

Chemical Bulk Storage (CBS) and Petroleum Bulk Storage (PBS) Tank Closure Construction Completion Report RITC Tank No. ST06 DEC Registered Tank No. B03

Riverview Innovation & Technology Campus Brownfield Cleanup Program Site No. C915353

> 3875 River Road Tonawanda, New York 14150

> > August 19, 2025

441 CARLISLE DRIVE SUITE C HERNDON, VA 20170 WWW.INVENTUMENG.COM

1. Facility Information Summary

	Facility Information							
Name of Facility:	Riverview Innovation & Technology Campus, Inc. (RITC)							
Address:	3875 River Road, Tonawanda, NY 14150							
County:	Erie							
Waste Generator Status:	Large Quantity Generator							
EPA Identification Number:	NYD088413877							
Site Operator:	Ontario Specialty Contracting (OSC)							
Operator Address:	140 Lee Street, Buffalo, NY 14210							
RITC Project Manager:	Dan Flanigan							
RITC Project Manager Email:	dflanigan@oscinc.com							
Engineering Consultant:	Inventum Engineering							
Consultant Address:	441 Carlisle Drive, Suite C, Herndon, VA 20170							
Consultant Contact:	John Black, P.E.							
Consultant Email:	John.Black@inventumeng.com							

2. Above Ground Storage Tank Information

RITC Tank No.:	ST06 "Lid Seal"
DEC Registered Tank No.:	B03
Grid Location:	R10
Location Notes:	ST06 was located north adjacent to the Coal Charging building.
Date of Closure:	9/23/2021
Tank Dimensions:	Horizontal Cylinder 8-foot Diameter, 13.5-foot Length
Storage Capacity:	5,100 gallons
Tank Exterior Coating Description:	Steel with blue painted coating.
Tank Piping Description:	One 8-foot long 3-inch diameter steel pipe was present between the tank containment and the Coal Charging building.
Secondary Containment Description:	ST06 had a dedicated rectangular steel box with a yellow painted coating.
Contents Description:	ST06 contained approximately 3-feet of brown, viscous, lid sealant.

3. AST Closure Procedure

Contractor:	US Ecology
Contractor Address:	2525 George Urban Blvd, Depew, NY 14043
Dates of Cleaning:	9/20/2021 — 9/21/2021
Cleaning Method:	Hot water power washing and mechanical removal of residuals.
Disposition of tank shell and piping:	Tank shell and piping were recycled.
Recycler or Disposal Facility Address:	Niagara Metals 4861 Packard Rd, Niagara Falls, NY 14304
Contents Volume Disposed:	1,650 gallons
Disposition of Contents & Hazardous Waste Code(s):	ST06 contents were disposed as non-hazardous waste at a RCRA-permitted waste facility.
Disposal Facility Address:	Veolia ES Technical Solutions LLC 4301 Infirmary Rd, West Carrollton, OH 45449
Disposal Facility EPA No.:	OHD093945293
Hazardous Waste Code(s):	NA
Hazardous Waste	(1) Veolia ES Technical Solutions
Transporter Name:	(2) Freehold Cartage Inc
Hazardous Waste	(1) NJD080631369
Transporter EPA No.:	(2) NJD054126164

4. Inspection Summary

Tank closure inspection:	ST06 contains no remaining residuals and is free of standing water from decontamination. Tank is cleared for recycling in September 2021.
Evidence of Leaks and/or additional observations:	The ST06 secondary containment contained lid seal residuals. Lid seal material was observed beneath the secondary containment in September 2021. NYSDEC filed Spill Report No. 2106302. Additional lid seal material was observed in the base of the nearby elevator shaft after demolition of the Coal Charging building and was managed in accordance with the Spill Number. Management of the secondary containment, including inspection, photographic documentation, and soil sampling, is documented under separate cover in the Secondary Containment Closure CCR (Inventum).

5. CAMP Data

Air monitoring was performed in accordance with the Community Air Monitoring Plan (CAMP) for all dates that tank work was completed including sampling, contents removal, cleaning, decommissioning and disposal. Decommissioning includes ancillary pipe removal, shearing, torch cutting, and/or contents stabilization. Daily summary graphs of particulate and volatile organic compound (VOC) monitoring are provided in the AST CCR CAMP Appendix.

Tank Work	Dates
Sampling	2/9/2021, 2/10/2022, 3/10/2022, 6/30/2022
Contents Removal	9/13/2021 - 9/20/2021
Cleaning	9/20/2021 - 9/21/2021
Decommissioning	9/21/2021 - 9/23/2021
Disposal	5/19/2022, 12/16/2022, 2/23/2023

Additional Notes:

Sampling:

One characterization sample of the viscous lid seal material was collected from the tank in February 2021. The pile of excavated lid seal and coke breeze documented under Spill No. 2106302 was sampled in February 2022 for disposal characterization with Modern Landfill. The analytical data from these two samples are presented in Attachment A, Table 1.

An additional sample of the stockpiled lid seal and coke breeze was collected in March 2022 for the paint filter test disposal parameter. The analysis is presented in Attachment A, Table 2.

In June 2022 one additional sample each from the containerized lid seal material, aqueous liquid separated on top of the lid seal material, and the solids removed from inside the secondary containment was collected and analyzed for total methanol (Methyl Alcohol, Method 18015D) at the request of the waste broker. The analysis is presented in Attachment A, Table 2.

Disposal:

A total of 1,650 gallons, or six 275-gallon polyethylene totes, of lid seal were disposed from tank ST06 with Veolia Environmental Services (Veolia). The five cubic yard boxes of lid seal residuals and coke breeze removed from the ST06 secondary containment were also disposed with Veolia.

The lid seal observed beneath the secondary containment and within the base of the Coal Charging building elevator shaft was segregated and managed in accordance with Spill No. 2106302. Two shipments of lid seal impacted soils and coke breeze were disposed at Modern Landfill as non-hazardous solid waste.

6. Attachments

- 1. Attachment A Analytical Tables of tank contents for disposal profiling.
- 2. Attachment B Photographic Log includes original, color photographs of the closure process.
- 3. Attachment C Spill Report No. 2106302
- 4. Attachment D Additional Lid Seal Memo (Inventum, 2022)
- 5. Attachment E Waste Manifests.
- 6. Attachment F Laboratory Reports.

Engineering Certification

I, John P. Black, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Tank Management and Closure Construction Completion Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and DER Green Remediation (DER-31) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Respectfully Submitted,

Inventum Engineering, P.C.

LI DETECTION

John P. Black, P.E

Date: 8. 18. 2025

License No: 062818. (

It is a violation of the laws of New York for any person, unless acting under the direction of a Licensed Professional Engineer, to alter any item or any portion of this document in any way. If an item bearing the seal of a Licensed Professional Engineer is altered, the altering Engineer shall affix to the item his/her seal and notation "altered by" followed by his/her signature and the date of such alternation, and a specific description of the alteration.

Attachment A – Analytical Tables

Table 1 CBS PBS Tank Closure Construction Completion Report ST06 Analytical Results Riverview Innovation & Technology Campus, Inc.

Town of Tonawanda, New York

		Camala ID.	TK-SD-ST06	02002024	CD CTOC O	2402022	
		Sample ID:			SD-ST06-02102022		
	Sa	mple Date:	2/9/2	2021	2/10/2022		
	Lab Report	Lab Report Number(s):		R2101264, R2101265		220605	
Analytes		Contents:		cous Mud	Lid Seal & Cok	e Breeze Pile	
	Hazardous Wa	ste Code(s):		No	one		
	TCLP Standards (ug/L)	Units					
VOCs SW8260C							
1,1,1-Trichloroethane (TCA)		ug/kg	<0.47	U	<9.05	U	
1,1,2,2-Tetrachloroethane		ug/kg	<1.1	U	<9.05	U	
1,1,2-Trichloroethane		ug/kg	<0.47	U	<9.05	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	<0.47	U	<9.05	U	
1,1-Dichloroethane		ug/kg	<0.47	U	<9.05	U	
1,1-Dichloroethene		ug/kg	<0.67	U	<9.05	U	
1,2,3-Trichlorobenzene		ug/kg	<1.2	U	<22.6	U	
1,2,4-Trichlorobenzene	-	ug/kg	<0.97	U	<22.6	U	
1,2-Dibromo-3-Chloropropane		ug/kg	<1.8	U	<45.3	U	
1,2-Dibromoethane (Ethylene Dibromide)	-	ug/kg	<0.47	U	<9.05	U	
1,2-Dichlorobenzene	-	ug/kg	<0.47	U	<9.05	U	
1,2-Dichloroethane	-	ug/kg	<0.47	U	<9.05	U	
1,2-Dichloropropane 1.3-Dichlorobenzene	+	ug/kg	<0.47	U	<9.05 <9.05	U	
,		ug/kg	<0.47				
1,4-Dichlorobenzene 1,4-Dioxane (P-Dioxane)		ug/kg	<0.51 <47	U	<9.05	U	
, , ,		ug/kg	11	U	<45.3	U	
Methyl Ethyl Ketone (2-Butanone) 2-Hexanone		ug/kg	<0.83	U	<45.3 <22.6	U	
		ug/kg	0.6	ı	<22.6	U	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Acetone		ug/kg ug/kg	79	J	<45.3	U	
Benzene		ug/kg	<0.47	U	<9.05	U	
Bromochloromethane		ug/kg	<0.47	U	<22.6	U	
Bromodichloromethane		ug/kg	<0.47	U	<9.05	U	
Bromoform		ug/kg	<1.2	U	<22.6	U	
Bromomethane		ug/kg	<4.9	U	<9.05	U	
Carbon Disulfide		ug/kg	<0.67	U	<9.05	U	
Carbon Tetrachloride		ug/kg	<0.60	U	<9.05	U	
Chlorobenzene		ug/kg	<0.47	U	<9.05	U	
Chloroethane		ug/kg	<0.95	U	<9.05	U	
Chloroform		ug/kg	<0.47	U	<9.05	U	
Chloromethane		ug/kg	<3.3	U	<9.05	U	
Cyclohexane		ug/kg	<0.60	U	<45.3	U	
Dibromochloromethane		ug/kg	<0.47	U	<9.05	U	
Dichlorodifluoromethane		ug/kg	<0.77	U	<9.05	U	
Methylene Chloride		ug/kg	<6.5	U	<22.6	U	
Ethylbenzene		ug/kg	<0.47	U	<9.05	U	
Isopropylbenzene (Cumene)		ug/kg	<0.47	U	<9.05	U	
Methyl Acetate		ug/kg	<2.0	U	<9.05	U	
Tert-Butyl Methyl Ether		ug/kg	<0.47	U	<9.05	U	
Methylcyclohexane		ug/kg	<0.72	U	<9.05	U	
Styrene		ug/kg	<0.47	U	<22.6	U	
Tetrachloroethylene (PCE)	1	ug/kg	<0.53	U	<9.05	U	
Toluene		ug/kg	<0.47	U	<9.05	U	
Trichloroethylene (TCE)		ug/kg	<0.51	U	<9.05	U	
Trichlorofluoromethane	<u> </u>	ug/kg	<0.60	U	<9.05	U	
Vinyl Chloride		ug/kg	<1.1	U	<9.05	U	
Cis-1,2-Dichloroethylene	ļ	ug/kg	<0.47	U	<9.05	U	
Cis-1,3-Dichloropropene		ug/kg	<0.47	U	<9.05	U	
m,p-Xylene	-	ug/kg	<0.86	U	<9.05	U	
O-Xylene (1,2-Dimethylbenzene)	-	ug/kg	<0.47	U	<9.05	U	
Trans-1,2-Dichloroethene	-	ug/kg	<0.47	U	<9.05	U	
Trans-1,3-Dichloropropene		ug/kg	<0.47	U	<9.05	U	

Table 1 CBS PBS Tank Closure Construction Completion Report ST06 Analytical Results Riverview Innovation & Technology Campus, Inc.

		Sample ID:	TK-SD-ST06	02002021	SD STOS O	2102022	
					SD-ST06-02102022		
		imple Date:	2/9/2		2/10/2022		
	Lab Report	Lab Report Number(s):		R2101265	2200	505	
Analytes		Contents:	Brown Vis	cous Mud	Lid Seal & Cok	e Breeze Pile	
	Hazardous Wa	Hazardous Waste Code(s):		N	one		
	TCLP Standards (ug/L)	Units	ST06/B03 -		Lid Seal Tank"		
SVOCs SW8270D		l .			ı	1	
1,2,4,5-Tetrachlorobenzene		ug/kg	<1000	U	<427	U	
2,3,4,6-Tetrachlorophenol		ug/kg	<1600	U	<427	U	
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		ug/kg	<1200 <1000	U	<427 <427	U	
· · · · · · · · · · · · · · · · · · ·		ug/kg	<870	U	<427	U	
2,4-Dichlorophenol 2,4-Dimethylphenol		ug/kg ug/kg	<810	U	<427	U	
2,4-Dinitrophenol			<7700	U	<1710	U	
2,4-Dinitrophenoi		ug/kg ug/kg	<1800	U	<427	U	
2,6-Dinitrotoluene	+	ug/kg ug/kg	<980	U	<427	U	
2-Chloronaphthalene		ug/kg ug/kg	<900	U	<427	U	
2-Chlorophenol	+	ug/kg ug/kg	<750	U	<427	U	
2-Methylnaphthalene		ug/kg ug/kg	<750	U	652		
2-Methylphenol (O-Cresol)		ug/kg ug/kg	<930	U	<427	U	
2-Nitroaniline		ug/kg	<1100	U	<427	U	
2-Nitrophenol		ug/kg	<1100	U	<427	U	
3,3'-Dichlorobenzidine		ug/kg	<510	U	<427	U	
Cresols, M & P		ug/kg	<860	U	<427	U	
3-Nitroaniline		ug/kg	<900	U	<427	U	
4,6-Dinitro-2-Methylphenol		ug/kg	<2600	U	<571	U	
4-Bromophenyl Phenyl Ether		ug/kg	<1200	U	<427	U	
4-Chloro-3-Methylphenol		ug/kg	<910	U	<427	U	
4-Chloroaniline		ug/kg	<760	U	<427	U	
4-Chlorophenyl Phenyl Ether		ug/kg	<960	U	<427	U	
4-Nitroaniline		ug/kg	<460	U	<427	U	
4-Nitrophenol		ug/kg	<900	U	<427	U	
Acenaphthene		ug/kg	<850	U	447		
Acenaphthylene		ug/kg	<910	U	<427	U	
Acetophenone		ug/kg	<1300	U	<427	U	
Anthracene		ug/kg	<750	U	781		
Atrazine		ug/kg	<630	U	<427	U	
Benzo(A)Anthracene		ug/kg ug/kg	<670	U	2350		
Benzaldehyde		ug/kg	<1100	U	<427	U	
Benzo(A)Pyrene		ug/kg	<1200	U	3030	1	
Benzo(B)Fluoranthene		ug/kg	<750	U	3200		
Benzo(G,H,I)Perylene		ug/kg	<1100	U	2110		
Benzo(K)Fluoranthene		ug/kg ug/kg	<730	U	1620		
Biphenyl (Diphenyl)		ug/kg	<1400	U	<427	U	
Bis(2-Chloroisopropyl) Ether	1	ug/kg	<920	U	NS		
Bis(2-Chloroethoxy) Methane		ug/kg	<1100	U	<427	U	
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	<890	U	<427	U	
Bis(2-Ethylhexyl) Phthalate		ug/kg	<820	U	<427	U	
Benzyl Butyl Phthalate		ug/kg	<540	U	<427	U	
Caprolactam	1	ug/kg	<990	U	<427	U	
Carbazole		ug/kg	<730	U	492	-	
Chrysene		ug/kg	<660	U	2880		
Di-N-Butyl Phthalate		ug/kg	<730	U	<427	U	
Di-N-Octylphthalate		ug/kg	<1600	U	<427	U	
Dibenz(A,H)Anthracene		ug/kg	<980	U	632	1	
Dibenzofuran	1	ug/kg	<820	U	523		
Diethyl Phthalate		ug/kg	<800	U	<427	U	
Dimethyl Phthalate		ug/kg	<860	U	<427	U	

CBS PBS Tank Closure Construction Completion Report STOG Analytical Results

		Sample ID:	TK-SD-ST06-02092021		SD-ST06-02102022		
	Sa	mple Date:	2/9/2021		2/10/2022		
		Lab Report Number(s):		R2101265	220	605	
Analytes		Contents:	Brown Vis		Lid Seal & Cok	ke Breeze Pile	
	Hazardous Wa	ste Code(s):		N	one		
	TCLP Standards (ug/L)	Units		ST06/B03 - "	'Lid Seal Tank"		
Fluoranthene		ug/kg	<1200	U	4790		
Fluorene		ug/kg	<840	U	462		
Hexachlorobenzene		ug/kg	<1100	U	<427	U	
Hexachlorobutadiene		ug/kg	<770	U	<427	U	
Hexachlorocyclopentadiene		ug/kg	<1500	U	<427	U	
Hexachloroethane		ug/kg	<840	U	<427	U	
Indeno(1,2,3-C,D)Pyrene		ug/kg	<1500	U	1720	1	
Isophorone		ug/kg	<940	U	<427	U	
N-Nitrosodi-N-Propylamine		ug/kg	<1400	U	<427	U	
N-Nitrosodiphenylamine		ug/kg	<2800		<427	U	
Naphthalene		ug/kg	<840	U	2000	11	
Nitrobenzene		ug/kg	<800	U	<427	U	
Pentachlorophenol		ug/kg	<4500	U	<427	U	
Phenanthrene		ug/kg	<640	U	3880		
Phenol		ug/kg	<910	U	<427	U	
Pyrene		ug/kg	<750	U	4220		
TAL Metals SW6010				1	I	1	
Aluminum		mg/kg	4230		7090		
Antimony		mg/kg	<1.2	U	<4.58	М	
Arsenic		mg/kg	3		2.65		
Barium		mg/kg	55.9		55.8		
Beryllium		mg/kg	0.415	J	<0.381	U	
Boron (RSI*)		mg/kg	NS		NS		
Cadmium		mg/kg	<0.553	U	<0.381	U	
Calcium		mg/kg	11700		2180	_	
Chromium, Total		mg/kg	5.1		13.8	D	
Cobalt		mg/kg	<1.1	U	<3.81	U	
Copper		mg/kg	10.3		23.8	D	
Iron		mg/kg	6750		19000	D	
Lead		mg/kg	5.2	J	24.2		
Magnesium		mg/kg	7050		961	M	
Manganese		mg/kg	14.8		77.4	MD	
Molybdenum (RSI*)		mg/kg	NS		NS		
Nickel		mg/kg	<1.5	U	8.04	D	
Potassium		mg/kg	3920		3560	M	
Selenium		mg/kg	<1.2	U	<1.53	U	
Silver		mg/kg	0.276	J	<0.763	U	
Sodium		mg/kg	13000		1140		
Sulfur (RSI, 6020A)		mg/kg	NS	1	NS 14.04		
Thallium		mg/kg	1.9	J	<1.91	U	
Tin (RSI*)		mg/kg	NS		NS		
Uranium (RSI*)		mg/kg	NS C 2	1	NS 0.70		
Vanadium		mg/kg	6.2	J	9.70		
Zinc		mg/kg	26.4		31.4		
NA CIAITATA							
Mercury SW7471			.0.03	l	0.0004		
Mercury		mg/kg	<0.03	U	0.0334		
Ammonia E350.1M			l	1.	1	l	
Nitrogen, Ammonia (As N)		mg/kg	11	J	<32.9	U	
				j			

CBS PBS Tank Closure Construction Completion Report STOG Analytical Results

		Carrala ID.	TV CD CTOO	02002024	SD STOS O	2402022
		Sample ID:			SD-ST06-02102022	
	Sa	mple Date:	2/9/	2021	2/10/	2022
	Lab Report Number(s):		R2101264, R2101265		2200	505
Analytes		Contents:		cous Mud	Lid Seal & Cok	e Breeze Pile
	Hazardous Wa	ste Code(s):		N	one	
	TCLP Standards (ug/L)	Units		ST06/B03 - "	Lid Seal Tank"	
Cyanide SW9012B						,
Cyanide		mg/kg	<0.27	U	<0.777	U
PCBs 8082A	l	/!		l	.224	
PCB-1016 (Aroclor 1016)		ug/kg	<140 <140	U	<231 <231	
PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)		ug/kg ug/kg	<140	U	<231	
PCB-1232 (Aroclor 1232)		ug/kg	<140	U	<231	
PCB-1248 (Aroclor 1248)		ug/kg	<140	U	<231	
PCB-1254 (Aroclor 1254)		ug/kg	450	P	<231	
PCB-1260 (Aroclor 1260)		ug/kg	<140	U	<231	
·						
Pesticides 8081B						
P,P'-DDD		ug/kg	<6.5	U	NS	
P,P'-DDE		ug/kg	<6.5	U	NS	
P,P'-DDT		ug/kg	<6.5	U	NS	
Aldrin		ug/kg	<6.5	U	NS	
Dieldrin		ug/kg	<6.5	U	NS	
Alpha Endosulfan		ug/kg	<6.5	U	NS	
Beta Endosulfan		ug/kg	<6.5	U	NS	
Endosulfan Sulfate		ug/kg	<6.5	U	NS	
Endrin		ug/kg	<6.5	U	NS	
Endrin Aldehyde		ug/kg	<6.5	U	NS	
Endrin Ketone		ug/kg	<6.5	U	NS NS	
Heptachlor Enovide		ug/kg ug/kg	<6.5 <6.5	U	NS	
Heptachlor Epoxide Methoxychlor		ug/kg ug/kg	<6.5	U	NS	
Toxaphene		ug/kg	<150	U	NS	
Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	<6.5	U	NS	
cis-Chlordane		ug/kg	<6.5	U	NS	
Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	<6.5	U	NS	
Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	<6.5	U	NS	
Gamma Bhc (Lindane)		ug/kg	<6.5	U	NS	
Chlordane (Technical)		ug/kg	<6.5	U	NS	
Herbicides SW8151A						
Acetic acid, (2,4,5-trichlorophenoxy)-		ug/kg	<20	U	NS	
Silvex (2,4,5-TP)		ug/kg	<18	U	NS	
2,4-D (Dichlorophenoxyacetic Acid)		ug/kg	<26	U	NS	
Dicamba		ug/kg	<13	U	NS	
TCLP VOCs - SW8260C						
1,2-Dichloroethane	500	ug/l	<20.0	U	<20.0	U
Chlorobenzene	100,000	ug/l	<20.0	U	<20.0	U
Tetrachloroethylene (PCE)	700	ug/l	<20.0	U	<20.0	U
Carbon Tetrachloride	500		<20.0	U	<20.0	U
Chloroform	6,000		<20.0	U	<20.0	U
Benzene	500		<20.0	U	21.0	
Vinyl Chloride	200		<20.0	U	<20.0	U
1,1-Dichloroethene	700		<20.0	U	<20.0	U
Methyl Ethyl Ketone (2-Butanone)	200,000		236		<20.0	U
Trichloroethylene (TCE)	500		<20.0	U	<20.0	U

CBS PBS Tank Closure Construction Completion Report ST06 Analytical Results

		Cample ID.	TK-SD-ST06	02002024	CD CTOC	2102022		
	_	Sample ID:			SD-ST06-02102022 2/10/2022			
		ample Date:						
	Lab Report	Number(s):	R2101264,	R2101265	220	605		
Analytes		Contents:	: Brown Viscous Mud		Lid Seal & Col	e Breeze Pile		
	Hazardous Wa	ste Code(s):		N	one			
	TCLP Standards (ug/L)	Units		ST06/B03 - "	03 - "Lid Seal Tank"			
TCLP SVOCs - SW8270D								
1,4-Dichlorobenzene	7,500	ug/l	<4.8	U	<40.0	U		
2,4,5-Trichlorophenol	400,000	ug/l	<4.4	U	<40.0	U		
2,4,6-Trichlorophenol	2,000		<5.6	U	<40.0	U		
2,4-Dinitrotoluene	130	-	<9.6	U	<40.0	U		
2-Methylphenol (O-Cresol)	200,000	-	<4.0	U	NS			
Cresols, M & P	200,000	-	<4.8	U	NS			
Cresols (as m,p,0-Cresol)	-	- C-	NS		<80.0	U		
Hexachlorobenzene	130	-	<6.4	U	<40.0	U		
Hexachlorobutadiene		ug/l	<4.0	U	<40.0	U		
Hexachloroethane	3,000	-	<4.4	U	<40.0	U		
Nitrobenzene	2,000	- C-	<6.0	U	<40.0	U		
Pentachlorophenol	100,000	-	<39	U	<80.0	U		
Pyridine	5,000	ug/l	<4.0	U	<40.0	U		
TCLP Metals - SW6010								
Arsenic	5,000	ug/l	12.3	l ₁	<500	U		
Barium	100,000		83.6	ı	<500	U		
Cadmium	1,000		<0.35	U	<25.0	U		
Chromium, Total	5,000		6.6	ı	<500	U		
Lead	5,000	-	<2.1	U	<500	U		
Selenium	1,000		13.6	J	<200	U		
Silver	5,000		<0.57	U	<500	U		
Silver	3,000	чь/ і	10.57		1500			
TCLP Mercury- SW7470	_	<u> </u>						
Mercury	200	ug/l	<0.077	U	<2.00	U		
TCLP Pesticides - 8081B				<u> </u>				
Chlordane	30	ug/l	<0.13	U	<2.00	U		
Endrin	20	ug/l	<0.020	U	<1.00	U		
Gamma Bhc (Lindane)	400	ug/l	<0.020	U	<1.00	U		
Heptachlor	8	ug/l	<0.020	U	<1.00	U		
Heptachlor Epoxide	8	ug/l	<0.020	U	<1.00	U		
Methoxychlor	10,000	ug/l	<0.020	U	<1.00	U		
Toxaphene	500	ug/l	<0.50	U	<20.0	U		
TCLP Herbicides- SW8151A								
2,4-D (Dichlorophenoxyacetic Acid)	10,000	-	<0.48	U	<50	U		
Silvex (2,4,5-TP)	1,000	ug/l	<0.48	U	<50	U		
SW9045D								
pH	<2, >=12.5	ph units	11.26		NS			
<u>r</u>	2,- 12.3			1	-			
Ignitability 1010MOD		1			<u>'</u>	·		
Ignitability		deg f	Not Ignitable	U	NS			
,		-	3					
SW1010								
Flash Point	<140	deg f	Did not flash		NS			
Reactive Cyanide SW7.3.3.2								
Reactive Cyanide		mg/kg	<10	U	NS			

CBS PBS Tank Closure Construction Completion Report ST06 Analytical Results

	Sample ID:		TK-SD-ST06-02092021		SD-ST06-02102022	
	Sa	mple Date:	2/9/2021		2/10/2022	
	Lab Report	Number(s):	R2101264, I	R2101265	2206	605
Analytes		Contents: Brown Viscous Mud		: Brown Viscous Mud		e Breeze Pile
	Hazardous Wa	ste Code(s):		No	one	
	TCLP Standards (ug/L)	Units		ST06/B03 - "I	Lid Seal Tank"	
Reactive Sulfide SW7.3.4.2						
Reactive Sulfide		mg/kg	7.2		NS	
Total Solids A2540G						
Moisture, Percent		%	50.1		NS	
Total Solids		%	49.9		NS	
BTU/Higher Heat Value	1	DT1.1/11			1	1
BTU		BTU/lb	NS		1200	
Notes:						
NS: Not Sampled						
NA: Sample collected, but not analyzed due to matrix						
"<": Analyzed for but detected at or above the quantit	ation limit					
J: Analyte detected below quantitation limit						
C: Continuing Calibration Verification (CCV) below according						
S: Lab Control Sample (LCS) Spike recovery is below ac	•					
P: Concentration >40% difference between the two GC					-	
L: Laboratory Control Sample recovery outside accept						
D: Concentration is a result of a dilution, typically a sec		f the sample	due to exceedin	g the calibration	on range.	
(RSI)*: Additional metals analytes requested by dispos	al facility RSI					
Bold: Analyte was detected						
Bold with red highlight: Analyte exceeds TCLP standard	ds or is characteri	stically haza	rdous for corrosiv	ity, flammabil	ity, or reactivity.	

Table 2 CBS PBS Tank Closure Construction Completion Report ST06 Analytical Results - Additional Disposal Characterization Riverview Innovation & Technology Campus, Inc. Town of Tonawanda, New York

		Sample ID:	ST06SOIL-0	3102022	ST06-BOXES-06302022		ST06-LQ-06302022		ST06-AQ-06302022	
	Sample Date:		3/10/2022		6/30/2022		6/30/2022		6/30/2022	
	Lab Report I	Number(s):	2209	95	223132		2231	.32	223132	
Analytes		Contents:	Lid Seal & Cok	e Breeze Pile	Secondary Co Solids (CY		Viscous Lid Se	eal Material	Water Separate	
	Hazardous Was	ta Coda(s):					ne			
	Tiazai dous vvas	le coue(s).				140	, iie			
		Units	ST06/B03 - "Lid Seal Tank"							
Paint Filter										
Paint Filter Test		NA	Pass		NS		NS		NS	
Percent Moisture		1	,	ı	,		,	,	,	1
Percent Moisture		%	77.1		NS		NS		NS	
Methanol		ı		ı	1			1	1	1
Methyl Alcohol		mg/kg	NS		2160		NS		NS	
Methanol		l	ı	I	1		ı	1	1	ı
Methyl Alcohol		mg/L	NS		NS		2910		2420	
Notes:										
NS: Not Sampled										
NA: Sample collected, but not analyzed due to matrix										
"<": Analyzed for but detected at or above the quantit	ation limit									
J: Analyte detected below quantitation limit										
C: Continuing Calibration Verification (CCV) below acce	•									
S: Lab Control Sample (LCS) Spike recovery is below ac	•									
P: Concentration >40% difference between the two GO										
L: Laboratory Control Sample recovery outside accepte										
D: Concentration is a result of a dilution, typically a sec		of the sampl	e due to exceedii	ng the calibrati	on range.					
(RSI)*: Additional metals analytes requested by dispos	al facility RSI									
Bold: Analyte was detected										
Bold with red highlight: Analyte exceeds TCLP standar	ds or is characteri	istically haza	ardous for corrosi	vity, flammabi	lity, or reactivity.					

Attachment B – Photographic Log

Client Name:	Date Photo was Taken:	Project:
RITC	1/6/2021	RITC

Photo No. 1

Direction Photo Taken:

View is south.

Description:

The north face ST06/B03. The tank was located north adjacent to the Coal Charging building and was used to store "Lid Seal," a mix of bentonite and antifreeze.

Client Name:

RITC

Date Photo was Taken:

9/16/2021

Project: RITC

Photo No. 2 Direction Photo Taken:

View is southeast.

Description:

ST06 material is pumped into polyethylene totes.

Client Name:Date Photo was Taken:Project:RITC9/20/2021RITC

Photo No. 3
Direction Photo
Taken:

View is south.

Description:

ST06 has been sheared and the remaining residuals are removed.

Client Name: RITC

Date Photo was Taken: 9/21/2021

Project: RITC

Photo No. 4
Direction Photo
Taken:

View is east.

Description:

ST06 has been removed from the steel secondary containment and sheared. Residual lid seal and coke breeze are present in the containment.

Client Name:	Date Photo was Taken:	Project:
RITC	9/23/2021	RITC
Photo No. 5		
Direction Photo		
Taken:		
View is southwest.		
Description:		
Residual lid seal and coke breeze are scraped from the secondary containment and		
containerized for disposal.		

Attachment C – Spill Report No. 2106302

NYSDEC SPILL REPORT FORM

DEC REGION:	9	9				SPILL N	UMBER:	2106302					
SPILL NAME:	RIT	C				DEC LEA	AD:	BJMC					
CALLER NAME	<u>:</u>					NOTIFIE	R'S NAME:	ROXANNE BRIX					
CLR'S AGENC	Y:					NOTIFIE	R'S AGENCY:	INVENT	TUM ENGINE	EERING, PC			
CALLER'S PHO	ONE <u>:</u>					NOTIFIE	R'S PHONE:	(571) 752-6559					
SPILL DATE:		-	09/27/202	1	SPILL TI	ME:	12:00 am		DISPATCH	IER:			
CALL RECEIV	ED D	ATE:	10/04/202	1	RECEIVE	D TIME:	12:00 am		-				
				<u>SP</u>	ILL LOC	<u>ATION</u>							
PLACE:	RITC					COUN	TY:	Erie					
STREET:	3875	RIVER R	OAD				I/CITY: MUNITY:	Tonawa	anda VANDA				
CONTACT:	CONTACT: JOHN BLACK			•	ACT PHONE:	(571)	217-6761						
CONT. FACTO	R:	Unkno	wn			SPILL	REPORTED B	Y: Other					
FACILITY TY		Comm	ercial/Indus	trial			RBODY:						
and impact	ted soi	l were rer	noved from	the ground	after the s ve been co	teel secon	nk removal mei dary containme rsuant to BCP v RECO	ent was r work plar	emoved. Exc ns.				
				POT	ENTIAL	SPILLEF	<u>RS</u>						
COMPANY			ADDRI	ESS				CON	NTACT				
	Size	Material methanol		Cause Jnknown		irce known	Test Meth	od	Leak Rate	Gross Failure			
DEC REMAR	KS:												
Contamination fo	ound w	hile remo	ving a CBS	tank. Will h	andle und	er BCP, #0	C915353.						
PIN		<u>T</u>	<u>& A</u>		COST CE	NTER							
CLASS: CLOSE DATE:				MEETS ST	TANDARDS:	False							

Created On: 10/04/2021

Date Printed: 10/5/2021 Last Updated: 10/04/2021 1

Attachment D – Additional Lid Seal Memo (Inventum, 2022)

February 9, 2022

To: Ben McPherson

From: Roxanne Birx

Re: Spill No. 2106302

Lid Seal Tank ST06/B03

Riverview Innovation & Technology Campus

3875 River Road, Tonawanda

BCP Site # 915353

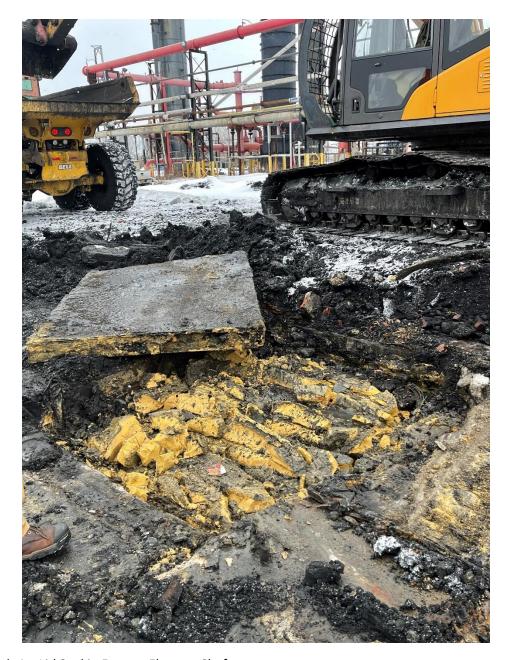
On Tuesday, February 8th, 2022 additional lid seal material was observed on the northwest section of the Coal Charging pad during clearing and grading activities at the RITC site. Further exploration revealed an elevator shaft approximately 8 ft by 7 ft by 4 ft filled with lid seal and lid seal impacted material. Figure 1 illustrates the locations of the former lid seal tank and elevator shaft. Figure two provides an additional view of the tank and shaft proximity.

Photograph 1: Aerial view of the former Coal Charging Building.

Notes: The yellow box designates the Lid Seal Tank location.

The blue box is the approximate location of the elevation shaft.

Photograph 2: Former Lid Seal Tank ST06/B03.


Note: The elevator shaft is just to the right of the tank.

Photograph 3: Lid Seal Material Below Secondary Containment of ST06.

Photograph 4 – Lid Seal in Former Elevator Shaft

The material discovered at the base of the elevator shaft (Photograph 4) is visually and textually identical to the materials encountered under the secondary containment for ST06 (Photograph 3). Inventum is proposing to manage this material in accordance with the Spill Number.

Attachment E – Waste Manifests

333 Ganson Street • Buffalo, New York 14203 Phone: (716) 856-3333 • FAX: (716) 842-1630

Job No:	19017	G111902
Location:	RITC TCC	
Client/Generator:		
Company/Hauler: License/Truck:	Niagara Metals. PA46411 1 22. Scale Ticket/ Manifest No:	
	tractor trailer	
	Scrapyard.	
	Shearing Stoke 1507	
No. Of Loads:		
Issuer:	Mak Authorized:	
Date:	10 8 21 Time Out:	
Comments:		
	4	
White: Driver	Yellow: Customer	Pink: Office

Pink: Office

M MODERN Landfill

operation or both.

N NON-HAZARDOUS WASTE & ASBESTOS WASTE SHIPMENT RECORDS

If waste is asbestos waste, complete Sections I, II, III and IV If waste is **NOT** asbestos waste, complete Sections I, II and III

0014486

GENERATOR (Generator completes Section I, a-q) Section I a: Generator's US EPA ID Number: b: Manifest Document Number: 0014486 c: Generator's Name and Location: e: Generator's Mailing Address: Riverview Innovation Technology Campus Riverview Innovation Technology Campus 3875 River Road 140 Lee Street, Suite 200 Tonawanda, New York 14150 Buffalo, New York 14210 d: Generators Phone: 716-818-3390 f: Phone: 716-856-3333 If owner of the generating facility differs from the generator, provide: g. Owner's Name: h. Owner's Phone: Containers n. Unit m. Total i. Waste Profile #: j. Exp. Date k. Waste Shipping Name and Description No. Quantity Type Wt/Vol M22-3405 4/21/23 Lid seal / Coal / Soil Cm Tons 220 GENERATOR'S CERTIFICATION: I hereby certify that the above named material is not a hazordous waste as defined by 40 CFR 261 or any applicable state law, has been properly described, classified and packaged, and is in proper condition for transportation according to applicable regulations; AND, if this waste is a treatment residue of a previously restricted hazardous waste subject to the Land Disposal Restrictions. I certify and warrant that the waste has been treated in accordance with the requirements of 40 CFR 268 and is no longer a hazardous waste as defined by 40 CFR 261. Kirsten Collican o. Generator Authorized Agent Name (Print) hohalf of RITC p. Signature g. Date Section II TRANSPORTER (Generator completes Sec. II, a-b; Transporter completes Sec. II, c-e) a: Transporter's Name and Address: beise Logistics 31049 River Road Tonawanda 144 14150 b: Phone: Jerry c. Transporter Authorized Agent Name (Print) d. Signature **Section III DESTINATION** (Generator completes Sec. III, a-c; Destination Site completes Sec. III, d-g) a: Disposal Facility and Site Address: c: US EPA Number d: Discrepancy Indication Space: Modern Landfill, Inc. 1445 Pletcher Rd. Model City, NY 14107 b: Phone: 716-754-8226 I hereby certify that the above named material has been accepted and to the best of my knowledge, the foregoing is true and accurate. e: Authorized Agent Name (Print) f. Signature q. Date **Section IV** ASBESTOS (Generator completes Sec. IV, a-d; Operator completes Sec. IV, e-g) a: Operator's Name and Address: c: Special Handling Instructions and Additional Information: b: Phone: d: Friable, Non-Friable or Both: e: Percentage Friable/NonFriable: 0% Friable and 0% Non-Friable OPERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked, and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. e. Operator's Name and Title (Print) f. Signature g. Date *Operator refers to the company which owns, leases, operates, controls or supervises the facility being demolished or renovated, or the demolition or renovation

HAZARDOUS WASTE & ASBESTOS WASTE SHIPMENT RECORDS

If waste is asbestos waste, complete Sections I, II, III and IV If waste is ${\color{red} {\bf NOT}}$ asbestos waste, complete Sections I, II and III

0014487

Section I GENERATOR (Generator comp	letes Section I, a-q)			No.)			
a: Generator's US EPA ID Number:			b: Manifest Document Nu 0014487	ımber:					
c: Generator's Name and Location: Riverview Innovation Technology Campu- 3875 River Road Tonawanda, New York 14150 d: Generators Phone: 716-818-3390	e: Generator's Mailing Address: Riverview Innovation Technology Campus 140 Lee Street, Suite 200 Buffalo, New York 14210 f: Phone: 716-856-3333								
If owner of the generating facility differs g. Owner's Name:	from the genera		h. Owner's Phone:						
i. Waste Profile #:	j. Exp. Date	k. Waste Shipping N	Name and Description	I. Contain	ners Type	m. Total Quantity	n. Unit Wt/Vol		
M22-3405	4/21/23	Lid seal / Coal / Soil		I	CM	20	Tons		
GENERATOR'S CERTIFICATION: I hereby	certify that the	above named material	is not a hazordous waste as c	Jefined by 4	10 CFR 261	or any applica	ble state law,		
treatment residue of a previously restricted accordance with the requirements of 40 C	na packaged, and ed hazardous wa	nd is in proper condition raste subject to the Land	for transportation according t d Disposal Restrictions - I certi	to applicable	e regulation	nc. AND if thic	wacto ic a		
Kirsten Colligan	T.C	KC	ehalf of RITC	72.	0.5	119/22			
o. Generator Authorized Agent Name	e (Print)	p. Signature			q. Dat	te			
	. (Generator cor	mpletes Sec. II, a-b; Tra	ansporter completes Sec. II, c-	-e)			· · · · · · · · · · · · · · · · · · ·		
a: Transporter's Name and Address: Par 150 Logistics 3649 River Rd Tonawanda NY 14150 b: Phone:							•		
Sheman M Abo	0/10		1		2	/ []	22,		
c. Transporter Authorized Agent Nam		d. Signature			e. Dat	e			
a: Disposal Facility and Site Address:			stination Site completes Sec. II				· · · · · · · · · · · · · · · · · · ·		
Modern Landfill, Inc. 1445 Pletcher Rd. Model City, NY 14107 b: Phone: 716-754-8226	:		d: Discrepancy Indication						
I hereby certify that the above named ma	terial has been a	accepted and to the bes	st of my knowledge, the foreg	oing is true	and accur	ate.			
e: Authorized Agent Name (Print)		f. Signature	i Pithu		5 q. Date	19 22	<u>\</u>		
	•		r completes Sec. IV, e-g)		4. Dak	<u> </u>			
a: Operator's Name and Address:	T-	·	Instructions and Additiona	Informat					
		or openial flamaning a	.iisu activiis ana Additiviia	l IIIIVi iiiat	JOH				
b: Phone:									
d: Friable, Non-Friable or Both:			- Darsantago Eriablo / Non	- : blac 00	Y Faller	100/ N F.			
OPERATOR'S CERTIFICATION: I hereby de and are classified, packaged, marked, and national governmental regulations.	eclare that the c labeled/placard	contents of this consignn	e: Percentage Friable/Non ment are fully and accurately of cts in proper condition for tran	described al	have by the	e proper shippi	ing name		
e. Operator's Name and Title (Print)		f. Signature			g. Date)			
*Operator refers to the company which ow operation or both.	ıns, leases, oper	rates, controls or superv	vises the facility being demolis	shed or reno	ovated, or t	the demolition	or renovation		

1	SHIPPING DOCUMENT	1. Generatur ID Number NYD 0 8 8 4 1 3 \$ 7	1	2. Fage 1 of		gency Response 818-0087	Phone	4. Shlaping	Z 0:	102	Q A	20	5
	5. Generator's Name and Mallin							an mailing addres			. • 1		
	40 LEE STREET SUITE SUFFALO, NY 14210	3200			TONAY	IVER ROAD FANDA, N	r 14150						
	Generator's Phone. 72 E. Transposter 1 Company Nam	16 574-6936 10						U.S. EPAID N	mbev				
	/EOLIA ES TECHNICA // Transporter 2 Company Mem	L SOLUTIONS					_	a 1 B	0 8	6 :	1	3 6	9
	REEBOLD CARTAGE	INC					20	N J D		i 2 ;	3 5	I 6	4
	E. Dosignalad Facility Name on	d Sac Acdres (BOLIA RS TECRN)	CAL SOLUTION	NS,				U.S. EPA ID N	unitar				
h	Facility's Phone: 937 859	4301 INFRIMARY R						овр	0.9	. 9	4 5	2 9	3
		on (Including Proper Shipping Name, Heza	ard Close ID Nursher			10. Contai	***	11. Tolsi	12 Unit			Ť	
	FM and Patting Group (if a	ny))				No.	Тура	Quantity	ANTVAN"		13. Goda	5	
4	NON RCRA AN	A CHTALLED BY MON TOOL O	OLID. (EOIL)			5		15.000		L			
GENERATOR				omiali	6/22	بوسيد	CF	10,000	P		T		
E	2.	233		V							1		
S I													
I	3.										-		
											+		-
11	4	- 14000											
H					550								
							**						
1	15. Special Hardling Instruction	s and Additionar information ER inchital transpounds to addition are b	Service Contrac	ted by VES	TS +	Continue ret	nined by	CONTRACT SOCIA	71		_		
	agency animally on	PCPU CHINÇOINA CO MAI OL MOD	PLANTS CONTINUES	en bearing	re on Sc	THE REAL PROPERTY.	111.						
11	15. GENERATOR SIOFFERD	R S CERTIFICATION: Thereby declare t	hat the contents of this	consignment	arə fully a	nd eccurerely de	scribed above	e byr Cre proper shi	ppingraem	, and are	dazilin	r. packa	ged,
Н	marked and labelod/plocar	tded, and are in all respects in proper con	dition for transport aco	ording to appli	icable inter	marlonal and nat	nmançq anoi	nenta' regulations,					
	Generator's Officeor's Printed/Ty	ood Nama		So	malure			*			Month	Day	Year
H	per used	Collisas es baba	16 E (a)		OC V	12	1	fof Ri	7-6		1 2		12 2
Ē	16. International Shipments	Import to U.S.		Export from I		Portofer	14-	101 15.	1	201	Section.	essera!	
_	7:arrsporter signature (for expor	rts erry);		a wilder i i i i i i		Data fesw		0999703					
	17. Transportor Acknowledgment Transporter > Printed/Typed Nar			Se	rvature		11.				Month	Day	Yoar
TRANSPORT	C & JAN	MYOSS		1	errore.	_1	ye,	7		1	12	16	22
3	Transpored 2 Philed Types Nor	"1, 10/1, "	(=.(*.)	56	Justine ()7	7()	¥.			Mants	Day	Year
E	156,51	Wassell					L	u-		1	12	Z	1-2
1	18. Discrepancy V										_	_	
П	16a. Discrepancy Indication Spa	CE Outstity			L	Residue		Pantial Rej	ection		∐F	uli Reje	ction
IJ		49. N			Şi	ippling Opeumon	< Tracking No						
E	18b. Alternate Facility (or Canen	elor)			ent l'action			U.S. EPA ID N	lumber		,,,		
욃	Facility's Phone:							ĭ					
9	18c. Signature of Allemate Fecil	ity (or Generator)									Month	Day	Year
MA				-						1			
7.7 P	 Report Management Method 	1 Codes (I.a., codes for Irealment, disposa 2.	and recycling system	ns! [3.									
9	HILL	≅ € i		3.				4.					
	20. Dosignated Facility Owner o	r Operator: Certification of receipt of sarph	ment oxcept as noted i	n Ilam 18a			,-,						
Ì	Printed Typed Name	1 21/	- 10	Sĸ	Sua;nte	111	111)	11	7		Nonth	Day	Year
+	Dr +	tony Daybe	wiShy/	n.		-The	Me	-ny	_/	1	16	29	14
	6		1			(/	/ DE8	IGNATE	D FACII	JTY TO	GEN	ERATOR

1	_	HIPPING			gency Response	Phone	4. Shipping C	ocument'	Leciono	Murph 3	79	3	
		OCUMENT NYD 0 1 8 4 1 3 8 7 7 Generators Name and Mailing Address	1	4.5		r different the	aerbbe gaifem a					•	
		Verview donovation & Tech 0 Lee Street Suite 200 IFFALO, NY 14210		3875 B	iver roai Wanda, M	i i	•	•					
Ш	G	securior's Phore: 71.6 574-6836		L			ILC ERAIDM	reads as					
ш	Ņ.	Transporter 1 Company Haine CELA, 16 TACTENICAL SOLUTIONS	1 0				N J D	0 6	0 6	3 1	3	6 5	•
	7, ,£	Transporter 2 Company Name DEPARTED CARTAGE INC		<u> </u>			U.S. EPAID N	2.0	4 1	2 6	1	5 4	4
Ш	В.	Designated Focisty Name and Site Address rates 48 18 18 18 18 18 18 18 18 18 18 18 18 18	94%,				U.S. EPA ID N	umber					
		LL.C. 4501 RETRIARY BOAD WEST CARROLLTON, OH 45449					10 8 9	0 9	9 P	4 5	5 2	9 3	,
	98	90, U.S. IX: I L'escription (including Proper Shipping Name, Hazard Class, ID Number,			10, Contain		11. lotal Quantity	12. Unit Vit, Vol		13 Cx	rdes		
	1	1. NON HEALA AND DUPNON PROJUCTED LIQUED, (QUAN	DZ,		No.	Type		411, 401	NEN	В		1	
ENERATOR		SCIE, TANK SOTTON)			6	Tr	18000	P	L	+			
	H	2.								十			
[5									٠,			Т	
	r	33x								T		1	
		,										T	, .
	一	4.											
$\ $							l			1			
Н	1	4. Special Handling Instructions and Additional Information Lab. Service Courses A special Handling Instructions and Additional Information Lab. W:1334400 A:REJULTIQ-POR	CONTRACTOR	io 15 Lifetaral		7.13.8 + 1 CG 000020	Application of the last of the	146 DY - 11					
Ш	l	W:1334400 A:KILIÜLPÜQ-16H			•			,					484
H	L								1				,
Ш	11	GENERATOR SKOFFEROR & CERTIFICATION: Thereby declare that the contents of this market and labelled tracerded, and are in all respects to proper condition for transported.	conting to app conting to app	icable hily	ustobili and usi	escola decirce Icnal governo	i by the propersions.			\$ (1963	nec, par	квде	0. es. ~~
}	L	Matt Keardon on Dehalfor Ki	17C	1/X	ux or	1 pel	nather	KII	<u></u>	Mont	<u>~</u>		23 Year
		enerator in Officerus . Printed Typed Harmin	51	grature	Made] a	me)	Mal		0		٠.	3 3
		6. International Shipments In port to U.S.	Export from	ป.ร.	Port of a	rby/exil; irp [_8 ;]							_
12	1	7. Transponer Admowledgment of Receipt of Shipmont					*0						
TRANSPORTER	Į	ensporter - Peoted Typod Name	SI I	gnature	1	4	~ (Mont	1 2 2 2	** **	Year 2 3
ANSP BP	Ī	ishspokar 2-Printed Typed Nanic/	- \$	Lineun	25	1				Mond	1 0	ay 200	Vea'
12	+	Kolder Hisler		*	1	3	t and					6	40
	- 1	8. Discrepancy Quertity Type			Readus		Partial Rej	edion		[FulR	aiacti	an .
1				'		V				-			,
1	1	8b. Allemate Facility (or Generalor)			hipping Documer	rt traciong in.	U.S. EPA ID	Humber					
PC I							1						
EDE		acitry's Phone: 8c, Signature of Aberrate Facility (or Generator)	N.							Mor	ith [Day	Year
DESIGNATED FACILETY	-					<u></u>				<u>L.</u>			
SESK	֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓	Report Management Mothod Codes (i.e., codes for freetment, disposal, and recycling system) 1	emsį				4.						
	L	1141	45.6	,			177						
		10. Designered Facility Owner or Operator. Certification of accept of shipment except as noted ininterlity ped Name		Sonature	1 1	121				Voi	ith C	ay	Year
Į		" 10nHany Dankenship	<u> </u>	-	This	M	1//			10	50	2	45
						/	1	DE	SIGNA	TEO I	-AÇILI	TY'S	COPY

Certificate of Disposition

Part B Permit that allows the facility to commingle wastes, recycle, store Veolia ES Technical Solutions, L.L.C., West Carrollton Facility has a RCRA and transfer waste for distillation, supplemental fuels for energy recovery, thermal treatment, and stabilization

Veolia E.S. Technical Solutions, E. E. C. certifies the waster which was received on Manifest Number. ZZ00453793 Date Received: 03/02/2023 will be/was managed in accordance with all applicable federal state and local laws and regulations

Generator: Riverview Innovation Tech Generator EPA ID: NYD088413877

DATE CERTIFICATE ISSUED: 03/02/2023

SIGNATURE: Brittany Blankenship

TITLE: Receiving Coordinator

/aofia ES Technical Solutions, L.L.C., 4301 INFIRMARY ROAD, WEST CARROLLTON, OH 45449; EPA ID# OHD093945293

Attachment F – Laboratory Reports

Mr. John Black Inventum Engineering 481 Carlisle Drive Herndon, VA 20170

Laboratory Results for: RTTC Tanks

Dear Mr.Black,

Enclosed are the results of the sample(s) submitted to our laboratory February 11, 2021 For your reference, these analyses have been assigned our service request number **R2101264**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks Date Received: 02/11/2021

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Two soil samples were received for analysis at ALS Environmental on 02/11/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 02/18/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Semivoa GC:

Method 8081B, 02/24/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since the samples have run twice with similar results, matrix is likely to blame for QC failure and no further action is appropriate.

Method 8081B, 02/19/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8081B, R2101264-001: The upper control limit was exceeded for one or more surrogates in one or more samples in this report. The elevated recovery equates to a high bias. Since no target analytes were detected in the sample(s), the quality of the sample data is not significantly affected. No further corrective action was appropriate.

Method 8082A, 02/17/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8082A, 02/17/2021: The control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.

Method 8082A, 02/26/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8082A, 02/26/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8082A, 714398: The control limits were exceeded for one or more surrogates in the sample(s). Since the exceedance may indicate a potential bias in the analytical batch, all associated field samples were re-extracted and reanalyzed. The surrogates met control limits for the reanalysis. Since the results for the field samples were comparable for both determinations,

	Mistrae Pedro			
Approved by _	<u> </u>	Date _	03/25/2021	

the exceedance in the initial analysis was likely restricted to the surrogate recovery. Therefore, the results from the original analysis are reported and flagged.

Method 8151A, 02/23/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8151A, 02/23/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8151A, 02/26/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8151A, 714412: The control limits were exceeded for one or more surrogates in the sample(s). Since the exceedance may indicate a potential bias in the analytical batch, all associated field samples were re-extracted and reanalyzed. The surrogates met control limits for the reanalysis. Since the results for the field samples were comparable for both determinations, the exceedance in the initial analysis was likely restricted to the surrogate recovery. Therefore, the results from the original analysis are reported and flagged.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

Method 8260C, 02/18/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8260C, 02/18/2021: The upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Report Revised 3/25/21 as sample 002 had the wrong report list for 8270.

	Millian Pedio		
Approved by	<u> </u>	Date	03/25/2021

Sample Receipt Information

Client: Inventum Engineering Service Request:R2101264

Project: RTTC Tanks

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>IIME</u>
R2101264-001	TK-SD-ST06-02092021	2/9/2021	1100
R2101264-002	TS-SD-RC02-0210	2/10/2021	1030

Printed 3/25/2021 8:59:43 AM Sample Summary

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

004192

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE Project Number ANALYSIS REQUESTED (Include Method Number and Container Preservative) Report CC PRESERVATIVE Preservative Key 0. NONE 1. HCL MABER OF CONTAINERS 2. HNO₃
3. H₂SO₄
4. NaOH
5. ZNAOH MeOH 7. NaHSO4 8. Other REMARKS/ ALTERNATE DESCRIPTION FOR OFFICE USE SAMPLING ONLY LAB ID MATRIX DATE TIME CLIENT SAMPLE ID CLAYTANTI FREEZE SPECIAL INSTRUCTIONS/COMMENTS REPORT REQUIREMENTS INVOICE INFORMATION TURNAROUND REQUIREMENTS Metals **RUSH (SURCHARGES APPLY)** _ I. Results Only II. Results + QC Summaries 1 day _____ 2 day _____ 3 day (LCS, DUP; MS/MSD as required) Standard (10 business days-No Surcharge) III. Results + OC and Calibration REQUESTED REPORT DATE IV. Data Validation Report with Raw Data See QAPP 120170 STATE WHERE SAMPLES WERE COLLECTED RECEIVED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RELINQUISHED BY Signature 5 R2101264 Printed Name SWESHA Printed Name Dayre Wire Printed Name Inventum Engineering RTTC Tenks Flrn /+15 Floor 1400 Date/Time 7/11/21/140 Date/Time 2 Date/Time

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

Cooler Receipt and Preservation Check Form

	ient Inven	INA			_Fold	ler Nur	noer_				_•				
looler recei	ved on 2/11/	<u>کا</u>	by:	<u>~</u>		COU	RIER:	MS	UPS	FEDE	X VE	LOCIT	Y CL	ENT	
1 Were C	ustody seals on	outside of coole	er?	1	Y (3)	<u>5</u> a	Perch	lorate s	amples	have re	quired l	neadspa	ice?	Y	N (VA)
2 Custod	ly papers prope	rly completed (in	ık, signe	d)?	Y N	5b	Did V	OA via	ls, Alk,	or Sulfi	ie have	sig* bu	bbles?	Y :	N NA
3 Did all	bottles arrive in	good condition	(unbrok	en)?	Y N	6	When	did the	bottles	origina	ite?	AL	S/ROC	CLI	ENT
4 Circle:	Wester Dry	Ice Gel packs	pres	ent? ¿	N Q	7	Soil V	OA rec	eived a	s: (F	III)	Encore	503	5set C	NA
. Temperat	ure Readings	Date: Z/W	7(Time:	1612		ID:	IR#7	##T0	?	Fron	n: Ten	np Blan	k San	iple Bott
Observed 7	Femp (°C)	113		0.70	[,		
Within 0-6	°C?	OPN			N	Y	N	Y	N	Y	N	Y	N	Y	N
If <0°C, w	ere samples froz	en? Y N		<u>Y</u>]	N	Y	N	Y	N	Y	N	Y	N	Y	N
All sample	es held in storag	•	Ro	oZ b		J 01	n 7/N n	Z(at	lle1Z		48 hour			Y	N
OUVIU D		ervation Check ***	* Date		ンノノン	/2/	Time .	18	311	by	r 💋				
9. 10. 11. 12. 13.	Were all bottle Did all bottle la Were correct co Were 5035 vial	ervation Check** labels complete abels and tags ago ontainers used fo ls acceptable (no Cassettes / Tubes	(i.e. ana ree with or the tes extra la Intact Y	lysis, personal custod to the	oreservedy paper cated? ot leak with M	ation, etc ers? ing)? SY/N	:.)?	ters Pre	Ssurize	ES ES ES ES	NO NO NO NO NO Tedlar®	Bags I			
9. 10. 11. 12.	Were all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags agr containers used fo ls acceptable (no	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreservedy paper cated? ot leak with M	ation, etc ers? ing)?	:.)?	\ 	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I	nflated Lot Add		Final
9. 10. 11. 12. 13. pH	Were all bottle la Did all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags agrontainers used fo ls acceptable (no Cassettes / Tubes Reagent	(i.e. ana ree with or the tes extra la Intact Y	lysis, personal custod to the	oreservedy paper cated? ot leak with M	ation, etc ers? ing)? SY/N	:.)?	ters Pre	Ssurize	ES ES d	NO NO NO NO Tedlar®	Bags I			Final pH
9. 10. 11. 12. 13. pH ≥12	Were all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags agrontainers used fo s acceptable (no Cassettes / Tubes Reagent NaOH	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreservedy paper cated? ot leak with M	ation, etc ers? ing)? SY/N	:.)?	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2	Were all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags agreements used fo s acceptable (no Cassettes / Tubes Reagent NaOH HNO3	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreservedy paper cated? ot leak with M	ation, etc ers? ing)? SY/N	:.)?	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12	Were all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags agrontainers used fo s acceptable (no Cassettes / Tubes Reagent NaOH	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreservedy paper cated? ot leak with M	ation, etc ers? ing)? SY/N	:.)?	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2	Were all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete abels and tags ago mainers used fo s acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreserved by paper cated? ot leak with MS Lot R	ation, etc ers? ing)? SY/N	Canis	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4	Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agreements used fo s acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	oreserved by paper cated? ot leak with MS Lot R	ation, etcers? ing)? SY/N ecceived otify for ontact PM	Canis	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4 5-9	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags ago mainers used fo s acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	No=N If +, cc	ation, etcers? ing)? SY/N eceived otify for ontact PM O3 (625, 6	Canis Ganis Ganis	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤4 5-9 Residual	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agreements used fo ls acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	No=N If +, cc	ation, etcers? ing)? SY/N ecceived otify for ontact PM	Canis Ganis Ganis	ters Pre	ssurize Samp	ES ES d	NO NO NO NO Tedlar®	Bags I			1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agreements used fo ls acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	(i.e. ana ree with or the tes extra la Intact Y	lysis, per custoo ts indicate the left indicate	No=N If +, cc	ation, etcers? ing)? SY/N eceived otify for ontact PM O3 (625, 6	Canis Ganis Ganis	ters Pre	Samp Adjus	ES ES ES d le ID sted	NO NO NO Of edlar® Vol. Addo	Bags I	Lot Add	led	1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agree that are used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	(i.e. ana ree with r the tes extra la Intact Y Preser Yes	lysis, p custoo tts indi- bels, n //N v ved? No	No=N If +, cc	ation, etcers? ing)? SY/N eceived otify for ontact PM O3 (625, 6	Canis Ganis Ganis	ters Pre	Samp Adjus	ES ES d de ID sted	NO NO NO NO Cedlar® Vol. Addd	Bags I	Lot Add	analysis.	pH_
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agontainers used for acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	(i.e. ana ree with r the tes extra la Intact Y Preser Yes	lysis, p custod tts indi- bels, n //N v ved?	No=N If +, cc	ation, etcers? ing)? SY/N eceived otify for ontact PM O3 (625, 6	Canis Ganis Ganis	ters Pre	ssurize Samp Adjus	ES ES d le ID sted	NO NO NO NO Cedlar® Vol. Addd	Bags I	d before	analysis.	1
9. 10. 11. 12. 13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	Were all bottle la Were correct of Were 5035 vial Air Samples: C Lot of test paper	labels complete abels and tags agreements used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	(i.e. ana ree with or the tes extra la Intact Y Preser Yes	lysis, p custoo tts indic bels, n //N v ved? No	No=N If +, cc	ation, etcers? ing)? S Y / N eceived otify for ontact PM O3 (625, 6 scorbic (p	Canis Ganis Ganis	ters Pre	ssurize Samp Adjus	ES ES d le ID sted	NO NO NO NO Cedlar® Vol. Addd	Bags I	d before	analysis.	pH_

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviev	ved by:
PC Secondary Review:	

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Non-Certified Analytes

Certifying Agency: New York Department of Health

Method	Matrix	Analyte
350.1M	Soil	Ammonia as Nitrogen, undistilled
ALS SOP	Soil	Total Solids

Analyst Summary report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks/

Sample Name: TK-SD-ST06-02092021 **Date Collected:** 02/9/21

Lab Code: R2101264-001 **Date Received:** 02/11/21

Sample Matrix: Soil

Analysis Method	Extracted/Digested By	Analyzed By
350.1M	CWOODS	SMEDBURY
6010C	AKONZEL	KMCLAEN
7471B	AKONZEL	AKONZEL
8081B	KSERCU	BALLGEIER
8082A	KSERCU	BALLGEIER
8151A	JMISIUREWICZ	BALLGEIER
8260C		FNAEGLER
8270D	KSERCU	JMISIUREWICZ
9012B	MROGERSON	GNITAJOUPPI
9045D		KWONG
ALS SOP		KAWONG

 Sample Name:
 TK-SD-ST06-02092021
 Date Collected: 02/9/21

 Lab Code:
 R2101264-001.R01
 Date Received: 02/11/21

Sample Matrix: Soil

Analysis MethodExtracted/Digested ByAnalyzed By8082AKSERCUBALLGEIER

Sample Name: TS-SD-RC02-0210 Date Collected: 02/10/21

Lab Code: R2101264-002 **Date Received:** 02/11/21

Sample Matrix: Soil

Analysis Method	Extracted/Digested By	Analyzed By	
350.1M	CWOODS	SMEDBURY	
6010C	AKONZEL	KMCLAEN	
7471B	AKONZEL	AKONZEL	
8081B	KSERCU	AFELSER	
8082A	KSERCU	BALLGEIER	
8151A	KSERCU	BALLGEIER	
8260C		FNAEGLER	
8270D	KSERCU	JMISIUREWICZ	

Analyst Summary report

Client: Inventum Engineering

Project: RTTC Tanks/ Service Request: R2101264

Sample Name: TS-SD-RC02-0210 Lab Code: R2101264-002

Sample Matrix: Soil **Date Collected:** 02/10/21 **Date Received:** 02/11/21

Analyzed By Analysis Method Extracted/Digested By

MROGERSON 9012B **GNITAJOUPPI** 9045D KWONG

ALS SOP **KAWONG**

Sample Name: TS-SD-RC02-0210 **Date Collected:** 02/10/21 Lab Code: R2101264-002.R01 **Date Received:** 02/11/21

Sample Matrix: Soil

Analyzed By Analysis Method Extracted/Digested By 8151A **JMISIUREWICZ BALLGEIER**

8270D **KSERCU JMISIUREWICZ**

Sample Name: TS-SD-RC02-0210 **Date Collected:** 02/10/21 Lab Code: R2101264-002.R02 **Date Received:** 02/11/21

Sample Matrix: Soil

Analyzed By Analysis Method Extracted/Digested By

8270D **KSERCU JMISIUREWICZ**

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed,	
method is the same as the analytic reference.	cal method
I ICICICIICC.	

Sample Results

Volatile Organic Compounds by GC/MS

Analytical Report

Inventum Engineering **Client:**

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/Kg Lab Code: R2101264-001 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.47 U	12	0.47	1	02/18/21 13:40	
1,1,2,2-Tetrachloroethane	1.1 U	12	1.1	1	02/18/21 13:40	
1,1,2-Trichloroethane	0.47 U	12	0.47	1	02/18/21 13:40	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.47 U	12	0.47	1	02/18/21 13:40	
1,1-Dichloroethane (1,1-DCA)	0.47 U	12	0.47	1	02/18/21 13:40	
1,1-Dichloroethene (1,1-DCE)	0.67 U	12	0.67	1	02/18/21 13:40	
1,2,3-Trichlorobenzene	1.2 U	12	1.2	1	02/18/21 13:40	
1,2,4-Trichlorobenzene	0.97 U	12	0.97	1	02/18/21 13:40	
1,2-Dibromo-3-chloropropane (DBCP)	1.8 U	12	1.8	1	02/18/21 13:40	
1,2-Dibromoethane	0.47 U	12	0.47	1	02/18/21 13:40	
1,2-Dichlorobenzene	0.47 U	12	0.47	1	02/18/21 13:40	-
1,2-Dichloroethane	0.47 U	12	0.47	1	02/18/21 13:40	
1,2-Dichloropropane	0.47 U	12	0.47	1	02/18/21 13:40	
1,3-Dichlorobenzene	0.47 U	12	0.47	1	02/18/21 13:40	
1,4-Dichlorobenzene	0.51 U	12	0.51	1	02/18/21 13:40	
1,4-Dioxane	47 U	230	47	1	02/18/21 13:40	
2-Butanone (MEK)	11 J	12	4.7	1	02/18/21 13:40	
2-Hexanone	0.83 U	12	0.83	1	02/18/21 13:40	
4-Methyl-2-pentanone	0.60 J	12	0.53	1	02/18/21 13:40	
Acetone	79	12	11	1	02/18/21 13:40	
Benzene	0.47 U	12	0.47	1	02/18/21 13:40	
Bromochloromethane	0.47 U	12	0.47	1	02/18/21 13:40	
Bromodichloromethane	0.47 U	12	0.47	1	02/18/21 13:40	
Bromoform	1.2 U	12	1.2	1	02/18/21 13:40	
Bromomethane	4.9 U	12	4.9	1	02/18/21 13:40	
Carbon Disulfide	0.67 U	12	0.67	1	02/18/21 13:40	
Carbon Tetrachloride	0.60 U	12	0.60	1	02/18/21 13:40	
Chlorobenzene	0.47 U	12	0.47	1	02/18/21 13:40	
Chloroethane	0.95 U	12	0.95	1	02/18/21 13:40	
Chloroform	0.47 U	12	0.47	1	02/18/21 13:40	
Chloromethane	3.3 U	12	3.3	1	02/18/21 13:40	
Cyclohexane	0.60 U	12	0.60	1	02/18/21 13:40	
Dibromochloromethane	0.47 U	12	0.47	1	02/18/21 13:40	
Dichlorodifluoromethane (CFC 12)	0.77 U	12	0.77	1	02/18/21 13:40	
Dichloromethane	6.5 U	12	6.5	1	02/18/21 13:40	
Ethylbenzene	0.47 U	12	0.47	1	02/18/21 13:40	
Isopropylbenzene (Cumene)	0.47 U	12	0.47	1	02/18/21 13:40	
Methyl Acetate	2.0 U	12	2.0	1	02/18/21 13:40	
Methyl tert-Butyl Ether	0.47 U	12	0.47	1	02/18/21 13:40	
Methylcyclohexane	0.72 U	12	0.72	1	02/18/21 13:40	
Styrene	0.47 U	12	0.47	1	02/18/21 13:40	
Tetrachloroethene (PCE)	0.53 U	12	0.53	1	02/18/21 13:40	
Toluene	0.47 U	12	0.47	1	02/18/21 13:40	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/09/21 11:00

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TK-SD-ST06-02092021
 Units: ug/Kg

 Lab Code:
 R2101264-001
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	0.51 U	12	0.51	1	02/18/21 13:40	
Trichlorofluoromethane (CFC 11)	0.60 U	12	0.60	1	02/18/21 13:40	
Vinyl Chloride	1.1 U	12	1.1	1	02/18/21 13:40	
cis-1,2-Dichloroethene	0.47 U	12	0.47	1	02/18/21 13:40	
cis-1,3-Dichloropropene	0.47 U	12	0.47	1	02/18/21 13:40	
m,p-Xylenes	0.86 U	23	0.86	1	02/18/21 13:40	
o-Xylene	0.47 U	12	0.47	1	02/18/21 13:40	
trans-1,2-Dichloroethene	0.47 U	12	0.47	1	02/18/21 13:40	
trans-1,3-Dichloropropene	0.47 U	12	0.47	1	02/18/21 13:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	31 - 154	02/18/21 13:40	
Dibromofluoromethane	84	63 - 138	02/18/21 13:40	
Toluene-d8	101	66 - 138	02/18/21 13:40	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TS-SD-RC02-0210
 Units: ug/Kg

 Lab Code:
 R2101264-002
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.5 U	35	1.5	5	02/15/21 21:56	
1,1,2,2-Tetrachloroethane	3.1 U	35	3.1	5	02/15/21 21:56	
1,1,2-Trichloroethane	1.5 U	35	1.5	5	02/15/21 21:56	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.5 U	35	1.5	5	02/15/21 21:56	
1,1-Dichloroethane (1,1-DCA)	1.5 U	35	1.5	5	02/15/21 21:56	
1,1-Dichloroethene (1,1-DCE)	2.1 U	35	2.1	5	02/15/21 21:56	
1,2,3-Trichlorobenzene	3.7 U	35	3.7	5	02/15/21 21:56	
1,2,4-Trichlorobenzene	3.0 U	35	3.0	5	02/15/21 21:56	
1,2-Dibromo-3-chloropropane (DBCP)	5.3 U	35	5.3	5	02/15/21 21:56	
1,2-Dibromoethane	1.5 U	35	1.5	5	02/15/21 21:56	
1,2-Dichlorobenzene	1.5 U	35	1.5	5	02/15/21 21:56	
1,2-Dichloroethane	1.5 U	35	1.5	5	02/15/21 21:56	
1,2-Dichloropropane	1.5 U	35	1.5	5	02/15/21 21:56	
1,3-Dichlorobenzene	1.5 U	35	1.5	5	02/15/21 21:56	
1,4-Dichlorobenzene	1.6 U	35	1.6	5	02/15/21 21:56	
1,4-Dioxane	150 U	700	150	5	02/15/21 21:56	
2-Butanone (MEK)	15 U	35	150	5	02/15/21 21:56	
2-Hexanone	2.6 U	35	2.6	5	02/15/21 21:56	
4-Methyl-2-pentanone	1.7 U	35	1.7	5	02/15/21 21:56	
Acetone	37	35	33	5	02/15/21 21:56	
Benzene	21 J	35	1.5	5	02/15/21 21:56	
Bromochloromethane	1.5 U	35 35	1.5	5 5	02/15/21 21:56	
Bromodichloromethane	1.5 U	35 35	1.5	5	02/15/21 21:56	
Bromoform	3.6 U	35 35	3.6	5 5	02/15/21 21:56	
Bromomethane C. I. Di. I.C. I.	15 U	35	15		02/15/21 21:56	
Carbon Disulfide	2.1 U	35	2.1	5	02/15/21 21:56	
Carbon Tetrachloride	1.9 U	35	1.9	5	02/15/21 21:56	
Chlorobenzene	1.5 U	35	1.5	5	02/15/21 21:56	
Chloroethane	2.9 U	35	2.9	5	02/15/21 21:56	
Chloroform	1.5 U	35	1.5	5	02/15/21 21:56	
Chloromethane	9.9 U	35	9.9	5	02/15/21 21:56	
Cyclohexane	1.9 U	35	1.9	5	02/15/21 21:56	
Dibromochloromethane	1.5 U	35	1.5	5	02/15/21 21:56	
Dichlorodifluoromethane (CFC 12)	2.4 U	35	2.4	5	02/15/21 21:56	
Dichloromethane	20 U	35	20	5	02/15/21 21:56	
Ethylbenzene	1.5 U	35	1.5	5	02/15/21 21:56	
Isopropylbenzene (Cumene)	1.5 U	35	1.5	5	02/15/21 21:56	
Methyl Acetate	5.9 U	35	5.9	5	02/15/21 21:56	
Methyl tert-Butyl Ether	1.5 U	35	1.5	5	02/15/21 21:56	
Methylcyclohexane	2.2 U	35	2.2	5	02/15/21 21:56	
Styrene	7.0 J	35	1.5	5	02/15/21 21:56	
Tetrachloroethene (PCE)	1.7 U	35	1.7	5	02/15/21 21:56	
Toluene	9.7 J	35	1.5	5	02/15/21 21:56	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TS-SD-RC02-0210
 Units: ug/Kg

 Lab Code:
 R2101264-002
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.6 U	35	1.6	5	02/15/21 21:56	
Trichlorofluoromethane (CFC 11)	1.9 U	35	1.9	5	02/15/21 21:56	
Vinyl Chloride	3.3 U	35	3.3	5	02/15/21 21:56	
cis-1,2-Dichloroethene	1.5 U	35	1.5	5	02/15/21 21:56	
cis-1,3-Dichloropropene	1.5 U	35	1.5	5	02/15/21 21:56	
m,p-Xylenes	5.5 J	70	2.6	5	02/15/21 21:56	
o-Xylene	1.9 J	35	1.5	5	02/15/21 21:56	
trans-1,2-Dichloroethene	1.5 U	35	1.5	5	02/15/21 21:56	
trans-1,3-Dichloropropene	1.5 U	35	1.5	5	02/15/21 21:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	82	31 - 154	02/15/21 21:56	
Dibromofluoromethane	92	63 - 138	02/15/21 21:56	
Toluene-d8	99	66 - 138	02/15/21 21:56	

Semivolatile Organic Compounds by GC/MS

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/Kg Lab Code: R2101264-001 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	1000 U	4500	1000	1	02/18/21 14:07	2/17/21	
2,3,4,6-Tetrachlorophenol	1600 U	4500	1600	1	02/18/21 14:07	2/17/21	
2,4,5-Trichlorophenol	1200 U	4500	1200	1	02/18/21 14:07	2/17/21	
2,4,6-Trichlorophenol	1000 U	4500	1000	1	02/18/21 14:07	2/17/21	
2,4-Dichlorophenol	870 U	4500	870	1	02/18/21 14:07	2/17/21	
2,4-Dimethylphenol	810 U	4500	810	1	02/18/21 14:07	2/17/21	
2,4-Dinitrophenol	7700 U	23000	7700	1	02/18/21 14:07	2/17/21	
2,4-Dinitrotoluene	1800 U	4500	1800	1	02/18/21 14:07	2/17/21	
2,6-Dinitrotoluene	980 U	4500	980	1	02/18/21 14:07	2/17/21	
2-Chloronaphthalene	900 U	4500	900	1	02/18/21 14:07	2/17/21	
2-Chlorophenol	750 U	4500	750	1	02/18/21 14:07	2/17/21	_
2-Methylnaphthalene	750 U	4500	750	1	02/18/21 14:07	2/17/21	
2-Methylphenol	930 U	4500	930	1	02/18/21 14:07	2/17/21	
2-Nitroaniline	1100 U	23000	1100	1	02/18/21 14:07	2/17/21	
2-Nitrophenol	1100 U	4500	1100	1	02/18/21 14:07	2/17/21	
3,3'-Dichlorobenzidine	510 U	4500	510	1	02/18/21 14:07	2/17/21	
3- and 4-Methylphenol Coelution	860 U	4500	860	1	02/18/21 14:07	2/17/21	
3-Nitroaniline	900 U	23000	900	1	02/18/21 14:07	2/17/21	
4,6-Dinitro-2-methylphenol	2600 U	23000	2600	1	02/18/21 14:07	2/17/21	
4-Bromophenyl Phenyl Ether	1200 U	4500	1200	1	02/18/21 14:07	2/17/21	
4-Chloro-3-methylphenol	910 U	4500	910	1	02/18/21 14:07	2/17/21	
4-Chloroaniline	760 U	4500	760	1	02/18/21 14:07	2/17/21	
4-Chlorophenyl Phenyl Ether	960 U	4500	960	1	02/18/21 14:07	2/17/21	
4-Nitroaniline	460 U	23000	460	1	02/18/21 14:07	2/17/21	
4-Nitrophenol	900 U	23000	900	1	02/18/21 14:07	2/17/21	
Acenaphthene	850 U	4500	850	1	02/18/21 14:07	2/17/21	
Acenaphthylene	910 U	4500	910	1	02/18/21 14:07	2/17/21	
Acetophenone	1300 U	4500	1300	1	02/18/21 14:07	2/17/21	
Anthracene	750 U	4500	750	1	02/18/21 14:07	2/17/21	
Atrazine	630 U	4500	630	1	02/18/21 14:07	2/17/21	
Benz(a)anthracene	670 U	4500	670	1	02/18/21 14:07	2/17/21	
Benzaldehyde	1100 U	23000	1100	1	02/18/21 14:07	2/17/21	
Benzo(a)pyrene	1200 U	4500	1200	1	02/18/21 14:07	2/17/21	
Benzo(b)fluoranthene	750 U	4500	750	1	02/18/21 14:07	2/17/21	
Benzo(g,h,i)perylene	1100 U	4500	1100	1	02/18/21 14:07	2/17/21	
Benzo(k)fluoranthene	730 U	4500	730	1	02/18/21 14:07	2/17/21	
Biphenyl	1400 U	4500	1400	1	02/18/21 14:07	2/17/21	
2,2'-Oxybis(1-chloropropane)	920 U	4500	920	1	02/18/21 14:07	2/17/21	
Bis(2-chloroethoxy)methane	1100 U	4500	1100	1	02/18/21 14:07	2/17/21	
Bis(2-chloroethyl) Ether	890 U	4500	890	1	02/18/21 14:07	2/17/21	
Bis(2-ethylhexyl) Phthalate	820 U	6800	820	1	02/18/21 14:07	2/17/21	
Butyl Benzyl Phthalate	540 U	4500	540	1	02/18/21 14:07	2/17/21	
Caprolactam	990 U	4500	990	1	02/18/21 14:07	2/17/21	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/Kg Lab Code: R2101264-001 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	730 U	4500	730	1	02/18/21 14:07	2/17/21	
Chrysene	660 U	4500	660	1	02/18/21 14:07	2/17/21	
Di-n-butyl Phthalate	730 U	4500	730	1	02/18/21 14:07	2/17/21	
Di-n-octyl Phthalate	1600 U	4500	1600	1	02/18/21 14:07	2/17/21	
Dibenz(a,h)anthracene	980 U	4500	980	1	02/18/21 14:07	2/17/21	
Dibenzofuran	820 U	4500	820	1	02/18/21 14:07	2/17/21	
Diethyl Phthalate	800 U	4500	800	1	02/18/21 14:07	2/17/21	
Dimethyl Phthalate	860 U	4500	860	1	02/18/21 14:07	2/17/21	
Fluoranthene	1200 U	4500	1200	1	02/18/21 14:07	2/17/21	
Fluorene	840 U	4500	840	1	02/18/21 14:07	2/17/21	
Hexachlorobenzene	1100 U	4500	1100	1	02/18/21 14:07	2/17/21	
Hexachlorobutadiene	770 U	4500	770	1	02/18/21 14:07	2/17/21	
Hexachlorocyclopentadiene	1500 U	4500	1500	1	02/18/21 14:07	2/17/21	
Hexachloroethane	840 U	4500	840	1	02/18/21 14:07	2/17/21	
Indeno(1,2,3-cd)pyrene	1500 U	4500	1500	1	02/18/21 14:07	2/17/21	
Isophorone	940 U	4500	940	1	02/18/21 14:07	2/17/21	
N-Nitrosodi-n-propylamine	1400 U	4500	1400	1	02/18/21 14:07	2/17/21	
N-Nitrosodiphenylamine	2800 U	4500	2800	1	02/18/21 14:07	2/17/21	
Naphthalene	840 U	4500	840	1	02/18/21 14:07	2/17/21	
Nitrobenzene	800 U	4500	800	1	02/18/21 14:07	2/17/21	
Pentachlorophenol (PCP)	4500 U	23000	4500	1	02/18/21 14:07	2/17/21	
Phenanthrene	640 U	4500	640	1	02/18/21 14:07	2/17/21	
Phenol	910 U	4500	910	1	02/18/21 14:07	2/17/21	_
Pyrene	750 U	4500	750	1	02/18/21 14:07	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	78	10 - 109	02/18/21 14:07	
2-Fluorobiphenyl	76	10 - 102	02/18/21 14:07	
2-Fluorophenol	75	10 - 88	02/18/21 14:07	
Nitrobenzene-d5	75	10 - 95	02/18/21 14:07	
Phenol-d6	75	10 - 145	02/18/21 14:07	
Terphenyl-d14	81	10 - 106	02/18/21 14:07	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Units: ug/Kg Lab Code: R2101264-002 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	600 U	2700	600	1	02/18/21 19:15	2/17/21	
2,3,4,6-Tetrachlorophenol	940 U	2700	940	1	02/18/21 19:15	2/17/21	
2,4,5-Trichlorophenol	670 U	2700	670	1	02/18/21 19:15	2/17/21	
2,4,6-Trichlorophenol	600 U	2700	600	1	02/18/21 19:15	2/17/21	
2,4-Dichlorophenol	520 U	2700	520	1	02/18/21 19:15	2/17/21	
2,4-Dimethylphenol	490 U	2700	490	1	02/18/21 19:15	2/17/21	
2,4-Dinitrophenol	4600 U	14000	4600	1	02/18/21 19:15	2/17/21	
2,4-Dinitrotoluene	1100 U	2700	1100	1	02/18/21 19:15	2/17/21	
2,6-Dinitrotoluene	590 U	2700	590	1	02/18/21 19:15	2/17/21	
2-Chloronaphthalene	540 U	2700	540	1	02/18/21 19:15	2/17/21	
2-Chlorophenol	450 U	2700	450	1	02/18/21 19:15	2/17/21	
2-Methylnaphthalene	3500	2700	450	1	02/18/21 19:15	2/17/21	
2-Methylphenol	560 U	2700	560	1	02/18/21 19:15	2/17/21	
2-Nitroaniline	640 U	14000	640	1	02/18/21 19:15	2/17/21	
2-Nitrophenol	630 U	2700	630	1	02/18/21 19:15	2/17/21	
3,3'-Dichlorobenzidine	310 U	2700	310	1	02/18/21 19:15	2/17/21	
3- and 4-Methylphenol Coelution	520 U	2700	520	1	02/18/21 19:15	2/17/21	
3-Nitroaniline	540 U	14000	540	1	02/18/21 19:15	2/17/21	
4,6-Dinitro-2-methylphenol	1600 U	14000	1600	1	02/18/21 19:15	2/17/21	
4-Bromophenyl Phenyl Ether	710 U	2700	710	1	02/18/21 19:15	2/17/21	
4-Chloro-3-methylphenol	550 U	2700	550	1	02/18/21 19:15	2/17/21	
4-Chloroaniline	460 U	2700	460	1	02/18/21 19:15	2/17/21	
4-Chlorophenyl Phenyl Ether	580 U	2700	580	1	02/18/21 19:15	2/17/21	
4-Nitroaniline	280 U	14000	280	1	02/18/21 19:15	2/17/21	
4-Nitrophenol	540 U	14000	540	1	02/18/21 19:15	2/17/21	
Acenaphthene	510 U	2700	510	1	02/18/21 19:15	2/17/21	
Acenaphthylene	2000 J	2700	550	1	02/18/21 19:15	2/17/21	
Acetophenone	780 U	2700	780	1	02/18/21 19:15	2/17/21	
Anthracene	5100000 D	270000	45000	100	02/19/21 19:18	2/17/21	
Atrazine	380 U	2700	380	1	02/18/21 19:15	2/17/21	
Benz(a)anthracene	160000 D	27000	4000	10	02/19/21 18:51	2/17/21	
Benzaldehyde	650 U	14000	650	1	02/18/21 19:15	2/17/21	
Benzo(a)pyrene	14000	2700	720	1	02/18/21 19:15	2/17/21	
Benzo(b)fluoranthene	65000 D	27000	4500	10	02/19/21 18:51	2/17/21	
Benzo(g,h,i)perylene	13000	2700	620	1	02/18/21 19:15	2/17/21	
Benzo(k)fluoranthene	42000	2700	440	1	02/18/21 19:15	2/17/21	
Biphenyl	800 A	2700	800	1	02/18/21 19:15	2/17/21	
2,2'-Oxybis(1-chloropropane)	550 U	2700	550	1	02/18/21 19:15	2/17/21	
Bis(2-chloroethoxy)methane	660 U	2700	660	1	02/18/21 19:15	2/17/21	
Bis(2-chloroethyl) Ether	530 U	2700	530	1	02/18/21 19:15	2/17/21	
Bis(2-ethylhexyl) Phthalate	490 U	4100	490	1	02/18/21 19:15	2/17/21	,

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TS-SD-RC02-0210
 Units: ug/Kg

 Lab Code:
 R2101264-002
 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Butyl Benzyl Phthalate	330 U	2700	330	1	02/18/21 19:15	2/17/21	
Caprolactam	600 U	2700	600	1	02/18/21 19:15	2/17/21	
Carbazole	1200000 D	270000	44000	100	02/19/21 19:18	2/17/21	
Chrysene	3200000 D	270000	40000	100	02/19/21 19:18	2/17/21	
Di-n-butyl Phthalate	440 U	2700	440	1	02/18/21 19:15	2/17/21	
Di-n-octyl Phthalate	940 U	2700	940	1	02/18/21 19:15	2/17/21	
Dibenz(a,h)anthracene	5100	2700	590	1	02/18/21 19:15	2/17/21	
Dibenzofuran	8900	2700	490	1	02/18/21 19:15	2/17/21	
Diethyl Phthalate	480 U	2700	480	1	02/18/21 19:15	2/17/21	
Dimethyl Phthalate	520 U	2700	520	1	02/18/21 19:15	2/17/21	
Fluoranthene	340000 D	27000	6800	10	02/19/21 18:51	2/17/21	
Fluorene	33000	2700	510	1	02/18/21 19:15	2/17/21	
Hexachlorobenzene	650 U	2700	650	1	02/18/21 19:15	2/17/21	
Hexachlorobutadiene	460 U	2700	460	1	02/18/21 19:15	2/17/21	
Hexachlorocyclopentadiene	860 U	2700	860	1	02/18/21 19:15	2/17/21	
Hexachloroethane	510 U	2700	510	1	02/18/21 19:15	2/17/21	
Indeno(1,2,3-cd)pyrene	19000	2700	870	1	02/18/21 19:15	2/17/21	
Isophorone	560 U	2700	560	1	02/18/21 19:15	2/17/21	
N-Nitrosodi-n-propylamine	830 U	2700	830	1	02/18/21 19:15	2/17/21	
N-Nitrosodiphenylamine	1700 U	2700	1700	1	02/18/21 19:15	2/17/21	
Naphthalene	8000	2700	510	1	02/18/21 19:15	2/17/21	
Nitrobenzene	480 U	2700	480	1	02/18/21 19:15	2/17/21	
Pentachlorophenol (PCP)	2700 U	14000	2700	1	02/18/21 19:15	2/17/21	
Phenanthrene	280000 D	27000	3800	10	02/19/21 18:51	2/17/21	
Phenol	540 U	2700	540	1	02/18/21 19:15	2/17/21	
Pyrene	210000 D	27000	4500	10	02/19/21 18:51	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	32	10 - 109	02/18/21 19:15	
2-Fluorobiphenyl	28	10 - 102	02/18/21 19:15	
2-Fluorophenol	21	10 - 88	02/18/21 19:15	
Nitrobenzene-d5	25	10 - 95	02/18/21 19:15	
Phenol-d6	19	10 - 145	02/18/21 19:15	
Terphenyl-d14	46	10 - 106	02/18/21 19:15	

Semivolatile Organic Compounds by GC

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/09/21 11:00

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TK-SD-ST06-02092021
 Units: ug/Kg

 Lab Code:
 R2101264-001
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
4,4'-DDE	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
4,4'-DDT	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Aldrin	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Dieldrin	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endosulfan I	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endosulfan II	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endosulfan Sulfate	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endrin	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endrin Aldehyde	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Endrin Ketone	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Heptachlor	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Heptachlor Epoxide	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Methoxychlor	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
Toxaphene	150 U	250	150	1	02/19/21 06:36	2/16/21	
alpha-BHC	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
alpha-Chlordane	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
beta-BHC	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
delta-BHC	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	
gamma-BHC (Lindane)	6.5 U	13	6.5	11	02/19/21 06:36	2/16/21	
gamma-Chlordane	6.5 U	13	6.5	1	02/19/21 06:36	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	154 *	10 - 145	02/19/21 06:36	*
Tetrachloro-m-xylene	100	10 - 123	02/19/21 06:36	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Units: ug/Kg Lab Code: R2101264-002 Basis: Dry

Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	21 U	42	21	10	02/24/21 06:56	2/16/21	
4,4'-DDE	21 U	42	21	10	02/24/21 06:56	2/16/21	
4,4'-DDT	200 P	42	21	10	02/24/21 06:56	2/16/21	
Aldrin	220	42	21	10	02/24/21 06:56	2/16/21	
Dieldrin	21 U	42	21	10	02/24/21 06:56	2/16/21	
Endosulfan I	84	42	21	10	02/24/21 06:56	2/16/21	
Endosulfan II	21 U	42	21	10	02/24/21 06:56	2/16/21	
Endosulfan Sulfate	21 U	42	21	10	02/24/21 06:56	2/16/21	
Endrin	180	42	21	10	02/24/21 06:56	2/16/21	
Endrin Aldehyde	21 U	42	21	10	02/24/21 06:56	2/16/21	
Endrin Ketone	250	42	21	10	02/24/21 06:56	2/16/21	
Heptachlor	21 U	42	21	10	02/24/21 06:56	2/16/21	
Heptachlor Epoxide	21 U	42	21	10	02/24/21 06:56	2/16/21	
Methoxychlor	21 U	42	21	10	02/24/21 06:56	2/16/21	
Toxaphene	480 U	820	480	10	02/24/21 06:56	2/16/21	
alpha-BHC	21 U	42	21	10	02/24/21 06:56	2/16/21	
alpha-Chlordane	21 U	42	21	10	02/24/21 06:56	2/16/21	
beta-BHC	21 U	42	21	10	02/24/21 06:56	2/16/21	
delta-BHC	21 U	42	21	10	02/24/21 06:56	2/16/21	
gamma-BHC (Lindane)	21 U	42	21	10	02/24/21 06:56	2/16/21	
gamma-Chlordane	21 U	42	21	10	02/24/21 06:56	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	255 *	10 - 145	02/24/21 06:56	*
Tetrachloro-m-xylene	49	10 - 123	02/24/21 06:56	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/09/21 11:00

Sample Matrix: Soil Date Received: 02/11/21 14:00

 Sample Name:
 TK-SD-ST06-02092021
 Units: ug/Kg

 Lab Code:
 R2101264-001
 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	140 U	250	140	1	02/23/21 15:40	2/16/21	
Aroclor 1221	140 U	510	140	1	02/23/21 15:40	2/16/21	
Aroclor 1232	140 U	250	140	1	02/23/21 15:40	2/16/21	
Aroclor 1242	140 U	250	140	1	02/23/21 15:40	2/16/21	
Aroclor 1248	140 U	250	140	1	02/23/21 15:40	2/16/21	
Aroclor 1254	450 P	250	140	1	02/23/21 15:40	2/16/21	
Aroclor 1260	140 U	250	140	1	02/23/21 15:40	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	180 *	22 - 128	02/23/21 15:40	*	
Tetrachloro-m-xylene	101	14 - 119	02/23/21 15:40		

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/Kg Lab Code: R2101264-001 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	190 U	360	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1221	190 U	730	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1232	190 U	360	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1242	190 U	360	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1248	190 U	360	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1254	190 U	360	190	1	02/26/21 15:08	2/25/21	*
Aroclor 1260	190 U	360	190	1	02/26/21 15:08	2/25/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	76	22 - 128	02/26/21 15:08	
Tetrachloro-m-xylene	50	14 - 119	02/26/21 15:08	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Units: ug/Kg Lab Code: R2101264-002 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	43 U	82	43	1	02/17/21 22:04	2/16/21	
Aroclor 1221	43 U	170	43	1	02/17/21 22:04	2/16/21	
Aroclor 1232	43 U	82	43	1	02/17/21 22:04	2/16/21	
Aroclor 1242	43 U	82	43	1	02/17/21 22:04	2/16/21	
Aroclor 1248	43 U	82	43	1	02/17/21 22:04	2/16/21	
Aroclor 1254	43 U	82	43	1	02/17/21 22:04	2/16/21	
Aroclor 1260	43 U	82	43	1	02/17/21 22:04	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	45	22 - 128	02/17/21 22:04	
Tetrachloro-m-xylene	37	14 - 119	02/17/21 22:04	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/Kg Lab Code: R2101264-001 Basis: Dry

Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	20 U	39	20	1	02/23/21 19:49	2/19/21	_
2,4,5-TP	18 U	39	18	1	02/23/21 19:49	2/19/21	
2,4-D	26 U	39	26	1	02/23/21 19:49	2/19/21	
Dicamba	13 U	39	13	1	02/23/21 19:49	2/19/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4-Dichlorophenylacetic Acid	49	10 - 151	02/23/21 19:49	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Units: ug/Kg Lab Code: R2101264-002 Basis: Dry

Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	9.9 U	20	9.9	1	02/23/21 20:28	2/19/21	
2,4,5-TP	9.0 U	20	9.0	1	02/23/21 20:28	2/19/21	
2,4-D	13 U	20	13	1	02/23/21 20:28	2/19/21	
Dicamba	6.2 U	20	6.2	1	02/23/21 20:28	2/19/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
2,4-Dichlorophenylacetic Acid	4 *	10 - 151	02/23/21 20:28	*	

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Units: ug/Kg Lab Code: R2101264-002 Basis: Dry

Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	15 U	28	15	1	02/26/21 15:11	2/25/21	*
2,4,5-TP	13 U	28	13	1	02/26/21 15:11	2/25/21	*
2,4-D	19 U	28	19	1	02/26/21 15:11	2/25/21	*
Dicamba	8.8 U	28	8.8	1	02/26/21 15:11	2/25/21	*

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4-Dichlorophenylacetic Acid	16	10 - 151	02/26/21 15:11	•

Metals

METALS - 1 INORGANIC ANALYSIS DATA PACKAGE

Client: Inventum Engineering Service Request: TK-SD-ST06-02092021

Project No.: R2101264 **Date Collected:** 2/9/2021

Project Name: Date Received: 2/11/2021

Matrix: SOIL Units: mg/Kg

Basis:

Sample Name: TK-SD-ST06-02092021 Lab Code: R2101264-001

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	С	Q
Aluminum	6010C	46.1	27.6	1.0	4230		
Antimony	6010C	13.8	1.2	1.0	13.8	Ū	
Arsenic	6010C	2.3	1.6	1.0	3.0		
Barium	6010C	4.6	3.5	1.0	55.9		
Beryllium	6010C	0.691	0.138	1.0	0.415	J	
Cadmium	6010C	1.2	0.553	1.0	1.2	Ū	
Mercury	7471B	0.077	0.030	1.0	0.077	Ū	
Calcium	6010C	230	73.7	1.0	11700		
Chromium	6010C	2.3	0.806	1.0	5.1		
Cobalt	6010C	11.5	1.1	1.0	11.5	Ū	
Copper	6010C	4.6	1.5	1.0	10.3		
Iron	6010C	46.1	30.0	1.0	6750		
Lead	6010C	11.5	0.922	1.0	5.2	J	
Magnesium	6010C	230	30.0	1.0	7050		
Manganese	6010C	4.6	3.5	1.0	14.8		
Nickel	6010C	9.2	1.5	1.0	9.2	Ū	
Potassium	6010C	461	115	1.0	3920		
Selenium	6010C	2.3	1.2	1.0	2.3	Ū	
Silver	6010C	2.3	0.207	1.0	0.276	J	
Sodium	6010C	230	120	1.0	13000		
Thallium	6010C	2.3	1.5	1.0	1.9	J	
Vanadium	6010C	11.5	1.6	1.0	6.2	J	
Zinc	6010C	4.6	3.2	1.0	26.4		

% Solids: 43.4

Comments:

METALS - 1 INORGANIC ANALYSIS DATA PACKAGE

Client: Inventum Engineering Service Request: TK-SD-ST06-02092021

Project Name: Date Received: 2/11/2021

Matrix: SOIL Units: mg/Kg

Basis:

Sample Name: TS-SD-RC02-0210 Lab Code: R2101264-002

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	С	Q
Aluminum	6010C	28.1	16.8	1.0	28.1	ŭ	
Antimony	6010C	8.4	0.757	1.0	7.0	J	
Arsenic	6010C	1.4	0.982	1.0	2.2		
Barium	6010C	2.8	2.1	1.0	5.0		
Beryllium	6010C	0.421	0.084	1.0	0.421	Ū	
Cadmium	6010C	0.701	0.337	1.0	0.393	J	
Mercury	7471B	0.044	0.017	1.0	0.317		
Calcium	6010C	140	44.9	1.0	175		
Chromium	6010C	1.4	0.491	1.0	10.0		
Cobalt	6010C	7.0	0.645	1.0	1.1	J	
Copper	6010C	2.8	0.884	1.0	14.2		
Iron	6010C	281	182	10.0	38500		
Lead	6010C	7.0	0.561	1.0	74.1		
Magnesium	6010C	140	18.2	1.0	164		
Manganese	6010C	2.8	2.1	1.0	191		
Nickel	6010C	5.6	0.926	1.0	11.8		
Potassium	6010C	281	70.1	1.0	828		
Selenium	6010C	1.4	0.757	1.0	1.4	ט	
Silver	6010C	1.4	0.126	1.0	1.4	ט	
Sodium	6010C	14000	7290	100.0	379000		
Thallium	6010C	1.4	0.912	1.0	2.1		
Vanadium	6010C	7.0	0.996	1.0	1.2	J	
Zinc	6010C	2.8	2.0	1.0	4.1		

% Solids: 71.3

Comments:

General Chemistry

Analytical Report

Client: Inventum Engineering

Service Request: R2101264 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Date Received: 02/11/21 14:00 **Sample Matrix:** Soil

Sample Name: TK-SD-ST06-02092021 Basis: Dry

Lab Code: R2101264-001

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Ammonia as Nitrogen, undistilled	350.1M	11 J	mg/Kg	12	8	1	02/23/21 16:40	02/22/21	
Cyanide, Total	9012B	0.27 U	mg/Kg	0.47	0.27	1	02/19/21 13:00	02/18/21	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/09/21 11:00

Sample Matrix: Soil Date Received: 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Basis: As Received

Lab Code: R2101264-001

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
pН	9045D	11.26	pH Units	-	-	1	02/18/21 09:05	NA	Н
Total Solids	ALS SOP	43.4	Percent	_	_	1	02/19/21 05:40	NA	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Basis: Dry

Lab Code: R2101264-002

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Ammonia as Nitrogen, undistilled	350.1M	4.4 U	mg/Kg	7.0	4.4	1	02/23/21 16:42	02/22/21	
Cyanide, Total	9012B	0.43	mg/Kg	0.41	0.24	1	02/19/21 13:01	02/18/21	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

Sample Name: TS-SD-RC02-0210 Basis: As Received

Lab Code: R2101264-002

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
pH	9045D	9.79	pH Units	-	-	1	02/18/21 09:05	NA	Н
Total Solids	ALS SOP	71.3	Percent	_	_	1	02/19/21 05:40	NA	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	31-154	63-138	66-138
Batch QC	R2101108-001	89	93	99
TK-SD-ST06-02092021	R2101264-001	94	84	101
TS-SD-RC02-0210	R2101264-002	82	92	99
Method Blank	RQ2101482-04	95	93	99
Method Blank	RQ2101653-04	97	93	102
Lab Control Sample	RQ2101482-03	97	95	100
Lab Control Sample	RQ2101653-03	98	96	100
Batch QC MS	RQ2101482-05	96	96	99
Batch QC DMS	RQ2101482-06	100	98	103
TK-SD-ST06-02092021 MS	RQ2101653-05	99	87	104
TK-SD-ST06-02092021 DMS	RQ2101653-06	100	88	103

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Tanks

Tanks

Date Collected:
Date Received:

Date Analyzed: 02/18/21 **Date Extracted:** NA

Units:

Duplicate Matrix Spike

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS, Unp

Sample Name: TK-SD-ST06-02092021

C-SD-ST06-02092021

Matrix Spike

Basis: Dry

R2101264

02/09/21

02/11/21

ug/Kg

Lab Code: R2101264-001 **Analysis Method:** 8260C

Prep Method: EPA 5030C

			1653-05		_	2101653-06	-			
		KQ210			ΝQ	-	,	0 / 30		DDD
A 1 A N	Sample	D 14	Spike	0/ D	D 14	Spike	0/ D	% Rec	DDD	RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	0.47 U	79.6	115	69 19 *	71.8	115	62 4 *	44-124	11 130*	30
1,1,2,2-Tetrachloroethane	1.1 U	21.9	115		5.18 J	115		41-155		30
1,1,2-Trichloroethane	0.47 U	75.7	115	66	65.6	115	57	48-124	15	30
1,1,2-Trichloro-1,2,2-trifluoroethane	0.47 U	78.4	115	68	73.3	115	64	40-117	6	30
1,1-Dichloroethane (1,1-DCA)	0.47 U	80.8	115	70	73.3	115	64	41-138	9	30
1,1-Dichloroethene (1,1-DCE)	0.67 U	100	115	87	94.3	115	82	46-124	6	30
1,2,3-Trichlorobenzene	1.2 U	63.3	115	55	56.1	115	49	10-169	12	30
1,2,4-Trichlorobenzene	0.97 U	68.8	115	60	60.5	115	53	10-169	12	30
1,2-Dibromo-3-chloropropane (DBCP)	1.8 U	54.7	115	47	45.9	115	40	30-136	16	30
1,2-Dibromoethane	0.47 U	73.7	115	64	64.0	115	56	38-129	13	30
1,2-Dichlorobenzene	0.47 U	74.5	115	65	64.4	115	56	11-152	15	30
1,2-Dichloroethane	0.47 U	74.2	115	64	65.1	115	56	49-119	13	30
1,2-Dichloropropane	0.47 U	78.7	115	68	69.1	115	60	60-126	13	30
1,3-Dichlorobenzene	0.47 U	76.0	115	66	65.6	115	57	13-151	15	30
1,4-Dichlorobenzene	0.51 U	75.2	115	65	65.9	115	57	10-151	13	30
1,4-Dioxane	47 U	2210	2300	96	1650	2300	72	49-188	29	30
2-Butanone (MEK)	11 J	85.1	115	64	74.5	115	55	13-176	15	30
2-Hexanone	0.83 U	71.4	115	62	63.3	115	55	12-163	12	30
4-Methyl-2-pentanone	0.60 J	71.6	115	62	62.2	115	53	38-148	16	30
Acetone	79	150	115	62	134	115	48	11-183	25	30
Benzene	0.47 U	81.2	115	70	72.5	115	63	51-123	11	30
Bromochloromethane	0.47 U	76.8	115	67	68.1	115	59	46-129	13	30
Bromodichloromethane	0.47 U	69.6	115	60	61.2	115	53	39-122	12	30
Bromoform	1.2 U	56.5	115	49	48.9	115	42	16-135	15	30
Bromomethane	4.9 U	115	115	100	90.1	115	78	10-150	25	30
Carbon Disulfide	0.67 U	100	115	87	92.5	115	80	44-139	8	30
Carbon Tetrachloride	0.60 U	71.9	115	62	65.6	115	57	46-137	8	30
Chlorobenzene	0.47 U	80.3	115	70	70.6	115	61	25-129	14	30
Chloroethane	0.95 U	102	115	88	81.7	115	71	10-166	21	30
Chloroform	0.47 U	80.3	115	70	72.2	115	63	55-118	11	30
Chloromethane	3.3 U	82.1	115	71	77.7	115	67	10-139	6	30
Cyclohexane	0.60 U	91.3	115	79	82.4	115	72	28-126	9	30
Dibromochloromethane	0.47 U	69.2	115	60	59.2	115	51	36-125	16	30
	J C	~~ . =		00	~ · · -			- 0 1 - 0		-

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2

Date Collected: 02

Units:

Basis:

R2101264 02/09/21

Date Received:

02/11/21

Date Analyzed:
Date Extracted:

02/18/21 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS, Unp

Sample Name: TK-SD-ST06-02092021

ug/Kg

Dry

Lab Code:

R2101264-001

Analysis Method:

8260C

Prep Method:

EPA 5030C

		Matrix Spike		Duplica	ite Matrix S	Spike				
		RQ210	1653-05		RQ	2101653-06	j			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Dichlorodifluoromethane (CFC 12)	0.77 U	94.2	115	82	88.7	115	77	51-144	6	30
Dichloromethane	6.5 U	76.1	115	66	68.6	115	60	49-125	10	30
Ethylbenzene	0.47 U	80.3	115	70	69.1	115	60	23-132	15	30
Isopropylbenzene (Cumene)	0.47 U	78.1	115	68	68.8	115	60	18-133	13	30
Methyl Acetate	2.0 U	48.9	115	42	30.1	115	26	10-200	47*	30
Methyl tert-Butyl Ether	0.47 U	74.5	115	65	66.3	115	58 *	62-130	11	30
Methylcyclohexane	0.72 U	96.9	115	84	85.2	115	74	12-134	13	30
Styrene	0.47 U	76.9	115	67	67.8	115	59	15-160	13	30
Tetrachloroethene (PCE)	0.53 U	77.1	115	67	67.9	115	59	21-137	13	30
Toluene	0.47 U	81.3	115	71	70.7	115	61	11-152	15	30
Trichloroethene (TCE)	0.51 U	134	115	116	128	115	111	23-140	4	30
Trichlorofluoromethane (CFC 11)	0.60 U	82.1	115	71	75.6	115	66	47-129	7	30
Vinyl Chloride	1.1 U	85.0	115	74	80.7	115	70	59-153	6	30
cis-1,2-Dichloroethene	0.47 U	84.8	115	74	76.9	115	67	42-129	10	30
cis-1,3-Dichloropropene	0.47 U	72.8	115	63	63.2	115	55	14-139	14	30
m,p-Xylenes	0.86 U	161	230	70	142	230	62	20-135	12	30
o-Xylene	0.47 U	79.5	115	69	70.2	115	61	26-137	12	30
trans-1,2-Dichloroethene	0.47 U	92.4	115	80	84.5	115	73	34-128	9	30

115

60

59.4

115

52

17-155

14

30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

0.47 U

69.2

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

trans-1,3-Dichloropropene

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2101482-04
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,1,2,2-Tetrachloroethane	0.44 U	5.0	0.44	1	02/15/21 15:13	
1,1,2-Trichloroethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,1-Dichloroethane (1,1-DCA)	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,1-Dichloroethene (1,1-DCE)	0.29 U	5.0	0.29	1	02/15/21 15:13	
1,2,3-Trichlorobenzene	0.52 U	5.0	0.52	1	02/15/21 15:13	
1,2,4-Trichlorobenzene	0.42 U	5.0	0.42	1	02/15/21 15:13	
1,2-Dibromo-3-chloropropane (DBCP)	0.75 U	5.0	0.75	1	02/15/21 15:13	
1,2-Dibromoethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,2-Dichlorobenzene	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,2-Dichloroethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,2-Dichloropropane	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,3-Dichlorobenzene	0.20 U	5.0	0.20	1	02/15/21 15:13	
1,4-Dichlorobenzene	0.22 U	5.0	0.22	1	02/15/21 15:13	
1,4-Dioxane	20 U	100	20	1	02/15/21 15:13	
2-Butanone (MEK)	2.0 U	5.0	2.0	1	02/15/21 15:13	
2-Hexanone	0.36 U	5.0	0.36	1	02/15/21 15:13	
4-Methyl-2-pentanone	0.23 U	5.0	0.23	1	02/15/21 15:13	
Acetone	4.7 U	5.0	4.7	1	02/15/21 15:13	
Benzene	0.20 U	5.0	0.20	1	02/15/21 15:13	
Bromochloromethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
Bromodichloromethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
Bromoform	0.50 U	5.0	0.50	1	02/15/21 15:13	
Bromomethane	2.1 U	5.0	2.1	1	02/15/21 15:13	
Carbon Disulfide	0.29 U	5.0	0.29	1	02/15/21 15:13	
Carbon Tetrachloride	0.26 U	5.0	0.26	1	02/15/21 15:13	
Chlorobenzene	0.20 U	5.0	0.20	1	02/15/21 15:13	
Chloroethane	0.41 U	5.0	0.41	1	02/15/21 15:13	
Chloroform	0.20 U	5.0	0.20	1	02/15/21 15:13	
Chloromethane	1.4 U	5.0	1.4	1	02/15/21 15:13	
Cyclohexane	0.26 U	5.0	0.26	1	02/15/21 15:13	
Dibromochloromethane	0.20 U	5.0	0.20	1	02/15/21 15:13	
Dichlorodifluoromethane (CFC 12)	0.33 U	5.0	0.33	1	02/15/21 15:13	
Dichloromethane	2.8 U	5.0	2.8	1	02/15/21 15:13	
Ethylbenzene	0.20 U	5.0	0.20	1	02/15/21 15:13	
Isopropylbenzene (Cumene)	0.20 U	5.0	0.20	1	02/15/21 15:13	
Methyl Acetate	0.84 U	5.0	0.84	1	02/15/21 15:13	
Methyl tert-Butyl Ether	0.20 U	5.0	0.20	1	02/15/21 15:13	
Methylcyclohexane	0.31 U	5.0	0.31	1	02/15/21 15:13	
Styrene	0.20 U	5.0	0.20	1	02/15/21 15:13	
Tetrachloroethene (PCE)	0.23 U	5.0	0.23	1	02/15/21 15:13	
Toluene	0.20 U	5.0	0.20	1	02/15/21 15:13	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101482-04Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	0.22 U	5.0	0.22	1	02/15/21 15:13	
Trichlorofluoromethane (CFC 11)	0.26 U	5.0	0.26	1	02/15/21 15:13	
Vinyl Chloride	0.46 U	5.0	0.46	1	02/15/21 15:13	
cis-1,2-Dichloroethene	0.20 U	5.0	0.20	1	02/15/21 15:13	
cis-1,3-Dichloropropene	0.20 U	5.0	0.20	1	02/15/21 15:13	
m,p-Xylenes	0.37 U	10	0.37	1	02/15/21 15:13	
o-Xylene	0.20 U	5.0	0.20	1	02/15/21 15:13	
trans-1,2-Dichloroethene	0.20 U	5.0	0.20	1	02/15/21 15:13	
trans-1,3-Dichloropropene	0.20 U	5.0	0.20	1	02/15/21 15:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	31 - 154	02/15/21 15:13	
Dibromofluoromethane	93	63 - 138	02/15/21 15:13	
Toluene-d8	99	66 - 138	02/15/21 15:13	

Analytical Report

Client: Inventum Engineering Service Request: R2101264

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: RQ2101653-04 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,1,2,2-Tetrachloroethane	0.44 U	5.0	0.44	1	02/18/21 11:21	
1,1,2-Trichloroethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,1-Dichloroethane (1,1-DCA)	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,1-Dichloroethene (1,1-DCE)	0.29 U	5.0	0.29	1	02/18/21 11:21	
1,2,3-Trichlorobenzene	0.52 U	5.0	0.52	1	02/18/21 11:21	
1,2,4-Trichlorobenzene	0.42 U	5.0	0.42	1	02/18/21 11:21	
1,2-Dibromo-3-chloropropane (DBCP)	0.75 U	5.0	0.75	1	02/18/21 11:21	
1,2-Dibromoethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,2-Dichlorobenzene	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,2-Dichloroethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,2-Dichloropropane	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,3-Dichlorobenzene	0.20 U	5.0	0.20	1	02/18/21 11:21	
1,4-Dichlorobenzene	0.22 U	5.0	0.22	1	02/18/21 11:21	
1,4-Dioxane	20 U	100	20	1	02/18/21 11:21	
2-Butanone (MEK)	2.0 U	5.0	2.0	1	02/18/21 11:21	
2-Hexanone	0.36 U	5.0	0.36	1	02/18/21 11:21	
4-Methyl-2-pentanone	0.23 U	5.0	0.23	1	02/18/21 11:21	
Acetone	4.7 U	5.0	4.7	1	02/18/21 11:21	
Benzene	0.20 U	5.0	0.20	1	02/18/21 11:21	
Bromochloromethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
Bromodichloromethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
Bromoform	0.50 U	5.0	0.50	1	02/18/21 11:21	
Bromomethane	2.1 U	5.0	2.1	1	02/18/21 11:21	
Carbon Disulfide	0.29 U	5.0	0.29	1	02/18/21 11:21	
Carbon Tetrachloride	0.26 U	5.0	0.26	1	02/18/21 11:21	
Chlorobenzene	0.20 U	5.0	0.20	1	02/18/21 11:21	
Chloroethane	0.41 U	5.0	0.41	1	02/18/21 11:21	
Chloroform	0.20 U	5.0	0.20	1	02/18/21 11:21	
Chloromethane	1.4 U	5.0	1.4	1	02/18/21 11:21	
Cyclohexane	0.26 U	5.0	0.26	1	02/18/21 11:21	
Dibromochloromethane	0.20 U	5.0	0.20	1	02/18/21 11:21	
Dichlorodifluoromethane (CFC 12)	0.33 U	5.0	0.33	1	02/18/21 11:21	
Dichloromethane	2.8 U	5.0	2.8	1	02/18/21 11:21	
Ethylbenzene	0.20 U	5.0	0.20	1	02/18/21 11:21	
Isopropylbenzene (Cumene)	0.20 U	5.0	0.20	1	02/18/21 11:21	
Methyl Acetate	0.84 U	5.0	0.84	1	02/18/21 11:21	
Methyl tert-Butyl Ether	0.20 U	5.0	0.20	1	02/18/21 11:21	
Methylcyclohexane	0.31 U	5.0	0.31	1	02/18/21 11:21	
Styrene	0.20 U	5.0	0.20	1	02/18/21 11:21	
Tetrachloroethene (PCE)	0.23 U	5.0	0.23	1	02/18/21 11:21	
Toluene	0.20 U	5.0	0.20	1	02/18/21 11:21	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101653-04Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	0.22 U	5.0	0.22	1	02/18/21 11:21	
Trichlorofluoromethane (CFC 11)	0.26 U	5.0	0.26	1	02/18/21 11:21	
Vinyl Chloride	0.46 U	5.0	0.46	1	02/18/21 11:21	
cis-1,2-Dichloroethene	0.20 U	5.0	0.20	1	02/18/21 11:21	
cis-1,3-Dichloropropene	0.20 U	5.0	0.20	1	02/18/21 11:21	
m,p-Xylenes	0.37 U	10	0.37	1	02/18/21 11:21	
o-Xylene	0.20 U	5.0	0.20	1	02/18/21 11:21	
trans-1,2-Dichloroethene	0.20 U	5.0	0.20	1	02/18/21 11:21	
trans-1,3-Dichloropropene	0.20 U	5.0	0.20	1	02/18/21 11:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	31 - 154	02/18/21 11:21	
Dibromofluoromethane	93	63 - 138	02/18/21 11:21	
Toluene-d8	102	66 - 138	02/18/21 11:21	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Printed 3/25/2021 8:59:57 AM

Service Request: R2101264

Date Analyzed: 02/15/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg Basis:Dry

Superset Reference:21-0000579987 rev 00

Lab Control Sample

RQ2101482-03

Analytical

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.2	20.0	96	68-123
1,1,2,2-Tetrachloroethane	8260C	17.0	20.0	85	78-121
1,1,2-Trichloroethane	8260C	19.7	20.0	98	84-117
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	18.5	20.0	93	54-121
1,1-Dichloroethane (1,1-DCA)	8260C	20.2	20.0	101	76-123
1,1-Dichloroethene (1,1-DCE)	8260C	24.1	20.0	121 *	65-115
1,2,3-Trichlorobenzene	8260C	17.2	20.0	86	60-128
1,2,4-Trichlorobenzene	8260C	17.7	20.0	89	62-130
1,2-Dibromo-3-chloropropane (DBCP)	8260C	15.9	20.0	80	54-135
1,2-Dibromoethane	8260C	19.0	20.0	95	77-117
1,2-Dichlorobenzene	8260C	18.2	20.0	91	75-116
1,2-Dichloroethane	8260C	18.9	20.0	95	74-116
1,2-Dichloropropane	8260C	19.3	20.0	97	79-112
1,3-Dichlorobenzene	8260C	18.7	20.0	93	72-118
1,4-Dichlorobenzene	8260C	18.2	20.0	91	72-117
1,4-Dioxane	8260C	365	400	91	59-147
2-Butanone (MEK)	8260C	18.1	20.0	90	67-129
2-Hexanone	8260C	18.2	20.0	91	68-118
4-Methyl-2-pentanone	8260C	18.0	20.0	90	64-123
Acetone	8260C	18.1	20.0	91	32-154
Benzene	8260C	19.9	20.0	99	77-114
Bromochloromethane	8260C	19.5	20.0	98	78-117
Bromodichloromethane	8260C	18.3	20.0	92	72-118
Bromoform	8260C	16.5	20.0	82	55-134
Bromomethane	8260C	21.4	20.0	107	10-150
Carbon Disulfide	8260C	20.8	20.0	104	44-139
Carbon Tetrachloride	8260C	17.3	20.0	86	51-123
Chlorobenzene	8260C	19.2	20.0	96	79-115
Chloroethane	8260C	20.9	20.0	105	10-140
Chloroform	8260C	20.6	20.0	103	76-115
Chloromethane	8260C	19.7	20.0	99	10-131
Cyclohexane	8260C	20.3	20.0	102	67-122
Dibromochloromethane	8260C	18.4	20.0	92	68-121

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264 Date Analyzed: 02/15/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg
Basis:Dry

Lab Control Sample

RQ2101482-03

A Luda Ni.	Analytical	D14	C 9 A	0/ D	0/ D - 1 - 14
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	23.9	20.0	119	51-144
Dichloromethane	8260C	19.2	20.0	96	72-118
Ethylbenzene	8260C	18.2	20.0	91	64-118
Isopropylbenzene (Cumene)	8260C	17.7	20.0	89	60-123
Methyl Acetate	8260C	16.7	20.0	83	31-122
Methyl tert-Butyl Ether	8260C	20.6	20.0	103	76-118
Methylcyclohexane	8260C	21.5	20.0	107	70-124
Styrene	8260C	18.1	20.0	91	74-117
Tetrachloroethene (PCE)	8260C	17.5	20.0	87	58-124
Toluene	8260C	19.1	20.0	96	72-116
Trichloroethene (TCE)	8260C	20.2	20.0	101	69-118
Trichlorofluoromethane (CFC 11)	8260C	20.1	20.0	100	52-127
Vinyl Chloride	8260C	20.7	20.0	103	59-153
cis-1,2-Dichloroethene	8260C	21.1	20.0	105	79-113
cis-1,3-Dichloropropene	8260C	18.9	20.0	95	66-117
m,p-Xylenes	8260C	37.1	40.0	93	68-118
o-Xylene	8260C	18.9	20.0	94	71-116
trans-1,2-Dichloroethene	8260C	22.6	20.0	113	73-114
trans-1,3-Dichloropropene	8260C	18.6	20.0	93	57-135

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Printed 3/25/2021 8:59:58 AM

Service Request: R2101264

Date Analyzed: 02/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg Basis:Dry

Superset Reference:21-0000579987 rev 00

Lab Control Sample

RQ2101653-03

Analytical

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	18.6	20.0	93	68-123
1,1,2,2-Tetrachloroethane	8260C	16.6	20.0	83	78-121
1,1,2-Trichloroethane	8260C	19.1	20.0	96	84-117
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	18.9	20.0	94	54-121
1,1-Dichloroethane (1,1-DCA)	8260C	18.8	20.0	94	76-123
1,1-Dichloroethene (1,1-DCE)	8260C	23.3	20.0	117 *	65-115
1,2,3-Trichlorobenzene	8260C	17.3	20.0	86	60-128
1,2,4-Trichlorobenzene	8260C	17.6	20.0	88	62-130
1,2-Dibromo-3-chloropropane (DBCP)	8260C	15.0	20.0	75	54-135
1,2-Dibromoethane	8260C	18.2	20.0	91	77-117
1,2-Dichlorobenzene	8260C	18.0	20.0	90	75-116
1,2-Dichloroethane	8260C	18.1	20.0	91	74-116
1,2-Dichloropropane	8260C	18.3	20.0	92	79-112
1,3-Dichlorobenzene	8260C	18.3	20.0	91	72-118
1,4-Dichlorobenzene	8260C	18.1	20.0	90	72-117
1,4-Dioxane	8260C	411	400	103	59-147
2-Butanone (MEK)	8260C	17.9	20.0	90	67-129
2-Hexanone	8260C	17.8	20.0	89	68-118
4-Methyl-2-pentanone	8260C	17.9	20.0	89	64-123
Acetone	8260C	18.8	20.0	94	32-154
Benzene	8260C	18.7	20.0	93	77-114
Bromochloromethane	8260C	18.9	20.0	95	78-117
Bromodichloromethane	8260C	16.6	20.0	83	72-118
Bromoform	8260C	14.5	20.0	72	55-134
Bromomethane	8260C	25.6	20.0	128	10-150
Carbon Disulfide	8260C	19.9	20.0	100	44-139
Carbon Tetrachloride	8260C	16.8	20.0	84	51-123
Chlorobenzene	8260C	18.6	20.0	93	79-115
Chloroethane	8260C	21.5	20.0	108	10-140
Chloroform	8260C	19.1	20.0	96	76-115
Chloromethane	8260C	18.8	20.0	94	10-131
Cyclohexane	8260C	20.3	20.0	101	67-122
Dibromochloromethane	8260C	16.8	20.0	84	68-121

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264 Date Analyzed: 02/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg
Basis:Dry

Lab Control Sample

RQ2101653-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	23.4	20.0	117	51-144
Dichloromethane	8260C	18.0	20.0	90	72-118
Ethylbenzene	8260C	18.2	20.0	91	64-118
Isopropylbenzene (Cumene)	8260C	17.9	20.0	90	60-123
Methyl Acetate	8260C	16.6	20.0	83	31-122
Methyl tert-Butyl Ether	8260C	19.9	20.0	99	76-118
Methylcyclohexane	8260C	21.5	20.0	107	70-124
Styrene	8260C	17.4	20.0	87	74-117
Tetrachloroethene (PCE)	8260C	18.0	20.0	90	58-124
Toluene	8260C	18.3	20.0	92	72-116
Trichloroethene (TCE)	8260C	19.4	20.0	97	69-118
Trichlorofluoromethane (CFC 11)	8260C	19.6	20.0	98	52-127
Vinyl Chloride	8260C	19.4	20.0	97	59-153
cis-1,2-Dichloroethene	8260C	19.7	20.0	98	79-113
cis-1,3-Dichloropropene	8260C	17.5	20.0	87	66-117
m,p-Xylenes	8260C	36.5	40.0	91	68-118
o-Xylene	8260C	18.1	20.0	90	71-116
trans-1,2-Dichloroethene	8260C	21.4	20.0	107	73-114
trans-1,3-Dichloropropene	8260C	16.7	20.0	84	57-135

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Extraction Method:** EPA 3546

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
mple Name Lab Code		10-109	10-102	10-88
TK-SD-ST06-02092021	R2101264-001	78	76	75
TS-SD-RC02-0210	R2101264-002	32	28	21
Batch QC	R2101317-001	41	52	56
Method Blank	RQ2101599-01	84	71	75
Lab Control Sample	RQ2101599-02	80	65	66
Duplicate Lab Control Sample	RQ2101599-03	87	73	74
Batch QC MS	RQ2101599-04	44	55	57
Batch QC DMS	RQ2101599-05	38	45	51

QA/QC Report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Extraction Method:** EPA 3546

		Nitrobenzene-d5	Phenol-d6	Terphenyl-d14
Sample Name	Lab Code	10-95	10-145	10-106
TK-SD-ST06-02092021	R2101264-001	75	75	81
TS-SD-RC02-0210	R2101264-002	25	19	46
Batch QC	R2101317-001	6*	52	53
Method Blank	RQ2101599-01	73	73	90
Lab Control Sample	RQ2101599-02	64	65	79
Duplicate Lab Control Sample	RQ2101599-03	72	74	82
Batch QC MS	RQ2101599-04	6*	55	58
Batch QC DMS	RQ2101599-05	7*	47	54

Analytical Report

Client: Inventum Engineering Service Request: R2101264

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101599-01Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	74 U	320	74	1	02/18/21 12:38	2/17/21	
2,3,4,6-Tetrachlorophenol	120 U	320	120	1	02/18/21 12:38	2/17/21	
2,4,5-Trichlorophenol	82 U	320	82	1	02/18/21 12:38	2/17/21	
2,4,6-Trichlorophenol	74 U	320	74	1	02/18/21 12:38	2/17/21	
2,4-Dichlorophenol	64 U	320	64	1	02/18/21 12:38	2/17/21	
2,4-Dimethylphenol	59 U	320	59	1	02/18/21 12:38	2/17/21	
2,4-Dinitrophenol	560 U	1700	560	1	02/18/21 12:38	2/17/21	
2,4-Dinitrotoluene	130 U	320	130	1	02/18/21 12:38	2/17/21	
2,6-Dinitrotoluene	72 U	320	72	1	02/18/21 12:38	2/17/21	
2-Chloronaphthalene	66 U	320	66	1	02/18/21 12:38	2/17/21	
2-Chlorophenol	55 U	320	55	1	02/18/21 12:38	2/17/21	
2-Methylnaphthalene	55 U	320	55	1	02/18/21 12:38	2/17/21	
2-Methylphenol	69 U	320	69	1	02/18/21 12:38	2/17/21	
2-Nitroaniline	78 U	1700	78	1	02/18/21 12:38	2/17/21	
2-Nitrophenol	77 U	320	77	1	02/18/21 12:38	2/17/21	
3,3'-Dichlorobenzidine	37 U	320	37	1	02/18/21 12:38	2/17/21	
3- and 4-Methylphenol Coelution	63 U	320	63	1	02/18/21 12:38	2/17/21	
3-Nitroaniline	67 U	1700	67	1	02/18/21 12:38	2/17/21	
4,6-Dinitro-2-methylphenol	190 U	1700	190	1	02/18/21 12:38	2/17/21	
4-Bromophenyl Phenyl Ether	87 U	320	87	1	02/18/21 12:38	2/17/21	
4-Chloro-3-methylphenol	67 U	320	67	1	02/18/21 12:38	2/17/21	
4-Chloroaniline	56 U	320	56	1	02/18/21 12:38	2/17/21	
4-Chlorophenyl Phenyl Ether	71 U	320	71	1	02/18/21 12:38	2/17/21	
4-Nitroaniline	34 U	1700	34	1	02/18/21 12:38	2/17/21	
4-Nitrophenol	67 U	1700	67	1	02/18/21 12:38	2/17/21	
Acenaphthene	63 U	320	63	1	02/18/21 12:38	2/17/21	
Acenaphthylene	67 U	320	67	1	02/18/21 12:38	2/17/21	
Acetophenone	95 U	320	95	1	02/18/21 12:38	2/17/21	
Anthracene	55 U	320	55	1	02/18/21 12:38	2/17/21	
Atrazine	46 U	320	46	1	02/18/21 12:38	2/17/21	
Benz(a)anthracene	49 U	320	49	1	02/18/21 12:38	2/17/21	
Benzaldehyde	80 U	1700	80	1	02/18/21 12:38	2/17/21	
Benzo(a)pyrene	88 U	320	88	1	02/18/21 12:38	2/17/21	
Benzo(b)fluoranthene	55 U	320	55	1	02/18/21 12:38	2/17/21	
Benzo(g,h,i)perylene	76 U	320	76	1	02/18/21 12:38	2/17/21	
Benzo(k)fluoranthene	54 U	320	54	1	02/18/21 12:38	2/17/21	
Biphenyl	98 U	320	98	1	02/18/21 12:38	2/17/21	
2,2'-Oxybis(1-chloropropane)	68 U	320	68	1	02/18/21 12:38	2/17/21	
Bis(2-chloroethoxy)methane	81 U	320	81	1	02/18/21 12:38	2/17/21	
Bis(2-chloroethyl) Ether	65 U	320	65	1	02/18/21 12:38	2/17/21	
Bis(2-ethylhexyl) Phthalate	61 U	490	61	1	02/18/21 12:38	2/17/21	

Analytical Report

Client: Inventum Engineering Service Request: R2101264

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101599-01Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270D **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Butyl Benzyl Phthalate	40 U	320	40	1	02/18/21 12:38	2/17/21	
Caprolactam	73 U	320	73	1	02/18/21 12:38	2/17/21	
Carbazole	54 U	320	54	1	02/18/21 12:38	2/17/21	
Chrysene	49 U	320	49	1	02/18/21 12:38	2/17/21	
Di-n-butyl Phthalate	54 U	320	54	1	02/18/21 12:38	2/17/21	
Di-n-octyl Phthalate	120 U	320	120	1	02/18/21 12:38	2/17/21	
Dibenz(a,h)anthracene	72 U	320	72	1	02/18/21 12:38	2/17/21	
Dibenzofuran	60 U	320	60	1	02/18/21 12:38	2/17/21	
Diethyl Phthalate	59 U	320	59	1	02/18/21 12:38	2/17/21	
Dimethyl Phthalate	63 U	320	63	1	02/18/21 12:38	2/17/21	
Fluoranthene	83 U	320	83	1	02/18/21 12:38	2/17/21	
Fluorene	62 U	320	62	1	02/18/21 12:38	2/17/21	
Hexachlorobenzene	79 U	320	79	1	02/18/21 12:38	2/17/21	
Hexachlorobutadiene	57 U	320	57	1	02/18/21 12:38	2/17/21	
Hexachlorocyclopentadiene	110 U	320	110	1	02/18/21 12:38	2/17/21	
Hexachloroethane	62 U	320	62	1	02/18/21 12:38	2/17/21	
Indeno(1,2,3-cd)pyrene	110 U	320	110	1	02/18/21 12:38	2/17/21	
Isophorone	69 U	320	69	1	02/18/21 12:38	2/17/21	
N-Nitrosodi-n-propylamine	110 U	320	110	1	02/18/21 12:38	2/17/21	
N-Nitrosodiphenylamine	210 U	320	210	1	02/18/21 12:38	2/17/21	
Naphthalene	62 U	320	62	1	02/18/21 12:38	2/17/21	
Nitrobenzene	59 U	320	59	1	02/18/21 12:38	2/17/21	
Pentachlorophenol (PCP)	330 U	1700	330	1	02/18/21 12:38	2/17/21	
Phenanthrene	47 U	320	47	1	02/18/21 12:38	2/17/21	
Phenol	67 U	320	67	1	02/18/21 12:38	2/17/21	
Pyrene	55 U	320	55	1	02/18/21 12:38	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	84	10 - 109	02/18/21 12:38	
2-Fluorobiphenyl	71	10 - 102	02/18/21 12:38	
2-Fluorophenol	75	10 - 88	02/18/21 12:38	
Nitrobenzene-d5	73	10 - 95	02/18/21 12:38	
Phenol-d6	73	10 - 145	02/18/21 12:38	
Terphenyl-d14	90	10 - 106	02/18/21 12:38	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg
Basis:Dry

Service Request: R2101264

Date Analyzed: 02/18/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2101599-02

RQ2101599-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,2,4,5-Tetrachlorobenzene	8270D	2120	3340	63	2560	3340	77	10-115	19	30
2,3,4,6-Tetrachlorophenol	8270D	2320	3330	70	2670	3330	80	29-100	14	30
2,4,5-Trichlorophenol	8270D	2230	3330	67	2560	3330	77	29-97	14	30
2,4,6-Trichlorophenol	8270D	2180	3330	65	2590	3330	78	26-97	17	30
2,4-Dichlorophenol	8270D	2050	3330	62	2380	3330	71	25-90	15	30
2,4-Dimethylphenol	8270D	2120	3330	64	2460	3330	74	26-89	15	30
2,4-Dinitrophenol	8270D	1350 J	3330	41	1660 J	3330	50	10-128	20	30
2,4-Dinitrotoluene	8270D	2600	3330	78	2930	3330	88	30-111	12	30
2,6-Dinitrotoluene	8270D	2420	3330	73	2790	3330	84	28-105	14	30
2-Chloronaphthalene	8270D	2210	3330	66	2590	3330	78	21-88	16	30
2-Chlorophenol	8270D	2020	3330	61	2350	3330	70	18-87	15	30
2-Methylnaphthalene	8270D	2060	3330	62	2400	3330	72	21-83	15	30
2-Methylphenol	8270D	2230	3330	67	2580	3330	77	22-86	15	30
2-Nitroaniline	8270D	2570	3330	77	2900	3330	87	27-105	12	30
2-Nitrophenol	8270D	2100	3330	63	2400	3330	72	20-88	13	30
3- and 4-Methylphenol Coelution	8270D	2220	3330	67	2590	3330	78	27-92	15	30
3-Nitroaniline	8270D	1930	3330	58	2090	3330	63	27-98	8	30
4,6-Dinitro-2-methylphenol	8270D	1860	3330	56	2080	3330	62	11-96	11	30
4-Bromophenyl Phenyl Ether	8270D	2290	3330	69	2620	3330	78	25-96	13	30
4-Chloro-3-methylphenol	8270D	2130	3330	64	2390	3330	72	29-92	11	30
4-Chloroaniline	8270D	1560	3330	47	1630	3330	49	21-72	5	30
4-Chlorophenyl Phenyl Ether	8270D	2240	3330	67	2590	3330	78	25-92	14	30
4-Nitroaniline	8270D	2520	3330	76	2860	3330	86	27-102	13	30
4-Nitrophenol	8270D	2260	3330	68	2430	3330	73	10-130	7	30
Acenaphthene	8270D	2230	3330	67	2580	3330	77	25-92	15	30
Acenaphthylene	8270D	2330	3330	70	2700	3330	81	27-93	15	30
Acetophenone	8270D	3750	6670	56	4390	6670	66	23-87	16	30
Anthracene	8270D	2450	3330	73	2710	3330	81	32-106	10	30
Benz(a)anthracene	8270D	2540	3330	76	2670	3330	80	33-109	5	30
Benzo(a)pyrene	8270D	3470	3330	104	3630	3330	109	34-115	4	30
Benzo(b)fluoranthene	8270D	2610	3330	78	2710	3330	81	31-107	4	30
Benzo(g,h,i)perylene	8270D	3080	3330	92	3190	3330	96	30-127	4	30
Benzo(k)fluoranthene	8270D	2790	3330	84	2960	3330	89	34-111	6	30

Printed 3/25/2021 9:00:11 AM

Superset Reference:21-0000579987 rev 00

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg
Basis:Dry

Service Request: R2101264

Date Analyzed: 02/18/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2101599-02

RQ2101599-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Biphenyl	8270D	2060	3330	62	2420	3330	73	26-88	16	30
2,2'-Oxybis(1-chloropropane)	8270D	2110	3330	63	2460	3330	74	10-82	15	30
Bis(2-chloroethoxy)methane	8270D	2320	3330	70	2670	3330	80	17-85	14	30
Bis(2-chloroethyl) Ether	8270D	2180	3330	66	2540	3330	76	10-79	15	30
Bis(2-ethylhexyl) Phthalate	8270D	2720	3330	82	2830	3330	85	31-115	4	30
Butyl Benzyl Phthalate	8270D	2820	3330	84	2920	3330	88	31-115	4	30
Caprolactam	8270D	2230	3330	67	2640	3330	79	28-99	17	30
Carbazole	8270D	2650	3330	79	2830	3330	85	23-129	7	30
Chrysene	8270D	2620	3330	79	2780	3330	83	34-108	6	30
Di-n-butyl Phthalate	8270D	2770	3330	83	2910	3330	87	33-114	5	30
Di-n-octyl Phthalate	8270D	2690	3330	81	2790	3330	84	32-116	4	30
Dibenz(a,h)anthracene	8270D	3100	3330	93	3240	3330	97	23-122	4	30
Dibenzofuran	8270D	2230	3330	67	2550	3330	77	27-94	13	30
Diethyl Phthalate	8270D	2220	3330	67	2530	3330	76	26-101	13	30
Dimethyl Phthalate	8270D	2260	3330	68	2560	3330	77	27-98	12	30
Fluoranthene	8270D	2510	3330	75	2650	3330	79	34-111	5	30
Fluorene	8270D	2310	3330	69	2620	3330	79	27-95	13	30
Hexachlorobenzene	8270D	2510	3330	75	2750	3330	83	30-104	9	30
Hexachlorobutadiene	8270D	2060	3330	62	2340	3330	70	10-142	13	30
Hexachlorocyclopentadiene	8270D	2170	3330	65	2510	3330	75	10-133	15	30
Hexachloroethane	8270D	1910	3330	57	2180	3330	66	10-129	13	30
Indeno(1,2,3-cd)pyrene	8270D	3110	3330	93	3270	3330	98	33-121	5	30
Isophorone	8270D	1810	3330	54	2090	3330	63	21-79	14	30
N-Nitrosodi-n-propylamine	8270D	2230	3330	67	2590	3330	78	15-78	15	30
N-Nitrosodiphenylamine	8270D	2520	3330	76	2870	3330	86	29-108	13	30
Naphthalene	8270D	2100	3330	63	2410	3330	72	18-81	14	30
Nitrobenzene	8270D	2080	3330	63	2470	3330	74	14-80	17	30
Pentachlorophenol (PCP)	8270D	2430	3330	73	2740	3330	82	13-117	12	30
Phenanthrene	8270D	2340	3330	70	2590	3330	78	33-103	10	30
Phenol	8270D	2160	3330	65	2550	3330	76	10-144	17	30
Pyrene	8270D	2710	3330	81	2960	3330	89	33-111	9	30

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Extraction Method:** EPA 3541

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10-145	10-123	
TK-SD-ST06-02092021	R2101264-001	154*	100	
TS-SD-RC02-0210	R2101264-002	255*	49	
Method Blank	RQ2101498-01	101	81	
Lab Control Sample	RQ2101498-02	103	82	
Duplicate Lab Control Sample	RQ2101498-03	94	80	

Analytical Report

Client: Inventum Engineering Service Request: R2101264

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101498-01Basis: Dry

Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
4,4'-DDE	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
4,4'-DDT	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Aldrin	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Dieldrin	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endosulfan I	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endosulfan II	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endosulfan Sulfate	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endrin	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endrin Aldehyde	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Endrin Ketone	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Heptachlor	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Heptachlor Epoxide	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Methoxychlor	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
Toxaphene	19 U	33	19	1	02/19/21 03:44	2/16/21	
alpha-BHC	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
alpha-Chlordane	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
beta-BHC	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
delta-BHC	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
gamma-BHC (Lindane)	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	
gamma-Chlordane	0.84 U	1.7	0.84	1	02/19/21 03:44	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	101	10 - 145	02/19/21 03:44	
Tetrachloro-m-xylene	81	10 - 123	02/19/21 03:44	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography

Units:ug/Kg
Basis:Dry

Service Request: R2101264

Date Analyzed: 02/19/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2101498-02

RQ2101498-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
4,4'-DDD	8081B	6.33	6.84	93	5.79	6.61	88	33-149	9	30
4,4'-DDE	8081B	6.64	6.84	97	5.97	6.61	90	38-147	11	30
4,4'-DDT	8081B	6.72	6.84	98	6.13	6.61	93	37-146	9	30
Aldrin	8081B	6.06	6.84	89	5.43	6.61	82	25-146	11	30
Dieldrin	8081B	6.43	6.84	94	6.08	6.61	92	40-140	6	30
Endosulfan I	8081B	6.35	6.84	93	5.65	6.61	86	35-116	12	30
Endosulfan II	8081B	6.74	6.84	99	6.10	6.61	92	39-122	10	30
Endosulfan Sulfate	8081B	6.34	6.84	93	6.20	6.61	94	31-132	2	30
Endrin	8081B	6.42	6.84	94	5.86	6.61	89	40-144	9	30
Endrin Aldehyde	8081B	6.15	6.84	90	5.58	6.61	84	10-109	10	30
Endrin Ketone	8081B	6.64	6.84	97	6.05	6.61	92	38-122	9	30
Heptachlor	8081B	6.19	6.84	91	5.50	6.61	83	34-142	12	30
Heptachlor Epoxide	8081B	6.34	6.84	93	5.72	6.61	87	37-113	10	30
Methoxychlor	8081B	7.04	6.84	103	6.55	6.61	99	41-152	7	30
alpha-BHC	8081B	6.02	6.84	88	5.37	6.61	81	28-145	11	30
alpha-Chlordane	8081B	6.25	6.84	91	5.66	6.61	86	37-114	10	30
beta-BHC	8081B	6.38	6.84	93	5.95	6.61	90	38-144	7	30
delta-BHC	8081B	6.47	6.84	95	5.80	6.61	88	30-153	11	30
gamma-BHC (Lindane)	8081B	5.91	6.84	86	5.46	6.61	83	32-145	8	30
gamma-Chlordane	8081B	6.14	6.84	90	5.50	6.61	83	34-123	11	30

QA/QC Report

Service Request: R2101264

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Extraction Method:** EPA 3541

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	22-128	14-119	
TK-SD-ST06-02092021	R2101264-001	180*	101	
TK-SD-ST06-02092021 RE	R2101264-001	76	50	
TS-SD-RC02-0210	R2101264-002	45	37	
Method Blank	RQ2101498-01	100	72	
Method Blank	RQ2101920-01	75	67	
Lab Control Sample	RQ2101498-04	101	71	
Duplicate Lab Control Sample	RQ2101498-05	113	112	
Lab Control Sample	RQ2101920-02	75	67	
Duplicate Lab Control Sample	RQ2101920-03	67	62	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101498-01Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	17 U	32	17	1	02/17/21 20:06	2/16/21	
Aroclor 1221	17 U	65	17	1	02/17/21 20:06	2/16/21	
Aroclor 1232	17 U	32	17	1	02/17/21 20:06	2/16/21	
Aroclor 1242	17 U	32	17	1	02/17/21 20:06	2/16/21	
Aroclor 1248	17 U	32	17	1	02/17/21 20:06	2/16/21	
Aroclor 1254	17 U	32	17	1	02/17/21 20:06	2/16/21	
Aroclor 1260	17 U	32	17	1	02/17/21 20:06	2/16/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	100	22 - 128	02/17/21 20:06	
Tetrachloro-m-xylene	72	14 - 119	02/17/21 20:06	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks

Date Collected: NA

Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2101920-01Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3541

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	18 U	33	18	1	02/26/21 14:09	2/25/21	
Aroclor 1221	18 U	67	18	1	02/26/21 14:09	2/25/21	
Aroclor 1232	18 U	33	18	1	02/26/21 14:09	2/25/21	
Aroclor 1242	18 U	33	18	1	02/26/21 14:09	2/25/21	
Aroclor 1248	18 U	33	18	1	02/26/21 14:09	2/25/21	
Aroclor 1254	18 U	33	18	1	02/26/21 14:09	2/25/21	
Aroclor 1260	18 U	33	18	1	02/26/21 14:09	2/25/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	75	22 - 128	02/26/21 14:09	
Tetrachloro-m-xylene	67	14 - 119	02/26/21 14:09	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264

Date Analyzed: 02/17/21

Duplicate Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2101498-04

RQ2101498-05

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Aroclor 1016	8082A	130	162	80	152	166	92	41-127	16	30
Aroclor 1260	8082A	145	162	89	170	166	102	37-127	16	30

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264

Date Analyzed: 02/26/21

Duplicate Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2101920-02

RQ2101920-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Aroclor 1016	8082A	128	171	75	112	167	67	41-127	13	30
Aroclor 1260	8082A	132	171	77	112	167	67	37-127	17	30

QA/QC Report

Client: Inventum Engineering Service Request: R2101264

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY Chlorinated Herbicides by GC

Analysis Method: 8151A **Extraction Method:** Method

2,4-Dichlorophenylacetic Acid

Sample Name	Lab Code	10-151	
TK-SD-ST06-02092021	R2101264-001	49	
TS-SD-RC02-0210	R2101264-002	4*	
TS-SD-RC02-0210 RE	R2101264-002	16	
Method Blank	RQ2101693-07	43	
Method Blank	RQ2101916-01	65	
Lab Control Sample	RQ2101693-08	61	
Duplicate Lab Control Sample	RQ2101693-09	69	
Lab Control Sample	RQ2101916-02	77	
Duplicate Lab Control Sample	RQ2101916-03	71	

Analytical Report

Client: **Inventum Engineering**

Project: RTTC Tanks **Date Collected:** NA

Service Request: R2101264

Sample Matrix: Soil

Date Received: NA

Sample Name: Method Blank Lab Code: RQ2101693-07 Units: ug/Kg Basis: Dry

Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name Result **MRL MDL** Dil. **Date Analyzed Date Extracted** 5.0 U 5.0 2,4,5-T 10 1 02/23/21 17:09 2/19/21 4.5 U 2,4,5-TP 10 4.5 2/19/21 1 02/23/21 17:09 2,4-D 6.5 U 10 6.5 1 02/23/21 17:09 2/19/21 3.1 U 10 3.1 1 02/23/21 17:09 2/19/21 Dicamba

Surrogate Name % Rec Q **Control Limits Date Analyzed** 02/23/21 17:09 43 10 - 151

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks

Date Collected: NA

Sample Matrix:

Sample Name:

Lab Code:

Soil

Date Received: NA

Service Request: R2101264

Method Blank Units: ug/Kg RQ2101916-01

Basis: Dry

Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	5.1 U	10	5.1	1	02/26/21 14:11	2/25/21	
2,4,5-TP	4.6 U	10	4.6	1	02/26/21 14:11	2/25/21	
2,4-D	6.6 U	10	6.6	1	02/26/21 14:11	2/25/21	
Dicamba	3.2 U	10	3.2	1	02/26/21 14:11	2/25/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4-Dichlorophenylacetic Acid	65	10 - 151	02/26/21 14:11	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264

Date Analyzed: 02/23/21

Duplicate Lab Control Sample Summary Chlorinated Herbicides by GC

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2101693-08

RQ2101693-09

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,4,5-T	8151A	24.3	50.0	49	30.6	50.0	61	19-127	23	30
2,4,5-TP	8151A	26.4	50.0	53	32.4	50.0	65	18-122	20	30
2,4-D	8151A	25.8	50.0	52	33.4	50.0	67	24-165	26	30
Dicamba	8151A	24.2	50.0	48	29.5	50.0	59	26-128	20	30

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264

Date Analyzed: 02/26/21

Duplicate Lab Control Sample Summary Chlorinated Herbicides by GC

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2101916-02

RQ2101916-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,4,5-T	8151A	30.6	50.2	61	31.5	50.0	63	19-127	3	30
2,4,5-TP	8151A	36.7	50.2	73	38.0	50.0	76	18-122	3	30
2,4-D	8151A	35.4	50.2	70	35.6	50.0	71	24-165	<1	30
Dicamba	8151A	28.4	50.2	57	28.7	50.0	57	26-128	1	30

Metals

-3-

BLANKS

Contract:	R2101264			
Lab Code:	Case No.:	SAS No.:	SDG NO.: TK-SD-ST06-0	_
Preparation	Blank Matrix (soil/water):	SOIL		
Preparation	Blank Concentration Units (ug/L,	ppt, or mg/kg): MG/KG		

and other	Initial Calib. Blank			inu	ing Calibrati	on	•		Preparation Blank		
Analyte	ug/L	С	1	С	2	С	3	С		С	М
Aluminum	120.00	Ū	120.00	ט	120.00	ŭ	120.00	Ū	12.000	U	P
Antimony	5.40	ם	5.40	ŭ	5.40	ט	5.40	Ū	0.540	U	P
Arsenic	7.00	Ū	7.00	ŭ	7.00	ט	7.00	Ū	0.700	Ū	P
Barium	15.00	ם	15.00	ŭ	15.00	ט	15.00	ŭ	1.500	U	P
Beryllium	0.60	ŭ	0.60	ט	0.60	ŭ	0.60	ŭ	0.060	ŭ	P
Cadmium	2.40	Ū	2.40	ט	2.40	ŭ	2.40	Ū	0.240	Ū	P
Mercury	0.078	Ū	0.078	ט	0.078	ŭ	0.078	Ū	0.013	ם	cv
Calcium	320.00	U	320.00	υ	320.00	υ	320.00	Ū	32.000	ט	P
Chromium	3.50	Ū	3.50	ט	3.50	Ū	3.50	Ū	0.350	Ū	P
Cobalt	4.60	Ū	4.60	ט	4.60	ŭ	4.60	Ū	0.460	Ū	P
Copper	6.30	ט	6.30	ŭ	6.30	ŭ	6.30	ŭ	0.630	ט	P
Iron	130.00	U	130.00	υ	130.00	υ	130.00	Ū	13.000	ט	P
Lead	4.00	Ū	4.00	ט	4.00	Ū	4.00	Ū	0.400	Ū	P
Magnesium	130.00	U	130.00	ט	130.00	U	130.00	Ū	13.000	Ū	P
Manganese	15.00	U	15.00	υ	15.00	υ	15.00	Ū	1.500	ט	P
Nickel	6.60	Ū	6.60	ט	6.60	Ū	6.60	Ū	0.660	Ū	P
Potassium	500.00	Ū	500.00	ט	500.00	Ū	500.00	Ū	50.000	Ū	P
Selenium	5.40	Ū	5.40	ŭ	5.40	U	5.40	Ū	0.540	Ū	P
Silver	0.90	Ū	0.90	ŭ	0.90	Ū	0.90	Ū	0.090	Ū	P
Sodium	520.00	Ū	520.00	Ū	520.00	U	520.00	Ū	52.000	Ū	P
Thallium	6.50	U	6.50	ŭ	6.50	U	6.50	Ū	0.650	U	P
Vanadium	7.10	U	7.10	ŭ	7.10	ŭ	7.10	Ū	0.710	U	P
Zinc	14.00	U	14.00	U	14.00	U	14.00	Ū	1.400	Ū	P

-3-

BLANKS

Contract:	R2101264			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0
Preparation	Blank Matrix (soil/water):	WATER		
Preparation	Blank Concentration Units (ug/L	, ppt, or mg/kg): UG/L		

	Initial Calib. Blank		Conti	inu	ing Calibrati	on	Blank ug/L		Preparation Blank		
Analyte	ug/L	С	1	С	2	С	3	С		С	М
Aluminum			120.00	υ	120.00	U	120.00	Ū			P
Antimony		Ì	5.40	ŭ	5.40	Ū	5.40	ŭ			P
Arsenic			7.00	U	7.00	U	7.00	U			P
Barium			15.00	U	15.00	U	15.00	ŭ			P
Beryllium			0.60	ŭ	0.60	ŭ	0.60	מ			P
Cadmium			2.40	U	2.40	U	2.40	U			P
Calcium			320.00	U	320.00	U	320.00	ū			P
Chromium			3.50	U	3.50	U	3.50	ŭ			P
Cobalt			4.60	U	4.60	U	4.60	ŭ			P
Copper			6.30	U	6.30	U	6.30	U			P
Iron			130.00	Ū	130.00	ŭ	130.00	Ū			P
Lead			4.00	U	4.00	Ū	4.00	מ			P
Magnesium			130.00	U	130.00	Ū	130.00	מ			P
Manganese			15.00	ŭ	15.00	ŭ	15.00	Ū			P
Nickel			6.60	Ū	6.60	ŭ	6.60	Ū			P
Potassium			500.00	U	500.00	U	500.00	ŭ			P
Selenium			5.40	U	5.40	U	5.40	U			P
Silver			0.90	U	0.90	U	0.90	U			P
Sodium			520.00	U	520.00	U	520.00	U			P
Thallium			6.50	ŭ	-6.50	J	-7.50	J			P
Vanadium			7.10	U	7.10	U	7.10	U			P
Zinc			14.00	ŭ	14.00	U	14.00	Ū			P

-3-

BLANKS

Contract:	R2101264			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0
Preparation	Blank Matrix (soil/water):	WATER		
Preparation	Blank Concentration Units (ug/L,	ppt, or mg/kg): UG/L		

	Initial Calib. Blank		Conti	inu	ing Calibrat	ion	Blank ug/L		Preparation Blank			
Analyte	ug/L	С	1	С	2	С	3	С		С		M
Aluminum	İ		120.00	U				ĺ			P	2
Antimony	[5.60	J		ĺ	ĺ				P	2
Arsenic	[Ī	7.00	U		Ī					P	5
Barium	1		15.00	ŭ		Ī					P	5
Beryllium	[0.60	Ū		ĺ	ĺ				P	5
Cadmium	[2.40	Ū		ĺ	ĺ				P	5
Calcium	[Ī	320.00	υ		Ī	ĺ				P	2
Chromium	[3.50	Ū		ĺ	ĺ				P	5
Cobalt	[İ	4.60	Ū		ĺ	ĺ				P	2
Copper	1	Ī	6.30	υ		Ì	ĺ				P	2
Iron	[Ī	130.00	Ū		Ī	ĺ				P	5
Lead	[4.00	Ū		ĺ	ĺ				P	5
Magnesium	[130.00	Ū		ĺ	ĺ				P	5
Manganese	[Ī	15.00	U		Ī	ĺ				P	5
Nickel	1	ĺĺ	6.60	ŭ		Ī					P	5
Potassium	[500.00	Ū		ĺ	ĺ				P	5
Selenium	1	Ī	5.40	Ū		Ī	j j				P	5
Silver	1	ii	0.90	υ		İ	j			İ	P	5
Sodium	1	Ī	520.00	Ū		Ī	l İ				P	5
Thallium	1	Ī	6.50	Ū		İ	j i				P	5
Vanadium		ii	7.10	υ		Ì	j				P	2
Zinc		iii	14.00	Ū		İ	j i				P	<u>-</u>

-3-

BLANKS

Contract:	R2101264			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0
Preparation	Blank Matrix (soil/water):	WATER	_	
Preparation	Blank Concentration Units (ug/L, ppt, or mg/kg): UG/	L	

	Initial Calib. Blank		Continuing Calibration Blank ug/L						Preparation Blank		
Analyte	ug/L	С	1	С	2	С	3	С		С	М
Sodium	520.	ט 00	520.0	0 U	520.	00 ט	520.00	ט			P

-3-

BLANKS

Contract:	R2101264							
Lab Code:	Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0				
Preparation	Blank Matrix (soil/water	: WATER						
Preparation	Blank Concentration Unit	s (ug/L, ppt, or mg/kg):	UG/L					

Analyte	Initial Calib. Blank ug/L	С	Cont 1	inuin C	g Calibrat 2	ion i	Blank ug/L	С	Preparation Blank	С	м
Sodium			520.00	ט	520.00	ַ					P

-5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Contract: R2101264				TK-SD-ST06	-02092021S
Lab Code:	Case No.:	SAS No.:		SDG NO.:	TK-SD-ST06-0
Matrix (soil/water):	SOIL		Level	(low/med):	LOW
% Solids for Sample:	43.4				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Q	м
Mercury	75 - 125	0.362	0.030 U	0.36	101		CV

Comments:		

-5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Contract:	R2101264				TK-SD-ST06	-02092021SD	
Lab Code:		Case No.:	SAS No.:		SDG NO.:	TK-SD-ST06-0	
Matrix (soi	l/water):	SOIL		Level	(low/med):	LOW	
% Solids fo	r Sample:	43.4					

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Q	м
Mercury	75 - 125	0.382	0.030 U	0.37	103		cv

Comments:		

METALS -6-DUPLICATES

SAMPLE NO.

TK-SD-ST06-02092021SD

Contract: R2101264

Lab Code: ____ Case No.: ___ SAS No.: SDG NO.: <u>TK-SD-ST06-0</u>

Matrix (soil/water): SOIL Level (low/med): LOW

% Solids for Sample: 43.4 % Solids for Duplicate: 43.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м
Mercury		0.362			0.382	5		cv

-7-

LABORATORY CONTROL SAMPLE

Contract:	R2101264				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0
Solid LCS	Source:	CPI	_		
Aqueous LC	S Source:				

	Aqueo	ous (ug/L			Sc	olid	(mg/K		
Analyte	True	Found	%R	True	Found	С	Limits		%R
Aluminum				200	195.11		160	240	98
Antimony				50	46.57		40	60	93
Arsenic				4	4.39		3.2	4.8	110
Barium				200	203.52		160	240	102
Beryllium				5	4.92		4	6	98
Cadmium				5	5.04		4	6	101
Mercury				0.166	0.18		.133	.199	108
Calcium				200	202.68		160	240	101
Chromium				20	20.38		16	24	102
Cobalt				50	50.49		40	60	101
Copper				25	24.85		20	30	99
Iron				100	100.94		80	120	101
Lead				50	50.21		40	60	100
Magnesium				200	196.10		160	240	98
Manganese				50	49.41		40	60	99
Nickel				50	50.36		40	60	101
Potassium				2000	1916.18		1600	2400	96
Selenium				101	88.46		80.8	121	88
Silver				5	4.75		4	6	95
Sodium				2000	1962.24		1600	2400	98
Thallium	İ			200	181.78		160	240	91
Vanadium				50	49.62	Ιİ	40	60	99
Zinc				50	48.55		40	60	97

Comments:		

General Chemistry

Analytical Report

Client: Inventum Engineering

entum Engineering Service Request: R2101264

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Basis: Dry

Lab Code: R2101264-MB

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Ammonia as Nitrogen, undistilled	350.1M	3.1 U	mg/Kg	5.0	3.1	1	02/23/21 16:17	02/22/21	
Cyanide, Total	9012B	0.17 U	mg/Kg	0.30	0.17	1	02/19/21 12:57	02/18/21	

QA/QC Report

Client: Inventum Engineering

RTTC Tanks

Sample Matrix: Soil

Service Request:

R2101264

Date Collected:

02/10/21

Date Received:

02/11/21 02/19/21

Date Analyzed: Date Extracted:

02/18/21

Duplicate Matrix Spike Summary

Cyanide, Total

Sample Name:

TS-SD-RC02-0210

•

Units: Basis:

mg/Kg

RPD

Limit

30

Dry

10-159

Lab Code:

Project:

R2101264-002

0.43

1.60

Analysis Method:

9012B

Prep Method:

Cyanide, Total

9012B Method

1.22

Matrix Spike R2101264-002MS **Duplicate Matrix Spike** R2101264-002DMS

4.20

Sample Spike Spike % Rec
Analyte Name Result Result Amount % Rec Result Amount % Rec Limits RPD

3.87

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 3/25/2021 9:01:41 AM

Superset Reference:21-0000579987 rev 00

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101264

Date Analyzed: 02/19/21 - 02/23/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/Kg
Basis:Dry

Lab Control Sample

R2101264-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen, undistilled	350.1M	25.0	25.0	100	69-142
Cyanide, Total	9012B	3.14	3.00	105	85-115

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: S

Soil

Service Request: R2101264

Date Analyzed: 02/19/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/Kg
Basis:Dry

Lab Control Sample R2101264-LCS2

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsCyanide, Total9012B17.818.09985-115

Mr. John Black Inventum Engineering 481 Carlisle Drive Herndon, VA 20170

Laboratory Results for: RTTC Tanks

Dear Mr.Black,

Enclosed are the results of the sample(s) submitted to our laboratory February 11, 2021 For your reference, these analyses have been assigned our service request number **R2101265**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

Narrative Documents

Client: Inventum Engineering Service Request: R2101265

Project: RTTC Tanks Date Received: 02/11/2021

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Two soil samples were received for analysis at ALS Environmental on 02/11/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

The RPD between the MS and the MSD was greater than the RPD limit. The percent recovery limit was met for both the MS and the MSD.

Semivoa GC:

Method 8081B, 02/18/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8151A, 02/18/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8151A, 02/18/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Metals:

No significant anomalies were noted with this analysis.

Subcontracted Analytical Parameters:

No significant anomalies were noted with this analysis.

	Midrae Pedio		
Approved by	S	Date	03/09/2021

Sample Receipt Information

Client: Inventum Engineering Service Request:R2101265

Project: RTTC Tanks

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>IIME</u>
R2101265-001	TK-SD-ST06-02092021	2/9/2021	1100
R2101265-002	TK-SD-RC02-0210	2/10/2021	1030

Printed 3/9/2021 1:09:28 PM Sample Summary

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

004192

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE Project Number ANALYSIS REQUESTED (Include Method Number and Container Preservative) Report CC PRESERVATIVE Preservative Key 0. NONE ACMBER OF CONTAINERS HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH 5. Zn. Acetate 6. MeOH 7. NaHSO₄ 8. Other REMARKS/ ALTERNATE DESCRIPTION SAMPLING FOR OFFICE USE ONLY LAB ID MATRIX DATE TIME CLIENT SAMPLE ID 8 FREEZE SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION Metals **RUSH (SURCHARGES APPLY)** I. Results Only II. Results + QC Summarles fLCS, DUP-trtS/MSD as required) Standard (10 business days-No Surcharge) III. Results + OC and Calibration Summaries REQUESTED REPORT DATE Data Validation Report with Raw Data See OAPP ... 420170 STATE WHERE SAMPLES WERE COLLECTED RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY Signature Signature Printed Name R2101265
Inventum Engineering
RTTC Tenks Firm /+15 1400 Date/Time 7/11/21/140 Date/Time

Distribution: White - Lab Copy; Yellow - Return to Originator

Cooler Receipt and Preservation Check Form

Cooler receive		tun		F01	der Nur									
	red on 2/11/	ح(by: dv	<u> </u>	COU	RIER:	MS	UPS	FEDEX	K VEI	OCITY	CLIE	NT _	
1 Were Cu	istody seals on	outside of cooler	r? ,	Y 🐧	5a	Percl	ılorate s	amples	have rec	uired b	eadspac	e?	Y 1	N QTA
2 Custody	papers proper	rly completed (in	k, signed)	? Œ N	5b	Did V	OA via	ls, Alk,	or Sulfide	e have s	ig* bub	bles?	Y	N NA
3 Did all b	ottles arrive in	good condition (unbroken	1)? (Y N	6	When	e did the	bottle	s originat	e?	ALS/	ROC	CLI	ENT
4 Circle:	Wette Dry	Ice Gel packs	presen	t? Ø N	7	Soil V	/OA rec	eived a	s: Bu	ılk E	encore	5035	set C	NA
3. Temperatur	re Readings	Date: Z/II/7	t(Ti	me: 1617	·	ID:	IR#7	K#10	P	From	Tem	Blank	San	nple Bottle
Observed Te		113	0	7°										
Within 0-6°		OP N		D N	Y	N	Y	N	Y	N	Y	N	Y	N
If <0°C, wer	re samples froz	en? Y N	7	N	Y	N	Y	N	Y	N]	Y	N	Y	7 N
If out of T	Temperature,	note packing/ice	e conditio	on:		Ice mel	ted P	oorly F	acked (d	escribe	below) [Same I	Day Rule
&Client A	Approval to R	tun Samples:		Standing A	pproval	Clien	t aware	at drop	-off Cl	ient not	ified by	/:		
All samples	held in storag	re location:	Q-007	by M	O	n 7/N	Z(at	11012					-	
_	_	orage location:		by	0:				within 4	8 hours	of sam	nling?	Y	N
		_ 												
9. \	Were all bottle.					-		10	by:	+				
10. II 11. V 12. V 13. A	Did all bottle la Were correct co Were 5035 vial Air Samples: C	labels complete (abels and tags agrontainers used for acceptable (no Cassettes / Tubes)	ee with co the tests extra labe Intact Y /	ustody pap indicated? els, not leal N with M	ers? king)? ISY/N	Cani	sters Pre	ssurize	TES TES TES d To	NO NO NO NO edlar®		flated o		Final
10. II 11. V 12. V	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	abels and tags agnoration and tage of the containers used for acceptable (no	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not leal N with M	ers? king)?	Cani	12-	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L	flated of Adde		Final pH
10. II 11. V 12. V 13. A	Did all bottle la Were correct co Were 5035 vial Air Samples: C	abels and tags agnontainers used for acceptable (no cassettes / Tubes Beagent	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M	ers? king)? ISY/N	Cani	sters Pre	ssurize	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar®	L			Final pH
10. II 11. V 12. V 13. PH ≥12	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	abels and tags agreements used for acceptable (no Cassettes / Tubes 1	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M	ers? king)? ISY/N	Cani	sters Pre	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L			1
10. II 11. V 12. V 13. A	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	abels and tags agnontainers used for s acceptable (no cassettes / Tubes la Reagent	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M	ers? king)? ISY/N	Cani	sters Pre	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L			1
10. II 11. V 12. V 13. P PH ≥12 ≤2	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	bels and tags agnontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO ₃	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M	ers? king)? ISY/N	Cani	sters Pre	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L			1
10. II 11. V 12. V 13. P PH ≥12 ≤2 ≤2 <4 5-9	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	chels and tags agnontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not leal N with M d? Lot F	cing)? IS Y / N Received	Cani	sters Pre	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L			1
10. II 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	containers used for sacceptable (no containers used for sacceptabl	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M d? Lot F No No=1 If+, c Na ₂ S ₁	ers? king)? IS Y / N Received	Cani 3day I to add 108,	sters Pre	ssurize Samp	TES TES TES TES TES TES TES TES TES TES	NO NO NO edlar® I Vol.	L			1
10. II 11. V 12. V 13. P PH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	hels and tags agnontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	ee with control the tests extra labed Intact Y / Preserved	ustody pap indicated? els, not lead N with M d? Lot F No No=1 If+, c Na ₂ S ₁	king)? IS Y / N Received Notify for contact PM 203 (625, 6	Cani 3day I to add 108,	sters Pre	ssurize Samp Adju	ZES ZES ZES ZES ZES ZES ZES ZES ZES ZES	NO NO NO edlar® Vol. Adde	d	ot Adde	ed .	1
10. II 11. V 12. V 13. P	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	naches and tags agrontainers used for sacceptable (no cassettes / Tubes I Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	ee with cut the tests extra labe Intact Y / Preserved Yes 1	ustody pap indicated? els, not leal N with M d? Lot F No No= No= Na= CN),	king)? IS Y / N Received Notify for contact PM 203 (625, 6	Cani 3day I to add 108,	sters Pre	ssurize Samp Adju	ÆS ÆS ÆS d To ble ID sted	NO NO NO edlar® Vol. Adde	d L	ot Adde	alysis.	pH
10. II 11. V 12. V 13. P PH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	hels and tags agnontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	ee with cut the tests extra labe Intact Y / Preserved Yes 1	ustody pap indicated? Els, not leal N with M d? Lot F No No=1 If+, c Na ₂ S ₂ CN),	king)? IS Y / N Received Notify for contact PM 203 (625, 6	Cani 3day I to add 108,	sters Pre	ssurize Samp Adju	ÆS ÆS ÆS d To ble ID sted	NO NO NO Odlar® Vol. Adde	d L	ot Adde	alysis.	1

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by:	@
PC Secondary Review:	

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Inventum Engineering

Project: RTTC Tanks/

Service Request: R2101265

Sample Name: TK-SD-ST06-02092021

Lab Code: R2101265-001

Sample Matrix: Soil

Date Collected: 02/9/21 **Date Received:** 02/11/21

Analysis MethodExtracted/Digested ByAnalyzed By6010CAKONZELKMCLAEN7470AAKONZELAKONZEL8081BKSERCUBALLGEIER8151AKSERCUBALLGEIER

8270D KSERCU JMISIUREWICZ

 Sample Name:
 TK-SD-RC02-0210
 Date Collected: 02/10/21

 Lab Code:
 R2101265-002
 Date Received: 02/11/21

Sample Matrix: Soil

8270D

Analysis MethodExtracted/Digested ByAnalyzed By6010CAKONZELKMCLAEN7470AAKONZELAKONZEL8081BKSERCUBALLGEIER8151AKSERCUBALLGEIER

KSERCU

JMISIUREWICZ

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed,	
method is the same as the analyti	cal method

Sample Results

Semivolatile Organic Compounds by GC/MS

Analytical Report

Client: Inventum Engineering

Service Request: R2101265 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/L

Lab Code: R2101265-001 Basis: As Received

TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Pre-Prep Method:** EPA 1311 **Prep Method:** EPA 3510C **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
1,4-Dichlorobenzene	4.8 U	400	4.8	1	02/19/21 15:07	2/17/21	
2,4,5-Trichlorophenol	4.4 U	400	4.4	1	02/19/21 15:07	2/17/21	
2,4,6-Trichlorophenol	5.6 U	400	5.6	1	02/19/21 15:07	2/17/21	
2,4-Dinitrotoluene	9.6 U	400	9.6	1	02/19/21 15:07	2/17/21	
2-Methylphenol	4.0 U	400	4.0	1	02/19/21 15:07	2/17/21	
3- and 4-Methylphenol Coelution	4.8 U	400	4.8	1	02/19/21 15:07	2/17/21	
Hexachlorobenzene	6.4 U	400	6.4	1	02/19/21 15:07	2/17/21	
Hexachlorobutadiene	4.0 U	400	4.0	1	02/19/21 15:07	2/17/21	
Hexachloroethane	4.4 U	400	4.4	1	02/19/21 15:07	2/17/21	
Nitrobenzene	6.0 U	400	6.0	1	02/19/21 15:07	2/17/21	
Pentachlorophenol (PCP)	39 U	2000	39	1	02/19/21 15:07	2/17/21	
Pyridine	4.0 U	2000	4.0	1	02/19/21 15:07	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	91	35 - 141	02/19/21 15:07	
2-Fluorobiphenyl	56	31 - 118	02/19/21 15:07	
2-Fluorophenol	46	10 - 105	02/19/21 15:07	
Nitrobenzene-d5	61	31 - 110	02/19/21 15:07	
Phenol-d6	31	10 - 107	02/19/21 15:07	
p-Terphenyl-d14	112	10 - 165	02/19/21 15:07	

Analytical Report

Client: Inventum Engineering

Service Request: R2101265 **Date Collected:** 02/10/21 10:30 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-RC02-0210 Units: ug/L

Lab Code: R2101265-002 Basis: As Received

TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Pre-Prep Method:** EPA 1311 **Prep Method:** EPA 3510C **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed 1	Date Extracted	Q
1,4-Dichlorobenzene	4.8 U	400	4.8	1	02/19/21 16:31	2/17/21	
2,4,5-Trichlorophenol	4.4 U	400	4.4	1	02/19/21 16:31	2/17/21	
2,4,6-Trichlorophenol	5.6 U	400	5.6	1	02/19/21 16:31	2/17/21	
2,4-Dinitrotoluene	9.6 U	400	9.6	1	02/19/21 16:31	2/17/21	
2-Methylphenol	4.0 U	400	4.0	1	02/19/21 16:31	2/17/21	
3- and 4-Methylphenol Coelution	4.8 U	400	4.8	1	02/19/21 16:31	2/17/21	
Hexachlorobenzene	6.4 U	400	6.4	1	02/19/21 16:31	2/17/21	
Hexachlorobutadiene	4.0 U	400	4.0	1	02/19/21 16:31	2/17/21	
Hexachloroethane	4.4 U	400	4.4	1	02/19/21 16:31	2/17/21	
Nitrobenzene	6.0 U	400	6.0	1	02/19/21 16:31	2/17/21	
Pentachlorophenol (PCP)	39 U	2000	39	1	02/19/21 16:31	2/17/21	
Pyridine	4.0 U	2000	4.0	1	02/19/21 16:31	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	82	35 - 141	02/19/21 16:31	
2-Fluorobiphenyl	58	31 - 118	02/19/21 16:31	
2-Fluorophenol	40	10 - 105	02/19/21 16:31	
Nitrobenzene-d5	57	31 - 110	02/19/21 16:31	
Phenol-d6	27	10 - 107	02/19/21 16:31	
p-Terphenyl-d14	110	10 - 165	02/19/21 16:31	

Semivolatile Organic Compounds by GC

Analytical Report

Client: Inventum Engineering

Service Request: R2101265 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/L

Lab Code: R2101265-001 Basis: As Received

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Pre-Prep Method:** EPA 1311 **Prep Method:** EPA 3510C **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Chlordane	0.13 U	2.5	0.13	1	02/18/21 21:41	2/17/21	
Endrin	0.020 U	0.50	0.020	1	02/18/21 21:41	2/17/21	
gamma-BHC (Lindane)	0.020 U	0.50	0.020	1	02/18/21 21:41	2/17/21	
Heptachlor	0.020 U	0.50	0.020	1	02/18/21 21:41	2/17/21	
Heptachlor Epoxide	0.020 U	0.50	0.020	1	02/18/21 21:41	2/17/21	
Methoxychlor	0.020 U	0.50	0.020	1	02/18/21 21:41	2/17/21	
Toxaphene	0.50 U	5.0	0.50	1	02/18/21 21:41	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	66	10 - 164	02/18/21 21:41	
Tetrachloro-m-xylene	65	10 - 147	02/18/21 21:41	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

Sample Name: TK-SD-RC02-0210 Units: ug/L

Lab Code: R2101265-002 Basis: As Received

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method:8081BPre-Prep Method:EPA 1311Prep Method:EPA 3510CPre-Prep Date:2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Chlordane	0.13 U	2.5	0.13	1	02/18/21 22:38	2/17/21	_
Endrin	0.020 U	0.50	0.020	1	02/18/21 22:38	2/17/21	
gamma-BHC (Lindane)	0.020 U	0.50	0.020	1	02/18/21 22:38	2/17/21	
Heptachlor	0.020 U	0.50	0.020	1	02/18/21 22:38	2/17/21	
Heptachlor Epoxide	0.020 U	0.50	0.020	1	02/18/21 22:38	2/17/21	
Methoxychlor	0.020 U	0.50	0.020	1	02/18/21 22:38	2/17/21	
Toxaphene	0.50 U	5.0	0.50	1	02/18/21 22:38	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	67	10 - 164	02/18/21 22:38	
Tetrachloro-m-xylene	67	10 - 147	02/18/21 22:38	

Service Request: R2101265

Analytical Report

Client: Inventum Engineering

Service Request: R2101265 **Date Collected:** 02/09/21 11:00 **Project:** RTTC Tanks

Sample Matrix: Soil **Date Received:** 02/11/21 14:00

Sample Name: TK-SD-ST06-02092021 Units: ug/L

Lab Code: R2101265-001 Basis: As Received

TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Pre-Prep Method:** EPA 1311

Prep Method: Pre-Prep Date: 2/15/21 Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4-D	0.48 U	20	0.48	1	02/18/21 17:35	2/17/21	
2.4.5-TP (Silvex)	0.48 U	20	0.48	1	02/18/21 17:35	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	55	12 - 131	02/18/21 17:35	

Analytical Report

Client: Inventum Engineering

Project: RTTC Tanks Date Collected: 02/10/21 10:30

Sample Matrix: Soil Date Received: 02/11/21 14:00

Sample Name: TK-SD-RC02-0210 Units: ug/L

Lab Code: R2101265-002 Basis: As Received

TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Pre-Prep Method:** EPA 1311

Prep Method: Method **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4-D	0.48 U	20	0.48	1	02/18/21 17:55	2/17/21	
2.4.5-TP (Silvex)	0.48 U	20	0.48	1	02/18/21 17:55	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	86	12 - 131	02/18/21 17:55	•

Service Request: R2101265

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

METALS - 1 INORGANIC ANALYSIS DATA PACKAGE

Client: Inventum Engineering Service Request: TK-SD-ST06-02092021

Project No.: R2101265 **Date Collected:** 2/9/2021

Project Name: Date Received: 2/11/2021

Matrix: WATER ug/L

Basis:

Sample Name: TK-SD-ST06-02092021 Lab Code: R2101265-001

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	С	Q
Arsenic	6010C	500	5.5	1.0	12.3	J	
Barium	6010C	1000	3.0	1.0	83.6	J	
Cadmium	6010C	100	0.350	1.0	100	Ū	
Mercury	7470A	0.300	0.077	1.0	0.300	ט	
Chromium	6010C	100	0.590	1.0	6.6	J	
Lead	6010C	100	2.1	1.0	100	Ū	
Selenium	6010C	500	6.4	1.0	13.6	J	
Silver	6010C	100	0.570	1.0	100	ט	

% Solids: 0.0

Comments:

METALS - 1 INORGANIC ANALYSIS DATA PACKAGE

Client: Inventum Engineering Service Request: TK-SD-ST06-02092021

Project No.: R2101265 **Date Collected:** 2/10/2021

Project Name: Date Received: 2/11/2021

Matrix: WATER ug/L

Basis:

Sample Name: TK-SD-RC02-0210 Lab Code: R2101265-002

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	С	Q
Arsenic	6010C	500	5.5	1.0	500	Ū	
Barium	6010C	1000	3.0	1.0	1000	U	
Cadmium	6010C	100	0.350	1.0	100	Ū	
Mercury	7470A	0.300	0.077	1.0	0.236	J	
Chromium	6010C	100	0.590	1.0	78.5	J	
Lead	6010C	100	2.1	1.0	28.8	J	
Selenium	6010C	500	6.4	1.0	10.5	J	
Silver	6010C	100	0.570	1.0	100	Ū	

% Solids: 0.0

Comments:

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Inventum Engineering Service Request: R2101265

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Extraction Method:** EPA 3510C

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
Sample Name	Lab Code	35-141	31-118	10-105
TK-SD-ST06-02092021	R2101265-001	91	56	46
TK-SD-RC02-0210	R2101265-002	82	58	40
Method Blank	RQ2101473-01	101	68	48
Method Blank	RQ2101474-01	94	66	50
Method Blank	RQ2101560-01	82	58	48
Lab Control Sample	RQ2101560-02	102	69	48
Duplicate Lab Control Sample	RQ2101560-03	90	70	46
TK-SD-ST06-02092021 MS	RQ2101560-04	99	71	46
TK-SD-ST06-02092021 DMS	RQ2101560-05	83	66	43

QA/QC Report

Client: Inventum Engineering Service Request: R2101265

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Extraction Method:** EPA 3510C

		Nitrobenzene-d5	Phenol-d6	p-Terphenyl-d14
Sample Name	Lab Code	31-110	10-107	10-165
TK-SD-ST06-02092021	R2101265-001	61	31	112
TK-SD-RC02-0210	R2101265-002	57	27	110
Method Blank	RQ2101473-01	73	31	113
Method Blank	RQ2101474-01	68	36	118
Method Blank	RQ2101560-01	64	30	103
Lab Control Sample	RQ2101560-02	69	34	120
Duplicate Lab Control Sample	RQ2101560-03	66	32	104
TK-SD-ST06-02092021 MS	RQ2101560-04	68	35	117
TK-SD-ST06-02092021 DMS	RQ2101560-05	62	32	96

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request:
Date Collected:

R2101265

Date Received:

02/09/21 02/11/21

Date Received:
Date Analyzed:

02/19/21

Date Extracted:

02/17/21

Duplicate Matrix Spike Summary

TCLP Semivolatile Organic Compounds by GC/MS

TK-SD-ST06-02092021

Units: Basis: ug/L

As Received

Lab Code:

R2101265-001

Analysis Method: 8270D

Prep Method:

Sample Name:

EPA 3510C

Matrix Spike

Duplicate Matrix Spike

RO2101560-05

		KQ2	2101300-04		r	Q2101300-0)3			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	4.8 U	299 J	800	37	305 J	800	38	10-124	2	30
2,4,5-Trichlorophenol	4.4 U	614	800	77	534	800	67	48-134	14	30
2,4,6-Trichlorophenol	5.6 U	602	800	75	517	800	65	44-135	15	30
2,4-Dinitrotoluene	9.6 U	680	800	85	588	800	73	37-143	15	30
2-Methylphenol	4.0 U	465	800	58	466	800	58	37-102	<1	30
3- and 4-Methylphenol Coelution	4.8 U	478	800	60	458	800	57	30-95	4	30
Hexachlorobenzene	6.4 U	697	800	87	640	800	80	42-125	9	30
Hexachlorobutadiene	4.0 U	339 J	800	42	329 J	800	41	10-111	3	30
Hexachloroethane	4.4 U	295 J	800	37	280 J	800	35	12-101	5	30
Nitrobenzene	6.0 U	483	800	60	457	800	57	35-112	6	30
Pentachlorophenol (PCP)	39 U	653 J	800	82	569 J	800	71	29-164	14	30
Pyridine	4.0 U	199 J	800	25	274 J	800	34	10-123	32*	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101473-01 Basis: As Received

TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method:8270DPre-Prep Method:EPA 1311Prep Method:EPA 3510CPre-Prep Date:2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,4-Dichlorobenzene	4.8 U	400	4.8	1	02/19/21 17:54	2/17/21	
2,4,5-Trichlorophenol	4.4 U	400	4.4	1	02/19/21 17:54	2/17/21	
2,4,6-Trichlorophenol	5.6 U	400	5.6	1	02/19/21 17:54	2/17/21	
2,4-Dinitrotoluene	9.6 U	400	9.6	1	02/19/21 17:54	2/17/21	
2-Methylphenol	4.0 U	400	4.0	1	02/19/21 17:54	2/17/21	
3- and 4-Methylphenol Coelution	4.8 U	400	4.8	1	02/19/21 17:54	2/17/21	
Hexachlorobenzene	6.4 U	400	6.4	1	02/19/21 17:54	2/17/21	
Hexachlorobutadiene	4.0 U	400	4.0	1	02/19/21 17:54	2/17/21	
Hexachloroethane	4.4 U	400	4.4	1	02/19/21 17:54	2/17/21	
Nitrobenzene	6.0 U	400	6.0	1	02/19/21 17:54	2/17/21	
Pentachlorophenol (PCP)	39 U	2000	39	1	02/19/21 17:54	2/17/21	
Pyridine	4.0 U	2000	4.0	1	02/19/21 17:54	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	101	35 - 141	02/19/21 17:54	
2-Fluorobiphenyl	68	31 - 118	02/19/21 17:54	
2-Fluorophenol	48	10 - 105	02/19/21 17:54	
Nitrobenzene-d5	73	31 - 110	02/19/21 17:54	
Phenol-d6	31	10 - 107	02/19/21 17:54	
p-Terphenyl-d14	113	10 - 165	02/19/21 17:54	

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101474-01 Basis: As Received

TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method:8270DPre-Prep Method:EPA 1311Prep Method:EPA 3510CPre-Prep Date:2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	Oate Extracted	Q
1,4-Dichlorobenzene	4.8 U	400	4.8	1	02/19/21 18:23	2/17/21	
2,4,5-Trichlorophenol	4.4 U	400	4.4	1	02/19/21 18:23	2/17/21	
2,4,6-Trichlorophenol	5.6 U	400	5.6	1	02/19/21 18:23	2/17/21	
2,4-Dinitrotoluene	9.6 U	400	9.6	1	02/19/21 18:23	2/17/21	
2-Methylphenol	4.0 U	400	4.0	1	02/19/21 18:23	2/17/21	
3- and 4-Methylphenol Coelution	4.8 U	400	4.8	1	02/19/21 18:23	2/17/21	
Hexachlorobenzene	6.4 U	400	6.4	1	02/19/21 18:23	2/17/21	
Hexachlorobutadiene	4.0 U	400	4.0	1	02/19/21 18:23	2/17/21	
Hexachloroethane	4.4 U	400	4.4	1	02/19/21 18:23	2/17/21	
Nitrobenzene	6.0 U	400	6.0	1	02/19/21 18:23	2/17/21	
Pentachlorophenol (PCP)	39 U	2000	39	1	02/19/21 18:23	2/17/21	
Pyridine	4.0 U	2000	4.0	1	02/19/21 18:23	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	94	35 - 141	02/19/21 18:23	
2-Fluorobiphenyl	66	31 - 118	02/19/21 18:23	
2-Fluorophenol	50	10 - 105	02/19/21 18:23	
Nitrobenzene-d5	68	31 - 110	02/19/21 18:23	
Phenol-d6	36	10 - 107	02/19/21 18:23	
p-Terphenyl-d14	118	10 - 165	02/19/21 18:23	

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101560-01 Basis: As Received

TCLP Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,4-Dichlorobenzene	1.2 U	40	1.2	1	02/19/21 13:43	2/17/21	
2,4,5-Trichlorophenol	1.1 U	40	1.1	1	02/19/21 13:43	2/17/21	
2,4,6-Trichlorophenol	1.4 U	40	1.4	1	02/19/21 13:43	2/17/21	
2,4-Dinitrotoluene	2.4 U	40	2.4	1	02/19/21 13:43	2/17/21	
2-Methylphenol	1.0 U	40	1.0	1	02/19/21 13:43	2/17/21	
3- and 4-Methylphenol Coelution	1.2 U	40	1.2	1	02/19/21 13:43	2/17/21	
Hexachlorobenzene	1.6 U	40	1.6	1	02/19/21 13:43	2/17/21	
Hexachlorobutadiene	1.0 U	40	1.0	1	02/19/21 13:43	2/17/21	
Hexachloroethane	1.1 U	40	1.1	1	02/19/21 13:43	2/17/21	
Nitrobenzene	1.5 U	40	1.5	1	02/19/21 13:43	2/17/21	
Pentachlorophenol (PCP)	9.7 U	200	9.7	1	02/19/21 13:43	2/17/21	
Pyridine	1.0 U	200	1.0	1	02/19/21 13:43	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	82	35 - 141	02/19/21 13:43	
2-Fluorobiphenyl	58	31 - 118	02/19/21 13:43	
2-Fluorophenol	48	10 - 105	02/19/21 13:43	
Nitrobenzene-d5	64	31 - 110	02/19/21 13:43	
Phenol-d6	30	10 - 107	02/19/21 13:43	
p-Terphenyl-d14	103	10 - 165	02/19/21 13:43	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Duplicate Lab Control Sample Summary
TCLP Semivolatile Organic Compounds by GC/MS

Units:ug/L

Service Request: R2101265

Date Analyzed: 02/19/21

Basis: As Received

Lab Control Sample

Duplicate Lab Control Sample

RQ2101560-02

RQ2101560-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,4-Dichlorobenzene	8270D	33.6 J	80.0	42	34.9 J	80.0	44	10-124	4	30
2,4,5-Trichlorophenol	8270D	61.9	80.0	77	56.6	80.0	71	48-134	9	30
2,4,6-Trichlorophenol	8270D	57.9	80.0	72	56.8	80.0	71	44-135	2	30
2,4-Dinitrotoluene	8270D	69.2	80.0	87	62.2	80.0	78	54-130	11	30
2-Methylphenol	8270D	50.6	80.0	63	48.0	80.0	60	47-100	5	30
3- and 4-Methylphenol Coelution	8270D	49.9	80.0	62	46.1	80.0	58	40-92	8	30
Hexachlorobenzene	8270D	73.3	80.0	92	65.1	80.0	81	53-123	12	30
Hexachlorobutadiene	8270D	35.4 J	80.0	44	38.1 J	80.0	48	16-95	7	30
Hexachloroethane	8270D	32.1 J	80.0	40	32.1 J	80.0	40	15-92	<1	30
Nitrobenzene	8270D	49.6	80.0	62	49.7	80.0	62	46-108	<1	30
Pentachlorophenol (PCP)	8270D	58.5 J	80.0	73	50.0 J	80.0	62	29-164	16	30
Pyridine	8270D	34.6 J	80.0	43	35.4 J	80.0	44	10-123	2	30

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Inventum Engineering Service Request: R2101265

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Extraction Method:** EPA 3510C

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10-164	10-147	
TK-SD-ST06-02092021	R2101265-001	66	65	
TK-SD-RC02-0210	R2101265-002	67	67	
Method Blank	RQ2101473-01	61	61	
Method Blank	RQ2101474-01	50	44	
Method Blank	RQ2101558-01	64	62	
Lab Control Sample	RQ2101558-02	63	61	
Duplicate Lab Control Sample	RQ2101558-03	63	63	
TK-SD-ST06-02092021 MS	RQ2101558-04	54	48	
TK-SD-ST06-02092021 DMS	RQ2101558-05	86	86	

QA/QC Report

Client:Inventum EngineeringService Request:R2101265Project:RTTC TanksDate Collected:02/09/21Sample Matrix:SoilDate Received:02/11/21Date Analyzed:02/18/21

Date Analyzed: 02/18/21 **Date Extracted:** 02/17/21

Duplicate Matrix Spike

Duplicate Matrix Spike Summary

TCLP Organochlorine Pesticides by Gas Chromatography

Sample Name: TK-SD-ST06-02092021 Units: ug/L

Matrix Spike

Lab Code: R2101265-001 Basis: As Received

Analysis Method: 8081B **Prep Method:** EPA 3510C

				1		- I	<u>I</u>			
				RQ2101558-04			RQ2101558-05			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Endrin	0.020 U	2.32	4.00	58	4.51	4.00	113	48-165	64*	30
gamma-BHC (Lindane)	0.020 U	2.26	4.00	57	4.30	4.00	108	43-164	62*	30
Heptachlor	0.020 U	1.87	4.00	47	3.40	4.00	85	29-168	58*	30
Heptachlor Epoxide	0.020 U	2.19	4.00	55	4.18	4.00	104	29-180	62*	30
Methoxychlor	0.020 U	2.56	4.00	64	4.69	4.00	117	38-162	59*	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 3/9/2021 1:09:46 PM

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101473-01 Basis: As Received

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method:8081BPre-Prep Method:EPA 1311Prep Method:EPA 3510CPre-Prep Date:2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Chlordane	0.13 U	2.5	0.13	1	02/18/21 23:36	2/17/21	
Endrin	0.020 U	0.50	0.020	1	02/18/21 23:36	2/17/21	
gamma-BHC (Lindane)	0.020 U	0.50	0.020	1	02/18/21 23:36	2/17/21	
Heptachlor	0.020 U	0.50	0.020	1	02/18/21 23:36	2/17/21	
Heptachlor Epoxide	0.020 U	0.50	0.020	1	02/18/21 23:36	2/17/21	
Methoxychlor	0.020 U	0.50	0.020	1	02/18/21 23:36	2/17/21	
Toxaphene	0.50 U	5.0	0.50	1	02/18/21 23:36	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	61	10 - 164	02/18/21 23:36	
Tetrachloro-m-xylene	61	10 - 147	02/18/21 23:36	

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101474-01 Basis: As Received

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method:8081BPre-Prep Method:EPA 1311Prep Method:EPA 3510CPre-Prep Date:2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Chlordane	0.13 U	2.5	0.13	1	02/19/21 00:14	2/17/21	
Endrin	0.020 U	0.50	0.020	1	02/19/21 00:14	2/17/21	
gamma-BHC (Lindane)	0.020 U	0.50	0.020	1	02/19/21 00:14	2/17/21	
Heptachlor	0.020 U	0.50	0.020	1	02/19/21 00:14	2/17/21	
Heptachlor Epoxide	0.020 U	0.50	0.020	1	02/19/21 00:14	2/17/21	
Methoxychlor	0.020 U	0.50	0.020	1	02/19/21 00:14	2/17/21	
Toxaphene	0.50 U	5.0	0.50	1	02/19/21 00:14	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	50	10 - 164	02/19/21 00:14	
Tetrachloro-m-xylene	44	10 - 147	02/19/21 00:14	

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project:RTTC TanksDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101558-01 Basis: As Received

TCLP Organochlorine Pesticides by Gas Chromatography

Analysis Method: 8081B **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Chlordane	0.13 U	0.25	0.13	1	02/18/21 20:44	2/17/21	
Endrin	0.020 U	0.050	0.020	1	02/18/21 20:44	2/17/21	
gamma-BHC (Lindane)	0.020 U	0.050	0.020	1	02/18/21 20:44	2/17/21	
Heptachlor	0.020 U	0.050	0.020	1	02/18/21 20:44	2/17/21	
Heptachlor Epoxide	0.020 U	0.050	0.020	1	02/18/21 20:44	2/17/21	
Methoxychlor	0.020 U	0.050	0.020	1	02/18/21 20:44	2/17/21	
Toxaphene	0.50 U	0.50	0.50	1	02/18/21 20:44	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	64	10 - 164	02/18/21 20:44	
Tetrachloro-m-xylene	62	10 - 147	02/18/21 20:44	

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101265 Date Analyzed: 02/18/21

Duplicate Lab Control Sample Summary TCLP Organochlorine Pesticides by Gas Chromatography

Units:ug/L

Basis: As Received

Lab Control Sample

Duplicate Lab Control Sample

RQ2101558-02

RQ2101558-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Endrin	8081B	0.308	0.400	77	0.299	0.400	75	56-143	3	30
gamma-BHC (Lindane)	8081B	0.284	0.400	71	0.277	0.400	69	41-149	2	30
Heptachlor	8081B	0.249	0.400	62	0.253	0.400	63	32-141	1	30
Heptachlor Epoxide	8081B	0.288	0.400	72	0.283	0.400	71	51-143	2	30
Methoxychlor	8081B	0.312	0.400	78	0.310	0.400	77	56-149	<1	30

QA/QC Report

Service Request: R2101265

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Extraction Method:** Method

		DCAA
Sample Name	Lab Code	12-131
TK-SD-ST06-02092021	R2101265-001	55
TK-SD-RC02-0210	R2101265-002	86
Method Blank	RQ2101473-01	41
Method Blank	RQ2101474-01	51
Method Blank	RQ2101559-01	59
Lab Control Sample	RQ2101559-02	79
Duplicate Lab Control Sample	RQ2101559-03	72
TK-SD-RC02-0210 MS	RQ2101559-04	84
TK-SD-RC02-0210 DMS	RQ2101559-05	92

QA/QC Report

Client: **Inventum Engineering Project:**

Service Request: Date Collected:

R2101265

Sample Matrix:

RTTC Tanks

02/10/21 02/11/21

Soil

Date Received: Date Analyzed:

02/18/21

Date Extracted:

02/17/21

Duplicate Matrix Spike Summary TCLP Chlorinated Herbicides by GC

Sample Name:

Prep Method:

TK-SD-RC02-0210

Units:

ug/L

Lab Code:

R2101265-002

Basis:

As Received

Analysis Method:

8151A

Method

Matrix Spike

Duplicate Matrix Spike

RQ2101559-05

			RQ210	1559-04		RQ2101	559-05			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,4-D	0.48 U	9.79 J	20.0	49	10.3 J	20.0	52	26-154	5	30
2,4,5-TP (Silvex)	0.48 U	9.13 J	20.0	46	10.0 J	20.0	50	21-120	10	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 3/9/2021 1:09:55 PM

Analytical Report

Client: Inventum Engineering Service Request: R2101265

Project: RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101473-01 Basis: As Received

TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Pre-Prep Method:** EPA 1311

Prep Method: Method **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4-D	0.48 U	20	0.48	1	02/18/21 19:34	2/17/21	
2.4.5-TP (Silvex)	0.48 U	20	0.48	1	02/18/21 19:34	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	41	12 - 131	02/18/21 19:34	

Analytical Report

Client: Inventum Engineering

Project:

Service Request: R2101265

RTTC Tanks Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101474-01 Basis: As Received

TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Pre-Prep Method:** EPA 1311

Prep Method: Method **Pre-Prep Date:** 2/15/21

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4-D	0.48 U	20	0.48	1	02/18/21 20:13	2/17/21	_
2.4.5-TP (Silvex)	0.48 U	20	0.48	1	02/18/21 20:13	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	51	12 - 131	02/18/21 20:13	

Analytical Report

Client: Inventum Engineering

Service Request: R2101265 **Project:** RTTC Tanks **Date Collected:** NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Units: ug/L

Lab Code: RQ2101559-01 Basis: As Received

TCLP Chlorinated Herbicides by GC

Analysis Method: 8151A **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4-D	0.12 U	2.0	0.12	1	02/18/21 16:36	2/17/21	_
2,4,5-TP (Silvex)	0.12 U	2.0	0.12	1	02/18/21 16:36	2/17/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
DCAA	59	12 - 131	02/18/21 16:36		

QA/QC Report

Client: Inventum Engineering

Project: RTTC Tanks

Sample Matrix: Soil

Service Request: R2101265

Date Analyzed: 02/18/21

Duplicate Lab Control Sample Summary TCLP Chlorinated Herbicides by GC

Units:ug/L

Basis: As Received

Lab Control Sample

Duplicate Lab Control Sample

RQ2101559-02

RQ2101559-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,4-D	8151A	1.72 J	2.00	86	1.84 J	2.00	92	26-154	7	30
2,4,5-TP (Silvex)	8151A	1.52 J	2.00	76	1.61 J	2.00	81	21-120	6	30

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

METALS

-3-

BLANKS

Contract:	R2101265			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	TK-SD-ST06-0
Preparation	Blank Matrix (soil/water):	WATER		
Preparation	Blank Concentration Units (ug/L,	ppt, or mg/kg): UG/L		

	Initial Calib. Blank		Continuing Calibration Blank ug/L Preparation Blank										
Analyte	ug/L	С	1	С	2	С	3	С			С		M
Arsenic	5.50	U	5.50	U	5.50	υ	5.50	U	I	5.500	U	$\overline{\Pi}$	P
Barium	3.00	U	3.00	Ū	3.00	U	3.00	Ū	Ī	3.000	U	ĪĪ	P
Cadmium	0.35	υ	0.35	Ū	0.35	υ	0.35	Ū	Ī	0.350	Ū	ΪĪ	P
Mercury	0.077	U	0.077	Ū	0.077	Ū	0.077	ŭ	Ī	0.077	Ū	ĪĪ	cv
Chromium	0.59	U	0.59	Ū	0.59	Ū	0.59	ŭ	Ī	0.590	Ū	ĪĪ	P
Lead	-2.50	J	2.10	Ū	2.10	Ū	2.10	ŭ	Ī	2.100	Ū	Ī	P
Selenium	6.40	U	6.40	Ū	6.40	Ū	6.40	ŭ		6.400	Ū		P
Silver	0.57	U	0.57	Ū	0.57	U	0.57	Ū		0.570	U	Ī	P

Comments:

METALS

-3-

BLANKS

Contract:	R2101265					
Lab Code:		Case No.:	SAS No.:		SDG NO.:	TK-SD-ST06-0
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	tration Units (ug/L, ppt, or mg/kg):	UG/L		

	Initial Calib. Blank		Conti	inu	ing Calibrati	on	Blank ug/L			Preparation Blank			
Analyte	ug/L	С	1	С	2	С	3	С			С	ı	м
Arsenic	İ		5.50	υ	5.50	U						P	
Barium	1		3.00	υ	3.00	U			Ì			P	
Cadmium	1		0.35	υ	0.35	U	ĺ					P	
Mercury	1		0.077	υ					Ì			C	v
Chromium	1		0.59	υ	0.59	U			Ì			P	
Lead	1	İ	2.10	υ	2.10	U	ĺ	Ì	Ì			P	
Selenium	1	İ	6.40	υ	6.40	υ						P	
Silver			0.57	υ	0.57	U						P	

Comments:

METALS -5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

TK-SD-ST06-02092021S	

Contract: R2101265

Lab Code: _____ Case No.: ____ SAS No.: ____ SDG NO.: <u>TK-SD-ST06-0</u>

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Q	М
Arsenic	75 - 125	1020.00	12.30 J	1000.0	101		P
Barium	75 - 125	2050.00	83.60 J	2000.0	98		P
Cadmium	75 - 125	468.00	0.35 U	500.0	94		P
Chromium	75 - 125	489.00	6.60 J	500.0	96		P
Lead	75 - 125	476.00	2.10 U	500.0	95		P
Selenium	75 - 125	1050.00	13.60 J	1000.0	104		P
Silver	75 - 125	274.00	0.57 บ	250.0	110		P

Comments:		
_		

METALS -5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

TK-SD-ST06-02092021SD

Contract: R2101265

Lab Code: Case No.: SAS No.: SDG NO.: TK-SD-ST06-0

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Q	м
Arsenic	75 - 125	1130.00	12.30 J	1000.0	112		P
Barium	75 - 125	2300.00	83.60 J	2000.0	111		P
Cadmium	75 - 125	521.00	0.35 ป	500.0	104		P
Chromium	75 - 125	544.00	6.60 ј	500.0	107		P
Lead	75 - 125	530.00	2.10 U	500.0	106		P
Selenium	75 - 125	1150.00	13.60 J	1000.0	114		P
Silver	75 - 125	306.00	0.57 U	250.0	122		P

Comments:			
•			

METALS -6-DUPLICATES

SAMPLE NO.

TK-SD-ST06-02092021SD

Contract: R2101265

Lab Code: ____ Case No.: ___ SAS No.: SDG NO.: <u>TK-SD-ST06-0</u>

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0 % Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit	Sample (S) C	Duplicate (D) C	RPD	Q	м
Arsenic		1020.00	1130.00	10		P
Barium	I	2050.00	2300.00	11		P
Cadmium		468.00	521.00	11		P
Chromium		489.00	544.00	11		P
Lead		476.00	530.00	11		P
Selenium		1050.00	1150.00	9		P
Silver		274.00	306.00	11		P

METALS

-7-

LABORATORY CONTROL SAMPLE

Contract: R	2101265				
Lab Code:		Case No.:	SAS No.:	SDG N	O.: TK-SD-ST06-0
Solid LCS Sou	irce:				<u></u>
Aqueous LCS S	Source:	CPI			

	Aqueous (ug/L			Solid (mg/K				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	1000	985	98					
Barium	2000	2020	101					
Cadmium	500	508	102					
Mercury	1.000	1.060	106					
Chromium	500	507	101					
Lead	500	499	100					
Selenium	1000	989	99					
Silver	250	246	98					

Comments:

Subcontracted Analytical Parameters

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

February 25, 2021

Reports and Invoices ALS Environmental 1565 Jefferson Road Building 300, Suite 360 Rochester, NY 14623

Certificate of Analysis

Project Name: Custom EDD, MDL, QC Workorder: 3158025

Purchase Order: **58-R2101265** Workorder ID: **AER557|R2101265**

Dear Reports Invoices:

Enclosed are the analytical results for samples received by the laboratory on Monday, February 15, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Mr. Michael Chevalier, Mr. Brady Kalkman, Ms. Janice Jaeger

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Report ID: 3158025 - 2/25/2021 Page 1 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3158025 AER557|R2101265

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3158025001	TK-SD-ST06-02092021	Solid	2/9/2021 11:00	2/15/2021 09:26	Collected by Clier
3158025002	TK-SD-RC02-0210	Solid	2/10/2021 10:30	2/15/2021 09:26	Collected by Clier

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 2 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3158025 AER557|R2101265

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- C Please reference the Project Summary section of this Certificate of Analysis for case narrative comments.
- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
 PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container

RegLmt Regulatory Limit

- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 3 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

PROJECT SUMMARY

Workorder: 3158025 AER557|R2101265

Workorder Comments

Temperature of sample taken at time of sample receipt in the laboratory. See chain of custody for actual temperature.

Project was received at a temperature greater than six degrees Celsius.

Project was received without the presence of ice.

Sample Comments

Lab ID: 3158025001 Sample ID: TK-SD-ST06-

02092021

Sample Type: SAMPLE

The analysis for ignitability is performed using a modified method 1010A that provides a flashpoint temperature for a solid sample.

Lab ID: 3158025002 Sample ID: TK-SD-RC02-0210 Sample Type: SAMPLE

The analysis for ignitability is performed using a modified method 1010A that provides a flashpoint temperature for a solid sample.

Report ID: 3158025 - 2/25/2021 Page 4 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3158025 AER557|R2101265

Lab ID: 3158025001 Date Collected: 2/9/2021 11:00 Matrix: Solid

Sample ID: TK-SD-ST06-02092021 Date Received: 2/15/2021 09:26

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared B	Ву	Analyzed	Ву	Cntr
TCLP EPA 1311 VOLATILE	ORGANIC										
Benzene	ND	С	ug/L	20.0	8.0	SW846 8260C			2/23/21 13:03	TMP	Α
2-Butanone	236	С	ug/L	200	60.0	SW846 8260C			2/23/21 13:03	TMP	Α
Carbon Tetrachloride	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
Chlorobenzene	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
Chloroform	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
1,2-Dichloroethane	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
1,1-Dichloroethene	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
Tetrachloroethene	ND	С	ug/L	20.0	8.0	SW846 8260C			2/23/21 13:03	TMP	Α
Trichloroethene	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
Vinyl Chloride	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:03	TMP	Α
Surrogate Recoveries	Results	Flag	Units	Limits		Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	102	С	%	62 - 133		SW846 8260C			2/23/21 13:03	TMP	Α
4-Bromofluorobenzene (S)	89.3	С	%	79 - 114		SW846 8260C			2/23/21 13:03	TMP	Α
Dibromofluoromethane (S)	98.3	С	%	78 - 116		SW846 8260C			2/23/21 13:03	TMP	Α
Toluene-d8 (S)	90.8	С	%	76 - 127		SW846 8260C			2/23/21 13:03	TMP	Α
WET CHEMISTRY											
Cyanide, Reactive	ND	С	mg/L	10	0.011	SW-846 7.3CN	2/21/21 15:00 V	/XF	2/23/21 08:03	MXF	Α
Ignitability	See Comment	C,1, 2	Deg. F			SW-846 1010AM			2/17/21 12:43	II	Α
Moisture	50.1	С	%	0.1	0.01	S2540G-11			2/16/21 15:00	Ш	
Sulfide, Reactive	7.2	С	mg/kg	6.2	1.4	SW846 7.3	2/21/21 15:00 V	/XF	2/21/21 21:40	VXF	Α
Total Solids	49.9	С	%	0.1	0.01	S2540G-11			2/16/21 15:00	Ш	

Ms. Sarah S Leung Project Coordinator

Report ID: 3158025 - 2/25/2021 Page 5 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3158025 AER557|R2101265

Lab ID: 3158025002 Date Collected: 2/10/2021 10:30 Matrix: Solid

Sample ID: TK-SD-RC02-0210 Date Received: 2/15/2021 09:26

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared E	Зу	Analyzed	Ву	Cntr
TCLP EPA 1311 VOLATILE	ORGANIC										
Benzene	ND	С	ug/L	20.0	8.0	SW846 8260C			2/23/21 13:26	TMP	Α
2-Butanone	ND	С	ug/L	200	60.0	SW846 8260C			2/23/21 13:26	TMP	Α
Carbon Tetrachloride	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
Chlorobenzene	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
Chloroform	5.2J	C,J	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
1,2-Dichloroethane	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
1,1-Dichloroethene	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
Tetrachloroethene	1090	С	ug/L	20.0	8.0	SW846 8260C			2/23/21 13:26	TMP	Α
Trichloroethene	18.1J	C,J	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
Vinyl Chloride	ND	С	ug/L	20.0	4.0	SW846 8260C			2/23/21 13:26	TMP	Α
Surrogate Recoveries	Results	Flag	Units	Limits		Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	110	С	%	62 - 133		SW846 8260C			2/23/21 13:26	TMP	Α
4-Bromofluorobenzene (S)	91.3	С	%	79 - 114		SW846 8260C			2/23/21 13:26	TMP	Α
Dibromofluoromethane (S)	104	С	%	78 - 116		SW846 8260C			2/23/21 13:26	TMP	Α
Toluene-d8 (S)	88.6	С	%	76 - 127		SW846 8260C			2/23/21 13:26	TMP	Α
WET CHEMISTRY											
Cyanide, Reactive	ND	С	mg/L	10	0.011	SW-846 7.3CN	2/21/21 15:00 \	/XF	2/23/21 08:03	MXF	Α
Ignitability	See Comment	C,1, 2	Deg. F			SW-846 1010AM			2/17/21 12:43	II	Α
Moisture	30.0	С	%	0.1	0.01	S2540G-11			2/16/21 15:00	Ш	
Sulfide, Reactive	8.8	С	mg/kg	6.2	1.4	SW846 7.3	2/21/21 15:00 \	/XF	2/21/21 21:40	VXF	Α
Total Solids	70.0	С	%	0.1	0.01	S2540G-11			2/16/21 15:00	Ш	

Ms. Sarah S Leung Project Coordinator

Report ID: 3158025 - 2/25/2021 Page 6 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3158025 AER557|R2101265

PARAMETER QU	JALIFIER	RS			
Lab ID	#	Sample ID	Analytical Method	Analyte	
3158025001	1	TK-SD-ST06-02092021	SW-846 1010AM	Ignitability	
According to Pa/L	JSEPA re	egulations, this sample is not con-	sidered to be ignitable. (Ref 40 CFF	261.21)	
3158025001	2	TK-SD-ST06-02092021	SW-846 1010AM	Ignitability	
The sample did n	ot flash u	ıp to 199°F			
3158025002	1	TK-SD-RC02-0210	SW-846 1010AM	Ignitability	
According to Pa/U	JSEPA re	egulations, this sample is not con	sidered to be ignitable. (Ref 40 CFF	261.21)	
3158025002	2	TK-SD-RC02-0210	SW-846 1010AM	Ignitability	
The sample did n	ot flash u	ıp to 199°F			

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 7 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3158025 AER557|R2101265

Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3158025001	TK-SD-ST06-02092021	S2540G-11		
3158025001	TK-SD-ST06-02092021	SW-846 1010AM		
3158025001	TK-SD-ST06-02092021	SW-846 7.3CN	SW-846 7.3CN	
3158025001	TK-SD-ST06-02092021	SW846 7.3	SW846 7.3	
3158025001	TK-SD-ST06-02092021	SW846 8260C		SW846 1311
3158025002	TK-SD-RC02-0210	S2540G-11		
3158025002	TK-SD-RC02-0210	SW-846 1010AM		
3158025002	TK-SD-RC02-0210	SW-846 7.3CN	SW-846 7.3CN	
3158025002	TK-SD-RC02-0210	SW846 7.3	SW846 7.3	
3158025002	TK-SD-RC02-0210	SW846 8260C		SW846 1311

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 8 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: VOMS/58421 Analysis Method: SW846 8260C

QC Batch Method: SW846 8260C

Associated Lab Samples: 3158025001, 3158025002

METHOD BLANK: 3282320

	Blank		Reporting
Parameter	Result	Units	Limit
Benzene	ND	ug/L	1.0
2-Butanone	ND	ug/L	10.0
Carbon Tetrachloride	ND	ug/L	1.0
Chlorobenzene	ND	ug/L	1.0
Chloroform	ND	ug/L	1.0
1,2-Dichloroethane	ND	ug/L	1.0
1,1-Dichloroethene	ND	ug/L	1.0
Tetrachloroethene	ND	ug/L	1.0
Trichloroethene	ND	ug/L	1.0
Vinyl Chloride	ND	ug/L	1.0
1,2-Dichloroethane-d4 (S)	101	%	62 - 133
4-Bromofluorobenzene (S)	90.1	%	79 - 114
Dibromofluoromethane (S)	95.3	%	78 - 116
Toluene-d8 (S)	90.1	%	76 - 127

LABORATORY CONTROL SA	MPLE: 3282321				
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
Benzene	108	ug/L	20	21.7	80 - 124
2-Butanone	125	ug/L	100	125	50 - 152
Carbon Tetrachloride	106	ug/L	20	21.2	62 - 132
Chlorobenzene	91.5	ug/L	20	18.3	85 - 117
Chloroform	106	ug/L	20	21.2	78 - 122
1,2-Dichloroethane	111	ug/L	20	22.3	70 - 133
1,1-Dichloroethene	115	ug/L	20	23.0	63 - 128
Tetrachloroethene	90.3	ug/L	20	18.1	72 - 124
Trichloroethene	90.9	ug/L	20	18.2	77 - 124
Vinyl Chloride	93.2	ug/L	20	18.6	27 - 138
1,2-Dichloroethane-d4 (S)	89.3	%			62 - 133
4-Bromofluorobenzene (S)	79.9	%			79 - 114
Dibromofluoromethane (S)	88.7	%			78 - 116
Toluene-d8 (S)	78	%			76 - 127

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 9 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: WCPR/53939 Analysis Method: SW-846 7.3CN

QC Batch Method: SW-846 7.3CN

Associated Lab Samples: 3158025001, 3158025002

METHOD BLANK: 3281267

Parameter

Blank Reporting Result Units Limit

Cyanide, Reactive

ND mg/L 10

LABORATORY CONTROL SAMPLE: 3281268

LCS % LCS % Rec Spike Rec Conc. Result Limit Parameter Units Cyanide, Reactive 9 mg/L 10 0.90J 0 - 92

SAMPLE DUPLICATE: 3281269 ORIGINAL: 3158496001

Parameter
yanide, Reactive

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 10 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: WCPR/53940 Analysis Method: SW846 7.3

QC Batch Method: SW846 7.3

Associated Lab Samples: 3158025001, 3158025002

METHOD BLANK: 3281270

ParameterBlank ResultReporting LimitSulfide, Reactive4.0Jmg/kg6.2

LABORATORY CONTROL SAMPLE: 3281271

LCS % LCS Spike % Rec Rec Conc. Result Limit Parameter Units Sulfide, Reactive 67.1 mg/kg 570 382 49 - 148

SAMPLE DUPLICATE: 3281272 ORIGINAL: 3158496001

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 11 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: WETC/250849 Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3158	3025001, 315	58025002				
SAMPLE DUPLICATE: 3278740	ORIGINAL	: 3158024	001			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture Total Solids	71.2625 28.7374	% %	71.1217 28.8782	.2 .49	10 5	
Total Solids	20.7374	70	20.0702	.49	5	
SAMPLE DUPLICATE: 3278720	ORIGINAL	: 3158083	001			
	Original Result		DUP Result	RPD	Max RPD	
Parameter Total Solids	5.1555	Units %	4.8543	6.02*	5	
iotai Solius	3.1000	,,	7.00-10	0.02	Ü	
SAMPLE DUPLICATE: 3278721	ORIGINAL	: 3158106	010			
	Original Result		DUP	RPD	Max RPD	
Parameter		Units	Result			
Moisture Total Solids	11.9087 88.0912	% %	13.3263 86.6736	11.2* 1.62	10 5	
Total Gollag	00.00.1	,,	00.0.00	2	· ·	
SAMPLE DUPLICATE: 3278722	ORIGINAL	: 3158111	001			
_	Original Result		DUP Result	RPD	Max RPD	
Parameter		Units %	18.5076			
Moisture Total Solids	18.5737 81.4262	% %	81.4923	.36 .08	10 5	
Total Gollas	0111202	,,	0.1.1020	.00	· ·	
SAMPLE DUPLICATE: 3278723	ORIGINAL	: 3158117	006			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	13.7931	%	13.4362	2.62	10	
Total Solids	86.2068	%	86.5637	.41	5	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 12 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

SAMPLE DUPLICATE: 32	78821 ORIGINAL	.: 3158119	001		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	13.6759	%	13.4241	1.86	10
Total Solids	86.324	%	86.5758	.29	5

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 13 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: WETC/251066 Analysis Method: SW846 7.3

QC Batch Method: SW846 7.3
Associated Lab Samples:

METHOD BLANK: 3281288

Blank Reporting
Parameter Result Units Limit

Sulfide, Reactive ND mg/kg 6.3

METHOD BLANK: 3281290

Blank Reporting
Parameter Result Units Limit

Sulfide, Reactive ND mg/kg 6.3

METHOD BLANK: 3281292

Blank Reporting
Parameter Result Units Limit

Sulfide, Reactive ND mg/kg 6.3

METHOD BLANK: 3281294

Parameter

Result Units Limit

Sulfide, Reactive

ND mg/kg 6.3

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 14 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3158025 AER557|R2101265

QC Batch: WETC/251095 Analysis Method: SW-846 7.3CN

QC Batch Method: SW-846 7.3CN

Associated Lab Samples:

METHOD BLANK: 3281626

Blank Reporting
Parameter Result Units Limit

Cyanide, Reactive ND mg/L 0.00010

METHOD BLANK: 3281628

Parameter

Blank Result Units Limit

Cyanide, Reactive

ND mg/L 0.00010

METHOD BLANK: 3281630

Parameter Blank Reporting Result Units Limit

Cyanide, Reactive ND mg/L 0.00010

METHOD BLANK: 3281632

Parameter

Blank Result
Units
Limit

Cyanide, Reactive

ND

mg/L
0.00010

METHOD BLANK: 3281634

Parameter

Blank Result Units Limit

Cyanide, Reactive

ND mg/L 0.00010

METHOD BLANK: 3281636

Blank Reporting
Parameter Result Units Limit

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 15 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Cyanide, Reactive ND mg/L 0.00010

METHOD BLANK: 3281638

METHOD BLANK: 3282224

Parameter

METHOD BLANK: 3282226

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 16 of 20

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3158025 AER557|R2101265

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3158025001	TK-SD-ST06-02092021			S2540G-11	WETC/250849
3158025002	TK-SD-RC02-0210			S2540G-11	WETC/250849
3158025001	TK-SD-ST06-02092021	SW-846 7.3CN	WCPR/53939	SW-846 7.3CN	WETC/251095
3158025002	TK-SD-RC02-0210	SW-846 7.3CN	WCPR/53939	SW-846 7.3CN	WETC/251095
3158025001	TK-SD-ST06-02092021	SW846 7.3	WCPR/53940	SW846 7.3	WETC/251066
3158025002	TK-SD-RC02-0210	SW846 7.3	WCPR/53940	SW846 7.3	WETC/251066
3158025001	TK-SD-ST06-02092021			SW846 8260C	VOMS/58421
3158025002	TK-SD-RC02-0210			SW846 8260C	VOMS/58421

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3158025 - 2/25/2021 Page 17 of 20

ALS Environmental Chain of Custody
1565 Jefferson Rd, Building 300 • Rochester, NY 14623 • 585-288-5380 • FAX 585-288-8475

ALS Contact: Meghan Pedro

R2101265 Project Manager: Project Number: QAP:

Meghan Pedro LAB QAP			Sample			601¢ CN Kesct	flash Modified A0101	Sulfide React 9034 Modified	VOC TCLP	m
Sample ID	# of Cont.	Matrix	Date	Time	Lab ID					
TK-SD-ST06-02092021	8	Soil	2/9/21	1100	Middletown ALS	×	×	×	×	
TK-SD-RC02-0210	Z	Soil	2/10/21	1030	Middletown ALS	×	×	×	×	

3158025					Invoice Information		PO#	\$ 58R2101265		Bill to	
OD 200V		×	×		ments		S	III. Results + QC and Calibration Summaries	IT WITH KAW DATA		Ø.
Sulfide Rod		×	×		Report Requirements	I. Results Only	Commar	C and Cal	ration Kepo	>	X WS 44
Flash 1010A Mod		×	×		Repo	I. Results Only	Kesulis + C	Results + (Data valid	PQL/MDL/J	NYS DEC Equas 4
601¢ CN K ^{eg}		×	×			¥ ×	- T- III-	 		PQL/M	NASP
	Lab ID	Middletown ALS	Middletown ALS		Turnaround Requirements	RUSH (Surcharges Apply)	WORK	3 4 5		ite:	Requested Report Date: 03/01/21
ė	Time	1100	1030		rnaround	USH (Surc	E CIRCL	1 2 3 X STANDAR	MANDAIN	Requested FAX Date:	ed Report I
Sample	Date	2/9/21	2/10/21		T	<u> </u>	PLEAS	ヌ		Request	Request
	Matrix	Soil	Soil	•							
	# of Cont.	8	B						•		ed for Prep Only
	9	TK-SD-ST06-02092021	TK-SD-RC02-0210		ıments						P - Test is Authorized for Prep Only
	Sample ID	TK-SD.	-		tions/Com						Hold
	Lab Code	R2101265-001	R2101265-002		Special Instructions/Comments	3			2000		H - Test is On Hold

ALS

Relinquished By:

Page 1

Airbill Number:

1330 Received By: (PN ATS

Honeywell

Shipping:	Overnight	2nd Day	Ground	
Instructions:	Ice	Dry Ice	No Ice	Bill to Client Account
		ži:	Date	Date
Ship To: Middletown ALS	301 Fulling Mill Rd.	Middletown, PA 17057	PC	SMO

ALS Group USA, Corp. www.alsglobal.com An ALS Limited Company

Comments:

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430

Condition of Sample Receipt Form

Client: Work Order #: 3158025 Initials:	Date: W 2757	1	
1. Were airbills / tracking numbers present and recorded?	NONE	ÆS	О ОО
2. Are Custody Seals on shipping containers intact?	NONE	YES	NO
3. Are Custody Seals on sample containers intact?		YES	NO
4. Is there a COC (Chain-of-Custody) present?		(SES)	NO
5. Are the COC and bottle labels complete, legible and in agreement?		YES	NO
5a. Does the COC contain sample locations?		TES	NO
5b. Does the COC contain date and time of sample collection for all samples?		TES	NO
Sc. Does the COC contain sample collectors name?		YES	(ATO)
5d. Does the COC note the type(s) of preservation for all bottles?		YES	(M)
Se. Does the COC note the number of bottles submitted for each sample?		YESS	4
5f. Does the COC note the type of sample, composite or grab?		$\overline{}$	(NO)
5g. Does the COC note the matrix of the sample(s)?		YES)	NO
6. Are all aqueous samples requiring preservation preserved correctly?1	19532337	YES	NO
7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume?		OFF	NO
8. Are all samples within holding times for the requested analyses?			NO
9. Were all sample containers received intact and headspace free when required? (not broken, leaking, fr			NO
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?		YES	NO ·
11. Were the samples received on ice?		YES	Ø€
12. Were sample temperatures measured at 0.0-6.0°C		YES	ENOS.
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below		YES	NO
13a. Are the samples required for SDWA compliance reporting?		YES	NO
13b. Did the client provide a SDWA PWS ID#?	/N/A	YES	NO
13c. Are all aqueous unpreserved SDWA samples pH 5-9?	/ N/A	YES	NO
13d. Did the client provide the SDWA sample location ID/Description?	N/A	YES	NO
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?	81 (2010)	YES	NO
Cooler #:			
Temperature (°C): 2			
Thermometer ID:5W			
Radiological (µCi):			

COMMENTS (Required for all NO responses above and any sample non-conformance):

NU ice

¹Final determination of correct preservation for analysis such as volatiles, microbiology, and oil and grease is made in the analytical department at the time of or following the analysis

Rev 1/20/2020

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

220605

Referencing

Lid Seal Soil

Prepared

Wednesday, February 23, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Reduced sample size used for Paint Filter Test analysis due to limited sample volume. Kindly refer to Chain of Custody Supplement for the affected sample(s

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

Ammonia-N

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Ammonia <32.9 mg/Kg 2/22/2022

Method Reference(s): SM 4500 NH3 G

Subcontractor ELAP ID: 10709

Heat Value

Analyte Result Units Qualifier Date Analyzed

BTU **1200** btu/lb 2/18/2022

Method Reference(s): ASTM D240-09

Subcontractor ELAP ID: 10709

ELAP does not offer this test for approval as part of their laboratory certification program.

Mercury

Analyte Result Units Qualifier Date Analyzed

Mercury 0.0334 mg/Kg 2/16/2022 11:17

Method Reference(s):EPA 7471BPreparation Date:2/16/2022Data File:Hg220216A

TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	7090	mg/Kg		2/16/2022 18:32
Antimony	< 4.58	mg/Kg	M	2/16/2022 18:32
Arsenic	2.65	mg/Kg		2/16/2022 18:32
Barium	55.8	mg/Kg		2/16/2022 18:32
Beryllium	< 0.381	mg/Kg		2/16/2022 18:32
Cadmium	< 0.381	mg/Kg		2/16/2022 18:32
Calcium	2180	mg/Kg		2/16/2022 18:32
Chromium	13.8	mg/Kg	D	2/16/2022 18:32
Cobalt	< 3.81	mg/Kg		2/16/2022 18:32
Copper	23.8	mg/Kg	D	2/16/2022 18:32

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

Iron	19000	mg/Kg	D	2/16/2022 18:32
11 011	17000	mg/ Kg	D	2/10/2022 10.32
Lead	24.2	mg/Kg		2/16/2022 18:32
Magnesium	961	mg/Kg	M	2/16/2022 18:32
Manganese	77.4	mg/Kg	MD	2/16/2022 18:32
Nickel	8.04	mg/Kg	D	2/16/2022 18:32
Potassium	3560	mg/Kg	M	2/16/2022 18:32
Selenium	< 1.53	mg/Kg		2/16/2022 18:32
Silver	< 0.763	mg/Kg		2/16/2022 18:32
Sodium	1140	mg/Kg		2/16/2022 18:32
Thallium	< 1.91	mg/Kg		2/16/2022 18:32
Vanadium	9.70	mg/Kg		2/16/2022 18:32
Zinc	31.4	mg/Kg		2/16/2022 18:32

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 2/16/2022

Data File:

220216B

Paint Filter Test

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Paint Filter Test	Fail	N/A		2/17/2022

Method Reference(s): EPA 9095B

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1221	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1232	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1242	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1248	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1254	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1260	< 0.231	mg/Kg		2/15/2022 08:04
PCB-1262	< 0.231	mg/Kg		2/15/2022 08:04

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

PCB-1268 < 0.231 mg/Kg 2/15/2022 08:04

SurrogatePercent RecoveryLimitsOutliersDate AnalyzedTetrachloro-m-xylene59.212.2 - 91.22/15/202208:04

Method Reference(s): EPA 8082A EPA 3546

Preparation Date: 2/14/2022

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1-Biphenyl	< 427	ug/Kg	2,	/16/2022	05:15
1,2,4,5-Tetrachlorobenzene	< 427	ug/Kg	2,	/16/2022	05:15
1,2,4-Trichlorobenzene	< 427	ug/Kg	2,	/16/2022	05:15
1,2-Dichlorobenzene	< 427	ug/Kg	2,	/16/2022	05:15
1,3-Dichlorobenzene	< 427	ug/Kg	2,	/16/2022	05:15
1,4-Dichlorobenzene	< 427	ug/Kg	2,	/16/2022	05:15
2,2-Oxybis (1-chloropropane)	< 427	ug/Kg	2,	/16/2022	05:15
2,3,4,6-Tetrachlorophenol	< 427	ug/Kg	2,	/16/2022	05:15
2,4,5-Trichlorophenol	< 427	ug/Kg	2,	/16/2022	05:15
2,4,6-Trichlorophenol	< 427	ug/Kg	2,	/16/2022	05:15
2,4-Dichlorophenol	< 427	ug/Kg	2,	/16/2022	05:15
2,4-Dimethylphenol	< 427	ug/Kg	2,	/16/2022	05:15
2,4-Dinitrophenol	< 1710	ug/Kg	2,	/16/2022	05:15
2,4-Dinitrotoluene	< 427	ug/Kg	2,	/16/2022	05:15
2,6-Dinitrotoluene	< 427	ug/Kg	2,	/16/2022	05:15
2-Chloronaphthalene	< 427	ug/Kg	2,	/16/2022	05:15
2-Chlorophenol	< 427	ug/Kg	2,	/16/2022	05:15
2-Methylnapthalene	652	ug/Kg	2,	/16/2022	05:15
2-Methylphenol	< 427	ug/Kg	2,	/16/2022	05:15
2-Nitroaniline	< 427	ug/Kg	2,	/16/2022	05:15
2-Nitrophenol	< 427	ug/Kg	2,	/16/2022	05:15
3&4-Methylphenol	< 427	ug/Kg	2,	/16/2022	05:15

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

3,3'-Dichlorobenzidine	< 427	ug/Kg	2/16/2022 05:15
3-Nitroaniline	< 427	ug/Kg	2/16/2022 05:15
4,6-Dinitro-2-methylphenol	< 571	ug/Kg	2/16/2022 05:15
4-Bromophenyl phenyl ether	< 427	ug/Kg	2/16/2022 05:15
4-Chloro-3-methylphenol	< 427	ug/Kg	2/16/2022 05:15
4-Chloroaniline	< 427	ug/Kg	2/16/2022 05:15
4-Chlorophenyl phenyl ether	< 427	ug/Kg	2/16/2022 05:15
4-Nitroaniline	< 427	ug/Kg	2/16/2022 05:15
4-Nitrophenol	< 427	ug/Kg	2/16/2022 05:15
Acenaphthene	447	ug/Kg	2/16/2022 05:15
Acenaphthylene	< 427	ug/Kg	2/16/2022 05:15
Acetophenone	< 427	ug/Kg	2/16/2022 05:15
Anthracene	781	ug/Kg	2/16/2022 05:15
Atrazine	< 427	ug/Kg	2/16/2022 05:15
Benzaldehyde	< 427	ug/Kg	2/16/2022 05:15
Benzo (a) anthracene	2350	ug/Kg	2/16/2022 05:15
Benzo (a) pyrene	3030	ug/Kg	2/16/2022 05:15
Benzo (b) fluoranthene	3200	ug/Kg	2/16/2022 05:15
Benzo (g,h,i) perylene	2110	ug/Kg	2/16/2022 05:15
Benzo (k) fluoranthene	1620	ug/Kg	2/16/2022 05:15
Bis (2-chloroethoxy) methane	< 427	ug/Kg	2/16/2022 05:15
Bis (2-chloroethyl) ether	< 427	ug/Kg	2/16/2022 05:15
Bis (2-ethylhexyl) phthalate	< 427	ug/Kg	2/16/2022 05:15
Butylbenzylphthalate	< 427	ug/Kg	2/16/2022 05:15
Caprolactam	< 427	ug/Kg	2/16/2022 05:15
Carbazole	492	ug/Kg	2/16/2022 05:15
Chrysene	2880	ug/Kg	2/16/2022 05:15
Dibenz (a,h) anthracene	632	ug/Kg	2/16/2022 05:15
Dibenzofuran	523	ug/Kg	2/16/2022 05:15
Diethyl phthalate	< 427	ug/Kg	2/16/2022 05:15

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

< 427	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
4790	ug/Kg			2/16/202	22 05:15
462	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 1710	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
1720	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
2000	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
< 854	ug/Kg			2/16/202	22 05:15
3880	ug/Kg			2/16/202	22 05:15
< 427	ug/Kg			2/16/202	22 05:15
4220	ug/Kg			2/16/202	22 05:15
Pero	cent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
	49.3	37.7 - 88.9		2/16/2022	05:15
	60.9	42 - 83.2		2/16/2022	05:15
	61.2	38.1 - 82.3		2/16/2022	05:15
	< 427 < 427 4790 462 < 427 < 427 < 1710 < 427 1720 < 427 2000 < 427 < 427 < 427 < 427 < 427 < 427 < 427 < 854 3880 < 427 4220	<pre>< 427</pre>	<pre> < 427</pre>	<pre> < 427</pre>	< 427

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 2/15/2022 Data File: B59990.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

59.4

66.5

67.8

37.1 - 80.1

37.4 - 81.8

45.7 - 104

Nitrobenzene-d5

Terphenyl-d14

Phenol-d5

05:15

05:15

05:15

2/16/2022

2/16/2022

2/16/2022

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	yzed
1,1,1-Trichloroethane	< 9.05	ug/Kg		2/16/2022	18:04
1,1,2,2-Tetrachloroethane	< 9.05	ug/Kg		2/16/2022	18:04
1,1,2-Trichloroethane	< 9.05	ug/Kg		2/16/2022	18:04
1,1-Dichloroethane	< 9.05	ug/Kg		2/16/2022	18:04
1,1-Dichloroethene	< 9.05	ug/Kg		2/16/2022	18:04
1,2,3-Trichlorobenzene	< 22.6	ug/Kg		2/16/2022	18:04
1,2,4-Trichlorobenzene	< 22.6	ug/Kg		2/16/2022	18:04
1,2-Dibromo-3-Chloropropane	< 45.3	ug/Kg		2/16/2022	18:04
1,2-Dibromoethane	< 9.05	ug/Kg		2/16/2022	18:04
1,2-Dichlorobenzene	< 9.05	ug/Kg		2/16/2022	18:04
1,2-Dichloroethane	< 9.05	ug/Kg		2/16/2022	18:04
1,2-Dichloropropane	< 9.05	ug/Kg		2/16/2022	18:04
1,3-Dichlorobenzene	< 9.05	ug/Kg		2/16/2022	18:04
1,4-Dichlorobenzene	< 9.05	ug/Kg		2/16/2022	18:04
1,4-Dioxane	< 45.3	ug/Kg		2/16/2022	18:04
2-Butanone	< 45.3	ug/Kg		2/16/2022	18:04
2-Hexanone	< 22.6	ug/Kg		2/16/2022	18:04
4-Methyl-2-pentanone	< 22.6	ug/Kg		2/16/2022	18:04
Acetone	< 45.3	ug/Kg		2/16/2022	18:04
Benzene	< 9.05	ug/Kg		2/16/2022	18:04
Bromochloromethane	< 22.6	ug/Kg		2/16/2022	18:04
Bromodichloromethane	< 9.05	ug/Kg		2/16/2022	18:04
Bromoform	< 22.6	ug/Kg		2/16/2022	18:04
Bromomethane	< 9.05	ug/Kg		2/16/2022	18:04
Carbon disulfide	< 9.05	ug/Kg		2/16/2022	18:04
Carbon Tetrachloride	< 9.05	ug/Kg		2/16/2022	18:04
Chlorobenzene	< 9.05	ug/Kg		2/16/2022	18:04
Chloroethane	< 9.05	ug/Kg		2/16/2022	18:04

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

Chloroform	< 9.05	ug/Kg	2/16/2022	18:04
Chloromethane	< 9.05	ug/Kg	2/16/2022	18:04
cis-1,2-Dichloroethene	< 9.05	ug/Kg	2/16/2022	18:04
cis-1,3-Dichloropropene	< 9.05	ug/Kg	2/16/2022	18:04
Cyclohexane	< 45.3	ug/Kg	2/16/2022	18:04
Dibromochloromethane	< 9.05	ug/Kg	2/16/2022	18:04
Dichlorodifluoromethane	< 9.05	ug/Kg	2/16/2022	18:04
Ethylbenzene	< 9.05	ug/Kg	2/16/2022	18:04
Freon 113	< 9.05	ug/Kg	2/16/2022	18:04
Isopropylbenzene	< 9.05	ug/Kg	2/16/2022	18:04
m,p-Xylene	< 9.05	ug/Kg	2/16/2022	18:04
Methyl acetate	< 9.05	ug/Kg	2/16/2022	18:04
Methyl tert-butyl Ether	< 9.05	ug/Kg	2/16/2022	18:04
Methylcyclohexane	< 9.05	ug/Kg	2/16/2022	18:04
Methylene chloride	< 22.6	ug/Kg	2/16/2022	18:04
o-Xylene	< 9.05	ug/Kg	2/16/2022	18:04
Styrene	< 22.6	ug/Kg	2/16/2022	18:04
Tetrachloroethene	< 9.05	ug/Kg	2/16/2022	18:04
Toluene	< 9.05	ug/Kg	2/16/2022	18:04
trans-1,2-Dichloroethene	< 9.05	ug/Kg	2/16/2022	18:04
trans-1,3-Dichloropropene	< 9.05	ug/Kg	2/16/2022	18:04
Trichloroethene	< 9.05	ug/Kg	2/16/2022	18:04
Trichlorofluoromethane	< 9.05	ug/Kg	2/16/2022	18:04
Vinyl chloride	< 9.05	ug/Kg	2/16/2022	18:04

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01 **Date Sampled:** 2/10/2022 11:45

Matrix: Soil Date Received 2/11/2022

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
1,2-Dichloroethane-d4	105	82.8 - 125		2/16/2022	18:04
4-Bromofluorobenzene	68.1	68.3 - 118	*	2/16/2022	18:04
Pentafluorobenzene	103	81 - 114		2/16/2022	18:04
Toluene-D8	103	79.3 - 124		2/16/2022	18:04

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z07301.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Total Cyanide

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Cyanide, Total	< 0.777	mg/Kg		2/17/2022

Method Reference(s): EPA 9014

EPA 9010C

Preparation Date: 2/17/2022

Inventum Engineering, P.C. Client:

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Date Sampled: 2/10/2022 Lab Sample ID: 220605-01A 11:45

Date Received 2/11/2022 **Matrix: TCLP Extract**

TCLP Semi-Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Lim	it Qualifier	Date An	alyzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500		2/16/202	22 02:22
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		2/16/202	22 02:22
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		2/16/202	22 02:22
2,4-Dinitrotoluene	< 40.0	ug/L	130		2/16/202	22 02:22
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		2/16/202	22 02:22
Hexachlorobenzene	< 40.0	ug/L	130		2/16/202	22 02:22
Hexachlorobutadiene	< 40.0	ug/L	500		2/16/202	22 02:22
Hexachloroethane	< 40.0	ug/L	3000		2/16/202	22 02:22
Nitrobenzene	< 40.0	ug/L	2000		2/16/202	22 02:22
Pentachlorophenol	< 80.0	ug/L	100000		2/16/202	22 02:22
Pyridine	< 40.0	ug/L	5000		2/16/202	22 02:22
Surrogate	Percer	nt Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
2.4.6-Tribromophenol		98.5	49.6 - 116		2/16/2022	02.22

Percent Recovery	Limits	<u>Outhers</u>	<u>Date An</u>	alyzed
98.5	49.6 - 116		2/16/2022	02:22
55.3	18.6 - 104		2/16/2022	02:22
68.3	10 - 105		2/16/2022	02:22
70.4	51.2 - 99.6		2/16/2022	02:22
68.9	10 - 104		2/16/2022	02:22
85.7	55.6 - 122		2/16/2022	02:22
	98.5 55.3 68.3 70.4 68.9	98.5 49.6 - 116 55.3 18.6 - 104 68.3 10 - 105 70.4 51.2 - 99.6 68.9 10 - 104	98.5 49.6 - 116 55.3 18.6 - 104 68.3 10 - 105 70.4 51.2 - 99.6 68.9 10 - 104	98.5 49.6 - 116 2/16/2022 55.3 18.6 - 104 2/16/2022 68.3 10 - 105 2/16/2022 70.4 51.2 - 99.6 2/16/2022 68.9 10 - 104 2/16/2022

Method Reference(s): EPA 8270D

EPA 1311 / 3510C

Preparation Date: 2/15/2022 B59984.D

Data File:

TCLP Herbicides

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
2,4,5-TP (Silvex)	< 0.050	mg/L	1	2/17/2022
2,4-D	< 0.050	mg/L	10	2/17/2022

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01A **Date Sampled:** 2/10/2022 11:45

Matrix: TCLP Extract Date Received 2/11/2022

Method Reference(s): EPA 8321B

EPA 1311

Subcontractor ELAP ID: 10709

TCLP Mercury

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Mercury	< 0.00200	mg/L	0.2	2/15/2022 12:06

Method Reference(s):EPA 7470AEPA 1311Preparation Date:2/15/2022Data File:Hg220215A

TCLP Pesticides

Analyte	<u>Result</u>	<u>Units</u>	Regulatory Lim	<u>it Qualifier</u>	Date Ana	ılyzed
Chlordane	< 2.00	ug/L	30	L	2/21/202	2 12:15
Endrin	< 1.00	ug/L	20	L	2/21/202	2 12:15
gamma-BHC (Lindane)	< 1.00	ug/L	400		2/21/202	2 12:15
Heptachlor	< 1.00	ug/L	8		2/21/202	2 12:15
Heptachlor Epoxide	< 1.00	ug/L	8		2/21/202	2 12:15
Methoxychlor	< 1.00	ug/L	10000		2/21/202	2 12:15
Toxaphene	< 20.0	ug/L	500		2/21/202	2 12:15
<u>Surrogate</u>	<u>Perce</u>	ent Recovery	<u>Limits</u>	Outliers	Date Ana	<u>lyzed</u>
Decachlorobiphenyl (1)		138	17 - 148		2/21/2022	12:15
Tetrachloro-m-xylene (1)		102	18 - 112		2/21/2022	12:15

Method Reference(s): EPA 8081B EPA 1311 / 3510C

Preparation Date: 2/18/2022

TCLP RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analyzed
Arsenic	< 0.500	mg/L	5	2/15/2022 14:28
Barium	< 0.500	mg/L	100	2/15/2022 14:28
Cadmium	< 0.0250	mg/L	1	2/15/2022 14:28

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: SD-ST06-02102022

Lab Sample ID: 220605-01A **Date Sampled:** 2/10/2022 11:45

Matrix: TCLP Extract Date Received 2/11/2022

Chromium	< 0.500	mg/L	5	2/15/2022 14:28
Lead	< 0.500	mg/L	5	2/15/2022 14:28
Selenium	< 0.200	mg/L	1	2/15/2022 14:28
Silver	< 0.500	mg/L	5	2/15/2022 14:28

Method Reference(s): EPA 6010C

EPA 1311 / 3005A

 Preparation Date:
 2/15/2022

 Data File:
 220215B

TCLP Volatile Organics

Analyte	Result	<u>Units</u>	Regulatory Limit	t Qualifier	Date Anal	yzed
1,1-Dichloroethene	< 20.0	ug/L	700		2/16/2022	13:14
1,2-Dichloroethane	< 20.0	ug/L	500		2/16/2022	13:14
2-Butanone	< 100	ug/L	200000		2/16/2022	13:14
Benzene	21.0	ug/L	500		2/16/2022	13:14
Carbon Tetrachloride	< 20.0	ug/L	500		2/16/2022	13:14
Chlorobenzene	< 20.0	ug/L	100000		2/16/2022	13:14
Chloroform	< 20.0	ug/L	6000		2/16/2022	13:14
Tetrachloroethene	< 20.0	ug/L	700		2/16/2022	13:14
Trichloroethene	< 20.0	ug/L	500		2/16/2022	13:14
Vinyl chloride	< 20.0	ug/L	200		2/16/2022	13:14
<u>Surrogate</u>	Percent l	Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4	11	7	77.9 - 132		2/16/2022	13:14
4-Bromofluorobenzene	89	.8	62.6 - 133		2/16/2022	13:14
Pentafluorobenzene	10	8	88.9 - 114		2/16/2022	13:14
Toluene-D8	11	7	75.6 - 117		2/16/2022	13:14

Method Reference(s): EPA 8260C

EPA 1311 / 5030C

Data File: z07286.D

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Mercury

Analyte Result Units Qualifier Date Analyzed

Mercury <0.00763 mg/Kg 2/16/2022 10:33

Method Reference(s):

EPA 7471B

Preparation Date:

2/16/2022

Data File: QC Batch ID: Hg220216A QC220216HgSoil

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil
Lab Project ID: 220605

Soil

Matrix:

Mercury

Mercury **Analyte** QC Batch ID: QC Number: Preparation Date: Method Reference(s): Added 0.0671 0.0753 **LCS** Added LCSD EPA 7471B QC220216HgSoil Hg220216A 2/16/2022 mg/Kg Units Spike Result 0.0659 0.0744 LCS Result LCSD Recovery Recovery LCS % 98.2 LCSD % 98.8 80 - 120 Limits % Rec **Outliers LCS** Outliers Difference **LCSD** Relative % 0.625Limit RPD 20 **Outliers** RPD 2/16/2022 **Analyzed** Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Method Blank Report

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

TAL Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
Aluminum	<4.90	mg/Kg		2/16/2022	18:18
Antimony	<2.94	mg/Kg		2/16/2022	18:18
Arsenic	< 0.490	mg/Kg		2/16/2022	18:18
Barium	<4.90	mg/Kg		2/16/2022	18:18
Beryllium	<0.245	mg/Kg		2/16/2022	18:18
Cadmium	<0.245	mg/Kg		2/16/2022	18:18
Calcium	<123	mg/Kg		2/16/2022	18:18
Chromium	< 0.490	mg/Kg		2/16/2022	18:18
Cobalt	<2.45	mg/Kg		2/16/2022	18:18
Copper	<0.980	mg/Kg		2/16/2022	18:18
Iron	<9.80	mg/Kg		2/16/2022	18:18
Lead	< 0.490	mg/Kg		2/16/2022	18:18
Magnesium	<123	mg/Kg		2/16/2022	18:18
Manganese	< 0.735	mg/Kg		2/16/2022	18:18
Nickel	<1.96	mg/Kg		2/16/2022	18:18
Potassium	<123	mg/Kg		2/16/2022	18:18
Selenium	<0.980	mg/Kg		2/16/2022	18:18
Silver	< 0.490	mg/Kg		2/16/2022	18:18
Sodium	<123	mg/Kg		2/16/2022	18:18
Thallium	<1.23	mg/Kg		2/16/2022	18:18
Vanadium	<1.23	mg/Kg		2/16/2022	18:18
Zinc	<2.94	mg/Kg		2/16/2022	18:18

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

2/16/2022

Data File:

220216B

QC Batch ID:

QC220216soil

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

Lab Project ID: 220605

Soil

Matrix:

TAL Metals (ICP)

	Nickel 250 250 mg/Kg 248 244 99.1 97.5 80 - 120	Manganese 50.0 50.0 mg/Kg 51.3 50.8 103 102 80 - 120	Magnesium 400 400 mg/Kg 407 398 102 99.5 80 - 120	115	mg/Kg 120	Copper 125 125 mg/Kg 127 124 101 99.5 80 - 120	Cobalt 50.0 50.0 mg/Kg 49.8 49.2 99.6 98.3 80 - 120	Chromium 125 125 mg/Kg 118 117 94.2 93.7 80 - 120	Calcium 200 200 mg/Kg 190 185 95.0 92.6 80 - 120	Cadmium 50.0 50.0 mg/Kg 51.5 50.7 103 101 80 - 120	Beryllium 25.0 25.0 mg/Kg 25.4 24.4 101 97.7 80 - 120	Barium 125 125 mg/Kg 131 131 105 105 80 - 120	Arsenic 125 125 mg/Kg 115 114 91.6 91.0 80 - 120	Antimony 125 125 mg/Kg 119 119 95.1 94.8 80 - 120	Aluminum 125 125 mg/Kg 117 117 94.0 93.6 80 - 120	THE THEORY THEORY TOWNS TOWNS TOWNS OF THE PARTY TO	Pacovary Limits Outliers	LCS LCSD Spike LCS LCSD LCS% LCSD% % Rec LCS LC
																	RACI	<u>101</u>
2030 1																		
1990	244	50.8	398	115	119	124	19.2	117	185	50.7	24.4	131	114	119	117			
957	99.1	103	102	94.1	96.3	101	99.6	94.2	95.0	103	101	105	91.6	95.1	94.0	(C C C C C C C C C C C C C C C C C C C	PCOVARY	LCS %
02 J	97.5	102	99.5	91.9	95.1	99.5	98.3	93.7	92.6	101	97.7	105	91.0	94.8	93.6	WCCOACT A	Pacouary	LCSD %
80 - 120					•	•		1		•	•	•	•	•	•		I imite	% Rec
																		LCS
22/	1.55	1.02	2.22	2.34	1.22	1.77	1.26	0.510	2.56	1.72	3.80	0.466	0.642	0.335	0.417	Duners Difference	Outline Difference	LCSD Relative %
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	TIIIIC	-	RPD
																Outliels	Outline	RPD
2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	Allalyzeu	A 11.1	<u>Date</u>

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample and Control Sample Duplicate

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Lab Project ID: 220605

Soil

Matrix:

TAL Metals (ICP)

IAL MEIUS (ICF)														
	TCS	LCSD	Spike	<u>LCS</u>	LCSD	LCS %	LCSD %	% Rec	LCS	LCSD I	LCSD Relative %	RPD	RPD	Date
Analyte	Added	Added	Units	Result	Result	Recovery	Recovery	Limits	Outliers Outliers Difference	Outliers		Limit	Outliers	<u>Analyzed</u>
Selenium	125	125	mg/Kg	111	110	89.1	88.2	80 - 120			0.987	20		2/16/2022
Silver	12.5	12.5	mg/Kg	11.6	11.5	92.6	91.9	80 - 120			0.703	20		2/16/2022
Sodium	600	600	mg/Kg	568	554	94.7	92.3	80 - 120			2.50	20		2/16/2022
Thallium	125	125	mg/Kg	124	124	99.3	98.9	80 - 120			0.390	20		2/16/2022
Vanadium	50.0	50.0	mg/Kg	53.6	52.9	107	106	80 - 120			1.44	20		2/16/2022
Zinc	125	125	mg/Kg	121	119	96.4	95.1	80 - 120			1.36	20		2/16/2022
Method Re	Method Reference(s):	EPA (EPA 6010C EPA 3050B											
Preparation Date: Data File:	n Date:	2/16/202 220216B	2/16/2022 220216B											
QC Number:	77	1												
QC Batch ID:	D.	0C22	0C220216soil											

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Sample Spike and Sample Duplicate

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

Lab Sample ID: 220605-01

Sample Identifier: SD-ST06-02102022

Date Received: 2/11/2022

Date Sampled:

2/10/2022

Lab Project ID: 220605

1100

Matrix:

TAL Metals (ICP)

Magnesium	Lead	Iron	Copper	Cobalt	Chromium	Calcium	Cadmium	Beryllium	Barium	Arsenic	Antimony	Aluminum	<u>Analyte</u>	
961	24.2	19000	23.8	< 3.81	13.8	2180	< 0.381	< 0.381	55.8	2.65	< 4.58	7090	Results	<u>Sample</u>
mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Units	Result
659	206	206	206	82.4	206	329	82.4	41.2	206	206	206	206	Added	<u>Spike</u>
1420	204	13100	212	76.0	191	2440	76.2	38.9	248	178	94.4	12400	Result	<u>Spike</u>
69.7	87.5	NC	91.2	92.3	86.1	79.0	92.5	94.4	93.4	85.2	45.8	NC	Recovery	Spike %
75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	Limits	% Rec
*											*		Outliers	<u>Spike</u>
989	22.1	28000	49.4	<3.85	46.3	2310	<0.385	<0.385	53.8	3.19	<4.62	7410	Result	<u>Duplicate</u>
2.91	8.97	38.2	69.7	NC	108	5.76	NC	NC	3.56	18.4	NC	4.36	Difference	Relative %
20	20	20	20	20	20	20	20	20	20	20	20	20	Limit	RPD
		*	*		*								Outliers	RPD
2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	Analyzed	Date

ten times the spike added. NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance

with the sample condition requirements upon receipt. Report Prepared Thursday, February 17, 2022

Page 18 of 51

QC Report for Sample Spike and Sample Duplicate

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: Matrix: Lab Sample ID: SD-ST06-02102022 220605-01

Date Received: 2/11/2022

Date Sampled:

2/10/2022

Lab Project ID: 220605

TAL Metals (ICP)

			ZINC	vanadium	I hallium	Sodium	Silver	Selenium	Potassium	Nickel	Manganese	Analyte
QC Batch ID:	Preparation Date:	Method Reference(s):	31,4	9.70	< 1.91	1140	< 0.763	< 1.53	3560	8.04	77.4	<u>Sample</u> <u>Results</u>
QC220216soil	2/16/2022 220216B	EPA 6010C EPA 3050B	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Result Units
			206	82.4	206	988	20.6	206	3500	412	82.4	<u>Spike</u> <u>Added</u>
			210	87.8	176	1930	17.8	174	4810	365	121	<u>Spike</u> <u>Result</u>
			86.6	94.8	85.5	80.0	86.6	84.7	35.7	86.7	53.1	Spike % Recovery
			75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	% Rec Limits
									*		*	<u>Spike</u> Outliers
			26.6	9.50	<1.92	1130	<0.770	<1.54	3890	38.7	126	<u>Duplicate</u> <u>Result</u>
			16.4	2.11	NC	0.806	NC	NC	8.78	131	47.9	Relative % Difference
			20	20	20	20	20	20	20	20	20	RPD Limit
										*	*	RPD Outliers
			2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	2/16/2022	<u>Date</u> <u>Analyzed</u>

ten times the spike added. NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to

with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance

Report Prepared Thursday, February 17, 2022

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
PCB-1016	<0.0269	mg/Kg		2/14/2022	20:20
PCB-1221	<0.0269	mg/Kg mg/Kg		2/14/2022	20:20
PCB-1232	< 0.0269	mg/Kg		2/14/2022	20:20
PCB-1242	<0.0269	mg/Kg		2/14/2022	20:20
PCB-1248	< 0.0269	mg/Kg		2/14/2022	20:20
PCB-1254	<0.0269	mg/Kg		2/14/2022	20:20
PCB-1260	< 0.0269	mg/Kg		2/14/2022	20:20
PCB-1262	<0.0269	mg/Kg		2/14/2022	20:20
PCB-1268	< 0.0269	mg/Kg		2/14/2022	20:20
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
Tetrachloro-m-xylene	40.6	12.2 - 91.2		2/14/2022	20:20

Method Reference(s):

EPA 8082A

EPA 3546

Preparation Date: Data File:

2/14/2022

QC Batch ID:

PC111770.D

QC220214PCBS

QC Number:

Blk 1

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

220605

PCBs Matrix: Lab Project ID: **Analyte** Soil

> Added <u>Spike</u>

Result LCS

Recovery LCS %

Limits % Rec

Outliers LCS

Analyzed Date

<u>Spike</u> Units

This report is part of a mu	Method Reference(s): Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:	DCD 1016/1960
ıltipage docume		
nt and should only b	EPA 8082A EPA 3546 2/14/2022 PC111771.D LCS 1 QC220214PCBS	
e evaluated in it	0.132	2
s entirety. The C	mg/kg	/1/-
hain of Custody	0.0488	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
provides additi	37.1	1
This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including	10 - 104	,
ing G	2/14/2022	

compliance with the sample condition requirements upon receipt.

Report Prepared Wednesday, February 16, 2022

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	<1400	ug/Kg		2/15/2022	18:13
1,2,4,5-Tetrachlorobenzene	<1400	ug/Kg		2/15/2022	18:13
1,2,4-Trichlorobenzene	<1400	ug/Kg		2/15/2022	18:13
1,2-Dichlorobenzene	<1400	ug/Kg		2/15/2022	18:13
1,3-Dichlorobenzene	<1400	ug/Kg		2/15/2022	18:13
1,4-Dichlorobenzene	<1400	ug/Kg		2/15/2022	18:13
2,2-0xybis (1-chloropropane)	<1400	ug/Kg		2/15/2022	18:13
2,3,4,6-Tetrachlorophenol	<1400	ug/Kg		2/15/2022	18:13
2,4,5-Trichlorophenol	<1400	ug/Kg		2/15/2022	18:13
2,4,6-Trichlorophenol	<1400	ug/Kg		2/15/2022	18:13
2,4-Dichlorophenol	<1400	ug/Kg		2/15/2022	18:13
2,4-Dimethylphenol	<1400	ug/Kg		2/15/2022	18:13
2,4-Dinitrophenol	<5590	ug/Kg		2/15/2022	18:13
2,4-Dinitrotoluene	<1400	ug/Kg		2/15/2022	18:13
2,6-Dinitrotoluene	<1400	ug/Kg		2/15/2022	18:13
2-Chloronaphthalene	<1400	ug/Kg		2/15/2022	18:13
2-Chlorophenol	<1400	ug/Kg		2/15/2022	18:13
2-Methylnapthalene	<1400	ug/Kg		2/15/2022	18:13
2-Methylphenol	<1400	ug/Kg		2/15/2022	18:13
2-Nitroaniline	<1400	ug/Kg		2/15/2022	18:13
2-Nitrophenol	<1400	ug/Kg		2/15/2022	18:13
3&4-Methylphenol	<1400	ug/Kg		2/15/2022	18:13
3,3'-Dichlorobenzidine	<1400	ug/Kg		2/15/2022	18:13
3-Nitroaniline	<1400	ug/Kg		2/15/2022	18:13
4,6-Dinitro-2-methylphenol	<2790	ug/Kg		2/15/2022	18:13
4-Bromophenyl phenyl ether	<1400	ug/Kg		2/15/2022	18:13
4-Chloro-3-methylphenol	<1400	ug/Kg		2/15/2022	18:13

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
4-Chloroaniline	<1400	ug/Kg		2/15/2022	18:13
4-Chlorophenyl phenyl ether	<1400	ug/Kg		2/15/2022	18:13
4-Nitroaniline	<1400	ug/Kg		2/15/2022	18:13
4-Nitrophenol	<1400	ug/Kg		2/15/2022	18:13
Acenaphthene	<1400	ug/Kg		2/15/2022	18:13
Acenaphthylene	<1400	ug/Kg		2/15/2022	18:13
Acetophenone	<1400	ug/Kg		2/15/2022	18:13
Anthracene	<1400	ug/Kg		2/15/2022	18:13
Atrazine	<1400	ug/Kg		2/15/2022	18:13
Benzaldehyde	<1400	ug/Kg		2/15/2022	18:13
Benzo (a) anthracene	<1400	ug/Kg		2/15/2022	18:13
Benzo (a) pyrene	<1400	ug/Kg		2/15/2022	18:13
Benzo (b) fluoranthene	<1400	ug/Kg		2/15/2022	18:13
Benzo (g,h,i) perylene	<1400	ug/Kg		2/15/2022	18:13
Benzo (k) fluoranthene	<1400	ug/Kg		2/15/2022	18:13
Bis (2-chloroethoxy) methane	<1400	ug/Kg		2/15/2022	18:13
Bis (2-chloroethyl) ether	<1400	ug/Kg		2/15/2022	18:13
Bis (2-ethylhexyl) phthalate	<1400	ug/Kg		2/15/2022	18:13
Butylbenzylphthalate	<1400	ug/Kg		2/15/2022	18:13
Caprolactam	<1400	ug/Kg		2/15/2022	18:13
Carbazole	<1400	ug/Kg		2/15/2022	18:13
Chrysene	<1400	ug/Kg		2/15/2022	18:13
Dibenz (a,h) anthracene	<1400	ug/Kg		2/15/2022	18:13
Dibenzofuran	<1400	ug/Kg		2/15/2022	18:13
Diethyl phthalate	<1400	ug/Kg		2/15/2022	18:13
Dimethyl phthalate	<1400	ug/Kg		2/15/2022	18:13
Di-n-butyl phthalate	<1400	ug/Kg		2/15/2022	18:13
Di-n-octylphthalate	<1400	ug/Kg		2/15/2022	18:13
v 1		01 -0		=, ==, ====	

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
Fluoranthene	<1400	ya /Va		2/15/2022	18:13
		ug/Kg			
Fluorene	<1400	ug/Kg		2/15/2022	18:13
Hexachlorobenzene	<1400	ug/Kg		2/15/2022	18:13
Hexachlorobutadiene	<1400	ug/Kg		2/15/2022	18:13
Hexachlorocyclopentadiene	<5590	ug/Kg		2/15/2022	18:13
Hexachloroethane	<1400	ug/Kg		2/15/2022	18:13
Indeno (1,2,3-cd) pyrene	<1400	ug/Kg		2/15/2022	18:13
Isophorone	<1400	ug/Kg		2/15/2022	18:13
Naphthalene	<1400	ug/Kg		2/15/2022	18:13
Nitrobenzene	<1400	ug/Kg		2/15/2022	18:13
N-Nitroso-di-n-propylamine	<1400	ug/Kg		2/15/2022	18:13
N-Nitrosodiphenylamine	<1400	ug/Kg		2/15/2022	18:13
Pentachlorophenol	<2790	ug/Kg		2/15/2022	18:13
Phenanthrene	<1400	ug/Kg		2/15/2022	18:13
Phenol	<1400	ug/Kg		2/15/2022	18:13
Pyrene	<1400	ug/Kg		2/15/2022	18:13
					198

Surrogate	Percent Recovery	<u>Limits</u>	Outliers	Date Anal	yzed
2,4,6-Tribromophenol	71.0	37.7 - 88.9		2/15/2022	18:13
2-Fluorobiphenyl	59.4	42 - 83.2		2/15/2022	18:13
2-Fluorophenol	60.1	38.1 - 82.3		2/15/2022	18:13
Nitrobenzene-d5	58.0	37.1 - 80.1		2/15/2022	18:13
Phenol-d5	64.8	37.4 - 81.8		2/15/2022	18:13
Terphenyl-d14	68.8	45.7 - 104		2/15/2022	18:13

Method Reference(s):

EPA 8270D

EPA 3546

Preparation Date: Data File: 2/15/2022 B59967.D

QC Batch ID:

QC220215ABNS

QC Number:

Blk 1

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Lab Project ID: 220605

Soil

Matrix:

Semi-Volatile Organics (Acid/Base Neutrals)

Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:	Pyrene	Phenol	Pentachlorophenol	N-Nitroso-di-n-propylamine	Acenaphthene	4-Nitrophenol	4-Chloro-3-methylphenol	2-Chlorophenol	2,4-Dinitrotoluene	1,4-Dichlorobenzene	1,2,4-Trichlorobenzene	Analyte	
EPA 8270D EPA 3546 2/15/2022 B59968.D LCS 1 QC220215ABNS													
	13400	20200	20200	13400	13400	20200	20200	20200	13400	13400	13400	Added	<u>Spike</u>
	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	<u>Units</u>	<u>Spike</u>
	9860	12300	15500	7920	8700	14400	14600	12900	9280	7390	8300	Result	LCS
	73.3	61.1	76.6	58.9	64.7	71.5	72.5	63.9	69.0	55.0	61.7	Recovery	LCS %
	51.3 = 103	48.4 - 84.9	47.6 - 109	38.4 - 84.7	46.4 - 83	25.1 - 102	52.4 • 90.3	52 - 83.3	48.2 - 91.1	41.1 - 73.2	43.8 = 79.2	Limits	% Rec
												<u>Outliers</u>	<u>LCS</u>
	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	<u>Analyzed</u>	<u>Date</u>

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<2.00	ug/Kg		2/16/2022	12:24
1,1,2,2-Tetrachloroethane	<2.00	ug/Kg		2/16/2022	12:24
1,1,2-Trichloroethane	<2.00	ug/Kg		2/16/2022	12:24
1,1-Dichloroethane	<2.00	ug/Kg		2/16/2022	12:24
1,1-Dichloroethene	<2.00	ug/Kg		2/16/2022	12:24
1,2,3-Trichlorobenzene	<5.00	ug/Kg		2/16/2022	12:24
1,2,4-Trichlorobenzene	<5.00	ug/Kg		2/16/2022	12:24
1,2-Dibromo-3-Chloropropane	<10.0	ug/Kg		2/16/2022	12:24
1,2-Dibromoethane	<2.00	ug/Kg		2/16/2022	12:24
1,2-Dichlorobenzene	<2.00	ug/Kg		2/16/2022	12:24
1,2-Dichloroethane	<2.00	ug/Kg		2/16/2022	12:24
1,2-Dichloropropane	<2.00	ug/Kg		2/16/2022	12:24
1,3-Dichlorobenzene	<2.00	ug/Kg		2/16/2022	12:24
1,4-Dichlorobenzene	<2.00	ug/Kg		2/16/2022	12:24
1,4-Dioxane	<10.0	ug/Kg		2/16/2022	12:24
2-Butanone	<10.0	ug/Kg		2/16/2022	12:24
2-Hexanone	<5.00	ug/Kg		2/16/2022	12:24
4-Methyl-2-pentanone	<5.00	ug/Kg		2/16/2022	12:24
Acetone	<10.0	ug/Kg		2/16/2022	12:24
Benzene	<2.00	ug/Kg		2/16/2022	12:24
Bromochloromethane	<5.00	ug/Kg		2/16/2022	12:24
Bromodichloromethane	<2.00	ug/Kg		2/16/2022	12:24
Bromoform	<5.00	ug/Kg		2/16/2022	12:24
Bromomethane	<2.00	ug/Kg		2/16/2022	12:24
Carbon disulfide	<2.00	ug/Kg		2/16/2022	12:24
Carbon Tetrachloride	<2.00	ug/Kg		2/16/2022	12:24
Chlorobenzene	<2.00	ug/Kg		2/16/2022	12:24

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
Chloroethane	<2.00	ug/Kg		2/16/2022	12:24
Chloroform	<2.00	ug/Kg		2/16/2022	12:24
Chloromethane	<2.00	ug/Kg		2/16/2022	12:24
cis-1,2-Dichloroethene	<2.00	ug/Kg		2/16/2022	12:24
cis-1,3-Dichloropropene	<2.00	ug/Kg		2/16/2022	12:24
Cyclohexane	<10.0	ug/Kg		2/16/2022	12:24
Dibromochloromethane	<2.00	ug/Kg		2/16/2022	12:24
Dichlorodifluoromethane	<2.00	ug/Kg		2/16/2022	12:24
Ethylbenzene	<2.00	ug/Kg		2/16/2022	12:24
Freon 113	<2.00	ug/Kg		2/16/2022	12:24
Isopropylbenzene	<2.00	ug/Kg		2/16/2022	12:24
m,p-Xylene	<2.00	ug/Kg		2/16/2022	12:24
Methyl acetate	<2.00	ug/Kg		2/16/2022	12:24
Methyl tert-butyl Ether	<2.00	ug/Kg		2/16/2022	12:24
Methylcyclohexane	<2.00	ug/Kg		2/16/2022	12:24
Methylene chloride	<5.00	ug/Kg		2/16/2022	12:24
o-Xylene	<2.00	ug/Kg		2/16/2022	12:24
Styrene	<5.00	ug/Kg		2/16/2022	12:24
Tetrachloroethene	<2.00	ug/Kg		2/16/2022	12:24
Toluene	<2.00	ug/Kg		2/16/2022	12:24
trans-1,2-Dichloroethene	<2.00	ug/Kg		2/16/2022	12:24
trans-1,3-Dichloropropene	<2.00	ug/Kg		2/16/2022	12:24
Trichloroethene	<2.00	ug/Kg		2/16/2022	12:24
Trichlorofluoromethane	<2.00	ug/Kg		2/16/2022	12:24
Vinyl chloride	<2.00	ug/Kg		2/16/2022	12:24

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
<u>Surrogate</u>	Percent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed	
1,2-Dichloroethane-d4	112	82.8 - 125		2/16/2022	12:24	
4-Bromofluorobenzene	89.9	68.3 - 118		2/16/2022	12:24	
Pentafluorobenzene	107	81 - 114		2/16/2022	12:24	
Toluene-D8	115	79.3 - 124		2/16/2022	12:24	

Method Reference(s):

EPA 8260C

EPA 5035A - L

Data File: QC Batch ID: z07284.D

voas220216

QC Number:

Blk 1

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

220605

Lab Project ID:

Soil

Matrix:

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	%Rec	LCS	<u>Date</u>
Analyte	Added	Units	Result	Recovery	Limits	Outliers	<u>Analyzed</u>
1,1,1-Trichloroethane	20.0	ug/Kg	21.7	108	71.9 - 122		2/16/2022
1,1,2,2-Tetrachloroethane	20.0	ug/Kg	17.9	89.7	29.7 - 153		2/16/2022
1,1,2-Trichloroethane	20.0	ug/Kg	18.6	92.8	65.3 - 116		2/16/2022
1,1-Dichloroethane	20.0	ug/Kg	21.4	107	76.8 - 120		2/16/2022
1,1-Dichloroethene	20.0	ug/Kg	20.7	104	59.3 - 120		2/16/2022
1,2-Dichlorobenzene	20.0	ug/Kg	18.3	91.7	68.5 - 118		2/16/2022
1,2-Dichloroethane	20.0	ug/Kg	20.0	99.9	75.4 - 116		2/16/2022
1,2-Dichloropropane	20.0	ug/Kg	19.7	98.4	77.6 - 110		2/16/2022
1,3-Dichlorobenzene	20.0	ug/Kg	18.9	94.6	72.7 - 114		2/16/2022
1,4-Dichlorobenzene	20.0	ug/Kg	18.7	93.4	72.4 - 115		2/16/2022
Benzene	20.0	ug/Kg	20.6	103	81.6 - 109		2/16/2022
Bromodichloromethane	20.0	ug/Kg	17.9	89.3	74.9 - 106		2/16/2022
Bromoform	20.0	ug/Kg	16.2	81.2	47 - 131		2/16/2022
Bromomethane	20.0	ug/Kg	24.1	120	28 - 176		2/16/2022
Carbon Tetrachloride	20.0	ug/Kg	21.2	106	72.1 - 116		2/16/2022
Chlorobenzene	20.0	ug/Kg	19.3	96.6	79.1 - 109		2/16/2022
This report is part of a multipage document and should only be exclusted in its anticety. The Chain of Created annual declaration of the control of the cont	ualnatad in ita	ntirate Thack	ain of Custod	r maoridos addit	ional cample information	ation includin)

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Matrix: Lab Project ID: 220605

Soil

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	% Rec	TCS	Date
Analyte	Added	<u>Units</u>	Result	Recovery	Limits	Outliers	Analyzed
Chloroethane	20.0	ug/Kg	25.0	125	54.3 • 146		2/16/2022
Chloroform	20.0	ug/Kg	21.0	105	77.4 - 118		2/16/2022
Chloromethane	20.0	ug/Kg	27.9	139	10 = 217		2/16/2022
cis-1,3-Dichloropropene	20.0	ug/Kg	19.5	97.7	70.4 - 109		2/16/2022
Dibromochloromethane	20.0	ug/Kg	17.6	87.9	66.5 - 111		2/16/2022
Ethylbenzene	20.0	ug/Kg	19.9	99.3	76.2 - 114		2/16/2022
Methylene chloride	20.0	ug/Kg	19.6	98.0	30.7 = 154		2/16/2022
Tetrachloroethene	20.0	ug/Kg	20.0	100	65.1 - 125		2/16/2022
Toluene	20.0	ug/Kg	20.3	102	76.8 - 115		2/16/2022
trans-1,2-Dichloroethene	20.0	ug/Kg	21.7	108	69 - 122		2/16/2022
trans-1,3-Dichloropropene	20.0	ug/Kg	18.4	92.1	54.2 - 116		2/16/2022
Trichloroethene	20.0	ug/Kg	20.9	104	76.1 - 115		2/16/2022
Trichlorofluoromethane	20.0	ug/Kg	24.4	122	61.2 - 137		2/16/2022
Vinyl chloride	20.0	ug/Kg	28.0	140	49.7 = 154		2/16/2022

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client: **Project Reference:** Lid Seal Soil Inventum Engineering, P.C.

Lab Project ID: 220605

Soil

Matrix:

Volatile Organics

Analyte Added <u>Spike</u> Units <u>Spike</u> Result LCS Recovery LCS % Limits % Rec **Outliers** <u>LCS</u> **Analyzed**

Date

z07283.D EPA 5035A - L

voas220216

QC Number: QC Batch ID:

Data File:

Method Reference(s):

EPA 8260C

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Thursday, February 17, 2022

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

Soil

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total <0.481 mg/Kg 2/17/2022

Method Reference(s):

EPA 9014

EPA 9010C

Preparation Date:

2/17/2022

QC Batch ID:

QC220217WTCN

QC Number:

Blk 1

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Project Reference: Lid Seal Soil
Lab Project ID: 220605

Soil

Matrix:

Total Cyanide

QC Batch ID:	QC Number:	Preparation Date:		Method Reference(s):	Cyanide, Total	<u>Analyte</u>	
QC220217WTCN	1	2/17/2022	EPA 9010C	EPA 9014			
					4.85	Added	<u>Spike</u>
					mg/Kg	Units	<u>Spike</u>
					4.82	Result	LCS
					99.2	Recovery	LCS %
					85 - 115	Limits	% Rec
						Outliers	LCS
					2/17/2022	<u>Analyzed</u>	Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

TCLP Fluid

TCLP Mercury

Analyte Result Units Qualifier Date Analyzed

Mercury <0.00200 mg/L 2/15/2022 11:59

Method Reference(s):

EPA 7470A

Preparation Date:

2/15/2022

Data File: QC Batch ID: Hg220215A QC220215HgTCLP

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

Lab Project ID: 220605

TCLP Fluid

Matrix:

TCLP Mercury

	Mercury	<u>Analyte</u>	
Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:			
nce(s): ate:	0.0200	Added	LCS
EPA 7470A 2/15/2022 Hg220215A 1 QC220215H	0.0200	Added	LCSD
EPA 7470A 2/15/2022 Hg220215A 1 QC220215HgTCLP	mg/L	Units	Spike
7	0.0195	Result	LCS
	0.0197	Result	LCSD
	97.4	Recovery	LCS %
	98.5	Recovery	LCS % LCSD %
	80 - 120	Limits	% Rec
		Outliers	LCS
		<u>Outliers</u>	<u>LCSD</u>
	1.12	Outliers Outliers Difference	LCSD Relative %
	20	Limit	RPD
		Outliers	RPD
	2/15/2022	<u>Analyzed</u>	Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Sample Spike and Sample Duplicate

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

220605-01A

SD-ST06-02102022

Date Sampled: Date Received:

2/10/2022 2/11/2022 Lab Project ID: 220605

Sample Identifier:

Lab Sample ID:

Matrix:

TCLP Extract

TCLP Mercury

Mercury **Analyte** Method Reference(s): Preparation Date: < 0.00200 Results Sample Hg220215A 2/15/2022 EPA 1311 EPA 7470A Result mg/L Units Added 0.0200Spike 0.0192Result Spike Recovery Spike % 96.1 75 - 125Limits % Rec **Outliers** Spike <u>Duplicate</u> < 0.00200 Result Relative % <u>Difference</u> NC Limit RPD 20 <u>Outliers</u> RPD 2/15/2022 **Analyzed** Date

QC Batch ID:

QC220215HgTCLP

ten times the spike added. NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to

with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance

Report Prepared Tuesday, February 15, 2022

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

TCLP Fluid

TCLP RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
Arsenic	< 0.500	mg/L		2/15/2022	14:13
Barium	< 0.500	mg/L		2/15/2022	14:13
Cadmium	< 0.0250	mg/L		2/15/2022	14:13
Chromium	< 0.500	mg/L		2/15/2022	14:13
Lead	<0.500	mg/L		2/15/2022	14:13
Selenium	< 0.200	mg/L		2/15/2022	14:13
Silver	< 0.500	mg/L		2/15/2022	14:13

Method Reference(s):

EPA 6010C

EPA 3005

Preparation Date:

2/15/2022

Data File:

220215B

QC Batch ID:

QC220215TCLP

QC Number:

Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

Lab Project ID: 220605

TCLP Fluid

Matrix:

TCLP RCRA Metals (ICP)

	Silver	Selenium	Lead	Chromium	Cadmium	Barium	Arsenic	Analyte
Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:								
nce(s): ate:	1.25	12.5	12.5	12.5	5.00	12.5	12.5	LCS Added
EPA 6010C EPA 3005 2/15/2022 220215B 1 QC220215	1.25	12.5	12.5	12.5	5.00	12.5	12.5	LCSD Added
EPA 6010C EPA 3005 2/15/2022 220215B 1 QC220215TCLP	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	<u>Spike</u> Units
	1.26	12.9	12.2	11.9	5.33	13.1	12.5	LCS Result
	1.24	12.6	12.5	12.2	5.24	13.5	12.2	LCSD Result
	101	103	97.2	95.4	107	105	100	LCS % Recovery
	98.8	101	100	97.6	105	108	97.4	LCSD % Reçovery
	80 - 120	80 - 120	80 - 120	80 - 120	80 - 120	80 - 120	80 - 120	% Rec
	1.73	2.14	3.13	2.37	1.82	2.46	2.72	LCS LCSD Relative % Outliers Outliers Difference
	20	20	20	20	20	20	20	RPD Limit
								RPD Outliers
	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	<u>Date</u> <u>Analyzed</u>

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Sample Spike and Sample Duplicate

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Sample Identifier: Lab Sample ID: SD-ST06-02102022 220605-01A

TCLP Extract

Date Received: 2/11/2022

Date Sampled:

2/10/2022

Lab Project ID: 220605

Matrix:

TCLP RCRA Metals (ICP)

	Silver	Selenium	Lead	Chromium	Cadmium	Barium	Arsenic	Analyte
Method Reference(s): Preparation Date:	< 0.500	< 0.200	< 0.500	< 0.500	< 0.0250	< 0.500	< 0.500	Sample Results
EPA 6010C EPA 1311 / 3005A 2/15/2022 2/20215B	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Result Units
05A	1.25	12.5	12.5	12.5	5.00	12.5	12.5	<u>Spike</u> Added
	1.24	13.0	12.6	12.3	5.15	13.6	12.3	Spike Result
	99.3	104	101	98.5	103	108	98.2	Spike % Recovery
	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	% Rec Limits
								<u>Spike</u> Outliers
	<0.500	<0.200	<0.500	<0.500	<0.0250	<0.500	<0.500	<u>Duplicate</u> <u>Result</u>
	NC	NC	NC	NC	NC	NC	NC	Relative % Difference
	20	20	20	20	20	20	20	RPD Limit
								RPD Outliers
	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	2/15/2022	<u>Date</u> <u>Analyzed</u>

ten times the spike added. NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to

QC Batch ID:

QC220215TCLP

with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance

Report Prepared Wednesday, February 16, 2022

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

TCLP Fluid

TCLP Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
9					
Chlordane	<2.00	ug/L		2/21/2022	11:26
Endrin	<1.00	ug/L		2/21/2022	11:26
gamma-BHC (Lindane)	<1.00	ug/L		2/21/2022	11:26
Heptachlor	<1.00	ug/L		2/21/2022	11:26
Heptachlor Epoxide	<1.00	ug/L		2/21/2022	11:26
Methoxychlor	<1.00	ug/L		2/21/2022	11:26
Toxaphene	<20.0	ug/L		2/21/2022	11:26
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
Decachlorobiphenyl (1)	150	17 - 148	*	2/21/2022	11:26
Tetrachloro-m-xylene (1)	53.4	18 - 112		2/21/2022	11:26

Method Reference(s):

EPA 8081B

EPA 3510C

Preparation Date:

2/18/2022

QC Batch ID:

QC220218PESTT

QC Number:

Blk 1

Inventum Engineering, P.C.

Client:

Project Reference: Lid Seal Soil

Lab Project ID: 220605

TCLP Fluid

Matrix:

TCLP Pesticides

OC Batch ID: 0C220218PESTT	QC Number: LCS 1	Preparation Date: 2/18/2022	EPA 3510C	Method Reference(s): EPA 8081B	Methoxychlor (1)	Heptachlor Epoxide (1)	Heptachlor (1)	gamma-BHC (Lindane) (1)	Endrin (1)	Chlordane (1)	Analyte	
											±.	
					5.00	5.00	5.00	5.00	5.00	10.0	Added	<u>Spike</u>
					ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	<u>Units</u>	Spike
					7.93	5.76	5.45	4.96	5.97	11.5	Result	LCS
					159	115	109	99.3	119	115	Recovery	LCS %
					30.1 - 182	51.5 - 117	39.8 - 116	47.4 - 112	33.4 = 115	59.9 - 90.1	Limits	% Rec
									*	*	Outliers	LCS
					2/21/2022	2/21/2022	2/21/2022	2/21/2022	2/21/2022	2/21/2022	<u>Analyzed</u>	Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

TCLP Fluid

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,4-Dichlorobenzene	<40.0	ug/L		2/16/2022	01:25
2,4,5-Trichlorophenol	<40.0	ug/L		2/16/2022	01:25
2,4,6-Trichlorophenol	<40.0	ug/L		2/16/2022	01:25
2,4-Dinitrotoluene	<40.0	ug/L		2/16/2022	01:25
Cresols (as m,p,o-Cresol)	<80.0	ug/L		2/16/2022	01:25
Hexachlorobenzene	<40.0	ug/L		2/16/2022	01:25
Hexachlorobutadiene	<40.0	ug/L		2/16/2022	01:25
Hexachloroethane	<40.0	ug/L		2/16/2022	01:25
Nitrobenzene	<40.0	ug/L		2/16/2022	01:25
Pentachlorophenol	<80.0	ug/L		2/16/2022	01:25
Pyridine	<40.0	ug/L		2/16/2022	01:25
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
2,4,6-Tribromophenol	87.4	49.6 - 116		2/16/2022	01:25
2-Fluorobiphenyl	50.7	18.6 - 104		2/16/2022	01:25
2-Fluorophenol	65.5	10 - 105		2/16/2022	01:25
Nitrobenzene-d5	65.9	51.2 - 99.6		2/16/2022	01:25
Phenol-d5	64.8	10 - 104		2/16/2022	01:25
Terphenyl-d14	78.1	55.6 - 122		2/16/2022	01:25
Mothod Pafaranca(s): EPA 82700					

Method Reference(s):

EPA 8270D

EPA 3510C

Preparation Date:

2/15/2022

Data File:

B59982.D

QC Batch ID:

QC220215ABNT

QC Number:

Blk 1

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Lab Project ID: 220605

TCLP Fluid

Matrix:

TCLP Semi-Volatile Organics

QC Batch ID:	QC Number:	Data File:	Preparation Date:		Method Reference(s):	Pentachlorophenol	2,4-Dinitrotoluene	2,4,6-Trichlorophenol	1,4-Dichlorobenzene	Апатуте	A	c
QC220215ABNT	LCS 1	B59983.D	2/15/2022	EPA 3510C	EPA 8270D							
						300	200	300	200	Aqueq	> L	<u>Spike</u>
						ug/L	ug/L	ug/L	ug/L		TT 24-	<u>Spike</u>
						322	186	282	115	Kesuit	J	LCS
						107	92.9	93.8	57.4	Kecovery	7	LCS %
						39.7 - 161	54.8 - 114	53.8 - 128	24.7 - 94.8			% Rec
										Outliers	O	LCS
						2/16/2022	2/16/2022	2/16/2022	2/16/2022	Analyzed		Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client:

Inventum Engineering, P.C.

Project Reference:

Lid Seal Soil

Lab Project ID:

220605

Matrix:

TCLP Fluid

TCLP Volatile Organics

ch volume organics						
<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Dichloroethene		<2.00	ug/L		2/16/2022	11:45
1,2-Dichloroethane		<2.00	ug/L		2/16/2022	11:45
2-Butanone		<10.0	ug/L		2/16/2022	11:45
Benzene		<2.00	ug/L		2/16/2022	11:45
Carbon Tetrachloride		<2.00	ug/L		2/16/2022	11:45
Chlorobenzene		<2.00	ug/L		2/16/2022	11:45
Chloroform		<2.00	ug/L		2/16/2022	11:45
Tetrachloroethene		<2.00	ug/L		2/16/2022	11:45
Trichloroethene		<2.00	ug/L		2/16/2022	11:45
Vinyl chloride		<2.00	ug/L		2/16/2022	11:45
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		113	77.9 - 132		2/16/2022	11:45
1,2-Dichloroethane-d4		113	77.9 - 132		2/16/2022	11:45
4-Bromofluorobenzene		94.3	62.6 - 133		2/16/2022	11:45
4-Bromofluorobenzene		94.3	62.6 - 133		2/16/2022	11:45
Pentafluorobenzene		107	88.9 - 114		2/16/2022	11:45
Pentafluorobenzene		107	88.9 - 114		2/16/2022	11:45
Toluene-D8		114	75.6 - 117		2/16/2022	11:45
Method Reference(s):	EPA 8260C					
Data File: QC Batch ID: QC Number:	EPA 5030 z07282.D voax220216 Blk 1					
40m	DIK I					

Client: Inventum Engineering, P.C.

Project Reference: Lid Seal Soil

Lab Project ID: 220605

TCLP Fluid

Matrix:

TCLP Volatile Organics

		<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	Date
Analyte		Added	Units	Result	Recovery	Limits	Outliers	<u>Analyzed</u>
			i					
1,1-Dichloroethene		20.0	ug/L	19.5	97.4	68.1 - 110		2/16/2022
1,2-Dichloroethane		20.0	ug/L	20.2	101	79.4 - 120		2/16/2022
Benzene		20.0	ug/L	20.0	100	85.6 - 106		2/16/2022
Carbon Tetrachloride		20.0	ug/L	19.5	97.3	79.7 - 122		2/16/2022
Chlorobenzene		20.0	ug/L	18.7	93.6	81.5 - 104		2/16/2022
Chloroform		20.0	ug/L	20.1	101	86.3 - 116		2/16/2022
Tetrachloroethene		20.0	ug/L	20.1	100	69.8 - 110		2/16/2022
Trichloroethene		20.0	ug/L	19.3	96.7	81.6 - 108		2/16/2022
Vinyl chloride		20.0	ug/L	25.4	127	58.2 • 140		2/16/2022
Method Reference(s):	EPA 8260C EPA 5030							
Data File:	z07281.D							

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Number: QC Batch ID:

voax220216

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

Chain of Custody Supplement

Client:	Inventum Engineering	Completed by:	Glenn Perrulo
Lab Project ID:	220605	Date:	2/11/22
	Sample Condition Per NELAC/ELAP 210,		
Condition	NELAC compliance with the sample co Yes	ondition requirements No	upon receipt N/A
Container Type	X	× 5035	
Comments	57		
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Comments	3°Ciced		metals
Compliant Sample Quantity/T Comments			

フ

Temperature:	Holding Time	Preservation:	Container Type:	Receipt Parameter	Sample Condition: Per NEI AC/FI AB 210/241/242/243/244	10	9	8	7	6	5	4	ω	2	1 2/10/22 11:45	DATE TIME			PROJECT NAME/SITE NAME:	- No Outros cases			THE REPORT OF THE PROPERTY OF		
ture: LIOS	Time:	ation:	Type:	arameter	AC/EI AB 210/241/242/24										\times	m ⊣ − ∅ ○ ∪ ≧ ○ ೧		COMMENTS:	ATTN:	PHONE:	CITY:	ADDRESS:	COMPANY:	2	<i>γ</i>
z	z	~ 	V N	NEI AC Compliance	3/2//										220605-	SAMPLE LOCATION/FIELD ID			Reporting	FAX:	STATE:		Parac	REPORT TO:	20214000CI
Received @ Lab By	Received By Salcho	Relinquished By	Client Sampled By												0 - S(1 - X	X - X - D = X = X = X = X = X = X = X = X = X =		Please email results to reporting@paradigmenv.com	ATTN:	PHONE:	ZIP: CITY:	ADDRESS:	mental COMPANY:		2021400GCHAIN OF CUSTODY
2) 14 22 Date/Time	Date/Time	2/14/32 Date/Time	Date/Time												×	Ammonia	REQUESTED ANALYSIS	v.com	Accounts Payable	FAX:	STATE:		Same	INVOICE TO:	ODY
Filo	12133	08:30													Batch Q	REN		2			ZIP: TURN		LAB		\ - -
	P.I.F.		Total Cost:													REMARKS	9/0-1	Date Due: 2/21/	1 2 3 5	STD	TURNAROUND TIME: (WORKING DAYS)	-	LAB PROJECT #: CLIENT PROJECT		ELAP ID: 1
																PARADIGM LAB SAMPLE NUMBER	9	ンノ	Sı		Der	40		Page	50 of 51

22021 SCOS 179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311 CHAIN OF CUSTODY

ELAPID: 1

220215005 Page 51 of 51

. 446		e e e e e e e e e e e e e e e e e e e	
	4	Section 2	and the second
	3 4 5		
7			
7			
	PARA		
	200 Table 201		
	A 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100		
	v .		55.00
4			
A			
A	4 9		
A			
	The second		100
799			
	-uccollains.		
			- 3

		REPORT TO:	IZ/	INVOICE TO:		
GANIBONATHIAL STRVICTS, THE	COMPANY:	r: Paradigm Environmental	COMPANY: Same		LAB PROJECT #: CLIE	CLIENT PROJECT#
	ADDRESS:		ADDRESS:			
	СІТҮ:	STATE: ZIP:	: СІТҮ:	STATE: ZIP:	TURNAROUND TIME: (WORKING DAYS)	NG DAYS)
	PHONE:	FAX:	PHONE:	FAX:		STD
PROJECT NAME/SITE NAME:	ATTN:	Reporting	ATTN: Accounts Pa	Payable	2 3	5
	COMMENTS:	rs: Please email results to reporting@paradigmenv.com	ling@paradigmenv.com		Date Due: $2/3$	46
			REQUESTED	TED ANALYSIS	_	
DATE TIME O	מ⊳ѫด	SAMPLE LOCATION/FIELD ID	DIMBECZ DIMZ-DIZOO STELL Herbicides		REMARKS	PARADIGM LOW SAMPLE NUMBER
12/10/22 11:45 ×		220605-01A	ethact X	Batch	, ac	
2						
ω				Sample	e spun at	
4				و (ه د د د ک	2	
5						
တ						
7						
8						
9						
10						
LAB USE ONLY BELOW THIS LINE	LINE*					
Sample Condition: Per NELAC/ELAP 210/241/242/243/244)/241/242/24	3/244				

Container Type:

~ [

z

Sampled-By

Client

NELAC Compliance

Preservation:

≺ □

z

Relinquished By

ىد

15/22

Date/Time

Total Cost:

Date/Time

Date/Time

P.I.F.

Date/Time

z

Holding Time:

Temperature:

Fo (

Z

Received @ Lab By

Receipt Parameter

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

220995

Referencing

Lid Seal Soil

Prepared

Monday, March 14, 2022

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Lab Project ID: 220995

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Lid Seal Soil

Sample Identifier: ST06Soil-03102022, Lid Seal & Soil

Lab Sample ID: 220995-01 **Date Sampled:** 3/10/2022 13:45

Matrix: Sludge Date Received 3/10/2022

Paint Filter Test

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Paint Filter Test Pass N/A 3/14/2022

Method Reference(s): EPA 9095B

Percent Moisture

Analyte Result Units Qualifier Date Analyzed

Percent Moisture **77.1** % 3/11/2022

Method Reference(s): SM 2540 B

ELAP does not offer this test for approval as part of their laboratory certification program.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Received @ Lab By Date/Time Apply 2 13:45 Date/Time Apply 2 1420 Date/Time Date/Time Date/Time Date/Time Date/Time P.I.F. Possible of the control	3/10/22 13:45 × 57065011-08102022	THE COLLECTED COLLECTED S B F E	TIME OULECTED COLLECTED O A A B E E	SOIL TIME COLLECTED COLLECTED S A A B E E	PROJECT REFERENCE LID ZIL SOIL TIME OA A B T B T B T B T B T B T B T B T B T B T	TIME COLLECTED SO A R G	PROJECT REFERENCE SOIL TIME COLLECTED COLLECTED S A B F B F A A A A A A A A A A A A A A A
	2 SD 1 V LIDSFALTSON	SILLE NO RECENT OF RECENT OF SOLIDS	SILLE X SIND X SILL SILL SILL SILL SILL SILL SILL SI	WA - Water WG - Groundwater WW - Wastewater WW - Wastewater WI - Paint WW - Wastewater SL - Sludge PI - Paint REPRINTED ANALYSIS REMARKS F S S S S S S S S S S S S S S S S S S	WA - Water WG - Groundwater WW - Wastewater WW - Wastewater N C M T D E N C M T D E N C M T D E N C M T D E N C M T D E N C C M T D E N C C M T D E N C C M T D E N C C M T D E N C C M T D C M T D E N C C M T D E N C C M T D C M T	WA-Water WW-Drinking Water SO-Soil W-Pinking Water SL-Sludge PI-Paint CH RE R N SO E SO E SO E SO E SO E SO E SO E SO	CHENTS AME SUITE ADDRESS: CHINT: STATE: ZIP: Quotation # PHONE:
		TIME P G SAMPLE IDENTIFIER R D E A SAMPLE IDENTIFIER R D E A SAMPLE IDENTIFIER R D E A SAMPLE IDENTIFIER R R D E A	TIME O COLLECTED S SAMPLEIDENTIFIER M COLLECTED S SAMPLEIDENTIFIER M COLLECTED S SAMPLEIDENTIFIER M COLLECTED S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER F S SAMPLEIDENTIFIER R EMARKS	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid WG - Groundwater WW - Waster WW - Wastewater SL - Solid WP - Wipe WW - Wastewater SL - Solid WP - Wipe W - Wastewater SL - Solid WP - Wipe N C M T U N U N U N U N U N U N U N U N U N U	ECT REFERENCE Matrix Codes: Matrix	ECT REFERENCE Matrix Codes:	COLLECTED COLLECTED

See additional page for sample conditions.

Chain of Custody Supplement

Client:	Inventum	Completed by:	MilyVail
Lab Project ID:	220995	Date:	3/10/22
	Sample Conditi Per NELAC/ELAP 2	ion Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	e condition requirements No	s upon receipt N/A
Container Type			E4
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	y°c; w		
Compliant Sample Quantity/Ty Comments	/	,	

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

223132

Referencing

ST-06 Lid Seal Disposal

Prepared
Friday, July 15, 2022

The enclosed reports reflect an analysis that has been subcontracted and are presented in their original form.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ANALYTICAL REPORT

Lab Number: L2235421

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: ST-06 LID SEAL DISPOSAL

Project Number: ST-06 LID SEAL DISP

Report Date: 07/15/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number: Report Date:

L2235421 07/15/22

Project Number: Project Name: ST-06 LID SEAL DISPOSAL

ST-06 LID SEAL DISP

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2235421-01	ST06 - BOXES - 06302022	SOLID	Not Specified	06/30/22 15:15	07/01/22
L2235421-02	ST06 - LQ - 06302022	WATER	Not Specified	06/30/22 15:30	07/01/22
L2235421-03	ST06 - AQ - 06302022	WATER	Not Specified	06/30/22 15:35	07/01/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juxon & Med Susan O' Neil

Title: Technical Director/Representative Date: 07/15/22

ORGANICS

VOLATILES

Project Name: Lab Number: ST-06 LID SEAL DISPOSAL L2235421

Project Number: Report Date: ST-06 LID SEAL DISP 07/15/22

SAMPLE RESULTS

Lab ID: L2235421-01 Date Collected: 06/30/22 15:15

Date Received: 07/01/22 Client ID: ST06 - BOXES - 06302022 Not Specified Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Solid Analytical Method: 1,8015D Analytical Date: 07/14/22 21:06

Analyst: WR 71% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Alcohol Analysis by GC/FID - Mansfield Lab						
Methyl Alcohol	2160		mg/kg	28.1	14.0	1

Project Name: ST-06 LID SEAL DISPOSAL Lab Number: L2235421

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

SAMPLE RESULTS

Lab ID: L2235421-02 D Date Collected: 06/30/22 15:30

Client ID: ST06 - LQ - 06302022 Date Received: 07/01/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8015D
Analytical Date: 07/13/22 21:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Alcohol Analysis by GC/FID - Mansfield Lab						
Methyl Alcohol	2910		mg/l	20.0	10.0	10

Project Name: Lab Number: ST-06 LID SEAL DISPOSAL L2235421

Project Number: Report Date: ST-06 LID SEAL DISP 07/15/22

SAMPLE RESULTS

Lab ID: L2235421-03 D Date Collected: 06/30/22 15:35

Client ID: ST06 - AQ - 06302022 Date Received: 07/01/22 Field Prep: Not Specified

Sample Location: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8015D Analytical Date: 07/14/22 19:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Alcohol Analysis by GC/FID - Mansfield Lab						
Methyl Alcohol	2420		mg/l	20.0	10.0	10

Project Name: ST-06 LID SEAL DISPOSAL Lab Number: L2235421

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D Analytical Date: 07/13/22 15:48

Parameter	Result	Qualifier	Units		RL	MDL
Alcohol Analysis by GC/FID - Mansf	ield Lab for	sample(s):	02	Batch:	WG166244	2-1
Methyl Alcohol	ND		mg/l		2.00	1.00

Project Name: ST-06 LID SEAL DISPOSAL Lab Number: L2235421

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D Analytical Date: 07/14/22 13:02

Parameter	Result	Qualifier	Units		RL	MDL
Alcohol Analysis by GC/FID - Mansf	ield Lab for	sample(s):	01	Batch:	WG166298	1-1
Methyl Alcohol	ND		mg/kg		2.00	1.00

Project Name: ST-06 LID SEAL DISPOSAL Lab Number: L2235421

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D Analytical Date: 07/14/22 12:21

Parameter	Result	Qualifier	Units		RL	MDL
Alcohol Analysis by GC/FID - Mansf	ield Lab for	sample(s):	03	Batch:	WG166298	2-1
Methyl Alcohol	ND		mg/l		2.00	1.00

Lab Control Sample Analysis Batch Quality Control

Project Number: ST-06 LID SEAL DISP Report Date:

Project Name:

ST-06 LID SEAL DISPOSAL

Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limi	LCS LCSD %Recovery RPL
Qual	
Limits	RPD

Alcohol Analysis by GC/FID - Mansfield Lab Associated sample(s): 02 Batch: WG1662442-2 WG1662442-3 Methyl Alcohol 90 70-130 30

Lab Number:

07/15/22 L2235421

Lab Control Sample Analysis Batch Quality Control

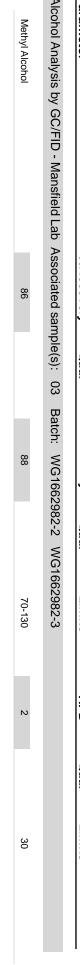
Project Number: Project Name: ST-06 LID SEAL DISP

ST-06 LID SEAL DISPOSAL

Lab Number: L2235421

Report Date: 07/15/22

Methyl Alcohol	Alcohol Analysis by GC/FID - Mansfield Lab Associated sample(s): 01 Batch: WG1662981-2 WG1662	Parameter
85	Associated sam	LCS %Recovery Qual
	ple(s): 01	Qual
86	Batch: WG16629	LCSD %Recovery
)81-2 WG1	Qual
70-130	662981-3	%Recovery Limits
_		RPD
		Qual
30		RPD Limits


Lab Control Sample Analysis Batch Quality Control

ST-06 LID SEAL DISPOSAL

Project Name:

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery Qual	Qual	%Recovery Qual	Qual	Limits	RPD	Qual	Limits	
Alcohol Analysis by GC/FID - Mansfield Lab Associated sample(s): 03 Batch: WG1662982-2 WG1662	Associated samp	le(s): 03	Batch: WG16629	82-2 WG1	662982-3				

Lab Number:

L2235421

Lab Duplicate Analysis

Batch Quality Control

Project Number: ST-06 LID SEAL DISP

Project Name:

ST-06 LID SEAL DISPOSAL

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Alcohol Analysis by GC/FID - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1662981-4 QC Sample: L2235421-01 Client ID: ST06 - BOXES - 06302022	ated sample(s): 01	QC Batch ID: WG1662981-4	QC Sample:	L2235421	-01 Client ID): ST06 - BOXES -
Methyl Alcohol	2160	2060	mg/kg	Oī		30
Alcohol Analysis by GC/FID - Mansfield Lab Associated sample(s): 03 QC Batch ID: WG1662982-4 QC Sample: L2235421-03 Client ID: ST06 - AQ - 06302022	ated sample(s): 03	QC Batch ID: WG1662982-4	QC Sample:	L2235421	-03 Client ID): ST06 - AQ -
Methyl Alcohol	2420	2430	mg/l	0		20

Report Date: Lab Number:

07/15/22 L2235421

INORGANICS & MISCELLANEOUS

Project Name: ST-06 LID SEAL DISPOSAL Lab Number: L2235421

Project Number: ST-06 LID SEAL DISP Report Date: 07/15/22

SAMPLE RESULTS

Lab ID: L2235421-01 Date Collected: 06/30/22 15:15

Client ID: ST06 - BOXES - 06302022 Date Received: 07/01/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Solid

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	71.1		%	0.100	NA	1	-	07/06/22 11:13	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Project Number: ST-06 LID SEAL DISP ST-06 LID SEAL DISPOSAL

Project Name:

Report Date: Lab Number:

L2235421 07/15/22

Project Number: ST-06 LID SEAL DISP Project Name: ST-06 LID SEAL DISPOSAL

Sample Receipt and Container Information

Cooler Information

Were project specific reporting limits specified?

YES

Cooler ပ္ပ Absent Custody Seal

Container Information	rmation		Initial	Final	Temp			Frozen	
Container ID	Container ID Container Type	Cooler	ρН	pΗ	deg C Pres Seal	Pres	Seal	Date/Time	Analysis(*)
L2235421-01A	Glass 60ml unpreserved split	Þ	NA		4.4	~	Absent		A2-ALCOHOL(14)
L2235421-01B	Glass 120ml/4oz unpreserved	⊳	N A		4.4	~	Absent		TS(7)
L2235421-02A	Vial unpreserved	⊳	N A		4.4	~	Absent		A2-ALCOHOL(14)
L2235421-02B	Vial unpreserved	⊳	N A		4.4	~	Absent		A2-ALCOHOL(14)
L2235421-02C	Glass 120ml/4oz unpreserved	⊳	N A		4.4	~	Absent		ARCHIVE()
L2235421-03A	Vial unpreserved	➤	N N		4.4	~	Absent		A2-ALCOHOL(14)
L2235421-03B	Vial unpreserved	Þ	N A		4.4	~	Absent		A2-ALCOHOL(14)

Serial_No:07152216:13

Report Date: 07/15/22 Lab Number: L2235421

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

SRM

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_main_model} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ANALYTICAL

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "H" = Sample analyzed outside of holding time.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
 "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

CHAIN OF CUSTODY

10 day Date Needed Rush 1 day Rush 2 day Rush 3 day Standard 5 day (406/108/19 HU SOU DISPASSOU DATE COLLECTED 130/2022 1535 a indicate date needed: **Turnaround Time** PROJECT REFERENCE Availability contingent upon lab approval; additional fees may apply. PARADIGM 1530 TIME Other None Required Category B Batch QC Category A sase indicate package reeded: m - 1 - 0 0 16 2 0 0 ឍ⊳៧០ Watrix Codes: Report Supplements 518 CLIENT: ST06-1045-630-2024 AQ - Aqueous Liquid NQ - Non-Aqueous Liquid WENTY NOTWEEDS IN Caniste dive Suite (A Ø ACTION OF WARMAN ON TON NYSDEC EDD X Other EDD Basic EDD None Required ase indicate EDD needed SAMPLE IDENTIFIER 26303027 06302021 WA - Water
WG - Groundwater By signing this form, client agrees to Paradigm Terms and Conditions (reverse). Received By Relfinquished By Brien 6 2 Ü × - 2 - 1 ≥ 3 0 m m o c SH. CLIENT: PHONE: ADDRESS رو **DW** - Drinking Water **WW** - Wastewater SAME 131AZ STATE: Date/Time SO - Soil SL - Sludge Į. See additional page for sample conditions. Thick IT SHEWA CHURCH SAMPLE er sta-la EXTE 121512 PS SD - Solid PT - Paint Email: Robune Bioxejnventures.com Show Brack Broken Brown Quotation #: Volume REMARKS Material. 225/27 Total Cost: SAMPLE WP - Wipe CK - Caulk Movided 6 OL - Oil AR - Air PARADIGM LAB SAMPLE NUMBER 0 allo

of 31

Chain of Custody Supplement

Client:	Inventum Eng	Completed by:	Emilie Hyde
Lab Project ID:	223132	Date:	7/6/22
	Sample Condition Per NELAC/ELAP 210/	Requirements 241/242/243/244	
Condition	NELAC compliance with the sample cor Yes	ndition requirements t No	upon receipt N/A
Container Type			
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
hlorine Absent <0.10 ppm per test strip) Comments			
olding Time Comments _			
emperature Comments			
mpliant Sample Quantity/Ty Comments	Sent diray	to sub	lab.

16455687

11148

CHAIN OF CUSTODY

PAR	PARADIGM	T.	<u> </u>	REPORT TO:	QUENT:	Camp	INVOICE TO:		LAB PROJECT ID
			ы	ADDRESS: 179 Lake Ave	ADDRESS	370			_
	1	7	OI.	STATE: NY	ZIP 14608 CITY:		STATE	ZIP:	Quotation #:
1	1		70	PHONE:	PHONE				Email:
PROJEC	PROJECT REFERENCE	NCE		ATTN: Reporting	ATTN:				reporting@paradigmenv.com
ST-06 Li	ST-06 Lid Seal Disposal	osal			WA - Water WG - Groundwater	DW - Drinking Water WW - Wastewater	y Water water	SO - Soil SL - Sludge	SD - Solid PT - Paint
	Series Designation					REQUESTE	REQUESTED ANALYSIS	S	
DATE COLLECTED	TIME	00%F00	m > 10 G	SAMPLE IDENTIFIER	X-2->Z WMDOO TO 2MBEC2 W2M2->-ZOO	Total Methanol			
6/30/2022	15:15		×	ST06 - Boxes - 06302022	sp 1	×			
6/30/2022	15:30		×	ST06 - LQ - 06302022	NO 2	×			
6/30/2022	15:35		×	ST06 - AQ - 06302022	AQ 2	×			
			1					Extra	Extra Volume Provided for ST06 - LQ.
			1					If settl	If settleing occures, sample thinck TAN
								material	al.
								Proje	Project: SP2022