovery limits	n ry lamats		ivos Databasa da um Larentos Defectios Einnit			:				Page 5 of 5

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020304.D Vial: 4 Acq On : 3 Feb 2022 10:37 am Sample : AMB1UG-020322 Misc : A201_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 04 08:24:22 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration

DataAcq Meth : LUG_ENT

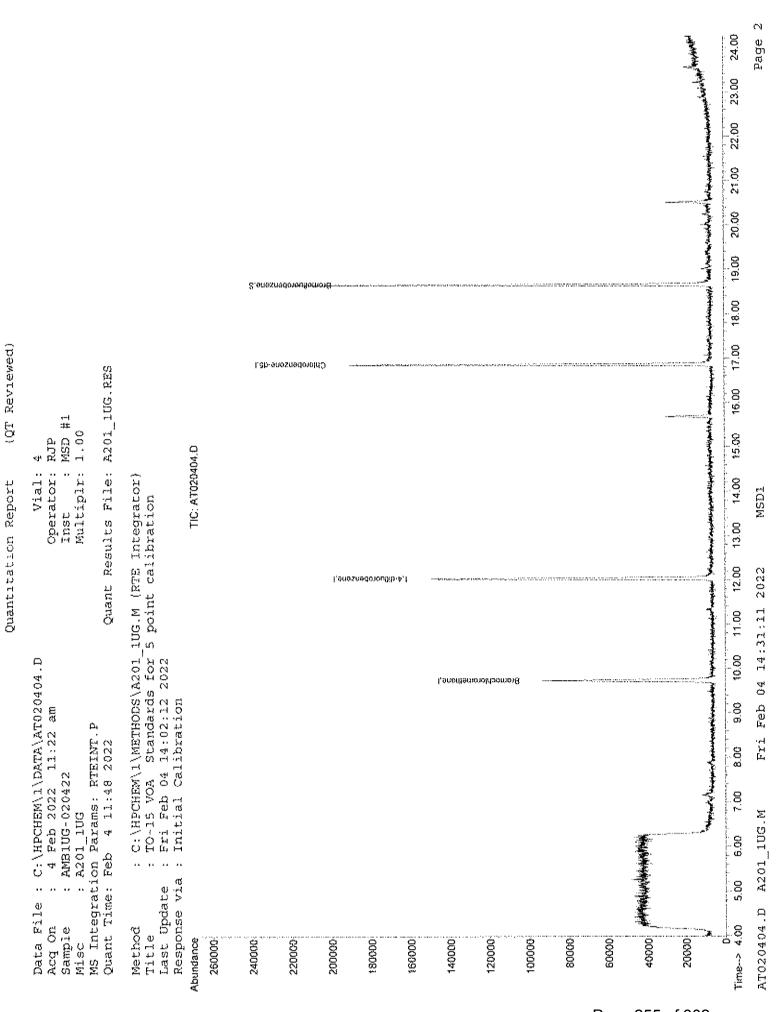
Internal Standards	R.T.	QIon	Response (Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.72 12.02 16.85		37307 165431 152624	1.00 pp 1.00 pp 1.00 pp	b -0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.61 Range 70		88053 Recovery		b ~0.04 8.00%

Qvalue Target Compounds

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020404.D Vial: 4 Acq On : 4 Feb 2022 11:22 am Operator: RJP Sample : AMB1UG-020422 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Feb 04 11:48:16 2022


Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022 Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response (Conc Uni	ts Dev(Min)
1) Bromochloromethane	9.74	128	31342	1.00 pj	10.0- dq
35) 1,4-difluorobenzene	12.03	114	143110	1.00 p	
50) Chlorobenzene-d5	16.85	117	114459	1.00 p	0.00 dq
System Monitoring Compounds					
65) Bromofluorobenzene	18.65	95	76445	0.91 py	
Spiked Amount 1.000	Range 70	~ 130	Recovery	Α	91.00%

Qvalue Target Compounds

Page 255 of 302

TestCode: 0.20 NVS

ANALYTICAL QC SUMMARY REPORT

CLIENT: Matrix Environmental Technologies, Inc.

Work Order: C2202013

Project: Aquino 65-67 Lake Ave

Sample ID: ALCS1UG-020322	SampType: LCS	TestCod	TestCode: 0.20 NYS	Units: pobV		Prep Date.		RunNo: 18586	
Client ID: ZZZZZ	Batch ID: R18586	Tesih	TesiNo: TO:15		-	Analysis Date:	2/3/2022	SeqNo: 211745	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Limit Qual
1.1.1-Trichloroethane	0.9600	0.15	+	0	96.0	91.3	127		
1,1,2,2-Tetrachloroethane	0.8500	0.15	4	Ü	85.0	78.7	121		
1,1,2-Trichloroethane	0.9400	0.15	An	Đ	94.0	88.1	135		
1,1-Dichloroethane	0.9500	0,15	V	Ð	95.0	86.1	123		
1,1-Dichloroethene	0.9900	0.040	-	0	0.66	70	ĸ		S
1,2,4-Trichlorobenzene	0.8700	0.15	-	٥	87.0	76.7	112		
,2,4-Trimethylbenzene	0.9300	0.15	_	0	93.0	74.3	123		
2-Dibromoethane	0.9490	0.15	-	0	94.0	80.4	125		
1,2-Dichlorobenzene	0.8400	0.15	-	0	84.0	79.5			
1,2-Dichloroethane	0.9900	0.15	_	0	0.99	70.9	133		
1,2-Dicfiloropropane	0.9400	0.15	**	0	94.0	12	134		
1,3,5-Trimethylbenzene	0.8800	0.15	ųn.	0	88.0	77.4	138		
1,3-butadene	0.9500	0.15	die.	0	95.0	77	144		
1,3-Dichlorobenzene	0.8900	0.15	•	⇔	89.0	84.7	128		
1,4-Dichlorobenzene	0.9000	0.15	-	Ç	90.0	77.9	131		
1,4-Dioxane	0.9600	0.30	-	0	96.0	60.9	133		
2,2,4-trimethylpentane	0.9590	0.15	_	0	95.0	86.9	126		
4-ethyllofuene	0.8900	0.15	-	0	89.0	77.5	†33		
Acetone	1.070	0.30	1	0	107	46.7	165		
Allyl chloride	0.9400	0.15		0	94.0	86.6	117		
Benzene	0.9500	0.15	***	0	95.0	88.9	122		
Benzyl chloride	0.9300	0.15	4117	÷	93.0	73.6	120		
Bromodíchloromethane	0.9700	0.15	***	c	97.0	84.3	133		
Втотобот	0.8700	0.15	-	Đ	67.0	44.6	149		
Bromomethane	0.9800	0.15	-	0	98.0	78.7	144		
Qualifiers: Results repor	Results reported are not blank corrected		E Estim	Estimated Value above quantitation range	tstation ran	o â	H Holding times fo	Holding times for preparation or analysis exceeded	exceeded
_	Analyte detected below quantitation famil		ND Not D	Not Detected at the Limit of Detection	Detection		R RPD outside acc	RPD outside accepted recovery limits	

Matrix Environmental Technologies, Inc CLIENT:

TestCode: 0.20 NYS

C2202013 Work Order:

Aquino 65-67 Lake Ave Project:

Sample ID: ALCS1UG-020322	-020322	SampType: LCS	TestCor	TestCode: 0.20_NYS	units: ppbv		Prep Date	int.	Kunino: 18586
Client ID: ZZZZZ		Batch ID: R18586	Test	TestNo: TO-15		•	Analysis Date:	3. 2/3/2022	SeqNo: 211745
Analyte		Resuit	90 <u>.</u>	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Carbon disulfide		0.9900	0.15	1	0	90.0	76.9	109	
Carbon tetrachloride		0.8900	0.038	-	0	89.0	71	120	
Chiorobenzene		0.9500	0.15	-	0	95.0	82.6	121	
Chioroethane		0.8900	0.15	•	0	99.0	67.1	146	
Chibroform		0.9700	0.15	-	0	97.0	82.5	125	
Chloromethane		0.9400	0.15	+	0	0.76	71.1	154	
cis-1,2-Dichioroethene		0.9500	0.040	•	ð	95.0	71.2	112	
cis-1,3-Dichtoropropene	ď	0.9800	0.15	40	Û	98.0	90.3	137	
Cyclohexane		0.9800	0.15	۸v	0	98.0	87	122	
Dibromochloromethane		0.9300	6.15	*-	0	93.0	62.8	132	
Ethyl acetate		0.9600	0.15	4	0	96.0	86.9	134	
Ethylbenzene		0.9700	0.15	•	Ç	97.0	76.9	123	
Freon 13		1,040	0.15	-	û	104	54.4	150	
Freon 113		0.9500	0.45	-	0	95.0	83.4	124	
Freon \$14		0.970.0	0.15	-	0	97.0	70.2	133	
Freon 12		0.9500	0.15	_	0	95.0	85.3	135	
Heplane		0.9800	0.15	_	0	98.0	86.5	137	
Hexachloro-1,3-butadiene	:11¢	0.8600	0.15	_	0	86.0	78.7	120	
Hexane		0.8500	0.15	-	0	85.0	77.3	128	
isopropyl alcohol		1.020	0.15	•	0	102	80.2	122	
m&p-Xylene		1.910	0.30	2	0	95.5	77.9	132	
Methyl Butyl Ketone		0.9500	0.30	Ψ-	Û	95.0	69.4	131	
Methyl Ethyl Ketone		0.9700	0.30	ų.	0	97.0	71.5	117	
Methyl Isobutyl Ketone		0.9200	0.30	•	Ç	92.0	63.5	141	
Methyl ted-buty! either		0.9800	0.15	•	C	98.0	80.8	113	
Methylene chloride		0.9400	0.15	•	0	94.0	87.8	123	
o-Xylene		0.8800	0.15	-	Q.	88.0	80.5	139	
Propylene		0.8400	0.15	•	0	84.0	73.8	124	
Styrene		0.8600	0.15	-	0	86.0	82.7	138	
Tetrachloroethylene		0.9200	0.15	-	0	92.0	85.9	122	
Tetrahydrofuran		0.9500	0.15	_	0	95.0	65.5	134	
Qualifiers: Re-	esults repor	Results reported are not blans corrected		E Estin	Estimated Value above quantitation range	संवेत्रीला क्य		H Holding times for	Holding times for preparation or analysis exceeded
any	nallyte detec	Analyte detected below quantitation limit		ND Not	Not Detected at the Limit of Detection	Detection		R RPD existing acco	RPD outside accepted recovery finits
S Spi	nike Recovi	Spike Recovery outside accepted recovery limits	limits	DL Dete	Detection Limit				Page 2 of 7

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

Work Order:

Project:

CLJENT:

TestCode: 0.20 NVS

Page 3 of 7 Sual Oual Holding times for preparation or analysis exceeded %RPD RPDLimit %RPD RPDLimit SeqNo: 211745 SeqNo: 211776 RPD outside accepted recovery limits RunNo: 18586 Runiklo: 18587 RPD Ref Vai RPD Rei Val 214/2022 213/2022 HighLimit HighLimit 38 333 126 125 343 133 3 4 128 3 133 꼸 117 101 142 홪 5 53 127 === Analysis Date: Analysis Date: Prep Date: Prep Date LowLimit LowLimit 77.9 60.9 36.3 77.8 83.3 84.8 79.3 70.5 81,4 70.4 83 88.1 76.7 74.3 80.4 79.5 70.9 77.4 17 78.7 84.7 ģ Estimated Value above quantitation range %REC %REC Not Detected at the Limit of Detection <u>م</u> 100 110 ₩ 109 95.0 108 90.0 93.0 95.0 95.0 35 108 101 ‡07 10 <u>10</u> 306 1 107 Units: ppbV Units: ppbV 0 Ö Ç,D 000 0 0 Ö C) CD SPK Ref Val SPK Ref Val Detection Limit TestCode: 0.20 NYS FestCode: 0.20_NYS SPK vatue SPK value TestMo: TO-15 TesiMo: TO-15 a 2 23 0.15 0.15 0.040 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.30 0.15 0.15 0.15 0.35 9.35 0.15 0.030 g 0.040 절 Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected 1,010 1.070 1.180 1.090 1.090 Satch 10: R18586 Result 0.9000 0.9300 0.9500 Batch ID: R18587 Result 1.010 1.04B 1,080 1.110 1.070 1.000 1,100 0.9700 0.9800 1.080 0.9500 0.9200 0.9500 1.000 Samp1ype: LCS SampType: LCS Sample ID: ALCS1UG-020422 Sample ID: ALCS1UG-020322 trans-1,3-Dichloropropene I, f., 2, 2-Tetrachloroethane trans-1,2-Dichlorcethene 1,2,4-Trimethylbenzene ,3,5-Trimethylbenzene 1,2,4-Trichtorobenzene 2,2,4-trimethylpentane I, t.2-Trichloroethane 1.1.1-Trichloroethane 1,2-Dichlorobenzene 3-Dichtorobenzene 4-Dichlorobenzene I,2-Dichloropropane ,2-Dichloroethane 1,2-Dibromoethane 1,1-Dichloroethene .1-Dichloroethane Client ID: ZZZZZ Client ID: ZZZZZ **Trichlorcethene** 1,3-butadiene 4-ethyltoluene Vinyi Bromide Vinyi chloride Vinyl acetate Qualifiers: Analyte Foilvene Апађие

Qual

Ø

Matrix Environmental Technologies, Inc
CLIENT:

TestCode: 0.20 NYS

C2202013 Work Order:

Aquino 65-67 Lake Ave

Project:

Sample ID: ALCS1UG-020422	SampType: LCS	TesfCox	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 18587	ATTENDED
Client ID: ZZZZZ	Batch ID: R18587	Test	TestNo: TO-15			Analysis Date:	2/4/2022	SeqNo: 211776	***************************************
Anaiyte	Result	S.	SPK value	SPK Ref Vai	% REC	LowLimit Hi	Hightimit RPD Ref Val	%RPD RPDLimit	ri Quat
Acetone	1.060	0:30	1	0	106	46.7	165		
Allyl chloride	1.020	0.15	-	Ç	102	86.6	137		
Benzene	1.030	0.15	-	¢	103	88.9	122		
Benzyl chloride	1.120	0.15	-	0	±12	73.6	120		
Bromodichipromethane	1.090	0.15	-	0	103	84.3	133		
Bromoform	1.020	0.15	-	0	102	44.6	149		
Bromomethane	1.220	0.15	-	0	122	78.7	144		
Carbon disulfide	1.910	0,15	-	0	101	76.9	±09		
Carbon tetrachloride	1.030	0.030	-	0	103	71	120		
Chlorobenzene	1.020	0.15	_	0	162	82.6	121		
Chloroethane	1.340	0.15	-	0	45	67.1	‡46		
Chioroform	1.090	0.15	-	0	109	82.5	125		
Chloromethane	1.220	0.15	-	0	122	71.1	154		
cis-1,2-Dichloroethene	1.000	0.040	*	0	150	71.2	112		
cis-1,3-Dichtoropropene	1.040	0.15	4411	0	\$	90.3	137		
Cyclohexane	0.9900	0.15	****	0	0.99	6	122		
Dibromochioromethane	1.020	0.15	Ases	Đ	102	62.8	132		
Ethyl acetate	1.020	0.15	Ψ	O	102	86.9	134		
Ethylbenzene	1.030	0,15	****	0	103	76.9	123		
Freon 11	1.350	0.15	***	Ф	135	54.4	150		
Freon 113	1,090	0.15	•	Ç	109	83.4	124		
Freon 114	1,250	0.15	-	Ç	125	70.2	133		
Freon 12	1.170	0.15	-	0	λ Γ	86.3	135		
Heptane	0.9900	0.15	-	0	99.0	86.5	137		
Hexachioro-1,3-butadiene	1,100	0.15	-	0	110	78.7	120		
Нехапе	1.040	0.15	-	0	104	77.3	128		
Isopropyl alcoho!	1.230	0.15	-	0	123	80.2	122		ςs
m&p-Xylene	2.100	0.30	2	0	105	77.9	132		
Methyi Butyi Ketone	0.9700	0.30	**	0	97.0	69.4	131		
Methyl Ethyl Kelone	0.9400	0.30	~	0	94.0	71.5	117		
Methyl Isobutyl Ketone	0.9400	0:30		0	94.0	63.5	44-1		
Qualifiers: Results repor	Results reported are not blank corrected		E Estim	Estimated Value above quantitation range	itations rang	æ		Holding times for preparation or analysis exceeded	papax
J Analyte detec	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	Detection		R RPD outside accep	RPD outside accepted recovery limits	
S Spike Recove	Spike Recovery outside accepted recovery limits	imis	DL Derec	Derection Lisnet					Page 4 of ?

TestCode: 0.20 NYS

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

CLIENT: Work Order:

Project:

Sample ID: ALCS1UG-020422	SampType: LCS	TestCor	estudge: 0.20_NYS	Outs: ppbv		Prep Gate	ai.		KunNo: 18587	
Client ID: ZZZZ	Batch ID: R18587	Test	TestNo: TO-15			Analysis Date:	2/4/2022		SeqNo: 211776	ю
Апаlуlе	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimif R	RPD Ref Val	%RPD RI	RPDLimit Qual
Methyl text-butyl ether	1.040	0.15	-	0	75	80.8	113			
Methytene chitoride	1.030	0.15	-	0	163	87.8	123			
o-Xylene	1.060	0.15	-	0	106	80.5	139			
Рторујеле	1.010	0.15	_	0	161	73.8	124			
Styrene	1.070	0.15	-	0	107	82.7	138			
Tetrachloroethylene	1.000	0.15	1	0	100	85.9	122			
Tetrahydrofuran	0.9700	0.15	*-	0	97.0	65.5	134			
Toluene	1.010	0.15	4~	O	10‡	77.8	127			
trans-1,2-Dichloroethene	1.030	0.15	ųvr	9	103	83.3	116			
frans-1,3-Dichloropropene	1.020	0.15	wm	¢	102	84.8	134			
Trichloroethene	0.9506	0.030	N.T.	ረግኃ	95.0	79.3	117			
Vinyl acetate	1,010	0.15	***	0	101	70.5	101			
Viny! Bromide	1,190	0.15	•	Đ	6##	81.4	142			
Vinyl chloride	1,160	0.040	•	0	ş.‡9	70.4	138			
Sample ID: ALCS1UGD-020322	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	ini		RunNo: 18586	
Client ID: ZZZZZ	Batch ID: R18586	Test	TestMo: TO-15			Analysis Date:	273/2022		SeqNo: 211746	ψ.
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimil R	RPD Ref Val	%RPD R	RPDLimit Qual
1.1,1-Trichloroethane	1.040	0.15	-	0	195	91.3	127	0.96	8.00	0
1.2.2-Telfachloroethane	0.9600	0.15	ų.	0	96.0	78.7	121	0.85	12.2	Û
1,1,2-Trichloroethane	0.9800	0.15	fer.	¢	0.86	88.1	136	0.94	4.17	0
1,1-Dichloroethane	1.076	6,15	400	¢	107	36.1	123	0.95	11.9	0
1,1-Dichloroethene	1.030	0.040	•	¢	103	22	35	66.0	3.96	0
1,2,4-Trichlorobenzene	1.010	0.15		0	101	76.7	112	0.87	14.9	0
1,2,4-Trimethylbenzene	1.020	0.15	-	0	102	74.3	123	0.93	9.23	0
1,2-Dibromoethane	1.010	0.15	-	0	101	90.4	125	0.94	7.18	0
1,2-Dichtorobenzene	1.020	0.15	-	0	102	79.5	143	0.84	\$9.4	0
1,2-Dichloroethane	1.090	0.15	-	0	109	70.9	133	0.99	9.62	0
1,2-Dichioropropane	0.9800	0.15	-	0	98.0	6	134	0.94	4.17	0
Quadifiers: Results repor	Results reported are not blank corrected		1	Estimated Value above quantitation range	Martines fan	8.	:	ding times for	Holding times for preparation or analysis exceeded	ysis exceeded
	Analyse detected below quantitation limit			Not Detected at the Limit of Detection	Detection		er.	D outside accep	RPD outside accepted recovery dragts	
5 7 4										

Qual

RPDLimit

211746 18586

TestCode: 0.20 NYS

Holding times for preparation or analysis exceeded

Estimated Value above quantitation range Not Detected at the Limit of Detection

Detection Limit

a d

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blask corrected

~ ~

Qualifiers:

RPD outside accepted recovery limits

Matrix Environmental Technologies, Inc CLIENT:

C2202013 Work Order:

Aquino 65-67 Lake Ave Project:

Sample ID: ALCS1UGD-020322	SampType: LCSD	TestCod	estCode: 0.20_NYS	Units: ppbV		Prep Date	<u> </u>		RunNo: 18586
Client ID: 2222	Batch ID: R18586	TestN	TestNo: 70-15			Analysis Date:	te: 2/3/2022	z	SeqNo: 21174
Analyte	Resul	PQ	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD F
1,3,5-Trimethylbenzene	1.030	0.15	***	0	103	77.4	138	0.88	15.7
1,3-butadiene	1.090	0.15	¥r.	0	\$0¢	7	144	0.95	13.7
1,3-Dichlorobenzene	1.050	0.55	W III	0	105	84.7	128	0.89	16.5
1,4-Dichlorobenzene	1.030	0.15	r	Ф	103	77.9	131	6.9	13.5
1.4-Dioxane	0.9600	0.30	upra-	o	96.0	60.9	133	0.96	0
2,2,4-trimethylpentane	0.9900	0.15	~	0	99.0	86.9	126	0.95	4.12
4-ethyftoluene	1.030	0.15	V	0	‡03	77.5	133	0.89	14.6
Acetone	1.080	0.30	•	0	108	45.7	165	1.07	0.930
Aliyi chloride	1.010	0.15	τ-	0	101	86.6	117	0.94	7.18
Вепzеле	00003	0.15	-	0	100	88.9	122	9.95	5.13
Benzy! chloride	1.030	0.15	-	0	103	73.6	120	0.93	10.2
Bromodichloromethane	1.020	0.15	-	0	102	84.3	133	0.97	5.03
Bramoform	0.9800	0.15	-	0	98.0	44.6	[‡] 49	0.87	11.9
Bromomethane	1.130	0.15	-	0	113	78.7	144	96.0	14.2
Carbon disulfide	0.9900	0.15	-	0	0.66	76.9	109	6.0	9.52
Carbon tetrachloride	0.9300	0.030	-	0	0.99	F	120	0.89	10.6
Chlorobenzene	1.000	0.15	-	0	100	82.6	121	0.95	5.13
Chloroethane	1.170	0.15	-	0	117	67.1	146	0.99	16.7
Chleroform	1.050	0.15	1	0	165	82.5	125	0.97	7.92
Chloromethane	1.160	0.15	+	Đ	116	71.1	154	0.94	21.0
cis-1,2-Dichloroethene	1.010	0.040	1	0	101	71.2	112	0.95	6.12
cis-1,3-Dichloropropene	1.010	0.15	41111	Đ	101	90.3	137	0.98	3.02
Cyclohexane	0.9900	0.15	Span	6	99.0	87	122	0.98	1.02
Dibromochioromethane	0.9900	0.15	4000	0	99.0	62.8	132	0.93	6.25
Ethyl acetate	1.010	0.15	ųm	0	5	86.9	\$	96.0	5.08
Ethylbenzene	1.010	0.15	****	Ç.	103	76.9	123	0.97	4.04
Freon 11	1,230	0.15		0	123	54.4	150	1.04	16.7
Freon 113	\$-060	0.15	-	0	‡ 06	83.4	124	0.95	10.9
Freon 114	1.150	0.15	-	0	\$15	70.2	133	76.0	t. Co
Freon 12	1.120	0.15	-	0	112	86.3	135	0.95	16.4
Heptane	0.9800	0.15	-	0	98.0	86.5	137	0.98	0

0000000000000000000

Matrix Environmental Technologies, Inc

Aquino 65-67 Lake Ave

C2202013

CLIENT: Work Order:

Project:

TestCode: 0.20 NVS

Count 10.	Sample ID: ALCS1UGD-020322	322 SampType: LCSD	TestCode: 0,20_NYS	0.20 NYS	Units: ppbV		Prep Date:	le:		RunNo: 18586	586	
Fleault PQL SPK value SPK Neet Veal WREC Londinint Hight-lind RPO Red Veal WRPD SPK Definit Londinint Londinint Hight-lind RPO Red Veal SRP Definit Londinint Hight-lind RPO Red Veal SRP Definit Londinint High-lind RPO Red Veal SRP Definit Londinint Londininint Londinininint Londininininint Londinininininininininininininininininini		Batch ID: R18586	TesiNo:	TO-15			Analysis Da		23	SeqNo: 21	1746	
1,020	Analyte	Result		PK vaiue	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual
1,050 0,15	Hexachloro-1,3-butadiene	1.020	0.15	4	0	102	48.1	160	0.85	17.0	٥	
1,000,000 1,000 0,15 1,000 0,15 1,000 0,15 1,000 0,1	Hexane	0.9600	0.15		O	96.0	77.3	128	0.85	12.2	Ç	
c 2 0 10 77 132 191 65 65 10 105 192 192 193 <	Isopropyl alcohol	1.050	0.15	+	0	105	80.2	122	1.02	2.90	ç	
1,050 0,30	m&p-Xylene	2.080	6.30	2	0	104	77.9	132	2.	8.52	0	
by/ketone 1050 0.30 1 105 105 715 117 0 97 722 0 90 0 90 105 117 0 97 722 4.26 0 90 0 90 0 95 117 0 92 4.26 0 90 0 90 0 90 117 0 92 4.26 0 90 0 90 0 90 117 0 92 4.26 0 90 0 90 0 90 0 90 117 0 90	Methyl Butyl Ketone	0.9900	0.30	****	ζÞ	99.0	69.4	131	0.95	4.12	0	
1,040 0,05	Methyl Ethyl Ketone	1,050	0.30	4***	O	105	71.5	117	0.97	7.92	¢	
1040 215 1150 1	Methyl Isobutył Ketone	0.9600	0:30	φw	0	96.0	63.5	141	0.92	4.26	¢>	
1000 1000	Methyl tert-butyt ether	1.040	0.15	ww	¢	104	80.8	113	0.98	5.94	(2)	
1010 015 1	Methylene chloride	1.030	0.15	W NII	o	103	87.8	123	0.94	9.14	ು	
1,000	o-Xylene	\$.016	0.15	æ.	Ģ	101	80.5	139	0.88	3.8	0	
1,010 0.15	Propylene	1.000	0.15	~	¢	1	73.8	124	0.84	7.6	0	
0.9869 0.15 1 0 96.0 65.5 134 0.95 6.32 0 0.9700 0.15 1 0 97.0 65.5 134 0.95 2.08 0 0.9800 0.15 1 0 90.0 77.0 65.5 134 0.95 2.08 0 1.040 0.15 1 0 90.0 77.3 147 0.95 2.08 0 0.9300 0.030 1 0 93.0 79.3 147 0.9 3.28 0 1.010 0.15 1 0 101 70.5 101 0.93 3.28 0 1.130 0.15 1 0 113 81.4 142 0.95 17.3 0 1.120 0.040 1 0 112 70.4 138 0.95 16.4 0 1.4 1.120 0.040 1 0 112 70.4 138	Styrene	\$.010	0.15	•	0	104	82.7	138	0.86	16.0	0	
0.9700 0.15 1 0 97.0 65.5 134 0.95 2.08 0 0.9600 0.15 1 0 98.0 77.8 127 0.95 6.32 0 1.040 0.15 1 0 105 83.3 146 0.95 10.0 0<	Tetrachloroethylene	0.9800	0.15	•	0	98.0	85.9	122	0.92	6.32	0	
1.050 0.15 1 0 98.0 77.8 127 0.92 6.32 0 0 0 1 1 0 0 105 8.3 116 0.95 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tetrahydrofuran	0.9760	0.15	-	0	97.0	65.5	134	0.95	2.08	0	
1.040 0.15 1 0 104 84.8 114 108 3.77 10.0 10.90 0.030 1 1 0 10.4 84.8 114 10.8 3.77 0.0 10.90 0.030 1 0 0.15 1 0 0 93.0 79.3 117 0.9 3.28 0.0 1.130 0.15 1 0 0.040 1 1 0 10.1 112	Тошеће	0.9800	0.15	-	0	98.0	77.8	127	0.92	6.32	0	
1.040 0.15 1 0 104 9.6 134 1.08 3.77 0 0.930 0.030 1 1 0 93.0 79.3 117 0.9 3.28 0 1.010 0.15 1 1 0 101 70.5 101 0.93 8.25 0 1.130 0.15 1 0 1 113 81.4 142 0.95 17.3 0 1.120 0.040 1 1 0 112 70.4 138 0.95 16.4 0 1.120 0.040 1 1 0 112 12 0.95 16.4 0 1.120 0.040 1 1 0 112 12 0.95 17.3 0 1.120 0.040 1 1 0 112 12 0.95 16.4 0 1.120 0.040 1 1 0 112 12 12 0.95 16.4 0 1.120 0.040 1 1 0 112 12 12 0.95 16.4 0 1.120 0.040 1 1 0 112 12 12 12 12 0.95 16.4 0 1.120 0.040 1 1 0 112 12 12 12 12 12 12 12 12 12 12 12 12	trans-1,2-Dichloroethene	1.050	0.15	-	0	505	83.3	116	0.95	10.0	0	
0.9300 0.030 1 0 93.0 79.3 117 0.9 3.28 0.9 0.15 1.130 0.15 1 0 101 70.5 101 0.93 8.25 0.9 0.15 1.120 0.040 1 0 112 70.4 138 0.95 16.4 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.9 0.95 16.4 0.95 0.95 16.4 0.95 0.9	trans-1,3-Dichloropropene	1.040	0.15	_	0	104	84.8	134	1.68	3.77	Ç	
ide 1.130 0.15 1 0 101 70.5 101 0.93 8.25 0 1.130 0.15 1 0 113 81.4 142 0.95 17.3 0 de 1.120 0.040 1 1 0 112 70.4 138 0.95 16.4 0 1.120 0.85 17.3 0 1.120 0.85 18.5 0 1.120 0.85 18	Trichloroethene	0.9300	0.030	-	0	93.0	79.3	117	0.0	3.28	¢	
1,130 0,15	Vinyl acetate	1.010	0.15	_	0	101	70.5	101	0.93	8.25	0	
de 1,120 0.040 1 0 112 70.4 138 0.95 16.4 0 Results repeated are not blank corrected Analyte decected blank quantitation finit Not Detection Limit S Spike Recovery outside accepted recovery fimits D. Detection Limit S Spike Recovery outside accepted recovery fimits D. Detection Limit S Spike Recovery outside accepted recovery fimits D. Detection Limit	Vinyl Bromide	1.130	0.15	-	0	113	4.10	142	0.95	17.3	c	
. Results reported are not blank corrected E. Estimated Value above quantitation range J. Analyte detected below quantitation timit ND Not Detected at the Limit of Detection Spike Recovery outside accopted recovery limits Spike Recovery outside accopted recovery limits	Vinyl chloride	1.120	0.040	-	0	112	70.4	138	0.95	16.4	0	
. Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excedence below quantitation finities ND Not Detected at the Limit of Detection R RPD outside accepted recovery fimits DL. Detection Limit												
. Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excedence below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits DL Detection Limit												
Spike Recovery outside accepted recovery limits Dl. Detection Limit	,	eparted are not blank corrected deserted helpsy quantitations limit		:	ated Value above quan erected at the Limit of	ditation rang Detection	2.	:	Holding times for RPD oatside acca	r preparation or a epted recovery fa	malysis exceed	25
		covery outside accepted recovery			tion Limit							Page 7 of 7

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020303.D Vial: 3 Acq On : 3 Feb 2022 9:56 am Sample : ALCS1UG-020322 Misc : A201_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

Quant Time: Feb 04 08:24:21 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022

Response via : Initial Calibration

DataAcq Meth : 1UG ENT

DataA	ed weru : Ind Eur.							
Inte:	rnal Standards	R.T.	QIon	Response	Conc Ui	nits	Dev ((Min)
						dag	**	0.03
35)	1,4-difluorobenzene	12.02	114	167276	1,00	daa	-	0.02
50)	Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	16.85	117	155326	1.00	dqq	-	0.02
	em Monitoring Compounds							
	Bromofluorobenzene	18.64	95	107380	0.94	daa	_	0.02
	iked Amount 1.000	Range 70	- 130	Recover	у =	94	800	
The rect	et Compounds						Ove	ilue
	Propylene	4.10	41	28356	0.84	ann		85
	Freon 12	4.15						100
	Chloromethane	4 34	50	61559	0.94			95
	Freon 114	4.35	85	61559 209491 59321	0.97			97
	Vinyl Chloride	4.54	62	59321	0.95			91
	Butane	4.64	43	66463	0.90			98
	1,3-butadiene	4.65	39	53557	0.95			96
	Bromomethane	4.65 4.99 5.15	94	53557 77322 26889	0.95 0.98	daa		97
	Chloroethane	5.15	64	26889	0.99	daa	##	
,	Ethanol	5.25	45	12725	0.78			94
	Acrolein	war arts and		17372	0.92			98
	Vinyl Bromide	5.82 5.49	56 106	17372 81207	0.95			97
	Freon 11	5.77	1.01	296864	1,04			99
	Acetone		58	28955	1.07			84
	Pentane	6.04	42	52169	1.08			92
	Isopropyl alcohol	6.02	45	28955 52169 85158	1.02	daa		89
	1,1-dichloroethene	6.52	96	57066	0.99	dag	#	
	Freon 113	6.72	101	138025	0.95			98
20)	t-Butvl alcohol	6.75	59	138025 103059 49286	0.96	dag		97
21)	Methylene chloride Allyl chloride	6.98	84	49286	0.94	dag		92
22)	Allyî chloride	6.97	41	50114	0.94			98
	Carbon disulfide	7.13						100
24)	trans-1,2-dichloroethene	7.92	63	152434 78579	0.95	daa		92
25)	methyl tert-butyl ether	7.94	73	143539	0.98	dqq		89
	1,1-dichloroethane	8.34	63	98456	0.95			98
		8.33	43	69681	0.93	and the Land		98
28)	Vinyl acetate Methyl Ethyl Ketone	8.83	72	98456 69681 23192	0.93	dqq	#	100
29)	cis-1,2-dichloroethene	9.28	61	74979	0.95	PON		02
	Hexane	8.89	57	56290 109430	0.85	dqq		85
31)	Ethyl acetate	9.42	43	109430	0.96	dqq		96
32)	Chloroform	9.89	83	156551	0.97	dqq		100
	Tetrahydrofuran	10.05	42	39884	0.95	ದ್ವರ		88
34)	1,2-díchloroethane	10.99	62	117477	0.99	ppp		99
36)	1,1,1-trichloroethane	10.71	97	178120	0.96			100
37)	Cyclohexane	11.42	56	59905	0.98			80
38)	Carbon tetrachloride	11.36	117	212711	0.89	dqq		100
39)	Benzene	11.33	78	146396	0.95	dqq		94
40)	Methyl methacrylate	12.91		65893	0.98	ppp		91
41)	1,4-dioxane	12.92	88	38507	0.96	dqq		88
	2,2,4-trimethylpentane	12.20	57	189569				91
	Heptane	12.55	43	66265	0.98			95
	Trichloroethene	12.67	130	66265 82127 50832	0.90			96
45)	1,2-dichloropropane	12.78	63	50832	0.94	dqq		98
		· · · · · · · · · · · · · · · · · · ·						

^{(#) =} qualifier out of range (m) = manual integration

AT020303.D A201 1UG.M Fri Feb 04 14:30:55 2022

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020303.D Vial: 3 Acq On : 3 Feb 2022 9:56 am Operator: RJP Sample : ALCS1UG-020322 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 08:24:21 2022 Quant Results File: A201 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration
DataAcq Meth : UG_ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
			vr ri 70 to 10			
46)	Bromodichloromethane	13.12	83	169937	0.97 ppb	9.9
47)	cis-1,3-dichloropropene	13.95	75	92496	0.98 ppb	98
48)	trans-1,3-dichloropropene	14.72	75	94722	1.08 ppb	93
49)	1,1,2-trichloroethane	15.05	97	68690	0.94 ppb	97
51)	Toluene	14.80	92	111048	0.92 ppb	96
52)	Methyl Isobutyl Ketone	13.86	43	101225	0,92 ppb	98
53)		15.78	129	175139	0.93 ppb	99
	Methyl Butyl Ketone	15.23	4.3	94992	0.95 ppb	96
55)	1,2-dibromoethane	16.05	1.07	116814	0.94 ppb	95
56)	Tetrachloroethylene	15.87	164	88591	0.92 ppb	99
57)	Chlorobenzene	16.90	112	168322	0.95 ppb	95
58)	Ethylbenzene	17.17	91	269591	0.97 ppb	98
59)	m&p-xylene	17.39	91	452081	1.91 ppb	93
60)	Nonane	17.80	43	100244	dqq 88.0	98
61)	Styrene	17.86	1.04	149648	0.86 ppb	82
62)	Bromoform	17.99	173	155709	0.87 დებ	99
63)	o-xylene	17.90	91	228807	0.88 ppb	95
64)	Cumene	18.52	105	282311	0.87 ppb	98
66)	1,1,2,2-tetrachloroethane	18.39	83	142184	0.85 ppb	100
67)	Propylbenzene	19.13	120	76535	0.87 ppb	92
68)	2-Chlorotoluene	19.18	126	77484	dqq 88.0	# 60
69)	4-ethyltoluene	19.32	105	290199	0,89 ppb	76
70)		19.39	105	259837	dqq 88.0	94
71)	1,2,4-trimethylbenzene	19.90	105	249418	0.93 ppb	95
72)		20.24	146	166697	dqq 88.0	95
73)	benzyl chloride	20.32	91	138007	0.93 ppb	98
74)		20.39	146	164438	dqq 0e.0	92
75)	1,2,3-trimethylbenzene	20.44	105	259656	dqq 88.0	97
76)		20.75	146	159462	0.84 ppb	93
77)	1,2,4-trichlorobenzene	22.88	180	78907	0.87 ppb	98
	Naphthalene	23.08	128	199994	વવુવ ટ8.0	99
79)	-	23,20	225	146804	0.86 ppb	93

Reviewed)

ĮQ)

Quantitation Report

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020403.D Vial: 3 Acq On : 4 Feb 2022 10:40 am Operator: RJP Sample : ALCS1UG-020422 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT,P

Quant Time: Feb 04 11:43:25 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Feb 02 07:40:12 2022 Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	ירי ס	OTon	Pesnonse	Conc Brits	Dev (Min)
Internal Standards		~ - · · · · · · ·		COHC OHICS	
				1.00 ppb	
35) 1,4-difluorobenzene	12.03	1.1.4	125986	1.00 ppb	-0.02
50) Chlorobenzene-d5	16.85	117	112172	1.00 ppb	~0.01
System Monitoring Compounds					
65) Bromofluorobenzene		95		1,12 ppb	
Spiked Amount 1.000	Range 70	- 130	Recover	ry = 112	.00%
Target Compounds					Qvalue
2) Propylene	4.10	41.	26100	1.01 ppb	
3) Freon 12	4.15				98
4) Chloromethane	4.34		235907 60582 205102	1.22 ppb	98
5) Freon 114	4.35		205102	1.25 ppb	96
6) Vinyl Chloride	4.54		55038 63570 50514 73068	1.16 ppb	
7) Butane	4.64		63520	1.13 ppb	
8) 1,3-butadiene	4.64	39	50514	1.18 ppb	
9) Bromomethane	4.99	94	73068	1,22 ppb	
10) Chloroethane	5.15	54	27892	1.34 ppb	
11) Ethanol	5.24	45	27892 12746 15249	1.03 ppb	
12) Acrolein	5.83	56	15249	1.06 ppb	
13) Vinyl Bromide	5.49	106			
14) Freon 11	5.77				
15) Acetone	5.92	5.8	292243 21979m /	1.06 ppb	
16) Pentane	6.04	42	45943	1.25 ppb	89
17) Isopropyl alcohol	6.03	45	78325		
18) 1,1-dichloroethene	6.53	96	46451	1.06 ppb	
19) Freon 113	6.72	1.01	46451 121372	1,09 ppb	
20) t-Butyl alcohol	6.75	59	83880	dqq 80.1	
21) Methylene chloride		84	41127	1.03 ppb	
22) Allyl chloride	6.96	41	41296	1.02 ppb	
23) Carbon disulfide	7.14		41296 129497	dqq 10.1	
24) trans-1,2-dichloroethene			65030	1.03 ppb	
25) methyl tert-butyl ether			115850	1.04 ppb	
26) 1,1-dichloroethane	8.35			1,04 ppb	
27) Vinyl acetate	8.33	43	58059	1.01 ppb	
28) Methyl Ethyl Ketone					
29) cis-1,2-dichloroethene	9.28	61	59686	dqq 00.1	
30) Hexane	8.88	61 57	52138	1.04 ppb	
31) Ethyl acetate	9.43	43	59686 52138 88397	1.02 ppb	
32) Chloroform	9.89		133319	1.09 ppb	
33) Tetrahydrofuran	10.05			dqq 70.0	89
34) 1,2-dichloroethane	11.00		99927	1.10 ppb	98
36) 1,1,1-trichloroethane	10.72		151192	1.08 ppb	
37) Cyclohexane	11.43		45579	0.99 ppb	
38) Carbon tetrachloride	11.37		185248	1.03 ppb	
39) Benzene	11.33		119171	1.03 ppb	
40) Methyl methacrylate	12.91		52431	1.03 ppb	
41) 1,4 dioxane	12.92		29364	0.97 ppb	
42) 2,2,4-trimethylpentane	12.20		146845	0.98 ppb	
43) Heptane	12,55		50448	dqq ee.o	
44) Trichloroethene	12.68		65384	0.95 ppb	96
45) 1,2-dichloropropane	12,79		40784	1.01 ppb	

(#) = qualifier out of range (m) = manual integration AT020403.D A201 lUG.M Fri Feb 04 14:31:07 2022

MSD1

Quantitation Report (QT Reviewed)

Data Pile : C:\HPCHEM\1\DATA\AT020403.D Vial: 3 Operator: RJP Acq On : 4 Feb 2022 10:40 am Sample : ALCS1UG-020422 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 11:43:25 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 02 07:40:12 2022 Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

	Compound	R.T.	Qlon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.13	83	144452	1,09 ppb	99
47)	cis-1,3-dichloropropene	13.95	75	73465	1.04 ppb	98
48)	trans-1,3-dichloropropene	14.72	75	67297	1.02 ppb	99
49)	1,1,2-trichloroethane	15.05	97	55665	1.01 ppb	99
51)	Toluene	14.80	92	88141	1.01 ppb	99
52)	Methyl Isobutyl Ketone	13.86	4.3	74283	0.94 ppb	96
53)	Dibromochloromethane	15.78	129	138494	1.02 ppb	700
54)	Methyl Butyl Ketone	15.23	43	70177	0.97 ppb	95
55)	1,2-dibromoethane	16.05	107	90237	1.00 ppb	97
56)	Tetrachloroethylene	15.88	164	69502	1.00 ppb	99
57)		16.90	112	129841	1.02 ppb	95
58)	Ethylbenzene	17.18	91	208009	1.03 ppb	99
59)	m&p-xylene	17.40	91	358838	2.10 ppb	94
60)	Nonane	17.81	43	80955	1.00 ppb	97
61.)	Styrene	17.87	104	134608	1.07 ppb	86
62)		17.99	173	130876	1.02 ppb	99
63)	o-xylene	17.90	91	199248	1.06 ppb	93
64)	Cumene	18.53	1.05	243557	1.04 ppb	99
66)	1,1,2,2-tetrachloroethane	18.40	83	120434	1.00 ppb	99
67)	Propylbenzene	19.13	120	66363	1.05 ppb	92
68)	2-Chlorotoluene	19.18	126	66415	1.05 ppb	# 58
69)	4-ethyltoluene	19.33	105	254717	1.09 ppb	76
70)	1,3,5-trimethylbenzene	19.40	105	228739	1.07 ppb	93
71)	1,2,4-trimethylbenzene	19.90	105	207301	1.07 ppb	96
72)	1,3-dichlorobenzene	20.24	146	147046	1.09 ppb	96
73)	benzyl chloride	20.32	91	119987	1.12 ppb	98
74)	1,4-dichlorobenzene	20.39	146	144151	dqq e0.1	93
75)	1,2,3-trimethylbenzene	20.44	1.05	229788	1.08 ppb	99
76)	1,2-dichlorobenzene	20.75	146	148363	dqq 80.1	96
77)	1,2,4-trichlorobenzene	22.88	180	72478	1.11 ppb	99
78)	Naphthalene	23.08	128	182888	1.08 ppb	99
79)	Hexachloro-1,3-butadiene	23.20	225	135966	1.10 ppb	93

Reviewed)

ξŎ

Report

Quantitation

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020320.D Vial: 44 Operator: RJP Acq On : 3 Feb 2022 10:26 pm Sample : ALCS1UGD-020322 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 08:24:38 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration
DataAcq Meth : UG_ENT

Inte	rnal Standards	R.T.	QIon	Response	Conc Unit		
	Bromochloromethane			32837			-0.03
- /	1,4-difluorobenzene			145184			
50)	Chlorobenzene-d5	16.85	117	127813	1.00 pp 1.00 pp	b	-0.02
20)	ciriozobciizene-ab	10.00	ala ala 7	Markey 1 Contract	1.00 PP	_	0.02
Syste	em Monitoring Compounds						
65)	Bromofluorobenzene	18.65	95		1.10 pp		0.00
Sp:	iked Amount 1.000	Range 70	- 130	Recove	ry = ll	0.009	į.
							_
	et Compounds	0		00100	1 00		value
	Propylene	4.10	41	29107			89
	Freon 12	4.15	85	255196			99
	Chloromethane	4.34		64821	1.16 pp		96
	Freon 114	4.35	85	213155	1.15 pp	D L	97
	Vinyl Chloride	4.54		59946 69404 52603	1.12 pp		94
	Butane	4.64		69404	1.10 pp		97
	1,3-butadiene	4.64		52603	1.09 pp		100
	Bromomethane	4.98		76809	1.13 pp	to	98
	Chloroethane	5.16	64	27366			98
	Ethanol	5.25	45	16680			91
,	Acrolein	5.82					95
	Vinyl Bromide	5.49		83355	1.13 pp		98
	Freon 11	5.76		300137 25175	1.23 pp		99
	Acetone	5.93		25175	1.08 pp		
	Pentane	6.03	42	41483	1.00 pp		8
17)	Isopropyl alcohol	6.03		75116 50975	1.05 ഉള		1
	1,1-dichloroethene	6.52	96	50975			80
	Freon 113	6.72		133264			97
	t-Butyl alcohol	6.75	59	95646	1.04 pp		95
	Methylene chloride	6.98 6.97	84	46338 45914 144347	1.03 pp		93
	Allyl chloride			45914	1.01 pp		96
	Carbon disulfide	7.13					99
24)	trans-1,2-dichloroethene	7,92	61	74617	1.05 pp		93
25)	methyl tert-butyl ether	7.93 8.34	73	131374 95210	1.04 pp		90
26)	1,1-dichloroethane			95210	1.07 pp		97
2/)	vinyi acetate	0.33	43	65265	1.01 pp		99
28)	Methyl Ethyl Ketone	8.83		21446 68013 54404	1.05 pp		100
	cis-1,2-dichloroethene	9.28	60	68013	1.01 pp		89
	Hexane	8.87	57	54404	0,96 pp		
	Ethyl acetate	9.43		99004			98
	Chloroform	9.88		144851	1.05 pp	D 1	99
	Tetrahydrofuran			35084		D 1	88
	1,2-dichloroethane	11.00		111481	1.09 pp		100
	1,1,1-trichloroethane	10.71		168422	1.04 pp		99
	Cyclohexane	11.42		52469	0.99 pp		74
	Carbon tetrachloride	11.36		205802	0.99 დ		97
	Benzene	11.32	78	133240	1.00 pp		95
	Methyl methacrylate	12.90		58699	1.01 pp	יט כע	93
	1,4-dioxane	12.92		33419	0.96 PF		89
	2,2,4-trimethylpentane	32.20		170662	qq ee.o		90
	Heptane	12.55		58015	0.98 pp		97
	Trichloroethene	12.67		73792	0.93 pp		96
	1,2-dichloropropane	12.78		45900	0.98 pp	D	96

(#) = qualifier out of range (m) = manual integration

AT020320.D A201_lUG.M Fri Feb 04 14:31:02 2022

MSDl

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AT020320.D Vial: 44 Operator: RJP Acq On : 3 Feb 2022 10:26 pm Sample : ALCS1UGD-020322 Misc : A201_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 04 08:24:38 2022 Quant Results File: A201_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A201_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Feb 02 07:40:12 2022
Response via : Initial Calibration
DataAcq Meth : lUG_ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	156051	dgg 20.1	99
47)	cis-1,3-dichloropropene	13.12	75	82740	dqq 10.1	96
48)	trans-1,3-dichloropropene	14.72	75	79356	1.04 ppb	100
49)	1,1,2-trichloroethane	15.05	97	62146	0.98 ppb	99
51)	Toluene	14.80	92	97710	0.98 ppb	95
52)	Methyl Isobutyl Ketone	13.85	43	86554	0.96 ppb	97
53)	Dibromochloromethane	15.78	129	153849	0.99 ppb	100
54)	Methyl Butyl Ketone	15.23	43	81330	0.99 ppb	95
	1,2-dibromoethane	16.05	1.07	103809	1.01 ppb	94
56)	Tetrachloroethylene	15.87	164	77482	dqq 86.0	100
57)	Chlorobenzene	16.90	112	146124	1.00 ppb	97
58)	Ethylbenzene	17.18	91	230189	1.01 ppb	98
59)	m&p-xylene	17.39	91	405243	2.08 ppb	93
60)	Nonane	17.80		92092	1.00 ppb	98
61)	Styrene	17.86	1.04	144927	1.01 ppb	84
62)	Bromoform	17.99	173	144176	daa 80.0	99
63)	o-xylene	17.90	91	216339	1.01 ppb	92
64)	Cumene	18.52	105	266273	1.00 ppb	97
66)	1,1,2,2-tetrachloroethane	18.39	83	131690	0.96 ppb	99
67)	Propylbenzene	19.13	120	72981	1.01 ppb	94
68)	2-Chlorotoluene	19.18	126	74449	1.03 ppb	# 60
69)	4-ethyltoluene	19.32	105	275014	1.03 ppb	76
70)	1,3,5-trimethylbenzene	19.39	105	251515	1.03 ppb	95
71)	1,2,4-trimethylbenzene	19.90	105	226726	1.02 ppb	98
72)	1,3-dichlorobenzene	20.24	1.46	161310	1.05 ppb	97
73)	benzyl chloride	20.32	91	125640	1.03 ppb	98
74)	1,4-dichlorobenzene	20.39	146	154897	1.03 ppb	93
75)	1,2,3-trimethylbenzene	20.44	105	252890	1.04 ppb	95
76)	1,2-dichlorobenzene	20.75	146	158801	1.02 ppb	95
	1,2,4-trichlorobenzene	22.87	7.80	75177	1.01 ppb	99
78)	Naphthalene	23.08	128	191195	0.99 ppb	99
79)	Hexachloro-1,3-butadiene	23.20	225	144230	1.02 ppb	94

Reviewed)

į.

Report

Quantitation

Page 271 of 302

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

		Centek	d/SanAir La	aboratories			
	C	Directory:	C:\HPCHEM	I\1\DATA	Injection Log	Commond II	
		,				1. Transent # 1 Classical Stock #	A4526
						e la persona de di <u> </u>	4527
"ine	Vial	FileName	Multiplier	SampleName		Misc Info:	4523 Injected
1	2	At020101.d	1.	BFB1UG		A201_1UG	1 Feb 2022 18:01
2	1	At020102.d	1.	A1UG		A201_1UG	1 Feb 2022 19:00
3	2	At020103.d		A1UG 2.0		A201_1UG	1 Feb 2022 19:48
ŀ	3	At020104.d		A1UG 1.50		A201_1UG	1 Feb 2022 20:34
>	4	At020105.d		A1UG_1.25		A201_1UG	1 Feb 2022 21:18
3	5 6 7	At020106.d	1.	A1UG_1.0		A201_1UG	1 Feb 2022 22:02
r	6	At020107.d	1.	A1UG_0.75		A201_1UG	1 Feb 2022 22:45
3		At020108.d	1.	A1UG_0.50		A201_1UG	1 Feb 2022 23:27
}_	8	At020109.d	1.	A1UG_0.30		A201_1UG	2 Feb 2022 00:08
0	9	At020110.d	1.	A1UG_0.15		A201_1UG	2 Feb 2022 00:51
1	11	At020111.d	1.	A1UG_0.10		A201_1UG	2 Feb 2022 02:15
2 3	12	At020112.d	1.	A1UG_0.04		A201_1UG	2 Feb 2022 02:57
3		At020113.d	1.	A1UG_0.03		A201_1UG	2 Feb 2022 03;38
4	13	At020114.d	1.	ALCS1UG-020122		A201_1UG	2 Feb 2022 08:02
5		At020115.d	1,	AMB1UG-020122		A201_1UG	2 Feb 2022 08:42
6 7	1	At020116.d	1.	WAC020122A		A201_1UG	2 Feb 2022 09:34
8		At020117.d At020118.d	1. 1.	WAC020122B		A201_1UG	2 Feb 2022 10:16
9		At020118.d	1.	WAC020122C WAC020122D		A201_1UG	2 Feb 2022 10:58
:0		At020120.d	1,	WAC020122E		A201_1UG A201_1UG	2 Feb 2022 11:40 2 Feb 2022 12:22
:1 :2		At020121.d At020122.d	1. 1.	WAC020122F C2202010-001A		A201_1UG	2 Feb 2022 13:04
:3		At020123.d	1.	C2202010-001A		A201_1UG A201_1UG	2 Feb 2022 14:34 2 Feb 2022 15:17
:4		At020124.d	1.	C2202010-001A 40X		A201_1UG	2 Feb 2022 15:59
5		At020125.d	1.	ALC\$1UGD-020122		A201_1UG	2 Feb 2022 16:43
6		At020126.d	1,	No MS or GC data pres	ent	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2100200000
.7		At020301.d	1.	BFB1UG		A201_1UG	3 Feb 2022 08:25
:8		At020302.d	1.	A1UG_1.0		A201_1UG	3 Feb 2022 09:11
9		At020303.d	1.	ALCS1UG-020322		A201_1UG	3 Feb 2022 09:56
0	4	At020304.d	1.	AMB1UG-020322		A201_1UG	3 Feb 2022 10;37
1		At020305.d	1.	C2202008-001A		A201_1UG	3 Feb 2022 11:22
2		At020306.d	1.	C2202008-002A		A201_1UG	3 Feb 2022 12:06
3		At020307.d	1.	C2202008-003A		A201_1UG	3 Feb 2022 12:50
4		At020308.d	1.	C2202008-004A		A201_1UG	3 Feb 2022 13:35
0		At020309.d At020310.d	1.	C2202008-005A		A201_1UG	3 Feb 2022 14:19
5 6 7		At020310.d	1. 1.	C2202008-006A C2202008-007A		A201_1UG A201_1UG	3 Feb 2022 15:03
8		At020312.d	1,	C2202008-007A		A201_1UG	3 Feb 2022 15:47 3 Feb 2022 16:31
9		At020313.d	1.	C2202013-001A		A201_1UG	3 Feb 2022 17:16
Ö		At020314.d	1.	C2202013-002A		A201_1UG	3 Feb 2022 18:00
1	11	At020315.d	1.	C2202013-003A		A201_1UG	3 Feb 2022 18:45
2		At020316.d	1.	C2202013-004A		A201_1UG	3 Feb 2022 19:29
3		At020317.d	1.	C2202013-005A		A201_1UG	3 Feb 2022 20:13
4		At020318.d	1.	C2202013-006A		A201_1UG	3 Feb 2022 20:58
5		At020319.d	1,	C2202013-007A		A201_1UG	3 Feb 2022 21:42
6		At020320.d	1.	ALCS1UGD-020322		A201_1UG	3 Feb 2022 22:26
7		At020321.d	1.	C2202008-001A 20X		A201_1UG	3 Feb 2022 23:09
8		At020322.d	1.	C2202008-002A 10X		A201_1UG	3 Feb 2022 23:52
9		At020323.d At020324.d	1. 1.	C2202008-003A 10X C2202008-004A 10X		A201_1UG	4 Feb 2022 00:35
						A201_1UG	4 Feb 2022 01:17
1 2		At020325.d At020326.d	1, 1.	C2202008-005A 10X C2202008-006A 10X		A201_1UG	4 Feb 2022 02:00
3		At020326.d At020327.d	1. 1.	C2202008-000A 10X		A201_1UG A201_1UG	4 Feb 2022 02:43 4 Feb 2022 03:26
4		At020328.d	1,	C2202008-008A 10X		A201_1UG	4 Feb 2022 04:09
5		At020329.d	1.	C2202013-001A 4X		A201_1UG	4 Feb 2022 04:51
i							· · · · · · · · · · · · · · · · · · ·

Injection Log · which ween Etock # A4516 Directory: C:\HPCHEM\1\DATA 4827 9928_ Line Vial FileName Multiplier Sinjected 939 SampleName Misc Info 56 54 At020330.d 1. C2202013-002A 10X A201_1UG 4 Feb 2022 05:32 55 At020331.d 57 1. C2202013-003A 10X 4 Feb 2022 06:15 A201 1UG 58 56 At020332.d 1. C2202013-004A 10X A201 1UG 4 Feb 2022 06:58 59 57 At020333,d 1. C2202013 A201_1UG-005A 10X 4 Feb 2022 07:41 30 58 At020334.d 1. C2202013-005A 40X A201_1UG 4 Feb 2022 08:23 31 At020335.d 1. No MS or GC data present 32 1 At020401.d 1. BFB1UG A201_1UG 4 Feb 2022 09:10 53 2 At020402.d 1. A1UG_1.0 A201_1UG 4 Feb 2022 09:56 3 54 At020403.d 1. ALCS1UG-020422 A201_1UG 4 Feb 2022 10:40 35 AMB1UG-020422 4 At020404.d 1. 4 Feb 2022 11:22 A201_1UG 5 36 At020405.d 1. C2202013-006A 10X A201_1UG 4 Feb 2022 12:06 37 6 At020406.d 1. C2202013-007A 10X A201_1UG 4 Feb 2022 12:49 1 At020901.d 58 1. BFB1UG A201_1UG A201_1UG 9 Feb 2022 09:51 39 2 At020902.d 1. BFB1UG 9 Feb 2022 10:52 70 3 At020903.d 1. A1UG_1.0 A201_1UG 9 Feb 2022 13:57 4 71 At020904.d 1, ALCS1UG-020922 A201 1UG 9 Feb 2022 15:00 72 5 At020905.d 1. AMB1UG-020922 A201 1UG 9 Feb 2022 15:53 73 6 At020906.d 1. AMB1UG-020922 A201_1UG 9 Feb 2022 17:08 74 14 At020907.d 1. C2202018-001A A201 1UG 9 Feb 2022 17:52 75 15 At020908.d 1. C2202018-002A A201_1UG 9 Feb 2022 18:36 76 16 At020909.d C2202018-003A 1. A201_1UG 9 Feb 2022 19:20 77 17 At020910.d 1. C2202018-004A A201_1UG 9 Feb 2022 20:04 78 18 At020911.d 1. C2202018-005A A201_1UG 9 Feb 2022 20:49 79 19 At020912.d 1. C2202018-006A A201 1UG 9 Feb 2022 21;33 3Ö 10 At020913.d 1. C2202018-007A A201_1UG 9 Feb 2022 22:17 31 11 At020914.d 1. C2202018-008A A201_1UG 9 Feb 2022 23:01 32 12 A201_1UG A201_1UG At020915.d 1. C2202018-009A 9 Feb 2022 23:46 At020916.d 33 13 1. C2202015-003A 10 Feb 2022 00:30 34 11 At020917.d C2202015-001A 1. A201_1UG 10 Feb 2022 01:14 35 12 At020918.d 1. C2202015-002A A201_1UG 10 Feb 2022 01:58 36 11 At020919.d 1. C2202015-001A 10X A201_1UG 10 Feb 2022 02:41 37 12 At020920.d 1. C2202015-002A 10X A201_1UG 10 Feb 2022 03:24 38 13 At020921.d 1. C2202015-001A 40X A201_1UG 10 Feb 2022 09:07 39 A201_1UG A201_1UG 13 At020922.d 1. C2202015-003A 10X 10 Feb 2022 09:50 Ю 17 At020923.d 1. ALCS1UGD-020922 10 Feb 2022 10:36 11 1 At021101.d 1. BFB A201_1UG 11 Feb 2022 09:37 12 2 At021102.d 1. BF_B A201_1UG 11 Feb 2022 10:54 A1UG_1.0 13 3 At021103.d 1. A201_1UG 11 Feb 2022 11:53 14 4 At021104.d 1. ALCS1UG-021122 A201_1UG 11 Feb 2022 13:36 15 5 At021105.d 1. AMB1UG-021122 A201_1UG 11 Feb 2022 14:28 16 14 At021106.d 1. C2202018-001A 5X A201_1UG 11 Feb 2022 15:25 17 15 At021107.d A201_1UG 1. C2202018-002A 5X 11 Feb 2022 16:19 18 16 At021108.d 1. C2202018-003A 4X A201_1UG 11 Feb 2022 17:13 19 17 At021109.d 1. C2202018-004A 10X A201_1UG 11 Feb 2022 17:56 00 18 At021110.d 1. C2202018-005A 4X A201_1UG 11 Feb 2022 18:38 01 19 At021111,d 1. C2202018-006A 10X A201_1UG 11 Feb 2022 19:20 02 19 At021112.d 1. C2202018-006A 40X A201 1UG 11 Feb 2022 20:03 03 10 At021113.d 1. C2202018-007A 10X A201_1UG 11 Feb 2022 20:45 04 11 At021114.d 1. C2202018-008A 4X A201_1UG 11 Feb 2022 21:26 05 12 At021115.d 1. C2202018-009A 4X A201_1UG 11 Feb 2022 22:08 06 21 At021116.d C2202021-001A A201_1UG 11 Feb 2022 22:52 22 07 At021117.d 1. C2202021-002A A201_1UG 11 Feb 2022 23:36 80 23 At021118.d 1. C2202021-003A A201 1UG 12 Feb 2022 00:21 0921 At021119.d 1. C2202021-001A 10X A201_1UG 12 Feb 2022 01:03

A201_1UG

C2202021-002A 10X

10

22

At021120.d

12 Feb 2022 01:46

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
STANDARDS LOG

GC/MS Calibration Standards Logbook

Centek Laboratories, LLC

Centek/SanAir Laboratories	
3 2223	
20	7858888
Sia) Final Sia Constant Sia Con	
Stock Conc Initial Vol (psig) Finial Vol (psig) Finial Conc (ppb) 10.3 pg/ 10.2 pg/ 10.2 pg/ 10.2 pg/ 10.2 pg/ 10.2 pg/ 10.3 pg/ 10.4 pg/ 10.5 pg/ 10.6 pg/ 10.6 pg/ 10.7 pg/ 10.8 pg/ 10.9 pg/	38 38 38 88 88 88 88 88 88 88 88 88 88 8
3.34/3.0 (ps 3.34/3.0 (ps 1.5 / 1.5	> 1-1 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Conc Inition of the SSO day of the S	
10.3 pm 10.3 pm 10.3 pm 500 pps 500 pps 500 pps 10.2 ppm 10.2 ppm	1.0.5 pp. 1.0.5
Stock # 434.54 A34.34 A434.34 A434.34 A43.57 A43.57 A43.57 A43.67	1.CS A4268 HPCH R3402 FORM R3792 SILON R3603 SUE R3606 H, S. R350
	1005 AND HOCKED AND HOCKED AND AND AND AND AND AND AND AND AND AN
Description 5 16 16 16 16 16 16 16 16 16 16 16 16 16	
Description 7015 FORM SOLF 1015 105 15 15 15 15 15 15 15 15 15 15 15 15 15	
2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Std # Date Prep Date Exp 1. 42.58 2/19/21 3/1/21 1. 42.55 2. 42.60 2. 42.61 4. 42.62 4. 42.67 4. 42.69 4. 42	
# 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-4278 4-4278 4-4278 7-4-4 7-4-4 8-4278
Std # A- 4253 A- 4264 A- 4266 A- 4269 A- 4269 A- 4269 A- 4269 A- 4269	4-42-73 4-42-73 4-42-73 6-42-74 6-42-75 6-42-78

FORM 153

Std #	Date Prep	Date Exp		Description	Stock #	Stock Conc	Stock Conc Initial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by	Chkd b
4. 4 Set	1/25/22	2 - 33	1	(£)	Charl	1.00m	1,5	30	So	(A)	ente
4.488	*		1	Sy	3984	->	→	7	个		k/S
4.4806				おか	A3992	1.625.pnm	두,	33	50		anA
A. 4867				4Pats	4PCHS 124866	5000	30	ર્લ્ડ	ŊŊ		ir Lé
A 4 SOR				Fuelm	A3792	10.300m	G.0	45	50		abo
4. 4809				SI WK ASUR	125.74 135.33	449 PP	3,34	3.0	50		rato
A-4810				Sour	A3626	loom	\ \ \ \	30	50		ries
A. 48	enemos alle			H25	GT25/ 22H	10.3 ppm	[4]	R R	500		
4- 4813			>	HZSSA	H2550 A 4811	4000025	3.0	35	50		
A. 4813			105		A 483	<u>-</u> 8	0.9	45	·~-(
A. 4814				\$	108×10 100×10			1			
A. 4815	>	>-	->	3	PH805	->	^	- >	→	->	
A. 4816	2 3	2 8 33	105	TS	grach.	1 poin	\. \.	30	250	(<u>(</u> (3)	
A. 4817			-	STD	FUCHA	- 	-				
A-4818				5271	BARAGE	->	>	→	->		
A. 4819				HOCH	4PCH A3999	1.02500m	1.47	30	550		
A. 4820	, , , , , , , , , , , , , , , , , , ,	m as	and the same of th	HPCHS	618ht)	5000	3.0	30	ľŋ		
4.483				FORM AZ	A3792	10,200m	0.33	45	50		
A-4823				¥ω)S	SILLUX A25.73	3000C	20.00 10.00	30	Ŗ		
A. 4523				Jus.	13300CH	1,00m	ľ	35	(3)		
A. 4824	7	_>>	>	1425	AZSTA	10,200m	1,47	30	560	<i>></i>	
						-ym÷		`			

FORM 153

				1	ator		1	1 -	1-	1.			,					1	1		
Ą-	Ą-	A.	Ą.	4.484l	A. 4840	A. 4839	4.4836	4.4837	A.4836	A-4835	4.4834	A.4833	A.4832	A-483	4. 4830	4829	8.443.78	4. 4827	4826	* Asse	# bis
				-												2/8/22	<			2/1/22	Date Prep
				<-												<u> </u>				2 8 12	Date Exp
				-		TOIS ING	<								-	105	<u></u>		1015 NG	Sior	Description
				150	577	TS		H25	SULF	Siwx	TORM	EESHUSHOOP	424	E		Λ, H	}—	510	SH 3	HZSSD	iption
				1483	14830	14829	14837	A 7250	AJUJ(Siwx Azis 74		FES.171	13399,2	83649	Lyrh	AYDUL	A4818	1844	91844	A4824	Stock #
				(11	5000	Soonah	10.01 Am	loom	Contract of the Contract of th	10,3 nom	50000	1.025,001	←		1 00m	<		40,05	49006	Stock Conc
				Ţ		<u>ک د</u>	3.0	Lh'I	1.5	بى ۋۇچ	٠. کیک	3.0	[+]	<i>←</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15	4		0,3	J.0	Initial Vol (psig)
				<u>_</u>		\$	30	30	30	3c	Y.	30	30	Ļ	1	<u>3</u> ù	Ų		£	30	Finial Vol (psia)
				<		P	ક'	500	95,	50	56	SI	95	<		Ó <u></u> ,	1		P	50	Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)
			THE STATE OF THE S	((E)	<			(m)	Prep by
																			Dag		Chkd by

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
CANISTER CLEANING LOG

Centek Laboratories, LLC Instrument: Entech 3100

a		T		T					<u> </u>			<u> </u>	ļ											·		
psig/dat																									T.	
Detection Limits Leak Test 24hr (psig/date)	R				-																				1	,
eakTes	<u>+</u>						+	+	+	+	<u>+</u>	+	4	+	+	4	+			+	+	+	4	*	**	
	<u>\$</u>	39	ģ	3	30+	30+	30+	30+	30+	30+	30+	30+	394	30+	30+	30+	30	30+	30+	30+	30+	30+	30+	30+	30+	
ion Lim	40,9+		:																		-				-A	95
Detec	1 3	4																							*	Page #
	A					23					ن					9					7		***************************************			
atch Nu	સુજ																								4	
QC Batch Number	LARCH 200FIZI																								1	
*****																										•
Date Cleaned	12/9/Ei	·—										4,,												·•·,)	
cles																										
# of Cyc	20	r.==.,														·							, .		- 3	
mber																										•
QC Can Number	564			···	\rightarrow	33				\Rightarrow	1185	4			ラ	467	474.4			>	1316	,			7	
) OC (13)					_										***										
ster Size	1																								· · · · · · · · · · · · · · · · · · ·)
Cani																										
Number		٠٧٠		o-	-)		2	ـــــــ	4	5	ام!	~	ارر)		(V		.	స్త	رد	<u>ر</u>	0.			c X	و	_
Canister Number Canister Size	(J)	128	011	११ ६९	564		353	539	1545	[33	325	188	119	567	1185	384	201	A88	(311)	しった	106	<u>8</u>	327	1193	1316	Form C151
ပ																										For

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100

.010	Jan			_	itori	-																				
	(psig/date)																									
	Leak Test 24tir (psig/date)	÷ 39		+	+	+	+	+	_+	+	+	+	<u>+</u>	 	<u>+</u>	+	+	#	+-	+	+	<u>+</u>	*	+	+	<u>+</u>
		30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30+	30÷	30+	30+	30+	30+	30+	30+	30±	30+
	Detection Limits	40.70																								
	Detec	-	7																					1		-
	QC Batch Number	315					J					工					5-1					רי				
(2007 to 1000)	Batch N	WACIZONALE	-	_																						
3		3 4					_												-			-		\top		7
	Date Cleaned	1 9 7																								1
/83	0000	3																		-	ر 2 ا	14/1/2	-	+	-	-
QC Can Nimber # of Course		2		_	_				-															-		1
100		-	-	-	-		_			_						_										
an Niim	262					83					15	-				> 0					~					
											6					189				7	568				7	
ster Size	را					ļ 																	ļ ļ		0	
Cani						_					[-					*	
Canister Number Canister Size	<u></u>	~		<u></u>	5	(T	<u>o</u> -	و	<u>ن</u>	, _	(XO	0	100	5			1 0	~		y 17-may-1					, ,	
Caniste	45 ₉	103	20	M8	563	159	479	1176	1).C	131	136	365	359	13	545	276	1193	226		343	h811	틸	3	2,68	
or making		[1			1																			

Form C151

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100

9	12/1/c)		+ + 08	30+ +	30+ +	5,53	30+ +	+ +08	30+ +	1 + 30+ +	7.7.		30+ +	30+ ++	+ + + + + + + + + + + + + + + + + + + +	22.2		+ + +02	++000	+ + + + + + + + + + + + + + + + + + + +	30+ +	+ +05	+ + + + 20+ + +	+ + + 30+	30+ +
umber Car		1289	285	1460	543	96	324	93	8%	553	1611	286.	87	340	317	465	1173	161	86	233	88	243	200	1186	195

σ

Centek/SanAir Laboratories Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120910.D Vial: 6 Acq On : 9 Dec 2021 4:49 pm Operator: RJP Sample : WAC120921F Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

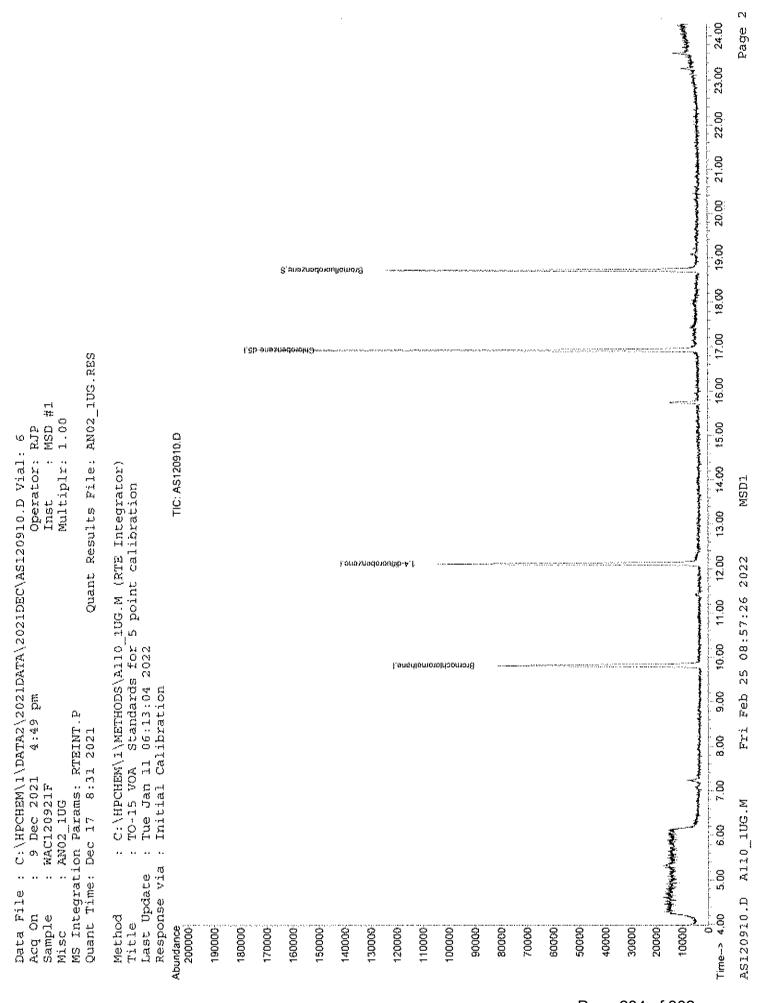
Quant Time: Dec 14 10:02:36 2021 Quant Results File: ANO2 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN02 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG ENT

Internal Standards	R.T.	QIon	Response	Conc Un:	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.11 16.92	128 114 117	33714 106210 104336m	1.00 p 1.00 p 1.00 p	20.02 add
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.72 Range 70	95 - 130	56926m Recover	0.74 p	


Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (*) = signals summed

Page 1

(QT Reviewed)

Quantitation Report

Page 284 of 302

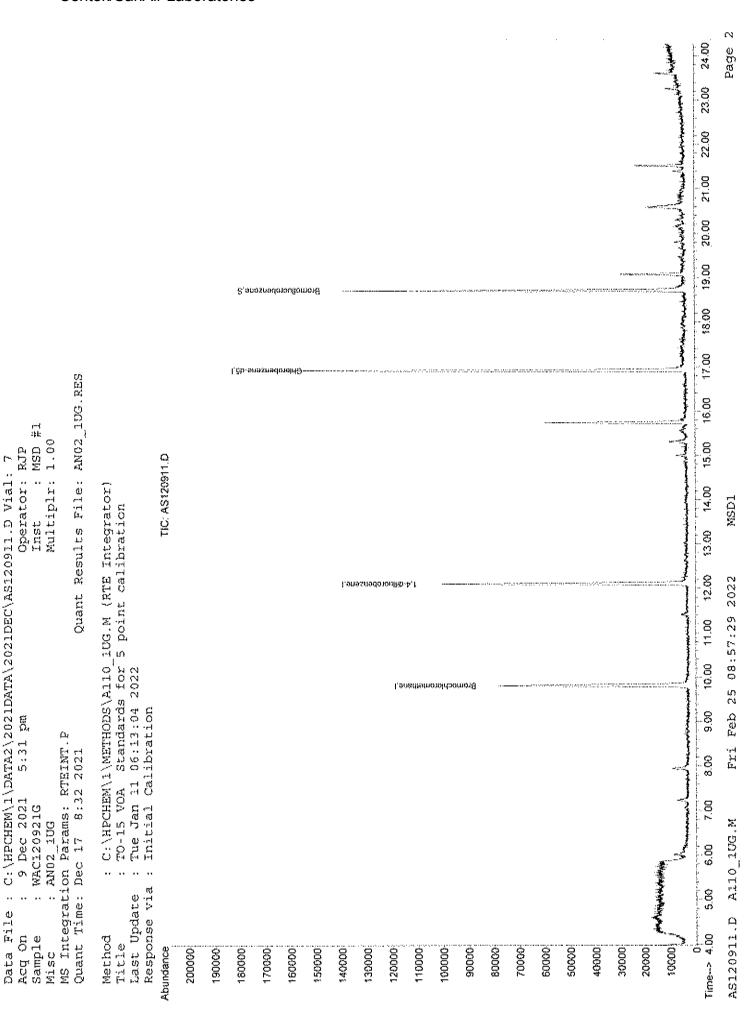
Centek/SanAir Laboratories Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120911.D Vial: 7 Acq On : 9 Dec 2021 5:31 pm Operator: RJP Sample : WAC120921G Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT,P

Quant Time: Dec 14 10:02:46 2021 Quant Results File: ANO2_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\ANG2 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021


Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.11 16.92	128 114 117	33462 103034 110755m	1.00 1.00 1.00	ppb -0.03
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.72 Range 70	95 - 130	56785m Recover		ppb 0.04 69.00%#

Target Compounds Qvalue (OT Reviewed)

Quantitation Report

Page 286 of 302

Centek/SanAir Laboratories

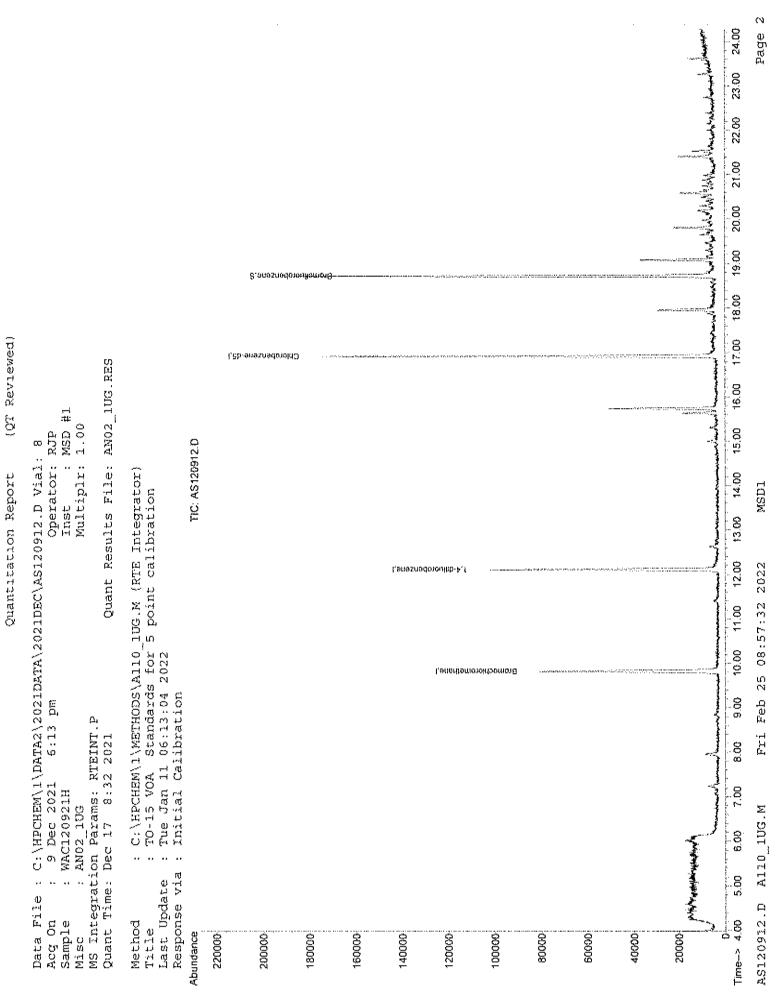
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120912.D Vial: 8 Acq On : 9 Dec 2021 6:13 pm Operator: RJP Sample : WAC120921H Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 14 10:02:57 2021 Quant Results File: AN02 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN02_lUG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response (Conc Uni	ts Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.11 16.92	128 114 117	33353 102487 120345	1.00 g 1.00 g 1.00 g	20.0- dag
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.72 Range 70	95 - 130	75569 Recover	0.85 g	pb 0.04 85.00%

Target Compounds Qvalue

Page 288 of 302

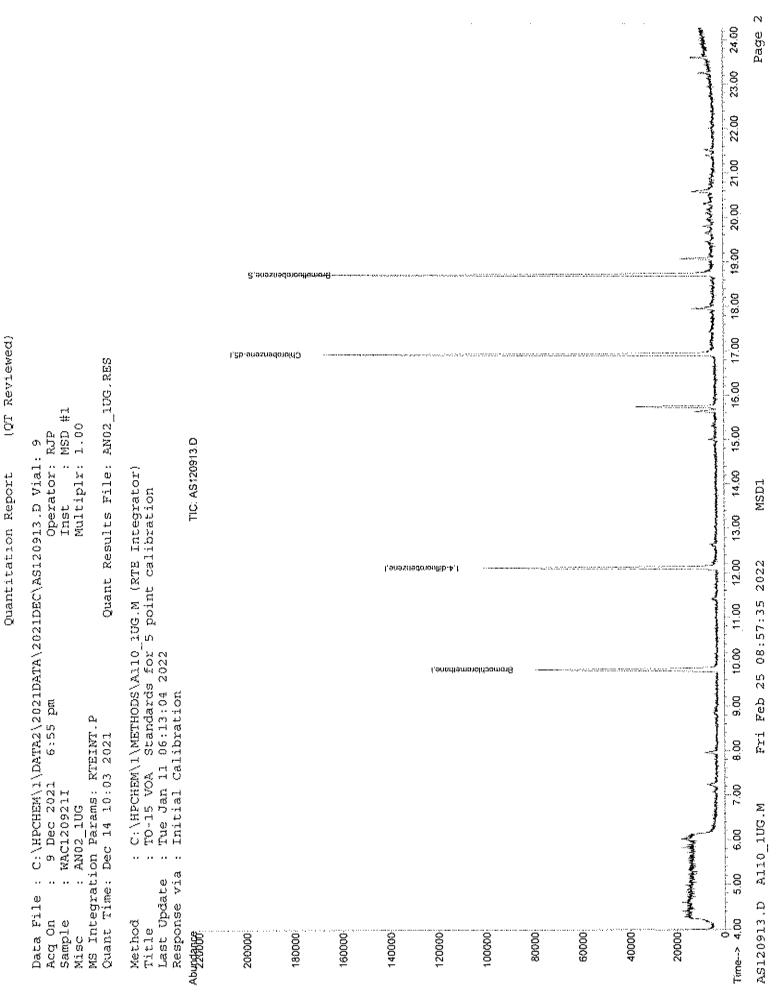
Centek/SanAir Laboratories
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120913.D Vial: 9 Acq On : 9 Dec 2021 6:55 pm Operator: RJP Sample : WAC1209211 Misc : ANO2_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 14 10:03:15 2021 Quant Results File: AN02_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN02_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG ENT

Internal Standards	R,T,	QIon	Response C	Conc Ur	nits Dev(Mi	n)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.11 16.92	128 114 117	32680 103440 118584	1.00 1.00 1.00	1.0- dqq	02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 - 130	74148 Recovery	0.84		0.3

Qvalue Target Compounds

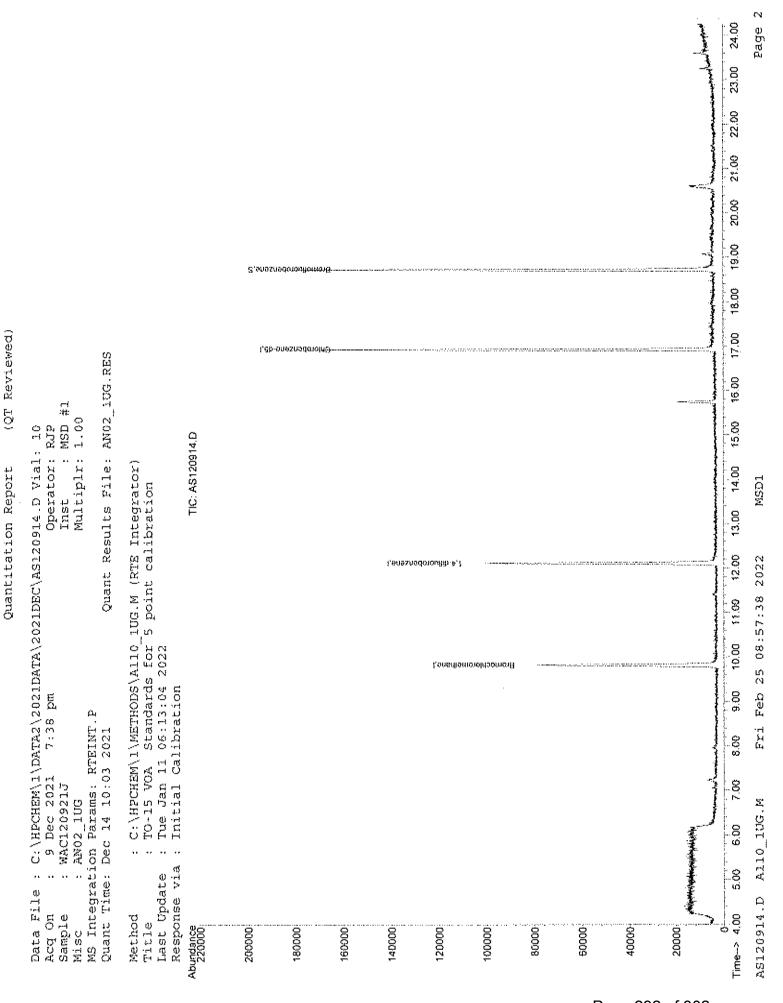
Page 290 of 302

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120914.D Vial: 10 Acq On : 9 Dec 2021 7:38 pm Operator: RJP Sample : WAC120921J Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 14 10:03:24 2021 Quant Results File: ANO2_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\ANG2 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response (Conc Un	its Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.81 12.11 16.92	128 114 117	32735 103903 116900	1.00	80.0- dag
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 ~ 130	72277 Recovery	0.83	80.0 dqq 800.88

Target Compounds Qvalue

Page 292 of 302

Centek/SanAir Laboratories (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120915.D Vial: 11 Acq On : 9 Dec 2021 8:20 pm Operator: RJP Sample : WAC120921K Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

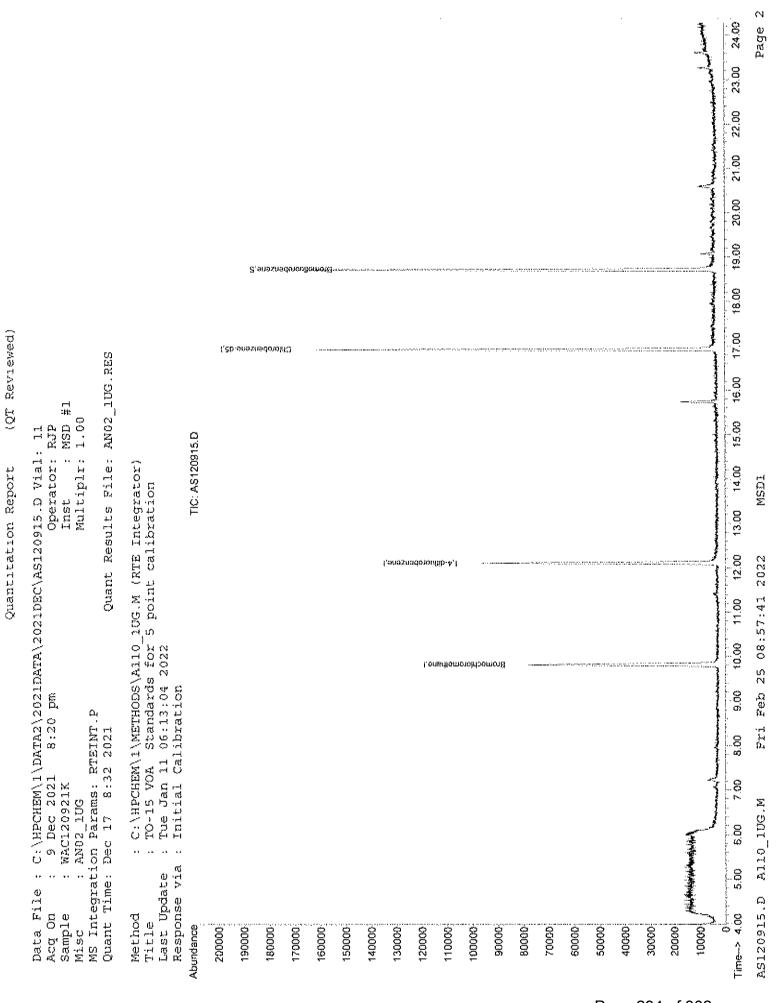
Quant Time: Dec 14 10:03:34 2021 Quant Results File: ANO2 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN02_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.11 16.92	128 114 117	32139 96252 113389	1.00 ppi 1.00 ppi 1.00 ppi	-0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 - 130	69073 Recover	0.82 ppl Y = 81	


Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed

AS120915.D All0_lUG.M Fri Feb 25 08:57:40 2022

Page 1

MSD1

Page 294 of 302

Centek/SanAir Laboratories Quantitation Report

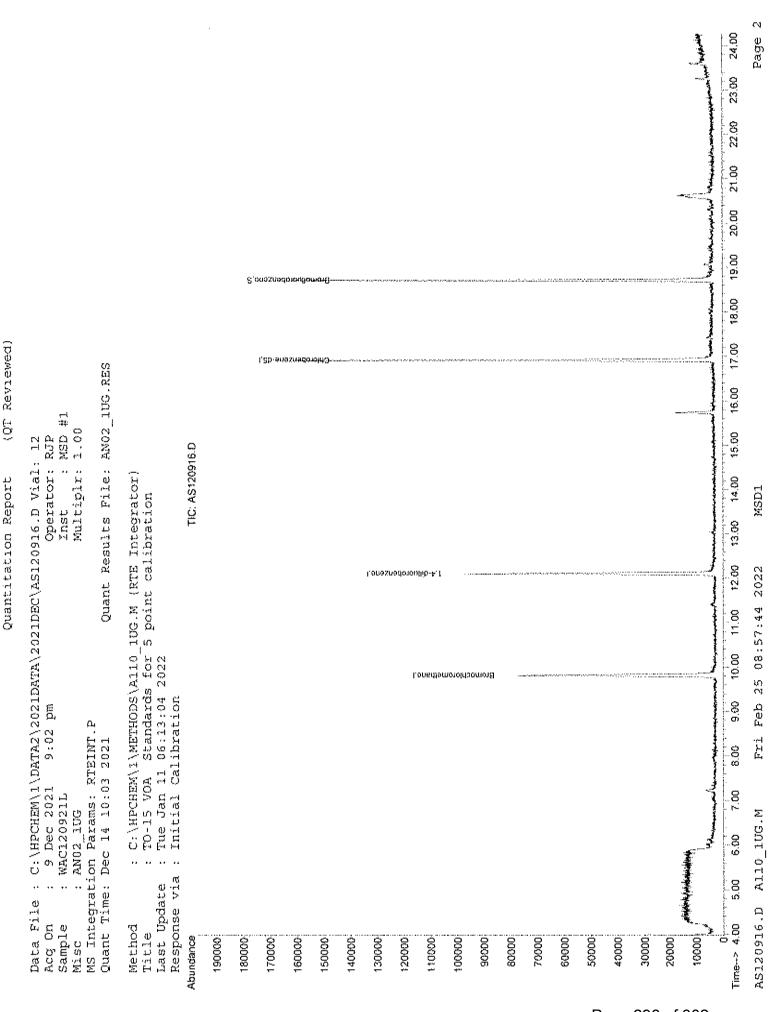
(QT Reviewed)

Data File: C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120916.D Vial: 12 Acq On : 9 Dec 2021 9:02 pm Operator: RJP Sample : WAC120921L Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

Quant Time: Dec 14 10:03:45 2021 Quant Results File: ANO2 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\ANO2_lUG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG ENT

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.11 16.92	128 114 117	32098 97837 112871	1.00 1.00 1.00	ppb -0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 - 130	67076 Recover		£0.0 dqq \$00.08

Target Compounds Qvalue

Page 296 of 302

Centek/SanAir Laboratories (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120917.D Vial: 13 Acq On : 9 Dec 2021 9:44 pm Operator: RJP Sample : WAC120921M Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

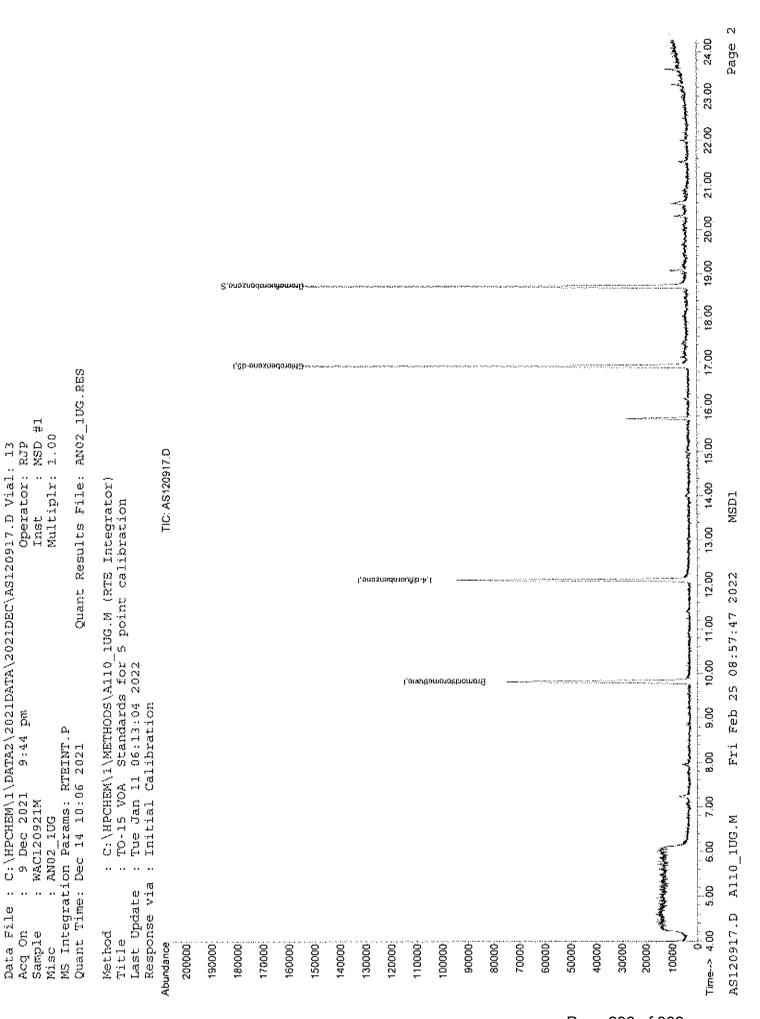
Quant Time: Dec 14 10:06:51 2021 Quant Results File: ANO2 1UG RES

Quant Method : C:\HPCHEM\1\METHODS\AN02_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

DataAcq Meth : 1UG_ENT

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.11 16.92		32459 97693 113401	1.00 ppb 1.00 ppb 1.00 ppb	-0.03
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 - 130	70192 Recover	0,83 ppb y = 83	


Target Compounds Qvalue

AS120917.D Allo_1UG.M Fri Feb 25 08:57:46 2022 MSD1

Page 1

(OT Reviewed)

Quantitation Report

Page 298 of 302

Centek/SanAir Laboratories Quantitation Report (QT Reviewed)

Data File: C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120918.D Vial: 14 Acq On : 9 Dec 2021 10:27 pm Operator: RJP Sample : WAC120921N Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 14 10:07:00 2021 Quant Results File: ANO2 IUG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN02_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration

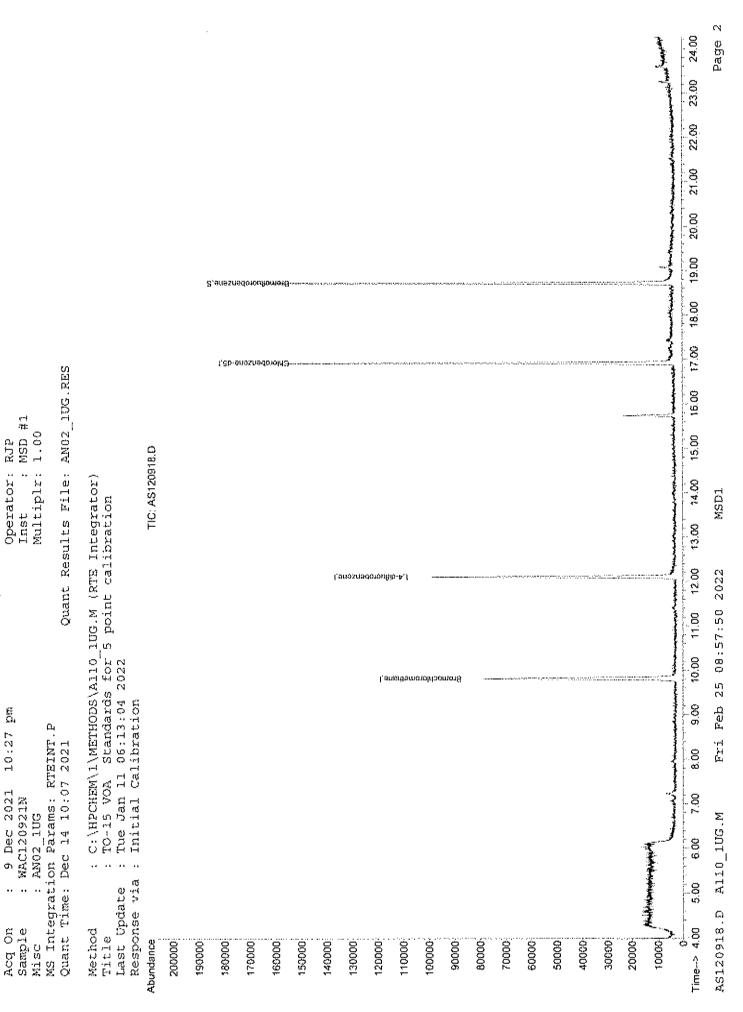
DataAcq Meth : lUG_ENT

Internal Standards	R.T.	QIon	Response C	one U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.11 16.91	128 114 117	32563 98395 112452	1.00 1.00 1.00	\$0.0° dqq
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 - 130	69316 Recovery		0.03 83.00%

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

AS120918.D Al10_1UG.M Fri Feb 25 08:57:49 2022 MSD1


Page 1

(OT Reviewed)

Quantitation Report

C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120918.D Vial: 14

Data File

Page 300 of 302

Centek/SanAir Laboratories Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2021DATA\2021DEC\AS120919.D Vial: 15 Acq On : 9 Dec 2021 11:09 pm Operator: RJP Sample : WAC1209210 Misc : AN02_1UG Inst : MSD #1 Multiplr: 1.00

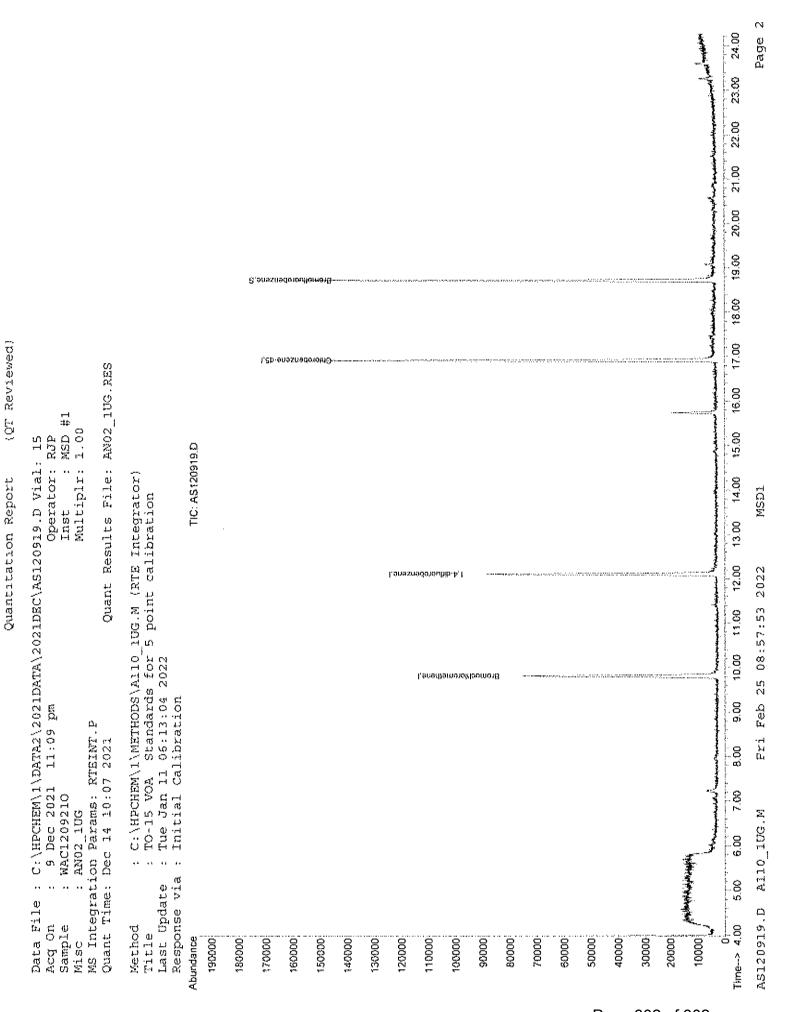
MS Integration Params: RTEINT.P

Quant Time: Dec 14 10:07:08 2021 Quant Results File: ANO2_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\ANO2 1UG,M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Wed Dec 08 09:05:20 2021

Response via : Initial Calibration


DataAcq Meth : IUG_ENT

Internal Standards	R.T.	QIon	Response C	onc Uni	ts Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.11 16.92	128 114 117	31891 93943 108851	1.00 p 1.00 p 1.00 p	80.0- dq
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.71 Range 70	95 ~ 130	63316 Recovery	0.78 p	-

Target Compounds

Qvalue

(QT Reviewed)

Page 302 of 302