INTERIM REMEDIAL MEASURE WORK PLAN for Petroleum Impacted Soil

BROWNFIELDS CLEANUP PROGRAM For 140 Chandler Street, LLC 140 Chandler Street Site, Western Portion, 140 Chandler Street, Buffalo, New York 14207 BCP # C915354

Prepared For: **140 Chandler Street, LLC** 391 Washington Street, Buffalo, New York 14203 WGS Project No: 19211

> Prepared By: Wittman GeoSciences, PLLC 3636 North Buffalo Road Orchard Park, New York 14127 (716) 574-1513

> > April 23, 2020

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
1.1	Project Background	1
2.0	INITIAL INVESTIGATION FINDINGS	1
3.0	INTERIM REMEDIAL MEASURES	2
3.1	IRM Tasks	2
3.2	Landfill Characterization Analysis and Soil Disposal	2
3.3	Site Control	2
3.4	Soil Excavation	2
3.5	Confirmatory Soil Sample Collection and Analysis	3
3.6	Excavation Backfill	3
3.7	Excavation Water Treatment and Disposal	
3.8	Personnel Decontamination	3
3.9	Decontamination of Equipment	
3.10	Erosion and Stormwater Management	4
3.1	Dust Monitoring and Controls	5
4.0	REPORTING	5
5.0	PROJECT SCHEDULE	5

FIGURES

Figure 1	Remedial Investigation Sample Locations
Figure 2	Estimated Areas of Remedial Soil Excavation

TABLES

Table 1	Summary of Soil Investigation Findings
Table 2	Soil Analytical Testing Results
Table 3	Groundwater Analytical Testing Results
Table 4	Emergent Contaminant Soil Sample Testing Results
Table 5	Emergent Contaminant Groundwater Testing Results
Table 6	Proposed Number of Confirmatory Samples

APPENDIX

Appendix A	Test Pit and Soil Boring Logs
Appendix B	Community Air Monitoring Plan

1.0 INTRODUCTION

1.1 Project Background

This Interim Remedial Measure (IRM) for Petroleum Impacted Soil Removal incorporates remedial activities summarized in a proposed scope of work (Work Plan) to be undertaken at the 140 Chandler Street Site located in the City of Buffalo, New York (Site). The Applicant, 140 Chandler Street, LLC, has been accepted into the Brownfield Cleanup Program (BCP) as a Volunteer.

This IRM Work Plan for Petroleum Impacted Soil Removal presents the planned interim remedial steps that will be implemented at the Site to address areas of petroleum impacted soil contamination recently identified at the site during building demolition work. Following the performance of this IRM, the results will be summarized in a Remedial Investigation, IRM, Alternative Analysis (RI/IRM/AA) Report, and included within the Final Engineering Report (FER) to be submitted to NYSDEC.

2.0 INITIAL INVESTIGATION FINDINGS

Two of the site buildings, identified as Buildings 2 and 3, were formerly utilized for mixing of petroleum products. As such, six mixing bins were present within the two buildings. The mixing bins were emptied, cleaned and temporarily staged on-site. The buildings also contained various containers and materials which were removed and disposed off-site. Additionally, asbestos abatement was completed and Buildings 2 and 3 were recently demolished.

Initial remedial investigation work was completed including completion of seven test pits, in order to collect landfill characterization samples for soil disposal. During test pit work, visual and olfactory indication of petroleum impacted soil was encountered at several locations. Due to impacts identified during initial work, further test pit work was completed. A total of 16 test pits were completed on-site, as well as six soil borings and installation of three monitoring wells. In general, petroleum impacts were identified approximately 1.5 to 4 feet below grade. Remedial investigation analytical soil samples were collected to further characterize the impacts and the site findings. A summary of site investigation location findings is included on Table 1, along with test pit and soil boring logs in Appendix A. Analytical testing results are summarized on Table 2 through 5, and investigation locations are included on Figure 1. In general, analytical results identified limited areas of semi-volatile organic compound (SVOC) and metals impacts exceeding planned commercial use soil clenaup objectives. However, visual and olfactory petroleum impacts were observed throughout many of the remedial investigation locations.

During building demolition work, the contractor started to excavate soil from along the eastern foundation wall. Contractor reported that a grossly impacted black oily silty material was present in the excavation. In order to not spread the impacted material, further foundation removal work was temporarily halted in order to evaluate potential soil and remedial options. Due to the presence of petroleum impact present in several on-site locations, IRM wok is needed to immediately address the concern.

3.0 INTERIM REMEDIAL MEASURES

An IRM will be completed to excavate the petroleum impacted soil for off-site disposal. Due to visual and olfactory petroleum impact, the site cleanup goals is anticipated to be altered to more restrictive unrestricted use soil cleanup objective (UUSCO).

3.1 IRM Tasks

The petroleum impacted soil is both visually and olfactory impacted and appears to be present in a throughout much of the site, approximately 1.5 to 4 feet below grade. Therefore, general excavation and removal of impacted soil/fill materials will be completed to remove the petroleum impacted soil. As the visually and olfactory impacted soil (i.e. staining and/or odor present) was present throughout the site, the soil excavation limits are anticipated to extend to the property limits and/or building foundation, as shown on Figure 2. Currently, approximately 2,800 cubic yards or 4,200-tons of petroleum impacted soil is anticipated to be removed from the site for off-site disposal.

Additionally, during soil sampling activities, one interior location was found to have soil impacts present at concentrations above UUSCO. Remedial work will also include removal soil from this, also shown on Figure 2. An additional 20 cubic yards or 30 tons of soil will be removed for off-site disposal.

The site work was under and extremely strict timeframe for the required for planned construction timing and activities. Therefore, IRM work was initially started on March 9, 2020.

Excavated soil will be directly loaded in a dump truck and disposed at Modern Landfill located in Youngstown, New York.

3.2 Landfill Characterization Analysis and Soil Disposal

Landfill characterization samples were collected during test pit work. The selected characterization analysis were determined based on solid waste landfill requirements, which is Modern Landfill in Youngstown, New York, and included toxicity characteristic leaching procedures (TLCP) VOCs, TCLP SVOCs, TCLP Metals, PCBs, pesticides, herbicides, ignitability, corrosivity, and reactivity. The soil will be disposed based on analytical testing results, and in accordance with applicable State disposal regulations.

3.3 Site Control

To safeguard the health and safety of Site workers and the general public, access to remedial work areas will be restricted. Prior to implementation of these IRM activities, Site control will be completed by establishment of a demarcation identifying work areas. Temporary construction fencing may be erected around staging areas to prevent unauthorized personnel from entering these areas as appropriate.

3.4 Soil Excavation

As discussed above, the current extent of impacted soil is not known, but due to planned site development activities, the IRM work must be completed immediately. An environmental scientist or geologist will be on-site during excavation to screen the removed soil/fill materials for

visual and olfactory observations and for total volatile compounds using an organic vapor meter (OVM) equipped with a photoionization detector (PID). Based on landfill discussions and approvals, grossly impacted soil may be segregated from visually and olfactory impacted soil.

Soil excavations will remain open allowing for NYSDEC inspection and possibly, until receipt of confirmation soil sample results, depending on planned development timing and activities.

3.5 Confirmatory Soil Sample Collection and Analysis

Confirmatory soil samples will be collected from the sidewalls and bottom of the excavation, in accordance with DER-10 requirements. One sample will be collected every 30 linear feet of sidewall and one sample for every 900 square feet of excavation bottom, as listed below.

- approximately 600 linear feet of sidewall, resulting in 20 sidewall samples
- 18,600 square feet of bottom, resulting in 21 bottom samples

Additionally, one bottom and four sidewall samples will be collected from the interior excavation area.

The number of confirmation samples may be reduced based on field conditions, and agreed upon by NYSDEC representative. Based on known contamination, it is anticipated that sidewall and bottom samples will be analyzed for TCL SVOCs and TAL Metals. Additionally, 10 sidewall and 10 bottom samples (or 50%) will also be analyzed for TCL VOC and PCBs; and 5 sidewall and 5 bottom samples (or 25%) will be analyzed for pesticides, herbicides, 1,4-dioxane, and polyfluoroalkyl substances (PFAS). A summary of expected samples is included on Table 1.

3.6 Excavation Backfill

The western portion of the Site will be developed for commercial usage to include a pool as well concrete decking, and the entire property will be covered by impermeable surface. Following soil excavation, the area will be backfilled with appropriate structural fill, as required for construction purposes. The backfill will be approved material in accordance with DER1- and tested, if required.

3.7 Excavation Water Treatment and Disposal

Although the grossly impacted soil may have petroleum product intermixed within the soil, the soil excavation work is anticipated to be above the water table. Due to the shallow depth of expected excavations to be into the native clay, groundwater is not anticipated to be encountered during excavation activities. However, should groundwater management be required, work on the Site will cease and a groundwater management plan developed.

3.8 Personnel Decontamination

The degree of decontamination is a function of both the particular task and the physical environment in which it takes place. Decontamination procedures will remain flexible, thereby allowing the decontamination crew to respond appropriately to changing conditions at the Site.

On-Site sampling activities will be carried out in such a manner as to avoid gross contamination of Site workers and their personal protective equipment and manual sampling equipment.

Upon the completion of the daily field activities, Site workers will proceed to a designated area to be determined. Equipment (e.g., sampling tools, shovels, hand tools, etc.) will be decontaminated in this area. Prior to leaving the Site for breaks, at the end of the work shift, or when PPE has been grossly contaminated, disposable boot covers, gloves, and suits, if utilized, will be removed and placed in a drum designated for the disposal of these materials.

Contaminated PPE and disposable sampling equipment and tools (e.g., gloves, clothing, sample sleeves, whirl-packs, etc.) that have been accumulated in a drum will be staged for proper disposal. This drum will be removed from the Site at the end of the IRM activities.

All fluids collected during equipment decontamination will be containerized with the drum(s) being labeled and staged for proper disposal. The drum(s) will be removed from the Site at the end of the IRM activities.

3.9 Decontamination of Equipment

Equipment decontamination efforts will be completed prior to equipment leaving the Site. Trucks and equipment leaving the Site will be broom-cleaned to remove clumped soil and prevent soil tracking off-Site. Standard construction protocols will be utilized, including on-Site designated truck pattern and periodic sweeping of the construction exit areas. Adjacent roads in the designated truck route will be inspected daily to ensure the prevention of soil migration. Roads that have any soil accumulation will be manually scrapped to reduce fugitive dust emissions. On-Site stone haul roads may be constructed as necessary to reduce the amount of soils tracked on the Site.

The decontamination of excavator or other heavy equipment will be undertaken as necessary. Initially, scraping of the equipment will remove heavily caked materials prior to washing, as necessary. Washing will then be accomplished by pressure washing, as needed. Water generated during decontamination activities will be collected, stored in one or more drums, as necessary, and profiled for future off-Site disposal. However, the use of water to clean equipment will be avoided, if possible, to prevent the generation of potentially impacted water.

3.10 Erosion and Stormwater Management

As part of the IRM activities, measures may be needed to limit erosion and manage stormwater. Erosion control and stormwater management will be implemented as needed to limit erosion in disturbed areas during excavation activities. Silt fencing will be the primary sediment control measure used in this area, if deemed necessary. The positioning of the silt fencing will be adjusted as necessary as work proceeds or Site conditions change. Silt fences will be maintained as deemed necessary, and will remain in place until excavation and grading activities are completed.

3.11 Dust Monitoring and Controls

A Community Air Monitoring Plan (CAMP) will be implemented during IRM activities and will include particulate monitoring (Appendix A). CAMP monitors will be positioned at upwind and downwind locations on the perimeter of the Site.

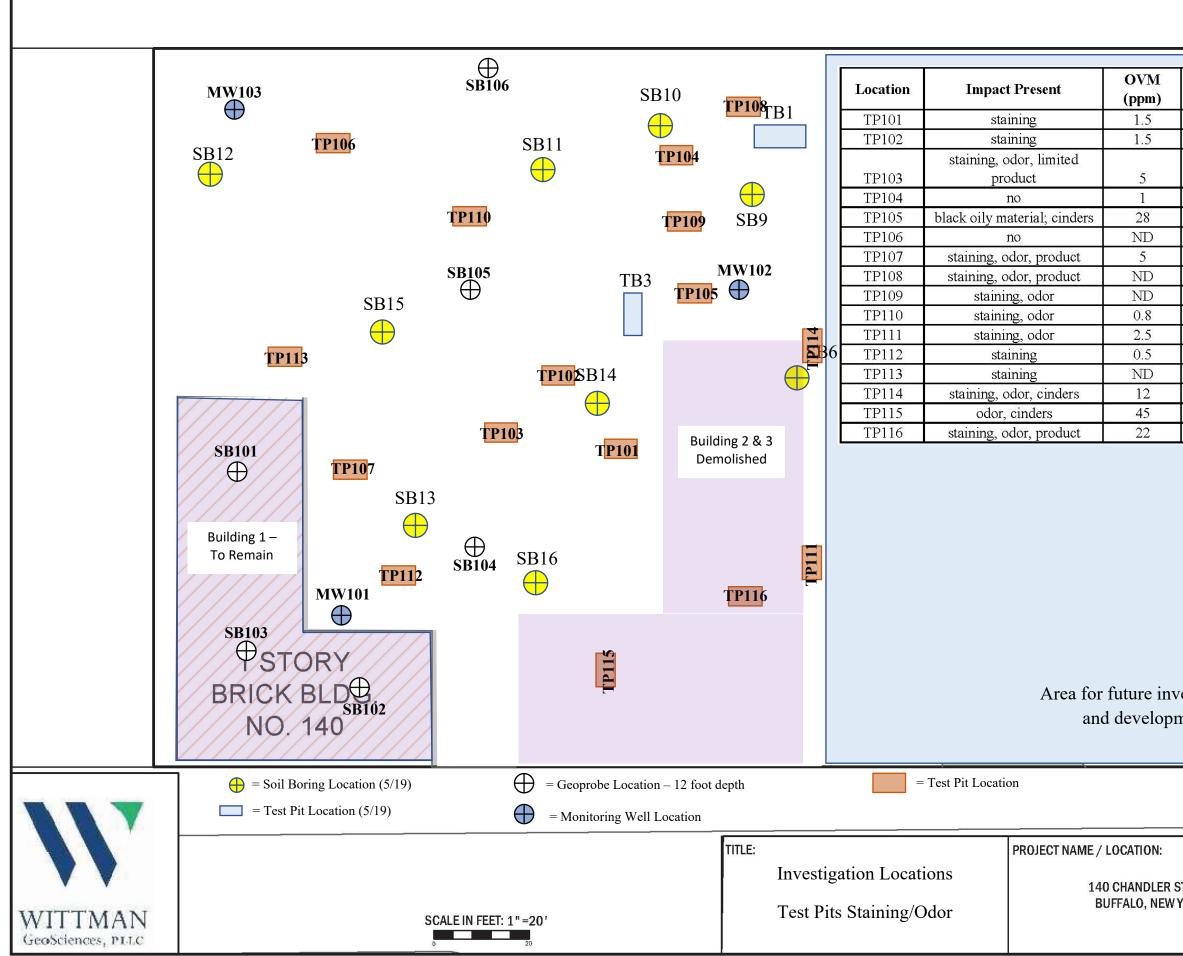
The remediation crew will make all efforts to suppress dust and particulate matter during the handling of contaminated fill materials. Fugitive dust and particulate monitoring will be completed in accordance with DER-10 Appendix 1B. The following techniques have been shown to be effective for the controlling the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and/or
- (g) Reducing the excavation size and/or number of excavations.

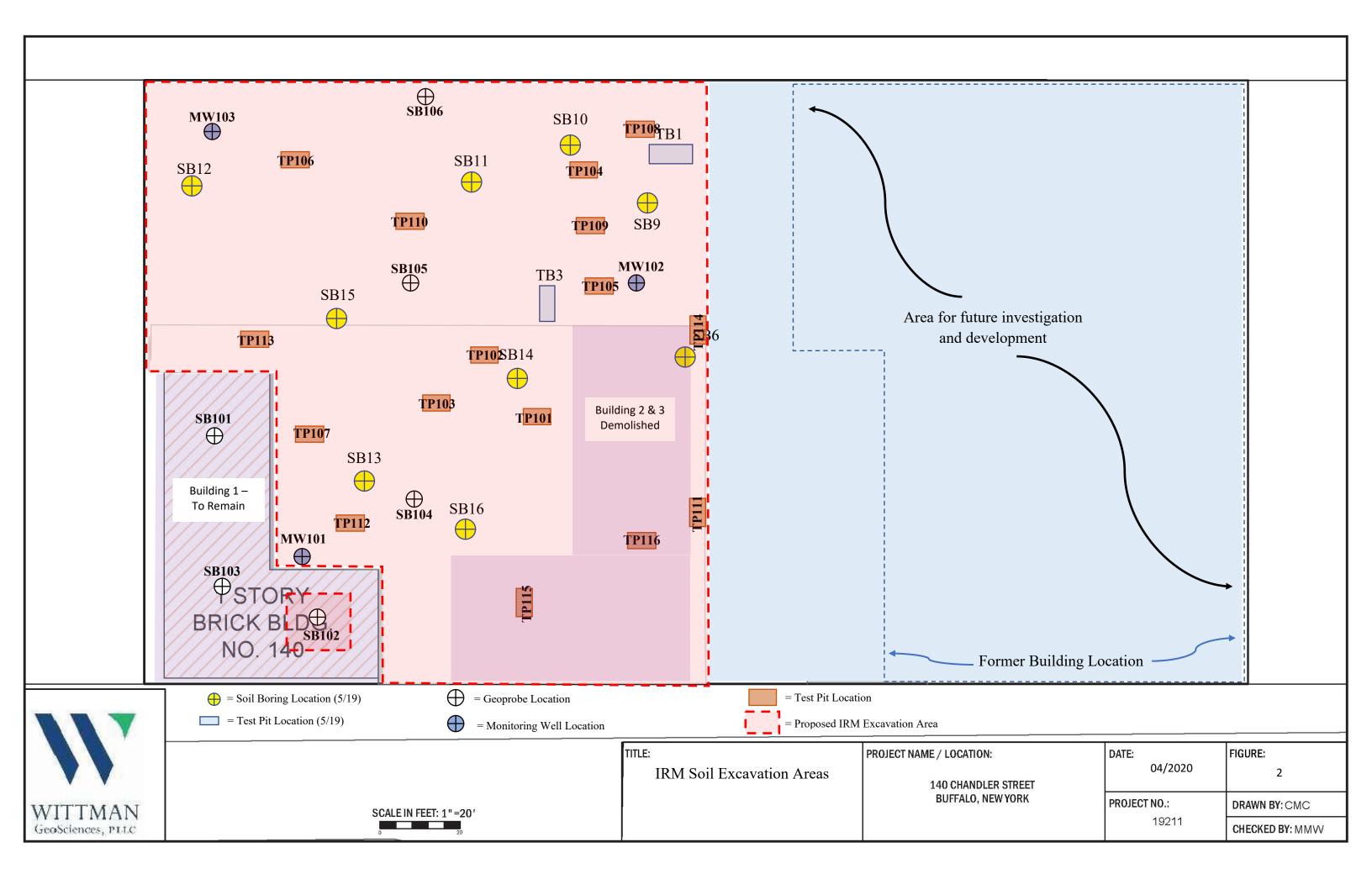
Care will be taken not to use excess water, which can result in unacceptably wet Site conditions. Use of atomizing sprays will prevent overly wet conditions, conserve water and provide an effective means of suppressing fugitive dust.

Weather conditions will be evaluated during remedial work. When extreme wind conditions make dust control ineffective, as a last resort, remedial actions may need to be suspended.

4.0 **REPORTING**


Upon completion of the field work and receipt of analytical data, the IRM soil excavation work will be summarized in an RI/IRM/AA Report will be submitted to NYSDEC. The report will document field work activities, results of confirmatory analytical sampling results, and contain associated figures, tables, and disposal manifests. The results of the IRM activities will also be included within the FER.

5.0 **PROJECT SCHEDULE**


The IRM excavation work started on Monday March 9, 2020, continuing until removal of visual and olfactory impacted soil is completed.

FIGURES

Staining (ft) 1.5 - 4 1.5 - 3 1.5 - 4 1.5 - 4 1.5 - 4 0 - 2 - 3 - 4 1.5 - 4 3 - 4 1.5 - 4 3 - 4 1.5 - 2.5 1 - 3 2 - 3 1 - 3 1 - 2 1.5 - 3'		
STREET YORK	DATE: 03/202	FIGURE: 1
TOTAL	PROJECT NO.: 19211	DRAWN BY: CMC CHECKED BY: MMVV

TABLES

Table 1Summary of Soil Investigation Findings140 Chandler Street, Buffalo, NY

Location	Fill Depth (ft)	Debris Present	Evidence of Impact Present	OVM reading (ppm)	Staining Depth (ft)	Clay Depth (ft)	Comments
TP101	0-4	No	staining	1.5	1.5 - 4	6	
TP102	0-6	Concrete	staining	1.5	1.5-3	6	Boulder size concrete from 2-6'; east wall appeared to be concrete footer wall
TP103	0-4	No	staining, odor, limited product	5	1.5-4	4	stained petroleum 1-3'; limited product 3-3.5'
TP104	0-4	No	no	1	-	5	
TP105	0-2 - refusal	No	black oily material; cinders	28	0-2	-	refusal at 2'; black oily material along concrete pad
TP106	0-3.5	No	no	ND	-	3.5	some cinders in fill
TP107	0-4	No	staining, odor, product	5	3-4	4	petro layer 3-4 feet; similar to TP103
TP108	0-4.5	Yes	staining, odor, product	ND	1.5-4	4.5	Discolored layer from 1.5-3'. Petro staining and odor
TP109	0-4.5	No	staining, odor	ND	3-4	4.5	3'bg - pipe found; stained soil below pipe
TP110	0-4	No	staining, odor	0.8	3-4	4	staining and odor at 3-4 fbg
							Pipe at 0.5' and drain tile at 1.5'. Staining and odor at drain tile;
TP111	0-2.5	Yes	staining, odor	2.5	1.5-2.5	refusal at 2.5	sheen on perched groundwater in pit
TP112	0-3	No	staining	0.5	1-3	3	staining at 1-3'
TP113	0-3	No	staining	ND	2-3	3	staining 2-3'
TP114	0-3	Yes	staining, odor, cinders	12	1-3	3	staning and odor present
TP115	0-2	Yes	odor, cinders	45	1-2	2	odor present
TP116	0-3.5	Yes	staining, odor, product	22	1.5-3'	3.5	odor, staining, limited product present. Drain tile at 3.5'
SB101	0-4	No	No	5	-	4	
SB102	0-2.5	No	No	1.2	-	2.5	
SB103	0-3	No	No	ND	-	3	
SB104	0-4	Concrete, cinders	No	3.5	-	4	cinders, concrete 2-3 ft
SB105	0-4	Brick	No	3.5	-	4	trace brick 1.5-3 ft.
SB106	0-5.5	Concrete	No	5	-	5.5	concrete 0-3 ft
MW101	0-3	No	No	ND	-	3	
MW102	0-4	Concrete, Brick	No	ND	-	4	concrete 1.5-4
MW103	0-4.5	Cinders	No	ND	-	4.5	cinders 1.5-3 ft.

						TD103 (1 5 51)	TD102 (1 5 41)	TP103 (1.5-4')	TD102 (4 71)	TD105 (1 5 01)	CD101 (0 5 21)	SB101 (0.5-3')	(D100 (2 71)	CD104 (0.5.40)				TD 100 (1 5 4)	TP 108 (1.5-4')		TD114 (0.5.21)	TD112 (1 21)	TD115 (1 A)	TD115 (0.51)	
LOCATION SAMPLING DATE	UUSC	O RRU	SCO C	USCO	IUSCO	TP102 (1.5-5') 1/10/2020	TP103 (1.5-4') 1/10/2020	DUPLICATE 1/10/2020	TP103 (4-7') 1/10/2020	TP105 (1.5-2') 1/10/2020	SB101 (0.5-3') 2/18/2020	DUPLICATE 2/18/2020	SB102 (3-7') 2/18/2020	SB104 (0.5-4') 2/18/2020	SB104 (0.5-4') 2/18/2020	SB106 (0.5-4') 2/18/2020	MW-103 (1-3') 2/19/2020	TP 108 (1.5-4') 3/3/2020	DUPLICATE 3/3/2020	MW-103 (1-3) 3/3/2020	TP114 (0.5-3') 3/4/2020	TP113 (1-3') 3/4/2020	TP115 (1-2') 3/4/2020	TP115 (2-5') 3/4/2020	TP116 (1.5-4.5') 3/4/2020
LAB SAMPLE ID					-	L2001326-01	L2001326-02	L2001326-03	L2001326-04	L2001326-05	L2007501-01	L2007501-02	L2007501-03	L2007501-04	L2007501-04 R1	L2007501-05	L2007501-06	L2009509-01	L2009509-02	L2009767-01	L2009767-02	L2009767-03	L2009767-04	L2009767-05	L2009767-06
Volatile Organics by EPA	5035 (mg/kg)																								
1,1-Dichloroethane	0.27		6	240	480	0.00089 U	0.06 U	0.058 U	0.00091 U	0.085 U	0.00099 U	0.00089 U	0.00079 U	0.051 U	NT	0.00088 U	0.0015 U	0.0012 U	0.00092 U	NT	0.044 J	0.0012 U	0.078 U	0.00083 U	0.064 U
Benzene	0.00		.8	44	89	0.00066	0.03 U	0.029 U	0.00046 U	0.042 U	0.0005 U	0.00044 U	0.00039 U	0.026 U	NT	0.00044 U	0.00073 U	0.00059 U	0.00046 U	NT	0.032 J	0.00062 U	0.023 J	0.00041 U	0.032 U
Toluene Ethvlbenzene	0.7	10		500 390	1000 780	0.00081 J 0.00015 J	0.078 0.022 J	0.046 J 0.019 J	0.00091 U 0.00091 U	0.68 0.043 J	0.00099 U 0.00046 J	0.00089 U 0.00019 J	0.00079 U 0.00079 U	0.051 U 0.0096 J	NT NT	0.00088 U 0.00088 U	0.0015 U 0.0015 U	0.0012 U 0.0012 U	0.00092 U 0.00092 U	NT NT	0.17	0.0012 U 0.00019 J	0.078 U 0.012 J	0.00083 U 0.00083 U	0.064 U 0.064 U
1,2-Dichlorobenzene	1.1		-	500	1000	0.0018 U	0.022 J	0.12 U	0.0018 U	0.17 U	0.002 U	0.0018 U	0.0016 U	0.0030 J	NT	0.0018 U	0.0029 U	0.0012 U	0.00032 0 0.0018 U	NT	0.86	0.0025 U	0.16 U	0.0016 U	0.004 0 0.13 U
1,3-Dichlorobenzene	2.4	4	9	280	560	0.0018 U	0.12 U	0.12 U	0.0018 U	0.17 U	0.002 U	0.0018 U	0.0016 U	0.1 U	NT	0.0018 U	0.0029 U	0.0024 U	0.0018 U	NT	0.094 J	0.0025 U	0.16 U	0.0016 U	0.13 U
1,4-Dichlorobenzene	1.8		с	130	250	0.0018 U	0.12 U	0.12 U	0.0018 U	0.17 U	0.002 U	0.0018 U	0.0016 U	0.1 U	NT	0.0018 U	0.0029 U	0.0024 U	0.0018 U	NT	0.11 J	0.0025 U	0.16 U	0.0016 U	0.13 U
Methyl tert butyl ether	0.93			500	1000	0.00038 J	0.12 U	0.12 U	0.0018 U	0.17 U	0.002 U	0.0018 U	0.00029 J	0.1 U	NT NT	0.0018 U	0.0029 U	0.0024 U	0.0018 U	NT NT	0.15 U	0.0025 U	0.16 U	0.0016 U	0.13 U
p/m-Xylene o-Xvlene	0.26		00	500 500	1000 1000	0.00062 J 0.00048 J	0.066 J 0.064	0.052 J 0.052 J	0.0018 U 0.00091 U	0.19 0.15	0.0006 J 0.00044 J	0.0018 U 0.00071 J	0.0016 U 0.00079 U	0.031 J 0.051 U	NT	0.0018 U 0.00088 U	0.0029 U 0.0015 U	0.0024 U 0.0012 U	0.0018 U 0.00092 U	NT NT	0.33	0.00074 J 0.0012 U	0.087 J 0.097	0.0016 U 0.00083 U	0.13 U 0.064 U
Acetone	0.05		00	500	1000	0.046	0.6 U	0.58 U	0.022	0.85 U	0.034	0.02	0.061	0.51 U	NT	0.011	0.059	0.18	0.46 E	NT	0.59 J	0.15	0.52 J	0.012	0.5 J
2-Butanone	0.12			500	1000	0.0042 J	0.6 U	0.58 U	0.0091 U	0.85 U	0.0099 U	0.0089 U	0.0079 U	0.51 U	NT	0.0088 U	0.011 J	0.029	0.014	NT	0.74 U	0.024	0.78 U	0.0083 U	0.64 U
Isopropylbenzene	NV		-	NV	NV	0.00089 U	0.019 J	0.019 J	0.00091 U	0.029 J	0.00021 J	0.00032 J	0.00079 U	0.051 U	NT NT	0.00088 U	0.0015 U	0.0012 U	0.00092 U	NT NT	0.055 J	0.00013 J	0.013 J	0.00083 U	0.048 J
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NV NV			NV NV	NV NV	0.0018 U 0.0018 U	0.12 U 0.12 U	0.12 U 0.12 U	0.0018 U 0.0018 U	0.17 U 0.17 U	0.002 U 0.002 U	0.0018 U 0.0018 U	0.0016 U 0.0016 U	0.1 U 0.1 U	NT	0.0018 U 0.0018 U	0.0029 U 0.0029 U	0.0024 U 0.0024 U	0.0018 U 0.0018 U	NT	0.045 J 0.09 J	0.0025 U 0.0025 U	0.16 U 0.16 U	0.0016 U 0.0016 U	0.13 U 0.13 U
Methyl Acetate	NV			NV	NV	0.0035 U	0.27	0.27	0.0036 U	0.28 J	0.004 U	0.0036 U	0.0032 U	4.6	NT	0.0035 U	0.0059 U	0.0047 U	0.46 U	NT	0.31	0.0049 U	0.28 J	0.0033 U	0.11 J
Cyclohexane	NV	N	V	NV	NV	0.0023 J	0.064 J	0.054 J	0.0091 U	0.85 U	0.0099 U	0.0089 U	0.0079 U	0.11 J	NT	0.0024 J	0.015 U	0.0038 J	0.043 J	NT	0.054 J	0.012 U	0.046 J	0.0083 U	0.64 U
Methyl cyclohexane		N	V	NV	NV	0.005	0.19 J	0.14 J	0.0036 U	0.087 J	0.004 U	0.0036 U	0.0032 U	0.35	NT	0.0021 J	0.0059 U	0.0041 J	0.087 J	NT	0.18 J	0.0049 U	0.11 J	0.0033 U	0.19 J
Semivolatile Organics by (Acenaphthene	GC/MS (mg/kg) 20	1(00	500	1000	0.042 J	0.082 J	0.12 J	0.15 U	0.94 U	0.03 J	0.039 J	0.16 U	0.026 J	0.78 U	0.062 J	2.9	0.14 J	0.07 J	NT	0.85 U	0.048 J	0.085 J	0.16 U	0.12 J
Fluoranthene	100			500	1000	0.88	0.69	1.1	0.13 U	0.94 0 0.71 U	0.059 J	0.13	0.10 0	0.73	1.3	0.54	21	5.2	1.5	NT	0.63 J	1	1.7	0.10 U	1.1
Isophorone	NV		V	NV	NV	0.18 U	0.054 J	0.35 U	0.17 U	1.1 U	0.18 U	0.17 U	0.18 U	0.17 U	0.88 U	0.17 U	2 U	0.18 U	0.18 U	NT	0.95 U	0.21 U	0.17 U	0.18 U	0.18 U
Naphthalene	12	10	00	500	1000	0.2 U	0.12 J	0.13 J	0.19 U	0.49 J	0.2	0.25	0.2 U	0.19 U	0.98 U	0.53	9	0.12 J	0.1 J	NT	0.44 J	0.06 J	0.2	0.2 U	0.062 J
Butyl benzyl phthalate	4	<u> </u>	1	5.6	11	0.2 U 0.36	0.38 U	0.39 U 0.59	0.19 U 0.11 U	1.2 U 0.62 J	0.2 U 0.035 J	0.19 U 0.075 J	0.2 U 0.03 J	0.17 J 0.31	0.98 U 0.46 J	0.19 U 0.35	2.2 U 14	0.2 U 2.4	0.2 U 0.76	NT NT	1 U 0.35 J	0.23 U 0.67	0.19 U	0.2 U 0.12 U	0.2 U 0.38
Benzo(a)anthracene Benzo(a)pyrene	1			1	11	0.36	0.39 0.29 J	0.59	0.11 U 0.15 U	0.62 J 0.42 J	0.035 J 0.16 U	0.075 J	0.03 J 0.16 U	0.31	0.46 J 0.51 J	0.35	14	2.4	0.76	NT	0.35 J 0.33 J	0.67	0.95	0.12 U 0.16 U	0.38
Benzo(b)fluoranthene	1	·	1	5.6	11	0.45	0.45	0.63	0.11 U	0.61 J	0.04 J	0.099 J	0.12 U	0.5	0.71	0.54	24	3.8	1.1	NT	0.47 J	0.87	1.4	0.12 U	0.46
Benzo(k)fluoranthene	0.8	3	.9	56	110	0.11 J	0.12 J	0.24	0.11 U	0.25 J	0.12 U	0.038 J	0.12 U	0.14	0.25 J	0.17	6.8	1.2	0.28	NT	0.64 U	0.19	0.32	0.12 U	0.14
Chrysene	1	3	.9	56	110	0.34	0.36	0.55	0.11 U	0.65 J	0.03 J	0.071 J	0.025 J	0.34	0.58 J	0.42	15	2.7	0.78	NT	0.4 J	0.71	0.99	0.12 U	0.39
Acenaphthylene Anthracene	100		00	500	1000 1000	0.16 U 0.1 J	0.3 U 0.13 J	0.062 J 0.24	0.15 U 0.11 U	0.94 U 0.71 U	0.16 U 0.12 U	0.15 U 0.11 U	0.16 U 0.12 U	0.15 U 0.06 J	0.78 U 0.59 U	0.15 U 0.071 J	0.74 J 4.2	0.093 J 0.48	0.1 J 0.42	NT	0.85 U 0.64 U	0.044 J 0.15	0.11 J 0.22	0.16 U 0.12 U	0.16 0
Benzo(ghi)perylene	100			500	1000	0.21	0.24 J	0.38	0.15 U	0.32 J	0.12 U	0.05 J	0.12 U	0.18	0.35 J	0.32	12	1.5	0.46	NT	0.3 J	0.33	0.53	0.12 U	0.18
Fluorene	30			500	1000	0.056 J	0.15 J	0.22 J	0.19 U	0.31 J	0.02 J	0.028 J	0.2 U	0.035 J	0.98 U	0.099 J	2.5	0.24	0.11 J	NT	0.15 J	0.05 J	0.083 J	0.2 U	0.2
Phenanthrene	100			500	1000	0.53	0.47	0.84	0.11 U	0.71 U	0.049 J	0.096 J	0.039 J	0.36	0.74	0.54	16	2.3	0.94	NT	0.48 J	0.54	0.92	0.12 U	1.2
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	0.33		33 .5	0.56	1.1 11	0.051 J 0.24	0.054 J 0.25 J	0.094 J 0.4	0.11 U 0.15 U	0.71 U 0.34 J	0.12 U 0.16 U	0.11 U 0.054 J	0.12 U 0.16 U	0.045 J 0.2	0.59 U 0.38 J	0.078 J 0.3	2.9 13	0.4	0.1 J 0.49	NT NT	0.64 U 0.27 J	0.082 J 0.35	0.14	0.12 U 0.16 U	0.038 J 0.2
Pyrene	100			500	1000	0.68	0.62	0.97	0.11 U	1.2	0.05 J	0.12	0.048 J	0.59	1	0.55	19	4.6	1.3	NT	0.65	1.2	1.4	0.12 U	0.81
Biphenyl	NV	N	V	NV	NV	0.45 U	0.87 U	0.88 U	0.43 U	2.7 U	0.46 U	0.43 U	0.45 U	0.44 U	2.2 U	0.087 J	0.99 J	0.47 U	0.45 U	NT	2.4 U	0.53 U	0.44 U	0.45 U	0.47 U
Dibenzofuran	7	5	•	350	1000	0.025 J	0.38 U	0.11 J	0.19 U	1.2 U	0.2 U	0.19 U	0.2 U	0.019 J	0.98 U	0.15 J	2.3	0.12 J	0.072 J	NT NT	0.12 J	0.03 J	0.065 J	0.2 U	0.099 J
2-Methylnaphthalene 2,4-Dimethylphenol	NV NV		V V	NV NV	NV NV	0.24 U 0.2 U	0.23 J 0.38 U	0.21 J 0.39 U	0.23 U 0.19 U	0.28 J 1.2 U	0.08 J 0.2 U	0.097 J 0.19 U	0.24 U 0.2 U	0.23 U 0.19 U	1.2 U 0.98 U	0.82 0.19 U	4 2.2 U	0.082 J 0.2 U	0.078 J 0.2 U	NT	0.5 J 1 U	0.035 J 0.23 U	0.15 J 0.19	0.24 U 0.2 U	0.25 0.2 U
3-Methylphenol/4-Methylp				NV	NV	0.29 U	0.55 U	0.56 U	0.10 U	1.2 U	0.29 U	0.10 U	0.28 U	0.10 U	1.4 U	0.091 J	0.49 J	0.032 J	0.28 U	NT	1.5 U	0.33 U	0.12 J	0.28 U	0.2 U
Carbazole	NV	N	V	NV	NV	0.097 J	0.38 U	0.11 J	0.19 U	1.2 U	0.2 U	0.19 U	0.2 U	0.059 J	0.1 J	0.048 J	2.4	0.44	0.14 J	NT	1 U	0.058 J	0.1 J	0.2 U	0.16 J
Total Metals (mg/kg)				ND /	ND /	5570	4510	5780	7000	6990	6930	10300	7280	7880	NT	5720	3430	7900	7000	NT	0700	11100	7000	12200	12200
Aluminum, Total Antimony, Total	NV NV			NV NV	NV NV	4.61 U	4510 4.55 U	4.44 U	7030 4.59 U	0.909 J	3.11 U	3.48 U	3.16 U	3.83 U	NT	0.565 J	5.02	4.83 U	7990 4.74 U	NT	8790 2.6 J	11400 5.43 U	7820 4.49 U	4.72 U	4.77 U
Arsenic, Total	13	1	6	16	16	4.75	9.35	6.31	2.86	8.18	2.39	3.35	3.98	2.08	NT	4.43	12.8	7.6	5.46	NT	11.5	4.12	10	5.59	5.04
Barium, Total	350			400	10000	47.7	64.3	50.2	80.4	213	58	84.1	44.7	46.7	NT	67.7	69.5	82	77.9	NT	184	95.4	91.4	110	110
Beryllium, Total	7.2			590	2700	0.433 J	0.273 J	0.328 J	0.239 J	0.471 J	0.385	0.92	0.335	1.91	NT	0.351 J	0.294 J	0.386 J	0.379 J	NT	0.777	0.564	0.449	0.585	0.592
Cadmium, Total Calcium, Total	2.5 NV			9.3 NV	60 NV	1.01 42400	0.764 J 137000	0.923 40500	0.863 J 59500	1.66 14500	0.286 J 17300	0.404 J 18600	0.322 J 68700	0.766 U 81300	NT NT	0.394 J 43900	2.02 12800	0.656 J 30100	0.53 J 30800	NT NT	3.32 12100	0.358 J 55900	1.01 16700	0.396 J 63500	0.468 J 63800
Chromium, Total	NV		-	NV	NV	12	42.3	21.8	12.5	18.2	8.82	14.4	13	6.22	NT	97.4	22.3	15.9	14.9	NT	25.6	15.1	16.8	20.4	20.6
Cobalt, Total	NV			NV	NV	5.54	3.58	5.26	7.94	5.81	2.36	16.4	8.29	0.804 J	NT	5.92	6.38	7.09	6.25	NT	8.63	3.1	4.68	10.9	11
Copper, Total	50			270	10000	20.4	17.8	21.1	16.6	43.1	13.8	16.6	16.6	1.55	NT	22.4	100	34.5	19.5	NT	127	13.1	65.7	19.8	22.3
Iron, Total Lead, Total	NV 63		v	NV 1000	NV 3900	12000 39.7	11600 29.3	13500 28	15900 8.82	19800 104	10600 11.6	18500 10.3	15100 8.87	2810 2.18 J	NT NT	14800 26.9	21200 159	21800 62.1	17200 36.2	NT NT	29400 830	12300 30.6	16800 100	21300 12.1	21200 19.9
Magnesium, Total	NV		V	NV	NV	7910	6790	9540	13300	3970	7360	8540	13900	11700	NT	8600	2210	8020	5960	NT	4940	19200	4880	14200	16200
Manganese, Total	160			10000	10000	384	1100	341	381	389	134	176	656	1810	NT	308	213	451	473	NT	533	251	383	550	541
Mercury, Total	0.18			2.8	5.7	0.082 U	0.084 U	0.08 U	0.092 U	0.109 U	0.055 J	0.073 U	0.075 U	0.075 U	NT	0.08	0.355	0.102	0.061 J	NT	0.423	0.098 J	0.166	0.095 U	0.085 U
Nickel, Total Potassium, Total	30 NV			310 NV	10000 NV	<u> </u>	9.68 380	15.5 472	17 827	13 654	5.98 775	15.3 933	15.8 887	2.1 565	NT NT	15.4 672	21.2 292	15.5 822	12 700	NT NT	22.6 749	9.51 1240	10.2 878	24 1460	24.6 1420
Selenium, Total	3.9		-	1500	6800	1.84 U	1.82 U	1.77 U	1.84 U	2.19 U	0.683 J	1.03 J	0.689 J	1.61	NT	1.01 J	2.32	0.376 J	0.407 J	NT	1.97 U	2.17 U	0.62 J	1.89 U	1.91 U
Sodium, Total	NV		V	NV	NV	189	189	178	136 J	77.9 J	198	106 J	168 J	224	NT	105 J	126 J	119 J	101 J	NT	106 J	275	160 J	184 J	270
Thallium, Total	NV		•	NV	NV	1.84 U	1.82 U	1.77 U	1.84 U	2.19 U	1.24 U	1.39 U	1.26 U	2.22	NT	1.71 U	1.68 U	1.93 U	0.445 J	NT	1.97 U	2.17 U	1.8 U	1.89 U	1.91 U
Vanadium, Total Zinc, Total	NV 109		V 000 1	NV 10000	NV 10000	<u> </u>	18.1 83.2	13.2 73.4	16.7 50.8	21.9 286	14.1 43.5	19.2 62.5	17.4 49.3	3.3 4.48	N I NT	13 60.4	18.1 496	20.3	<u>19.6</u> 90	NI NT	34.9 298	17.4 70.5	24.8 215	26.8 64.4	26.3 81.2
Polychlorinated Biphenyls		100			10000	52.1	00.2	1 70.4	00.0	200	-0.0	02.0	1 79.0	U 7.TO			730	107			230	1 10.0	210	T.T.	01.2
Aroclor 1248	0.1		1	1	25	0.00941 J	0.00749 J	0.0201 J	0.0377 U	0.0455 U	0.0411 U	0.0377 U	0.038 U	NT	NT	NT	NT	0.04 U	0.0386 U	0.05 U	0.042 U	0.0452 U	0.0378 U	0.039 U	0.0407 U
Aroclor 1254	0.1			1	25	0.0161 J	0.00965 J	0.0255 J	0.0377 U	0.216	0.0411 U	0.0377 U	0.038 U	NT	NT	NT	NT	0.0103 J	0.00764 J	0.05 U	0.042 U	0.0144 J	0.0378 U	0.039 U	0.0407 U
Aroclor 1260 PCBs, Total	0.1		 	1	25 25	0.0106 J 0.0361 J	0.039 U 0.0171 J	0.0376 U 0.0456 J	0.0377 U 0.0377 U	0.0455 U 0.216	0.0411 U 0.0411 U	0.0377 U 0.0377 U	0.038 U 0.038 U	NT NT	NT NT	NT NT	NT NT	0.04 U 0.0103 J	0.0124 J 0.02 J	0.05 U 0.05 U	0.042 U 0.042 U	0.0452 U 0.0144 J	0.0378 U 0.0378 U	0.039 U 0.039 U	0.0407 U 0.0407 U
Chlorinated Herbicides by				I	23	0.0001 J	0.01713	0.04303	0.0377-0	0.210	0.0411.0	0.0011 0	0.000 0					0.0103 3	0.02 0	0.05 0	0.042 0	0.0144 0	0.0070 0	0.009 0	0.04070
						NT				NT				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Organochlorine Pesticides			2	0.0	00		0.00740.11	0.00750.11	0.000744.11		0.0464.11	0.0140	0.000750.11		NIT.			NIT	NT NT	NIT.	NIT.	NT		NT NT	NT
Lindane Alpha-BHC	0.1			9.2 3.4	23 6.8	NT	0.00742 U 0.00742 U	0.00759 U 0.00759 U	0.000744 U 0.000744 U	NT	0.0164 U 0.0122 JP	0.0149 J 0.012 JP	0.000759 U 0.000759 U	NT NT	NI NT	NT NT	NT NT	NI NT	NI NT	NI NT	NI NT	NI NT	NI NT	NI NT	NT
4,4'-DDE	0.003	3 8	.9	62	120	NT	0.00428 J	0.00659 J	0.00179 U	NT	0.0395 U	0.0364 U	0.00182 U	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
trans-Chlordane	NV	N	V	NV	NV	NT	0.0391 IP	0.113 IP	0.00223 U	NT	0.0493 U	0.0456 U	0.00228 U	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes:

Notes:

 Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
 ug/kg = parts per billion; mg/kg = parts per million.
 ND = not detected above method detection limit; NT = not tested; NV = no value.
 Analytical results compared to NYSDEC Part 375-6; Remedial Program Soil Cleanup Objectives, Table 375-6.8 (a) Unrestricted Use Soil Cleanup Objective; and Table 375-6.8(b): Restricted Use Soil Cleanup

5. *= Concentration of analyte exceeded range of the calibration curve, which required a re-analysis at a higher dilution factor.
6. E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
7. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL).
8. P = The RPD between the results for the two columns exceeds the method-specified criteria.

9. Shading indicates:

exceeds UUSCO - Unrestriced Use Soil Cleanup Objective exceeds RUSCO - Restricted Residential Use Soil Cleanup Objective

Table 2 - BCP #C91554 Remedial Investigation - Western Portion of 140 Chandler Street, Buffalo, NY Soil Analytical Testing Results

Table 3Groundwater Sample Results140 Chandler Street, Buffalo, NY

			MW-102		
LOCATION		MW-102	(DUPLICATE)	MW-103	MW-101
SAMPLING DATE	Class GA	2/24/2020	2/24/2020	2/24/2020	2/24/2020
LAB SAMPLE ID		L2008162-01	L2008162-02	L2008162-03	L2008162-04
Volatile Organics by GC/MS (ug/I	·			0.5.11	
Methylene chloride Acetone	5 50	2.5 U 18	2.5 U 15	2.5 U 14	<u>1.2 J</u> 13
2-Butanone	50	1.9 J	5 U	14 1.9 J	13 5 U
Semivolatile Organics by GC/MS		1.5 0	00	1.0 0	0.0
Di-n-butylphthalate	50	0.41 J	5 U	2.2 J	5 U
Diethyl phthalate	50	0.54 J	5 U	1.4 J	5 U
Acetophenone	NV	5 U	5 U	0.78 J	5 U
Semivolatile Organics by GC/MS		0.4.11		0.44	0.07.1
Acenaphthene Fluoranthene	20 50	0.1 U 0.09 J	0.1 U 0.06 J	0.14 0.08 J	0.07 J 1.7
Naphthalene	10	0.09 J	0.08 J 0.1 U	0.08 J	0.1 U
Benzo(a)anthracene	0.002	0.03 J	0.1 U	0.14 0.06 J	0.83
Benzo(a)pyrene	0.002	0.02 J	0.1 U	0.04 J	0.99
Benzo(b)fluoranthene	0.002	0.03 J	0.1 U	0.06 J	1.4
Benzo(k)fluoranthene	0.002	0.01 J	0.1 U	0.02 J	0.44
Chrysene	0.002	0.03 J	0.1 U	0.03 J	0.87
Anthracene	50	0.04 J	0.1 U	0.02 J	0.13
Benzo(ghi)perylene	NV 50	0.02 J	0.1 U	0.03 J	0.7
Fluorene	50	0.1 U	0.1 U	0.25	0.06 J
Phenanthrene Dibenzo(a b)anthracene	50 NV	0.1 0.1 U	0.05 J 0.1 U	1.2 0.1 U	0.55 0.16
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	0.002	0.1 U 0.02 J	0.1 U 0.1 U	0.1 U 0.04 J	0.16
Pyrene	50	0.02 J	0.1 U 0.03 J	0.04 J 0.05 J	1.5
2-Methylnaphthalene	NV	0.03 J	0.00 0 0.1 U	0.23	0.03 J
Pentachlorophenol	1	0.8 U	0.8 U	0.8 U	0.15 J
Total Metals (ug/l)					
Aluminum, Total	NV	78.7	91.6	453	11400
Antimony, Total	3	4 U	4 U	4 U	0.72 J
Arsenic, Total	25	1.61	1.85	1.09	8.35
Barium, Total	1000	186.9	188.9	23.47	187.1
Beryllium, Total Cadmium, Total	3 5	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.59 0.37
Calcium, Total	NV	194000	192000	129000	213000
Chromium, Total	50	0.82 J	0.95 J	2.01	20.47
Cobalt, Total	NV	0.8	0.76	2.38	12.06
Copper, Total	200	3.05	3.27	4.67	29.1
Iron, Total	300	110	120	1630	21100
Lead, Total	25	1 U	1 U	2.99	29.46
Magnesium, Total	35000	292000	274000	328000	149000
Manganese, Total	300 100	137.8	139.7	180 4.42	642.9
Nickel, Total Potassium, Total	NV	1.63 J 16200	1.42 J 16400	6770	28.89 13000
Selenium, Total	10	2.71 J	3.05 J	5 U	4.75 J
Sodium, Total	20000	176000	177000	140000	72800
Thallium, Total	0.5	0.5 U	0.5 U	0.14 J	0.23 J
Vanadium, Total	NV	1.81 J	1.69 J	5 U	25.88
Zinc, Total	2000	10 U	10 U	19.15	93.41
Dissolved Metals (ug/l)					
Aluminum, Dissolved	NV	5.83 J	5.74 J	6.71 J	12
Antimony, Dissolved Arsenic, Dissolved	3 25	0.85 J 1.68	0.71 J 1.67	4 U 0.59	1.73 J 1.51
Arsenic, Dissolved Barium, Dissolved	1000	193.7	1.67	18.49	72.29
Calcium, Dissolved	NV	174000	176000	122000	141000
Chromium, Dissolved	50	0.88 J	0.79 J	0.37 J	0.28 J
Cobalt, Dissolved	NV	0.67	0.66	1.82	0.72
Copper, Dissolved	200	3.7	3.16	1.93	2.5
Iron, Dissolved	300	30.2 J	83.2	50 U	43.8 J
Magnesium, Dissolved	35000	231000	244000	313000	132000
Manganese, Dissolved	300	126.9	125.3	167.6	61.49
Mercury, Dissolved Nickel, Dissolved	0.7	0.12 J 1.44 J	0.2 U 1.66 J	0.2 U 2.9	0.12 J 2.23
Nickel, Dissolved Potassium, Dissolved	NV	1.44 J 15400	1.66 J 15400	7250	11200
Selenium, Dissolved	10	3.12 J	2.82 J	5 U	5 U
Sodium, Dissolved	20000	173000	171000	138000	73700
	0.5	0.81	0.32 J	0.18 J	0.18 J
Thallium, Dissolved					-
Thallium, Dissolved Polychlorinated Biphenyls by GC	(ug/I)				
Polychlorinated Biphenyls by GC PCBs, Total		0.083 U	0.083 U	0.083 U	0.083 U
Polychlorinated Biphenyls by GC					
Polychlorinated Biphenyls by GC PCBs, Total Organochlorine Pesticides by GC	(ug/l)	0.083 U 0.014 U	0.083 U 0.014 U	0.083 U 0.014 U	0.083 U 0.014 U
Polychlorinated Biphenyls by GC PCBs, Total	(ug/l)				

Notes:

1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table.

Refer to Appendix for the full analytical report.

2. ug/L = parts per billion; mg/L = parts per million.

3. U = not detected; NT = not tested; NV = no value.

4. Analytical results compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1)

Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

5. * = Concentration of analyte exceeded range of the calibration curve, which required a re-analysis at a higher dilution factor.

6. Shading indicates: exceeds NYSDEC groundwater standards

Table 4
Emergent Contaminant Soil Sample Results
Western Portion of 140 Chandler Street Site, Site No: 915354, Buffalo, NY

		MW-103 (1-3')		
PARAMETER	MW-103 (1-3')	DUPLICATE	TP103 (1.5-4')	TP103 (4-7')
SAMPLING DATE	3/2/2020	3/2/2020	3/2/2020	3/2/2020
LAB SAMPLE ID	L2009287-01	L2009287-02	L2009287-03	L2009287-04
Semivolatile Organics by GC/MS (mg/kg)				
1,4-Dioxane	0.18 U	0.17 U	0.031 U	0.03 U
Perfluorinated Alkyl Acids by Isotope Dilution (mg/kg)				
Perfluorobutanoic Acid (PFBA)	0.000478 J	0.000446 J	0.000142 J	0.00109 U
Perfluoropentanoic Acid (PFPeA)	0.00339	0.00331	0.000805 J	0.00109 U
Perfluorobutanesulfonic Acid (PFBS)	0.000162 J	0.000174 J	0.0011 U	0.00109 U
Perfluorohexanoic Acid (PFHxA)	0.0019	0.00191	0.000375 J	0.000057 J
Perfluoroheptanoic Acid (PFHpA)	0.000639 J	0.000603 J	0.000091 J	0.00109 U
Perfluorohexanesulfonic Acid (PFHxS)	0.00252	0.00278	0.000084 J	0.00109 U
Perfluorooctanoic Acid (PFOA)	0.000537 J	0.000463 J	0.000146 J	0.00109 U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.00379	0.00349	0.00486	0.00109 U
Perfluoroheptanesulfonic Acid (PFHpS)	0.000219 J	0.00131 U	0.0011 U	0.00109 U
Perfluorononanoic Acid (PFNA)	0.000455 J	0.000438 J	0.0011 U	0.00109 U
Perfluorooctanesulfonic Acid (PFOS)	0.0407	0.0388	0.00351	0.00109 U
Perfluorodecanoic Acid (PFDA)	0.000449 J	0.00041 J	0.000087 J	0.00109 U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	0.00129 U	0.00131 U	0.00307	0.00109 U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
Perfluoroundecanoic Acid (PFUnA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
Perfluorodecanesulfonic Acid (PFDS)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
Perfluorooctanesulfonamide (FOSA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.00129 U	0.00131 U	0.000121 J	0.00109 U
Perfluorododecanoic Acid (PFDoA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
Perfluorotridecanoic Acid (PFTrDA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
Perfluorotetradecanoic Acid (PFTA)	0.00129 U	0.00131 U	0.0011 U	0.00109 U
PFOA/PFOS, Total	0.0412 J	0.0393 J	0.00366 J	0.00109 U

1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.

2. ug/kg = parts per billion; mg/kg = parts per million.

3. U = not detected; "-" = not tested; NV = no value.

4. Analytical results compared to NYSDEC Part 375-6; Remedial Program Soil Cleanup Objectives, Table 375-(a) Unrestricted Use Soil Cleanup Objective; and Table 375-6.8(b): Restricted Use Soil Cleanup Objectives.

5. * = Concentration of analyte exceeded range of the calibration curve, which required a re-analysis at a higher dilution factor.

6. E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

7. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL).

8. P = The RPD between the results for the two columns exceeds the method-specified criteria.

Table 5Emergent Contaminant Groundwater Sample ResultsWestern Portion of 140 Chandler Street Site; Site No: C915354, Buffalo, NY

		MW-102							
PARAMETER	MW-102	(DUPLICATE)	MW-103	MW-101	RB-2 (022420)	TB-2 (022420)	FB-1 (022420)	FB-2 (030220)	RB-3 (030220)
SAMPLING DATE	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	3/2/2020	3/2/2020
LAB SAMPLE ID	L2008162-01	L2008162-02	L2008162-03	L2008162-04	L2008162-05	L2008162-06	L2008162-07	L2009287-05	L2009287-06
1,4 Dioxane by 8270D-SIM (ug/l)									
1,4-Dioxane	0.152	0.167	0.15 U	0.205	0.15 U				0.144 U
Perfluorinated Alkyl Acids by Isotope Dilution (ug/l)									
Perfluorobutanoic Acid (PFBA)	0.14	0.127	0.0667	0.333	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluoropentanoic Acid (PFPeA)	1.16	1.06	0.357	1.87	0.000377 J	0.00037 J	0.00188 U	0.00179 U	0.00182 U
Perfluorobutanesulfonic Acid (PFBS)	0.0114	0.0118	0.00559	0.0237	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorohexanoic Acid (PFHxA)	0.308	0.281	0.163	0.798	0.000344 J	0.000381 J	0.000428 J	0.000398 J	0.000334 J
Perfluoroheptanoic Acid (PFHpA)	0.0701	0.0696	0.0413	0.235	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorohexanesulfonic Acid (PFHxS)	0.0712	0.0567	0.0226	0.158	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorooctanoic Acid (PFOA)	0.0338	0.0296	0.00908	0.109	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.0848	0.0628	0.011	0.346	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluoroheptanesulfonic Acid (PFHpS)	0.00186 U	0.00123 J	0.00181 U	0.0016 J	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorononanoic Acid (PFNA)	0.00988	0.00827	0.000605 J	0.0136	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorooctanesulfonic Acid (PFOS)	0.151	0.138	0.00777	0.0694	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorodecanoic Acid (PFDA)	0.00742	0.00557	0.00181 U	0.00277	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	0.00871	0.00723	0.00181 U	0.0029	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluoroundecanoic Acid (PFUnA)	0.000632 J	0.000342 J	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorodecanesulfonic Acid (PFDS)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorooctanesulfonamide (FOSA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorododecanoic Acid (PFDoA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorotridecanoic Acid (PFTrDA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
Perfluorotetradecanoic Acid (PFTA)	0.00186 U	0.00184 U	0.00181 U	0.00194 U	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U
PFOA/PFOS, Total	0.185	0.168	0.0169	0.178	0.00181 U	0.00183 U	0.00188 U	0.00179 U	0.00182 U

1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table.

Refer to Appendix for the full analytical report.

2. ug/L = parts per billion

3. U = not detected

4. Analytical results compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and and Groundwater Effluent Limitations.

5. * = Concentration of analyte exceeded range of the calibration curve, which required a re-analysis at a higher dilution factor.

6. E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

7. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL).

8. P = The RPD between the results for the two columns exceeds the method-specified criteria.

9. B = Analyte detected above reporting limit in the associated method blank

TABLE 6 Analytical Testing Program Summary - IRM Confirmatory Soil Samples Western Portion - 140 Chandler Street Site 140 Chandler, Buffalo, NY NYSDEC Brownfield Cleanup Program - #C915354

Location	Number of Proposed Locations	Matrix	TCL VOCS	TCL SVOCs	TAL METALS Total	TAL METALS dissolved	PCBs	Pest/ Herbs	VOC TO-15	1,4-dioxane	PFAS
Sidewall Samples		-									
Sidewall Samples	20	Soil	10	20	20	-	10	5	-	5	5
Duplicate		Soil	1	1	1	-	1	1	-	1	1
MS/MSD		Soil	2	2	2	-	2	2	-	2	2
Rinsate		Water	1	1	1	-	1	1	-	1	1
Total			14	24	24	0	14	9	0	9	9
Bottom Samples											
Bottom Samples	20	Soil	10	20	20	-	10	5	-	5	5
Duplicate		Soil	1	1	1	-	1	1	-	1	1
MS/MSD		Soil	2	2	2	-	2	2	-	2	2
Rinsate		Water	1	1	1	-	1	1	-	1	1
Total			14	24	24	0	14	9	0	9	9
Interior Confirmatory	y Samples			-							
Bottom Sample	1	Soil	1	1	1	-	-	-	-	-	-
Sidewall Samples	4	Soil	4	4	4	-	-	-	-	-	-
Duplicate		Soil	1	1	1	-	-	-	-	-	-
MS/MSD		Soil	2	2	2	-	-	-	-	-	-
Rinsate		Water	1	1	1	-	-	-	-	-	-
Total			8	8	8	0	0	0	0	0	0
			VOCs	SVOCs	METALS	METALS	PCBs	Pest/ Herbs	VOC - TO-15	1,4-dioxane	PFAS
	Т	OTAL SAMPLES	36	56	56	0	28	18	0	18	18

Notes:

TCL VOCs - Target Compound List Volatile Organic Compounds.

TCL SVOCs - Target Compound List Semi-volatile Organic Compounds.

TAL Metals - Target Analyte List Metals.

TCL PCBs - Target Compound List Polychlorinated Biphenyls.

PFAS - Polyfluoroalkyl Substances

APPENDIX A

TEST PIT AND SOIL BORING LOGS

WITTMA GeoSciences, PL	3636 N. Buffalo Orchard Park, N michelewittman; N 716-574-1513	Y 14127				Test Pit No: TP101
Project	Name & Loca	tion 140 Cł	handler Street, Buffalo	o, NY	WGS Represent	ative: E. Betzold/HEI
WGS P1	roject Number	: 19211			WGS Reviewed & Approv	ed by: M. Wittman, P.G.
Start Da	ite	1/10/2	020 Ei	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries
GW Dej	pth in Excavat	ion <u>7.5 fbg</u>	y 2		Equipment	Track Excavator
Sample Depth (ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1	0-1.5	ND	Brown Gravel, some f/c Sand, lit	tle Silt, wet (FILL)	
1	2	1.5-3	1.5	Grades to:some Silt, stained, o	dor	
2					vel, little f/c Sand, wet, stained (FILL)	
			1.5			
3	3	3-6	0.2	4		
4	5	J-0	0.2	Grades to:brown		
			ND	Red/brown CLAY & SILT, tr. f/o	sand, tr. Gravel, moist	
5	├ ───┤			4		
6			ND	4		
	4	6-8	ND			
7						
8			ND	Grades to:saturated		
U	<u>├</u>			Bottom of Excavation - 8 fbg		
9				Dottom of Encuration 10 105		
10				4		
11	<u>├</u>			4		
12						
13				4		
1.5	├ <u>├</u>			4		
14						
				4		
15						

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General	motes:	3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

rojeci	Name & Loca	tion	140 Chanc	ller Street, Buffalo	o, NY	WGS Representa	tive: E. Betzold/HEI
VGS P	roject Number	r:	19211			WGS Reviewed & Approved	l by: M. Wittman, P.G.
tart Da	ate		1/10/2020	E	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries
GW De	pth in Excava	tion	NWAC			Equipment	Track Excavator
					1		
ample Depth (ft)	Sample No.		ple Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1	()-1.5	ND	Brown Gravel, some f/c Sand, little	Silt, wet (FILL)	
1					-		
2	2]	1.5-3	1.5	Dir Drayn Clay & Silt sama Craya	1 some f/a Sand to Concepta maint (EII	I)
2				1.5	Grades to:some boulder size conc	l, some f/c Sand, tr. Concrete, moist (FIL rete pieces, saturated, stained	L)
3						···· · · · · · · · · · · · · · · · · ·	
	3		3-6	0.2	Grades to:no staining		
4					-		
5				ND	-		
5				ND	Grades to:tr. Steel Pieces, tr. Woo	od	
6							
	4		6-8	ND	Red/brown CLAY & SILT, tr. f/c Sa	and, tr. Gravel, moist	
7							
8				ND	-		
-					Bottom of Excavation - 8 fbg		
9]		
10					-		
10					-		
11					-		
12							
10					-		
13					-		
14					-		
15							

Concrete footer present along eastern test pit wall. Boulder sized concrete pieces from 2-6 fbg

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI		o Road NY 14127 ngeo@gmail.com				Test Pit No: TP103
Project	Name & Loca	ation <u>140 Chand</u>	ller Street, Buffalo	o, NY	WGS Represent	ative: E. Betzold/HEI
WGS P	roject Numbe	r: 19211		WGS Reviewed & Approved by		ed by: M. Wittman, P.G.
Start Da	ate	1/10/2020	E	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries
GW De	W Depth in Excavation <u>NWAC</u>				Equipment	Track Excavator
Sample Depth (ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
1	1	0-1.5	ND	Brown Gravel, some f/c Sand, litt	le Silt, wet (FILL)	
1	2	1.4-4	0.5	Brown Clay & Silt, little f/c Sand	, little Gravel, wet, stained (FILL)	
2			2	-		
3				Grades to:some Cobbles, odor	and staining	
			5			
4	3	4-6	ND	Ded/harring CLAV & SILT to f/s	Sand to Convol maint	
5		4-0	ND	Red/brown CLAY & SILT, tr. f/c	Sand, Ir. Oravel, moist	
			ND			
6				-		
7	4	6-8	ND	-		
,			ND	-		
8						
				Bottom of Excavation - 8 fbg		
9				-		
10				-		
11				-		
12				-		
12				-		
13]		
1.4				4		
14				-		
15				1		

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI	3636 N. Buffalo Orchard Park, N michelewittman 716-574-1513	Y 14127				Test Pit No: TP104
Project	Name & Loca	tion 140 Chand	dler Street, Buffalo), NY	WGS Represent	tative: E. Betzold/HEI
WGS P	roject Number	: 19211			WGS Reviewed & Approve	ed by: M. Wittman, P.G.
Start Da	ate	1/10/2020	Eı	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries
GW De	pth in Excavat	ion NWAC			Equipment	Track Excavator
Sample Depth (ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1	0-1.5	ND	Brown f/c Sand, some Gravel, litt	e Silt, tr. Concrete, moist (FILL)	
1	2	1.5-4	ND	Brown Clay & Silt, little f/c Sand,	little Gravel, wet (FILL)	
2			ND	-		
3						
	-		ND	-		
4	3	4-7	1	-		
5			1	Grades to:saturated		
	[]		ND	Red/brown CLAY & SILT, tr. f/c	Sand, tr. Gravel, moist	
6	-		ND	-		
7				- 		
				Bottom of Excavation - 7 fbg		
8			+	-		
9				1		
10				-		
11				1		
12				-		
13			<u> </u>	1		
14			<u> </u>	-		
15				1		

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI	3636 N. Buffalo Orchard Park, N michelewittmang N 716-574-1513	Y 14127				Test Pit No: TP105
Project	Name & Locat	tion 140 Chanc	ller Street, Buffalo	o, NY	WGS Represent	ative: E. Betzold/HEI
	roject Number					ed by: M. Wittman, P.G.
Start Da		1/10/2020	Eı	nd Date 1/10/2020	Contractor	Lazarus Industries
GW De	pth in Excavat	ion NWAC			– Equipment	Track Excavator
				1		
Sample Depth (ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1	0-1.5	ND	Brown f/c Sand, some Gravel, litt	le Silt, tr. Concrete, moist (FILL_	
1				Brown Clay & Silt, tr. f/c Sand, tr	. Gravel, wet, odor and heavy staining obs	erved (FILL)
	2	1.5-2	ND	Grades to:little Cinders		
2				Concrete pad/excavator refusal at	2 fbg	
2				-		
3				-		
4				-		
				-		
5				-		
]		
6						
				-		
7				-		
8				-		
0				-		
9				-		
				1		
10						
11				-		
				-		
12				-		
13				4		
13				4		
14				4		
				1		
15				1		
	· · · · · ·		4	•		

1) Organic vapor meter used to field screen and headspace soil samples

2) ND = non detect on the OVM \sim

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI		o Road NY 14127 1geo@gmail.com				Test Pit No: TP106
Project	Name & Loca	ation 140 Chand	ller Street, Buffalo	o, NY	WGS Represent	ative: E. Betzold/HEI
WGS P	roject Numbe	r: 19211			WGS Reviewed & Approve	ed by: M. Wittman, P.G.
Start Da	ate	1/10/2020	E	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries
GW De	pth in Excava	tion <u>NWAC</u>			Equipment	Track Excavator
Sample Depth (ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
1	1	0-1.5	ND	Dk. Gray Cobbles, little Gravel, tr	. f/c Sand, tr. Silt, moist (FILL)	
1	2	1.5-2	ND	Brown f. Sand (possible casting s	and). moist	
2		2-3.5	ND	Brown Clay & Silt, little f/c Sand		
			ND	Grades to:Dk. Brown, some Cir		
3				Grades to Brown, tr. Cinders		
	4	3.5-6	ND	Red/brown CLAY & SILT, tr. f/c	Sand, tr. Gravel, moist	
4				-		
			1	-		
5				-		
6			ND	4		
6				Bottom of Excavation - 6 fbg		
7				Bottom of Excavation - 0 log		
8						
]		
9						
10				4		
1.1				4		
11				4		
12				4		
12				-		
13	+			4		
				1		
14				1		
]		
15						

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PL	3636 N. Buffalo Road Orchard Park, NY 14127 michelewittmangeo@gmail.com 716-574-1513 Test Pit No: TP107								
Project 2	Name & Loc	ation	140 Chand	ler Street, Buffalo	, NY	WGS Represent	ative: E. Betzold/HEI		
WGS P1	roject Numb	er:	19211			WGS Reviewed & Approved by: M. Wittm			
Start Da	ite		1/10/2020	Er	nd Date <u>1/10/2020</u>	Contractor	Lazarus Industries		
GW Dej	GW Depth in Excavation NWAC					Equipment	Track Excavator		
Sample Depth (ft)	Sample No.	(Teet) Keading (ppm)			SAMPLE DESCRIPTION				
1	1		0-3	ND	Brown Gravel, some f/c Sand, little	e Silt, moist (FILL)			
1				ND					
2				ND	Grades to: some Silt				
3									
1	2		3-4	5	Brown Clay & Silt, little f/c Sand,	tr. Gravel, saturated, odor, heavy staining	g (FILL)		
4	3		4-6	5					
5					Red/brown CLAY & SILT, tr. f/c S	Sand, tr. Gravel, wet			
6				ND					
6					Grades to:wet Bottom of Excavation - 6 fbg				
7					Dottom of Excuvation 0 10g				
8									
9					-				
					-				
10									
11					4				
12					-				
13					-				
14									
15									
15									

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI	N 716-574-1513	o Road NY 14127 1geo@gmail.com				Test Pit No: TP108
Project	Name & Loca	ation 140 Chan	dler Street, Buffalo	o, NY	WGS Represent	ative: E. Betzold/HEI
WGS P	roject Numbe	r: 19211			WGS Reviewed & Approve	ed by: M. Wittman, P.G.
Start Da		3/3/2020	E	nd Date <u>3/3/2020</u>	Contractor	Lazarus Industries
GW De	pth in Excava	tion NWAC			Equipment	Track Excavator
Sample Depth (ft)	Sample No. Sample Depth OVM (feet) Reading (ppm)			SAMPLE DESCRIPTION		
	1	0-1.5	ND	Gray/brown f/c Sand and Gravel,	some cobble sized Concrete, little Silt, mo	pist (FILL)
1	2	1.5-4	ND	Grades to:little Gravel, little co	bble sized Concrete	
2	├		ND	Prown Clay & Silt Ittle Gravel t	. f/c Sand, wet, odor and staining observe	<i>А (</i> ЕПТ)
3				Grades to:tr. Cinders	. I'C Sanu, wet, ouor and staming observe	a (FILL)
			ND	Grades to:minor staining		
4				-		
5	3	4-6	ND			
			ND	Brown CLAY & SILT, tr. f/c San	d, tr. Gravel, moist	
6				Bottom of Excavation - 6 fbg		
7				Dottom of Encurrence of tog		
8				4		
9				-		
				1		
10]		
11						
12				4		
12				4		
13						
14				-		
15				-		
	1			I		

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comonal	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General	notes:	3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

Project	Name & Loc	ation	140 Chand	ller Street, Buffalo	, NY	WGS Represent	ative: E. Betzold/HEI
WGS P	VGS Project Number: 19211 tart Date 3/3/2020						d by: M. Wittman, P.G.
Start Da				Er	nd Date <u>3/3/2020</u>	Contractor	Lazarus Industries
GW De	pth in Excava	ation	NWAC			Equipment	Track Excavator
Sample Depth (ft)	Sample No.		ple Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1		0-3	ND	Brown Clay & Silt, little f/c Sand	little Gravel, moist (FILL)	
1							
-				ND	-		
2				ND	-		
3							
	2		3-4	0.2	Grades to:Dk. Gray, odor and s	taining observed	
4	2		A. C.	ND			
5	3		4-6	ND	Red/brown CLAY & SILT, tr. f/s	Cand, tr. Gravel, moist	
				ND			
6							
7					Bottom of Excavation - 6 fbg		
8							
9							
)							
10							
11							
11					-		
12							
13					4		
14					1		
]		
15							

2) ND = non detect on the OVM \mathbf{N}

3 fbg - a 2.5" diameter pipe was present. Approximate 1-ft layer of stained soil present below the pipe.

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PL	3636 N. Buffalo Road Orchard Park, NY 14127 michelewittmangeo@gmail.com WITTMAN Geościence, Pulz								
Project]	Name & Loca	ation	140 Chand	ller Street, Buffalo	9, NY	WGS Represent	tative: E. Betzold/HEI		
WGS Pr	roject Numbe	er:	19211			WGS Reviewed & Approv	ed by: M. Wittman, P.G.		
Start Da	ite		3/3/2020	Er	nd Date <u>3/3/2020</u>	Contractor	Lazarus Industries		
GW Der	pth in Excava	ation	NWAC			Equipment	Track Excavator		
Sample Depth (ft)	Sample No.		nple Depth OVM (feet) Reading (ppm)		SAMPLE DESCRIPTION				
1	1		0-3	ND	Brown Clay & Silt, some Gravel, I	little f/c Sand, wet (FILL)			
2				ND	-				
2				ND	Grades to:little Gravel				
3	2		3-4	0.8	Grades to:Dk. Gray, odor and st	aining observed			
4	3		4-6	ND	Red/brown CLAY & SILT, tr. f/s	Cand, tr. Gravel, moist			
5				ND	4				
6				<u> </u>	Bottom of Excavation - 6 fbg				
7				<u> </u>	4				
8					4				
9					4				
10					4				
11									
12									
13									
14									
15					1				

1) Organic vapor meter used to field screen and headspace soil samples

2) ND = non detect on the OVM \sim

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

oject	Name & Locati	on 140 Chang	ller Street, Buffalo	NY	WGS Represent	ative: E. Betzold/HEI
GS P	roject Number:	19211			WGS Reviewed & Approve	ed by: M. Wittman, P.G.
art Da	t Date <u>3/3/2020</u> E			d Date <u>3/3/2020</u>	Contractor	Lazarus Industries
V De	pth in Excavation	on <u>NWAC</u>			Equipment	Track Excavator
nple epth ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)	SAMPLE	DESCRIPTION	
	1	0-1	ND	Brown f/c Sand, some Gravel, little Silt, wet (FII	LL)	
1	2	1-1.5	2.5	Black Gravel, some Clay & Silt, lttiel f/c Sand, s	aturated, odor and staining	observed (FILL)
2	3 1.5-2.5 ND					
3			ND	Red/brown CLAY & SILT, tr. f/c Sand, tr. Grave	el, moist	
5				Bottom of Excavation - 2.5 fbg		
4						
5						
6						
7						
8						
9						
10						
10						
11						
12						
13						
13						
14						
15						

0.5 fbg - a 2" diameter pipe was present.

1.5 fbg - 4" drain tile was observed. Stained soil was present around and under the drain tile

		Sheen was observed on water within the bottom of excavation							
		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.							
General	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.							
		3) f=fine; m=medium; c=coarse							
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)							
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core							

3636 N. Buffalo Road Orchard Park, NY 14127 michelewittmangeo@gmail.com WITTMAN Geościence, PLLC Test Pit No: TP112							
Project	Name & Loca	ition	140 Chand	ller Street, Buffalo	, NY	WGS Represen	tative: E. Betzold/HEI
WGS P1	WGS Project Number: 19211					WGS Reviewed & Approv	ed by: M. Wittman, P.G.
Start Da	te		3/3/2020	Er	nd Date <u>3/3/2020</u>	Contractor	Lazarus Industries
GW Dej	oth in Excava	tion	NWAC			Equipment	Track Excavator
Sample Depth (ft)	Sample No.		le Depth `eet)	OVM Reading (ppm)		SAMPLE DESCRIPTION	
	1	()-1	ND	Gray Gravel, some f/c Sand, little	Silt, saturated (FILL)	
	2	1	1-3	0.5	Gray Clay & Silt, little f/c Sand, li	ttle Gravel, wet, stained (FILL)	
2				0.5			
3	3	3	3-5	ND	Red/brown CLAY & SILT, tr. f/s	Cand, tr. Gravel, moist	
4				ND			
5							
6				+	Bottom of Excavation - 5 fbg		
				<u> </u>			
7				+			
8				+			
9							
10				<u>+</u>			
11							
12				<u>+</u>			
13							
14							
				<u> </u>			
15							

1) Organic vapor meter used to field screen and headspace soil samples

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMAN GeoSciences, PLLC	Orchard Park, 1 michelewittman 716-574-1513		com				Test Pit No: TP113	
Project N	Vame & Loca	ation	140 Chand	ller Street, Buffalo	, NY	WGS Represent	ative: E. Betzold/HEI	
WGS Pro	oject Numbe	er:	19211			WGS Reviewed & Approved by: M. Wittman, P.G.		
Start Dat	e		3/3/2020	Er	nd Date <u>3/3/2020</u>	Contractor	Lazarus Industries	
GW Dep				NWAC		Equipment	Track Excavator	
	Sample No.			OVM Reading (ppm)		SAMPLE DESCRIPTION		
1	1		0-2	ND	Brown f/c Sand and Gravel, some	Silt, wet (FILL)		
2				ND	4			
2	2		2-3	ND	Dk. Gray Clay & Silt, little Gravel	, tr. f/c Sand, wet, staining observed (FIL)	L)	
3	3		3-5	ND	Brown CLAY & SILT, tr. f/c Sand	l, tr. Gravel, moist		
4				ND				
5					Bottom of Excavation - 5 fbg			
6								
7								
8								
9								
10								
11					•			
12								
13								
14								
15								

Notes: 1) Organic vapor meter used to field screen and headspace soil samples

2) ND = non detect on the OVM

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMA GeoSciences, PI	3636 N. Buffale Orchard Park, N michelewittman N 716-574-1513	Y 14127	om				Test Pit No: TP114	
	oject Name & Location140 Chandler Street, Buffalo,GS Project Number:19211art Date3/3/2020				, NY	WGS Representative: <u>E. Betzold/HEI</u> WGS Reviewed & Approved by: M. Wittman, P.G.		
		•		Er	nd Date 3/3/2020	- Contractor	Lazarus Industries	
	pth in Excava	tion	NWAC		57572020	- Equipment	Track Excavator	
C 2 .						-1h		
Sample Depth (ft)	Sample No.		ple Depth (feet)	OVM Reading (ppm)		SAMPLE DESCRIPTION		
	1		0-2	11	Black f/c Sand, little Cinders, little	e Gravel, moist, odor and staining observe	ed (FILL)	
1								
2				11	Gray Clay & Silt, tr. f/c Sand, tr. C	Bravel, moist, odor (FILL)		
2	2		2-3	12	Black Gravel, some f/c Sand, som	e Cinders, saturated, heavy staining obser	rved	
3					1			
4	3		3-5	ND	Brown CLAY & SILT, tr. f/c Sand	l, tr. Gravel, moist		
4				ND	-			
5								
					Bottom of Excavation - 5 fbg			
6					-			
7								
8					-			
9								
10								
11								
12					-			
13					4			
					1			
14								
15								
1.5	11				I			

Notes: 1) Organic vapor meter used to field screen and headspace soil samples

2) ND = non detect on the OVM \mathbf{N}

1 1/2" verticle pipe present in excvation; heavy stained soil presen in vicinity of pipe

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMAN GeoSciences, PLLC	Orchard Park, N ³ michelewittmang 716-574-1513						Test Pit No: TP115		
Project Na	ame & Locat	tion 1	40 Chandle	er Street, Buffalo	, NY	WGS Represer	WGS Representative: E. Betzold/HEI		
WGS Proj	ject Number:	: 1	9211			WGS Reviewed & Approved by: M. Wittman, P.G.			
Start Date	e	3	/3/2020	0 End Date 3/3/2020		Contractor	Lazarus Industries		
GW Depth	Depth Sample No. Sample Dep					Equipment	Track Excavator		
Sample Depth (ft)	Sample No.			OVM Reading (ppm)		SAMPLE DESCRIPTION			
	1	0-1	1	ND	Brown f/c Sand, some Silt, tr. Grav	rel, moist (FILL)			
	2	1-2	2	45	Dk. Brown Silt & Clay, some f/c Sa	and, little Cinders, tr. Gravel, slight odc	r		
2	3	2-5	5	ND	Red/brown CLAY & SILT, tr. f/s C	Cand, tr. Gravel, moist			
3				ND					
4					4				
5				ND					
6					Bottom of Excavation - 5 fbg				
8									
9									
10									
11									
12									
13									
					•				
14									
15									

1) Organic vapor meter used to field screen and headspace soil samples

2) ND = non detect on the OVM

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
Comoral	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General		3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

oject	Name & Locati	ion 140 Chanc	ller Street, Buffalo	WGS Representative: E. Betzold/HEI
GS P	roject Number:	19211		WGS Reviewed & Approved by: M. Wittman, P.G.
art Da	ite	3/3/2020	E	nd Date <u>3/3/2020</u> Contractor <u>Lazarus Industries</u>
V De	pth in Excavati	on <u>NWAC</u>		Equipment Track Excavator
nple epth ft)	Sample No.	Sample Depth (feet)	OVM Reading (ppm)	SAMPLE DESCRIPTION
	1	0-0.5	ND	Brown Clay & Silt, some Gravel, little f/c Sand, wet (FILL)
1	2	0.5-1.5	11	Black Gravel, some Cinders, tr. f/c Sand, saturated, odor and heavy staining observed (FILL)
			20	
2	3	1.5-3.5		Gray Clay & Silt, tr. f/c Sand, tr. Gravel, wet, odor and staining observed (FILL)
			22	4
3				4
Л	4	2575	22	
4	4	3.5-7.5	22	Red/brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist, odor
5				
			15	
6]
			5	Grades to:limited odor
7				4
0			ND	
8				Bottom of Excavation - 7.5 fbg
9				
-				1
10				
11				4
10				4
12				4
13				-
10				
14]
15				

		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.
General	Notes:	2) Groundwater (GW) depths approximate at time of excavation. Fluctuations in groundwater may occur.
General	motes.	3) f=fine; m=medium; c=coarse
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

WITTMAN GeoSciences, PLLC	3636 N. Buffalo Orchard Park, N michelewittman 716-574-1513	Y 14127		Boring No: MW101	
Project N	ame & Loca	tion 140 Chandle	er Street, Buffalo	o, NY WGS Representative: E. Betzold/HEI	
	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	
Start Dat	e	2/18/2020	E	nd Date 2/18/2020 Drilling Contractor Trec Environmental	
GW Dep	th While Dril	ling <u>NWWD</u>		Type of Drill Rig Track Mounted Geopro	be
GW Dep	th at Comple	tion <u>NWAC</u>		Sampler Type: MC	
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
1	1	0-4	70	Brown f/c Sand, some Gravel, little Silt, wet (FILL)	
1				Grades to:and Gravel	ND
2				Die Durren Class & Silt to f/a Sand to Crossel maint (EUL)	5
3				Dk. Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL)	5
4				Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	ND
	2	4-8	75	biown celler & biele, u. i/e band, u. oraver, moist	T(D)
5					ND
6					ND
7					ND
8					ND
9	3	8-12	85	Grades to:wet	
7					ND
10					ND
11					ND
12					ND
	4	12-16	100		
13					ND
14					ND
15					ND
16					
10	5	16-20	85	Grades to:little Gravel	ND
18					ND
20				-	

20			ND				
		Bottom of Boring - 20 fbg					
22							
24							
		1) Organic vapor meter used to field screen and headspace soil samples.					
Not	tes:	2) ND - non detect on OVM					
		1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate.					
General	Notes:	2) Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur.					
Sellerur		3) f=fine; m=medium; c=coarse					
		4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

WITTMAN GeoSciences, PLLC	3636 N. Buffalo Orchard Park, N michelewittman 716-574-1513	Y 14127		Boring No: MW102	
Project N	ame & Locat	tion 140 Chandle	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	_
Start Dat	e	2/18/2020	E	nd Date <u>2/18/2020</u> Drilling Contractor <u>Trec Environmental</u>	_
GW Dep	th While Dril	ling <u>NWWD</u>		Type of Drill Rig Track Mounted Geopro	obe
GW Dep	th at Comple	tion <u>NWAC</u>		Sampler Type: MC	-
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
1	1	0-4	70	Brown Clay & Silt, little f/c Sand, little Gravel, tr. Brick, moist (FILL)	ND
2				Grades to:and Concrete	5
3					5
4					ND
5	2	4-8	75	Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	ND
6				-	ND
7				-	ND
8	2	8-12	85	Grades to:wet/saturated	ND
9	3	0-12	63		ND
10				-	ND
11				-	ND
12					ND
13	4	12-15	100	-	ND
14				-	ND
15				-	ND
16				Spoon refusal - 15 fbg	
18				-	

20							
22							
24							
Notes:		 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General Notes:		 1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. 2) Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. 3) f=fine; m=medium; c=coarse 4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

WITTMAN GeoSciences, PLD	3636 N. Buffalo Orchard Park, N michelewittman 716-574-1513	IY 14127		Boring No: MW103	
Project N	Vame & Loca	tion 140 Chandle	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
	oject Number		^	WGS Reviewed & Approved by: M. Wittman, P.G.	-
Start Dat	te	2/19/2020	E	nd Date 2/19/2020 Drilling Contractor Trec Environmental	-
GW Dep	th While Dri			Type of Drill Rig Track Mounted Geopro	be
	th at Comple			Sampler Type: MC	
	-				-
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
	1	0-4	70	Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL)	
1					ND
				Dk. Brown f/c Sand, some Silt, litte Cinders, tr. Gravel, moist (FILL)	
2				-	ND
3					ND
				Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	
4					ND
	2	4-8	100	Grades to:saturated	
5					. ND
6				Red/brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist.	ND
					ND
7					ND
8					ND
9	3	8-12	80	Grades to:wet/saturated	ND
,				-	ND
10					ND
11					ND
10					
12		12.16	80		ND
13	4	12-16	80	Grades to:wet	ND
14					ND
	└─── ┤			4	
15	├			4	ND
16	├			-	ND
10	5	16-20	25	-	ND
18					ND
				4	

20							ND
	6	20-24	70				
22							ND
			C	Grades to:saturated			
24							ND
			I	Bottom of Boring - 24 fbg			
		1) Organic vapor meter	used to field scree	n and headspace soil samples	5.		
No	otes:	2) ND - non detect on O	VM				
		1) Stratification lines rep	present approximation	e boundary between soil. Tra	insitions may be gradual.	Depths are approximate.	
General	Notes:	2) Groundwater (GW) de	epths approximate	at time of sampling. Fluctua	tions in groundwater ma	y occur.	
General	10005.	3) f=fine; m=medium; c=	=coarse				
		4) and (36-50%); some (4)	21-35%); little (11	-20%); trace (1-10%)			
		MC - 0	Geoprobe Macroco	ore SS - Split Spoon	SH - Shelby Tube	BC - Bedrock Core	

WITTMAN GeoSciences, PLLO	3636 N. Buffalo Orchard Park, N michelewittman 716-574-1513	Y 14127		Boring No: SB101	
Project N	Jame & Locat	tion 140 Chandl	ler Street, Buffalo	o, NY WGS Representative: E. Betzold/HEI	
	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	
Start Dat	e	2/18/2020	E	nd Date 2/18/2020 Drilling Contractor Trec Environmental	
GW Dep	th While Dril	ling NWWD		Type of Drill Rig Track Mounted Geopro	be
GW Dep	th at Comple	tion NWAC		Sampler Type: MC	_
					
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
	1	0-4	75	Concrete	
1				Brown f/c Sand, little Silt, tr. Gravel, moist (FILL)	ND
2				Die Deursen Cilere & Stilt te f/e See 1 te Coursel aus ist (EUL)	E
2				Dk. Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL)	5
3				Grades to:brown	5
4		4.9	50		ND
5	2	4-8	50	Red/brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	ND
					112
6					ND
7			+	-	
1				-	ND
8			<u> </u>		ND
	3	8-12	50	Brown f/c SAND, some Silt, tr. Gravel, saturated	
9			+		ND
10				Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist	ND
10				brown Clay & Sht, u. De Sand, u. Oravel, moist	ND
11					ND
10					
12	4	12-16	75	-	ND
13		12-10	75		ND
14					ND
15				-	
15			+		ND
16					ND
				Bottom of Boring - 16 fbg	
18			+		
				4	

20							
22							
24							
Not	tes:	 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General	notes.	 1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. 2) Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. 3) f=fine; m=medium; c=coarse 4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

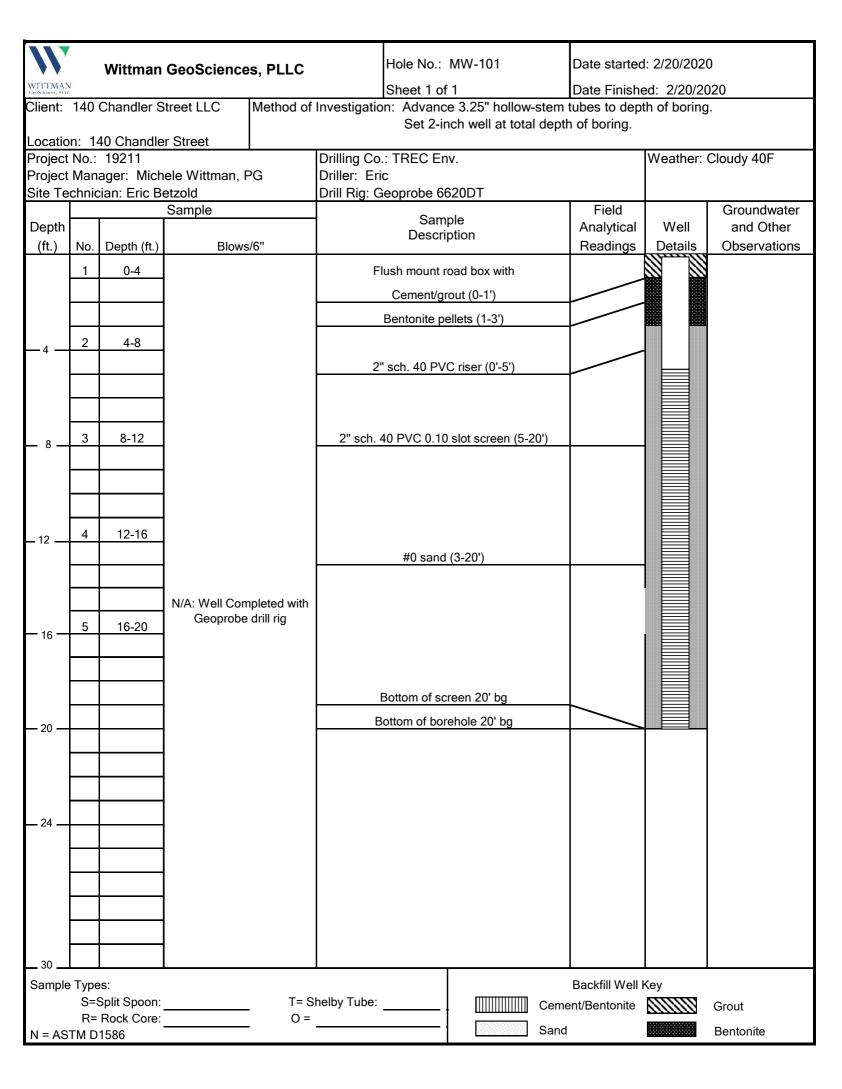
WITTMAN GeoSciences, PLM		Road YY 14127 geo@gmail.com		Boring No: SB102	
Project N	Vame & Loca	tion 140 Cha	ndler Street, Buffalo	o, NY WGS Representative: E. Betzold/HEI	
WGS Pro	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	_
Start Dat	te	2/18/202	20 E	nd Date <u>2/18/2020</u> Drilling Contractor <u>Trec Environmental</u>	_
GW Dep	th While Dri	lling <u>NWWD</u>		Type of Drill Rig Track Mounted Geopre	obe
GW Dep	th at Comple	tion <u>NWAC</u>		Sampler Type: MC	_
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
	1	0-4	50	Concrete	
1				Brown f/c Sand, little Silt, little Gravel, moist (FILL)	ND
2				Grades to: some Gravel, tr. Brick	
2				Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL)	5
3				Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	
4					ND
5	2	4-8	75	Grades to:brown	
5					ND
6					ND
7					ND
8					ND
0	3	8-12	75		ND
9					ND
10					ND
11					ND
					ND
12					ND
				Bottom of Boring - 12 fbg	
13				-	ND
14					ND
15					ND
]				
16					ND
18					
10					
I			1		1

20							
22							
24							
Not	tes:	 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General Notes:		 Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. f=fine; m=medium; c=coarse and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

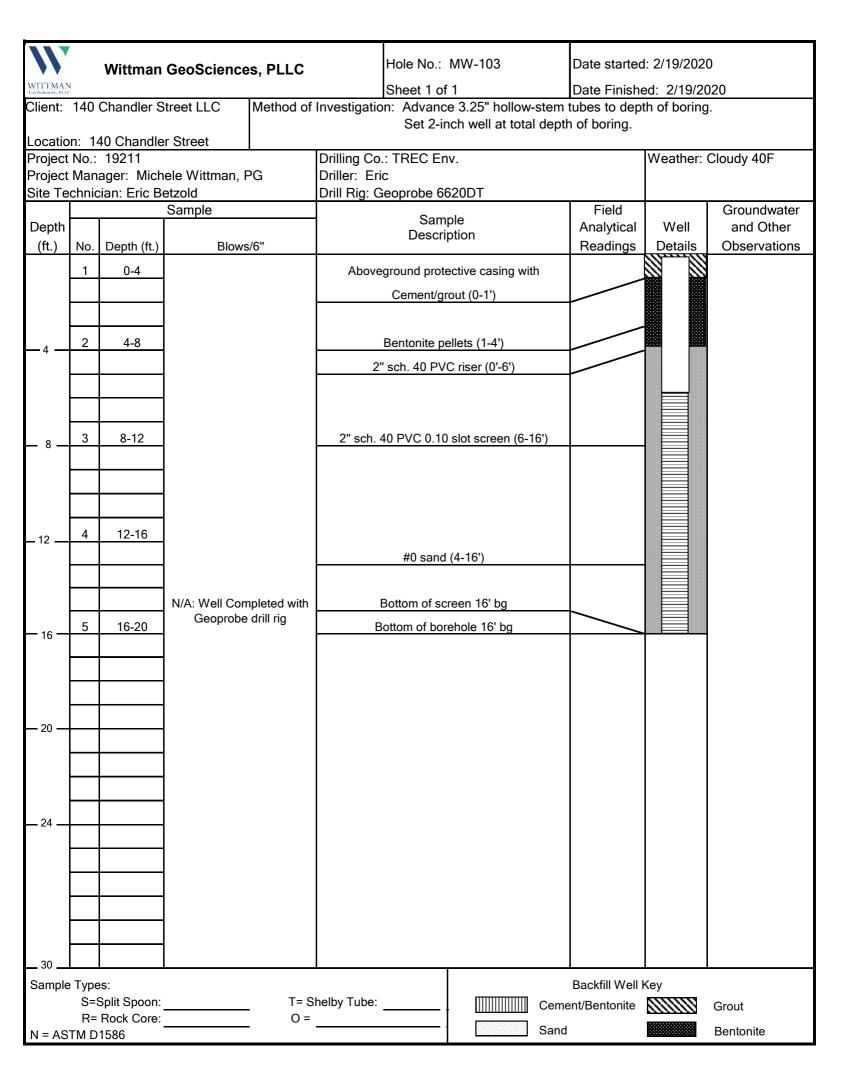
WITTMAN GeoSciences, PLIA		b Road NY 14127 Igeo@gmail.com		Boring No: SB103	
Project N	Jame & Loca	tion 140 Chandl	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	-
Start Dat		2/18/2020	E	nd Date 2/18/2020 Drilling Contractor Trec Environmental	-
GW Dep	th While Dri	lling NWWD		Type of Drill Rig Track Mounted Geopro	be
GW Dep	th at Comple	tion NWAC		Sampler Type: MC	
┣───	I		1	Ι	T
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
	1	0-4	50	Concrete	
1				Brown f/c Sand, little Silt, little Gravel, moist (FILL)	0.5
2				Grades to: wet	0.5
-				Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL)	0.5
3					ND
				Gray/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	
4		4.0			ND
5	2	4-8	75	Grades to:brown	ND
6					ND
7					
7					ND
8					ND
	3	8-12	75		
9					ND
10					
10				4	ND
11					ND
12					ND
13				Bottom of Boring - 12 fbg	
1.7					ND
14					ND
15					ND
16					ND
10					ND
18					

20							
22							
24							
Not	tes:	 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General Notes:		 Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. f=fine; m=medium; c=coarse and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

WITTMAN GeoSciences, PLL	3636 N. Buffalo Orchard Park, N michelewittmar 716-574-1513	IY 14127	om		Boring No: SB104	
Project N	Jame & Loca	tion	140 Chandl	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
	oject Number		19211	,	WGS Reviewed & Approved by: M. Wittman, P.G.	_
Start Dat	e		2/18/2020	E	nd Date 2/18/2020 Drilling Contractor Trec Environmental	
GW Dep	th While Dri	lling	NWWD		Type of Drill Rig Track Mounted Geopre	obe
GW Dep	th at Comple	etion	NWAC		Sampler Type: MC	-
Sample Depth (ft)	Sample No.		ple Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
1	1		0-4	50	Brown f/c Sand, some Gravel, some Silt, wet (FILL)	
1					Proven Clay & Silt to f/a Sand to Gravel maist (FILL)	0.5
2					Brown Clay & Silt, tr. f/c Sand, tr. Gravel, moist (FILL) Grades to:little Cinders	0.5
					Grades to:and Concrete	
3						ND
4					Dk. Brown f/c Sand, little Silt, tr. Cinders, moist (FILL)	
4	2		4-8	75	Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	. ND
5	2		4-0	15	Ked/Brown CLAY & SIL1, Ir. I/c Sand, Ir. Gravel, moist	ND
6						ND
7						
/						ND
8						ND
	3		8-12	75	Grades to:wet/saturated.	
9						ND
10					-	ND
10					-	ND
11						ND
12						ND
13					Bottom of Boring - 12 fbg	ND
15						ND
14						ND
15					4	ND
16					-	
10					-	ND
18						


20							
22							
24							
Not	tes:	 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General Notes:		 Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. f=fine; m=medium; c=coarse and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

WITTMAN GeoSciences, PLLC		o Road NY 14127 ngeo@gmail.com		Boring No: SB105	
Project N	Jame & Loca	tion 140 Chandle	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
-	oject Number			WGS Reviewed & Approved by: M. Wittman, P.G.	_
Start Dat	e	2/18/2020	E	nd Date 2/18/2020 Drilling Contractor Trec Environmental	-
GW Dep	th While Dri	lling NWWD		Type of Drill Rig Track Mounted Geopre	obe
GW Dep	th at Comple	etion NWAC		Sampler Type: MC	_
			<u> </u>	Ι	1
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
	1	0-4	70	Brown Clay & sSilt, little f/c Sand, little Gravel, moist (FILL)	
1			 		1
2			<u> </u>	Grades to:tr. Brick	3.5
				Grades to:Dk. Brown	5.5
3					3.5
			<u> </u>		
4	2	4-8	100	D-J/Durry CIAV & SIIT to f/2 Sand to Convel maist	. 3.5
5	<u> </u>	4-0	100	Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	ND
					-
6					ND
7			<u> </u>		
1			<u> </u>	4	ND
8			<u> </u>		ND
	3	8-12	100		
9			<u> </u>		ND
10			<u> </u>	-	ND
1~				-	
11					ND
			[
12			<u> </u>		ND
13			<u> </u>	Bottom of Boring - 12 fbg	ND
	<u> </u>		<u> </u>		
14					ND
1.5			<u> </u>	-	
15			<u> </u>	-	ND
16				-	ND
18					


20							
22							
24							
Not	tes:	 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 					
General Notes:		 Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. f=fine; m=medium; c=coarse and (36-50%); some (21-35%); little (11-20%); trace (1-10%) 					
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core					

WITTMAN GeoSciences, PLLC		o Road NY 14127 Igeo@gmail.com		Boring No: SB106	
Project N	ame & Loca	tion 140 Chandle	er Street, Buffalo	b, NY WGS Representative: E. Betzold/HEI	
WGS Project Number: 19211				WGS Reviewed & Approved by: M. Wittman, P.G.	
Start Date 2/18/2020 En				nd Date 2/18/2020 Drilling Contractor Trec Environmental	
GW Depth While Drilling NWWD				Type of Drill Rig Track Mounted Geopro	be
GW Depth at Completion NWAC				Sampler Type: MC	
Sample Depth (ft)	Sample No.	Sample Depth (feet)	Recovery (%)	SAMPLE DESCRIPTION	OVM Reading (ppm)
1	1	0-4	70	Brown f/c Sand and Gravel, some Concrete, saturated (FILL)	5
2					5
3					5
4	2	4.9	100	Brown Clay & Silt, tr. f/c Sand, tr. Gravel, wet (FILL)	5
5	2	4-8	100		2.5
6				Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist	ND
7					ND
8	3	8-12	100	Grades to:wet/saturated	ND
9					ND
10					ND
11					ND
12					ND
13				Bottom of Boring - 12 fbg	ND
14					ND
15					ND
16					ND
18					

20									
22									
24									
Notes:		 1) Organic vapor meter used to field screen and headspace soil samples. 2) ND - non detect on OVM 							
General Notes: 1) Stratification lines represent approximate boundary between soil. Transitions may be gradual. Depths are approximate. 2) Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur. 3) f=fine; m=medium; c=coarse 4) and (36-50%); some (21-35%); little (11-20%); trace (1-10%)		2) Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur.							
		MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core							

W	Wittman GeoSciences, PLLC				Hole No.:	MW-102		Date started: 2/19/2020			
WITTMAN GeoSciences, PLLC	AN PULC				Sheet 1 of 1 Date Finished: 2/19/2020						
Client:	:: 140 Chandler Street LLC Method of Ir				Investigatio	nvestigation: Advance 3.25" hollow-stem tubes to depth of boring.					
Locatio	n• 1.	40 Chandle	r Stroot			Set 2-ir	nch well at total	I depth	of boring.		
Project					Drilling Co	Drilling Co.: TREC Env. Weather: Cloudy 40F					
Project	Project Manager: Michele Wittman, PG				Driller: Eri	с					,
Site Te	ite Technician: Eric Betzold			Drill Rig: Geoprobe 6620DT							
Depth	Sample			Sample			Field Analytical	Well	Groundwater and Other		
(ft.)	No.	Depth (ft.)	Blows	s/6"		Descri	ption		Readings	Details	Observations
	1	0-4			F	lush mount r	oad box with				
						Cement/gr	out (0-1)				
<u> </u>	2	4-8				Bentonite pe	· · ·		//		
					2'	' sch. 40 PV	C riser (0'-6')				
_ 8 _	3	8-12			2" sch. 4	40 PVC 0.10	slot screen (6-1	16')			
-											
	4	12-16									
_ 12	4	12-10				#0	(4.10)				
						#0 sand	(4-16)				
						_					
			N/A: Well Cor Geoprobe			Bottom of sc					
— 16 —	5	16-20	0.0000.000		B	ottom of bor	ehole 16' bg				
<u> </u>											
20											
<u> </u>											
30											
Sample	Tvne	es:			•				Backfill Well I	Kev	
Campic					helby Tube:				nt/Bentonite		Grout
	R=	Rock Core:		O =				Sand			Bentonite
N = AS	IM D	1586					12,12,12,12,12,12,12,12,12	Janu			Demonille

APPENDIX B

COMMUNITY AIR MONITORING PLAN

COMMUNITY AIR MONITORING PLAN

BROWNFIELD CLEANUP PROGRAM For

140 Chandler Street, LLC Western Portion of 140 Chandler Street Site, 140 Chandler Street, Buffalo, New York 14207 BCP # C915354

Prepared For: **140 Chandler Street, LLC** 391 Washington Street, Buffalo, New York 14203 WGS Project No: 19211

> Prepared By: Wittman GeoSciences, PLLC 3636 North Buffalo Road Orchard Park, New York 14127 716-574-1513

January 9, 2020 rev March 30, 2020

TABLE OF CONTENTS

	<u>P</u>	'age
1.0	INTRODUCTION	1
2.0	VOLATILE ORGANIC COMPOUND AIR MONITORING	1
3.0	PARTICULATE AIR MONITORING	2
4.0	DOCUMENTATION	3
5.0	WIND DIRECTION	3

LIST OF FIGURES

Figure 1 Potential Air Monitoring Device Locations

LIST OF ATTACHMENTS

Attachment A	NYSDEC DER-10 Appendix 1A, New York State Department of Health, Generic Community Air Monitoring Plan
Attachment B	NYSDEC DER-10 Appendix 1B, Fugitive Dust and Particulate Monitoring

1.0 INTRODUCTION

This Community Air Monitoring Plan (CAMP) has been developed for the Remedial Investigation /Alternatives Analysis Report (RI/AAR) Work Plan to be completed by Wittman GeoSciences, PLLC (WGS) for Western Portion of 140 Chandler Street Site located at 140 Chandler Street, Buffalo, Erie County, New York, on behalf of 140 Chandler Street, LLC (Applicant) as part of the Brownfield Cleanup Program (BCP).

The CAMP requires real-time monitoring of volatile organic compounds (VOCs) and particulates (dust) at downwind perimeter of each designated work area. The CAMP will be implemented during the excavation and removal of soils from the courtyard and vacant lot areas of the subject site. This CAMP will be completed in general accordance with NYSDEC DER-10 Appendix 1A, as included in Attachment A. A figure showing proposed monitoring points is included as Figure 1.

2.0 VOLATILE ORGANIC COMPOUND AIR MONITORING

VOCs will be monitored at the downwind perimeter of the work are on a continuous basis and periodically during non-intrusive activities. VOC monitoring will be done using an organic vapor meter (OVM) equipped with a photoionization detector (PID) to provide real-time recordable air monitoring data.

VOCs will also be monitored and recorded at the downwind perimeter of the immediate work area(s). Upwind concentrations will be measured at the beginning of each day before activities begin and periodically throughout the day to establish background conditions. The downwind VOC monitoring device will also be checked periodically throughout the day to assess emissions and the need for corrective action. VOC monitoring action levels as per *DER-10 Technical Guidance for Site Investigations and Remediation* is as follows:

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If the organic vapor level at the perimeter of the work area persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions take to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less; but in no case than that 20 feet, is below 5 ppm over background for the 15-minute average.

• If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shut down.

3.0 PARTICULATE AIR MONITORING

The remediation crew will make all efforts to suppress dust and particulate matter during the handling of contaminated soil. Fugitive dust and particulate monitoring will be completed in accordance with DER-10 Appendix 1B, as included in Attachment B. The following techniques have been shown to be effective for the controlling the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and/or
- (g) Reducing the excavation size and/or number of excavations.

Care will be taken not to use excess water, which can result in unacceptably wet site conditions. Use of atomizing sprays will prevent overly wet conditions, conserve water and provide an effective means of suppressing fugitive dust.

Weather conditions will be evaluated during remedial work. When extreme wind conditions make dust control ineffective, as a last resort, remedial actions may need to be suspended.

Dust and particulate monitoring will be conducted near approximate upwind and downwind perimeters of the work area, when possible. If visual evidence of dust is apparent in other locations, monitoring equipment will be placed where necessary. Dust monitoring may be suspended during period of precipitation and snow cover.

Particulate air monitoring will be done with a DataRAM-4 (or similar), which will be capable of reading particles less than 10 micrometers in size (PM-10) and equipped with an audible alarm feature which will indicate exceedances. Dust monitoring devices will be recorded periodically throughout the day to assess emissions and the need for corrective actions. Particulate monitoring action levels as per *DER-10 Technical Guidance for Site Investigations and Remediation* is as follows:

• If the downwind PM-10 particulate level is 100 micrograms per cubic meter ($\mu g/m^3$) greater than background for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 ($\mu g/m^3$) above the upwind level and provided that no visible dust is migrating from the work area.

 \circ If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 (µg/m³) above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.

4.0 DOCUMENTATION

All 15-minute readings will be recorded and be available for or State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

5.0 WIND DIRECTION

Prevailing wind direction will be recorded at the beginning of each work day by visual observations of an on-site windsock. As wind direction may change throughout the work day, direction will be reestablished if a significant change in direction is observed. The wind direction results will be utilized to determine the placement of the monitoring equipment.

Figures

Attachment A

NYSDEC DER-10 Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m^3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Attachment B

NYSDEC DER-10 Appendix 1B Fugitive Dust and Particulate Monitoring

Appendix 1B Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.

2. Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.

3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:

- (a) Objects to be measured: Dust, mists or aerosols;
- (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);

(c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;

(d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);

- (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
- (f) Particle Size Range of Maximum Response: 0.1-10;
- (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number

(i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;

(j) Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;

(k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;

(1) Operating Temperature: -10 to 50° C (14 to 122° F);

(m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.

4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.

5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative,

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential-such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.

7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and
- (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Appendix 1C DEC Permits Subject to Exemption

In accordance with section 1.10, exemptions from the following permit programs may be granted to the person responsible for conducting the remedial programs undertaken pursuant to section 1.2:

Air - Title 5 permits Air - State permits Air - Registrations **Ballast Discharge Chemical Control Coastal Erosion Hazard Areas** Construction of Hazardous Waste Management Facilities Construction of Solid Waste Management Facilities Dams Excavation and Fill in Navigatable Waters (Article 15) Flood Hazard Area Development Freshwater Wetland Hazardous Waste Long Island Wells Mined Land Reclamation Navigation Law - Docks Navigation Law - Floating Objects Navigation Law - Marinas Non-Industrial Waste Transport **Operation of Solid Waste Management Facilities Operation of Hazardous Waste Management Facilities** State Pollution Discharge Elimination Systems (SPDES) Stream Disturbance **Tidal Wetlands** Water Quality Certification Water Supply Wild, Scenic and Recreational Rivers