REMEDIAL INVESTIGATION / ALTERNATIVES ANALYSIS REPORT

For

301 CONNECTICUT STREET SITE 301 CONNECTICUT STREET CITY OF BUFFALO, ERIE COUNTY, NEW YORK SITE No. C915345

Prepared by:

C&S Engineers, Inc.

141 ELM STREET, SUITE 100 BUFFALO, NEW YORK 14203

Prepared for: 301 CONNECTICUT LLC

320 PORTER AVENUE BUFFALO, NEW YORK 14201

AND

D'YOUVILLE COLLEGE

320 PORTER AVENUE BUFFALO, NEW YORK 14201

REVISION 02

CERTIFICATION STATEMENT

I <u>John T. Camp, P.E.</u> certify that I am currently a NYS registered professional engineer and that this Remedial Investigation / Alternative Analysis Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Department of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10).

P.E

<u>JUNE 8, 2020</u> DATE

TABLE OF CONTENTS

	ONYM LIST	V
ES 1.	. SITE SETTING	VII
A. F	PHYSICAL SETTING	VII
	Subsurface Setting	VII
	REMEDIAL INVESTIGATION	VII
ES 3.	ALTERNATIVES ANALYSIS	X
<u>1</u>	INTRODUCTION	1
<u>2</u>	PROJECT BACKGROUND	2
2.1	SITE HISTORY	2
2.2	Previous Investigations	3
2.3	REMEDIAL INVESTIGATION OBJECTIVES, SCOPE, AND RATIONALE	7
<u>3</u>	METHODOLOGY	9
	Soil / HFM Characterization	9
	SURFACE SOIL	9
	SUBSURFACE SOIL / HFM CHARACTERIZATION	9
	GROUNDWATER CHARACTERIZATION	13
	On-Site Groundwater Characterization	13
	OFF-SITE GROUNDWATER CHARACTERIZATION	14
	SOIL VAPOR INTRUSION	14
	QUALITY ASSURANCE/QUALITY CONTROL PROGRAM	14
	FINDINGS	16
_		
	GEOLOGY AND HYDROGEOLOGY	16
	SITE GEOLOGY	16
	SITE HYDROGEOLOGY	16
	FIELD OBSERVATIONS	17
	ANALYTICAL RESULTS	18
	SURFACE SOIL RESULTS	18
	On-site Subsurface Soil/Fill Sample Results	18
	OFF-SITE SAMPLING RESULTS	22
4.3.4	GROUNDWATER (ON-SITE)	23
<u>5</u>	QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT	27
5.1	HUMAN HEALTH CONSTITUENTS OF POTENTIAL CONCERN	27
	SUB-SURFACE SOIL	27
	GROUNDWATER	29
	SOIL VAPOR	30
	HUMAN HEALTH COPC MIGRATION PATHWAYS	30
	SUBSURFACE SOIL	30
	GROUNDWATER	31
	SOIL VAPOR	31
	POTENTIALLY EXPOSED RECEPTORS AND EXPOSURE PATHWAYS	32
	RECEPTORS AND EXPOSURE PATHWAYS	32
	SURFACE / SUBSURFACE SOIL	33
	GROUNDWATER	33
	SOIL VAPOR	34
5.4	OHHEA SUMMARY	34

_			3 <u>5</u> 36
7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.3 7.4 7.4.1 7.5 7.5.1	OBJECTAPPLIC SOIL GROUND SOIL WAS ALTE REMEI DEVEL NO F DETAI NO F RECOM	TIVES CABLE STANDARDS, CRITERIA, GUIDANCE UNDWATER VAPOR TE CHARACTERIZATION ANALYSIS ERNATIVES ANALYSIS GUIDELINES: DIAL ACTION OBJECTIVES OPMENT OF ALTERNATIVES URTHER ACTION LED EVALUATION OF ALTERNATIVES URTHER ACTION MENDED REMEDIAL ALTERNATIVE	36 36 36 37 37 37 37 38 38 38 38 38
FIGU	RES		
FIGUR	E 1		
FIGUR	E 2		
FIGUR	E 3	2018 SITE CHARACTERIZATION LOCATIONS AND RESULTS	
FIGUR	E 4	Soil Sample Locations	
FIGUR	E 5	GROUNDWATER MONITORING WELL LOCATIONS	
FIGUR	E 6	SOIL SAMPLING LOCATIONS AND RESULTS	
FIGUR	E 7	GROUNDWATER MONITORING WELL LOCATIONS AND RESULTS AND CONTOURS	
FIGUR	E 8	TRACK 1 CLEANUP PLAN	
FIGUR	E 9	TRACK 1 EXCAVATION SURVEY	
TABI	LES		
TABLE	E 1	Surface Soil Sampling Results	
TABLE	E 2	FILL MATERIAL AND NATIVE SOIL SAMPLING RESULTS	
TABLE	Ξ3	X Delineation Sampling Results	
TABLE	E 4	Y AND Z DELINEATION SAMPLING RESULTS	
TABLE	E 5	WASTE CHARACTERIZATION RESULTS	
TABLE	Ε6	OFF-SITE SOIL SAMPLING RESULTS	
TABLE	E 7	OFF-SITE GROUNDWATER SAMPLING RESULTS	
TABLE	E 8	On-site Groundwater Sampling Results	
TABLE	E 9		
TABLE	E 10	Post Remediation Groundwater Sampling Results	

Remedial Investigation / Alternative Analysis Report 301 Connecticut Street Site, BCP No. C915345

TABLE 11	REMEDIAL INVESTIGATION SAMPLING PROGRAM
TABLE 2-3	Previous Subsurface Soil Investigation Sample Exceedances (In-Text)
TABLE 3-1	SAMPLE ID PROTOCOL (IN-TEXT)
TABLE 4-1	APRIL 2019 GROUNDWATER ELEVATIONS (IN-TEXT)
Table 4-2	May 2019 Groundwater Elevations (In-Text)
TABLE 4-3	SUMMARY OF EXCEEDANCES IN HFM GRID SAMPLING (IN-TEXT)
TABLE 4-4	SUMMARY OF EXCEEDANCES IN NATIVE SOIL (IN-TEXT)
TABLE 5-1	DETECTED CONTAMINANTS IN HFM (IN-TEXT)
TABLE 5-2	Human Exposure Pathway Analysis (In Text)
Table 6-5	Summary of Track 4 Remedial Action Costs (In-Text)
TABLE 6-6	SUMMARY OF TRACK 1 REMEDIAL ACTION COSTS (IN-TEXT)
APPENDIC	CES
APPENDIX A	Soil Boring Logs
Appendix B	GROUNDWATER WELL CONSTRUCTION AND SAMPLING LOGS
ADDENDIV C	DILC

ACRONYM LIST

AAR ALTERNATIVES ANALYSIS REPORT

AST ABOVEGROUND STORAGE TANK

BCP BROWNFIELD CLEANUP PROGRAM

BGS BELOW GROUND SURFACE

BSA BUFFALO SEWER AUTHORITY

C&S ENGINEERS

CAMP COMMUNITY AIR MONITORING PLAN

CPP CITIZEN PARTICIPATION PLAN

COPC CONSTITUENTS OF POTENTIAL CONCERN

DER DEPARTMENT OF ENVIRONMENTAL REMEDIATION

DUSR DATA USABILITY AND SUMMARY REPORT

EDD ELECTRONIC DATA DELIVERABLE

EE ENVIRONMENTAL EASEMENT

ELAP ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

ESA ENVIRONMENTAL SITE ASSESSMENT

HASP HEALTH AND SAFETY PLAN

HFM HISTORIC FILL MATERIAL

IRM INTERIM REMEDIAL MEASURES

MS/MSD MATRIX SPIKE / MATRIX SPIKE DUPLICATE

MW MONITORING WELL

NYCRR NEW YORK CODES, RULES, AND REGULATIONS

NYSDEC NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

NYSDOH NEW YORK STATE DEPARTMENT OF HEALTH

PAH POLYCYCLIC AROMATIC HYDROCARBONS

PCBS POLYCHLORINATED BIPHENYLS

PFAS PERFLUOROALKYL AND POLYFLUOROALKYL SUBSTANCES

PID PHOTO-IONIZATION DETECTOR

PPM PARTS PER MILLION
PPT PARTS PER TRILLION

QHHEA QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

RAOS REMEDIAL ACTION OBJECTIVES

REC RECOGNIZED ENVIRONMENTAL CONDITION

Remedial Investigation / Alternative Analysis Report 301 Connecticut Street Site, BCP No. C915345

RI REMEDIAL INVESTIGATION

SCG STANDARDS, CRITERIA, AND GUIDANCE

SCOS SOIL CLEANUP OBJECTIVES

SITE 0.86-ACRE SITE; 301 CONNECTICUT STREET, BUFFALO, NEW YORK

SMP SITE MANAGEMENT PLAN

SVOCS SEMI-VOLATILE ORGANIC COMPOUNDS

TAL TARGET ANALYTE LIST
TCL TARGET COMPOUND LIST

TOGS TECHNICAL & OPERATIONAL GUIDANCE SERIES

U.S. EPA UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

UST UNDERGROUND STORAGE TANK
VOCS VOLATILE ORGANIC COMPOUNDS

EXECUTIVE SUMMARY

ES 1. Site Setting

a. Physical Setting

The Brownfield Cleanup Program (BCP) Site is located in the City of Buffalo, New York. The Site is situated on a partial city block which contains a parking lot, Hart's Service Station, and the D'Youville Education Center building. The Site is bounded by the Connecticut Street to the northwest, West Avenue to the southwest, a D'Youville parking lot to the southeast, and residential housing, The Armory Restaurant, and Plymouth Avenue to the northeast.

The BCP Site is located in the Lower West Side in the City of Buffalo, New York, adjacent to the D'Youville College campus. The Site is approximately 0.86-acres and is owned by 301 Connecticut LLC.

Land uses immediately adjacent to the BCP Site include parking, residential uses, educational uses (D'Youville campus), and retail (Rite Aid).

According to historical records, the Site was initially occupied by residential homes. The property at 305 Connecticut contained a filling station and auto repair shop from 1951 to 1981. The auto repair shop remained past 1981 to present. A property at 289 Connecticut Street formerly contained upholstering and 291 Connecticut Street formerly contained a paints store. An additional auto repair shop and gas tanks were located on the Site along West Avenue.

b. Subsurface Setting

The Site is comprised of asphalt underlain by Historic Fill Material (HFM) and native soils. Asphalt thickness varied throughout the Site. Generally, asphalt was approximately five to twelve inches thick. Underneath the asphalt, the Site contains urban fill to approximate depths ranging from one to four feet below grade, in most areas. HFM is defined as material coming from anthropogenic sources re-worked to build a site to a defined grade. Underlying the HFM are native soils which are comprised of primarily moist brown silty clay.

Groundwater levels were encountered at relatively shallow depths. Many soil borings exhibited moist, and even soft, wet, or saturated material at varying depths within the borings. Groundwater levels throughout the Site ranged from four to eight feet below ground surface (bgs). Groundwater flow appeared to be flowing in a general northwest direction, toward Connecticut Street.

After review of New York State Department of Environmental Conservation (NYSDEC) data, it was determined that the Site is not underlain by any mapped principal or primary aquifers. Groundwater at and in the vicinity of the Site is not used for public drinking water supply. The City of Buffalo Water Board Regulations (21 NYCRR § 10085.3) states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board.

ES 2. Remedial Investigation

The Remedial Investigation (RI) supplemented the existing, Phase I Environmental Site Assessment (ESA), Phase II ESA, and Supplemental Investigation information through the advancement of soil borings, installation of monitoring wells, and collection and analysis of soil and groundwater samples.

ES2.1 Surface Soil

Surface soil samples were collected from three locations throughout the Site. Results indicate many semi-volatile organic compounds (SVOCs), pesticides, and metals present in all three of the sample locations. Analytics show multiple SVOCs above Residential, Restricted Residential, and Industrial Use Soil Cleanup Objectives (SCOs) in B3, C1, and E1. Pesticides and metals, including lead and zinc, were all also present in these surface soil samples with results above Unrestricted Use SCOs.

ES2.2 Historic Fill Material

The Site was broken into 18 grids, each grid was approximately a 50 by 50 foot area. A total of seven fill samples were collected across the Site, taken from the seven of the 18 on-site grid locations. Sample results indicate that subsurface HFM within the BCP boundary contain concentrations of volatile organic compounds (VOCs), SVOCs, pesticides, and metals above multiple SCOs. VOCs and pesticides were detected above Unrestricted Use SCOs. SVOCs/polycyclic aromatic hydrocarbons (PAHs) were detected above Residential, Restricted Residential, and Industrial Use SCOs. Metals were detected above Unrestricted and Restricted Residential Use SCOs.

A total of five soil samples collected within the HFM were analyzed for waste characterization parameters. Based on these results, HFM located at the Site is considered non-hazardous.

ES2.3 Native Soil

During the RI, native soil samples were collected from 18 grid locations as the final confirmatory samples. Soil samples were collected at the top of the native material, with two additional samples that were collected at one-foot intervals below the first native soil sample. A total of three of the 18 native soil sample grid locations exceeded Unrestricted Use SCOs. Two of the three sample locations collected that exceeded Unrestricted Use SCOs were due to metals such as lead and zinc. These locations were in grid locations A1 for zinc and B1 for zinc and lead. One native soil sample, C4, exceeded VOC Unrestricted Use SCOs for acetone. The exceedances of Unrestricted Use SCOs within native material has been attributed to impacts from the overlying HFM.

ES2.4 15-Foot Deep Native Soil

Deep native soil samples were taken from a depth of 15 feet bgs in five of the 18 grid borings completed within the Site bounds. The locations of the deep native samples were dispersed evenly across the Site. In four of the five locations sampled, contaminant concentrations did not exceed the Unrestricted Use SCOs. In grid location A1 (within an area backfilled with crushed stone), zinc concentrations exceeded the Unrestricted Use SCO. Considering that zinc is a heavy metal that is not mobile in the subsurface, it is likely that residual stone backfill interfered with the native soil results at 15-feet in this location.

ES2.5 EB-1/X (Lead) Delineation

Initial sampling indicated elevated lead levels in the subsurface near the northern corner of the Site, which resulted in the need for delineation to determine the extents of contamination. Results indicated lead concentrations below Unrestricted Use SCOs for all but one of the sample locations. At a depth of 13 feet below ground surface, 2-X04 had lead levels of 266 mg/kg, exceeding the Unrestricted Use SCOs. Multiple VOCs were detected above Unrestricted Use SCOs in ten of the delineation locations. These VOCs included acetone, ethylbenzene, toluene, and xylenes. In one of the locations, 1-X01, at a depth of 9 feet below ground surface, multiple SVOCs were also detected. Three SVOC analytes in that

location had levels exceeding Residential Use SCOs, and two of those three exceeding Restricted Residential Use SCOs.

ES2.6 EB-4 and EB-11/Y and Z (Petroleum) Delineation

Remedial investigation in this area focused on the determination of the extents of petroleum impacts. Soil borings and sampling indicated that the extent of contamination extends to approximately 7 to 12 feet below ground surface. Both petroleum delineation areas showed evidence of petroleum impairment toward the northwest. With the addition of soil borings 3-Y04, 2-Y05, and 2-Z05, it appeared this contamination extended toward Connecticut Street. With Photo-Ionization Detector (PID) measurements of up to 5,500 parts per million (ppm) in 3-Y04, it was determined that additional sampling beneath the sidewalk and across the street would need to take place. The only contamination which appeared in the analytical results was in soil boring 2-Z01 at a depth of 10 feet below ground surface and soil boring 2-Y05 at a depth of 12 feet below ground surface. Both locations appeared to show total xylenes to have concentrations slightly above Unrestricted Use SCOs, and 2-Y05 showed ethylbenzene concentrations also above Unrestricted Use SCOs.

ES2.7 Groundwater

Groundwater sampling occurred in two stages. The first round of sampling occurred in April 2019. Five groundwater samples, a duplicate, and matrix spike / matrix spike duplicate (MS/MSD) were collected from the five previously installed wells at the Site.

The second round of groundwater sampling occurred in May 2019. The second round of sampling did not include emerging contaminates.

During the first sampling event, VOCs were detected at concentrations greater than the Department of Environmental Conservation Technical & Operational Guidance Series (TOGS) 1.1.1 standards for groundwater in all monitoring wells, aside from Monitoring Well (MW)-2. During the second groundwater sampling event, VOC concentrations greatly diminished and analytes were only detected above TOGS in MW-1.

During the first sampling event, SVOCs including, but not limited to; benzo(a)anthracene benzo(b)flouranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-c,d)pyrene were detected at concentrations greater than the respective standards in nearly all of the monitoring wells. During the second sampling event, SVOC concentrations diminished, but some analytes still exceeded standards, which is anticipated to be due to reduced turbidity levels.

Metals, including iron, magnesium, and manganese were present in wells in both rounds of groundwater sampling. Barium was detected above guidance values for MW-1 in both rounds of sampling. Lead was detected above TOGS standards in the first round of sampling in MW-2.

Aside from the pesticide beta-BHC found in both rounds of sampling in MW-1, no other pesticides or PCBs were found in any of the wells in either round of groundwater sampling.

Emerging contaminants were sampled in two out of the five wells in the first round of sampling. Laboratory data generated from the first round of sampling was compared to the United States Environmental Protection Agency (USEPA) 70 parts per trillion (ppt) guidance value for total perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), combined. Results were also compared against NYSDEC guidance values of 10 ppt for each PFOA and PFOS, in addition to NYSDEC guidance value of 500 ppt for all perfluoroalkyl and polyfluoroalkyl substance (PFAS) compounds, combined. All PFAS results fall below the guidance values set by USEPA and NYSDEC. In both of the wells 1,4-

Dioxane was not detected.

ES 3. Alternatives Analysis

This remediation was completed under an IRM. All fill at the Site and any contaminated layers of native soils was excavated and disposed of at appropriately permitted off-site waste disposal facilities. The volume of removed fill/contaminated soil is 16,423 tons. Cut and fill depths associated with the planned Track 1 cleanup are shown in **Figure 8**. The final excavation depths are presented in **Figure 9**.

Based on the alternative analysis evaluation and the IRM described in **Section 7**, the recommended remedy for the Site is no further action. The IRM is fully protective of public health and the environment. This remedy is protective of human health and the environment, and was implemented in one construction season The IRM included the following:

- The excavation and off-site disposal of all fill and all layers of contaminated native soils. **Figure 8** depicts a Track 1 Cleanup Plan with the required excavation depths based on analytical results in each grid on the property;
- The placement of backfill consisting of clean fill and/or building materials (stone, concrete); and
- No environmental easements or continuing monitoring programs such as an SMP would be required.

1 Introduction

C&S Engineers, Inc. (C&S) has prepared this Remedial Investigation (RI) / Alternative Analysis (AA) Report on behalf of the applicant to the Brownfield Cleanup Program (BCP), 301 Connecticut LLC and D'Youville College (hereafter known as "Applicant") for the remediation and redevelopment of 301 Connecticut Street, Buffalo, New York (the "Site").

On April 1, 2019, the Applicant, acting as a BCP Participant, submitted a BCP Application to remediate and develop 301 Connecticut Street, Buffalo, New York. Investigative and remedial actions covered under this RI/AA Report includes the entire 0.86-acre Site.

Initial sampling, conducted through a Phase II Environmental Site Assessment (ESA), indicated the presence of historic fill material (HFM), petroleum contamination, and lead contamination with contaminant concentrations in excess of the New York State Department of Environmental Conservation's (NYSDEC's) Soil Cleanup Objectives (SCOs). The NYSDEC used these results to approve the Site's entrance into the BCP.

In response to the findings of the Phase II ESA, C&S prepared an RI/IRM Work Plan to describe the proposed approach to more thoroughly assess site contaminant conditions. The RI was implemented to further evaluate the extent of the contaminated HFM, petroleum, and lead material. The intent of this RI/AA Report is to present the results of the investigation and to identify and evaluate potential remedial measures to address the contamination present at the Site.

2 PROJECT BACKGROUND

The Site is comprised of one parcel: 301 Connecticut Street (SBL: 99.67-8-1.121, total 0.86 acres).

The BCP Site is located in the Lower West Side in the City of Buffalo, New York, adjacent to the D'Youville College campus. The Site is approximately 0.86-acres and is owned by 301 Connecticut LLC. Connecticut Street is located to the north, Plymouth Avenue to the east, West Ave to the west, and parking for D'Youville College to the south. Land uses immediately adjacent to the BCP Site include parking, residential uses, educational uses (D'Youville campus), and retail (Rite Aid). **Figure 1** shows the location of the Site and **Figure 2** shows the Project Area and Site Boundaries.

The Site is situated on a partial city block which contains an approximately 75 spot parking lot, Hart's Service Station, and the D'Youville Education Center building. Access to the Site is made possible through the parking area entrance off West Avenue or the parking area along Connecticut Street for Hart's Service Station and the D'Youville Education Center.

The parking lot area of the Site, on the corner of West Ave. and Connecticut St., is immediately surrounded by a black metal fence with landscaped areas just outside the fence. The Site contains three utility poles with wires hanging above the parking area and buildings.

The anticipated post remediation use of the Site is a multistory, mixed-use Health Professions Hub for D'Youville College students that will include a Community Clinic, a Workforce Development Center, a Virtual Simulation Training Center, and a neighborhood pharmacy.

2.1 Site History

The 301 Connecticut Street property was created in December 2018 by combining 295 Connecticut Street, 305 Connecticut Street and a portion of 289 Connecticut Street.

According to historical records, the Site was initially occupied by residential homes. The property at 305 Connecticut contained a filling station and auto repair shop from 1951 to 1981. The auto repair shop remained past 1981 to present. A property at 289 Connecticut Street formerly contained upholstering and 291 Connecticut Street formerly contained a paints store. An additional auto repair shop and gas tanks were located on the Site along West Avenue.

D'Youville College has owned the parking lot area of the Site and the D'Youville Education Center since the early 2000's. The Hart's Service Station was purchased by D'Youville in March of 2018.

The Site has not been remediated pursuant to Titles 9, 13, or 14 of ECL Article 27, or Title 5 of ECL Article 56. However, during excavation and removal of underground storage tanks (USTs) at the former 305 Connecticut Street parcel (Hart Service Station), contamination was discovered and remediated under the NYS Spills program, in conformance with Article 12 of Navigation Law. Spill 0475238 was made inactive in October 2008.

Based on recent investigative results, contamination at the Site appears to be from the previous filling station/service station at the Site in the proximity of the former 305 Connecticut Street parcel and possibly from the long term presence of a repair shop at the former 457 and 461 West Avenue parcels. Additionally, contamination may be related to the placement of urban fill material throughout the years as property uses changed along Connecticut Street and West Avenue and buildings were built and/or demolished.

2.2 Previous Investigations

Environmental information currently exists for the Site from a Phase I ESA completed by C&S Engineers (C&S) in 2017, from Phase II ESA completed by C&S in 2018, and a Supplemental Investigation completed by C&S in 2018. The associated documents are provided in **Attachment B**.

The Phase I indicated areas containing Recognized Environmental Conditions (RECs) which were subsequently investigated in a Phase II ESA.

C&S Phase I ESA Report

The Phase I ESA for the Site was restricted to the Hart's Service Station parcel only, located on what was once 305 Connecticut Street and is now included within the 301 Connecticut Street parcel. The Phase I ESA identified the following RECs:

- Multiple oily stains observed throughout the service area, especially around numerous small containers/drums and the two 250-gallon aboveground storage tanks (ASTs).
- The drain inside the service area. This drain is positioned to collect any fluids that would spill on the floor of the service area. At the time of the Site visit, the point of discharge could not be determined. This drain could serve as a way for spilled petroleum based products to be released on the Subject Property.
- After the removal of the three leaking USTs, the NYSDEC spills report indicated that groundwater contamination may still exist on-site.
- Multiple historic dry cleaner and auto repair shops located adjacent to the Subject Property. These sites are considered a REC in this Phase I ESA due to its close proximity to the Subject Property and potential for contaminants to migrate onto the Subject Property.

C&S Phase II ESA Report

A Phase II ESA was completed to provide additional information on the RECs identified as a result of the 2017 Phase I ESA (summarized above). The Phase II ESA included the advancement of 11 soil borings, installation of two temporary groundwater monitoring wells, and the collection and analysis of 8 soil samples. The soil samples were analyzed for the following contaminants in 6 NYCRR Part 375-6.8; Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), and Metals. The two temporary groundwater monitoring wells were sampled and analyzed for VOCs and SVOCs.

The findings from the Phase II ESA are provided below:

- Further review of the historic Sanborn Maps indicated in addition to the USTs located at the 305 Connecticut Street property, gasoline tanks were noted on the 1951 map for the 295 Connecticut Street property and the 461 West Avenue property.
- The floor drain survey indicated that at one time prior to the installation of the
 hydraulic lifts there were other floor drains inside the building. These floor
 drains were removed or buried underneath the existing hydraulic lifts. The
 drainage system discharges from a pipe approximately three feet bgs in front of
 the garage doors and runs northwest to Connecticut Street. This drainage line
 likely connects into the existing sewer system.

- Petroleum-like odors were observed from soil cores from the 305 and 295 Connecticut Street properties. The highest concentrations of petroleum-like odors was observed in the area of the former underground storage tanks (UST), 305 Connecticut Street property, and on the 295 Connecticut Street property.
- Fill material was generally observed across the Site from beneath the asphalt surface to approximately one feet to four feet bgs. The fill material consists of a mixture of soil types (sand, silt and or clay), ash, coal, gravel, and construction demolition debris. One soil boring, EB-1, was advanced in the area of the removed USTs; in this area fill material (medium grade "run of the bank") was observed to eight feet bgs. Beneath the fill material was native silty clay.
- Petroleum impacted native soil was observed around soil boring EB-4 and EB-11. Black staining of the native silty clay was observed from four to seven feet in EB-4 and from one to eleven feet in EB-11. Strong petroleum-like odors were also observed with the stained material.
- Contaminant concentrations in the fill material and petroleum impacted subsurface soils exceeded New York State Department of Environmental Conservation (NYSDEC) Soil Cleanup Objectives (SCO), including Volatile Organic Compounds (VOC), Semi-Volatile Organic Compounds (SVOC) and metals at concentrations above the Unrestricted, Restricted Residential, and Commercial SCOs.
 - Analytical results indicate that the area remediated for hazardous levels of lead still contains high lead concentrations at eight feet bgs. A sample collected from the native silty clay material (EB-1) contained lead at 1,740 ppm, which is over Commercial Use SCOs.
 - VOC concentrations from petroleum contaminants were detected above Unrestricted and Restricted Residential Use in the sample EB-4 collected in the area of the historic gasoline tank on 295 Connecticut Street.
 - Samples collected for fill material underneath the parking lot (EB-2, EB-3, EB-5, and EB-7) and underneath the floor of the auto repair shop (EB-9) contained concentrations of SVOC and metals above Unrestricted and Restricted Residential Use SCOs.
 - Only EB-5 contained concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) above SCOs for benzo(b)fluoranthene exceeding Restricted Residential Use, detected at 1 ppm, and indeno(1,2,3-cd)pyrene exceeding the Restricted Residential Use, detected at 0.51 ppm.
- Groundwater on the Site was particularly shallow and was present at depths of approximately one to six feet bgs. Both groundwater samples contained at least one contaminant concentration exceeding NYSDEC TOGS Groundwater Standards, for contaminants including VOC, and SVOCs.
 - One groundwater sample, GW-1, was collected within the area where the USTs were removed. This sample contained concentrations of VOCs related to petroleum contaminants that exceed NYS TOGS Groundwater Standards.

- The second groundwater sample, GW-2, was collected south of GW-1 on the 295 Connecticut Street property. This sample did not contain VOC concentrations above NYS TOGS Groundwater Standards.
- PAH concentrations were identified in both the groundwater samples (GW-1 and GW-2). Overall, PAH compounds marginally exceeded NYS TOGS Groundwater Standards, this is likely due to the high turbidity of the groundwater samples.

C&S Supplemental Investigation (October - November 2018)

A supplemental investigation was completed by C&S Engineers to provide additional characterization of the soil on the Site. This effort included the advancement of 17 additional soil borings. The soil samples were analyzed for SVOCs and metals. The analytical findings from the supplemental investigation are provided below:

 Contaminant concentrations in the soil exceeded NYSDEC SCOs for SVOCs and metals at concentrations above the Unrestricted, Residential Use, Restricted Residential Use, and Commercial Use and Industrial Use SCOs.

Summary of Previous Investigations

Site characterization efforts in 2017 and 2018 were conducted to assess contaminant concentrations at the Site and the results are summarized on **Figure 3**. The Site soils encountered during previous limited investigations generally consisted of HFM extending down approximately one to four feet bgs. Consistent with HFM found throughout the City of Buffalo, this HFM contains VOC, SVOC, and metal contamination, as shown in recent sampling. No discrete horizontal contamination layer was observed within the HFM, and therefore, the horizontal extent of contamination within the HFM is difficult to identify due to its heterogeneous nature.

The Phase II ESA completed by C&S included 11 soil borings with eight borings sampled. Out of the eight soil samples taken, seven of them showed exceedances of Unrestricted Use SCO. Concentrations of VOCs, SVOCs and metals present in the HFM that exceed SCOs included:

- Concentrations of VOCs exceeded Unrestricted Use SCOs in one location on the Site, EB-4 for multiple analytes.
- SVOC/PAH compounds, such as benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene were detected in HFM samples and at concentrations that exceed Restricted Residential Use SCOs in EB-5.
- Metals, including copper, lead, mercury, and zinc were detected in all HFM samples, aside from EB-8, at concentrations that exceed Unrestricted Use SCOs. Lead exceeded commercial Use SCOs in EB-1.

The table below summarizes the contaminants of concern in the HFM, the number of locations where samples were collected and contain concentrations above Unrestricted Use SCOs, and the range of the concentrations in parts per million (ppm) for each analyte.

Table 2-3: Previous Subsurface Soil Investigation Sample Exceedances

Analyte	Locations with Concentrations above SCOs	Low Concentration (ppm)	High Concentration (ppm)
VOCs			
Toluene	1	1.8	1.8
Ethylbenzene	1	11	11
p/m-Xylene	1	19	19
o-Xylene	1	8.7	8.7
Xylenes, Total	1	28	28
n-Propylbenzene	1	11	11
1,3,5-Trimethylbenzene	1	18	18
1,2,4-Trimethylbenzene	1	85	85
SVOCs / PAHs			
Benzo(b)fluoranthene	1	1	1
Indeno(1,2,3-cd)pyrene	1	0.51	0.51
Metals			
Copper	1		
Lead	5	105	591
Mercury	4	0.18	1.05
Zinc	4	113	220

The previous investigations completed by C&S in 2018 included the installation and sampling of VOCs and SVOCs in two temporary groundwater monitoring wells. Groundwater sampling revealed exceedances of VOCs and SVOCs exceeding NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 in well GW-1 and SVOCs only in GW-2. Groundwater results are summarized below:

- One groundwater sample, GW-1, was collected within the area where USTs were removed. This sample contained concentrations of VOCs related to petroleum contaminants that exceed NYS TOGS Groundwater Standards.
- The second groundwater sample, GW-2, was collected south of GW-1 on the 295 Connecticut Street property. This sample did not contain VOC concentrations above NYS TOGS Groundwater Standards.
- PAH concentrations were identified in both the groundwater samples (GW-1 and GW-2). Overall, PAH compounds marginally exceeded NYS TOGS Groundwater Standards, this is likely due to the high turbidity of the groundwater samples.

Based on investigations conducted to date, the known contaminants of concern include SVOCs; primarily PAHs, VOCs, and metals including lead and mercury in the native soils and in the HFM.

The variation in analyte concentrations, outside of VOCs, across the Site indicates that the source of contamination is the variable HFM and no discrete source is located on-site or off-site. The VOC exceedances source correlates to approximately where USTs were in place and removed. Based on these sampling results, contaminated HFM is expected to exist on-site from surface to an average approximate depth of four feet bgs.

2.3 Remedial Investigation Objectives, Scope, and Rationale

The objectives of the RI were to further characterize contamination at the Site, evaluate contaminant impacts to soil and groundwater, and identify and evaluate appropriate remedial actions necessary to redevelop the Site. The investigation work included evaluating the magnitude and extent of contaminant impacts, conducting a qualitative exposure assessment for actual or potential exposures to contaminants at the Site and/or emanating from the Site, and producing data that supports the development of an acceptable RI Report.

The scope of the RI was based on information previously gathered regarding historical operations conducted at the Site, the results of previous investigations, including the Phase I and Phase II Environmental Site Assessments (ESA), and the project objectives. The RI included the following:

- Soil Evaluation This task consisted of multiple elements: HFM characterization, lead delineation, petroleum delineation, and underlying native soils.
 - The HFM was characterized to identify the extent and magnitude of contamination. This material was also the subject of waste characterization sampling because subsequent remedial activities would likely include the excavation and off-site disposal of the HFM.
 - An area in the northern corner of the Site was delineated to characterize the extent of area and depth of lead contamination uncovered during the Phase II ESA.
 - Two areas along Connecticut Street on the northwest boundary of the Site were delineated to characterize the extent of area and depth of petroleum contamination uncovered during the Phase II ESA.
 - The underlying native soils were characterized to determine the depth of impacts from the overlying HFM and the depths at which remedial efforts may be terminated.

Groundwater Evaluation – Subsequent to completing the above tasks, existing
groundwater monitoring wells on Site were sampled to confirm previous sampling
results and evaluate if the on-site HFM, petroleum, and lead contamination impacts
groundwater quality.

The RI activities were completed in accordance with NYSDEC Division of Environmental Remediation: Technical Guidance for Site Investigation and Remediation dated May 2010 (DER-10).

3 METHODOLOGY

The RI supplemented the existing, Phase II Environmental Site Assessment (ESA) information through the advancement of soil borings and collection and analysis of soil and groundwater samples. The investigative methods described below closely follow the approved RI/IRM Work Plan (dated July 2019).

Soil and groundwater samples sent to a certified laboratory were analyzed in accordance with EPA SW-846 methodology for the following contaminants:

- VOCs (EPA Method 8260);
- SVOCs (EPA Method 8270C);
- Pesticides (USEPA Method 8081A);
- PCBs (USEPA Method 8082);
- Cyanide (USEPA Method 9010B);
- Mercury (USEPA Method 7471A);
- Hexavalent Chromium (USEPA Method 7196A);
- Metals (EPA Method 6010B):
- 1,4 dioxane (EPA Method 8270SIM); and
- Per- and Poly-fluoroalkyl Substances (EPA Method 537).

The complete sampling program conducted during this RI, including the number of samples collected for each media and the contaminant list samples were collected for, can be found in **Table 11**. Category B deliverables were used in a third-party data validation.

3.1 Soil / HFM Characterization

Recent Site characterization efforts conducted to assess contaminant concentrations at the Site are summarized on **Figure 3.** The locations of all soil boring and sampling associated with the RI are shown in **Figure 4**.

3.1.1 Surface Soil

Surface soil samples were collected from the top two inches below the vegetative layer. In three locations, one surface sample was collected and analyzed for the following:

- Target Compound List (TCL) VOCs
- TCL SVOCs
- TCL pesticides
- Total polychlorinated biphenyls (PCBs)
- Target Analyte List (TAL) metals
- Total mercury
- Total cyanide
- Per- and Poly-fluoroalkl Substances (PFAS)
- 1,4-dioxane

3.1.2 Subsurface Soil / HFM Characterization

The advancement of soil borings across the Site facilitated the sampling of native material and HFM. To ensure complete coverage, borings were located in a grid pattern across the Site. The Site was divided into 50 by 50 foot grids resulting in a total of 18 sample grids each with one central soil boring.

From the borings, fill and native soil samples were collected to document Site conditions.

A Geoprobe 6620DT was used to advance the borings. Each boring location was continuously sampled in four or five-foot intervals depending on the sample volume required at the specific location. The steel coring tube was fitted with a disposable acetate liner at every interval. All non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

Soils from the acetate liners were screened in the field for visible impairment (e.g. staining), olfactory indications of impairment, evidence of non-aqueous phase liquids (NAPLs), and/or indication of detectable VOCs with a 10.6 eV PID over 10 ppm, collectively referred to as "evidence of impairment" and the results were recorded on boring logs. Soil boring logs were prepared and include soil description, PID readings, etc. The boring logs are included in **Appendix A**.

3.1.2.1 Fill Sampling

Fill samples were collected from seven of the borings based on evidence of impairment and to provide characterization across the Site. In six locations, one HFM sample was collected and analyzed for the following:

- TCL VOCs
- TCL pesticides
- Total polychlorinated biphenyls (PCBs)
- Hexavalent chromium
- Silvex
- Per- and Poly-fluoroalkl Substances (PFAS) (five out of six samples)
- 1,4-dioxane (five out of six samples)

In addition to the six fill samples collected and analyzed for the above; one additional fill sample was also analyzed for:

TCL VOCs

Additionally, five samples were collected from the HFM for waste disposal characteristics. The waste characterization analysis included:

- Toxicity Characteristic Leaching Procedure (TCLP) VOCs
- TCLP SVOCs
- PCBs
- TCLP metals
- Reactivity
- Corrosivity
- Ignitability
- nH
- Total Petroleum Hydrocarbons
- Percent Solids

3.1.2.2 Native Soil Sampling

Native Soil Samples Collected Immediately Below the Fill

Native soil was visually assessed and sampled in each of the 18 grid locations. In order to assess the impact of fill on the underlying native soil, a soil sample was collected from the

top two feet of native material in each grid location. The 18 native soil samples were collected and analyzed for:

- TCL VOCs
- TCL SVOCs
- TCL pesticides (from 5 of 18 samples only)
- Total PCBs (from 5 of 18 samples only)
- TAL metals
- Total mercury
- Total cyanide
- Hexavalent chromium (from 5 of 18 samples only)
- Silvex (from 5 of 18 samples only)
- Per- and Poly-fluoroalkl Substances (PFAS)
- 1,4-dioxane

Based on the results, the 18 native soil samples also served as the final confirmatory samples during the subsequent remedial activities.

In addition to collecting samples at the top of the native material, two additional samples were collected at one-foot intervals below the first native soil sample. These deeper samples were submitted to the laboratory but held until the uppermost native soil sample is analyzed. If any analytes exceeded the respective SCOs, the next deeper sample was analyzed for only those compounds that exceed the SCO. If the concentrations in that sample also exceeded the SCOs, the next lower sample was analyzed and the results were compared to the SCOs. The process was repeated for the third sample, if necessary. The intent of this sampling scheme was to identify the depth of remedial investigation and use the sampling results as the confirmatory sample results for the IRM.

Deep Native Soil Samples

Five samples, one sample per location, were collected from deeper native soils below the last confirmatory interval, outlined above, to a maximum depth of 15 feet below ground surface. The deep native soil characterization analysis included:

- TCL VOCs
- TCL SVOCs
- TCL pesticides
- Total PCBs
- TAL metals
- Total mercury
- Total cyanide
- Hexavalent chromium
- Silvex
- Per- and Poly-fluoroalkl Substances (PFAS)
- 1.4-dioxane

Below, in **Table 3-1**, shows the scheme in which we identified all subsurface soil samples to reference throughout this report.

Table 3-1: Sample ID Protocol

"Grid ID"-00-"depth" Fill Sample

"Grid ID"-01-"depth"	1 st Native Sample
"Grid ID"-02-"depth"	2 nd Native Sample
"Grid ID"-03-"depth"	3 rd Native Sample
"Grid ID"-04-"depth"	15-foot Native Sample

3.1.2.3 EB-1/X (Lead) Delineation

Soil samples were collected in concentric circles outward from EB-1. Each delineation circle contained four soil borings and stepped out every five feet from the point of origin or the previous circle. For the initial round of sampling, two delineation circles were used; if sample results indicated that lead concentrations exceed Unrestricted Use beyond the boundary of the this initial evaluation, then another round of delineation sampling would have been conducted. Only two delineation circles were investigated upon in this RI.

Vertical sampling from each soil boring was conducted starting at five feet below grade and extending to 12 feet below grade. Five soil samples were collected from each soil boring at one-foot intervals between five and 12 feet below grade. The samples from the first delineation circle were analyzed by the laboratory. The samples from the second delineation circle were submitted to the laboratory. Analysis samples from the second delineation circle were held pending the first round of laboratory results. If any analytes exceeded the respective SCOs, samples from the second delineation circle were analyzed.

A total of 49 samples were collected for the following:

- TCL VOCs
- TCL SVOCs
- Lead Only
- Total PCBs

The intent of this sampling scheme was to identify the depth of remedial investigation and use the sampling results as the confirmatory sample results for the IRMs.

3.1.2.4 EB-4 and EB-11/Y and Z (Petroleum) Delineation

Soils were evaluated in concentric circles outward from EB-4 and EB-11. Each delineation circle contained four soil borings and stepped out every five feet from the point of origin or the previous circle. Soils from these borings were continuously assessed for visible or olfactory indications of impairment, and/or indication of detectable petroleum impacts with a PID. Soil samples were collected from the locations at least one-foot away from any visual staining and/or PID readings below 50 ppm.

Up to eight samples were collected within each delineation area to delineate the horizontal extents of contamination and up to two samples were collected to delineate the vertical extents of contamination. Between the two delineation circles, 18 total samples were collected. Samples were analyzed for the following:

- TCL VOCs
- TCL SVOCs
- TAL metals

3.1.2.5 Off-site Soil Sampling

Ten additional soil boring locations were investigated to determine the possibility of petroleum contamination migrating toward Connecticut Street. The locations were drilled and sampled in the sidewalk at the furthest extent toward the southeast side of Connecticut Street that was permitted. Elevated PID measurements were found in five of the locations. The locations of these elevated measurements were adjacent to where elevated PID measurements were found in the original on-site investigation. Samples were collected from the soil interval where the most significant petroleum impacts were observed (staining, or highest PID measurements).

The ten samples that were collected were analyzed for the following:

- TCL VOCs
- TCL SVOCs

3.2 Groundwater Characterization

3.2.1 On-Site Groundwater Characterization

To characterize groundwater conditions at the Site, five new monitoring wells were installed. The new wells were located throughout the Site, as shown in **Figure 5**.

A rotary drill was used to advance 4-1/4-inch hollow stem augers. New overburden wells were constructed to intersect the top of the water table. Each well was completed with 10 feet of 2-inch Schedule 40 0.010-slot well screen connected to an appropriate length of schedule 40 PVC well riser to complete the well. The annulus was sand packed with quartz sand to approximately one to two feet above the screened section, and one to two feet of bentonite chips or pellets above the sand. The remaining annulus was grouted to ground surface. Each well was completed with a flush mount monitoring well cover. Groundwater well construction and sampling logs can be found in **Appendix B**.

Following installation, the monitoring wells were developed through the removal of up to ten well volumes using dedicated bailers or a peristaltic or submersible pump.

Groundwater sampling was conducted using low-flow purging and sampling techniques. Before purging the well, water levels were measured using an electric water level sounder capable of measuring to the 0.01 foot accuracy. Peristaltic or bladder pumps using manufacturer-specified tubing were used for purging and sampling groundwater. Calibration, purging and sampling procedures were performed as specified by the USEPA¹ for low-flow sampling. Decontamination was conducted after each well was sampled to reduce the likelihood of cross contamination. Calibration times, purging volumes, water levels and field measurements were recorded in a field log and will be provided in the RI Report.

The groundwater samples were analyzed for the following analyte list:

- TCL VOCs
- TCL SVOCs
- TCL pesticides
- Total PCBs
- TAL metals

¹ U.S. EPA Region 1 Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, January 19, 2010.

- Total mercury
- Total cyanide

Historic uses and sampling performed to date did not indicate the Site contained per- and poly-fluoroalkyl substances (PFOA / PFOS) and 1,4-dioxane. As a prerequisite screening of the Site, the NYSDEC requested the collection of one round of groundwater samples for the analysis of PFOA/PFOS and 1,4-dioxane on two groundwater monitoring wells.

Drilling decontamination, development, and purge fluids were allowed to infiltrate the ground surface of the Site in the vicinity of each soil sampling location.

A second round of groundwater sampling was performed approximately four weeks after the first round. The second round of groundwater samples was analyzed for the same analytes as in the first round (excluding PFOA/PFOS and 1,4-dioxane).

3.2.2 Off-site Groundwater Characterization

Three temporary groundwater monitoring wells were drilled in the sidewalk to the northwest, across Connecticut Street, to examine if petroleum impacts found in the on-site investigation migrated via groundwater. These temporary wells were drilled to approximately 12 to 16 feet below ground surface. Each well was completed with 5 feet of 1-inch Schedule 40 0.010-slot well screen connected to an appropriate length of schedule 40 PVC well riser to complete the well. Only one of these wells produced enough groundwater to sample from.

The single additional groundwater monitoring well sample was analyzed for:

- TCL VOCs
- TCL SVOCs

All temporary wells were removed after sample was taken. Well holes were packed with stone and topped with concrete to fill hole.

3.3 Soil Vapor Intrusion

Due to the VOC and SVOC detections in the groundwater, the New York State Department of Health (NYSDOH) and the NYSDEC will require a Soil Vapor Intrusion (SVI) investigation once the building is enclosed. The SVI investigation will be conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), with updates. The scope of the SVI is will consist of five sub-slab air samples and five indoor air samples spaced throughout the future building. The five locations chosen through the SVI investigation will include one sub-slab air sample and one indoor air sample in each location. One outdoor ambient air sample will also be collected. All samples will be collected concurrently.

3.4 Quality Assurance/Quality Control Program

Additionally, Quality Assurance/Quality Control (QA/QC) samples were collected, and the following describes the minimum number of samples per media type.

- Soil samples (excluding waste characteristic samples)
 - o Blind duplicate 5%
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) 5%
- Groundwater samples
 - o Trip blank 1 per shipment
 - o Blind Duplicate 5%
 - o Matrix Spike/Matrix Spike Duplicate (MS/MSD) 5%

Test America, Inc. and Alpha Analytical, both being New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratories, performed the analytical testing. The laboratory results for the samples were reported in a Category B deliverables package to facilitate validation of the data, and a third party validator reviewed the laboratory data and prepared a Data Usability Summary Report (DUSR). The validator evaluated the analytical results for the field samples and quality assurance/quality control samples and compared the findings to USEPA guidance to determine the accuracy and validity of the results.

Quality control samples were collected from the samples to characterize the contamination and document the RI activities. The RI Work Plan stated that a minimum of 5% of the soil samples would be collected for Matrix Spike/Matrix Spike Duplicates (MS/MSD). In addition, the RI Work Plan stated that a minimum of 5% of the groundwater samples would be collected for Blind Duplicate and another 5% for MS/MSD, in addition to a trip blank. QA/QC samples were not collected nor analyzed for the waste characterization sampling.

During the RI activities, 153 soil samples collected: eight QA/QC samples were taken which included four Matrix Spikes and Matrix Spike Duplicates, and four field duplicates; meeting the 5% criteria. Five groundwater samples were analyzed during the first groundwater sampling event in addition to one field duplicate and one MS/MSD; meeting the 5% criteria. Five groundwater samples were collected during the second groundwater sampling event. The 5% criteria for QA/QC for groundwater sampling was also met in the second round as well.

A third-party data consultant, Vail-Data, prepared the Data Usability and Summary Report (DUSR) as required in the RI Work Plan. Once complete, the DUSR is included as **Appendix C.** The following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate Standard Recoveries
- Matrix Spike Recoveries. Duplicate Recoveries
- Blind Field Duplicate Correlations
- Preparation/calibration Blanks
- Laboratory Control Samples (LCSs)
- Calibration/Low Level Standards
- ICP Serial Dilution
- Instrument MDLs
- Sample Result Verification

4 FINDINGS

4.1 Geology and Hydrogeology

4.1.1 Site Geology

The following geologic information is based on observations made during the 2018 Phase II ESA and the 2019 Remedial Investigation.

The Site contains HFM across the Site from directly below asphalt and subbase material to depths ranging from one to four feet bgs.

HFM is defined as material coming from anthropogenic sources re-worked to build a site to a defined grade. The HFM at the Site contains:

- Crushed Rock
- Sand
- Silt
- Clav
- Plastics
- Construction Debris
- Lumber
- Ash/Cinders
- Ceramics
- Bricks
- Metals

Underlying the HFM are native soils which are comprised of primarily moist brown silty clay.

4.1.2 Site Hydrogeology

The groundwater monitoring program consisted of five wells installed and screened at various depths during two separate sampling events. The monitoring wells consisted of the following:

- MW-1 installed in close proximity to the area of the Site where there is believed to have been USTs, or possibly still contains USTs. This was located right alongside the southeast sidewalk of Connecticut Street, in front of the D'Youville Education Center.
- MW-2 was installed in the area in which lead concentrations above Unrestricted Use were uncovered during the Phase II ESA. This well was located in the far north corner of the Site.
- MW-3 was installed directly in front of the garage doors for the Hart's Service Station which is the area believed to contain a drain pipe from the service station that may have flowed toward Connecticut Street into the existing sewer system.
- MW-4 was installed along West Avenue where is was believed there may have possibly been an UST in that area due to historical records of gasoline tanks in that area.
- MW-5 was installed near the southeast edge of the Site to get complete coverage of possible groundwater flow characteristics and uncover any contamination that may have migrated from the automobile related businesses located in close proximity.

Water levels were encountered at relatively shallow depths. Water levels throughout the Site ranged from four to eight feet bgs. Groundwater flow appeared to be flowing in a general northwest direction, toward Connecticut Street. **Figure 7** shows the groundwater contour map for the Site.

Groundwater flow influences include local drainage features, building foundations, subsurface geology, and/or other local Site features. **Tables 4-1 and 4-2** present the water level measurements at the two sampling events.

Table 4-1: April 2019 Groundwater Elevations

WELL ID	SURFACE ELEVATION (FEET)	WATER LEVEL (FEET)	GROUNDWATER ELEVATION (FEET)
MW-1	633.569	5.7	627.869
MW-2	632.698	5.3	627.398
MW-3	634.687	5.7	628.987
MW-4	635.743	6.4	629.343
MW-5	637.424	5.0	632.424

Table 4-2: May 2019 Groundwater Elevations

WELL ID	SURFACE ELEVATION (FEET)	WATER LEVEL (FEET)	GROUNDWATER ELEVATION (FEET)
MW-1	633.569	5.6	627.969
MW-2	632.698	5.4	627.298
MW-3	634.687	5.8	628.887
MW-4	635.743	7.6	628.143
MW-5	637.424	5.0	632.424

After review of NYSDEC data, it was determined that the Site is not underlain by any mapped principal or primary aquifers. Groundwater at and in the vicinity of the Site is not used for public drinking water supply. The City of Buffalo Water Board Regulations (21 NYCRR § 10085.3) states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board.

4.2 Field Observations

Initial sampling provided evidence of lead contamination near the northern corner of the Site. Labeled as the "X Delineation", this area of the Site appeared to contain deeper areas of crushed stone. Based on previous reports and photographs, a portion of grid A1 was

remediated and backfilled to 12 to 15 feet when the tanks were removed from the gas station that was previously located on that Site.

The two other delineation areas were investigated to determine extents of petroleum contamination uncovered in previous sampling. These areas were labeled as "Y and Z Delineation" areas and were located along Connecticut Street, southwest of the lead delineation area.

Grid location C1 and multiple locations within the Y and Z delineation areas did exhibit evidence of petroleum contamination. Staining, odors, and elevated PID measurements were recorded in these areas. Grid location C1 and other locations contained petroleum-like odors with PID measurements of up to 4000 ppm. Depths of these petroleum impacts extended down 6 to 10 feet below ground surface.

Soil borings were advanced throughout the Site to at least 15 feet below ground surface and within the existing buildings. Except for grid location C1 and the delineation areas, no other petroleum impacts were observed on-site. Soil boring logs can be found in **Appendix A**.

4.3 Analytical Results

The following sections summarize and discuss the analytical results generated during the RI. Fill, native soil, deep native soil, and groundwater samples, along with samples from the lead and petroleum delineation areas, were collected for laboratory analysis to determine the magnitude and extent of potential contamination occurring in various media at the Site.

For discussion purposes, this data was compared with the Standards Criteria and Guidance values (SCGs) applicable to each medium sampled, and included:

- Soil/Fill: NYSDEC's 6NYCRR Part 375 Environmental Remediation Programs: Part 375-6.8: Unrestricted, Residential, Restricted Residential, Commercial and Industrial Use Soil Cleanup Objectives; and
- Groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values, and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Consistent with NYSDEC guidelines, the ASP Category B deliverables are not presented as appendices to the RI Report. The data has been transmitted electronically to the NYSDEC in a format consistent with the Electronic Data Deliverable (EDD) Manual. The associated Data Usability Summary Reports (DUSRs) will be included in **Appendix C**.

4.3.1 Surface Soil Results

Surface soil samples were collected from three locations throughout the Site. **Table 1** and **Figure 6** shows these surface soil results.

Results indicate many SVOCs, pesticides, and metals present in all three of the sample locations. Analytics show multiple SVOCs above Residential, Restricted Residential, and Industrial Use SCOs in B3, C1, and E1. Pesticides and metals, including lead and zinc, were all also present in these surface soil samples with results above Unrestricted Use SCOs.

4.3.2 On-site Subsurface Soil/Fill Sample Results

4.3.2.1 Fill Sample Results

A total of seven fill samples were collected across the Site, taken from the seven of the 18 on-site grid locations. The analytical results are summarized in **Table 2** and **Figure 6** shows the sampling locations and results.

Sample results indicate that subsurface HFM within the BCP boundary contain concentrations of VOCs, SVOCs, pesticides, and metals above multiple SCOs. VOCs and pesticides were detected above Unrestricted Use SCOs. SVOCs/PAHs were detected above Residential, Restricted Residential, and Industrial Use SCOs. Metals were detected above Unrestricted and Restricted Residential Use SCOs. Fill samples were collected underneath the two buildings that existed onsite (A2-00-1ft and B2-00-1ft). **Figure 6** shows the location of these samples and the outline of the former buildings. Mercury, lead and zinc concentrations exceeded Unrestricted Use SCOs in these samples. **Table 4-3 (below)** summarizes the analytes that exceeded the SCOs in the HFM, including the lowest and highest exceedance concentrations.

Table 4-3: Summary of Exceedances in HFM Grid Sampling

Analyte	Samples with Detections above SCOs		Low Concentration (ppm)	High Concentration (ppm)			
	UR	RS	RR	CM	IN		
VOCs							
Ethylbenzene	1					1.9	1.9
Xylenes, Total	1					5.1	5.1
SVOCs / PAHs							
Benzo(a)anthracene			1			2.8	2.8
Benzo(a)pyrene					1	2.0	2.0
Benzo(b)fluoranthene			2			1.1	2.7
Benzo(k)fluoranthene		1				1.3	1.3
Chrysene		1				2.6	2.6
Dibenzo(a,h)anthracene			1			0.34	0.34
Indeno(1,2,3-cd)pyrene			2			0.72	1.3
Pesticides							
4,4'-DDD	1					0.016	0.016
4,4'-DDT	1					0.015	0.015
PCBs							
No P	CBs w	ere de	tected	at con	centra	tions above SCOs	
Herbicides							
No Herl	oicides	were	detect	ed at c	oncen	trations above SCO	S
Metals							
Mercury	3					0.21	0.58
Copper	1					61.6	61.6
Lead	2		1			120	545
Zinc	4					112	386
Emerging Contaminant	S						

Notes: UR = Unrestricted Use SCOs RS = Residential Use SCOs

RR = Restricted Residential Use SCOs

No Emerging Contaminants were detected at concentrations above SCOs

CM = Commercial Use SCOs IN = Industrial Use SCOs

4.3.2.2 Native Soil Sample Results

During the RI, native soil samples were collected from 18 grid locations as the final confirmatory samples. Soil samples were collected at the top of the native material, with two additional samples that were collected at one-foot intervals below the first native soil sample. A total of three of the 18 native soil sample grid locations exceeded Unrestricted Use SCOs. Two of the three sample locations collected that exceeded Unrestricted Use SCOs were due to metals such as lead and zinc. These locations were in grid locations A1 for zinc and B1 for zinc and lead. One native soil sample, C4, exceeded VOC Unrestricted Use SCOs for acetone. The analytical results are summarized in **Table 2**. **Figure 6** shows the sampling locations and results. **Table 4-4 (below)** summarizes the analytes that exceeded the SCOs in native soil, including the lowest and highest exceedance concentrations.

Table 4-4: Summary of Exceedances in Native Soil

Analyte	San	Samples with Detections above SCOs				Low Concentration (ppm)	High Concentration (ppm)
	UR	RS	RR	CM	IN		
VOCs							
Acetone	1					0.013	0.013
SVOCs/PAHs							
No	o PCBs w	ere de	etected	at cond	entra	tions above SCOs	
Pesticides							
No Pesticides were detected at concentrations above SCOs							
PCBs							
No PCBs were detected at concentrations above SCOs							
Herbicides							
No Herbicides were detected at concentrations above SCOs							
Metals							
Lead	2					191	191
Zinc	2					117	127
Emerging Contamin	ants					1	
		ninant	s were	detect	ed at o	concentrations abov	e SCOs

Notes:

UR = Unrestricted Use SCOs

RS = Residential Use SCOs

RR = Restricted Residential Use SCOs

 $\mathsf{CM} = \mathsf{Commercial} \ \mathsf{Use} \ \mathsf{SCOs}$

IN = Industrial Use SCOs

Additional Confirmatory Sampling

In addition to collecting samples at the top of the native material, two additional samples were collected at one-foot intervals below the first native soil sample. These deeper samples were submitted to the laboratory but held until the uppermost native soil sample was analyzed. If any analytes exceeded the respective SCOs, the next deeper sample was analyzed for only those compounds that exceeded the SCO. The process was repeated for

the second additional sample, if necessary. The intent of this sampling scheme was to identify the depth of remedial investigation and use the sampling results as the confirmatory sample results for the IRM.

A total of three of the 18 native soil samples from the grid locations collected exceeded Unrestricted Use SCOs. The results and locations are shown on **Figure 6**. The exceedances prompted analyzation of the next deeper confirmatory sample for the analytes showing exceedances. A total of four samples on hold were analyzed for several or a single analyte to determine the extent of impact in the native material based on the original native sample. Full native soil results can be found in **Table 2**.

In grid location A1, two additional samples at deeper depths were analyzed for zinc. A1-02 at a depth of 13 feet bgs exceeded Unrestricted Use SCOs, therefore the next sample was also analyzed. A1-02 at a depth of 14 feet bgs was analyzed for zinc and exceeded Unrestricted Use SCOs. There was evidence through previous investigations that this area was backfilled with crushed stone. Considering that zinc is a heavy metal that is not mobile in the subsurface, it is likely that residual stone backfill interfered with the native soil results at the 12, 13 and 14 feet bgs intervals.

In grid location B1, one additional sample was analyzed for lead and zinc due to the top native sample exceeding Unrestricted SCOs for those analytes. DUP-D from B1 at 1-2 feet bgs, also displayed a lead exceedance. B1-02 was analyzed at a depth of 3 feet bgs and both lead and zinc results were below Unrestricted SCOs.

In grid location C4, one additional sample was analyzed for acetone due to the top native sample exceeding Unrestricted SCOs for that analyte. C4-02 was analyzed at a depth of 4 feet bgs with decreasing acetone results above Unrestricted SCOs.

4.3.2.3 15-Foot Deep Native Soil Sample Results

Deep native soil samples were taken from a depth of 15 feet bgs in five of the 18 grid sampling borings completed within the Site bounds. The locations of the deep native samples were dispersed evenly across the Site and shown in **Figure 6**. Deep native sample results are presented in **Table 2**. In four of the five locations sampled, contaminant concentrations did not exceed the Unrestricted Use SCOs. In grid location A1 (within an area backfilled with crushed stone), zinc concentrations exceeded the Unrestricted Use SCO. Considering that zinc is a heavy metal that is not mobile in the subsurface, it is likely that residual stone backfill interfered with the native soil results at 15-feet in this location.

4.3.2.4 EB-1/X (Lead) Delineation

Initial sampling indicated elevated lead levels in the subsurface near the northern corner of the Site, as shown in **Figure 6**, which resulted in the need for delineation to determine the extents of contamination. Results indicated lead concentrations below Unrestricted Use SCOs for all but one of the sample locations. At a depth of 13 feet below ground surface, 2-X04 had lead levels of 266 mg/kg, exceeding the Unrestricted Use SCOs. Multiple VOCs were detected above Unrestricted Use SCOs in ten of the delineation locations. These VOCs included acetone, ethylbenzene, toluene, and xylenes. In one of the locations, 1-X01, at a depth of 9 feet below ground surface, multiple SVOCs were also detected. Three SVOC analytes in that location had levels exceeding Residential Use SCOs, and two of those three exceeding Restricted Residential Use SCOs. Full lead delineation results are summarized in **Table 3**.

4.3.2.5 EB-4 and EB-11/Y and Z (Petroleum) Delineation

Remedial investigation in this area focused on the determination of the extents of petroleum impacts through sampling. The area of this petroleum delineation is along Connecticut Street, directly in front of the D'Youville Education Center building, as shown in **Figure 6**. Soil borings and sampling indicated that the extent of contamination extends to approximately seven to 12 feet below ground surface. Both petroleum delineation areas showed evidence of petroleum impairment toward the northwest. With the addition of soil borings 3-Y04, 2-Y05, and 2-Z05, it appeared this contamination extended toward Connecticut Street. With PID measurements of up to 5,500 ppm in 3-Y04, it was determined that additional sampling beneath the sidewalk and across the street would need to take place. The only contamination which appeared in the analytical results was in soil boring 2-Z01 at a depth of 10 feet below ground surface and soil boring 2-Y05 at a depth of 12 feet below ground surface. Both locations appeared to show total xylenes to have concentrations slightly above Unrestricted Use SCOs, and 2-Y05 showed ethylbenzene concentrations also above Unrestricted Use SCOs. Full Petroleum delineation results can be found in **Table 4**.

4.3.2.6 Waste Characterization Results

A total of five soil samples collected within the HFM were analyzed for waste characterization parameters. **Table 5** presents waste characterization results. Based on these results, HFM located at the Site is considered non-hazardous.

4.3.3 Off-site Sampling Results

4.3.3.1 Off-site Soil

Ten additional soil boring locations were investigated to determine the possibility of petroleum contamination migrating toward Connecticut Street. The locations were drilled and sampled in the sidewalk at the furthest extent toward the southeast side of Connecticut Street that was permitted, as shown in **Figure 6**. Elevated PID measurements were found in five of the locations. PID measurements as high as 2600 ppm were recorded in soil boring locations SW-4, SW-6, and SW-7. Lower PID measurements were recorded in surrounding locations, SW-3 and SW-5, as high as 500 ppm. The locations of these elevated measurements were adjacent to where elevated PID measurements were found in the original on-site investigation. All elevated off-site PID measurements were recorded approximately five to ten feet bgs. Samples were collected from the soil interval where the most significant petroleum impacts were observed (staining, or highest PID measurements).

VOCs were detected at concentrations just above Unrestricted Use SCOs in only two of the ten off-site samples. These analytes included total xylenes, and 1,3,5-trimethlybenzene in locations SW-4 and SW-7. These contaminants do not seem to be an issue at their low levels and with the proposed Track 1 cleanup (as shown in Figure 4), all sources will be removed. No SVOCs were detected at levels exceeding Unrestricted Use SCOs. Full off-site subsurface soil results can be found in **Table 6**.

Tentatively Identified Compounds (TICs) were not detected at the boundaries of the off-site sidewalk investigation. Samples collected from SW-1, SW-2 and SW-10 contained no TICs. TICs were detected in SW-3 through SW-9 and ranged in total TIC concentration. The following were identified:

- Unknown Cyclohexane
- Pentane, 2,3-dimethyl-

- Unknown Benzene
- Benzene, 1-butenyl-, (E)-Unknown
- Cyclohexane
- Cyclohexane, 1,1,3-trimethyl-Unknown
- Hexane, 3-methyl-
- Heptane, 2,6-dimethyl-Pentane,
- 3-ethyl-2-methyl-
- Heptane
- Octane, 3-methyl-
- Aromatic
- Unknown Aromatic
- Unknown Alkane
- Unknown Alkane
- Unknown Cycloalkane
- Unknown Cyclopentane
- Unknown Naphthalene
- Unknown

The highest totals were detected in the sample collected from SW-4 (107,000 ug/kg) with the lowest total TICs were detected in SW-9 at 2.48 ug/kg.

4.3.3.2 Off-site Groundwater

Three temporary groundwater monitoring wells were drilled in the sidewalk to the northwest, across Connecticut Street, as shown in **Figure 7**, to examine if petroleum impacts found in the on-site investigation migrated via groundwater. MW-6, which was drilled to a depth of 16 feet below ground surface, was sampled and contained only SVOC (polycyclic aromatic hydrocarbons) concentrations exceeding New York State Groundwater TOGS Standards. The SVOC concentrations were likely due to the turbidity of the groundwater sample. No TICs were identified in the off-site groundwater sample.

Groundwater from this well showed no evidence of petroleum odors. The two other temporary wells, MW-7 and MW-8, were drilled to depths of 12 to 16 feet below ground surface. Neither of these two wells produced groundwater and were unable to be sampled. None of the soil borings advanced for the installation of temporary wells showed evidence of petroleum impacts. Full off-site groundwater results can be found in **Table 7**.

4.3.4 Groundwater (On-Site)

Groundwater sampling occurred in two stages. The first round of sampling occurred in April 2019 and the second occurred in May 2019. Five groundwater samples were collected in each round of sampling from the five installed monitoring wells at the Site.

4.3.4.1 First Round of Sampling – April 2019

On April 11, 2019, C&S collected groundwater samples from the five monitoring wells

located on 301 Connecticut Street. Samples were collected from these locations as described in the Remedial Investigation / Interim Remedial Work Plan. **Figure 5** shows the locations of the samples on the BCP Site. **Table 8** summarizes analytical results and compares the results to the Department of Environmental Conservation TOGS 1.1.1 standards for groundwater.

VOCs

VOCs were detected in three of the five wells including the DUP sampling which was collected from MW-4. Wells MW-1, MW-3, MW-4 and the DUP sample contained VOC levels above TOGS guidance levels. These VOCs included; 1,3,5-trimethylbenzene (mesitylene), acetone, benzene, ethylbenzene, n-propylbenzene, p/m-xylene, o-xylene, and toluene.

SVOCs

All five wells on the Site contained at least one SVOC above the TOGS groundwater guidance levels. MW-3 contained the highest number of SVOCs above TOGS groundwater guidance levels. With all five wells partially screened within the fill material zone, it was not unexpected to have minor detections of SVOCs. The anticipated remedy will remove all contaminated fill material from the Site.

Metals

Metals were detected above TOGS groundwater guidance levels in all five of the monitoring wells throughout the Site. Magnesium was detected above guidance levels in all five monitoring wells including the DUP sample. Other metals that were detected above the guidance levels included, manganese, iron, chromium, barium, and one detection of lead in MW-2.

PCBs

No PCBs were detected in any monitoring wells throughout the Site.

Pesticides

Only one well on Site had a detection of pesticides above TOGS groundwater guidance levels. MW-1 had a detection of Beta-BHC slightly above the guidance levels.

Emerging Contaminants

PFAS were sampled in two out of the five wells. Laboratory data generated from the first round of sampling was compared to the USEPA 70 parts per trillion (ppt) guidance value for total PFOA and PFOS, combined. Results were also compared against NYSDEC guidance values of 10 ppt for each PFOA and PFOS, in addition to NYSDEC guidance value of 500 ppt for all PFAS compounds, combined. PFAS compounds were detected in both monitoring wells sampled with concentrations of a total PFAS analyte ranging from 0.502 parts per trillion (ng/L) to 7.19 ng/L. The highest concentration was detected from MW-1. All PFAS results fall below the guidance values set by USEPA and NYSDEC. In both of the wells 1,4-Dioxane was not detected.

4.3.4.2 Second Round of Sampling - May 2019

On May 21, 2019, C&S collected a second round of groundwater samples from the five monitoring wells located on 301 Connecticut Street. Samples were collected from these locations as described in the Remedial Investigation / Interim Remedial Work Plan. **Figure 7** shows the locations of the samples on the BCP Site. No emerging contaminants were tested for in the second round of groundwater sampling. **Table 8** summarizes the analytical

results and compares the results to the Department of Environmental Conservation TOGS 1.1.1 standards for groundwater.

VOCs

VOCs were detected in all five wells including the DUP sampling which was collected from MW-4. All VOC levels decreased in concentration since the previous sampling event. Only Well MW-1, contained VOC levels above TOGS guidance levels. These VOCs included; 1,3,5-trimethylbenzene (mesitylene), benzene, ethylbenzene, p/m-xylene, o-xylene, and toluene.

SVOCs

SVOCs were detected in four of the five wells on the Site. All four wells, including the DUP sample contained at least one SVOC above the TOGS groundwater guidance levels. MW-1 and MW-3 contained the highest number of SVOCs above TOGS groundwater guidance levels. Well MW-4 detected no concentrations for SVOCs for any analyte sampled. With all five wells partially screened within the fill material zone, it was not unexpected to have turbidity, leading to minor detections of SVOCs. The anticipated remedy will remove all contaminated fill material from the Site.

Metals

Metals were detected above TOGS groundwater guidance levels in all five of the monitoring wells throughout the Site. Magnesium was detected above guidance levels in all five monitoring wells including the DUP sample. Other metals that were detected above the guidance levels included, manganese, iron, barium, and one detection of thallium in MW-2. Majority if metal concentrations appeared to decrease in the second round of groundwater sampling.

PCB

No PCBs were detected in any monitoring wells throughout the Site.

Pesticides

Only one well on Site had a detection of pesticides above TOGS groundwater guidance levels. MW-1 had a detection of beta-BHC slightly above the guidance levels. Beta-BHC was also the only pesticide detected in the first round of groundwater sampling. The concentration remained relatively consistent.

Emerging Contaminants

No PFAS were sampled in the second round of groundwater sampling. PFAS were previously detected below guidance values in the first round of groundwater sampling in both monitoring wells that were sampled.

4.3.4.3 Post Remediation Groundwater Sampling

Post remedial action groundwater sampling was conducted on-site in two rounds. Samples were collected from three groundwater monitoring wells located in the northeast corner of the site, within the cells which were found to have the greatest contamination during the RI. The first round of groundwater sampling occurred on February 12, 2020 and the second round occurred on March 9, 2020. Samples were analyzed for VOCs + Tentatively Identified Compounds (TICs), SVOCs + TICs, and Total Lead. Complete results can be found in **Table 10.**

During the first round of sampling, multiple SVOCs were detected in all three of the wells above TOGS standards. These exceedances were not detected in the second round of post

remediation groundwater sampling. One VOC compound, methyl tert butyl ether, was found in well MW-2R in both rounds of sampling. No other VOC exceedances were detected in either round of sampling. No lead concentrations were detected above TOGS standards in either rounds of sampling.

Because the HFM material has been removed from the Site, and the City of Buffalo Water Board Regulations states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board, the potential exposure to any possible remaining groundwater contamination is unlikely.

5 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

A QHHEA was completed for the Site and is presented in this section. The QHHEA was conducted in accordance with New York Environmental Conservation Law (ECL) §27-1415(2)(b) and Section 3.3(c)(4) and Appendix 3B of DER-10. As presented in DER-10, the purpose of the QHHEA is to evaluate and document the potential exposure routes and pathways, and to identify and characterize the potentially exposed populations currently and under reasonably anticipated future use of the Site. Environmental media assessed in the RI for potential impacts from historical Site operations and practices and potential human exposure include soil, groundwater, and soil vapor.

The Site is situated on a partial city block which contains an approximately 75 spot parking lot, Hart's Service Station, and the D'Youville Education Center building. Access to the Site is made possible through the parking area entrance off West Avenue or the parking area along Connecticut Street for Hart's Service Station and the D'Youville Education Center.

The anticipated post remediation use of the Site is a multistory, mixed-use Health Professions Hub for D'Youville College students that will include a Community Clinic, a Workforce Development Center, a Virtual Simulation Training Center, and a neighborhood pharmacy.

5.1 Human Health Constituents of Potential Concern

Constituents that were detected in each medium are designated as constituents of potential concern (COPCs) for evaluation of human health exposures if they exceed screening criteria that correspond with current and probable future land use. Given the reasonably anticipated future use of the Site for mixed-use, as well as current and likely future zoning, the soil and groundwater data have been evaluated against the following standards/guidance values:

- Unrestricted Use SCOs
- NYS TOGS

5.1.1 Sub-surface Soil

Historic Fill Material

A total of seven subsurface soil samples were taken from within the HFM during this RI. Samples were collected from on-site soil borings which were evenly dispersed throughout the Site. **Tables 2** provide analytical results compared to SCOs. **Figure 6** shows the sampling location and results. **Table 4-3** (located above in **Section 4 – Findings**) summarizes the analytes that exceeded the SCOs in on-site HFM, including the lowest and highest exceedance concentrations. The following table identifies the contaminants detected in HFM above standards.

VOC PCBs SVOC Pesticides Herbicides Metals **Emerging Contaminants** Ethylbenzene 4.4'-DDD Benzo(a)anthracene None None Mercury None Xylenes, Total 4,4'-DDT Copper Benzo(a)pyrene Benzo(b)fluoranthene Lead Benzo(k)fluoranthene Zinc Chrysene

Table 5-1: Detected Contaminants in HFM

Dibenzo(a,h)anthracene			
Indeno(1,2,3-cd)pyrene			

HFM is present at the Site at depths ranging from approximately one to four feet bgs in most areas. Contaminated HFM extends horizontally throughout the entire Site.

The variation in analyte concentrations across the Site indicates that the source of contamination in fill soil samples is the variable HFM and no discrete source is located onsite or off-site. Contaminant sources are likely related to the demolition of buildings and homes that were present within the Site boundary prior to D'Youville College purchasing the Site.

Native Soil

Contaminant concentrations in the upper extent of native soil were largely below the Unrestricted Use SCOs. However, VOCs and metals were present at concentrations slightly above the Unrestricted Use SCOs in a limited number of samples collected from the shallowest native soil, due to the impacts from the overlying HFM. In areas with slightly elevated VOC and metals concentrations in the native material, the underlying samples were collected until analyte concentrations were below the Unrestricted Use SCOs. The sampling demonstrated that the impacts from the overlying fill were limited to the top one foot or less of native soil in most areas. Only A1 revealed deeper impacts of zinc down to 15 feet bgs. Considering that zinc is a heavy metal that is not mobile in the subsurface, it is likely that residual stone backfill in that area interfered with the native soil results at the 12, 13 and 14 feet bgs intervals, as well as the deep native sample at 15 feet bgs.

Lead Delineation Area

Lead concentrations were found to be below Unrestricted Use SCOs in all but one location within the lead delineation area. This was at a depth of 13 feet bgs at location 2-X04. Multiple VOCs had concentrations above Unrestricted Use SCOs throughout this area and extended from nine to fifteen feet bgs. One location, 1-X01, at nine feet bgs contained multiple SVOC exceedances.

The previously known lead contamination can be linked to the fueling station that once occupied this property. This location appeared to have been backfilled with crushed stone which could have contributed to the migration of the lead contamination extending down to thirteen feet bgs. The VOC and SVOC exceedances can also be directly connected to the fueling station and different waste oils that may have been disposed of in an improper manner on the Site in the past. There is evidence of USTs occupying the area prior to D'Youville College purchasing the property which had the possibility of leaking and causing much of this contamination.

Petroleum Delineation Area

Samples that were taken within this area displayed results consistent with petroleum contamination stemming from a fueling station and USTs being located on Site. VOCs, including ethylbenzene and total xylenes, were found in two locations at depths ranging from seven to twelve feet bgs. These compounds are typical products of petroleum contamination within the subsurface. The possibility of there being USTs beneath the ground surface presently of in the past is high and would be the source of this contamination.

Due to much of the Site being underlain by dense silty clay, it is not believed that the

petroleum contamination migrated too far horizontally throughout the Site.

5.1.2 Groundwater

The analytical results for the groundwater samples are summarized in **Table 8** and the locations and results of sampling at the monitoring wells are depicted on **Figure 7**. Two rounds of groundwater sampling were conducted for this remedial investigation.

Groundwater levels in all the wells were fairly consistent throughout the Site. Measurement to depth of water in each well were roughly from five to seven feet bgs in every well. The groundwater levels in all of the wells were at depths within the HFM zone. The following should be understood related to the VOC, SVOC, PCB, pesticide, metal, and emerging contaminant concentrations in groundwater:

- Exposure and migration of groundwater is significantly limited do to the extent and volume of the silty clay zone embedded within several feet of dense clay.
- The VOCs that were detected exceeding NYS TOGS standards in the first round of sampling in wells MW-1, MW-3, MW-4, and including the DUP sampling which was collected from MW-4, all fell to undetected outside of MW-1 in the second round of sampling. Source of these marginal exceedances can be contributed to the fill material within the subsurface.
- In the first round of groundwater sampling, SVOCs were detected in all five wells. The second round exhibited the same types of results, outside of MW-4, which contained no exceedances in the second round of sampling. MW-1 and MW-3 contained the highest number of SVOCs above TOGS groundwater guidance levels. With all five wells partially screened within the fill material zone, it was not unexpected to have turbidity, leading to minor detections of SVOCs. The anticipated remedy will remove all contaminated fill material from the Site.
- Metals were detected above TOGS groundwater guidance levels in all five of the monitoring wells in both rounds of sampling throughout the Site. Metals that were detected above the guidance levels included; lead, magnesium, manganese, iron, barium, and one detection of thallium in MW-2. Groundwater in Western New York is commonly referred to as "hard water" because it tends to have high levels of iron, sodium, magnesium, etc. The source of these metals can be contributed to the HFM in the subsurface of the Site. Metal exceedances would be expected to greatly decrease after remediation of the Site is complete.
- No PCBs were detected in any monitoring wells in either round of sampling throughout the Site.
- One monitoring well, MW-1, detected the pesticide Beta-BHC in both rounds of sampling. The source of this could be the contaminated soil and HFM beneath the Site.
- Two wells, MW-1 and MW-5 were sampled for emerging contaminants in the
 first round of groundwater sampling. Individual PFOA/PFOS analytes ranged
 in values from 0.219 parts per trillion (ppt) to 7.19 ppt. No analytes were
 found to exceed the USEPA 70 ppt guidance value for total PFOA/PFAS or
 NYSDEC guidance values for PFOA or PFAS individually at 10 ppt. 1,4-

Dioxane was undetected. PFA detections in subsurface soils are primarily within the fill material on-site and are below guidance values

 All potable water used in the City of Buffalo is provided by a publically-owned treatment facility. Groundwater at and in the vicinity of the Site is not used for public drinking water supply. The City of Buffalo Water Board Regulations states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board. Therefore, no other regulatory easement or institutional controls are needed to prohibit the potable use of groundwater at the Site.

The probable cause of the various exceedances of VOCs, SVOCs, and metals is the HFM and native soil contamination on-site. These exceedances have occurred in wells screened within the HFM. Additionally, the higher VOC and SVOC exceedances in the first round of sampling could have been attributed to high turbidity levels, as VOC and SVOC analytical results all decreased in the second round. The remaining minimal metal exceedances are considered background for this region. It is unlikely that these marginal detections represent a wider area of contamination. The planned excavation on-site will remove all HFM and contaminated native soils within the property boundaries.

5.1.3 Soil Vapor

Due to the VOC and SVOC detections in the groundwater, the New York State Department of Health (NYSDOH) and the NYSDEC will require a Soil Vapor Intrusion (SVI) investigation once the building is enclosed. The SVI investigation will be conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), with updates. The scope of the SVI is will consist of five sub-slab air samples and five indoor air samples spaced throughout the future building. The five locations chosen through the SVI investigation will include one sub-slab air sample and one indoor air sample in each location. One outdoor ambient air sample will also be collected. All samples will be collected concurrently.

5.2 Human Health COPC Migration Pathways

The probable fate and transport of contaminants detected on the Site is a function of the properties of the individual contaminants and available pathways for the contaminants to migrate. The Site is currently used as a parking lot and contains a D'Youville Education building and a vacant automobile service center. The Site is the location of the planned construction of multistory, mixed-use Health Professions Hub for D'Youville College students that will include a Community Clinic, a Workforce Development Center, a Virtual Simulation Training Center, and a neighborhood pharmacy. The degree to which, as well as the route by which, contaminants migrate is dependent on the physical characteristics of the Site and the type and distribution of contaminants. The following sections discuss the probable fate and transport of contaminants in the different types of media at the Site.

5.2.1 Subsurface Soil

Contaminants of concern associated with the subsurface soil/HFM include VOCs, SVOCs, and metals, which were present due to the nature of the urban environment. Contaminants in the subsurface soil can move deeper into the subsurface depending on whether or not they sorb to particles or dissolve in water. Natural attenuation, due to processes such as biodegradation or hydrolysis can break down a parent chemical into other forms.

The SVOCs/PAHs detected are characterized by low water solubilities and, therefore, have a tendency to adsorb onto soil particles. Because of their low vapor pressures, compounds

with five or more aromatic rings, which include a majority of the detected PAHs, will exist mainly adsorbed to airborne particulate matter. Those with four or fewer rings, such as benzo(a)anthracene, will occur both in the vapor phase and adsorbed to particles. The detected compounds have relatively low vapor pressures and are expected to remain in a solid or liquid state and undergo degradation via naturally occurring microbes. Due to the low solubility, these contaminants are not expected to impact groundwater quality or migrate substantially further into the subsurface.

Heavy metals, such as lead are non-biodegradable pollutants that are generally transported through anthropogenic activities. In contaminated soils, they tend to persist for many years in the surface layers of soil. In aquatic systems, heavy metals may become blocked as sinks in bottom sediments, where they may remain for many years. Metals can be remobilized in water if the pH falls, increasing heavy metals as solubility increases. Due to the low solubility, these contaminants are not expected to impact groundwater quality or migrate substantially into the subsurface. While lead was present in the groundwater, it was found within one well which was screened within the HFM. Groundwater analysis also detected naturally occurring metals such as iron, magnesium, and manganese. The metals detected at concentrations above the groundwater standards and guidance values appear to be representative of local groundwater quality. Metals do not readily break down and will persist in the environment.

5.2.2 Groundwater

Site groundwater contains concentrations of organic and inorganic constituents above NYS TOGS

. Only two monitoring wells contain petroleum-related VOCs associated with pervious operations at the Site, it is likely that there is not a persistent plume on the Site. In addition, no VOCs were identified in the off-site groundwater sample. If present, volatile groundwater COPCs will migrate downgradient with groundwater flow, while hydrophobic COPC will adhere to organic ligands and fine particles within the saturated soil matrix. The general direction of shallow groundwater flow is to the north, with components potentially flowing to the northwest. The groundwater does not discharge a waterway or other waterway sensitive downgradient receptors where direct human contact could occur.

Transport of Site-related VOCs in groundwater can be affected by various processes that result in reduced concentrations, including volatilization, diffusion, sorption, and degradation. Inorganic constituents in groundwater are potentially subject to biologically and physically induced chemical reactions (e.g., oxidation/reduction), which can markedly affect their mobility.

5.2.3 Soil Vapor

Volatile compounds in soil and groundwater have the potential to migrate into the interstitial air spaces within soil. Where this occurs below future buildings or structures, VOCs originating from soil and groundwater could enter indoor air of an occupiable space and subsequently be inhaled. The potential for vapor intrusion to future buildings is governed by several factors, including target building location, COPC concentration, pressure differentials, building properties, presence and width of cracks in a building's foundation, and vadose zone soil temperature. Attenuation processes described above for groundwater can also mitigate soil vapor concentrations and potential indoor air concentrations when soil vapors discharge to a building.

Depending on the location of the future buildings, the potential presence of VOCs in Site groundwater and detection of odors and elevated PID readings in soil suggests the potential

that COPC VOCs could migrate as vapors in soil and into the indoor air of a future building. Because mixed use structures will be constructed on the Site property under the current redevelopment plan, the potential for soil vapor intrusion in the future building will be further evaluated prior to occupancy.

The potential for off-site migration of soil vapor to adjacent residences to the north of the Site was considered; however, predicting the extent of soil vapor contamination from soil or groundwater contamination, as well as the potential for human exposure from soil vapor intrusion into buildings, is complicated by factors that can affect soil vapor migration and intrusion. Soil vapor intrusion will be further evaluated prior to on-site occupancy.

5.3 Potentially Exposed Receptors and Exposure Pathways

This section identifies the potential exposure pathways through which there may be exposure to Site-related human health COPCs. An exposure pathway analysis describes the transport of a COPC from the affected medium to the exposed receptor. An exposure pathway links the potential sources, exposure media, and receptor populations to identify potential pathways of human exposure. As defined in DER-10 (Appendix 3B), an exposure pathway has five elements:

- A source and mechanism of COPC release to the environment
- An environmental transport medium (e.g., soil) for the COPC and/or mechanism of transfer from one medium to another
- A point of contact with the impacted environmental medium (exposure point)
- An exposure route at the contact point (i.e., ingestion, inhalation, or dermal contact)
- A characterization of the receptor populations who may be exposed.

The exposure pathways considered for evaluation in this QHHEA include direct contact with surface and/or subsurface soils via ingestion, dermal contact, and inhalation of ambient vapors and fugitive dust. Direct exposure (dermal contact and incidental ingestion) to overburden groundwater is also a potentially complete exposure pathway. Potential indirect exposure via inhalation of groundwater-derived vapors in indoor air is also considered a complete pathway.

Public water is available in the Site area; therefore, groundwater is not considered a current or future source of potable water. All potable water used in the City of Buffalo is provided by a publically-owned treatment facility. Groundwater at and in the vicinity of the Site is not used for public drinking water supply. The City of Buffalo Water Board Regulations states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board..

The potential exposure pathways associated with current and reasonably anticipated future receptors are discussed in the following section. As a conservative measure, these pathways and receptors may also apply to some of the properties adjoining the Site.

5.3.1 Receptors and Exposure Pathways

The exposure pathways and receptors considered in the QHHEA are as follows:

• <u>Current/future utility worker:</u> Subsurface utilities at the Site may require periodic inspection, servicing, and maintenance both currently and in the foreseeable future. The utility worker is presumed to be of adult age (>18 years old) and may be exposed to Site-related COPCs in surface and subsurface soil through incidental

ingestion, dermal contact, and soil dust inhalation. Utility workers could also inhale groundwater-derived soil vapors while engaging in subsurface work activities.

- Future construction worker: A construction worker is selected as a receptor for this QHHEA due to the potential for excavation and/or construction to occur across the Site in the future. The construction worker is an adult (>18 years old), and may be exposed to Site-related surface and subsurface soil COPCs via incidental ingestion, dermal contact, and incidental inhalation of groundwater-derived ambient vapors and fugitive dust. These workers may also be directly exposed to groundwater COPCs via dermal contact and incidental ingestion with affected groundwater.
- <u>Future students and medical patients:</u> Under a future use scenario, child and adult exposure routes include incidental ingestion of and dermal contact with surface soil, inhalation of fugitive dust, and inhalation of groundwater-derived VOC vapors in the interior space of residential buildings. As discussed previously, the Site and surrounding area is supplied potable water from an off-Site water source, and direct exposure to groundwater is unlikely. The potential for soil vapor intrusion in the on-site building will be further evaluated prior to occupancy.

5.3.2 Surface / Subsurface Soil

Under the current use, persons living and working in the vicinity of the project Site and/or persons trespassing on the Site are relatively unlikely to be exposed to the contaminants of concern because the majority Site is paved, outside of some landscaped areas along Connecticut Avenue and West Avenue.

The presence of elevated concentrations of VOCs, SVOCs, and metals in surface soil and subsurface fill is not interpreted to represent a human or environmental exposure risk because no complete exposure pathways were identified under the current use scenario for the Site. This is a function of the subsurface disposition of the contamination, which effectively minimizes the potential for the incidental ingestion of, or dermal contact with the contaminated media. These factors also reduce the potential for the emission of vapors and particulates that could pose an exposure risk via inhalation. This applies to persons living, working and traveling through the area surrounding the Site, as well as persons visiting, working or trespassing on the Site.

During excavation of the contaminated soil/HFM in connection with Site redevelopment activities, environmental receptors, construction workers, Site visitors and persons living, working and traveling through the project Site could be exposed to the VOCs, SVOCs, and metals in the HFM during excavation of the contaminated soil. Potential exposure routes for these receptors include inhalation of contaminated dust and incidental ingestion of, and/or dermal contact with the contaminated surface soil. However, the use of appropriate personal protective equipment, dust suppression techniques and personal/air monitoring, and the development and implementation of a Health and Safety Plan (provided in the RI/IRM Work Plan) would minimize the risk of exposure during this stage of the project. In addition to the Health and Safety Plan, a Community Air Monitoring Plan (CAMP) was implemented during remedial activities for the protection of the surrounding community.

No complete exposure pathways to the chemical contaminants in the surface or subsurface soil have been identified in connection with the post-redevelopment period, assuming that the contaminated soil and HFMs have been removed.

5.3.3 Groundwater

Groundwater at and in the vicinity of the Site is not used for public drinking water supply.

The City of Buffalo Water Board Regulations (21 NYCRR § 10085.3) states that every dwelling, house, or other building requiring the use of water must be supplied from the water mains of the water board. Therefore, no human exposure via ingestion of contaminated groundwater is likely.

5.3.4 Soil Vapor

As a result of the post-remediation groundwater sampling, identified one VOC compound, methyl tert butyl ether, and multiple SVOCs in the Site groundwater at a location adjacent to the proposed buildings. As discussed in **Section 3.3** above, the potential for soil vapor intrusion in the on-site building will be further evaluated prior to occupancy.

The potential for off-site migration of soil vapor to adjacent residences to the north of the Site was considered

A summary of the environmental media, exposure pathways, and potential human receptors relevant to the QHHEA are presented in **Table 5-2** below.

Table 5-2: Human Exposure Pathway Analysis

Environmental Media & Exposure Route	Human Exposure Assessment
Direct contact with surface soils(and incidental ingestion)	People are not coming into contact because contaminated surface soils are covered with pavement.
Direct contact with subsurface soils(and incidental ingestion)	People can come into contact if they complete ground- intrusive work at the site.
Ingestion of groundwater	Contaminated groundwater is not being used for drinking water, as the area is served by the public water supply.
Direct contact with groundwater	People can come into contact if they complete ground- intrusive work at the site.
Inhalation of air(exposures related to soil vapor intrusion)	 A ventilation system has been installed on the on-site building to prevent the indoor air quality from being affected by the contamination. A soil vapor intrusion evaluation will be completed.

5.4 QHHEA Summary

Under current conditions, potential human and are minimal. Almost all of the Site is currently covered in asphalt paving or structures, preventing disturbance of contaminated soils below the pavement and concrete foundations. Exposure risks to persons working on the Site will increase during remedial work on-site. Exposure via inhalation of airborne particles cause the largest threat to workers on the Site and pedestrians in the surrounding area. The potential for soil vapor intrusion in the on-site building will be further evaluated prior to occupancy.

6 FISH/WILDLIFE RESOURCES EXPOSURE ASSESSMENT

The Site is used as a paved parking area with currently vacant structures in an urban area which limited wildlife exposure.

The Site and surrounding area within one-quarter mile of the Site consists of urban land that is not proximate to a surface water body, wetland or other ecologically significant area. A review of information concerning endangered and threatened species in Erie County, available via the NYSDEC Environmental Resource Mapper indicated that no threatened or endangered species were identified around the Site according to the State's data bases.

The Site is not located in or substantially contiguous to a Critical Environmental Area designated pursuant to Article 8 or the ECL and 6 NYCRR 617, nor are any state or federally designated wetlands located on or adjacent to the project Site.

Based upon the information summarized above, there are no ecological resources present on or in the vicinity of the Site and, consequently, no fish and wildlife resource impacts have been identified.

There was evidence of impacted groundwater, however groundwater is not used for drinking water and therefore there is no exposure risk through ingestion. In addition, the depth of the groundwater (greater than 4 feet below grade) reasonably precludes human contact.

7 ALTERNATIVES ANALYSIS

7.1 Objectives

The objectives of this portion of the document, the Alternatives Analysis Report (AAR), are to evaluate remedial alternatives to address the contamination presented above and select remedial actions to be implemented. As defined in NYSDEC DER-10 (Section 4.0), remedial alternatives will be evaluated based on the following criteria:

- a. <u>Overall Protection of Public Health and the Environment:</u> This criterion evaluates exposure and residual risks to human health and the environment during or subsequent to implementation of the alternative.
- b. <u>Compliance with SCGs</u>: This criterion evaluates whether the remedial alternative will ultimately result in compliance with SCGs, to the extent practicable.
- c. <u>Long-Term Effectiveness and Permanence</u>: This criterion evaluates if the remedy is effective in the long-term after implementation (e.g., potential rebound). In the event that residual impacts will remain as part of the alternative, then the risks and adequacy/reliability of the controls are also evaluated.
- d. <u>Reduction of Toxicity, Mobility, or Volume with Treatment:</u> This criterion evaluates the reduction of contaminant toxicity, mobility or volume as a result of the remedial alternative. In addition, the reversibility of the contaminant destruction or treatment is evaluated.
- e. <u>Short-Term Effectives:</u> This criterion evaluates if the remedial alternative protects the community, workers and the environment during implementation.
- f. <u>Implementability:</u> This criterion evaluates the remedial alternative based on its suitability, implementability at the specific site, and availability of services and materials that will be required.
- g. <u>Community Acceptance:</u> This criterion takes into account concerns of the community regarding the proposed remedy. Any public comments and overall public perception are addressed as part of the criterion.
- h. <u>Land Use:</u> This criterion evaluates the proposed remedial approach against the current, intended, and reasonably anticipated future use of the land and its surroundings.

7.2 Applicable Standards, Criteria, Guidance

The remedial alternatives were developed in consideration of the following Standards, Criteria, and Guidance (SCG):

7.2.1 Soil

• New York Codes, Rules, and regulations, Title 6 (6 NYCRR), Chapter IV, Subpart 375-6: Remedial Program Soil Cleanup Objectives, and DEC CP-51 Soil Cleanup Guidance, issued October 21, 2010.

7.2.2 Groundwater

- NYSDEC Technical and Operational Guidance Series (TOGS), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- 6 NYCRR Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.

7.2.3 Soil Vapor

- NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, with updates.
- NYSDOH Trichloroethene (TCE) in Indoor Air and Outdoor Air, August 2015 Fact Sheet.

7.2.4 Waste Characterization Analysis

- NYSDEC 6 NYCRR Part 371, *Identification and Listing of Hazardous Wastes*.
- 7.2.5 Alternatives Analysis Guidelines:
 - NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation, May 2010.
 - NYSDEC DER-31, Green Remediation, January 20, 2011

7.3 Remedial Action Objectives

Remedial Action Objectives (RAOs) are medium-specific objectives for the protection of public health and the environment and are developed based on contaminant-specific standards, criteria, and guidance (SCGs) established by NYSDEC and/or New York State Department of Health (NYSDOH).

Soil RAOs

The RAOs for soil used in this AAR are:

- RAOs for Public Health Protection
 - Prevent ingestion/direct contact with contaminated soil;
 - Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil;
 - Meet the NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives;
 and
 - o Reduce the toxicity, mobility, and volume of contaminants at the Site.
 - RAOs for Environmental Protection
 - Prevent migration of contaminants that would result in groundwater or surface water contamination; and
 - Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

Groundwater RAOs

The RAOs for groundwater used in this AAR are:

- RAOs for Public Health Protection
 - Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards; and
 - o Prevent contact with, or inhalation of, volatiles from contaminated groundwater.
- RAOs for Environmental Protection

- Restore groundwater aquifer to pre-disposal / pre-release conditions, to the extent practicable;
- o Prevent the discharge of contaminants to surface water; and
- o Remove the source of ground or surface water contamination.

Soil Vapor RAOs

- RAOs for Public Health Protection
 - Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a Site.
 - Prevent contact with, or inhalation of, volatiles due to soil vapor intrusion.

7.4 Development of Alternatives

This section identifies potential remedial alternatives being considered to address the Site. Per DER-10 4.2(a)(i), each alternative considered must be protective of human health and the environment and conform to officially promulgated SCGs. These two criteria are considered threshold criteria. The remedial alternatives evaluated are summarized below:

7.4.1 No Further Action

This remediation was completed under an IRM. All fill at the Site and any contaminated layers of native soils was excavated and disposed of at appropriately permitted off-site waste disposal facilities. The volume of removed fill/contaminated soil is 16,423 tons. Cut and fill depths associated with the planned Track 1 cleanup are shown in **Figure 8**. The final excavation depths are presented in **Figure 9**.

7.5 Detailed Evaluation of Alternatives

The following sections include an evaluation of the alternatives presented in the previous section.

7.5.1 No Further Action

Description

All of the fill and all layers of contaminated native soil was excavated and disposed of off-site in accordance with applicable regulations. The need for the removal of the entire volume of fill and varying depths of native soils on-site is based on the RI results, which indicate that the HFM and some upper layers of native soils contain contaminants at concentrations above the Unrestricted Use SCOs.

Assessment

Overall Protection of Human Health and the Environment

This alternative would be protective of human health and the environment. All fill with contaminant concentrations above RAOs on-site was removed and disposed of off-site.

Compliance with Standards, Criteria and Guidance (SCGs)

The alternative complies with the SCGs, as all on-site fill with contaminant concentrations above the SCOs was removed and disposed of off-site.

Short-term Impacts and Effectiveness

This alternative increases the short-term risks for the community and the workers implementing the alternative (i.e., through the disturbance of impacted fill), because the Site has undergone complete removal of contaminated material. However, these risks were minimized through the implementation of appropriate fill/soil handling procedures, air monitoring, and dust suppression techniques. Furthermore, this alternative will be effective in the long-term. A Community Air Monitoring Plan (CAMP) was implemented during remedial activities for the protection of offsite receptors.

Long-term Effectiveness and Permanence

The no further action will be a permanent remedy to address the contaminant concentrations in the fill and petroleum/lead contamination in the native soil throughout the Site. It will have a positive impact on groundwater concentrations for VOCs, SVOCs, and metals, especially in the long-term due to complete source removal.

Reduction of Toxicity, Mobility and Volume

This alternative resulted in the reduction of the toxicity, mobility, and volume of contaminants in the fill.

Implementability

This alternative was implementable using existing construction methods and equipment. The expected duration was less than one construction season. This alternative resulted in a Site suitable for redevelopment for any use.

Community Acceptance

Based on the findings of the studies performed to date, no further action was acceptable to the community.

Land Use

This alternative will allow for unrestricted use of the parcel as a Medical HUB for D'Youville College, which conforms to the City of Buffalo's development plans for the area. This alternative leaves open the possibility for different uses of the Site in the future without the need for further remediation. Therefore, this alternative will allow for the highest and best use of the land.

As a result of the post-remediation groundwater sampling, identified one VOC compound, methyl tert butyl ether, and multiple SVOCs in the Site groundwater at a location adjacent to the proposed buildings. As discussed in **Section 3.3** above, the potential for soil vapor intrusion in the on-site building will be further evaluated prior to occupancy. Based on the results of the SVI, further mitigation of indoor air impacts in the on-site building may be required.

7.6 Recommended Remedial Alternative

Based on the alternative analysis evaluation and the IRM described in **Section 7** below, the recommended remedy for the Site is no further action. The IRM is fully protective of public health and the environment. This remedy is protective of human health and the environment, and was implemented in one construction season The IRM included the following:

- The excavation and off-site disposal of all fill and all layers of contaminated native soils. **Figure 8** depicts a Track 1 Cleanup Plan with the required excavation depths based on analytical results in each grid on the property;
- The placement of backfill consisting of clean fill and/or building materials (stone, concrete); and
- No environmental easements or continuing monitoring programs such as an SMP would be required.

8 INTERIM REMEDIAL MEASURES

Interim Remedial Measures were implemented to remove contaminated fill/soil material across the Site. An IRM excavation of all material exceeding applicable SCOs was implemented to prevent exposure to contaminated fill and soil material. As part of the IRMs, the following were identified as steps to remediate the soil at the Site:

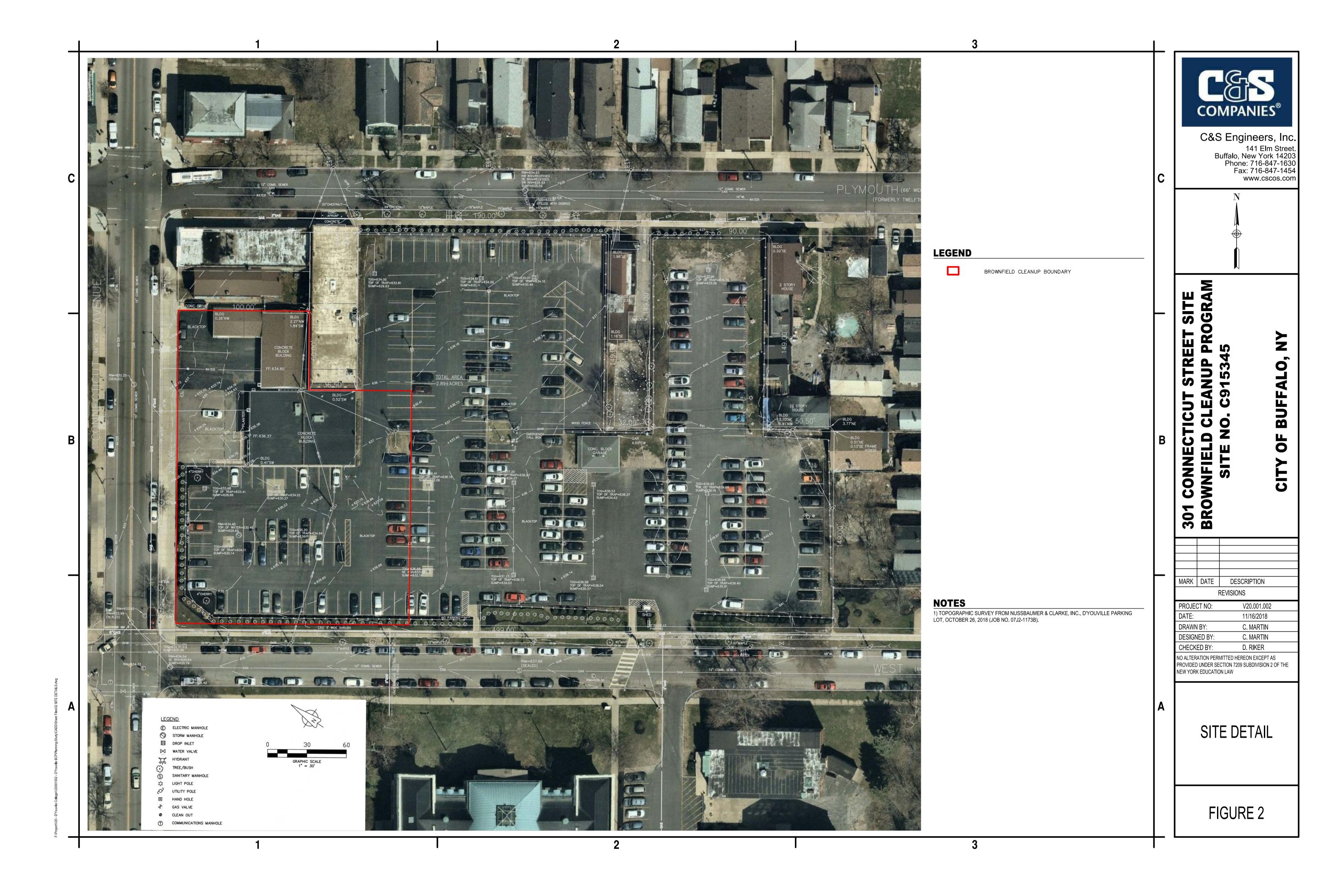
• Excavation and disposal of historic fill material and impacted native soil exceeding Unrestricted Use SCOs from across the entire Site.

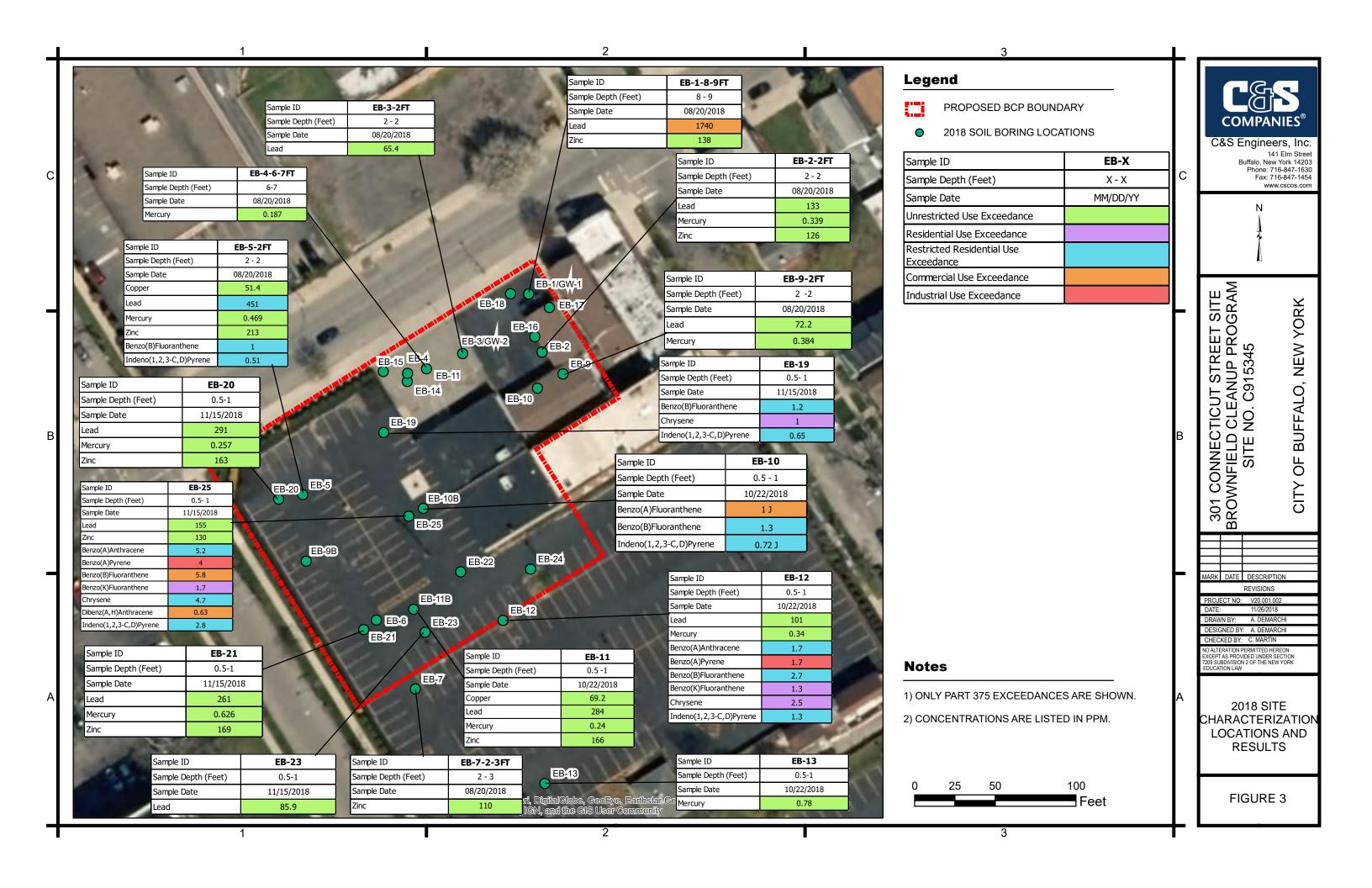
Soil excavation began on December 12, 2019. Excavation depths were determined from native soil sampling completed during the Remedial Investigation. Soil sampling followed a grid system on the Site. The Site was divided into eighteen, 50 by 50 foot grids, with a boring located in the middle of each grid. Native soil in the 18 on-site grid locations was visually assessed and sampled. To assess the impact of fill on the underlying native soil, a soil sample was collected from the top one foot of native material in each location. Two additional native soil samples were collected at one foot intervals below this first sample and held pending the results of the previous sample. The samples held by the laboratory immediately underneath those samples with contraventions of SCOs were analyzed for those specific analytes exceeding the SCOs. This process was repeated until the concentrations met the necessary SCOs for the Site. This sampling approach served as confirmatory soil sampling to determine final excavation depth and show compliance with Unrestricted Use Soil Cleanup Objectives. **Table 9** provides confirmatory sample results from the bottom of each grid.

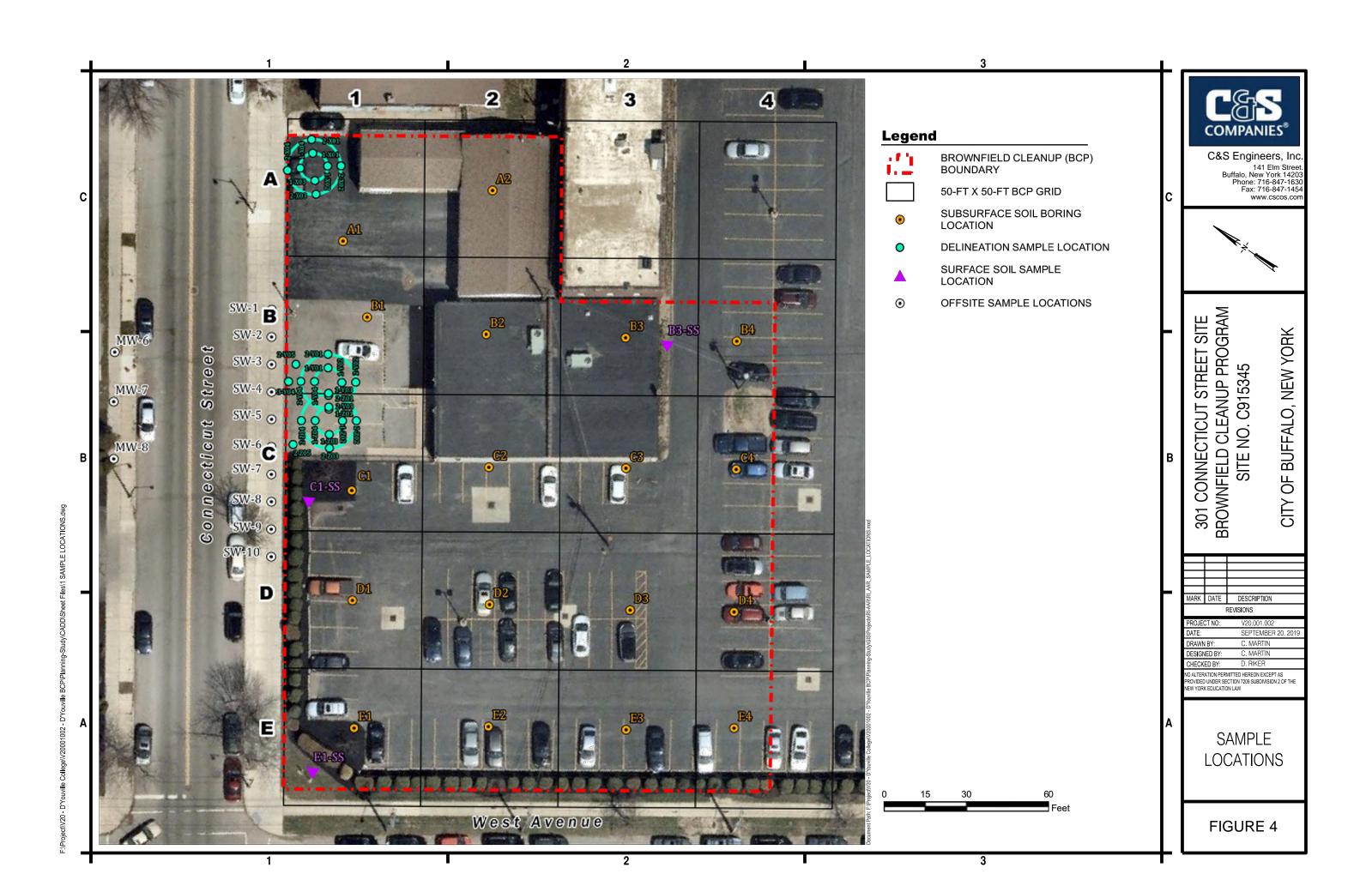
In addition to analytical results, in field observation served as the final approval method to ensure all impacted fill/soil media was removed. Excavation efforts were monitored by C&S to ensure the predetermined excavation depths visually corresponded to clean material across each grid. **Figure 9** presents the final excavation elevations from each grid.

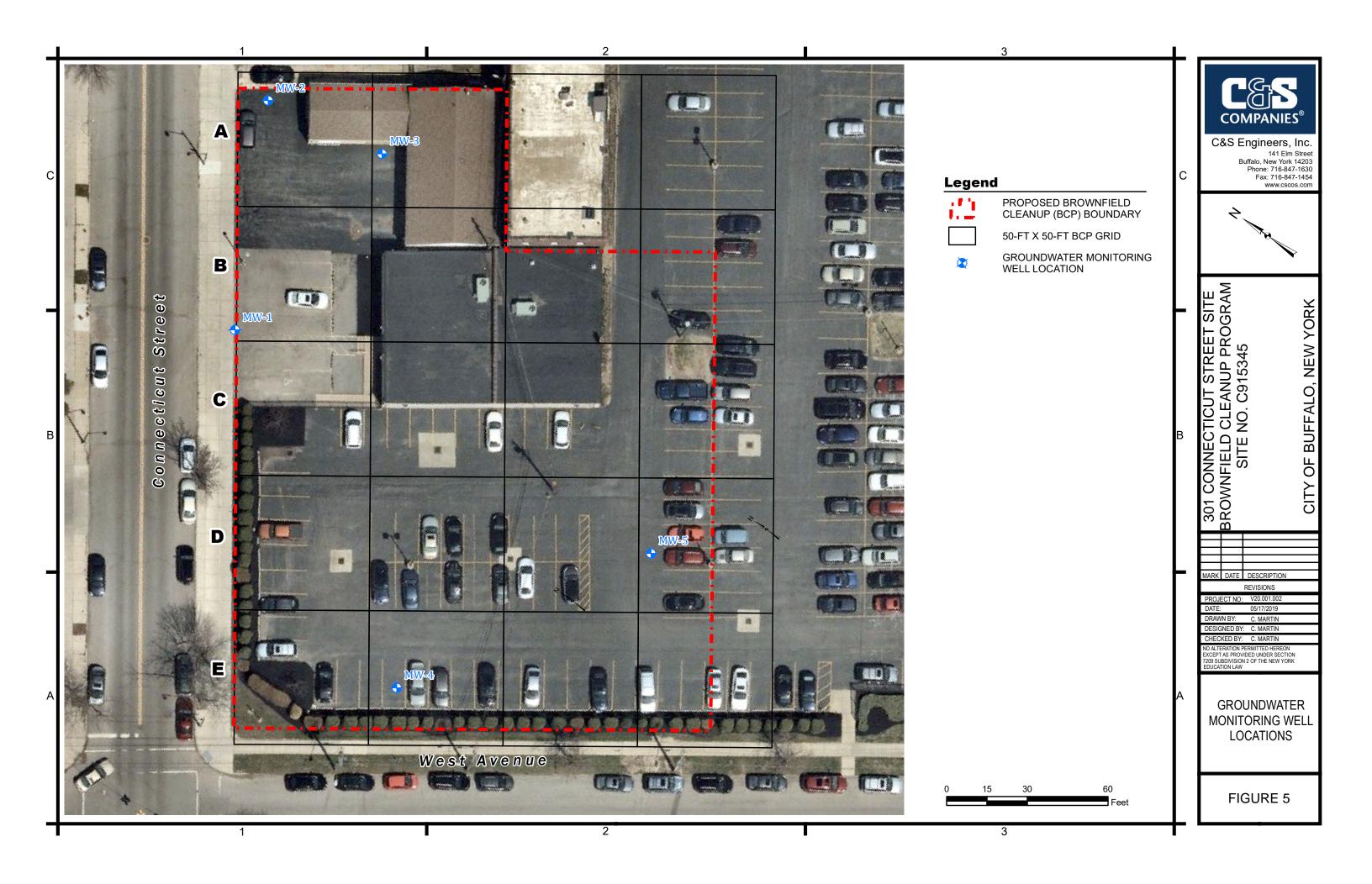
During the IRM excavation work, three underground storage tanks (USTs) were discovered at the site. Two of the tanks were approximately 500 gallons in size, while the third was approximately 250 gallons in size. All three of the tanks were discovered within grid Cell C1. The tanks were believed to contain gasoline, however no product was found within USTs. Excavations in this areas was completed to the excavation depths determined from native soil sampling. Additional sampling was then completed below the tank locations to ensure native soil was not impacted by leaking petroleum products.

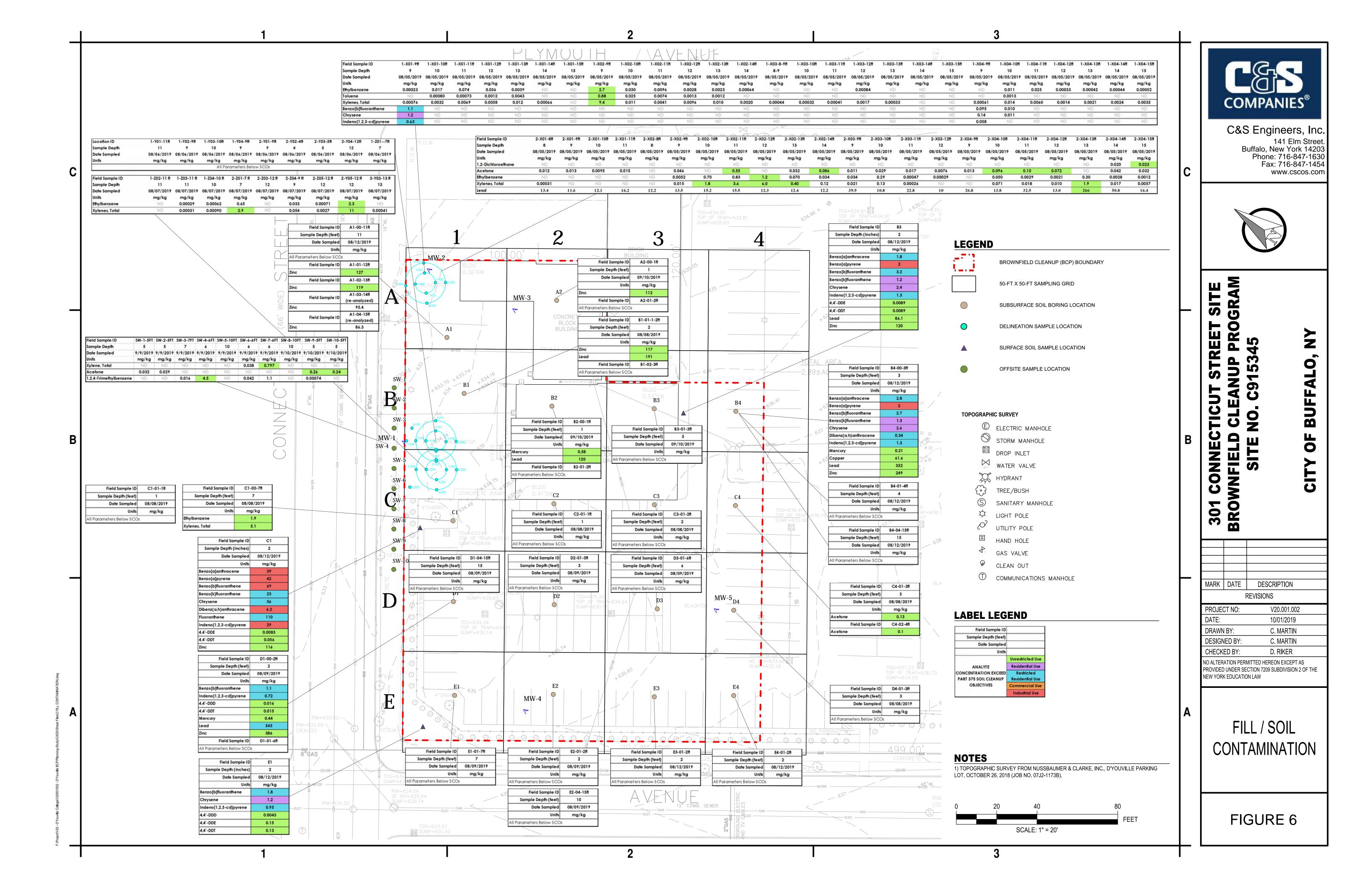

Excavated fill was direct-loaded onto trucks for off-site disposal. Good housekeeping practices were followed during excavation activities to prevent leaving contaminated material on the ground surface and from being tracked onto the road during transportation. Transportation of all wastes was completed by properly permitted vehicles. To the extent practicable, trucks traveled along routes that avoided residential areas.

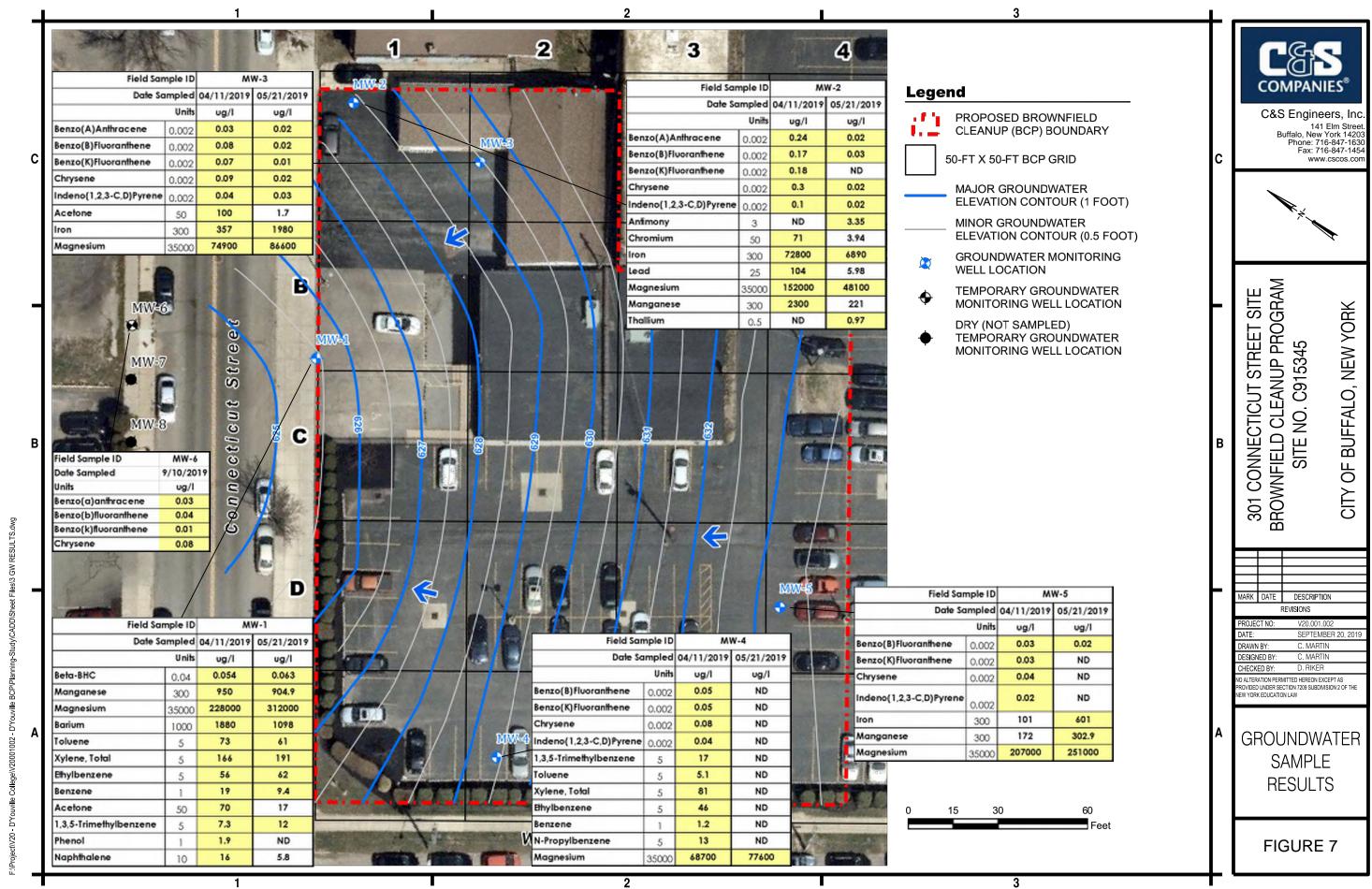

Contaminated soil and fill material was loaded onto dump trucks and transported to an appropriate disposal facility. The material included:

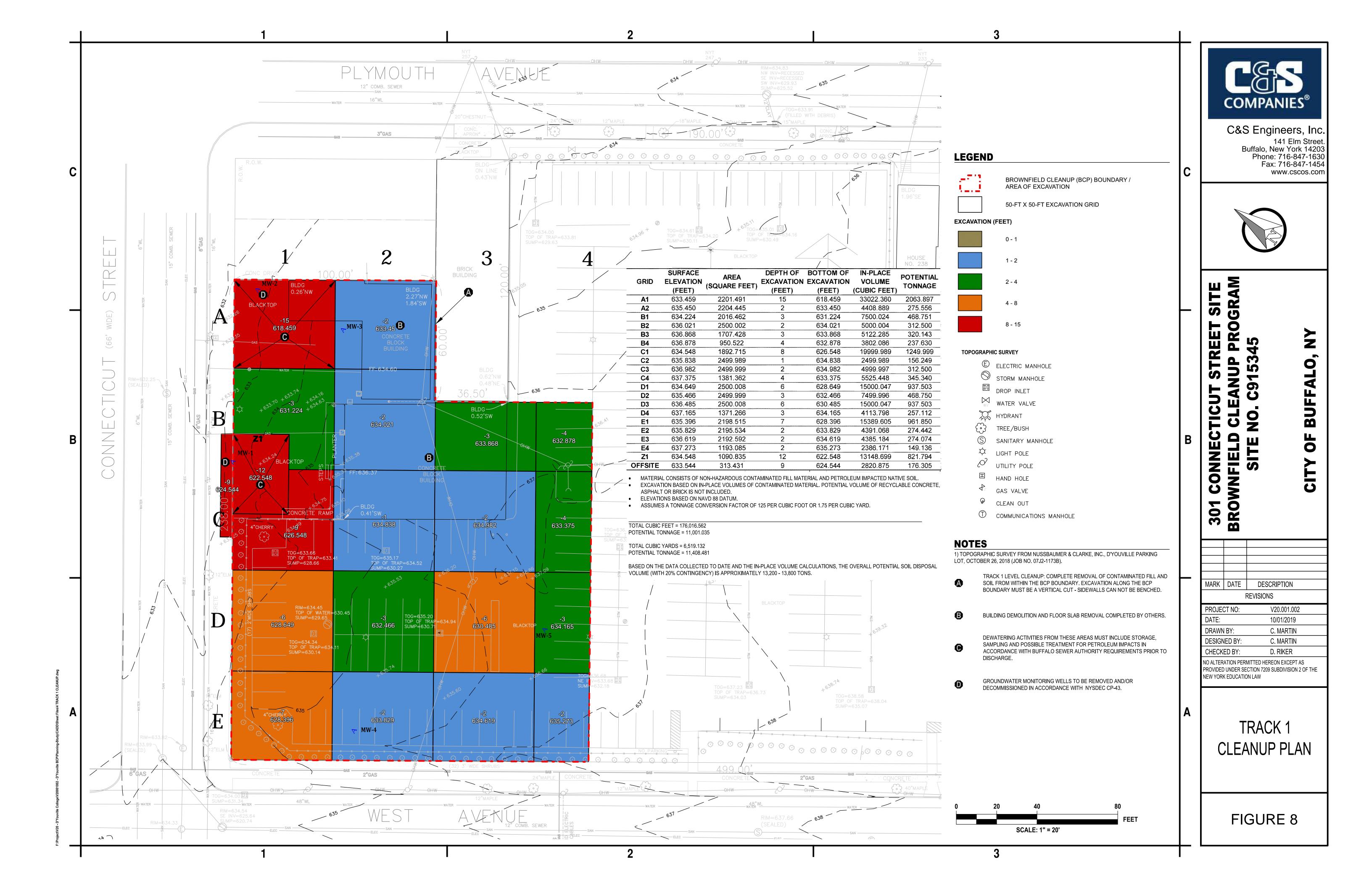

• A total of 16,423.28 tons of contaminated soil and fill material was disposed at Republic Services Landfill in Niagara Falls, New York.

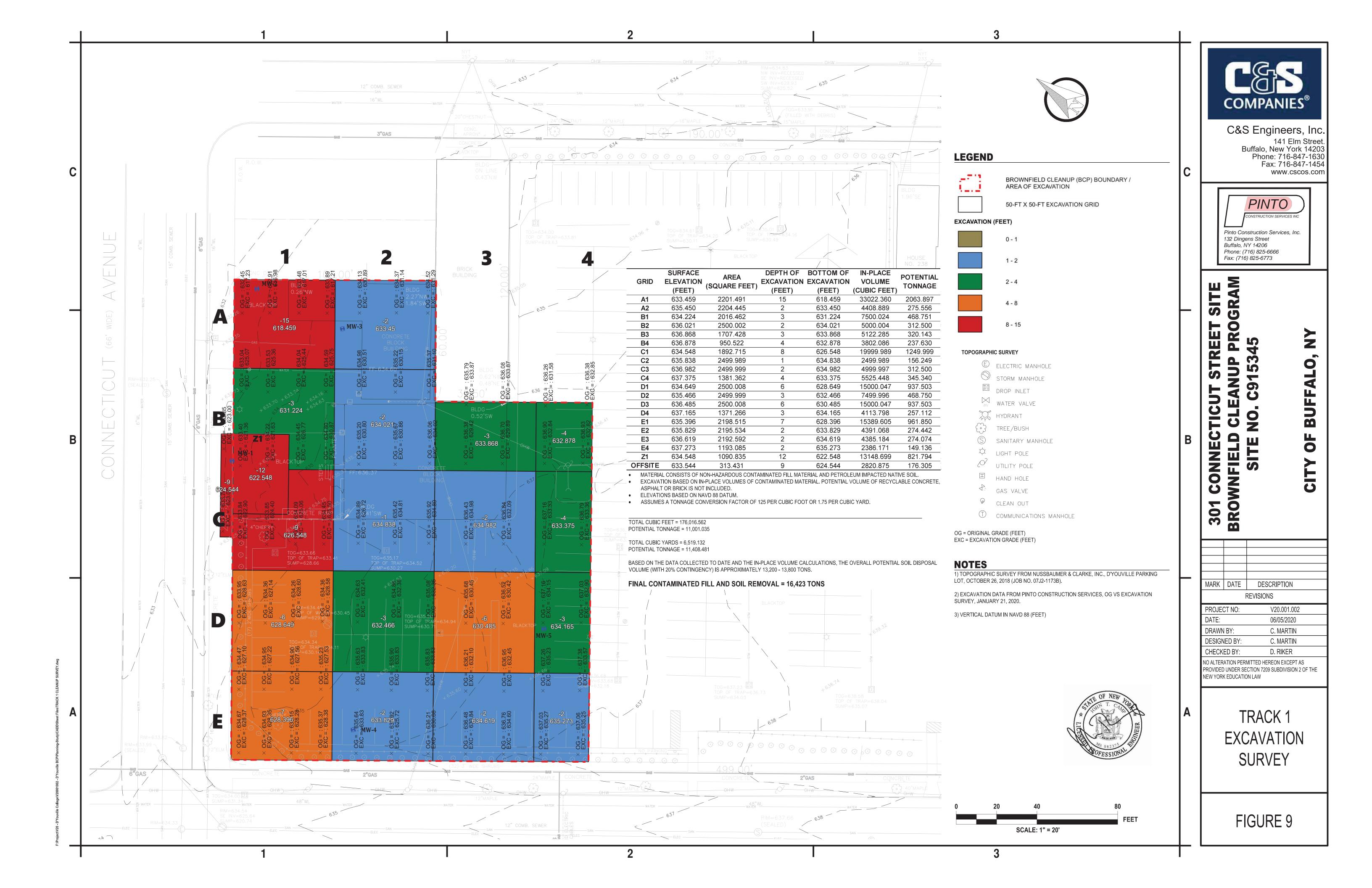

At the completion of the IRM described above, remediation at the Site to a Track 1 Cleanup was achieved.











TABLES

SURFACE SOIL RESULTS - 8/12/2019 GRID SAMPLING 301 CONNECTICUT STREET SITE BCP SITE C915345

CSS
COMPANIES®

			LOC	CATION - SAM	PLE DEPTH	В3	C1	E1
				SAMP	LING DATE	08/12/2019	08/12/2019	08/12/2019
				SA	MPLE TYPE	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg
	Unrestricted	Residential	Restricted	Commercial	Industrial			
	Use	Use	Residential Use	Use	Use			
VOCs			USE					
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND
Acetone	0.05	100	100	500	1000	ND	ND	ND
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND
Cyclohexane						ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	ND	ND
Isopropylbenzene		50	-11	370	700	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	0.00044 J	ND	0.00027 J
Methylcyclohexane	0.73	02	100	300	1000	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND ND	ND ND	ND
Toluene	0.7	100	100	500	1000	ND ND	ND ND	ND ND
		100	100				-	_
Xylenes, Total	0.26	100	100	500	1000	ND	ND	ND
SVOCs	1		1		1.1	1.0	20	0.74
Benzo[a]anthracene	1	1	1	5.6	11	1.8	39	0.74
Benzo[a]pyrene	1	1	1	1	1.1	2.0	42	1.0
Benzo[b]fluoranthene	1	1	1	5.6	11	3.2	69	1.8
Benzo[g,h,i]perylene	100	100	100	500	1000	1.1	25	0.90
Benzo[k]fluoranthene	0.8	1	3.9	56	110	1.2	23	0.56
Chrysene	1	1	3.9	56	110	2.4	56	1.2
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	0.22	6.2	0.20
Dibenzofuran	7	14	59	350	1000	0.034 J	1.2 J	_
Fluoranthene	100	100	100	500	1000	4.3	110	1.8
Fluorene	30	100	100	500	1000	0.083 J	3.3 J	0.020 J
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	1.3	29	0.95
Naphthalene	12	100	100	500	1000	0.017 J	0.25 J	ND
Phenanthrene	100	100	100	500	1000	1.7	53	0.49
Pyrene	100	100	100	500	1000	3.6	89	1.5
Pesticidies								
4,4'-DDD	0.0033	2.6	13	92	180	ND	ND	0.0043 J _I
4,4'-DDE	0.0033	1.8	8.9	62	120	0.0089	0.0083 J	0.15 p
4,4'-DDT	0.0033	1.7	7.9	47	94	0.0089	0.056	0.13 p
Dieldrin	0.005	0.039	0.2	1.4	2.8	0.0023	ND	ND
PCBs								
Total PCBs	0.1	1	1	1	25	ND	ND	ND
Herbicidies								
Silvex (2,4,5-TP)	3.8	58	100	500	1000	ND	ND	ND
Metals								
Aluminum						13300	6270	13700
Mercury	0.18	0.81	0.81	2.8	5.7	0.092	0.040	0.046
Arsenic	13	16	16	16	16	6.7	4.3 J	3.6
Barium	350	350	400	400	10000	112	120	77.3
Beryllium	7.2	14	72	590	2700	0.77	0.40 J	0.57
Cadmium	2.5	2.5	4.3	9.3	60	0.46 J	0.54 J	_
Calcium	2.0					29200	32900	6340
Chromium						18.2	17.7	17.0

SURFACE SOIL RESULTS - 8/12/2019 GRID SAMPLING 301 CONNECTICUT STREET SITE

BCP SITE C915345

			LOC	CATION - SAM	PLE DEPTH	В3		C1		E1	(
					LING DATE	08/12/2	019	08/12/20	019	08/12/20	019
					MPLE TYPE	SOII		SOII	,	SOII	
					UNITS	mg/k	g	mg/k	g	mg/k	g
	Unrestricted	Residential	Restricted	Commercial	Industrial				•		'
	Use	Use	Residential Use	Use	Use						
Cobalt			USC			8.4	J	4.4	J	6.6	J
Copper	50	270	270	270	10000	21.2		24.0		16.8	
Iron						28700		12900		19000	
Lead	63	400	400	1000	3900	86.1		46.3		25.5	
Magnesium						9430		4600		3470	
Manganese	1600	2000	2000		10000	705		775		299	
Nickel	30	140	310	310	10000	18.8		13.0	J	14.6	
Potassium						1840		964	J	1510	
Selenium	3.9	36	180	1500	6800	ND		ND		ND	\neg
Silver	2	36	180	1500	6800	ND		ND		ND	\neg
Sodium						761	J	ND		87.7	J
Vanadium						28.9		15.3	J	26.1	\neg
Zinc	109	2200			10000	120		116		80.2	\neg
WetChem											
Chromium, hexavalent	1	22	110	400	800	ND		ND		ND	
Cyanide, Total	27	27	27	27	10000	0.20	J	0.80		0.28	J
Per- and Poly-fluoroalkyl Su	bstances										
Perfluorobutanoic acid (PFBA)						ND		0.68		0.22	J
Perfluoropentanoic acid (PFPeA)						ND		ND		ND	
Perfluorohexanoic acid (PFHxA)						ND		ND		0.15	J
Perfluoroheptanoic acid (PFHpA)						0.056	J	ND		0.14	J
Perfluorooctanoic acid (PFOA)						0.35		0.19	J	0.38	
Perfluorononanoic acid (PFNA)						0.16	J	0.11	J	0.21	J
Perfluorodecanoic acid (PFDA)						0.22		0.17	J	0.22	J
Perfluoroundecanoic acid (PFUnA)						0.12	J	0.19	J	0.12	J
Perfluorododecanoic acid (PFDoA)						0.098	J	ND		0.082	J
Perfluorotridecanoic acid (PFTriA)						ND		ND		ND	
Perfluorotetradecanoic acid (PFTeA)						ND		ND		ND	
Perfluorobutanesulfonic acid (PFBS)						ND		ND		ND	
Perfluorohexanesulfonic acid (PFHxS)						ND		ND		0.049	J
Perfluoroheptanesulfonic Acid (PFHpS)						ND		ND		ND	
Perfluorooctanesulfonic acid (PFOS)						1.4		0.55	J	1.3	\Box
Perfluorodecanesulfonic acid (PFDS)						ND		ND		0.079	J
Perfluorooctanesulfonamide (FOSA)						ND		ND		ND	
N-methylperfluorooctanesulfonamidoaceti	c acid (NMeFOSA	A)				ND		ND		ND	
N-ethylperfluorooctanesulfonamidoacetic a	acid (NEtFOSAA)					ND		ND		ND	\neg
6:2 FTS						0.24	J	ND		0.30	J
8:2 FTS						ND		ND		ND	

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

^{* -} LCS or LCSD is outside acceptance limits.

F1 - MS and/or MSD Recovery is outside acceptance limits.

F2 - MS/MSD RPD exceeds control limits

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

p - The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

										14.04.470	10.00.10			D4 02 22	DUP-D-	D2 00 48	D2 04 26	D2 04 28	D 4 00 20	D4 04 48
			LOC	CATION - SAM	IPLE DEPTH	A1-00-11ft	A1-01-12ft	A1-02-13ft	A1-03-14ft	A1-04-15ft	A2-00-1ft	A2-01-2ft	B1-01-1-2ft	B1-02-3ft	080819	B2-00-1ft	B2-01-2ft	B3-01-3ft	B4-00-3ft	B4-01-4ft
					PLING DATE	08/12/2019	08/12/2019	08/12/2019	08/12/2019	08/12/2019	09/10/2019	09/10/2019	08/08/2019	08/08/2019	08/08/2019	09/10/2019	09/10/2019	09/10/2019	08/12/2019	08/12/2019
				SA	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL							
			Restricted		UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							
	Unrestricted Use	Residential Use	Residential Use	Commercial Use	Industrial Use															
VOCs			Use																	
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND			ND	ND	0.0030 J	ND		ND	ND	ND	ND	0.0058	ND
Acetone	0.05	100	100	500	1000	ND	0.011			0.0094	ND	0.016	0.0065 J		0.010	ND	ND	ND	0.034	0.021
Benzene	0.06	2.9	4.8	44	89	ND	ND			0.0027	ND	ND	ND		ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND			0.0012	ND	ND	ND		ND	ND	ND	ND	ND	ND
Cyclohexane						0.00074 J	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Isopropylbenzene						ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	0.00043 J	0.0017			0.012	ND	ND	ND		ND	ND	ND	ND	ND	ND
Methylcyclohexane						0.0012	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND	ND			ND	0.00095 J	ND	ND		ND	0.00072 J	0.00084 J	ND	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND			ND	0.046	0.067	ND		ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	0.00060 J	ND			ND	ND	ND	ND		0.0018 J	ND	ND	ND	ND	ND
SVOCs																				
Benzo[a]anthracene	1	1	1	5.6	11	ND	ND			0.024 J	0.047	ND	0.051		0.085	0.073	ND	ND	2.8	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND	ND			0.017 J	ND	ND	0.039 J		0.081	0.050	ND	ND	2.0	ND F1
Benzo[b]fluoranthene	1	1	1	5.6	11	ND	ND			0.026 J	0.11	ND	0.068		0.13	0.089	ND	0.025 J	2.7	ND F1
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND	ND			0.0086 J	0.030 J	ND	0.026 J		0.058	0.028 J	ND	ND	1.3	ND F1
Chrysene	1	1	3.9	56	110	ND	ND			0.025 J	0.10 J	ND	0.070 J		0.12 J	0.077 J	ND	ND	2.6	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND			ND	0.021 J	ND	ND		ND	ND	ND	ND	0.34	ND
Dibenzofuran	7	14	59	350	1000	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	0.64 J	ND F1
Fluoranthene	100	100	100	500	1000	ND	ND			0.040 J	0.061 J	ND	0.10 J		0.20 J	0.13 J	ND	0.025 J	7.0	ND
Fluorene	30	100	100	500	1000	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	0.97 J	ND F1
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND	ND			0.017 J	0.049	ND	0.039 J		0.080	0.035 J	ND	ND	1.3	ND
Naphthalene	12	100	100	500	1000	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	0.30 J	ND F1
Phenanthrene	100	100	100	500	1000	0.028 J	ND			0.013 J	0.024 J	ND	0.051 J		0.094 J	0.092 J	ND	0.020 J	7.2	ND
Pyrene	100	100	100	500	1000	ND	ND			0.035 J	0.055 J	ND	0.093 J		0.19 J	0.11 J	ND	0.020 J	5.6	ND
Pesticidies																				
4,4'-DDD	0.0033	2.6	13	92	180	ND	ND			ND	ND					ND	ND		ND	
4,4'-DDE	0.0033	1.8	8.9	62	120	ND	ND			ND	ND					ND	ND		0.0030 J	
4,4'-DDT	0.0033	1.7	7.9	47	94	ND	ND			ND	ND					ND	ND		ND	
PCBs																				
Total PCBs	0.1	1	1	1	25	ND	ND			ND	ND					0.091	ND		ND	
Herbicidies																				
Silvex (2,4,5-TP)	3.8	58	100	500	1000	ND	ND			ND	ND					ND	ND		ND	
Metals																				

			LOC	CATION - SAM	IPLE DEPTH	A1-00-11ft	A1-01-12ft	A1-02-13ft	A1-03-14ft	A1-04-15ft	A2-00-1ft	A2-01-2ft	B1-01-1-2ft	B1-02-3ft	DUP-D- 080819	B2-00-1ft	B2-01-2ft	B3-01-3ft	B4-00-3ft	B4-01-4ft
				SAMI	PLING DATE	08/12/2019	08/12/2019	08/12/2019	08/12/2019	08/12/2019	09/10/2019	09/10/2019	08/08/2019	08/08/2019	08/08/2019	09/10/2019	09/10/2019	09/10/2019	08/12/2019	08/12/2019
				SA	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL							
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use															
Aluminum	<u> </u>			-		579	4290			4440	11100	14500	11400		10400	10000	12700	12100	9820	13600
Mercury	0.18	0.81	0.81	2.8	5.7	ND	ND			ND	0.14	0.070	0.16		0.15	0.58	0.021	0.093	0.21	0.016 J
Arsenic	13	16	16	16	16	ND	1.8 J			1.7 J	9.0	4.5	6.0		6.3	5.8	3.0	4.6	5.6	3.9
Barium	350	350	400	400	10000	2.4 J	39.4 J			44.5	192	115	110		97.2	86.4	57.4	106	115	96.0
Beryllium	7.2	14	72	590	2700	ND	0.23 J			0.24 J	0.58	0.78	0.66		0.63	0.55	0.65	0.64	0.63	0.67
Cadmium	2.5	2.5	4.3	9.3	60	ND	0.42 J			0.35 J	ND	ND	ND		ND	ND	ND	ND	0.66 J	ND
Calcium						195000	87000			84100	77200	5470	25400		20300	39000	3850	3800	47900	16400
Chromium						3.2	6.7			7.2	17.3	21.5	17.3		16.0	15.1	19.0	18.6	15.3	19.0
Cobalt						ND	2.9 J			3.2 J	8.3 J	9.7 J	7.5 J		8.7 J	6.4 J	7.1 J	8.4 J	6.9 J	8.4 J
Copper	50	270	270	270	10000	3.5 J	12.8			12.2	17.5	18.2	18.9		15.3	19.4	13.2	13.8	61.6	15.0
Iron						1730	8960			9400	23400	25700	19100		21000	18100	21200	22900	18800	22900
Lead	63	400	400	1000	3900	ND	11.4			10.1	28.7	25.5	191	18.9	96.1	120	18.3	20.3	332	15.0
Magnesium						3970	36000			30500	29000	6570	12400		10500	16400	5040	4800	18300	12800
Manganese	1600	2000	2000		10000	61.0	389			418	1040	335	392		545	372	203	397	576	297
Nickel	30	140	310	310	10000	4.0 J	6.6 J			7.1 J	18.5	24.0	16.9		17.0	15.1	18.6	19.1	18.2	20.9
Potassium						298 J	1190			1230	1930	1700	1460		1200	1570	1560	1620	1640	2130
Selenium	3.9	36	180	1500	6800	ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND F1			ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Sodium		-				260 J	505 J			466 J	803 J	574 J	894 J		811 J	214 J	167 J	88.1 J	382 J	238 J
Vanadium						2.3 J	11.9			13.0	27.3	28.1	23.3		24.3	22.1	20.2	24.3	22.0	26.1
Zinc	109	2200			10000	8.9	127	119	95.4	86.3	112	93.5	117	67.4	96.4	94.9	76.2	81.2	249	85.9
WetChem																				
Chromium, hexavalent	1	22	110	400	800	ND	ND			ND	ND					ND	ND		ND	
Cyanide, Total	27	27	27	27	10000	ND	ND			ND	0.18 J	ND	ND		ND F1	0.15 J	ND	ND	0.25 J	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LOC	CATION - SAM	PLE DEPTH	B4-04-15ft	C1-00-7ft	C1-01-1ft	C2-01-1ft	C3-01-2ft	C4-01-3ft	C4-02-4ft	D1-00-2ft	D1-01-6ft	D1-04-15ft	DUP-C- 080919	D2-01-3ft	D3-01-6ft	D4-01-3ft	E1-01-7ft	E2-00-1ft
				SAMP	LING DATE	08/12/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/08/2019	08/09/2019	08/09/2019
				SA	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use																
VOCs			Usc																		
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND	ND	ND	0.017		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	ND	ND	ND	ND	ND	0.13	0.10	0.023	ND	0.011	0.012	0.011	ND	0.011	ND	0.015 I
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND I
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
Cyclohexane						ND	3.1 *	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	1.9	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
Isopropylbenzene						ND	0.83	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
Methyl tert-butyl ether	0.93	62	100	500	1000	0.00034 J	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND F
Methylcyclohexane						ND	17	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND	ND	ND	ND	ND	ND		0.0010 J	0.0020	0.0029	0.0032	0.0013	0.00064 J	0.00083 J	ND	0.00081 J
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
Toluene	0.7	100	100	500	1000	ND	0.12	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
Xylenes, Total	0.26	100	100	500	1000	ND	5.1	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND F1	ND	ND	ND F
SVOCs	0.20	100	100	200	1000	113	311	112	112	112	112		1,12	1,12	112	113	112	1,13	112	112	
Benzo[a]anthracene	1	1	1	5.6	11	ND		ND	0.12	0.065	ND		0.73	ND	0.041	0.093	0.019 J	ND	ND	ND	0.055
Benzo[a]pyrene	1	1	1	1	1.1	ND		ND	0.10	0.054	ND		0.74	0.014 J	0.040	0.075	0.019 J	ND F1	ND	ND	0.043 F
Benzo[b]fluoranthene	1	1	1	5.6	11	ND		0.019 J	0.16	0.087	ND		1.1	0.014 J	0.062	0.13	0.019 J	ND ND	ND	ND	0.043 F
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND		ND	0.070	0.037 J	ND		0.42	ND	0.026 J	0.042 J	0.0094 J	ND F1	ND	ND	0.027 J
Chrysene	1	1	3.9	56	110	ND		ND	0.070 0.17 J	0.037 J	ND		1.0	0.020 J	0.020 J	0.042 J	0.0094 J	ND 11	ND	ND	0.027 J
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND		ND	0.17 J 0.023 J	ND	ND		0.16	ND	ND	0.12 J 0.020 J	ND	ND	ND	ND	ND
Dibenzofuran	7	14	59	350	1000	ND		ND	0.023 J	ND	ND		0.10 0.037 J	ND	ND	ND	ND	ND F1	ND	ND ND	ND F
Fluoranthene	100	100	100	500	1000	ND		ND	0.36 J	0.10 J	ND		2.0	0.028 J	0.13 J	0.18 J	0.043 J	0.016 J	ND	ND	0.17 J
					1000	ND ND		+	0.30 J ND	ND	ND					ND	ND	ND F1	ND ND		ND F
Fluorene	30	100	100	500				ND					0.064 J	ND	ND					ND	
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND		ND	0.095	0.047	ND		0.72	ND	0.031 J	0.067	0.024 J	ND F1	ND	ND	0.046
Naphthalene	12	100	100	500	1000	ND		ND	ND	ND	ND		0.019 J	ND	ND	ND	ND	ND F1	ND	ND	ND F
Phenanthrene	100	100	100	500	1000	ND		ND	0.18 J	0.056 J	ND		1.2	ND	0.081 J	0.11 J	0.026 J	ND F1	ND	ND	0.078 J
Pyrene	100	100	100	500	1000	ND		ND	0.34 J	0.11 J	ND		1.9	0.029 J	0.13 J	0.17 J	0.040 J	ND	ND	ND	0.16 J
Pesticidies					100						3		0.617								3. 776
4,4'-DDD	0.0033	2.6	13	92	180	ND				ND	ND		0.016		ND	ND					ND
4,4'-DDE	0.0033	1.8	8.9	62	120	ND				ND	ND		ND		ND	ND					ND *
4,4'-DDT	0.0033	1.7	7.9	47	94	ND				ND	ND		0.015		ND	ND					ND
PCBs																					
Total PCBs	0.1	1	1	1	25	ND				ND	ND		ND		ND	ND					ND
Herbicidies																					
Silvex (2,4,5-TP)	3.8	58	100	500	1000	ND				ND	ND		ND		ND	ND					ND
Metals																					

			LOC	CATION - SAMI	PLE DEPTH	B4-04-15ft	C1-00-7ft	C1-01-1ft	C2-01-1ft	C3-01-2ft	C4-01-3ft	C4-02-4ft	D1-00-2ft	D1-01-6ft	D1-04-15ft	DUP-C- 080919	D2-01-3ft	D3-01-6ft	D4-01-3ft	E1-01-7ft	E2-00-1ft
				SAMPI	LING DATE	08/12/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/08/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/08/2019	08/09/2019	08/09/2019
				SAN	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL										
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg										
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use																
Aluminum	·					11900		15000	12100	7450	15200		6070	6700	5670	11800	6770	6660	9870	5310	12600
Mercury	0.18	0.81	0.81	2.8	5.7	ND		0.034	ND	0.013 J	0.025		0.44	0.078	ND	0.080	ND	ND	0.013 J	0.086	0.019
Arsenic	13	16	16	16	16	3.4		3.4	4.0	4.8	5.0		8.3	5.7	2.9	4.5	3.2 J	3.3 J	3.3 J	3.3	5.0
Barium	350	350	400	400	10000	119		129	104	64.6	135		143	57.6	56.5	92.8	62.7	53.1	56.5	43.5	115
Beryllium	7.2	14	72	590	2700	0.64		0.72	0.75	0.44 J	0.85		0.41 J	0.34 J	0.29 J	0.66	0.37 J	0.43 J	0.52	0.31 J	0.68
Cadmium	2.5	2.5	4.3	9.3	60	0.29 J		ND	ND	ND	ND		0.57 J	ND	ND	ND	ND	ND	ND	ND	0.31 J
Calcium						73000		2960	18900	84700	3690		29900	68400	66600	25400	77300	83400	25100	79700	80600
Chromium						17.2		20.4	18.5	15.2	22.0		17.8	11.0	9.8	18.4	11.2	10.8	15.4	9.5	18.3
Cobalt						9.5 J		8.6 J	7.3 J	5.3 J	10.2 J		5.0 J	5.4 J	4.7 J	7.8 J	5.8 J	5.6 J	6.1 J	4.6 J	8.4 J
Copper	50	270	270	270	10000	18.8		10.5	14.4	14.8	14.0		37.6	16.0	10.9	19.8	10.8	13.6	12.3	15.6	19.9
Iron						20600		22700	23100	15200	25500		20000	13700	11900	20000	12900	14000	17600	11900	22600
Lead	63	400	400	1000	3900	13.2		15.9	18.1	41.4	17.9		545	45.9	10.8	48.4	13.3	12.0	14.6	15.7	19.0
Magnesium						26000		4240	13000	23200	5470		8390	21000	26600	15300	26700	31800	16100	30300	29100
Manganese	1600	2000	2000		10000	597		221	234	368	541		212	337	358	358	407	413	164	329	573
Nickel	30	140	310	310	10000	23.1		19.8	18.4	13.7	24.3		14.8	13.3	11.2	19.8	12.4	12.8	16.2	10.6	20.4
Potassium						2920		1530	1510	1460	1770		945 J	1260	1350	1790	1300	1450	1460	1290	2440 F
Selenium	3.9	36	180	1500	6800	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium						204 J		546 J	795 J	916 J	591 J		1810	728 J	159 J	1680	1280	688 J	1000 J	424 J	1040
Vanadium						25.2		26.1	26.3	19.0	27.7		15.7	15.7	14.7	23.0	15.2	17.9	19.7	15.6	27.5
Zinc	109	2200			10000	93.4		76.1	87.3	73.9	90.1		386	70.5	53.3	122	58.3	63.2	67.9	85.2	74.5
WetChem																					
Chromium, hexavalent	1	22	110	400	800	ND				ND	ND		ND		ND	ND					ND
Cyanide, Total	27	27	27	27	10000	ND		0.15 J	ND	ND	ND		0.25 J	ND	ND	ND	ND	ND	ND	ND	ND F

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LOC	CATION - SAM	PLE DEPTH	E2-01-2ft	E2-04-15ft	E3-01-2ft	E4-01-2ft	E4-04-15ft
				SAMI	LING DATE	08/09/2019	08/09/2019	08/12/2019	08/12/2019	08/12/2019
					MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted	Residential	Restricted Residential	Commercial	Industrial					
	Use	Use	Use	Use	Use					
VOCs										
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	0.0078	ND	ND	0.0066 J	ND
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND
Cyclohexane						ND	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	ND	ND	ND	ND
Isopropylbenzene						ND	ND	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	ND	ND	ND	ND	ND
Methylcyclohexane						ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	0.00096 J	0.00082 J	ND	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	ND	ND	ND	ND	ND
SVOCs										
Benzo[a]anthracene	1	1	1	5.6	11	ND	ND	ND	0.018 J	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND	ND	ND	0.011 J	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	ND	ND	ND	0.019 J	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	56	110	ND	ND	ND	0.014 J	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND
Dibenzofuran	7	14	59	350	1000	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND	ND	ND	0.023 J	ND
Fluorene	30	100	100	500	1000	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	ND	ND	ND	ND	ND
Phenanthrene	100	100	100	500	1000	ND	ND	ND	0.014 J	ND
Pyrene	100	100	100	500	1000	ND	ND	ND	ND	ND
Pesticidies										
4,4'-DDD	0.0033	2.6	13	92	180		ND	ND F2		ND
4,4'-DDE	0.0033	1.8	8.9	62	120		ND	ND F2		ND
4,4'-DDT	0.0033	1.7	7.9	47	94		ND	ND F2		ND
PCBs										
Total PCBs	0.1	1	1	1	25		ND	ND		ND
Herbicidies										
Silvex (2,4,5-TP)	3.8	58	100	500	1000		ND	ND		ND
Metals			100		1000			1.2		
Mictals										

			LOC	CATION - SAM	PLE DEPTH	E2-01-2ft	E2-04-15ft	E3-01-2ft	E4-01-2ft	E4-04-15ft
				SAMP	LING DATE	08/09/2019	08/09/2019	08/12/2019	08/12/2019	08/12/2019
					MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL
				571	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use	gg				
Aluminum						10300	5600	12600	19600	6420
Mercury	0.18	0.81	0.81	2.8	5.7	0.013 J	0.011 J	0.024	ND	ND
Arsenic	13	16	16	16	16	3.4	2.6 J	3.9	4.7	3.2
Barium	350	350	400	400	10000	78.2	64.8	115	164	101
Beryllium	7.2	14	72	590	2700	0.56	0.28 J	0.68	0.98	0.37
Cadmium	2.5	2.5	4.3	9.3	60	0.17 J	ND	ND	ND	0.19 J
Calcium						63100	74900	5060	4000	82700
Chromium						16.3	9.9	17.8	27.1	10.2
Cobalt						7.2 J	4.6 J	10.3	11.7	6.7 J
Copper	50	270	270	270	10000	14.0	13.8	14.0	17.8	14.6
Iron						18600	11500	22600	30500	13000
Lead	63	400	400	1000	3900	15.9	11.1	17.7	16.9	11.4
Magnesium						29200	31300	6360	7490	34600
Manganese	1600	2000	2000		10000	477	350	568	568	430
Nickel	30	140	310	310	10000	18.1	11.3	21.4	29.9	13.1
Potassium						2010	1360	1490	2750	1580
Selenium	3.9	36	180	1500	6800	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND
Sodium						770 J	163 J	477 J	964 J	634 J
Vanadium						21.5	15.0	23.4	33.4	15.0
Zinc	109	2200			10000	71.8	76.8	77.0	96.5	68.6
WetChem										
Chromium, hexavalent	1	22	110	400	800		ND	ND		ND
Cyanide, Total	27	27	27	27	10000	ND	ND	ND F1	ND	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

SUBSURFACE SOIL RESULTS - 8/8/2019 - 8/9/2019 AND 8/12/2019 FILL MATERIAL AND NATIVE SOIL RESULTS - EMERGING CONTAMINANTS 301 CONNECTICUT STREET SITE BCP SITE C915345

LOCATION - SAMPLE DEP SAMPLING DA SAMPLE TY UNI SOIL TY Use Use LOCATION - SAMPLE DEP Resmicred Residential Use LOCATION - SAMPLE DEP RAMPLING DA SAMPLE TY UNI SOIL TY Use Use Use Use Location - Sample Dep Sample D	PE 08/12/2019 PE SOIL IS ug/kg PE FILL	A1-01-12ft 08/12/2019 SOIL ug/kg NATIVE	A1-04-15ft 08/12/2019 SOIL ug/kg NATIVE	A2-01-2ft 09/10/2019 SOIL ug/kg NATIVE	B1-01-1-2ft 08/08/2019 SOIL ug/kg NATIVE	DUP-D- 080819 08/08/2019 SOIL ug/kg NATIVE	B2-00-1ft 09/10/2019 SOIL ug/kg FILL	B2-01-2ft 09/10/2019 SOIL ug/kg NATIVE	B3-01-3ft 09/10/2019 SOIL ug/kg NATIVE	B4-00-3ft 08/12/2019 SOIL ug/kg FILL	B4-01-4ft 08/12/2019 SOIL ug/kg NATIVE	B4-04-15ft 08/12/2019 SOIL ug/kg NATIVE	C1-01-1ft 08/08/2019 SOIL ug/kg NATIVE	C2-01-1ft 08/08/2019 SOIL ug/kg NATIVE	C3-01-2ft 08/08/2019 SOIL ug/kg NATIVE
Perf and Poly-fluoroalkyl Substances	ND	ND	ND	0.077 JB	ND	ND	0.15 JB	0.096 JB	0.096 JB	ND	ND	ND	ND	ND	ND
Perfluoroputanoic acid (PFPeA)	ND ND	ND ND	ND ND	0.077 JB ND	ND ND	ND ND	0.15 JB ND	0.096 JB ND	0.096 JB ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorohexanoic acid (PFHxA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.062 J	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanoic acid (PFOA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17 J	ND	ND	ND	ND	ND
Perfluorononanoic acid (PFNA)	0.046 J	ND	ND	ND	ND	ND	ND	ND	ND	0.047 J	ND	ND	ND	ND	ND
Perfluorodecanoic acid (PFDA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 J	ND	ND	ND	ND	ND
Perfluoroundecanoic acid (PFUnA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorododecanoic acid (PFDoA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotridecanoic acid (PFTriA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotetradecanoic acid (PFTeA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonic acid (PFOS)	ND	ND	ND	ND	ND	0.23 J	ND	ND	ND	0.68	ND	ND	0.27 J	ND	ND
Perfluorodecanesulfonic acid (PFDS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonamide (FOSA)	ND	ND	0.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6:2 FTS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42 J	ND	ND	ND
8:2 FTS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B - Compound was found in the blank and sample.

SUBSURFACE SOIL RESULTS - 8/8/2019 - 8/9/2019 AND 8/12/2019 FILL MATERIAL AND NATIVE SOIL RESULTS - EMERGING CONTAMINANTS 301 CONNECTICUT STREET SITE BCP SITE C915345

LOCATION GAMBLE DEPOT	T C4-01-3ft	D1-00-2ft	D1-01-6ft	D1 04 156	DUP-C-	D2 01 26	D2 01 664	D4-01-3ft	E1-01-7ft	E2-00-1ft	E2-01-2ft	E2-04-15ft	E3-01-2ft	E4-01-2ft	E4-04-15ft
LOCATION - SAMPLE DEPT	1 C4-01-3ft			D1-04-15ft	080919	D2-01-3ft	D3-01-6ft								
SAMPLING DAT	E 08/08/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/08/2019	08/09/2019	08/09/2019	08/09/2019	08/09/2019	08/12/2019	08/12/2019	08/12/2019
SAMPLE TYP	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
UNIT	S ug/kg	ug/kg													
SOIL TYP	E NATIVE	FILL	NATIVE	FILL	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE						
Unrestricted Residential Use Use Residential Use Use Use Use Use Use															
Per- and Poly-fluoroalkyl Substances															
Perfluorobutanoic acid (PFBA)	ND	0.069 J	ND	0.089 J	ND										
Perfluoropentanoic acid (PFPeA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorohexanoic acid (PFHxA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	ND	ND	ND	ND	0.043 J	ND	0.044 J	ND							
Perfluorooctanoic acid (PFOA)	ND	ND	ND	ND	0.28	ND	0.23 J	ND							
Perfluorononanoic acid (PFNA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorodecanoic acid (PFDA)	ND	0.065 J	ND	0.049 J	ND										
Perfluoroundecanoic acid (PFUnA)	ND	0.063 J	ND												
Perfluorododecanoic acid (PFDoA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotridecanoic acid (PFTriA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotetradecanoic acid (PFTeA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	0.032 J	ND							
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonic acid (PFOS)	ND	2.2	ND	ND	0.51 J	ND	0.84	ND							
Perfluorodecanesulfonic acid (PFDS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonamide (FOSA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6:2 FTS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.20 J	ND	ND
8:2 FTS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B - Compound was found in the blank and sample.

			LO	CATION - SAM	PLE DEPTH	1-X01-9ft	1-X01-10ft	1-X01-11ft	1-X01-12ft	1-X01-13ft	1-X01-14ft	1-X01-15ft	DUP-A-080519	1-X02-9ft	1-X02-10ft
				SAMP	LING DATE	8/5/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SA	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential	Commercial Use	Industrial Use										
VOCs			Use												
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	0.00035 J	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	0.00045 J	0.0039	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	0.0036 J	ND	0.0047 J	0.017	ND	ND	ND	ND	0.016
Acetone	0.05	100	100	500	1000	0.0071	0.012	0.0067	0.014	0.041	0.014	0.0087	0.0073	ND	0.022
Benzene	0.06	2.9	4.8	44	89	ND	0.0013	0.0010 J	0.0024	0.011	ND	ND	0.0029	ND	0.0055
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	0.00017 J	ND	ND	ND	ND	ND
Cyclohexane						0.0010	0.0064	0.016	0.018	0.038	0.00076 J	ND	0.0053	1.4	0.013
Ethylbenzene	1	30	41	390	780	0.00023 J	0.017	0.074	0.036	0.0039	ND	ND	0.041	2.7	0.030
Isopropylbenzene						ND	0.0024	0.0046	0.0036	0.0084	0.00021 J	ND	0.0033	0.28	0.0039
Methyl tert-butyl ether	0.93	62	100	500	1000	0.00039 J	0.00042 J	ND	0.00026 J	0.0013	0.0018	0.012	0.00021 J	ND	0.00068 J
Methylcyclohexane						0.0013	0.013	0.021	0.011	0.015	ND	ND	0.0053	3.9	0.018
Methylene Chloride	0.05	51	100	500	1000	0.0021	ND	ND	ND	ND	0.0023	ND	0.0013	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	0.00080 J	0.00073 J	0.0012	0.0043	ND	ND	0.0011	0.88	0.025
Xylenes, Total	0.26	100	100	500	1000	0.00076 J	0.0032	0.0069	0.0058	0.012	0.00066 J	ND	0.0050	9.4	0.011
SVOCs															
Benzo[a]anthracene	1	1	1	5.6	11	0.91	ND	ND	ND						
Benzo[a]pyrene	1	1	1	1	1.1	0.83	ND	ND	ND						
Benzo[b]fluoranthene	1	1	1	5.6	11	1.1	ND	ND	ND						
Benzo[k]fluoranthene	0.8	1	3.9	56	110	0.57	ND	ND	ND						
Chrysene	1	1	3.9	56	110	1.2	ND	ND	ND						
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	0.18	ND	ND	ND						
Dibenzofuran	7	14	59	350	1000	0.11 J	ND	ND	ND						
Fluoranthene	100	100	100	500	1000	2.4	ND	ND	ND	0.033 J	ND	ND	ND	ND	ND
Fluorene	30	100	100	500	1000	0.16 J	ND	ND	ND						
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	0.63	ND	ND	ND						
Naphthalene	12	100	100	500	1000	ND	0.072 J	0.17 J	0.12 J	0.048 J	ND	ND	0.20 J	0.072 J	0.039 J
Phenanthrene	100	100	100	500	1000	1.8	ND	ND	ND	0.027 J	ND	ND	ND	ND	ND
Pyrene	100	100	100	500	1000	2.2	ND	ND	ND	0.027 J	ND	ND	ND	ND	ND
PCBs															
Total PCBs	0.1	1	1	1	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals		_	_												
Aluminum						248	5450	8130	7380	6780	6230	6010	6930	7370	4490
Mercury	0.18	0.81	0.81	2.8	5.7	ND	0.011 J	0.017 J	0.019	0.017 J	0.012 J	ND	0.015 J	ND	ND
Arsenic	13	16	16	16	16	1.2 J	3.0	4.4	3.6	3.5	3.5	2.4 J	3.7	3.1	3.3
Barium	350	350	400	400	10000	2.7 J	65.2	85.9	82.9	72.8	72.3	62.3	74.1	112	66.8
													<u> </u>	l	

			LOG	CATION - SAMP	PLE DEPTH	1-X01-9ft 8/5/2019	1-X01-10ft 08/05/2019	1-X01-11ft 08/05/2019	1-X01-12ft 08/05/2019	1-X01-13ft 08/05/2019	1-X01-14ft 08/05/2019	1-X01-15ft 08/05/2019	DUP-A-080519 08/05/2019	1-X02-9ft 08/05/2019	1-X02-10ft 08/05/2019
				SAN	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use										
Beryllium	7.2	14	72	590	2700	ND	0.29 J	0.39 J	0.41	0.35	0.31 J	0.27 J	0.31 J	0.37	0.25 J
Cadmium	2.5	2.5	4.3	9.3	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15 J
Calcium						154000	51000	99100	74700	73100	73200	68500	86100	72900	93000
Chromium						2.2	9.2	12.7	12.1	11.5	10.1	9.6	11.3	11.7	7.3
Cobalt						ND	4.2 J	6.2 J	6.9 J	5.7 J	4.5 J	4.8 J	4.7 J	5.8 J	4.1 J
Copper	50	270	270	270	10000	ND	12.3	15.0	15.0	12.7	31.5	12.3	12.1	15.6	16.9
Iron						1480	11800	15300	14300	13400	13300	11500	13600	14500	9300
Lead	63	400	400	1000	3900	1.9	5.7	12.7	13.9	11.7	11.5	10.2	10.6	14.3	13.8
Magnesium						5460	14000	44200	29200	26800	28600	28600	34500	25900	41100
Manganese	1600	2000	2000		10000	49.6	293	420	401	406	351	347	375	398	387
Nickel	30	140	310	310	10000	3.0 J	8.7	14.0	14.5	13.6	11.5	10.9	11.7	12.7	8.1
Potassium						174 J	1200	2040	1730	1560	1460	1480	1670	1700	1260
Selenium	3.9	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium		-				201 J	457 J	602 J	505 J	452 J	359 J	299 J	542 J	517 J	423 J
Vanadium						1.5 J	15.6	17.9	17.5	16.0	15.4	15.1	16.2	17.6	13.1
Zinc	109	2200			10000	ND	71.0	89.6	74.5	65.2	62.5	71.0	83.7	64.8	84.0

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

^{* -} LCS or LCSD is outside acceptance limits.

F1 - MS and/or MSD Recovery is outside acceptance limits.

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LOC	ATION - SAM	PLE DEPTH	1-X02-11ft	1-X02-12ft	1-X02-13ft	1-X02-14ft	1-X03-8-9ft	1-X03-10ft	1-X03-11ft	1-X03-12ft	1-X03-13ft	1-X03-14ft	1-X03-15ft
					LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAI	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				571.	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use											
VOCs			Use													
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	0.0028	0.0073	0.0024	ND	ND	ND	ND	0.00054 J	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	0.011	0.0036 J	0.0028 J	ND	0.0045 J	ND	0.0040 J	ND	0.0037 J	ND	ND
Acetone	0.05	100	100	500	1000	0.019	0.0076	0.0060 J	0.0079	0.011	0.0088	0.011	ND	0.012	0.0094	0.011
Benzene	0.06	2.9	4.8	44	89	0.0024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane						0.0049	0.00048 J	0.0015	ND	ND	ND	0.0015	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	0.0096	0.0028	0.0023	0.00064 J	ND	ND	ND	0.00084 J	ND	ND	ND
Isopropylbenzene						0.0029	0.00023 J	0.00027 J	ND	ND	ND	0.00065 J	0.00069 J	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	0.00063 J	0.0075	0.018	0.015	0.00024 J	0.00018 J	0.00032 J	ND	0.0027	0.031	0.030
Methylcyclohexane		<u> </u>				0.0096	0.00061 J	0.0017	ND	ND	ND	0.0023	0.0041	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	0.00083 J	0.0012	0.00053 J	0.00071 J	0.00078 J	0.00071 J	0.0011	ND	0.0015	0.0012	0.0015
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	0.0074	0.0013	0.0012	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	0.0041	0.0096	0.010	0.0020 J	0.00044 J	0.00032 J	0.00041 J	0.0017 J	0.00033 J	ND	ND
SVOCs						010011	010030	01010	010020	0.00011	0.00002	0100011	0.0017	0100000		
Benzo[a]anthracene	1	1	1	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	56	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	7	14	59	350	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND	ND	ND	ND	ND	ND	0.018 J	0.023 J	ND	ND	ND
Fluorene	30	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	0.055 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	100	500	1000	ND	ND	ND	ND	ND	ND	0.014 J	0.022 J	ND	ND	ND
PCBs																
Total PCBs	0.1	1	1	1	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals																
Aluminum						3920	6060	6410	6040	3140	3180	4930	4380	4310	6450	6270
Mercury	0.18	0.81	0.81	2.8	5.7	ND	0.013 J	ND	ND	ND	ND ND	ND	ND	0.013 J	0.011 J	0.012 J
Arsenic	13	16	16	16	16	3.1	3.5	2.9	3.0	2.5 J	1.8 J	2.7 J	2.8	3.1	3.1	3.4
	1.0	10	10	10	10	J.1	J.J	4.7	3.0	4.J J	1.0 J	4./ J	2.0	J.1	J.1	3.7

			LO	CATION - SAM	PLE DEPTH	1-X02-11ft	1-X02-12ft	1-X02-13ft	1-X02-14ft	1-X03-8-9ft	1-X03-10ft	1-X03-11ft	1-X03-12ft	1-X03-13ft	1-X03-14ft	1-X03-15ft
				SAMP	LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAI	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				5/1	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	**	D 11 41	Restricted													
	Unrestricted Use	Residential Use	Residential Use	Commercial Use	Industrial Use											
Beryllium	7.2	14	72	590	2700	0.21 J	0.31 J	0.30 J	0.31 J	0.15 J	0.11 J	0.23 J	0.20 J	0.19 J	0.35	0.32 J
Cadmium	2.5	2.5	4.3	9.3	60	0.23 J	ND	ND	ND	ND	0.16 J	0.16 J	ND	ND	ND	ND
Calcium						103000	88000	81100	79600	111000	139000	85800	110000	115000	66300	68800
Chromium						6.4	10.8	10.5	10.3	5.9	5.4	8.3	7.6	7.3	10.7	10.1
Cobalt						3.4 J	4.1 J	4.6 J	4.8 J	2.3 J	2.1 J	3.1 J	3.4 J	3.4 J	5.5 J	5.3 J
Copper	50	270	270	270	10000	13.6	13.7	12.8	14.4	12.7	7.3	12.5	13.7	9.3	13.1	13.3
Iron						8520	12100	12500	12000	6870	8440	10000	8660	8910	12800	12400
Lead	63	400	400	1000	3900	12.9	24.2	11.6	11.6	10.2	6.2	9.8	9.9	11.0	12.4	13.3
Magnesium						39900	29900	32600	34500	27100	75100	28900	26700	52400	26900	27800
Manganese	1600	2000	2000		10000	403	331	352	381	290	372	357	310	391	368	364
Nickel	30	140	310	310	10000	6.8	11.2	11.2	11.3	5.9 J	5.7 J	8.4	7.7	7.6	12.6	12.2
Potassium						1010	1430	1550	1450	832 J	970	1180	1130	1180	1530	1520
Selenium	3.9	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium						414 J	379 J	281 J	248 J	457 J	399 J	552 J	468 J	472 J	326 J	287 J
Vanadium						11.1	15.7	15.9	15.3	8.8 J	8.0 J	13.5	11.4	12.0	15.4	15.0
Zinc	109	2200	•		10000	88.7	75.9	65.7	59.1	65.8	57.7	108	80.8	81.1	67.0	52.7

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

							1	ı			1	1	1		ı	
			LOC	CATION - SAMP	LE DEPTH	1-X04-9ft	1-X04-10ft	1-X04-11ft	1-X04-12ft	1-X04-13ft	1-X04-14ft	1-X04-15ft	2-X01-8ft	2-X01-9ft	2-X01-10ft	2-X01-11ft
				SAMPL	ING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAM	PLE TYPE	SOIL										
					UNITS	mg/kg										
				5	SOIL TYPE	NATIVE										
	Unrestricted	Residential	Restricted	Commercial	Industrial											
	Use	Use	Residential Use	Use	Use											
VOCs			CSC													
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	0.00041 J	ND						
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	0.0035	0.0052	0.0045	0.0059	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND	0.0034 J	0.0041 J	0.0035 J	0.0035 J	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	ND	ND	ND	0.020	0.013	0.0078	0.010	0.012	0.013	0.0095	0.015
Benzene	0.06	2.9	4.8	44	89	ND	0.0027	0.0021	0.00058 J	0.00036 J	0.00053 J	0.00070 J	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND										
Cyclohexane						0.0011	0.0016	0.0042	0.00037 J	ND	0.00041 J	0.00055 J	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	0.011	0.025	0.00033 J	0.00042 J	0.00044 J	0.00052 J	ND	ND	ND	ND
Isopropylbenzene						ND	0.00098 J	0.0022	ND	ND	0.00016 J	0.00020 J	ND	ND	ND	0.00016 J
Methyl tert-butyl ether	0.93	62	100	500	1000	ND	0.00034 J	0.00018 J	0.0088	0.0097	0.044	0.032	ND	ND	ND	0.00013 J
Methylcyclohexane						0.0019	0.0043	0.0081	ND	ND	0.00054 J	0.00095 J	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	0.0015	ND	ND	0.00094 J	0.0011	ND	ND	0.0015	0.0028	ND	0.00059 J
Tetrachloroethene	1.3	5.5	19	150	300	ND										
Toluene	0.7	100	100	500	1000	ND	0.0013	ND								
Xylenes, Total	0.26	100	100	500	1000	0.00061 J	0.014	0.0060	0.0014 J	0.0021	0.0024	0.0033	0.00031 J	ND	ND	ND
SVOCs																
Benzo[a]anthracene	1	1	1	5.6	11	0.086	0.020 J	ND								
Benzo[a]pyrene	1	1	1	1	1.1	0.063	ND									
Benzo[b]fluoranthene	1	1	1	5.6	11	0.095	0.010 J	ND								
Benzo[k]fluoranthene	0.8	1	3.9	56	110	0.028 J	ND									
Chrysene	1	1	3.9	56	110	0.14 J	0.011 J	ND	ND	ND	ND	ND	0.022 J	ND	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND										
Dibenzofuran	7	14	59	350	1000	0.021 J	ND									
Fluoranthene	100	100	100	500	1000	0.27 J	0.017 J	ND	ND	ND	ND	ND	0.041 J	ND	ND	ND
Fluorene	30	100	100	500	1000	0.033 J	ND									
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	0.058	ND									
Naphthalene	12	100	100	500	1000	ND	0.074 J	0.27 J	ND							
Phenanthrene	100	100	100	500	1000	0.27 J	0.021 J	ND	ND	ND	ND	ND	0.027 J	ND	ND	ND
Pyrene	100	100	100	500	1000	0.29 J	0.020 J	ND	ND	ND	ND	ND	0.033 J	ND	ND	ND
PCBs																
Total PCBs	0.1	1	1	1	25	ND										
Metals																
Aluminum						803	6340	6410	8090	6940	4850	6450	6380	7310	7060	6630
Mercury	0.18	0.81	0.81	2.8	5.7	0.012 J	0.013 J	0.014 J	0.013 J	0.014 J	0.012 J	0.013 J	ND	ND	ND	0.012 J
Arsenic	13	16	16	16	16	1.7 J	2.9	3.7	3.9	4.4	3.2	3.6	2.4 J	2.6 J	3.0 J	2.5 J
Barium	350	350	400	400	10000	19.3 J	100	71.1	79.8	70.8	43.5	65.1	58.7	83.8	65.7	69.1

			LO	CATION - SAM	PLE DEPTH	1-X04-9ft	1-X04-10ft	1-X04-11ft	1-X04-12ft	1-X04-13ft	1-X04-14ft	1-X04-15ft	2-X01-8ft	2-X01-9ft	2-X01-10ft	2-X01-11ft
				SAMP	LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				GA1	MPLE TYPE	SOIL										
				SA												
					UNITS SOIL TYPE	mg/kg NATIVE										
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use											
Beryllium	7.2	14	72	590	2700	ND	0.33	0.34	0.36	0.35	0.22 J	0.33	0.33 J	0.40 J	0.38 J	0.35 J
Cadmium	2.5	2.5	4.3	9.3	60	0.13 J	ND	ND	0.16 J	ND	ND	ND	ND	ND	ND	0.18 J
Calcium						207000	68700	74300	78800	74500	99300	83300	82100	87700	67100	69300
Chromium						4.1	10.3	10.1	12.6	11.4	8.7	10.2	10.9	12.3	11.8	11.4
Cobalt						ND	4.3 J	5.9 J	6.1 J	5.2 J	4.0 J	5.1 J	5.1 J	5.5 J	5.7 J	5.7 J
Copper	50	270	270	270	10000	4.1	13.3	16.7	15.3	14.0	10.0	12.2	12.3	14.1	12.9	15.6
Iron						3050	11700	12000	13900	13400	9920	12600	12500	14100	14500	13900
Lead	63	400	400	1000	3900	50.7	17.9	15.5	14.0	16.5	12.3	27.7	13.4	11.6	12.1	16.2
Magnesium						6730	25900	30500	32100	30000	37400	34700	29300	35200	27500	27800
Manganese	1600	2000	2000		10000	79.8	341	427	399	359	320	401	405	395	381	387
Nickel	30	140	310	310	10000	7.0	10.0	12.6	14.3	12.4	9.8	12.0	12.0	12.8	13.1	12.9
Potassium						379 J	1600	1600	1980	1710	1300	1620	1650	1900	1720	1510
Selenium	3.9	36	180	1500	6800	ND										
Silver	2	36	180	1500	6800	ND										
Sodium						342 J	477 J	430 J	328 J	295 J	233 J	250 J	480 J	614 J	534 J	519 J
Vanadium					•	3.4 J	16.8	15.2	17.8	15.7	11.8	14.5	16.2	18.6	16.9	16.1
Zinc	109	2200			10000	38.1	74.2	63.8	66.9	59.2	63.6	56.4	70.1	67.8	70.7	76.5

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

		L DEPTH	2-X02-8ft	2-X02-9ft	2-X02-10ft	2-X02-11ft	2-X02-12ft	2-X02-13ft	2-X02-14ft	2-X03-9ft	2-X03-10ft	2-X03-11ft	2-X03-12ft			
			LO	CATION - SAMPI	LE DEPTH	2-A02-011	2-A02-91t	2-A02-101t	2-A02-111t	2-A02-12It	2-A02-131t	2-A02-1411	2-A05-911	2-A05-101t	2-A05-111t	2-A03-1211
				SAMPL	ING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAMI	PLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				s	OIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use											
VOCs			CSC													
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	0.016	ND	ND	ND	0.014	0.051	0.0072	0.011	ND	ND
Acetone	0.05	100	100	500	1000	ND	0.046	ND	0.55	ND	0.032	0.086	0.011	0.029	0.017	0.0076
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND	ND	ND	ND	ND	0.00065 J	0.0095	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane						ND	ND	0.64	ND	0.77	ND	0.0061	0.0036	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	0.0052	0.70	0.83	1.2	0.070	0.034	0.034	0.29	0.00047 J	0.00029 J
Isopropylbenzene						ND	0.0017	0.19	0.15	0.14	0.011	0.0022	0.0016	0.035	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0091	0.018
Methylcyclohexane						ND	0.11	2.7	1.1	2.4	0.20	0.016	0.0061	0.084	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND	ND	ND	ND	ND	ND	0.0032	0.00092 J	ND	0.0032	0.00096 J
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND	0.053 J	0.038 J	0.10 J	0.0092	0.0035	0.0043	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	ND	0.015	1.8	3.6	6.0	0.40	0.12	0.021	0.13	0.00026 J	ND
SVOCs							01010	210	0.0	010	0110	0112	01021	0110	0100020 0	
Benzo[a]anthracene	1	1	1	5.6	11	0.30	0.68	ND	ND	0.60	0.041	ND	0.022 J	0.028 J	ND	ND
Benzo[a]pyrene	1	1	1	1	1.1	0.24	0.51	ND	ND	0.45	0.029 J	ND	0.015 J	0.019 J	ND	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	0.33	0.75	ND	ND	0.65	0.042	ND	0.023 J	0.020 J	ND	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	0.14	0.29	ND	ND	0.27	0.014 J	ND	ND	0.021 J	ND	ND
Chrysene	1	1	3.9	56	110	0.34 J	0.84	ND	ND	0.66	0.046 J	ND	0.019 J	0.029 J	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	0.047	0.088	ND	ND	0.077	ND	ND	ND	0.016 J	ND	ND
Dibenzofuran	7	14	59	350	1000	0.047 0.081 J	0.35 J	ND	ND	0.21 J	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	1.0	2.7	ND	ND	2.0	0.12 J	ND	0.041 J	0.020 J	ND	ND
Fluorene	30	100	100	500	1000	0.094 J	0.37 J	ND	ND	0.21 J	0.011 J	ND	0.0098 J	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	0.21	0.40	ND	ND	0.36	0.023 J	ND	ND	0.018 J	ND	ND
Naphthalene	12	100	100	500	1000	ND	0.12 J	0.50	0.75	0.63	0.16 J	0.10 J	0.44	ND	ND	ND
Phenanthrene	100	100	100	500	1000	0.87	2.8	ND	ND	1.8	0.10 J	ND	0.054 J	ND	ND	ND
Pyrene	100	100	100	500	1000	0.81	2.5	ND	ND	1.7	0.11 J	ND	0.039 J	0.024 J	ND	ND
PCBs													-			
Total PCBs	0.1	1	1	1	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals																
Aluminum						8440	6410	6880	6470	6360	6090	5400	7600	3900	2760	5340
Mercury	0.18	0.81	0.81	2.8	5.7	0.010 J	ND	ND	ND	ND	0.022	ND	ND	ND	0.023	0.013 J
Arsenic	13	16	16	16	16	2.6 J	3.2	2.9	3.1	2.5	2.6	2.2 J	3.3	1.6 J	3.6	1.9 J
Barium	350	350	400	400	10000	61.5	49.7	55.3	50.8	51.8	47.4	61.8	70.9	49.6	24.5 J	52.1

			LOG	CATION - SAMI	PLE DEPTH	2-X02-8ft	2-X02-9ft	2-X02-10ft	2-X02-11ft	2-X02-12ft	2-X02-13ft	2-X02-14ft	2-X03-9ft	2-X03-10ft	2-X03-11ft	2-X03-12ft
				SAMP	LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAN	MPLE TYPE	SOIL										
					UNITS	mg/kg										
					SOIL TYPE	NATIVE										
_	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use											
Beryllium	7.2	14	72	590	2700	0.42	0.34 J	0.36 J	0.34 J	0.33	0.31 J	0.26 J	0.43	0.21 J	0.16 J	0.27 J
Cadmium	2.5	2.5	4.3	9.3	60	0.13 J	0.12 J	0.14 J	0.13 J	ND	0.12 J	0.21 J	ND	0.29 J	0.29 J	ND
Calcium						86700	97700	79900	77600	71200	74800	89300	56400	93200	126000	117000
Chromium						13.1	10.4	10.8	10.1	11.1	10	8.1	11.6	6.6	4.9	8.7
Cobalt						6.2 J	5.2 J	5.6 J	5.3 J	4.7 J	5.1 J	4.4 J	5.2 J	3.1 J	3.5 J	5.3 J
Copper	50	270	270	270	10000	13.4	14.7	13.0	12.6	11.6	12.3	15.1	21.4	12.2	10.5	10.6
Iron						15100	13300	13700	13700	12500	12700	10700	12400	8390	7150	11900
Lead	63	400	400	1000	3900	12.2	13.5	15.2	15.5	12.3	12.4	12.2	39.9	10.8	22.8	10
Magnesium						34600	28500	31900	31500	27300	29400	36500	15300	38400	65900	56300
Manganese	1600	2000	2000		10000	432	418	426	412	374	409	421	256	436	332	350
Nickel	30	140	310	310	10000	14.5	12.2	11.7	11.9	10.9	11.1	9.8	13.1	7.4	8.6	12.8
Potassium						1670	1330	1390	1350	1290	1290	1480	1230	1030	951	1400
Selenium	3.9	36	180	1500	6800	ND										
Silver	2	36	180	1500	6800	ND										
Sodium						564 J	456 J	493 J	450 J	455 J	323 J	263 J	807 J	483 J	400 J	324 J
Vanadium						18.2	18.8	16.0	15.8	15.5	15.2	12.8	16.5	11.5	8.1	13.3
Zinc	109	2200			10000	63.1	59.6	69.8	68.3	61.9	62.3	81.9	66.8	104	67.6	46.5

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

 $[\]ast$ - LCS or LCSD $% \left(1\right) =\left(1\right) \left(1\right)$

F1 - MS and/or MSD Recovery is outside acceptance limits.

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LO	CATION - SAM	PLE DEPTH	DUP-B- 080519	2-X04-9ft	2-X04-10ft	2-X04-11ft	2-X04-12ft	2-X04-13ft	2-X04-14ft	2-X04-15ft
				SAMP	LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAI	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use								
VOCs			CSC										
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND	0.020	0.023
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	0.0089	0.0067	0.0048 J	ND	ND	ND
Acetone	0.05	100	100	500	1000	0.0096	0.013	0.096	0.10	0.072	ND	0.042	0.032
Benzene	0.06	2.9	4.8	44	89	ND	ND	0.0038	0.0011	0.00055 J	0.053 J	0.00041 J	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	0.00028 J	0.00019 J	ND	ND	ND
Cyclohexane						ND	ND	0.0020	0.011	0.0055	0.069 J	0.00030 J	0.00041 J
Ethylbenzene	1	30	41	390	780	ND	ND	0.050	0.0029	0.0021	0.30	0.0028	0.0012
Isopropylbenzene						ND	ND	0.0052	0.0022	0.0032	0.036 J	0.00042 J	0.00018 J
Methyl tert-butyl ether	0.93	62	100	500	1000	0.041	0.033	0.0043	0.015	0.015	ND	0.016	0.030
Methylcyclohexane						ND	ND	0.0073	0.011	0.0027	0.15	0.00067 J	0.00077 J
Methylene Chloride	0.05	51	100	500	1000	0.0021	0.00065 J	0.0022	0.0014	0.0012	ND	0.0013	0.0030
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND	0.0074	0.0014	0.00083 J	0.60	0.0029	0.0011
Xylenes, Total	0.26	100	100	500	1000	ND	ND	0.071	0.018	0.010	1.9	0.017	0.0057
SVOCs					2000			01071	0.010	01010	200	01017	010007
Benzo[a]anthracene	1	1	1	5.6	11	ND	ND	ND	ND	ND	0.043	ND	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND	ND	ND	ND	ND	0.020 J	ND	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	ND	ND	ND	ND	ND	0.026 J	ND	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND	ND	ND	ND	ND	0.0095 J	ND	ND
Chrysene	1	1	3.9	56	110	ND	ND	ND	ND	ND	0.066 J	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	7	14	59	350	1000	ND	ND	ND	ND	ND	0.014 J	ND	ND
Fluoranthene	100	100	100	500	1000	ND	ND	ND	ND	ND	0.072 J	ND	ND
Fluorene	30	100	100	500	1000	ND	ND	ND	ND	ND	0.051 J	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	ND	0.18 J	0.025 J	0.020 J	ND	0.78 F1	0.011 J	0.016 J
Phenanthrene	100	100	100	500	1000	ND	ND	ND	ND	ND	0.15 J	ND	ND
Pyrene	100	100	100	500	1000	ND	ND	ND	ND	ND	0.14 J	ND	ND
PCBs													
Total PCBs	0.1	1	1	1	25	ND	ND	ND	ND	ND	ND	ND	ND
Metals	V.1	·	•	•		112	112	112	112		-12	112	112
Aluminum						5380	6420	7080	6670	7930	6880	7350	7040
Mercury	0.18	0.81	0.81	2.8	5.7	0.020	0.014 J	0.015 J	0.019	0.016 J	0.018	0.019	0.015 J
Arsenic	13	16	16	16	16	2.8	2.8	2.8	2.3 J	3.4	2.8 J	1.8 J	2.1 J
	350	350	400	400	10000	33.1 J	172	74.2	65.1	75.0	2.6 J 117	75.5	79.3
Barium	330	330	400	400	10000	33.1 J	1/2	/4.2	05.1	/5.0	11/	/5.5	19.3

			LOC	CATION - SAM	PLE DEPTH	DUP-B- 080519	2-X04-9ft	2-X04-10ft	2-X04-11ft	2-X04-12ft	2-X04-13ft	2-X04-14ft	2-X04-15ft
				SAMP	LING DATE	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019	08/05/2019
				SAN	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Industrial Use								
Beryllium	7.2	14	72	590	2700	0.22 J	0.35	0.35 J	0.35 J	0.42 J	0.35 J	0.37 J	0.38 J
Cadmium	2.5	2.5	4.3	9.3	60	0.18 J	0.18 J	0.23 J	ND	ND	0.15 J	ND	ND
Calcium						71600	80200	84100	90900	92400	79400	80900	92300
Chromium						8.5	10.4	11.2	11.0	12.8	11.5	11.9	11.4
Cobalt						4.6 J	5.8 J	4.9 J	4.5 J	5.2 J	4.8 J	5.5 J	5.6 J
Copper	50	270	270	270	10000	10.4	13.4	13.0	12.5	12.9	10.7	12.3	13.5
Iron						13000	13300	14200	13200	15300	12500	12900	13400
Lead	63	400	400	1000	3900	7.9	26.8	13.8	32.5	13.0	266	50.8	16.4
Magnesium						29700	32200	35900	34400	39300	30700	33500	40200
Manganese	1600	2000	2000		10000	625	401	375	377	438	369	405	422
Nickel	30	140	310	310	10000	10.4	12.7	12.0	11.0	12.6	11.1	13.1	12.5
Potassium						1020	1560	1670	1710	2060	1800	1970	1890
Selenium	3.9	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND
Sodium					, and the second	330 J	376 J	387 J	340 J	380 J	348 J	320 J	331 J
Vanadium						12.5	16.5	17.0	16.0	18.6	15.7	16.9	17.3
Zinc	109	2200			10000	86.6	65.2	73.5	63.3	68.1	68.6	65.7	61.9

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

						ECTICUT STRE P SITE C915345									
			LOC	CATION - SAM	PLE DEPTH	1-Y01-11ft	1-Y02-9ft	1-Y03-10ft	1-Y04-9ft	2-Y01-9ft	2-Y02-4ft	2-Y03-5ft	2-Y04-12ft	2-Y05-12 ft	3-Y04-13 ft
							00/05/0040	00/04/04/0	00/05/0040	00/07/0040	00/05/0040	00/07/0040	00/04/04040	00/05/00/0	00/05/0040
					LING DATE	08/06/2019	08/06/2019	08/06/2019		08/06/2019			08/06/2019		08/07/2019
				SA.	MPLE TYPE	SOIL	SOIL mg/kg	SOIL	SOIL mg/kg	SOIL	SOIL	SOIL	SOIL mg/kg	SOIL	SOIL
					UNITS	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE	mg/kg NATIVE
		5 11 11	Restricted		SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Residential Use	Commercial Use	Industrial Use										
VOCs			Use												
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	ND	ND	0.011	ND						
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00029 J
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane						ND	ND	ND	0.0042	ND	ND	ND	ND	3.0	ND
Ethylbenzene	1	30	41	390	780	ND	ND	0.00085 J	0.0044	ND	ND	ND	ND	2.3	ND
Isopropylbenzene						ND	ND	0.00019 J	0.00085 J	ND	ND	ND	ND	0.41	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane						ND	ND	ND	0.015	ND	ND	ND	ND	8.3	ND
Methylene Chloride	0.05	51	100	500	1000	0.00056 J	0.00060 J	ND	0.0010 J	0.00074 J	0.00075 J	ND	ND	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.61	ND
Xylenes, Total	0.26	100	100	500	1000	ND	0.00035 J	0.00040 J	0.0078	ND	ND	ND	ND	11	0.00041 J
SVOCs															
Benzo[a]anthracene	1	1	1	5.6	11	ND F1	0.086	ND	ND	0.030 J	ND	ND	ND	ND	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND F1	0.082	ND	ND	0.019 J	0.015 J	ND	ND	ND	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	ND F1	0.14	ND	ND	0.032 J	0.042	ND	ND	ND	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND F1	0.043	ND	ND	0.016 J	0.020 J	ND	ND	ND	ND
Chrysene	1	1	3.9	56	110	ND	0.095 J	ND	ND	0.025 J	0.032 J	ND	ND	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND F1 F2	ND								
Dibenzofuran	7	14	59	350	1000	ND F1	ND	ND	ND	0.013 J	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND F1	0.19 J	ND	ND	0.027 J	0.073 J	0.024 J	ND	ND	ND
Fluorene	30	100	100	500	1000	ND F1	ND								
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND F2	0.082	ND	ND	0.020 J	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	ND F1	ND	ND	0.00031 J	0.025 J	ND	ND	ND	0.27 J	ND
Phenanthrene	100	100	100	500	1000	ND F1	0.041 J	ND	ND	0.029 J	0.047 J	0.030 J	ND	ND	ND
Pyrene	100	100	100	500	1000	ND	0.15 J	ND	ND	0.022 J	0.048 J	0.021 J	ND	ND	ND

	BCP SITE C915345														
			LOC	CATION - SAM	IPLE DEPTH	1-Y01-11ft	1-Y02-9ft	1-Y03-10ft	1-Y04-9ft	2-Y01-9ft	2-Y02-4ft	2-Y03-5ft	2-Y04-12ft	2-Y05-12 ft	3-Y04-13 ft
				SAMI	PLING DATE	08/06/2019	08/06/2019	08/06/2019	08/06/2019	08/06/2019	08/06/2019	08/06/2019	08/06/2019	08/07/2019	08/07/2019
					MPLE TYPE	SOIL	SOIL								
				2	UNITS	mg/kg	mg/kg								
					SOIL TYPE	NATIVE	NATIVE								
	Unrestricted	Residential	Restricted	Commercial	Industrial										
	Use	Use	Residential Use	Use	Use										
Metals															
Aluminum						5920	7290	7280	7580	7930	8620	8570	7520	8140	6020
Mercury	0.18	0.81	0.81	2.8	5.7	ND	ND	0.012 J	0.015 J	0.019	0.012 J	ND	0.012 J	ND	0.012 J
Arsenic	13	16	16	16	16	2.7 J	3.8	3.0 J	5.4	3.6	4.9	3.2 J	3.2 J	3.3 J	3.1 J
Barium	350	350	400	400	10000	51.3	63.7	48.2	60.5	49.4	69.8	65.7	75.0	93.5	81.0
Beryllium	7.2	14	72	590	2700	0.27 J	0.38 J	0.35 J	0.39 J	0.40 J	0.45	0.44	0.39 J	0.53	0.37 J
Cadmium	2.5	2.5	4.3	9.3	60	ND	0.16 J								
Calcium						73800	63400	59800	72100	64600	72600	73700	67500	55800	89400
Chromium						10.6	11.9	11.4	12.4	13.2	12.8	12.8	12.0	13.5	10.6
Cobalt						4.6 J	5.3 J	5.3 J	5.7 J	5.1 J	6.1 J	6.1 J	6.1 J	6.1 J	4.2 J
Copper	50	270	270	270	10000	13.7	13.5	12.1	14.6	13.5	15.7	14.1	13.7	18.0	11.0
Iron						11400	13200	12600	14500	13600	16500	14800	13700	16000	11900
Lead	63	400	400	1000	3900	12.1	14.7	12.1	15.9	39.6	13.1	11.6	10.5	11.0	10.4
Magnesium						29700	25000	22400	29500	24300	24500	24200	27800	18700	40000
Manganese	1600	2000	2000		10000	382	338	347	366	395	393	339	366	347	328
Nickel	30	140	310	310	10000	9.1	11.8	11.5	12.6	12.8	13.6	13.9	12.4	13.7	11.3
Potassium						1500	1810	1810	1870	1930	1860	1970	1950	2070	1630
Selenium	3.9	36	180	1500	6800	ND	ND								
Silver	2	36	180	1500	6800	ND	ND								
Sodium						289 J	344 J	968 J	1190	1560	1230	1480	938 J	889 J	796 J
Vanadium						14.7	17.6	16.8	18.3	18.2	21.3	20.0	18.1	24.2	15.0
Zinc	109	2200			10000	77.3	59.5	59.8	63.0	72.3	61.4	59.4	64.4	84.9	66.0

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

					ECTICUT STRI P SITE C91534								
			LOC	CATION - SAM	PLE DEPTH	1-Z01-7ft	1-Z02-11 ft	1-Z03-11 ft	1-Z04-10 ft	2-Z01-7 ft	2-Z03-12 ft	2-Z04-9 ft	2-Z05-12 ft
												00/05/2010	00/07/2010
					PLING DATE							08/07/2019	08/07/2019 SOIL
				SA	MPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			Restricted		SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Residential Use	Commercial Use	Industrial Use								
VOCs													
1,1-Dichloroethane	0.27	19	26	240	480	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND	ND	ND	ND	ND	ND	0.010	ND
Acetone	0.05	100	100	500	1000	ND	ND	0.0086	ND	ND	ND	0.018	0.0057
Benzene	0.06	2.9	4.8	44	89	ND	ND	ND	ND	ND	ND	0.0021	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane						0.51	ND	0.00026 J	0.0013	0.86	ND	0.014	0.0045
Ethylbenzene	1	30	41	390	780	0.28	ND	0.00029 J	0.00062 J	0.65	ND	0.033	0.00071 J
Isopropylbenzene						0.14	ND	ND	0.00017 J	0.17	ND	0.0056	0.00092 J
Methyl tert-butyl ether	0.93	62	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane						1.9	ND	ND	0.00077 J	3.4	ND	0.047	0.046
Methylene Chloride	0.05	51	100	500	1000	ND	0.00053 J	ND	0.00081 J	ND	ND	ND	0.00060 J
Tetrachloroethene	1.3	5.5	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND	ND	ND	ND	ND	ND	0.0092	ND
Xylenes, Total	0.26	100	100	500	1000	0.25	ND	0.00031 J	0.00090 J	2.9	ND	0.054	0.0027
SVOCs													
Benzo[a]anthracene	1	1	1	5.6	11	0.031 J	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pyrene	1	1	1	1	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[b]fluoranthene	1	1	1	5.6	11	0.019 J	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.8	1	3.9	56	110	0.012 J	ND	ND	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	56	110	0.025 J	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	7	14	59	350	1000	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	0.037 J	ND	ND	ND	ND	ND	ND	0.011 J
Fluorene	30	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	ND	ND	ND	ND	0.41	ND	0.024 J	ND
Phenanthrene	100	100	100	500	1000	0.045 J	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	100	500	1000	0.029 J	ND	ND	ND	ND	ND	ND	ND

BCP SITE C915345													
			LOC	CATION - SAM	IPLE DEPTH	1-Z01-7ft	1-Z02-11 ft	1-Z03-11 ft	1-Z04-10 ft	2-Z01-7 ft	2-Z03-12 ft	2-Z04-9 ft	2-Z05-12 ft
				CAMI	PLING DATE	00/06/2010	09/07/2010	09/07/2010	09/07/2010	08/07/2010	08/07/2010	08/07/2010	08/07/2010
							SOIL		SOIL	SOIL	SOIL		SOIL
				SA	MPLE TYPE			SOIL				SOIL	
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			Restricted		SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Residential Use	Commercial Use	Industrial Use								
Metals			Usc										
Aluminum						6940	8120	6100	6800	6500	6490	5120	7840
Mercury	0.18	0.81	0.81	2.8	5.7	0.013 J	ND	0.014 J	ND	ND	ND	ND	0.016 J
Arsenic	13	16	16	16	16	4.3	3.2	2.7 J	2.8 J	3.0 J	3.1 J	2.9 J	2.5 J
Barium	350	350	400	400	10000	54.5	78.5	44.9	84.4	60.0	94.5	39.4 J	64.4
Beryllium	7.2	14	72	590	2700	0.37 J	0.50	0.38 J	0.38 J	0.39 J	0.37 J	0.30 J	0.48
Cadmium	2.5	2.5	4.3	9.3	60	ND	ND	ND	ND	ND	0.15 J	ND	ND
Calcium						74900	65800	76500	81900	74800	84100	75600	75400
Chromium						11.1	15.5	9.9	10.9	10.5	9.6	9.0	12.9
Cobalt						5.3 J	6.5 J	4.8 J	5.0 J	5.0 J	4.9 J	3.9 J	5.7 J
Copper	50	270	270	270	10000	11.6	14.6	11.9	12.3	12.4	14.0	10.1	15.1
Iron						13500	15900	11600	12800	13100	12000	11000	14000
Lead	63	400	400	1000	3900	12.3	9.6	9.2	11.7	13.2	10.5	12.3	8.7
Magnesium						29000	22900	30900	34500	29100	34000	31900	27500
Manganese	1600	2000	2000		10000	383	399	375	390	403	411	393	353
Nickel	30	140	310	310	10000	11.8	14.1	10.7	12.0	11.6	11.4	9.0	12.7
Potassium						1640	1860	1560	1750	1550	1600	1240	1960
Selenium	3.9	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND
Sodium						1110 J	1210	684 J	1020 J	1280	445 J	1250	1050 J
Vanadium						17.1	20.5	15.4	16.3	16.7	16.8	14.4	19.3
Zinc	109	2200			10000	67.2	61.6	67.2	73.0	66.0	85.7	61.8	64.1

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- $\ensuremath{^*}$ LCS or LCSD $% \ensuremath{^{\circ}}$ is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

SUBSURFACE SOIL RESULTS - 8/8/2019 - 8/9/2019 AND 8/12/2019 WASTE CHARACTERIZATION SAMPLING 301 CONNECTICUT STREET SITE BCP SITE C915345

			LOC	CATION - SAM	PLE DEPTH	A1-WC	A1-WC	A1-WC	B1-WC	B1-WC	B1-WC	B4-WC
				SAMP	LING DATE	08/12/2019	08/12/2019	08/12/2019	08/08/2019	08/08/2019	08/08/2019	08/12/2019
				SA	MPLE TYPE	SOIL						
					UNITS	mg/kg	mm/sec	su	mg/kg	mm/sec	su	mg/kg
	Unrestricted	Residential	Restricted Residential	Commercial	Industrial							
	Use	Use	Use	Use	Use							
PCBs												
Aroclor 1016						ND			ND			ND
Aroclor 1221						ND			ND			ND
Aroclor 1232						ND			ND			ND
Aroclor 1242						ND			ND			ND
Aroclor 1248						ND			ND			ND
Aroclor 1254						ND			ND			ND
Aroclor 1260						ND			ND			ND
Aroclor-1262						ND			ND			ND
Aroclor 1268						ND			ND			ND
Total PCBs	0.1	1	1	1	25	ND			ND			ND
WetChem												
Burn Rate							ND			ND		
Cyanide, Reactive						ND			ND			ND
рН								8.4 HF			8.1 HF	
Sulfide, Reactive						ND			ND			ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

HF - Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

SUBSURFACE SOIL RESULTS - 8/8/2019 - 8/9/2019 AND 8/12/2019 WASTE CHARACTERIZATION SAMPLING 301 CONNECTICUT STREET SITE PCD STIFE CO15245

B4-WC 08/12/2019 SOIL mm/sec	B4-WC 08/12/2019 SOIL su	D1-WC 08/09/2019 SOIL mg/kg	D1-WC 08/09/2019 SOIL mm/sec	D1-WC 08/09/2019 SOIL su	E2-WC 08/09/2019 SOIL mg/kg	E2-WC 08/09/2019 SOIL mm/sec	E2-WC 08/09/2019 SOIL su
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
		ND			ND		
ND			ND			ND	
		ND			ND		
	8.1 HF			8.5 HF			8.1 HF
		ND			ND		

OFFSITE INVESTIGATION SUBSURFACE SOIL RESULTS - 9/9/2019 AND 9/10/2019 301 CONNECTICUT STREET SITE BCP SITE C915345

	LOCATION - SAMPLE DEPT SAMPLING DAT SAMPLE TYP UNIT				PLING DATE MPLE TYPE	SW-1-5FT 9/9/2019 SOIL mg/kg	SW-2-5FT 9/9/2019 SOIL mg/kg	SW-3-7FT 9/9/2019 SOIL mg/kg	SW-4-6FT 9/9/2019 SOIL mg/kg	SW-5-10FT 9/9/2019 SOIL mg/kg	SW-6-6FT 9/9/2019 SOIL mg/kg	SW-7-6FT 9/9/2019 SOIL mg/kg	SW-8-10FT 9/10/2019 SOIL mg/kg	SW-9-5FT 9/10/2019 SOIL mg/kg	SW-10-5FT 9/10/2019 SOIL mg/kg
	Unrestricted Use	Residential Use	Restricted Residential	Commercial Use	Industrial Use	mg/kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg
General Chemistry			031												
Solids, Total (%)						87.2	88.4	87.4	86.8	87.3	87.9	90.5	90.6	88.5	88.5
Semivolatile Organics by GC/MS															
Acenaphthene	20	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.042 J	ND
Hexachlorobenzene	0.33	0.33	1.2	6	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND	0.049 J	ND	ND	ND	ND	0.055 J	ND	0.51	ND
Naphthalene	12	100	100	500	1000	ND	ND	ND	0.087 J	ND	0.023 J	0.31	0.031 J	0.024 J	ND
Benzo(a)anthracene	1	1	1	5.6	11	ND	0.029 J	ND	ND	ND	ND	0.022 J	ND	0.23	ND
Benzo(a)pyrene	1	1	1	1	1.1	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND
Benzo(b)fluoranthene	1	1	1	5.6	11	ND	0.04 J	ND	ND	ND	ND	0.03 J	ND	0.24	ND
Benzo(k)fluoranthene	0.8	1	3.9	56	110	ND	ND	ND	ND	ND	ND	ND	ND	0.086 J	ND
Chrysene	1	1	3.9	56	110	ND	0.034 J	ND	ND	ND	ND	0.022 J	ND	0.23	ND
Acenaphthylene	100	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.099 J	ND
Benzo(ghi)perylene	100	100		500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.1 J	ND
Fluorene	30	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.057 J	ND
Phenanthrene	100	100	100	500	1000	ND	0.038 J	ND	ND	ND	ND	0.039 J	ND	0.51	ND
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND	ND	ND	ND	0.033 J	ND
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	11	ND	ND	ND	ND	ND	ND	ND	ND	0.12 J	ND
Pyrene	100	100	100	500	1000	ND	0.044 J	ND	ND	ND	ND	0.043 J	ND	0.42	ND
Dibenzofuran	7	14		350	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.029 J	ND
Pentachlorophenol	0.8	2.4	6.7	6.7	55	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	0.33	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	0.33	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	0.33	34	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organics by GC/MS															
Methylene chloride	0.05	51		500	1000	ND		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.27	19		240	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.37	10	49	350	700	0.00018 J	0.00021 J	ND	ND	0.01 J	ND	ND	0.0096 J	0.00029 J	0.00028 J
Carbon tetrachloride	0.76	1.4	2.4	22	44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	5.5		150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1.1	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.68	100		500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.06	2.9		44	89	0.00016 J	0.00017 J	ND	ND	ND	ND	ND	0.0081 J	0.00019 J	ND
Toluene	0.7	100	100	500	1000	0.00067 J	0.0009 J	ND	ND	ND	ND	0.055	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND	ND	ND	ND	0.029 J	ND	0.28	ND	ND	ND
Vinyl chloride	0.02	0.21	0.9	13	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.33	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.19	100		500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.47	10		200	400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100		500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	17	49	280	560	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	9.8		130	250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether	0.93	62	100	500	1000	0.00046 J	0.00063 J	ND	ND	ND	ND	ND	ND	0.0016 J	0.0019 J
p/m-Xylene						ND	ND	ND	ND	ND	0.038 J	0.7	ND	ND	ND
o-Xylene	2.5		400	***	1000	ND	ND	ND	ND	ND	0.024 J	0.097	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	0.032	0.029	ND	ND	ND	ND	ND	ND	0.26	0.24
Carbon disulfide					400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	0.12	100	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	0.0071 J	ND
n-Butylbenzene	12			500	1000	ND	ND	0.12	1.5	ND	ND	0.1	0.01 J	ND	ND
sec-Butylbenzene	11	100	100	500	1000	ND	ND	0.35	0.82	ND	0.18	0.04 J	0.022 J	ND	ND

OFFSITE INVESTIGATION SUBSURFACE SOIL RESULTS - 9/9/2019 AND 9/10/2019 301 CONNECTICUT STREET SITE BCP SITE C915345

	Postrioted				LING DATE	SW-1-5FT 9/9/2019 SOIL mg/kg	SW-2-5FT 9/9/2019 SOIL mg/kg	SW-3-7FT 9/9/2019 SOIL mg/kg	SW-4-6FT 9/9/2019 SOIL mg/kg	SW-5-10FT 9/9/2019 SOIL mg/kg	SW-6-6FT 9/9/2019 SOIL mg/kg	SW-7-6FT 9/9/2019 SOIL mg/kg	SW-8-10FT 9/10/2019 SOIL mg/kg	SW-9-5FT 9/10/2019 SOIL mg/kg	SW-10-5FT 9/10/2019 SOIL mg/kg
	Unrestricted Use	Residential Use	Restricted Residential	Commercial Use	Industrial Use										
tert-Butylbenzene	5.9	100	100	500	1000	ND	ND	0.032 J	0.096 J	ND	0.031 J	ND	ND	ND	ND
Isopropylbenzene						ND	ND	0.075	0.44	0.0071 J	0.071	0.058	0.007 J	ND	ND
p-Isopropyltoluene						ND	ND	0.22	1.2	ND	0.033 J	0.05 J	0.0067 J	ND	ND
Naphthalene	12	100	100	500	1000	ND	ND	ND	ND	0.054 J	0.14 J	0.36	ND	ND	ND
n-Propylbenzene	3.9	100	100	500	1000	ND	ND	0.14	1.5	0.02 J	0.15	0.2	ND	ND	ND
1,2,4-Trichlorobenzene						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	47	52	190	380	ND	ND	ND	0.14 J	ND	0.043 J	0.41	ND	0.00035 J	ND
1,2,4-Trimethylbenzene	3.6	47	52	190	380	ND	ND	0.016 J	4.5	ND	0.042 J	1.1	ND	0.00074 J	ND
Methyl Acetate						ND	ND	ND	ND	ND	ND	ND	ND	0.052	0.065
Cyclohexane						ND	ND	0.17 J	4.2	ND	0.26 J	0.26 J	0.065 J	0.00084 J	ND
Methyl cyclohexane						ND	ND	1	15	0.083 J	1.6	0.72	0.12 J	0.00088 J	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

* - LCS or LCSD is outside acceptance limits.

F1 - MS and/or MSD Recovery is outside acceptance limits.

F2 - MS/MSD RPD exceeds control limits

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

OFFSITE INVESTIGATION GROUNDWATER RESULTS - 9/10/2019 301 CONNECTICUT STREET SITE BCP SITE C915345

		LOCATION	MW-6
		LING DATE	9/10/2019
	NY-TOGS	MPLE TYPE Units	WATER
Semivolatile Organics by GC/MS	1111000	Cinto	
Bis(2-chloroethyl)ether	1	ug/l	ND
3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	5	ug/l ug/l	ND ND
2,6-Dinitrotoluene	5	ug/l	ND
Bis(2-chloroisopropyl)ether	5	ug/l	ND
Bis(2-chloroethoxy)methane	5	ug/l	ND ND
Hexachlorocyclopentadiene Isophorone	50	ug/l ug/l	ND
Nitrobenzene	0.4	ug/l	ND
NDPA/DPA	50	ug/l	ND
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	5 50	ug/l ug/l	2.4 ND
Di-n-butylphthalate	50	ug/l	ND
Di-n-octylphthalate	50	ug/l	ND
Diethyl phthalate Dimethyl phthalate	50 50	ug/l ug/l	ND ND
Biphenyl	30	ug/l	ND
4-Chloroaniline	5	ug/l	ND
2-Nitroaniline	5	ug/l	ND ND
3-Nitroaniline 4-Nitroaniline	5	ug/l ug/l	ND
Dibenzofuran		ug/l	ND
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND
Acetophenone 2.4 Diableronhand	2	ug/l	ND ND
2,4-Dichlorophenol 2,4-Dimethylphenol	2	ug/l ug/l	ND
2,4-Dinitrophenol	2	ug/l	ND
4,6-Dinitro-o-cresol		ug/l	ND
Phenol Carbazole	2	ug/l ug/l	ND ND
Atrazine	7.5	ug/l ug/l	ND
Benzaldehyde		ug/l	ND
Caprolactam		ug/l	ND
Semivolatile Organics by GC/MS-SIM Acenaphthene	20	ug/l	ND
2-Chloronaphthalene	10	ug/l	ND
Fluoranthene	50	ug/l	0.04
Hexachlorobutadiene	0.5	ug/l	ND
Naphthalene Benzo(a)anthracene	0.002	ug/l ug/l	0.03
Benzo(a)pyrene	0	ug/l	ND
Benzo(b)fluoranthene	0.002	ug/l	0.04
Benzo(k)fluoranthene	0.002	ug/l	0.01
Chrysene Acenaphthylene	0.002	ug/l ug/l	0.08 ND
Anthracene	50	ug/l	ND
Fluorene	50	ug/l	ND
Phenanthrene	50	ug/l	0.06 ND
Indeno(1,2,3-cd)pyrene Pyrene	0.002 50	ug/l ug/l	0.07
Pentachlorophenol	2	ug/l	ND
Hexachlorobenzene	0.04	ug/l	ND
Hexachloroethane Volatile Organics by GC/MS	5	ug/l	ND
Methylene chloride	5	ug/l	ND
Chloroform	7	ug/l	ND
1,2-Dichloropropane	1	ug/l	ND ND
1,1,2-Trichloroethane Tetrachloroethene	5	ug/l ug/l	ND
Chlorobenzene	5	ug/l	ND
Trichlorofluoromethane	5	ug/l	ND
1,2-Dichloroethane	0.6	ug/l	ND ND
1,1,1-Trichloroethane trans-1,3-Dichloropropene	5 0.4	ug/l ug/l	ND
cis-1,3-Dichloropropene	0.4	ug/l	ND
Bromoform	50	ug/l	ND
1,1,2,2-Tetrachloroethane Benzene			
Toluene	5	ug/l	ND ND
Ethylbenzene	5 1 5		ND ND ND
	1 5 5	ug/l ug/l	ND ND ND
	1 5 5 5	ug/l ug/l ug/l ug/l ug/l	ND ND ND
Vinyl chloride	1 5 5 5 2	ug/I ug/I ug/I ug/I ug/I ug/I	ND ND ND ND ND
Vinyl chloride Chloroethane	1 5 5 5	ug/l ug/l ug/l ug/l ug/l	ND ND ND
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	1 5 5 5 5 5 5 5 3	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1 5 5 5 5 5 5 5 3 3 3 3	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 5 5 5 5 5 5 5 3	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Frichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene	1 5 5 5 5 5 5 5 3 3 3 3 10 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Frichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene 0-Xylene	1 5 5 5 5 5 5 5 3 3 3 3 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene I,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene	1 5 5 5 5 5 5 5 3 3 3 3 10 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone	1 5 5 5 5 2 5 5 5 5 3 3 3 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone	1 5 5 5 5 2 5 5 5 5 3 3 3 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene I,2-Dichlorobenzene I,3-Dichlorobenzene I,4-Dichlorobenzene Methyl tert butyl ether pym-Xylene p-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone	1 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene I,2-Dichlorobenzene I,3-Dichlorobenzene I,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene p-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 1,2-Dibromoethane n-Butylbenzene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene Methyl tert butyl ether p/m-Xylene p-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene p-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene sec-Butylbenzene tert-Butylbenzene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene I,2-Dichloroethene I,3-Dichlorobenzene I,3-Dichlorobenzene I,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene p-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene 1,2-Dibromo-3-chloropropane	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND
Vinyl chloride Chloroethane trans-1,2-Dichloroethene I,2-Dichlorobenzene I,3-Dichlorobenzene I,4-Dichlorobenzene I,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene l,2-Dibromo-3-chloropropane Isopropyltoluene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 2-Hexanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene 1,2-Dibromo-3-chloropropane Isopropylbenzene p-Isopropyltoluene Naphthalene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND
Vinyl chloride Chloroethane trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 2-Hexanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene 1,2-Dibromo-3-chloropropane Isopropylbenzene p-Isopropyltoluene Naphthalene n-Propylbenzene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND N
Bromomethane Vinyl chloride Chloroethane trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 2-Hexanone 1,2-Dibromoethane n-Butylbenzene etert-Butylbenzene tert-Butylbenzene 1,2-Dibromo-3-chloropropane Isopropylbenzene p-Isopropyltoluene Naphthalene n-Propylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND

^{*} Comparison is not performed on parameters with non-numeric criteria.

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

	Location ID Sample Matrix Date Sampled Units NYS TOGS Groundwater Standand & Guidance Value	MW-1 WG 04/11/2019 ug/l	MW-2 WG 04/11/2019 ug/I	MW-3 WG 04/11/2019 ug/l	MW-4 WG 04/11/2019 ug/l	DUP (MW-4) WG 04/11/2019 ug/l	MW-5 WG 04/11/2019 ug/l	MW-1 WG 05/21/2019 ug/l	MW-2 WG 05/21/2019 ug/l
VOC									
Acenaphthene	20.0 ug/l	0.07 J	0.22	0.03 J	0.06 J	0.06 J	ND	0.08 J	0.06 J
Acenaphthylene		ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50.0 ug/l	0.02 J	0.14	0.02 J	0.03 J	0.02 J	0.01 J	0.04 J	0.02 J
Benzo(A)Anthracene	0.002 ug/l	ND	0.24	0.03 J	ND	ND	ND	0.05 J	0.02 J
Benzo(A)Pyrene		ND	0.17	0.05 J	0.05 J	ND	0.03 J	0.02 J	ND
Benzo(B)Fluoranthene	0.002 ug/l	ND	0.17	0.08 J	0.05 J	ND	0.03 J	0.04 J	0.03 J
Benzo(G,H,I)Perylene Benzo(K)Fluoranthene		ND	0.11	0.05 J	0.05 J	ND	0.02 J	0.03 J	0.01 J
. ,	0.002 ug/l	ND	0.18	0.07 J	0.05 J	ND	0.03 J	0.03 J	ND
Bis(2-ethylhexyl)phthalate Chrysene	5.0 ug/l	2 J	ND	6.3	ND	ND	2.4 J 0.04 J	3.8 0.05	ND 0.02 J
Di-n-butylphthalate	0.002 ug/l 50.0 ug/l	ND ND	0.3 ND	0.09 J 2 J	0.08 J	ND 2 J	0.04 J	ND	0.02 J
Dibenz(A,H)Anthracene	50.0 ug/1	ND	0.04 J	+	ND	ND ND	ND	0.02 J	ND
2, 4-Dimethylphenol	2.0 ug/l	ND	ND	ND	ND	ND	ND	1.8 J	ND
Fluoranthene	50.0 ug/l	0.04 J	0.83	0.28	0.4	0.14	0.16	0.08 J	0.09 J
Fluorene	50.0 ug/l	0.22	0.19	0.03 J	0.05 J	0.05 J	0.02 J	0.06 J	0.04 J
Indeno(1,2,3-C,D)Pyrene	0.002 ug/l	ND	0.1	0.04 J	0.04 J	ND	0.02 J	0.03 J	0.02 J
Naphthalene	10.0 ug/l	16	0.09 J	0.06 J	0.16 J	0.16	ND	5.8	0.14
2-Methylnaphthalene		1.1	0.05 J	0.02 J	0.5	0.09 J		0.26	0.03 J
2-Methylphenol (O-Cresol)		2.2 J	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol (P-Cresol)		2.2 J	ND	ND	ND	ND	ND	1.4 J	ND
Pentachlorophenol	1.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50.0 ug/l	0.29	0.94	0.11	0.18 J	0.09 J	0.14	0.12	0.12
Phenol	1.0 ug/l	1.90 J	0.46 J		0.42 J			ND	ND
Pyrene	50.0 ug/l	0.02 J	0.64	0.20	0.26	0.1 J	0.1	0.06 J	0.07 J
OC 1,1,1-Trichloroethane									
1,1,1-1 richloroethane	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,1-Dichloroethene	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	2.0.110/1	25 ND	ND ND	ND	15	34	ND	21 ND	ND ND
1,2-Dichloroethane	3.0 ug/l 0.6 ug/l	0.44 J	0.46 J	ND ND	0.34 J	0.32 J	ND ND	0.39 J	0.16 J
1,3,5-Trimethylbenzene (Mesitylene)	5.0 ug/l	7.3	ND	ND	17	29	ND	12	ND
1,3-Dichlorobenzene	3.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (P-Dioxane)		ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50.0 ug/l	ND	ND	ND	18	28	2.3 J	ND	ND
Acetone	50.0 ug/l	70	14	100	36	49	38	17	2.9 J
Benzene	1.0 ug/l	19	0.16 J	ND	1.2	2	ND	9.4	ND
Carbon Tetrachloride	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethylene	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.0 ug/l	56	ND	ND	46	120	ND	62	ND
Hexachlorobenzene	0.04 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
N-Butylbenzene	5.0 ug/l	ND	ND	ND	1.7 J	4	ND	ND	ND
N-Propylbenzene	5.0 ug/l	1.9 J	ND	ND	13	55	ND	2.3 J	ND
Sec-Butylbenzene	5.0 ug/l	0.74 J	ND	ND	1.2 J	2 J	ND	ND	ND
Methyl Ethyl Ketone (2-Butanone)	50.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Tert-Butyl Methyl Ether		ND	8.6	ND	ND	ND	ND	ND	3.3
p/m-Xylene	5.0 ug/l	150	ND	ND	43	74	ND	170	ND
o-Xylene Tetrachloroethylene (PCE)	5.0 ug/l	16	ND ND	ND	38	58	ND	21 ND	ND
Toluene	5.0 ug/l 5.0 ug/l	73	ND ND	ND ND	ND 5.1	ND 8.8	ND ND	61	ND ND
Trans-1,2-Dichloroethene	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	5.0 ug/l	ND	ND	ND	ND	ND	ND ND	ND ND	ND
Vinyl Chloride	2.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	2.0 "8'1	ND	ND	ND	ND	ND	ND	ND	ND
[etals		_							
Aluminum		94 J	42100	376	208	666	60 J	202	2080
Antimony	3.0 ug/l	ND	ND	ND	ND	ND	ND	ND	3.35
Arsenic	25.0 ug/l	7	16	4 J	5	ND	ND	ND	2.49
Barium	1000.0 ug/l	1880	797	197	475	582	436	1098	354
Beryllium	3.0 ug/l	ND	1 J	ND	ND	ND	ND	ND	0.11
Cadmium	5.0 ug/l	ND	ND	ND	ND	ND	ND	ND	ND
		_	727000	127000	159000	174000	409000	504000	133000

	Location ID	MW-1	1	MW-2	2	MW-3	3	MW-	4	DUP (MW	/ -4)	MW-5	MW-	1	MW-2
	Sample Matrix	WG		WG		WG		WG		WG	,	WG	WG		WG
	Date Sampled	04/11/20	19	04/11/20)19	04/11/20	19	04/11/20)19	04/11/201	19	04/11/2019	05/21/20	019	05/21/2019
	Units	ug/l		ug/l		ug/l		ug/l		ug/l		ug/l	ug/l		ug/l
	NYS TOGS Groundwater Standand & Guidance Value														
Chromium	50.0 ug/l	ND		71		ND		3	J	4	J	ND	ND		3.94
Cobalt		8	J	40		ND		ND		ND		3 J	7.16		2.13
Copper	200.0 ug/l	10	J	114.0		10		6.0	J	11		7 J	4.02	J	5.76
Cyanide	200.0 ug/l	ND		ND	•	ND		ND		ND		ND	ND		ND
Iron	300.0 ug/l	179		72800		357		276		997	_	101	2340		6890
	25.0 ug/l	ND		104		ND		ND		10	J	ND	ND		5.98
Magnesium Manganese	35000.0 ug/l 300.0 ug/l	228000		152000		74900		68700		71400		207000	312000		48100
Mercury	0.7 ug/l	950 ND		2300.0 0.14	J	88 ND		102 ND		157 ND		172 ND	904.9 ND		221 ND
Nickel	100.0 ug/l	9	J	92.0	J	33	J	4	J	4	J	4 J	10.71	J	6.43
Potassium	100.0 ug/1	17000		18200		7920	J	8390		7860	J	10700	13800	9	6220
Selenium	10.0 ug/l	ND		9	J	ND		ND		ND		ND	ND	$\overline{}$	2.51 J
Silver	50.0 ug/l	ND		ND		ND		ND		ND		ND	ND		ND
Sodium		3770000		757000		255000		190000		199000		709000	4010000		1020000
Thallium	0.5 ug/l	ND		ND		ND		ND		ND		ND	ND		0.97 J
Zinc	2000.0 ug/l	10.0	J	509		9	J	11	J	20	J	8 J	ND		30.36
PCBs															
Aroclor 1016	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1221	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1232	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1242	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1248	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1254	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1260	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1262	0.09	ND		ND		ND		ND		ND		ND	ND		ND
Aroclor 1268	0.09	ND		ND		ND		ND		ND		ND	ND		ND
PCBs, Total		ND		ND		ND		ND		ND		ND	ND		ND
Pesticides															
Delta-BHC	0.04	ND		ND		ND		ND		ND		ND	ND		ND
Lindane	0.05	ND		ND		ND		ND		ND		ND	ND	\neg	ND
Alpha-BHC	0.01	ND		ND		ND		ND		ND		ND	ND	\neg	ND
Beta-BHC	0.04	0.054	IP	ND		ND		ND		ND		ND	0.063	IP	ND
Heptachlor	0.04	ND	11	ND		ND		ND		ND		ND	ND	11	ND
														—	
Aldrin	0	ND		ND		ND		ND		ND		ND	ND		ND
Endrin	0	ND		ND		ND		ND		ND		ND	ND		ND
Dieldrin	0.004	ND		ND		ND		ND		ND		ND	ND		ND
4,4'-DDE	0.2	ND		ND		ND		ND		ND		ND	ND		ND
4,4'-DDD	0.3	ND		0.006	J	ND		ND		ND		ND	ND		ND
4,4'-DDT	0.2	ND		ND		ND		ND		ND		ND	ND		ND
Endosulfan I		ND		ND		ND		ND		ND		ND	ND		ND
Endosulfan II		ND		ND		ND		ND		ND		ND	ND		ND
Endosulfan sulfate		ND		ND		ND		ND		ND		ND	ND		ND
cis-Chlordane		ND		ND		ND		ND		ND		ND	ND		ND

	Location ID Sample Matrix Date Sampled Units	WG		MW-4 WG 05/21/2019 ug/l	DUP (MV WG 05/21/20 ug/l	ŕ	MW- WG 05/21/20 ug/l	019
	NYS TOGS Groundwater Standand & Guidance Value							
SVOC								
Acenaphthene	20.0 ug/l	ND		ND	ND		ND	
Acenaphthylene		ND		ND	ND		ND	
Anthracene	50.0 ug/l	ND		ND	ND		ND	
Benzo(A)Anthracene Benzo(A)Pyrene	0.002 ug/l	0.02	J	ND	ND	-	ND	
Benzo(A)Pyrene Benzo(B)Fluoranthene	0.002 //	ND	т.	ND	0.02	J	ND	т.
Benzo(G,H,I)Perylene	0.002 ug/l	0.02	J J	ND ND	0.04	J J	0.02 ND	J
Benzo(K)Fluoranthene	0.002 ug/l	0.02	J	ND	0.04	J	ND	
Bis(2-ethylhexyl)phthalate	5.0 ug/l	ND	v	ND	ND	•	ND	
Chrysene	0.002 ug/l	0.02	J	ND	ND		ND	
Di-n-butylphthalate	50.0 ug/l			ND	ND		ND	
Dibenz(A,H)Anthracene		ND		ND	ND		ND	
2, 4-Dimethylphenol	2.0 ug/l			ND	ND		ND	
Fluoranthene Fluorene	50.0 ug/l	0.04	J	ND	ND		0.05	J
Indeno(1,2,3-C,D)Pyrene	50.0 ug/l	ND	т.	ND	ND		ND	
Naphthalene	0.002 ug/l 10.0 ug/l	0.03 ND	J	ND ND	0.05 ND	J	ND ND	
2-Methylnaphthalene	10.0 ug/1	0.04		ND	ND		ND	
2-Methylphenol (O-Cresol)		ND		ND	ND		ND	
4-Methylphenol (P-Cresol)		ND		ND	ND		ND	
Pentachlorophenol	1.0 ug/l	ND		ND	ND		ND	
Phenanthrene	50.0 ug/l	ND		ND	ND		ND	
Phenol	1.0 ug/l			ND	ND		ND	
Pyrene	50.0 ug/l	0.04		ND	ND		0.03	J
VOC 1,1,1-Trichloroethane	5.0 //	177		1170) ID		3.77	
1,1-Dichloroethane	5.0 ug/l	ND ND		ND ND	ND ND		ND ND	
1,1-Dichloroethene	5.0 ug/l 5.0 ug/l	ND		ND ND	ND		ND	
1,2,4-Trimethylbenzene	5.0 u g/1	ND		ND	ND		ND	
1,2-Dichlorobenzene	3.0 ug/l	ND		ND	ND		ND	
1,2-Dichloroethane	0.6 ug/l	ND		0.23 J	0.38	J	ND	
1,3,5-Trimethylbenzene (Mesitylene)	5.0 ug/l	ND		ND	ND		ND	
1,3-Dichlorobenzene	3.0 ug/l	ND		ND	ND		ND	
1,4-Dichlorobenzene	3.0 ug/l	ND		ND	ND		ND	
1,4-Dioxane (P-Dioxane)	70.0 11	ND		ND	ND		ND	
2-Butanone Acetone	50.0 ug/l	ND	T	ND	ND 10	т	ND	T
Benzene	50.0 ug/l 1.0 ug/l	1.7 ND	J	1.6 J	2.8 ND	J	2.2 ND	J
Carbon Tetrachloride	5.0 ug/l	ND		ND	ND		ND	
Chlorobenzene	5.0 ug/l	ND		ND	ND		ND	
Chloroform	7.0 ug/l	ND		ND	ND		ND	
Cis-1,2-Dichloroethylene	5.0 ug/l	ND		ND	ND		ND	
Ethylbenzene	5.0 ug/l	ND		ND	ND		ND	
Hexachlorobenzene	0.04 ug/l	ND		ND	ND		ND	
Methylene Chloride N-Butylbenzene	5.0 ug/l	ND		ND	ND		ND	
N-Propylbenzene	5.0 ug/l	ND		ND	ND		ND	
Sec-Butylbenzene	5.0 ug/l 5.0 ug/l	ND ND		ND ND	ND ND		ND ND	
Methyl Ethyl Ketone (2-Butanone)	50.0 ug/l	ND		ND	ND		ND	
Tert-Butyl Methyl Ether	2000 1.8.1	ND		ND	ND		ND	
p/m-Xylene	5.0 ug/l	ND		ND	ND		ND	
o-Xylene	5.0 ug/l	ND		ND	ND		ND	
Tetrachloroethylene (PCE)	5.0 ug/l	ND		ND	ND		ND	
Toluene	5.0 ug/l	ND		ND	ND		ND	
Trans-1,2-Dichloroethene	5.0 ug/l	ND		ND	ND		ND	
Trichloroethylene (TCE) Vinyl Chloride	5.0 ug/l	ND		ND	ND		ND	
Dibenzofuran	2.0 ug/l	ND		ND	ND		ND	
Metals		ND		ND	ND		ND	
Aluminum		1220		39	219		567	
Antimony	3.0 ug/l	ND		ND	ND		ND	
Arsenic	25.0 ug/l	2.57		1.2	1.24		1.43	
Barium	1000.0 ug/l	152		229	210		394	
Beryllium	3.0 ug/l	ND		ND	ND		ND	
Cadmium	5.0 ug/l	ND		ND	ND		ND	
Calcium		150000		141000	113000		480000	

	Location ID	MW-3	MW-4	DUP (MW-4)	MW-5
	Sample Matrix	WG	WG	WG	WG
	Date Sampled	05/21/2019	05/21/2019	05/21/2019	05/21/2019
	Units	ug/l	ug/l	ug/l	ug/l
	NYS TOGS Groundwater Standand & Guidance Value				
Chromium	50.0 ug/l	4.54	0.35 J	1.04	1.34
Cobalt	5 6	1.28	0.6	0.85	2.67
Copper	200.0 ug/l	4.71	1.12	1.22	2.12
Cyanide	200.0 ug/l	ND	ND	ND	ND
Iron	300.0 ug/l	1980	55.1	174	601
Lead	25.0 ug/l	5.3	0.43 J	0.56 J	0.93 J
Magnesium	35000.0 ug/l	86600	77600	78200	251000
Manganese	300.0 ug/l	152.2	91.6	92	302.9
Mercury	0.7 ug/l	ND	ND	ND	ND
Nickel	100.0 ug/l	4.47	1.7 J	2.3	5.31
Potassium		14200	6950	6880	10600
Selenium	10.0 ug/l	2.49 J	ND	1.88 J	ND
Silver	50.0 ug/l	3.3	ND	ND	0.29 J
Sodium		194000	170000	179000	640000
Thallium	0.5 ug/l	ND	ND	ND	ND
Zinc	2000.0 ug/l	18.73	ND	3.76 J	7.85 J
PCBs					
Aroclor 1016	0.09	ND	ND	ND	ND
Aroclor 1221	0.09	ND	ND	ND	ND
Aroclor 1232	0.09	ND	ND	ND	ND
Aroclor 1242	0.09	ND	ND	ND	ND
Aroclor 1248	0.09	ND	ND	ND	ND
Aroclor 1254	0.09	ND	ND	ND	ND
Aroclor 1260	0.09	ND	ND	ND	ND
Aroclor 1262	0.09	ND	ND	ND	ND
Aroclor 1268	0.09	ND	ND	ND	ND
PCBs, Total		ND	ND	ND	ND
Pesticides					
Delta-BHC	0.04	ND	ND	ND	ND
Lindane	0.05	ND	ND	ND	ND
	0.03				
Alpha-BHC		ND	ND	ND	ND
Beta-BHC	0.04	ND	ND	ND	ND
Heptachlor	0.04	ND	ND	ND	ND
Aldrin	0	ND	ND	ND	ND
Endrin	0	ND	ND	ND	ND
Dieldrin	0.004	ND	ND	ND	ND
4,4'-DDE	0.2	ND	ND	ND	ND
4,4'-DDD	0.3	ND	ND	ND	ND
4,4'-DDT	0.2	ND	ND	ND	ND
Endosulfan I		ND	ND	ND	ND
Endosulfan II		ND	ND	ND	ND
Endosulfan sulfate		ND	ND	ND	ND
cis-Chlordane		ND	ND	ND	ND

GROUNDWATER SAMPLE RESULTS - EMERGING CONTAMINANTS 301 CONNECTICUT STREET SITE BCP SITE C915345

Well Location	MW-1		MW-5				
Sample ID	MW-1		MW-5				
Date Sampled	4/11/2019	9	4/11/2019)			
Sample Matrix	Water		Water				
Units	ng/l		ng/l				
PFOA / PFOS							
Perfluorobutanoic acid (PFBA)	1.23	J	4.65				
Perfluoropentanoic acid (PFPeA)	7.19		1.04	J			
Perfluorobutanesulfonic Acid (PFBS)	ND		0.569	J			
Perfluorohexanoic acid (PFHxA)	6.4		1	J			
Perfluoroheptanoic acid (PFHpA)	4.7		0.518	J			
Perfluorohexanesulfonic acid (PFHxS)	0.947	J	1.81	J			
Perfluorooctanoic acid (PFOA)	5.89		3				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ND				
Perfluorononanoic acid (PFNA)	2.75		ND				
Perfluorooctanesulfonic Acid (PFOS)	7.14		ND				
Perfluorodecanoic acid (PFDA)	ND		ND				
Perfluoroundecanoic acid (PFUnA)	ND		ND				
Perfluorodecanesulfonic Acid (PFDS)	ND		ND				
Perfluorooctanesulfonamide (FOSA)	ND		ND				
Perfluorododecanoic acid (PFDoA)	ND		ND				
Perfluorotridecanoic acid (PFTrA)	ND		ND				
Perfluorotetradecanoic acid (PFTA)	ND		ND				
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		0.299	J			
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		ND				
6:2 FTS	0.502	J	0.219	J			
8:2 FTS	ND		ND				
Total PFOA/PFOS	13.00		3.00				
Units	ug/l		ug/l				
1,4-Dioxane	ND		ND				

ND indicates analyte was not detected.

^{* -} RPD of the LCS and LCSD exceeds the control limits

 $^{^{\}wedge}\text{-ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.}$

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LOG	CATION - SAM	MPLE DEPTH	A1-01-12ft	A1-02-13ft	A1-03-14ft	A2-01-2ft	B1-01-1-2ft	B1-02-3ft	B2-01-2ft	B3-01-3ft	B4-01-4ft	C1-01-1ft	C2-01-1ft	C3-01-2ft
				SAM	PLING DATE	08/12/2019	08/12/2019	08/12/2019	09/10/2019	08/08/2019	08/08/2019	09/10/2019	09/10/2019	08/12/2019	08/08/2019	08/08/2019	08/08/2019
					AMPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted	Residential	Restricted	Commercial	Industrial												
	Use	Use	Residential Use	Use	Use												
VOCs																	
1,1-Dichloroethane	0.27	19	26	240	480	ND			ND	ND		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND			ND	ND		ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	0.12	100	100	500	1000	ND			0.0030 J	ND		ND	ND	ND	ND	ND	ND
Acetone	0.05	100	100	500	1000	0.011			0.016	0.0065 J		ND	ND	0.021	ND	ND	ND
Benzene	0.06	2.9	4.8	44	89	ND			ND	ND		ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND			ND	ND		ND	ND	ND	ND	ND	ND
Cyclohexane						ND			ND	ND		ND	ND	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND			ND	ND		ND	ND	ND	ND	ND	ND
Isopropylbenzene						ND			ND	ND		ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	0.0017			ND	ND		ND	ND	ND	ND	ND	ND
Methylcyclohexane						ND			ND	ND		ND	ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND			ND	ND		0.00084 J	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND			0.067	ND		ND	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND			ND	ND		ND	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	ND			ND	ND		ND	ND	ND	ND	ND	ND
SVOCs																	
Benzo[a]anthracene	1	1	1	5.6	11	ND			ND	0.051		ND	ND	ND	ND	0.12	0.065
Benzo[a]pyrene	1	1	1	1	1.1	ND			ND	0.039 J		ND	ND	ND F1	ND	0.10	0.054
Benzo[b]fluoranthene	1	1	1	5.6	11	ND			ND	0.068		ND	0.025 J	ND F1	0.019 J	0.16	0.087
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND			ND	0.026 J		ND	ND	ND F1	ND	0.070	0.037 J
Chrysene	1	1	3.9	56	110	ND			ND	0.070 J		ND	ND	ND	ND	0.17 J	0.073 J
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND			ND	ND		ND	ND	ND	ND	0.023 J	ND
Dibenzofuran	7	14	59	350	1000	ND			ND	ND		ND	ND	ND F1	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND			ND	0.10 J		ND	0.025 J	ND	ND	0.36 J	0.10 J
Fluorene	30	100	100	500	1000	ND			ND	ND		ND	ND	ND F1	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND			ND	0.039 J		ND	ND	ND	ND	0.095	0.047
Naphthalene	12	100	100	500	1000	ND			ND	ND		ND	ND	ND F1	ND	ND	ND
Phenanthrene	100	100	100	500	1000	ND			ND	0.051 J		ND	0.020 J	ND	ND	0.18 J	0.056 J
Pyrene	100	100	100	500	1000	ND			ND	0.093 J		ND	0.020 J	ND	ND	0.34 J	0.11 J
Pesticidies																	
4,4'-DDD	0.0033	2.6	13	92	180	ND						ND					ND
4,4'-DDE	0.0033	1.8	8.9	62	120	ND						ND					ND
4,4'-DDT	0.0033	1.7	7.9	47	94	ND						ND					ND
PCBs																	
Total PCBs	0.1	1	1	1	25	ND						ND					ND
Herbicidies																	
Silvex (2,4,5-TP)	3.8	58	100	500	1000	ND						ND					ND
							1	·	·	1	·	1	1	l	1	·	

	LOCATION - SAMPLE DEPTI							A1-03-14ft	A2-01-2ft	B1-01-1-2ft	B1-02-3ft	B2-01-2ft	B3-01-3ft	B4-01-4ft	C1-01-1ft	C2-01-1ft	C3-01-2ft
				SAM	PLING DATE	08/12/2019	08/12/2019	08/12/2019	09/10/2019	08/08/2019	08/08/2019	09/10/2019	09/10/2019	08/12/2019	08/08/2019	08/08/2019	08/08/2019
				SA	AMPLE TYPE	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					SOIL TYPE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
	Unrestricted Use	Residential Use	Restricted Residential	Commercial Use	Industrial Use												
Metals			Use														
Aluminum						4290			14500	11400		12700	12100	13600	15000	12100	7450
Mercury	0.18	0.81	0.81	2.8	5.7	ND			0.070	0.16		0.021	0.093	0.016 J	0.034	ND	0.013 J
Arsenic	13	16	16	16	16	1.8 J			4.5	6.0		3.0	4.6	3.9	3.4	4.0	4.8
Barium	350	350	400	400	10000	39.4 J			115	110		57.4	106	96.0	129	104	64.6
Beryllium	7.2	14	72	590	2700	0.23 J			0.78	0.66		0.65	0.64	0.67	0.72	0.75	0.44 J
Cadmium	2.5	2.5	4.3	9.3	60	0.42 J			ND	ND		ND	ND	ND	ND	ND	ND
Calcium						87000			5470	25400		3850	3800	16400	2960	18900	84700
Chromium						6.7			21.5	17.3		19.0	18.6	19.0	20.4	18.5	15.2
Cobalt						2.9 J			9.7 J	7.5 J		7.1 J	8.4 J	8.4 J	8.6 J	7.3 J	5.3 J
Copper	50	270	270	270	10000	12.8			18.2	18.9		13.2	13.8	15.0	10.5	14.4	14.8
Iron						8960			25700	19100		21200	22900	22900	22700	23100	15200
Lead	63	400	400	1000	3900	11.4			25.5	191	18.9	18.3	20.3	15.0	15.9	18.1	41.4
Magnesium						36000			6570	12400		5040	4800	12800	4240	13000	23200
Manganese	1600	2000	2000		10000	389			335	392		203	397	297	221	234	368
Nickel	30	140	310	310	10000	6.6 J			24.0	16.9		18.6	19.1	20.9	19.8	18.4	13.7
Potassium						1190			1700	1460		1560	1620	2130	1530	1510	1460
Selenium	3.9	36	180	1500	6800	ND			ND	ND		ND	ND	ND	ND	ND	ND
Silver	2	36	180	1500	6800	ND F1			ND	ND		ND	ND	ND	ND	ND	ND
Sodium						505 J			574 J	894 J		167 J	88.1 J	238 J	546 J	795 J	916 J
Vanadium						11.9			28.1	23.3		20.2	24.3	26.1	26.1	26.3	19.0
Zinc	109	2200			10000	127	119	95.4	93.5	117	67.4	76.2	81.2	85.9	76.1	87.3	73.9
WetChem																	
Chromium, hexavalent	1	22	110	400	800	ND						ND					ND
Cyanide, Total	27	27	27	27	10000	ND			ND	ND		ND	ND	ND	0.15 J	ND	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

			LOC	ATION - SAM	IPLE DEPTH	C4-01-3ft	C4-02-4ft	D1-01-6ft	D2-01-3ft	D3-01-6ft	D4-01-3ft	E1-01-7ft	E2-01-2ft	E3-01-2ft	E4-01-2ft
					PLING DATE	08/08/2019	08/08/2019	08/09/2019	08/09/2019	08/09/2019	08/08/2019	08/09/2019	08/09/2019	08/12/2019	08/12/2019
					MPLE TYPE	SOIL									
				521	UNITS	mg/kg									
					SOIL TYPE	NATIVE									
	Unrestricted	Residential	Restricted	C		MATIVE	MATIVE	MATIVE	MATIVE	MATIVE	MATIVE	MATTYLE	MAIIVE	MATIVE	MATIVE
	Use	Use	Residential Use	Commercial Use	Industrial Use										
VOCs			Use												
1,1-Dichloroethane	0.27	19	26	240	480	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	2.3	3.1	30	60	ND		ND							
2-Butanone (MEK)	0.12	100	100	500	1000	0.017		ND							
Acetone	0.05	100	100	500	1000	0.13	0.10	ND	0.011	ND	0.011	ND	0.0078	ND	0.0066 J
Benzene	0.06	2.9	4.8	44	89	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Cyclohexane						ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Ethylbenzene	1	30	41	390	780	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Isopropylbenzene						ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Methyl tert-butyl ether	0.93	62	100	500	1000	ND		ND							
Methylcyclohexane	0.55	02	100	300	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Methylene Chloride	0.05	51	100	500	1000	ND		0.0020	0.0013	0.00064 J	0.00083 J	ND	0.00096 J	ND	ND
Tetrachloroethene	1.3	5.5	19	150	300	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Toluene	0.7	100	100	500	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	100	500	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
SVOCs	0.20	100	100	300	1000	ND		ND	ND	ND II	ND	ND	ND	ND	ND
Benzo[a]anthracene	1	1	1	5.6	11	ND		ND	0.019 J	ND	ND	ND	ND	ND	0.018 J
Benzo[a]pyrene	1	1	1	1	1.1	ND		0.014 J	0.019 J	ND F1	ND	ND	ND	ND	0.011 J
Benzo[b]fluoranthene	1	1	1	5.6	11	ND		0.022 J	0.032 J	ND ND	ND	ND	ND	ND	0.019 J
Benzo[k]fluoranthene	0.8	1	3.9	56	110	ND		ND	0.0094 J	ND F1	ND	ND	ND	ND	ND
Chrysene	1	1	3.9	56	110	ND		0.020 J	0.0094 J	ND 11	ND	ND	ND	ND	0.014 J
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND		ND							
Dibenzofuran	7	14	59	350	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Fluoranthene	100	100	100	500	1000	ND		0.028 J	0.043 J	0.016 J	ND	ND	ND	ND	0.023 J
Fluorene	30	100	100	500	1000	ND		ND	ND	ND F1	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.5	0.5	0.5	5.6	11	ND		ND	0.024 J	ND 11	ND	ND	ND	ND	ND
Naphthalene	12	100	100	500	1000	ND		ND	0.024 J	ND F1	ND	ND	ND	ND	ND
Phenanthrene	100	100	100	500	1000	ND		ND	0.026 J	ND F1	ND	ND	ND	ND	0.014 J
Pyrene	100	100	100	500	1000	ND		0.029 J	0.020 J	ND 11	ND	ND	ND	ND	0.014 J
Pesticidies	100	100	100	300	1000	IND		0.049 J	0.040 J	IND	IND	IND	IND	עוא	ND
Pesticidies 4,4'-DDD	0.0033	2.6	13	92	180	ND								ND F2	
4,4'-DDE	0.0033	1.8	8.9	62	120	ND ND								ND F2	
4,4'-DDE 4.4'-DDT	0.0033	1.8	7.9	47	94	ND ND			-		-			ND F2	
	0.0033	1./	1.9	41	94	ND								ND F2	
PCBs	0.1				25	AUD								MD	
Total PCBs	0.1	1	1	1	25	ND								ND	
Herbicidies			100		1000										
Silvex (2,4,5-TP)	3.8	58	100	500	1000	ND								ND	

	LOCATION - SAMPLE DEPTH SAMPLING DATE SAMPLE TYPE UNITS						C4-02-4ft 08/08/2019 SOIL mg/kg NATIVE	D1-01-6ft 08/09/2019 SOIL mg/kg NATIVE	D2-01-3ft 08/09/2019 SOIL mg/kg NATIVE	D3-01-6ft 08/09/2019 SOIL mg/kg NATIVE	D4-01-3ft 08/08/2019 SOIL mg/kg NATIVE	E1-01-7ft 08/09/2019 SOIL mg/kg NATIVE	E2-01-2ft 08/09/2019 SOIL mg/kg NATIVE	E3-01-2ft 08/12/2019 SOIL mg/kg NATIVE	E4-01-2ft 08/12/2019 SOIL mg/kg NATIVE
	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	SOIL TYPE Industrial Use	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE	NATIVE
Metals															
Aluminum						15200		6700	6770	6660	9870	5310	10300	12600	19600
Mercury	0.18	0.81	0.81	2.8	5.7	0.025		0.078	ND	ND	0.013 J	0.086	0.013 J	0.024	ND
Arsenic	13	16	16	16	16	5.0		5.7	3.2 J	3.3 J	3.3 J	3.3	3.4	3.9	4.7
Barium	350	350	400	400	10000	135		57.6	62.7	53.1	56.5	43.5	78.2	115	164
Beryllium	7.2	14	72	590	2700	0.85		0.34 J	0.37 J	0.43 J	0.52	0.31 J	0.56	0.68	0.98
Cadmium	2.5	2.5	4.3	9.3	60	ND		ND	ND	ND	ND	ND	0.17 J	ND	ND
Calcium						3690		68400	77300	83400	25100	79700	63100	5060	4000
Chromium						22.0		11.0	11.2	10.8	15.4	9.5	16.3	17.8	27.1
Cobalt						10.2 J		5.4 J	5.8 J	5.6 J	6.1 J	4.6 J	7.2 J	10.3	11.7
Copper	50	270	270	270	10000	14.0		16.0	10.8	13.6	12.3	15.6	14.0	14.0	17.8
Iron						25500		13700	12900	14000	17600	11900	18600	22600	30500
Lead	63	400	400	1000	3900	17.9		45.9	13.3	12.0	14.6	15.7	15.9	17.7	16.9
Magnesium						5470		21000	26700	31800	16100	30300	29200	6360	7490
Manganese	1600	2000	2000		10000	541		337	407	413	164	329	477	568	568
Nickel	30	140	310	310	10000	24.3		13.3	12.4	12.8	16.2	10.6	18.1	21.4	29.9
Potassium						1770		1260	1300	1450	1460	1290	2010	1490	2750
Selenium	3.9	36	180	1500	6800	ND		ND							
Silver	2	36	180	1500	6800	ND		ND							
Sodium						591 J		728 J	1280	688 J	1000 J	424 J	770 J	477 J	964 J
Vanadium				-		27.7		15.7	15.2	17.9	19.7	15.6	21.5	23.4	33.4
Zinc	109	2200			10000	90.1		70.5	58.3	63.2	67.9	85.2	71.8	77.0	96.5
WetChem															
Chromium, hexavalent	1	22	110	400	800	ND								ND	
Cyanide, Total	27	27	27	27	10000	ND		ND	ND	ND	ND	ND	ND	ND F1	ND

Analytical Data compared to Part 375 Standards and DER-10

ND indicates analyte was not detected.

- * LCS or LCSD is outside acceptance limits.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

POST REMEDIATION GROUNDWATER SAMPLE RESULTS 301 CONNECTICUT STREET SITE BCP SITE C915345

	LOCATION SAMPLING DATE SAMPLE TYPE UNITS	MW-1R 2/12/2020 WATER ug/l	MW-2R 2/12/2020 WATER ug/l	MW-3R 2/12/2020 WATER ug/l	MW-1R 3/9/2020 WATER ug/l	MW-2R 3/9/2020 WATER ug/l	MW-3R 3/9/2020 WATER ug/l
	NY-TOGS-GA	ug/i	ug/I	ug/i	ug/I	ug/1	ug/1
Volatile Organics by GC/MS							
Methylene chloride	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane Chloroform	5 7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND
Dibromochloromethane 1,1,2-Trichloroethane	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	ND 0.24	ND	ND	ND 0.48 I	ND
1,2-Dichloroethane 1,1,1-Trichloroethane	0.6	ND ND	0.24 J ND	ND ND	ND ND	0.48 J ND	ND ND
Bromodichloromethane	50	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene Bromoform	0.4 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	1	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND
Ethylbenzene Chloromethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 J
Bromomethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND J
Vinyl chloride	2	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene trans-1,2-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether p/m-Xylene	10 5	ND ND	24 ND	ND ND	ND ND	29 ND	ND ND
o-Xylene	5	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Styrene	930	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane Acetone	5 50	ND 2.1 J	ND 6	ND 9.6	ND 15	ND 3 J	ND 6
Carbon disulfide	60	ND ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	50	ND	ND	ND	ND	1.1 J	ND
2-Hexanone Bromochloromethane	50 5	ND ND	ND ND	ND ND	ND 	ND -	ND
1,2-Dibromoethane	0.0006	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	-	-	-	ND	ND	ND
sec-Butylbenzene	5	-	-	-	ND	ND	ND
tert-Butylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	- ND	- ND	- ND	ND ND	ND ND	ND ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	-	-	-	ND	ND	ND
Naphthalene	10	-	-	-	0.92 J	ND	ND
n-Propylbenzene 1,2,3-Trichlorobenzene	5	- ND	- ND	- ND	ND	ND 	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	-	-	-	ND	ND	ND
1,2,4-Trimethylbenzene	5	- ND	- ND	- ND	ND	ND	ND
Methyl Acetate Cyclohexane		ND ND	ND ND	ND ND	ND 0.33 J	ND ND	ND ND
1,4-Dioxane		ND	ND	ND			
Freon-113	5	ND	ND	ND	ND	ND	ND
Methyl cyclohexane Total VOCs		ND 2.1 -	ND 30.24 -	ND 9.6 -	0.76 J 17.01 -	0.51 J 34.09 -	ND 6.7 -
Volatile Organics by GC/MS-TIC		2.1 -	30.24 -	9.0 -	17.01 -	34.09 -	0./ -
Unknown		_	-	-	-	-	2.01 J
iso-Propyl Alcohol		2.54 NJ	2.91 NJ				2.01 J
No Tentatively Identified Compounds		-	-	ND	ND	ND	-
Total TIC Compounds		2.54 J	2.91 J	-	-	-	2.01 J
Semivolatile Organics by GC/MS		NID.	NID.	MD	MD	MD	NID
Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND ND	ND ND	ND
2,6-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroethoxy)methane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND
Nitrobenzene NDPA /DPA	0.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
NDPA/DPA n-Nitrosodi-n-propylamine	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-ethylhexyl)phthalate	5	8.6	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND ND	0.57 J	ND ND	ND ND	ND ND
Di-n-octylphthalate	50	ND	ND	ND	ND	ND	ND

POST REMEDIATION GROUNDWATER SAMPLE RESULTS 301 CONNECTICUT STREET SITE BCP SITE C915345

	LOCATION SAMPLING DATE SAMPLE TYPE UNITS NY-TOGS-GA	MW-1R 2/12/2020 WATER ug/l		MW-2R 2/12/2020 WATER ug/l	2/12 WA	V-3R 2/2020 ATER ag/I	MW-1 3/9/20 WATF ug/l	20 ER	MW-2 3/9/202 WATF ug/l	20 ER	MW-: 3/9/20 WAT! ug/!)20 ER
Diethyl phthalate	50	0.38	J	ND	ND		ND		ND		ND	
Dimethyl phthalate	50	ND		ND	ND		ND		ND		ND	
Biphenyl	5	ND		ND	ND		ND		ND		ND	
4-Chloroaniline 2-Nitroaniline	5	ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	
3-Nitroaniline	5	ND		ND	ND		ND		ND		ND	
4-Nitroaniline	5	ND		ND	ND		ND		ND		ND	
Dibenzofuran		ND		ND	ND		ND		ND		ND	
1,2,4,5-Tetrachlorobenzene	5	ND		ND	ND		ND		ND		ND	
Acetophenone 2,4,6-Trichlorophenol		ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	
p-Chloro-m-cresol		ND		ND	ND		ND		ND		ND	
2-Chlorophenol		ND		ND	ND		ND		ND		ND	
2,4-Dichlorophenol	2	ND		ND	ND		ND		ND		ND	
2,4-Dimethylphenol	2	ND		ND	ND		ND		ND		ND	
2-Nitrophenol		ND		ND	ND		ND		ND		ND	
4-Nitrophenol 2,4-Dinitrophenol	2	ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	
4,6-Dinitro-o-cresol	-	ND	-+	ND	ND		ND		ND		ND	
Phenol	2	ND		ND	ND		ND		ND		ND	
2-Methylphenol		-		-	-		ND		ND		ND	
3-Methylphenol/4-Methylphenol		ND		ND	ND		ND		ND		ND	
2,4,5-Trichlorophenol Carbazole		ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	
Atrazine	7.5	ND ND	+	ND ND	ND ND		ND ND		ND ND		ND ND	
Benzaldehyde	7.5	ND		ND	ND		ND		ND		ND	
Caprolactam		ND		ND	ND		ND		ND		ND	
2,3,4,6-Tetrachlorophenol		ND		ND	ND		ND		ND		ND	
Total SVOCs		8.98	-		0.57	-	-	-	-	-	-	
Semivolatile Organics by GC/MS-SIM												
Acenaphthene 2-Chloronaphthalene	20 10	ND ND		ND ND	ND ND		0.04 ND	J	ND ND		ND ND	
Fluoranthene	50	0.06	ī	0.03 J		I	ND ND		ND ND		ND ND	
Hexachlorobutadiene	0.5	ND	,	ND	ND	<u> </u>	ND		ND		ND	
Naphthalene	10	ND		ND	ND		ND		ND		ND	
Benzo(a)anthracene	0.002		J	ND	ND		ND		ND		ND	
Benzo(a)pyrene	0		J J	ND 0.01 J	0.02	J	ND		ND		ND ND	
Benzo(b)fluoranthene Benzo(k)fluoranthene	0.002 0.002	0.06	J	0.01 J ND	0.02 ND	J	ND ND		ND ND		ND ND	
Chrysene	0.002		J	ND	ND		ND		ND		ND	
Acenaphthylene		ND		ND	ND		ND		ND		ND	
Anthracene	50	ND		ND	ND		ND		ND		ND	
Benzo(ghi)perylene	50	0.04	J	ND	ND		ND		ND		ND	
Fluorene Phenanthrene	50 50	ND 0.03	J	0.01 J ND	ND ND		0.03 ND	J	ND ND		ND ND	
Dibenzo(a,h)anthracene	50	ND	,	ND	ND		ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.002		J	ND	ND		ND		ND		ND	
Pyrene	50	0.05	J	0.02 J			ND		ND		ND	
2-Methylnaphthalene		ND		ND	ND		0.03	J	0.03	J	ND	
Pentachlorophenol Hexachlorobenzene	2 0.04	ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	
Hexachloroethane	5	ND		ND	ND		ND		ND		ND	
Total SVOCs	3	0.38	-	0.07 -	_	-	0.1	-	0.03	-	-	-
Semivolatile Organics by GC/MS-TIC												
Aldol Condensates (A)		23.6	J	21 J	25.4	. J	-	-	-	-	-	-
Unknown Organic Acid		4.11	J	-	2.36	J	-	-	-	-	-	-
Unknown Alcohol		13.2	J			-		-	-	-	-	-
Unknown Phenol Unknown Alkane		-		-	45.9	J	5.82	J	1.78	- J	-	-
Unknown Alkane Unknown		1.56	J	4.04 J			-		1./8	- -	-	
Unknown			J	1.93 J		-	-	-	-	-	-	-
Unknown		1.67	J	2.22 J		-	-	-	-	-	-	-
Unknown			J	2.47 J			-	-	-	-	-	-
Unknown Unknown		10.4 26.9	J J	1.67 J 1.85 J			-	-	-	-	-	-
Unknown		1.74	J	2.29 J			-		-	-	-	
Unknown		2.18	J	2.76 J		J	-	-	-	-	-	
Unknown		3.24	J	3.53 J	3.53		-	-	-	-	-	-
Unknown		5.05	J	5.67 J			-		1.53	J	2.54	J
Unknown			J	1.64 J			1.85	J	1.78	J	1.89	J
Unknown Cyclic Octaatomic Sulfur		6.58	J	2.04 J	1.53	J	1.71	J	2.94	J NJ	1.93	
Total TIC Compounds		119	J	53.1 J		J	9.38	J	10.8	J	6.36	J
Total Metals					2.55						,	
Lead, Total	50	2.45		3.04	0.6	J	ND		ND		ND	

Lead, Total 50 2.45 3.04 0.6 J ND ND *Comparison is not performed on parameters with non-numeric criteria.

NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

Table 11 Remedial Investigation Sampling Program

Matrix	Sample Type	Lab Analysis	No. Samples	Field Duplicates	Spike	Matrix Spike Duplicate	Blank	Total
	Surface	TCL VOC	3	0	0	0		3
		TCL SVOC	3	0	0	0		3
		TCL Pesticides	3	0	0	0		3
		Total PCB	3	0	0	0		3
		TAL Metals	3	0	0	0		3
		Cyanide	3	0	0	0		3
		Hexavalent Chromium	0	0	0	0		0
		Silvex	0	0	0	0		0
		PFAS	3	0	0	0		3
	Fill Material	1,4-Dioxane	<u>3</u> 7	1	1	0 1		3 10
	riii Materiai	TCL VOC TCL SVOC	0	0	0	0		0
		TCL Pesticides	6	1	1	1		9
		Total PCB	6	1	1	1		9
		TAL Metals	0	0	0	0		0
		Cyanide	0	0	0	0		0
		Hexavalent Chromium	6	1	1	1		9
		Silvex	6	1	1	1		9
		PFAS	5	1	1	1		8
		1,4-Dioxane	5	1	1	1		8
	Lead Delineation	TCL VOC	49	2	2	2		55
		TCL SVOC	49	2	2	2		55
		TCL Pesticides	0	0	0	0		0
		Total PCB	49	2	2	2		55
		TAL Metals (Lead Only)	49	2	2	2		55
		Cyanide	0	0	0	0		0
		Hexavalent Chromium	0	0	0	0		0
		Silvex	0	0	0	0		0
		PFAS	0	0	0	0		0
		1,4-Dioxane	0	0	0	0		0
	Petroluem Delieation	TCL VOC	18	0	0	0		18
		TCL SVOC	18	0	0	0		18
		TCL Pesticides	0	0	0	0		0
		Total PCB	0	0	0	0		0
		TAL Metals	18	0	0	0		18
		Cyanide	0	0	0	0		0
		Hexavalent Chromium	0	0	0	0		0
		Silvex	0	0	0	0		0
Soil		PFAS	0	0	0	0		0
Son	Native Soil	1,4-Dioxane TCL VOC	18	1	1	1		21
	Native 3011	TCL SVOC	18	1	1	1		21
		TCL Pesticides	5	1	1	1		8
		Total PCB	5	1	1	1		8
		TAL Metals	18	1	1	1		21
		Cyanide	18	1	1	1		21
		Hexavalent Chromium	5	1	1	1		8
		Silvex	5	1	1	1		8
		PFAS	18	1	1	1		21
		1,4-Dioxane	18	1	1	1		21
	Deep Native Soil	TCL VOC	5	0	0	0		5
		TCL SVOC	5	0	0	0		5
		TCL Pesticides	5	0	0	0		5
		Total PCB	5	0	0	0		5
		TAL Metals	5	0	0	0		5
		Cyanide	5	0	0	0		5
		Hexavalent Chromium	5	0	0	0		5
		Silvex	5	0	0	0		5
		PFAS	5	0	0	0		5
	W Ch	1,4-Dioxane TCLP VOC	<u>5</u> 5	0	0	0		5
	Waste Characterization		5 5					5
		TCLP SVOC PCB	5 5					5 5
		TCLP Metal	5 5					5 5
		Reactivity	5 5					5 5
		Corrosivity	5					5 5
		Ignitability	5					5
		pH	5					5
		Percent Solids	5					5
	Off-site Soil	TCL VOC	10	0	0	0		10
		TCL SVOC	10	0	0	0		10
		TCL Pesticides	0	0	0	0		0
	1	Total PCB	0	0	0	0		0
								0
		TAL Metals	0	0	0	0		
		TAL Metals Cyanide	0	0	0	0		0
		Cyanide Hexavalent Chromium Silvex	0	0	0	0		0
		Cyanide Hexavalent Chromium	0	0	0	0		0

Table 11 Remedial Investigation Sampling Program

Matrix	Sample Type	Lab Analysis	No. Samples	Field Duplicates	Matrix Spike	Matrix Spike Duplicate	Trip Blank	Total
	Groundwater	Part 375 VOC	10	2	2	2	2	18
		Part 375 SVOC	10	2	2	2	0	16
		Part 375 Pesticides	10	2	2	2	0	16
		Total PCB	10	2	2	2	0	16
		Part 375 Metals	10	2	2	2	0	16
		Cyanide	10	2	2	2	0	16
		Hexavalent Chromium	0	0	0	0	0	0
		Silvex	0	0	0	0	0	0
		1,4 Dioxane	2	1	1	1	0	5
Water		PFOA/PFOS	2	1	1	1	0	5
water	Off-site Groundwater	Part 375 VOC	1	0	0	0	1	2
		Part 375 SVOC	1	0	0	0	0	1
		Part 375 Pesticides	0	0	0	0	0	0
		Total PCB	0	0	0	0	0	0
		Part 375 Metals	0	0	0	0	0	0
		Cyanide	0	0	0	0	0	0
		Hexavalent Chromium	0	0	0	0	0	0
		Silvex	0	0	0	0	0	0
		1,4 Dioxane	0	0	0	0	0	0
		PFOA/PFOS	0	0	0	0	0	0

APPENDICES

APPENDIX A

Soil Boring Logs

	- @		14	1 Elm Stre	neers, Inc. et York 14203	P	ORING LO	В	oring No.	A1	
C			Ph	one: 716-8 x: 716-847	347-1630	_	OKING LO	3		neet 1 of:	
						_				ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
			D'Youville (eet, Buffalo, NY					Datum: tart Date:	8/5/19
Drilli			TREC	Jollege						ish Date:	8/12/19
Dillill	Grou			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			ile Drilling:	Борат	Date a Time	Casing:		Rock Core:		Undist:	o. / at vviiizig
Befo			Removal:			Sampler:		Other:	I	01101011	
			Removal:			Hammer:					
			(N No	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0 0 4 #	Asphalt, gravel a	nd cond fill					
1	*				t - Gravel fill and s						
2				0.4 0.7 11	Clavel IIII and s	Sario					
3											
4											
5					<u>PID - 0 ppm</u>					3.7 ft Rec	covered
J		H									
6				0-1.8 ft -	Gravel fill and sa	nd					
7											
8											
9					D/D 0					4005	
10					<u>PID - 0 ppm</u>					1.8 ft Rec	covered
11	A1-00			0-1.7 ft -	Gravel fill and sa	nd					
	A1-01				t - Brown silty clay						
	1										
13	A1-02	2									
14	A1-03	3			<u>PID - 0 ppm</u>					5.0 ft Rec	rovered
15	A1-04	L								J.J IL NEC	3,0100
16					End of Boring a	<u>t 15 ft</u>					
17					A1-00-11 ft A1-01-12 ft						
	1				A1-02-13 ft						
18					A1-03-14 ft	······································		·	·		
19					A1-04-15 ft A1-WC						
20											
21											
00											
22	1										
23											

	COMPANIES			11 Elm Stre				0	В	oring No.	A2	
C			PI	none: 716-8		_ E	SORING LO	Ğ	SI	heet 1 of:		
C	JMP	AN	IIES Fa	ax: 716-847	-1454				Pro	ject No.:	V20.001.005	
		_			eet Brownfield Cle	anup Program			Surfa	ce Elev.:		
L		_			eet, Buffalo, NY					Datum:		
			D'Youville	College						tart Date:	9/9/19	
Drilli	ng Firr			I 5 4	D	D-:/// Di				ish Date:	9/10/19	
	Groun		vater le Drilling:	Depth	Date & Time	Drill Rig: Casing:		Rock Core:	II.	undist:	J. Alt-Winzig	
Refo			Removal:			Sampler:		Other:		Unaist:		
			Removal:			Hammer:		Other:				
		- 3		. of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)	
£)	Ф	_	Blows on		•			o and	35-50%		COMMENTS	
먎	Sample No.	upc	Sampler	c - coarse m - mediur	m	MATERIAL	DESCRIPTION	s - some	20-35%		N-value, recovery,	
Depth (ft)	Sample No.	Syl	per 6"	f - fine	S - San	· · · · · ·	vel, C - Clay, cly - claye		- 10-20% 0-10%		moisture, core run, D, % recovered)	
Ë		H		0-0 5 ft -					I NQ	D, 76 lecovered)		
1	A2-00 0-0.5 ft - Concrete gravel 0.5-0.8 ft - Sub-base gravel and sand											
	0.8-1.4 ft - Brown silty clay and gravel									1.4 ft Rec	covered	
2	A2-01											
3	A2-02				Brown silty clay a							
4	A2-03				t - Brown silty clay	•						
4	A2-03	l		2.9-3.9 11	t - Brown silty clay	, moist						
5												
	İ				PID - 0 ppm					3.9 ft Recovered		
6												
7	ļ			0-3.1 ft -	Brown silty clay,	moist						
8												
	•	l										
9												
					<u>PID - 0 ppm</u>					3.1 ft Rec	overed	
10												
44		ŀ		0 0 4 4	Dunium allei alaii							
11	ł	l		0-2.4 π -	Brown silty clay,	moist						
12		l										
	1											
13												
					<u>PID - 0 ppm</u>					2.3 ft Rec	overed	
14		Ш										
15				-	End of Boring a	<u>t 14 It</u>						
13				1	A2-00-1 ft							
16		A2-00-1 ft A2-01-2 ft										
					A2-02-3 ft							
17					A2-03-4 ft							
1												
18												
19				1								
				1								
20												
21												
20				1								
22												
23												

	- @		14	1 Elm Stre	neers, Inc. et York 14203		ORING LO	2	В	oring No.	B1
C	— @ OMP⁄		Ph	one: 716-8	347-1630		OKING LO	J		heet 1 of:	
				x: 716-847						ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
					eet, Buffalo, NY					Datum:	0/5/40
D.:			D'Youville C	Jollege						tart Date:	8/5/19
Drilli	<i>ng Firi</i> Groui			Donth	Data & Time	Drill Rig:				ish Date:	8/12/19
			le Drilling:	Depth	Date & Time	Casing:		Rock Core:	"	uspector:	J. Alt-Winzig
Refo			Removal:			Sampler:		Other:		Unaist:	
			Removal:			Hammer:		Other.			
7		9		of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
æ	o)	_	Blows on		•		•		35-50%		COMMENTS
Depth (ft)	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some · I - little ·		relative	N-value, recovery, moisture, core run, D, % recovered)
Ë			-			α, φ σ, σ σ	, o olay, oly olay,	-,		RQ	D, % recovered)
1				0-0.6 ft -	Asphalt, gravel, s	some dark brown	sand, fill				
	B1-01				t - Black silty clay	Joine dant brown	r carra, m				
2	DUP-D				t - Brown silty clay	/					
	1										
3	B1-02										
4	B1-03										
5					<u>PID - 0 ppm</u>					5.0 ft Red	overed
5											
6				0-5.0 ft -	Brown silty clay						
7											
8											
9	ļ										
10					PID - 0 ppm Hit Refusal at 10	0 ft				5.0 ft Red	covered
					End of Boring a	t 10 ft					
11											
12											
13											
14											
15		Ц									
16											
17					B1-01-1 to 2 ft B1-02-3 ft						
18					B1-03-4 ft B1-WC						
19					DUP-D-080819						
20	1										
	1										
21	1										
22											
23											

COMPANIES Phone: 716-847-1630 Sneet 1 or:		COMPANIES			41 Elm Stre			BORING LOG			oring No.	B2	
Project Name: 301 Connecticul Street Brownfield Cleanup Program Surface Efex. V2.0.091.00				P	hone: 716-8	347-1630		SORING LO	Ğ	SI	heet 1 of:		
Detum: College										Pro	ject No.:	V20.001.005	
Client DYsoville College Start Date:	_						anup Program			Surfa			
Drilling Firm: TREC	L		_			eet, Buffalo, NY						0/0/40	
Second content	Duilli				College								
Mille Dritting: Casing: Rock Core: Undist:	Drilli				Donth	Data & Time	Drill Bion						
Serior Casing Removal: Sampler: Other:						Date & Time			Rock Core		•	J. Ait-Willzig	
After Casing Removal: (N - No. of blows to drive sampler 12" w140 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test)	Befo						_				Onaist.		
Section Sect													
Social State Soci				(N No	o. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)	
1 B2-00 00.6 ft - Concrete gravel 0.6-1:2 ft - Sub-base gravel, some asphalt 1.2-1.6 ft - Darb wors slity clay, dry 1.6 ft Recovered 1.2 ft Recovered 1.3 ft Recovered 1.5 ft Recovered	(ft)	le	ol	Blows on					a - and	- 35-50%			
1 B2-00 00.6 ft - Concrete gravel 0.6-1:2 ft - Sub-base gravel, some asphalt 1.2-1.6 ft - Darb wors slity clay, dry 1.6 ft Recovered 1.2 ft Recovered 1.3 ft Recovered 1.5 ft Recovered	ţ	m og og	dm,	Sampler	m - mediur	m	MATERIAL	DESCRIPTION	s - some	- 20-35%			
B2-00	Dep	Sa	Sy	per 6"	f - fine	S - San	d, \$ - Silt, G - Gra	avel, C - Clay, cly - claye					
1.2-1.6 ft - Dark brown silty clay, dry												,	
2 B2-01	1	B2-00			0.6-1.2 ft	t - Sub-base grave	el, some asphalt						
3 B2-02 0-0.2 ft - Dark brown silty clay and gravel, dry 0.2-2.9 ft - Brown silty clay			1.2-1.6 ft - Dark brown silty clay, dry								1.6 ft Rec	overed	
0.2-2.9 ft - Brown silty clay	2	B2-01				<u>PID - 0 ppm</u>							
0.2-2.9 ft - Brown silty clay	2	B2 02			0 0 2 ft	Dark brown silty	clay and grayal	dny					
A B2-03	3	DZ-UZ						ury					
PID - 0 ppm 3.9 ft Recovered	4	B2-03			0.2 2.0 11	Drown sincy olds	<u>'</u>						
PID - 0 ppm 3.9 ft Recovered		İ											
6 7 7 0-3.8 ft - Brown silty clay, saturated 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5										3.0 ft Recovered		
7						<u>PID - 0 ppm</u>					3.9 ft Rec	covered	
B	6												
B	7				0-3.8 ft -	Brown silty clay	saturated						
9 10 11 11 0-3.9 ft - Brown silty clay, saturated 12 13 PID - 0 ppm 3.9 ft Recovered 14 15 B2-00-1 ft B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20		1			0 0.0	z.c cy c.ay,							
PID - 0 ppm 3.8 ft Recovered	8												
PID - 0 ppm 3.8 ft Recovered													
10 11 12 13 14 15 16 18 19 20	9	+				D/D 0					0045		
11	10					<u> PID - 0 ppm</u>					3.8 ft Red	covered	
12 13 PID - 0 ppm 3.9 ft Recovered End of Boring at 14 ft B2-00-1 ft B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20	10												
13 PID - 0 ppm 3.9 ft Recovered End of Boring at 14 ft B2-00-1 ft B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20	11				0-3.9 ft -	Brown silty clay,	saturated						
13 PID - 0 ppm 3.9 ft Recovered End of Boring at 14 ft B2-00-1 ft B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20													
PID - 0 ppm 3.9 ft Recovered	12												
PID - 0 ppm 3.9 ft Recovered	13												
14 End of Boring at 14 ft 15 B2-00-1 ft 16 B2-01-2 ft 17 B2-03-4 ft 19 20	13					PID - 0 ppm					3.9 ft Rec	covered	
15	14												
B2-00-1 ft B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20						End of Boring a	t 14 ft						
16 B2-01-2 ft B2-02-3 ft B2-03-4 ft 19 20	15				1	P2 00 4 #							
17 B2-02-3 ft B2-03-4 ft 18 19 20	16				1								
17 B2-03-4 ft 18	10				1								
20	17												
20													
20	18						·						
20	40				1								
	19				1								
	20												
21		1											
	21												
					1								
22	22												
23	23				1								

	CGS		14	11 Elm Stre	neers, Inc. et York 14203		BORING LOG		В	oring No.	B3
C			PI	none: 716-8	347-1630	E	ORING LO	5	SI	heet 1 of:	
				ax: 716-847					Pro	oject No.:	V20.001.005
		_			eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L		_			eet, Buffalo, NY				_	Datum:	0/0/40
D::!!!			D'Youville	College						tart Date:	9/9/19
Drilli	<i>ng Firi</i> Groui			Depth	Date & Time	Drill Rig:				ish Date:	9/10/19 J. Alt-Winzig
			le Drilling:	Берит	Date & Time	Casing:		Rock Core:		Undist:	J. Ait William
Befo			Removal:			Sampler:		Other:		onuncu.	
			Removal:			Hammer:					
			(N No	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine		· · · · · ·	DESCRIPTION Ivel, C - Clay, cly - claye	s - some ·	35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
					Concrete gravel						
1	-	0.5-0.7 ft - Sub-base gravel and sand, some asphalt								1 1 # Dc-	an vorad
2		0.7-1.1 ft - Dark brown silty clay, trace brick PID - 0 ppm								1.1 ft Rec	overea
		H			тъ оррии						
3	B3-01			0-0.2 ft -	Dark brown silty	clay, trace brick					
					t - Sandy clay						
4	B3-02			2.5-3.7 ft	t - Brown silty clay	<u>'</u>					
5	B3-03	ŀ									
		ľ			PID - 0 ppm					3.7 ft Rec	covered
6											
7				0-3.9 ft -	Brown silty clay,	moist					
8		l									
9											
10					<u>PID - 0 ppm</u>					3.9 ft Rec	overed
10		H									
11				0-2.6 ft -	Brown silty clay,	moist					
12											
13		ŀ									
		l			PID - 0 ppm					2.6 ft Rec	covered
14					·						
					End of Boring a	t 14 ft					
15	}				B3-01-3 ft						
16					B3-02-4 ft						
	1				B3-03-5 ft						
17											
4.0											
18	ł										
19											
	1										
20	1					-		-			
24											
21	1										
22											
	1										
23											

	- @	ŀ	14 Bu	1 Elm Stre ffalo, New	/ York 14203	BORING LOG				oring No.	B4
C	OMP/	AN	IIES Fa	one: 716-8 x: 716-847						neet 1 of:	V20 004 00E
						onus Drogram				ject No.: ce Elev.:	V20.001.005
					eet Brownfield Cle eet, Buffalo, NY	anup Program			Suria	Datum:	
			D'Youville (et, buildio, ivi				6	tart Date:	8/5/19
Drilli			TREC	Juliege						ish Date:	8/12/19
Drilli	Groui			Donth	Date & Time	Drill Rig:					J. Alt-Winzig
-			ile Drilling:	Depth	Date & Time		ı	Rock Core:	"	spector: Undist:	J. Alt-Willzig
Pofo			Removal:			Casing: Sampler:		Other:		Unaist:	
			Removal:			Hammer:		Other.			
All	er cas	my		of blows	to drive sampler		nmer falling 30" AST	M D-1586 Stan	dard Pen	etration Te	ost)
				OI DIOWS	to anve sampler	12 W/ 140 ID. Hal	miler faming 60 7.611				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
				0.006							
1	-				Asphalt, gravel a						
2					t - Brick and sand t - Black silty clay	, TIII					
	-				t - Brown silty clay	, moist					
3	B4-00	П		3.3-4.7	t - Blown Silty Clay	, moist					
	D- 00										
4	B4-01				PID - 0 ppm					4.7 ft Rec	overed
5	B4-02				<u> </u>					4.7 II Kec	overed
6	B4-03			0-5.0 ft -	Brown silty clay,	moist					
7											
8											
9											
10					<u>PID - 0 ppm</u>					5.0 ft Rec	overed
		П									
11				0-4.8 ft -	Brown silty clay,	moist					
12											
13											
14										4005	
15	B4-04				PID - 0 ppm					4.8 ft Rec	overed
16					End of Boring a	<u>t 15 ft</u>					
17					B4-00-3 ft B4-01-4 ft						
	1				B4-02-5 ft						
18					B4-03-6 ft						
					B4-04-15 ft						
19					B4-WC						
20											
21											
								_			
22											
23]	1								Ī	

				1 Elm Stre	neers, Inc. et York 14203	BORING LOG		3		oring No.	C1
C	OMP		Ph	one: 716-8 x: 716-847	347-1630	_	OKING LO	9		heet 1 of:	
						_				oject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
			D'Youville C		eet, Buffalo, NY					Datum: tart Date:	8/5/19
Drilli	ng Firi			Jollege						ish Date:	8/12/19
DIIIII	Groui			Depth	Date & Time	Drill Rig:				isii Dale. ispector:	J. Alt-Winzig
			le Drilling:	Deptil	Date & Time	Casing:		Rock Core:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Undist:	J. Ait William
Befo			Removal:			Sampler:		Other:		Onaist.	
			Removal:			Hammer:					
		Ť		of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
4	C1-01			0074	Applied around a	nd aand fill					
1	C1-01	ıŀ			Asphalt, gravel a	na sana, iiii					
2	C1-02	'			t - Brown silty clay	/					
	1	ıİ				<u>'</u>					
3	C1-03										
4											
5		╽╽			<u>PID - 0 ppm</u>				5.0 ft Red	covered	
6				0-5.0 ft -	Brown silty clay,	saturated, petro	leum odor				
7	C1-00										
					DID 2000 nnm	ot 7 ft					
8	1	$\ \cdot\ $			<u>PID - 3000 ppm</u> <u>PID - 4300 ppm</u>						
9					PID - 200 ppm a						
10					<u>PID - 5 ppm at 1</u>	<u>0 ft</u>				5.0 ft Red	covered
11				0 0 4 ft	Sand dry						
					Sand, dry t - Silty clay, mois	t					
12	1	$\ \cdot \ $									
13											
14					PID - 5ppm at 1						
15					PID - 0 ppm at 1	2 to 15 ft				5.0 ft Red	covered
16					End of Boring a	<u>t 15 ft</u>					
17	-				C1-01-1 ft C1-02-2 ft						
- 17		lŀ			C1-02-2 ft						
18]				C1-00-7 ft						
19											
20											
21											
22											
23											
20	1										

		ì	14 Bu	1 Elm Stre	/ York 14203	В	3		oring No.	C2	
C	OMP	AN		x: 716-847						oject No.:	V20.001.005
Proje	et Nam	e.	301 Conne	cticut Stre	eet Brownfield Cle	anun Program				ce Elev.:	V20.001.000
					eet, Buffalo, NY	pg				Datum:	
			D'Youville (S	tart Date:	8/5/19
Drilli			TREC							ish Date:	8/12/19
	Grou			Depth	Date & Time	Drill Rig:			lı	nspector:	J. Alt-Winzig
	V	Vhi	ile Drilling:	,		Casing:		Rock Core:		Undist:	
Befo			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
			(N No	of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" ASTI	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye			(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
	00.04			0044	Apple of supplied fi						
1	C2-01	ıl			Asphalt, gravel, for the street of the stree						
2	C2-02			0.4-3.01	t - Blown Silty Clay	anu sanu					
	02 02										
3	C2-03	•									
4											
	<u>.</u>				<u>PID - 0 ppm</u>					3.6 ft Rec	overed
5		Н									
6	<u> </u>			0-4.8 ft -	Brown silty clay,	moist					
7											
8											
9											
10					<u>PID - 0 ppm</u>					4.8 ft Rec	overed
10		H									
11				0-4.9 ft -	Brown silty clay,	moist					
12											
13	_										
14											
15					<u>PID - 0 ppm</u>					4.9 ft Red	overed
16					End of Boring a	t 15 ft					
17					C2-01-1 ft C2-02-2 ft						
18	1				C2-03-3 ft						
	1										
19	1										
20	1										
21	-										
22	22										
23											

	- @	ř	14 Bu	1 Elm Stre ffalo, New	S Engineers, Inc. Elm Street falo, New York 14203 ne: 716-847-1630 : 716-847-1454		BORING LOG			oring No.	C3
C	OMP	AN	IIES Fa							ject No.:	V20.001.005
Projec	ot Nam	0.	301 Conne	cticut Stra	eet Brownfield Cle	anun Program				ce Elev.:	V20.001.003
_					eet, Buffalo, NY	anup i rogiam			Juite	Datum:	
			D'Youville (oct, Banaio, 141				S	tart Date:	8/5/19
Drilli			TREC							ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			ile Drilling:	2000	2430 6 7 11110	Casing:		Rock Core:		Undist:	511 III 11 III III
Befo			Removal:			Sampler:		Other:			
			Removal:			Hammer:					
			(N No	of blows	to drive sampler	12" w/140 lb. hai	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0 1 <i>1</i> ft	Asphalt, gravel, f	ill					
	1				t - Large gravel ar						
2	C3-01	•			t - Brown silty clay						
	i	П				·					
3	C3-02										
4	C3-03										
5					<u>PID - 0 ppm</u>					2.8 ft Rec	overed
6	6 0-5.0 ft - Brown silty clay, moist										
7	-										
8											
9	-										
10					<u>PID - 0 ppm</u> Hit Refusal at 9					5.0 ft Rec	overed
					End of Boring a	<u>t 10 ft</u>					
11	-										
12	1										
13											
14											
15		Ц									
16					00.04.5.5						
17					C3-01-2 ft C3-02-3 ft						
18					C3-03-4 ft						
19											
20											
21]										
	1										
22	1										
23											

		ì	14 Bu	1 Elm Stre	/ York 14203	BORING LOG		3		oring No.	C4
C	OMP	AN		one: 716-8 x: 716-847						ject No.:	V20.001.005
Proje	ot Nam	٥.	201 Conno	otiout Stro	eet Brownfield Cle	anun Program				ce Elev.:	V20.001.003
					eet, Buffalo, NY	anup i rogiam			Juite	Datum:	
			D'Youville (oct, Banaio, 141				S	tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:	2000	2430 6 7 11110	Casing:		Rock Core:		Undist:	511 III 11 III III
Befo			Removal:			Sampler:		Other:			
			Removal:			Hammer:					
		Ĭ		of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye			(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				000#	Asphalt, gravel, f	II					
	-	l			t - Black silty clay	Ш					
2					t - Brown silty clay	,					
	1										
3	C4-01	<u></u>									
4	C4-02										
-	04-02	ı			PID - 0 ppm					4.6 ft Rec	overed
5	C4-03										
6				0-4.8 ft -	Brown silty clay						
7											
8	1										
9	_										
10					<u>PID - 0 ppm</u>					4.8 ft Rec	overed
11	-			0-5.0 ft -	Brown silty clay						
12	_										
13	1										
14	1				PID - 0 ppm					5.0 ft Rec	overed
15										J.J IL NEU	5.5.0u
16					End of Boring a	<u>t 15 ft</u>					
17					C4-01-3 ft C4-02-4 ft						
18					C4-03-5 ft						
19											
20											
21											
22											
	1										
23	1										

				1 Elm Stre	neers, Inc. et York 14203	BORING LOG		2	В	oring No.	D1	
C			Ph	one: 716-8 x: 716-847	47-1630		OKING LO	3		heet 1 of:		
						_				oject No.:	V20.001.005	
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:		
			D'Youville (eet, Buffalo, NY					Datum: tart Date:	8/5/19	
Drilli			TREC	Jollege						ish Date:	8/12/19	
Dillill	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig	
			ile Drilling:	Ворит	Date a Time	Casing:		Rock Core:		Undist:	o. / at vviiizig	
Befo			Removal:			Sampler:		Other:	I	onuncu.		
			Removal:			Hammer:						
			(N No	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Star	dard Pen			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)	
1				0 0 0 ft	Apphalt graval a	ome and fill						
1					Asphalt, gravel, s							
2	D1-00				t - Brown silty clay							
	DUP-C				t - Asphalt							
3					- Gravel and san	d, some brick						
4					DID 0					3.6 ft Recovered		
5					<u>PID - 0 ppm</u>					3.0 II Ked	overed	
6	D1-01	.			Gravel and sand,							
7	D1-02			0.9-4.8 ft	t - Brown silty clay	v, moist						
	1											
8	D1-03											
9					DID 0					4.0.4 Das	a	
10					<u>PID - 0 ppm</u>					4.8 ft Rec	overea	
11				0-5.0 ft -	Brown silty clay,	moist						
12												
13												
14					<u>PID - 0 ppm</u>					5.0 ft Rec	overed	
<u>1</u> 5	D1-04				<u>. τυ - υ μμπ</u>					0.0 IL NEC		
16					End of Boring a	<u>t 15 ft</u>						
17					D1-00-2 ft D1-01-6 ft							
					D1-02-7ft							
18	ļ				D1-03-8ft							
19					D1-04-15 ft DUP-C-080919							
20	<u> </u>				D1-WC							
21												
22												
23												

	- @		14	1 Elm Stre	neers, Inc. et York 14203	BORING LOG		2	В	oring No.	D2
C			Ph	one: 716-8	347-1630		OKING LO	3		heet 1 of:	
				x: 716-847						oject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	- 1-11-
			D'Youville (College		1				tart Date:	8/5/19
Drilli			TREC	5 4	5	D.:/// Di-				ish Date:	8/12/19
	Grou		vater ile Drilling:	Depth	Date & Time	Drill Rig: Casing:		Rock Core:	"	spector:	J. Alt-Winzig
Rofo			Removal:			Sampler:		Other:		Undist:	
			Removal:			Hammer:		Other.			
7		9		of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
£)	o)	_			•		<u> </u>		- 35-50%		COMMENTS
Depth (ft)	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little		relative	N-value, recovery, moisture, core run, D, % recovered)
		П									,
1				0-1.1 ft -	Asphalt, gravel, f	ill					
					t - Large gravel ar						
2				2.8-4.1 ft	t - Brown silty clay	, moist					
2	D2 04	ı									
3	D2-01										
4	D2-02	.			PID - 0 ppm					4.1 ft Rec	rovered
5	D2-03				<u>гір - о ррін</u>					4.11t Nec	overed
6				0-4.9 ft -	Brown silty clay,	moist					
7											
8											
9	ļ										
10					<u>PID - 0 ppm</u>					4.9 ft Rec	overed
11				0 0 4 ft	Brown silty clay	moist					
	ł				Brown silty clay, t		ated				
12					t - Brown silty clay						
13											
14											
15					<u>PID - 0 ppm</u>					4.6 ft Rec	covered
16					End of Boring a	<u>t 15 ft</u>					
	1				D2-01-3 ft						
17	ł				D2-02- 4 ft D2-03-5 ft					-	
18					D2-03-3 IL						
19											
20											
21											
22	1										
23											

				1 Elm Stre ffalo, New	York 14203	BORING LOG		3		oring No.	D3
C	OMP	AN		one: 716-8 x: 716-847		_				neet 1 of:	1/00 004 005
						and the same and				ject No.:	V20.001.005
					eet Brownfield Cle eet, Buffalo, NY	anup Program			Surra	Datum:	
<u> </u>			D'Youville (et, Bullalo, NT				S	tart Date:	8/5/19
Drilli			TREC	Jonogo						ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
	V	Vhi	ile Drilling:			Casing:		Rock Core:		Undist:	J
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0 1 <i>1</i> ft	Asphalt, gravel, f	:11					
					t - Brown silty clay						
2					t - Gravel and san						
	1										
3											
4											
5					<u>PID - 0 ppm</u>					3.6 ft Red	covered
3		Н									
6	D3-01	'		0-0.4 ft -	Gravel and sand,	moist					
	MS/MSE			0.4-4.8 ft	t - Silty clay, mois	t					
7	D3-02	1									
8	D3-03										
9											
10					<u>PID - 0 ppm</u>					4.8 ft Rec	covered
11					Small gravel, son		ed				
12				3.4-5.0 -	Brown silty clay,	moist					
13											
14											
15					<u>PID - 0 ppm</u>					5.0 ft Rec	covered
		Ħ			End of Boring a	<u>t 15 ft</u>					
16					D3-01-6 ft						
17					D3-01-6 ft MS/M	SD					
18					D3-02-7 ft D3-03-8 ft						
19	1										
	1										
20	•										
21											
22											
23											

	- @	ŀ	14	1 Elm Stre	neers, Inc. et York 14203	P	ORING LO	2	В	oring No.	D4
C			Ph	one: 716-8 x: 716-847	347-1630	_	CINING LO	9		heet 1 of:	
										ject No.:	V20.001.005
					eet Brownfield Cle eet, Buffalo, NY	anup Program			Surta	ce Elev.: Datum:	
-			D'Youville (eet, Bullalo, INT				9	tart Date:	8/5/19
Drilli			TREC	Dollege						ish Date:	8/12/19
	Grou			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
	ı	Vhi	ile Drilling:			Casing:		Rock Core:		Undist:	0
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:		-			
			(N No.	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		╽╽		∩-1 8 ft -	Asphalt, gravel, a	and sand fill mo	niet .				
	ł	H			t - Sand, saturated		1131				
2		ll		2.5-4.3 ft - Brown silty clay, saturated							
3	D4-01										
4	D4-02	<u>PID - 0 ppm</u>								4.3 ft Rec	overed
5	D4-03									4.5 11 100	overeu
6	ļ			0-4.3 ft -	Brown silty clay,	moist					
7		╽╏									
8											
9											
		ll			PID - 0 ppm					4.3 ft Red	overed
10		Ц			Hit Refusal at 9						
11					End of Boring a	<u>t 10 ft</u>					
12											
13											
14											
15		Ц									
16					D4 04 2 #						
17					D4-01-3 ft D4-02-4 ft						
18	1				D4-03-5 ft						
19											
20											
21											
22											
23											

	CES 14		1 Elm Stre	neers, Inc. et York 14203	BORING LOG		2	В	oring No.	E1	
C			Ph	one: 716-8	347-1630		OKING LO	3		heet 1 of:	
				x: 716-847						ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	- 1- 1 -
			D'Youville C	College						tart Date:	8/5/19
Drilli			TREC	5 4	D	D-:/// Di				ish Date:	8/12/19
	Grou			Depth	Date & Time	Drill Rig:		Book Coro	"	spector:	J. Alt-Winzig
Pofo			ile Drilling: Removal:			Casing: Sampler:		Rock Core: Other:		Undist:	
			Removal:			Hammer:		Otner:			
A10	er oas	<i>m</i> g		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)
t											COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION Ivel, C - Clay, cly - claye	s - some · I - little ·	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1					Tolsoil loam, little	gravel					
2				2.6-3.4 ft - Gravel, fill 3.4-4.3 ft - Black silty clay, moist							
	ł			4.3-4.8 ft - Black silty clay, moist							
3				4.3-4.8 ft - Brown silty clay							
	İ										
4											
		<u>PID - 0 ppm</u>								4.8 ft Rec	overed
5		Н									
6				0-2 0 ft -	Black silty clay ar	nd gravel					
-					t - Brown silty clay						
7	E1-01										
8	E1-02										
9	E1-03										
					<u>PID - 0 ppm</u>					5.0 ft Rec	overed
10		Ц									
11				0-5.0 ft -	Brown silty clay						
12											
13											
14	= '										
15					<u>PID - 0 ppm</u>					5.0 ft Red	overed
16					End of Boring a	<u>t 15 ft</u>					
17					E1-01-7 ft E1-02-8 ft						
18					E1-03-9 ft						
19	1										
20	1										
21											
	1										
22	1										
23	<u> </u>										

				1 Elm Stre	neers, Inc. et York 14203	BORING LOG		2	В	oring No.	E2
C			Ph	one: 716-8	347-1630		OKING LO	3		heet 1 of:	
				x: 716-847						ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	- 1-11-
			D'Youville C	College						tart Date:	8/5/19
Drilli	ng Firi			5 4	D 1 0 T	D-:/// Di				ish Date:	8/12/19
	Groui		le Drilling:	Depth	Date & Time	Drill Rig:		Book Coro	"	spector:	J. Alt-Winzig
Pofo			Removal:			Casing: Sampler:		Rock Core: Other:		Undist:	
			Removal:			Hammer:		Otner:			
Alt	er oas	ng.		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)
t											COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION Ivel, C - Clay, cly - claye	s - some · I - little ·	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
_	F0.00	ŀ		0.0.0#	Assist annual s	and and fill					
1	E2-00 MS/MSD				Asphalt, gravel, a t - Brown silty clay						
2	E2-01			0.0-4.01	t - Diowii siity clay	<u> </u>					
Ħ	1 '										
3	E2-02										
4	E2-03										
		<u>PID - 0 ppm</u>								4.8 ft Rec	overed
5											
6				0.40#	Drown silty slav	danaa					
6	1	ŀ		U-4.6 II -	Brown silty clay,	uerise					
7		ŀ									
	1										
8											
9											
10					<u>PID - 0 ppm</u>					4.8 ft Rec	overed
11	-			0-4.8 ft -	Brown silty clay,	dense					
12											
13											
14											
					<u>PID - 0 ppm</u>					4.8 ft Rec	overed
15	E2-04				End of Boring a	<u>t 15 ft</u>					
16					E2-00-1 ft						
17					E2-00-1 ft MS/M	SD					
18					E2-01-2 ft E2-02-3 ft						
10	†				E2-02-3 ft E2-03-4 ft						
19	-				E2-04-15 ft						
20					E2-WC						
21											
22											
	1										
23											

			14	1 Elm Stre	neers, Inc. et York 14203	Б	ORING LO	2	В	oring No.	E3
			Ph	one: 716-8	347-1630		OKING LO	3		heet 1 of:	
				x: 716-847						ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	- 1- 1 -
			D'Youville C	College						tart Date:	8/5/19
Drilli	ng Firi			5 4	D	D-:/// Di				ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:		Book Coro	"	spector:	J. Alt-Winzig
Pofo			le Drilling: Removal:			Casing: Sampler:		Rock Core: Other:		Undist:	
			Removal:			Hammer:		Otner:			
Alt	er oas	,,,g		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)
t											COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION Ivel, C - Clay, cly - claye	s - some · I - little ·	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
4				0004	Assist annual s						
1	•				Asphalt, gravel, a						
2	E3-01				t - Brown silty clay						
F				0.0 11	Sity oray						
3	E3-02										
4	E3-03										
5					<u>PID - 0 ppm</u>					5.0 ft Rec	overed
5											
6				0-5.0 ft -	Brown silty clay						
7											
8											
9					DID 0					5.0 (1 D	
10					<u>PID - 0 ppm</u>					5.0 ft Red	overea
11				0-5.0 ft -	Brown silty clay						
12											
13											
14											
15	1				<u>PID - 0 ppm</u>					5.0 ft Rec	covered
					End of Boring a	<u>t 15 ft</u>					
16					E3-01-2 ft						
17					E3-02-3 ft E3-03-4 ft						
18											
19											
20											
21											
22											
23											
	<u> </u>										

Sheet 1 of: V20,001,005 Project Name: 30 Connecticul Street Brownfield Cleanup Program Surface Elev: V20,001,005			ŀ	14 Bu	1 Elm Stre ffalo, New	/ York 14203	В	ORING LO	3		oring No.	E4
Project Name 301 Connecticul Street Brownfield Cleanup Program	C	OMP/	ÁN				_					.,
Determined Start Determined Dittermined Start Determined Sta											_	V20.001.005
Clear DYOLVINE College Barra Deci: 8871 Deci: 87129 1718 1815 Deci: 871219 1818 Deci: 871219 Deci: 871219 1818 Deci: 871219 De	_						anup Program			Surfa		
Drilling Film: TREC Filish best 8/12/19 Inspector: J. Alt-Winzig Casing: Rock Core: Undist: Undi						et, Buttaio, NY						0/5/40
Section Depth De	Duilli				Jollege							
White Drilling: Casing: Rock Core: Undist:	Drilli				Donth	Data & Times	Duill Dian					
Defence Casing Removal: Sampler: Other:					Deptn	Date & Time		<u> </u>	Dook Cores	"		J. Ait-Winzig
After Casing Removal:	Pofo			_			_				Unaist:	
N - No. of blows to drive sampler 12" w/140 b. hammer falling 30" ASTM D-1686, Standard Penetration Test) Sampler Sample									Other.			
Section Sampler Samp	All	er Cas	'''y		of blows	to drive sampler		nmer falling 30" AST	M D-1586 Stan	dard Pen	etration Te	est)
Comparison of the content of the c	Ξ.				0. 5.000	to anyo campion	12 10 15. 1101	Timer raining oo 7.011				
2	Depth (f	Sample No.	Symbo	Blows on Sampler per 6"	m - mediu				s - some - I - little -	20-35% 10-20%	(e.g., relative	N-value, recovery, moisture, core run,
2					0.074	A 1 - 11 1 -						
2 E4-01	1											
3 E4-02 4 E4-03 5 PID - 0 ppm 4.7 ft Recovered 6 O-4.8 ft - Brown silty clay 7 8 9 9 PID - 0 ppm 4.8 ft Recovered 11 O-5.0 ft - Brown silty clay, moist 12 13 14 PID - 0 ppm 5.0 ft Recovered 15 E4-04 End of Boring at 15 ft E4-03 ft E4-03-3 ft E4-03-3 ft E4-04-15 ft 19 20 21	2	F4-01										
## E4-03 PID - 0 ppm		4-01			1.3-4.7	t - Blown Silty Clay	<u>'</u>					
## E4-03 PID - 0 ppm	3	E4-02										
PID - 0 ppm		1										
6 0-4.8 ft - Brown silty clay 7 8 9 PID - 0 ppm 4.8 ft Recovered 10 0-5.0 ft - Brown silty clay, moist 11 12 13 14 PID - 0 ppm 5.0 ft Recovered 15 E4-04 End of Boring at 15 ft 16 17 E4-02.3 ft E4-03.4 ft E4-04-15 ft 19 20 21 22	4	E4-03										
6 0-4.8 ft - Brown silty clay 7 8 9 PID - 0 ppm 4.8 ft Recovered 11 0 0-5.0 ft - Brown silty clay, moist 12 13 14 PID - 0 ppm 5.0 ft Recovered 15 E4-04 E4-02.3 ft E4-03.4 ft E4-03.4 ft E4-03-4 ft E4-03-4 ft E4-04-15 ft 19 20 21 22						<u>PID - 0 ppm</u>					4.7 ft Rec	overed
7 8 9 PID - 0 ppm 4.8 ft Recovered 10 PID - 0 ppm 4.8 ft Recovered 11 0-5.0 ft - Brown silty clay, moist 12 13 PID - 0 ppm 5.0 ft Recovered 16 PID - 0 ppm 5.0 ft Recovered 16 E4-04 E4-02 ft E4-02-3 ft E4-03-4 ft E4-04-15 ft 19 20 21 22	5											
8 9 PID - 0 ppm 4.8 ft Recovered 11 0-5.0 ft - Brown silty clay, moist 12 13 14 PID - 0 ppm 5.0 ft Recovered 15 E4-04 End of Boring at 15 ft 16 E4-02-3 ft E4-03-4 ft E4-03-4 ft 18 E4-04-15 ft 19 20 21 22	6				0-4.8 ft -	Brown silty clay						
9	7											
PID - 0 ppm	8											
10 11 12 13 14 15 E4-04 End of Boring at 15 ft 16 17 18 E4-03-4 ft E4-04-15 ft 19 20 21	9											
12 13 14 15 E4-04 PID - 0 ppm 5.0 ft Recovered End of Boring at 15 ft E4-01-2 ft E4-02-3 ft E4-03-4 ft E4-04-15 ft 19 20 21 22	10					<u>PID - 0 ppm</u>					4.8 ft Rec	overed
13 14 15 E4-04 16 17 18 19 20 21 22	11				0-5.0 ft -	Brown silty clay,	moist					
14	12	-										
PID - 0 ppm 5.0 ft Recovered	13	-										
15 E4-04 End of Boring at 15 ft	14											
16 E4-01-2 ft E4-02-3 ft E4-03-4 ft E4-04-15 ft	15	E4-04									5.0 ft Rec	overed
17	16					End of Boring a	t 15 ft					
18	17											·
19 20 21 22 2		1										
20 21 22 2	18	-				E4-04-15 ft		·				
21 22 2	19	-										
22	20											
	21											
23	22											
	22										-	

		ì	14 Bu Ph	1 Elm Stre Iffalo, New Ione: 716-8	York 14203 347-1630	В	ORING LO	G		oring No.	1-X01
C	ОМР	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
Projec	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	
			D'Youville (College						tart Date:	8/5/19
Drilli			TREC						Fin	ish Date:	8/12/19
	Grou			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
			ile Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:	- ()-	(a deixa a a a a a la a	Hammer:		M D 4500 Ota-	de ed De e	-tt' T-	-1\
	1			. of blows	to drive sampler	12" W/140 lb. nar	mmer falling 30" AST	IVI D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1				0-1.7 ft -	Asphalt, gravel, s	sub-base, fill					
2											
3	1				DID 0 mm			4.7.4 Das	a		
4					<u>PID - 0 ppm</u>			1.7 ft Rec	overed		
				0.074	One wall be all fill ou	atan astronata d					
5				0-0.7 π -	Gravel backfill, w	ater, saturated					
6											
	İ										
7					D/D 0			0.7.4.0			
8					<u>PID - 0 ppm</u>					0.7 ft Rec	overed
Ü		П									
9	1-X01			-	Gravel backfill, w						
10	1-X01 DUP-A			1.1-2.6 f	t - Brown silty clay	, trace gravel, so	oft, moist				
10	100.7										
11	1-X01										
40	4 7/04				<u>PID - 0 ppm</u>					2.6 ft Rec	overed
12	1-X01	Н									
13	1-X01			0-2.6 ft -	Brown silty clay,	soft, moist					
	1				,y, -	·					
14	1-X01										
15	1-X01										
	1				PID - 0 ppm					2.6 ft Rec	overed
16		Ц			End of Do	4 40 44					
17					End of Boring a	<u>t 16 ft</u>					
<u>Г</u>	1				1-X01-9 ft						
18]				1-X01-10 ft						
					1-X01-11 ft						
19	1				1-X01-12 ft						
20					1-X01-13 ft 1-X01-14 ft						
	1				1-X01-15 ft						
21	1				DUP-A-080519						
22											
	†										
23											

		ì	S 14 Bu	1 Elm Stre ffalo, New	RS Engineers, Inc. Elm Street falo, New York 14203 one: 716-847-1630 c: 716-847-1454 BORING LOG					oring No.	1-X02
C	OMP	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
Projec	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC	-					Fin	ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:	•		Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
				of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Œ	σ	_	Blows on					2 - 2nd -	35-50%		COMMENTS
Depth (ft)	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	20-35%	relative	N-value, recovery, moisture, core run, D, % recovered)
1				010#	Asphalt, gravel, s	ub boso fill dru					
1				0-1.9 π -	Aspnait, gravei, s	ub-base, fill, dry					
2											
3											
	Ť				PID - 0 ppm			1.9 ft Rec	overed		
4											
5				0-0.9 ft -	Gravel backfill						
6											
7					DID 0 mmm				0.0 # Daa		
8					<u>PID - 0 ppm</u>					0.9 ft Rec	overed
-		H									
9	1-X02			0-1.0 ft -	Slag						
	1				t - Brown silty clay	, moist					
10	1-X02										
11	1-X02				<u>PID - 700 ppm a</u>						
					PID - 0 ppm at 1	<u>0 ft</u>				2.6 ft Rec	overed
12	1-X02	Ц									
40	4 200			0 0 0 4	Duarra aller alare						
13	1-X02			∪-3.8 ft -	Brown silty clay,	saturated					
14	1-X02										
''	1 702										
15											
	1				PID - 0 ppm					3.8 ft Rec	overed
16		Ш			•						
					End of Boring a	t 16 ft					
17											
					1-X02-9 ft						
18	ļ				1-X02-10 ft						
40					1-X02-11 ft						
19	ł				1-X02-12 ft 1-X02-13 ft						
20					1-X02-13 ft						
	ł				. // 1711						
21											
	İ										
22											
	1										
23											

		ì	14 Bu	1 Elm Stre	/ York 14203	В	ORING LO	3		oring No.	1-X03
C	OMP	AN	IIES Fa	x: 716-847						ject No.:	V20.001.005
Proied	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
			D'Youville C						Si	tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
-			le Drilling:	20,000	2440 64 7 11110	Casing:		Rock Core:		Undist:	**************************************
Befo			Removal:			Sampler:		Other:		ondiot.	
			Removal:			Hammer:					
		- 3		of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
t							J				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - I - little - t - trace	20-35%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
				0.0.0.4	Assist and all	4:11					
1	ł	ŀ		0-2.6 π -	Asphalt, gravel, s	ub-base, fill, dry					
2											
	ł	l									
3											
	1				PID - 0 ppm			2.6 ft Rec	overed		
4											
5				0-0.7 ft -	Gravel backfill						
6											
7	ł	ŀ			DID A none			0.7 tt Dag			
8		ŀ			<u>PID - 0 ppm</u>					0.7 ft Rec	overea
-	1-X03										
9	1 7.00	ŀ		0-2.2 ft -	Brown silty clay						
	Ì				, ,						
10	1-X03										
11	1-X03										
					<u>PID - 0 ppm</u>					2.2 ft Rec	overed
12	1-X03										
12	1 V02	l		022#	Brown silty clay						
13	1-X03	l		0-3.3 II -	Brown Silty Clay						
14	1-X03										
F	. 7.03										
15	1-X03										
	1				PID - 0 ppm					3.3 ft Rec	overed
16		Ц			·						
					End of Boring a	t 16 ft					
17	ļ										
					1-X03-8 to 9 ft						
18	ļ				1-X03-10 ft						
40					1-X03-11 ft						
19	ł				1-X03-12 ft 1-X03-13 ft						
20					1-X03-13 ft						
	ł				1-X03-14 ft						
21											
	1										
22											
23											

				1 Elm Stre ffalo, New	York 14203	P	ORING LO	3		oring No.	1-X04
C	OMP/	٩N		one: 716-8 x: 716-847		_	JOINING LOV			neet 1 of:	
										ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surta	ce Elev.:	
					eet, Buffalo, NY					Datum:	0/5/40
יייי			D'Youville (Jollege						tart Date:	8/5/19
Drilli	<i>ng Firi</i> Groui			Donath	Data & Times	Drill Dian				ish Date:	8/12/19
			le Drilling:	Depth	Date & Time	Drill Rig:		Rock Core:	"	spector:	J. Alt-Winzig
Pofo			Removal:			Casing: Sampler:		Other:		Undist:	
			Removal:			Hammer:		Other:			
AIL	er Cas	iiig		of blows	to drive sampler		I mmer falling 30" AST	M D-1586 Stan	dard Pen	etration Te	est)
·			·	OI DIOWO	to anve sampler	12 W/140 IB. Ha	miner raining 60 7.61	W B 1000, Otan	dara i cii		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
_				0.4.5.0	A b - b	ode basa CII					
1				U-1.5 ft -	Asphalt, gravel, s	sup-base, fill					
2		ŀ									
–											
3											
					PID - 0 ppm			1.5 ft Rec	overed		
4											
5				0-0.7 ft -	Gravel backfill, w	ater, saturated					
_											
6		ŀ									
7		ŀ									
		ŀ			PID - 0 ppm			0.7 ft Rec	overed		
8											
9	1-X04				Gravel backfill, w						
		l		1.1-1.6 f	t - Brown silty clay	, moist					
10	1-X04										
11	1-X04	ŀ			PID - 203 ppm a	t 10 ft					
	1 7.0-1	ŀ			PID - 0 ppm at 1					1.6 ft Rec	overed
12	1-X04										
13	1-X04			0-2.6 ft -	Brown silty clay,	moist					
14	1-X04				DID =1	40.6					
15	1-X04				PID - 74 ppm at PID - 13 ppm at						
13	1-∧∪4				PID - 13 ppm at 1					2.6 ft Rec	overed
16					o ppin at i	- 11				1. 1.00	3.3100
		Ħ			End of Boring a	t 16 ft					
17											
					1-X04-9 ft		-	-	-		-
18					1-X04-10 ft						
1					1-X04-11 ft						
19					1-X04-12 ft						
20					1-X04-13 ft 1-X04-14 ft						
					1-X04-14 ft						
21					10 11						
22											
23											

	COMPANIES			1 Elm Stre Iffalo, New Ione: 716-8	y York 14203 347-1630	В	ORING LO	3		oring No. heet 1 of:	2-X01		
C	OIVIP	AIN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005		
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:			
L					eet, Buffalo, NY					Datum:			
			D'Youville C	College						tart Date:	8/5/19		
Drilli	ng Firi									ish Date:	8/12/19		
	Grou			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig		
			le Drilling:			Casing:		Rock Core:		Undist:			
			Removal:			Sampler:		Other:					
Aft	er Cas	ing	Removal:			Hammer:							
			(N No.	. of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen				
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)		
1				012#	Asphalt, gravel, f	ill dn.							
		ŀ		0-1.5 11 -	Aspirali, gravel, il	iii, ury							
2		ŀ											
		ľ											
3													
	1				PID - 0 ppm		1.3 ft Rec	overed					
4													
5	-				Gravel fill, dry								
_				0.6-1.8 f	t - Brown silty clay								
6	1	l											
7		l											
Ė		ľ			PID - 0 ppm 1.8 ft Recovered								
8	2-X01												
9	2-X01			0-0.4 ft -	Asphalt and grav	el fill							
					t - Brown silty clay		oist						
10	2-X01												
11	2-X01				515 4					0045			
40					PID - 0 ppm Hit Refusal at 12	2.44				3.8 ft Rec	overed		
12		H			End of Boring a								
13					Life of Borning a	<u>t 12 1t</u>							
	İ												
14]												
15	1												
1													
16		Н											
17													
	ł				2-X01-8 ft								
18					2-X01-9 ft								
	1				2-X01-10 ft								
19					2-X01-11 ft								
20													
	1												
21	1												
22													
	ł												
23													

	COMPANIES			1 Elm Stre Iffalo, New Ione: 716-8	y York 14203 347-1630	В	ORING LO	G		oring No.	2-X02
C	JMP	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
Projec	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L	ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville (College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:		-			
			(N No	. of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		1		005#	Asphalt, gravel, f	:11					
-	ł	ŀ			t - Brown silty clay						
2		ŀ		0.5-5.01	t - Diowii siity ciay	and graver					
	ł										
3											
	Ì				PID - 0 ppm					3.0 ft Rec	overed
4					-						
5	ļ				Brown silty clay a						
				1.7-3.8 f	t - Brown silty clay	<u>'</u>					
6	ł										
7					PID - 73 ppm at	7 ft					
	Ì	ŀ			PID - 240 ppm a			3.8 ft Rec	overed		
8	2-X02										
9	2-X02				Brown silty clay a						
		l		1.0-3.9 f	t - Brown silty clay	v, saturated					
10	2-X02				PID - 77 ppm at	0 ft					
11	2-X02	ŀ			PID - 61 ppm at						
	2 7.02	ŀ			PID - 0 ppm at 1					3.9 ft Rec	overed
12	2-X02										
13	2-X02			0-2.5 ft -	Brown silty clay,	saturated					
	0 1/2-										
14	2-X02										
15	2-X02										
Ť	1				PID - 0 ppm					2.5 ft Rec	overed
16		Ц									
		П			End of Boring a	t 16 ft					
17	ļ										
40					2-X02-8 ft						
18	ł				2-X02-9 ft						
19		-			2-X02-10 ft 2-X02-11 ft						
19	ł				2-X02-11 ft						
20					2-X02-13 ft						
	ĺ				2-X02-14 ft						
21											
1											
22	ļ										
23											
		ш									

		1	S 14 Bu	1 Elm Stre	/ York 14203	В	ORING LO	3		oring No.	2-X03
C	OMP	AN	IIES Fa	x: 716-847	'-1454					ject No.:	V20.001.005
Proje	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
L	.ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	ıt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Groui	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
		_	(N No.	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				∩-2 4 ft -	Asphalt, gravel, f	ili					
	-			0 2.4 10	7 Sprian, graver, in						
2											
3	1										
					<u>PID - 0 ppm</u>			2.4 ft Rec	overed		
4		H									
5				0-0.9 ft -	Gravel fill						
	Ī										
6	_										
l _											
7	-	ŀ			PID - 0 ppm					0.9 ft Rec	overed
8		l			<u>т ю - о ррні</u>					0.9 11 100	overed
9	2-X03				Gravel fill						
10	2-X03			0.9-2.3 f	t - Brown silty clay	, moist					
10	2-703										
11	2-X03				PID - 66 ppm at	9 ft					
					PID - 0 ppm at 1	<u>0 ft</u>				2.3 ft Rec	overed
12	2-X03										
13				0-0.6 ft -	Slag						
13	†				Brown silty clay, i	moist					
14				3.0 7.0 -	omi only oldy, i						
	1										
15	1										
16					<u>PID - 0 ppm</u>					4.0 ft Rec	overed
10		H			End of Boring a	t 16 ft					
17											
					2-X03-9 ft						
18					2-X03-10 ft						
19					2-X03-11 ft 2-X03-12 ft						
18	1				2-AUJ-12 IL						
20	1										
21											
22	1										
23											
23	I									Ī	

Project Name: 301 Connecticut Street Brownfield Cleanup Program Location: 301 Connecticut Street, Buffalo, NY Client: D'Youville College Start Drilling Firm: TREC Groundwater Depth Date & Time Drill Rig: While Drilling: Casing: Rock Core: Un Before Casing Removal: After Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetral (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetral ATERIAL DESCRIPTION MATERIAL DESCRIPTION	PELEV.: Datum: t Date: 8/5/19 n Date: 8/12/19 Dector: J. Alt-Winzig ndist:
Project Name: 301 Connecticut Street Brownfield Cleanup Program Location: 301 Connecticut Street, Buffalo, NY Client: D'Youville College Start Drilling Firm: TREC Groundwater Depth Date & Time Drill Rig: Inspection of the College Inspection of th	Datum: It Date: 8/5/19 In Date: 8/12/19 Dector: J. Alt-Winzig Indist: COMMENTS (e.g., N-value, recovery, relative moisture, core run,
Location: 301 Connecticut Street, Buffalo, NY Date Client: D'Youville College Start Drilling Firm: TREC Finish Groundwater Depth Date & Time Drill Rig: Inspector Inspector Inspector Unit Before Casing Removal: Sampler: Other: Unit After Casing Removal: Hammer: Hammer: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetral	Datum: It Date: 8/5/19 In Date: 8/12/19 Dector: J. Alt-Winzig Indist: COMMENTS (e.g., N-value, recovery, relative moisture, core run,
Client: D'Youville College Drilling Firm: TREC Groundwater Depth Date & Time Drill Rig: Inspection Inspe	t Date: 8/5/19 n Date: 8/12/19 Dector: J. Alt-Winzig Indist: ation Test) COMMENTS (e.g., N-value, recovery, relative moisture, core run,
Drilling Firm: TREC Finish Groundwater Depth Date & Time Drill Rig: Inspector While Drilling: Casing: Rock Core: Un Before Casing Removal: Sampler: Other: After Casing Removal: Hammer: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetral	n Date: 8/12/19 pector: J. Alt-Winzig ndist: ation Test) COMMENTS (e.g., N-value, recovery, relative moisture, core run,
Groundwater Depth Date & Time Drill Rig: Inspection While Drilling: Casing: Rock Core: Un Before Casing Removal: Sampler: Other: After Casing Removal: Hammer: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetra	ation Test) COMMENTS (e.g., N-value, recovery, relative moisture, core run,
While Drilling: Before Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetra	ation Test) COMMENTS (e.g., N-value, recovery, relative moisture, core run,
Before Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetra	ation Test) COMMENTS (e.g., N-value, recovery, relative moisture, core run,
After Casing Removal: Hammer: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetra	COMMENTS (e.g., N-value, recovery, relative moisture, core run,
(N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetra	COMMENTS (e.g., N-value, recovery, relative moisture, core run,
	COMMENTS (e.g., N-value, recovery, relative moisture, core run,
## Sampler Sampler Great Street Sampler Great Street Gre	(e.g., N-value, recovery, relative moisture, core run,
per 6" f - fine S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey	
A CATA Archall mount sub-hans fill day	
1 0-1.7 ft - Asphalt, gravel, sub-base, fill, dry	
2	
 - - - 	
3	
<u>PID - 0 ppm</u> 1.7	7 ft Recovered
4	
5 0-1.4 ft - Gravel backfill, saturated	
7	
<u>PID - 0 ppm</u> 1.4	4 ft Recovered
8	
9 2-X04 0-0.7 ft - Gravel, saturated	
0.7-3.5 ft - Brown silty clay, saturated	
10 2-X04	
PID - 130 ppm at 10 ft	
11 2-X04 PID - 23 ppm at 11 ft	
	5 ft Recovered
12 2-X04	
13 2-X04 0-3.7 ft - Brown silty clay, saturated	
14 2-X04	
15 2-X04	
	7 ft Recovered
16 <u>16</u>	
End of Boring at 16 ft	
17	
2-X04-9 ft	
18 2-X04-10 ft 2-X04-11 ft	
19 2-X04-11 π 2-X04-12 ft	
2-X04-12 ft 2-X04-13 ft	
20 2-X04-14 ft	
2-X04-15 ft	
21	
23	

		ì	14 Bu	1 Elm Stre	/ York 14203	В	ORING LO	G		oring No.	1-Y01
C	OMP	AN	I IES Fa	x: 716-847	'-1454					ject No.:	V20.001.005
Projec	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
L	.ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Groui	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
	1		(N No.	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		╽╽		0.00#	Asphalt, gravel, a	and cond fill					
	1	lŀ			t - Dark brown silty						
2		lŀ			t - Light brown silt						
	1	ll			<u> </u>	,					
3											
					<u>PID - 0 ppm</u>					3.5 ft Rec	overed
4		Щ									
5		╽╽		0 1 7 ft	Black silty clay, d	ln.					
3	1	H									
6		ll		117 0.0 1	.7-3.9 ft - Brown silty clay, moist						
	1										
7	_				PID - 5 ppm at 5						
					PID - 0 ppm at 7	<u>to 8 ft</u>				3.9 ft Rec	overed
8		Н									
9		lŀ		0-1.4 ft -	Dark brown silty of	clay, some grave	I, moist				
	1				t - Brown silty clay						
10	<u> </u>										
11	1-Y01										
- 11	1-101	lŀ			PID - 0 ppm					3.9 ft Rec	overed
12		lŀ			<u>пъ-о ррш</u>					3.3 It 100	overed
		Ħ									
13				0-3.9 ft -	Brown silty clay, i	moist					
		l [
14	-										
15											
13	1				PID - 0 ppm					3.9 ft Rec	overed
16											
		П			End of Boring a	t 16 ft					
17	-										
40					1-Y01-11 ft						
18	1										
19											
	1										
20											
21											
		l [
22	-										
23											

		ì	14 Bu Ph	1 Elm Stre	/ York 14203	В	ORING LO	<u> </u>		oring No.	1-Y02
C	OMP	AN		x: 716-847						oject No.:	V20.001.005
Proied	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
			D'Youville (Si	tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	<u> </u>	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	Ü
Befo			Removal:			Sampler:		Other:			
			Removal:			Hammer:					
		Ĭ	(N No.	of blows	to drive sampler	12" w/140 lb. hai	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
4		ŀ		0.004	Assets assets as	and and fill					
1		ŀ			Asphalt, gravel, a		d				
2		╽╽		0.0-2.3 1	t - Dark blown siit	y ciay, some san	u				
	1	l									
3		l									
					PID - 0 ppm					2.3 ft Rec	overed
4											
5					Dark brown silty	clay, some sand					
					t - Black silty clay						
6	1	ŀ		0.6-0.9 f	t - Dark brown silty	y clay					
7		l									
<u> </u>	ł	l			PID - 0 ppm					0.9 ft Rec	overed
8											
9	1-Y02			0-1.5 ft -	Dark brown silty	clay, moist					
10	-	ŀ									
11		l									
<u> </u>		l			PID - 0 ppm					1.5 ft Rec	overed
12											
13				0-3.9 ft -	Brown silty clay,	moist					
14	ł									-	
15										 	
13	†				PID - 0 ppm					3.9 ft Rec	overed
16	<u></u>	LÌ									
		П			End of Boring a	t 16 ft					
17											
					1-Y02-9 ft					ļ	
18	1									<u> </u>	
19										 	
	İ									1	
20	-										
21											
	1										
22]							-			-
1			<u> </u>		_						
23	1									I	

		í	14 Bu	1 Elm Stre	York 14203	В	ORING LO	G		oring No.	1-Y03
C	OMP	AN	IIES Fa	x: 716-847						ject No.:	V20.001.005
Proied	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	120.001.000
					eet, Buffalo, NY					Datum:	
			D'Youville C						S	tart Date:	8/5/19
Drilli	ng Firr									ish Date:	8/12/19
	Grour			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	Ü
Befo			Removal:			Sampler:		Other:			
			Removal:			Hammer:					
		Ĭ		of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
,				0444	Apple of supplied fi	:11					
1	ł	l			Asphalt, gravel, for the street of the stree						
2		╽╽		1.1-2.01	t - Blown Silty Clay	<u>'</u>					
	•	ŀ									
3		l									
	İ				PID - 0 ppm					2.6 ft Rec	overed
4											
5	ļ				Brown silty clay,						
				2.0-3.2 f	t - Brown silty clay	v, moist					
6		ŀ			DID CO	C #4					
7		ŀ			PID - 60 ppm at PID - 40 ppm at						
	•	ŀ			PID - 0 ppm at 8					3.2 ft Rec	overed
8		l			TID - 0 ppin at 0	<u>, 16</u>				3.2 It 100	overeu
9				0-3 9 ft -	Brown silty clay,	moist					
-	ł	l		0-3.9 11 -	Brown silty clay,	moist					
10	1-Y03										
11											
					<u>PID - 0 ppm</u>					3.9 ft Rec	overed
12					End of Boring a	4 40 #					
13		ŀ			End of Boring a	<u>t 12 ft</u>					
13											
14											
	1										
15									_		
16		Ц									
47											
17					1-Y03-10 ft						
18					1-103-10 ft						
<u> </u>	1										
19											
20											
21											
22											
23										I	

		í	Bu Ph	1 Elm Stre	York 14203	В	ORING LO	G		oring No.	1-Y04
C	OMP	AN		x: 716-847					Pro	oject No.:	V20.001.005
Projec	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
L	ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:	af blavva	ta duiva agus na n	Hammer:		M D 4500 Ctor	dand Dan	atuatian Ta	- 4\
		П	(N NO.	. Of blows	to drive sampler	12" W/140 lb. nar	mmer falling 30" AST	W D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1				0.00#	Asphalt, gravel, a	and cond fill					
-		ŀ			t - Sandy clay, littl						
2		-		0.0 2.41	t - Oarlay Clay, Ilti	c graver					
3											
					<u>PID - 0 ppm</u>					2.4 ft Rec	overed
4		Щ									
5		1		011#	Sandy clay, little	arovol					
	1	ŀ			t - Black silty clay	giavei					
6				111 2.0 1	Black only olay						
	İ	ľ			PID - 80 ppm at	5 to 6 ft					
7					PID - 5 ppm at 6						
					PID - 0 ppm at 8	<u>ft</u>				2.0 ft Rec	overed
8		Н									
9	1-Y04	ŀ		0-0 6 ft -	Black silty clay						
	1				t - Brown silty clay	, saturated					
10					, ,						
11	1				D/D 0					0045	
12		ŀ			<u>PID - 0 ppm</u>					3.8 ft Rec	overed
12		H									
13				0-3.3 ft -	Brown silty clay,	saturated					
	1										
14		ļ				·					
1											
15	ł				PID - 0 ppm					3.3 ft Rec	overed
16					יטוים - ט ppm - טוים					J.J IL KEC	overeu
-0		H			End of Boring a	t 16 ft					
17											
					1-Y04-9 ft						
18											
40										-	
19	1									 	
20	-										
21											
22	ł										
23										1	

			14 Bu Ph	1 Elm Stre uffalo, New none: 716-8	y York 14203 347-1630	В	ORING LO	G		oring No. neet 1 of:	2-Y01
	ОМР			x: 716-847						ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	2/2//2
5			D'Youville (College		1				art Date:	8/5/19
Drilli	ng Firi			D 4/s	D-4- 0 Ti	Duill Dian				ish Date:	8/12/19
	Grou		le Drilling:	Depth	Date & Time	Drill Rig:		Rock Core:	Ir	spector: Undist:	J. Alt-Winzig
Rofo			Removal:			Casing: Sampler:		Other:		Unaist:	
			Removal:			Hammer:		Other.			
–	o, ouo	9		. of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		ŀ		0-0 7 ft -	Asphalt, gravel, a	and black sand f	ill				
<u> </u>	1	ŀ			t - Black silty clay						
2		l			, ,	,					
3	1										
					<u>PID - 0 ppm</u>					1.9 ft Rec	overed
4		H									
5		ŀ		0-2.0 ft -	Black silty clay, r	noist					
	1	lÌ			t - Brown silty cla						
6	_										
7	1	ŀ			<u>PID - 17 ppm at</u> <u>PID - 2 ppm at 7</u>					3.9 ft Red	any orod
8		ŀ			FID - 2 ppili at 1	<u>. n</u>				J.9 IL INEC	overed
9	2-Y01				Brown silty clay,	trace sand, mois	t				
				2.2-3.7 f	t - Silty clay						
10	1										
11		ŀ			PID - 1 ppm at 9) ft					
	1	l			PID - 0 ppm at 1					3.7 ft Rec	overed
12						 -					
13	4			0-3.9 ft -	Brown silty clay						
14											
14	1	ŀ									
15		ľ									
					<u>PID - 0 ppm</u>					3.9 ft Red	overed
16											
17		ŀ			End of Boring a	<u>t 16 ft</u>					
17	1	ŀ			2-Y01-9 ft						
18		l									
	1										
19]										
22				.							
20	1	1									
21				-							
<u> </u>	1	1									
22]			<u> </u>							
23											

			14	1 Elm Stre	neers, Inc. et York 14203	В	ORING LO	2	В	oring No.	2-Y02
C	OMP/		Ph	one: 716-8 x: 716-847	347-1630		OKING LO	3		heet 1 of:	
						_				ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
			D'Youville C		eet, Buffalo, NY					Datum: tart Date:	8/5/19
Drilli	ng Firi			Jollege						ish Date:	8/12/19
Dillill	Grou			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:	Бери	Date & Time	Casing:		Rock Core:	- "	Undist:	0.711t VVIII21g
Befo			Removal:			Sampler:		Other:		onaiot.	
			Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
				0.4.4.6	A 1 1/2 1		***				
1	1				Asphalt, gravel, a t - Dark brown silt		1111				
2				1.1-2.7 10	t - Daik blown siit	y ciay					
ΙŤ	1										
3											
					<u>PID - 0 ppm</u>					2.7 ft Rec	overed
4	2-Y02	H									
5		-		0-3 4 ft -	Dark brown silty	clav some grave	إذ				
	1			0 01 1 11	24	o.u.y, 000 g.u.v	<u> </u>				
6	_										
_											
7	-				PID - 0 ppm					3.4 ft Rec	overed
8					<u>тъ-о ррні</u>					5.4 It 100	overed
9	-			0-3.8 ft -	Brown silty clay,	moist					
10											
11	_				PID - 0 ppm					3.8 ft Rec	overed
12		╽┟			<u>гір - о ррін</u>					3.0 II Nec	overed
		Ħ									
13	-			0-3.7 ft -	Brown silty clay,	moist					
14											
	1										
15	1				PID - 0 ppm					3.7 ft Rec	overed
16		╚			<u>. ιυ - υ μμιιι</u>					J. IL NEC	
					End of Boring a	t 16 ft					
17	4				2 V02 4 #						
18					2-Y02-4 ft						
٣	1										
19]										
22											
20	_	-									
21											
22	1	-									
23		Ĺŀ									

		ŀ	14	1 Elm Stre	neers, Inc. et York 14203	-	ORING LO	2	В	oring No.	2-Y03
C			Ph	one: 716-8 x: 716-847	347-1630	-	OKING LO	3		heet 1 of:	
										ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L L					eet, Buffalo, NY					Datum:	0/5/40
Drilli	ng Firi		D'Youville C	ollege		<u> </u>				tart Date: ish Date:	8/5/19 8/12/19
Dillill	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:	Берит	Date & Time	Casing:		Rock Core:	,,	Undist:	J. Alt Williag
Befo			Removal:			Sampler:		Other:		onaiot.	
			Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
_				0.06#	Asphalt, gravel, f	:11					
1					t - Sandy clay, dry						
2				0.0 2.0 11	Carray day, ary	'					
	1										
3											
					<u>PID - 0 ppm</u>					2.9 ft Rec	overed
4		H									
5	2-Y03			0-2.8 ft -	Sandy clay, dry						
	İ				t - Silty clay, mois	t					
6											
_											
7	ł	╽┟			PID - 0 ppm					3.6 ft Rec	overed
8					<u>тъ оррні</u>					0.0111100	0.000
9		╽┟		0-3.8 ft -	Brown silty clay,	moist					
10											
11	+				DID 0					3.8 ft Rec	
12					<u>PID - 0 ppm</u>					3.6 II KeC	overed
13				0-3.6 ft -	Brown silty clay,	moist					
14											
	†										
15											
16					<u>PID - 0 ppm</u>					3.6 ft Rec	overed
-10		Ħ			End of Boring a	nt 16 ft					
17]										
		[2-Y03-5 ft						
18	ļ										
19		-									
	1										
20		֓֞֞֜֞֜֞֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֡֡֡֡֡֡֡									
24											
21	-	-									
22											
	1										
23											

		í	Bu Bh	1 Elm Stre	/ York 14203	В	ORING LO	G		oring No.	2-Y04
C	OMP	AN	IIES Fa	x: 716-847						ject No.:	V20.001.005
Projec	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
L	ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville (College					Si	art Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
		_	(N No	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -		(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
_		H		0.00#	Apphalt graval fi	:11					
1	ł	╽╽			Asphalt, gravel, for the Black sand, pet						
2		lŀ		0.9-1.01	t - Diack Sariu, per	iroleum odoi					
	ľ	H									
3											
					PID - 2500 ppm	at 2 ft				1.8 ft Rec	overed
4		Ц									
5				0114	Digal good patra	laum adar maia	4				
- 3	ł	H		0-1.4 11 -	Black sand, petro	neum odor, mois	ι				
6		lŀ									
	ľ	ll									
7											
_					<u>PID - 4000 ppm</u>	<u>at 5 ft</u>				1.4 ft Rec	overed
8		Н									
9		l		0-1.8 ft -	Black sand, petro	leum odor. mois	t				
	ĺ	ll			t - Silty sand, mois		-				
10											
					PID - 500 ppm a						
11	ł				PID - 100 ppm a					3.8 ft Rec	
12	2-Y04	╽┟			PID - 90 ppm at 1					3.6 IL Red	overea
12	£ 104	Ħ			<u> υ γριπαί τ</u>						
13				0-3.2 ft -	Brown silty sand,	moist					
		[
14	ļ	l l									
45											
15	ł				PID - 0 ppm					3.2 ft Rec	overed
16					. ιο υ ρριιι					5.2 It 1\c	
		П			End of Boring a	t 16 ft					
17		[
1		Ιl			2-Y04-12 ft						
18	ł			Dovins	was mayad F fr f	urthor from al-1	inaction contact (45 f	t from comtant	n aud		
19				Boring			ineation center (15 f etroleum odor/conta		ıı oraer		
13	<u> </u>					от ре					
20											
آ _{د م} [
21	ļ										
22											
	ľ										
23											

		ì	Bu Ph	1 Elm Stre	/ York 14203	В	ORING LO	3		oring No.	2-Y05
C	OMP	AN		x: 716-847						ject No.:	V20.001.005
Proied	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
			D'Youville (Si	art Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui	_		Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	<u> </u>
Befo			Removal:			Sampler:		Other:		onuiou	
			Removal:			Hammer:					
		3		of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
ŧ	•				•		J				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -		(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
,		H		0.004	Apple of supplied fi	:11					
1		Н			Asphalt, gravel, for the same of the same	<u> </u>					
2		H		0.2-3.0 f	t - Sandy clay						
		Н									
3		H									
Ť		l			PID - 20 ppm at	3 ft				3.0 ft Rec	overed
4		H				<u> </u>				0.0 11 1100	
		П									
5				0-1.2 ft -	Sandy clay						
				1.2-3.9 f	t - Brown silty clay	′					
6		П									
		Ш			PID - 250 ppm a						
7		Ш			PID - 130 ppm a						
		П			PID - 110 ppm a					3.9 ft Rec	overed
8		Н			PID - 73 ppm at	<u>8 ft</u>					
9		H		0-3 9 ft -	Brown silty clay						
		H		0 0.0 10	Brown Sirty Glay						
10		H									
					PID - 130 ppm a	t 9 ft					
11					PID - 40 ppm at	10 ft					
					PID - 0 ppm at 1	<u>1 ft</u>				3.9 ft Rec	overed
12	2-Y05	Ц									
		Ιl			End of Boring a	<u>t 12 ft</u>					
13	ļ	l l									
11											
14	ł										
15											
	İ										
16		LÌ									
		П									
17]										
		l [2-Y05-12 ft	_		_			
18		Ιl									
1		Ιl		В	oring added on N	Northeast corne	r of "Y" delineation	10 ft from cent	er		
19	Į										
20											
20	ł										
21											
F	İ										
22											
	1										
23		Ц									

		ì	Bu Bh	1 Elm Stre	York 14203	В	ORING LO	3		oring No.	3-Y04
C	OMP	AN	IIES Fa	x: 716-847					_	ject No.:	V20.001.005
Proied	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
_					eet, Buffalo, NY					Datum:	
			D'Youville (Si	tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui	_		Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:	20,000	2440 64 7 11110	Casing:		Rock Core:		Undist:	511 m 11 m g
Befo			Removal:			Sampler:		Other:		onuiou	
			Removal:			Hammer:					
		- 3		of blows	to drive sampler		nmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
ŧ	•	_	•		•		J				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
,				0.4.0.0	A b - b - b b - 6						
1					Asphalt, gravel, for the Black and brow						
2				1.2-2.7 1	t - Black and brow	n siity ciay					
		ŀ									
3		l									
Ť					PID - 0 ppm					2.7 ft Rec	overed
4		ľ			<u>1 10 - 0 ppin</u>						
5				0-1.6 ft -	Black and brown	silty clay					
				1.6-3.9 f	t - Brown silty clay	, petroleum odor					
6					.9 ft - Brown silty clay, petroleum odor, moist						
					PID - 630 ppm a						
7					PID - 5500 ppm						
					PID - 430 ppm a					3.9 ft Rec	overed
8		H			PID - 130 pmm a	at 8 ft					
9		ŀ		0-2 6 ft -	Brown silty clay,	moist					
				0 2.0 10	Brown Sirty Glay,	moiot					
10											
					PID - 55 ppm at	9 ft					
11					PID - 20 ppm at	10 ft					
					<u>PID - 15 ppm at</u>					2.6 ft Rec	overed
12					PID - 0 ppm at 1	<u>2 ft</u>					
13	3-Y04			0-2.2 ft -	Brown silty clay,	moist					
11											
14	ł										
15											
		l			PID - 0 ppm					2.2 ft Rec	overed
16											
		M			End of Boring a	t 16 ft					
17											
					3-Y04-13 ft						
18											
				Boring			neation center (20 f		n order		
19	ļ				to try and f	and extent of pe	troleum odor/conta	mination			
00											
20	ļ										
21											
	ł										
22											
	İ										
23											

		ì	14 Bu	1 Elm Stre	/ York 14203	В	ORING LO	3		oring No.	1-Z01
C	OMP	AN		x: 716-847						ject No.:	V20.001.005
Proied	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
			D'Youville C						Si	tart Date:	8/5/19
Drilli			TREC							ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			ile Drilling:	20,000	2440 64 7 11110	Casing:		Rock Core:		Undist:	**************************************
Befo			Removal:			Sampler:		Other:		ondio.	
			Removal:			Hammer:					
				of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
ŧ	4)				•		<u> </u>				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
,				040#	Apple of supplied fi	:11					
1	1				Asphalt, gravel, for the street of the stree						
2				1.2-3.4 [t - Brown sandy ci	ay					
	1										
3											
	İ				PID - 0 ppm					3.4 ft Rec	overed
4											
5				0-3.9 ft -	Brown with black	stains sandy cla	y, some gravel				
6											
_					PID - 60 ppm at						
7	1-Z01				PID - 40 ppm at					0045	
8					PID - 0 ppm at 8	<u> </u>				3.9 ft Rec	overed
0		H									
9				0-2.9 ft -	Brown silty clay,	moist					
	1										
10											
11											
					<u>PID - 0 ppm</u>					2.9 ft Rec	overed
12		Н									
40				026#	Drown oilte alas	moint					
13	1			U-3.6 II -	Brown silty clay,	IIIOISI					
14											
	İ										
15											
	1				PID - 0 ppm					3.6 ft Rec	overed
16		Ш									
					End of Boring a	t 16 ft					
17											
1					1-Z01-7 ft						
18	ł										
19											
18	ł										
20	1										
21											
1											
22	1										
23											
23]										

		1	14 Bu Ph	1 Elm Stre ffalo, New	S Engineers, Inc. Elm Street Io, New York 14203 e: 716-847-1630 716-847-1454		ORING LO	G		oring No.	1-Z02
C	ОМР	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
Projec	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L	.ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Groui	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:		·			
			(N No.	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0.06#	Asphalt, gravel, f	:11					
	-	ŀ		0-0.6 11 -	Aspriant, graver, in	III					
2		╽╽									
	1										
3											
					<u>PID - 0 ppm</u>					0.6 ft Rec	overed
4											
l _											
5	-				Asphalt, gravel, for the street of the stree						
6		l		1.1-2.01	t - Brown Silty Clay	<u>'</u>					
-	-	l			PID - 60 ppm at	8 ft					
7		ŀ			PID - 40 ppm at						
	1				PID - 0 ppm at 8					2.6 ft Rec	overed
8											
9	-			0-0.6 ft -		_					
10		ŀ		0.6-3.61	t - Brown silty clay	<u>'</u>					
-10	-				PID - 67 ppm at	9 ft					
11	1-Z02				PID - 5 ppm at 1						
					PID - 0 ppm at 1					3.8 ft Rec	overed
12					Hit Refusal at 12						
					End of Boring a	<u>t 12 ft</u>					
13	-										
14											
	Ħ										
15											
16		Ц									
l											
17	1				1-Z02-11 ft						
18					1-202-11 it						
10	1										
19											
20	1										
21	1										
22	1										
00											
23											

		ì	14 Bu Ph	1 Elm Stre Iffalo, New one: 716-8	y York 14203 347-1630	ORING LO	3		oring No.	1-Z03	
C	ОМР	٩N	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	
			D'Youville C	College						tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:	af blasse	ta duiva agus mlan	Hammer:		M D 4500 Cton	dand Dan	-44: T-	-1\
			(N NO.	. Of blows	to drive sampler	12" W/140 lb. nar	mmer falling 30" AST	IVI D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -		(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1				010#	Asphalt, gravel, a	and cond fill					
		ŀ				inu sanu iii					
2	1.0-2.1 ft - Gravel										
		l									
3											
					<u>PID - 0 ppm</u>					2.1 ft Rec	overed
4											
5				0-1.4 ft -	Graval						
3					t - Sandy clay and	l gravel					
6				11.1 2.0 1	Canay day and	giavoi					
	İ										
7					PID - 3500 ppm						
					PID - 400 ppm a	<u>t 8 ft</u>				2.5 ft Rec	overed
8		H									
9				0-1.2 ft -	Sandy clay and g	ravel					
	İ				t - Brown silty clay						
10											
11	1-Z03				PID - 400 ppm at 1					3.8 ft Rec	avarad
12		ŀ			PID - 0 ppili at 1	<u>0 It</u>				3.6 IL KeC	overed
12		H									
13				0-3.9 ft -	Brown silty clay						
	1										
14	1										
4.5											
15	-				PID - 0 ppm					3.9 ft Rec	overed
16		ŀ			<u>тъ-о ррні</u>					3.3 It IXCC	overed
					End of Boring a	t 16 ft					
17]										
1					1-Z03-11 ft						
18	-										
19											
l	1										
20	-										
21											
	1					_					
22							-				
23											

		ř	Bu Ph	1 Elm Stre	/ York 14203	BORING LOG				oring No.	1-Z04
C	OMP	٩N		x: 716-847						ject No.:	V20.001.005
Proied	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
					eet, Buffalo, NY					Datum:	
			D'Youville (,				S	tart Date:	8/5/19
Drilli	ng Firi									ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
-			le Drilling:	2000	2440 64 7 11110	Casing:		Rock Core:		Undist:	511 m 11 m g
Befo			Removal:			Sampler:		Other:		onuicu	
			Removal:			Hammer:					
				of blows	to drive sampler	12" w/140 lb. hai	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
t	4	_			•		<u> </u>				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some	35-50% - 20-35% - 10-20% - 0-10%	relative	N-value, recovery, moisture, core run, D, % recovered)
_		╽╽		0.0.0.0	A b - b		CII				
1		H			Asphalt, gravel, a		ne, till				
2		╽┟		0.6-3.0 1	t - Tan sandy clay	, ary					
		H									
3		lŀ									
	ł	ll			PID - 0 ppm					3.0 ft Rec	overed
4		H									
5		H		0-1.1 ft -	Brown silty clay						
				1.1-3.8 f	t - Sandy clay, tra	ce gravel					
6											
_					PID - 26 ppm at						
7					PID - 15 ppm at					0.04.0	
8		╽┟			PID - 8 ppm at 7					3.8 ft Rec	overed
0		H			PID - 0 ppm at 8	<u> </u>					
9		H		0-2.9 ft -	Brown silty clay						
	İ	li			, ,						
10	1-Z04										
11											
					<u>PID - 0 ppm</u>					2.9 ft Rec	overed
12		Н									
13				0-2 8 ft	Brown silty clay						
13	ł			U-∠.0 IL -	DIOWIT SILLY Clay						
14											
	1										
15											
					<u>PID - 0 ppm</u>					2.8 ft Rec	overed
16		Ц									
1		$ \ $			End of Boring a	t 16 ft					
17	ļ				4 704 40 %						
10					1-Z04-10 ft						
18	ł										
19		╽┟									
	İ										
20											
21											
	İ										
22											
	1										
23		ΙÍ				·		<u></u>			

		ì	S 14 Bu Ph	1 Elm Stre	York 14203	BORING LOG				oring No.	2-Z01	
C	ОМР	AN		x: 716-847					Pro	ject No.:	V20.001.005	
Projec	ct Nam	e:	301 Connec	cticut Stre	et Brownfield Cle	anup Program				ce Elev.:		
L	ocatio	n:	301 Connec	cticut Stre	et, Buffalo, NY					Datum:		
	Clier	nt:	D'Youville (College					Si	tart Date:	8/5/19	
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19	
	Groui	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig	
	V	Vhi	ile Drilling:			Casing:		Rock Core:		Undist:		
			Removal:			Sampler:		Other:				
Aft	er Cas	ing	Removal:			Hammer:						
	_		(N No.	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen			
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)	
1				000#	Asphalt, gravel, f	:11						
	1				t - Black silty sand							
2					t - Brown silty clay							
						<u> </u>						
3												
					<u>PID - 0 ppm</u>					3.1 ft Rec	overed	
4		<u>і по - 0 ррт</u>										
5				0 1 9 ft	Brown silty clay,	somo gravol						
	1											
6				2.0 .	9 ft - Brown silty clay, moist							
	İ				PID - 20 ppm at 5 ft							
7	2-Z01				PID - 400 ppm a							
					PID - 160 ppm a					2.9 ft Rec	overed	
8		Н			PID - 0 ppm at 8	<u> </u>						
9				0-3.8 ft -	Brown silty clay,	moist						
10												
10												
11												
4.0					<u>PID - 0 ppm</u>					3.8 ft Rec	overed	
12		H										
13				0-1.8 ft -	Brown silty clay,	moist						
				0 110 11								
14]											
1												
15					PID - 0 ppm					1.8 ft Rec	overed	
16					<u>. ιυ - υ μμιιι</u>					1.0 It Nec		
					End of Boring a	t 16 ft						
17												
10					2-Z01-7 ft							
18	1											
19												
20												
20]											
21	-											
22												
<u> </u>	1											
23												

		í	14 Bu Ph	1 Elm Stre	York 14203	В	G		oring No.	2-Z03	
C	OMP	AN	IIES Fa	x: 716-847	'-1454					ject No.:	V20.001.005
Projec	t Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	
L	ocatio	n:	301 Connec	cticut Stre	eet, Buffalo, NY					Datum:	
	Clier	nt:	D'Youville C	College					Si	tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
	1	_	(N No.	. of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some · I - little ·	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		╽┟		0 0 7 ft	Asphalt, gravel, f	ill					
<u> </u>	ł	lŀ			t - Dark brown silt						
2		ll		017 110 1		,,					
	ĺ	li									
3											
					<u>PID - 0 ppm</u>					1.6 ft Rec	overed
4		Н									
5		╽╽		No Reco	overy						
6	·										
7		╽┟									
	ľ	lŀ								0 ft Recov	rered
8		Ц									
9		$\ \cdot\ $		0-0.6 ft -	Brown silty clay a	and gravel					
				0.6-3.9 f	t - Brown silty clay	1					
10	ł	╽╽			PID - 120 ppm a	t Q ft					
11		lŀ			PID - 40 ppm at						
		li			PID - 0 ppm at 1					3.9 ft Rec	overed
12	2-Z03	Ш	_								
13		$ \ $			End of Boring a	t 12 ft					
	Ì										
14	ļ							-	<u>-</u>		
15											
16		H									
17	r	$ \ $			2 702 42 #						
18					2-Z03-12 ft						
19											
20	•	$ \ $									
21											
22											
22	1										
23											

	COMPANIES			1 Elm Stre	neers, Inc. et York 14203	P	ORING LO	G	Boring No		2-Z04
C	OMP/			one: 716-8 x: 716-847		_	JOINING LOV			neet 1 of:	1/00 004 005
						D				ject No.: ce Elev.:	V20.001.005
					eet Brownfield Cle eet, Buffalo, NY	anup Program			Surra	Datum:	
			D'Youville C		et, Bullalo, NT				S	tart Date:	8/5/19
Drilli	ng Firi			onogo -						ish Date:	8/12/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	<u> </u>
Befo			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Star	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
_				0054	Asiabalt august f	:11					
1	ł	l			Asphalt, gravel, f t - Black silty clay	III					
2		l			t - Brown silty clay	/. little gravel					
Ħ	1					, g					
3					PID - 400 ppm a	t 2 ft					
					PID - 1500 ppm					3.0 ft Rec	overed
4					PID - 1200 ppm	at 4 ft					
5		ŀ		0-3.6 ft - Brown silty clay							
	ł	ŀ	0-3.6 ft - Brown silty clay								
6											
	1		PID - 1650 ppm at 6 ft								
7	ļ				PID - 200 ppm a					0.04.5	
8					PID - 0 ppm at 8	<u>s nt</u>				3.6 ft Rec	overed
Ť											
9	2-Z04			0-3.3 ft -	Brown silty clay,	moist					
40											
10		╽╽									
11											
					<u>PID - 0 ppm</u>					3.3 ft Rec	overed
12		Ш									
13				በ-በ ጸ ft -	Brown silty clay,	moist					
	ł				t - Brown silty clay						
14					t - Brown silty clay						
15	+				DID 0					3.6 ft Rec	
16					<u>PID - 0 ppm</u>					3.6 II Rec	overed
		Ħ			End of Boring a	t 16 ft					
17											
1.					2-Z04-9 ft						
18	ł										
19											
	1										
20											
21											
22											
	1										
23		Ц									

		ì	14 Bu Ph	1 Elm Stre Iffalo, New Ione: 716-8	y York 14203 347-1630	ork 14203 -1630 BORING LOG				oring No.	2-Z05
C	OMP	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	
			D'Youville C	College						tart Date:	8/5/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	8/12/19
	Grou			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:	af blasse	ta duiva agus mlan	Hammer:		M D 4500 Cton	dand Dan	-44: T-	-1\
		П	(N NO.	. Of blows	to drive sampler	12" W/140 lb. nar	mmer falling 30" AST	M D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	· 35-50% · 20-35% · 10-20% · - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1		╽┟		0 0 7 ft	Asphalt, gravel, f	ill					
	ł	lŀ				III					
2		0.7-1.1 ft - Brown sand 1.1-1.9 ft - Black stained silty clay, petroleum odor									
	ľ	ll				99,1					
3											
		$ \ $			PID - 2800 ppm	at 2 ft				1.9 ft Rec	overed
4		Щ									
5		╽╽		∩-1 Q ft -	Black stained silt	v clav petroleum					
ٽ	Ì	lŀ		0 1.0 10	Black stamed sitt	y olay, petroleum					
6		ll									
7					PID - 2600 ppm					4.0 (1.0)	
8		╽┟			PID - 2200 ppm	at o it				1.9 ft Rec	overed
Ů		Ħ									
9					Black stained silt		odor				
10				1.1-3.7 f	t - Brown silty clay	<i>'</i>					
10	Ì	H			PID - 150 ppm a	t 10 ft					
11					PID - 50 ppm at						
					PID - 0 ppm at 1	<u>2 ft</u>				3.7 ft Rec	overed
12	2-Z05	Н			End of Do	4 40 4					
13					End of Boring a	<u>t 12 ft</u>					
· · ·	İ										
14											
1 <i>F</i>											
15	ŀ										
16		Ц									
47											
17	ŀ				2-Z05-12 ft						
18											
				В	oring added on N	orthwest corne	er of "Z" delineation	10 ft from cent	ter		
19	}										
20											
21											
22	ł										
23											

		ř	S 14 Bu	1 Elm Stre	York 14203	BORING LOG			Boring No		SW-1
C	OMP	AN		x: 716-847						oject No.:	V20.001.005
Proied	ct Nam	e:	301 Conne	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	120.001.000
					et, Buffalo, NY	1 0				Datum:	
			D'Youville (Si	tart Date:	9/9/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	9/10/19
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	ile Drilling:			Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
			(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some · I - little ·	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
4		H		0.04#	Cararata aub ba						
1	1				Concrete, sub-bat - Brown silty clay						
2		Н		0.1-2.01	t - Blown Silty Clay	, dry					
F	1										
3		H									
	1				PID- 0 ppm					2.6 ft Red	overed
4		Ш									
5	SW-1	$ \ $		0-3.9 ft -	Brown silty clay,	trace gravel, dry					
	1			0-3.9 ft - Brown silty clay, trace gravel, dry							
6		П									
7		╽╽									
		H			PID - 0 ppm					3.9 ft Rec	covered
8		H			<u>тъ оррин</u>					0.0111100	
9		Н		0-3.9 ft -	Brown silty clay,	moist					
10											
	1										
11		Н			PID - 0 ppm					3.9 ft Rec	overed
12					ть оррш					0.0 11 100	overed
13					End of Boring a	t 12 ft					
-10		l			SW-1-5 ft						
14	_										
15		$ \ $									
16		$ \ $									
	1										
17											
18	-	$ \ $									
19											
20											
21											
	1										
22	22										
23		Ц									

		i i	14 Bu Ph	1 Elm Stre Iffalo, New Ione: 716-8	Engineers, Inc. n Street New York 14203 716-847-1630 6-847-1454 BORING LOG				SI	oring No.	SW-2
										ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev	
<i>L</i>					eet, Buffalo, NY					Datum:	0/0/40
Duilli			D'Youville (Jollege						tart Date:	9/9/19
Drilli	<i>ng Firi</i> Groui			Depth	Date & Time	Drill Rig:				ish Date:	9/10/19 J. Alt-Winzig
			le Drilling:	Depui	Date & Time	Casing:		Rock Core:		Undist:	J. Alt-WillZig
Befo			Removal:			Sampler:		Other:		Onaist.	
			Removal:			Hammer:		outer:			
		- 3		. of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				002#	Concrete, sub-ba	an atoma					
-		l			t - Brown silty clay						
2		l		0.0 2.7 1	E Brown only oray	, ary					
	İ										
3											
					PID- 0 ppm					2.7 ft Rec	overed
4		Н									
5	SW-2	ŀ		0-0 3 ft -	Black silty clay						
-	000 2	ŀ			t - Brown silty clay	, trace gravel, m	oist				
6						<u>,</u>					
7											
					<u>PID - 0 ppm</u>					3.8 ft Rec	overed
8		H									
9		l		0-3.9 ft -	Brown silty clay,	saturated					
10				1							
11											
11		l			PID - 0 ppm					3.9 ft Rec	overed
12					тъ оррии					0.0 11 1100	Overed
					End of Boring a	t 12 ft					
13											
				1	SW-2-5 ft						
14	1										
15											
	1										
16]										
17	-										
18											
	1										
19											
]										
20	1										
21]										
22	22										
23											

		i i	14 Bu Ph	1 Elm Stre Iffalo, New Ione: 716-8	New York 14203 716-847-1630 3-847-1454				SI	oring No. heet 1 of:	SW-3
										ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev	
L					eet, Buffalo, NY					Datum:	0/0/40
Duilli			D'Youville (Jollege						tart Date:	9/9/19
Drilli	ng Firi Groui		TREC	Danth	Data & Time	Duill Dian				ish Date:	9/10/19
			ile Drilling:	Depth	Date & Time	Drill Rig:		Rock Core:		spector:	J. Alt-Winzig
Pofo			Removal:			Casing: Sampler:		Other:		Undist:	
			Removal:			Hammer:		Other.			
7/6	er ous	<i>m</i> g		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)
ū	_						g				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1				002#	Concrete, sub-ba	an atoma					
					t - Brown silty clay						
2				0.2 2.2 1	Diowii siity olay	, ary					
3											
					PID- 0 ppm					2.2 ft Rec	overed
4											
5				0-3.9 ft -	Dark brown silty	clay, moist					
6											
7	SW-3				PID - 50 ppm at						
	SVV-3				PID - 500 ppm at					3.9 ft Rec	overed
8					1 1D - 30 ppin at	<u>0 71</u>				3.3 It 100	overed
				0 2 0 #	Drown eilte day	maiat					
9	ł			0-2.8 π -	Brown silty clay,	moist					
10											
	İ				PID - 28 oom at	9 ft					
11					PID - 23 ppm at	<u>10 ft</u>					
					PID - 0 ppm at 1	<u>1 ft</u>				2.8 ft Rec	overed
12		Ц			- · · · ·	. 10.5					
13					End of Boring a	t 12 ft					
13	ł				SW-3-7 ft						
14											
. =									_		
15	ł										
16											
17											
18											
19											
20]										
21											
22	ŀ										
23											

		ì	14 Bu Ph	1 Elm Stre Iffalo, New Ione: 716-8	y York 14203 347-1630	BORING LOG			Sheet 1 o		SW-4
C	OMP	AN	IIES Fa	x: 716-847	'-1454				Pro	ject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	
			D'Youville (College						tart Date:	9/9/19
Drilli	ng Firi				1					ish Date:	9/10/19
	Groui			Depth	Date & Time	Drill Rig:			lr	spector:	J. Alt-Winzig
5.6			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler: Hammer:		Other:			
AIL	er Cas	mg		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)
<u> </u>			•		to any o campion	12 11/11/01/01/10	minor raining oo 7.01				COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some · I - little ·	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
4				002#	Canarata aub ba	an atoma					
1			0-0.3 ft - Concrete, sub-base stone 0.3-1.7 ft - Brown silty clay, dry								
2		0.3-1.7 ft - Brown silty clay, dry									
	1										
3	3										
					PID- 0 ppm					1.7 ft Rec	overed
4		Ц		1 12							
5				0-2.1 ft - Black silty clay							
	ł			0-2.111-	Diack Silty Clay						
6	SW-4										
	•				PID - 412 ppm a	t 5 ft					
7					PID - 1850 ppm						
					PID - 370 ppm a	<u>t 7 ft</u>				2.1 ft Rec	overed
8		Н									
9				0-0.3 ft -	Black silty clay						
	İ				t - Brown silty clay	, moist					
10											
l											
11	•				PID - 30 ppm at 1					3.3 ft Rec	overed
12					FID - 0 ppili at 1	<u>0 11</u>				3.3 II Nec	overeu
		П			End of Boring a	t 12 ft					
13											
					SW-4-6 ft						
14											
15											
13	1										
16											
]										
17]										
40											
18	ł										
19											
20											
21							·				·
	1										
22	ļ										
23				<u>I</u>							

	- @	ì	14 Bu	1 Elm Stre	York 14203	В	ORING LO	G	Boring No		SW-5
C	OMP.	AN		ix: 716-847						ject No.:	V20.001.005
Projec	ct Nam	e:	301 Conne	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	V20.001.000
					eet, Buffalo, NY					Datum:	
			D'Youville (<u> </u>				Si	tart Date:	9/9/19
Drilli	ng Fir	n:	TREC						Fin	ish Date:	9/10/19
	Grou	ndv	water	Depth	Date & Time	Drill Rig:			lr	spector:	J. Alt-Winzig
			ile Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:	(III	M.D. 4500. 0:			4)
_	1	П		. of blows	to drive sampler	12" W/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some - I - little -	35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1				0 0 2 ft	Concrete, sub-ba	eo etono					
<u> </u>	1				t - Brown silty clay						
2											
	1										
3											
4	<u>PID- 0 ppm</u>								1.2 ft Red	covered	
4											
5			0-3.7 ft - Brown silty clay, moist								
_			O C.F. It. Blown only dialy, mode								
6	1										
7											
					<u>PID - 0 ppm</u>					3.7 ft Red	overed
8		H									
9				0-3.4 ft -	Brown silty clay,	moist					
] 										
10	SW-5				PID - 45 ppm at	9 ft					
11					PID - 100 ppm a						
					PID - 0 ppm at 1	<u>1 ft</u>				3.4 ft Rec	overed
12		Н			End of Boring a	t 12 ft					
13					End of Borning a	<u>t 12 1t</u>					
	1				SW-5-10 ft						
14											
15	<u>-</u>										
16	= '										
17											
18											
19											
20	1										
	1										
21	1										
22											
23											

		ì	14 Bu	1 Elm Stre Iffalo, New one: 716-8	York 14203 347-1630	В	ORING LO	G		oring No.	SW-6
<u> </u>	OMP	AN	IIES Fa	x: 716-847	'-1454				Pro	oject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	
			D'Youville (College						tart Date:	9/9/19
Drilli	ng Firi									ish Date:	9/10/19
	Groui			Depth	Date & Time	Drill Rig:			lı	nspector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:	- ()-	(a deixa a a a a a la a	Hammer:	(-II' 00 AOT	M.D. 4500, Ota-	dend Den	ataatiaa Ta	- ()
-	ı		(N NO	. of blows	to drive sampler	12" W/140 lb. nar	mmer falling 30" AST	M D-1586, Stan	dard Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1		H		0.00#	Canarata aub ba	an atoma					
ļ !	_	lŀ			Concrete, sub-batt - Brown silty clay						
2		H		0.2 1.7 1	t Blown Silty Clay	, ury					
	1	ll									
3											
					PID- 0 ppm					1.7 ft Rec	overed
4		Ш									
_		H		0 2 0 4	Drawn allter alare						
5	-	H		0-3.8 π -	Brown silty clay,	moist					
6	SW-6	lŀ									
	-	H									
7					<u>PID - 2600 ppm</u>						
					PID - 25 ppm at	<u>7 ft</u>				3.8 ft Rec	overed
8		Н									
9		H		0-2.2 ft -	Brown silty clay,	moist					
		ll									
10	_										
144		$ \ $									
11	-	H			PID - 0 ppm					2.2 ft Rec	overed
12		lŀ			<u>т ю - о ррні</u>					2.2 It Nec	overeu
		Ħ			End of Boring a	t 12 ft					
13]										
		l [SW-6-6 ft						
14	-									-	
15										-	
	1										
16	_										
1,_											
17	_	╽╽									
18											
	1										
19		[· · · · · · · · · · · · · · · · · · ·		-	·		·			
20											
21				-							
1											
22	4									-	
23											

		ì	S 14 Bu	1 Elm Stre	York 14203	В	ORING LO	G		oring No.	SW-7	
C	OMP	AN	IIES Fa	x: 716-847	-1454				Pro	ject No.:	V20.001.005	
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:		
L					eet, Buffalo, NY					Datum:		
			D'Youville (College						tart Date:	9/9/19	
Drilli	ng Firi									ish Date:	9/10/19	
	Groui			Depth	Date & Time	Drill Rig:			lr	spector:	J. Alt-Winzig	
5.6			le Drilling:			Casing:		Rock Core:		Undist:		
			Removal:			Sampler: Hammer:		Other:				
AIL	er Cas	mg		of blows	to drive sampler		mmer falling 30" AST	M D-1586. Stan	dard Pen	etration Te	est)	
Œ					to divo campion	12 11/11/01/01/10	minor raining oo 7.01				COMMENTS	
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)	
4				000#	Canarata aub ba							
1	ł				Concrete, sub-ba t - Brown silty clay							
2				0.2-2.5 11	t - Diowii siity clay							
Ħ	1											
3]											
					PID- 0 ppm		2.5 ft Rec	overed				
4		Ц										
5				0 2 9 ft	Dark brown silty							
	ł			0-3.6 11 -	Dark blown silty t	Jiay						
6	SW-7				PID - 1500 ppm	at 5 ft						
	•				PID - 2600 ppm							
7					PID - 0 ppm at 7							
					PID - 100 ppm a	<u>t 8 ft</u>				3.8 ft Recovered		
8		Н										
9				0-0.7 ft -	Dark brown silty	clav. some black	staining					
	-				t - Brown silty clay							
10												
11	ļ				PID - 45 ppm at					0.04.0		
12					<u>PID - 10 ppm at</u>	<u>10 ft</u>				3.6 ft Rec	overea	
12					End of Boring a	t 12 ft						
13						i						
]				SW-7-6 ft							
14												
4.5												
15	ł											
16												
	1											
17	ļ											
40												
18	ļ											
19												
20												
21												
22												
	1											
23												

		ì	S 14 Bu	1 Elm Stre	York 14203	Е	ORING LO	G		oring No.	SW-8
C	OMP	٩N		x: 716-847						ject No.:	V20.001.005
Proied	ct Nam	e:	301 Conne	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	720.001.000
					eet, Buffalo, NY					Datum:	
			D'Youville (Si	tart Date:	9/9/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	9/10/19
	Grou	าdv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
	1		(N No	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Star	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
4		H		005#	Canarata aub ba	an atoma					
1		lŀ			Concrete, sub-ba t - Brown silty clay						
2		lŀ		0.5-1.5 11	t - Diowii siity ciay						
		ll									
3											
					PID- 0 ppm		1.5 ft Rec	overed			
4		Щ									
_				0.05.0	Daniel a Stead and						
5		╽┟			Brown silty clay, t - Brown sand, m						
6		lŀ			t - Black clayey si						
Ů	+	H		0.0 1.2 1	Black dayby on						
7		ll									
					<u>PID - 0 ppm</u>					1.2 ft Rec	overed
8		Щ									
0				0.01#	Diggie giltu glav						
9		╽┟			Black silty clay t - Brown silty clay	,					
10	SW-8	H		0.1 2.0 11	C Diowii Siity Clay	<u>'</u>					
	İ	li			PID - 0 ppm at 9) <u>ft</u>					
11					PID - 40 ppm at						
					PID - 0 ppm at 1	<u>1 ft</u>				2.6 ft Red	overed
12		Н									
13		╽┟		0 1 2 ft	Brown sandy clay	, moist					
13	ł	╽┟			t - Brown silty clay						
14		H		1.2 0.11	Diominoncy oraș	,, 1110101					
15											
16					<u>PID - 0 ppm</u>					3.4 ft Red	overed
10		H			End of Boring a	t 16 ft					
17		l									
	1				SW-8-10 ft						
18	<u> </u>	[······································			·		
19											
	1										
20											
21											
22											
]										
23											

	- @		1	41 Elm Stre	neers, Inc. et York 14203		ODING LOA)	В	oring No.	SW-9
C	—© OMP⁄		P	hone: 716-8	47-1630		SORING LO	5	Sheet 1 of:		
				ax: 716-847					Pro	oject No.:	V20.001.005
		_			et Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					et, Buffalo, NY					Datum:	
			D'Youville	College						tart Date:	9/9/19
Drilli	ng Firi			1	5	2 : " 2:				ish Date:	9/10/19
	Groui			Depth .	Date & Time	Drill Rig:		Book Core		spector:	J. Alt-Winzig
Pofo			le Drilling Removal			Casing: Sampler:		Rock Core: Other:		Undist:	
			Removal			Hammer:		Other.			
-	cr ous	mg			to drive sampler		mmer falling 30" AST	I M D-1586, Stan	dard Pen	etration Te	est)
£)	ø.	_	·		•		<u> </u>				COMMENTS
با ب	o o	oqu	Blows on Sampler	c - coarse	n	MATERIAL	DESCRIPTION	s - some -			N-value, recovery,
Depth (ft)	Sample No.	Syr	per 6"	f - fine		·	ivel, C - Clay, cly - claye		· 10-20% · - 0-10%		moisture, core run,
		H	•		o can	α, φ οπι, ο οπ	tvoi, o olay, oly olay,	~,		RQ	D, % recovered)
1				0-0.2 ft -	Concrete, sub-ba						
	1				t - Brown sandy cl						
2		lŀ		0.2 0.0							
	1										
3											
					PID- 0 ppm		0.9 ft Red	overed			
4		Ц									
5	SW-9			0 1 1 ft	Dark brown sand						
	300-3			0-1.111	Dark blown sand						
6											
	1										
7											
					<u>PID - 0 ppm</u>					1.1 ft Red	overed
8		H									
9				0-1 4 ft -	Dark brown sand	v clav					
		lŀ		0 1.4 10	Dark brown sand	y ciay					
10											
	1										
11	1										
40		╽┟			<u>PID - 0 ppm</u>					1.4 ft Rec	covered
12		H									
13				0-1.7 ft -	Dark brown sand	v clav. moist					
	1			1	2.2 04.14	,,,					
14											
								·			·
15	1									4705	
46					<u>PID - 0 ppm</u>					1.7 ft Red	covered
16		H			End of Boring a	t 16 ft					
17					a or borning a						
	1			SW-9-5 ft							
18]			3W-9-3 II							
19	1										
20											
20	1										
21											
	1										
22]										
23	1			_[I	

		ì	14 Bu	1 Elm Stre	York 14203	В	ORING LO	G		oring No.	SW-10
C	OMP	٩N		x: 716-847						ject No.:	V20.001.005
Projec	ct Nam	e:	301 Connec	cticut Stre	eet Brownfield Cle	anup Program				ce Elev.:	V20.001.000
					eet, Buffalo, NY	anap i rogiam				Datum:	
			D'Youville (<u> </u>				Si	tart Date:	9/9/19
Drilli	ng Firi	n:	TREC						Fin	ish Date:	9/10/19
	Groui	าdv	vater	Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					3
_	1	П	(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Star	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediui f - fine			DESCRIPTION avel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				NO REC	OVERV						
1		ŀ		NO REC	OVERT						
2		lŀ									
	1										
3											
										0 ft Recov	vered
4		Н									
5	SW-10	ן ו		0-3 4 ft -	Brown silty clay,	moist					
-	J	íŀ		0 0.4 10	Brown Sirty Glay,	1110101					
6											
7											
8					<u>PID - 0 ppm</u>					3.4 ft Rec	covered
0		H									
9				0-3.7 ft -	Brown silty clay,	moist					
10											
11		ŀ									
					PID - 0 ppm					3.7 ft Rec	covered
12					<u>- 12 </u>						
					End of Boring a	t 12 ft					
13											
					SW-10-5 ft						
14	1										
15											
	1	[
16]	[
17											
17		ŀ									
18											
	1	ן ן									
19											
20	_	 									
21		$ \ $		-							
22											
	†										
23											

		ŀ	14 Bu	1 Elm Stre	York 14203	В	ORING LO		oring No.	MW-6	
C	OMP	٩N		one: 716-8 x: 716-847						neet 1 of:	V20.001.005
Broios	st Nom	٥,	201 Connor	ations Stro	eet Brownfield Cle	anun Program				ject No.: ce Elev.:	V20.001.005
					eet, Buffalo, NY	anup Fiogram			Surra	Datum:	
<u> </u>			D'Youville (oct, Bullalo, 141				Si	tart Date:	9/9/19
Drilli			TREC	Jonogo		1				ish Date:	9/10/19
	Groui			Depth	Date & Time	Drill Rig:				spector:	J. Alt-Winzig
			le Drilling:			Casing:		Rock Core:		Undist:	<u> </u>
Befo			Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
			(N No	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION Ivel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
_				0.004	0						
1	ł	ŀ			Concrete, sub-ba t - Brown sandy cl						
2		ŀ		0.2-2.0 11	t - Blowii Salidy Ci						
Ė	İ										
3											
	1				PID- 0 ppm		2.0 ft Rec	overed			
4											
_		1		0.4.0.0	Daniel Inner and 200						
5	ł	1			Dark brown silty of the Brown silty clay						
6		1		1.9-3.0 1	t - Diowii siity clay						
		ŀ									
7											
					<u>PID - 0 ppm</u>					3.6 ft Rec	overed
8		Н									
9		ŀ		∩-1 1 ft -	Brown silty clay,n	noiet					
- 3	Ì				t - Black silty sand						
10					t - Brown silty clay						
11	ļ										
40					<u>PID - 0 ppm</u>					3.1 ft Rec	overed
12		H									
13		1		0-3.9 ft -	Brown silty clay,	moist					
	İ			2 3.0 11	Table Sitty Glay,						
14											
						·					
15	ļ				DID 0					00"5	
16					<u>PID - 0 ppm</u>					3.9 ft Rec	overed
16		H			End of Boring a	nt 16 ft					
17					or borning a	<u> </u>					
	1				Groundwater Sample Taken						
18]										
		[
19	ļ										
20		-									
20	Ì										
21											
	[
22											
22											
23											

	OMP		S 14 Bu	1 Elm Stre Iffalo, New none: 716-8	York 14203 347-1630	В	ORING LO	G		oring No. heet 1 of:	MW-7
				x: 716-847					Pro	oject No.:	V20.001.005
					eet Brownfield Cle	anup Program			Surfa	ce Elev.:	
L					eet, Buffalo, NY					Datum:	- 1- 1 -
D.:///			D'Youville (College		I				tart Date:	9/9/19
Drilli	ng Firi Grou		TREC	D4	D-4- 0 Time	Duill Dies				ish Date:	9/10/19
-			ile Drilling:	Depth	Date & Time	Drill Rig: Casing:		Rock Core:	"	nspector: Undist:	J. Alt-Winzig
Refo			Removal:			Sampler:		Other:		Unaist:	
			Removal:			Hammer:		outer.			
				. of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediu f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0 0 0 #	Congrete out he	an atoma					
1	ł				Concrete, sub-batt - Brown silty clay						
2				0.2 1.01	C Brown Silty Clay	, ury					
	1										
3											
					<u>PID - 0 ppm</u>					1.5 ft Rec	overed
4		Н									
5				0-1.7 ft -	Brown silty clay						
					Brown silty clay,	moist					
6											
7					DID 0 mmm					2.0 # Das	a
8					<u>PID - 0 ppm</u>					3.9 ft Rec	overea
9	-			0-3.9 ft -	Brown silty clay,	moist					
10											
11											
12					<u>PID - 0 ppm</u>					3.9 ft Rec	overed
12		H			End of Boring a	t 12 ft					
13					<u> </u>	<u> </u>					
					No Samples Tal	(en					
14	1										
15										-	
	1										
16											
17											
18											
10	1										
19											
20											
21											
22											
22	1									-	
23											

		i	14 Bu	1 Elm Stre ffalo, New	York 14203	В	ORING LO	<u> </u>		oring No.	MW-8
C	OMP	AN		one: 716-8 x: 716-847						neet 1 of: oject No.:	V20.001.005
Projec	rt Nam	ω.	301 Conne	cticut Stre	eet Brownfield Cle	anun Program				ce Elev.:	V20.001.005
					eet, Buffalo, NY	andp i rogiam			Guire	Datum:	
			D'Youville (ot, Banaio, 111				Si	tart Date:	9/9/19
Drilli			TREC							ish Date:	9/10/19
	Grou			Depth	Date & Time	Drill Rig:			Ir	spector:	J. Alt-Winzig
	V	Vhi	le Drilling:	-		Casing:		Rock Core:		Undist:	-
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:		-			
	1	_	(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - claye	s - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
_				002#	Congrete out he	an atoms					
1	ł	ŀ			Concrete, sub-ba t - Brown silty clay						
2				0.0 0.1 11	C Drown Silty Clay						
	1										
3											
					PID- 0 ppm		3.1 ft Rec	overed			
4		H									
5		ŀ		0-2.4 ft -	Brown silty clay						
	Ì				Brown silty clay,						
6	ļ				4 0.5 Blown sitty day, most						
7											
	ł	ŀ			PID - 0 ppm					3.9 ft Rec	overed
8					<u> 112 0 pp</u>					0.0 11 1100	0.000
9	ł			0-3.7 ft -	Brown silty clay,	moist					
10		ŀ									
	Ì										
11	•										
12					<u>PID - 0 ppm</u>					3.7 ft Rec	overed
12		H									
13				0-3.9 ft -	Brown silty clay,	moist					
		[
14	ļ										
15											
	Ī	ן ן			<u>PID - 0 ppm</u>					3.9 ft Rec	overed
16		Ц			Find of Dod	4.40.8					
17					End of Boring a	<u>nt 16 ft</u>					
- ''	ł				No Samples Tal	ken					
18											
		[
19	ł										
20											
21											
22											
	[ן ן									
23											

APPENDIX B

GROUNDWATER WELL CONSTRUCTION & SAMPLING LOGS

Continue Continue		C&S Engineers, Inc.	G	ROUND	WATE	R		Well No.	MW-1
CONSTRUCTION LOG Surface Elev: 633.569 Popier James 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET Cont.: DYOUVILLE COLLEGE Finish Date: 42/19 Drilling Firm: TYREC O' Top Protective Casing 3" Top of Riser O' Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Soil Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Soil Backfill Material X Bentonite Slurry Cement/Bentonite Grout Concrete Soil Backfill Material X Bentonite Slurry Cement/Bentonite Grout Both Time Water Bleavation Status 4/11/2019 Soil 627,969 Depth To: 6 Top of Soal Seal Material X Bentonite Slurry Cement/Bentonite Grout Concrete Soil Size X O10 in O15 in O20 in O25 in Filter Material X 00 Sand Pack 1 Sand Pack 1 Sand Pack		Buffalo, New York 14203	OBS	ERVAT	ON W	ELL			
Project Name: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Crient: Drilling Firm: TREC O" Top Protective Casing -3" Top of Riser O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Sturry Well Material Soil Cuttings Bentonite Sturry Well Material Soil Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Bentonite Sturry X Cement/Bentonite Grout Concrete Bore Hole Diameter 2" Well Diameter 4/11/2019 Soil Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Bentonite Sturry Concrete Bore Hole Diameter 10 Top of Seal Seal Material Seal Material Seal Material Depth To: 6" Top of Seal Seal Material Depth To: 6" Top o	COMPANIES		CON	ICTDIIC	TION I	OG			
Location: 301 CONNECTICUT STREET Citents DyOUVILLE COLLEGE Plinish Date: 42/19 Drilling Firm: IREC O	Drainet Name 201 CC					<u>.00</u>	Sur		
Cilent: DYOUVILLE COLLEGE Finish Dete: AIZH9			NFIED CLE	ANUP PROGR	KAIVI				
### Top of Riser Surface Backfill Material Soil Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete									
O" Top Protective Casing 3" Top of Riser Dill Rig: Casing:		VILLE GOLLLOL							
Soli Cuttings Backfill Material Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Concrete Soli Cuttings Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Soli Cuttings Soli Cuttings Soli Cuttings Soli Cuttings Soli Cuttings Bentonite Sturry X Cement/Bentonite Grout Soli Cuttings Soli C	Dinning Firm.	0" Top Protective Cas	sina	Drill Ria:				_	O. WATERIN
O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Backfill Material X PVC Stainless Steel Backfill Material X Cement/Bentonite Grout Concrete Backfill Material X PVC Stainless Steel Backfill Material X PVC Stainless Steel Backfill Material X PVC Stainless Steel Backfill Material X PVC Stainless Steel Backfill Material X Poorent/Bentonite Grout Concrete Date Time Water Tide Date Time Water Elevation Status 4/11/2019 5.6 627.969 Depth To: 6' Top of Seal Seal Material X Bentonite Slurry Cement/Bentonite Grout Concrete Top of Filter Pack 10' Top of Screen Screen Slot Size X O10 in O15 in O20 in O25 in Filter Material X 00 Sand Pack 1 Sand Pack 1 Sand Pack 1 Sand Pack 1 Sand Pack			,g		(provide de	scription of a	observation v		method of
Surface Backfill Material Soil Cuttings Bentonite Slurry x Cement/Bentonite Grout Concrete									
3 Sand Pack 4 Sand Pack 20' Bottom of Screen 21' Bottom of Bore Hole		O" Ground Surface Surface Backfill Materia Soil Cuttings Bentonite Slurry X Cement/Bentonite G Concrete 6" Bore Hole Diamete 2" Well Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite G Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Chips/Pell Bentonite Slurry Cement/Bentonite G Seal Material X Bentonite Chips/Pell Bentonite Slurry Cement/Bentonite G 8' Top of Filter Pace 10' Top of Screen Screen Slot Size X 010 in 015 in 020 in 025 in Filter Material X 00 Sand Pack 0 Sand Pack 1 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack Bottom of Screen	Grout Grout lets Grout ck	Gi Date 4/11/2019	roundwate	er Measure Depth to Water 5.7	ement Data Water Elevation 627.869	and any othe	

	C&S Engineers, Inc.	G	ROUND	WATE	R		Well No.	MW-2
	141 Elm Street Buffalo, New York 14203	OBS	ERVATI	ON W	ELL			
COMPANIES	Phone: 716-847-1630 Fax: 716-847-1454	CON	ISTRUC'	TION I	OG		roject No.:	V20.001.001
Drain at Name 1201 CC					<u>.00</u>	Sur	face Elev.:	632.698
	ONNECTICUT STREET BROW ONNECTICUT STREET	/NFIED GLE	ANUP PROGE	KAIVI		ļ .	Datum: Start Date:	NAVD 88 4/2/19
	VILLE COLLEGE						inish Date:	4/2/19
Drilling Firm: TREC	VILLE GOLLEGE		T				Inspector:	C. MARTIN
Dining i i i i i i i i i i i i i i i i i	0" Top Protective Cas	sina	Drill Rig:			1	Casing:	O. 1917 G. CT 11 C
	-3" Top of Riser	J9		(provide de	scription of	observation v		method of
	·							er information)
	O" Ground Surface Surface Backfill Materia Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete 6" Bore Hole Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Chips/Pel Bentonite Slurry Cement/Bentonite Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Slurry Cement/Bentonite Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Slurry Cement/Bentonite Concrete Bentonite Slurry Concrete	Grout Grout Hets Grout ack	Notes:	construction	n, developm	ent method a	and any othe	

OBSERVATION WELL Project No.: V20.001.00 Surface Elev:: 634.687 Project Age: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 Connecticut Ad3/19 Implied Project No.: V20.001.00 Implied Project No.: Start Date: 4/3/19 Impl		C&S Engineers, Inc.	G	ROUND	WATE	R	1	Well No.	MW-3	
CONSTRUCTION LOG Surface Elev: 634.687 Project Name: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 501 CONNECTICUT STREET Client: DYPOUVILLE COLLEGE Finish Date: 4/3/19 Drilling Firm: TREC O" Top Protective Casing O" Top of Riser O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Surface Elev: 634.687 Notes: finish Date: 4/3/19 Drill Rig: Cesing: Cesing: Cesing: Construction, development method and any other information) O" Ground Surface Surface Elev: 634.687 Notes: finish Date: 4/3/19 Notes: construction, development method of onstruction, development method and any other information) O" Ground Surface Surface Elev: 634.687 Notes: finish Date: 4/3/19 Notes: construction, development method of onstruction, development method and any other information) O" Ground Surface Surface Elev: 634.687 Notes: finish Date: 4/3/19 Notes: construction, development method and any other information) O" Ground Surface Surface Elev: 634.687 Notes: finish Date: 4/3/19 Notes: construction, development method and any other information) O" Ground Surface Surface Elev: 64/3/19 Navior Date of Surface Elev: 64/3/19 Notes: construction, development method and any other information) O" Ground Surface Surface Elev: 64/3/19 Navior Date of Surface of Construction of Observation well clouds in method of Construction, development method and any other information on the Construction, development method and any other information of Construction, development method and any other information on the Construction of Construction, development method and any other information of Construction, development method and any other information of Construction, development method and any other information of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction of Construction		Buffalo, New York 14203	OBS	ERVAT	ION W	ELL				
Project Name: 301 CONNECTICUT STREET BROWNFIED CLEANUP PROGRAM Location: 301 CONNECTICUT STREET Cleient: ProVoVILLE COLLEGE Top Protective Casing "Top of Riser O" Top Protective Casing "Top of Riser O" Ground Surface Surface Elev: 4/3/19 Prilling Firm: TREC O" Top Protective Casing "Top of Riser O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Backfill Material Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Surface Beackfill Material Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Soil Cuttings Bentonite Surry Concrete Soil Cuttings Bentonite Surry X Cement/Bentonite Grout Concrete Soil Cuttings Bentonite Surry Co	COMPANIES)1
Colonia Colo						<u>.00</u>	Sur			
Cilent: DYOUVILLE COLLEGE Finish Date: 4/3/19 IRSC Casing: Casing: Casing: Casing: Casing: Notes: (provide description of observation well location, method of construction, development method and any other information) -3"			NFIED CLE	ANUP PROG	KAW					
Drilling Firm: TREC										
Top Protective Casing 3" Top of Riser Notes: (provide description of observation well location, method of construction, development method and any other information) O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry Coment/Bentonite Grout Concrete Well Diameter Well Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete Depth To: Concrete G" Jop of Seal Seal Material X Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Chips/Pellets Bentonite Slurry Cement/Bentonite Grout Concrete Screen Slot Size X 010 in 015 in 020 in		VILLE GOLLLOL								₹T
Surface Surf	Drining rinin =0	0" Top Protective Cas	ina	Drill Rig:				_	T. D. TOTAL	``
O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Grout Concrete 6" Bore Hole Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite Grout Concrete 10			9		(provide de	scription of	observation v		method of	
Surface Backfill Material Soil Cuttings Bentonite Slurry x Cement/Bentonite Grout Concrete		<u> </u>		Notes:	construction	n, developm	ent method a	and any othe	er information)	
D25 in Filter Material x 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 20' Bottom of Screen Bottom of Bore Hole		O" Ground Surface Surface Backfill Materia Soil Cuttings Bentonite Slurry X Cement/Bentonite G Concrete 6" Bore Hole Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite G Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Chips/Pell Bentonite Slurry Cement/Bentonite G Concrete Depth To: 6' Top of Seal Seal Material X Bentonite Slurry Cement/Bentonite G Screen Slot Size X 010 in 015 in 020 in 025 in Filter Material X 00 Sand Pack 0 Sand Pack 1 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack 20' Bottom of Screen	rout rout ets rout	G Date 4/11/2019	roundwate	er Measure Depth to Water 5.7	ement Data Water Elevation 628.987	and any othe		

Project Name: 301 CONNECTICU Location: D'YOUVILLE COLL Drilling Firm: TREC	w York 14203 -847-1630 -7-1454 OBS	ERVATI	ON WE	FII		Well No.	MW-5
Project Name: 301 CONNECTICU Location: 301 CONNECTICU Client: D'YOUVILLE COLL	-847-1630 -7-1454 CON						
Project Name: 301 CONNECTICU Location: 301 CONNECTICU Client: D'YOUVILLE COLL		CLDIIC.	TION I			roject No.:	V20.001.001
Location: 301 CONNECTICU Client: D'YOUVILLE COLL	IT CTDEET DOOMNEIED OLE			.00	Sur	face Elev.:	637.424
Client: D'YOUVILLE COLL		ANUP PROGR	*AIVI			Datum: Start Date:	NAVD 88 4/3/19
						nish Date:	4/3/19
						Inspector:	R. BACKERT
	p Protective Casing	Drill Rig:				Casing:	T. B. COTLETT
	p of Riser		(provide des	scription of c	bservation v		method of
	'						r information)
O" Gro Soi Soi Ber X Cer Cor Cor Soi Ber X Pv Sta Soi Ber X Cer Cor Soi Ber X Cer Cor Soi Ber X Cer Cor Cor Seal M X Ber Ber Cer X 010 Cor Screer X 010 Cor	ce Backfill Material il Cuttings intonite Slurry ment/Bentonite Grout increte re Hole Diameter fell	Notes:	construction	n, developm		and any othe	

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Site Name:	301 CONNECTICUT	D'YOUNG IC COLLEGE	
		is positiff a coopie	Ú.
Project No.:			
Ciald Ctaffi	RICH BACKERT		
rieiu Staii.	MICH BACKER		

WELL DATA

Date		4/11/19	4/11/19	4/11/19	4/11/19	4/11/19			
Well Number		MW-4	MW-5	MUST	Mw-2	MW-3			
Diameter (inches)		24	2"	20	2"	24			
Total Sounded Depth (feet)		20.3	20.2	20.49	19,3	20,2		,	
Static Water Level (feet)		6.4	5.0	5.7	5,3	5.7			
H ₂ O Column (feet)							٨.	× .	
Pump Intake (feet)									
Well Volume (gallons)		2			- E				
Amount to Evacuate (gallons)					Σ	=			
Amount Evacuated (gallons)	•	·							

FIELD READINGS

Date	Stabilization	4/11/19	4/11/19	4/11/9	4/1/19	4/11/19			V
Time	Criteria	9:30	10:30	11:30	12:15	1:15			
pH (Std. Units)	+/-0.1	7.60	7.20	Le.80	7.50	7.45			
Conductivity (mS/cm)	3%	2.23	7.65	28.7	470	2.22			
Turbidity (NTU)	10%								
D.O. (mg/L)	10%	13.06	14.37	13.12	12.28	12.42			
Temperature (°C) (°F)	3%	94400	9.19℃	9.0400	9.400	9.590€			
ORP ³ (mV)	+/-10 mv	94	86	98	-141	26		,	
Appearance		CLEAN	CLEAN	CLEAS	SEM THIS!	CLEAR			
Free Product (Yes/No)		VES	VES	46,5	y&S	yrs			
Odor		NONK	NONE	NONE	NONE	NONE		*	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 141 Eim Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field Data Sheet

Well	Casing	Unit Volume

(gal/l.f.)

Client Name:		
Site Name:	30 CONNECTICAT	
Project No.:		
Field Staff:	TESSE + NICH	

WELL DATA

Date	77	5/21/19	5/21/19	5/21/17	5/2/119	5/21/19		
Well Number		MW-1	MW-2	113.3	MW-4"	MW-5		
Diameter (inches)		2	ð	3"	2	2		
Total Sounded Depth (feet)		20.4	19.3	20.2	20.3	20.2		
Static Water Level (feet)		5.6	5.4	5.8	7.6	5.0		
H₂O Column (feet)								
Pump Intake (feet)	100							
Well Volume (gallons)								
Amount to Evacuate (gallons)								
Amount Evacuated (gallons)								

FIELD READINGS

Date	Stabilization	5/21/19	5/21/19	5/4/19	5/21/19	5/21/19			
Time	Criteria	9:45am	10:45an	11:30	12:15	12:45			
pH (Std. Units)	+/-0.1	6.7	6.9	7.5	7.02	6.73			
Conductivity (mS/cm)	3%	35.7	7.3	a.7	2.4	8.78			
Turbidity (NTU)	10%				• •)			
D.O. (mg/L)	10%	1.25	1.69	2.90	3.88	3.38			
Temperature (°C) (°F)	3%	10.4	10.7	11.6	10.85	12.40			
ORP ³ (mV)	+/-10 mv	-108	-178	م	19	35			
Appearance		Clear	Son Turbid	Classe	Clear	Clean			
Free Product (Yes/No)		Maya	No VE	wa yes	Ye	Yes			
Odor	3.30 July 644	None	None	Nonth	None	None			
Comments	MW-4	has	baild-	up o	f mad	l in We	ell Casin	9	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

APPENDIX C

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT (DUSR)

Site: 301 Connecticut Street BCP Buffalo, NY NYS DEC BCP # C915345

SDGs: 460-188451-1, 460-188451-2, 460-188674-1, 460-188683-1, 460-188946-1, 460-188946-2, 460-188946-4, 460-189159-1, L1914947, L1921374 and L1941139.

150 Soil and Water Samples

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 Attention: Cody Martin

October 2019

Table of Contents

		Page No.					
REVIEWE	R'S NARRATIVE						
1.0 SUN	MMARY	1					
2.0 INT	2.0 INTRODUCTION						
3.0 SAN	MPLE AND ANALYSIS SUMMARY	2					
4.0 GUI	4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERI						
5.0 DAT	TA VALIDATION QUALIFIERS	3					
6.0 RES	SULTS OF THE DATA REVIEW	4					
7.0 TOT	TAL USABLE DATA	4					
APPENDIX APPENDIX APPENDIX	Laboratory QC Documentation						
Tables							
Table 3-1	Summary of Laboratory Deliverables						
Table 4-1	Data Validation Guidance Documents						
Table 4-2	Quality Control Criteria for Validating Laboratory	Analytical Data					
	of Validated Results						
Table 6-1							
Table 6-2	SDG 460-188451-2						
Table 6-3	SDG 460-188674-1						
Table 6-4	SDG 460-188683-1						
Table 6-5	SDG 460-188946-1						
Table 6-6	SDG 460-188946-2						
Table 6-7	SDG 460-188946-4						
Table 6-8	SDG 460-189159-1						
Table 6-9	SDG L1914947						
Table 6-10	SDG L1921374						
Table 6-11	SDG L1941139						

REVIEWER'S NARRATIVE C & S Companies 301 Connecticut Street BCP

The data associated with these Sample Delivery Groups (SDGs), analyzed by Eurofins TestAmerica Edison, NJ and Alpha Analytical Westborough Ma have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature: Mehal L-Perry Date: 10/2/19

Michael K. Perry
Chemist

1.0 SUMMARY

SITE:

301 Connecticut Street

Buffalo, NY

BCP No. C915345

SAMPLING DATE:

April - September, 2019

SAMPLE TYPE:

150 soil samples and water samples

LABORATORYS:

1) Eurofins TestAmerica

Edison, NJ

2) ALPHA Analytical Westborough, MA

SDG No.:

460-188451-1, 460-188451-2, 460-188674-1, 460-188683-1,

460-188946-1, 460-188946-2, 460-188946-4, 460-189159-1,

L1914947, L1921374 and L1941139.

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,

- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

A summary of the laboratory data deliverables is provided in Table 3-1. The data were supplied on 4 compact disks (CDs) that contained the analytical data for one or more sample delivery groups (SDGs). The information provided in Table 3-1 is categorized according SDG to provide a reference for future access to the data by other data users. (It is assumed that the data will continue to be managed using this same format).

As shown in Table 3-1, the laboratory deliverables consisted of 11 SDGs that contained the analytical results for 150 total samples collected from April to September 2019. Samples were analyzed for some or all of the following volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, herbicides (silvex), polychlorinated biphenyls (PCBs), total cyanide (TCN), metals, 1,4-Dioxane and PFAAs.

The sample IDs associated with each SDG are provided with the validated analytical results in Appendix A.

All analyses were performed by Eurofins TestAmerica, Edison, NJ and ALPHA Analytical, Westborough, MA. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents used for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results are listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into

Table 3-1
Summary of Laboratory Deliverables
301 Connecticut Street
BCP No. C915345

Data		Sample	No. of	Matrix	Analysis
SDG No.	SDG	Date	Samples		Minigala
1	460-188451-1	08/05/19	28	soils	VOCs,SVOC,PCBs,Metals
2	460-188451-2	08/05/19	23	soils	VOCs,SVOC,PCBs,Metals
3	460-188674-1	08/06/19	9	soils	VOCs,SVOC,Metals
4	460-188683-1	08/07/19	9	soils	VOCs,SVOC,Metals
5	460-188946-1	08/08/19	20	soils	VOCs,SVOC,Pests,PCBs,Herbs,Metals,TCN
6	460-188946-2	08/08/19	17	soils	PFAAs by 537
7	460-188946-4	08/08/19	3	soils	TCLP VOCs,TCLP SVOC,PCBs,TCLP Metals
7	480-189159-1	08/12/19	14	soils	VOCs,SVOC,Pests,PCBs,Herbs,Metals,TCN,CR+6
9	L1914947	04/11/19	6 3	water water	VOCs,SVOC,SVOC-SIM,Pests,PCBs,Metals,TCN PFAAs by 537,1,4-Dioxane by 8270-SIM
10	L1921374	05/21/19	7	water	VOCs,SVOC,SVOC-SIM,Pests,PCBs,Metals,TCN
11	L1941139	9/9/19 + 9/10/19	10 1	soil water	VOCs, SVOCs VOCs, SVOCs-SIM

 SDGs
 SAMPLES
 ANALYTES

 11
 150
 17972

 REJECTS
 % USABILITY
 99.9%

TABLE 4-1

DATA VALIDATION GUIDANCE DOCUMENTS

Analyte Type	Validation Guidance
NOC.	USEPA, 2008, Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B; SOP # HW-24, Rev. 2.
VOCs	USEPA, 2008, Statement of Work for Organic Analysis of Low/Medium Concentration of Volatile Organic Compounds SOM01.2; SOP HW-33, Rev. 2.
SVOCs	USEPA, 2007, Statement of Work for Organic Analysis of Low/Medium Concentration of Semivolatile Organic Compounds SOM01.2; SOP HW-35, Rev. 1.
Pesticides/PCBs	USEPA, 2006, CLP Organics Data Review and Preliminary Review (CLP/SOW OLMO 4.3); SOP # HW-6, Rev. 14, Part C.
Metals	USEPA, 2006, Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO 5.3 (SOP Revision 13), SOP # HW-2, Rev. 13.
Gen Chemistry	NYSDEC, 2005, Analytical Services Protocols (ASP)
VOCs (Ambient air)	USEPA, 2006, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15; SOP # HW-31, Rev. 4.
Perfluoroalkyl Substances (PFASs)	USEPA, 2018, Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537

account to determine data quality. Note for the organics, metals and total cyanide only the SW-846 8000 series methods were evaluated.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING
LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	Method TO-15
Completeness of Pkg Sample Preservation Holding Time System Monitoring Compounds Lab Control Sample Matrix Spikes Blanks Instrument Tuning Internal Standards Initial Calibration Continuing Calibration Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Preservation Holding Time Surrogate Recoveries Lab Control Sample Matrix Spikes Blanks Instrument Tuning Internal Standards Initial Calibration Continuing Calibration Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Preservation Holding Time Surrogate Recoveries Matrix Spikes Blanks Instrument Calibration & Verification Analyte ID Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Preservation Holding Time Initial/Continuing Calibration CRDL Standards Blanks Interference Check Sample Spike Recoveries Lab Duplicate Lab Control Sample ICP Serial Dilutions Lab Qualifiers Field Duplicate	Completeness of Pkg Sample Preservation Holding Times Calibration Lab Control Samples Blanks Spike Recoveries Lab Duplicates	Completeness of Pkg Sample Preservation Holding Time Canister Certification Lab Control Sample Instrument Tuning Blanks Initial Calibration & System Performance Daily Calibration Field Duplicate

PFASs

Completeness of Pkg
Sample Preservation
Holding Time
Instr Performance Check
Initial Calibration
Continuing Calibration
Blanks
Surrogates
Lab Fortified Blank
Matrix Spikes
Internal Standards

control criteria. The presence or absence of the analyte cannot be verified.

N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".

JN The analyte is considered to be "presumptively present." The associated numerical value represents its *approximate* concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated using red ink. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-11, which correspond to the data and SDGs listed in Table 3-1. The tables provide the sample IDs in each SDG where QC criteria were found to exceed acceptable limits and the actions taken to qualify the affected sample results.

Listings of the sample IDs included with each SDG and the sample results (Form 1s) that required qualification are provided in Appendix A. Only the Form 1s that required qualification are included.

Appendix B provides the QC documentation that identifies the specific QC criteria that were found to be outside acceptable limits.

7.0 TOTAL USABLE DATA

For the 301 Connecticut Street BCP project, 150 samples were analyzed and results were reported for 17972 analytes. Sixteen results were rejected. Even though some results were flagged with a "J" as estimated, all other results (99.9 %) are considered usable. See the summary tables for the analyses that have been flagged and the associated QC reasons.

NOTE: 1) As noted by the laboratory, the soil samples were not collected following SW846 5035A protocol. This adds an element of uncertainty to the analytical results for volatile organic analytes (VOAs). Although not specifically indicated on the final data sheets with a "J" flag, the VOA analytical results should be considered estimated, but usable.

Table 6-1
SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188451-1

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188451-1	08/05/19	8260C	1-X01-9ft	Bromoform	UJ/J	8
			1-X01-10ft	Bromoform	UJ/J	8
			1-X01-11ft	Bromoform	UJ/J	8
			1-X01-12ft	Bromoform	NYA	8
			DUP-A	Bromoform	UJ/J	8
			1-X04-10ft	Bromoform	UJ/J	8
			1-X04-11ft	Bromoform	UJ/J	8
			1-X03-12ft	Bromoform	UJ/J	8
			1-X01-10ft	Ethylbenzene	J	4
			DUP-A	Ethylbenzene	J	4
		8270D	1-X01-10ft	Several Analytes	UJ/J	9
			All Samples	2,4-Dinitrotoluene	nn/n	2 8
			•	Indeno(1,2,3-cd)pyrer		8
		6010C/7471B	1-X01-10ft	Ca,Pb,Mg		4
		1	DUP-A	Ca,Pb,Mg	. j	4
			1-X01-10ft	Sb	חייח	2
			1-X01-10ft	As	J	3

0	No analytical result	is were qualified

- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188451-2

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188451-2	08/05/19	8260C	2-X02-10ft	Carbon Tet and 1,1,2,2TCA	UNN	8
		1	2-X02-11ft	Carbon Tet and 1,1,2,2TCA	UJ/J	8
		:	2-X01-12ft	Carbon Tet and 1,1,2,2TCA	UJ/J	8
		ļ	2-X04-13ft	Carbon Tet and 1,1,2,2TCA	UJ/J	8
			2-X03-11ft	MTBE	j	4
	_		DUP-B	MTBE	L	4
		8270D	2-X01-8ft	PCP,2-NP,2,6-DNT	UJ/J	8,13
			2-X01-9ft	PCP,2-NP,2,6-DNT	UNV	8,13
			2-X01-10ft	PCP,2-NP,2,6-DNT	UJ/J	8,13
			2-X01-11ft	PCP,2-NP,2,6-DNT	UJ/J	8,13
			2-X02-8ft	PCP	UJ/J	8
			2-X02-12ft	PCP	UJ/J	8
			2-X04-12ft	PCP	ן נאנט	8
			2-X04-13ft	2,2'-oxybis(1-chloropropane)	ן נאנט	8
			2-X04-14ft	2,2'-oxybis(1-chloropropane)	רירח	8
			2-X04-15ft	2,2'-oxybis(1-chloropropane)	nn/n	8
		8082A	2-X01-8ft	PCB 1016	UJ/J	2
			2-X04-13ft	PCB 1016 and PCB 1260	A7\7	2
		6010C/7471B	2-X03-11ft	Al,Ca,Cr,Fe,Pb,Mg,Mn,∀	J	4
			DUP-B	Al,Ca,Cr,Fe,Pb,Mg,Mn,V	Ĵ	4

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188674-1

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188674-1	08/06/19	8260C	All Samples	Bromoform	ΠΊ/Ί	8
		8270D	1-Y01-11ft All Samples All Samples 1-Y03-10ft	Most Analytes Nitrobenzene Caprolactum 4,6-Dinitro-2-methylphenol	7 N1/1 N1/1 N1/1	2 8 8 12
		6010C/7471B	All Samples	All Metals		0

auvii i	Sodes
0	No analytical results were qualified
1	% recovery in spike sample > control limit results may be biased high
2	% recovery in spike sample < control limit results may be biased low
3	Relative percent difference between duplicate lab samples > control limit
4	Relative percent difference between field duplicate and sample > control limit
5	Surrogate recoveries > QC control limit
6	Surrogate recoveries < QC control limit
7	Minimum RF of 0.005 not met
8	%D for CCV exceeded for various compounds:
9	ICAL was not a minimum of 5 calibration points
10	%D for dual column analysis was exceeded
11	Laboratory Blank contamination
12	LCS Recovery > QC limit
13	LCS Recovery < QC limit
14	Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188683-1

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188683-1	08/07/18	8260C	All Samples	Bromoform	N7\7	8
		8270D	All Samples	All analytes		0
		6010C/7471B	All Samples	All metals		0

Validation Codes

12

13

14

LCS Recovery > QC limit

LCS Recovery < QC limit Serial Dilution > 10 %

dation (Codes
0	No analytical results were qualified
1	% recovery in spike sample > control limit results may be biased high
2	% recovery in spike sample < control limit results may be biased low
3	Relative percent difference between duplicate lab samples > control limit
4	Relative percent difference between field duplicate and sample > control limit
5	Surrogate recoveries > QC control limit
6	Surrogate recoveries < QC control limit
7	Minimum RF of 0.005 not met
8	%D for CCV exceeded for various compounds:
9	ICAL was not a minimum of 5 calibration points
10	%D for dual column analysis was exceeded
11	Laboratory Blank contamination

Table 6-5 **SUMMARY OF DATA VALIDATION RESULTS**

SDG 460-188946-1

SDG	Sample Date		Sample ID	Analyte	Qualifier	Code
460-188946-1	08/09/19	8260C	D3-01-6ft	All analytes	UJ/J	6
			All Samples	DCDFM	UN/1	13
			C1-00-7ft	Cyclohexane	J	12
			D3-01-6ft	34 analytes	UJ/J	2
			E2-00-1ft	31 analytes	UJ/J	2
			B1-01-2ft	DBCP	UJ/J	4
			DUP-D	DBCP	N7\7	4
		8270D	D3-01-6ft	36 analytes	ΠΊ/Ί	2
			E2-00-1ft	32 analytes	nn/n	2 2
		8081C	D1-00-2ft	4,4'-DDT	J	10
		8082A	All Samples	PCBs		0
		8151B	All Samples	Silvex		0
		9012B	All Samples	TCN		0
		7196A	All Samples	CR+6	į	0
		6010C/7470B	D3-01-6ft	Sb	UJ/J	2
			E2-00-1ft	Sb,K	רוח	2
			B1-01-2ft	Pb	J	4
			DUP-D	Pb	j	4
			D1-04-15ft	Pb	R	4
			DUP-C	Pb	R	4
			D1-04-15ft	Al,As,Ba,Ca,Cr,Fe,Mg	J	4
			DUP-C	Al,As,Ba,Ca,Cr,Fe,Mg	J	4

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188946-2

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188946-2	08/09/19	PFAAs by 537	All Samples	PFAAs		0

ualivii	Codes
0	No analytical results were qualified
1	% recovery in spike sample > control limit results may be biased high
2	% recovery in spike sample < control limit results may be biased low
3	Relative percent difference between duplicate lab samples > control limit
4	Relative percent difference between field duplicate and sample > control limit
5	Surrogate recoveries > QC control limit
6	Surrogate recoveries < QC control limit
7	Minimum RF of 0.005 not met
8	%D for CCV exceeded for various compounds:
9	ICAL was not a minimum of 5 calibration points
10	%D for dual column analysis was exceeded
11	Laboratory Blank contamination
12	LCS Recovery > QC limit
13	LCS Recovery < QC limit
14	Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG 460-188946-4

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-188946-4	08/09/19	TCLP 8260C	All Samples	CCL4,1,2DCA	Πη\η	8
		TCLP 8270D	All Samples			0
		8082A	All Samples	PCBs		0
		6010C/7471B	All Samples	TCLP Metals		0
		RCI	All Samples	Reac,Corr,Ign		0

U	No analytical results were qualified
1	% recovery in spike sample > control limit

- % recovery in spike sample > control limit results may be biased high
 % recovery in spike sample < control limit results may be biased low
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

Table 6-8 **SUMMARY OF DATA VALIDATION RESULTS**

SDG 460-189159-1

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
460-189159-1	08/12/19	8260C	All Samples	1,1,1-TCA,2-Hexanone	UJ/J	13
			All Samples	Carbon Disulfide	UJ/J	13
			All Samples	1,1,1-TCA,CCL4	J	12
			All Samples	1,2-DCP,DBCP	UJ/J	8
			All Samples	Bromoform	UN/1	8
			B1-01-2ft	DBCP	NN	8
		8270D	B4-01-4ft	33 analytes	UJ/J	2
			All Samples	2,2'-oxybis(1-chloropro)	ΠΊ/Ί	2 8
		8081C	E3-01-2ft	Endrin Aldehyde	UJ/J	2
			C1	4,4'-DDT	J	10
			E1	4,4'-DDE,4,4'-DDT	J	10
			E1	4,4'-DDD	JΝ	10
		8082A	All Samples	PCBs	:	0
		8151B	All Samples	Silvex		0
		9012B		TCN		o
		7196A		CR+6		0
		6010C/7470B	A1-01-12ft	Sb,Ag	N1\1	2

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG L1914947

000	10		SDG L191494	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
SDG	Sample Date		Sample ID	Analyte	Qualifier	Code
L1914947	04/11/19	8260C	All Samples	1,4-Dioxane	R	7
]]	MW-2	MTBE,Acetone	N1/1	2
		1	MW-2	MEK	J	2
			MW-3	CCL4,MTBE,n-Prop.benz	UJ/J	8,13
			MW-4	CCL4,MTBE,n-Prop.benz	UJ/J	8,13
		1	DUP (MW-4)	CCL4,MTBE,n-Prop.benz	UJ/J	8,13
	1		MW-5	CCL4,MTBE,n-Prop.benz	N7\1	8,13
			MW-4	N-Propylbenzene	J	4
			DUP (MW-4)	N-Propylbenzene	J	4
		8270D	MW-2	4-Chloroaniline	บม/ม	2,13
			MW-3	4-Chloroaniline	UJ/J	13
]	DUP (MW-4)	4-Chloroaniline	חיוח	13
			MW-5	4-Chloroaniline	UJ/J	13
			MW-2	3,3'-Dichlorobenzidine	UJ/J	2
			MW-4	2,4-Dimethylphenol	N1/1	8
		8270D-SIM	MW-1	Naphthalene	CRQL-U	11
			MW-2	Naphthalene	CRQL-U	11
			MW-3	Naphthalene	CRQL-U	11
			All Samples	Acenaphthene,Fluorene	N1/1	8
		8081C	MW-2	All detected analytes	J	3
			MW-1	b-BHC	Ĵ	10
		8082A	All Samples	PCBs		0
		EPA 537	All Samples	6:2FTS	CRQL-U	11
			MW-1	PFBA	ΠΊ/Ί	2
		8270D-SIM	All Samples	1,4-Dioxane		0
		9012B	All Samples	TCN		0
		6010C/7470B	MW-2	Sb,Tl	กา/า	2
			MW-2	Mn	j	3
]		MW-4	Al,Fe,Mn	ĭ	4
			DUP (MW-4)	Al,Fe,Mn	j l	4
			MW-2	Mg	j l	14

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

SUMMARY OF DATA VALIDATION RESULTS

SDG L1921374

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
L1921374	05/21/19	8260C	All Samples	1,4-Dioxane	R	7
			MW-1	Vinyl Chloride	UJ/J	8
			W/V-3	Vinyl Chloride	UJ/J	8
		ļ	MW-4	Vinyl Chloride	UJ/J	8
			DUP (MW-4)	Vinyl Chloride	UJ/J	8
			MW-5	Vinyl Chloride	UJ/J	8
			All Samples	Acetone	CRQL-U	15
		8270D	MW-2	3,3'-Dichlorobenzidine	UJ/J	2
	1		MW-2	4-Chloroaniline	n'\'1	2
			MW-2	2,4-Dimethylphenol	nn/n	2 2 2
		8270D-SIM	All Samples	All analytes		0
		8081C	MW-1	b-BHC	υγγ	10
		8082A	All Samples	PCBs		0
		6010C/7470B	MW-4	Cr,Fe		4
			DUP (MW-4)	Cr,Fe	ĭ	4
			MW-2	Al,Ca,Mg,Mn,K	ű	14
		9012B	All Samples	TCN		0

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- 2 % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %
- 15 Field Blank contamination

Table 6-11

SUMMARY OF DATA VALIDATION RESULTS

SDG L1941139

SDG	Sample Date	Analysis	Sample ID	Analyte	Qualifier	Code
L1941139	09/09/19	8260C	SW-4-6ft	All detects	J	5
			SW-6-6ft	All detects	J	5
			SW-1-5ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-2-5ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-3-7ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-5-10ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-6-6ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-7-6ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-8-10ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-9-5ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			SW-10-5ft	DCDFM,CCL4,1,2DCA	UJ/J	8
			MW-6	Bromomethane,MECL	N'I'I	8
			MW-6	Benzene,1,1,2,2-TCA	UJ/J	8
			MW-6	Methylcyclohexane	UJ/J	8,13
			All samples	Chloroform	CRQL-U	11
		8270D	MW-6	4-Nitroanatimie	UJ/J	2
			MW-6	BEHP	CRQL-U	11
		8270D-SIM	MVV-6	Indeno(1,2,3-cd)pyrene	NN/1	8

- 0 No analytical results were qualified
- 1 % recovery in spike sample > control limit results may be biased high
- % recovery in spike sample < control limit results may be biased low</p>
- 3 Relative percent difference between duplicate lab samples > control limit
- 4 Relative percent difference between field duplicate and sample > control limit
- 5 Surrogate recoveries > QC control limit
- 6 Surrogate recoveries < QC control limit
- 7 Minimum RF of 0.005 not met
- 8 %D for CCV exceeded for various compounds:
- 9 ICAL was not a minimum of 5 calibration points
- 10 %D for dual column analysis was exceeded
- 11 Laboratory Blank contamination
- 12 LCS Recovery > QC limit
- 13 LCS Recovery < QC limit
- 14 Serial Dilution > 10 %

ACRONYMS

BSP Blank Spike

CCAL Continuing Calibration

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CRDL Contract Required Detection Limit

CRQL Contract Required Quantitation Limit

%D Percent Difference

ICAL Initial Calibration

ICB Initial Calibration Blank

IS Internal Standard

LCS Laboratory Control Sample

MS/MSD Matrix Spike/Matrix Spike Duplicate

QA Quality Assurance

QC Quality Control

%R Percent recovery

RPD Relative Percent Difference

RRF Relative Response Factor

%RSD Percent Relative Standard Deviation

TAL Target Analyte List (metals)

TCL Target Compound List (organics)