PHASE II ENVIRONMENTAL SITE ASSESSMENT FOR FORMER FRIENDSHIP HOUSE 100 DONA STREET LACKAWANNA, ERIE COUNTY, NEW YORK

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203

Prepared for: City of Lackawanna 714 Ridge Road Lackawanna, NY 14218

March 2017

C&S Project No: Q27.001.001

EXE	CUTIVE SUMMARY	III
<u>1.0</u>	INTRODUCTION	1
1.1 1.2	SITE DESCRIPTION PHASE II ESA SCOPE AND OBJECTIVES	1 1
<u>2.0</u>	SITE INVESTIGATION METHODS	2
 2.1 2.2 2.2.1 2.2.2 2.3 	SURFACE SOIL CHARACTERIZATION SUBSURFACE INVESTIGATION SOIL BORINGS TEST PITS GROUNDWATER CHARACTERIZATION	2 2 2 3 3 3
<u>3.0</u>	PHASE II ESA FINDINGS	4
3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.1. 3.2.1. 3.2.2	SUBSURFACE CONDITIONS SIMPLIFIED SITE STRATIGRAPHY GROUNDWATER CONDITIONS RESULTS SOIL SAMPLING RESULTS 1 SURFACE SOIL SAMPLING RESULTS 2 SUBSURFACE SOIL SAMPLING RESULTS GROUNDWATER CHARACTERIZATION RESULTS	4 4 5 5 5 6 8 9
<u>4.0</u>	PHASE II ESA SUMMARY	<u> 10</u>
4.1 4.2	FINDINGS DISCUSSION AND CONCLUSIONS	10 10
<u>5.0</u>	DISCLAIMER	12

FOLLOWING TEXT

Environmental Professional Statement and Qualifications and Resume

FIGURES

Figure 1	Site Location
Figure 2	Soil Sample Locations
Figure 3	Groundwater Well Locations
Figure 4	Soil Sampling Results

TABLES

Table 1	Surface Soil Sampling Results
Table 2	Boring Sampling Results
Table 3	Test Pit Sampling Results
Table 3	Groundwater Sampling Results

APPENDICES

APPENDIC	ES
Appendix A	Soil Boring Logs
Appendix B	Test Pit Logs
Appendix C	Groundwater Well Sampling Field Data
Appendix D	Laboratory Analysis Report – Surface Soil
Appendix E	Laboratory Analysis Report – Subsurface Soil

Laboratory Analysis Report - Groundwater Appendix F

EXECUTIVE SUMMARY

The purpose of this Phase II Environmental Site Assessment (ESA) is to advance the findings of the previously conducted Phase I ESA. The scope of the Phase II ESA includes: a subsurface investigation; surface soil characterization; groundwater characterization; and analytical testing on a site located at 100 Dona Street, City of Lackawanna, Erie County, New York.

The following findings are made in this Phase II ESA:

- 1. Fill material was encountered on the eastern portion of the Site from just below the asphalt and gravel sub-base or topsoil to one to three feet below grade. Sandy and silty sand material was observed directly beneath the fill.
- 2. No VOCs were detected in any of the surface soil sampling. However, SVOCs exceeding Industrial Use standards and metals exceeding Unrestricted Use SCOs were detected in surface soil samples. PCBs were detected in one surface soil sample, but did not exceed NYS SCOs.
- 3. Visual and olfactory indications of petroleum impairment were evident on the north side behind the building. Petroleum staining appeared in BH-6, BH-7 and TP-9 at approximately 6 to 16 feet below grade.
- 4. Six subsurface soil samples contained contaminants exceeding NYS SCOs. BH-7 contained acetone exceeding Unrestricted Use SCOs. BH-11 contained SVOCs that exceeded Restricted Residential Use SCOs and BH-12 exceeded Industrial Use SCOs for arsenic.
- 5. No PCBs were detected in any subsurface soil samples.
- 6. Groundwater was present at depths of approximately 5.5 to 10 feet bgs. GW-4 contained exceedance levels of acetone. GW-3, GW-4, and GW-5 contained various concentrations of metals that exceeded New York standards. No PCBs were detected in any groundwater samples.

Discussion and Conclusions

The majority of the surface soil samples contained varying concentrations of SVOCs which exceeded Industrial Use SCOs, which is indicative of the historical industrial use of the surrounding area. Exposure to impacted soil is likely if any site improvement (i.e. earthwork) is conducted.

Subsurface soil contamination was generally limited to the top one to three feet of fill material, which was observed on the eastern portion of the Site. The fill material consists of a mix of variable amount of sand, with gravel, concrete and brick fragments. Due to the heterogeneous nature of the fill material, no defined point sources of contamination were identified.

Visual and olfactory evidence of petroleum was identified in the proximity of BH-6, BH-7 and TP-9 at depths of six to 16 feet. However, no petroleum-related VOCs or SVOCs were detected in the soil samples from these locations. Based on this information, it appears that the release of petroleum occurred in the distant past and that the petroleum has since weathered. The apparent source of this impact is not known, although records suggest that the school was once heated by fuel oil. The fuel oil was once stored in an 8,000-gallon UST which was removed in 1988. The location of the UST is not known, and documentation of the closure was not found. Therefore, it is possible that the petroleum nuisance characteristics encountered during this Phase II ESA are related to the former presence of that 8,000-gallon UST.

Historical Sanborn Maps indicated the presence of a gasoline storage tank near southeast corner of the Site. Subsurface investigation and groundwater characterization of the southeast corner of the Site indicates that this historical gasoline tank does not appear to have impacted the Site.

Because analytical results indicate contaminant concentrations above the NYS SCOs for Industrial Use (the redevelopment of the site is planned for residential), the Site appears to be eligible for cleanup and redevelopment under NYSDEC's Brownfield Cleanup Program (BCP).

FINAL

1.0 **INTRODUCTION**

1.1 Site Description

The Site is located at 100 Dona Street in the City of Lackawanna, Erie County, New York. This property consists of a single parcel totaling approximately 2.2 acres with a vacant three story structure. The Site is shown in *Figure 1*.

1.2 Phase II ESA Scope and Objectives

A Phase I Environmental Site Assessment (ESA) was previously conducted at the property at 100 Dona Street in the City of Lackawanna, New York (Site). The Phase I ESA identified a number of Recognized Environmental Concerns (RECs) that have the potential to have released contaminants into the environment. These RECs include:

- An environmental database records search indicated that the former school building was heated by oil and that the oil was formerly stored in an 8,000-gallon UST. Although the UST was closed in 1988, no documentation was identified relative to the closure. Therefore, this former UST is considered an REC.
- An unregulated storage tank was formerly located at the southeast corner of the Site. This underground storage tank was considered a REC.
- An historical automobile station was located upgradient of the Site was considered a REC due to potential migration of petroleum onto the Site.

The purpose of this Phase II Environmental Site Assessment is to characterize the RECs identified in the previously conducted Phase I ESA and assess whether the soil and groundwater has been impacted by these concerns. As discussed below, the scope of the Phase II ESA includes: surface soil characterization, subsurface investigation, groundwater characterization, soil and groundwater sample collection; and analytical testing.

This investigation was conducted over the course of several days. Sub-surface soil investigation took place on December 20, 2016, test pit investigation took place on December 27, 2016 and surface soil samples were collected on December 28, 2016. Groundwater sampling occurred on January 16, 2017.

2.0 <u>SITE INVESTIGATION METHODS</u>

2.1 Surface Soil Characterization

A total of 12 surface soil samples were collected from 0 to 2 inches below grade and below the vegetated layer. The sample locations evenly distributed across the site.

Soil samples were collected using a decontaminated stainless steel spoon and placed directly into clean bottles supplied by Paradigm Analytical and placed on ice in a cooler. These soil samples were submitted to Paradigm Analytical under chain of custody protocols.

Six of the soil samples were analyzed for EPA Target Compound List (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs) and Target Analyte List (TAL) metals and six were analyzed for NYSDEC Part 375 VOCs, SVOCs, PCBs and metals. Paradigm Analytical was contracted to analyze these soil samples. Quality Assurance/Quality Control (QA/QC) samples included two matrix spike/matrix spike duplicate (MS/MSD) samples.

2.2 Subsurface Investigation

2.2.1 Soil Borings

Nature's Way Environmental was contracted to advance 12 soil borings; 8 were advanced to approximately 12 feet below grade and 4 borings were advanced to 40 feet or to refusal. Drilling was conducted using a truck mounted Geo-probe drilling unit. Each boring location was assessed for visual impairment, olfactory indications of impairment, and total VOCs using a Mini-Rae 2000 photoionization detector (PID) with an 11.7-volt lamp, and sampled using a one-inch by four-foot steel sampling tube fitted with a disposable acetate liner. All non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

Material description and physical evidence of contamination (odors, staining or sheen) of each direct push sample was recorded on soil boring logs provided in *Appendix A*.

Samples from eight of the twelve borings were collected and placed in a plastic zip lock bag. Head space readings for each sample were conducted using a PID. The PID head space readings for all samples and the depths of the selected lab analysis samples are recorded on the soil boring logs provided in *Appendix A*.

Subsurface samples were selected based on visual impairment, olfactory indications of impairment, utilization of a PID to identify "evidence of impairment" and depth. Samples in this Phase II ESA were mainly extracted from urban fill on the Site. If no impairment was observed, samples were extracted from just above the water table. These samples were collected and placed in clean bottles supplied by the laboratory.

Four of the soil samples were analyzed for TCL VOCs, TCL SVOCs, PCBs and TAL metals, while four were analyzed for NYSDEC Part 375 parameters. All soil sample analytical results are summarized in the tables following the text of this document.

2.2.2 Test Pits

Nature's Way Environmental was contracted to advance nine test pits up to depths of eight to ten feet deep across the site. Each location was assessed for visual and olfactory indications of impairment, total VOCs using a PID. Material description and physical evidence of contamination are provided in *Appendix B*. Samples were mainly collected from urban fill on the site, from areas with petroleum impacts, or, if no fill or other environmental impairment was observed, samples were extracted from just above the water table. Samples from eight of the nine test pits were collected and placed in jars provided by the analytical lab.

Four of the soil samples were analyzed for TCL VOCs, TCL SVOCs, PCBs and TAL metals and four were analyzed for NYS DEC Part 375 parameters.

2.3 Groundwater Characterization

Nature's Way Environmental was contracted to install five groundwater monitoring wells on the Site. These groundwater monitoring wells were completed with five feet of twoinch, Schedule 40 0.010-slot well screen connected to a Schedule 40 PVC well riser to completed the well. The borehole annulus was filled with quartz sand, sealed with bentonite to approximately one to two feet below ground surface, and grouted to ground surface.

The groundwater monitoring wells were developed using a monsoon pump and the removal of three well volumes. Groundwater sampling followed well development and was conducted using low-flow purging. Before and after purging the well, water levels were measured using an electric water level sounder capable of measuring to the 0.01-foot accuracy. Water quality measurements such as pH, turbidity, dissolved oxygen, temperature, and conductivity were collected until stabilized. Calibration times, purging volumes, water levels and field measurements were recorded in a field log and are included in *Appendix C*.

Groundwater samples were collected from each well using low-slow purging methods. Groundwater samples were pumped into clean bottle supplied by the lab and analyzed for TCL VOCs, TCL SVOCs, and PCBs, and TAL metals using a low-flow technique in accordance with US EPA standards. QA/QC samples included one trip blank, one field duplicate, and one MS/MSD sample. All groundwater sample analytical results are summarized in Table 4 following the text of this document.

3.0 PHASE II ESA FINDINGS

This Phase II ESA program for this investigation included the following components:

- Surface Soil Characterization
- Subsurface Soil Characterization
- Groundwater Characterization
- Quality Assurance, Quality Control, and Data Validation

The subsurface soil investigation included 12 borings located across the Site with samples taken from eight of these borings; nine test pits with samples taken from eight of these test pits; the collection of 12 surface soil samples evenly distributed across the site; and the installation and sampling of five groundwater monitoring wells. *Figure 2* displays all soil investigation locations including boring locations, test pit locations, and surface soil samples. *Figure 3* displays all groundwater well locations.

3.1 Subsurface Conditions

Each soil sample retrieved from the geo-probe and test pit was observed for general soil type, estimated moisture content and any evidence of contamination.

3.1.1 Simplified Site Stratigraphy

The soils from borehole samples and test pit investigations were classified in the following simplified categories:

- Asphalt/Topsoil- Asphalt and gravel sub-base thickness or top soil observed from the surface to 8 inches deep.
- *Fill-* Only observed on the eastern portion of the Site from approximately one to three feet below grade. Anthropogenic sources of any one, or mixture, of the material re-worked to build a site to a defined grade. This material included sand, crushed brick, concrete and rock.
- Sand Brown and tan, fine to medium particle sized granular material. Generally ranged from one to 9 feet in depth on western portion of Site
- Silty Sand-Fine grained soil having apparent plasticity when wet, but easily powdered when dried. Generally ranged from four to 12 feet in depth.

Fill was observed on the eastern portion of the Site from beneath the asphalt or topsoil approximately one to three feet below grade. Directly beneath the fill material was sand or silty sand. Refusal across the site ranged from 14 to 16.5 feet.

During the subsurface investigation (boring hold and test pit investigations) visual and olfactory evidence of petroleum was identified in the proximity of BH-6, BH-7 and TP-9. The soil from approximately 6 to 16 feet in depth exhibited a grayish appearance of staining.

3.1.2 Groundwater Conditions

Saturated soils encountered during the boring program were typically found at 5.5 to 10 feet below grade. During the boring program, the soils were saturated where water was encountered.

3.2 Results

3.2.1 Soil Sampling Results

Samples including eight from the 12 borings, eight from the nine test pits, and 12 surface soil samples were collected for analysis. Soil results are discussed below in comparison to the Soil Cleanup Objectives (SCOs) outlined in NYSDEC 6NYRR Part 375-6.8(b). The Remediation Program Soil Cleanup Objectives, effective December 14, 2006, includes SCOs that are based on protection of human health, groundwater, and ecological resources. The SCOs are based on the following site uses:

<u>Unrestricted Use</u>: This land use category is intended to be representative of pre-disposal conditions and requires no restrictions on the use of the site. The unrestricted use soil cleanup objectives represent the concentration of a contaminant in soil which will require no use restrictions on the site for the protection of public health, groundwater and ecological resources due to the presence of contaminants in the soil.

<u>Residential Use:</u> This land use category is intended for single family housing and requires the fewest restrictions on the use of the Site. It allows only two restrictions: a groundwater use restriction and / or a prohibition against producing animal products for human consumption.

<u>Restricted-Residential Use</u>: This land use category is intended for apartments, condominium, co-operative or other multi-family / common property control residential development. In addition to the restrictions for residential use, this use prohibits vegetable gardens, unless planted in gardens where the soil achieves the residential use soil cleanup objectives; and a prohibition of single-family housing. Restricted-Residential use is the appropriate use category for the following:

- Day care or other child care facilities
- Elementary or secondary schools
- College or boarding school residential buildings

This use allows for active recreational uses, which includes recreational activities with a reasonable potential for soil contact, such as:

• Designated picnic areas

- Playgrounds
- Natural grass sports playing fields, including surrounding unpaved spectator areas

<u>Commercial Use</u>: This land use category anticipates use by businesses with the primary purpose of buying, selling or trading of merchandise or services. It is the appropriate use category for:

- Health care facilities, including hospitals, clinics etc.
- College academic and administrative facilities

This use allows for passive recreational purposes, which includes recreational uses with limited potential for soil contact, such as:

- Artificial surface fields
- Outdoor tennis or basketball courts
- Other paved recreational facilities used for roller hockey, roller skating, shuffle board, etc.
- Outdoor pools
- Indoor sports or recreational facilities
- Golf courses
- Paved (raised) bike or walking paths

<u>Industrial Use:</u> This land use category anticipates that use of the property will be the primary purpose of manufacturing, production, fabrication or assembly processes and ancillary services. Industrial use does not include any recreational component.

The above described use-based SCOs are intended to apply to:

- The development and implementation of remedial programs for inactive hazardous waste disposal sites, including, but not limited to, sites listed on the national priorities list (NPL) or are being addressed by the Department of Defense or the Department of Energy.
- The development and implementation of remedial programs for the Brownfield Cleanup Program (BCP),
- The development and implementation of remedial programs for the environmental restoration program (ERP),
- The soil cleanup objectives for remedial programs, specifically under subpart 375-6.

Figure 4 shows the location of all soil samples that exceed NYSDEC standards.

3.2.1.1 Surface Soil Sampling Results

A total of 12 surface soil samples were collected from 0 to 2 inches in various locations throughout the site. All 12 surface soil samples contained contaminants concentrations

that exceeded NYS SCOs. The table below provides a summary of analyte concentration exceedances and **Table 1** (following text) summarizes all of the analytical results.

	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
SS-1	3	2	4	-	1
SS-2	2	2	4	-	1
SS-3	2	3	3	1	1
SS-4	3	-	-	-	-
SS-5	2	1	-	-	-
SS-6	3	-	-	-	-
SS-7	3	-	-	-	-
SS-8	2	-	-	-	-
SS-9	2	3	4	-	1
SS-10	2	2	4	-	2
SS-11	3	2	4	-	1
SS-12	4	1	4	-	2

Table 3-1: Summary of Surface Soil Samples Exceeding Soil Cleanup Criteria

<u>VOCs</u>

No VOCs exceeding NYS SCOs were detected

SVOCs

Seven samples contained analytes that exceeded NYS SCOs for SVOCs, including:

- SS-11 exceeded Unrestricted Use SCOs for benzo(k)fluoranthene. Four samples exceeded Residential SCOs for benzo(k)fluoranthene and chrysene.
- SS-9 and SS-12 exceeded Residential Use SCOs for benzo(k)fluoranthene and SS-11 exceeded for chrysene.
- samples exceeded Residential Seven Restricted Use SCOs for • benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-c,d)pyrene while five samples exceeded Restricted Residential Use **SCOs** for dibenzo(a,h)anthracene and chrysene.
- SS-3 exceeded Commercial Use SCOs for dibenzo(a,h)anthracene. Additionally, Seven samples exceeded Industrial Use SCOs for benzo(a)pyrene and two exceeded Industrial Use SCOs for dibenzo(a,h)anthracene.

<u>PCBs</u>

No PCBs exceeding NYS SCOs were detected.

<u>Metals</u>

All surface soil samples exceeded Unrestricted Use SCOs for lead and zinc. SS-12 exceeded Unrestricted Use SCOs for copper. Five samples exceeded Unrestricted Use SCOs for chromium. Four samples contained analytes that exceeded Residential Use SCOs for chromium.

3.2.1.2 Subsurface Soil Sampling Results

A total of 16 subsurface samples were collected and analyzed. The table below displays the analyte concentration exceedances. **Table 2 and Table 3** (following text) display analyte results and exceedances above NYS SCOs for boring and test pit samples.

	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
BH-4	-	-	-	-	-
BH-6	-	-	-	-	-
BH-7	1	-	-	-	-
BH-8	1	-	-	-	-
BH-9	4	-	-	-	-
BH-10	-	-	-	-	-
BH-11	1	1	1	-	-
BH-12	5	-		-	1
TP-9	1	-	-	-	-

Table 3-2: Summary of Samples Exceeding Soil Cleanup Criteria

<u>VOCs</u>

Four subsurface samples contained VOCs that exceeded the SCOs. Two sample concentrations exceeded Unrestricted Use SCOs for trichloroethylene (TCE) and two sample analytes exceeded Unrestricted Use SCOs for acetone. The exceedances in TCE are attributed to cross contaminations due to laboratory procedure failure.

<u>SVOCs</u>

Only one subsurface soil sample contained SVOCs in excess of the SCOs. BH-11 contained SVOC concentrations above Unrestricted Use SCOs for benzo(k)fluoranthene, concentrations above Residential Use SCOs for chrysene, and concentrations above Restricted Residential Use SCOs for benzo(a)anthracene.

Results indicate that detected SVOCs present in these deposits are classified as polycyclic aromatic hydrocarbons (PAHs). The PAH compounds are usually associated with the incomplete combustion of organic material (i.e., wood, coal or petroleum products). The presence of these compounds are consistent with the urban setting of the Site.

<u>PCBs</u>

No PCBs were detected.

<u>Metals</u>

BH-8 contained concentrations above Unrestricted Use SCOs for manganese. BH-9 contained concentrations above Unrestricted Use SCOs for lead, selenium and zinc. BH-12 contained concentrations above Unrestricted Use SCOs for copper, lead, selenium, and zinc as well as exceedances above Industrial Use SCOs for arsenic.

3.2.2 Groundwater Characterization Results

Groundwater samples were collected and analyzed from five monitoring wells on Site. Groundwater sampling results are displayed in **Table 4** (following text) displays all sample analyte results and exceedances above NY TOGS Groundwater Standards.

<u>VOCs</u>

Acetone was detected and exceeded standards for NY TOGS at 59.3 mg/kg in GW-4.

<u>SVOCs</u>

Low concentrations of SVOCs were detected in GW-5; however, these concentrations did not exceed standards.

<u>PCBs</u>

No PCBs were detected.

<u>Metals</u>

GW-3, GW-4, and GW-5 contained contaminants that exceeded standards for various metals. These groundwater samples contained analytes that exceeded aluminum, chromium, iron, manganese, and vanadium. Other metals detected included arsenic, beryllium, barium, cobalt, copper, lead, selenium, magnesium, and nickel.

4.0 PHASE II ESA SUMMARY

This section summarizes the results of the Phase II ESA of the Subject Properties.

4.1 Findings

- 1. Fill material was encountered on the eastern portion of the Site from just below the asphalt and gravel sub-base or topsoil to one to three feet below grade. Sandy and silty sand material was observed directly beneath the fill.
- 2. No VOCs were detected in any of the surface soil sampling. However, SVOCs exceeding Industrial Use standards and metals exceeding Unrestricted Use SCOs were detected in surface soil samples. PCBs were detected in one surface soil sample, but did not exceed NYS SCOs.
- 3. Visual and olfactory indications of petroleum impairment were evident on the north side behind the building. Petroleum staining appeared in BH-6, BH-7 and TP-9 at approximately 6 to 16 feet below grade. However, all concentrations of petroleum-related VOCs and SVOCs were below the respective SCOs in the samples collected from these locations.
- 4. Six subsurface soil samples contained contaminants exceeding NYS SCOs. BH-7 contained acetone exceeding Unrestricted Use SCOs. BH-11 contained SVOCs that exceeded Restricted Residential Use SCOs and BH-12 exceeded Industrial Use SCOs for arsenic.
- 5. No PCBs were detected in any subsurface soil samples.
- 6. Groundwater was present at depths of approximately 5.5 to 10 feet bgs. GW-4 contained exceedance levels of acetone. GW-3, GW-4, and GW-5 contained various concentrations of metals that exceeded New York standards. No PCBs were detected in any groundwater samples.

4.2 Discussion and Conclusions

The majority of the surface soil samples contained varying concentrations of SVOCs which exceeded Industrial Use SCOs, which is indicative of the historical industrial use of the surrounding area. Exposure to impacted soil is likely if any site improvement (i.e. earthwork) is conducted.

Subsurface soil contamination was generally limited to the top one to three feet of fill material, which was observed on the eastern portion of the Site. The fill material consists of a mix of variable amount of sand, with gravel, concrete and brick fragments. Due to the heterogeneous nature of the fill material, no defined point sources of contamination were identified.

Visual and olfactory evidence of petroleum was identified in the proximity of BH-6, BH-7 and TP-9 at depths of six to 16 feet. However, no petroleum-related VOCs or SVOCs were detected in the soil samples from these locations. Based on this information, it

appears that the release of petroleum occurred in the distant past and that the petroleum has since weathered. The apparent source of this impact is not known, although records suggest that the school was once heated by fuel oil. The fuel oil was once stored in an 8,000-gallon UST which was removed in 1988. The location of the UST is not known, and documentation of the closure was not found. Therefore, it is possible that the petroleum nuisance characteristics encountered during this Phase II ESA are related to the former presence of that 8,000-gallon UST.

Historical Sanborn Maps indicated the presence of a gasoline storage tank near southeast corner of the Site. Subsurface investigation and groundwater characterization of the southeast corner of the Site indicates that this historical gasoline tank does not appear to have impacted the Site.

Because analytical results indicate contaminant concentrations above the NYS SCOs for Industrial Use (the redevelopment of the site is planned for residential), the Site appears to be eligible for cleanup and redevelopment under NYSDEC's Brownfield Cleanup Program (BCP).

5.0 **DISCLAIMER**

C&S's conclusions are based on conditions that existed on the Site in December 2016 and January 2017. Past and present conditions that could not be observed were established on the basis of documents. C&S cannot attest to the completeness of accuracy of these materials.

This report was prepared by C&S expressly and exclusively for use by the City of Lackawanna, its successors and/or assigns. Except where specifically stated to the contrary, the information contained herein was provided to C&S by others and has not been verified independently or otherwise examined to determine its accuracy, completeness, or feasibility. In addition, C&S may have had to rely upon the assumptions, especially as to future conditions and events. Accordingly, neither C&S nor any person acting on its behalf (a) makes any warranty or representation, whether expressed or implied, concerning the usefulness of the information contained in this report, or (b) assumes liabilities with respect to the use of or for damages resulting from the use of any information contained in this Environmental Site Assessment (ESA) report. Further, C&S cannot promise that any assumed conditions will come to pass.

No one is authorized to rely on this report for any purpose, except to the extent that such reliance is specifically authorized in writing by C&S. Any person who intends to take action, which is in any way related to or affected by the information contained herein, should independently verify all such information. The report speaks only as of the date issued. C&S has no responsibility for updating the information herein, and therefore, it should not be assumed that any information contained herein in this ESA continues to be accurate subsequent to 180 days from the date of the site inspection.

It would be extremely expensive, and perhaps not possible, to conduct an investigation that would ensure the detection of environmental impacts at the subject site, which now are, or in the future might be, considered hazardous. This investigation does not guarantee that C&S discovered all the environmental impacts at the Subject Properties. Similarly, a property which, in fact, is unaffected by environmental impacts at the time of the assessment may later, due to natural phenomena or other intervention, become contaminated.

Except where stated to be the contrary, this ESA has been prepared solely on the basis of readily available visual observation. Except where stated to be the contrary, no demolition or removal by C&S has been accomplished to reveal hidden conditions. No testing such as the testing of materials, equipment, or systems has been performed to verify current conditions or to predict future conditions.

Future regulatory modifications, agency interpretation, or policy changes may affect the compliance status of the property.

A title search, indoor air quality, and wetland surveys were not requested as part of this project. These topics require specialized expertise. A specialty survey can be performed upon request.

F:\Project\Q27 - City of Lackawanna\Q27001001 - Lackawanna Step 3 BOA\Planning-Study\Reports\Phase I and II\Assessments\100 Dona Street\Phase II ESA\100 Dona Street Phase II ESA.docx

ENVIRONMENTAL PROFESSIONAL STATEMENT AND QUALIFICATIONS

We declare that, to the best of our professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in §312.10 of 40 CFR 312.

We have the specific qualifications based on education, training, and experience (as summarized on the resumes which follow this page) to assess a property of the nature, history and setting of the Site. To the best of our knowledge and belief, C&S Engineers Inc. has developed and performed all appropriate inquiries in general conformance with the standards and practices set forth in 40 CFR Part 31.

ERL

Daniel E. Riker, P.G. Managing Geologist

Parcel Boundaries

Subject Property

600

37.5

TABLE 1 - SURFACE SOIL SAMPLING RESULTS100 DONA STREET

Field Sample ID						SS-1	SS-2	SS-3	SS-4	\$\$-5	SS-6	SS-7	SS-8	SS-9	SS-10	SS-11	SS-12
Pielu Sample ID	Unrestricted	Residential	Restricted	Commercial	Industrial	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016	12/28/2016
Sample Matrix	Ugo	Lico	Residential	Ugo	Illeo	SO	SO	12/20/2010 SO	SO	SO	12/26/2010 SO	SO	SO	12/20/2010 SO	SO	SO	SO
Sample Matrix	Use	Use	Use	Use	Use	ma/ka				ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	malka	ma/ka	ma/ka
						ilig/kg	ilig/kg	шg/кg	ilig/kg	iiig/kg	ilig/ Kg	ilig/kg	ilig/kg	ilig/Kg	ing/kg	ilig/Kg	ilig/kg
volatile Organics	0.05		100	500	1000					1.00							
Methylene Chloride	0.05	51	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00528 J	0.01 J
Semi-volatile Organ		100	100	500	1000												
Acenaphthene	20	100	100	500	1000	0.264 JM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	100	100	500	1000	ND	ND	0.266	J ND	ND	ND	ND	ND	0.364	ND	ND	ND
Anthracene	100	100	100	500	1000	0.847	0.293	J 0.598	ND	0.21 J	ND	ND	ND	0.557	1.89 J	0.406	2.11
Benzo(A)Anthracene	1	1	1	5.6		1.99	1.48	2.62	0.403	J 0.639	0.513	0.32 J	0.517	1.84	5.01	1.41	5.13
Benzo(A)Pyrene	1			l	1.1	1.7	1.3	2.11	0.38	J 0.61	0.478	0.317 J	0.487	1.56	4.54	1.26	4.48
Benzo(B)Fluoranthene	1	1	1	5.6	11	1.48	1.47	2.47	0.432	0.64	0.492	0.34 J	0.484	1.6	4.27	1.44	4.35
Benzo(G,H,I)Perylene	100	100	100	500	1000	1.04	0.779	1.26	0.267	J 0.445	0.318	J 0.221 J	0.344 J	0.938	2.92	0.842	2.85
Benzo(K)Fluoranthene	0.8	1	3.9	56	110	1.41	1.17	1.87	0.334	J 0.55	0.406	0.244 J	0.39 J	1.05	3.29	0.859	3.32
Carbazole						0.526	0.249	J 0.382	ND	ND	ND	ND	ND	0.241	J 1.09 J	0.223 J	1.09 J
Chrysene	1	1	3.9	56	110	2.03	1.76	2.87	0.491	0.757	0.625	0.384	0.575	1.69	5.09	1.52	5.08
Dibenz(A,H)Anthracene	0.33	0.33	0.33	0.56	1.1	0.427	0.418	0.654	ND	ND	ND	ND	ND	0.409	1.19 J	0.377 J	1.37 J
Fluoranthene	100	100	100	500	1000	5.17	3.45	5.79	0.841	1.41	1.14	0.715	1.22	3.97	12.3	2.97	11.5
Fluorene	30	100	100	500	1000	0.326 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-C,D)Pyrene	0.5	0.5	0.5	5.6	11	0.751	0.628	1.05	0.22	J 0.325 J	0.227	J ND	0.231 J	0.796	2.11	0.652	2.13
Phenanthrene	100	100	100	500	1000	3.73	1.46	2.49	0.338	J 0.644	0.627	0.36 J	0.707	1.84	8.37	1.52	8.32
Pyrene	100	100	100	500	1000	3.99 M	2.42	3.93	0.644	1.08	0.89	0.566	0.974	3.06	9.86	2.26	9.11
PCBs	<u>.</u>			-							<u> </u>		·				
PCB-1260 (Aroclor 1260)	0.1	1	1	1	25	ND	0.0208	J 0.021	J ND	0.0271 J	ND	ND	ND	0.0257	J ND	ND	ND
Metals	<u>.</u>			-							<u> </u>		·				
Aluminum												7660	7050	9030	9380	8540	8760
Antimony												ND	ND	ND	ND	ND	ND
Arsenic	13	16	16	16	16	8.96	7.51	7.79	9.16	10.5	8.84	8.87	7.89	11.5	11.9	11.9	11.5
Barium	350	350	400	400	10000	60.5	49.9	63.4	58.6	69.2	47.5	50.9	46	57.3	65.7	64.2	73
Beryllium	7.2	14	72	590	2700	0.566	0.632	0.759	0.495	0.766	0.443	0.443	0.446	0.519	0.604	0.546	0.544
Cadmium	2.5	2.5	4.3	9.3	60	1.34	1.41	1.49	1.48	1.95	1.3	1.54	1.22	1.73	1.7	1.9	1.63
Calcium												12500	28300	16100	8580	10500	17300
Chromium, Trivalent	30	36	180	1500	6800	31.2	28.3	43.9	30.6	48.7	33.3	33.1	29.2	42.7	36.3	47.7	31.9
Cobalt												5.6	5.45	6.54	6.97	6.63	6.26
Copper	50	270	270	270	10000	32	26.3	32.6	29.5	41.6	29.8	30.4	30	34.9	36.6	39.1	57.7
Iron												20900	20000	25100	26300	26100	23400
Lead	63	400	400	1000	3900	108	121	142	110	174	104	124	110	149	165	148	143
Magnesium												3560	6100	7480	3140	3770	4970
Manganese	1600	2000	2000	10000	10000	1190	936	1530	905	1490	1110	1010	928	1290	965	1310	910
Mercury	0.18	0.81	0.81	2.8	5.7	0.0687 D	0.0732	0.0622	0.0923	0.0983	0.0736	0.0825	0.0695	0.102	0.0985	0.113	0.0964
Nickel	30	140	310	310	10000	20.2	16	19.7	18.3	22.1	16.5	17.8	17.1	18.5	20.1	19.6	18.8
Potassium												955	906	1480	1260	1150	1110
Selenium	3.9	36	180	1500	6800	1.60	ND	1.85	1.68	2.42	0.91	ND	2.14	0.936	1	1.09	1.47
Silver	2	36	180	1500	6800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium												ND	92.6 J	81	J ND	ND	82.4 J
Thallium												ND	ND	ND	ND	ND	ND
Vanadium												26.7	24.1	27.6	29.1	32.4	27.2
Zinc	109	2200	10000	10000	10000	303	283	336	296	403	268	329	285	386	373	369	380

Notes:

All concentraiions in mg/kg

Analytical Data compared to Part 375 Standards and DER-10

ND - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

M - Matrix spike recoveries outside QC limits. Matrix bias indicated.

TABLE 2 - BORING SAMPLING RESULTS100 DONA STREET

Etabl Cameria ID						рЦ <i>1</i>	PH 6		РЦ 7		рц 9		PU 0		PH 10		PU 11		PU 12	
	Unrestricted	Decidential	Restricted	Commondial	Inductrial	12/10/2016	12/10/2014	12/19/2016 12/19/2016		12/10/2016	12/19/2016		6 12/19/2016			12/10/2016	_	12/10/2016	_	
Date Sampled	Unestricted	L	Residential	Uninercial	Thustria	12/13/2010 50	12/13/2010 50		50		12/13/2010		50	,	12/13/2010		12/19/2010		12/13/2010 SO	_
Sample Matrix	Use	Use	Use	Use	Use	50	30		50		50		50				50		50 ma/ka	
						ing/kg	ilig/kg		ing/kg		mg/kg		mg/kg		mg/kg		iiig/kg		mg/kg	
volatile Organics	0.10	100	100	500	1000			1						- 1		1	<u>г</u>			
2-Butanone	0.12	100	100	500	1000	ND	ND	_	0.0435	J	ND		ND		ND		ND		ND	
Acetone	0.05	100	100	500	1000	ND	ND		0.242		ND		ND		ND		ND		ND	
Carbon disulfide		100	-	-		ND	ND	_	ND		ND		ND		0.00738	J	ND		ND	
Isopropylbenzene		100	100		1000	ND	ND		0.0148		ND		ND		ND		ND		ND	
sec-Butylbenzene	11	100	100	500	1000	ND	0.00382	J	ND		ND		ND		ND		ND		ND	
Toluene	0.7	100	100	500	1000	ND	ND		0.0109	J	ND		0.0333		0.0139		0.0174		0.0212	
Trichloroethylene (TCE)	0.47	10	21	200	400	ND	0.00374	JZ	0.315	Z	0.0992	Z	0.771	Z	0.398	Z	0.434 Z		0.7	Z
Semi-Volatile Organics								1				1 1				1				
1,1-Biphenyl						ND	ND		0.387		ND		ND		ND		0.234 J		ND	
2-Methylnapthalene						ND	ND		ND		ND		ND		ND		1.2		ND	
Acenaphthene	20	100	100	500	1000	ND	ND		0.599		ND		ND		ND		ND		ND	
Acenaphthylene	100	100	100	500	1000	ND	ND		ND		ND		ND		ND		2.09		ND	
Anthracene	100	100	100	500	1000	ND	ND		0.282	J	ND		ND		ND	1	1.6		ND	
Benzo(A)Anthracene	1	1	1	5.6	11	ND	ND		ND		ND		0.186	J	ND	1	1.54		ND	
Benzo(B)Fluoranthene	1	1	1	5.6	11	ND	ND		ND	1	ND		0.183	J	ND	t	0.699		ND	
Benzo(G,H,I)Pervlene	100	100	100	500	1000	ND	ND		ND	1	ND		0.171	J	ND	t	0.433		ND	
Benzo(K)Fluoranthene	0.8	1	3.9	56	110	ND	ND		ND		ND		ND		ND		0.907		ND	
Carbazole			015			ND	ND		ND		ND		ND		ND		0.499		ND	
Chrysene	1	1	3.9	56	110	ND	ND		ND		ND		0.196	J	ND		1.08		ND	
Dibenz(A.H)Anthracene	0.33	0.33	0.33	0.56	1.1	ND	ND		ND		ND		ND		ND		0.273 J		ND	
Dibenzofuran	7	14	59	350	1000	ND	ND		ND		ND		ND		ND		0.952		ND	
Fluoranthene	100	100	100	500	1000	ND	ND		ND		ND		0.291	J	ND		3.79		ND	
Fluorene	30	100	100	500	1000	ND	ND		1.24		ND		ND		ND		1.82		ND	
Indeno(1,2,3-cd)Pyrene	0.5	0.5	0.5	5.6	11	ND	ND		ND		ND		ND		ND		0.383		ND	
Naphthalene	12	100	100	500	1000	ND	ND		ND		ND 🥚		ND		ND		1.33		ND	
Phenanthrene	100	100	100	500	1000	ND	ND		3.23		ND		0.202	J	ND		5.26		ND	
Pyrene	100	100	100	500	1000	ND	ND		ND		ND	Y	0.252	J	ND		2.36		ND	
PCBs			•			•														
Not detected																				
Metals	•																			
Aluminum									6780.00		12400.00		4220				7620			
Antimony									ND		ND		3.23	J			ND			
Arsenic	13	16	16	16	16	4.77	2.46		7.67		7.82		11.4		9.52		8.07		19.2	
Barium	350	350	400	400	10000	46.0	15.2		38.8		104		110		77.0		43.4		163	
Beryllium	7.2	14	72	590	2700	0.55	0.161	J	0.687		0.606		0.596		0.439		0.42		0.474	
Cadmium	2.5	2.5	4.3	9.3	60	0.43	0.178	J	0.595		0.734		0.744		0.185	J	0.322		0.829	
Calcium									6260		4930		15800				22800			
Chromium	30	36	180	1500	6800	17.4	4.87		10.9		15.2		15.1		6.13		12.3		14.9	
Cobalt									7.00		6.11		6.14				7.35			
Copper	50	270	270	270	10000	23.7	9.6		28.2		19.8		47.3		17.6		17.7		52.6	
Iron									16200		17200		37800				16200			
Lead	63	400	400	1000	3900	9.49	4.99		10.8		21.1		82.7		11.0		21.9		259	
Magnesium									1280		1710		1420				1830			
Manganese	1600	2000	2000	10000	10000	263	126		513		1760		498	+	69.7	1	276		289	
Mercury	0.18	0.81	0.81	2.8	5.7	0.0102	0.008	J	0.0727		0.131		0.0874	+	0.0247	1	0.0618		0.148	
Nickel	30	140	310	310	10000	24.7	7.05	-	23.9	-	15.6	-	14.0		11.1		17.1		22.6	
Potassium			100	4 800	(000			-	1220	-	1230		347				842		_	
Selenium	3.9	36	180	1500	6800	3.3	1.08	-	3.27		3.86		6.06	+	3.54	<u> </u>	3.06		5.01	
Silver	2	36	180	1500	6800	ND	ND		ND		ND	-	ND	+	ND	1	ND		ND	
Sodium									ND	-	ND	- -	142	+		\vdash	108 J			
Thallium								-	ND		ND	-	ND	+		+	ND	+		
vanadium	100	2200	10000	10000	10000				17.1		23.8		12.1	$\left \right $	a 2.0	\vdash	17.5		272	
Zinc	109	2200	10000	10000	10000	61.3	21.7		31.9		94.6		m		23.9	1	52.4		213	

Notes:

All concentraiions in mg/kg

Analytical Data compared to Part 375 Standards and DER-10

 $ND\,$ - $\,$ The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

Z - See case narrative.

TABLE 3 - TEST PIT SAMPLING RESULTS100 DONA STREET

Field Sample ID			Restricted			TP-1		TP-2		TP-3		TP-5	TP-5		P-6 TP-7		-7 TP-8			TP-9			
Date Sampled	Unrestricted	Residential	Desidential	Commercial	Industrial	12/27/2016	5	12/27/2016		12/27/2016	5	12/27/2016	5	12/27/201	5	12/27/2016	5	12/27/2016		12/27/2016			
Sample Matrix	Use	Use	Kesiuentiai	Use	Use	SO		SO		SO		SO		SO		SO		SO		SO			
Units			Use			mg/kg		mg/kg		mg/kg		mg/kg	mg/kg			mg/kg		mg/kg		mg/kg			
Volatile Organics																							
Acetone	0.05	100	100	500	1000	ND		ND		ND		ND		ND		ND		ND		0.0505			
Isopropylbenzene						ND		ND		ND		ND		ND		ND		ND		0.0105			
Trichloroethylene (TCE)	0.47	10	21	200	400	ND		0.0142	Z	0.0175	Z	ND		0.0376	Z	0.0281	Z	0.0284	Z	ND			
Semi-Volatile Organics																							
1,1-Biphenyl						ND		ND		ND		ND		ND		ND		ND		0.703			
Acenaphthene	20	100	100	500	1000	ND		ND		ND		ND		ND		ND		ND		1.51			
Fluorene	30	100	100	500	1000	ND		ND		ND		ND		ND		ND		ND		2.77			
Phenanthrene	100	100	100	500	1000	ND		ND		ND		ND		ND		ND		ND		4.7			
Pyrene	100	100	100	500	1000	ND		ND		ND		ND		ND		ND		ND		0.416 J			
PCBs																							
Not detected																							
Metals																							
Aluminum												4060				5950		7160		5470			
Antimony												ND				ND		ND		ND			
Arsenic	13	16	16	16	16	1.70		2.87		1.43		1.93		3.73		3.98		4.25		5.91			
Barium	350	350	400	400	10000	23.6		20.3		15.0		22.0		27.8		25.3		31.5		37.8			
Beryllium	7.2	14	72	590	2700	0.164	J	0.198	J	0.147	J	0.237	J	0.417		0.283	J	0.302		0.697			
Cadmium	2.5	2.5	4.3	9.3	60	0.140	J	0.191 🔦	J	ND		0.182	J	0.209	J	0.161	J	0.272	J	0.42			
Calcium								7				74900				16200		44500		3960			
Chromium, Trivalent	30	36	180	1500	6800	5.39		6.84		5.09		7.07		12.9		8		9.54		9.38			
Cobalt												3.72				4.7		4.49		7.29			
Copper	50	270	270	270	10000	10.8		11.2		8.02		13.8		20.9		14.9		14.0		24.3			
Iron												7800				10500		11000		16100			
Lead	63	400	400	1000	3900	5.31	X	5.54		4.74		5.83		11.5		9.34		15.9		10.4			
Magnesium												12200				4410		7700		1540			
Manganese	1600	2000	2000	10000	10000	179		256		139	М	144		271		247		233		639			
Mercury	0.18	0.81	0.81	2.8	5.7	0.00451	J	0.00582	J	0.00488	J	0.0111		0.0108		0.0179		0.0449		0.0512			
Nickel	30	140	310	310	10000	9.44		8.58		6.74		11.9		24.1		12.3		12.3		21.1			
Potassium												1010				865		823		1160			
Selenium	3.9	36	180	1500	6800	1.65		1.01		0.575	D	1.41		0.972		ND		0.8		ND			
Silver	2	36	180	1500	6800	ND		ND		ND		ND		ND		ND		ND		ND			
Sodium												108	J			ND		108	J	ND			
Thallium												2.55				ND		1.25	J	ND			
Vanadium												11.3				15.1		15.9		15.0			
Zinc	109	2200	10000	10000	10000	33.5		34.3		46.6	D	40.1		45.6		39.0		52.5		40.9			

Notes:

All concentrtaions in mg/kg

Analytical Data compared to Part 375 Standards and DER-10

ND - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

M - Matrix spike recoveries outside QC limits. Matrix bias indicated.

Z - See case narrative.

TABLE 4 - GROUNDWATER SAMPLING RESULTS100 DONA STREET

Field Sample ID		GW-1		GW-2		GW-3		DUP		GW-4		GW-5		Trip Blank	
Date Sampled	NV TOCS	01/16/2017	7	01/16/2017	1	01/16/2017		01/16/2017		01/16/2017		02/23/2017		01/16/2017	
Sample Matrix	N1-1065	WG		WG		WG		WG		WG		WG		WG	
Units		ug/l		ug/l		ug/l		ug/l		ug/l		ug/l		ug/l	
Volatile Organics			-			T	1	T	1				1	1	
Acetone	50.0 ug/l	18.7		5.75	J	19.9		8.45	J	59.3		ND		9.43	J
Carbon disulfide		1.49	J	ND		ND		ND		ND		ND		ND	
Methylcyclohexane		ND		6.05		ND		ND		ND		ND		ND	
Semi-Volatile Org	anics	1	_	ī	-	-	1	T	1	-		-	-		
Dibenzofuran		ND		ND		ND		ND		ND		5.24			
Fluorene	50.0 ug/l	ND		ND		ND		ND		ND		9.37			
Phenanthrene	50.0 ug/l	ND		ND		ND		ND		ND		5.15			
PCBs															
Not detected															
TAL Metals (ICP))														
Aluminum	100.0 ug/l					37300		34700		206000		11300			
Antimony	3.0 ug/l					ND		ND		ND		ND			
Arsenic	25.0 ug/l					19.9		15.6		132		ND			
Barium	1000.0 ug/l					372		358		1440		199			
Beryllium	3.0 ug/l					ND		ND		9.22		ND			
Cadmium	5.0 ug/l					ND		ND		20.6		ND			
Calcium						431000		436000		6390000		284000			
Chromium, Total	50.0 ug/l					55.1		50.2		410		18.5			
Cobalt	0.0 TBE					ND		ND		165		ND			
Copper	200.0 ug/l					68.8		66.7		601		24.3	J		
fron	300.0 ug/l					44600		42700		364000		16300			
Lead	25.0 ug/l					29.5		28.6		228		17.1			
Magnesium	35000.0 ug/l					62300		62100		978000		343			
Manganese	300.0 ug/l					1000		1000		27600		997.0			Y
Mercury	0.7 ug/l	ND		ND		0.116	J	ND		2.31					
Nickel	100.0 ug/l					67.7		63.8		486		21.5	J		
Potassium						15400		15000		50900		4460			
Selenium	10.0 ug/l					ND		ND		82.9		ND			
Silver	50.0 ug/l					ND		ND		ND		ND			
Sodium	20000.0 ug/l					40400		41800	<u> </u>	12100		24600			
Thallium	0.5 ug/l					ND		ND		173		ND			
Vanadium	0.0 TBE	ļ	_		_	55.3		52.4	<u> </u>	413		16.9	<u> </u>		
Zinc	2000.0 ug/l					211		205		856	L	258.0			
Part 375 Metals (I	CP)														
Arsenic	25.0 ug/l	11.0		ND											
Barium	1000.0 ug/l	102		76.6	J										
Beryllium	3.0 ug/l	ND		ND											
Cadmium	5.0 ug/l	ND		ND											
Chromium, Total	50.0 ug/l	26.9		28.5											
Copper	200.0 ug/l	13.9	J	12.5	J										
Lead	25.0 ug/l	ND		ND											
Manganese	300.0 ug/l	333		323											
Nickel	100.0 ug/l	21.9	J	24.0	J										
Selenium	10.0 ug/l	10.2		11.9											
Silver	50.0 ug/l	ND		ND											
Zinc	2000.0 ug/l	ND		38.2	J		1		1				1		

Notes:

All concentrtaions in ug/l

Analytical Data compared to Part 375 Standards and DER-10

ND - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

CONVEXTING Base Action Project Name Q27.001 Froger Name Surface Elev: Concording Surface Elev: Concording Froger Name Depting Finish Date: 12201 Drilling Finis Date Date 12201 Drilling Finish Date: Date Total Sampler: Other While Drilling Finish Date: Date Sampler: Other Image: Concording Concord Concording Concording Concord Concording Concording Con	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630					neers, Inc. et York 14203 47-1630	E	BORING LOO	B	oring No. Sheet 1 of:	BH-1		
Project Name: 100 Don's Street Stratuse: Stratuse: Stratuse: Location: Location: Location: Start Date: 12201 Drilling Firm: Natures: Watures: Watures: </td <td>C</td> <td>OMP/</td> <td>٩N</td> <td></td> <td>x: 716-847- w.cscos.com</td> <td>-1454</td> <td></td> <td></td> <td></td> <td></td> <td>Pr</td> <td>oject No.:</td> <td>Q27.001.001</td>	C	OMP/	٩N		x: 716-847- w.cscos.com	-1454					Pr	oject No.:	Q27.001.001
Location: Ladowanna Datum: 12201 Diriting Firm: Ladowanna Sart Date: 12201 Driting Firm: Ladowanna Firnish Date: 12201 Officing Firm: Ladowanna Firnish Date: 12201 Officing Firm: Ladowanna Casing: Rock Core: Unified::: After Casing Removal: Sampler: Other: Context: Context: After Casing Removal: No. of blows to drive sampler 12" wh'40 lb. harmer falling 30" ASTM D-1586. Standard Penetration Test) Commethins: Commethins: (N = No. of blows to drive sampler 12" wh'40 lb. harmer falling 30" ASTM D-1586. Standard Penetration Test) Commethins: Commethins: Commethins: (N = No. of blows to drive sampler 12" wh'40 lb. harmer falling 30" ASTM D-1586. Standard Penetration Test) Commethins: Commethins: Commethins: (N = No. of blows to drive sampler 12" wh'40 lb. harmer falling 30" ASTM D-1586. Standard Penetration Test) Commethins:	Proje	ct Nam	e:	100 Dona S	treet						Surf	ace Elev.:	
Client: City of Lackawanna Start Date: 12201 Drilling Firs: Natures Way Finish Date: Finish Date: Finish Date: SRH Groundwater Depth Date & Time Drill Rig: Rock Core: Undist: Estimate Start Before Casing Removal: Sampler: Other: Other: Undist: Estimate Start (N - No. of blows to drive sampler 12" wi140 Ib. harmer: Imam: Sampler: Other: Commercian (N - No. of blows to drive sampler 12" wi140 Ib. harmer: Imam: Sampler: Commercian Commercian (N - No. of blows to drive sampler 12" wi140 Ib. harmer failing 30" ASTM D-1586, Standard Penetration Test) Commercian Commercian 1 0.4" Topsoil Sampler Commercian Commercian 1 0.4" Topsoil Sampler Commercian Commercian 2 0.4" Topsoil Sampler Commercian Commercian 3 0.42" Topsoil Sampler Commercian Commercian 3 0.42" Topsoil' fing grained sand	L	.ocatic	n:	Lackawanna	a, NY							Datum:	
Dritting Firm: Datures Depth Date & Time Drill Rg: Earth Probe 200 Inspector: SRH While Drilling: 0 Casing: 0 Rock Core: Undist: SRH Atter Casing Removal: Sampler: 0 Other:		Clie	nt:	City of Lack	awanna						S	Start Date:	12/20/16
Groundwater Depth Date & Time Drill Rig: Earth Probe 200 Imspector: SRH While Drilling: Casing: Casing: Cock Core: Undist: Indist: Indis: Ind	Drilli	ing Fir	m:	Natures Wa	y						Fii	nish Date:	
While Drilling: Casing: Rock Core: Undist: Before Casing Removal: Sampler: Othor: Othor: After Casing Removal: Othor: After Casing Removal: Hammer: Othor: Othor: Othor: Commercial Standard Penetration Test) Image: Standard Penetration Test Image: Standard Penetration Test Commercial Standard Penetration Test) Commercial Standard Penetration Test) Image: Standard Penetration Test S-Sand, S-Sand, S-Sand, C-Clay, cly-clayey Pinterstandard Standard Penetration Test) Commercial Standard Penetration Test Image: Standard Penetration Test S-Sand, S-Sand, S-Sand, C-Clay, cly-clayey PID Reading Standard Penetration Test Commercial Standard Penetration Test Image: Standard Penetration Test S-Sand, S-Sand, S-Sand, C-Clay, cly-clayey PID Reading Standard Penetration Test Commercial Standard Penetration Test Image: Standard Penetration Test S-Sand, S-Sand, S-Sand, S-Sand, S-Sand, S-Sand, S-Sand, S-Sand, C-Clay, cly-clayey PID Reading Standard Penetration Test Commercial Standard Penetration Test Image: Standard Penetration Test Sangle: PID Reading Standard Penetration Test Commercial Standard Penetration Test Commercial Standard Penetration Standard Penetration Standard Penetration Stan		Grou	ndv	vater	Depth	Date & Time	Drill Rig:	Earth Probe 200				nspector:	SRH
Before Casing Removal: Sampler: Other: After Casing Removal: N=Nc. of blows to drive sampler 12* wir40 is manner falling 30* ASTMD-1566, Standard Penetration Test) (N=Nc. of blows to drive sampler 12* wir40 is manner falling 30* ASTMD-1566, Standard Penetration Test) (N=Nc. of blows to drive sampler 12* wir40 is manner falling 30* ASTMD-1566, Standard Penetration Test) (N=Nc. of blows to drive sampler 12* wir40 is mained samd (N=Nc. of blows to drive sampler 12* wir40 is mained samd 1 (N=Nc. of around the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd (N=Nc. of the sampler 12* wir40 is mained samd with gravel fragments (N=Nc. of the sampler 12* wir40 is mained samd with gravel fragments (N=Nc. of the sampler 12* wir40 is mained sampler 12* w			Wh	ile Drillina:			Casing:		Roo	k Core:		Undist:	
Atter Casing Removal: Hammer: International control of the sampler 12" with 40 is. hammer failing 30" ASTM D-1586, Standard Penetration Test) Egg Egg<	Befo	ore Ca	sing	g Removal:			Sampler:		Other:				
Image: construction of the sampler 12" wi140 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS Eg g	Af	ter Ca	sind	, a Removal:			Hammer:						
E B Biows on Sampler Comment Intermedian MATERIAL DESCRIPTION S - Sand. S -				(N N	lo. of blov	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-158	36, Stand	ard Pene	tration Test)
E G B Constant P = 100 MATERIAL DESCRIPTION ************************************	ţ	0	_								05 500/		COMMENTS
Image: Picken Start Start 8:20 AM 1 0-4" Topsoil 0 End: 8:45 AM 2 39-40" Pragments of sheet reck 0 44" Recovery 3 44.2" Brown sifty sand 0 44" Recovery 3 42:44" Large rock chunk (limestone) 0 4 4 0-8" Brown sifty sand 0 4 5 8:42" Tan, fine grained sand with gravel fragments 0 42" Recovery 6 0-8" Brown sifty sand 0 42" Recovery 6 0-12" Dry and compacted 42" Recovery 7 1 1 1 8 0-12" Dry brown sand 0 9 12:13" Rock fragments 0 48" Recovery 10 16:30" Dry brown sand (with rock fragments 0 1 11 32:48" Brown sind (with acce filta moist 0 1 12 Compacted 1 1 1 <	Depth (f	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
1 0.4" Topsoil 0. End: 8:45 AM 2 39-40" Fragments of sheet rock 0 44" Recovery 3 40-42" Brown silty sand 0 44" Recovery 4 42-44" Large rock chunk (limestone) 0 44" Recovery 4 - - - - 4 - - - - 6 - - - - 7 - - - - 6 - - - - 7 - - - - - 8 - - - - - 9 12.13" Rock fragments 0 45" Recovery - 10 16-30" Dry brown sand (dry and compacted) 0 - - 11 - - - - - 10 16-30" Dry brown sand (dry and compacted) 0 - - 11 - - - - - 12 Eo										PID F	Reading	Start:	8:20 AM
2 4-30° Brown, dry line grained sand 0 3 30-40° Fragments of sheet rock 0 44° Recovery 3 40-42° Brown sity sand 0 0 4 1 0 1 1 4 1 0 1 1 4 0 1 1 1 5 8-42° Tan, fine grained sand with gravel fragments 0 1 6 1 1 1 1 1 7 1 1 1 1 1 8 0 1 1 1 1 9 12-13° Rock fragments 0 48° Recovery 10 16-30° Dry brown sand with rock fragments 0 1 10 16-30° Dry brown sand (dry and compacted) 0 1 11 32-48° Brown, fine grained sand with trace sit, moist 0 1 12 1 1 1 1	1	ļ			0-4"	<u>Topsoil</u>				0		End:	8:45 AM
2 33-40° Fragments of sheet rock 0 44° Recovery 3 42-42° Brown silty sand 0 0 4 1 1 1 1 5 Brown silty sand 0 1 1 6 1 1 1 1 7 8 1 1 1 1 6 1 1 1 1 1 7 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 8 12:13° Rock fragments 0 48° Recovery 1					4-39"	Brown, dry fine	grained sand			0			
3 40-42* brown sitty sand 0 4 42*44* Large rock chunk (limestone) 0 4 0-8* Brown silty sand 0 5 8-42* Tan, fine grained sand with gravel fragments 0 6 0 42* Recovery 42* Recovery 6 0 0 1 7 0 1 42* Recovery 8 0 1 1 9 12-13* Rock fragments 0 10 16-30* Dry brown sand with rock fragments 0 11 32-48* Brown file grained sand with trace sit, moist 0 11 32-24* Brown file grained sand with trace sit, moist 0 12 END OF BORING AT 12 FEET 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 1	2	ł			39-40"	Fragments of sh	eet rock			0		44" Recov	very
3 42-44* Large rock chunk (limestone) 0 4 0-6* Brown silty sand 0 5 8-42* Tan, fine grained sand with gravel fragments 0 6 Dry and compacted 42* Recovery 7 0 42* Recovery 8 0-12* Dry brown sand 0 9 12-13* Rock fragments 0 10 16-30* Dry brown sand with rock fragments 0 10 16-30* Dry brown sand with rock fragments 0 10 16-30* Dry, brown sand with rock fragments 0 11 32-48* Brown, fine grained sand with trace silt, moist 0 12 END OF BORING AT 12 FEET 1 13 1 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 1 19 1 1 1 1 19 1	_				40-42"	Brown silty sand	<u>1</u>			0			
4 0.8" Brown silty sand 0 5 8-42" Tan, fine grained sand with gravel fragments 0 6 0.12" Dry and compacted 42" Recovery 7 1 1 1 8 0 1 1 9 12-13" Rock tragments 0 9 12-13" Rock tragments 0 10 16-30" Dry, brown sand with rock fragments 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 12 END OF BORING AT 12 FEET 1 1 13 14 1 1 1 16 16 1 1 1 17 1 1 1 1 18 1 1 1 1 19 10 Samples: 1 1	3				42-44"	Large rock chun	<u>k (limestone)</u>			0			
0-8" Brown sitty sand 0 5 8-42" Tan, fine grained sand with gravel fragments 0 6 0 42" Recovery 6 0 42" Recovery 7 0 0 8 0 0 9 12-13" Rock fragments 0 10 16-30" Dry brown sand 0 11 32-48" Brown, sint dith rock fragments 0 11 32-48" Brown, fine grained sand with trace sitt, moist 0 12 0 16-30" Dry brown sand dity and compacted) 0 11 32-48" Brown, fine grained sand with trace sitt, moist 0 12 0 0 0 0 14 0 0 0 0 15 END OF BORING AT 12 FEET 0 0 16 0 0 0 0 17 0 0 0 0 18 0 0 0	4												
5 8-42" Ian, fine grained sand with gravel fragments 0 42" Recovery 6 42" Recovery 42" Recovery 7 4 42" Recovery 8 0 42" Recovery 9 0-12" Dry brown sand 0 9 12-13" Rock fragments 0 10 16-30" Dry brown sand with rock fragments 0 10 16-30" Dry brown sand with rock fragments 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 12 Compacted 1 13 END OF BORING AT 12 FEET 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 20 1 1 21 1 1	_				0-8"	Brown silty sand	1			0			
6 42" Recovery 7 42" Recovery 8 0 9 12-13" Bock tragments 0 10 16-30" Dry brown sand with rock tragments 0 10 16-30" Dry brown sand (dry and compacted) 0 11 32-38" Brown fine grained sand with trace silt, moist 0 12 Compacted 1 12 END OF BORING AT 12 FEET 1 13 Image: Second Seco	5	4	▎▎		8-42"	Tan, fine grained	d sand with grav	<u>rel fragments</u>		0			
0 - - - 7 - - - - 8 0 - - - - 9 12-13" Rock fragments 0 48" Recovery - - 10 16-30" Dry brown sand with rock fragments 0 - - - 10 16-30" Dry brown sand (dry and compacted) 0 - - - 11 32-48" Brown fine grained sand with trace silt, moist 0 - - - 12 - - - - - - - 12 -	c					Dry and compac	tea			-		42" Recov	ery
7	0												
1 0 0 9 12-13" Rock fragments 0 10 13-16" Dry brown sand with rock fragments 0 10 16-30" Dry, brown sand (dry and compacted) 0 11 32-48" Brown, fine grained sand with trace sit, moist 0 12	7		╎╎		-					-			
8 0-12" Dry brown sand 0 48" Recovery 9 12-13" Rock fragments 0 48" Recovery 10 13-16" Dry brown sand diry and compacted) 0 10 11 32-48" Brown, fine grained sand with trace silt, moist 0 10 11 32-48" Brown, fine grained sand with trace silt, moist 0 10 12	- /												
9 0-12" Dry brown sand 0 48" Recovery 10 12-13" Rock fragments 0 48" Recovery 10 13-16" Dry brown sand with rock tragments 0 48" Recovery 11 16-30" Dry, brown sand (dry and compacted) 0 0 11 30-32" Rock fragments 0 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 0 12	8												
9 12-13" Rock fragments 0 48" Recovery 10 13-16" Dry brown sand with rock fragments 0 0 10 16-30" Dry brown sand (dry and compacted) 0 0 11 30-32" Rock fragments 0 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 0 12 Compacted 0 0 0 13 END OF BORING AT 12 FEET 0 0 14 END OF BORING AT 12 FEET 0 0 14 0 0 0 0 14 0 0 0 0 15 0 0 0 0 16 0 0 0 0 17 0 0 0 0 18 0 0 0 0 19 0 0 0 0 10 0 0 0 0 11 0 0 0 0 10 0 0<	-				0-12"	Dry brown sand				0			
10 13-16° Dry brown sand with rock fragments 0 10 16-30° Dry, brown sand (dry and compacted) 0 11 30-32° Rock fragments 0 11 32-48° Brown, fine grained sand with trace silt, moist 0 12 Compacted 1 13 Compacted 1 14 END OF BORING AT 12 FEET 1 14 Image: Single singl	9				12-13"	Rock fragments				0		48" Recov	very
10 16-30" Dry, brown sand (dry and compacted) 0 11 30-32" Rock fragments 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 12		1			13-16"	Dry brown sand	with rock fragm	ents		0			
30-32" Rock fragments 0 11 32-48" Brown, fine grained sand with trace silt, moist 0 12	10				16-30"	Dry, brown sand	l (dry and compa	acted)		0			
11 32-48" Brown, fine grained sand with trace silt, moist 0 12 Compacted Image: compact of the second secon					30-32"	Rock fragments				0			
12 Compacted Image: Compact and the second	11				32-48"	Brown, fine grai	ned sand with tr	ace silt, moist		0			
Image: Image in the second system in the	12					<u>Compacted</u>							
14 14 14 14 15 15 16 1 16 1 1 1 17 1 1 1 18 1 1 1 19 1 1 1 20 1 1 1 11 1 1 1 12 1 1 1 13 1 1 1 14 1 1 1 18 1 1 1 19 1 1 1 19 1 1 1 10 1 1 1 11 1 1 1 11 1 1 1 12 1 1 1 19 1 1 1 10 1 1 1 11 1 1 1 12 1 1 1 13 1 1 1 <	13					END OF BORING	<u>AT 12 FEET</u>						
14 14 14 14 15 15 16 1 1 16 1 1 1 1 17 1 1 1 1 18 1 1 1 1 19 1 1 1 1 20 1 1 1 1	1 4	1											
15 16 17 17 17 10 18 11 11 19 11 11 20 11 11	14	1											
16	15												
17	16	ļ											
18 Image: Constraint of the second seco	17												
18 Image: Constraint of the second seco		1								1			
19 Samples: 20 — …	18									1		1	
19		1								1		Samples:	
	19												
]											
	20	ļ											
										-			
	21	ļ											
	22												
	_ 22	ł											
23	23									1			

	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454					E			B	oring No.	BH-2	
. .	<		ww	w.cscos.com						Pr	oject No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona S							Surt	ace Elev.:	
	.ocatio	11: at:	City of Look								Datum:	
וויים	Cilei ina Eir	п. т	Noturos Wo	awanna						5	vich Date.	
Driii	Grou	n. odv	Natures wa	y Donth	Data & Tima	Drill Pige	Farth Probe 200				nspoctor:	<u>срн</u>
	Grou	Wh	ile Drilling:	Deptil	Date & Time	Casing:	Latin Tobe 200	Por	k Core:		Undist:	51(11
Rofe	ore Ca	sind	n Romoval:			Sampler:		Othor	, k core.		unuisi.	
Δf	ter Ca	sind	Removal:			Hammer:		Ouler.				
		,	(N N	lo. of blow	s to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-158	6. Stand	ard Penet	tration Test)
÷												
Depth (f	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION el, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID F	leading	Start:	8:45 AM
1	1			0-2"	<u>Topsoil</u>				0		End:	9:15 AM
				2-30"	Dark brown dry	sand			0		1.41 5	
2				30-44"	<u>Dry, tan fine gra</u>	ined sand			0		44" Recov	ered
3												
-				0-14"	Dry, medium gra	ained brown san	<u>d</u>		0			
5					Some rust color	ed staining						
				14-36"	Tan, fine grained	<u>d sand</u>			0		45" Recov	rered
6	4			00.45"	SATURATED at	<u>6 FT</u>			0			
7				36-45	Tan, compacted,	, dry sand trace	<u>slit, with some</u>		0			
	1				TOCK Hagments							
8												
		[0-12"	Brown, fine grai	ned sand trace s	a <mark>ilt, moist</mark>		0			
9	ļ			12-45"	Grey sand trace	<u>silt, moist and c</u>	ompacted with		0			
					rock fragments						45" Recov	ered
10												
11												
12												
13					END OF BORING	<u>G AT 12 FEET</u>						
14												
15												
16	1											
- 10	1											
17												
	1											
18	ļ	[_			
											Samples:	
19	ł										BH-2	
20												
20	1										J.J. PAIVI	
21												
	1											
22	ļ	[
23												

COMPANIES Fa			S Ca 14 Bu Ph IES Fa	&S Engii 1 Elm Stree ffalo, New one: 716-84 x: 716-847-	neers, Inc. ^{et} York 14203 47-1630 1454	BORING LOG					oring No. heet 1 of:	BH-3
w				w.cscos.com						Pr	oject No.:	Q27.001.001
Proje		e: n·								Surface Elev.:		
Client: City of Lookowoppo										Datum. Start Data:		
Drill	na Fir	m. m.	Natures Wa	v						Finish Date:		
Dimi	Grou	ndv	vater	y Denth	Date & Time	Drill Ria [.]	Farth Probe 200			Inspector:		SRH
	orea	Wh	ile Drillina:	Deptil	Dute & Thile	Casing:		Roc	k Core:		Undist:	•••••
Befo	ore Cas	sinc	a Removal:			Sampler:		Other [.]			onulou	
Af	ter Cas	sing	, Removal:			Hammer:		•	<u> </u>			
	(N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586. Standard Penetration Test)											
												COMMENTS
Depth (1	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION rel, C - Clay, cly - clayey		s - some - I - little - t - trace	20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID R	eading	Start:	9:30 AM
1				0-14"	Dark brown, dry	sand			0		End:	9:50 AM
				14-40"	Tan, dry fine gra	ined sand			0		101 -	
2				40-42"	<u>Moist, brown/tan</u> <u>silt</u>	n medium graine	ed sand with trace		0		42" Recov	rered
3												
4				0.12"	Brown dry final	brown sand with	rock frogmonts		0			
5				13-15"	Tan, clavev silt	orown sand with	rioek naginents		0			
-					SATURATED AT	5.5 FEET	•		-		48" Recov	rered
6				15-48"	Moist, tan fine gi	rained sand with	n trace silt/clay		0			
	1				imbedded rock f	ragments						
7		[
8												
				0-18"	Slug (tan saturat	ted sand)			0			
9				18-20"	Rock Fragments		•		0			
				20-48"	Tan, dry medium	n grained sand v	vith trace silt		0		48" Recov	rered
10					with rock fragme	ents, very comp	acted					
4.4		╎╎										
12												
13					END OF BORING	<u>AT 12 FEET</u>						
14												
15												
16												
10	ł											
17												
<u> </u>	1										1	
18												
		[Samples:	
19												
20												
21												
1	ł											
22												
<u> </u>	1								1			
23												

			Ca 14 Bu Ph Fa	&S Engir 1 Elm Stree ffalo, New one: 716-84 x: 716-847- w.cscos.com	neers, Inc. et York 14203 47-1630 1454	BORING LOG					Boring No. Sheet 1 of: Project No.:	BH-4 Q27.001.001	
Projec	ct Nam	e:	100 Dona S	treet						Su	rface Elev.:		
Ĺ	ocatio	n:	Lackawanna	a, NY							Datum:		
	Clie	nt:	City of Lack	awanna							Start Date:		
Drilli	ng Fir	m:	Natures Wa	у						Finish Date:			
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	Earth Probe 200			Inspector:		SRH	
		Wh	ile Drilling:			Casing:		Roc	k Core:		Undist:		
Befo	ore Ca	sing	g Removal:			Sampler:		Other:					
Af	ter Ca	sing	g Removal:			Hammer:							
(N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test)													
Depth (ft)	Sample No.	Blows on Sampler per 6"			a - an MATERIAL DESCRIPTION S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey t - tra					35-50% 20-35% 10-20% - 0-10%	COMMENTS 35% (e.g., N-value, recovery, relative 20% moisture, core run, RQD, % 10% recovered)		
									PID F	Reading	Start:	9:55 AM	
1	l			0-6"	<u>Topsoil</u>				0		End:	10:15 AM	
				6-18"	Dark brown, dry	sand			0				
2				18-44"	<u>Tan, dry fine gra</u>	<u>ined sand</u>			0		44" Recove	red	
3													
-				0-24"	Moist, brown me	dium grained s	and_		0				
5				24-32"	Moist, brown cla	yey silt			0				
	1			32-33"	Moist, soft brow	n silt	•		0		40" Recove	red	
6				33-40"	" <u>Tan, fine grained sand</u> 0								
7													
8													
				0-24"	Moist, tan silty s		0						
9				04.40	SATURATED AT 9 FEET						40" D		
10		╎╎		24-40 40-41"	woist, tan tine grained sand						48 Recove	rea	
10				41-48"	Grev sand with I	arge fragments			0				
11				11 10	Cicy Sund Marrie				Ů				
40													
12						AT 12 FEET							
13											-		
14													
15													
15													
16													
17													
18													
19											Samples: B-4		
20											8-9 Feet 10:15 AM		
21													
22													
23													

COMPANIES Fa			S Ca 14 Bu Ph IES Fa	&S Engi 1 Elm Stree ffalo, New one: 716-8 x: 716-847-	neers, Inc. et York 14203 47-1630 -1454	BORING LOG				Boring No. Sheet 1 of:		BH-5
w				w.cscos.com						Project No.:		Q27.001.001
Proje		e: n·								Surface Elev.:		
Client: City of Lockeyroppe										Datum. Stort Doto:		
Drilli	ina Fir	т. m·	Natures Wa	v						Finish Date:		
	Grou	ndv	vator	Denth	Date & Time	Drill Ria:	Farth Probe 200			Inspector:		SRH
	Grou	Wh	ile Drillina:	Deptil	Date & Time	Casing:	200	Roc	k Core:		Undist.	ORT
Befo	ore Ca	sinc	a Removal:			Sampler:		Other [.]			enuiou	
Af	ter Ca	sind	n Removal:			Hammer:		ourer.				
(N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586. Standard Penetration Test)												
t)												
Depth (f	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID R	eading	Start:	10:30 AM
1	4			0-5"	Topsoil				0		End:	10:55 AM
_				5-18"	Dark brown sand	d with large grav	<u>/el chunk</u>		0		401 0	
2	-			18-46"	<u>Tan, dry fine gra</u> 24" tree root	ined sand			0		46" Recov	ery
3	1											
4				0.10"	Top dry find are	inod cond			0			
5				0-19 10-31"	Tan, dry line gra	ined sand			0			
				19-01	SATURATED at	9 FFFT			0		48" Recov	erv
6				31-48"	Moist, tan silty s	and			0		10 110001	
7												
8												
0				0-18"	Moist, tan silty s	and	•		0			
9		╎╎		22-36 Compacted silt sand with trace clay							36" Recov	vered
10				22 30	(some imbedded rock fragments)						50 11000	
					<u></u>		2					
11												
12												
13					END OF BORING	<u> AT 12 FEET</u>						
14												
15												
16												
		[
17	4											
40												
18	-										Samplas	
10											Samples:	
13	1											
20												
	1											
21												
]	[
22	ļ	[
23												
	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com					E		3		B S Pr	oring No. heet 1 of:	BH-6
------------	---	----------	-------------------------------	--------------------------------------	--------------------	------------------------------------	--	--------------------	--	---------------------------------------	-------------------------	---
Proje	ct Nan	<u>م</u>	100 Dona S	w.cscos.com treet						Surf	aca Flav :	Q27.001.001
110,0	ocatio	n:	Lackawanna	a. NY						Guin	Datum:	
	Clie	nt:	City of Lack	awanna						s	tart Date:	
Drilli	na Fir	m:	Natures Wa	V						Fir	nish Date:	
	Grou	ndv	vater	, Denth	Date & Time	Drill Ria:	Earth Probe 200				nspector:	SRH
	0.00	Wh	ile Drillina:	Dopar	Duto di Timo	Casing:		Roc	k Core:		Undist:	
Befo	ore Ca	sinc	a Removal:			Sampler:		Other [.]			onulou	
Af	ter Ca	sind	n Removal:			Hammer:		Calci.				
			(N N	lo. of blow	s to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-158	6, Standa	ard Pene	tration Test)
÷					•		0					
Depth (f	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID R	leading	Start:	4:05 PM
1	l			0-8"	Loose asphalt/G	<u>ravel</u>			0		End:	4:37 PM
_				8-24"	Dark brown, dry	sand with brick	/concrete fragments		0		10" -	
2	ł			24-48"	Tan, dry fine gra	ined sand			0		48" Recov	rery
3												
4												
	1			0-6"	Slug				0			
5				6-45"	Tan, dry fine gra	ined sand			0			
		[45-48"	Moist, tan silty s	and_			0		48" Recov	rery
6												
7												
•		╎╎										
8		╎╎		0.4"	Ton dry cond wi		fundamento		0		1	
٩				0-4 4-38"	Wet fret silty sa	til sinali gravel			0 33			
3		╎╎		4-30	SATURATED at				5.5		38" Recov	rered
10					PETROLEUM OL	DOR						0100
	1											
11												
12												
13				0-26"	Saturated, grey	<u>silty sand</u> DOR			4.8			
	1			26-40"	Moist, compacte	d silty sand trac	e clay		2.5		40" Recov	rery
14		ļĺ			PETROLEUM OL	DOR						
		[
15	l											
40												
16	ł					AT 16 5 FEFT					Pofunal at	16 5 foot
17					END OF BURING	AI 10.3 FEEL					rteiusai at	10.0 1661
18				<u> </u>								
	1										Samples:	
19											BH-6	
	1	ļļ									11-12 Fee	t
20		[4:25 PM	
		[
21	l											
22												
22												
<u>∠</u> ې									1		I	

	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1630 Fax: 716-847-1454 www.cscos.com			neers, Inc. et York 14203 47-1630 1454	E		G		B	oring No. heet 1 of:	BH-7	
			ww	w.cscos.com	1404					Pr	oject No.:	Q27.001.001
Proje	ct Nam	ie:	100 Dona S	treet						Surf	ace Elev.:	
	ocatio	n:	Lackawanna	a, NY							Datum:	
D=:11	Cilei	nt: m:	City of Lack	awanna						5	tart Date:	
Driili		m: adv	Natures wa	y Domáh	Data & Tima		Forth Brobo 200			-11	iisn Date:	CDU
	Grou	nav Wb	vater ilo Drillingu	Deptn	Date & Time	Drill Rig:	Earth Probe 200	Por	k Coro	1	nspector:	экп
Bofr	ore Ca	sinc	n Removal:			Sampler:		Othor:			unuisi.	
Δf	ter Ca	sing	n Removal:			Hammer:		ouler.				
		, nig	(N N	lo. of blow	s to drive sampler	12" w/140 lb. ha	mmer falling 30" ASTI	M D-158	6. Stand	ard Pene	tration Test)
÷	0	_	, ,		•		0			05 500/		COMMENTS
Depth (f	Sample No.	Symbo	Sampler per 6"	c - coarse m - mediun f - fine	n S - Sand	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	1	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID F	Reading	Start:	3:30 PM
1	l			0-6"	Loose asphalt, g	iravel			0		End:	3:55 PM
				6-18"	Dark brown, dry	sand			0		401 5	in word
2				18-36"	Ian, compacted	<u>clayey silt</u>			0		48" Recov	rered
2				38-48"	ROCK tragments	~			0			
3				30-40	Dark brown sand	<u></u>			0			
4												
_				0-2"	<u>Tan clayey silt</u>				21			
5		╎╎		2-30"	Grey sand with k	black staining			75		40" De eeu	in un al
6				30-42"	<u>PETROLEUM OL</u>	<u>JUR</u> with trace clav a	nd rock fragments		15		42" Recov	rerea
0				30-42" Grey silty sand with trace clay and rock fragments PETROL FUM ODOR					15			
7												
8												
_				0-28"	Wet silty sand w	<u>ith trace clay</u>			1.1			
9					PETROLEUM OL	DOR					40" Dooo	up rod
10				28-48"	Grev silty sand v	<u>o ieel</u>	ocks		1.6		40 RECOV	ereu
				20 10	PETROLEUM OL	DOR			1.0			
11												
12					END OF BORING	AT 12 FEET						
13												
14												
15												
16												
	1										1	
17												
		[
18	l											
40		╎╎									Samples:	
19											BH-/	
20											3:40 PM	
<u> </u>	1			<u> </u>					1			
21											1	
		[
22		[
23												

	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1630 Fax: 716-847-1454 www.cscos.com					E		3		B S Pr	oring No. heet 1 of:	BH-8
Proje	ct Nan	<u>م</u> ،	100 Dona S	w.cscos.com treet						Surf	aca Flav :	Q27.001.001
L	ocatio	no:	Lackawanna	a. NY						Curr	Datum:	
	Clie	nt:	City of Lack	awanna						s	tart Date:	
Drilli	na Fir	m:	Natures Wa	v						Fir	nish Date:	
2	Grou	ndv	vater	, Denth	Date & Time	Drill Ria [.]	Farth Probe 200				nspector:	SRH
	0.00	Wh	ile Drillina:	Dopui	Date a fille	Casing:		Roc	k Core:		Undist:	
Befo	ore Ca	sind	a Removal:			Sampler:		Other [.]			onulou	
Af	ter Ca	sind	, Removal:			Hammer:		e alleri				
			(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-158	6, Standa	ard Penet	tration Test)
ŝ					•		0					
Depth (f	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION rel, C - Clay, cly - clayey		a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moistur	alue, recovery, relative e, core run, RQD, % recovered)
									PID R	leading	Start:	2:40 PM
1	ł			0-5"	Asphalt and grav	<u>vel</u>			0		End:	3:15PM
2				5-12"	Dark brown, dry,	<u>sand</u>			0		20" Door	varad
2	ł			12-30"	<u>Tan, moist, fines</u>	<u>sano</u> rso fill with valle	w brick from ante		0		38 Recov	erea
з				30-30	Dark brown, coa	ist silty sand	ow brick inaginents		0			
				50 50	Dark brown, mor	st, snty sand			0			
4												
	ł –			0-6"	Slug				0			
5				6-9"	Dark brown, moi	ist, silty sand			0			
	1	11		9-24"	Tan, moist, fine	sand with grave	l fragments		0		40" Recov	rered
6				24-40"	Tan, dryer, com	pacted silty sand	d, with large		0			
					rock fragments							
7							<u> </u>					
8												
0				0-9"	Loose, wet to sa	turated, silty sa	nd. Saturated at 8 ft.		0			
9				9-39	<u>ran to gravish ta</u>	an at 24 , moist,	very compacted sitt	Ľ	0		20" Pocov	vorod
10					sand with imped	ded TOCK hagin					39 Kecov	ereu
	1											
11												
12		[
				0-12"	Slug - loose, wet	t to saturated, si	ity sand		0			
13				12-38"	Moist, very com	pacted silty san	d with imbedded		0			
4.4					rock fragments						38" Recov	rered
14	ł											
15												
	ł				END OF BORING	AT 15 FEET					Refusal at	15 feet
16												
	1											
17		[
		[
18		[
											Samples:	
19	ł										BH-8	
20											2-4 Feet	
20	ł										2.45 PM	
21												
22												
-	1											
23												

C	ЭМР		S Ca 14 Bu Ph Fa	&S Engli 1 Elm Stree ffalo, New one: 716-84 x: 716-847-	neers, Inc. st York 14203 47-1630 1454	E	BORING LOC	G		B S Pr	oring No. heet 1 of:	BH-9
Projo	ot Nan	10 ·	100 Dona S	w.cscos.com						Pr	oject No.:	Q27.001.001
Fioje	ocatic	n. n.	Lackawanna							Suria	Datum:	
	Clie	nt:	City of Lack	awanna						s	tart Date:	
Drilli	ing Fir	m:	Natures Wa	y						Fir	nish Date:	
	Grou	ndv	vater	, Depth	Date & Time	Drill Rig:	Earth Probe 200			1	nspector:	SRH
		Wh	ile Drilling:			Casing:		Roc	k Core:		Undist:	
Befo	ore Ca	sing	g Removal:			Sampler:		Other:				
Af	ter Ca	sing	g Removal:			Hammer:						
			(N N	lo. of blow	s to drive sampler	[.] 12" w/140 lb. ha	mmer falling 30" AST	M D-158	6, Stand	ard Penet	tration Test)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION rel, C - Clay, cly - clayey		a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
				0.5"						Reading	Start:	2:00 PM
1	ł			U-5" 5_10"	Asphalt and rock	<u>k tragments</u>	ith vallow brick		0			
2				9-19	fragments	Uaise salla W			0		39" Recov	rered
Ľ	ł			19-39"	Brown, moist. fil	ne sand			0			
3				'							1	
	1											
4	ļ											
_				0-6"	<u>Slug</u>				0			
5	-			6-30"	Tan, moist, silty	sand with trace	<u>Clay</u> with imboddod		0		40" Booo	varad
6				30-40	rock fragments	acted sinty sand			0		40 Recov	erea
	1				<u>rook nuginento</u>							
7							7					
0	ł			0-24"	Moist. heavily co	ompacted, silty	sand with		0			
9					imbedded grave	1			-			
	1										24" Recov	rered
10	ļ											
11	ł											
12												
	ſ				END OF BORING	<u>G AT 12 FEET</u>						
13												
14	ł											
15												
G	ł											
16												
l –	1											
17	ļ											
10												
18	ł										Samplas	
19											BH-9	
	1										1.5-2.5 Fe	et
20											2:10 PM	
	1											
21	ļ											
22	ł											
23												
20	1	1									1	

	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com				neers, Inc. et York 14203 47-1630 :1454	E		G			Boring No. Sheet 1 of:	BH-10
	51VII	/ (ww	w.cscos.com						P	Project No.:	Q27.001.001
Proje	ct Nai	me:	100 Dona S	treet						Sui	rface Elev.:	
L	.ocati	on:	Lackawanna	a, NY							Datum:	
	Clie	ent:	City of Lack	awanna							Start Date:	
Drilli	ing Fi	rm:	Natures Wa	у						F	inish Date:	
	Grou	und	water	Depth	Date & Time	Drill Rig:	Earth Probe 200				Inspector:	SRH
		W	hile Drilling:			Casing:		Roc	k Core:		Undist:	
Befo	ore Ca	asin	g Removal:			Sampler:		Other:				
Af	ter Ca	asin	g Removal:			Hammer:						
			(N I	No. of blow	ws to drive sample	r 12" w/140 lb. ha	ammer falling 30" AST	M D-158	6, Stanc	lard Pene	etration Test)	
Depth (ft)	Sample No.	Svmbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moisture	COMMENTS Ilue, recovery, relative e, core run, RQD, % recovered)
				0.0"					PID F	Reading	Start:	11:10 AM
1	ł			0-2"	Topsoil		· ·		0		End:	11:52 AM
				2-30"	Dark brown, dry,	sand with bric	k and concrete		U		40" D -	ne d
2	ł			20.00"	Tragments	nd with we at f			0		40" Recove	red
2				30-38"	very ary, silty sa	u <u>na with rock fra</u> nd	agments		0			
3	ł			30-4U ^{°°}	<u>ran, ary, fine sa</u>				U			
л											-	
-4	ł			0-2"	Slua				0			
5				2-33"	Tan dry fine gra	ained sand			0			
				33-36"	Tan sand with tr	ace clav			0		36" Recove	red
6				00 00	<u>run ounu man a</u>				0			
7												
	1											
8												
				0-5"	<u>Tan, dry, fine sa</u>	<u>nd</u>			0			
9	-			5-1"	Dark brown, coa	rse sand	turner eilt en d		0		40" Decesso	no d
10				7-41	imbedded rock f	ragments			0		40 RECOVE	ieu
	1			41-48"	Grev. drv. siltv s	and with reddis	h hue imbedded		0			
11					gravel							
12												
				0-15"	Tan, dry, fine sa	nd			0			
13	ļ			15-27 ["]	Silty sand with s	ome clay			0			
			L	27-29"	Rock fragments				0		43" Recove	red
14	ļ			29-41"	Grey, silty sand	with dry, trace o	<u>clay</u>		0			
				41-43"	Shale fragments				0			
15	ł											
16												
	İ			0-18"	Shale fragments				0		18" Recove	red
17												
]											
18	ļ				END OF BORING	3 17.5 FEET					Refusal at 2	17.5 feet
											Samples:	
19	ļ										BH-10	
											1-2 Feet	
20	ł										11:15 AM	
24												
21	ł											
22												
	ł											
23												

	C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com				neers, Inc. et York 14203 47-1630 :1454	E		3		E	Boring No. Sheet 1 of:	BH-11
			ww	w.cscos.com						Pi	oject No.:	Q27.001.001
Proje	ct Nan	ie:	100 Dona S	treet						Surf	face Elev.:	
L	ocatio	n:	Lackawanna	a, NY							Datum:	
	Clie	nt:	City of Lack	awanna						9	Start Date:	
Drilli	ing Fir	m:	Natures Wa	у						Fi	nish Date:	
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	Earth Probe 200				Inspector:	SRH
		Wh	ile Drilling:			Casing:		Roc	k Core:		Undist:	
Befo	ore Ca	sinę	g Removal:			Sampler:		Other:				
Af	ter Ca	sinę	g Removal:			Hammer:						
			(N N	lo. of blov	vs to drive sample	[.] 12" w/140 lb. ha	mmer falling 30" ASTI	M D-158	6, Stand	ard Pene	tration Test)	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION rel, C - Clay, cly - clayey		a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-va moisture	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
				0.7"					PID R	leading	Start:	12:40 PM
1				0-7"	<u>Topsoil</u>				0		End:	1:00 PM
2				7-15"	Fill - dark, coars	e sand with bric	K and concrete		0		20" Dooou	arad
				15-20"	Brown dry san	d with brick			0		So Recove	ereu
3				20-38"	Tan. drv. fine sa	nd			0			
					<u> </u>				•			
4												
				0-5"	<u>Slug</u>				0			
5				5-18"	<u>Tan, fine sand, v</u>	vet at 18" or app	proximately 5.5 feet		0			
				18-34"	Tan, sand with s	ome clay, moist	<u>t</u>		0		48" Recove	ered
6				34-40"	Tan, silty sand				0			
7				40-48"	Grey, silty sand	with trace clay,	compacted		0			
/												
8				0.12"	brown silty son	d with trace cla	moist		0			
9				12-15"	Rock fragments				0			
	1			15-33"	Grey, compacted	d silty sand with	imbedded rock		0		33" Recove	ered
10					fragments							
11												
12												
					END OF BORING	<u>AT 12 FEET</u>						
13	ļ											
14												
	1											
15												
16												
17												
17	1											
18												
											Samples:	
19	ļ										BH-11	
20											1-2 Feet	
20	1										12.30 PM	
21												
	1			1								
22												
23												

COMPARINE Project Name: O27:001.001 Project Name: Correction: Laddworms, NY Datum: Control: Laddworms, NY Datum: Thinks Date: Control: Laddworms, NY Datum: Finish Date: Control: Laddworms, NY Datum: Finish Date: Control: Laddworms Dapth Date 6. Time Dotting: Groundwater Dapth Date 6. Time Dotting: Image: Dotting: Groundwater Dapth Date 6. Time Dotting: Image: Dotting: SRH Before Casing flowrowit: Note: Name: Tains: Name: Tains: Dotting: Toting: Not:: Not:: Sampler: Not:: Dotting: Toting: Toting: <th></th> <th colspan="4">C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com</th> <th>neers, Inc. et York 14203 47-1630</th> <th>E</th> <th>BORING LOO</th> <th>G</th> <th></th> <th>B</th> <th>oring No. heet 1 of:</th> <th>BH-12</th>		C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com				neers, Inc. et York 14203 47-1630	E	BORING LOO	G		B	oring No. heet 1 of:	BH-12
Project Name: 100 Dona Steet Surface Elev: Datum: Constitut: Constitut: Start Datu: Finish Patu: Finish Datu: Finish Datu: F		JMP	AN		x: 716-847- w.cscos.com	1454					Pr	oject No.:	Q27.001.001
Location: Lockwarms, NY Date: Office: (b) of Lackwarms Start Date: Groundwater: Depth Date & Time Priviles [Enth: Probe 200 inspector; SRH Before Casing Removal: Sampler: Other: Control (Control (Con	Proje	ct Nan	ie:	100 Dona S	treet						Surf	ace Elev.:	
Dimm City of Laskawama Start Date Drilling Film. Matters Way Finish Date Finish Date Groundwates Date & Time Drill Rig: Each Probe 200 Inspector: SRH Born Casing Removat: Asampler: Other: Undist: Inspector: SRH Attract Casing Removat: N - No. of blows to drive sampler 12: w140 is homer faling 30: ASIMD 1:586, Standard Periettalion Test) Comment: Comment: Comment: Inspector: Inspector: Inspector: Inspector: Second 2000 Second 2000 Inspector: Second 2000 Inspector: Inspector: Second 2000 Inspector:	Ĺ	.ocatic	on:	Lackawanna	a, NY							Datum:	
Drilling Firm: Deput: Deput: Prior Groundwater Deput: Casing: Rock Core: Under: White Drilling: Sampler: Ack Core: Under: Casing: After Casing Removat: Nammor: Other: Other: Casing: Control: E B E B Sampler: Other: Casing: Control: Control: Records Removat: Name: Sampler: Matten Casing Removat: Control: Contro: Contro: Contro:		Clie	nt:	City of Lack	awanna						s	tart Date:	
Groundwater Depth Date & Time Drill Rig: Earth Probe 200 Inspector SRH Before Casing Removat: Sampler: Other: Undist: Undist: Inspector SRH Atter Casing Removat: N – No. of blows to drive sampler 12: w140 b. hommer failing 30: ASTM D-1586, Standard Penetration Test) Collments (e.g., Navalie:, ecore run, ROL, Naveered) (e.g., Navalie:, ecore run, ROL, Naveered) 1 0	Drilli	ina Fir	m:	, Natures Wa	v						Fir	nish Date:	
Open Control Open Control Control Control Rock Core: Infinition Before Casing Removat: Image:		Grou	ndv	vater	, Denth	Date & Time	Drill Ria [.]	Earth Probe 200				nspector:	SRH
Before Casing Removal: Disk of the sampler: Other: Other: Other: Other: Other: Other: Other: Commentation Comment		0.00	Wh	ile Drillina:	Depair	Dute a Time	Casing:	20.0.1.1.1.0000 200	Roc	k Core:		Undist:	0
Device obsing Removal: Hammer: Units: Units: Units: After Casing Removal: Marman: Marman: Units: Second Seco	Bofe	oro Ca	sind	ne Drinnig. n Pomoval:			Sampler:		Othori	<u>k 00/0.</u>		unuist.	
Alter Cashry Hendroxa Imainter	Derc		51110	y Removal.			Jammer:		Other:				
Bit of the standard of	AI	ter Ca	sing	g Removal:	la of blou	ia ta drivia complar	Hammer:	mmar falling 20" A CT		C Ctand	ard Dana	ration Toot	λ
E g Blows on second per 6* Control second secon	-			(11 11)		is to unive sampler	12 W/140 ID. Ha	miner failing 50 AST	WD-150	o, Stanu	alu Felle		
PID Reading Start: 1:00 PM 0 6-16" Deak brown, dry, sity sand 0 Ext.: 1:00 PM 2 16-22" Fill dark brown, dry, file sand 0 40" Recovered 3 36-40" Gray, dry, fine sand 0 4 4 - - - - 5 Stag 0 - - 4 - - - - - 5 Stag 0 - - - 6 28-39" Gray, silty sand, cmpacted, with imbedded rock 0 - - 7 - - - - - - - 8 -	Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION rel, C - Clay, cly - clayey	,	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	alue, recovery, relative e, core run, RQD, % recovered)
1 0.6" Togodi 0 End: 1.45PM 2 5.16" Dark brown, dry, silty sand 0 40" Recovered 3 18-22" Fill - dark sand with brick and concrete fragments 0 40" Recovered 3 38-40" Grey, dry, file sand 0 1 4 1 1 1 1 5 5.24" Grey, moist, silty sand with trace clay 0 3 6 22-36" Grey, silty sand, cmpacted, with imbedded tock 0 30" Recovered 7 1 1 1 1 1 8 0.15" Grey, moist, silty sand 0 1 1 9 15-17" Dark brown, dry, medium crain sand with rock imbedded 0 40" Recovered 11 1 1 1 1 1 1 12 1 1 1 1 1 1 14 1 1 1 1 1 1 15										PID F	Reading	Start:	1:00 PM
2 5-18* Deck brown, dry, file sand 0 40* Recovered 3 36-40* Grey, dry, fine sand 0 1 4 1 1 1 1 4 0 1 1 1 5 Slug 0 1 1 5 Slug 0 1 1 6 5-24* Grey, moist, silty sand with trace clay 0 39* Recovered 6 24-28* Rock fragments 0 39* Recovered 1 7 1 1 1 1 1 1 8 0 15* Grey, moist, silty sand 0 10* Grey, dry, compacted silty sand with rock 0 1 9 15* Grey, moist, silty sand 0 40* Recovered 1 1 10 15* Grey, dry, compacted silty sand with rock imbedded 1 1 1 11 1 1 1 1 1 1 12 0 15* Grey, dry, compacted silty s	1	ļ			0-5"	<u>Topsoil</u>				0		End:	1:45PM
2 18-22' Fill-dark sand with brick and concrete fragments 0 40' Recovered 3 36-40' Grey, dry, time sand 0 1 4 0 1 1 5 5-24' Grey, moist, silty sand with trace clay 0 1 6 22-39' Reck fragments 0 39' Recovered 7 22-39' Reck fragments 0 39' Recovered 8 0 1 1 7 1 1 1 8 0 15' Grey, moist, silty sand, empacted, with imbedded tock 0 9 15-17' Dark brown, dry, medium grain sand with rock 0 40' Recovered 11 1 1 1 1 12 1 1 1 1 13 15-17' Dark brown, dry, medium grain sand with rock imbedded 0 40' Recovered 14 1 1 1 1 12 1 1 1 1 14 1 1 1 1 14					5-18"	Dark brown, dry,	<u>silty sand</u>			0			
1 12:36° Dark brown, dry, line sand 0 3 38:40° Grey, rdy, line sand 0 4 0-5° Slug 0 5 524° Seck rangents 0 6 28:39° Grey, moist, silty sand, with trace clay 0 7 24:28° Rock fragments 0 39° Recovered 7 1 1 1 1 8 1 1 1 1 9 16:17° Grey, moist, silty sand 0 1 10 16:17° Grey, moist, silty sand 0 1 11 1 1 1 1 1 12 1 1 1 1 1 13 31:48° Grey, dry, compacted silty sand saturated at 13 feet 0 1 14 1 1 1 1 1 14 1 1 1 1 1 15 1 Grey, dry, compacted silty s	2	ļ			18-22"	Fill - dark sand v	vith brick and co	oncrete fragments		0		40" Recov	rered
3 38-40° Grey, dry, fine sand 0 4 0-5° Silar 0 6 5-24° Grey, moist, silty sand with trace clay 0 6 24-28° Bock fragments 0 39' Recovered 7 24-28° Bock fragments 0 39' Recovered 7 128-39° Grey, moist, silty sand, cmpacted, with imbedded rock 0 10 8 0 1 1 1 1 8 0-15° Grey, moist, silty sand 0 40° Recovered 10 16-17° Dark brown, dry, medium drain sand with rock imbedded 0 40° Recovered 11 11 1 1 1 1 1 12 0-31° Grey, dry, compacted silty sand, saturated at 13 feet 0 40° Recovered 13 31-48° Grey, dry, compacted silty sand, saturated at 13 feet 0 46° Recovered 14 1 1 1 1 1 1 16 1 1 1 1 1 1 1 16 1					22-36"	Dark brown, dry,	fine sand			0			
4 -	3				36-40"	Grey, dry, fine sa	and			0			
4 0-5" Slug 0 5 6 24-28" Reck fragments 0 39" Recovered 6 28-39" Grey, moist, silty sand, empacted, with imbedded rock. 0 39" Recovered 7 7 7 7 7 7 8 0 15" Grey, moist, silty sand, empacted, with imbedded rock. 0 10 9 0-15" Grey, moist, silty sand, empacted with rock 0 40" Recovered 10 15-17" Dark brown, dry, medium grain sand with rock imbedded 0 40" Recovered 11 11 11 11 11 11 12 0-31" Grey, dry, compacted silty sand, saturated at 13 feet 0 40" Recovered 13 31-48" Grey, dry, compacted silty sand, saturated at 13 feet 0 44" Recovered 14 14 14 14 14 14 16 16 11 14 14 14 16 16 16 14 14 14 17 18 19 14 14 14 14 <													
5 0.5' Slag 0 5 5.4' Grey, moist, silty sand with imbedded tock 0 6 28-39 Grey, silty sand, cmpacted, with imbedded tock 0 7 1 1 1 8 1 1 1 9 15-1' Grey, moist, silty sand 0 1 9 15-1' Grey, moist, silty sand 0 1 10 15-1' Grey, moist, silty sand 0 1 11 1 1 1 1 1 10 17-40' Grey, dry, compacted silty sand with rock imbedded 1 1 11 1 1 1 1 1 1 12 0-31' Grey, wet to moist, medium grain sand 0 1 1 13 31-48' Grey, wet to moist, medium grain sand 0 1 1 14 1 1 1 1 1 1 1 14 1 1	4												
5 5-24* Grey, moist, silty sand, cmpacted, with imbedded took 0 6 28-39* Grey, moist, silty sand, cmpacted, with imbedded took 0 7	_				0-5"	Slug				0			
6 24-28 Kock tragments 0 39 Recovered 7 1 1 1 1 1 8 0 1 1 1 1 9 15-17 Dark brown, drv, medium orain sand with rock 0 1 1 10 17-40° Grey, drv, compacted silty sand with rock imbedded 0 4 1 11 1 1 1 1 1 1 1 12 0-31° Grey, wet to moist, medium grain sand 0 0 1	5				5-24"	Grey, moist, silty	/ sand with trace	<u>e clay</u>		0			
6 28-39* Grey, sitty sand, cmpacted, with imbedded rock 0 7 1 1 1 8 0-15* Grey, moist, sitty sand 0 9 15-17* Dark brown, dry, medium grain sand with rock 0 10 17-40* Grey, we compacted sitty sand with rock imbedded 0 11 11 11 12 11 12 1 12 11 12 13 31-48* Grey, we to moist, medium grain sand 0 13 14 14 48* Recovered 14 14 14 14 14 15 14 14 14 16 16 1 14 17 1 14 14 18 19 18 18 11 19 19 12 11 11 19 19 11 11 11 19 19 11 11 11 19 19 11 11 11 19 11					24-28"	Rock fragments				0		39" Recov	rered
7	6				28-39"	Grey, silty sand,	cmpacted, with	imbedded rock		0			
7	_					fragments							
8 0-15" Grey, moist, silty sand 0 9 15-17" Dark brown, dry, medium grain sand with rock 0 40" Recovered 10 17-40" Grey, dry, compacted silty sand with rock imbedded 0 40" Recovered 11 11 11 11 11 11 12 11 11 11 11 11 12 11 11 11 11 11 12 11 11 11 11 11 11 12 11 11 11 11 11 11 11 12 11	7												
9 0-15' Grey, moist, silty sand 0 10 15-17' Dark brown, dry, medium grain sand with rock 0 10 17-40'' Grey, dry, compacted silty sand with rock imbedded 0 11	8												
9 15-17" Dark brown, drv. medium grain sand with rock 0 10 17-40" Grey, drv, compacted silty sand with rock imbedded 0 40" Recovered 11 17-40" Grey, drv, compacted silty sand with rock imbedded 1 1 11 1 1 1 1 1 12 1 1 1 1 1 13 31-48" Grey, wet to moist, medium grain sand 0 1 14 1 1 1 1 1 14 1 1 14 14 14 14 15 1 1 14 <		1			0-15"	Grey, moist, silty	/ sand			0		1	
Image: fragments 0 40° Recovered 10 17-40° Grey, dry, compacted silty sand with rock imbedded Image: fragments Image: fragments 11 Image: fragments Image: fragments Image: fragments Image: fragments 11 Image: fragments Image: fragments Image: fragments Image: fragments 11 Image: fragments Image: fragments Image: fragments Image: fragments 11 Image: fragments Image: fragments Image: fragments Image: fragments 12 Image: fragments Image: fragments Image: fragments Image: fragments 12 Image: fragments Image: fragments Image: fragments Image: fragments 13 31-48° Grey, wet to moist, medium grain sand 0 Image: fragments 14 Image: fragments Image: fragments Image: fragments Image: fragments 14 Image: fragments Image: fragments Image: fragments Image: fragments 14 Image: fragments Image: fragments Image: fragments Image: fragments	9				15-17"	Dark brown, dry,	medium grain :	sand with rock		0			
10 17-40" Grey, dry, compacted silty sand with rock imbedded						fragments				0		40" Recov	rered
11	10				17-40"	Grey, dry, comp	acted silty sand	with rock imbedded					
11													
12	11												
12 0-31" Grey, wet to moist, medium grain sand 0 13 31-48" Grey, dry, compacted sity sand, saturated at 13 feet 0 14 48" Recovered 48" Recovered 14 END OF BORING AT 14 FEET Refusal at 14 feet 15 9 9 9 16 9 9 9 17 9 9 9 18 9 9 9 19 9 9 9 20 1:10 PM 9 21 9 9 9 22 9 9 9 23 9 9 9													
13 0-31" Grey, wet to moist, medium grain sand 0 14 31-48" Grey, dry, compacted silty sand, saturated at 13 feet 0 14 48" Recovered 48" Recovered 15 Image: Second sec	12	ļ											
13 31-48" Grey, dry, compacted silty sand, saturated at 13 feet 0 14 48" Recovered 14 END OF BORING AT 14 FEET Refusal at 14 feet 15 Image: Compacted silty sand, saturated at 13 feet Image: Compacted silty sand, saturated at 13 feet Image: Compacted silty sand, saturated at 13 feet 16 END OF BORING AT 14 FEET Refusal at 14 feet 15 Image: Compacted silty sand, saturated at 13 feet Image: Compacted silty sand, saturated at 13 feet 16 END OF BORING AT 14 FEET Refusal at 14 feet 16 Image: Compacted silty sand, saturated at 13 feet Image: Compacted silty sand, saturated at 13 feet 16 END OF BORING AT 14 FEET Refusal at 14 feet 16 Image: Compacted silty sand, saturated at 13 feet Image: Compacted silty saturated at 14 feet 16 Image: Compacted silty saturated at 14 feet Image: Compacted silty saturated at 14 feet 17 Image: Compacted silty saturated at 14 feet Image: Compacted silty saturated at 14 feet 18 Image: Compacted silty saturated saturat					0-31"	Grey, wet to moi	<u>st, medium grai</u>	<u>n sand</u>		0			
14 48" Recovered 14 6 15 8efusal at 14 feet 16 9 16 9 17 9 18 9 19 9 20 110 PM 21 9 22 9 23 9	13	ļ			31-48"	Grey, dry, comp	acted silty sand.	saturated at 13 feet		0			
14 END OF BORING AT 14 FEET Refusal at 14 feet 15												48" Recov	vered
15 END OF BORING AT 14 FEET Refusal at 14 feet 15 Image: Control of the second	14	ł										D.(4451
15 -	45					END OF BORING	<u>; AT 14 FEET</u>					Refusal at	14 feet
16	15	ł											
10 10 11 17 11 11 18 11 11 19 11 11 19 11 11 20 11 11 21 11 11 22 11 11 23 11 11	10												
17 17 17 17 18 1 1 19 1 1 20 1 1 21 1 1 22 1 1 23 1 1	10	ł											
18 18 10 10 19 10 10 10 20 20 2-3 Feet 21 10 1:10 PM 22 10 10 23 10 10	17												
18 Image: Samples: 19 Image: Samples: 19 Image: Samples: 20 Image: Samples: 20 Image: Samples: 21 Image: Samples: 22 Image: Samples: 23 Image: Samples:		ł											
10 Samples: 19 BH-12 20 2-3 Feet 21 1:10 PM 22 20 21 2-3 Feet 22 20 23 20	1.2												
19 BH-12 20 2-3 Feet 21 1:10 PM 22 1 23 1	- 10	ł										Samples:	
20 2-3 Feet 21 1:10 PM 22 1 23 1	19											BH-12	
20 1:10 PM 21 1:10 PM 22 1 23 1	- 10	1										2-3 Feet	
21	20											1:10 PM	
21		1											
22 23 23	21												
22	· ·	1											
23	22												
23		1										1	
	23												

С	Syra Phor NIES Fax: www.	S Engineers, Col. Eileen Collin cuse, New York he: 315-455-2000 315-455-9667 cscos.com	, Inc. s Blvd. 13212		GENER	BORING AL INFOR	LOG MATION	& KEY	
			Casi	ng, Sampling	g and Other Eq	uipment			
H.S.A:	Hollow Stem	Auger (reco	rd I.D.)				Rock C	Cores	
S.S.A:	Solid Stem A	Auger (record	O.D.)			Standard	I.D.	Wire Line I.D.	
Steel:	Hollow Steel	Flush Joint (Casing (record	led I.D.)		EW / EX	1-13/32"		
Open:	Open Hole /	No Casing (r	ecord I.D.)			AW / AX	1-25/32"	AQ 1-1/8"	
S.S.:	Split Spoon	(record I.D.)				BW / BX	2-7/32"	BQ 1-1/2"	
Hammer:	Auto - Auton	natic, Manual	- Manual (rop	e & cat-head)	NW / NX	2-27/32"	NQ 1-31/32"	
Undist:	Tube - Shelk	oy, Oste - Ost	eberg (record	I.D. & length) 	HW / HX	2-25/32"	HQ 2-5/8"	
			3	Abbroviation	na & Abbreviat	ions Color			
				ADDIEVIALION	15	<u>Color</u> br brown			
Split S	poon			ight of Rode	& Hammer	rd - red			
Sam	ple		N - Standard	Penetration -	Tost N-valuo	ar - aray			
			NWE - No.	Nater Encou	ntered	arn - areen			
		Rock Core	do - ditto (sar	ne as above)		blk - black			
			Rec - Recove	erv		wht - white			
Undist	urbed		RQD - Rock (Quality Desig	nation				
Sam	iple		PP - Pocket F	Penetrometer					
ш			Tor - Torvane)					
Description of Soil Density									
Relative Soil Density determined while advancing the soil boring by using ASTM Method D-1586, Standard Penetration Test N-Value. The N-Val calculated by adding the hammer blow counts of the 2nd and 3rd sampling intervals together for driving a 2" O.D. sampler with a 140 lb. hammer fallin OR by obtaining Pocket Penetrometer or Torvane Readings.							<i>iest N-Value</i> .The N-Value is h a 140 lb. hammer falling 30"		
				.3	Fir	o Grained Soil	6		
Creator the	se Grained S	50IIS			Undrained She	Shear Strength (q _u)			
than No. 200) Sieve (sand	nd and gravel)		nei	ondianica one	$tof or kg/om^2$	$k N l/m^2$	Relative Density	
N-Value	Relative	Density	- 2		< 375		KIN/III < 20	Very Soft	
< 4	Verv	oose	2 to 4	25-5	375 - 750	0 20 - 0 40	20 - 40	Soft	
4 to 10	Lo	ose	5 to 8	5-10	750 - 1,500	0.40 - 0.75	40 - 75	Firm -or- Medium Stiff	
11 to 30	Medium	n Dense	9 to 15	10 - 20	1.500 - 3.000	0.75 - 1.50	75 - 150	Stiff	
31 to 50	De	nse	16 to 30	20 - 40	3,000 - 6,000	1.50 - 3.00	150 - 300	Very Stiff	
> 50	Very I	Dense	> 30	> 40	> 6,000	> 3	> 3,000	Hard	
				Descripti	on of Soil Type)			
Material	Grain Size	Material	Grain Size	Material	Grain Size	Material	Grain Size		
Boulder	> 8"	Gra	avel	9	Sand	Silt & Clay	< #200		
Cobble	8" - 3"	Course	3" - 1-1/2"	Course	#4 - #10	Note: # indicate	s U.S. Standa	ard Sieve	
		Medium	1-1/2" - 3/4"	Medium	#10 - #40	with size	shown.		
		Fine	3/4" - #4	Fine	#40 - #200				
		Bec	Rock Classi	fication Terr	ns & Field Test	/ Field Observa	ation		
le	rm	I	-ield lest/Fi	eld Observa	tion	Rock Ma	iss Classifica	tion based on RQD	
	- f4	Hai	raness	had by Finan	na all	RQ	D	ROCK Mass Quality	
Madiur		- Contraction Contraction	Jan be Scratc	hed by Finge	mali or Noil	< 20	% 50%	very poor	
Mediur		Eas	ultly Scratched	d by Pen Knile	or Nail	25% -	30% 75%	poor	
Verv	Hard	Canno	at be Scratche	d by Pen Kni	ife or Nail	75% -	90%	nood	
Very	Tiaru	Wea	thering	a by ren kin		90% - 1	00%	excellent	
Verv We	Very Weathered Based or			a amounto	f disintegration	0070	0070	CXCONON!	
Weat	Weathered iron sta			ery, clav sear	ms, amount of	_	Σ of pie	ces ≥ 4"	
Sou	Sound			nin joints, etc	.)	RQD =	total lend	th of run	
	Beddir	ng (Natural B	reaks in Roc	k Layers)		1		,	
Lami	Laminated			inch		ASTM Metho	od D-6032. St	andard Test Method for	
		1 inch to 4 inches				AS I WI WEINOD D-6032, Standard Te			
Thinly I	Bedded		1 inch t	o 4 inches		Determining R	ock Quality D	esignation (RQD) of Rock	
Thinly E Bed	Bedded		1 inch t 4 inches	o 4 inches to 12 inches		Determining R	ock Quality D Core	esignation (RQD) of Rock es	
Thinly E Bed Thickly	Bedded Bedded		1 inch t 4 inches 12 inches	o 4 inches to 12 inches to 36 inches		Determining R	ock Quality D Core	esignation (RQD) of Rock es	

APPENDIX B

Test Pit Logs

			C8	S Engineers, Inc. Elm Street falo New York, 14203	тга	דום די	Test	Pit No.	TP-1
		1	Pho	one: 716-847-1630	IES		s	heet 1 of:	
C	OMP/	٩N	IES Fax	:: 716-847-1454 v cscos com			Pr	oject No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona S	treet			s	tart Date:	
Ĺ	ocatio	n:	Lackawanna	a, NY	Operator:		Fir	ish Date:	
	Clie	nt:	City of Lack	awanna	Equipment:			nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium <u>M</u> f - fine S - Sand	IATERIAL DESCRI d, \$ - Silt, G - Gravel,	a - and - 3 s - some - 2 PTION I - little - 1 t - trace - C - Clay, cly - clayey	5-50% 0-35% 0-20% 0-10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-1'	<u>Dark brown, dry, sand</u>			0 ppm	Start:	9:45 AM
								End:	10:00 AM
1									
2			2-6'	<u>Tan, dry, medium graineo</u>	l sand with slate fr	<u>ags</u>	0 ppm		
3									
1									
-			6-8'	Moist, brown sand			0 ppm		
5							• pp		
6									
7									
8					<u> </u>				
a				END OF TEST PIT AT 8 F	EFT				
10					\mathbf{Y}				
11									
12	•								
13									
14									
15						I			
						9:50 AM			

			C 14 Bu	&S Engineers, Inc. I1 Elm Street uffalo, New York 14203	TES	ΓΡΙΤ	Test	Pit No.	TP-2
		ļ	Pr	none: 716-847-1630			S	heet 1 of:	
	JIVIPF		IES Fa	IX: 710-847-1434 W.cscos.com			Pr	oject No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona \$	Street			S	tart Date:	
L	ocatio.	n:	Lackawanr	na, NY	Operator:		Fin	ish Date:	
	Clier	nt:	City of Lac	kawanna	Equipment:		l.	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium f - fine S - Sanc	TERIAL DESCRIP d, \$ - Silt, G - Gravel,	a - and - 35 s - some - 20 I - little - 10 t - trace - 0 C - Clay, cly - clayey	5-50%)-35%)-20%)-10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-1'	Dark brown, dry, sand			0 ppm	Start:	10:06 AM
								End:	10:24 AM
1									
			1-4'	Tan, dry, medium grained	l sand		0 ppm		
2									
3									
4									
			4-8.5'	Tan, dry, medum grained	sand with gravel r	ocks, moist, large	0 ppm		
5				rocks and slate fragments	<u>5</u>				
6									
-									
/									
8					— \ \ \ \	· · · · · · · · · · · · · · · · · · ·			
0					FEFT				
9				END OF TEST FIT AT 6.5					
10									
10									
11									
12									
13									
14									
15									

ſ	ß		C 14 Bu	&S Engineers, Inc. 11 Elm Street uffalo, New York, 14203	TEST		Test	Pit No.	TP-3
		I,	Pr	none: 716-847-1630	IE2		S	heet 1 of:	
C	DMPA		IES Fa	x: 716-847-1454 w.cscos.com			Pre	oject No.:	Q27.001.001
Proje	t Nam	e:	100 Dona	Street			s	tart Date:	
Ĺ	ocatio	n:	Lackawanr	na, NY	Operator:		Fin	ish Date:	
	Clier	nt:	City of Lac	kawanna	Equipment:		l	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium f - fine S - Sand	TERIAL DESCRIP1 d, \$ - Silt, G - Gravel,	a - and - 3 s - some - 2 ION I - little - 1 t - trace - C - Clay, cly - clayey	5-50% 0-35% 0-20% 0-10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-2'	Topsoil (dark brown, dry,	<u>sand)</u>		0 ppm	Start:	10:35 AM
								End:	10:53 AM
1									
2									
			2-3'	Tan, dry, fine sand			0 ppm		
3									
			3-7'	Brown and tan, moist, sa	nd with slate fragm	ents	0 ppm		
4				A large rock was located	at approximately 5	<u>feet</u>			
5									
6									
7									
			7-8'	Brown, moist, silty sand	with slate fragment	ts	0 ppm		
8									
				END OF TEST PIT AT 8 FI	<u>EET</u>				
9									
10									
11									
10									
12									
12									
13									
14									
15									
				<u> </u>				ļ	
]	— I			

ſ		ł	C 14 Bu	&S Engineers, Inc. I1 Elm Street uffalo, New York 14203	TES	ΓΡΙΤ	Test	Pit No.	TP-4
C			Pł	none: 716-847-1630			S	heet 1 of:	
	JIVIPF		IIES Fa	IX: 710-847-1434 W.cscos.com			Pr	oject No.:	Q27.001.001
Projec	ct Nam	e:	100 Dona	Street			S	tart Date:	
L	ocatio	n:	Lackawanr	na, NY	Operator:		Fin	ish Date:	
	Clier	nt:	City of Lac	kawanna	Equipment:		l.	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium <u>MA</u> f - fine S - Sand	TERIAL DESCRIPT d, \$ - Silt, G - Gravel,	a - and - 38 s - some - 20 I - little - 10 t - trace - 0 C - Clay, cly - clayey	5-50%)-35%)-20%)-10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-1'	Topsoil (dark brown, dry,	<u>sand)</u>		0 ppm	Start:	11:15 AM
								End:	11:33 AM
1									
			1-4'	Tan, dry, fine grained san	d with rock fragme	<u>ents</u>	0 ppm		
2									
3									
4			4.01						
_			4-9	Brown, moist, silty sand v	with rock fragment	<u>s, large rocks</u>	0 ppm		
5				<u>within soli</u>					
6									
0									
7									
8									
<u> </u>				END OF TEST PIT AT 9 F	EET				
9									
10									
11					•				
12									
13									
14									
16									
15									

	B		C8	Left Street	тго		Test	Pit No.	TP-5
			Pho	one: 716-847-1630	IES		S	heet 1 of:	
C	DMPA	NIE	ES Fax	(: 716-847-1454			Pr	piect No.:	Q27.001.001
Proie	ct Nam	e: 10	00 Dona S	treet			s	tart Date:	
L	ocatio	n: La	ackawann	a. NY	Operator:		Fin	ish Date:	
	Clier	t: C	itv of Lack	awanna	Equipment:			nspector:	
\sim	0					a - and - 3	5-50%		COMMENTS
Depth (ft	Sample No.	Symbol	Exc. Depth	c - coarse m - medium f - fine S - Sanc	TERIAL DESCRIP d, \$ - Silt, G - Gravel,	s - some - 2 rion 1 - little - 1 C - Clay, cly - clayey	0-35% 0-20% 0-10%	(e.g., excava	caving of sidewalls, ition difficulties, PID readings)
		0-	-0.5'	<u>Topsoil</u>				Start:	2:15 PM
		0.	5-3'	Dark brown, drv. sand			0 ppm		
1		-					• pp		
<u> </u>									
2									
<u> </u>									
3									
Ť		3-	-5'	Tan, dry, fine sand with s	late fragments		maa 0		
4		_	-				- 11		
5									
		5-	-9'	Brown, moist, silty sand w	with rock fragment	<u>s</u>			
6		_		<u>WATER AT 7 FEET</u>					
7		_			•				
-									
8									
9									
				END OF TEST PIT AT 9 F	ET				
10									
11					•				
10									
12									
13									
14									
15									
	I			1				1	
		<u>ତ ତ ତ ତ</u>	<u>₩-1/BH-1</u> <u>₩-2</u> <u>₩-3</u> <u>₩-5</u>	<u>8-13 ft</u> <u>7-12 ft</u> <u>7-12 ft</u> <u>9-14 ft screen</u>					

ſ					S Engineers, Inc. Elm Street alo, New York 14203	TES		Test	Pit No.	TP-6
		1		Pho	ne: 716-847-1630	163		S	heet 1 of:	
	JMP	٩N	IIE2	Fax	: 716-847-1454 .cscos.com			Pre	oject No.:	Q27.001.001
Proje	ct Nan	e:	100 Don	na St	reet			S	tart Date:	
L	ocatic	n:	Lackawa	anna	i, NY	Operator:		Fin	nish Date:	
	Clie	nt:	City of L	.acka	awanna	Equipment:		l	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depti	h	c - coarse m - medium f - fine S - Sand	TERIAL DESCRIP d, \$ - Silt, G - Gravel,	a - and - s - some - I - little - t - trace C - Clay, cly - claye	35-50% 20-35% 10-20% • 0-10% /	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-0.5	5'	<u>Topsoil</u>			0 ppm	Start:	11:56 AM
4			0.5-3	5'	<u>Dark brown, dry, sand</u>			0 ppm		
1										
2										
3										
4			3-6'		<u>Tan, dry, fine grained san</u>	<u>nd</u>		0 ppm		
5										
5										
6			6-8'		Grey, dry, fine grained sa	nd 🔹		0 ppm		
7						0				
8										
9										
10										
11										
12										
12										
13										
14										
15										

ſ	B			C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203	TES	гыт	Test	Pit No.	TP-7
		1		Phone: 716-847-1630	IES		S	heet 1 of:	
	JIVIPA		IE2	-ax: 716-847-1454 www.cscos.com			Pr	oject No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona	a Street			S	tart Date:	
Ĺ	ocatio	n:	Lackawa	nna, NY	Operator:		Fin	ish Date:	
	Clier	nt:	Citv of La	ickawanna	Equipment:		1	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium f - fine S - Sanc	TERIAL DESCRIPT d, \$-Silt, G-Gravel,	a - and - 38 s - some - 20 I - little - 10 t - trace - 0 C - Clay, cly - clayey	5-50% 0-35% 0-20% 0-10%	(e.g., excava	COMMENTS caving of sidewalls, ttion difficulties, PID readings)
			0-0.5'	Topsoil			0 ppm	Start:	12:24 PM
								End:	12:40 PM
			0.5-2'	Dark brown, dry, sand wit	th some brick fragr	nents	0 ppm		
1									
2									
			2-7'	Tan, dry, fine sand with re	ock fragments		0 ppm		
3				Large rock with 1.5 ft diar	neter located in thi	s layer			
4									
5									
6									
7									
			7-8'	Grev. moist. fine sand wit	th large rocks	\mathbf{V}	maa 0		
8									
-				END OF TEST PIT AT 8 F	EET				
9									
10									
11					•				
12									
13									
14									
15						I			
						—	Samples		
							TP-7 1-2 Feet		

			C 14 B	&S Engineers, Inc. 41 Elm Street uffalo, New York 14203	TES	ΓΡΙΤ	Test	Pit No.	TP-8
		J	PI	hone: 716-847-1630			S	heet 1 of:	
	JIVIPA			ax: 710-847-1454 ww.cscos.com			Pre	oject No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona	Street			S	tart Date:	
L	ocatio.	n:	Lackawan	na, NY	Operator:		Fin	ish Date:	
	Clier	nt:	City of Lac	ckawanna	Equipment:		l.	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium f - fine S - Sanc	TERIAL DESCRIPT d, \$ - Silt, G - Gravel,	a - and - 3 s - some - 2 I - little - 1 t - trace - C - Clay, cly - clayey	5-50% 0-35% 0-20% 0-10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-1'	Dark brown, dry, sand			0 ppm	Start:	12:55 PM
1									
			1-3'	Tan, dry, fine sand with ro	ock fragments		0 ppm		
2									
3									
			3-8'	Brown, sand with slate fra	agments		0 ppm		
4				Large boulder with 2 ft dia	amter located in th	<u>is layer</u>			
5									
6									
-									
1									
_									
8									
0				END OF TEST PIT AT 8 FE	<u>=E1</u>				
9									
10									
10									
11									
12									
13									
14									
15									
]								

			C 8	S Engineers, Inc.			Test	Pit No.	TP-9
			But Ph	ffalo, New York 14203 one: 716-847-1630	TES	ΓΡΙΤ	s	heet 1 of:	
C	DMP/	١N	IES Fax	x: 716-847-1454			Pr	piect No.:	Q27.001.001
Proje	ct Nam	e:	100 Dona S	Street			S	tart Date:	
Ĺ	ocatio	n:	Lackawann	a, NY	Operator:		Fin	ish Date:	
	Clier	nt:	City of Lack	awanna	Equipment:		l	nspector:	
Depth (ft)	Sample No.	Symbol	Exc. Depth	c - coarse m - medium MA f - fine S - Sand	TERIAL DESCRIP	a - and - 35- s - some - 20- l - little - 10- t - trace - 0- C - Clay, cly - clayey	50% 35% 20% 10%	(e.g., excava	COMMENTS caving of sidewalls, ation difficulties, PID readings)
			0-6"	Asphalt			0 ppm	Start:	1:40 PM
								End:	2:05 PM
			6"-6'	Dark brown, dry, sand wit	th rocks and slate	fragments	0 ppm		
1			6"-10'	Grey stained (black), sand	d and silt		5 ppm		
				PETROLEUM ODOR					
2				Water at 7 ft					
_				<u>Staining at 6-10 ft</u>					
3									
4									
5									
6									
7					•				
-						\mathbf{V}			
8									
-									
9									
10									
				END OF TEST PIT AT 10 P	EET				
11					•				
12									
13									
11									
15									
							Samples: TP-9 6-7 Feet		

APPENDIX C

Groundwater Well Sampling Field Data

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

1 .

Well Sampling Field Data Sheet

WELL DATA

Date		11617				
Well Number		Gw-T				
Diameter (inches)	the state of the	211				
Total Sounded Depth (feet)		12.5				
Static Water Level (feet)		6.2				
H ₂ O Column (feet)						
Pump Intake (feet)						
Well Volume (gallons)		1071				
Amount to Evacuate (gallons)		3,2				
Amount Evacuated (gallons)	Sector States					

		1	FIEL	D READIN	IGS	· .			
Date	Stabilization	1167	_	-					
Time	Criteria	9:56	10:07	10:15					
pH (Std. Units)	+/-0.1	7.6	7.1	8.3					
Conductivity (mS/cm)	3%	.481	QNI	COLR					•
Turbidity (NTU)	10%	16761	53	1.0					
D.O. (mg/L)	10%	8.20	9.6	9.0					
Temperature (°C) (°F)	3%	6.4	YOC	8.70					
ORP ³ (mV)	+/-10 mv	257.0	157.	140					
Appearance			Ċ	le le					
Free Product (Yes/No)		No		(
Odor		1b					,		
Comments		<u> </u>	1.5 gas	3				· · · · · ·	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Temperature (°C) (°F)

Free Product (Yes/No)

ORP³(mV)

Odor

Appearance

Comments

3%

+/-10 mv

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field **Data Sheet**

		_						
Well Casing Unit Vo (gal/l.f.) 1¼" = 0.08 2" = 0.17	<u>lume</u> 3" = 0.38		Client Name: Site Name: Project No.:		Doni	L	 	
4" = 0.66 6" = 1.5	8" = 2.6	J	Field Staff:	-00			 	
			v	ELL DAT	4			
Date		V1/1						
Weil Number		Chi-2						
Diameter (inches)	PORTS AND IN	2						
Total Sounded Depth (feet)		13						
Static Water Level (feet)		38						
H ₂ O Column (feet)		9.2						
Pump Intake (feet)								
Well Volume (gallons)		1.510					ţ.	
Amount to Evacuate (gallons)		4.0					1.1	
Amount Evacuated (gallons)		Egu						1 . L.
- 1 - 1	• • • • • • • • • • • • • • • • • • • •		·				1	
		1						
		and the second se	FIEL	D READIN	IGS		\$	a and a second
Date	Stabilization							
Time	Criteria	11:54	11:58	1202				
pH (Std. Units)	+/-0.1	7.29	7.2	8.1				
Conductivity (mS/cm)	3%	0.67	003	20.02	i.			
Turbidity (NTU)	10%	718	3.2	3.0				
D.O. (mg/L)	10%	1735	1.949	94.1%	L			

203

V

 \mathcal{O}

0.

r

3 gal

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

T

2063 195 1ittle twp C

Nī

CAS Engineers, II 141 Elm Street Su Buffalo, New York Phone: 716-847-11 www.cscos.com	nc. lite 100 (14203 630	Wel	l Sampling Data Sheet	Field		. ', <i>1</i> 9	
Well Casing Unit Volum (gal/l.f.) 1¼" = 0.08 2" = 0.17 3" = 4" = 0.66 6" = 1.5 8" =	<u>e</u> = 0.38 = 2.6	Client Name Site Name: Project No.: Field Staff:	po Don SRH		9	•	· · · · · · · · · · · · · · · · · · ·
0 * 5		v	VELL DATA				
Date	a states						
Well Number	<u> </u>	N-3					
Diameter (inches)	یا ا	<u>) </u>					
Total Sounded Depth (feet)	8	14					
	1	1.3					
Static Water Level (feet)							
Static Water Level (feet) H ₂ O Column (feet)	5	51					
Static Water Level (feet) H ₂ O Column (feet) Pump Intake (feet)	<u>ک</u> لا						
Static Water Level (feet) H ₂ O Column (feet) Pump Intake (feet) Well Volume (gallons)	<u>5</u>	aul					
Static Water Level (feet) H ₂ O Column (feet) Pump Intake (feet) Well Volume (gallons) Amount to Evacuate (gallons)		gul gul					

FIELD	READ	NGS
-------	------	-----

Date	Stabilization								
Time	Criteria	1:05	112	XV	, i i i i i i i i i i i i i i i i i i i				
pH (Std. Units)	+/-0.1	733	7.5						
Conductivity (mS/cm)	3%	0:877	089						
Turbidity (NTU)	10%	103	262						
D.O. (mg/L)	10%	94.5	80%			đ)			
Temperature (°C) (°F)	3%	11.3	111			đ			
ORP ³ (mV)	+/-10 mv	-26.5	-14					¢.	
Appearance		T	ST		v				
Free Product (Yes/No)		N	N						
Odor		N	N						
Comments		2 gal	4 opu		· .		۴.	9	

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field Data Sheet

Well	Well Casing Unit Volume							
(gal/l.f.)								
1¼" = 0.08	2" = 0.17	3" = 0.38						
4" = 0.66	6" = 1.5	8" = 2.6						

Client Name		
Site Name:	100 max	
Project No.:		0
Field Staff:	8128	

WELL DATA

Date					
	-	_	 		
Well Number	Gaw-4				
Diameter (inches)	1 12				
Total Sounded Depth (feet)	12.2				
Static Water Level (feet)	3.4				
H ₂ O Column (feet)	8.8				
Pump Intake (feet)	1 - 9				
Well Volume (gallons)	1.5				
Amount to Evacuate (gallons)	45				
Amount Evacuated (gallons)					

FIELD READINGS

Date	Stabilization						
Time	Criteria	1:46	2'.00	14:05			
pH (Std. Units)	+/-0.1	7.54	7.26	1-29			
Conductivity (mS/cm)	3%	0.63	0.531	0.521			
Turbidity (NTU)	10%	42	1300	217			
D.O. (mg/L)	10%	28.3%	60.06	57010			
Temperature (°C) (°F)	3%	10.1	9.9	11.2			
ORP³(mV)	+/-10 mv	1-17.9	109.2	156			
Appearance		Ţ.	Ť	\top			
Free Product (Yes/No)		2	P	Σ			
Odor		Ĩ	N	N			
Comments		\Diamond	2.1	Gall			
		V	2 90/	Sycy	,		
			V	•			1

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume (gal/l.f.) 1¼" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field **Data Sheet**

Client Name:	City	of la	Renve	nnes	5.
Site Name:	assil!	Dona	Street		
Project No.:	Q27	0			
Field Staff:	SRU				

WELL DATA

Date	2 23 17					
Well Number	GW-5					
Diameter (inches)	2"					
Total Sounded Depth (feet)	12.3+1	t.				
Static Water Level (feet)	7.7.4					
H ₂ O Column (feet)	4.64					
Pump Intake (feet)						
Well-Volume (gallons)	0.782					
Amount to Evacuate (gallons)	2.5	X		×		
Amount Evacuated (gallons)	2.5					

			FIEI		NGS			¥	
Date	Stabilization	223	223	213					2
Time	Criteria								
pH (Std. Units)	+/-0.1	7.11	7.3	7.01					
Conductivity (mS/cm)	3%	0.00	10.001	MAR BC	.99				
Turbidity (NTU)	10%	B.	94	45.	'				
D.O. (mg/L)	10%	1/01.12	1.28	NAMA	L				
Temperature (°C) (°F)	3%	12.8	13.2	10.6	•				
ORP ³ (mV)	+/-10 mv	120	187	8					
Appearance		ST	TO	Ċ					
Free Product (Yes/No)		NO	No						
Odor		No	NU -						
Comments .	5	0.5gc	1.5 Gal	2.5 gal		. • *			
	C = Clear T =	Turbid ST	= Semi Tu	rbid VT = V	Very Turbid	Can	1.	Lalons	
	,					Sar	ypu		the second
						0	it	9:50	5

	_	C&S Engineers, Inc.	GF	ROUND	WATE	२		Well No.	GW-1
		Syracuse, New York 13212	OBS	SERVATION WELL				•	
COMPAN	IES	Phone: 315-455-2000 Fax: 315-455-9667	CON	et DI LO		00	Р	roject No.:	
		www.cscos.com	CON	31KUU		.06	Sur	face Elev.:	
Project Name:	Dona S	treet						Datum:	GROUND SURFACE
Location:	Lackaw	anna, NY						Start Date:	
Client:	National	- \\/		D-///	Dala Craws	-	F	inish Date:	0011
Drilling Firm:	Natures	s way		Driller:	Dale Gramza	a		Inspector:	
		NA Top Protective Cas	ing	Drill Rig:		anintian of all		Casing:	4 1/4 HSAS
l Ir		² TOP OF Riser		Notes:	(provide des	t method and	d any other in	formation)	nethod of construction,
		NA Top Protective Cas 2' Top of Riser 0'-0" Ground Surface Surface Backfill Materia Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete -8" Bore Hole Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete Vell Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete Depth To: Grd surf Seal Material X Bentonite Slurry Cement/Bentonite G 5 Top of Filter Par 7.5' Top of Screen Screen Slot Size X 010 in 015 in 020 in 025 in Filter Material 000 Sand Pack <td>ing I rout r ets rout ck</td> <td>Date</td> <td>Groundwat Time</td> <td>er Measure Depth to Water</td> <td>ement Data Water Elevation</td> <td>Casing: Casing: ell location, r oformation)</td> <td>4 1/4" HSAs nethod of construction,</td>	ing I rout r ets rout ck	Date	Groundwat Time	er Measure Depth to Water	ement Data Water Elevation	Casing: Casing: ell location, r oformation)	4 1/4" HSAs nethod of construction,
		2 Sand Pack 3 Sand Pack 4 Sand Pack 12.5' Bottom of Scree 13' Bottom of Bore	en Hole						

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

		C&S Engineers, Inc.	GF	ROUND	WATE	२		Well No.	GW-2
		Syracuse, New York 13212	OBS	SERVATION WELL		ELL			
COMPAN	JIES	Phone: 315-455-2000 Fax: 315-455-9667	CON			00	P	roject No.:	
		www.cscos.com	CON	SIRUC		.06	Sur	face Elev.:	
Project Name:	Dona S	Street						Datum:	GROUND SURFACE
Location:	Lackaw	vanna, NY						Start Date:	
Client:	National	- \//		Duitter	Dala Crama	-	F	inish Date:	0011
Drilling Firm:	Nature	s way		Driller:	Dale Gramza	а		Inspector:	SRH
Г		NA Top Protective Cas	ing	Drill Rig:		anintian of al			4 1/4 HSAS
	r	² TOP of Riser		Notes:	(provide des	t method and	d any other in	oformation)	nethod of construction,
		NA Top Protective Cas 2' Top of Riser 0'-0" Ground Surface Surface Backfill Materia Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete Concrete -8" Bore Hole Diameter Well Material X PVC Stainless Steel Soil Cuttings Bentonite Slurry Cement/Bentonite G Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete Bentonite Slurry Cement/Bentonite G Soil Cuttings Bentonite Slurry Cement/Bentonite G Concrete Depth To: Grd surf Grd surf Top of Seal Seal Material X Bentonite Chips/Pell Bentonite Slurry Cement/Bentonite G 5' Top of Screen 7' Top of Screen Screen Slot Size X 010 in 015 in 020 in 025 in Diagon / De vie	ing I rout r ets rout ck	Date	Groundwat Time	er Measure Depth to Water	ement Data Water Elevation	Tide Status	4 1/4" HSAs nethod of construction,
		00 Sand Pack x 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack							
		12'Bottom of Screet12.5'Bottom of Bore	en Hole						

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

		C&S Engineers, Inc.	GF	ROUND	WATE	R		Well No	GW-3
		Syracuse, New York 13212	OBS	FRVAT		FLI			511 5
COMPANI	ES	Phone: 315-455-2000 Fax: 315-455-9667					P	Project No.:	
COMPANY		www.cscos.com	CON	SIKUC		.06	Sui	face Elev.:	
Project Name:	Dona St	reet						Datum:	GROUND SURFACE
Location:	ackawa	anna, NY						Start Date:	
Client:		147		_			F	inish Date:	
Drilling Firm: N	Nature's	Way	•	Driller:	Dale Gramz	а		Inspector:	SRH
		NA I op Protective Cas	ung	Drill Rig:	Mabil B57	and and the second		Casing:	4 1/4" HSAs
-				Notes:	(provide des	scription of ol	oservation we	ell location, n	nethod of construction,
					acvelopinel	a mounoù alle		nonnau011)	
		0'-0" Ground Surface							
	88								
***************************************		Surface Backfill Materia	1						
	***	Soil Cuttings	<u>-</u>						
\sim	\sim	Bentonite Slurry							
	\sim	Cement/Bentonite G	irout						
	\sim	Concrete							
	\mathbf{x}								
	\mathbf{X}	~8" Bore Hole Diamete	r						
	\sim	2" Well Diameter							
	X	Well Material							
l Ö	Ċ	X PVC							
Ŏ	Ŏ	Stainless Steel							
Ŏ	Ŏ	De el fill Meteriel				or Mooour	am ant Data		
Č (Ô	Backfill Material			Groundwat	er Measur	ement Data	l Tida	
	\sim	Bontonito Slurny		Data	Timo	Water	Flovation	Status	
	\sim	Comont/Pontonito C	rout	Date	Time	Waler	Elevation	Sidius	
\sim	\bigcirc	Cement/Bentonite G	ilout						
\sim	\bigcirc	Conciete							
	\bigcirc	Denth To:							
	\sim	Grd surf Top of Seal							
	<u> </u>	Seal Material							
		X Bentonite Chips/Pel	lets						
		Bentonite Slurry							
		Cement/Bentonite G	irout						
		6.5' Top of Filter Pa	ck						
		8.5' Top of Screen							
		Correct Olat C							
	\equiv	Screen Slot Size							
	\exists								
	\exists	025 in			I				
		Filter Material							
		00 Sand Pack							
		x 0 Sand Pack							
		1 Sand Pack							
		2 Sand Pack							
		3 Sand Pack							
		4 Sand Pack							
		13.5' Bottom of Scree	en						
		13.8' Bottom of Bore	Hole						

		C&S Engineers, Inc.	GF	GROUNDWATER	R		Well No.	GW-4	
		499 Col. Eileen Collins Blvd. Syracuse, New York 13212	NPC			FU			577-4
		Phone: 315-455-2000	UDS				Р	Project No.:	
COMPAN	IE2	Fax: 315-455-9667 www.cscos.com	CON	STRUC	TION L	_OG	Sur	face Elev.:	
Project Name:	Dona S	Street						Datum:	GROUND SURFACE
Location:	Lackaw	vanna, NY						Start Date:	
Client:							F	inish Date:	
Drilling Firm:	Nature'	's Way		Driller:	Dale Gramz	za		Inspector:	SRH
_		Top Protective Cas	sing	Drill Rig:	Mabil B57			Casing:	4 1/4" HSAs
,		Top of Riser		Notes:	(provide des	scription of ol	oservation we	ell location, n	nethod of construction,
					developmer	nt method an	d any other in	formation)	
				Grouted to	ground sur	face			
		0°-0° Ground Surface							
		Curfo og De ekfill Meterie							
		Sullace Backilli Materia	<u>I</u>						
×**	- XX	Bentonite Slurry							
		Cement/Bentonite G	irout						
	\sim		lout						
		~8" Bore Hole Diamete	r						
\sim		2" Well Diameter							
	\times	Well Material							
		X PVC							
\sim		Stainless Steel							
X		Backfill Material			Groundwa	ter Measur	ement Data	1	
l č	Č	× Soil Cuttings			·	Depth to	Water	Tide	
l Ö	Ŏ	Bentonite Slurry		Date	Time	Water	Elevation	Status	
Ŏ	Ŏ	Cement/Bentonite	Frout						
Ô	Ő	Concrete							
	\sim	Dopth Toy							
\sim	\sim	Gnd Surf Top of Seal							
	<u> </u>	Seal Material							
		Bentonite Chips/Pel	lets						
		Bentonite Slurry							
		Cement/Bentonite G	Grout						
		5' Top of Filter Pa	ck						
		7' Top of Screen							
		Screen Slot Size							
	\equiv	x 010 in							
		015 in							
		020 IN							
	\equiv	025 11							
		Filter Material							
		00 Sand Pack							
	\equiv	x 0 Sand Pack							
		1 Sand Pack							
		2 Sand Pack							
		3 Sand Pack							
		4 Sand Pack							
		12' Bottom of Scree	en						
		12.5' Bottom of Bore	Hole						

	-	C&S Engineers, Inc.	GF	ROUND	WATE	R		Wall No	GW-5
		499 Col. Eileen Collins Blvd. Syracuse, New York 13212				CI I		wen no.	GW-5
		Phone: 315-455-2000	UDJ				Р	Project No.:	
COMPAN	IE2	Fax: 315-455-9667 www.cscos.com	CON	STRUC	TION L	LOG	Sur	face Elev.:	
Project Name:	Dona S	Street						Datum:	GROUND SURFACE
Location:	Lackav	vanna, NY						Start Date:	
Client:							F	inish Date:	
Drilling Firm:	Nature	's Way		Driller:	Dale Gramz	za		Inspector:	SRH
_		Top Protective Cas	sing	Drill Rig:	Mabil B57			Casing:	4 1/4" HSAs
.		Top of Riser		Notes:	(provide des	scription of o	oservation we	ell location, n	nethod of construction,
				0	developmer	nt method an	d any other in	iformation)	
				Grouted to	ground sur	face			
		0°-0° Ground Surface							
		Curfa es De skill Materia							
		Soil Cuttings	<u>I</u>						
\sim	- XX	Bentonite Slurry							
\sim	\sim	Cement/Bentonite G	irout						
\sim	\sim		lout						
\sim									
		~8" Bore Hole Diamete	r						
\sim									
$\left \right\rangle$		2" Well Diameter							
$\left \times \right $	X	Well Material							
\sim		X PVC							
\sim		Stainless Steel							
\sim	X								
X	X	Backfill Material			Groundwa	ter Measur	ement Data	1	
Č	Č	Soil Cuttings				Depth to	Water	Tide	
Ŏ	Ŏ	Bentonite Slurry		Date	lime	Water	Elevation	Status	
Ŏ	Ŏ		irout						
\sim	Ô	Concrete							
\sim	\sim	Depth To:							
\sim	\sim	Grd surf Top of Seal							
		Seal Material							
		X Bentonite Chips/Pel	lets						
		Bentonite Slurry							
		Cement/Bentonite G	Grout						
		6' Top of Filter Pa	ck						
		8' Top of Screen							
		Screen Slot Size							
	=	x 010 in							
	=								
	\equiv	025 in							
		Filter Material							
		00 Sand Pack							
		x 0 Sand Pack							
		1 Sand Pack							
		2 Sand Pack							
		3 Sand Pack							
		4 Sand Pack							
		13' Bottom of Scree	en						
		13.3' Bottom of Bore	Hole						

APPENDIX D

Laboratory Analysis Report - Surface Soil

Client:	<u>C&S C</u>	ompanies	5			
Project Reference:	100 D	ona Street				
Sample Identifier	:: SS-1					
Lab Sample ID:	1655	93-01			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>Metals</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic			8.96	mg/Kg		1/4/2017 16:01
Barium			60.5	mg/Kg		1/4/2017 16:01
Beryllium			0.566	mg/Kg		1/4/2017 16:01
Cadmium			1.34	mg/Kg		1/4/2017 16:01
Chromium			31.2	mg/Kg		1/4/2017 16:01
Copper			32.0	mg/Kg		1/4/2017 16:01
Lead			108	mg/Kg	•	1/4/2017 16:01
Manganese			1190	mg/Kg		1/4/2017 17:43
Nickel			20.2	mg/Kg		1/4/2017 16:01
Selenium			1.60	mg/Kg		1/4/2017 16:01
Silver			< 0.615	mg/Kg		1/4/2017 16:01
Zinc			303	mg/Kg		1/4/2017 16:01
Method Re	ference(s):	EPA 6010C EPA 3050B				
Preparatio Data File:	n Date:	1/3/2017 010317b				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-1		
Lab Sample ID:	165593-01	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016
<u>Mercury</u>			

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0687	mg/Kg	D	1/3/2017 16:05
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Compa</u>	nies					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-1						
Lab Sample ID:	165593-01			Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1221		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1232		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1242		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1248		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1254		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1260		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1262		< 0.0389	mg/Kg			1/5/2017	13:12
PCB-1268		< 0.0389	mg/Kg			1/5/2017	13:12
<u>Surrogate</u>		<u>Percen</u>	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			56.0	10 - 144		1/5/2017	13:12
Tetrachloro-m-xylene			35.8	10 - 140		1/5/2017	13:12
Method Referen	nce(s): EPA 8 EPA 3	8082A 8550C					
i reparation Da	1/4/2	2017					

Client:	<u>C&S Companies</u> 100 Dona Street					
Project Reference:						
Sample Identifier:	SS-1					
Lab Sample ID:	165593-01			Date Sampled:	12/28/2016	
Matrix:	Soil			Date Received:	12/30/2016	
Semi-Volatile Organic	s (Acid/Base Ne	<u>utrals)</u>				
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	
1,1-Biphenyl		< 382	ug/Kg		1/4/2017 20:29	
1,2,4,5-Tetrachlorobe	enzene	< 382	ug/Kg		1/4/2017 20:29	
1,2,4-Trichlorobenze	ne	< 382	ug/Kg	М	1/4/2017 20:29	
1,2-Dichlorobenzene		< 382	ug/Kg		1/4/2017 20:29	
1,3-Dichlorobenzene		< 382	ug/Kg		1/4/2017 20:29	
1,4-Dichlorobenzene		< 382	ug/Kg	М	1/4/2017 20:29	
2,2-Oxybis (1-chloro)	propane)	< 382	ug/Kg		1/4/2017 20:29	
2,3,4,6-Tetrachloropl	nenol	< 382	ug/Kg	М	1/4/2017 20:29	
2,4,5-Trichloropheno	l	< 764	ug/Kg		1/4/2017 20:29	
2,4,6-Trichloropheno	l	< 382	ug/Kg	М	1/4/2017 20:29	
2,4-Dichlorophenol		< 382	ug/Kg	М	1/4/2017 20:29	
2,4-Dimethylphenol		< 382	ug/Kg	М	1/4/2017 20:29	
2,4-Dinitrophenol		< 764	ug/Kg	М	1/4/2017 20:29	
2,4-Dinitrotoluene		< 382	ug/Kg	М	1/4/2017 20:29	
2,6-Dinitrotoluene		< 382	ug/Kg		1/4/2017 20:29	
2-Chloronaphthalene		< 382	ug/Kg		1/4/2017 20:29	
2-Chlorophenol		< 382	ug/Kg	М	1/4/2017 20:29	
2-Methylnapthalene		< 382	ug/Kg		1/4/2017 20:29	
2-Methylphenol		< 382	ug/Kg		1/4/2017 20:29	
2-Nitroaniline		< 764	ug/Kg		1/4/2017 20:29	
2-Nitrophenol		< 382	ug/Kg	М	1/4/2017 20:29	
3&4-Methylphenol		< 382	ug/Kg		1/4/2017 20:29	
3,3'-Dichlorobenzidir	ie	< 382	ug/Kg		1/4/2017 20:29	
3-Nitroaniline		< 764	ug/Kg		1/4/2017 20:29	
4,6-Dinitro-2-methyl	phenol	< 764	ug/Kg	М	1/4/2017 20:29	
4-Bromophenyl phen	yl ether	< 382	ug/Kg		1/4/2017 20:29	
4-Chloro-3-methylph	enol	< 382	ug/Kg	М	1/4/2017 20:29	

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-1				
Lab Sample ID:	165593-01			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 382	ug/Kg		1/4/2017 20:29
4-Chlorophenyl pheny	/l ether	< 382	ug/Kg		1/4/2017 20:29
4-Nitroaniline		< 764	ug/Kg		1/4/2017 20:29
4-Nitrophenol		< 764	ug/Kg	М	1/4/2017 20:29
Acenaphthene		264	ug/Kg	JM	1/4/2017 20:29
Acenaphthylene		< 382	ug/Kg		1/4/2017 20:29
Acetophenone		< 382	ug/Kg		1/4/2017 20:29
Anthracene		847	ug/Kg		1/4/2017 20:29
Atrazine		< 382	ug/Kg		1/4/2017 20:29
Benzaldehyde		< 382	ug/Kg		1/4/2017 20:29
Benzo (a) anthracene		1990	ug/Kg		1/4/2017 20:29
Benzo (a) pyrene		1700	ug/Kg		1/4/2017 20:29
Benzo (b) fluoranthen	ie	1480	ug/Kg		1/4/2017 20:29
Benzo (g,h,i) perylene		1040	ug/Kg		1/4/2017 20:29
Benzo (k) fluoranthen	ie	1410	ug/Kg		1/4/2017 20:29
Bis (2-chloroethoxy)	methane	< 382	ug/Kg		1/4/2017 20:29
Bis (2-chloroethyl) et	her	< 382	ug/Kg		1/4/2017 20:29
Bis (2-ethylhexyl) pht	halate	< 382	ug/Kg		1/4/2017 20:29
Butylbenzylphthalate		< 382	ug/Kg		1/4/2017 20:29
Caprolactam		< 382	ug/Kg		1/4/2017 20:29
Carbazole		526	ug/Kg		1/4/2017 20:29
Chrysene		2030	ug/Kg		1/4/2017 20:29
Dibenz (a,h) anthrace	ne	427	ug/Kg		1/4/2017 20:29
Dibenzofuran		< 382	ug/Kg		1/4/2017 20:29
Diethyl phthalate		< 382	ug/Kg		1/4/2017 20:29
Dimethyl phthalate		< 764	ug/Kg		1/4/2017 20:29
Di-n-butyl phthalate		< 382	ug/Kg		1/4/2017 20:29
Di-n-octylphthalate		< 382	ug/Kg		1/4/2017 20:29
Fluoranthene		5170	ug/Kg		1/4/2017 20:29
Fluorene		326	ug/Kg	J	1/4/2017 20:29

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	SS-1						
Lab Sample ID:	165593-01			Date	e Sampled:	12/28/2016	6
Matrix:	Soil			Date	e Received:	12/30/2016	5
Hexachlorobenzene		< 382	ug/Kg			1/4/2017	20:29
Hexachlorobutadiene		< 382	ug/Kg			1/4/2017	20:29
Hexachlorocyclopenta	adiene	< 382	ug/Kg			1/4/2017	20:29
Hexachloroethane		< 382	ug/Kg			1/4/2017	20:29
Indeno (1,2,3-cd) pyre	ene	751	ug/Kg			1/4/2017	20:29
Isophorone		< 382	ug/Kg			1/4/2017	20:29
Naphthalene		< 382	ug/Kg			1/4/2017	20:29
Nitrobenzene		< 382	ug/Kg			1/4/2017	20:29
N-Nitroso-di-n-propyl	lamine	< 382	ug/Kg		М	1/4/2017	20:29
N-Nitrosodiphenylam	ine	< 382	ug/Kg			1/4/2017	20:29
Pentachlorophenol		< 764	ug/Kg		М	1/4/2017	20:29
Phenanthrene		3730	ug/Kg			1/4/2017	20:29
Phenol		< 382	ug/Kg		М	1/4/2017	20:29
Pyrene		3990	ug/Kg		М	1/4/2017	20:29
Surrogate		Perc	ent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
2,4,6-Tribromophenol	l		36.8	38 - 114	*	1/4/2017	20:29
2-Fluorobiphenyl			22.7	25 - 105	*	1/4/2017	20:29
2-Fluorophenol			24.6	30.8 - 84	*	1/4/2017	20:29
Nitrobenzene-d5			22.9	28.5 - 84.9	*	1/4/2017	20:29
Phenol-d5			26.9	32.5 - 89.6	*	1/4/2017	20:29
Terphenyl-d14			33.4	55.5 - 117	*	1/4/2017	20:29
Method Referen	nce(s): EPA 827)D					
Preparation Da Data File:	te: 1/4/201 B16332.1	7)					

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-1						
Lab Sample ID:	165593-01			Date Sampled:	12/28/2016		
Matrix:	Soil			Date Received:	12/30/2016		
Volatile Organics							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1,1-Trichloroethane	2	< 5.11	ug/Kg		1/4/2017 22:18		
1,1,2,2-Tetrachloroet	hane	< 5.11	ug/Kg		1/4/2017 22:18		
1,1,2-Trichloroethane	2	< 5.11	ug/Kg		1/4/2017 22:18		
1,1-Dichloroethane		< 5.11	ug/Kg		1/4/2017 22:18		
1,1-Dichloroethene		< 5.11	ug/Kg		1/4/2017 22:18		
1,2,3-Trichlorobenzer	ne	< 12.8	ug/Kg		1/4/2017 22:18		
1,2,4-Trichlorobenzer	ne	< 12.8	ug/Kg		1/4/2017 22:18		
1,2,4-Trimethylbenze	ne	< 5.11	ug/Kg		1/4/2017 22:18		
1,2-Dibromo-3-Chloro	opropane	< 25.5	ug/Kg		1/4/2017 22:18		
1,2-Dibromoethane		< 5.11	ug/Kg		1/4/2017 22:18		
1,2-Dichlorobenzene		< 5.11	ug/Kg	М	1/4/2017 22:18		
1,2-Dichloroethane		< 5.11	ug/Kg	М	1/4/2017 22:18		
1,2-Dichloropropane		< 5.11	ug/Kg		1/4/2017 22:18		
1,3,5-Trimethylbenze	ne	< 5.11	ug/Kg		1/4/2017 22:18		
1,3-Dichlorobenzene		< 5.11	ug/Kg	М	1/4/2017 22:18		
1,4-Dichlorobenzene		< 5.11	ug/Kg	М	1/4/2017 22:18		
1,4-dioxane		< 51.1	ug/Kg		1/4/2017 22:18		
2-Butanone		< 25.5	ug/Kg		1/4/2017 22:18		
2-Hexanone		< 12.8	ug/Kg		1/4/2017 22:18		
4-Methyl-2-pentanon	e	< 12.8	ug/Kg		1/4/2017 22:18		
Acetone		< 25.5	ug/Kg		1/4/2017 22:18		
Benzene		< 5.11	ug/Kg		1/4/2017 22:18		
Bromochloromethane	9	< 12.8	ug/Kg		1/4/2017 22:18		
Bromodichlorometha	ne	< 5.11	ug/Kg		1/4/2017 22:18		
Bromoform		< 12.8	ug/Kg	М	1/4/2017 22:18		
Bromomethane		< 5.11	ug/Kg	М	1/4/2017 22:18		
Carbon disulfide		< 5.11	ug/Kg		1/4/2017 22:18		

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-1				
Lab Sample ID:	165593-01			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Carbon Tetrachloride		< 5.11	ug/Kg		1/4/2017 22:18
Chlorobenzene		< 5.11	ug/Kg	М	1/4/2017 22:18
Chloroethane		< 5.11	ug/Kg		1/4/2017 22:18
Chloroform		< 5.11	ug/Kg		1/4/2017 22:18
Chloromethane		< 5.11	ug/Kg		1/4/2017 22:18
cis-1,2-Dichloroethen	e	< 5.11	ug/Kg		1/4/2017 22:18
cis-1,3-Dichloroprope	ene	< 5.11	ug/Kg	М	1/4/2017 22:18
Cyclohexane		< 25.5	ug/Kg		1/4/2017 22:18
Dibromochlorometha	ne	< 5.11	ug/Kg		1/4/2017 22:18
Dichlorodifluorometh	ane	< 5.11	ug/Kg		1/4/2017 22:18
Ethylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
Freon 113		< 5.11	ug/Kg		1/4/2017 22:18
Isopropylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
m,p-Xylene		< 5.11	ug/Kg		1/4/2017 22:18
Methyl acetate		< 5.11	ug/Kg		1/4/2017 22:18
Methyl tert-butyl Ethe	er	< 5.11	ug/Kg		1/4/2017 22:18
Methylcyclohexane		< 5.11	ug/Kg		1/4/2017 22:18
Methylene chloride		< 12.8	ug/Kg		1/4/2017 22:18
Naphthalene		< 12.8	ug/Kg		1/4/2017 22:18
n-Butylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
n-Propylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
o-Xylene		< 5.11	ug/Kg		1/4/2017 22:18
p-Isopropyltoluene		< 5.11	ug/Kg		1/4/2017 22:18
sec-Butylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
Styrene		< 12.8	ug/Kg		1/4/2017 22:18
tert-Butylbenzene		< 5.11	ug/Kg		1/4/2017 22:18
Tetrachloroethene		< 5.11	ug/Kg		1/4/2017 22:18
Toluene		< 5.11	ug/Kg		1/4/2017 22:18
trans-1,2-Dichloroeth	ene	< 5.11	ug/Kg		1/4/2017 22:18
trans-1,3-Dichloropro	pene	< 5.11	ug/Kg	М	1/4/2017 22:18

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-1						
Lab Sample ID:	165593-01			Dat	e Sampled:	12/28/2016	6
Matrix:	Soil			Dat	e Received:	12/30/2016	5
Trichloroethene		< 5.11	ug/Kg		М	1/4/2017	22:18
Trichlorofluorometha	ne	< 5.11	ug/Kg			1/4/2017	22:18
Vinyl chloride		< 5.11	ug/Kg			1/4/2017	22:18
<u>Surrogate</u>		<u>Perc</u>	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
1,2-Dichloroethane-d4	Ļ		106	82 - 124		1/4/2017	22:18
4-Bromofluorobenzen	e		81.8	80.5 - 116		1/4/2017	22:18
Pentafluorobenzene			95.4	88.7 - 112		1/4/2017	22:18
Toluene-D8			94.9	79.1 - 120		1/4/2017	22:18
Internal standard	outliers indicate probab	le matrix inter	ference				

Method Reference(s): EPA 8260C

EPA 5035A - L **Data File:** x38292.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	mpanies	5			
Project Reference:	100 Do	na Street				
Sample Identifier:	SS-2					
Lab Sample ID:	16559	3-02			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>Metals</u>						
Analyte			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic			7.51	mg/Kg		1/4/2017 16:30
Barium			49.9	mg/Kg		1/4/2017 16:30
Beryllium			0.632	mg/Kg		1/4/2017 16:30
Cadmium			1.41	mg/Kg		1/4/2017 16:30
Chromium			28.3	mg/Kg		1/4/2017 16:30
Copper			26.3	mg/Kg		1/4/2017 16:30
Lead			121	mg/Kg		1/4/2017 16:30
Manganese			936	mg/Kg		1/4/2017 18:04
Nickel			16.0	mg/Kg		1/4/2017 16:30
Selenium			< 0.650	mg/Kg		1/3/2017 18:30
Silver			< 0.650	mg/Kg		1/4/2017 16:30
Zinc			283	mg/Kg		1/4/2017 16:30
Method Refer	rence(s):	EPA 6010C EPA 3050B				
Preparation Data File:	Date:	1/3/2017 010317b				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-2		
Lab Sample ID:	165593-02	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016
Morcury			

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0732	mg/Kg		1/3/2017 16:16
Method Reference	(s): EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	SS-2						
Lab Sample ID:	165593-	02		Dat	e Sampled:	12/28/2016	ò
Matrix:	Soil			Dat	e Received:	12/30/2016	5
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1221		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1232		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1242		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1248		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1254		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1260		0.0208	mg/Kg		J	1/5/2017	14:19
PCB-1262		< 0.0375	mg/Kg			1/5/2017	14:19
PCB-1268		< 0.0375	mg/Kg			1/5/2017	14:19
<u>Surrogate</u>		Perc	e <mark>nt Recovery</mark>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			74.5	10 - 144		1/5/2017	14:19
Tetrachloro-m-xylene	2	X	49.5	10 - 140		1/5/2017	14:19
Method Referen	nce(s): El El	PA 8082A PA 3550C					
Preparation Da	te: 1,	/4/2017					

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-2						
Lab Sample ID:	165593-02			Date Sampled:	12/28/2016		
Matrix:	Soil			Date Received:	12/30/2016		
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		< 377	ug/Kg		1/4/2017 21:58		
1,2,4,5-Tetrachlorobe	enzene	< 377	ug/Kg		1/4/2017 21:58		
1,2,4-Trichlorobenze	ne	< 377	ug/Kg	М	1/4/2017 21:58		
1,2-Dichlorobenzene		< 377	ug/Kg		1/4/2017 21:58		
1,3-Dichlorobenzene		< 377	ug/Kg		1/4/2017 21:58		
1,4-Dichlorobenzene		< 377	ug/Kg	М	1/4/2017 21:58		
2,2-Oxybis (1-chlorop	propane)	< 377	ug/Kg		1/4/2017 21:58		
2,3,4,6-Tetrachloroph	nenol	< 377	ug/Kg		1/4/2017 21:58		
2,4,5-Trichloropheno	1	< 754	ug/Kg		1/4/2017 21:58		
2,4,6-Trichloropheno	1	< 377	ug/Kg		1/4/2017 21:58		
2,4-Dichlorophenol		< 377	ug/Kg		1/4/2017 21:58		
2,4-Dimethylphenol		< 377	ug/Kg		1/4/2017 21:58		
2,4-Dinitrophenol		< 754	ug/Kg		1/4/2017 21:58		
2,4-Dinitrotoluene		< 377	ug/Kg		1/4/2017 21:58		
2,6-Dinitrotoluene		< 377	ug/Kg		1/4/2017 21:58		
2-Chloronaphthalene		< 377	ug/Kg		1/4/2017 21:58		
2-Chlorophenol		< 377	ug/Kg		1/4/2017 21:58		
2-Methylnapthalene		< 377	ug/Kg		1/4/2017 21:58		
2-Methylphenol		< 377	ug/Kg		1/4/2017 21:58		
2-Nitroaniline		< 754	ug/Kg		1/4/2017 21:58		
2-Nitrophenol		< 377	ug/Kg		1/4/2017 21:58		
3&4-Methylphenol		< 377	ug/Kg		1/4/2017 21:58		
3,3'-Dichlorobenzidir	ie	< 377	ug/Kg		1/4/2017 21:58		
3-Nitroaniline		< 754	ug/Kg		1/4/2017 21:58		
4,6-Dinitro-2-methyl	phenol	< 754	ug/Kg		1/4/2017 21:58		
4-Bromophenyl phen	yl ether	< 377	ug/Kg		1/4/2017 21:58		
4-Chloro-3-methylph	enol	< 377	ug/Kg		1/4/2017 21:58		

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-2				
Lab Sample ID:	165593-02			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 377	ug/Kg		1/4/2017 21:58
4-Chlorophenyl pheny	yl ether	< 377	ug/Kg		1/4/2017 21:58
4-Nitroaniline		< 754	ug/Kg		1/4/2017 21:58
4-Nitrophenol		< 754	ug/Kg		1/4/2017 21:58
Acenaphthene		< 377	ug/Kg		1/4/2017 21:58
Acenaphthylene		< 377	ug/Kg		1/4/2017 21:58
Acetophenone		< 377	ug/Kg		1/4/2017 21:58
Anthracene		293	ug/Kg	J	1/4/2017 21:58
Atrazine		< 377	ug/Kg		1/4/2017 21:58
Benzaldehyde		< 377	ug/Kg		1/4/2017 21:58
Benzo (a) anthracene		1480	ug/Kg		1/4/2017 21:58
Benzo (a) pyrene		1300	ug/Kg		1/4/2017 21:58
Benzo (b) fluoranther	ie	1470	ug/Kg		1/4/2017 21:58
Benzo (g,h,i) perylene	2	779	ug/Kg		1/4/2017 21:58
Benzo (k) fluoranthen	ie	1170	ug/Kg		1/4/2017 21:58
Bis (2-chloroethoxy)	methane	< 377	ug/Kg		1/4/2017 21:58
Bis (2-chloroethyl) et	her	< 377	ug/Kg		1/4/2017 21:58
Bis (2-ethylhexyl) pht	halate	< 377	ug/Kg		1/4/2017 21:58
Butylbenzylphthalate		< 377	ug/Kg		1/4/2017 21:58
Caprolactam		< 377	ug/Kg		1/4/2017 21:58
Carbazole		249	ug/Kg	J	1/4/2017 21:58
Chrysene		1760	ug/Kg		1/4/2017 21:58
Dibenz (a,h) anthrace	ne	418	ug/Kg		1/4/2017 21:58
Dibenzofuran		< 377	ug/Kg		1/4/2017 21:58
Diethyl phthalate		< 377	ug/Kg		1/4/2017 21:58
Dimethyl phthalate		< 754	ug/Kg		1/4/2017 21:58
Di-n-butyl phthalate		< 377	ug/Kg		1/4/2017 21:58
Di-n-octylphthalate		< 377	ug/Kg		1/4/2017 21:58
Fluoranthene		3450	ug/Kg		1/4/2017 21:58
Fluorene		< 377	ug/Kg		1/4/2017 21:58

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	SS-2						
Lab Sample ID:	165593-02			Dat	e Sampled:	12/28/201	6
Matrix:	Soil			Dat	e Received:	12/30/201	6
Hexachlorobenzene		< 377	ug/Kg			1/4/2017	21:58
Hexachlorobutadiene		< 377	ug/Kg			1/4/2017	21:58
Hexachlorocyclopenta	adiene	< 377	ug/Kg			1/4/2017	21:58
Hexachloroethane		< 377	ug/Kg			1/4/2017	21:58
Indeno (1,2,3-cd) pyre	ene	628	ug/Kg			1/4/2017	21:58
Isophorone		< 377	ug/Kg			1/4/2017	21:58
Naphthalene		< 377	ug/Kg			1/4/2017	21:58
Nitrobenzene		< 377	ug/Kg			1/4/2017	21:58
N-Nitroso-di-n-propy	lamine	< 377	ug/Kg			1/4/2017	21:58
N-Nitrosodiphenylam	ine	< 377	ug/Kg	1		1/4/2017	21:58
Pentachlorophenol		< 754	ug/Kg			1/4/2017	21:58
Phenanthrene		1460	ug/Kg			1/4/2017	21:58
Phenol		< 377	ug/Kg			1/4/2017	21:58
Pyrene		2420	ug/Kg			1/4/2017	21:58
Surrogate		Perce	ent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		53.7	38 - 114		1/4/2017	21:58
2-Fluorobiphenyl			38.9	25 - 105		1/4/2017	21:58
2-Fluorophenol			40.6	30.8 - 84		1/4/2017	21:58
Nitrobenzene-d5			38.7	28.5 - 84.9		1/4/2017	21:58
Phenol-d5			43.1	32.5 - 89.6		1/4/2017	21:58
Terphenyl-d14			47.5	55.5 - 117	*	1/4/2017	21:58
Method Referer	nce(s): EPA 8270)D					
Preparation Da Data File:	te: 1/4/201 B16335.I	7)					

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-2						
Lab Sample ID:	165593-02			Date Sampled:	12/28/2016		
Matrix:	Soil			Date Received:	12/30/2016		
Volatile Organics							
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1,1-Trichloroethane	2	< 4.65	ug/Kg		1/5/2017 13:45		
1,1,2,2-Tetrachloroet	hane	< 4.65	ug/Kg		1/5/2017 13:45		
1,1,2-Trichloroethane	2	< 4.65	ug/Kg		1/5/2017 13:45		
1,1-Dichloroethane		< 4.65	ug/Kg	L	1/5/2017 13:45		
1,1-Dichloroethene		< 4.65	ug/Kg		1/5/2017 13:45		
1,2,3-Trichlorobenze	ne	< 11.6	ug/Kg		1/5/2017 13:45		
1,2,4-Trichlorobenze	ne	< 11.6	ug/Kg		1/5/2017 13:45		
1,2,4-Trimethylbenze	ene	< 4.65	ug/Kg		1/5/2017 13:45		
1,2-Dibromo-3-Chlor	opropane	< 23.2	ug/Kg		1/5/2017 13:45		
1,2-Dibromoethane		< 4.65	ug/Kg		1/5/2017 13:45		
1,2-Dichlorobenzene		< 4.65	ug/Kg	М	1/5/2017 13:45		
1,2-Dichloroethane		< 4.65	ug/Kg	М	1/5/2017 13:45		
1,2-Dichloropropane		< 4.65	ug/Kg		1/5/2017 13:45		
1,3,5-Trimethylbenze	ene	< 4.65	ug/Kg		1/5/2017 13:45		
1,3-Dichlorobenzene		< 4.65	ug/Kg	М	1/5/2017 13:45		
1,4-Dichlorobenzene		< 4.65	ug/Kg	М	1/5/2017 13:45		
1,4-dioxane		< 46.5	ug/Kg		1/5/2017 13:45		
2-Butanone		< 23.2	ug/Kg		1/5/2017 13:45		
2-Hexanone		< 11.6	ug/Kg		1/5/2017 13:45		
4-Methyl-2-pentanon	e	< 11.6	ug/Kg		1/5/2017 13:45		
Acetone		< 23.2	ug/Kg		1/5/2017 13:45		
Benzene		< 4.65	ug/Kg		1/5/2017 13:45		
Bromochloromethan	e	< 11.6	ug/Kg		1/5/2017 13:45		
Bromodichlorometha	ine	< 4.65	ug/Kg		1/5/2017 13:45		
Bromoform		< 11.6	ug/Kg	М	1/5/2017 13:45		
Bromomethane		< 4.65	ug/Kg	М	1/5/2017 13:45		
Carbon disulfide		< 4.65	ug/Kg		1/5/2017 13:45		

Client:	<u>C&S Companies</u> 100 Dona Street						
Project Reference:							
Sample Identifier:	SS-2						
Lab Sample ID:	165593-02			Date Sampled:	12/28/2016		
Matrix:	Soil			Date Received:	12/30/2016		
Carbon Tetrachloride		< 4.65	ug/Kg		1/5/2017 13:45		
Chlorobenzene		< 4.65	ug/Kg	М	1/5/2017 13:45		
Chloroethane		< 4.65	ug/Kg		1/5/2017 13:45		
Chloroform		< 4.65	ug/Kg		1/5/2017 13:45		
Chloromethane		< 4.65	ug/Kg		1/5/2017 13:45		
cis-1,2-Dichloroethen	e	< 4.65	ug/Kg		1/5/2017 13:45		
cis-1,3-Dichloroprope	ene	< 4.65	ug/Kg	М	1/5/2017 13:45		
Cyclohexane		< 23.2	ug/Kg		1/5/2017 13:45		
Dibromochlorometha	ne	< 4.65	ug/Kg		1/5/2017 13:45		
Dichlorodifluorometh	ane	< 4.65	ug/Kg		1/5/2017 13:45		
Ethylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
Freon 113		< 4.65	ug/Kg		1/5/2017 13:45		
Isopropylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
m,p-Xylene		< 4.65	ug/Kg		1/5/2017 13:45		
Methyl acetate		< 4.65	ug/Kg		1/5/2017 13:45		
Methyl tert-butyl Ethe	er	< 4.65	ug/Kg		1/5/2017 13:45		
Methylcyclohexane		< 4.65	ug/Kg		1/5/2017 13:45		
Methylene chloride		< 11.6	ug/Kg		1/5/2017 13:45		
Naphthalene		< 11.6	ug/Kg		1/5/2017 13:45		
n-Butylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
n-Propylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
o-Xylene		< 4.65	ug/Kg		1/5/2017 13:45		
p-Isopropyltoluene		< 4.65	ug/Kg		1/5/2017 13:45		
sec-Butylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
Styrene		< 11.6	ug/Kg		1/5/2017 13:45		
tert-Butylbenzene		< 4.65	ug/Kg		1/5/2017 13:45		
Tetrachloroethene		< 4.65	ug/Kg		1/5/2017 13:45		
Toluene		< 4.65	ug/Kg		1/5/2017 13:45		
trans-1,2-Dichloroeth	ene	< 4.65	ug/Kg		1/5/2017 13:45		
trans-1,3-Dichloropro	pene	< 4.65	ug/Kg	М	1/5/2017 13:45		

Client:	C&S Companie	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-2						
Lab Sample ID:	165593-02			Dat	e Sampled:	12/28/2016)
Matrix:	Soil			Dat	e Received:	12/30/2016)
Trichloroethene		< 4.65	ug/Kg		М	1/5/2017	13:45
Trichlorofluoromethan	e	< 4.65	ug/Kg		М	1/5/2017	13:45
Vinyl chloride		< 4.65	ug/Kg		М	1/5/2017	13:45
<u>Surrogate</u>		Pero	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
1,2-Dichloroethane-d4			104	82 - 124		1/5/2017	13:45
4-Bromofluorobenzene	2		77.9	80.5 - 116	*	1/5/2017	13:45
Pentafluorobenzene			92.9	88.7 - 112		1/5/2017	13:45
Toluene-D8			93.9	79.1 - 120		1/5/2017	13:45
Internal standard	outliere indicate probabi	la matrix inta	rtorongo				

Internal standard outliers indicate probable matrix interference

EPA 8260C

Method Reference(s):

	EPA 5035A - L
Data File:	x38305.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S C</u>	ompanies	6			
Project Reference:	100 D	ona Street				
Sample Identifier:	SS-3					
Lab Sample ID:	1655	93-03			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>Metals</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic			7.79	mg/Kg		1/4/2017 16:51
Barium			63.4	mg/Kg		1/4/2017 16:51
Beryllium			0.759	mg/Kg		1/4/2017 16:51
Cadmium			1.49	mg/Kg		1/4/2017 16:51
Chromium			43.9	mg/Kg		1/4/2017 16:51
Copper			32.6	mg/Kg		1/4/2017 16:51
Lead			142	mg/Kg	•	1/4/2017 16:51
Manganese			1530	mg/Kg		1/4/2017 18:17
Nickel			19.7	mg/Kg		1/4/2017 16:51
Selenium			1.85	mg/Kg		1/4/2017 16:51
Silver			< 0.604	mg/Kg		1/4/2017 16:51
Zinc			336	mg/Kg		1/4/2017 16:51
Method Refe	rence(s):	EPA 6010C EPA 3050B				
Preparation Data File:	Date:	1/3/2017 010317b				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-3		
Lab Sample ID:	165593-03	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016
Mercurv			

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0622	mg/Kg		1/3/2017 16:28
Method Reference(s	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	SS-3						
Lab Sample ID:	165593-	03		Dat	te Sampled:	12/28/2016	ò
Matrix:	Soil			Dat	e Received:	12/30/2016	5
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1221		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1232		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1242		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1248		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1254		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1260		0.0210	mg/Kg		J	1/5/2017	15:26
PCB-1262		< 0.0367	mg/Kg			1/5/2017	15:26
PCB-1268		< 0.0367	mg/Kg			1/5/2017	15:26
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			42.3	10 - 144		1/5/2017	15:26
Tetrachloro-m-xylene	2	X	33.0	10 - 140		1/5/2017	15:26
Method Referen	n ce(s): El El	PA 8082A PA 3550C					
Preparation Da	te: 1,	/4/2017					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-3				
Lab Sample ID:	165593-03			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	rs (Acid/Base Neu	<u>ıtrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 370	ug/Kg		1/4/2017 23:26
1,2,4,5-Tetrachlorobe	enzene	< 370	ug/Kg		1/4/2017 23:26
1,2,4-Trichlorobenzer	ne	< 370	ug/Kg		1/4/2017 23:26
1,2-Dichlorobenzene		< 370	ug/Kg		1/4/2017 23:26
1,3-Dichlorobenzene		< 370	ug/Kg		1/4/2017 23:26
1,4-Dichlorobenzene		< 370	ug/Kg		1/4/2017 23:26
2,2-Oxybis (1-chlorop	propane)	< 370	ug/Kg		1/4/2017 23:26
2,3,4,6-Tetrachloroph	nenol	< 370	ug/Kg		1/4/2017 23:26
2,4,5-Trichloropheno	l	< 740	ug/Kg		1/4/2017 23:26
2,4,6-Trichloropheno	l	< 370	ug/Kg		1/4/2017 23:26
2,4-Dichlorophenol		< 370	ug/Kg		1/4/2017 23:26
2,4-Dimethylphenol		< 370	ug/Kg		1/4/2017 23:26
2,4-Dinitrophenol		< 740	ug/Kg		1/4/2017 23:26
2,4-Dinitrotoluene		< 370	ug/Kg		1/4/2017 23:26
2,6-Dinitrotoluene		< 370	ug/Kg		1/4/2017 23:26
2-Chloronaphthalene		< 370	ug/Kg		1/4/2017 23:26
2-Chlorophenol		< 370	ug/Kg		1/4/2017 23:26
2-Methylnapthalene		< 370	ug/Kg		1/4/2017 23:26
2-Methylphenol		< 370	ug/Kg		1/4/2017 23:26
2-Nitroaniline		< 740	ug/Kg		1/4/2017 23:26
2-Nitrophenol		< 370	ug/Kg		1/4/2017 23:26
3&4-Methylphenol		< 370	ug/Kg		1/4/2017 23:26
3,3'-Dichlorobenzidin	ie	< 370	ug/Kg		1/4/2017 23:26
3-Nitroaniline		< 740	ug/Kg		1/4/2017 23:26

4,6-Dinitro-2-methylphenol< 740</th>ug/Kg1/4/201723:264-Bromophenyl phenyl ether< 370</td>ug/Kg1/4/201723:264-Chloro-3-methylphenol< 370</td>ug/Kg1/4/201723:26

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-3				
Lab Sample ID:	165593-03			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 370	ug/Kg		1/4/2017 23:26
4-Chlorophenyl pheny	yl ether	< 370	ug/Kg		1/4/2017 23:26
4-Nitroaniline		< 740	ug/Kg		1/4/2017 23:26
4-Nitrophenol		< 740	ug/Kg		1/4/2017 23:26
Acenaphthene		< 370	ug/Kg		1/4/2017 23:26
Acenaphthylene		266	ug/Kg	J	1/4/2017 23:26
Acetophenone		< 370	ug/Kg		1/4/2017 23:26
Anthracene		598	ug/Kg		1/4/2017 23:26
Atrazine		< 370	ug/Kg		1/4/2017 23:26
Benzaldehyde		< 370	ug/Kg		1/4/2017 23:26
Benzo (a) anthracene		2620	ug/Kg		1/4/2017 23:26
Benzo (a) pyrene		2110	ug/Kg		1/4/2017 23:26
Benzo (b) fluoranther	ie	2470	ug/Kg		1/4/2017 23:26
Benzo (g,h,i) perylene	2	1260	ug/Kg		1/4/2017 23:26
Benzo (k) fluoranther	ie	1870	ug/Kg		1/4/2017 23:26
Bis (2-chloroethoxy)	methane	< 370	ug/Kg		1/4/2017 23:26
Bis (2-chloroethyl) et	her	< 370	ug/Kg		1/4/2017 23:26
Bis (2-ethylhexyl) pht	halate	< 370	ug/Kg		1/4/2017 23:26
Butylbenzylphthalate		< 370	ug/Kg		1/4/2017 23:26
Caprolactam		< 370	ug/Kg		1/4/2017 23:26
Carbazole		382	ug/Kg		1/4/2017 23:26
Chrysene		2870	ug/Kg		1/4/2017 23:26
Dibenz (a,h) anthrace	ne	654	ug/Kg		1/4/2017 23:26
Dibenzofuran		< 370	ug/Kg		1/4/2017 23:26
Diethyl phthalate		< 370	ug/Kg		1/4/2017 23:26
Dimethyl phthalate		< 740	ug/Kg		1/4/2017 23:26
Di-n-butyl phthalate		< 370	ug/Kg		1/4/2017 23:26
Di-n-octylphthalate		< 370	ug/Kg		1/4/2017 23:26
Fluoranthene		5790	ug/Kg		1/4/2017 23:26
Fluorene		< 370	ug/Kg		1/4/2017 23:26

Client:	<u>C&S Compan</u>	<u>nies</u>					
Project Reference:	100 Dona Str	eet					
Sample Identifier:	SS-3						
Lab Sample ID:	165593-03			Date	e Sampled:	12/28/2016	5
Matrix:	Soil			Date	e Received:	12/30/2016	6
Hexachlorobenzene		< 370	ug/Kg			1/4/2017	23:26
Hexachlorobutadiene		< 370	ug/Kg			1/4/2017	23:26
Hexachlorocyclopenta	diene	< 370	ug/Kg			1/4/2017	23:26
Hexachloroethane		< 370	ug/Kg			1/4/2017	23:26
Indeno (1,2,3-cd) pyre	ene	1050	ug/Kg			1/4/2017	23:26
Isophorone		< 370	ug/Kg			1/4/2017	23:26
Naphthalene		< 370	ug/Kg			1/4/2017	23:26
Nitrobenzene		< 370	ug/Kg			1/4/2017	23:26
N-Nitroso-di-n-propyl	amine	< 370	ug/Kg			1/4/2017	23:26
N-Nitrosodiphenylam	ine	< 370	ug/Kg	1		1/4/2017	23:26
Pentachlorophenol		< 740	ug/Kg			1/4/2017	23:26
Phenanthrene		2490	ug/Kg			1/4/2017	23:26
Phenol		< 370	ug/Kg			1/4/2017	23:26
Pyrene		3930	ug/Kg			1/4/2017	23:26
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	l		65.4	38 - 114		1/4/2017	23:26
2-Fluorobiphenyl			47.3	25 - 105		1/4/2017	23:26
2-Fluorophenol			45.1	30.8 - 84		1/4/2017	23:26
Nitrobenzene-d5			43.3	28.5 - 84.9		1/4/2017	23:26
Phenol-d5			51.3	32.5 - 89.6		1/4/2017	23:26
Terphenyl-d14			59.8	55.5 - 117		1/4/2017	23:26
Method Referen	ce(s): EPA 82	70D					
Preparation Da Data File:	EPA 35. te: 1/4/20 B16338	50C 17 3.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-3				
Lab Sample ID:	165593-03			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.56	ug/Kg		1/4/2017 21:54
1,1,2,2-Tetrachloroet	hane	< 4.56	ug/Kg		1/4/2017 21:54
1,1,2-Trichloroethane	2	< 4.56	ug/Kg		1/4/2017 21:54
1,1-Dichloroethane		< 4.56	ug/Kg		1/4/2017 21:54
1,1-Dichloroethene		< 4.56	ug/Kg		1/4/2017 21:54
1,2,3-Trichlorobenzer	ne	< 11.4	ug/Kg		1/4/2017 21:54
1,2,4-Trichlorobenzer	ne	< 11.4	ug/Kg		1/4/2017 21:54
1,2,4-Trimethylbenze	ene	< 4.56	ug/Kg		1/4/2017 21:54
1,2-Dibromo-3-Chlor	opropane	< 22.8	ug/Kg		1/4/2017 21:54
1,2-Dibromoethane		< 4.56	ug/Kg		1/4/2017 21:54
1,2-Dichlorobenzene		< 4.56	ug/Kg		1/4/2017 21:54
1,2-Dichloroethane		< 4.56	ug/Kg		1/4/2017 21:54
1,2-Dichloropropane		< 4.56	ug/Kg		1/4/2017 21:54
1,3,5-Trimethylbenze	ene	< 4.56	ug/Kg		1/4/2017 21:54
1,3-Dichlorobenzene		< 4.56	ug/Kg		1/4/2017 21:54
1,4-Dichlorobenzene		< 4.56	ug/Kg		1/4/2017 21:54
1,4-dioxane		< 45.6	ug/Kg		1/4/2017 21:54
2-Butanone		< 22.8	ug/Kg		1/4/2017 21:54
2-Hexanone		< 11.4	ug/Kg		1/4/2017 21:54
4-Methyl-2-pentanon	e	< 11.4	ug/Kg		1/4/2017 21:54
Acetone		< 22.8	ug/Kg		1/4/2017 21:54
Benzene		< 4.56	ug/Kg		1/4/2017 21:54
Bromochloromethane	e	< 11.4	ug/Kg		1/4/2017 21:54
Bromodichlorometha	ine	< 4.56	ug/Kg		1/4/2017 21:54
Bromoform		< 11.4	ug/Kg		1/4/2017 21:54
Bromomethane		< 4.56	ug/Kg		1/4/2017 21:54
Carbon disulfide		< 4.56	ug/Kg		1/4/2017 21:54

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-3				
Lab Sample ID:	165593-03			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Carbon Tetrachloride		< 4.56	ug/Kg		1/4/2017 21:54
Chlorobenzene		< 4.56	ug/Kg		1/4/2017 21:54
Chloroethane		< 4.56	ug/Kg		1/4/2017 21:54
Chloroform		< 4.56	ug/Kg		1/4/2017 21:54
Chloromethane		< 4.56	ug/Kg		1/4/2017 21:54
cis-1,2-Dichloroethen	e	< 4.56	ug/Kg		1/4/2017 21:54
cis-1,3-Dichloroprope	ne	< 4.56	ug/Kg		1/4/2017 21:54
Cyclohexane		< 22.8	ug/Kg		1/4/2017 21:54
Dibromochlorometha	ne	< 4.56	ug/Kg		1/4/2017 21:54
Dichlorodifluorometh	ane	< 4.56	ug/Kg		1/4/2017 21:54
Ethylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
Freon 113		< 4.56	ug/Kg		1/4/2017 21:54
Isopropylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
m,p-Xylene		< 4.56	ug/Kg		1/4/2017 21:54
Methyl acetate		< 4.56	ug/Kg		1/4/2017 21:54
Methyl tert-butyl Ethe	er	< 4.56	ug/Kg		1/4/2017 21:54
Methylcyclohexane		< 4.56	ug/Kg		1/4/2017 21:54
Methylene chloride		< 11.4	ug/Kg		1/4/2017 21:54
Naphthalene		< 11.4	ug/Kg		1/4/2017 21:54
n-Butylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
n-Propylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
o-Xylene		< 4.56	ug/Kg		1/4/2017 21:54
p-Isopropyltoluene		< 4.56	ug/Kg		1/4/2017 21:54
sec-Butylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
Styrene		< 11.4	ug/Kg		1/4/2017 21:54
tert-Butylbenzene		< 4.56	ug/Kg		1/4/2017 21:54
Tetrachloroethene		< 4.56	ug/Kg		1/4/2017 21:54
Toluene		< 4.56	ug/Kg		1/4/2017 21:54
trans-1,2-Dichloroeth	ene	< 4.56	ug/Kg		1/4/2017 21:54
trans-1,3-Dichloropro	pene	< 4.56	ug/Kg		1/4/2017 21:54

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-3						
Lab Sample ID:	165593-03			Dat	e Sampled:	12/28/201	6
Matrix:	Soil			Dat	e Received:	12/30/201	6
Trichloroethene		< 4.56	ug/Kg			1/4/2017	7 21:54
Trichlorofluorometha	ine	< 4.56	ug/Kg			1/4/2017	7 21:54
Vinyl chloride		< 4.56	ug/Kg			1/4/2017	7 21:54
<u>Surrogate</u>		<u>Perc</u>	<u>ent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d	4		109	82 - 124		1/4/2017	21:54
4-Bromofluorobenzei	ne		81.5	80.5 - 116		1/4/2017	21:54
Pentafluorobenzene			95.7	88.7 - 112		1/4/2017	21:54
Toluene-D8			93.4	79.1 - 120		1/4/2017	21:54
Internal standar Method Refere	d outliers indicate probab nce(s): EPA 8260	le matrix interj C	ference				

Method Reference(s):

EPA 5035A - L Data File: x38291.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S C</u>	ompanies	<u>i</u>			
Project Referenc	e: 100 D	ona Street				
Sample Identifi	ier: SS-4					
Lab Sample ID:	1655	93-04			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>Metals</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic			9.16	mg/Kg		1/4/2017 16:55
Barium			58.6	mg/Kg		1/4/2017 16:55
Beryllium			0.495	mg/Kg		1/4/2017 16:55
Cadmium			1.48	mg/Kg		1/4/2017 16:55
Chromium			30.6	mg/Kg		1/4/2017 16:55
Copper			29.5	mg/Kg		1/4/2017 16:55
Lead			110	mg/Kg		1/4/2017 16:55
Manganese			905	mg/Kg		1/4/2017 18:21
Nickel			18.3	mg/Kg		1/4/2017 16:55
Selenium			1.68	mg/Kg		1/4/2017 16:55
Silver			< 0.638	mg/Kg		1/4/2017 16:55
Zinc			296	mg/Kg		1/4/2017 16:55
Method	Reference(s):	EPA 6010C EPA 3050B				
Data Fil	e:	010317b				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-4		
Lab Sample ID:	165593-04	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury	0.0923	mg/Kg		1/3/2017 16:39
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

Client:	<u>C&S Com</u>	<u>panies</u>						
Project Reference:	100 Dona	Street						
Sample Identifier:	SS-4							
Lab Sample ID:	165593-	-04			Dat	te Sampled:	12/28/2016	
Matrix:	Soil				Dat	te Received:	12/30/2016)
<u>PCBs</u>								
<u>Analyte</u>		Resu	lt	<u>Units</u>		<u>Qualifier</u>	Date Analy	zed
PCB-1016		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1221		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1232		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1242		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1248		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1254		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1260		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1262		< 0.04	410	mg/Kg			1/5/2017	15:49
PCB-1268		< 0.04	410	mg/Kg			1/5/2017	15:49
<u>Surrogate</u>		<u>P</u>	<u>ercent</u>	<u>Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			1	56	10 - 144	*	1/5/2017	15:49
Tetrachloro-m-xylene			1	9.0	10 - 140		1/5/2017	15:49
Method Referen	nce(s): El	PA 8082A PA 3550C						
Preparation Da	te: 1,	/4/2017						

1.3-Dichlorobenzene

1.4-Dichlorobenzene

2,2-Oxybis (1-chloropropane)

2,3,4,6-Tetrachlorophenol

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

2,4-Dinitrotoluene

2.6-Dinitrotoluene

2-Chlorophenol

2-Methylphenol

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

3&4-Methylphenol

3,3'-Dichlorobenzidine

2-Chloronaphthalene

2-Methylnapthalene

Lab Project ID: 165593

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

1/4/2017 23:55

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-4				
Lab Sample ID:	165593-04			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 408	ug/Kg		1/4/2017 23:55
1,2,4,5-Tetrachlorobe	nzene	< 408	ug/Kg		1/4/2017 23:55
1,2,4-Trichlorobenzer	ie	< 408	ug/Kg		1/4/2017 23:55
1,2-Dichlorobenzene		< 408	ug/Kg		1/4/2017 23:55

ug/Kg

< 408

< 408

< 408

< 408

< 815

< 408

< 408

< 408

< 815

< 408

< 408

< 408

< 408

< 408

< 408

< 815

< 408

< 408

< 408

< 815

4,6-Dinitro-2-methylphenol	< 815	ug/Kg	1/4/2017 23:55			
4-Bromophenyl phenyl ether	< 408	ug/Kg	1/4/2017 23:55			
4-Chloro-3-methylphenol	< 408	ug/Kg	1/4/2017 23:55			
This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.						

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-4				
Lab Sample ID:	165593-04			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 408	ug/Kg		1/4/2017 23:55
4-Chlorophenyl pheny	/l ether	< 408	ug/Kg		1/4/2017 23:55
4-Nitroaniline		< 815	ug/Kg		1/4/2017 23:55
4-Nitrophenol		< 815	ug/Kg		1/4/2017 23:55
Acenaphthene		< 408	ug/Kg		1/4/2017 23:55
Acenaphthylene		< 408	ug/Kg		1/4/2017 23:55
Acetophenone		< 408	ug/Kg		1/4/2017 23:55
Anthracene		< 408	ug/Kg		1/4/2017 23:55
Atrazine		< 408	ug/Kg		1/4/2017 23:55
Benzaldehyde		< 408	ug/Kg		1/4/2017 23:55
Benzo (a) anthracene		403	ug/Kg	J	1/4/2017 23:55
Benzo (a) pyrene		380	ug/Kg	J	1/4/2017 23:55
Benzo (b) fluoranthen	e	432	ug/Kg		1/4/2017 23:55
Benzo (g,h,i) perylene		267	ug/Kg	J	1/4/2017 23:55
Benzo (k) fluoranthen	e	334	ug/Kg	J	1/4/2017 23:55
Bis (2-chloroethoxy)	nethane	< 408	ug/Kg		1/4/2017 23:55
Bis (2-chloroethyl) et	her	< 408	ug/Kg		1/4/2017 23:55
Bis (2-ethylhexyl) pht	halate	< 408	ug/Kg		1/4/2017 23:55
Butylbenzylphthalate		< 408	ug/Kg		1/4/2017 23:55
Caprolactam		< 408	ug/Kg		1/4/2017 23:55
Carbazole		< 408	ug/Kg		1/4/2017 23:55
Chrysene		491	ug/Kg		1/4/2017 23:55
Dibenz (a,h) anthrace	ne	< 408	ug/Kg		1/4/2017 23:55
Dibenzofuran		< 408	ug/Kg		1/4/2017 23:55
Diethyl phthalate		< 408	ug/Kg		1/4/2017 23:55
Dimethyl phthalate		< 815	ug/Kg		1/4/2017 23:55
Di-n-butyl phthalate		< 408	ug/Kg		1/4/2017 23:55
Di-n-octylphthalate		< 408	ug/Kg		1/4/2017 23:55
Fluoranthene		841	ug/Kg		1/4/2017 23:55
Fluorene		< 408	ug/Kg		1/4/2017 23:55

Client:	<u>C&S Comp</u>	<u>anies</u>					
Project Reference:	100 Dona S	Street					
Sample Identifier:	SS-4						
Lab Sample ID:	165593-0	4		Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016	5
Hexachlorobenzene		< 408	ug/Kg			1/4/2017	23:55
Hexachlorobutadiene		< 408	ug/Kg			1/4/2017	23:55
Hexachlorocyclopenta	adiene	< 408	ug/Kg			1/4/2017	23:55
Hexachloroethane		< 408	ug/Kg			1/4/2017	23:55
Indeno (1,2,3-cd) pyre	ene	220	ug/Kg		J	1/4/2017	23:55
Isophorone		< 408	ug/Kg			1/4/2017	23:55
Naphthalene		< 408	ug/Kg			1/4/2017	23:55
Nitrobenzene		< 408	ug/Kg			1/4/2017	23:55
N-Nitroso-di-n-propy	lamine	< 408	ug/Kg			1/4/2017	23:55
N-Nitrosodiphenylam	ine	< 408	ug/Kg	1		1/4/2017	23:55
Pentachlorophenol		< 815	ug/Kg			1/4/2017	23:55
Phenanthrene		338	ug/Kg		J	1/4/2017	23:55
Phenol		< 408	ug/Kg			1/4/2017	23:55
Pyrene		644	ug/Kg			1/4/2017	23:55
<u>Surrogate</u>		Perce	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		54.5	38 - 114		1/4/2017	23:55
2-Fluorobiphenyl			37.2	25 - 105		1/4/2017	23:55
2-Fluorophenol			40.2	30.8 - 84		1/4/2017	23:55
Nitrobenzene-d5			36.1	28.5 - 84.9		1/4/2017	23:55
Phenol-d5			44.6	32.5 - 89.6		1/4/2017	23:55
Terphenyl-d14			50.8	55.5 - 117	*	1/4/2017	23:55
Method Referen	nce(s): EPA	8270D					
Preparation Da Data File:	EPA te: 1/4, B16	. 3550C /2017 339.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-4				
Lab Sample ID:	165593-04			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 5.82	ug/Kg		1/4/2017 21:29
1,1,2,2-Tetrachloroet	hane	< 5.82	ug/Kg		1/4/2017 21:29
1,1,2-Trichloroethane	2	< 5.82	ug/Kg		1/4/2017 21:29
1,1-Dichloroethane		< 5.82	ug/Kg		1/4/2017 21:29
1,1-Dichloroethene		< 5.82	ug/Kg		1/4/2017 21:29
1,2,3-Trichlorobenzer	ne	< 14.6	ug/Kg		1/4/2017 21:29
1,2,4-Trichlorobenzer	ne	< 14.6	ug/Kg		1/4/2017 21:29
1,2,4-Trimethylbenze	ne	< 5.82	ug/Kg		1/4/2017 21:29
1,2-Dibromo-3-Chloro	opropane	< 29.1	ug/Kg		1/4/2017 21:29
1,2-Dibromoethane		< 5.82	ug/Kg		1/4/2017 21:29
1,2-Dichlorobenzene		< 5.82	ug/Kg		1/4/2017 21:29
1,2-Dichloroethane		< 5.82	ug/Kg		1/4/2017 21:29
1,2-Dichloropropane		< 5.82	ug/Kg		1/4/2017 21:29
1,3,5-Trimethylbenze	ne	< 5.82	ug/Kg		1/4/2017 21:29
1,3-Dichlorobenzene		< 5.82	ug/Kg		1/4/2017 21:29
1,4-Dichlorobenzene		< 5.82	ug/Kg		1/4/2017 21:29
1,4-dioxane		< 58.2	ug/Kg		1/4/2017 21:29
2-Butanone		< 29.1	ug/Kg		1/4/2017 21:29
2-Hexanone		< 14.6	ug/Kg		1/4/2017 21:29
4-Methyl-2-pentanon	e	< 14.6	ug/Kg		1/4/2017 21:29
Acetone		< 29.1	ug/Kg		1/4/2017 21:29
Benzene		< 5.82	ug/Kg		1/4/2017 21:29
Bromochloromethane	9	< 14.6	ug/Kg		1/4/2017 21:29
Bromodichlorometha	ne	< 5.82	ug/Kg		1/4/2017 21:29
Bromoform		< 14.6	ug/Kg		1/4/2017 21:29
Bromomethane		< 5.82	ug/Kg		1/4/2017 21:29
Carbon disulfide		< 5.82	ug/Kg		1/4/2017 21:29

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-4				
Lab Sample ID:	165593-04			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Carbon Tetrachloride		< 5.82	ug/Kg		1/4/2017 21:29
Chlorobenzene		< 5.82	ug/Kg		1/4/2017 21:29
Chloroethane		< 5.82	ug/Kg		1/4/2017 21:29
Chloroform		< 5.82	ug/Kg		1/4/2017 21:29
Chloromethane		< 5.82	ug/Kg		1/4/2017 21:29
cis-1,2-Dichloroethen	e	< 5.82	ug/Kg		1/4/2017 21:29
cis-1,3-Dichloroprope	ene	< 5.82	ug/Kg		1/4/2017 21:29
Cyclohexane		< 29.1	ug/Kg		1/4/2017 21:29
Dibromochlorometha	ne	< 5.82	ug/Kg		1/4/2017 21:29
Dichlorodifluorometh	ane	< 5.82	ug/Kg		1/4/2017 21:29
Ethylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
Freon 113		< 5.82	ug/Kg		1/4/2017 21:29
Isopropylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
m,p-Xylene		< 5.82	ug/Kg		1/4/2017 21:29
Methyl acetate		< 5.82	ug/Kg		1/4/2017 21:29
Methyl tert-butyl Ethe	er	< 5.82	ug/Kg		1/4/2017 21:29
Methylcyclohexane		< 5.82	ug/Kg		1/4/2017 21:29
Methylene chloride		< 14.6	ug/Kg		1/4/2017 21:29
Naphthalene		< 14.6	ug/Kg		1/4/2017 21:29
n-Butylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
n-Propylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
o-Xylene		< 5.82	ug/Kg		1/4/2017 21:29
p-Isopropyltoluene		< 5.82	ug/Kg		1/4/2017 21:29
sec-Butylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
Styrene		< 14.6	ug/Kg		1/4/2017 21:29
tert-Butylbenzene		< 5.82	ug/Kg		1/4/2017 21:29
Tetrachloroethene		< 5.82	ug/Kg		1/4/2017 21:29
Toluene		< 5.82	ug/Kg		1/4/2017 21:29
trans-1,2-Dichloroeth	ene	< 5.82	ug/Kg		1/4/2017 21:29
trans-1,3-Dichloropro	pene	< 5.82	ug/Kg		1/4/2017 21:29

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-4						
Lab Sample ID:	165593-04			Dat	e Sampled:	12/28/201	.6
Matrix:	Soil			Dat	e Received:	12/30/201	.6
Trichloroethene		< 5.82	ug/Kg			1/4/201	7 21:29
Trichlorofluorometha	ne	< 5.82	ug/Kg			1/4/201	7 21:29
Vinyl chloride		< 5.82	ug/Kg			1/4/201	7 21:29
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Anal	<u>yzed</u>
1,2-Dichloroethane-d4	Ļ		106	82 - 124		1/4/2017	21:29
4-Bromofluorobenzen	e		77.7	80.5 - 116	*	1/4/2017	21:29
Pentafluorobenzene			97.2	88.7 - 112		1/4/2017	21:29
Toluene-D8			94.2	79.1 - 120		1/4/2017	21:29
Internal standard	outliers indicate probabl	e matrix inter	ference				

Method Reference(s): EPA 8260C

EPA 5035A - L Data File: x38290.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	mpanies	5					
Project Reference:	100 Do	na Street						
Sample Identifier:	SS-5							
Lab Sample ID:	16559	93-05			Date Sampl	ed:	12/28/2016	
Matrix:	Soil				Date Receiv	ved:	12/30/2016	
<u>Metals</u>								
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualif	<u>ier</u>	Date Analyzed	
Arsenic			10.5	mg/Kg			1/4/2017 17:0	0
Barium			69.2	mg/Kg			1/4/2017 17:0	0
Beryllium			0.766	mg/Kg			1/4/2017 17:0	0
Cadmium			1.95	mg/Kg			1/4/2017 17:0	0
Chromium			48.7	mg/Kg			1/4/2017 17:0	0
Copper			41.6	mg/Kg			1/4/2017 17:0	0
Lead			174	mg/Kg			1/4/2017 17:0	0
Manganese			1490	mg/Kg			1/4/2017 18:2	6
Nickel			22.1	mg/Kg			1/4/2017 17:0	0
Selenium			2.42	mg/Kg			1/5/2017 16:4	2
Silver			< 0.664	mg/Kg			1/4/2017 17:0	0
Zinc			403	mg/Kg			1/4/2017 17:0	0
Method Refere	ence(s):	EPA 6010C EPA 3050B						
Preparation D Data File:	Date:	1/3/2017 010317b						

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-5		
Lab Sample ID:	165593-05	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016
Mercury			

.

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0983	mg/Kg		1/3/2017 16:43
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Compa</u>	<u>anies</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-5						
Lab Sample ID:	165593-05	5		Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016	5
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1221		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1232		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1242		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1248		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1254		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1260		0.0271	mg/Kg		J	1/5/2017	16:11
PCB-1262		< 0.0398	mg/Kg			1/5/2017	16:11
PCB-1268		< 0.0398	mg/Kg			1/5/2017	16:11
<u>Surrogate</u>		<u>Percen</u>	<u>t Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			11.8	10 - 144		1/5/2017	16:11
Tetrachloro-m-xylene	1		28.1	10 - 140		1/5/2017	16:11
Method Referer	te: 1/4/	8082A 3550C 2017					
- opulation Du	1/1/1						

1.3-Dichlorobenzene

1.4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

2.4-Dinitrotoluene

2.6-Dinitrotoluene

2-Chlorophenol

2-Methylphenol

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

3&4-Methylphenol

3,3'-Dichlorobenzidine

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

4-Chloro-3-methylphenol

2-Chloronaphthalene

2-Methylnapthalene

2,2-Oxybis (1-chloropropane)

2,3,4,6-Tetrachlorophenol

Lab Project ID: 165593

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

1/5/2017 00:24

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-5				
Lab Sample ID:	165593-05			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	r <mark>s (Acid/Base Ne</mark>	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 401	ug/Kg		1/5/2017 00:24
1,2,4,5-Tetrachlorobe	enzene	< 401	ug/Kg		1/5/2017 00:24
1,2,4-Trichlorobenze	ne	< 401	ug/Kg		1/5/2017 00:24
1.2-Dichlorobenzene		< 401	ug/Kg		1/5/2017 00:24

ug/Kg

< 401

< 401

< 401

< 401

< 803

< 401

< 401

< 401

< 803

< 401

< 401

< 401

< 401

< 401

< 401

< 803

< 401

< 401

< 401

< 803

< 803

< 401

< 401

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provide
additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-5				
Lab Sample ID:	165593-05			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 401	ug/Kg		1/5/2017 00:24
4-Chlorophenyl pheny	/l ether	< 401	ug/Kg		1/5/2017 00:24
4-Nitroaniline		< 803	ug/Kg		1/5/2017 00:24
4-Nitrophenol		< 803	ug/Kg		1/5/2017 00:24
Acenaphthene		< 401	ug/Kg		1/5/2017 00:24
Acenaphthylene		< 401	ug/Kg		1/5/2017 00:24
Acetophenone		< 401	ug/Kg		1/5/2017 00:24
Anthracene		210	ug/Kg	J	1/5/2017 00:24
Atrazine		< 401	ug/Kg		1/5/2017 00:24
Benzaldehyde		< 401	ug/Kg		1/5/2017 00:24
Benzo (a) anthracene		639	ug/Kg		1/5/2017 00:24
Benzo (a) pyrene		610	ug/Kg		1/5/2017 00:24
Benzo (b) fluoranthen	e	640	ug/Kg		1/5/2017 00:24
Benzo (g,h,i) perylene		445	ug/Kg		1/5/2017 00:24
Benzo (k) fluoranthen	e	550	ug/Kg		1/5/2017 00:24
Bis (2-chloroethoxy)	nethane	< 401	ug/Kg		1/5/2017 00:24
Bis (2-chloroethyl) et	her	< 401	ug/Kg		1/5/2017 00:24
Bis (2-ethylhexyl) pht	halate	< 401	ug/Kg		1/5/2017 00:24
Butylbenzylphthalate		< 401	ug/Kg		1/5/2017 00:24
Caprolactam		< 401	ug/Kg		1/5/2017 00:24
Carbazole		< 401	ug/Kg		1/5/2017 00:24
Chrysene		757	ug/Kg		1/5/2017 00:24
Dibenz (a,h) anthrace	ne	< 401	ug/Kg		1/5/2017 00:24
Dibenzofuran		< 401	ug/Kg		1/5/2017 00:24
Diethyl phthalate		< 401	ug/Kg		1/5/2017 00:24
Dimethyl phthalate		< 803	ug/Kg		1/5/2017 00:24
Di-n-butyl phthalate		< 401	ug/Kg		1/5/2017 00:24
Di-n-octylphthalate		< 401	ug/Kg		1/5/2017 00:24
Fluoranthene		1410	ug/Kg		1/5/2017 00:24
Fluorene		< 401	ug/Kg		1/5/2017 00:24

Client:	<u>C&S Compa</u>	<u>nies</u>					
Project Reference:	100 Dona Sti	reet					
Sample Identifier:	SS-5						
Lab Sample ID:	165593-05			Date	e Sampled:	12/28/2016	5
Matrix:	Soil			Date	e Received:	12/30/2016	6
Hexachlorobenzene		< 401	ug/Kg			1/5/2017	00:24
Hexachlorobutadiene		< 401	ug/Kg			1/5/2017	00:24
Hexachlorocyclopenta	diene	< 401	ug/Kg			1/5/2017	00:24
Hexachloroethane		< 401	ug/Kg			1/5/2017	00:24
Indeno (1,2,3-cd) pyre	ene	325	ug/Kg		J	1/5/2017	00:24
Isophorone		< 401	ug/Kg			1/5/2017	00:24
Naphthalene		< 401	ug/Kg			1/5/2017	00:24
Nitrobenzene		< 401	ug/Kg			1/5/2017	00:24
N-Nitroso-di-n-propyl	amine	< 401	ug/Kg			1/5/2017	00:24
N-Nitrosodiphenylam	ine	< 401	ug/Kg	1		1/5/2017	00:24
Pentachlorophenol		< 803	ug/Kg			1/5/2017	00:24
Phenanthrene		644	ug/Kg			1/5/2017	00:24
Phenol		< 401	ug/Kg			1/5/2017	00:24
Pyrene		1080	ug/Kg			1/5/2017	00:24
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol			54.4	38 - 114		1/5/2017	00:24
2-Fluorobiphenyl			37.1	25 - 105		1/5/2017	00:24
2-Fluorophenol			38.9	30.8 - 84		1/5/2017	00:24
Nitrobenzene-d5			37.4	28.5 - 84.9		1/5/2017	00:24
Phenol-d5			41.7	32.5 - 89.6		1/5/2017	00:24
Terphenyl-d14			50.4	55.5 - 117	*	1/5/2017	00:24
Method Referen	ce(s): EPA 82	270D					
Preparation Da Data File:	EPA 35 te: 1/4/2 B1634	550C 017 0.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-5				
Lab Sample ID:	165593-05			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.19	ug/Kg		1/4/2017 21:02
1,1,2,2-Tetrachloroet	hane	< 4.19	ug/Kg		1/4/2017 21:02
1,1,2-Trichloroethane	2	< 4.19	ug/Kg		1/4/2017 21:02
1,1-Dichloroethane		< 4.19	ug/Kg		1/4/2017 21:02
1,1-Dichloroethene		< 4.19	ug/Kg		1/4/2017 21:02
1,2,3-Trichlorobenzer	ne	< 10.5	ug/Kg		1/4/2017 21:02
1,2,4-Trichlorobenzer	ne	< 10.5	ug/Kg		1/4/2017 21:02
1,2,4-Trimethylbenze	ne	< 4.19	ug/Kg		1/4/2017 21:02
1,2-Dibromo-3-Chloro	opropane	< 21.0	ug/Kg		1/4/2017 21:02
1,2-Dibromoethane		< 4.19	ug/Kg		1/4/2017 21:02
1,2-Dichlorobenzene		< 4.19	ug/Kg		1/4/2017 21:02
1,2-Dichloroethane		< 4.19	ug/Kg		1/4/2017 21:02
1,2-Dichloropropane		< 4.19	ug/Kg		1/4/2017 21:02
1,3,5-Trimethylbenze	ne	< 4.19	ug/Kg		1/4/2017 21:02
1,3-Dichlorobenzene		< 4.19	ug/Kg		1/4/2017 21:02
1,4-Dichlorobenzene		< 4.19	ug/Kg		1/4/2017 21:02
1,4-dioxane		< 41.9	ug/Kg		1/4/2017 21:02
2-Butanone		< 21.0	ug/Kg		1/4/2017 21:02
2-Hexanone		< 10.5	ug/Kg		1/4/2017 21:02
4-Methyl-2-pentanon	e	< 10.5	ug/Kg		1/4/2017 21:02
Acetone		< 21.0	ug/Kg		1/4/2017 21:02
Benzene		< 4.19	ug/Kg		1/4/2017 21:02
Bromochloromethane	9	< 10.5	ug/Kg		1/4/2017 21:02
Bromodichlorometha	ne	< 4.19	ug/Kg		1/4/2017 21:02
Bromoform		< 10.5	ug/Kg		1/4/2017 21:02
Bromomethane		< 4.19	ug/Kg		1/4/2017 21:02
Carbon disulfide		< 4.19	ug/Kg		1/4/2017 21:02

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-5				
Lab Sample ID:	165593-05			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Carbon Tetrachloride		< 4.19	ug/Kg		1/4/2017 21:02
Chlorobenzene		< 4.19	ug/Kg		1/4/2017 21:02
Chloroethane		< 4.19	ug/Kg		1/4/2017 21:02
Chloroform		< 4.19	ug/Kg		1/4/2017 21:02
Chloromethane		< 4.19	ug/Kg		1/4/2017 21:02
cis-1,2-Dichloroethen	e	< 4.19	ug/Kg		1/4/2017 21:02
cis-1,3-Dichloroprope	ene	< 4.19	ug/Kg		1/4/2017 21:02
Cyclohexane		< 21.0	ug/Kg		1/4/2017 21:02
Dibromochlorometha	ne	< 4.19	ug/Kg		1/4/2017 21:02
Dichlorodifluorometh	ane	< 4.19	ug/Kg		1/4/2017 21:02
Ethylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
Freon 113		< 4.19	ug/Kg		1/4/2017 21:02
Isopropylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
m,p-Xylene		< 4.19	ug/Kg		1/4/2017 21:02
Methyl acetate		< 4.19	ug/Kg		1/4/2017 21:02
Methyl tert-butyl Ethe	er	< 4.19	ug/Kg		1/4/2017 21:02
Methylcyclohexane		< 4.19	ug/Kg		1/4/2017 21:02
Methylene chloride		< 10.5	ug/Kg		1/4/2017 21:02
Naphthalene		< 10.5	ug/Kg		1/4/2017 21:02
n-Butylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
n-Propylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
o-Xylene		< 4.19	ug/Kg		1/4/2017 21:02
p-Isopropyltoluene		< 4.19	ug/Kg		1/4/2017 21:02
sec-Butylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
Styrene		< 10.5	ug/Kg		1/4/2017 21:02
tert-Butylbenzene		< 4.19	ug/Kg		1/4/2017 21:02
Tetrachloroethene		< 4.19	ug/Kg		1/4/2017 21:02
Toluene		< 4.19	ug/Kg		1/4/2017 21:02
trans-1,2-Dichloroeth	ene	< 4.19	ug/Kg		1/4/2017 21:02
trans-1,3-Dichloropro	opene	< 4.19	ug/Kg		1/4/2017 21:02

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-5						
Lab Sample ID:	165593-05			Dat	e Sampled:	12/28/201	6
Matrix:	Soil			Dat	e Received:	12/30/201	6
Trichloroethene		< 4.19	ug/Kg			1/4/2017	21:02
Trichlorofluoromethar	ie	< 4.19	ug/Kg			1/4/2017	21:02
Vinyl chloride		< 4.19	ug/Kg			1/4/2017	21:02
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			105	82 - 124		1/4/2017	21:02
4-Bromofluorobenzen	e		76.2	80.5 - 116	*	1/4/2017	21:02
Pentafluorobenzene			98.2	88.7 - 112		1/4/2017	21:02
Toluene-D8			92.7	79.1 - 120		1/4/2017	21:02
Internal standard	outliers indicate probabl	e matrix inter	ference				

EPA 8260C

Method Reference(s):

	EPA 5035A - L
Data File:	x38289.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u> 1	<u>mpanies</u>						
Project Reference:	100 Dor	na Street						
Sample Identifier:	SS-6							
Lab Sample ID:	165593	3-06]	Date Sampled:	12/28/2016	
Matrix:	Soil]	Date Received:	12/30/2016	
<u>Metals</u>								
<u>Analyte</u>			<u>Result</u>	<u>Units</u>		<u>Qualifier</u>	Date Analyz	ed
Arsenic			8.84	mg/Kg			1/4/2017	17:04
Barium			47.5	mg/Kg			1/4/2017	17:04
Beryllium			0.443	mg/Kg			1/4/2017	17:04
Cadmium			1.30	mg/Kg			1/4/2017	17:04
Chromium			33.3	mg/Kg			1/4/2017	17:04
Copper			29.8	mg/Kg			1/4/2017	17:04
Lead			104	mg/Kg			1/4/2017	17:04
Manganese			1110	mg/Kg			1/4/2017	18:30
Nickel			16.5	mg/Kg			1/4/2017	17:04
Selenium			0.910	mg/Kg			1/4/2017	17:04
Silver			< 0.596	mg/Kg			1/4/2017	17:04
Zinc			268	mg/Kg			1/4/2017	17:04
Method Refer	ence(s):	EPA 6010C EPA 3050B						
Preparation I Data File:	Date:	1/3/2017 010317b						

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-6		
Lab Sample ID:	165593-06	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0736	mg/Kg		1/3/2017 16:47
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Stre	eet					
Sample Identifier:	SS-6						
Lab Sample ID:	165593-06			Date	e Sampled:	12/28/2016	ò
Matrix:	Soil			Date	e Received:	12/30/2016	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1221		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1232		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1242		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1248		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1254		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1260		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1262		< 0.0376	mg/Kg			1/5/2017	16:33
PCB-1268		< 0.0376	mg/Kg			1/5/2017	16:33
<u>Surrogate</u>		<u>Percen</u>	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			51.7	10 - 144		1/5/2017	16:33
Tetrachloro-m-xylene			30.6	10 - 140		1/5/2017	16:33
Method Referen	ce(s): EPA 808 EPA 355	2A 0C					
Preparation Dat	te: 1/4/201	./					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-6				
Lab Sample ID:	165593-06			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	<u>rs (Acid/Base Ne</u>	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 385	ug/Kg		1/5/2017 00:54
1,2,4,5-Tetrachlorobe	enzene	< 385	ug/Kg		1/5/2017 00:54
1,2,4-Trichlorobenze	ne	< 385	ug/Kg		1/5/2017 00:54
1,2-Dichlorobenzene		< 385	ug/Kg		1/5/2017 00:54
1,3-Dichlorobenzene		< 385	ug/Kg		1/5/2017 00:54
1,4-Dichlorobenzene		< 385	ug/Kg		1/5/2017 00:54
2,2-Oxybis (1-chlorop	propane)	< 385	ug/Kg		1/5/2017 00:54
2,3,4,6-Tetrachloroph	nenol	< 385	ug/Kg		1/5/2017 00:54
2,4,5-Trichloropheno	l	< 770	ug/Kg		1/5/2017 00:54
2,4,6-Trichloropheno	l	< 385	ug/Kg		1/5/2017 00:54
2,4-Dichlorophenol		< 385	ug/Kg		1/5/2017 00:54
2,4-Dimethylphenol		< 385	ug/Kg		1/5/2017 00:54
2,4-Dinitrophenol		< 770	ug/Kg		1/5/2017 00:54
2,4-Dinitrotoluene		< 385	ug/Kg		1/5/2017 00:54
2,6-Dinitrotoluene		< 385	ug/Kg		1/5/2017 00:54
2-Chloronaphthalene	2	< 385	ug/Kg		1/5/2017 00:54
2-Chlorophenol		< 385	ug/Kg		1/5/2017 00:54
2-Methylnapthalene		< 385	ug/Kg		1/5/2017 00:54
2-Methylphenol		< 385	ug/Kg		1/5/2017 00:54
2-Nitroaniline		< 770	ug/Kg		1/5/2017 00:54
2-Nitrophenol		< 385	ug/Kg		1/5/2017 00:54
3&4-Methylphenol		< 385	ug/Kg		1/5/2017 00:54
3,3'-Dichlorobenzidir	ie	< 385	ug/Kg		1/5/2017 00:54
3-Nitroaniline		< 770	ug/Kg		1/5/2017 00:54

4,6-Dinitro-2-methylphenol< 770</th>ug/Kg1/5/201700:544-Bromophenyl phenyl ether< 385</td>ug/Kg1/5/201700:544-Chloro-3-methylphenol< 385</td>ug/Kg1/5/201700:54

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-6				
Lab Sample ID:	165593-06			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 385	ug/Kg		1/5/2017 00:54
4-Chlorophenyl pheny	vl ether	< 385	ug/Kg		1/5/2017 00:54
4-Nitroaniline		< 770	ug/Kg		1/5/2017 00:54
4-Nitrophenol		< 770	ug/Kg		1/5/2017 00:54
Acenaphthene		< 385	ug/Kg		1/5/2017 00:54
Acenaphthylene		< 385	ug/Kg		1/5/2017 00:54
Acetophenone		< 385	ug/Kg		1/5/2017 00:54
Anthracene		< 385	ug/Kg		1/5/2017 00:54
Atrazine		< 385	ug/Kg		1/5/2017 00:54
Benzaldehyde		< 385	ug/Kg		1/5/2017 00:54
Benzo (a) anthracene		513	ug/Kg		1/5/2017 00:54
Benzo (a) pyrene		478	ug/Kg		1/5/2017 00:54
Benzo (b) fluoranthen	e	492	ug/Kg		1/5/2017 00:54
Benzo (g,h,i) perylene		318	ug/Kg	J	1/5/2017 00:54
Benzo (k) fluoranthen	e	406	ug/Kg		1/5/2017 00:54
Bis (2-chloroethoxy) r	nethane	< 385	ug/Kg		1/5/2017 00:54
Bis (2-chloroethyl) etl	her	< 385	ug/Kg		1/5/2017 00:54
Bis (2-ethylhexyl) pht	halate	< 385	ug/Kg		1/5/2017 00:54
Butylbenzylphthalate		< 385	ug/Kg		1/5/2017 00:54
Caprolactam		< 385	ug/Kg		1/5/2017 00:54
Carbazole		< 385	ug/Kg		1/5/2017 00:54
Chrysene		625	ug/Kg		1/5/2017 00:54
Dibenz (a,h) anthrace	ne	< 385	ug/Kg		1/5/2017 00:54
Dibenzofuran		< 385	ug/Kg		1/5/2017 00:54
Diethyl phthalate		< 385	ug/Kg		1/5/2017 00:54
Dimethyl phthalate		< 770	ug/Kg		1/5/2017 00:54
Di-n-butyl phthalate		< 385	ug/Kg		1/5/2017 00:54
Di-n-octylphthalate		< 385	ug/Kg		1/5/2017 00:54
Fluoranthene		1140	ug/Kg		1/5/2017 00:54
Fluorene		< 385	ug/Kg		1/5/2017 00:54

Client:	<u>C&S Compan</u>	<u>lies</u>					
Project Reference:	100 Dona Str	eet					
Sample Identifier:	SS-6						
Lab Sample ID:	165593-06			Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016	
Hexachlorobenzene		< 385	ug/Kg			1/5/2017	00:54
Hexachlorobutadiene		< 385	ug/Kg			1/5/2017	00:54
Hexachlorocyclopenta	adiene	< 385	ug/Kg			1/5/2017	00:54
Hexachloroethane		< 385	ug/Kg			1/5/2017	00:54
Indeno (1,2,3-cd) pyre	ene	227	ug/Kg		J	1/5/2017	00:54
Isophorone		< 385	ug/Kg			1/5/2017	00:54
Naphthalene		< 385	ug/Kg			1/5/2017	00:54
Nitrobenzene		< 385	ug/Kg			1/5/2017	00:54
N-Nitroso-di-n-propy	lamine	< 385	ug/Kg			1/5/2017	00:54
N-Nitrosodiphenylam	ine	< 385	ug/Kg	1		1/5/2017	00:54
Pentachlorophenol		< 770	ug/Kg			1/5/2017	00:54
Phenanthrene		627	ug/Kg			1/5/2017	00:54
Phenol		< 385	ug/Kg			1/5/2017	00:54
Pyrene		890	ug/Kg			1/5/2017	00:54
Surrogate		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		60.9	38 - 114		1/5/2017	00:54
2-Fluorobiphenyl			40.1	25 - 105		1/5/2017	00:54
2-Fluorophenol			39.9	30.8 - 84		1/5/2017	00:54
Nitrobenzene-d5			38.6	28.5 - 84.9		1/5/2017	00:54
Phenol-d5			41.3	32.5 - 89.6		1/5/2017	00:54
Terphenyl-d14			60.4	55.5 - 117		1/5/2017	00:54
Method Referen	nce(s): EPA 82	70D					
Preparation Da Data File:	EPA 35 te: 1/4/20 B16341	50C 17 L.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-6				
Lab Sample ID:	165593-06			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.48	ug/Kg		1/4/2017 20:38
1,1,2,2-Tetrachloroet	hane	< 4.48	ug/Kg		1/4/2017 20:38
1,1,2-Trichloroethane	2	< 4.48	ug/Kg		1/4/2017 20:38
1,1-Dichloroethane		< 4.48	ug/Kg		1/4/2017 20:38
1,1-Dichloroethene		< 4.48	ug/Kg		1/4/2017 20:38
1,2,3-Trichlorobenzer	ne	< 11.2	ug/Kg		1/4/2017 20:38
1,2,4-Trichlorobenzer	ne	< 11.2	ug/Kg		1/4/2017 20:38
1,2,4-Trimethylbenze	ne	< 4.48	ug/Kg		1/4/2017 20:38
1,2-Dibromo-3-Chloro	opropane	< 22.4	ug/Kg		1/4/2017 20:38
1,2-Dibromoethane		< 4.48	ug/Kg		1/4/2017 20:38
1,2-Dichlorobenzene		< 4.48	ug/Kg		1/4/2017 20:38
1,2-Dichloroethane		< 4.48	ug/Kg		1/4/2017 20:38
1,2-Dichloropropane		< 4.48	ug/Kg		1/4/2017 20:38
1,3,5-Trimethylbenze	ne	< 4.48	ug/Kg		1/4/2017 20:38
1,3-Dichlorobenzene		< 4.48	ug/Kg		1/4/2017 20:38
1,4-Dichlorobenzene		< 4.48	ug/Kg		1/4/2017 20:38
1,4-dioxane		< 44.8	ug/Kg		1/4/2017 20:38
2-Butanone		< 22.4	ug/Kg		1/4/2017 20:38
2-Hexanone		< 11.2	ug/Kg		1/4/2017 20:38
4-Methyl-2-pentanon	e	< 11.2	ug/Kg		1/4/2017 20:38
Acetone		< 22.4	ug/Kg		1/4/2017 20:38
Benzene		< 4.48	ug/Kg		1/4/2017 20:38
Bromochloromethane	9	< 11.2	ug/Kg		1/4/2017 20:38
Bromodichlorometha	ne	< 4.48	ug/Kg		1/4/2017 20:38
Bromoform		< 11.2	ug/Kg		1/4/2017 20:38
Bromomethane		< 4.48	ug/Kg		1/4/2017 20:38
Carbon disulfide		< 4.48	ug/Kg		1/4/2017 20:38

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-6				
Lab Sample ID:	165593-06			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Carbon Tetrachloride		< 4.48	ug/Kg		1/4/2017 20:38
Chlorobenzene		< 4.48	ug/Kg		1/4/2017 20:38
Chloroethane		< 4.48	ug/Kg		1/4/2017 20:38
Chloroform		< 4.48	ug/Kg		1/4/2017 20:38
Chloromethane		< 4.48	ug/Kg		1/4/2017 20:38
cis-1,2-Dichloroethen	e	< 4.48	ug/Kg		1/4/2017 20:38
cis-1,3-Dichloroprope	ne	< 4.48	ug/Kg		1/4/2017 20:38
Cyclohexane		< 22.4	ug/Kg		1/4/2017 20:38
Dibromochlorometha	ne	< 4.48	ug/Kg		1/4/2017 20:38
Dichlorodifluorometh	ane	< 4.48	ug/Kg		1/4/2017 20:38
Ethylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
Freon 113		< 4.48	ug/Kg		1/4/2017 20:38
Isopropylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
m,p-Xylene		< 4.48	ug/Kg		1/4/2017 20:38
Methyl acetate		< 4.48	ug/Kg		1/4/2017 20:38
Methyl tert-butyl Ethe	er	< 4.48	ug/Kg		1/4/2017 20:38
Methylcyclohexane		< 4.48	ug/Kg		1/4/2017 20:38
Methylene chloride		< 11.2	ug/Kg		1/4/2017 20:38
Naphthalene		< 11.2	ug/Kg		1/4/2017 20:38
n-Butylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
n-Propylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
o-Xylene		< 4.48	ug/Kg		1/4/2017 20:38
p-Isopropyltoluene		< 4.48	ug/Kg		1/4/2017 20:38
sec-Butylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
Styrene		< 11.2	ug/Kg		1/4/2017 20:38
tert-Butylbenzene		< 4.48	ug/Kg		1/4/2017 20:38
Tetrachloroethene		< 4.48	ug/Kg		1/4/2017 20:38
Toluene		< 4.48	ug/Kg		1/4/2017 20:38
trans-1,2-Dichloroeth	ene	< 4.48	ug/Kg		1/4/2017 20:38
trans-1,3-Dichloropro	pene	< 4.48	ug/Kg		1/4/2017 20:38

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-6						
Lab Sample ID:	165593-06			Dat	e Sampled:	12/28/201	6
Matrix:	Soil			Dat	e Received:	12/30/201	6
Trichloroethene		< 4.48	ug/Kg			1/4/201	7 20:38
Trichlorofluorometha	ane	< 4.48	ug/Kg			1/4/201	7 20:38
Vinyl chloride		< 4.48	ug/Kg			1/4/201	7 20:38
<u>Surrogate</u>		Perc	<u>ent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Anal	<u>yzed</u>
1,2-Dichloroethane-d	4		106	82 - 124		1/4/2017	20:38
4-Bromofluorobenzer	ne		80.3	80.5 - 116	*	1/4/2017	20:38
Pentafluorobenzene			97.7	88.7 - 112		1/4/2017	20:38
Toluene-D8			94.3	79.1 - 120		1/4/2017	20:38
Internal standar Mothod Rofero	d outliers indicate probab	le matrix interj C	ference				

Method Reference(s): EPA 8260C

EPA 5035A - L Data File: x38288.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-7		
Lab Sample ID:	165593-07	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0825	mg/Kg		1/3/2017 16:50
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

Client:	<u>C&S Compan</u>	<u>ies</u>			
Project Reference:	100 Dona Stre	eet			
Sample Identifier:	SS-7				
Lab Sample ID:	165593-07			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		7660	mg/Kg		1/4/2017 17:08
Antimony		< 3.78	mg/Kg		1/4/2017 17:08
Arsenic		8.87	mg/Kg		1/4/2017 17:08
Barium		50.9	mg/Kg		1/4/2017 17:08
Beryllium		0.443	mg/Kg		1/4/2017 17:08
Cadmium		1.54	mg/Kg		1/4/2017 17:08
Calcium		12500	mg/Kg		1/3/2017 19:08
Chromium		33.1	mg/Kg		1/4/2017 17:08
Cobalt		5.60	mg/Kg		1/4/2017 17:08
Copper		30.4	mg/Kg		1/4/2017 17:08
Iron		20900	mg/Kg		1/4/2017 17:08
Lead		124	mg/Kg		1/4/2017 17:08
Magnesium		3560	mg/Kg		1/4/2017 17:08
Manganese		1010	mg/Kg		1/4/2017 18:34
Nickel		17.8	mg/Kg		1/4/2017 17:08
Potassium		955	mg/Kg		1/4/2017 17:08
Selenium		< 0.630	mg/Kg		1/3/2017 19:08
Silver		< 0.630	mg/Kg		1/4/2017 17:08
Sodium		< 157	mg/Kg		1/4/2017 17:08
Thallium		< 1.57	mg/Kg		1/4/2017 17:08
Vanadium		26.7	mg/Kg		1/4/2017 17:08
Zinc		329	mg/Kg		1/4/2017 17:08
Method Refere	nce(s): EPA 601 EPA 305	10C 50B			
Data File:	1/3/20. 010317	b			

<u>C&S Companie</u>	<u>es</u>					
100 Dona Stree	et					
SS-7						
165593-07			Dat	e Sampled:	12/28/2016)
Soil			Dat	e Received:	12/30/2016)
	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	< 0.0377	mg/Kg			1/5/2017	16:56
	<u>Percer</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
		31.1	10 - 144		1/5/2017	16:56
		21.9	10 - 140		1/5/2017	16:56
e(s): EPA 8082 EPA 3550 e: 1/4/2017	A C					
	C&S Companie 100 Dona Stree SS-7 165593-07 Soil Soil EPA 8082 EPA 3550 e: 1/4/2017	C&S Companies 100 Dona Street SS-7 165593-07 Soil Result < 0.0377	C&S Companies 100 Dona Street SS-7 165593-07 Soil Result Units < 0.0377	C&S Companies 100 Dona Street SS-7 165593-07 Dat Soil Result Units < 0.0377	C&S Companies 100 Dona Street SS-7 165593-07 Soil Date Sampled: Soil Result Units Qualifier < 0.0377	C&S Companies 100 Dona Street SS-7 165593-07 Date Sampled: Soil 12/28/2016 Soil Date Received: Result Units Qualifier < 0.0377

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-7				
Lab Sample ID:	165593-07			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	s (Acid/Base Ne	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 375	ug/Kg		1/5/2017 01:23
1,2,4,5-Tetrachlorobe	enzene	< 375	ug/Kg		1/5/2017 01:23
1,2,4-Trichlorobenzer	ne	< 375	ug/Kg		1/5/2017 01:23
1,2-Dichlorobenzene		< 375	ug/Kg		1/5/2017 01:23
1,3-Dichlorobenzene		< 375	ug/Kg		1/5/2017 01:23
1,4-Dichlorobenzene		< 375	ug/Kg		1/5/2017 01:23
2,2-Oxybis (1-chlorop	oropane)	< 375	ug/Kg		1/5/2017 01:23
2,3,4,6-Tetrachloroph	ienol	< 375	ug/Kg		1/5/2017 01:23
2,4,5-Trichloropheno	l	< 750	ug/Kg		1/5/2017 01:23
2,4,6-Trichloropheno	l	< 375	ug/Kg		1/5/2017 01:23
2,4-Dichlorophenol		< 375	ug/Kg		1/5/2017 01:23
2,4-Dimethylphenol		< 375	ug/Kg		1/5/2017 01:23
2,4-Dinitrophenol		< 750	ug/Kg		1/5/2017 01:23
2,4-Dinitrotoluene		< 375	ug/Kg		1/5/2017 01:23
2,6-Dinitrotoluene		< 375	ug/Kg		1/5/2017 01:23
2-Chloronaphthalene		< 375	ug/Kg		1/5/2017 01:23
2-Chlorophenol		< 375	ug/Kg		1/5/2017 01:23
2-Methylnapthalene		< 375	ug/Kg		1/5/2017 01:23
2-Methylphenol		< 375	ug/Kg		1/5/2017 01:23
2-Nitroaniline		< 750	ug/Kg		1/5/2017 01:23
2-Nitrophenol		< 375	ug/Kg		1/5/2017 01:23
3&4-Methylphenol		< 375	ug/Kg		1/5/2017 01:23
3,3'-Dichlorobenzidin	e	< 375	ug/Kg		1/5/2017 01:23
3-Nitroaniline		< 750	ug/Kg		1/5/2017 01:23
4,6-Dinitro-2-methylp	ohenol	< 750	ug/Kg		1/5/2017 01:23

4-Bromophenyl phenyl ether< 375</th>ug/Kg1/5/201701:234-Chloro-3-methylphenol< 375</td>ug/Kg1/5/201701:23

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-7				
Lab Sample ID:	165593-07			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 375	ug/Kg		1/5/2017 01:23
4-Chlorophenyl pheny	/l ether	< 375	ug/Kg		1/5/2017 01:23
4-Nitroaniline		< 750	ug/Kg		1/5/2017 01:23
4-Nitrophenol		< 750	ug/Kg		1/5/2017 01:23
Acenaphthene		< 375	ug/Kg		1/5/2017 01:23
Acenaphthylene		< 375	ug/Kg		1/5/2017 01:23
Acetophenone		< 375	ug/Kg		1/5/2017 01:23
Anthracene		< 375	ug/Kg		1/5/2017 01:23
Atrazine		< 375	ug/Kg		1/5/2017 01:23
Benzaldehyde		< 375	ug/Kg		1/5/2017 01:23
Benzo (a) anthracene		320	ug/Kg	J	1/5/2017 01:23
Benzo (a) pyrene		317	ug/Kg	J	1/5/2017 01:23
Benzo (b) fluoranther	ie	340	ug/Kg	J	1/5/2017 01:23
Benzo (g,h,i) perylene		221	ug/Kg	J	1/5/2017 01:23
Benzo (k) fluoranthen	ie	244	ug/Kg	J	1/5/2017 01:23
Bis (2-chloroethoxy)	methane	< 375	ug/Kg		1/5/2017 01:23
Bis (2-chloroethyl) et	her	< 375	ug/Kg		1/5/2017 01:23
Bis (2-ethylhexyl) pht	halate	< 375	ug/Kg		1/5/2017 01:23
Butylbenzylphthalate		< 375	ug/Kg		1/5/2017 01:23
Caprolactam		< 375	ug/Kg		1/5/2017 01:23
Carbazole		< 375	ug/Kg		1/5/2017 01:23
Chrysene		384	ug/Kg		1/5/2017 01:23
Dibenz (a,h) anthrace	ne	< 375	ug/Kg		1/5/2017 01:23
Dibenzofuran		< 375	ug/Kg		1/5/2017 01:23
Diethyl phthalate		< 375	ug/Kg		1/5/2017 01:23
Dimethyl phthalate		< 750	ug/Kg		1/5/2017 01:23
Di-n-butyl phthalate		< 375	ug/Kg		1/5/2017 01:23
Di-n-octylphthalate		< 375	ug/Kg		1/5/2017 01:23
Fluoranthene		715	ug/Kg		1/5/2017 01:23
Fluorene		< 375	ug/Kg		1/5/2017 01:23

Client:	<u>C&S Com</u> j	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	SS-7						
Lab Sample ID:	165593-	07		Date	e Sampled:	12/28/2016	5
Matrix:	Soil			Date	e Received:	12/30/2016	5
Hexachlorobenzene		< 375	ug/Kg			1/5/2017	01:23
Hexachlorobutadiene		< 375	ug/Kg			1/5/2017	01:23
Hexachlorocyclopenta	adiene	< 375	ug/Kg			1/5/2017	01:23
Hexachloroethane		< 375	ug/Kg			1/5/2017	01:23
Indeno (1,2,3-cd) pyre	ene	< 375	ug/Kg			1/5/2017	01:23
Isophorone		< 375	ug/Kg			1/5/2017	01:23
Naphthalene		< 375	ug/Kg			1/5/2017	01:23
Nitrobenzene		< 375	ug/Kg			1/5/2017	01:23
N-Nitroso-di-n-propy	lamine	< 375	ug/Kg			1/5/2017	01:23
N-Nitrosodiphenylam	line	< 375	ug/Kg			1/5/2017	01:23
Pentachlorophenol		< 750	ug/Kg			1/5/2017	01:23
Phenanthrene		360	ug/Kg		J	1/5/2017	01:23
Phenol		< 375	ug/Kg			1/5/2017	01:23
Pyrene		566	ug/Kg			1/5/2017	01:23
Surrogate		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	1		58.5	38 - 114		1/5/2017	01:23
2-Fluorobiphenyl			43.1	25 - 105		1/5/2017	01:23
2-Fluorophenol			42.2	30.8 - 84		1/5/2017	01:23
Nitrobenzene-d5			40.6	28.5 - 84.9		1/5/2017	01:23
Phenol-d5			43.5	32.5 - 89.6		1/5/2017	01:23
Terphenyl-d14			58.3	55.5 - 117		1/5/2017	01:23
Method Referen	nce(s): EP	A 8270D					
Preparation Da Data File:	EP te: 1/- B1	A 3550C 4/2017 6342.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-7				
Lab Sample ID:	165593-07			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.60	ug/Kg		1/4/2017 20:13
1,1,2,2-Tetrachloroet	hane	< 4.60	ug/Kg		1/4/2017 20:13
1,1,2-Trichloroethane		< 4.60	ug/Kg		1/4/2017 20:13
1,1-Dichloroethane		< 4.60	ug/Kg		1/4/2017 20:13
1,1-Dichloroethene		< 4.60	ug/Kg		1/4/2017 20:13
1,2,3-Trichlorobenzer	ne	< 11.5	ug/Kg		1/4/2017 20:13
1,2,4-Trichlorobenzer	ne	< 11.5	ug/Kg		1/4/2017 20:13
1,2-Dibromo-3-Chloro	opropane	< 23.0	ug/Kg		1/4/2017 20:13
1,2-Dibromoethane		< 4.60	ug/Kg		1/4/2017 20:13
1,2-Dichlorobenzene		< 4.60	ug/Kg		1/4/2017 20:13
1,2-Dichloroethane		< 4.60	ug/Kg		1/4/2017 20:13
1,2-Dichloropropane		< 4.60	ug/Kg		1/4/2017 20:13
1,3-Dichlorobenzene		< 4.60	ug/Kg		1/4/2017 20:13
1,4-Dichlorobenzene		< 4.60	ug/Kg		1/4/2017 20:13
1,4-dioxane		< 46.0	ug/Kg		1/4/2017 20:13
2-Butanone		< 23.0	ug/Kg		1/4/2017 20:13
2-Hexanone		< 11.5	ug/Kg		1/4/2017 20:13
4-Methyl-2-pentanon	e	< 11.5	ug/Kg		1/4/2017 20:13
Acetone		< 23.0	ug/Kg		1/4/2017 20:13
Benzene		< 4.60	ug/Kg		1/4/2017 20:13
Bromochloromethane	2	< 11.5	ug/Kg		1/4/2017 20:13
Bromodichlorometha	ne	< 4.60	ug/Kg		1/4/2017 20:13
Bromoform		< 11.5	ug/Kg		1/4/2017 20:13
Bromomethane		< 4.60	ug/Kg		1/4/2017 20:13
Carbon disulfide		< 4.60	ug/Kg		1/4/2017 20:13
Carbon Tetrachloride		< 4.60	ug/Kg		1/4/2017 20:13
Chlorobenzene		< 4.60	ug/Kg		1/4/2017 20:13

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-7				
Lab Sample ID:	165593-07			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 4.60	ug/Kg		1/4/2017 20:13
Chloroform		< 4.60	ug/Kg		1/4/2017 20:13
Chloromethane		< 4.60	ug/Kg		1/4/2017 20:13
cis-1,2-Dichloroethen	e	< 4.60	ug/Kg		1/4/2017 20:13
cis-1,3-Dichloroprope	ene	< 4.60	ug/Kg		1/4/2017 20:13
Cyclohexane		< 23.0	ug/Kg		1/4/2017 20:13
Dibromochlorometha	ne	< 4.60	ug/Kg		1/4/2017 20:13
Dichlorodifluorometh	ane	< 4.60	ug/Kg		1/4/2017 20:13
Ethylbenzene		< 4.60	ug/Kg		1/4/2017 20:13
Freon 113		< 4.60	ug/Kg		1/4/2017 20:13
Isopropylbenzene		< 4.60	ug/Kg		1/4/2017 20:13
m,p-Xylene		< 4.60	ug/Kg		1/4/2017 20:13
Methyl acetate		< 4.60	ug/Kg		1/4/2017 20:13
Methyl tert-butyl Eth	er	< 4.60	ug/Kg		1/4/2017 20:13
Methylcyclohexane		< 4.60	ug/Kg		1/4/2017 20:13
Methylene chloride		< 11.5	ug/Kg		1/4/2017 20:13
o-Xylene		< 4.60	ug/Kg		1/4/2017 20:13
Styrene		< 11.5	ug/Kg		1/4/2017 20:13
Tetrachloroethene		< 4.60	ug/Kg		1/4/2017 20:13
Toluene		< 4.60	ug/Kg		1/4/2017 20:13
trans-1,2-Dichloroeth	ene	< 4.60	ug/Kg		1/4/2017 20:13
trans-1,3-Dichloropro	opene	< 4.60	ug/Kg		1/4/2017 20:13
Trichloroethene		< 4.60	ug/Kg		1/4/2017 20:13
Trichlorofluorometha	ine	< 4.60	ug/Kg		1/4/2017 20:13
Vinyl chloride		< 4.60	ug/Kg		1/4/2017 20:13

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-7					
Lab Sample ID:	165593-07		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	105	82 - 124		1/4/2017	20:13
4-Bromofluorobenzer	ie	82.1	80.5 - 116		1/4/2017	20:13
Pentafluorobenzene		98.7	88.7 - 112		1/4/2017	20:13
Toluene-D8		94.9	79.1 - 120		1/4/2017	20:13

 $\ Internal\ standard\ outliers\ indicate\ probable\ matrix\ interference$

Method Reference(s): EPA 8260C

EPA 5035A - L Data File: x38287.D

Data File:x38287.DThis sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are
less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from

11/15/2012.

Project Reference: 100 Dona Street Sample Identifier: SS-8 Lob G 105500.00
Sample Identifier: SS-8
Lab Sample ID: 165593-08 Date Sampled: 12/28/2016
Matrix:SoilDate Received:12/30/2016

<u>Mercury</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0695	mg/Kg		1/3/2017 16:54
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-8				
Lab Sample ID:	165593-08			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
TAL Metals (ICP)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		7050	mg/Kg		1/4/2017 17:21
Antimony		< 4.00	mg/Kg		1/4/2017 17:21
Arsenic		7.89	mg/Kg		1/4/2017 17:21
Barium		46.0	mg/Kg		1/4/2017 17:21
Beryllium		0.446	mg/Kg		1/4/2017 17:21
Cadmium		1.22	mg/Kg		1/4/2017 17:21
Calcium		28300	mg/Kg		1/3/2017 19:21
Chromium		29.2	mg/Kg		1/4/2017 17:21
Cobalt		5.45	mg/Kg		1/4/2017 17:21
Copper		30.0	mg/Kg		1/4/2017 17:21
Iron		20000	mg/Kg		1/4/2017 17:21
Lead		110	mg/Kg		1/4/2017 17:21
Magnesium		6100	mg/Kg		1/4/2017 17:21
Manganese		928	mg/Kg		1/4/2017 18:38
Nickel		17.1	mg/Kg		1/4/2017 17:21
Potassium		906	mg/Kg		1/4/2017 17:21
Selenium		2.14	mg/Kg		1/5/2017 16:47
Silver		< 0.666	mg/Kg		1/4/2017 17:21
Sodium		92.6	mg/Kg	J	1/4/2017 17:21
Thallium		< 1.66	mg/Kg		1/4/2017 17:21
Vanadium		24.1	mg/Kg		1/4/2017 17:21
Zinc		285	mg/Kg		1/4/2017 17:21
Method Refere Preparation Da	nce(s): EPA 6010 EPA 3050 ate: 1/3/2017	C B			
Data File:	010317b				

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-8						
Lab Sample ID:	165593-08			Dat	e Sampled:	12/28/2016)
Matrix:	Soil			Dat	e Received:	12/30/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1221		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1232		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1242		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1248		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1254		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1260		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1262		< 0.0395	mg/Kg			1/5/2017	17:18
PCB-1268		< 0.0395	mg/Kg			1/5/2017	17:18
<u>Surrogate</u>		<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			42.4	10 - 144		1/5/2017	17:18
Tetrachloro-m-xylene			28.4	10 - 140		1/5/2017	17:18
Method Reference Preparation Date	ce(s): EPA 8082. EPA 3550 e: 1/4/2017	A C					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-8				
Lab Sample ID:	165593-08			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	s (Acid/Base Ne	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 391	ug/Kg		1/5/2017 01:52
1,2,4,5-Tetrachlorobe	enzene	< 391	ug/Kg		1/5/2017 01:52
1,2,4-Trichlorobenze	ne	< 391	ug/Kg		1/5/2017 01:52
1,2-Dichlorobenzene		< 391	ug/Kg		1/5/2017 01:52
1,3-Dichlorobenzene		< 391	ug/Kg		1/5/2017 01:52
1,4-Dichlorobenzene		< 391	ug/Kg		1/5/2017 01:52
2,2-Oxybis (1-chlorog	propane)	< 391	ug/Kg		1/5/2017 01:52
2,3,4,6-Tetrachloroph	nenol	< 391	ug/Kg		1/5/2017 01:52
2,4,5-Trichloropheno	l	< 783	ug/Kg		1/5/2017 01:52
2,4,6-Trichloropheno	l	< 391	ug/Kg		1/5/2017 01:52
2,4-Dichlorophenol		< 391	ug/Kg		1/5/2017 01:52
2,4-Dimethylphenol		< 391	ug/Kg		1/5/2017 01:52
2,4-Dinitrophenol		< 783	ug/Kg		1/5/2017 01:52
2,4-Dinitrotoluene		< 391	ug/Kg		1/5/2017 01:52
2,6-Dinitrotoluene		< 391	ug/Kg		1/5/2017 01:52
2-Chloronaphthalene		< 391	ug/Kg		1/5/2017 01:52
2-Chlorophenol		< 391	ug/Kg		1/5/2017 01:52
2-Methylnapthalene		< 391	ug/Kg		1/5/2017 01:52
2-Methylphenol		< 391	ug/Kg		1/5/2017 01:52
2-Nitroaniline		< 783	ug/Kg		1/5/2017 01:52
2-Nitrophenol		< 391	ug/Kg		1/5/2017 01:52
3&4-Methylphenol		< 391	ug/Kg		1/5/2017 01:52
3,3'-Dichlorobenzidir	ie	< 391	ug/Kg		1/5/2017 01:52
3-Nitroaniline		< 783	ug/Kg		1/5/2017 01:52
4,6-Dinitro-2-methyl	phenol	< 783	ug/Kg		1/5/2017 01:52

 4-Bromophenyl phenyl ether
 < 391</td>
 ug/Kg
 1/5/2017
 01:52

 4-Chloro-3-methylphenol
 < 391</td>
 ug/Kg
 1/5/2017
 01:52

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-8				
Lab Sample ID:	165593-08			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 391	ug/Kg		1/5/2017 01:52
4-Chlorophenyl pheny	yl ether	< 391	ug/Kg		1/5/2017 01:52
4-Nitroaniline		< 783	ug/Kg		1/5/2017 01:52
4-Nitrophenol		< 783	ug/Kg		1/5/2017 01:52
Acenaphthene		< 391	ug/Kg		1/5/2017 01:52
Acenaphthylene		< 391	ug/Kg		1/5/2017 01:52
Acetophenone		< 391	ug/Kg		1/5/2017 01:52
Anthracene		< 391	ug/Kg		1/5/2017 01:52
Atrazine		< 391	ug/Kg		1/5/2017 01:52
Benzaldehyde		< 391	ug/Kg		1/5/2017 01:52
Benzo (a) anthracene		517	ug/Kg		1/5/2017 01:52
Benzo (a) pyrene		487	ug/Kg		1/5/2017 01:52
Benzo (b) fluoranther	ie	484	ug/Kg		1/5/2017 01:52
Benzo (g,h,i) perylene		344	ug/Kg	J	1/5/2017 01:52
Benzo (k) fluoranthen	ie	390	ug/Kg	J	1/5/2017 01:52
Bis (2-chloroethoxy)	methane	< 391	ug/Kg		1/5/2017 01:52
Bis (2-chloroethyl) et	her	< 391	ug/Kg		1/5/2017 01:52
Bis (2-ethylhexyl) pht	halate	< 391	ug/Kg		1/5/2017 01:52
Butylbenzylphthalate		< 391	ug/Kg		1/5/2017 01:52
Caprolactam		< 391	ug/Kg		1/5/2017 01:52
Carbazole		< 391	ug/Kg		1/5/2017 01:52
Chrysene		575	ug/Kg		1/5/2017 01:52
Dibenz (a,h) anthrace	ne	< 391	ug/Kg		1/5/2017 01:52
Dibenzofuran		< 391	ug/Kg		1/5/2017 01:52
Diethyl phthalate		< 391	ug/Kg		1/5/2017 01:52
Dimethyl phthalate		< 783	ug/Kg		1/5/2017 01:52
Di-n-butyl phthalate		< 391	ug/Kg		1/5/2017 01:52
Di-n-octylphthalate		< 391	ug/Kg		1/5/2017 01:52
Fluoranthene		1220	ug/Kg		1/5/2017 01:52
Fluorene		< 391	ug/Kg		1/5/2017 01:52

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Str	eet					
Sample Identifier:	SS-8						
Lab Sample ID:	165593-08			Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016	5
Hexachlorobenzene		< 391	ug/Kg			1/5/2017	01:52
Hexachlorobutadiene		< 391	ug/Kg			1/5/2017	01:52
Hexachlorocyclopenta	diene	< 391	ug/Kg			1/5/2017	01:52
Hexachloroethane		< 391	ug/Kg			1/5/2017	01:52
Indeno (1,2,3-cd) pyre	ene	231	ug/Kg		J	1/5/2017	01:52
Isophorone		< 391	ug/Kg			1/5/2017	01:52
Naphthalene		< 391	ug/Kg			1/5/2017	01:52
Nitrobenzene		< 391	ug/Kg			1/5/2017	01:52
N-Nitroso-di-n-propyl	amine	< 391	ug/Kg			1/5/2017	01:52
N-Nitrosodiphenylam	ine	< 391	ug/Kg	1		1/5/2017	01:52
Pentachlorophenol		< 783	ug/Kg			1/5/2017	01:52
Phenanthrene		707	ug/Kg			1/5/2017	01:52
Phenol		< 391	ug/Kg			1/5/2017	01:52
Pyrene		974	ug/Kg			1/5/2017	01:52
<u>Surrogate</u>		Perce	ent Recovery	Limits	Outliers	Date Analy	zed
2,4,6-Tribromophenol			117	38 • 114	*	1/5/2017	01:52
2-Fluorobiphenyl			71.9	25 - 105		1/5/2017	01:52
2-Fluorophenol			69.2	30.8 - 84		1/5/2017	01:52
Nitrobenzene-d5			67.8	28.5 - 84.9		1/5/2017	01:52
Phenol-d5			72.6	32.5 - 89.6		1/5/2017	01:52
Terphenyl-d14			117	55.5 - 117		1/5/2017	01:52
Method Referen	ce(s): EPA 82	70D					
Preparation Da Data File:	EPA 355 te: 1/4/20 B16343	50C 17 3.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-8				
Lab Sample ID:	165593-08			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	9	< 4.29	ug/Kg		1/4/2017 19:49
1,1,2,2-Tetrachloroet	hane	< 4.29	ug/Kg		1/4/2017 19:49
1,1,2-Trichloroethane	9	< 4.29	ug/Kg		1/4/2017 19:49
1,1-Dichloroethane		< 4.29	ug/Kg		1/4/2017 19:49
1,1-Dichloroethene		< 4.29	ug/Kg		1/4/2017 19:49
1,2,3-Trichlorobenzer	ne	< 10.7	ug/Kg		1/4/2017 19:49
1,2,4-Trichlorobenzer	ne	< 10.7	ug/Kg		1/4/2017 19:49
1,2-Dibromo-3-Chlor	opropane	< 21.4	ug/Kg		1/4/2017 19:49
1,2-Dibromoethane		< 4.29	ug/Kg		1/4/2017 19:49
1,2-Dichlorobenzene		< 4.29	ug/Kg		1/4/2017 19:49
1,2-Dichloroethane		< 4.29	ug/Kg		1/4/2017 19:49
1,2-Dichloropropane		< 4.29	ug/Kg		1/4/2017 19:49
1,3-Dichlorobenzene		< 4.29	ug/Kg		1/4/2017 19:49
1,4-Dichlorobenzene		< 4.29	ug/Kg		1/4/2017 19:49
1,4-dioxane		< 42.9	ug/Kg		1/4/2017 19:49
2-Butanone		< 21.4	ug/Kg		1/4/2017 19:49
2-Hexanone		< 10.7	ug/Kg		1/4/2017 19:49
4-Methyl-2-pentanon	e	< 10.7	ug/Kg		1/4/2017 19:49
Acetone		< 21.4	ug/Kg		1/4/2017 19:49
Benzene		< 4.29	ug/Kg		1/4/2017 19:49
Bromochloromethane	e	< 10.7	ug/Kg		1/4/2017 19:49
Bromodichlorometha	ine	< 4.29	ug/Kg		1/4/2017 19:49
Bromoform		< 10.7	ug/Kg		1/4/2017 19:49
Bromomethane		< 4.29	ug/Kg		1/4/2017 19:49
Carbon disulfide		< 4.29	ug/Kg		1/4/2017 19:49
Carbon Tetrachloride		< 4.29	ug/Kg		1/4/2017 19:49
Chlorobenzene		< 4.29	ug/Kg		1/4/2017 19:49

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-8				
Lab Sample ID:	165593-08			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 4.29	ug/Kg		1/4/2017 19:49
Chloroform		< 4.29	ug/Kg		1/4/2017 19:49
Chloromethane		< 4.29	ug/Kg		1/4/2017 19:49
cis-1,2-Dichloroethen	e	< 4.29	ug/Kg		1/4/2017 19:49
cis-1,3-Dichloroprope	ene	< 4.29	ug/Kg		1/4/2017 19:49
Cyclohexane		< 21.4	ug/Kg		1/4/2017 19:49
Dibromochlorometha	ne	< 4.29	ug/Kg		1/4/2017 19:49
Dichlorodifluorometh	ane	< 4.29	ug/Kg		1/4/2017 19:49
Ethylbenzene		< 4.29	ug/Kg		1/4/2017 19:49
Freon 113		< 4.29	ug/Kg		1/4/2017 19:49
Isopropylbenzene		< 4.29	ug/Kg		1/4/2017 19:49
m,p-Xylene		< 4.29	ug/Kg		1/4/2017 19:49
Methyl acetate		< 4.29	ug/Kg		1/4/2017 19:49
Methyl tert-butyl Ethe	er	< 4.29	ug/Kg		1/4/2017 19:49
Methylcyclohexane		< 4.29	ug/Kg		1/4/2017 19:49
Methylene chloride		< 10.7	ug/Kg		1/4/2017 19:49
o-Xylene		< 4.29	ug/Kg		1/4/2017 19:49
Styrene		< 10.7	ug/Kg		1/4/2017 19:49
Tetrachloroethene		< 4.29	ug/Kg		1/4/2017 19:49
Toluene		< 4.29	ug/Kg		1/4/2017 19:49
trans-1,2-Dichloroeth	ene	< 4.29	ug/Kg		1/4/2017 19:49
trans-1,3-Dichloropro	opene	< 4.29	ug/Kg		1/4/2017 19:49
Trichloroethene		< 4.29	ug/Kg		1/4/2017 19:49
Trichlorofluorometha	ine	< 4.29	ug/Kg		1/4/2017 19:49
Vinyl chloride		< 4.29	ug/Kg		1/4/2017 19:49

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-8					
Lab Sample ID:	165593-08		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	yzed
1,2-Dichloroethane-d	4	106	82 - 124		1/4/2017	19:49
4-Bromofluorobenzei	ne	83.7	80.5 - 116		1/4/2017	19:49
Pentafluorobenzene		99.8	88.7 - 112		1/4/2017	19:49
Toluene-D8		95.5	79.1 - 120		1/4/2017	19:49
Method Refere	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38286.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-9		
Lab Sample ID:	165593-09	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.102	mg/Kg		1/3/2017 16:58
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

Project Reference: Sample Identifier: Lab Sample ID: Matrix:	100 Dona Street SS-9 165593-09 Soil			Date Sampled:	40/00/0017
Sample Identifier: Lab Sample ID: Matrix:	SS-9 165593-09 Soil			Date Sampled:	40,000,0001,0
Lab Sample ID: Matrix:	165593-09 Soil			Date Sampled:	10/00/001/
Motrix	Soil			FF	12/28/2016
				Date Received:	12/30/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		9030	mg/Kg		1/4/2017 17:26
Antimony		< 3.67	mg/Kg		1/4/2017 17:26
Arsenic		11.5	mg/Kg		1/4/2017 17:26
Barium		57.3	mg/Kg		1/4/2017 17:26
Beryllium		0.519	mg/Kg		1/4/2017 17:26
Cadmium		1.73	mg/Kg		1/4/2017 17:26
Calcium		16100	mg/Kg		1/3/2017 19:25
Chromium		42.7	mg/Kg		1/4/2017 17:26
Cobalt		6.54	mg/Kg		1/4/2017 17:26
Copper		34.9	mg/Kg		1/4/2017 17:26
Iron		25100	mg/Kg		1/4/2017 17:26
Lead		149	mg/Kg		1/4/2017 17:26
Magnesium		7480	mg/Kg		1/4/2017 17:26
Manganese		1290	mg/Kg		1/4/2017 19:04
Nickel		18.5	mg/Kg		1/4/2017 17:26
Potassium		1480	mg/Kg		1/4/2017 17:26
Selenium		0.936	mg/Kg		1/4/2017 17:26
Silver		< 0.611	mg/Kg		1/4/2017 17:26
Sodium		81.0	mg/Kg	J	1/4/2017 17:26
Thallium		< 1.53	mg/Kg		1/4/2017 17:26
Vanadium		27.6	mg/Kg		1/4/2017 17:26
Zinc		386	mg/Kg		1/4/2017 17:26
Method Reference Preparation Date:	(s): EPA 6010C EPA 3050B 1/3/2017				

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	SS-9						
Lab Sample ID:	165593-	09		Dat	e Sampled:	12/28/2016)
Matrix:	Soil			Dat	e Received:	12/30/2016	5
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1221		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1232		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1242		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1248		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1254		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1260		0.0257	mg/Kg		J	1/5/2017	17:40
PCB-1262		< 0.0382	mg/Kg			1/5/2017	17:40
PCB-1268		< 0.0382	mg/Kg			1/5/2017	17:40
<u>Surrogate</u>		Perc	e <mark>nt Recovery</mark>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			43.5	10 - 144		1/5/2017	17:40
Tetrachloro-m-xylene		X	22.8	10 - 140		1/5/2017	17:40
Method Referen	a ce(s): EP EP	A 8082A A 3550C					
Preparation Da	te: 1/	4/2017					

Client:	<u>C&S Compani</u>	<u>es</u>							
Project Reference:	100 Dona Stre	et							
Sample Identifier:	SS-9								
Lab Sample ID:	165593-09			Date Sampled:	12/28/2016				
Matrix:	Soil			Date Received:	12/30/2016				
Semi-Volatile Organics	<u>Semi-Volatile Organics (Acid/Base Neutrals)</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed				
1,1-Biphenyl		< 385	ug/Kg		1/5/2017 02:21				
1,2,4,5-Tetrachlorobe	nzene	< 385	ug/Kg		1/5/2017 02:21				
1,2,4-Trichlorobenzer	ie	< 385	ug/Kg		1/5/2017 02:21				
1,2-Dichlorobenzene		< 385	ug/Kg		1/5/2017 02:21				
1,3-Dichlorobenzene		< 385	ug/Kg		1/5/2017 02:21				
1,4-Dichlorobenzene		< 385	ug/Kg		1/5/2017 02:21				

1,2,4,5-Tetrachlorobenzene	< 385	ug/Kg	1/5/2017	02:21
1,2,4-Trichlorobenzene	< 385	ug/Kg	1/5/2017	02:21
1,2-Dichlorobenzene	< 385	ug/Kg	1/5/2017	02:21
1,3-Dichlorobenzene	< 385	ug/Kg	1/5/2017	02:21
1,4-Dichlorobenzene	< 385	ug/Kg	1/5/2017	02:21
2,2-Oxybis (1-chloropropane)	< 385	ug/Kg	1/5/2017	02:21
2,3,4,6-Tetrachlorophenol	< 385	ug/Kg	1/5/2017	02:21
2,4,5-Trichlorophenol	< 771	ug/Kg	1/5/2017	02:21
2,4,6-Trichlorophenol	< 385	ug/Kg	1/5/2017	02:21
2,4-Dichlorophenol	< 385	ug/Kg	1/5/2017	02:21
2,4-Dimethylphenol	< 385	ug/Kg	1/5/2017	02:21
2,4-Dinitrophenol	< 771	ug/Kg	1/5/2017	02:21
2,4-Dinitrotoluene	< 385	ug/Kg	1/5/2017	02:21
2,6-Dinitrotoluene	< 385	ug/Kg	1/5/2017	02:21
2-Chloronaphthalene	< 385	ug/Kg	1/5/2017	02:21
2-Chlorophenol	< 385	ug/Kg	1/5/2017	02:21
2-Methylnapthalene	< 385	ug/Kg	1/5/2017	02:21
2-Methylphenol	< 385	ug/Kg	1/5/2017	02:21
2-Nitroaniline	< 771	ug/Kg	1/5/2017	02:21
2-Nitrophenol	< 385	ug/Kg	1/5/2017	02:21
3&4-Methylphenol	< 385	ug/Kg	1/5/2017	02:21
3,3'-Dichlorobenzidine	< 385	ug/Kg	1/5/2017	02:21
3-Nitroaniline	< 771	ug/Kg	1/5/2017	02:21
4,6-Dinitro-2-methylphenol	< 771	ug/Kg	1/5/2017	02:21
4-Bromophenyl phenyl ether	< 385	ug/Kg	1/5/2017	02:21
4-Chloro-3-methylphenol	< 385	ug/Kg	1/5/2017	02:21

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-9				
Lab Sample ID:	165593-09			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 385	ug/Kg		1/5/2017 02:21
4-Chlorophenyl pheny	yl ether	< 385	ug/Kg		1/5/2017 02:21
4-Nitroaniline		< 771	ug/Kg		1/5/2017 02:21
4-Nitrophenol		< 771	ug/Kg		1/5/2017 02:21
Acenaphthene		< 385	ug/Kg		1/5/2017 02:21
Acenaphthylene		364	ug/Kg	J	1/5/2017 02:21
Acetophenone		< 385	ug/Kg		1/5/2017 02:21
Anthracene		557	ug/Kg		1/5/2017 02:21
Atrazine		< 385	ug/Kg		1/5/2017 02:21
Benzaldehyde		< 385	ug/Kg		1/5/2017 02:21
Benzo (a) anthracene		1840	ug/Kg		1/5/2017 02:21
Benzo (a) pyrene		1560 🖕	ug/Kg		1/5/2017 02:21
Benzo (b) fluoranther	ie	1600	ug/Kg		1/5/2017 02:21
Benzo (g,h,i) perylene		93 8	ug/Kg		1/5/2017 02:21
Benzo (k) fluoranthen	ie	1050	ug/Kg		1/5/2017 02:21
Bis (2-chloroethoxy)	methane	< 385	ug/Kg		1/5/2017 02:21
Bis (2-chloroethyl) et	her	< 385	ug/Kg		1/5/2017 02:21
Bis (2-ethylhexyl) pht	halate	< 385	ug/Kg		1/5/2017 02:21
Butylbenzylphthalate		< 385	ug/Kg		1/5/2017 02:21
Caprolactam		< 385	ug/Kg		1/5/2017 02:21
Carbazole		241	ug/Kg	J	1/5/2017 02:21
Chrysene		1690	ug/Kg		1/5/2017 02:21
Dibenz (a,h) anthrace	ne	409	ug/Kg		1/5/2017 02:21
Dibenzofuran		< 385	ug/Kg		1/5/2017 02:21
Diethyl phthalate		< 385	ug/Kg		1/5/2017 02:21
Dimethyl phthalate		< 771	ug/Kg		1/5/2017 02:21
Di-n-butyl phthalate		< 385	ug/Kg		1/5/2017 02:21
Di-n-octylphthalate		< 385	ug/Kg		1/5/2017 02:21
Fluoranthene		3970	ug/Kg		1/5/2017 02:21
Fluorene		< 385	ug/Kg		1/5/2017 02:21

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-9						
Lab Sample ID:	165593-09			Date	e Sampled:	12/28/2016	5
Matrix:	Soil			Date	e Received:	12/30/2016	5
Hexachlorobenzene		< 385	ug/Kg			1/5/2017	02:21
Hexachlorobutadiene		< 385	ug/Kg			1/5/2017	02:21
Hexachlorocyclopenta	diene	< 385	ug/Kg			1/5/2017	02:21
Hexachloroethane		< 385	ug/Kg			1/5/2017	02:21
Indeno (1,2,3-cd) pyre	ene	796	ug/Kg			1/5/2017	02:21
Isophorone		< 385	ug/Kg			1/5/2017	02:21
Naphthalene		< 385	ug/Kg			1/5/2017	02:21
Nitrobenzene		< 385	ug/Kg			1/5/2017	02:21
N-Nitroso-di-n-propy	amine	< 385	ug/Kg			1/5/2017	02:21
N-Nitrosodiphenylam	ine	< 385	ug/Kg			1/5/2017	02:21
Pentachlorophenol		< 771	ug/Kg			1/5/2017	02:21
Phenanthrene		1840	ug/Kg			1/5/2017	02:21
Phenol		< 385	ug/Kg			1/5/2017	02:21
Pyrene		3060	ug/Kg			1/5/2017	02:21
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		60.3	38 - 114		1/5/2017	02:21
2-Fluorobiphenyl			40.2	25 - 105		1/5/2017	02:21
2-Fluorophenol			38.3	30.8 - 84		1/5/2017	02:21
Nitrobenzene-d5			38.1	28.5 - 84.9		1/5/2017	02:21
Phenol-d5			40.9	32.5 - 89.6		1/5/2017	02:21
Terphenyl-d14			59.0	55.5 - 117		1/5/2017	02:21
Method Referen	nce(s): EPA 8270	ID NG					
Preparation Da Data File:	te: 1/4/2017 B16344.D	7)					

Client:	<u>C&S Compani</u>	<u>C&S Companies</u>						
Project Reference:	100 Dona Street							
Sample Identifier:	SS-9							
Lab Sample ID:	165593-09			Date Sampled:	12/28/2016			
Matrix:	Soil			Date Received:	12/30/2016			
Volatile Organics								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	e	< 5.08	ug/Kg		1/4/2017 19:24			
1,1,2,2-Tetrachloroet	hane	< 5.08	ug/Kg		1/4/2017 19:24			
1,1,2-Trichloroethane	e	< 5.08	ug/Kg		1/4/2017 19:24			
1,1-Dichloroethane		< 5.08	ug/Kg		1/4/2017 19:24			
1,1-Dichloroethene		< 5.08	ug/Kg		1/4/2017 19:24			
1,2,3-Trichlorobenze	ne	< 12.7	ug/Kg		1/4/2017 19:24			
1,2,4-Trichlorobenze	ne	< 12.7	ug/Kg		1/4/2017 19:24			
1,2-Dibromo-3-Chlor	opropane	< 25.4	ug/Kg		1/4/2017 19:24			
1,2-Dibromoethane		< 5.08	ug/Kg		1/4/2017 19:24			
1,2-Dichlorobenzene		< 5.08	ug/Kg		1/4/2017 19:24			
1,2-Dichloroethane		< 5.08	ug/Kg		1/4/2017 19:24			
1,2-Dichloropropane		< 5.08	ug/Kg		1/4/2017 19:24			
1,3-Dichlorobenzene		< 5.08	ug/Kg		1/4/2017 19:24			
1,4-Dichlorobenzene		< 5.08	ug/Kg		1/4/2017 19:24			
1,4-dioxane		< 50.8	ug/Kg		1/4/2017 19:24			
2-Butanone		< 25.4	ug/Kg		1/4/2017 19:24			
2-Hexanone		< 12.7	ug/Kg		1/4/2017 19:24			
4-Methyl-2-pentanon	ie	< 12.7	ug/Kg		1/4/2017 19:24			
Acetone		< 25.4	ug/Kg		1/4/2017 19:24			
Benzene		< 5.08	ug/Kg		1/4/2017 19:24			
Bromochloromethan	e	< 12.7	ug/Kg		1/4/2017 19:24			
Bromodichlorometha	ine	< 5.08	ug/Kg		1/4/2017 19:24			
Bromoform		< 12.7	ug/Kg		1/4/2017 19:24			
Bromomethane		< 5.08	ug/Kg		1/4/2017 19:24			
Carbon disulfide		< 5.08	ug/Kg		1/4/2017 19:24			
Carbon Tetrachloride		< 5.08	ug/Kg		1/4/2017 19:24			
Chlorobenzene		< 5.08	ug/Kg		1/4/2017 19:24			

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-9				
Lab Sample ID:	165593-09			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 5.08	ug/Kg		1/4/2017 19:24
Chloroform		< 5.08	ug/Kg		1/4/2017 19:24
Chloromethane		< 5.08	ug/Kg		1/4/2017 19:24
cis-1,2-Dichloroethen	e	< 5.08	ug/Kg		1/4/2017 19:24
cis-1,3-Dichloroprope	ene	< 5.08	ug/Kg		1/4/2017 19:24
Cyclohexane		< 25.4	ug/Kg		1/4/2017 19:24
Dibromochlorometha	ine	< 5.08	ug/Kg		1/4/2017 19:24
Dichlorodifluorometh	nane	< 5.08	ug/Kg		1/4/2017 19:24
Ethylbenzene		< 5.08	ug/Kg		1/4/2017 19:24
Freon 113		< 5.08	ug/Kg		1/4/2017 19:24
Isopropylbenzene		< 5.08	ug/Kg		1/4/2017 19:24
m,p-Xylene		< 5.08	ug/Kg		1/4/2017 19:24
Methyl acetate		< 5.08	ug/Kg		1/4/2017 19:24
Methyl tert-butyl Eth	er	< 5.08	ug/Kg		1/4/2017 19:24
Methylcyclohexane		< 5.08	ug/Kg		1/4/2017 19:24
Methylene chloride		< 12.7	ug/Kg		1/4/2017 19:24
o-Xylene		< 5.08	ug/Kg		1/4/2017 19:24
Styrene		< 12.7	ug/Kg		1/4/2017 19:24
Tetrachloroethene		< 5.08	ug/Kg		1/4/2017 19:24
Toluene		< 5.08	ug/Kg		1/4/2017 19:24
trans-1,2-Dichloroeth	iene	< 5.08	ug/Kg		1/4/2017 19:24
trans-1,3-Dichloropro	opene	< 5.08	ug/Kg		1/4/2017 19:24
Trichloroethene		< 5.08	ug/Kg		1/4/2017 19:24
Trichlorofluorometha	ane	< 5.08	ug/Kg		1/4/2017 19:24
Vinyl chloride		< 5.08	ug/Kg		1/4/2017 19:24

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-9					
Lab Sample ID:	165593-09		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	104	82 - 124		1/4/2017	19:24
4-Bromofluorobenzer	ie	81.8	80.5 - 116		1/4/2017	19:24
Pentafluorobenzene		99.0	88.7 - 112		1/4/2017	19:24
Toluene-D8		95.0	79.1 - 120		1/4/2017	19:24

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Data File:

EPA 5035A - L x38285.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-10		
Lab Sample ID:	165593-10	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0985	mg/Kg		1/3/2017 17:01
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S C</u>	ompanies	5			
Project Reference:	100 D	ona Street				
Sample Identifier:	SS-1	0				
Lab Sample ID:	1655	593-10			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>TAL Metals (ICP)</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum			9380	mg/Kg		1/4/2017 17:30
Antimony			< 3.85	mg/Kg		1/4/2017 17:30
Arsenic			11.9	mg/Kg		1/4/2017 17:30
Barium			65.7	mg/Kg		1/4/2017 17:30
Beryllium			0.604	mg/Kg		1/4/2017 17:30
Cadmium			1.70	mg/Kg		1/4/2017 17:30
Calcium			8580	mg/Kg		1/3/2017 19:29
Chromium			36.3	mg/Kg		1/4/2017 17:30
Cobalt			6.97	mg/Kg		1/4/2017 17:30
Copper			36.6	mg/Kg		1/4/2017 17:30
Iron			26300	mg/Kg		1/4/2017 17:30
Lead			165	mg/Kg		1/4/2017 17:30
Magnesium			3140	mg/Kg		1/4/2017 17:30
Manganese			965	mg/Kg		1/4/2017 19:08
Nickel			20.1	mg/Kg		1/4/2017 17:30
Potassium			1260	mg/Kg		1/4/2017 17:30
Selenium			1.00	mg/Kg		1/4/2017 17:30
Silver			< 0.642	mg/Kg		1/4/2017 17:30
Sodium			< 161	mg/Kg		1/4/2017 17:30
Thallium			< 1.61	mg/Kg		1/4/2017 17:30
Vanadium			29.1	mg/Kg		1/4/2017 17:30
Zinc			373	mg/Kg		1/4/2017 17:30
Method Refere	nce(s):	EPA 6010C EPA 3050B				
Preparation Da Data File:	ate:	1/3/2017 010317b				

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	SS-10						
Lab Sample ID:	165593-10			Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1221		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1232		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1242		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1248		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1254		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1260		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1262		< 0.0401	mg/Kg			1/5/2017	18:03
PCB-1268		< 0.0401	mg/Kg			1/5/2017	18:03
<u>Surrogate</u>		<u>Percen</u>	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			60.9	10 - 144		1/5/2017	18:03
Tetrachloro-m-xylene			37.7	10 - 140		1/5/2017	18:03
Method Reference	ce(s): EPA 8082 EPA 3550 e: 1/4/2017	A C					
r oparation but							

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Street						
Sample Identifier:	SS-10						
Lab Sample ID:	165593-10			Date Sampled:	12/28/2016		
Matrix:	Soil			Date Received:	12/30/2016		
Semi-Volatile Organic	s (Acid/Base Ne	utrals)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		< 1970	ug/Kg		1/6/2017 17:36		
1,2,4,5-Tetrachlorobe	enzene	< 1970	ug/Kg		1/6/2017 17:36		
1,2,4-Trichlorobenze	ne	< 1970	ug/Kg		1/6/2017 17:36		
1,2-Dichlorobenzene		< 1970	ug/Kg		1/6/2017 17:36		
1,3-Dichlorobenzene		< 1970	ug/Kg		1/6/2017 17:36		
1,4-Dichlorobenzene		< 1970	ug/Kg		1/6/2017 17:36		
2,2-Oxybis (1-chloro	propane)	< 1970	ug/Kg		1/6/2017 17:36		
2,3,4,6-Tetrachloropl	henol	< 1970	ug/Kg		1/6/2017 17:36		
2,4,5-Trichlorophenc	bl	< 3930	ug/Kg		1/6/2017 17:36		
2,4,6-Trichlorophenc	bl	< 1970	ug/Kg		1/6/2017 17:36		
2,4-Dichlorophenol		< 1970	ug/Kg		1/6/2017 17:36		
2,4-Dimethylphenol		< 1970	ug/Kg		1/6/2017 17:36		
2,4-Dinitrophenol		< 3930	ug/Kg		1/6/2017 17:36		
2,4-Dinitrotoluene		< 1970	ug/Kg		1/6/2017 17:36		
2,6-Dinitrotoluene		< 1970	ug/Kg		1/6/2017 17:36		
2-Chloronaphthalene	2	< 1970	ug/Kg		1/6/2017 17:36		
2-Chlorophenol		< 1970	ug/Kg		1/6/2017 17:36		
2-Methylnapthalene		< 1970	ug/Kg		1/6/2017 17:36		
2-Methylphenol		< 1970	ug/Kg		1/6/2017 17:36		
2-Nitroaniline		< 3930	ug/Kg		1/6/2017 17:36		
2-Nitrophenol		< 1970	ug/Kg		1/6/2017 17:36		
3&4-Methylphenol		< 1970	ug/Kg		1/6/2017 17:36		
3,3'-Dichlorobenzidin	ne	< 1970	ug/Kg		1/6/2017 17:36		
3-Nitroaniline		< 3930	ug/Kg		1/6/2017 17:36		
4,6-Dinitro-2-methyl	phenol	< 3930	ug/Kg		1/6/2017 17:36		
4-Bromophenyl phen	yl ether	< 1970	ug/Kg		1/6/2017 17:36		
4-Chloro-3-methylph	enol	< 1970	ug/Kg		1/6/2017 17:36		

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-10				
Lab Sample ID:	165593-10			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 1970	ug/Kg		1/6/2017 17:36
4-Chlorophenyl pheny	/l ether	< 1970	ug/Kg		1/6/2017 17:36
4-Nitroaniline		< 3930	ug/Kg		1/6/2017 17:36
4-Nitrophenol		< 3930	ug/Kg		1/6/2017 17:36
Acenaphthene		< 1970	ug/Kg		1/6/2017 17:36
Acenaphthylene		< 1970	ug/Kg		1/6/2017 17:36
Acetophenone		< 1970	ug/Kg		1/6/2017 17:36
Anthracene		1890	ug/Kg	J	1/6/2017 17:36
Atrazine		< 1970	ug/Kg		1/6/2017 17:36
Benzaldehyde		< 1970	ug/Kg		1/6/2017 17:36
Benzo (a) anthracene		5010	ug/Kg		1/6/2017 17:36
Benzo (a) pyrene		4540 🖕	ug/Kg		1/6/2017 17:36
Benzo (b) fluoranther	ie	4270	ug/Kg		1/6/2017 17:36
Benzo (g,h,i) perylene	1	2920	ug/Kg		1/6/2017 17:36
Benzo (k) fluoranthen	le	3290	ug/Kg		1/6/2017 17:36
Bis (2-chloroethoxy)	methane	< 1970	ug/Kg		1/6/2017 17:36
Bis (2-chloroethyl) et	her	< 1970	ug/Kg		1/6/2017 17:36
Bis (2-ethylhexyl) pht	halate	< 1970	ug/Kg		1/6/2017 17:36
Butylbenzylphthalate		< 1970	ug/Kg		1/6/2017 17:36
Caprolactam		< 1970	ug/Kg		1/6/2017 17:36
Carbazole		1090	ug/Kg	J	1/6/2017 17:36
Chrysene		5090	ug/Kg		1/6/2017 17:36
Dibenz (a,h) anthrace	ne	1190	ug/Kg	J	1/6/2017 17:36
Dibenzofuran		< 1970	ug/Kg		1/6/2017 17:36
Diethyl phthalate		< 1970	ug/Kg		1/6/2017 17:36
Dimethyl phthalate		< 3930	ug/Kg		1/6/2017 17:36
Di-n-butyl phthalate		< 1970	ug/Kg		1/6/2017 17:36
Di-n-octylphthalate		< 1970	ug/Kg		1/6/2017 17:36
Fluoranthene		12300	ug/Kg		1/6/2017 17:36
Fluorene		< 1970	ug/Kg		1/6/2017 17:36

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	SS-10						
Lab Sample ID:	165593-10			Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016)
Hexachlorobenzene		< 1970	ug/Kg			1/6/2017	17:36
Hexachlorobutadiene		< 1970	ug/Kg			1/6/2017	17:36
Hexachlorocyclopenta	diene	< 1970	ug/Kg			1/6/2017	17:36
Hexachloroethane		< 1970	ug/Kg			1/6/2017	17:36
Indeno (1,2,3-cd) pyre	ene	2110	ug/Kg			1/6/2017	17:36
Isophorone		< 1970	ug/Kg			1/6/2017	17:36
Naphthalene		< 1970	ug/Kg			1/6/2017	17:36
Nitrobenzene		< 1970	ug/Kg			1/6/2017	17:36
N-Nitroso-di-n-propy	amine	< 1970	ug/Kg			1/6/2017	17:36
N-Nitrosodiphenylam	ine	< 1970	ug/Kg	1		1/6/2017	17:36
Pentachlorophenol		< 3930	ug/Kg			1/6/2017	17:36
Phenanthrene		8370	ug/Kg			1/6/2017	17:36
Phenol		< 1970	ug/Kg			1/6/2017	17:36
Pyrene		9860	ug/Kg			1/6/2017	17:36
Surrogate		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		64.5	38 - 114		1/6/2017	17:36
2-Fluorobiphenyl			48.1	25 - 105		1/6/2017	17:36
2-Fluorophenol			43.2	30.8 - 84		1/6/2017	17:36
Nitrobenzene-d5			44.5	28.5 - 84.9		1/6/2017	17:36
Phenol-d5			47.4	32.5 - 89.6		1/6/2017	17:36
Terphenyl-d14			66.0	55.5 - 117		1/6/2017	17:36
Method Referen	ce(s): EPA 827	0D					
Preparation Da Data File:	EPA 355 te: 1/4/201 B16387.1	0C 7 D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-10				
Lab Sample ID:	165593-10			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.12	ug/Kg		1/5/2017 16:37
1,1,2,2-Tetrachloroet	hane	< 4.12	ug/Kg		1/5/2017 16:37
1,1,2-Trichloroethane	2	< 4.12	ug/Kg		1/5/2017 16:37
1,1-Dichloroethane		< 4.12	ug/Kg	L	1/5/2017 16:37
1,1-Dichloroethene		< 4.12	ug/Kg		1/5/2017 16:37
1,2,3-Trichlorobenzer	ne	< 10.3	ug/Kg		1/5/2017 16:37
1,2,4-Trichlorobenzer	ne	< 10.3	ug/Kg		1/5/2017 16:37
1,2-Dibromo-3-Chloro	opropane	< 20.6	ug/Kg		1/5/2017 16:37
1,2-Dibromoethane		< 4.12	ug/Kg		1/5/2017 16:37
1,2-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 16:37
1,2-Dichloroethane		< 4.12	ug/Kg		1/5/2017 16:37
1,2-Dichloropropane		< 4.12	ug/Kg		1/5/2017 16:37
1,3-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 16:37
1,4-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 16:37
1,4-dioxane		< 41.2	ug/Kg		1/5/2017 16:37
2-Butanone		< 20.6	ug/Kg		1/5/2017 16:37
2-Hexanone		< 10.3	ug/Kg		1/5/2017 16:37
4-Methyl-2-pentanon	e	< 10.3	ug/Kg		1/5/2017 16:37
Acetone		< 20.6	ug/Kg		1/5/2017 16:37
Benzene		< 4.12	ug/Kg		1/5/2017 16:37
Bromochloromethane	9	< 10.3	ug/Kg		1/5/2017 16:37
Bromodichlorometha	ne	< 4.12	ug/Kg		1/5/2017 16:37
Bromoform		< 10.3	ug/Kg		1/5/2017 16:37
Bromomethane		< 4.12	ug/Kg		1/5/2017 16:37
Carbon disulfide		< 4.12	ug/Kg		1/5/2017 16:37
Carbon Tetrachloride		< 4.12	ug/Kg		1/5/2017 16:37
Chlorobenzene		< 4.12	ug/Kg		1/5/2017 16:37

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-10				
Lab Sample ID:	165593-10			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 4.12	ug/Kg		1/5/2017 16:37
Chloroform		< 4.12	ug/Kg		1/5/2017 16:37
Chloromethane		< 4.12	ug/Kg		1/5/2017 16:37
cis-1,2-Dichloroethen	e	< 4.12	ug/Kg		1/5/2017 16:37
cis-1,3-Dichloroprope	ene	< 4.12	ug/Kg		1/5/2017 16:37
Cyclohexane		< 20.6	ug/Kg		1/5/2017 16:37
Dibromochlorometha	ne	< 4.12	ug/Kg		1/5/2017 16:37
Dichlorodifluorometh	ane	< 4.12	ug/Kg		1/5/2017 16:37
Ethylbenzene		< 4.12	ug/Kg		1/5/2017 16:37
Freon 113		< 4.12	ug/Kg		1/5/2017 16:37
Isopropylbenzene		< 4.12	ug/Kg		1/5/2017 16:37
m,p-Xylene		< 4.12	ug/Kg		1/5/2017 16:37
Methyl acetate		< 4.12	ug/Kg		1/5/2017 16:37
Methyl tert-butyl Ethe	er	< 4.12	ug/Kg		1/5/2017 16:37
Methylcyclohexane		< 4.12	ug/Kg		1/5/2017 16:37
Methylene chloride		< 10.3	ug/Kg		1/5/2017 16:37
o-Xylene		< 4.12	ug/Kg		1/5/2017 16:37
Styrene		< 10.3	ug/Kg		1/5/2017 16:37
Tetrachloroethene		< 4.12	ug/Kg		1/5/2017 16:37
Toluene		< 4.12	ug/Kg		1/5/2017 16:37
trans-1,2-Dichloroeth	ene	< 4.12	ug/Kg		1/5/2017 16:37
trans-1,3-Dichloropro	opene	< 4.12	ug/Kg		1/5/2017 16:37
Trichloroethene		< 4.12	ug/Kg		1/5/2017 16:37
Trichlorofluorometha	ine	< 4.12	ug/Kg		1/5/2017 16:37
Vinyl chloride		< 4.12	ug/Kg		1/5/2017 16:37

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-10					
Lab Sample ID:	165593-10		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	107	82 - 124		1/5/2017	16:37
4-Bromofluorobenzer	ie	69.7	80.5 - 116	*	1/5/2017	16:37
Pentafluorobenzene		91.0	88.7 - 112		1/5/2017	16:37
Toluene-D8		92.3	79.1 - 120		1/5/2017	16:37

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L Data File: x38312.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-11		
Lab Sample ID:	165593-11	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.113	mg/Kg		1/3/2017 17:05
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

Client:	<u>C&S Compa</u>	<u>inies</u>			
Project Reference:	100 Dona St	treet			
Sample Identifier:	SS-11				
Lab Sample ID:	165593-11	L		Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		8540	mg/Kg		1/4/2017 17:34
Antimony		< 3.97	mg/Kg		1/4/2017 17:34
Arsenic		11.9	mg/Kg		1/4/2017 17:34
Barium		64.2	mg/Kg		1/4/2017 17:34
Beryllium		0.546	mg/Kg		1/4/2017 17:34
Cadmium		1.90	mg/Kg		1/4/2017 17:34
Calcium		10500	mg/Kg		1/3/2017 19:34
Chromium		47.7	mg/Kg		1/4/2017 17:34
Cobalt		6.63	mg/Kg		1/4/2017 17:34
Copper		39.1	mg/Kg		1/4/2017 17:34
Iron		26100	mg/Kg		1/4/2017 17:34
Lead		148	mg/Kg		1/4/2017 17:34
Magnesium		3770	mg/Kg		1/4/2017 17:34
Manganese		1310	mg/Kg		1/4/2017 19:12
Nickel		19.6	mg/Kg		1/4/2017 17:34
Potassium		1150	mg/Kg		1/4/2017 17:34
Selenium		1.09	mg/Kg		1/4/2017 17:34
Silver		< 0.661	mg/Kg		1/4/2017 17:34
Sodium		< 165	mg/Kg		1/4/2017 17:34
Thallium		< 1.65	mg/Kg		1/4/2017 17:34
Vanadium		32.4	mg/Kg		1/4/2017 17:34
Zinc		369	mg/Kg		1/4/2017 17:34
Method Refere	nce(s): EPA 6 EPA 3	5010C 3050B			
Preparation Da Data File:	ate: 1/3/2 0103	2017 17b			

Client:	<u>C&S Comp</u>	<u>anies</u>					
Project Reference:	100 Dona S	Street					
Sample Identifier:	SS-11						
Lab Sample ID:	165593-1	1		Date	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1221		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1232		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1242		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1248		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1254		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1260		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1262		< 0.0386	mg/Kg			1/5/2017	18:25
PCB-1268		< 0.0386	mg/Kg			1/5/2017	18:25
<u>Surrogate</u>		<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			40.9	10 - 144		1/5/2017	18:25
Tetrachloro-m-xylene	!		22.4	10 - 140		1/5/2017	18:25
Method Referen	nce(s): EPA EPA	A 8082A A 3550C					
Preparation Da	te: 1/4	/2017					

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-11		
Lab Sample ID:	165593-11	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 384	ug/Kg		1/5/2017 03:20
1,2,4,5-Tetrachlorobenzene	< 384	ug/Kg		1/5/2017 03:20
1,2,4-Trichlorobenzene	< 384	ug/Kg		1/5/2017 03:20
1,2-Dichlorobenzene	< 384	ug/Kg		1/5/2017 03:20
1,3-Dichlorobenzene	< 384	ug/Kg		1/5/2017 03:20
1,4-Dichlorobenzene	< 384	ug/Kg		1/5/2017 03:20
2,2-Oxybis (1-chloropropane)	< 384	ug/Kg		1/5/2017 03:20
2,3,4,6-Tetrachlorophenol	< 384	ug/Kg		1/5/2017 03:20
2,4,5-Trichlorophenol	< 768	ug/Kg		1/5/2017 03:20
2,4,6-Trichlorophenol	< 384	ug/Kg		1/5/2017 03:20
2,4-Dichlorophenol	< 384	ug/Kg		1/5/2017 03:20
2,4-Dimethylphenol	< 384	ug/Kg		1/5/2017 03:20
2,4-Dinitrophenol	< 768	ug/Kg		1/5/2017 03:20
2,4-Dinitrotoluene	< 384	ug/Kg		1/5/2017 03:20
2,6-Dinitrotoluene	< 384	ug/Kg		1/5/2017 03:20
2-Chloronaphthalene	< 384	ug/Kg		1/5/2017 03:20
2-Chlorophenol	< 384	ug/Kg		1/5/2017 03:20
2-Methylnapthalene	< 384	ug/Kg		1/5/2017 03:20
2-Methylphenol	< 384	ug/Kg		1/5/2017 03:20
2-Nitroaniline	< 768	ug/Kg		1/5/2017 03:20
2-Nitrophenol	< 384	ug/Kg		1/5/2017 03:20
3&4-Methylphenol	< 384	ug/Kg		1/5/2017 03:20
3,3'-Dichlorobenzidine	< 384	ug/Kg		1/5/2017 03:20
3-Nitroaniline	< 768	ug/Kg		1/5/2017 03:20
4,6-Dinitro-2-methylphenol	< 768	ug/Kg		1/5/2017 03:20
4-Bromophenyl phenyl ether	< 384	ug/Kg		1/5/2017 03:20
4-Chloro-3-methylphenol	< 384	ug/Kg		1/5/2017 03:20

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-11				
Lab Sample ID:	165593-11			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 384	ug/Kg		1/5/2017 03:20
4-Chlorophenyl pheny	/l ether	< 384	ug/Kg		1/5/2017 03:20
4-Nitroaniline		< 768	ug/Kg		1/5/2017 03:20
4-Nitrophenol		< 768	ug/Kg		1/5/2017 03:20
Acenaphthene		< 384	ug/Kg		1/5/2017 03:20
Acenaphthylene		< 384	ug/Kg		1/5/2017 03:20
Acetophenone		< 384	ug/Kg		1/5/2017 03:20
Anthracene		406	ug/Kg		1/5/2017 03:20
Atrazine		< 384	ug/Kg		1/5/2017 03:20
Benzaldehyde		< 384	ug/Kg		1/5/2017 03:20
Benzo (a) anthracene		1410	ug/Kg		1/5/2017 03:20
Benzo (a) pyrene		1260	ug/Kg		1/5/2017 03:20
Benzo (b) fluoranther	ie	1440	ug/Kg		1/5/2017 03:20
Benzo (g,h,i) perylene		842	ug/Kg		1/5/2017 03:20
Benzo (k) fluoranthen	ie	859	ug/Kg		1/5/2017 03:20
Bis (2-chloroethoxy)	methane	< 384	ug/Kg		1/5/2017 03:20
Bis (2-chloroethyl) et	her	< 384	ug/Kg		1/5/2017 03:20
Bis (2-ethylhexyl) pht	halate	< 384	ug/Kg		1/5/2017 03:20
Butylbenzylphthalate		< 384	ug/Kg		1/5/2017 03:20
Caprolactam		< 384	ug/Kg		1/5/2017 03:20
Carbazole		223	ug/Kg	J	1/5/2017 03:20
Chrysene		1520	ug/Kg		1/5/2017 03:20
Dibenz (a,h) anthrace	ne	377	ug/Kg	J	1/5/2017 03:20
Dibenzofuran		< 384	ug/Kg		1/5/2017 03:20
Diethyl phthalate		< 384	ug/Kg		1/5/2017 03:20
Dimethyl phthalate		< 768	ug/Kg		1/5/2017 03:20
Di-n-butyl phthalate		< 384	ug/Kg		1/5/2017 03:20
Di-n-octylphthalate		< 384	ug/Kg		1/5/2017 03:20
Fluoranthene		2970	ug/Kg		1/5/2017 03:20
Fluorene		< 384	ug/Kg		1/5/2017 03:20

Client:	<u>C&S Compan</u>	<u>lies</u>					
Project Reference:	100 Dona Str	eet					
Sample Identifier:	SS-11						
Lab Sample ID:	165593-11			Date	e Sampled:	12/28/2016	5
Matrix:	Soil			Date	e Received:	12/30/2016	ó
Hexachlorobenzene		< 384	ug/Kg			1/5/2017	03:20
Hexachlorobutadiene		< 384	ug/Kg			1/5/2017	03:20
Hexachlorocyclopenta	diene	< 384	ug/Kg			1/5/2017	03:20
Hexachloroethane		< 384	ug/Kg			1/5/2017	03:20
Indeno (1,2,3-cd) pyre	ene	652	ug/Kg			1/5/2017	03:20
Isophorone		< 384	ug/Kg			1/5/2017	03:20
Naphthalene		< 384	ug/Kg			1/5/2017	03:20
Nitrobenzene		< 384	ug/Kg			1/5/2017	03:20
N-Nitroso-di-n-propy	amine	< 384	ug/Kg			1/5/2017	03:20
N-Nitrosodiphenylam	ine	< 384	ug/Kg	1		1/5/2017	03:20
Pentachlorophenol		< 768	ug/Kg			1/5/2017	03:20
Phenanthrene		1520	ug/Kg			1/5/2017	03:20
Phenol		< 384	ug/Kg			1/5/2017	03:20
Pyrene		2260	ug/Kg			1/5/2017	03:20
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		61.5	38 - 114		1/5/2017	03:20
2-Fluorobiphenyl			44.5	25 - 105		1/5/2017	03:20
2-Fluorophenol			40.3	30.8 - 84		1/5/2017	03:20
Nitrobenzene-d5			39.5	28.5 - 84.9		1/5/2017	03:20
Phenol-d5			42.5	32.5 - 89.6		1/5/2017	03:20
Terphenyl-d14			59.0	55.5 - 117		1/5/2017	03:20
Method Referen	ice(s): EPA 82	70D					
Preparation Da Data File:	EPA 35 te: 1/4/20 B16346	50C 17 5.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-11				
Lab Sample ID:	165593-11			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.12	ug/Kg		1/5/2017 17:01
1,1,2,2-Tetrachloroet	hane	< 4.12	ug/Kg		1/5/2017 17:01
1,1,2-Trichloroethane	2	< 4.12	ug/Kg		1/5/2017 17:01
1,1-Dichloroethane		< 4.12	ug/Kg	L	1/5/2017 17:01
1,1-Dichloroethene		< 4.12	ug/Kg		1/5/2017 17:01
1,2,3-Trichlorobenzer	ne	< 10.3	ug/Kg		1/5/2017 17:01
1,2,4-Trichlorobenzer	ne	< 10.3	ug/Kg		1/5/2017 17:01
1,2-Dibromo-3-Chloro	opropane	< 20.6	ug/Kg		1/5/2017 17:01
1,2-Dibromoethane		< 4.12	ug/Kg		1/5/2017 17:01
1,2-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 17:01
1,2-Dichloroethane		< 4.12	ug/Kg		1/5/2017 17:01
1,2-Dichloropropane		< 4.12	ug/Kg		1/5/2017 17:01
1,3-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 17:01
1,4-Dichlorobenzene		< 4.12	ug/Kg		1/5/2017 17:01
1,4-dioxane		< 41.2	ug/Kg		1/5/2017 17:01
2-Butanone		< 20.6	ug/Kg		1/5/2017 17:01
2-Hexanone		< 10.3	ug/Kg		1/5/2017 17:01
4-Methyl-2-pentanon	e	< 10.3	ug/Kg		1/5/2017 17:01
Acetone		< 20.6	ug/Kg		1/5/2017 17:01
Benzene		< 4.12	ug/Kg		1/5/2017 17:01
Bromochloromethane	2	< 10.3	ug/Kg		1/5/2017 17:01
Bromodichlorometha	ne	< 4.12	ug/Kg		1/5/2017 17:01
Bromoform		< 10.3	ug/Kg		1/5/2017 17:01
Bromomethane		< 4.12	ug/Kg		1/5/2017 17:01
Carbon disulfide		< 4.12	ug/Kg		1/5/2017 17:01
Carbon Tetrachloride		< 4.12	ug/Kg		1/5/2017 17:01
Chlorobenzene		< 4.12	ug/Kg		1/5/2017 17:01

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-11				
Lab Sample ID:	165593-11			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 4.12	ug/Kg		1/5/2017 17:01
Chloroform		< 4.12	ug/Kg		1/5/2017 17:01
Chloromethane		< 4.12	ug/Kg		1/5/2017 17:01
cis-1,2-Dichloroethen	e	< 4.12	ug/Kg		1/5/2017 17:01
cis-1,3-Dichloroprope	ene	< 4.12	ug/Kg		1/5/2017 17:01
Cyclohexane		< 20.6	ug/Kg		1/5/2017 17:01
Dibromochlorometha	ine	< 4.12	ug/Kg		1/5/2017 17:01
Dichlorodifluorometh	nane	< 4.12	ug/Kg		1/5/2017 17:01
Ethylbenzene		< 4.12	ug/Kg		1/5/2017 17:01
Freon 113		< 4.12	ug/Kg		1/5/2017 17:01
Isopropylbenzene		< 4.12	ug/Kg		1/5/2017 17:01
m,p-Xylene		< 4.12	ug/Kg		1/5/2017 17:01
Methyl acetate		< 4.12	ug/Kg		1/5/2017 17:01
Methyl tert-butyl Eth	er	< 4.12	ug/Kg		1/5/2017 17:01
Methylcyclohexane		< 4.12	ug/Kg		1/5/2017 17:01
Methylene chloride		5.28	ug/Kg	J	1/5/2017 17:01
o-Xylene		< 4.12	ug/Kg		1/5/2017 17:01
Styrene		< 10.3	ug/Kg		1/5/2017 17:01
Tetrachloroethene		< 4.12	ug/Kg		1/5/2017 17:01
Toluene		< 4.12	ug/Kg		1/5/2017 17:01
trans-1,2-Dichloroeth	iene	< 4.12	ug/Kg		1/5/2017 17:01
trans-1,3-Dichloropro	opene	< 4.12	ug/Kg		1/5/2017 17:01
Trichloroethene		< 4.12	ug/Kg		1/5/2017 17:01
Trichlorofluorometha	ane	< 4.12	ug/Kg		1/5/2017 17:01
Vinyl chloride		< 4.12	ug/Kg		1/5/2017 17:01

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-11					
Lab Sample ID:	165593-11		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	105	82 - 124		1/5/2017	17:01
4-Bromofluorobenzer	ie	71.3	80.5 - 116	*	1/5/2017	17:01
Pentafluorobenzene		90.9	88.7 - 112		1/5/2017	17:01
Toluene-D8		91.2	79.1 - 120		1/5/2017	17:01

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Data File:

EPA 5035A - L x38313.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	SS-12		
Lab Sample ID:	165593-12	Date Sampled:	12/28/2016
Matrix:	Soil	Date Received:	12/30/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0964	mg/Kg		1/3/2017 17:09
Method Reference(s):	EPA 7471B			
Preparation Date:	1/3/2017			
Data File:	Hg170103A			

FINAL

Client:	<u>C&S Co</u>	ompanies	i			
Project Reference:	100 Do	na Street				
Sample Identifier:	SS-12					
Lab Sample ID:	16559	93-12			Date Sampled:	12/28/2016
Matrix:	Soil				Date Received:	12/30/2016
<u>TAL Metals (ICP)</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum			8760	mg/Kg		1/4/2017 17:39
Antimony			< 3.66	mg/Kg		1/4/2017 17:39
Arsenic			11.5	mg/Kg		1/4/2017 17:39
Barium			73.0	mg/Kg		1/4/2017 17:39
Beryllium			0.544	mg/Kg		1/4/2017 17:39
Cadmium			1.63	mg/Kg		1/4/2017 17:39
Calcium			17300	mg/Kg		1/3/2017 19:38
Chromium			31.9	mg/Kg		1/4/2017 17:39
Cobalt			6.26	mg/Kg		1/4/2017 17:39
Copper			57.7	mg/Kg		1/4/2017 17:39
Iron			23400	mg/Kg		1/4/2017 17:39
Lead			143	mg/Kg		1/4/2017 17:39
Magnesium			4970	mg/Kg		1/4/2017 17:39
Manganese			910	mg/Kg		1/4/2017 19:16
Nickel			18.8	mg/Kg		1/4/2017 17:39
Potassium			1110	mg/Kg		1/4/2017 17:39
Selenium			1.47	mg/Kg		1/4/2017 17:39
Silver			< 0.609	mg/Kg		1/4/2017 17:39
Sodium			82.4	mg/Kg	J	1/4/2017 17:39
Thallium			< 1.52	mg/Kg		1/4/2017 17:39
Vanadium			27.2	mg/Kg		1/4/2017 17:39
Zinc			380	mg/Kg		1/4/2017 17:39
Method Refere Preparation D	ence(s): ate:	EPA 6010C EPA 3050B 1/3/2017				
Data File:		010317b				

Client:	<u>C&S Comp</u>	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	SS-12						
Lab Sample ID:	165593-2	12		Date	e Sampled:	12/28/2016	
Matrix:	Soil			Date	e Received:	12/30/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1221		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1232		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1242		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1248		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1254		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1260		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1262		< 0.0394	mg/Kg			1/5/2017	18:47
PCB-1268		< 0.0394	mg/Kg			1/5/2017	18:47
<u>Surrogate</u>		<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			40.5	10 - 144		1/5/2017	18:47
Tetrachloro-m-xylene	2		27.3	10 - 140		1/5/2017	18:47
Method Referer	nce(s): EPA EPA	A 8082A A 3550C					
Preparation Da	te: 1/4	4/2017					

Client:	<u>C&S Compan</u>	ies			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-12				
Lab Sample ID:	165593-12			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Semi-Volatile Organic	rs (Acid/Base Ne	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 1930	ug/Kg		1/6/2017 18:05
1,2,4,5-Tetrachlorobe	enzene	< 1930	ug/Kg		1/6/2017 18:05
1,2,4-Trichlorobenze	ne	< 1930	ug/Kg		1/6/2017 18:05
1,2-Dichlorobenzene		< 1930	ug/Kg		1/6/2017 18:05
1,3-Dichlorobenzene		< 1930	ug/Kg		1/6/2017 18:05
1,4-Dichlorobenzene		< 1930	ug/Kg		1/6/2017 18:05
2,2-Oxybis (1-chlorop	propane)	< 1930	ug/Kg		1/6/2017 18:05
2,3,4,6-Tetrachloroph	nenol	< 1930	ug/Kg		1/6/2017 18:05
2,4,5-Trichloropheno	l	< 3860	ug/Kg		1/6/2017 18:05
2,4,6-Trichloropheno	l	< 1930	ug/Kg		1/6/2017 18:05
2,4-Dichlorophenol		< 1930	ug/Kg		1/6/2017 18:05
2,4-Dimethylphenol		< 1930	ug/Kg		1/6/2017 18:05
2,4-Dinitrophenol		< 3860	ug/Kg		1/6/2017 18:05
2,4-Dinitrotoluene		< 1930	ug/Kg		1/6/2017 18:05
2,6-Dinitrotoluene		< 1930	ug/Kg		1/6/2017 18:05
2-Chloronaphthalene		< 1930	ug/Kg		1/6/2017 18:05
2-Chlorophenol		< 1930	ug/Kg		1/6/2017 18:05
2-Methylnapthalene		< 1930	ug/Kg		1/6/2017 18:05
2-Methylphenol		< 1930	ug/Kg		1/6/2017 18:05
2-Nitroaniline		< 3860	ug/Kg		1/6/2017 18:05
2-Nitrophenol		< 1930	ug/Kg		1/6/2017 18:05
3&4-Methylphenol		< 1930	ug/Kg		1/6/2017 18:05
3,3'-Dichlorobenzidir	ie	< 1930	ug/Kg		1/6/2017 18:05
3-Nitroaniline		< 3860	ug/Kg		1/6/2017 18:05
4,6-Dinitro-2-methyl	phenol	< 3860	ug/Kg		1/6/2017 18:05
4-Bromophenyl phen	yl ether	< 1930	ug/Kg		1/6/2017 18:05
4-Chloro-3-methylph	enol	< 1930	ug/Kg		1/6/2017 18:05

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-12				
Lab Sample ID:	165593-12			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
4-Chloroaniline		< 1930	ug/Kg		1/6/2017 18:05
4-Chlorophenyl pheny	yl ether	< 1930	ug/Kg		1/6/2017 18:05
4-Nitroaniline		< 3860	ug/Kg		1/6/2017 18:05
4-Nitrophenol		< 3860	ug/Kg		1/6/2017 18:05
Acenaphthene		< 1930	ug/Kg		1/6/2017 18:05
Acenaphthylene		< 1930	ug/Kg		1/6/2017 18:05
Acetophenone		< 1930	ug/Kg		1/6/2017 18:05
Anthracene		2110	ug/Kg		1/6/2017 18:05
Atrazine		< 1930	ug/Kg		1/6/2017 18:05
Benzaldehyde		< 1930	ug/Kg		1/6/2017 18:05
Benzo (a) anthracene		5130	ug/Kg		1/6/2017 18:05
Benzo (a) pyrene		4480	ug/Kg		1/6/2017 18:05
Benzo (b) fluoranther	ie	4350	ug/Kg		1/6/2017 18:05
Benzo (g,h,i) perylene	2	2850	ug/Kg		1/6/2017 18:05
Benzo (k) fluoranther	ie	3320	ug/Kg		1/6/2017 18:05
Bis (2-chloroethoxy)	methane	< 1930	ug/Kg		1/6/2017 18:05
Bis (2-chloroethyl) et	her	< 1930	ug/Kg		1/6/2017 18:05
Bis (2-ethylhexyl) ph	halate	< 1930	ug/Kg		1/6/2017 18:05
Butylbenzylphthalate		< 1930	ug/Kg		1/6/2017 18:05
Caprolactam		< 1930	ug/Kg		1/6/2017 18:05
Carbazole		1090	ug/Kg	J	1/6/2017 18:05
Chrysene		5080	ug/Kg		1/6/2017 18:05
Dibenz (a,h) anthrace	ne	1370	ug/Kg	J	1/6/2017 18:05
Dibenzofuran		< 1930	ug/Kg		1/6/2017 18:05
Diethyl phthalate		< 1930	ug/Kg		1/6/2017 18:05
Dimethyl phthalate		< 3860	ug/Kg		1/6/2017 18:05
Di-n-butyl phthalate		< 1930	ug/Kg		1/6/2017 18:05
Di-n-octylphthalate		< 1930	ug/Kg		1/6/2017 18:05
Fluoranthene		11500	ug/Kg		1/6/2017 18:05
Fluorene		< 1930	ug/Kg		1/6/2017 18:05

Client:	<u>C&S Compani</u>	ies					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	SS-12						
Lab Sample ID:	165593-12			Dat	e Sampled:	12/28/2016)
Matrix:	Soil			Date	e Received:	12/30/2016)
Hexachlorobenzene		< 1930	ug/Kg			1/6/2017	18:05
Hexachlorobutadiene		< 1930	ug/Kg			1/6/2017	18:05
Hexachlorocyclopenta	diene	< 1930	ug/Kg			1/6/2017	18:05
Hexachloroethane		< 1930	ug/Kg			1/6/2017	18:05
Indeno (1,2,3-cd) pyre	ene	2130	ug/Kg			1/6/2017	18:05
Isophorone		< 1930	ug/Kg			1/6/2017	18:05
Naphthalene		< 1930	ug/Kg			1/6/2017	18:05
Nitrobenzene		< 1930	ug/Kg			1/6/2017	18:05
N-Nitroso-di-n-propy	amine	< 1930	ug/Kg			1/6/2017	18:05
N-Nitrosodiphenylam	ine	< 1930	ug/Kg	1		1/6/2017	18:05
Pentachlorophenol		< 3860	ug/Kg			1/6/2017	18:05
Phenanthrene		8320	ug/Kg			1/6/2017	18:05
Phenol		< 1930	ug/Kg			1/6/2017	18:05
Pyrene		9110	ug/Kg			1/6/2017	18:05
Surrogate		Perce	nt Recovery	Limits	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		70.6	38 - 114		1/6/2017	18:05
2-Fluorobiphenyl			57.1	25 - 105		1/6/2017	18:05
2-Fluorophenol			49.7	30.8 - 84		1/6/2017	18:05
Nitrobenzene-d5			49.2	28.5 - 84.9		1/6/2017	18:05
Phenol-d5			57.7	32.5 - 89.6		1/6/2017	18:05
Terphenyl-d14			79.2	55.5 - 117		1/6/2017	18:05
Method Referen	ce(s): EPA 827	0D					
Preparation Da Data File:	EPA 355 te: 1/4/201 B16388.	0C 7 D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	SS-12				
Lab Sample ID:	165593-12			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.82	ug/Kg		1/5/2017 17:26
1,1,2,2-Tetrachloroet	hane	< 4.82	ug/Kg		1/5/2017 17:26
1,1,2-Trichloroethane		< 4.82	ug/Kg		1/5/2017 17:26
1,1-Dichloroethane		< 4.82	ug/Kg	L	1/5/2017 17:26
1,1-Dichloroethene		< 4.82	ug/Kg		1/5/2017 17:26
1,2,3-Trichlorobenzer	ne	< 12.0	ug/Kg		1/5/2017 17:26
1,2,4-Trichlorobenzer	ne	< 12.0	ug/Kg		1/5/2017 17:26
1,2-Dibromo-3-Chloro	opropane	< 24.1	ug/Kg		1/5/2017 17:26
1,2-Dibromoethane		< 4.82	ug/Kg		1/5/2017 17:26
1,2-Dichlorobenzene		< 4.82	ug/Kg		1/5/2017 17:26
1,2-Dichloroethane		< 4.82	ug/Kg		1/5/2017 17:26
1,2-Dichloropropane		< 4.82	ug/Kg		1/5/2017 17:26
1,3-Dichlorobenzene		< 4.82	ug/Kg		1/5/2017 17:26
1,4-Dichlorobenzene		< 4.82	ug/Kg		1/5/2017 17:26
1,4-dioxane		< 48.2	ug/Kg		1/5/2017 17:26
2-Butanone		< 24.1	ug/Kg		1/5/2017 17:26
2-Hexanone		< 12.0	ug/Kg		1/5/2017 17:26
4-Methyl-2-pentanon	e	< 12.0	ug/Kg		1/5/2017 17:26
Acetone		< 24.1	ug/Kg		1/5/2017 17:26
Benzene		< 4.82	ug/Kg		1/5/2017 17:26
Bromochloromethane	9	< 12.0	ug/Kg		1/5/2017 17:26
Bromodichlorometha	ne	< 4.82	ug/Kg		1/5/2017 17:26
Bromoform		< 12.0	ug/Kg		1/5/2017 17:26
Bromomethane		< 4.82	ug/Kg		1/5/2017 17:26
Carbon disulfide		< 4.82	ug/Kg		1/5/2017 17:26
Carbon Tetrachloride		< 4.82	ug/Kg		1/5/2017 17:26
Chlorobenzene		< 4.82	ug/Kg		1/5/2017 17:26

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	SS-12				
Lab Sample ID:	165593-12			Date Sampled:	12/28/2016
Matrix:	Soil			Date Received:	12/30/2016
Chloroethane		< 4.82	ug/Kg		1/5/2017 17:26
Chloroform		< 4.82	ug/Kg		1/5/2017 17:26
Chloromethane		< 4.82	ug/Kg		1/5/2017 17:26
cis-1,2-Dichloroethen	ie	< 4.82	ug/Kg		1/5/2017 17:26
cis-1,3-Dichloroprope	ene	< 4.82	ug/Kg		1/5/2017 17:26
Cyclohexane		< 24.1	ug/Kg		1/5/2017 17:26
Dibromochlorometha	ine	< 4.82	ug/Kg		1/5/2017 17:26
Dichlorodifluorometh	nane	< 4.82	ug/Kg		1/5/2017 17:26
Ethylbenzene		< 4.82	ug/Kg		1/5/2017 17:26
Freon 113		< 4.82	ug/Kg		1/5/2017 17:26
Isopropylbenzene		< 4.82	ug/Kg		1/5/2017 17:26
m,p-Xylene		< 4.82	ug/Kg		1/5/2017 17:26
Methyl acetate		< 4.82	ug/Kg		1/5/2017 17:26
Methyl tert-butyl Eth	er	< 4.82	ug/Kg		1/5/2017 17:26
Methylcyclohexane		< 4.82	ug/Kg		1/5/2017 17:26
Methylene chloride		10.0	ug/Kg	J	1/5/2017 17:26
o-Xylene		< 4.82	ug/Kg		1/5/2017 17:26
Styrene		< 12.0	ug/Kg		1/5/2017 17:26
Tetrachloroethene		< 4.82	ug/Kg		1/5/2017 17:26
Toluene		< 4.82	ug/Kg		1/5/2017 17:26
trans-1,2-Dichloroeth	iene	< 4.82	ug/Kg		1/5/2017 17:26
trans-1,3-Dichloropro	opene	< 4.82	ug/Kg		1/5/2017 17:26
Trichloroethene		< 4.82	ug/Kg		1/5/2017 17:26
Trichlorofluorometha	ane	< 4.82	ug/Kg		1/5/2017 17:26
Vinyl chloride		< 4.82	ug/Kg		1/5/2017 17:26

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	SS-12					
Lab Sample ID:	165593-12		Dat	e Sampled:	12/28/201	6
Matrix:	Soil		Dat	e Received:	12/30/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	107	82 - 124		1/5/2017	17:26
4-Bromofluorobenzer	ie	73.9	80.5 - 116	*	1/5/2017	17:26
Pentafluorobenzene		92.3	88.7 - 112		1/5/2017	17:26
Toluene-D8		92.5	79.1 - 120		1/5/2017	17:26

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

Data File:

EPA 5035A - L x38314.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this areement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

onal page for sample conditions.	See additi	No Custody Seal, seat		0.5		Г
ditions (reverse).	es to Paradigm Terms and Con	By signing this form, client agree	d: please indicate EDD needed :	lease indicate package neede	ase indicate date needed:	plea
	10/40	5°C iced 12/30/10		Yther		Ç ₽
	Date/Time	Received @ Lab By			sh 1 day	Ru
27	$\frac{10}{20} \frac{10}{10} \frac{11}{100}$		Ø	Sategory B	sh 2 day	Ru
	× 12/24/16 2	James Heene		Category A	sh 3 day	Ru
	Date/Time	Relinquished By	Basic EDD	Batch QC	day	10
Total Cost	DeterTinhe 15/29/16 20	Sampled By	None Required	Vone Required	andard 5 day	Sta
	2/28/110	Sundenberge	rt Supplements ditional fees may apply.	upon lab approval; ac	Availability contingent	П
				1	4	
0/	6		5-10	- 8	815A	
09			-9	8	825A	
80			8-8	S	S45A	
. 07	TCL		5-7	S	400 A	
30	<		5-6	S	Disb	
So			5-5	S	845A	
40			5-4	S	A ab	
50			5-3	S	930A	1
Lo CISM/SM		3	S-2	2	N 256 1	
12 MS/MSN OI	Par	XXX E OS	S -	X	2 28/16 940A	-
It availate list per	2 Corre	TCL PCB		m -i 0		
REMARKS NUMBER		- 77 - 1 > 2 m 0 0 0 77 m 0 2 C 2 2 - > - 1 2 0 VOC5 SV(V 5 SV	SAMPLE IDENTIFIER	רסצרסט מג⊲נ	ATE COLLECTED COLLECTED	Ø
	TED ANALYSIS	REQUES				
SD - Solid WP - Wipe OL - Oil PT - Paint CK - Caulk AR - Air	stewater SO - Soil SL - Sludge	WA - Water WG - Groundwater WW - Was	X Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Matri	a ta a ta a ta a ta	
Shorboty to loutturieu		ATTN:	m therberger	NCE	PROJECT REFERE	
Email:		PHONE:	6-847-1030	PHONE		
Quotation #:	STATE: ZIP:	CITY:	Hado STATE:	O.		
100 Dona Street		ADDRESS:	Elm street au	ADDRES		
LAB PROJECT ID		CLIENT: Same	C+SENAMEERS 1	CLIENT:	PARADIGN	
	INVOICE TO:		REPORT TO:			
165593	YO	CHAIN OF CUSTO				
1073	-2530 Fax (585) 647-3311	enue, Rochester, NY 14608 Office (585) 647	179 Lake Ave			

Other 10 day Rush 2 day please indicate date needed: Rush 1 day Rush 3 day Standard 5 day 12/24 DATE COLLECTED **Turnaround Time** 30 PROJECT REFERENCE Availability contingent upon lab approval; additional fees may apply. PARADIGM 16 TIME X 208 Hal X P Other None Required please indicate package needed: Batch QC Category B Category A m ⊣ - ∽ O ⊅ ≤ O O 0 P 7 0 Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid Report Supplements ATTN: CLIENT: CITY: PHONE: ADDRESS 55-X 0 l 5 np as othe NYSDEC EDD Basic EDD None Required please indicate EDD needed : Other EDD SAMPLE IDENTIFIER 179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311 STATE: K CHAIN OF CUSTODY WA - Water WG - Groundwater ΣIP By signing this form, client agrees to Paradigm Terms and Conditions (reverse). Received By Sampled By Received @'Lab By Relinquished By amels 00 08 X - 7 - 7 5 3 0 m m o o 5 ATTN: CITY: CLIENT: PHONE: ADDRESS ッ m w ≤ ⊂ z n z − > ⊣ z o o пΟ דד גר א VOC TC REQUESTED ANALYSIS Same DW - Drinking Water WW - Wastewater SVI TC enn PCB TAL Metals INVOICE TO: STATE: à 12/28 Date/Time Dat&/Time Date/Time Date/Time ball 3 SO - Soil SL - Sludge 511 6 ZIP See additional page for sample conditions. TCL 0 201 ſ 11:37 SD - Solid PT - Paint Email: Quotation #: 5923 REMARKS P.I.F. Total Cost: LAB PROJECT ID WP - Wipe CK - Caulk とれい PARADIGM LAB SAMPLE NUMBER OL - Oil AR - Air S

Chain of Custody Supplement

Client:		C+ 5 Engineers	Completed by:	Glenn Pezzulo
Lab Project ID	:	165593	Date:	12/30/16
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244				
NELAC compliance with the sample condition requirements upon receiptConditionYesNoN/A				
Container Type		$\square \not = \square$	X 5035	
	Comments			
Transferred to method- compliant container				
Headspace (<1 mL)	Comments			
Preservation	Comments			
Chlorine Absent (<0.10 ppm per t	est strip) Comments			
Holding Time	Comments			
Temperature	Comments	5°Ciced		metals
Sufficient Sample	Quantity Comments			

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

APPENDIX E

Laboratory Analysis Report – Subsurface Soil

LAB PROJECT NARRATIVE

CLIENT: C&S Engineers

PROJECT REFERENCE: 100 Dona St., N.W. #16-266

LAB PROJECT NUMBER: 165522

DATE: 12/30/2016

This report documents positive detections for trichloroethene (TCE) in select samples. It has been determined that your samples were stored concurrent with another sample that contained very high levels of TCE. Although the evidence is purely circumstantial, it is possible that the TCE results reported herein stem from cross contamination during storage.

Matthew Miller Operations Manager

179 Lake Avenue

Rochester, NY 14608

OFFICE: 585.647.2530

FAX: 585.647.3311

mmiller@paradigmenv.com www.paradigmenv.com

Client:	<u>C&S Co</u>	<u>mpanies</u>						
Project Reference:	100 Do	na Street, N	.W. # 1	6-266				
Sample Identifier:	BH-4							
Lab Sample ID:	16552	2-01			Date Sa	mpled:	12/19/2016	
Matrix:	Soil				Date Re	ceived:	12/22/2016	
<u>Metals</u>								
<u>Analyte</u>		Re	<u>esult</u>	<u>Units</u>	Q	ualifier	Date Analyz	<u>ed</u>
Arsenic		4.	77	mg/Kg			12/27/2016	17:33
Barium		40	5.0	mg/Kg			12/27/2016	17:33
Beryllium		0.	547	mg/Kg			12/27/2016	17:33
Cadmium		0.	429	mg/Kg			12/27/2016	17:33
Chromium		17	7.4	mg/Kg			12/27/2016	17:33
Copper		23	3.7	mg/Kg			12/27/2016	17:33
Lead		9.	49	mg/Kg			12/27/2016	17:33
Manganese		26	63	mg/Kg			12/27/2016	17:33
Nickel		24	4.7	mg/Kg			12/27/2016	17:33
Selenium		3.	30	mg/Kg			12/28/2016	12:09
Silver		<	0.547	mg/Kg			12/27/2016	17:33
Zinc		61	1.3	mg/Kg			12/27/2016	17:33
Method Refer	rence(s):	EPA 6010C EPA 3050B						
Preparation I Data File:	Date:	12/27/2016 122716c						

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et, N.W. # 1	6-266		
Sample Identifier:	BH-4				
Lab Sample ID:	165522-01			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>Mercury</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed

Analyte	<u>Result</u>	<u>UIIIts</u>	Quaimer Date Analyzeu
Mercury	0.0102	mg/Kg	12/27/2016 14:49
Method Reference(s):	EPA 7471B		
Preparation Date:	12/27/2016		
Data File:	Hg161227B		

FINAL

Client:	<u>C&S Comp</u>	anies					
Project Reference:	100 Dona S	treet, N.W. # 16	6-266				
Sample Identifier:	BH-4						
Lab Sample ID:	165522-0	1		Date	e Sampled:	12/19/2016	
Matrix:	Soil			Date	e Received:	12/22/2016)
<u>PCBs</u>							
<u>Analyte</u>		Result	<u>Units</u>		<u>Qualifier</u>	Date Analy	zed
PCB-1016		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1221		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1232		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1242		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1248		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1254		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1260		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1262		< 0.0350	mg/Kg			12/28/2016	12:06
PCB-1268		< 0.0350	mg/Kg			12/28/2016	12:06
<u>Surrogate</u>		<u>Percen</u>	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			73.5	10 - 144		12/28/2016	12:06
Tetrachloro-m-xylene			51.1	10 - 140		12/28/2016	12:06
Method Referen	ce(s): EPA EPA	8082A 3550C					
Preparation Dat	ie: 12/2	28/2016					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et, N.W. # 1	6-266		
Sample Identifier:	BH-4				
Lab Sample ID:	165522-01			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Semi-Volatile Organic	s (Acid/Base Ne	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 354	ug/Kg		12/27/2016 17:22
1,2,4,5-Tetrachlorobe	enzene	< 354	ug/Kg		12/27/2016 17:22
1,2,4-Trichlorobenzer	ne	< 354	ug/Kg		12/27/2016 17:22
1,2-Dichlorobenzene		< 354	ug/Kg		12/27/2016 17:22
1,3-Dichlorobenzene		< 354	ug/Kg		12/27/2016 17:22
1,4-Dichlorobenzene		< 354	ug/Kg		12/27/2016 17:22
2,2-Oxybis (1-chlorop	propane)	< 354	ug/Kg		12/27/2016 17:22
2,3,4,6-Tetrachloroph	nenol	< 354	ug/Kg		12/27/2016 17:22
2,4,5-Trichloropheno	1	< 709	ug/Kg		12/27/2016 17:22
2,4,6-Trichloropheno	1	< 354	ug/Kg		12/27/2016 17:22
2,4-Dichlorophenol		< 354	ug/Kg		12/27/2016 17:22
2,4-Dimethylphenol		< 354	ug/Kg		12/27/2016 17:22
2,4-Dinitrophenol		< 709	ug/Kg		12/27/2016 17:22
2,4-Dinitrotoluene		< 354	ug/Kg		12/27/2016 17:22
2,6-Dinitrotoluene		< 354	ug/Kg		12/27/2016 17:22
2-Chloronaphthalene		< 354	ug/Kg		12/27/2016 17:22
2-Chlorophenol		< 354	ug/Kg		12/27/2016 17:22
2-Methylnapthalene		< 354	ug/Kg		12/27/2016 17:22
2-Methylphenol		< 354	ug/Kg		12/27/2016 17:22
2-Nitroaniline		< 709	ug/Kg		12/27/2016 17:22
2-Nitrophenol		< 354	ug/Kg		12/27/2016 17:22
3&4-Methylphenol		< 354	ug/Kg		12/27/2016 17:22
3,3'-Dichlorobenzidir	ie	< 354	ug/Kg		12/27/2016 17:22
3-Nitroaniline		< 709	ug/Kg		12/27/2016 17:22
4,6-Dinitro-2-methylj	phenol	< 709	ug/Kg		12/27/2016 17:22
4-Bromophenyl phen	yl ether	< 354	ug/Kg		12/27/2016 17:22
4-Chloro-3-methylph	enol	< 354	ug/Kg		12/27/2016 17:22

Client:	<u>C&S Companie</u>	es			
Project Reference:	100 Dona Stree	et, N.W. # 1	.6-266		
Sample Identifier:	BH-4				
Lab Sample ID:	165522-01			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
4-Chloroaniline		< 354	ug/Kg		12/27/2016 17:22
4-Chlorophenyl pheny	/l ether	< 354	ug/Kg		12/27/2016 17:22
4-Nitroaniline		< 709	ug/Kg		12/27/2016 17:22
4-Nitrophenol		< 709	ug/Kg		12/27/2016 17:22
Acenaphthene		< 354	ug/Kg		12/27/2016 17:22
Acenaphthylene		< 354	ug/Kg		12/27/2016 17:22
Acetophenone		< 354	ug/Kg		12/27/2016 17:22
Anthracene		< 354	ug/Kg		12/27/2016 17:22
Atrazine		< 354	ug/Kg		12/27/2016 17:22
Benzaldehyde		< 354	ug/Kg		12/27/2016 17:22
Benzo (a) anthracene		< 354	ug/Kg		12/27/2016 17:22
Benzo (a) pyrene		< 354	ug/Kg		12/27/2016 17:22
Benzo (b) fluoranthen	ie	< 354	ug/Kg		12/27/2016 17:22
Benzo (g,h,i) perylene		< 354	ug/Kg		12/27/2016 17:22
Benzo (k) fluoranthen	ie	< 354	ug/Kg		12/27/2016 17:22
Bis (2-chloroethoxy)	methane	< 354	ug/Kg		12/27/2016 17:22
Bis (2-chloroethyl) et	her	< 354	ug/Kg		12/27/2016 17:22
Bis (2-ethylhexyl) pht	halate	< 354	ug/Kg		12/27/2016 17:22
Butylbenzylphthalate		< 354	ug/Kg		12/27/2016 17:22
Caprolactam		< 354	ug/Kg		12/27/2016 17:22
Carbazole		< 354	ug/Kg		12/27/2016 17:22
Chrysene		< 354	ug/Kg		12/27/2016 17:22
Dibenz (a,h) anthrace	ne	< 354	ug/Kg		12/27/2016 17:22
Dibenzofuran		< 354	ug/Kg		12/27/2016 17:22
Diethyl phthalate		< 354	ug/Kg		12/27/2016 17:22
Dimethyl phthalate		< 709	ug/Kg		12/27/2016 17:22
Di-n-butyl phthalate		< 354	ug/Kg		12/27/2016 17:22
Di-n-octylphthalate		< 354	ug/Kg		12/27/2016 17:22
Fluoranthene		< 354	ug/Kg		12/27/2016 17:22
Fluorene		< 354	ug/Kg		12/27/2016 17:22

Client:	<u>C&S Con</u>	<u>ipanies</u>					
Project Reference:	100 Dona	a Street, N.W. #	16-266				
Sample Identifier:	BH-4						
Lab Sample ID:	165522	-01		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
Hexachlorobenzene		< 354	ug/Kg			12/27/2016	17:22
Hexachlorobutadiene	2	< 354	ug/Kg			12/27/2016	17:22
Hexachlorocyclopenta	adiene	< 354	ug/Kg			12/27/2016	17:22
Hexachloroethane		< 354	ug/Kg			12/27/2016	17:22
Indeno (1,2,3-cd) pyr	ene	< 354	ug/Kg			12/27/2016	17:22
Isophorone		< 354	ug/Kg			12/27/2016	17:22
Naphthalene		< 354	ug/Kg			12/27/2016	17:22
Nitrobenzene		< 354	ug/Kg			12/27/2016	17:22
N-Nitroso-di-n-propy	lamine	< 354	ug/Kg			12/27/2016	17:22
N-Nitrosodiphenylam	nine	< 354	ug/Kg			12/27/2016	17:22
Pentachlorophenol		< 709	ug/Kg			12/27/2016	17:22
Phenanthrene		< 354	ug/Kg			12/27/2016	17:22
Phenol		< 354	ug/Kg			12/27/2016	17:22
Pyrene		< 354	ug/Kg			12/27/2016	17:22
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	ol		37.2	38 - 114	*	12/27/2016	17:22
2-Fluorobiphenyl			27.9	25 - 105		12/27/2016	17:22
2-Fluorophenol			24.9	30.8 - 84	*	12/27/2016	17:22
Nitrobenzene-d5			25.4	28.5 - 84.9	*	12/27/2016	17:22
Phenol-d5			26.0	32.5 - 89.6	*	12/27/2016	17:22
Terphenyl-d14			45.8	55.5 - 117	*	12/27/2016	17:22
Method Referen	nce(s): E	EPA 8270D EPA 3550C					
Preparation Da Data File:	ate: 1 E	2/27/2016 316231.D					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et, N.W. # 1	.6-266		
Sample Identifier:	BH-4				
Lab Sample ID:	165522-01			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>Volatile Organics</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.95	ug/Kg		12/28/2016 10:38
1,1,2,2-Tetrachloroet	hane	< 4.95	ug/Kg		12/28/2016 10:38
1,1,2-Trichloroethane	<u>j</u>	< 4.95	ug/Kg		12/28/2016 10:38
1,1-Dichloroethane		< 4.95	ug/Kg		12/28/2016 10:38
1,1-Dichloroethene		< 4.95	ug/Kg		12/28/2016 10:38
1,2,3-Trichlorobenzei	ne	< 12.4	ug/Kg		12/28/2016 10:38
1,2,4-Trichlorobenzei	ne	< 12.4	ug/Kg		12/28/2016 10:38
1,2,4-Trimethylbenze	ene	< 4.95	ug/Kg		12/28/2016 10:38
1,2-Dibromo-3-Chlor	opropane	< 24.8	ug/Kg		12/28/2016 10:38
1,2-Dibromoethane		< 4.95	ug/Kg		12/28/2016 10:38
1,2-Dichlorobenzene		< 4.95	ug/Kg		12/28/2016 10:38
1,2-Dichloroethane		< 4.95	ug/Kg		12/28/2016 10:38
1,2-Dichloropropane		< 4.95	ug/Kg		12/28/2016 10:38
1,3,5-Trimethylbenze	ene	< 4.95	ug/Kg		12/28/2016 10:38
1,3-Dichlorobenzene		< 4.95	ug/Kg		12/28/2016 10:38
1,4-Dichlorobenzene		< 4.95	ug/Kg		12/28/2016 10:38
1,4-dioxane		< 49.5	ug/Kg		12/28/2016 10:38
2-Butanone		< 24.8	ug/Kg		12/28/2016 10:38
2-Hexanone		< 12.4	ug/Kg		12/28/2016 10:38
4-Methyl-2-pentanon	e	< 12.4	ug/Kg		12/28/2016 10:38
Acetone		< 24.8	ug/Kg		12/28/2016 10:38
Benzene		< 4.95	ug/Kg		12/28/2016 10:38
Bromochloromethane	2	< 12.4	ug/Kg		12/28/2016 10:38
Bromodichlorometha	ne	< 4.95	ug/Kg		12/28/2016 10:38
Bromoform		< 12.4	ug/Kg		12/28/2016 10:38
Bromomethane		< 4.95	ug/Kg		12/28/2016 10:38
Carbon disulfide		< 4.95	ug/Kg		12/28/2016 10:38

Client:	<u>C&S Companie</u>	es			
Project Reference:	100 Dona Stree	et, N.W. # 1	6-266		
Sample Identifier:	BH-4				
Lab Sample ID:	165522-01			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Carbon Tetrachloride		< 4.95	ug/Kg		12/28/2016 10:38
Chlorobenzene		< 4.95	ug/Kg		12/28/2016 10:38
Chloroethane		< 4.95	ug/Kg		12/28/2016 10:38
Chloroform		< 4.95	ug/Kg		12/28/2016 10:38
Chloromethane		< 4.95	ug/Kg		12/28/2016 10:38
cis-1,2-Dichloroethene		< 4.95	ug/Kg		12/28/2016 10:38
cis-1,3-Dichloropropen	e	< 4.95	ug/Kg		12/28/2016 10:38
Cyclohexane		< 24.8	ug/Kg		12/28/2016 10:38
Dibromochloromethan	e	< 4.95	ug/Kg		12/28/2016 10:38
Dichlorodifluorometha	ne	< 4.95	ug/Kg		12/28/2016 10:38
Ethylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
Freon 113		< 4.95	ug/Kg		12/28/2016 10:38
Isopropylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
m,p-Xylene		< 4.95	ug/Kg		12/28/2016 10:38
Methyl acetate		< 4.95	ug/Kg		12/28/2016 10:38
Methyl tert-butyl Ether		< 4.95	ug/Kg		12/28/2016 10:38
Methylcyclohexane		< 4.95	ug/Kg		12/28/2016 10:38
Methylene chloride		< 12.4	ug/Kg		12/28/2016 10:38
Naphthalene		< 12.4	ug/Kg		12/28/2016 10:38
n-Butylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
n-Propylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
o-Xylene		< 4.95	ug/Kg		12/28/2016 10:38
p-Isopropyltoluene		< 4.95	ug/Kg		12/28/2016 10:38
sec-Butylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
Styrene		< 12.4	ug/Kg		12/28/2016 10:38
tert-Butylbenzene		< 4.95	ug/Kg		12/28/2016 10:38
Tetrachloroethene		< 4.95	ug/Kg		12/28/2016 10:38
Toluene		< 4.95	ug/Kg		12/28/2016 10:38
trans-1,2-Dichloroethe	ne	< 4.95	ug/Kg		12/28/2016 10:38
trans-1,3-Dichloroprop	ene	< 4.95	ug/Kg		12/28/2016 10:38

Client:	<u>C&S Compa</u>	<u>inies</u>					
Project Reference:	100 Dona St	treet, N.W. #	16-266				
Sample Identifier:	BH-4						
Lab Sample ID:	165522-01	l		Dat	e Sampled:	12/19/2016	5
Matrix:	Soil			Dat	e Received:	12/22/2016	5
Trichloroethene		< 4.95	ug/Kg			12/28/2016	10:38
Trichlorofluorometha	ne	< 4.95	ug/Kg			12/28/2016	10:38
Vinyl chloride		< 4.95	ug/Kg			12/28/2016	10:38
<u>Surrogate</u>		Pero	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	4		104	82 - 124		12/28/2016	10:38
4-Bromofluorobenzen	ie		94.8	80.5 - 116		12/28/2016	10:38
Pentafluorobenzene			102	88.7 - 112		12/28/2016	10:38
Toluene-D8			99.3	79.1 - 120		12/28/2016	10:38
Method Referen	nce(s): EPA 8 EPA 9	3260C 5035A - L					
Data File:	x381	03.D					

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	<u>ompanies</u>				
Project Reference:	100 Dc	ona Street,	N.W. # 1	6-266		
Sample Identifier:	BH-10)				
Lab Sample ID:	16552	22-02			Date Sampled:	12/19/2016
Matrix:	Soil				Date Received:	12/22/2016
<u>Metals</u>						
<u>Analyte</u>		J	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		9	9.52	mg/Kg		12/27/2016 17:37
Barium			77.0	mg/Kg		12/27/2016 17:37
Beryllium		(0.439	mg/Kg		12/27/2016 17:37
Cadmium		(0.185	mg/Kg	J	12/27/2016 17:37
Chromium		(6.13	mg/Kg		12/27/2016 17:37
Copper			17.6	mg/Kg		12/27/2016 17:37
Lead			11.0	mg/Kg		12/27/2016 17:37
Manganese		(69.7	mg/Kg		12/27/2016 17:37
Nickel			11.1	mg/Kg		12/27/2016 17:37
Selenium		:	3.54	mg/Kg		12/28/2016 12:13
Silver			< 0.564	mg/Kg		12/27/2016 17:37
Zinc		:	23.9	mg/Kg		12/27/2016 17:37
Method Refe	rence(s):	EPA 6010C EPA 3050B				
Preparation Data File:	Date:	12/27/2016 122716c				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street, N.W. # 16-266		
Sample Identifier:	BH-10		
Lab Sample ID:	165522-02	Date Sampled:	12/19/2016
Matrix:	Soil	Date Received:	12/22/2016

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0247	mg/Kg		12/27/2016 14:53
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

FINAL

Client:	<u>C&S Com</u>	<u>panies</u>						
Project Reference:	100 Dona	a Street, N.W.	# 16-266)				
Sample Identifier:	BH-10							
Lab Sample ID:	165522	-02			Date	Sampled:	12/19/2016	
Matrix:	Soil				Date	Received:	12/22/2016	
<u>PCBs</u>								
<u>Analyte</u>		Result	t <u>Un</u>	<u>its</u>		Qualifier	Date Analyz	zed
PCB-1016		< 0.03	28 mg	/Kg			12/28/2016	12:30
PCB-1221		< 0.03	28 mg	j/Kg			12/28/2016	12:30
PCB-1232		< 0.03	28 mg	j/Kg			12/28/2016	12:30
PCB-1242		< 0.03	28 mg	j/Kg			12/28/2016	12:30
PCB-1248		< 0.03	28 mg	j/Kg			12/28/2016	12:30
PCB-1254		< 0.03	28 mg	j/Kg			12/28/2016	12:30
PCB-1260		< 0.03	28 mg	;/Kg			12/28/2016	12:30
PCB-1262		< 0.03	28 mg	/Kg			12/28/2016	12:30
PCB-1268		< 0.03	28 mg	;/Kg			12/28/2016	12:30
<u>Surrogate</u>		<u>Pe</u>	rcent Reco	very <u>Li</u>	<u>mits</u>	<u>Outliers</u>	Date Analyz	<u>zed</u>
Decachlorobiphenyl			71.5	10	- 144		12/28/2016	12:30
Tetrachloro-m-xylene			47.1	10	- 140		12/28/2016	12:30
Method Reference	ce(s): E E	PA 8082A PA 3550C	•					
Preparation Date	e: 1	2/28/2016						

12/27/2016 17:52

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et, N.W. # 1	6-266		
Sample Identifier:	BH-10				
Lab Sample ID:	165522-02			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Semi-Volatile Organic	s (Acid/Base Neu	<u>ıtrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 326	ug/Kg		12/27/2016 17:52
1,2,4,5-Tetrachlorobe	enzene	< 326	ug/Kg		12/27/2016 17:52
1,2,4-Trichlorobenzer	ne	< 326	ug/Kg		12/27/2016 17:52
1,2-Dichlorobenzene		< 326	ug/Kg		12/27/2016 17:52
1,3-Dichlorobenzene		< 326	ug/Kg		12/27/2016 17:52
1,4-Dichlorobenzene		< 326	ug/Kg		12/27/2016 17:52
2,2-Oxybis (1-chlorop	propane)	< 326	ug/Kg		12/27/2016 17:52
2,3,4,6-Tetrachloroph	ienol	< 326	ug/Kg		12/27/2016 17:52
2,4,5-Trichloropheno	1	< 652	ug/Kg		12/27/2016 17:52
2,4,6-Trichloropheno	1	< 326	ug/Kg		12/27/2016 17:52
2,4-Dichlorophenol		< 326	ug/Kg		12/27/2016 17:52
2,4-Dimethylphenol		< 326	ug/Kg		12/27/2016 17:52
2,4-Dinitrophenol		< 652	ug/Kg		12/27/2016 17:52
2,4-Dinitrotoluene		< 326	ug/Kg		12/27/2016 17:52
2,6-Dinitrotoluene		< 326	ug/Kg		12/27/2016 17:52
2-Chloronaphthalene		< 326	ug/Kg		12/27/2016 17:52
2-Chlorophenol		< 326	ug/Kg		12/27/2016 17:52
2-Methylnapthalene		< 326	ug/Kg		12/27/2016 17:52
2-Methylphenol		< 326	ug/Kg		12/27/2016 17:52
2-Nitroaniline		< 652	ug/Kg		12/27/2016 17:52
2-Nitrophenol		< 326	ug/Kg		12/27/2016 17:52
3&4-Methylphenol		< 326	ug/Kg		12/27/2016 17:52
3,3'-Dichlorobenzidir	ie	< 326	ug/Kg		12/27/2016 17:52

4,6-Dinitro-2-methylphenol< 652</th>ug/Kg12/27/201617:524-Bromophenyl phenyl ether< 326</td>ug/Kg12/27/201617:524-Chloro-3-methylphenol< 326</td>ug/Kg12/27/201617:52

ug/Kg

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 652

3-Nitroaniline

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et, N.W. # 1	.6-266		
Sample Identifier:	BH-10				
Lab Sample ID:	165522-02			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
4-Chloroaniline		< 326	ug/Kg		12/27/2016 17:52
4-Chlorophenyl pheny	vl ether	< 326	ug/Kg		12/27/2016 17:52
4-Nitroaniline		< 652	ug/Kg		12/27/2016 17:52
4-Nitrophenol		< 652	ug/Kg		12/27/2016 17:52
Acenaphthene		< 326	ug/Kg		12/27/2016 17:52
Acenaphthylene		< 326	ug/Kg		12/27/2016 17:52
Acetophenone		< 326	ug/Kg		12/27/2016 17:52
Anthracene		< 326	ug/Kg		12/27/2016 17:52
Atrazine		< 326	ug/Kg		12/27/2016 17:52
Benzaldehyde		< 326	ug/Kg		12/27/2016 17:52
Benzo (a) anthracene		< 326	ug/Kg		12/27/2016 17:52
Benzo (a) pyrene		< 326	ug/Kg		12/27/2016 17:52
Benzo (b) fluoranthen	e	< 326	ug/Kg		12/27/2016 17:52
Benzo (g,h,i) perylene		< 326	ug/Kg		12/27/2016 17:52
Benzo (k) fluoranthen	e	< 326	ug/Kg		12/27/2016 17:52
Bis (2-chloroethoxy)	nethane	< 326	ug/Kg		12/27/2016 17:52
Bis (2-chloroethyl) et	ner	< 326	ug/Kg		12/27/2016 17:52
Bis (2-ethylhexyl) pht	halate	< 326	ug/Kg		12/27/2016 17:52
Butylbenzylphthalate		< 326	ug/Kg		12/27/2016 17:52
Caprolactam		< 326	ug/Kg		12/27/2016 17:52
Carbazole		< 326	ug/Kg		12/27/2016 17:52
Chrysene		< 326	ug/Kg		12/27/2016 17:52
Dibenz (a,h) anthrace	ne	< 326	ug/Kg		12/27/2016 17:52
Dibenzofuran		< 326	ug/Kg		12/27/2016 17:52
Diethyl phthalate		< 326	ug/Kg		12/27/2016 17:52
Dimethyl phthalate		< 652	ug/Kg		12/27/2016 17:52
Di-n-butyl phthalate		< 326	ug/Kg		12/27/2016 17:52
Di-n-octylphthalate		< 326	ug/Kg		12/27/2016 17:52
Fluoranthene		< 326	ug/Kg		12/27/2016 17:52
Fluorene		< 326	ug/Kg		12/27/2016 17:52

Client:	<u>C&S Com</u>	<u>ipanies</u>					
Project Reference:	100 Dona	a Street, N.W. #	16-266				
Sample Identifier:	BH-10						
Lab Sample ID:	165522	-02		Date	e Sampled:	12/19/2016	
Matrix:	Soil			Date	e Received:	12/22/2016	
Hexachlorobenzene		< 326	ug/Kg			12/27/2016	17:52
Hexachlorobutadiene		< 326	ug/Kg			12/27/2016	17:52
Hexachlorocyclopenta	adiene	< 326	ug/Kg			12/27/2016	17:52
Hexachloroethane		< 326	ug/Kg			12/27/2016	17:52
Indeno (1,2,3-cd) pyre	ene	< 326	ug/Kg			12/27/2016	17:52
Isophorone		< 326	ug/Kg			12/27/2016	17:52
Naphthalene		< 326	ug/Kg			12/27/2016	17:52
Nitrobenzene		< 326	ug/Kg			12/27/2016	17:52
N-Nitroso-di-n-propy	lamine	< 326	ug/Kg			12/27/2016	17:52
N-Nitrosodiphenylam	ine	< 326	ug/Kg	1		12/27/2016	17:52
Pentachlorophenol		< 652	ug/Kg			12/27/2016	17:52
Phenanthrene		< 326	ug/Kg			12/27/2016	17:52
Phenol		< 326	ug/Kg			12/27/2016	17:52
Pyrene		< 326	ug/Kg			12/27/2016	17:52
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	1		48.0	38 - 114		12/27/2016	17:52
2-Fluorobiphenyl			49.3	25 - 105		12/27/2016	17:52
2-Fluorophenol			36.5	30.8 - 84		12/27/2016	17:52
Nitrobenzene-d5			40.7	28.5 - 84.9		12/27/2016	17:52
Phenol-d5			46.0	32.5 - 89.6		12/27/2016	17:52
Terphenyl-d14			64.9	55.5 - 117		12/27/2016	17:52
Method Referer	nce(s): E E	PA 8270D PA 3550C					
Preparation Da Data File:	te: 1 B	2/27/2016 16232.D					

Client:	<u>C&S Compani</u>	<u>es</u>						
Project Reference:	100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-10							
Lab Sample ID:	165522-02			Date Sampled:	12/19/2016			
Matrix:	Soil			Date Received:	12/22/2016			
Volatile Organics								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	e	< 11.6	ug/Kg		12/28/2016 14:41			
1,1,2,2-Tetrachloroet	hane	< 11.6	ug/Kg		12/28/2016 14:41			
1,1,2-Trichloroethane	e	< 11.6	ug/Kg		12/28/2016 14:41			
1,1-Dichloroethane		< 11.6	ug/Kg		12/28/2016 14:41			
1,1-Dichloroethene		< 11.6	ug/Kg		12/28/2016 14:41			
1,2,3-Trichlorobenze	ne	< 29.0	ug/Kg		12/28/2016 14:41			
1,2,4-Trichlorobenze	ne	< 29.0	ug/Kg		12/28/2016 14:41			
1,2,4-Trimethylbenze	ene	< 11.6	ug/Kg		12/28/2016 14:41			
1,2-Dibromo-3-Chlor	opropane	< 58.0	ug/Kg		12/28/2016 14:41			
1,2-Dibromoethane		< 11.6	ug/Kg		12/28/2016 14:41			
1,2-Dichlorobenzene		< 11.6	ug/Kg		12/28/2016 14:41			
1,2-Dichloroethane		< 11.6	ug/Kg		12/28/2016 14:41			
1,2-Dichloropropane		< 11.6	ug/Kg		12/28/2016 14:41			
1,3,5-Trimethylbenze	ene	< 11.6	ug/Kg		12/28/2016 14:41			
1,3-Dichlorobenzene		< 11.6	ug/Kg		12/28/2016 14:41			
1,4-Dichlorobenzene		< 11.6	ug/Kg		12/28/2016 14:41			
1,4-dioxane		< 116	ug/Kg		12/28/2016 14:41			
2-Butanone		< 58.0	ug/Kg		12/28/2016 14:41			
2-Hexanone		< 29.0	ug/Kg		12/28/2016 14:41			
4-Methyl-2-pentanon	e	< 29.0	ug/Kg		12/28/2016 14:41			
Acetone		< 58.0	ug/Kg		12/28/2016 14:41			
Benzene		< 11.6	ug/Kg		12/28/2016 14:41			
Bromochloromethan	е	< 29.0	ug/Kg		12/28/2016 14:41			
Bromodichlorometha	ine	< 11.6	ug/Kg		12/28/2016 14:41			
Bromoform		< 29.0	ug/Kg		12/28/2016 14:41			
Bromomethane		< 11.6	ug/Kg		12/28/2016 14:41			
Carbon disulfide		7.38	ug/Kg	J	12/28/2016 14:41			

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et, N.W. # 1	6-266		
Sample Identifier:	BH-10				
Lab Sample ID:	165522-02			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Carbon Tetrachloride		< 11.6	ug/Kg		12/28/2016 14:41
Chlorobenzene		< 11.6	ug/Kg		12/28/2016 14:41
Chloroethane		< 11.6	ug/Kg		12/28/2016 14:41
Chloroform		< 11.6	ug/Kg		12/28/2016 14:41
Chloromethane		< 11.6	ug/Kg		12/28/2016 14:41
cis-1,2-Dichloroethene		< 11.6	ug/Kg		12/28/2016 14:41
cis-1,3-Dichloropropen	e	< 11.6	ug/Kg		12/28/2016 14:41
Cyclohexane		< 58.0	ug/Kg		12/28/2016 14:41
Dibromochloromethan	e	< 11.6	ug/Kg		12/28/2016 14:41
Dichlorodifluorometha	ne	< 11.6	ug/Kg		12/28/2016 14:41
Ethylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
Freon 113		< 11.6	ug/Kg		12/28/2016 14:41
Isopropylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
m,p-Xylene		< 11.6	ug/Kg		12/28/2016 14:41
Methyl acetate		< 11.6	ug/Kg		12/28/2016 14:41
Methyl tert-butyl Ether		< 11.6	ug/Kg		12/28/2016 14:41
Methylcyclohexane		< 11.6	ug/Kg		12/28/2016 14:41
Methylene chloride		< 29.0	ug/Kg		12/28/2016 14:41
Naphthalene		< 29.0	ug/Kg		12/28/2016 14:41
n-Butylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
n-Propylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
o-Xylene		< 11.6	ug/Kg		12/28/2016 14:41
p-Isopropyltoluene		< 11.6	ug/Kg		12/28/2016 14:41
sec-Butylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
Styrene		< 29.0	ug/Kg		12/28/2016 14:41
tert-Butylbenzene		< 11.6	ug/Kg		12/28/2016 14:41
Tetrachloroethene		< 11.6	ug/Kg		12/28/2016 14:41
Toluene		13.9	ug/Kg		12/28/2016 14:41
trans-1,2-Dichloroethe	ne	< 11.6	ug/Kg		12/28/2016 14:41
trans-1,3-Dichloroprop	ene	< 11.6	ug/Kg		12/28/2016 14:41

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et, N.W. #	16-266				
Sample Identifier:	BH-10						
Lab Sample ID:	165522-02			Dat	e Sampled:	12/19/2010	5
Matrix:	Soil	Soil Dat		e Received:	12/22/2010	5	
Trichloroethene		398	ug/Kg		Z	12/28/2016	14:41
Trichlorofluorometha	ne	< 11.6	ug/Kg			12/28/2016	14:41
Vinyl chloride		< 11.6	ug/Kg			12/28/2016	14:41
<u>Surrogate</u>		Perc	<u>ent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-de	4		104	82 - 124		12/28/2016	14:41
4-Bromofluorobenzer	ie		88.4	80.5 - 116		12/28/2016	14:41
Pentafluorobenzene			101	88.7 - 112		12/28/2016	14:41
Toluene-D8			98.7	79.1 - 120		12/28/2016	14:41
Method Referer Data File:	nce(s): EPA 8260 EPA 5035 x38113.D	0C 5A - L					

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	<u>ompanies</u>					
Project Reference:	100 Dc	ona Street, N.V	W. # 16 [.]	266			
Sample Identifier:	BH-12	2					
Lab Sample ID:	16552	22-03			Date Sampled:	12/19/2016	
Matrix:	Soil				Date Received:	12/22/2016	
<u>Metals</u>							
<u>Analyte</u>		Res	ult	<u>Units</u>	Qualifier	Date Analyze	ed
Arsenic		19.2	2	mg/Kg		12/27/2016	17:41
Barium		163	}	mg/Kg		12/27/2016	17:41
Beryllium		0.47	74	mg/Kg		12/27/2016	17:41
Cadmium		0.82	29	mg/Kg		12/27/2016	17:41
Chromium		14.9	9	mg/Kg		12/27/2016	17:41
Copper		52.0	6	mg/Kg		12/27/2016	17:41
Lead		259)	mg/Kg		12/27/2016	17:41
Manganese		289)	mg/Kg		12/27/2016	17:41
Nickel		22.0	6	mg/Kg		12/27/2016	17:41
Selenium		5.01	1	mg/Kg		12/28/2016	12:18
Silver		< 0.	607	mg/Kg		12/27/2016	17:41
Zinc		273		mg/Kg		12/27/2016	17:41
Method Refe	erence(s):	EPA 6010C FPA 3050B					
Preparation Data File:	Date:	12/27/2016 122716c					

016
016
2

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.148	mg/Kg		12/27/2016 15:08
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

FINAL

Client:	<u>C&S Com</u>	<u>ipanies</u>					
Project Reference:	100 Dona	a Street, N.W.	# 16-266				
Sample Identifier:	BH-12						
Lab Sample ID:	165522	-03			Date Sampled:	12/19/2016)
Matrix:	Soil				Date Received:	12/22/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Unit</u>	<u>-S</u>	Qualifier	Date Analy	zed
PCB-1016		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1221		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1232		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1242		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1248		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1254		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1260		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1262		< 0.034	44 mg/	Kg		12/28/2016	12:53
PCB-1268		< 0.034	44 mg/	Kg		12/28/2016	12:53
<u>Surrogate</u>		Per	rcent Reco	very Limits	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			67.7	10 - 14	4	12/28/2016	12:53
Tetrachloro-m-xylene		X	38.3	10 - 14	0	12/28/2016	12:53
Method Reference	ce(s): E E	PA 8082A PA 3550C	•				
Preparation Dat	e: 1	2/28/2016					

12/27/2016 18:21

Client:	<u>C&S Companies</u>							
Project Reference:	100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-12							
Lab Sample ID:	165522-03			Date Sampled:	12/19/2016			
Matrix:	Soil			Date Received:	12/22/2016			
Semi-Volatile Organic	s (Acid/Base Neu	<u>utrals)</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1-Biphenyl		< 343	ug/Kg		12/27/2016 18:21			
1,2,4,5-Tetrachlorobe	enzene	< 343	ug/Kg		12/27/2016 18:21			
1,2,4-Trichlorobenze	ne	< 343	ug/Kg		12/27/2016 18:21			
1,2-Dichlorobenzene		< 343	ug/Kg		12/27/2016 18:21			
1,3-Dichlorobenzene		< 343	ug/Kg		12/27/2016 18:21			
1,4-Dichlorobenzene		< 343	ug/Kg		12/27/2016 18:21			
2,2-Oxybis (1-chlorog	propane)	< 343	ug/Kg		12/27/2016 18:21			
2,3,4,6-Tetrachloroph	ienol	< 343	ug/Kg		12/27/2016 18:21			
2,4,5-Trichloropheno	1	< 686	ug/Kg		12/27/2016 18:21			
2,4,6-Trichloropheno	1	< 343	ug/Kg		12/27/2016 18:21			
2,4-Dichlorophenol		< 343	ug/Kg		12/27/2016 18:21			
2,4-Dimethylphenol		< 343	ug/Kg		12/27/2016 18:21			
2,4-Dinitrophenol		< 686	ug/Kg		12/27/2016 18:21			
2,4-Dinitrotoluene		< 343	ug/Kg		12/27/2016 18:21			
2,6-Dinitrotoluene		< 343	ug/Kg		12/27/2016 18:21			
2-Chloronaphthalene		< 343	ug/Kg		12/27/2016 18:21			
2-Chlorophenol		< 343	ug/Kg		12/27/2016 18:21			
2-Methylnapthalene		< 343	ug/Kg		12/27/2016 18:21			
2-Methylphenol		< 343	ug/Kg		12/27/2016 18:21			
2-Nitroaniline		< 686	ug/Kg		12/27/2016 18:21			
2-Nitrophenol		< 343	ug/Kg		12/27/2016 18:21			
3&4-Methylphenol		< 343	ug/Kg		12/27/2016 18:21			
3,3'-Dichlorobenzidir	ie	< 343	ug/Kg		12/27/2016 18:21			
3-Nitroaniline		< 686	ug/Kg		12/27/2016 18:21			
4,6-Dinitro-2-methyl	phenol	< 686	ug/Kg		12/27/2016 18:21			
4-Bromophenyl phen	vl ether	< 343	ug/Kg		12/27/2016 18:21			

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 343

4-Chloro-3-methylphenol

Client:	<u>C&S Companie</u>	<u>es</u>						
Project Reference:	100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-12							
Lab Sample ID:	165522-03			Date Sampled:	12/19/2016			
Matrix:	Soil			Date Received:	12/22/2016			
4-Chloroaniline		< 343	ug/Kg		12/27/2016 18:21			
4-Chlorophenyl pheny	yl ether	< 343	ug/Kg		12/27/2016 18:21			
4-Nitroaniline		< 686	ug/Kg		12/27/2016 18:21			
4-Nitrophenol		< 686	ug/Kg		12/27/2016 18:21			
Acenaphthene		< 343	ug/Kg		12/27/2016 18:21			
Acenaphthylene		< 343	ug/Kg		12/27/2016 18:21			
Acetophenone		< 343	ug/Kg		12/27/2016 18:21			
Anthracene		< 343	ug/Kg		12/27/2016 18:21			
Atrazine		< 343	ug/Kg		12/27/2016 18:21			
Benzaldehyde		< 343	ug/Kg		12/27/2016 18:21			
Benzo (a) anthracene		< 343	ug/Kg		12/27/2016 18:21			
Benzo (a) pyrene		< 343	ug/Kg		12/27/2016 18:21			
Benzo (b) fluoranther	ie	< 343	ug/Kg		12/27/2016 18:21			
Benzo (g,h,i) perylene	2	< 343	ug/Kg		12/27/2016 18:21			
Benzo (k) fluoranthen	ie	< 343	ug/Kg		12/27/2016 18:21			
Bis (2-chloroethoxy)	methane	< 343	ug/Kg		12/27/2016 18:21			
Bis (2-chloroethyl) et	her	< 343	ug/Kg		12/27/2016 18:21			
Bis (2-ethylhexyl) pht	halate	< 343	ug/Kg		12/27/2016 18:21			
Butylbenzylphthalate		< 343	ug/Kg		12/27/2016 18:21			
Caprolactam		< 343	ug/Kg		12/27/2016 18:21			
Carbazole		< 343	ug/Kg		12/27/2016 18:21			
Chrysene		< 343	ug/Kg		12/27/2016 18:21			
Dibenz (a,h) anthrace	ne	< 343	ug/Kg		12/27/2016 18:21			
Dibenzofuran		< 343	ug/Kg		12/27/2016 18:21			
Diethyl phthalate		< 343	ug/Kg		12/27/2016 18:21			
Dimethyl phthalate		< 686	ug/Kg		12/27/2016 18:21			
Di-n-butyl phthalate		< 343	ug/Kg		12/27/2016 18:21			
Di-n-octylphthalate		< 343	ug/Kg		12/27/2016 18:21			
Fluoranthene		< 343	ug/Kg		12/27/2016 18:21			
Fluorene		< 343	ug/Kg		12/27/2016 18:21			

Client:	<u>C&S Com</u>	<u>ipanies</u>					
Project Reference:	100 Dona	a Street, N.W. #	16-266				
Sample Identifier:	BH-12						
Lab Sample ID:	165522	-03		Date	e Sampled:	12/19/2016	1
Matrix:	Soil			Date	e Received:	12/22/2016	I
Hexachlorobenzene		< 343	ug/Kg			12/27/2016	18:21
Hexachlorobutadiene		< 343	ug/Kg			12/27/2016	18:21
Hexachlorocyclopenta	adiene	< 343	ug/Kg			12/27/2016	18:21
Hexachloroethane		< 343	ug/Kg			12/27/2016	18:21
Indeno (1,2,3-cd) pyro	ene	< 343	ug/Kg			12/27/2016	18:21
Isophorone		< 343	ug/Kg			12/27/2016	18:21
Naphthalene		< 343	ug/Kg			12/27/2016	18:21
Nitrobenzene		< 343	ug/Kg			12/27/2016	18:21
N-Nitroso-di-n-propy	lamine	< 343	ug/Kg			12/27/2016	18:21
N-Nitrosodiphenylam	ine	< 343	ug/Kg			12/27/2016	18:21
Pentachlorophenol		< 686	ug/Kg			12/27/2016	18:21
Phenanthrene		< 343	ug/Kg			12/27/2016	18:21
Phenol		< 343	ug/Kg			12/27/2016	18:21
Pyrene		< 343	ug/Kg			12/27/2016	18:21
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	l		73.6	38 - 114		12/27/2016	18:21
2-Fluorobiphenyl			52.7	25 - 105		12/27/2016	18:21
2-Fluorophenol			42.6	30.8 - 84		12/27/2016	18:21
Nitrobenzene-d5			46.5	28.5 - 84.9		12/27/2016	18:21
Phenol-d5			47.6	32.5 - 89.6		12/27/2016	18:21
Terphenyl-d14			79.1	55.5 - 117		12/27/2016	18:21
Method Referen	nce(s): E E	PA 8270D PA 3550C					
Preparation Da Data File:	ite: 1 B	2/27/2016 16233.D					

Client: <u>C&S Companies</u>						
Project Reference:	100 Dona Street, N.W. # 16-266					
Sample Identifier:	BH-12					
Lab Sample ID:	165522-03			Date Sampled:	12/19/2016	
Matrix:	Soil			Date Received:	12/22/2016	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	
1,1,1-Trichloroethane	2	< 10.5	ug/Kg		12/28/2016 14:17	
1,1,2,2-Tetrachloroet	hane	< 10.5	ug/Kg		12/28/2016 14:17	
1,1,2-Trichloroethane	2	< 10.5	ug/Kg		12/28/2016 14:17	
1,1-Dichloroethane		< 10.5	ug/Kg		12/28/2016 14:17	
1,1-Dichloroethene		< 10.5	ug/Kg		12/28/2016 14:17	
1,2,3-Trichlorobenzei	ne	< 26.2	ug/Kg		12/28/2016 14:17	
1,2,4-Trichlorobenzei	ne	< 26.2	ug/Kg		12/28/2016 14:17	
1,2,4-Trimethylbenze	ene	< 10.5	ug/Kg		12/28/2016 14:17	
1,2-Dibromo-3-Chlor	opropane	< 52.3	ug/Kg		12/28/2016 14:17	
1,2-Dibromoethane		< 10.5	ug/Kg		12/28/2016 14:17	
1,2-Dichlorobenzene		< 10.5	ug/Kg		12/28/2016 14:17	
1,2-Dichloroethane		< 10.5	ug/Kg		12/28/2016 14:17	
1,2-Dichloropropane		< 10.5	ug/Kg		12/28/2016 14:17	
1,3,5-Trimethylbenze	ene	< 10.5	ug/Kg		12/28/2016 14:17	
1,3-Dichlorobenzene		< 10.5	ug/Kg		12/28/2016 14:17	
1,4-Dichlorobenzene		< 10.5	ug/Kg		12/28/2016 14:17	
1,4-dioxane		< 105	ug/Kg		12/28/2016 14:17	
2-Butanone		< 52.3	ug/Kg		12/28/2016 14:17	
2-Hexanone		< 26.2	ug/Kg		12/28/2016 14:17	
4-Methyl-2-pentanon	e	< 26.2	ug/Kg		12/28/2016 14:17	
Acetone		< 52.3	ug/Kg		12/28/2016 14:17	
Benzene		< 10.5	ug/Kg		12/28/2016 14:17	
Bromochloromethane	2	< 26.2	ug/Kg		12/28/2016 14:17	
Bromodichlorometha	ne	< 10.5	ug/Kg		12/28/2016 14:17	
Bromoform		< 26.2	ug/Kg		12/28/2016 14:17	
Bromomethane		< 10.5	ug/Kg		12/28/2016 14:17	
Carbon disulfide		< 10.5	ug/Kg		12/28/2016 14:17	

Client:	<u>C&S Companies</u>							
Project Reference:	100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-12							
Lab Sample ID:	165522-03			Date Sampled:	12/19/2016			
Matrix:	Soil			Date Received:	12/22/2016			
Carbon Tetrachloride		< 10.5	ug/Kg		12/28/2016 14:17			
Chlorobenzene		< 10.5	ug/Kg		12/28/2016 14:17			
Chloroethane		< 10.5	ug/Kg		12/28/2016 14:17			
Chloroform		< 10.5	ug/Kg		12/28/2016 14:17			
Chloromethane		< 10.5	ug/Kg		12/28/2016 14:17			
cis-1,2-Dichloroethene		< 10.5	ug/Kg		12/28/2016 14:17			
cis-1,3-Dichloropropen	e	< 10.5	ug/Kg		12/28/2016 14:17			
Cyclohexane		< 52.3	ug/Kg		12/28/2016 14:17			
Dibromochloromethan	e	< 10.5	ug/Kg		12/28/2016 14:17			
Dichlorodifluorometha	ne	< 10.5	ug/Kg		12/28/2016 14:17			
Ethylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
Freon 113		< 10.5	ug/Kg		12/28/2016 14:17			
Isopropylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
m,p-Xylene		< 10.5	ug/Kg		12/28/2016 14:17			
Methyl acetate		< 10.5	ug/Kg		12/28/2016 14:17			
Methyl tert-butyl Ether		< 10.5	ug/Kg		12/28/2016 14:17			
Methylcyclohexane		< 10.5	ug/Kg		12/28/2016 14:17			
Methylene chloride		< 26.2	ug/Kg		12/28/2016 14:17			
Naphthalene		< 26.2	ug/Kg		12/28/2016 14:17			
n-Butylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
n-Propylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
o-Xylene		< 10.5	ug/Kg		12/28/2016 14:17			
p-Isopropyltoluene		< 10.5	ug/Kg		12/28/2016 14:17			
sec-Butylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
Styrene		< 26.2	ug/Kg		12/28/2016 14:17			
tert-Butylbenzene		< 10.5	ug/Kg		12/28/2016 14:17			
Tetrachloroethene		< 10.5	ug/Kg		12/28/2016 14:17			
Toluene		21.2	ug/Kg		12/28/2016 14:17			
trans-1,2-Dichloroethe	ne	< 10.5	ug/Kg		12/28/2016 14:17			
trans-1,3-Dichloroprop	ene	< 10.5	ug/Kg		12/28/2016 14:17			

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et, N.W. #	16-266				
Sample Identifier:	BH-12						
Lab Sample ID:	165522-03			Dat	e Sampled:	12/19/2016	6
Matrix:	Soil			Dat	e Received:	12/22/2016	5
Trichloroethene		700	ug/Kg		Z	12/28/2016	14:17
Trichlorofluorometha	ne	< 10.5	ug/Kg			12/28/2016	14:17
Vinyl chloride		< 10.5	ug/Kg			12/28/2016	14:17
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	4		105	82 - 124		12/28/2016	14:17
4-Bromofluorobenzen	ie		89.2	80.5 - 116		12/28/2016	14:17
Pentafluorobenzene			103	88.7 - 112		12/28/2016	14:17
Toluene-D8			98.1	79.1 - 120		12/28/2016	14:17
Method Referer Data File:	nce(s): EPA 8260 EPA 5035 x38112.D	0C 5A - L	2				

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street, N.W. # 16-266		
Sample Identifier:	BH-9		
Lab Sample ID:	165522-04	Date Sampled:	12/19/2016
Matrix:	Soil	Date Received:	12/22/2016

<u>Mercury</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0874	mg/Kg		12/27/2016 15:11
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

Client:	<u>C&S Comp</u>	<u>anies</u>					
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04	4		Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
<u>TAL Metals (ICP)</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
Aluminum		4220	mg/Kg		12/27/2016 17:46		
Antimony		3.23	mg/Kg	J	12/27/2016 17:46		
Arsenic		11.4	mg/Kg		12/27/2016 17:46		
Barium		110	mg/Kg		12/27/2016 17:46		
Beryllium		0.596	mg/Kg		12/27/2016 17:46		
Cadmium		0.744	mg/Kg		12/27/2016 17:46		
Calcium		15800	mg/Kg		12/27/2016 17:46		
Chromium		15.1	mg/Kg		12/27/2016 17:46		
Cobalt		6.14	mg/Kg		12/27/2016 17:46		
Copper		47.3	mg/Kg		12/27/2016 17:46		
Iron		37800	mg/Kg		12/28/2016 12:57		
Lead		82.7	mg/Kg		12/27/2016 17:46		
Magnesium		1420	mg/Kg		12/27/2016 17:46		
Manganese		498	mg/Kg		12/27/2016 17:46		
Nickel		14.0	mg/Kg		12/27/2016 17:46		
Potassium		347	mg/Kg		12/27/2016 17:46		
Selenium		6.06	mg/Kg		12/28/2016 12:22		
Silver		< 0.560	mg/Kg		12/27/2016 17:46		
Sodium		142	mg/Kg		12/27/2016 17:46		
Thallium		< 1.40	mg/Kg		12/27/2016 17:46		
Vanadium		12.1	mg/Kg		12/27/2016 17:46		
Zinc		111	mg/Kg		12/27/2016 17:46		
Method Refere	nce(s): EPA EPA	6010C 3050B					
Preparation Data File:	nte: 12/2 1227	27/2016 716c					

Client:	<u>C&S Compa</u>	nies					
Project Reference:	100 Dona St	reet, N.W. # 10	6-266				
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04	ł		Date	Sampled:	12/19/2016)
Matrix:	Soil			Date	Received:	12/22/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		<u>Qualifier</u>	Date Analy	zed
PCB-1016		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1221		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1232		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1242		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1248		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1254		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1260		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1262		< 0.0326	mg/Kg			12/28/2016	13:16
PCB-1268		< 0.0326	mg/Kg			12/28/2016	13:16
<u>Surrogate</u>		<u>Percen</u>	<u>t Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			67.6	10 - 144		12/28/2016	13:16
Tetrachloro-m-xylene			48.0	10 - 140		12/28/2016	13:16
Method Reference Preparation Date	ce(s): EPA 8 EPA 3 e: 12/28	8082A 8550C 8/2016					
	/						

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		< 326	ug/Kg		12/27/2016 18:51		
1,2,4,5-Tetrachlorobe	enzene	< 326	ug/Kg		12/27/2016 18:51		
1,2,4-Trichlorobenzer	ne	< 326	ug/Kg		12/27/2016 18:51		
1,2-Dichlorobenzene		< 326	ug/Kg		12/27/2016 18:51		
1,3-Dichlorobenzene		< 326	ug/Kg		12/27/2016 18:51		
1,4-Dichlorobenzene		< 326	ug/Kg		12/27/2016 18:51		
2,2-Oxybis (1-chlorop	propane)	< 326	ug/Kg		12/27/2016 18:51		
2,3,4,6-Tetrachloroph	nenol	< 326	ug/Kg		12/27/2016 18:51		
2,4,5-Trichloropheno	1	< 653	ug/Kg		12/27/2016 18:51		
2,4,6-Trichloropheno	1	< 326	ug/Kg		12/27/2016 18:51		
2,4-Dichlorophenol		< 326	ug/Kg		12/27/2016 18:51		
2,4-Dimethylphenol		< 326	ug/Kg		12/27/2016 18:51		
2,4-Dinitrophenol		< 653	ug/Kg		12/27/2016 18:51		
2,4-Dinitrotoluene		< 326	ug/Kg		12/27/2016 18:51		
2,6-Dinitrotoluene		< 326	ug/Kg		12/27/2016 18:51		
2-Chloronaphthalene		< 326	ug/Kg		12/27/2016 18:51		
2-Chlorophenol		< 326	ug/Kg		12/27/2016 18:51		
2-Methylnapthalene		< 326	ug/Kg		12/27/2016 18:51		
2-Methylphenol		< 326	ug/Kg		12/27/2016 18:51		
2-Nitroaniline		< 653	ug/Kg		12/27/2016 18:51		
2-Nitrophenol		< 326	ug/Kg		12/27/2016 18:51		
3&4-Methylphenol		< 326	ug/Kg		12/27/2016 18:51		
3,3'-Dichlorobenzidin	ie	< 326	ug/Kg		12/27/2016 18:51		
3-Nitroaniline		< 653	ug/Kg		12/27/2016 18:51		
4,6-Dinitro-2-methylj	phenol	< 653	ug/Kg		12/27/2016 18:51		
4-Bromophenyl phen	yl ether	< 326	ug/Kg		12/27/2016 18:51		
4-Chloro-3-methylph	enol	< 326	ug/Kg		12/27/2016 18:51		

Client:	<u>C&S Companies</u> 100 Dona Street, N.W. # 16-266						
Project Reference:							
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
4-Chloroaniline		< 326	ug/Kg		12/27/2016 18:51		
4-Chlorophenyl pheny	yl ether	< 326	ug/Kg		12/27/2016 18:51		
4-Nitroaniline		< 653	ug/Kg		12/27/2016 18:51		
4-Nitrophenol		< 653	ug/Kg		12/27/2016 18:51		
Acenaphthene		< 326	ug/Kg		12/27/2016 18:51		
Acenaphthylene		< 326	ug/Kg		12/27/2016 18:51		
Acetophenone		< 326	ug/Kg		12/27/2016 18:51		
Anthracene		< 326	ug/Kg		12/27/2016 18:51		
Atrazine		< 326	ug/Kg		12/27/2016 18:51		
Benzaldehyde		< 326	ug/Kg		12/27/2016 18:51		
Benzo (a) anthracene		186	ug/Kg	J	12/27/2016 18:51		
Benzo (a) pyrene		< 326	ug/Kg		12/27/2016 18:51		
Benzo (b) fluoranther	ie	183	ug/Kg	J	12/27/2016 18:51		
Benzo (g,h,i) perylene	2	171	ug/Kg	J	12/27/2016 18:51		
Benzo (k) fluoranther	ie	< 326	ug/Kg		12/27/2016 18:51		
Bis (2-chloroethoxy)	methane	< 326	ug/Kg		12/27/2016 18:51		
Bis (2-chloroethyl) et	her	< 326	ug/Kg		12/27/2016 18:51		
Bis (2-ethylhexyl) pht	halate	< 326	ug/Kg		12/27/2016 18:51		
Butylbenzylphthalate		< 326	ug/Kg		12/27/2016 18:51		
Caprolactam		< 326	ug/Kg		12/27/2016 18:51		
Carbazole		< 326	ug/Kg		12/27/2016 18:51		
Chrysene		196	ug/Kg	J	12/27/2016 18:51		
Dibenz (a,h) anthrace	ne	< 326	ug/Kg		12/27/2016 18:51		
Dibenzofuran		< 326	ug/Kg		12/27/2016 18:51		
Diethyl phthalate		< 326	ug/Kg		12/27/2016 18:51		
Dimethyl phthalate		< 653	ug/Kg		12/27/2016 18:51		
Di-n-butyl phthalate		< 326	ug/Kg		12/27/2016 18:51		
Di-n-octylphthalate		< 326	ug/Kg		12/27/2016 18:51		
Fluoranthene		291	ug/Kg	J	12/27/2016 18:51		
Fluorene		< 326	ug/Kg		12/27/2016 18:51		

Client:	<u>C&S Companies</u>							
Project Reference: 100 Dona Street, N.W. # 16-266								
Sample Identifier:	BH-9							
Lab Sample ID:	165522	-04		Date	e Sampled:	12/19/2016	5	
Matrix:	Soil			Date	e Received:	12/22/2016	5	
Hexachlorobenzene		< 326	ug/Kg			12/27/2016	18:51	
Hexachlorobutadiene		< 326	ug/Kg			12/27/2016	18:51	
Hexachlorocyclopentadiene		< 326	ug/Kg			12/27/2016	18:51	
Hexachloroethane		< 326	ug/Kg			12/27/2016	18:51	
Indeno (1,2,3-cd) pyrene		< 326	ug/Kg			12/27/2016	18:51	
Isophorone		< 326	ug/Kg			12/27/2016	18:51	
Naphthalene		< 326	ug/Kg			12/27/2016	18:51	
Nitrobenzene		< 326	ug/Kg			12/27/2016	18:51	
N-Nitroso-di-n-propyl	lamine	< 326	ug/Kg			12/27/2016	18:51	
N-Nitrosodiphenylamine		< 326	ug/Kg	1		12/27/2016	18:51	
Pentachlorophenol		< 653	ug/Kg			12/27/2016	18:51	
Phenanthrene		202	ug/Kg		J	12/27/2016	18:51	
Phenol		< 326	ug/Kg			12/27/2016	18:51	
Pyrene		252	ug/Kg		J	12/27/2016	18:51	
Surrogate		Per	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed	
2,4,6-Tribromophenol	1		69.1	38 - 114		12/27/2016	18:51	
2-Fluorobiphenyl			65.7	25 - 105		12/27/2016	18:51	
2-Fluorophenol			46.8	30.8 - 84		12/27/2016	18:51	
Nitrobenzene-d5			51.9	28.5 - 84.9		12/27/2016	18:51	
Phenol-d5			55.5	32.5 - 89.6		12/27/2016	18:51	
Terphenyl-d14			80.2	55.5 - 117		12/27/2016	18:51	
Method Referen	nce(s): H	EPA 8270D						
Preparation Da Data File:	te: 1 E	2PA 3550C 12/27/2016 316234.D						

Client:	<u>C&S Companies</u> 100 Dona Street, N.W. # 16-266						
Project Reference:							
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Volatile Organics							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1,1-Trichloroethane	ć	< 11.8	ug/Kg		12/28/2016 13:54		
1,1,2,2-Tetrachloroet	hane	< 11.8	ug/Kg		12/28/2016 13:54		
1,1,2-Trichloroethane	ć	< 11.8	ug/Kg		12/28/2016 13:54		
1,1-Dichloroethane		< 11.8	ug/Kg		12/28/2016 13:54		
1,1-Dichloroethene		< 11.8	ug/Kg		12/28/2016 13:54		
1,2,3-Trichlorobenzer	ne	< 29.5	ug/Kg		12/28/2016 13:54		
1,2,4-Trichlorobenzer	ne	< 29.5	ug/Kg		12/28/2016 13:54		
1,2-Dibromo-3-Chloro	opropane	< 59.0	ug/Kg		12/28/2016 13:54		
1,2-Dibromoethane		< 11.8	ug/Kg		12/28/2016 13:54		
1,2-Dichlorobenzene		< 11.8	ug/Kg		12/28/2016 13:54		
1,2-Dichloroethane		< 11.8	ug/Kg		12/28/2016 13:54		
1,2-Dichloropropane		< 11.8	ug/Kg		12/28/2016 13:54		
1,3-Dichlorobenzene		< 11.8	ug/Kg		12/28/2016 13:54		
1,4-Dichlorobenzene		< 11.8	ug/Kg		12/28/2016 13:54		
1,4-dioxane		< 118	ug/Kg		12/28/2016 13:54		
2-Butanone		< 59.0	ug/Kg		12/28/2016 13:54		
2-Hexanone		< 29.5	ug/Kg		12/28/2016 13:54		
4-Methyl-2-pentanon	e	< 29.5	ug/Kg		12/28/2016 13:54		
Acetone		< 59.0	ug/Kg		12/28/2016 13:54		
Benzene		< 11.8	ug/Kg		12/28/2016 13:54		
Bromochloromethane	Ĵ	< 29.5	ug/Kg		12/28/2016 13:54		
Bromodichlorometha	ne	< 11.8	ug/Kg		12/28/2016 13:54		
Bromoform		< 29.5	ug/Kg		12/28/2016 13:54		
Bromomethane		< 11.8	ug/Kg		12/28/2016 13:54		
Carbon disulfide		< 11.8	ug/Kg		12/28/2016 13:54		
Carbon Tetrachloride	1	< 11.8	ug/Kg		12/28/2016 13:54		
Chlorobenzene		< 11.8	ug/Kg		12/28/2016 13:54		

Client:	<u>C&S Companies</u>						
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-9						
Lab Sample ID:	165522-04			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Chloroethane		< 11.8	ug/Kg		12/28/2016 13:54		
Chloroform		< 11.8	ug/Kg		12/28/2016 13:54		
Chloromethane		< 11.8	ug/Kg		12/28/2016 13:54		
cis-1,2-Dichloroethen	e	< 11.8	ug/Kg		12/28/2016 13:54		
cis-1,3-Dichloroprope	ene	< 11.8	ug/Kg		12/28/2016 13:54		
Cyclohexane		< 59.0	ug/Kg		12/28/2016 13:54		
Dibromochlorometha	ine	< 11.8	ug/Kg		12/28/2016 13:54		
Dichlorodifluorometh	nane	< 11.8	ug/Kg		12/28/2016 13:54		
Ethylbenzene		< 11.8	ug/Kg		12/28/2016 13:54		
Freon 113		< 11.8	ug/Kg		12/28/2016 13:54		
Isopropylbenzene		< 11.8	ug/Kg		12/28/2016 13:54		
m,p-Xylene		< 11.8	ug/Kg		12/28/2016 13:54		
Methyl acetate		< 11.8	ug/Kg		12/28/2016 13:54		
Methyl tert-butyl Eth	er	< 11.8	ug/Kg		12/28/2016 13:54		
Methylcyclohexane		< 11.8	ug/Kg		12/28/2016 13:54		
Methylene chloride		< 29.5	ug/Kg		12/28/2016 13:54		
o-Xylene		< 11.8	ug/Kg		12/28/2016 13:54		
Styrene		< 29.5	ug/Kg		12/28/2016 13:54		
Tetrachloroethene		< 11.8	ug/Kg		12/28/2016 13:54		
Toluene		33.3	ug/Kg		12/28/2016 13:54		
trans-1,2-Dichloroeth	iene	< 11.8	ug/Kg		12/28/2016 13:54		
trans-1,3-Dichloropro	opene	< 11.8	ug/Kg		12/28/2016 13:54		
Trichloroethene		771	ug/Kg	Z	12/28/2016 13:54		
Trichlorofluorometha	ane	< 11.8	ug/Kg		12/28/2016 13:54		
Vinyl chloride		< 11.8	ug/Kg		12/28/2016 13:54		

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street,	N.W. # 16-266				
Sample Identifier:	BH-9					
Lab Sample ID:	165522-04		Dat	e Sampled:	12/19/201	6
Matrix:	Soil		Dat	e Received:	12/22/201	6
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d	4	107	82 - 124		12/28/2016	13:54
4-Bromofluorobenzer	ie	81.7	80.5 - 116		12/28/2016	13:54
Pentafluorobenzene		101	88.7 - 112		12/28/2016	13:54
Toluene-D8		96.8	79.1 - 120		12/28/2016	13:54
Method Referen	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38111.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street, N.W. # 16-266		
Sample Identifier:	BH-8		
Lab Sample ID:	165522-05	Date Sampled:	12/19/2016
Matrix:	Soil	Date Received:	12/22/2016

<u>Mercury</u>

Analyte	<u>Result</u>	<u>Units</u>	Qual	ifier Date Analyzed
Mercury	0.131	mg/Kg		12/27/2016 15:15
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

Client:	<u>C&S Co</u>	ompanies				
Project Reference:	100 Do	ona Street,	N.W. # 1	6-266		
Sample Identifier:	BH-8					
Lab Sample ID:	1655	22-05			Date Sampled:	12/19/2016
Matrix:	Soil				Date Received:	12/22/2016
<u>TAL Metals (ICP)</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum			12400	mg/Kg		12/27/2016 17:50
Antimony			< 3.66	mg/Kg		12/27/2016 17:50
Arsenic			7.82	mg/Kg		12/27/2016 17:50
Barium			104	mg/Kg		12/27/2016 17:50
Beryllium			0.606	mg/Kg		12/27/2016 17:50
Cadmium			0.734	mg/Kg		12/27/2016 17:50
Calcium			4930	mg/Kg		12/27/2016 17:50
Chromium			15.2	mg/Kg		12/27/2016 17:50
Cobalt			6.11	mg/Kg		12/27/2016 17:50
Copper			19.8	mg/Kg		12/27/2016 17:50
Iron			17200	mg/Kg		12/27/2016 17:50
Lead			21.1	mg/Kg		12/27/2016 17:50
Magnesium			1710	mg/Kg		12/27/2016 17:50
Manganese			1760	mg/Kg		12/28/2016 12:26
Nickel			15.6	mg/Kg		12/27/2016 17:50
Potassium			1230	mg/Kg		12/27/2016 17:50
Selenium			3.86	mg/Kg		12/28/2016 12:31
Silver			< 0.610	mg/Kg		12/27/2016 17:50
Sodium			< 152	mg/Kg		12/27/2016 17:50
Thallium			< 1.52	mg/Kg		12/27/2016 17:50
Vanadium			23.8	mg/Kg		12/27/2016 17:50
Zinc			94.6	mg/Kg		12/27/2016 17:50
Method Refere	ence(s):	EPA 6010C EPA 3050B				
Preparation D Data File:	ate:	12/2//2016 122716c				

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street, N.W. #	16-266				
Sample Identifier:	BH-8						
Lab Sample ID:	165522-0	05		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1221		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1232		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1242		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1248		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1254		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1260		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1262		< 0.0381	mg/Kg			12/28/2016	13:40
PCB-1268		< 0.0381	mg/Kg			12/28/2016	13:40
<u>Surrogate</u>		<u>Perc</u>	e <mark>nt Recovery</mark>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			69.5	10 - 144		12/28/2016	13:40
Tetrachloro-m-xylene		X	48.0	10 - 140		12/28/2016	13:40
Method Reference	ce(s): EP. EP.	A 8082A A 3550C					
Preparation Date	e: 12,	/28/2016					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et, N.W. # 1	6-266		
Sample Identifier:	BH-8				
Lab Sample ID:	165522-05			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 383	ug/Kg		12/27/2016 19:20
1,2,4,5-Tetrachlorobe	enzene	< 383	ug/Kg		12/27/2016 19:20
1,2,4-Trichlorobenzer	ne	< 383	ug/Kg		12/27/2016 19:20
1,2-Dichlorobenzene		< 383	ug/Kg		12/27/2016 19:20
1,3-Dichlorobenzene		< 383	ug/Kg		12/27/2016 19:20
1,4-Dichlorobenzene		< 383	ug/Kg		12/27/2016 19:20
2,2-0xybis (1-chlorop	propane)	< 383	ug/Kg		12/27/2016 19:20
2,3,4,6-Tetrachloroph	nenol	< 383	ug/Kg		12/27/2016 19:20
2,4,5-Trichloropheno	1	< 767	ug/Kg		12/27/2016 19:20
2,4,6-Trichloropheno	1	< 383	ug/Kg		12/27/2016 19:20
2,4-Dichlorophenol		< 383	ug/Kg		12/27/2016 19:20
2,4-Dimethylphenol		< 383	ug/Kg		12/27/2016 19:20
2,4-Dinitrophenol		< 767	ug/Kg		12/27/2016 19:20
2,4-Dinitrotoluene		< 383	ug/Kg		12/27/2016 19:20
2,6-Dinitrotoluene		< 383	ug/Kg		12/27/2016 19:20
2-Chloronaphthalene		< 383	ug/Kg		12/27/2016 19:20
2-Chlorophenol		< 383	ug/Kg		12/27/2016 19:20
2-Methylnapthalene		< 383	ug/Kg		12/27/2016 19:20
2-Methylphenol		< 383	ug/Kg		12/27/2016 19:20
2-Nitroaniline		< 767	ug/Kg		12/27/2016 19:20
2-Nitrophenol		< 383	ug/Kg		12/27/2016 19:20
3&4-Methylphenol		< 383	ug/Kg		12/27/2016 19:20
3,3'-Dichlorobenzidin	ie	< 383	ug/Kg		12/27/2016 19:20
3-Nitroaniline		< 767	ug/Kg		12/27/2016 19:20
4,6-Dinitro-2-methyl	phenol	< 767	ug/Kg		12/27/2016 19:20
4-Bromophenyl phen	yl ether	< 383	ug/Kg		12/27/2016 19:20
4-Chloro-3-methylph	enol	< 383	ug/Kg		12/27/2016 19:20

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et, N.W. # 1	.6-266		
Sample Identifier:	BH-8				
Lab Sample ID:	165522-05			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
4-Chloroaniline		< 383	ug/Kg		12/27/2016 19:20
4-Chlorophenyl pheny	vl ether	< 383	ug/Kg		12/27/2016 19:20
4-Nitroaniline		< 767	ug/Kg		12/27/2016 19:20
4-Nitrophenol		< 767	ug/Kg		12/27/2016 19:20
Acenaphthene		< 383	ug/Kg		12/27/2016 19:20
Acenaphthylene		< 383	ug/Kg		12/27/2016 19:20
Acetophenone		< 383	ug/Kg		12/27/2016 19:20
Anthracene		< 383	ug/Kg		12/27/2016 19:20
Atrazine		< 383	ug/Kg		12/27/2016 19:20
Benzaldehyde		< 383	ug/Kg		12/27/2016 19:20
Benzo (a) anthracene		< 383	ug/Kg		12/27/2016 19:20
Benzo (a) pyrene		< 383	ug/Kg		12/27/2016 19:20
Benzo (b) fluoranthen	e	< 383	ug/Kg		12/27/2016 19:20
Benzo (g,h,i) perylene		< 383	ug/Kg		12/27/2016 19:20
Benzo (k) fluoranthen	e	< 383	ug/Kg		12/27/2016 19:20
Bis (2-chloroethoxy) r	nethane	< 383	ug/Kg		12/27/2016 19:20
Bis (2-chloroethyl) etl	her	< 383	ug/Kg		12/27/2016 19:20
Bis (2-ethylhexyl) pht	halate	< 383	ug/Kg		12/27/2016 19:20
Butylbenzylphthalate		< 383	ug/Kg		12/27/2016 19:20
Caprolactam		< 383	ug/Kg		12/27/2016 19:20
Carbazole		< 383	ug/Kg		12/27/2016 19:20
Chrysene		< 383	ug/Kg		12/27/2016 19:20
Dibenz (a,h) anthrace	ne	< 383	ug/Kg		12/27/2016 19:20
Dibenzofuran		< 383	ug/Kg		12/27/2016 19:20
Diethyl phthalate		< 383	ug/Kg		12/27/2016 19:20
Dimethyl phthalate		< 767	ug/Kg		12/27/2016 19:20
Di-n-butyl phthalate		< 383	ug/Kg		12/27/2016 19:20
Di-n-octylphthalate		< 383	ug/Kg		12/27/2016 19:20
Fluoranthene		< 383	ug/Kg		12/27/2016 19:20
Fluorene		< 383	ug/Kg		12/27/2016 19:20

Client:	<u>C&S Con</u>	<u>ipanies</u>					
Project Reference:	100 Dona	a Street, N.W. #	16-266				
Sample Identifier:	BH-8						
Lab Sample ID:	165522	-05		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
Hexachlorobenzene		< 383	ug/Kg			12/27/2016	19:20
Hexachlorobutadiene		< 383	ug/Kg			12/27/2016	19:20
Hexachlorocyclopenta	adiene	< 383	ug/Kg			12/27/2016	19:20
Hexachloroethane		< 383	ug/Kg			12/27/2016	19:20
Indeno (1,2,3-cd) pyre	ene	< 383	ug/Kg			12/27/2016	19:20
Isophorone		< 383	ug/Kg			12/27/2016	19:20
Naphthalene		< 383	ug/Kg			12/27/2016	19:20
Nitrobenzene		< 383	ug/Kg			12/27/2016	19:20
N-Nitroso-di-n-propyl	lamine	< 383	ug/Kg			12/27/2016	19:20
N-Nitrosodiphenylam	ine	< 383	ug/Kg			12/27/2016	19:20
Pentachlorophenol		< 767	ug/Kg			12/27/2016	19:20
Phenanthrene		< 383	ug/Kg			12/27/2016	19:20
Phenol		< 383	ug/Kg			12/27/2016	19:20
Pyrene		< 383	ug/Kg			12/27/2016	19:20
Surrogate		Perc	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	1		67.2	38 - 114		12/27/2016	19:20
2-Fluorobiphenyl			55.9	25 - 105		12/27/2016	19:20
2-Fluorophenol			45.5	30.8 - 84		12/27/2016	19:20
Nitrobenzene-d5			45.4	28.5 - 84.9		12/27/2016	19:20
Phenol-d5			53.0	32.5 - 89.6		12/27/2016	19:20
Terphenyl-d14			68.7	55.5 - 117		12/27/2016	19:20
Method Referen	nce(s): E	PA 8270D					
Preparation Da Data File:	E 1	PA 3550C 2/27/2016 16235.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et, N.W. # 1	.6-266		
Sample Identifier:	BH-8				
Lab Sample ID:	165522-05			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>Volatile Organics</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.37	ug/Kg		12/28/2016 12:16
1,1,2,2-Tetrachloroet	hane	< 4.37	ug/Kg		12/28/2016 12:16
1,1,2-Trichloroethane	2	< 4.37	ug/Kg		12/28/2016 12:16
1,1-Dichloroethane		< 4.37	ug/Kg		12/28/2016 12:16
1,1-Dichloroethene		< 4.37	ug/Kg		12/28/2016 12:16
1,2,3-Trichlorobenzei	ne	< 10.9	ug/Kg		12/28/2016 12:16
1,2,4-Trichlorobenzei	ne	< 10.9	ug/Kg		12/28/2016 12:16
1,2-Dibromo-3-Chlor	opropane	< 21.8	ug/Kg		12/28/2016 12:16
1,2-Dibromoethane		< 4.37	ug/Kg		12/28/2016 12:16
1,2-Dichlorobenzene		< 4.37	ug/Kg		12/28/2016 12:16
1,2-Dichloroethane		< 4.37	ug/Kg		12/28/2016 12:16
1,2-Dichloropropane		< 4.37	ug/Kg		12/28/2016 12:16
1,3-Dichlorobenzene		< 4.37	ug/Kg		12/28/2016 12:16
1,4-Dichlorobenzene		< 4.37	ug/Kg		12/28/2016 12:16
1,4-dioxane		< 43.7	ug/Kg		12/28/2016 12:16
2-Butanone		< 21.8	ug/Kg		12/28/2016 12:16
2-Hexanone		< 10.9	ug/Kg		12/28/2016 12:16
4-Methyl-2-pentanon	e	< 10.9	ug/Kg		12/28/2016 12:16
Acetone		< 21.8	ug/Kg		12/28/2016 12:16
Benzene		< 4.37	ug/Kg		12/28/2016 12:16
Bromochloromethane	e	< 10.9	ug/Kg		12/28/2016 12:16
Bromodichlorometha	ine	< 4.37	ug/Kg		12/28/2016 12:16
Bromoform		< 10.9	ug/Kg		12/28/2016 12:16
Bromomethane		< 4.37	ug/Kg		12/28/2016 12:16
Carbon disulfide		< 4.37	ug/Kg		12/28/2016 12:16
Carbon Tetrachloride		< 4.37	ug/Kg		12/28/2016 12:16
Chlorobenzene		< 4.37	ug/Kg		12/28/2016 12:16

Client:	<u>C&S Companie</u>	es			
Project Reference:	100 Dona Stree	et, N.W. # 1	6-266		
Sample Identifier:	BH-8				
Lab Sample ID:	165522-05			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Chloroethane		< 4.37	ug/Kg		12/28/2016 12:16
Chloroform		< 4.37	ug/Kg		12/28/2016 12:16
Chloromethane		< 4.37	ug/Kg		12/28/2016 12:16
cis-1,2-Dichloroethen	e	< 4.37	ug/Kg		12/28/2016 12:16
cis-1,3-Dichloroprope	ne	< 4.37	ug/Kg		12/28/2016 12:16
Cyclohexane		< 21.8	ug/Kg		12/28/2016 12:16
Dibromochlorometha	ne	< 4.37	ug/Kg		12/28/2016 12:16
Dichlorodifluorometh	ane	< 4.37	ug/Kg		12/28/2016 12:16
Ethylbenzene		< 4.37	ug/Kg		12/28/2016 12:16
Freon 113		< 4.37	ug/Kg		12/28/2016 12:16
Isopropylbenzene		< 4.37	ug/Kg		12/28/2016 12:16
m,p-Xylene		< 4.37	ug/Kg		12/28/2016 12:16
Methyl acetate		< 4.37	ug/Kg		12/28/2016 12:16
Methyl tert-butyl Ethe	er	< 4.37	ug/Kg		12/28/2016 12:16
Methylcyclohexane		< 4.37	ug/Kg		12/28/2016 12:16
Methylene chloride		< 10.9	ug/Kg		12/28/2016 12:16
o-Xylene		< 4.37	ug/Kg		12/28/2016 12:16
Styrene		< 10.9	ug/Kg		12/28/2016 12:16
Tetrachloroethene		< 4.37	ug/Kg		12/28/2016 12:16
Toluene		< 4.37	ug/Kg		12/28/2016 12:16
trans-1,2-Dichloroeth	ene	< 4.37	ug/Kg		12/28/2016 12:16
trans-1,3-Dichloropro	pene	< 4.37	ug/Kg		12/28/2016 12:16
Trichloroethene		99.2	ug/Kg	Z	12/28/2016 12:16
Trichlorofluorometha	ne	< 4.37	ug/Kg		12/28/2016 12:16
Vinyl chloride		< 4.37	ug/Kg		12/28/2016 12:16

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street,	N.W. # 16-266				
Sample Identifier:	BH-8					
Lab Sample ID:	165522-05		Dat	e Sampled:	12/19/201	6
Matrix:	Soil		Dat	e Received:	12/22/201	6
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d	4	104	82 - 124		12/28/2016	12:16
4-Bromofluorobenzer	ie	93.0	80.5 - 116		12/28/2016	12:16
Pentafluorobenzene		99.8	88.7 - 112		12/28/2016	12:16
Toluene-D8		98.3	79.1 - 120		12/28/2016	12:16
Method Referen	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38107.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street, N.W. # 16-266		
Sample Identifier:	BH-7		
Lab Sample ID:	165522-06	Date Sampled:	12/19/2016
Matrix:	Soil	Date Received:	12/22/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0727	mg/Kg		12/27/2016 15:19
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

Client:	<u>C&S Compa</u>	<u>inies</u>			
Project Reference:	100 Dona St	treet, N.W. # 1	6-266		
Sample Identifier:	BH-7				
Lab Sample ID:	165522-06	5		Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		6780	mg/Kg		12/27/2016 17:54
Antimony		< 3.78	mg/Kg		12/27/2016 17:54
Arsenic		7.67	mg/Kg		12/27/2016 17:54
Barium		38.8	mg/Kg		12/27/2016 17:54
Beryllium		0.687	mg/Kg		12/27/2016 17:54
Cadmium		0.595	mg/Kg		12/27/2016 17:54
Calcium		6260	mg/Kg		12/27/2016 17:54
Chromium		10.9	mg/Kg		12/27/2016 17:54
Cobalt		7.00	mg/Kg		12/27/2016 17:54
Copper		28.2	mg/Kg		12/27/2016 17:54
Iron		16200	mg/Kg		12/27/2016 17:54
Lead		10.8	mg/Kg		12/27/2016 17:54
Magnesium		1280	mg/Kg		12/27/2016 17:54
Manganese		513	mg/Kg		12/27/2016 17:54
Nickel		23.9	mg/Kg		12/27/2016 17:54
Potassium		1220	mg/Kg		12/27/2016 17:54
Selenium		3.27	mg/Kg		12/28/2016 14:41
Silver		< 0.631	mg/Kg		12/27/2016 17:54
Sodium		< 158	mg/Kg		12/27/2016 17:54
Thallium		< 1.58	mg/Kg		12/27/2016 17:54
Vanadium		17.1	mg/Kg		12/27/2016 17:54
Zinc		31.9	mg/Kg		12/27/2016 17:54
Method Refere	nce(s): EPA (EPA 3	5010C 3050B			
Preparation Da Data File:	ite: 12/2 1227	7/2016 16c			

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street, N.W. # 1	6-266				
Sample Identifier:	BH-7						
Lab Sample ID:	165522-	06		Date	Sampled:	12/19/2016	1
Matrix:	Soil			Date	Received:	12/22/2016	•
<u>PCBs</u>							
<u>Analyte</u>		Result	<u>Units</u>		<u>Qualifier</u>	Date Analyz	zed
PCB-1016		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1221		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1232		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1242		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1248		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1254		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1260		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1262		< 0.0375	mg/Kg			12/28/2016	16:00
PCB-1268		< 0.0375	mg/Kg			12/28/2016	16:00
<u>Surrogate</u>		<u>Percen</u>	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	<u>zed</u>
Decachlorobiphenyl			60.3	10 - 144		12/28/2016	16:00
Tetrachloro-m-xylene			21.8	10 - 140		12/28/2016	16:00
Method Reference	ce(s): El El	PA 8082A PA 3550C					
Preparation Date	e: 12	2/28/2016					

Client:	<u>C&S Companies</u> 100 Dona Street, N.W. # 16-266						
Project Reference:							
Sample Identifier:	BH-7						
Lab Sample ID:	165522-06			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		387	ug/Kg		12/27/2016 19:50		
1,2,4,5-Tetrachlorobe	enzene	< 371	ug/Kg		12/27/2016 19:50		
1,2,4-Trichlorobenze	ne	< 371	ug/Kg		12/27/2016 19:50		
1,2-Dichlorobenzene		< 371	ug/Kg		12/27/2016 19:50		
1,3-Dichlorobenzene		< 371	ug/Kg		12/27/2016 19:50		
1,4-Dichlorobenzene		< 371	ug/Kg		12/27/2016 19:50		
2,2-Oxybis (1-chlorop	propane)	< 371	ug/Kg		12/27/2016 19:50		
2,3,4,6-Tetrachloroph	ienol	< 371	ug/Kg		12/27/2016 19:50		
2,4,5-Trichloropheno	1	< 742	ug/Kg		12/27/2016 19:50		
2,4,6-Trichloropheno	1	< 371	ug/Kg		12/27/2016 19:50		
2,4-Dichlorophenol		< 371	ug/Kg		12/27/2016 19:50		
2,4-Dimethylphenol		< 371	ug/Kg		12/27/2016 19:50		
2,4-Dinitrophenol		< 742	ug/Kg		12/27/2016 19:50		
2,4-Dinitrotoluene		< 371	ug/Kg		12/27/2016 19:50		
2,6-Dinitrotoluene		< 371	ug/Kg		12/27/2016 19:50		
2-Chloronaphthalene		< 371	ug/Kg		12/27/2016 19:50		
2-Chlorophenol		< 371	ug/Kg		12/27/2016 19:50		
2-Methylnapthalene		< 371	ug/Kg		12/27/2016 19:50		
2-Methylphenol		< 371	ug/Kg		12/27/2016 19:50		
2-Nitroaniline		< 742	ug/Kg		12/27/2016 19:50		
2-Nitrophenol		< 371	ug/Kg		12/27/2016 19:50		
3&4-Methylphenol		< 371	ug/Kg		12/27/2016 19:50		
3,3'-Dichlorobenzidin	ie	< 371	ug/Kg		12/27/2016 19:50		
3-Nitroaniline		< 742	ug/Kg		12/27/2016 19:50		
4,6-Dinitro-2-methylj	phenol	< 742	ug/Kg		12/27/2016 19:50		
4-Bromophenyl phen	yl ether	< 371	ug/Kg		12/27/2016 19:50		
4-Chloro-3-methylph	enol	< 371	ug/Kg		12/27/2016 19:50		

Client:	<u>C&S Companie</u>	es					
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-7						
Lab Sample ID:	165522-06			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
4-Chloroaniline		< 371	ug/Kg		12/27/2016 19:50		
4-Chlorophenyl pheny	/l ether	< 371	ug/Kg		12/27/2016 19:50		
4-Nitroaniline		< 742	ug/Kg		12/27/2016 19:50		
4-Nitrophenol		< 742	ug/Kg		12/27/2016 19:50		
Acenaphthene		599	ug/Kg		12/27/2016 19:50		
Acenaphthylene		< 371	ug/Kg		12/27/2016 19:50		
Acetophenone		< 371	ug/Kg		12/27/2016 19:50		
Anthracene		282	ug/Kg	J	12/27/2016 19:50		
Atrazine		< 371	ug/Kg		12/27/2016 19:50		
Benzaldehyde		< 371	ug/Kg		12/27/2016 19:50		
Benzo (a) anthracene		< 371	ug/Kg		12/27/2016 19:50		
Benzo (a) pyrene		< 371	ug/Kg		12/27/2016 19:50		
Benzo (b) fluoranthen	ie	< 371	ug/Kg		12/27/2016 19:50		
Benzo (g,h,i) perylene		< 371	ug/Kg		12/27/2016 19:50		
Benzo (k) fluoranthen	ie	< 371	ug/Kg		12/27/2016 19:50		
Bis (2-chloroethoxy)	methane	< 371	ug/Kg		12/27/2016 19:50		
Bis (2-chloroethyl) et	her	< 371	ug/Kg		12/27/2016 19:50		
Bis (2-ethylhexyl) pht	halate	< 371	ug/Kg		12/27/2016 19:50		
Butylbenzylphthalate		< 371	ug/Kg		12/27/2016 19:50		
Caprolactam		< 371	ug/Kg		12/27/2016 19:50		
Carbazole		< 371	ug/Kg		12/27/2016 19:50		
Chrysene		< 371	ug/Kg		12/27/2016 19:50		
Dibenz (a,h) anthrace	ne	< 371	ug/Kg		12/27/2016 19:50		
Dibenzofuran		< 371	ug/Kg		12/27/2016 19:50		
Diethyl phthalate		< 371	ug/Kg		12/27/2016 19:50		
Dimethyl phthalate		< 742	ug/Kg		12/27/2016 19:50		
Di-n-butyl phthalate		< 371	ug/Kg		12/27/2016 19:50		
Di-n-octylphthalate		< 371	ug/Kg		12/27/2016 19:50		
Fluoranthene		< 371	ug/Kg		12/27/2016 19:50		
Fluorene		1240	ug/Kg		12/27/2016 19:50		

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street, N.W. #	16-266				
Sample Identifier:	BH-7						
Lab Sample ID:	165522-	·06		Date	e Sampled:	12/19/2016	
Matrix:	Soil			Date	e Received:	12/22/2016	
Hexachlorobenzene		< 371	ug/Kg			12/27/2016	19:50
Hexachlorobutadiene		< 371	ug/Kg			12/27/2016	19:50
Hexachlorocyclopenta	adiene	< 371	ug/Kg			12/27/2016	19:50
Hexachloroethane		< 371	ug/Kg			12/27/2016	19:50
Indeno (1,2,3-cd) pyre	ene	< 371	ug/Kg			12/27/2016	19:50
Isophorone		< 371	ug/Kg			12/27/2016	19:50
Naphthalene		< 371	ug/Kg			12/27/2016	19:50
Nitrobenzene		< 371	ug/Kg			12/27/2016	19:50
N-Nitroso-di-n-propy	lamine	< 371	ug/Kg			12/27/2016	19:50
N-Nitrosodiphenylam	line	< 371	ug/Kg	/		12/27/2016	19:50
Pentachlorophenol		< 742	ug/Kg			12/27/2016	19:50
Phenanthrene		3230	ug/Kg			12/27/2016	19:50
Phenol		< 371	ug/Kg			12/27/2016	19:50
Pyrene		< 371	ug/Kg			12/27/2016	19:50
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	l		69.0	38 - 114		12/27/2016	19:50
2-Fluorobiphenyl			61.8	25 - 105		12/27/2016	19:50
2-Fluorophenol			51.1	30.8 - 84		12/27/2016	19:50
Nitrobenzene-d5			52.3	28.5 - 84.9		12/27/2016	19:50
Phenol-d5			55.0	32.5 - 89.6		12/27/2016	19:50
Terphenyl-d14			69.9	55.5 - 117		12/27/2016	19:50
Method Referen	nce(s): E	PA 8270D PA 3550C					
Preparation Da Data File:	ite: 12 B	2/27/2016 16236.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et, N.W. # 1	6-266		
Sample Identifier:	BH-7				
Lab Sample ID:	165522-06			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 10.9	ug/Kg		12/28/2016 13:29
1,1,2,2-Tetrachloroet	hane	< 10.9	ug/Kg		12/28/2016 13:29
1,1,2-Trichloroethane	2	< 10.9	ug/Kg		12/28/2016 13:29
1,1-Dichloroethane		< 10.9	ug/Kg		12/28/2016 13:29
1,1-Dichloroethene		< 10.9	ug/Kg		12/28/2016 13:29
1,2,3-Trichlorobenzer	ne	< 27.4	ug/Kg		12/28/2016 13:29
1,2,4-Trichlorobenzer	ne	< 27.4	ug/Kg		12/28/2016 13:29
1,2-Dibromo-3-Chloro	opropane	< 54.7	ug/Kg		12/28/2016 13:29
1,2-Dibromoethane		< 10.9	ug/Kg		12/28/2016 13:29
1,2-Dichlorobenzene		< 10.9	ug/Kg		12/28/2016 13:29
1,2-Dichloroethane		< 10.9	ug/Kg		12/28/2016 13:29
1,2-Dichloropropane		< 10.9	ug/Kg		12/28/2016 13:29
1,3-Dichlorobenzene		< 10.9	ug/Kg		12/28/2016 13:29
1,4-Dichlorobenzene		< 10.9	ug/Kg		12/28/2016 13:29
1,4-dioxane		< 109	ug/Kg		12/28/2016 13:29
2-Butanone		43.5	ug/Kg	J	12/28/2016 13:29
2-Hexanone		< 27.4	ug/Kg		12/28/2016 13:29
4-Methyl-2-pentanon	e	< 27.4	ug/Kg		12/28/2016 13:29
Acetone		242	ug/Kg		12/28/2016 13:29
Benzene		< 10.9	ug/Kg		12/28/2016 13:29
Bromochloromethane	2	< 27.4	ug/Kg		12/28/2016 13:29
Bromodichlorometha	ne	< 10.9	ug/Kg		12/28/2016 13:29
Bromoform		< 27.4	ug/Kg		12/28/2016 13:29
Bromomethane		< 10.9	ug/Kg		12/28/2016 13:29
Carbon disulfide		< 10.9	ug/Kg		12/28/2016 13:29
Carbon Tetrachloride		< 10.9	ug/Kg		12/28/2016 13:29
Chlorobenzene		< 10.9	ug/Kg		12/28/2016 13:29

Client:	<u>C&S Compani</u>	<u>es</u>						
Project Reference:	100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-7							
Lab Sample ID:	165522-06			Date Sampled:	12/19/2016			
Matrix:	Soil			Date Received:	12/22/2016			
Chloroethane		< 10.9	ug/Kg		12/28/2016 13:29			
Chloroform		< 10.9	ug/Kg		12/28/2016 13:29			
Chloromethane		< 10.9	ug/Kg		12/28/2016 13:29			
cis-1,2-Dichloroethen	e	< 10.9	ug/Kg		12/28/2016 13:29			
cis-1,3-Dichloroprope	ene	< 10.9	ug/Kg		12/28/2016 13:29			
Cyclohexane		< 54.7	ug/Kg		12/28/2016 13:29			
Dibromochlorometha	ne	< 10.9	ug/Kg		12/28/2016 13:29			
Dichlorodifluorometh	ane	< 10.9	ug/Kg		12/28/2016 13:29			
Ethylbenzene		< 10.9	ug/Kg		12/28/2016 13:29			
Freon 113		< 10.9	ug/Kg		12/28/2016 13:29			
Isopropylbenzene		14.8	ug/Kg		12/28/2016 13:29			
m,p-Xylene		< 10.9	ug/Kg		12/28/2016 13:29			
Methyl acetate		< 10.9	ug/Kg		12/28/2016 13:29			
Methyl tert-butyl Ethe	er	< 10.9	ug/Kg		12/28/2016 13:29			
Methylcyclohexane		< 10.9	ug/Kg		12/28/2016 13:29			
Methylene chloride		< 27.4	ug/Kg		12/28/2016 13:29			
o-Xylene		< 10.9	ug/Kg		12/28/2016 13:29			
Styrene		< 27.4	ug/Kg		12/28/2016 13:29			
Tetrachloroethene		< 10.9	ug/Kg		12/28/2016 13:29			
Toluene		10.9	ug/Kg	J	12/28/2016 13:29			
trans-1,2-Dichloroeth	ene	< 10.9	ug/Kg		12/28/2016 13:29			
trans-1,3-Dichloropro	opene	< 10.9	ug/Kg		12/28/2016 13:29			
Trichloroethene		315	ug/Kg	Z	12/28/2016 13:29			
Trichlorofluorometha	ine	< 10.9	ug/Kg		12/28/2016 13:29			
Vinyl chloride		< 10.9	ug/Kg		12/28/2016 13:29			

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street,	N.W. # 16-266				
Sample Identifier:	BH-7					
Lab Sample ID:	165522-06		Dat	e Sampled:	12/19/201	6
Matrix:	Soil		Dat	e Received:	12/22/201	6
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	4	103	82 - 124		12/28/2016	13:29
4-Bromofluorobenzen	ie	75.5	80.5 - 116	*	12/28/2016	13:29
Pentafluorobenzene		101	88.7 - 112		12/28/2016	13:29
Toluene-D8		103	79.1 - 120		12/28/2016	13:29
Method Referen	ce(s): EPA 8260C					

Data File:

EPA 5035A - L x38110.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street, N.W. # 16-266		
Sample Identifier:	BH-11		
Lab Sample ID:	165522-07	Date Sampled:	12/19/2016
Matrix:	Soil	Date Received:	12/22/2016

<u>Mercury</u>

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0618	mg/Kg		12/27/2016 15:23
Method Reference(s):	EPA 7471B			
Preparation Date:	12/27/2016			
Data File:	Hg161227B			

Client:	<u>C&S Compa</u>	anies			
Project Reference:	100 Dona S	treet, N.W. # 1	6-266		
Sample Identifier:	BH-11				
Lab Sample ID:	165522-0	7		Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>TAL Metals (ICP)</u>					
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		7620	mg/Kg		12/27/2016 17:59
Antimony		< 3.39	mg/Kg		12/27/2016 17:59
Arsenic		8.07	mg/Kg		12/27/2016 17:59
Barium		43.4	mg/Kg		12/27/2016 17:59
Beryllium		0.420	mg/Kg		12/27/2016 17:59
Cadmium		0.322	mg/Kg		12/27/2016 17:59
Calcium		22800	mg/Kg		12/27/2016 17:59
Chromium		12.3	mg/Kg		12/27/2016 17:59
Cobalt		7.35	mg/Kg		12/27/2016 17:59
Copper		17.7	mg/Kg		12/27/2016 17:59
Iron		16200	mg/Kg		12/27/2016 17:59
Lead		21.9	mg/Kg		12/27/2016 17:59
Magnesium		1830	mg/Kg		12/27/2016 17:59
Manganese		276	mg/Kg		12/27/2016 17:59
Nickel		17.1	mg/Kg		12/27/2016 17:59
Potassium		842	mg/Kg		12/27/2016 17:59
Selenium		3.06	mg/Kg		12/28/2016 14:45
Silver		< 0.564	mg/Kg		12/27/2016 17:59
Sodium		108	mg/Kg	J	12/27/2016 17:59
Thallium		< 1.41	mg/Kg		12/27/2016 17:59
Vanadium		17.5	mg/Kg		12/27/2016 17:59
Zinc		52.4	mg/Kg		12/27/2016 17:59
Method Refere	nce(s): EPA EPA	6010C 3050B			
Preparation Da Data File:	ate: 12/2 1227	7/2016 16c			

Client:	<u>C&S Con</u>	<u>npanies</u>						
Project Reference:	100 Don	a Street, I	N.W. # 1	6-266				
Sample Identifier:	BH-11							
Lab Sample ID:	165522	2-07			Dat	te Sampled:	12/19/2016)
Matrix:	Soil				Dat	te Received:	12/22/2016)
<u>PCBs</u>								
<u>Analyte</u>		E	<u>Result</u>	<u>Units</u>		<u>Qualifier</u>	Date Analy:	zed
PCB-1016		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1221		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1232		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1242		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1248		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1254		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1260		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1262		<	0.0327	mg/Kg			12/28/2016	16:23
PCB-1268		<	0.0327	mg/Kg			12/28/2016	16:23
<u>Surrogate</u>			Perce	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy:	zed
Decachlorobiphenyl				59.6	10 - 144		12/28/2016	16:23
Tetrachloro-m-xylene			X	69.6	10 - 140		12/28/2016	16:23
Method Referen	ce(s):	EPA 8082A EPA 3550C	•					
Preparation Dat	te:	12/28/2016						

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-11						
Lab Sample ID:	165522-07			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		234	ug/Kg	J	12/27/2016 20:19		
1,2,4,5-Tetrachlorobe	enzene	< 328	ug/Kg		12/27/2016 20:19		
1,2,4-Trichlorobenze	ne	< 328	ug/Kg		12/27/2016 20:19		
1,2-Dichlorobenzene		< 328	ug/Kg		12/27/2016 20:19		
1,3-Dichlorobenzene		< 328	ug/Kg		12/27/2016 20:19		
1,4-Dichlorobenzene		< 328	ug/Kg		12/27/2016 20:19		
2,2-Oxybis (1-chlorop	propane)	< 328	ug/Kg		12/27/2016 20:19		
2,3,4,6-Tetrachloroph	nenol	< 328	ug/Kg		12/27/2016 20:19		
2,4,5-Trichloropheno	1	< 657	ug/Kg		12/27/2016 20:19		
2,4,6-Trichloropheno	1	< 328	ug/Kg		12/27/2016 20:19		
2,4-Dichlorophenol		< 328	ug/Kg		12/27/2016 20:19		
2,4-Dimethylphenol		< 328	ug/Kg		12/27/2016 20:19		
2,4-Dinitrophenol		< 657	ug/Kg		12/27/2016 20:19		
2,4-Dinitrotoluene		< 328	ug/Kg		12/27/2016 20:19		
2,6-Dinitrotoluene		< 328	ug/Kg		12/27/2016 20:19		
2-Chloronaphthalene		< 328	ug/Kg		12/27/2016 20:19		
2-Chlorophenol		< 328	ug/Kg		12/27/2016 20:19		
2-Methylnapthalene		1200	ug/Kg		12/27/2016 20:19		
2-Methylphenol		< 328	ug/Kg		12/27/2016 20:19		
2-Nitroaniline		< 657	ug/Kg		12/27/2016 20:19		
2-Nitrophenol		< 328	ug/Kg		12/27/2016 20:19		
3&4-Methylphenol		< 328	ug/Kg		12/27/2016 20:19		
3,3'-Dichlorobenzidir	ne	< 328	ug/Kg		12/27/2016 20:19		
3-Nitroaniline		< 657	ug/Kg		12/27/2016 20:19		
4,6-Dinitro-2-methylj	phenol	< 657	ug/Kg		12/27/2016 20:19		
4-Bromophenyl phen	yl ether	< 328	ug/Kg		12/27/2016 20:19		
4-Chloro-3-methylph	enol	< 328	ug/Kg		12/27/2016 20:19		

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-11						
Lab Sample ID:	165522-07			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
4-Chloroaniline		< 328	ug/Kg		12/27/2016 20:19		
4-Chlorophenyl pheny	yl ether	< 328	ug/Kg		12/27/2016 20:19		
4-Nitroaniline		< 657	ug/Kg		12/27/2016 20:19		
4-Nitrophenol		< 657	ug/Kg		12/27/2016 20:19		
Acenaphthene		< 328	ug/Kg		12/27/2016 20:19		
Acenaphthylene		2090	ug/Kg		12/27/2016 20:19		
Acetophenone		< 328	ug/Kg		12/27/2016 20:19		
Anthracene		1600	ug/Kg		12/27/2016 20:19		
Atrazine		< 328	ug/Kg		12/27/2016 20:19		
Benzaldehyde		< 328	ug/Kg		12/27/2016 20:19		
Benzo (a) anthracene		1540	ug/Kg		12/27/2016 20:19		
Benzo (a) pyrene		815	ug/Kg		12/27/2016 20:19		
Benzo (b) fluoranther	ie	699	ug/Kg		12/27/2016 20:19		
Benzo (g,h,i) perylene	2	433	ug/Kg		12/27/2016 20:19		
Benzo (k) fluoranthen	ie	907	ug/Kg		12/27/2016 20:19		
Bis (2-chloroethoxy)	methane	< 328	ug/Kg		12/27/2016 20:19		
Bis (2-chloroethyl) et	her	< 328	ug/Kg		12/27/2016 20:19		
Bis (2-ethylhexyl) pht	halate	< 328	ug/Kg		12/27/2016 20:19		
Butylbenzylphthalate		< 328	ug/Kg		12/27/2016 20:19		
Caprolactam		< 328	ug/Kg		12/27/2016 20:19		
Carbazole		499	ug/Kg		12/27/2016 20:19		
Chrysene		1080	ug/Kg		12/27/2016 20:19		
Dibenz (a,h) anthrace	ne	273	ug/Kg	J	12/27/2016 20:19		
Dibenzofuran		952	ug/Kg		12/27/2016 20:19		
Diethyl phthalate		< 328	ug/Kg		12/27/2016 20:19		
Dimethyl phthalate		< 657	ug/Kg		12/27/2016 20:19		
Di-n-butyl phthalate		< 328	ug/Kg		12/27/2016 20:19		
Di-n-octylphthalate		< 328	ug/Kg		12/27/2016 20:19		
Fluoranthene		3790	ug/Kg		12/27/2016 20:19		
Fluorene		1820	ug/Kg		12/27/2016 20:19		

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street, N.W. #	16-266				
Sample Identifier:	BH-11						
Lab Sample ID:	165522-	07		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
Hexachlorobenzene		< 328	ug/Kg			12/27/2016	20:19
Hexachlorobutadiene		< 328	ug/Kg			12/27/2016	20:19
Hexachlorocyclopenta	adiene	< 328	ug/Kg			12/27/2016	20:19
Hexachloroethane		< 328	ug/Kg			12/27/2016	20:19
Indeno (1,2,3-cd) pyre	ene	383	ug/Kg			12/27/2016	20:19
Isophorone		< 328	ug/Kg			12/27/2016	20:19
Naphthalene		1330	ug/Kg			12/27/2016	20:19
Nitrobenzene		< 328	ug/Kg			12/27/2016	20:19
N-Nitroso-di-n-propy	lamine	< 328	ug/Kg			12/27/2016	20:19
N-Nitrosodiphenylam	ine	< 328	ug/Kg			12/27/2016	20:19
Pentachlorophenol		< 657	ug/Kg			12/27/2016	20:19
Phenanthrene		5260	ug/Kg			12/27/2016	20:19
Phenol		< 328	ug/Kg			12/27/2016	20:19
Pyrene		2360	ug/Kg			12/27/2016	20:19
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	1		69.5	38 - 114		12/27/2016	20:19
2-Fluorobiphenyl			63.3	25 - 105		12/27/2016	20:19
2-Fluorophenol			47.2	30.8 - 84		12/27/2016	20:19
Nitrobenzene-d5			53.8	28.5 - 84.9		12/27/2016	20:19
Phenol-d5			53.6	32.5 - 89.6		12/27/2016	20:19
Terphenyl-d14			79.6	55.5 - 117		12/27/2016	20:19
Method Referen	nce(s): El	PA 8270D					
Preparation Da Data File:	te: 12 B1	2/27/2016 16237.D					

Client:	<u>C&S Compani</u>	<u>es</u>						
Project Reference:	100 Dona Stre	100 Dona Street, N.W. # 16-266						
Sample Identifier: Lab Sample ID: Matrix:	BH-11 165522-07 Soil			Date Sampled: Date Received:	12/19/2016			
Volatilo Organico	5011			Dute Receiveur	12/22/2010			
<u>volutile Organics</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	9	< 15.9	ug/Kg		12/28/2016 15:04			
1,1,2,2-Tetrachloroet	hane	< 15.9	ug/Kg		12/28/2016 15:04			
1,1,2-Trichloroethane	2	< 15.9	ug/Kg		12/28/2016 15:04			
1,1-Dichloroethane		< 15.9	ug/Kg		12/28/2016 15:04			
1,1-Dichloroethene		< 15.9	ug/Kg		12/28/2016 15:04			
1,2,3-Trichlorobenzei	ne	< 39.8	ug/Kg		12/28/2016 15:04			
1,2,4-Trichlorobenzei	ne	< 39.8	ug/Kg		12/28/2016 15:04			
1,2-Dibromo-3-Chlore	opropane	< 79.5	ug/Kg		12/28/2016 15:04			
1,2-Dibromoethane		< 15.9	ug/Kg		12/28/2016 15:04			
1,2-Dichlorobenzene		< 15.9	ug/Kg		12/28/2016 15:04			
1,2-Dichloroethane		< 15.9	ug/Kg		12/28/2016 15:04			
1,2-Dichloropropane		< 15.9	ug/Kg		12/28/2016 15:04			
1,3-Dichlorobenzene		< 15.9	ug/Kg		12/28/2016 15:04			
1,4-Dichlorobenzene		< 15.9	ug/Kg		12/28/2016 15:04			
1,4-dioxane		< 159	ug/Kg		12/28/2016 15:04			
2-Butanone		< 79.5	ug/Kg		12/28/2016 15:04			
2-Hexanone		< 39.8	ug/Kg		12/28/2016 15:04			
4-Methyl-2-pentanon	e	< 39.8	ug/Kg		12/28/2016 15:04			
Acetone		< 79.5	ug/Kg		12/28/2016 15:04			
Benzene		< 15.9	ug/Kg		12/28/2016 15:04			
Bromochloromethane	<u>e</u>	< 39.8	ug/Kg		12/28/2016 15:04			
Bromodichlorometha	ne	< 15.9	ug/Kg		12/28/2016 15:04			
Bromoform		< 39.8	ug/Kg		12/28/2016 15:04			
Bromomethane		< 15.9	ug/Kg		12/28/2016 15:04			
Carbon disulfide		< 15.9	ug/Kg		12/28/2016 15:04			
Carbon Tetrachloride	!	< 15.9	ug/Kg		12/28/2016 15:04			
Chlorobenzene		< 15.9	ug/Kg		12/28/2016 15:04			

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et, N.W. # 1	6-266		
Sample Identifier:	BH-11				
Lab Sample ID:	165522-07			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
Chloroethane		< 15.9	ug/Kg		12/28/2016 15:04
Chloroform		< 15.9	ug/Kg		12/28/2016 15:04
Chloromethane		< 15.9	ug/Kg		12/28/2016 15:04
cis-1,2-Dichloroethen	e	< 15.9	ug/Kg		12/28/2016 15:04
cis-1,3-Dichloroprope	ene	< 15.9	ug/Kg		12/28/2016 15:04
Cyclohexane		< 79.5	ug/Kg		12/28/2016 15:04
Dibromochlorometha	ne	< 15.9	ug/Kg		12/28/2016 15:04
Dichlorodifluorometh	ane	< 15.9	ug/Kg		12/28/2016 15:04
Ethylbenzene		< 15.9	ug/Kg		12/28/2016 15:04
Freon 113		< 15.9	ug/Kg		12/28/2016 15:04
Isopropylbenzene		< 15.9	ug/Kg		12/28/2016 15:04
m,p-Xylene		< 15.9	ug/Kg		12/28/2016 15:04
Methyl acetate		< 15.9	ug/Kg		12/28/2016 15:04
Methyl tert-butyl Ethe	er	< 15.9	ug/Kg		12/28/2016 15:04
Methylcyclohexane		< 15.9	ug/Kg		12/28/2016 15:04
Methylene chloride		< 39.8	ug/Kg		12/28/2016 15:04
o-Xylene		< 15.9	ug/Kg		12/28/2016 15:04
Styrene		< 39.8	ug/Kg		12/28/2016 15:04
Tetrachloroethene		< 15.9	ug/Kg		12/28/2016 15:04
Toluene		17.4	ug/Kg		12/28/2016 15:04
trans-1,2-Dichloroeth	ene	< 15.9	ug/Kg		12/28/2016 15:04
trans-1,3-Dichloropro	opene	< 15.9	ug/Kg		12/28/2016 15:04
Trichloroethene		434	ug/Kg	Z	12/28/2016 15:04
Trichlorofluorometha	ine	< 15.9	ug/Kg		12/28/2016 15:04
Vinyl chloride		< 15.9	ug/Kg		12/28/2016 15:04

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street,	N.W. # 16-266				
Sample Identifier:	BH-11					
Lab Sample ID:	165522-07		Dat	e Sampled:	12/19/2010	6
Matrix:	Soil		Dat	e Received:	12/22/2010	5
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4	4	105	82 - 124		12/28/2016	15:04
4-Bromofluorobenzen	ie	92.4	80.5 - 116		12/28/2016	15:04
Pentafluorobenzene		105	88.7 - 112		12/28/2016	15:04
Toluene-D8		99.5	79.1 - 120		12/28/2016	15:04
Method Referen	ce(s): EPA 8260C					

Data File:

EPA 5035A - L x38114.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	ompanies			
Project Reference:	100 Dc	ona Street, N.W. # 2	16-266		
Sample Identifier:	BH-6				
Lab Sample ID:	16552	22-08		Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>Metals</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		2.46	mg/Kg		12/27/2016 18:03
Barium		15.2	mg/Kg		12/28/2016 14:49
Beryllium		0.161	mg/Kg	J	12/27/2016 18:03
Cadmium		0.178	mg/Kg	J	12/27/2016 18:03
Chromium		4.87	mg/Kg		12/27/2016 18:03
Copper		9.60	mg/Kg		12/27/2016 18:03
Lead		4.99	mg/Kg		12/27/2016 18:03
Manganese		126	mg/Kg		12/27/2016 18:03
Nickel		7.05	mg/Kg		12/27/2016 18:03
Selenium		1.08	mg/Kg		12/28/2016 14:49
Silver		< 0.595	mg/Kg		12/27/2016 18:03
Zinc		21.7	mg/Kg		12/27/2016 18:03
Method Refe	erence(s):	EPA 6010C			
Preparation Data File:	Date:	12/27/2016 122716c			

Client:	<u>C&S Companies</u>				
Project Reference:	100 Dona Street,	N.W. # 16	5-266		
Sample Identifier:	BH-6				
Lab Sample ID:	165522-08			Date Sampled:	12/19/2016
Matrix:	Soil			Date Received:	12/22/2016
<u>Mercury</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury		0.00800	mg/Kg	J	12/27/2016 15:26

 Method Reference(s):
 EPA 7471B

 Preparation Date:
 12/27/2016

 Data File:
 Hg161227B

FINAL

Client:	<u>C&S Comp</u>	<u>oanies</u>					
Project Reference:	100 Dona	Street, N.W. # 10	6-266				
Sample Identifier:	BH-6						
Lab Sample ID:	165522-0)8		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1221		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1232		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1242		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1248		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1254		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1260		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1262		< 0.0346	mg/Kg			12/28/2016	14:49
PCB-1268		< 0.0346	mg/Kg			12/28/2016	14:49
<u>Surrogate</u>		<u>Percen</u>	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			14.7	10 - 144		12/28/2016	14:49
Tetrachloro-m-xylene			19.0	10 - 140		12/28/2016	14:49
Method Referen	ce(s): EPA EPA	A 8082A A 3550C					
Preparation Dat	ie: 12/	/28/2016					

12/27/2016 20:48

Client:	<u>C&S Compani</u>	<u>C&S Companies</u>							
Project Reference:	100 Dona Stre	et, N.W. # 1	6-266						
Sample Identifier:	BH-6								
Lab Sample ID:	165522-08			Date Sampled:	12/19/2016				
Matrix:	Soil			Date Received:	12/22/2016				
Semi-Volatile Organic	s (Acid/Base Ne	<u>utrals)</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed				
1,1-Biphenyl		< 346	ug/Kg		12/27/2016 20:48				
1,2,4,5-Tetrachlorobe	enzene	< 346	ug/Kg		12/27/2016 20:48				
1,2,4-Trichlorobenze	ne	< 346	ug/Kg		12/27/2016 20:48				
1,2-Dichlorobenzene		< 346	ug/Kg		12/27/2016 20:48				
1,3-Dichlorobenzene		< 346	ug/Kg		12/27/2016 20:48				
1,4-Dichlorobenzene		< 346	ug/Kg		12/27/2016 20:48				
2,2-Oxybis (1-chlorop	propane)	< 346	ug/Kg		12/27/2016 20:48				
2,3,4,6-Tetrachloroph	nenol	< 346	ug/Kg		12/27/2016 20:48				
2,4,5-Trichloropheno	1	< 691	ug/Kg		12/27/2016 20:48				
2,4,6-Trichloropheno	1	< 346	ug/Kg		12/27/2016 20:48				
2,4-Dichlorophenol		< 346	ug/Kg		12/27/2016 20:48				
2,4-Dimethylphenol		< 346	ug/Kg		12/27/2016 20:48				
2,4-Dinitrophenol		< 691	ug/Kg		12/27/2016 20:48				
2,4-Dinitrotoluene		< 346	ug/Kg		12/27/2016 20:48				
2,6-Dinitrotoluene		< 346	ug/Kg		12/27/2016 20:48				
2-Chloronaphthalene		< 346	ug/Kg		12/27/2016 20:48				
2-Chlorophenol		< 346	ug/Kg		12/27/2016 20:48				
2-Methylnapthalene		< 346	ug/Kg		12/27/2016 20:48				
2-Methylphenol		< 346	ug/Kg		12/27/2016 20:48				
2-Nitroaniline		< 691	ug/Kg		12/27/2016 20:48				
2-Nitrophenol		< 346	ug/Kg		12/27/2016 20:48				
3&4-Methylphenol		< 346	ug/Kg		12/27/2016 20:48				
3,3'-Dichlorobenzidin	ie	< 346	ug/Kg		12/27/2016 20:48				
3-Nitroaniline		< 691	ug/Kg		12/27/2016 20:48				
4,6-Dinitro-2-methylj	phenol	< 691	ug/Kg		12/27/2016 20:48				
4-Bromophenyl phen	yl ether	< 346	ug/Kg		12/27/2016 20:48				

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 346

4-Chloro-3-methylphenol

Client:	<u>C&S Companie</u>	es				
Project Reference:	100 Dona Street, N.W. # 16-266					
Sample Identifier:	BH-6					
Lab Sample ID:	165522-08			Date Sampled:	12/19/2016	
Matrix:	Soil			Date Received:	12/22/2016	
4-Chloroaniline		< 346	ug/Kg		12/27/2016 20:48	
4-Chlorophenyl pheny	yl ether	< 346	ug/Kg		12/27/2016 20:48	
4-Nitroaniline		< 691	ug/Kg		12/27/2016 20:48	
4-Nitrophenol		< 691	ug/Kg		12/27/2016 20:48	
Acenaphthene		< 346	ug/Kg		12/27/2016 20:48	
Acenaphthylene		< 346	ug/Kg		12/27/2016 20:48	
Acetophenone		< 346	ug/Kg		12/27/2016 20:48	
Anthracene		< 346	ug/Kg		12/27/2016 20:48	
Atrazine		< 346	ug/Kg		12/27/2016 20:48	
Benzaldehyde		< 346	ug/Kg		12/27/2016 20:48	
Benzo (a) anthracene		< 346	ug/Kg		12/27/2016 20:48	
Benzo (a) pyrene		< 346	ug/Kg		12/27/2016 20:48	
Benzo (b) fluoranther	ie	< 346	ug/Kg		12/27/2016 20:48	
Benzo (g,h,i) perylene	!	< 346	ug/Kg		12/27/2016 20:48	
Benzo (k) fluoranthen	ie	< 346	ug/Kg		12/27/2016 20:48	
Bis (2-chloroethoxy)	methane	< 346	ug/Kg		12/27/2016 20:48	
Bis (2-chloroethyl) et	her	< 346	ug/Kg		12/27/2016 20:48	
Bis (2-ethylhexyl) pht	halate	< 346	ug/Kg		12/27/2016 20:48	
Butylbenzylphthalate		< 346	ug/Kg		12/27/2016 20:48	
Caprolactam		< 346	ug/Kg		12/27/2016 20:48	
Carbazole		< 346	ug/Kg		12/27/2016 20:48	
Chrysene		< 346	ug/Kg		12/27/2016 20:48	
Dibenz (a,h) anthrace	ne	< 346	ug/Kg		12/27/2016 20:48	
Dibenzofuran		< 346	ug/Kg		12/27/2016 20:48	
Diethyl phthalate		< 346	ug/Kg		12/27/2016 20:48	
Dimethyl phthalate		< 691	ug/Kg		12/27/2016 20:48	
Di-n-butyl phthalate		< 346	ug/Kg		12/27/2016 20:48	
Di-n-octylphthalate		< 346	ug/Kg		12/27/2016 20:48	
Fluoranthene		< 346	ug/Kg		12/27/2016 20:48	
Fluorene		< 346	ug/Kg		12/27/2016 20:48	

Client:	<u>C&S Companies</u>						
Project Reference: 100 Dona Street, N.W. # 16-266							
Sample Identifier:	BH-6						
Lab Sample ID:	165522-0	08		Date	e Sampled:	12/19/2016)
Matrix:	Soil			Date	e Received:	12/22/2016)
Hexachlorobenzene		< 346	ug/Kg			12/27/2016	20:48
Hexachlorobutadiene		< 346	ug/Kg			12/27/2016	20:48
Hexachlorocyclopenta	adiene	< 346	ug/Kg			12/27/2016	20:48
Hexachloroethane		< 346	ug/Kg			12/27/2016	20:48
Indeno (1,2,3-cd) pyr	ene	< 346	ug/Kg			12/27/2016	20:48
Isophorone		< 346	ug/Kg			12/27/2016	20:48
Naphthalene		< 346	ug/Kg			12/27/2016	20:48
Nitrobenzene		< 346	ug/Kg			12/27/2016	20:48
N-Nitroso-di-n-propy	lamine	< 346	ug/Kg			12/27/2016	20:48
N-Nitrosodiphenylam	ine	< 346	ug/Kg			12/27/2016	20:48
Pentachlorophenol		< 691	ug/Kg			12/27/2016	20:48
Phenanthrene		< 346	ug/Kg			12/27/2016	20:48
Phenol		< 346	ug/Kg			12/27/2016	20:48
Pyrene		< 346	ug/Kg			12/27/2016	20:48
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	l		69.4	38 - 114		12/27/2016	20:48
2-Fluorobiphenyl			56.2	25 - 105		12/27/2016	20:48
2-Fluorophenol			48.8	30.8 - 84		12/27/2016	20:48
Nitrobenzene-d5			50.6	28.5 - 84.9		12/27/2016	20:48
Phenol-d5			52.8	32.5 - 89.6		12/27/2016	20:48
Terphenyl-d14			73.4	55.5 - 117		12/27/2016	20:48
Method Referen	nce(s): EP.	A 8270D A 3550C					
Preparation Da Data File:	ite: 12, B1	/27/2016 6238.D					

Client:	<u>C&S Companies</u>						
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-6						
Lab Sample ID:	165522-08			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Volatile Organics							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1,1-Trichloroethane	2	< 4.85	ug/Kg		12/28/2016 13:05		
1,1,2,2-Tetrachloroet	hane	< 4.85	ug/Kg		12/28/2016 13:05		
1,1,2-Trichloroethane	2	< 4.85	ug/Kg		12/28/2016 13:05		
1,1-Dichloroethane		< 4.85	ug/Kg		12/28/2016 13:05		
1,1-Dichloroethene		< 4.85	ug/Kg		12/28/2016 13:05		
1,2,3-Trichlorobenzei	ne	< 12.1	ug/Kg		12/28/2016 13:05		
1,2,4-Trichlorobenzer	ne	< 12.1	ug/Kg		12/28/2016 13:05		
1,2,4-Trimethylbenze	ne	< 4.85	ug/Kg		12/28/2016 13:05		
1,2-Dibromo-3-Chloro	opropane	< 24.3	ug/Kg		12/28/2016 13:05		
1,2-Dibromoethane		< 4.85	ug/Kg		12/28/2016 13:05		
1,2-Dichlorobenzene		< 4.85	ug/Kg		12/28/2016 13:05		
1,2-Dichloroethane		< 4.85	ug/Kg		12/28/2016 13:05		
1,2-Dichloropropane		< 4.85	ug/Kg		12/28/2016 13:05		
1,3,5-Trimethylbenze	ne	< 4.85	ug/Kg		12/28/2016 13:05		
1,3-Dichlorobenzene		< 4.85	ug/Kg		12/28/2016 13:05		
1,4-Dichlorobenzene		< 4.85	ug/Kg		12/28/2016 13:05		
1,4-dioxane		< 48.5	ug/Kg		12/28/2016 13:05		
2-Butanone		< 24.3	ug/Kg		12/28/2016 13:05		
2-Hexanone		< 12.1	ug/Kg		12/28/2016 13:05		
4-Methyl-2-pentanon	e	< 12.1	ug/Kg		12/28/2016 13:05		
Acetone		< 24.3	ug/Kg		12/28/2016 13:05		
Benzene		< 4.85	ug/Kg		12/28/2016 13:05		
Bromochloromethane	9	< 12.1	ug/Kg		12/28/2016 13:05		
Bromodichlorometha	ne	< 4.85	ug/Kg		12/28/2016 13:05		
Bromoform		< 12.1	ug/Kg		12/28/2016 13:05		
Bromomethane		< 4.85	ug/Kg		12/28/2016 13:05		
Carbon disulfide		< 4.85	ug/Kg		12/28/2016 13:05		

Client:	<u>C&S Companies</u>						
Project Reference:	100 Dona Street, N.W. # 16-266						
Sample Identifier:	BH-6						
Lab Sample ID:	165522-08			Date Sampled:	12/19/2016		
Matrix:	Soil			Date Received:	12/22/2016		
Carbon Tetrachloride		< 4.85	ug/Kg		12/28/2016 13:05		
Chlorobenzene		< 4.85	ug/Kg		12/28/2016 13:05		
Chloroethane		< 4.85	ug/Kg		12/28/2016 13:05		
Chloroform		< 4.85	ug/Kg		12/28/2016 13:05		
Chloromethane		< 4.85	ug/Kg		12/28/2016 13:05		
cis-1,2-Dichloroethene	2	< 4.85	ug/Kg		12/28/2016 13:05		
cis-1,3-Dichloroproper	ne	< 4.85	ug/Kg		12/28/2016 13:05		
Cyclohexane		< 24.3	ug/Kg		12/28/2016 13:05		
Dibromochloromethan	ne	< 4.85	ug/Kg		12/28/2016 13:05		
Dichlorodifluorometha	ane	< 4.85	ug/Kg		12/28/2016 13:05		
Ethylbenzene		< 4.85	ug/Kg		12/28/2016 13:05		
Freon 113		< 4.85	ug/Kg		12/28/2016 13:05		
Isopropylbenzene		< 4.85	ug/Kg		12/28/2016 13:05		
m,p-Xylene		< 4.85	ug/Kg		12/28/2016 13:05		
Methyl acetate		< 4.85	ug/Kg		12/28/2016 13:05		
Methyl tert-butyl Ether	r	< 4.85	ug/Kg		12/28/2016 13:05		
Methylcyclohexane		< 4.85	ug/Kg		12/28/2016 13:05		
Methylene chloride		< 12.1	ug/Kg		12/28/2016 13:05		
Naphthalene		< 12.1	ug/Kg		12/28/2016 13:05		
n-Butylbenzene		< 4.85	ug/Kg		12/28/2016 13:05		
n-Propylbenzene		< 4.85	ug/Kg		12/28/2016 13:05		
o-Xylene		< 4.85	ug/Kg		12/28/2016 13:05		
p-Isopropyltoluene		< 4.85	ug/Kg		12/28/2016 13:05		
sec-Butylbenzene		3.82	ug/Kg	J	12/28/2016 13:05		
Styrene		< 12.1	ug/Kg		12/28/2016 13:05		
tert-Butylbenzene		< 4.85	ug/Kg		12/28/2016 13:05		
Tetrachloroethene		< 4.85	ug/Kg		12/28/2016 13:05		
Toluene		< 4.85	ug/Kg		12/28/2016 13:05		
trans-1,2-Dichloroethe	ene	< 4.85	ug/Kg		12/28/2016 13:05		
trans-1,3-Dichloroprop	pene	< 4.85	ug/Kg		12/28/2016 13:05		

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et, N.W. #	16-266				
Sample Identifier:	BH-6						
Lab Sample ID:	165522-08			Dat	e Sampled:	12/19/2010	6
Matrix:	Soil			Dat	e Received:	12/22/2010	5
Trichloroethene		3.74	ug/Kg		JZ	12/28/2016	13:05
Trichlorofluorometha	ne	< 4.85	ug/Kg			12/28/2016	13:05
Vinyl chloride		< 4.85	ug/Kg			12/28/2016	13:05
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d	4		104	82 - 124		12/28/2016	13:05
4-Bromofluorobenzer	ie		96.9	80.5 - 116		12/28/2016	13:05
Pentafluorobenzene			101	88.7 - 112		12/28/2016	13:05
Toluene-D8			100	79.1 - 120		12/28/2016	13:05
Method Referen	nce(s): EPA 8260 EPA 5035	DC 5A - L					
Data File:	x38109.D)					

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this areement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Rush 3 day Category A NYSDEC EDD Received By DateTime Rush 2 day Category B Category B Category B Category B Received By Category B Category B	Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply. 200/10 Standard 5 day None Required None Required 10 day Batch QC Basic EDD		IZ[I9]II6 X BH-12 SO XXXX - 10 IIISA X BH-10 SO XXXX	DATE COLLECTED COLLECTED M + - 0 0 V ± 0 0 M > 70 SAMPLE IDENTIFIER X - 70 + D ± 0 0 X - 70 + D ± 0 0 X - 70 + D ± 0 0 TO 70 m m m s c z 0 7 m z - 2 + 1 z 0 0 TO 2 m m s c z 0 7 m z - 2 + 1 z 0 0 TO 2 NOC TOL VOC TOL VOC TOL SUOG PCB	PROJECT REFERENCE ATTN: N.W.H /6-266 ATTN: Matrix Codes: AQ - Aqueous Liquid ATTN: MA - Aqueous Liquid ATTN: MA - Water ATTN: C LC ATTN: C LC ATTN: C LC ATTN: C LC N.W.H /6-266 Matrix Codes: AQ - Aqueous Liquid WA - Water DW - Drinking Water SO - Soil NQ - Non-Aqueous Liquid WG - Groundwater WW - Wastewater SL - Sludge	PARADIGM PARADI
Date/Time P.I.F. $A = \frac{12}{22/16} + \frac{14}{10}$ P.I.F. Date/Time 22/16 + 11:49 to Paradigm Terms and Conditions (reverse). $a^{1}, a^{1} + a^{1}, \frac{12}{22} + \frac{14}{16}$ See additional page for sample conditions.	12 DOULU Date/Time 12 - 2 I - 12 Date/Time 12 - 2 I - 12	Hurt 275 04 06 06 07 07 07	- Pert 375 01	PARADIGM LAB	Lessing Email: Sherberg buttalo.ed Sherberg butta	Y (65522) OICE TO: Unes high Environmental LAB PROJECT ID Unes high Environmental Unes high Environmental UNES high Environmental STATE 1900 Quotation #:

んち

2.12

Chain of Custody Supplement

Client:	C+ S Engineers	Completed by:	66m Pezzulo
Lab Project ID:	165522	Date:	12/27/16
	Sample Condition Per NELAC/ELAP 210/	Requirements 241/242/243/244	
<i>Condition</i>	NELAC compliance with the sample con Yes	ndition requirements up No	on receipt N/A
Container Type	X	5035	
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			$\square \not \square$
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	4° C iced 12/22/16	[] []:'49	mujals
Sufficient Sample Quantity Comments			

LAB PROJECT NARRATIVE

CLIENT: C&S Companies

PROJECT REFERENCE: 100 Dona St.

LAB PROJECT NUMBER: 165582

DATE: 01/04/2017

This report documents positive detections for trichloroethene (TCE) in select samples. It has been determined that your samples were stored concurrent with another sample that contained very high levels of TCE. Although the evidence is purely circumstantial, it is possible that the TCE results reported herein stem from cross contamination during storage.

Att Matty

Matthew Miller Operations Manager

179 Lake Avenue

Rochester, NY 14608

OFFICE: 585.647.2530

FAX: 585.647.3311

mmiller@paradigmenv.com www.paradigmenv.com

Client:	<u>C&S C</u>	<u>ompanies</u>					
Project Reference:	100 Do	ona Street					
Sample Identifier:	TP-1						
Lab Sample ID:	1655	82-01			Date Sample	ed:	12/27/2016
Matrix:	Soil				Date Receiv	ed:	12/29/2016
<u>Metals</u>							
<u>Analyte</u>		R	lesult	<u>Units</u>	Qualifie	<u>er</u>	Date Analyzed
Arsenic		1	.70	mg/Kg			1/3/2017 14:14
Barium		2	3.6	mg/Kg			1/3/2017 12:58
Beryllium		0	.164	mg/Kg	J		1/3/2017 12:58
Cadmium		0	.140	mg/Kg	J		1/3/2017 12:58
Chromium		5	.39	mg/Kg			1/3/2017 12:58
Copper		1	0.8	mg/Kg			1/3/2017 12:58
Lead		5	.31	mg/Kg			1/3/2017 12:58
Manganese		1	.79	mg/Kg			1/3/2017 12:58
Nickel		9	.44	mg/Kg			1/3/2017 12:58
Selenium		1	.65	mg/Kg			1/4/2017 20:51
Silver		<	0.503	mg/Kg			1/3/2017 12:58
Zinc		3	3.5	mg/Kg			1/3/2017 12:58
Method Refe	erence(s):	EPA 6010C					
Preparation Data File:	Date:	12/30/2016 010317b					

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-1		
Lab Sample ID:	165582-01	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury	0.00451	mg/Kg	J	12/30/2016 13:53
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Compa</u>	<u>inies</u>					
Project Reference:	100 Dona St	treet					
Sample Identifier:	TP-1						
Lab Sample ID:	165582-01	L		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1221		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1232		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1242		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1248		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1254		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1260		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1262		< 0.0324	mg/Kg			1/3/2017	23:32
PCB-1268		< 0.0324	mg/Kg			1/3/2017	23:32
<u>Surrogate</u>		<u>Percen</u>	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl			83.1	10 - 144		1/3/2017	23:32
Tetrachloro-m-xylene			53.0	10 - 140		1/3/2017	23:32
Method Referen	nce(s): EPA 8 EPA 3	3082A 3550C					
Preparation Da	te: 1/3/2	2017					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-1				
Lab Sample ID:	165582-01			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 321	ug/Kg		12/30/2016 21:27
1,2,4,5-Tetrachlorobe	enzene	< 321	ug/Kg		12/30/2016 21:27
1,2,4-Trichlorobenze	ne	< 321	ug/Kg		12/30/2016 21:27
1,2-Dichlorobenzene		< 321	ug/Kg		12/30/2016 21:27
1,3-Dichlorobenzene		< 321	ug/Kg		12/30/2016 21:27
1,4-Dichlorobenzene		< 321	ug/Kg		12/30/2016 21:27
2,2-Oxybis (1-chlorop	propane)	< 321	ug/Kg		12/30/2016 21:27
2,3,4,6-Tetrachloroph	nenol	< 321	ug/Kg		12/30/2016 21:27
2,4,5-Trichloropheno	1	< 642	ug/Kg		12/30/2016 21:27
2,4,6-Trichloropheno	1	< 321	ug/Kg		12/30/2016 21:27
2,4-Dichlorophenol		< 321	ug/Kg		12/30/2016 21:27
2,4-Dimethylphenol		< 321	ug/Kg		12/30/2016 21:27
2,4-Dinitrophenol		< 642	ug/Kg		12/30/2016 21:27
2,4-Dinitrotoluene		< 321	ug/Kg		12/30/2016 21:27
2,6-Dinitrotoluene		< 321	ug/Kg		12/30/2016 21:27
2-Chloronaphthalene		< 321	ug/Kg		12/30/2016 21:27
2-Chlorophenol		< 321	ug/Kg		12/30/2016 21:27
2-Methylnapthalene		< 321	ug/Kg		12/30/2016 21:27
2-Methylphenol		< 321	ug/Kg		12/30/2016 21:27
2-Nitroaniline		< 642	ug/Kg		12/30/2016 21:27
2-Nitrophenol		< 321	ug/Kg		12/30/2016 21:27
3&4-Methylphenol		< 321	ug/Kg		12/30/2016 21:27
3,3'-Dichlorobenzidir	ie	< 321	ug/Kg		12/30/2016 21:27
3-Nitroaniline		< 642	ug/Kg		12/30/2016 21:27
4,6-Dinitro-2-methyl	phenol	< 642	ug/Kg		12/30/2016 21:27
4-Bromophenyl phen	yl ether	< 321	ug/Kg		12/30/2016 21:27
4-Chloro-3-methylph	enol	< 321	ug/Kg		12/30/2016 21:27

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-1				
Lab Sample ID:	165582-01			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 321	ug/Kg		12/30/2016 21:27
4-Chlorophenyl pheny	yl ether	< 321	ug/Kg		12/30/2016 21:27
4-Nitroaniline		< 642	ug/Kg		12/30/2016 21:27
4-Nitrophenol		< 642	ug/Kg		12/30/2016 21:27
Acenaphthene		< 321	ug/Kg		12/30/2016 21:27
Acenaphthylene		< 321	ug/Kg		12/30/2016 21:27
Acetophenone		< 321	ug/Kg		12/30/2016 21:27
Anthracene		< 321	ug/Kg		12/30/2016 21:27
Atrazine		< 321	ug/Kg		12/30/2016 21:27
Benzaldehyde		< 321	ug/Kg		12/30/2016 21:27
Benzo (a) anthracene		< 321	ug/Kg		12/30/2016 21:27
Benzo (a) pyrene		< 321	ug/Kg		12/30/2016 21:27
Benzo (b) fluoranther	ie	< 321	ug/Kg		12/30/2016 21:27
Benzo (g,h,i) perylene		< 321	ug/Kg		12/30/2016 21:27
Benzo (k) fluoranther	ie	< 321	ug/Kg		12/30/2016 21:27
Bis (2-chloroethoxy)	methane	< 321	ug/Kg		12/30/2016 21:27
Bis (2-chloroethyl) et	her	< 321	ug/Kg		12/30/2016 21:27
Bis (2-ethylhexyl) pht	halate	< 321	ug/Kg		12/30/2016 21:27
Butylbenzylphthalate		< 321	ug/Kg		12/30/2016 21:27
Caprolactam		< 321	ug/Kg		12/30/2016 21:27
Carbazole		< 321	ug/Kg		12/30/2016 21:27
Chrysene		< 321	ug/Kg		12/30/2016 21:27
Dibenz (a,h) anthrace	ne	< 321	ug/Kg		12/30/2016 21:27
Dibenzofuran		< 321	ug/Kg		12/30/2016 21:27
Diethyl phthalate		< 321	ug/Kg		12/30/2016 21:27
Dimethyl phthalate		< 642	ug/Kg		12/30/2016 21:27
Di-n-butyl phthalate		< 321	ug/Kg		12/30/2016 21:27
Di-n-octylphthalate		< 321	ug/Kg		12/30/2016 21:27
Fluoranthene		< 321	ug/Kg		12/30/2016 21:27
Fluorene		< 321	ug/Kg		12/30/2016 21:27

Client:	<u>C&S Compar</u>	<u>nies</u>					
Project Reference:	100 Dona Str	reet					
Sample Identifier:	TP-1						
Lab Sample ID:	165582-01			Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
Hexachlorobenzene		< 321	ug/Kg			12/30/2016	21:27
Hexachlorobutadiene		< 321	ug/Kg			12/30/2016	21:27
Hexachlorocyclopenta	diene	< 321	ug/Kg			12/30/2016	21:27
Hexachloroethane		< 321	ug/Kg			12/30/2016	21:27
Indeno (1,2,3-cd) pyre	ene	< 321	ug/Kg			12/30/2016	21:27
Isophorone		< 321	ug/Kg			12/30/2016	21:27
Naphthalene		< 321	ug/Kg			12/30/2016	21:27
Nitrobenzene		< 321	ug/Kg			12/30/2016	21:27
N-Nitroso-di-n-propyl	amine	< 321	ug/Kg			12/30/2016	21:27
N-Nitrosodiphenylam	ine	< 321	ug/Kg	1		12/30/2016	21:27
Pentachlorophenol		< 642	ug/Kg			12/30/2016	21:27
Phenanthrene		< 321	ug/Kg			12/30/2016	21:27
Phenol		< 321	ug/Kg			12/30/2016	21:27
Pyrene		< 321	ug/Kg			12/30/2016	21:27
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	l		67.9	38 - 114		12/30/2016	21:27
2-Fluorobiphenyl			60.0	25 - 105		12/30/2016	21:27
2-Fluorophenol			52.9	30.8 - 84		12/30/2016	21:27
Nitrobenzene-d5			53.7	28.5 - 84.9		12/30/2016	21:27
Phenol-d5			56.1	32.5 - 89.6		12/30/2016	21:27
Terphenyl-d14			75.6	55.5 - 117		12/30/2016	21:27
Method Referen	ice(s): EPA 82	270D					
Preparation Da Data File:	EPA 35 te: 12/30, B1628	/2016 9.D					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-1				
Lab Sample ID:	165582-01			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 3.58	ug/Kg		1/4/2017 14:53
1,1,2,2-Tetrachloroet	hane	< 3.58	ug/Kg		1/4/2017 14:53
1,1,2-Trichloroethane	9	< 3.58	ug/Kg		1/4/2017 14:53
1,1-Dichloroethane		< 3.58	ug/Kg		1/4/2017 14:53
1,1-Dichloroethene		< 3.58	ug/Kg		1/4/2017 14:53
1,2,3-Trichlorobenzei	ne	< 8.96	ug/Kg		1/4/2017 14:53
1,2,4-Trichlorobenzei	ne	< 8.96	ug/Kg		1/4/2017 14:53
1,2,4-Trimethylbenze	ene	< 3.58	ug/Kg		1/4/2017 14:53
1,2-Dibromo-3-Chlore	opropane	< 17.9	ug/Kg		1/4/2017 14:53
1,2-Dibromoethane		< 3.58	ug/Kg		1/4/2017 14:53
1,2-Dichlorobenzene		< 3.58	ug/Kg		1/4/2017 14:53
1,2-Dichloroethane		< 3.58	ug/Kg		1/4/2017 14:53
1,2-Dichloropropane		< 3.58	ug/Kg		1/4/2017 14:53
1,3,5-Trimethylbenze	ene	< 3.58	ug/Kg		1/4/2017 14:53
1,3-Dichlorobenzene		< 3.58	ug/Kg		1/4/2017 14:53
1,4-Dichlorobenzene		< 3.58	ug/Kg		1/4/2017 14:53
1,4-dioxane		< 35.8	ug/Kg		1/4/2017 14:53
2-Butanone		< 17.9	ug/Kg		1/4/2017 14:53
2-Hexanone		< 8.96	ug/Kg		1/4/2017 14:53
4-Methyl-2-pentanon	e	< 8.96	ug/Kg		1/4/2017 14:53
Acetone		< 17.9	ug/Kg		1/4/2017 14:53
Benzene		< 3.58	ug/Kg		1/4/2017 14:53
Bromochloromethane	e	< 8.96	ug/Kg		1/4/2017 14:53
Bromodichlorometha	ne	< 3.58	ug/Kg		1/4/2017 14:53
Bromoform		< 8.96	ug/Kg		1/4/2017 14:53
Bromomethane		< 3.58	ug/Kg		1/4/2017 14:53
Carbon disulfide		< 3.58	ug/Kg		1/4/2017 14:53

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-1				
Lab Sample ID:	165582-01			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Carbon Tetrachloride		< 3.58	ug/Kg		1/4/2017 14:53
Chlorobenzene		< 3.58	ug/Kg		1/4/2017 14:53
Chloroethane		< 3.58	ug/Kg		1/4/2017 14:53
Chloroform		< 3.58	ug/Kg		1/4/2017 14:53
Chloromethane		< 3.58	ug/Kg		1/4/2017 14:53
cis-1,2-Dichloroethene	е	< 3.58	ug/Kg		1/4/2017 14:53
cis-1,3-Dichloroprope	ne	< 3.58	ug/Kg		1/4/2017 14:53
Cyclohexane		< 17.9	ug/Kg		1/4/2017 14:53
Dibromochlorometha	ne	< 3.58	ug/Kg		1/4/2017 14:53
Dichlorodifluorometh	ane	< 3.58	ug/Kg		1/4/2017 14:53
Ethylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
Freon 113		< 3.58	ug/Kg		1/4/2017 14:53
Isopropylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
m,p-Xylene		< 3.58	ug/Kg		1/4/2017 14:53
Methyl acetate		< 3.58	ug/Kg		1/4/2017 14:53
Methyl tert-butyl Ethe	er	< 3.58	ug/Kg		1/4/2017 14:53
Methylcyclohexane		< 3.58	ug/Kg		1/4/2017 14:53
Methylene chloride		< 8.96	ug/Kg		1/4/2017 14:53
Naphthalene		< 8.96	ug/Kg		1/4/2017 14:53
n-Butylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
n-Propylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
o-Xylene		< 3.58	ug/Kg		1/4/2017 14:53
p-Isopropyltoluene		< 3.58	ug/Kg		1/4/2017 14:53
sec-Butylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
Styrene		< 8.96	ug/Kg		1/4/2017 14:53
tert-Butylbenzene		< 3.58	ug/Kg		1/4/2017 14:53
Tetrachloroethene		< 3.58	ug/Kg		1/4/2017 14:53
Toluene		< 3.58	ug/Kg		1/4/2017 14:53
trans-1,2-Dichloroeth	ene	< 3.58	ug/Kg		1/4/2017 14:53
trans-1,3-Dichloropro	pene	< 3.58	ug/Kg		1/4/2017 14:53

Client:	<u>C&S Comp</u>	<u>anies</u>					
Project Reference:	100 Dona S	treet					
Sample Identifier:	TP-1						
Lab Sample ID:	165582-0	1		Dat	e Sampled:	12/27/201	6
Matrix:	Soil			Dat	e Received:	12/29/201	6
Trichloroethene		< 3.58	ug/Kg			1/4/201	7 14:53
Trichlorofluorometha	ine	< 3.58	ug/Kg			1/4/201	7 14:53
Vinyl chloride		< 3.58	ug/Kg			1/4/201	7 14:53
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Anal	<u>vzed</u>
1,2-Dichloroethane-d	4		106	82 - 124		1/4/2017	14:53
4-Bromofluorobenzer	ne		92.4	80.5 - 116		1/4/2017	14:53
Pentafluorobenzene			95.7	88.7 - 112		1/4/2017	14:53
Toluene-D8			97.9	79.1 - 120		1/4/2017	14:53
Method Referen	nce(s): EPA EPA	8260C 5035A - L					
Data File:	x382	274.D					

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Co</u>	<u>ompanies</u>					
Project Reference:	100 Do	na Street					
Sample Identifier:	TP-2						
Lab Sample ID:	16558	32-02			Date Sampled:	12/27/2016	
Matrix:	Soil				Date Received:	12/29/2016	
<u>Metals</u>							
<u>Analyte</u>		Rest	ılt	<u>Units</u>	<u>Qualifier</u>	Date Analyze	ed
Arsenic		2.87		mg/Kg		1/3/2017	13:02
Barium		20.3		mg/Kg		1/3/2017	13:02
Beryllium		0.19	8	mg/Kg	J	1/3/2017	13:02
Cadmium		0.19	1	mg/Kg	J	1/3/2017	13:02
Chromium		6.84		mg/Kg		1/3/2017	13:02
Copper		11.2		mg/Kg		1/3/2017	13:02
Lead		5.54		mg/Kg		1/3/2017	13:02
Manganese		256		mg/Kg		1/3/2017	13:02
Nickel		8.58		mg/Kg		1/3/2017	13:02
Selenium		1.01		mg/Kg		1/4/2017	21:04
Silver		< 0.5	25	mg/Kg		1/3/2017	13:02
Zinc		34.3		mg/Kg		1/3/2017	13:02
Method Refe	rence(s):	EPA 6010C					
Preparation Data File:	Date:	12/30/2016 010317b					

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-2		
Lab Sample ID:	165582-02	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016
<u>Mercury</u>			

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.00582	mg/Kg	J	12/30/2016 13:57
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Con</u>	<u>ipanies</u>						
Project Reference:	100 Dona	a Street						
Sample Identifier:	TP-2							
Lab Sample ID:	165582	-02			Da	te Sampled:	12/27/2016)
Matrix:	Soil				Da	te Received:	12/29/2016	, ,
<u>PCBs</u>								
<u>Analyte</u>		Re	<u>esult</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1221		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1232		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1242		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1248		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1254		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1260		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1262		< (0.0328	mg/Kg			1/3/2017	23:55
PCB-1268		< (0.0328	mg/Kg			1/3/2017	23:55
<u>Surrogate</u>			Percer	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl				87.6	10 - 144		1/3/2017	23:55
Tetrachloro-m-xylene	2		X	58.4	10 - 140		1/3/2017	23:55
Method Referer	nce(s): E E	CPA 8082A CPA 3550C						
Preparation Da	te: 1	/3/2017						

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-2				
Lab Sample ID:	165582-02			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Semi-Volatile Organic	<u>s (Acid/Base Neu</u>	<u>ıtrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 332	ug/Kg		12/30/2016 21:56
1,2,4,5-Tetrachlorobe	enzene	< 332	ug/Kg		12/30/2016 21:56
1,2,4-Trichlorobenze	ne	< 332	ug/Kg		12/30/2016 21:56
1,2-Dichlorobenzene		< 332	ug/Kg		12/30/2016 21:56
1,3-Dichlorobenzene		< 332	ug/Kg		12/30/2016 21:56
1,4-Dichlorobenzene		< 332	ug/Kg		12/30/2016 21:56
2,2-Oxybis (1-chlorop	propane)	< 332	ug/Kg		12/30/2016 21:56
2,3,4,6-Tetrachloroph	nenol	< 332	ug/Kg		12/30/2016 21:56
2,4,5-Trichloropheno	l	< 664	ug/Kg		12/30/2016 21:56
2,4,6-Trichloropheno	l	< 332	ug/Kg		12/30/2016 21:56
2,4-Dichlorophenol		< 332	ug/Kg		12/30/2016 21:56
2,4-Dimethylphenol		< 332	ug/Kg		12/30/2016 21:56
2,4-Dinitrophenol		< 664	ug/Kg		12/30/2016 21:56
2,4-Dinitrotoluene		< 332	ug/Kg		12/30/2016 21:56
2,6-Dinitrotoluene		< 332	ug/Kg		12/30/2016 21:56
2-Chloronaphthalene		< 332	ug/Kg		12/30/2016 21:56
2-Chlorophenol		< 332	ug/Kg		12/30/2016 21:56
2-Methylnapthalene		< 332	ug/Kg		12/30/2016 21:56
2-Methylphenol		< 332	ug/Kg		12/30/2016 21:56
2-Nitroaniline		< 664	ug/Kg		12/30/2016 21:56
2-Nitrophenol		< 332	ug/Kg		12/30/2016 21:56
3&4-Methylphenol		< 332	ug/Kg		12/30/2016 21:56
3,3'-Dichlorobenzidin	ie	< 332	ug/Kg		12/30/2016 21:56
3-Nitroaniline		< 664	ug/Kg		12/30/2016 21:56
4,6-Dinitro-2-methylj	phenol	< 664	ug/Kg		12/30/2016 21:56
4-Bromophenyl phen	yl ether	< 332	ug/Kg		12/30/2016 21:56
4-Chloro-3-methylph	enol	< 332	ug/Kg		12/30/2016 21:56

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-2				
Lab Sample ID:	165582-02			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 332	ug/Kg		12/30/2016 21:56
4-Chlorophenyl pheny	yl ether	< 332	ug/Kg		12/30/2016 21:56
4-Nitroaniline		< 664	ug/Kg		12/30/2016 21:56
4-Nitrophenol		< 664	ug/Kg		12/30/2016 21:56
Acenaphthene		< 332	ug/Kg		12/30/2016 21:56
Acenaphthylene		< 332	ug/Kg		12/30/2016 21:56
Acetophenone		< 332	ug/Kg		12/30/2016 21:56
Anthracene		< 332	ug/Kg		12/30/2016 21:56
Atrazine		< 332	ug/Kg		12/30/2016 21:56
Benzaldehyde		< 332	ug/Kg		12/30/2016 21:56
Benzo (a) anthracene		< 332	ug/Kg		12/30/2016 21:56
Benzo (a) pyrene		< 332	ug/Kg		12/30/2016 21:56
Benzo (b) fluoranther	ie	< 332	ug/Kg		12/30/2016 21:56
Benzo (g,h,i) perylene	2	< 332	ug/Kg		12/30/2016 21:56
Benzo (k) fluoranthen	ie	< 332	ug/Kg		12/30/2016 21:56
Bis (2-chloroethoxy)	methane	< 332	ug/Kg		12/30/2016 21:56
Bis (2-chloroethyl) et	her	< 332	ug/Kg		12/30/2016 21:56
Bis (2-ethylhexyl) pht	halate	< 332	ug/Kg		12/30/2016 21:56
Butylbenzylphthalate		< 332	ug/Kg		12/30/2016 21:56
Caprolactam		< 332	ug/Kg		12/30/2016 21:56
Carbazole		< 332	ug/Kg		12/30/2016 21:56
Chrysene		< 332	ug/Kg		12/30/2016 21:56
Dibenz (a,h) anthrace	ne	< 332	ug/Kg		12/30/2016 21:56
Dibenzofuran		< 332	ug/Kg		12/30/2016 21:56
Diethyl phthalate		< 332	ug/Kg		12/30/2016 21:56
Dimethyl phthalate		< 664	ug/Kg		12/30/2016 21:56
Di-n-butyl phthalate		< 332	ug/Kg		12/30/2016 21:56
Di-n-octylphthalate		< 332	ug/Kg		12/30/2016 21:56
Fluoranthene		< 332	ug/Kg		12/30/2016 21:56
Fluorene		< 332	ug/Kg		12/30/2016 21:56

Client:	<u>C&S Compa</u>	<u>inies</u>					
Project Reference:	100 Dona St	treet					
Sample Identifier:	TP-2						
Lab Sample ID:	165582-02	2		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
Hexachlorobenzene		< 332	ug/Kg			12/30/2016	21:56
Hexachlorobutadiene		< 332	ug/Kg			12/30/2016	21:56
Hexachlorocyclopenta	diene	< 332	ug/Kg			12/30/2016	21:56
Hexachloroethane		< 332	ug/Kg			12/30/2016	21:56
Indeno (1,2,3-cd) pyre	ene	< 332	ug/Kg			12/30/2016	21:56
Isophorone		< 332	ug/Kg			12/30/2016	21:56
Naphthalene		< 332	ug/Kg			12/30/2016	21:56
Nitrobenzene		< 332	ug/Kg			12/30/2016	21:56
N-Nitroso-di-n-propyl	amine	< 332	ug/Kg			12/30/2016	21:56
N-Nitrosodiphenylam	ine	< 332	ug/Kg	1		12/30/2016	21:56
Pentachlorophenol		< 664	ug/Kg			12/30/2016	21:56
Phenanthrene		< 332	ug/Kg			12/30/2016	21:56
Phenol		< 332	ug/Kg			12/30/2016	21:56
Pyrene		< 332	ug/Kg			12/30/2016	21:56
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	l		67.7	38 - 114		12/30/2016	21:56
2-Fluorobiphenyl			62.4	25 - 105		12/30/2016	21:56
2-Fluorophenol			57.7	30.8 - 84		12/30/2016	21:56
Nitrobenzene-d5			58.2	28.5 - 84.9		12/30/2016	21:56
Phenol-d5			59.7	32.5 - 89.6		12/30/2016	21:56
Terphenyl-d14			80.5	55.5 - 117		12/30/2016	21:56
Method Referen	ice(s): EPA	3270D					
Preparation Da Data File:	te: 12/3 B162	0/2016 90.D					

Client:	<u>C&S Compani</u>	les			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-2				
Lab Sample ID:	165582-02			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.05	ug/Kg		1/3/2017 16:24
1,1,2,2-Tetrachloroet	hane	< 4.05	ug/Kg		1/3/2017 16:24
1,1,2-Trichloroethane	2	< 4.05	ug/Kg		1/3/2017 16:24
1,1-Dichloroethane		< 4.05	ug/Kg		1/3/2017 16:24
1,1-Dichloroethene		< 4.05	ug/Kg		1/3/2017 16:24
1,2,3-Trichlorobenze	ne	< 10.1	ug/Kg		1/3/2017 16:24
1,2,4-Trichlorobenzer	ne	< 10.1	ug/Kg		1/3/2017 16:24
1,2,4-Trimethylbenze	ene	< 4.05	ug/Kg		1/3/2017 16:24
1,2-Dibromo-3-Chlor	opropane	< 20.3	ug/Kg		1/3/2017 16:24
1,2-Dibromoethane		< 4.05	ug/Kg		1/3/2017 16:24
1,2-Dichlorobenzene		< 4.05	ug/Kg		1/3/2017 16:24
1,2-Dichloroethane		< 4.05	ug/Kg		1/3/2017 16:24
1,2-Dichloropropane		< 4.05	ug/Kg		1/3/2017 16:24
1,3,5-Trimethylbenze	ene	< 4.05	ug/Kg		1/3/2017 16:24
1,3-Dichlorobenzene		< 4.05	ug/Kg		1/3/2017 16:24
1,4-Dichlorobenzene		< 4.05	ug/Kg		1/3/2017 16:24
1,4-dioxane		< 40.5	ug/Kg		1/3/2017 16:24
2-Butanone		< 20.3	ug/Kg		1/3/2017 16:24
2-Hexanone		< 10.1	ug/Kg		1/3/2017 16:24
4-Methyl-2-pentanon	e	< 10.1	ug/Kg		1/3/2017 16:24
Acetone		< 20.3	ug/Kg		1/3/2017 16:24
Benzene		< 4.05	ug/Kg		1/3/2017 16:24
Bromochloromethane	e	< 10.1	ug/Kg		1/3/2017 16:24
Bromodichlorometha	ine	< 4.05	ug/Kg		1/3/2017 16:24
Bromoform		< 10.1	ug/Kg		1/3/2017 16:24
Bromomethane		< 4.05	ug/Kg		1/3/2017 16:24
Carbon disulfide		< 4.05	ug/Kg		1/3/2017 16:24

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	t			
Sample Identifier:	TP-2				
Lab Sample ID:	165582-02			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Carbon Tetrachloride		< 4.05	ug/Kg		1/3/2017 16:24
Chlorobenzene		< 4.05	ug/Kg		1/3/2017 16:24
Chloroethane		< 4.05	ug/Kg		1/3/2017 16:24
Chloroform		< 4.05	ug/Kg		1/3/2017 16:24
Chloromethane		< 4.05	ug/Kg		1/3/2017 16:24
cis-1,2-Dichloroethene		< 4.05	ug/Kg		1/3/2017 16:24
cis-1,3-Dichloropropen	e	< 4.05	ug/Kg		1/3/2017 16:24
Cyclohexane		< 20.3	ug/Kg		1/3/2017 16:24
Dibromochloromethan	е	< 4.05	ug/Kg		1/3/2017 16:24
Dichlorodifluorometha	ne	< 4.05	ug/Kg		1/3/2017 16:24
Ethylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
Freon 113		< 4.05	ug/Kg		1/3/2017 16:24
Isopropylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
m,p-Xylene		< 4.05	ug/Kg		1/3/2017 16:24
Methyl acetate		< 4.05	ug/Kg		1/3/2017 16:24
Methyl tert-butyl Ether		< 4.05	ug/Kg		1/3/2017 16:24
Methylcyclohexane		< 4.05	ug/Kg		1/3/2017 16:24
Methylene chloride		< 10.1	ug/Kg		1/3/2017 16:24
Naphthalene		< 10.1	ug/Kg		1/3/2017 16:24
n-Butylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
n-Propylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
o-Xylene		< 4.05	ug/Kg		1/3/2017 16:24
p-Isopropyltoluene		< 4.05	ug/Kg		1/3/2017 16:24
sec-Butylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
Styrene		< 10.1	ug/Kg		1/3/2017 16:24
tert-Butylbenzene		< 4.05	ug/Kg		1/3/2017 16:24
Tetrachloroethene		< 4.05	ug/Kg		1/3/2017 16:24
Toluene		< 4.05	ug/Kg		1/3/2017 16:24
trans-1,2-Dichloroether	ne	< 4.05	ug/Kg		1/3/2017 16:24
trans-1,3-Dichloroprop	ene	< 4.05	ug/Kg		1/3/2017 16:24

<u>C&S Compani</u>	<u>es</u>					
100 Dona Stre	et					
TP-2						
165582-02			Dat	e Sampled:	12/27/201	6
Soil			Dat	e Received:	12/29/201	6
	14.2	ug/Kg		Z	1/3/2017	16:24
ne	< 4.05	ug/Kg			1/3/2017	16:24
	< 4.05	ug/Kg			1/3/2017	16:24
	Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
ł		104	82 - 124		1/3/2017	16:24
e		93.2	80.5 - 116		1/3/2017	16:24
		93.9	88.7 - 112		1/3/2017	16:24
		97.0	79.1 - 120		1/3/2017	16:24
ce(s): EPA 8260 EPA 5035 x38244.D	0C 5A - L					
	C&S Compani 100 Dona Stree TP-2 165582-02 Soil ne ce(s): EPA 8260 EPA 5035 x38244.D	C&S Companies 100 Dona Street TP-2 165582-02 Soil 14.2 ne < 4.05	C&S Companies 100 Dona Street TP-2 165582-02 Soil 14.2 ug/Kg ne 4.05 ug/Kg < 4.05	C&S Companies 100 Dona Street 100 Dona Street TP-2 165582-02 Dat 165582-02 Dat Soil Dat ne < 4.05	C&S Companies 100 Dona Street 100 Dona Street TP-2 TP-2 165582-02 Date Sampled: Soil Date Received: Soil Date Received: ne < 4.05	C&S Companies 100 Dona Street TP-2 165582-02 Date Sampled: 12/27/2016 Soil Date Received: 12/29/2016 ne < 4.05

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Con</u>	<u>npanies</u>			
Project Reference:	100 Don	a Street			
Sample Identifier:	TP-3				
Lab Sample ID:	165582	2-03		Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
<u>Metals</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		1.43	mg/Kg		1/3/2017 13:15
Barium		15.0	mg/Kg		1/3/2017 13:15
Beryllium		0.147	mg/Kg	J	1/3/2017 13:15
Cadmium		< 0.279	mg/Kg		1/3/2017 13:15
Chromium		5.09	mg/Kg		1/3/2017 13:15
Copper		8.02	mg/Kg		1/3/2017 13:15
Lead		4.74	mg/Kg		1/3/2017 13:15
Manganese		139	mg/Kg	М	1/3/2017 13:15
Nickel		6.74	mg/Kg		1/3/2017 13:15
Selenium		0.575	mg/Kg	D	1/4/2017 21:08
Silver		< 0.558	mg/Kg		1/3/2017 13:15
Zinc		46.6	mg/Kg	D	1/3/2017 13:15
Method Refer	ence(s):	EPA 6010C			
Preparation I Data File:	Date:	12/30/2016 010317b			

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-3		
Lab Sample ID:	165582-03	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016
<u>Mercury</u>			

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.00488	mg/Kg	J	12/30/2016 14:01
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Compa</u>	<u>anies</u>					
Project Reference:	100 Dona S	treet					
Sample Identifier:	TP-3						
Lab Sample ID:	165582-03	3		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016	,
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1221		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1232		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1242		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1248		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1254		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1260		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1262		< 0.0326	mg/Kg			1/4/2017	00:18
PCB-1268		< 0.0326	mg/Kg			1/4/2017	00:18
<u>Surrogate</u>		<u>Percen</u>	<u>t Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			88.7	10 - 144		1/4/2017	00:18
Tetrachloro-m-xylene	9		58.2	10 - 140		1/4/2017	00:18
Method Referen	nce(s): EPA 8 EPA 3	8082A 3550C					
Preparation Da	1/3/.	2017					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-3				
Lab Sample ID:	165582-03			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
Analyte		Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 327	ug/Kg		12/30/2016 22:25
1,2,4,5-Tetrachlorobe	enzene	< 327	ug/Kg		12/30/2016 22:25
1,2,4-Trichlorobenze	ne	< 327	ug/Kg		12/30/2016 22:25
1,2-Dichlorobenzene		< 327	ug/Kg		12/30/2016 22:25
1,3-Dichlorobenzene		< 327	ug/Kg		12/30/2016 22:25
1,4-Dichlorobenzene		< 327	ug/Kg		12/30/2016 22:25
2,2-Oxybis (1-chlorop	propane)	< 327	ug/Kg		12/30/2016 22:25
2,3,4,6-Tetrachloroph	ienol	< 327	ug/Kg		12/30/2016 22:25
2,4,5-Trichloropheno	1	< 653	ug/Kg		12/30/2016 22:25
2,4,6-Trichloropheno	l	< 327	ug/Kg		12/30/2016 22:25
2,4-Dichlorophenol		< 327	ug/Kg		12/30/2016 22:25
2,4-Dimethylphenol		< 327	ug/Kg		12/30/2016 22:25
2,4-Dinitrophenol		< 653	ug/Kg		12/30/2016 22:25
2,4-Dinitrotoluene		< 327	ug/Kg		12/30/2016 22:25
2,6-Dinitrotoluene		< 327	ug/Kg		12/30/2016 22:25
2-Chloronaphthalene	!	< 327	ug/Kg		12/30/2016 22:25
2-Chlorophenol		< 327	ug/Kg		12/30/2016 22:25
2-Methylnapthalene		< 327	ug/Kg		12/30/2016 22:25
2-Methylphenol		< 327	ug/Kg		12/30/2016 22:25
2-Nitroaniline		< 653	ug/Kg		12/30/2016 22:25
2-Nitrophenol		< 327	ug/Kg		12/30/2016 22:25
3&4-Methylphenol		< 327	ug/Kg		12/30/2016 22:25
3,3'-Dichlorobenzidir	ne	< 327	ug/Kg		12/30/2016 22:25
3-Nitroaniline		< 653	ug/Kg		12/30/2016 22:25
4,6-Dinitro-2-methyl	phenol	< 653	ug/Kg		12/30/2016 22:25
4-Bromophenyl phen	yl ether	< 327	ug/Kg		12/30/2016 22:25
4-Chloro-3-methylph	enol	< 327	ug/Kg		12/30/2016 22:25

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-3				
Lab Sample ID:	165582-03			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 327	ug/Kg		12/30/2016 22:25
4-Chlorophenyl pheny	yl ether	< 327	ug/Kg		12/30/2016 22:25
4-Nitroaniline		< 653	ug/Kg		12/30/2016 22:25
4-Nitrophenol		< 653	ug/Kg		12/30/2016 22:25
Acenaphthene		< 327	ug/Kg		12/30/2016 22:25
Acenaphthylene		< 327	ug/Kg		12/30/2016 22:25
Acetophenone		< 327	ug/Kg		12/30/2016 22:25
Anthracene		< 327	ug/Kg		12/30/2016 22:25
Atrazine		< 327	ug/Kg		12/30/2016 22:25
Benzaldehyde		< 327	ug/Kg		12/30/2016 22:25
Benzo (a) anthracene		< 327	ug/Kg		12/30/2016 22:25
Benzo (a) pyrene		< 327	ug/Kg		12/30/2016 22:25
Benzo (b) fluoranther	ie	< 327	ug/Kg		12/30/2016 22:25
Benzo (g,h,i) perylene	2	< 327	ug/Kg		12/30/2016 22:25
Benzo (k) fluoranthen	ie	< 327	ug/Kg		12/30/2016 22:25
Bis (2-chloroethoxy)	methane	< 327	ug/Kg		12/30/2016 22:25
Bis (2-chloroethyl) et	her	< 327	ug/Kg		12/30/2016 22:25
Bis (2-ethylhexyl) pht	halate	< 327	ug/Kg		12/30/2016 22:25
Butylbenzylphthalate		< 327	ug/Kg		12/30/2016 22:25
Caprolactam		< 327	ug/Kg		12/30/2016 22:25
Carbazole		< 327	ug/Kg		12/30/2016 22:25
Chrysene		< 327	ug/Kg		12/30/2016 22:25
Dibenz (a,h) anthrace	ne	< 327	ug/Kg		12/30/2016 22:25
Dibenzofuran		< 327	ug/Kg		12/30/2016 22:25
Diethyl phthalate		< 327	ug/Kg		12/30/2016 22:25
Dimethyl phthalate		< 653	ug/Kg		12/30/2016 22:25
Di-n-butyl phthalate		< 327	ug/Kg		12/30/2016 22:25
Di-n-octylphthalate		< 327	ug/Kg		12/30/2016 22:25
Fluoranthene		< 327	ug/Kg		12/30/2016 22:25
Fluorene		< 327	ug/Kg		12/30/2016 22:25

Client:	<u>C&S Compa</u>	<u>nies</u>					
Project Reference:	100 Dona St	reet					
Sample Identifier:	TP-3						
Lab Sample ID:	165582-03			Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
Hexachlorobenzene		< 327	ug/Kg			12/30/2016	22:25
Hexachlorobutadiene		< 327	ug/Kg			12/30/2016	22:25
Hexachlorocyclopenta	diene	< 327	ug/Kg			12/30/2016	22:25
Hexachloroethane		< 327	ug/Kg			12/30/2016	22:25
Indeno (1,2,3-cd) pyre	ene	< 327	ug/Kg			12/30/2016	22:25
Isophorone		< 327	ug/Kg			12/30/2016	22:25
Naphthalene		< 327	ug/Kg			12/30/2016	22:25
Nitrobenzene		< 327	ug/Kg			12/30/2016	22:25
N-Nitroso-di-n-propyl	amine	< 327	ug/Kg			12/30/2016	22:25
N-Nitrosodiphenylam	ine	< 327	ug/Kg	1		12/30/2016	22:25
Pentachlorophenol		< 653	ug/Kg			12/30/2016	22:25
Phenanthrene		< 327	ug/Kg			12/30/2016	22:25
Phenol		< 327	ug/Kg			12/30/2016	22:25
Pyrene		< 327	ug/Kg			12/30/2016	22:25
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromophenol	l		59.1	38 - 114		12/30/2016	22:25
2-Fluorobiphenyl			47.6	25 - 105		12/30/2016	22:25
2-Fluorophenol			42.6	30.8 - 84		12/30/2016	22:25
Nitrobenzene-d5			42.4	28.5 - 84.9		12/30/2016	22:25
Phenol-d5			44.9	32.5 - 89.6		12/30/2016	22:25
Terphenyl-d14			65.0	55.5 - 117		12/30/2016	22:25
Method Referen	ice(s): EPA 8	270D					
Preparation Da Data File:	te: 12/30 B1629	/2016 1.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-3				
Lab Sample ID:	165582-03			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 3.78	ug/Kg		1/4/2017 15:18
1,1,2,2-Tetrachloroet	hane	< 3.78	ug/Kg		1/4/2017 15:18
1,1,2-Trichloroethane	9	< 3.78	ug/Kg		1/4/2017 15:18
1,1-Dichloroethane		< 3.78	ug/Kg		1/4/2017 15:18
1,1-Dichloroethene		< 3.78	ug/Kg		1/4/2017 15:18
1,2,3-Trichlorobenzer	ne	< 9.45	ug/Kg		1/4/2017 15:18
1,2,4-Trichlorobenzer	ne	< 9.45	ug/Kg		1/4/2017 15:18
1,2,4-Trimethylbenze	ene	< 3.78	ug/Kg		1/4/2017 15:18
1,2-Dibromo-3-Chloro	opropane	< 18.9	ug/Kg		1/4/2017 15:18
1,2-Dibromoethane		< 3.78	ug/Kg		1/4/2017 15:18
1,2-Dichlorobenzene		< 3.78	ug/Kg		1/4/2017 15:18
1,2-Dichloroethane		< 3.78	ug/Kg		1/4/2017 15:18
1,2-Dichloropropane		< 3.78	ug/Kg		1/4/2017 15:18
1,3,5-Trimethylbenze	ene	< 3.78	ug/Kg		1/4/2017 15:18
1,3-Dichlorobenzene		< 3.78	ug/Kg		1/4/2017 15:18
1,4-Dichlorobenzene		< 3.78	ug/Kg		1/4/2017 15:18
1,4-dioxane		< 37.8	ug/Kg		1/4/2017 15:18
2-Butanone		< 18.9	ug/Kg		1/4/2017 15:18
2-Hexanone		< 9.45	ug/Kg		1/4/2017 15:18
4-Methyl-2-pentanon	e	< 9.45	ug/Kg		1/4/2017 15:18
Acetone		< 18.9	ug/Kg		1/4/2017 15:18
Benzene		< 3.78	ug/Kg		1/4/2017 15:18
Bromochloromethane	9	< 9.45	ug/Kg		1/4/2017 15:18
Bromodichlorometha	ne	< 3.78	ug/Kg		1/4/2017 15:18
Bromoform		< 9.45	ug/Kg		1/4/2017 15:18
Bromomethane		< 3.78	ug/Kg		1/4/2017 15:18
Carbon disulfide		< 3.78	ug/Kg		1/4/2017 15:18

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-3				
Lab Sample ID:	165582-03			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Carbon Tetrachloride		< 3.78	ug/Kg		1/4/2017 15:18
Chlorobenzene		< 3.78	ug/Kg		1/4/2017 15:18
Chloroethane		< 3.78	ug/Kg		1/4/2017 15:18
Chloroform		< 3.78	ug/Kg		1/4/2017 15:18
Chloromethane		< 3.78	ug/Kg		1/4/2017 15:18
cis-1,2-Dichloroethen	e	< 3.78	ug/Kg		1/4/2017 15:18
cis-1,3-Dichloroprope	ne	< 3.78	ug/Kg		1/4/2017 15:18
Cyclohexane		< 18.9	ug/Kg		1/4/2017 15:18
Dibromochlorometha	ne	< 3.78	ug/Kg		1/4/2017 15:18
Dichlorodifluorometh	ane	< 3.78	ug/Kg		1/4/2017 15:18
Ethylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
Freon 113		< 3.78	ug/Kg		1/4/2017 15:18
Isopropylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
m,p-Xylene		< 3.78	ug/Kg		1/4/2017 15:18
Methyl acetate		< 3.78	ug/Kg		1/4/2017 15:18
Methyl tert-butyl Ethe	er	< 3.78	ug/Kg		1/4/2017 15:18
Methylcyclohexane		< 3.78	ug/Kg		1/4/2017 15:18
Methylene chloride		< 9.45	ug/Kg		1/4/2017 15:18
Naphthalene		< 9.45	ug/Kg		1/4/2017 15:18
n-Butylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
n-Propylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
o-Xylene		< 3.78	ug/Kg		1/4/2017 15:18
p-Isopropyltoluene		< 3.78	ug/Kg		1/4/2017 15:18
sec-Butylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
Styrene		< 9.45	ug/Kg		1/4/2017 15:18
tert-Butylbenzene		< 3.78	ug/Kg		1/4/2017 15:18
Tetrachloroethene		< 3.78	ug/Kg		1/4/2017 15:18
Toluene		< 3.78	ug/Kg		1/4/2017 15:18
trans-1,2-Dichloroeth	ene	< 3.78	ug/Kg		1/4/2017 15:18
trans-1,3-Dichloropro	pene	< 3.78	ug/Kg		1/4/2017 15:18

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Str	eet					
Sample Identifier:	TP-3						
Lab Sample ID:	165582-03			Dat	e Sampled:	12/27/201	6
Matrix:	Soil			Dat	e Received:	12/29/201	6
Trichloroethene		17.5	ug/Kg		Z	1/4/2017	7 15:18
Trichlorofluorometha	ine	< 3.78	ug/Kg			1/4/2017	7 15:18
Vinyl chloride		< 3.78	ug/Kg			1/4/2017	7 15:18
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d	4		105	82 - 124		1/4/2017	15:18
4-Bromofluorobenzer	ne		91.1	80.5 - 116		1/4/2017	15:18
Pentafluorobenzene			95.5	88.7 - 112		1/4/2017	15:18
Toluene-D8			97.8	79.1 - 120		1/4/2017	15:18
Method Referen	nce(s): EPA 826 EPA 503	50C 35A - L					
Data File:	x38275	D					

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Cor</u>	<u>npanies</u>			
Project Reference:	100 Don	a Street			
Sample Identifier:	TP-6				
Lab Sample ID:	165582	2-04		Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
<u>Metals</u>					
<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		3.73	mg/Kg		1/3/2017 13:35
Barium		27.8	mg/Kg		1/3/2017 13:35
Beryllium		0.417	mg/Kg		1/3/2017 13:35
Cadmium		0.209	mg/Kg	J	1/3/2017 13:35
Chromium		12.9	mg/Kg		1/3/2017 13:35
Copper		20.9	mg/Kg		1/3/2017 13:35
Lead		11.5	mg/Kg	•	1/3/2017 13:35
Manganese		271	mg/Kg		1/3/2017 13:35
Nickel		24.1	mg/Kg		1/3/2017 13:35
Selenium		0.972	mg/Kg		1/4/2017 14:57
Silver		< 0.531	mg/Kg		1/3/2017 13:35
Zinc		45.6	mg/Kg		1/3/2017 13:35
Method Refer	rence(s):	EPA 6010C EPA 3050B			
Preparation I Data File:	Date:	12/30/2016 010317b			

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-6		
Lab Sample ID:	165582-04	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016
<u>Mercury</u>			

Analyte Re		<u>Units</u>	Qualifie	r <u>Date Analyzed</u>
Mercury	0.0108	mg/Kg		12/30/2016 14:12
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Con</u>	<u>ipanies</u>						
Project Reference:	100 Dona	a Street						
Sample Identifier:	TP-6							
Lab Sample ID: 165		-04			Da	te Sampled:	12/27/2016)
Matrix:	Soil				Da	te Received:	12/29/2016)
<u>PCBs</u>								
<u>Analyte</u>		R	<u>lesult</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1221		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1232		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1242		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1248		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1254		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1260		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1262		<	0.0322	mg/Kg			1/4/2017	00:42
PCB-1268		<	0.0322	mg/Kg			1/4/2017	00:42
<u>Surrogate</u>			<u>Percei</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl				86.0	10 - 144		1/4/2017	00:42
Tetrachloro-m-xylene	2		X	59.9	10 - 140		1/4/2017	00:42
Method Referen	nce(s): E	CPA 8082A CPA 3550C						
Preparation Da	te: 1	/3/2017						

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	TP-6						
Lab Sample ID:	165582-04			Date Sampled:	12/27/2016		
Matrix:	Soil			Date Received:	12/29/2016		
Semi-Volatile Organic	s (Acid/Base Neu	<u>ıtrals)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
1,1-Biphenyl		< 324	ug/Kg		12/30/2016 22:54		
1,2,4,5-Tetrachlorobe	enzene	< 324	ug/Kg		12/30/2016 22:54		
1,2,4-Trichlorobenze	ne	< 324	ug/Kg		12/30/2016 22:54		
1,2-Dichlorobenzene		< 324	ug/Kg		12/30/2016 22:54		
1,3-Dichlorobenzene		< 324	ug/Kg		12/30/2016 22:54		
1,4-Dichlorobenzene		< 324	ug/Kg		12/30/2016 22:54		
2,2-Oxybis (1-chlorog	propane)	< 324	ug/Kg		12/30/2016 22:54		
2,3,4,6-Tetrachloroph	ienol	< 324	ug/Kg		12/30/2016 22:54		
2,4,5-Trichloropheno	1	< 647	ug/Kg		12/30/2016 22:54		
2,4,6-Trichloropheno	1	< 324	ug/Kg		12/30/2016 22:54		
2,4-Dichlorophenol		< 324	ug/Kg		12/30/2016 22:54		
2,4-Dimethylphenol		< 324	ug/Kg		12/30/2016 22:54		
2,4-Dinitrophenol		< 647	ug/Kg		12/30/2016 22:54		
2,4-Dinitrotoluene		< 324	ug/Kg		12/30/2016 22:54		
2,6-Dinitrotoluene		< 324	ug/Kg		12/30/2016 22:54		
2-Chloronaphthalene		< 324	ug/Kg		12/30/2016 22:54		
2-Chlorophenol		< 324	ug/Kg		12/30/2016 22:54		
2-Methylnapthalene		< 324	ug/Kg		12/30/2016 22:54		
2-Methylphenol		< 324	ug/Kg		12/30/2016 22:54		
2-Nitroaniline		< 647	ug/Kg		12/30/2016 22:54		
2-Nitrophenol		< 324	ug/Kg		12/30/2016 22:54		
3&4-Methylphenol		< 324	ug/Kg		12/30/2016 22:54		
3,3'-Dichlorobenzidir	ie	< 324	ug/Kg		12/30/2016 22:54		
3-Nitroaniline		< 647	ug/Kg		12/30/2016 22:54		
4,6-Dinitro-2-methyl	phenol	< 647	ug/Kg		12/30/2016 22:54		
4-Bromophenyl phen	yl ether	< 324	ug/Kg		12/30/2016 22:54		
4-Chloro-3-methylph	enol	< 324	ug/Kg		12/30/2016 22:54		

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-6				
Lab Sample ID:	165582-04			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 324	ug/Kg		12/30/2016 22:54
4-Chlorophenyl pheny	yl ether	< 324	ug/Kg		12/30/2016 22:54
4-Nitroaniline		< 647	ug/Kg		12/30/2016 22:54
4-Nitrophenol		< 647	ug/Kg		12/30/2016 22:54
Acenaphthene		< 324	ug/Kg		12/30/2016 22:54
Acenaphthylene		< 324	ug/Kg		12/30/2016 22:54
Acetophenone		< 324	ug/Kg		12/30/2016 22:54
Anthracene		< 324	ug/Kg		12/30/2016 22:54
Atrazine		< 324	ug/Kg		12/30/2016 22:54
Benzaldehyde		< 324	ug/Kg		12/30/2016 22:54
Benzo (a) anthracene		< 324	ug/Kg		12/30/2016 22:54
Benzo (a) pyrene		< 324	ug/Kg		12/30/2016 22:54
Benzo (b) fluoranther	ie	< 324	ug/Kg		12/30/2016 22:54
Benzo (g,h,i) perylene	2	< 324	ug/Kg		12/30/2016 22:54
Benzo (k) fluoranther	ie	< 324	ug/Kg		12/30/2016 22:54
Bis (2-chloroethoxy)	methane	< 324	ug/Kg		12/30/2016 22:54
Bis (2-chloroethyl) et	her	< 324	ug/Kg		12/30/2016 22:54
Bis (2-ethylhexyl) pht	halate	< 324	ug/Kg		12/30/2016 22:54
Butylbenzylphthalate		< 324	ug/Kg		12/30/2016 22:54
Caprolactam		< 324	ug/Kg		12/30/2016 22:54
Carbazole		< 324	ug/Kg		12/30/2016 22:54
Chrysene		< 324	ug/Kg		12/30/2016 22:54
Dibenz (a,h) anthrace	ne	< 324	ug/Kg		12/30/2016 22:54
Dibenzofuran		< 324	ug/Kg		12/30/2016 22:54
Diethyl phthalate		< 324	ug/Kg		12/30/2016 22:54
Dimethyl phthalate		< 647	ug/Kg		12/30/2016 22:54
Di-n-butyl phthalate		< 324	ug/Kg		12/30/2016 22:54
Di-n-octylphthalate		< 324	ug/Kg		12/30/2016 22:54
Fluoranthene		< 324	ug/Kg		12/30/2016 22:54
Fluorene		< 324	ug/Kg		12/30/2016 22:54

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	TP-6						
Lab Sample ID:	165582-04			Date	e Sampled:	12/27/2016	5
Matrix:	Soil			Date	e Received:	12/29/2016)
Hexachlorobenzene		< 324	ug/Kg			12/30/2016	22:54
Hexachlorobutadiene		< 324	ug/Kg			12/30/2016	22:54
Hexachlorocyclopenta	adiene	< 324	ug/Kg			12/30/2016	22:54
Hexachloroethane		< 324	ug/Kg			12/30/2016	22:54
Indeno (1,2,3-cd) pyr	ene	< 324	ug/Kg			12/30/2016	22:54
Isophorone		< 324	ug/Kg			12/30/2016	22:54
Naphthalene		< 324	ug/Kg			12/30/2016	22:54
Nitrobenzene		< 324	ug/Kg			12/30/2016	22:54
N-Nitroso-di-n-propy	lamine	< 324	ug/Kg			12/30/2016	22:54
N-Nitrosodiphenylam	ine	< 324	ug/Kg			12/30/2016	22:54
Pentachlorophenol		< 647	ug/Kg			12/30/2016	22:54
Phenanthrene		< 324	ug/Kg			12/30/2016	22:54
Phenol		< 324	ug/Kg			12/30/2016	22:54
Pyrene		< 324	ug/Kg			12/30/2016	22:54
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	1		63.6	38 - 114		12/30/2016	22:54
2-Fluorobiphenyl			52.8	25 - 105		12/30/2016	22:54
2-Fluorophenol			46.5	30.8 - 84		12/30/2016	22:54
Nitrobenzene-d5			46.2	28.5 - 84.9		12/30/2016	22:54
Phenol-d5			48.9	32.5 - 89.6		12/30/2016	22:54
Terphenyl-d14			71.8	55.5 - 117		12/30/2016	22:54
Method Referen	nce(s): EPA 827)D					
Preparation Da Data File:	te: 12/30/2 B16292.1	016 D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-6				
Lab Sample ID:	165582-04			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.33	ug/Kg		1/3/2017 17:13
1,1,2,2-Tetrachloroet	hane	< 4.33	ug/Kg		1/3/2017 17:13
1,1,2-Trichloroethane	2	< 4.33	ug/Kg		1/3/2017 17:13
1,1-Dichloroethane		< 4.33	ug/Kg		1/3/2017 17:13
1,1-Dichloroethene		< 4.33	ug/Kg		1/3/2017 17:13
1,2,3-Trichlorobenzer	ne	< 10.8	ug/Kg		1/3/2017 17:13
1,2,4-Trichlorobenzer	ne	< 10.8	ug/Kg		1/3/2017 17:13
1,2,4-Trimethylbenze	ne	< 4.33	ug/Kg		1/3/2017 17:13
1,2-Dibromo-3-Chloro	opropane	< 21.7	ug/Kg		1/3/2017 17:13
1,2-Dibromoethane		< 4.33	ug/Kg		1/3/2017 17:13
1,2-Dichlorobenzene		< 4.33	ug/Kg		1/3/2017 17:13
1,2-Dichloroethane		< 4.33	ug/Kg		1/3/2017 17:13
1,2-Dichloropropane		< 4.33	ug/Kg		1/3/2017 17:13
1,3,5-Trimethylbenze	ne	< 4.33	ug/Kg		1/3/2017 17:13
1,3-Dichlorobenzene		< 4.33	ug/Kg		1/3/2017 17:13
1,4-Dichlorobenzene		< 4.33	ug/Kg		1/3/2017 17:13
1,4-dioxane		< 43.3	ug/Kg		1/3/2017 17:13
2-Butanone		< 21.7	ug/Kg		1/3/2017 17:13
2-Hexanone		< 10.8	ug/Kg		1/3/2017 17:13
4-Methyl-2-pentanon	e	< 10.8	ug/Kg		1/3/2017 17:13
Acetone		< 21.7	ug/Kg		1/3/2017 17:13
Benzene		< 4.33	ug/Kg		1/3/2017 17:13
Bromochloromethane	9	< 10.8	ug/Kg		1/3/2017 17:13
Bromodichlorometha	ne	< 4.33	ug/Kg		1/3/2017 17:13
Bromoform		< 10.8	ug/Kg		1/3/2017 17:13
Bromomethane		< 4.33	ug/Kg		1/3/2017 17:13
Carbon disulfide		< 4.33	ug/Kg		1/3/2017 17:13

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-6				
Lab Sample ID:	165582-04			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Carbon Tetrachloride		< 4.33	ug/Kg		1/3/2017 17:13
Chlorobenzene		< 4.33	ug/Kg		1/3/2017 17:13
Chloroethane		< 4.33	ug/Kg		1/3/2017 17:13
Chloroform		< 4.33	ug/Kg		1/3/2017 17:13
Chloromethane		< 4.33	ug/Kg		1/3/2017 17:13
cis-1,2-Dichloroethen	e	< 4.33	ug/Kg		1/3/2017 17:13
cis-1,3-Dichloroprope	ne	< 4.33	ug/Kg		1/3/2017 17:13
Cyclohexane		< 21.7	ug/Kg		1/3/2017 17:13
Dibromochlorometha	ne	< 4.33	ug/Kg		1/3/2017 17:13
Dichlorodifluorometh	ane	< 4.33	ug/Kg		1/3/2017 17:13
Ethylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
Freon 113		< 4.33	ug/Kg		1/3/2017 17:13
Isopropylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
m,p-Xylene		< 4.33	ug/Kg		1/3/2017 17:13
Methyl acetate		< 4.33	ug/Kg		1/3/2017 17:13
Methyl tert-butyl Ethe	er	< 4.33	ug/Kg		1/3/2017 17:13
Methylcyclohexane		< 4.33	ug/Kg		1/3/2017 17:13
Methylene chloride		< 10.8	ug/Kg		1/3/2017 17:13
Naphthalene		< 10.8	ug/Kg		1/3/2017 17:13
n-Butylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
n-Propylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
o-Xylene		< 4.33	ug/Kg		1/3/2017 17:13
p-Isopropyltoluene		< 4.33	ug/Kg		1/3/2017 17:13
sec-Butylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
Styrene		< 10.8	ug/Kg		1/3/2017 17:13
tert-Butylbenzene		< 4.33	ug/Kg		1/3/2017 17:13
Tetrachloroethene		< 4.33	ug/Kg		1/3/2017 17:13
Toluene		< 4.33	ug/Kg		1/3/2017 17:13
trans-1,2-Dichloroeth	ene	< 4.33	ug/Kg		1/3/2017 17:13
trans-1,3-Dichloropro	pene	< 4.33	ug/Kg		1/3/2017 17:13

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	TP-6						
Lab Sample ID:	165582-04			Dat	e Sampled:	12/27/201	6
Matrix:	Soil			Dat	e Received:	12/29/201	6
Trichloroethene		37.6	ug/Kg		Z	1/3/2017	/ 17:13
Trichlorofluorometha	ne	< 4.33	ug/Kg			1/3/2017	/ 17:13
Vinyl chloride		< 4.33	ug/Kg			1/3/2017	/ 17:13
<u>Surrogate</u>		Perc	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d	4		105	82 - 124		1/3/2017	17:13
4-Bromofluorobenzer	ie		88.8	80.5 - 116		1/3/2017	17:13
Pentafluorobenzene			92.3	88.7 - 112		1/3/2017	17:13
Toluene-D8			96.3	79.1 - 120		1/3/2017	17:13
Method Referen	nce(s): EPA 8260 EPA 503)C 5A - L					
Data File:	x38246.D) · CUIO			1 17 11		

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-7		
Lab Sample ID:	165582-05	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qual	lifier Date Analyzed
Mercury	0.0179	mg/Kg		12/30/2016 14:24
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Compan</u>	<u>ies</u>			
Project Reference:	100 Dona Stre	eet			
Sample Identifier:	TP-7				
Lab Sample ID:	165582-05			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		5950	mg/Kg		1/3/2017 13:40
Antimony		< 3.48	mg/Kg		1/3/2017 13:40
Arsenic		3.98	mg/Kg		1/3/2017 13:40
Barium		25.3	mg/Kg		1/3/2017 13:40
Beryllium		0.283	mg/Kg	J	1/3/2017 13:40
Cadmium		0.161	mg/Kg	J	1/3/2017 13:40
Calcium		16200	mg/Kg		1/3/2017 13:40
Chromium		8.00	mg/Kg		1/3/2017 13:40
Cobalt		4.70	mg/Kg		1/3/2017 13:40
Copper		14.9	mg/Kg		1/3/2017 13:40
Iron		10500	mg/Kg		1/3/2017 13:40
Lead		9.34	mg/Kg		1/3/2017 13:40
Magnesium		4410	mg/Kg		1/3/2017 13:40
Manganese		247	mg/Kg		1/3/2017 13:40
Nickel		12.3	mg/Kg		1/3/2017 13:40
Potassium		865	mg/Kg		1/3/2017 13:40
Selenium		< 0.580	mg/Kg		1/3/2017 13:40
Silver		< 0.580	mg/Kg		1/3/2017 13:40
Sodium		< 145	mg/Kg		1/3/2017 13:40
Thallium		< 1.45	mg/Kg		1/3/2017 13:40
Vanadium		15.1	mg/Kg		1/3/2017 13:40
Zinc		39.0	mg/Kg		1/3/2017 13:40
Method Referen Preparation Da	nce(s): EPA 601 EPA 305 ite: 12/30/2	0C 0B 2016			

Client:	<u>C&S Compa</u>	<u>nies</u>					
Project Reference:	100 Dona St	reet					
Sample Identifier:	TP-7						
Lab Sample ID:	165582-05			Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016	5
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1221		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1232		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1242		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1248		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1254		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1260		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1262		< 0.0329	mg/Kg			1/4/2017	01:52
PCB-1268		< 0.0329	mg/Kg			1/4/2017	01:52
<u>Surrogate</u>		<u>Percen</u>	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			86.4	10 - 144		1/4/2017	01:52
Tetrachloro-m-xylene			70.1	10 - 140		1/4/2017	01:52
Method Referen	ce(s): EPA 8 EPA 3	082A 550C					
Preparation Dat	te: 1/3/2	017					

Client:	<u>C&S Companie</u>	<u>es</u>				
Project Reference:	100 Dona Street					
Sample Identifier:	TP-7					
Lab Sample ID:	165582-05			Date Sampled:	12/27/2016	
Matrix:	Soil			Date Received:	12/29/2016	
Semi-Volatile Organic	s (Acid/Base Neu	<u>ıtrals)</u>				
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	
1,1-Biphenyl		< 335	ug/Kg		12/30/2016 23:24	
1,2,4,5-Tetrachlorobe	enzene	< 335	ug/Kg		12/30/2016 23:24	
1,2,4-Trichlorobenze	ne	< 335	ug/Kg		12/30/2016 23:24	
1,2-Dichlorobenzene		< 335	ug/Kg		12/30/2016 23:24	
1,3-Dichlorobenzene		< 335	ug/Kg		12/30/2016 23:24	
1,4-Dichlorobenzene		< 335	ug/Kg		12/30/2016 23:24	
2,2-Oxybis (1-chlorop	propane)	< 335	ug/Kg		12/30/2016 23:24	
2,3,4,6-Tetrachloroph	ienol	< 335	ug/Kg		12/30/2016 23:24	
2,4,5-Trichloropheno	1	< 669	ug/Kg		12/30/2016 23:24	
2,4,6-Trichloropheno	1	< 335	ug/Kg		12/30/2016 23:24	
2,4-Dichlorophenol		< 335	ug/Kg		12/30/2016 23:24	
2,4-Dimethylphenol		< 335	ug/Kg		12/30/2016 23:24	
2,4-Dinitrophenol		< 669	ug/Kg		12/30/2016 23:24	
2,4-Dinitrotoluene		< 335	ug/Kg		12/30/2016 23:24	
2,6-Dinitrotoluene		< 335	ug/Kg		12/30/2016 23:24	
2-Chloronaphthalene		< 335	ug/Kg		12/30/2016 23:24	
2-Chlorophenol		< 335	ug/Kg		12/30/2016 23:24	
2-Methylnapthalene		< 335	ug/Kg		12/30/2016 23:24	
2-Methylphenol		< 335	ug/Kg		12/30/2016 23:24	
2-Nitroaniline		< 669	ug/Kg		12/30/2016 23:24	
2-Nitrophenol		< 335	ug/Kg		12/30/2016 23:24	
3&4-Methylphenol		< 335	ug/Kg		12/30/2016 23:24	
3,3'-Dichlorobenzidin	ie	< 335	ug/Kg		12/30/2016 23:24	
3-Nitroaniline		< 669	ug/Kg		12/30/2016 23:24	
4,6-Dinitro-2-methylj	phenol	< 669	ug/Kg		12/30/2016 23:24	
4-Bromophenyl phen	yl ether	< 335	ug/Kg		12/30/2016 23:24	
4-Chloro-3-methylph	enol	< 335	ug/Kg		12/30/2016 23:24	

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-7				
Lab Sample ID:	165582-05			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 335	ug/Kg		12/30/2016 23:24
4-Chlorophenyl pheny	yl ether	< 335	ug/Kg		12/30/2016 23:24
4-Nitroaniline		< 669	ug/Kg		12/30/2016 23:24
4-Nitrophenol		< 669	ug/Kg		12/30/2016 23:24
Acenaphthene		< 335	ug/Kg		12/30/2016 23:24
Acenaphthylene		< 335	ug/Kg		12/30/2016 23:24
Acetophenone		< 335	ug/Kg		12/30/2016 23:24
Anthracene		< 335	ug/Kg		12/30/2016 23:24
Atrazine		< 335	ug/Kg		12/30/2016 23:24
Benzaldehyde		< 335	ug/Kg		12/30/2016 23:24
Benzo (a) anthracene		< 335	ug/Kg		12/30/2016 23:24
Benzo (a) pyrene		< 335	ug/Kg		12/30/2016 23:24
Benzo (b) fluoranther	ie	< 335	ug/Kg		12/30/2016 23:24
Benzo (g,h,i) perylene	2	< 335	ug/Kg		12/30/2016 23:24
Benzo (k) fluoranther	ie	< 335	ug/Kg		12/30/2016 23:24
Bis (2-chloroethoxy)	methane	< 335	ug/Kg		12/30/2016 23:24
Bis (2-chloroethyl) et	her	< 335	ug/Kg		12/30/2016 23:24
Bis (2-ethylhexyl) pht	chalate	< 335	ug/Kg		12/30/2016 23:24
Butylbenzylphthalate		< 335	ug/Kg		12/30/2016 23:24
Caprolactam		< 335	ug/Kg		12/30/2016 23:24
Carbazole		< 335	ug/Kg		12/30/2016 23:24
Chrysene		< 335	ug/Kg		12/30/2016 23:24
Dibenz (a,h) anthrace	ne	< 335	ug/Kg		12/30/2016 23:24
Dibenzofuran		< 335	ug/Kg		12/30/2016 23:24
Diethyl phthalate		< 335	ug/Kg		12/30/2016 23:24
Dimethyl phthalate		< 669	ug/Kg		12/30/2016 23:24
Di-n-butyl phthalate		< 335	ug/Kg		12/30/2016 23:24
Di-n-octylphthalate		< 335	ug/Kg		12/30/2016 23:24
Fluoranthene		< 335	ug/Kg		12/30/2016 23:24
Fluorene		< 335	ug/Kg		12/30/2016 23:24

Client:	<u>C&S Comp</u>	<u>oanies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	TP-7						
Lab Sample ID:	165582-0)5		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
Hexachlorobenzene		< 335	ug/Kg			12/30/2016	23:24
Hexachlorobutadiene		< 335	ug/Kg			12/30/2016	23:24
Hexachlorocyclopenta	adiene	< 335	ug/Kg			12/30/2016	23:24
Hexachloroethane		< 335	ug/Kg			12/30/2016	23:24
Indeno (1,2,3-cd) pyre	ene	< 335	ug/Kg			12/30/2016	23:24
Isophorone		< 335	ug/Kg			12/30/2016	23:24
Naphthalene		< 335	ug/Kg			12/30/2016	23:24
Nitrobenzene		< 335	ug/Kg			12/30/2016	23:24
N-Nitroso-di-n-propy	lamine	< 335	ug/Kg			12/30/2016	23:24
N-Nitrosodiphenylam	ine	< 335	ug/Kg	1		12/30/2016	23:24
Pentachlorophenol		< 669	ug/Kg			12/30/2016	23:24
Phenanthrene		< 335	ug/Kg			12/30/2016	23:24
Phenol		< 335	ug/Kg			12/30/2016	23:24
Pyrene		< 335	ug/Kg			12/30/2016	23:24
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		69.0	38 - 114		12/30/2016	23:24
2-Fluorobiphenyl			56.3	25 - 105		12/30/2016	23:24
2-Fluorophenol			49.9	30.8 - 84		12/30/2016	23:24
Nitrobenzene-d5			50.5	28.5 - 84.9		12/30/2016	23:24
Phenol-d5			52.7	32.5 - 89.6		12/30/2016	23:24
Terphenyl-d14			79.3	55.5 - 117		12/30/2016	23:24
Method Referen	nce(s): EPA	A 8270D					
Preparation Da Data File:	te: 12/ B16	/30/2016 5293.D					

Client:	<u>C&S Compani</u>	<u>es</u>						
Project Reference:	100 Dona Street							
Sample Identifier:	TP-7							
Lab Sample ID:	165582-05			Date Sampled:	12/27/2016			
Matrix:	Soil			Date Received:	12/29/2016			
Volatile Organics								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	2	< 4.56	ug/Kg		1/3/2017 17:38			
1,1,2,2-Tetrachloroet	hane	< 4.56	ug/Kg		1/3/2017 17:38			
1,1,2-Trichloroethane	2	< 4.56	ug/Kg		1/3/2017 17:38			
1,1-Dichloroethane		< 4.56	ug/Kg		1/3/2017 17:38			
1,1-Dichloroethene		< 4.56	ug/Kg		1/3/2017 17:38			
1,2,3-Trichlorobenze	ne	< 11.4	ug/Kg		1/3/2017 17:38			
1,2,4-Trichlorobenze	ne	< 11.4	ug/Kg		1/3/2017 17:38			
1,2-Dibromo-3-Chlor	opropane	< 22.8	ug/Kg		1/3/2017 17:38			
1,2-Dibromoethane		< 4.56	ug/Kg		1/3/2017 17:38			
1,2-Dichlorobenzene		< 4.56	ug/Kg		1/3/2017 17:38			
1,2-Dichloroethane		< 4.56	ug/Kg		1/3/2017 17:38			
1,2-Dichloropropane		< 4.56	ug/Kg		1/3/2017 17:38			
1,3-Dichlorobenzene		< 4.56	ug/Kg		1/3/2017 17:38			
1,4-Dichlorobenzene		< 4.56	ug/Kg		1/3/2017 17:38			
1,4-dioxane		< 45.6	ug/Kg		1/3/2017 17:38			
2-Butanone		< 22.8	ug/Kg		1/3/2017 17:38			
2-Hexanone		< 11.4	ug/Kg		1/3/2017 17:38			
4-Methyl-2-pentanon	e	< 11.4	ug/Kg		1/3/2017 17:38			
Acetone		< 22.8	ug/Kg		1/3/2017 17:38			
Benzene		< 4.56	ug/Kg		1/3/2017 17:38			
Bromochloromethane	e	< 11.4	ug/Kg		1/3/2017 17:38			
Bromodichlorometha	ine	< 4.56	ug/Kg		1/3/2017 17:38			
Bromoform		< 11.4	ug/Kg		1/3/2017 17:38			
Bromomethane		< 4.56	ug/Kg		1/3/2017 17:38			
Carbon disulfide		< 4.56	ug/Kg		1/3/2017 17:38			
Carbon Tetrachloride		< 4.56	ug/Kg		1/3/2017 17:38			
Chlorobenzene		< 4.56	ug/Kg		1/3/2017 17:38			

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-7				
Lab Sample ID:	165582-05			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Chloroethane		< 4.56	ug/Kg		1/3/2017 17:38
Chloroform		< 4.56	ug/Kg		1/3/2017 17:38
Chloromethane		< 4.56	ug/Kg		1/3/2017 17:38
cis-1,2-Dichloroethen	e	< 4.56	ug/Kg		1/3/2017 17:38
cis-1,3-Dichloroprope	ene	< 4.56	ug/Kg		1/3/2017 17:38
Cyclohexane		< 22.8	ug/Kg		1/3/2017 17:38
Dibromochlorometha	ne	< 4.56	ug/Kg		1/3/2017 17:38
Dichlorodifluorometh	ane	< 4.56	ug/Kg		1/3/2017 17:38
Ethylbenzene		< 4.56	ug/Kg		1/3/2017 17:38
Freon 113		< 4.56	ug/Kg		1/3/2017 17:38
Isopropylbenzene		< 4.56	ug/Kg		1/3/2017 17:38
m,p-Xylene		< 4.56	ug/Kg		1/3/2017 17:38
Methyl acetate		< 4.56	ug/Kg		1/3/2017 17:38
Methyl tert-butyl Ethe	er	< 4.56	ug/Kg		1/3/2017 17:38
Methylcyclohexane		< 4.56	ug/Kg		1/3/2017 17:38
Methylene chloride		< 11.4	ug/Kg		1/3/2017 17:38
o-Xylene		< 4.56	ug/Kg		1/3/2017 17:38
Styrene		< 11.4	ug/Kg		1/3/2017 17:38
Tetrachloroethene		< 4.56	ug/Kg		1/3/2017 17:38
Toluene		< 4.56	ug/Kg		1/3/2017 17:38
trans-1,2-Dichloroeth	ene	< 4.56	ug/Kg		1/3/2017 17:38
trans-1,3-Dichloropro	opene	< 4.56	ug/Kg		1/3/2017 17:38
Trichloroethene		28.1	ug/Kg	Z	1/3/2017 17:38
Trichlorofluorometha	ine	< 4.56	ug/Kg		1/3/2017 17:38
Vinyl chloride		< 4.56	ug/Kg		1/3/2017 17:38

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	TP-7					
Lab Sample ID:	165582-05		Dat	e Sampled:	12/27/201	6
Matrix:	Soil		Dat	e Received:	12/29/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	105	82 - 124		1/3/2017	17:38
4-Bromofluorobenzer	ie	89.7	80.5 - 116		1/3/2017	17:38
Pentafluorobenzene		93.4	88.7 - 112		1/3/2017	17:38
Toluene-D8		97.0	79.1 - 120		1/3/2017	17:38
Method Refere	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38247.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-8		
Lab Sample ID:	165582-06	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qual	ifier Date Analyzed
Mercury	0.0449	mg/Kg		12/30/2016 14:27
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

Client:	<u>C&S Compa</u>	<u>anies</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	TP-8						
Lab Sample ID:	165582-0	6		Date Sampled:	12/27/2016		
Matrix:	Soil			Date Received:	12/29/2016		
<u>TAL Metals (ICP)</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
Aluminum		7160	mg/Kg		1/3/2017 13:44		
Antimony		< 3.31	mg/Kg		1/3/2017 13:44		
Arsenic		4.25	mg/Kg		1/3/2017 13:44		
Barium		31.5	mg/Kg		1/3/2017 13:44		
Beryllium		0.302	mg/Kg		1/3/2017 13:44		
Cadmium		0.272	mg/Kg	J	1/3/2017 13:44		
Calcium		44500	mg/Kg		1/3/2017 14:31		
Chromium		9.54	mg/Kg		1/3/2017 13:44		
Cobalt		4.49	mg/Kg		1/3/2017 13:44		
Copper		14.0	mg/Kg		1/3/2017 13:44		
Iron		11000	mg/Kg		1/3/2017 13:44		
Lead		15.9	mg/Kg		1/3/2017 13:44		
Magnesium		7700	mg/Kg		1/3/2017 13:44		
Manganese		233	mg/Kg		1/3/2017 13:44		
Nickel		12.3	mg/Kg		1/3/2017 13:44		
Potassium		823	mg/Kg		1/3/2017 13:44		
Selenium		0.800	mg/Kg		1/4/2017 15:10		
Silver		< 0.552	mg/Kg		1/3/2017 13:44		
Sodium		108	mg/Kg	J	1/3/2017 13:44		
Thallium		1.25	mg/Kg	J	1/3/2017 13:44		
Vanadium		15.9	mg/Kg		1/3/2017 13:44		
Zinc		52.5	mg/Kg		1/3/2017 13:44		
Method Refere	nce(s): EPA EPA	6010C 3050B					
Preparation Da Data File:	ate: 12/3 0103	80/2016 317b					

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona	Street					
Sample Identifier:	TP-8						
Lab Sample ID:	165582-	06		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1221		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1232		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1242		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1248		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1254		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1260		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1262		< 0.0326	mg/Kg			1/4/2017	02:15
PCB-1268		< 0.0326	mg/Kg			1/4/2017	02:15
<u>Surrogate</u>		<u>Perc</u>	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl			95.9	10 - 144		1/4/2017	02:15
Tetrachloro-m-xylene		X	67.9	10 - 140		1/4/2017	02:15
Method Referen	n ce(s): EF EF	PA 8082A PA 3550C					
Preparation Dat	te: 1/	/3/2017					

Client:	<u>C&S Companie</u>	<u>25</u>						
Project Reference:	100 Dona Street							
Sample Identifier:	TP-8							
Lab Sample ID:	165582-06			Date Sampled:	12/27/2016			
Matrix:	Soil			Date Received:	12/29/2016			
Semi-Volatile Organic	s (Acid/Base Neu	<u>ıtrals)</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1-Biphenyl		< 330	ug/Kg		12/30/2016 23:53			
1,2,4,5-Tetrachlorobe	enzene	< 330	ug/Kg		12/30/2016 23:53			
1,2,4-Trichlorobenzei	ne	< 330	ug/Kg		12/30/2016 23:53			
1,2-Dichlorobenzene		< 330	ug/Kg		12/30/2016 23:53			
1,3-Dichlorobenzene		< 330	ug/Kg		12/30/2016 23:53			
1,4-Dichlorobenzene		< 330	ug/Kg		12/30/2016 23:53			
2,2-Oxybis (1-chlorop	propane)	< 330	ug/Kg		12/30/2016 23:53			
2,3,4,6-Tetrachloroph	ienol	< 330	ug/Kg		12/30/2016 23:53			
2,4,5-Trichloropheno	1	< 660	ug/Kg		12/30/2016 23:53			
2,4,6-Trichloropheno	1	< 330	ug/Kg		12/30/2016 23:53			
2,4-Dichlorophenol		< 330	ug/Kg		12/30/2016 23:53			
2,4-Dimethylphenol		< 330	ug/Kg		12/30/2016 23:53			
2,4-Dinitrophenol		< 660	ug/Kg		12/30/2016 23:53			
2,4-Dinitrotoluene		< 330	ug/Kg		12/30/2016 23:53			
2,6-Dinitrotoluene		< 330	ug/Kg		12/30/2016 23:53			
2-Chloronaphthalene		< 330	ug/Kg		12/30/2016 23:53			
2-Chlorophenol		< 330	ug/Kg		12/30/2016 23:53			
2-Methylnapthalene		< 330	ug/Kg		12/30/2016 23:53			
2-Methylphenol		< 330	ug/Kg		12/30/2016 23:53			
2-Nitroaniline		< 660	ug/Kg		12/30/2016 23:53			
2-Nitrophenol		< 330	ug/Kg		12/30/2016 23:53			
3&4-Methylphenol		< 330	ug/Kg		12/30/2016 23:53			
3,3'-Dichlorobenzidin	ie	< 330	ug/Kg		12/30/2016 23:53			
3-Nitroaniline		< 660	ug/Kg		12/30/2016 23:53			
4,6-Dinitro-2-methyl	phenol	< 660	ug/Kg		12/30/2016 23:53			
4-Bromophenyl phen	yl ether	< 330	ug/Kg		12/30/2016 23:53			
4-Chloro-3-methylph	enol	< 330	ug/Kg		12/30/2016 23:53			

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-8				
Lab Sample ID:	165582-06			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 330	ug/Kg		12/30/2016 23:53
4-Chlorophenyl pheny	/l ether	< 330	ug/Kg		12/30/2016 23:53
4-Nitroaniline		< 660	ug/Kg		12/30/2016 23:53
4-Nitrophenol		< 660	ug/Kg		12/30/2016 23:53
Acenaphthene		< 330	ug/Kg		12/30/2016 23:53
Acenaphthylene		< 330	ug/Kg		12/30/2016 23:53
Acetophenone		< 330	ug/Kg		12/30/2016 23:53
Anthracene		< 330	ug/Kg		12/30/2016 23:53
Atrazine		< 330	ug/Kg		12/30/2016 23:53
Benzaldehyde		< 330	ug/Kg		12/30/2016 23:53
Benzo (a) anthracene		< 330	ug/Kg		12/30/2016 23:53
Benzo (a) pyrene		< 330	ug/Kg		12/30/2016 23:53
Benzo (b) fluoranthen	e	< 330	ug/Kg		12/30/2016 23:53
Benzo (g,h,i) perylene		< 330	ug/Kg		12/30/2016 23:53
Benzo (k) fluoranthen	e	< 330	ug/Kg		12/30/2016 23:53
Bis (2-chloroethoxy) 1	nethane	< 330	ug/Kg		12/30/2016 23:53
Bis (2-chloroethyl) et	her	< 330	ug/Kg		12/30/2016 23:53
Bis (2-ethylhexyl) pht	halate	< 330	ug/Kg		12/30/2016 23:53
Butylbenzylphthalate		< 330	ug/Kg		12/30/2016 23:53
Caprolactam		< 330	ug/Kg		12/30/2016 23:53
Carbazole		< 330	ug/Kg		12/30/2016 23:53
Chrysene		< 330	ug/Kg		12/30/2016 23:53
Dibenz (a,h) anthrace	ne	< 330	ug/Kg		12/30/2016 23:53
Dibenzofuran		< 330	ug/Kg		12/30/2016 23:53
Diethyl phthalate		< 330	ug/Kg		12/30/2016 23:53
Dimethyl phthalate		< 660	ug/Kg		12/30/2016 23:53
Di-n-butyl phthalate		< 330	ug/Kg		12/30/2016 23:53
Di-n-octylphthalate		< 330	ug/Kg		12/30/2016 23:53
Fluoranthene		< 330	ug/Kg		12/30/2016 23:53
Fluorene		< 330	ug/Kg		12/30/2016 23:53

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	TP-8						
Lab Sample ID:	165582-06			Dat	e Sampled:	12/27/2016	<u>,</u>
Matrix:	Soil			Dat	e Received:	12/29/2016)
Hexachlorobenzene		< 330	ug/Kg			12/30/2016	23:53
Hexachlorobutadiene		< 330	ug/Kg			12/30/2016	23:53
Hexachlorocyclopenta	diene	< 330	ug/Kg			12/30/2016	23:53
Hexachloroethane		< 330	ug/Kg			12/30/2016	23:53
Indeno (1,2,3-cd) pyre	ene	< 330	ug/Kg			12/30/2016	23:53
Isophorone		< 330	ug/Kg			12/30/2016	23:53
Naphthalene		< 330	ug/Kg			12/30/2016	23:53
Nitrobenzene		< 330	ug/Kg			12/30/2016	23:53
N-Nitroso-di-n-propy	amine	< 330	ug/Kg			12/30/2016	23:53
N-Nitrosodiphenylam	ine	< 330	ug/Kg	1		12/30/2016	23:53
Pentachlorophenol		< 660	ug/Kg			12/30/2016	23:53
Phenanthrene		< 330	ug/Kg			12/30/2016	23:53
Phenol		< 330	ug/Kg			12/30/2016	23:53
Pyrene		< 330	ug/Kg			12/30/2016	23:53
<u>Surrogate</u>		Perc	cent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		72.0	38 - 114		12/30/2016	23:53
2-Fluorobiphenyl			55.4	25 - 105		12/30/2016	23:53
2-Fluorophenol			47.8	30.8 - 84		12/30/2016	23:53
Nitrobenzene-d5			49.4	28.5 - 84.9		12/30/2016	23:53
Phenol-d5			50.7	32.5 - 89.6		12/30/2016	23:53
Terphenyl-d14			78.7	55.5 - 117		12/30/2016	23:53
Method Referen	EPA 8270	D					
Preparation Da Data File:	te: 12/30/20 B16294.D	16					

Client:	<u>C&S Companies</u>							
Project Reference:	100 Dona Street							
Sample Identifier:	TP-8							
Lab Sample ID:	165582-06			Date Sampled:	12/27/2016			
Matrix:	Soil			Date Received:	12/29/2016			
Volatile Organics								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	9	< 4.04	ug/Kg		1/3/2017 18:02			
1,1,2,2-Tetrachloroet	hane	< 4.04	ug/Kg		1/3/2017 18:02			
1,1,2-Trichloroethane	9	< 4.04	ug/Kg		1/3/2017 18:02			
1,1-Dichloroethane		< 4.04	ug/Kg		1/3/2017 18:02			
1,1-Dichloroethene		< 4.04	ug/Kg		1/3/2017 18:02			
1,2,3-Trichlorobenzei	ne	< 10.1	ug/Kg		1/3/2017 18:02			
1,2,4-Trichlorobenzei	ne	< 10.1	ug/Kg		1/3/2017 18:02			
1,2-Dibromo-3-Chlore	opropane	< 20.2	ug/Kg		1/3/2017 18:02			
1,2-Dibromoethane		< 4.04	ug/Kg		1/3/2017 18:02			
1,2-Dichlorobenzene		< 4.04	ug/Kg		1/3/2017 18:02			
1,2-Dichloroethane		< 4.04	ug/Kg		1/3/2017 18:02			
1,2-Dichloropropane		< 4.04	ug/Kg		1/3/2017 18:02			
1,3-Dichlorobenzene		< 4.04	ug/Kg		1/3/2017 18:02			
1,4-Dichlorobenzene		< 4.04	ug/Kg		1/3/2017 18:02			
1,4-dioxane		< 40.4	ug/Kg		1/3/2017 18:02			
2-Butanone		< 20.2	ug/Kg		1/3/2017 18:02			
2-Hexanone		< 10.1	ug/Kg		1/3/2017 18:02			
4-Methyl-2-pentanon	e	< 10.1	ug/Kg		1/3/2017 18:02			
Acetone		< 20.2	ug/Kg		1/3/2017 18:02			
Benzene		< 4.04	ug/Kg		1/3/2017 18:02			
Bromochloromethane	2	< 10.1	ug/Kg		1/3/2017 18:02			
Bromodichlorometha	ne	< 4.04	ug/Kg		1/3/2017 18:02			
Bromoform		< 10.1	ug/Kg		1/3/2017 18:02			
Bromomethane		< 4.04	ug/Kg		1/3/2017 18:02			
Carbon disulfide		< 4.04	ug/Kg		1/3/2017 18:02			
Carbon Tetrachloride	!	< 4.04	ug/Kg		1/3/2017 18:02			
Chlorobenzene		< 4.04	ug/Kg		1/3/2017 18:02			

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-8				
Lab Sample ID:	165582-06			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Chloroethane		< 4.04	ug/Kg		1/3/2017 18:02
Chloroform		< 4.04	ug/Kg		1/3/2017 18:02
Chloromethane		< 4.04	ug/Kg		1/3/2017 18:02
cis-1,2-Dichloroethen	e	< 4.04	ug/Kg		1/3/2017 18:02
cis-1,3-Dichloroprope	ene	< 4.04	ug/Kg		1/3/2017 18:02
Cyclohexane		< 20.2	ug/Kg		1/3/2017 18:02
Dibromochlorometha	ne	< 4.04	ug/Kg		1/3/2017 18:02
Dichlorodifluorometh	ane	< 4.04	ug/Kg		1/3/2017 18:02
Ethylbenzene		< 4.04	ug/Kg		1/3/2017 18:02
Freon 113		< 4.04	ug/Kg		1/3/2017 18:02
Isopropylbenzene		< 4.04	ug/Kg		1/3/2017 18:02
m,p-Xylene		< 4.04	ug/Kg		1/3/2017 18:02
Methyl acetate		< 4.04	ug/Kg		1/3/2017 18:02
Methyl tert-butyl Ethe	er	< 4.04	ug/Kg		1/3/2017 18:02
Methylcyclohexane		< 4.04	ug/Kg		1/3/2017 18:02
Methylene chloride		< 10.1	ug/Kg		1/3/2017 18:02
o-Xylene		< 4.04	ug/Kg		1/3/2017 18:02
Styrene		< 10.1	ug/Kg		1/3/2017 18:02
Tetrachloroethene		< 4.04	ug/Kg		1/3/2017 18:02
Toluene		< 4.04	ug/Kg		1/3/2017 18:02
trans-1,2-Dichloroeth	ene	< 4.04	ug/Kg		1/3/2017 18:02
trans-1,3-Dichloropro	opene	< 4.04	ug/Kg		1/3/2017 18:02
Trichloroethene		28.4	ug/Kg	Z	1/3/2017 18:02
Trichlorofluorometha	ine	< 4.04	ug/Kg		1/3/2017 18:02
Vinyl chloride		< 4.04	ug/Kg		1/3/2017 18:02

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	TP-8					
Lab Sample ID:	165582-06		Dat	e Sampled:	12/27/201	6
Matrix:	Soil		Dat	e Received:	12/29/201	6
<u>Surrogate</u>		Percent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	106	82 - 124		1/3/2017	18:02
4-Bromofluorobenzer	ne	91.0	80.5 - 116		1/3/2017	18:02
Pentafluorobenzene		93.4	88.7 - 112		1/3/2017	18:02
Toluene-D8		96.5	79.1 - 120		1/3/2017	18:02
Method Referen	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38248.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

<u>C&S Companies</u>		
100 Dona Street		
TP-9		
165582-07	Date Sampled:	12/27/2016
Soil	Date Received:	12/29/2016
	C&S Companies 100 Dona Street TP-9 165582-07 Soil	C&S Companies100 Dona StreetTP-9165582-07SoilDate Sampled:Date Received:

<u>Mercury</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0512	mg/Kg		12/30/2016 14:31
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

Client:	<u>C&S Compan</u>	ies			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-9				
Lab Sample ID:	165582-07			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		5470	mg/Kg		1/3/2017 13:48
Antimony		< 4.49	mg/Kg		1/3/2017 13:48
Arsenic		5.91	mg/Kg		1/3/2017 13:48
Barium		37.8	mg/Kg		1/3/2017 13:48
Beryllium		0.697	mg/Kg		1/3/2017 13:48
Cadmium		0.420	mg/Kg		1/3/2017 13:48
Calcium		3960	mg/Kg		1/3/2017 13:48
Chromium		9.38	mg/Kg		1/3/2017 13:48
Cobalt		7.29	mg/Kg		1/3/2017 13:48
Copper		24.3	mg/Kg		1/3/2017 13:48
Iron		16100	mg/Kg		1/3/2017 13:48
Lead		10.4	mg/Kg		1/3/2017 13:48
Magnesium		1540	mg/Kg		1/3/2017 13:48
Manganese		639	mg/Kg		1/3/2017 13:48
Nickel		21.1	mg/Kg		1/3/2017 13:48
Potassium		1160	mg/Kg		1/3/2017 13:48
Selenium		< 0.749	mg/Kg		1/4/2017 15:14
Silver		< 0.749	mg/Kg		1/3/2017 13:48
Sodium		< 187	mg/Kg		1/3/2017 13:48
Thallium		< 1.87	mg/Kg		1/3/2017 13:48
Vanadium		15.0	mg/Kg		1/3/2017 13:48
Zinc		40.9	mg/Kg		1/3/2017 13:48
Method Referen Preparation Da	nce(s): EPA 601 EPA 305 te: 12/30/2	0C 0B 016			

Client:	<u>C&S Compa</u>	nies					
Project Reference:	100 Dona St	reet					
Sample Identifier:	TP-9						
Lab Sample ID:	165582-07	,		Date	e Sampled:	12/27/2016)
Matrix:	Soil			Date	e Received:	12/29/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1221		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1232		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1242		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1248		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1254		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1260		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1262		< 0.0407	mg/Kg			1/5/2017	10:14
PCB-1268		< 0.0407	mg/Kg			1/5/2017	10:14
<u>Surrogate</u>		<u>Percen</u>	it Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl			63.9	10 - 144		1/5/2017	10:14
Tetrachloro-m-xylene			70.6	10 - 140		1/5/2017	10:14
Method Referen	ce(s): EPA 8 EPA 3	8082A 8550C					
Preparation Dat	te: 1/3/2	2017					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-9				
Lab Sample ID:	165582-07			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		703	ug/Kg		12/31/2016 00:22
1,2,4,5-Tetrachlorobe	enzene	< 425	ug/Kg		12/31/2016 00:22
1,2,4-Trichlorobenze	ne	< 425	ug/Kg		12/31/2016 00:22
1,2-Dichlorobenzene		< 425	ug/Kg		12/31/2016 00:22
1,3-Dichlorobenzene		< 425	ug/Kg		12/31/2016 00:22
1,4-Dichlorobenzene		< 425	ug/Kg		12/31/2016 00:22
2,2-Oxybis (1-chlorog	propane)	< 425	ug/Kg		12/31/2016 00:22
2,3,4,6-Tetrachloroph	nenol	< 425	ug/Kg		12/31/2016 00:22
2,4,5-Trichloropheno	l	< 851	ug/Kg		12/31/2016 00:22
2,4,6-Trichloropheno	l	< 425	ug/Kg		12/31/2016 00:22
2,4-Dichlorophenol		< 425	ug/Kg		12/31/2016 00:22
2,4-Dimethylphenol		< 425	ug/Kg		12/31/2016 00:22
2,4-Dinitrophenol		< 851	ug/Kg		12/31/2016 00:22
2,4-Dinitrotoluene		< 425	ug/Kg		12/31/2016 00:22
2,6-Dinitrotoluene		< 425	ug/Kg		12/31/2016 00:22
2-Chloronaphthalene		< 425	ug/Kg		12/31/2016 00:22
2-Chlorophenol		< 425	ug/Kg		12/31/2016 00:22
2-Methylnapthalene		< 425	ug/Kg		12/31/2016 00:22
2-Methylphenol		< 425	ug/Kg		12/31/2016 00:22
2-Nitroaniline		< 851	ug/Kg		12/31/2016 00:22
2-Nitrophenol		< 425	ug/Kg		12/31/2016 00:22
3&4-Methylphenol		< 425	ug/Kg		12/31/2016 00:22
3,3'-Dichlorobenzidir	ie	< 425	ug/Kg		12/31/2016 00:22
3-Nitroaniline		< 851	ug/Kg		12/31/2016 00:22
4,6-Dinitro-2-methyl	phenol	< 851	ug/Kg		12/31/2016 00:22
4-Bromophenyl phen	yl ether	< 425	ug/Kg		12/31/2016 00:22
4-Chloro-3-methylph	enol	< 425	ug/Kg		12/31/2016 00:22

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-9				
Lab Sample ID:	165582-07			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 425	ug/Kg		12/31/2016 00:22
4-Chlorophenyl pheny	/l ether	< 425	ug/Kg		12/31/2016 00:22
4-Nitroaniline		< 851	ug/Kg		12/31/2016 00:22
4-Nitrophenol		< 851	ug/Kg		12/31/2016 00:22
Acenaphthene		1510	ug/Kg		12/31/2016 00:22
Acenaphthylene		< 425	ug/Kg		12/31/2016 00:22
Acetophenone		< 425	ug/Kg		12/31/2016 00:22
Anthracene		< 425	ug/Kg		12/31/2016 00:22
Atrazine		< 425	ug/Kg		12/31/2016 00:22
Benzaldehyde		< 425	ug/Kg		12/31/2016 00:22
Benzo (a) anthracene		< 425	ug/Kg		12/31/2016 00:22
Benzo (a) pyrene		< 425	ug/Kg		12/31/2016 00:22
Benzo (b) fluoranthen	e	< 425	ug/Kg		12/31/2016 00:22
Benzo (g,h,i) perylene		< 425	ug/Kg		12/31/2016 00:22
Benzo (k) fluoranthen	e	< 425	ug/Kg		12/31/2016 00:22
Bis (2-chloroethoxy) r	nethane	< 425	ug/Kg		12/31/2016 00:22
Bis (2-chloroethyl) etl	her	< 425	ug/Kg		12/31/2016 00:22
Bis (2-ethylhexyl) pht	halate	< 425	ug/Kg		12/31/2016 00:22
Butylbenzylphthalate		< 425	ug/Kg		12/31/2016 00:22
Caprolactam		< 425	ug/Kg		12/31/2016 00:22
Carbazole		< 425	ug/Kg		12/31/2016 00:22
Chrysene		< 425	ug/Kg		12/31/2016 00:22
Dibenz (a,h) anthrace	ne	< 425	ug/Kg		12/31/2016 00:22
Dibenzofuran		< 425	ug/Kg		12/31/2016 00:22
Diethyl phthalate		< 425	ug/Kg		12/31/2016 00:22
Dimethyl phthalate		< 851	ug/Kg		12/31/2016 00:22
Di-n-butyl phthalate		< 425	ug/Kg		12/31/2016 00:22
Di-n-octylphthalate		< 425	ug/Kg		12/31/2016 00:22
Fluoranthene		< 425	ug/Kg		12/31/2016 00:22
Fluorene		2770	ug/Kg		12/31/2016 00:22

Client:	<u>C&S Compa</u>	<u>anies</u>					
Project Reference:	100 Dona S	treet					
Sample Identifier:	TP-9						
Lab Sample ID:	165582-0	7		Date	e Sampled:	12/27/2016	
Matrix:	Soil			Date	e Received:	12/29/2016	
Hexachlorobenzene		< 425	ug/Kg			12/31/2016	00:22
Hexachlorobutadiene		< 425	ug/Kg			12/31/2016	00:22
Hexachlorocyclopenta	adiene	< 425	ug/Kg			12/31/2016	00:22
Hexachloroethane		< 425	ug/Kg			12/31/2016	00:22
Indeno (1,2,3-cd) pyre	ene	< 425	ug/Kg			12/31/2016	00:22
Isophorone		< 425	ug/Kg			12/31/2016	00:22
Naphthalene		< 425	ug/Kg			12/31/2016	00:22
Nitrobenzene		< 425	ug/Kg			12/31/2016	00:22
N-Nitroso-di-n-propy	lamine	< 425	ug/Kg			12/31/2016	00:22
N-Nitrosodiphenylam	ine	< 425	ug/Kg	1		12/31/2016	00:22
Pentachlorophenol		< 851	ug/Kg			12/31/2016	00:22
Phenanthrene		4700	ug/Kg			12/31/2016	00:22
Phenol		< 425	ug/Kg			12/31/2016	00:22
Pyrene		416	ug/Kg		J	12/31/2016	00:22
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	l		55.9	38 - 114		12/31/2016	00:22
2-Fluorobiphenyl			54.4	25 - 105		12/31/2016	00:22
2-Fluorophenol			36.8	30.8 - 84		12/31/2016	00:22
Nitrobenzene-d5			40.7	28.5 - 84.9		12/31/2016	00:22
Phenol-d5			41.0	32.5 - 89.6		12/31/2016	00:22
Terphenyl-d14			63.5	55.5 - 117		12/31/2016	00:22
Method Referen	nce(s): EPA	8270D					
Preparation Da Data File:	te: 12/3 B162	3330C 80/2016 295.D					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-9				
Lab Sample ID:	165582-07			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	e	< 5.44	ug/Kg		1/4/2017 15:42
1,1,2,2-Tetrachloroet	hane	< 5.44	ug/Kg		1/4/2017 15:42
1,1,2-Trichloroethane	e	< 5.44	ug/Kg		1/4/2017 15:42
1,1-Dichloroethane		< 5.44	ug/Kg		1/4/2017 15:42
1,1-Dichloroethene		< 5.44	ug/Kg		1/4/2017 15:42
1,2,3-Trichlorobenze	ne	< 13.6	ug/Kg		1/4/2017 15:42
1,2,4-Trichlorobenze	ne	< 13.6	ug/Kg		1/4/2017 15:42
1,2-Dibromo-3-Chlor	opropane	< 27.2	ug/Kg		1/4/2017 15:42
1,2-Dibromoethane		< 5.44	ug/Kg		1/4/2017 15:42
1,2-Dichlorobenzene		< 5.44	ug/Kg		1/4/2017 15:42
1,2-Dichloroethane		< 5.44	ug/Kg		1/4/2017 15:42
1,2-Dichloropropane		< 5.44	ug/Kg		1/4/2017 15:42
1,3-Dichlorobenzene		< 5.44	ug/Kg		1/4/2017 15:42
1,4-Dichlorobenzene		< 5.44	ug/Kg		1/4/2017 15:42
1,4-dioxane		< 54.4	ug/Kg		1/4/2017 15:42
2-Butanone		< 27.2	ug/Kg		1/4/2017 15:42
2-Hexanone		< 13.6	ug/Kg		1/4/2017 15:42
4-Methyl-2-pentanon	ie	< 13.6	ug/Kg		1/4/2017 15:42
Acetone		50.5	ug/Kg		1/4/2017 15:42
Benzene		< 5.44	ug/Kg		1/4/2017 15:42
Bromochloromethan	e	< 13.6	ug/Kg		1/4/2017 15:42
Bromodichlorometha	ane	< 5.44	ug/Kg		1/4/2017 15:42
Bromoform		< 13.6	ug/Kg		1/4/2017 15:42
Bromomethane		< 5.44	ug/Kg		1/4/2017 15:42
Carbon disulfide		< 5.44	ug/Kg		1/4/2017 15:42
Carbon Tetrachloride	2	< 5.44	ug/Kg		1/4/2017 15:42
Chlorobenzene		< 5.44	ug/Kg		1/4/2017 15:42

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-9				
Lab Sample ID:	165582-07			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Chloroethane		< 5.44	ug/Kg		1/4/2017 15:42
Chloroform		< 5.44	ug/Kg		1/4/2017 15:42
Chloromethane		< 5.44	ug/Kg		1/4/2017 15:42
cis-1,2-Dichloroether	ie	< 5.44	ug/Kg		1/4/2017 15:42
cis-1,3-Dichloroprop	ene	< 5.44	ug/Kg		1/4/2017 15:42
Cyclohexane		< 27.2	ug/Kg		1/4/2017 15:42
Dibromochlorometha	ane	< 5.44	ug/Kg		1/4/2017 15:42
Dichlorodifluorometh	nane	< 5.44	ug/Kg		1/4/2017 15:42
Ethylbenzene		< 5.44	ug/Kg		1/4/2017 15:42
Freon 113		< 5.44	ug/Kg		1/4/2017 15:42
Isopropylbenzene		10.5	ug/Kg		1/4/2017 15:42
m,p-Xylene		< 5.44	ug/Kg		1/4/2017 15:42
Methyl acetate		< 5.44	ug/Kg		1/4/2017 15:42
Methyl tert-butyl Eth	er	< 5.44	ug/Kg		1/4/2017 15:42
Methylcyclohexane		< 5.44	ug/Kg		1/4/2017 15:42
Methylene chloride		< 13.6	ug/Kg		1/4/2017 15:42
o-Xylene		< 5.44	ug/Kg		1/4/2017 15:42
Styrene		< 13.6	ug/Kg		1/4/2017 15:42
Tetrachloroethene		< 5.44	ug/Kg		1/4/2017 15:42
Toluene		< 5.44	ug/Kg		1/4/2017 15:42
trans-1,2-Dichloroeth	iene	< 5.44	ug/Kg		1/4/2017 15:42
trans-1,3-Dichloropro	opene	< 5.44	ug/Kg		1/4/2017 15:42
Trichloroethene		< 5.44	ug/Kg		1/4/2017 15:42
Trichlorofluorometha	ane	< 5.44	ug/Kg		1/4/2017 15:42
Vinyl chloride		< 5.44	ug/Kg		1/4/2017 15:42

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	TP-9					
Lab Sample ID:	165582-07		Dat	e Sampled:	12/27/201	6
Matrix:	Soil		Dat	e Received:	12/29/201	6
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	106	82 - 124		1/4/2017	15:42
4-Bromofluorobenzer	ne	109	80.5 - 116		1/4/2017	15:42
Pentafluorobenzene		94.2	88.7 - 112		1/4/2017	15:42
Toluene-D8		96.9	79.1 - 120		1/4/2017	15:42
Method Referen	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38276.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	TP-5		
Lab Sample ID:	165582-08	Date Sampled:	12/27/2016
Matrix:	Soil	Date Received:	12/29/2016

<u>Mercury</u>

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.0111	mg/Kg		12/30/2016 14:48
Method Reference(s):	EPA 7471B			
Preparation Date:	12/30/2016			
Data File:	Hg161230A			

FINAL

Client:	<u>C&S Companies</u> 100 Dona Street						
Project Reference:							
Sample Identifier:	TP-5						
Lab Sample ID:	165582-08			Date Sampled:	12/27/2016		
Matrix:	Soil			Date Received:	12/29/2016		
<u>TAL Metals (ICP)</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed		
Aluminum		4060	mg/Kg		1/3/2017 13:53		
Antimony		< 3.10	mg/Kg		1/3/2017 13:53		
Arsenic		1.93	mg/Kg		1/3/2017 13:53		
Barium		22.0	mg/Kg		1/3/2017 13:53		
Beryllium		0.237	mg/Kg	J	1/3/2017 13:53		
Cadmium		0.182	mg/Kg	J	1/3/2017 13:53		
Calcium		74900	mg/Kg		1/3/2017 14:36		
Chromium		7.07	mg/Kg		1/3/2017 13:53		
Cobalt		3.72	mg/Kg		1/3/2017 13:53		
Copper		13.8	mg/Kg		1/3/2017 13:53		
Iron		7800	mg/Kg		1/3/2017 13:53		
Lead		5.83	mg/Kg		1/3/2017 13:53		
Magnesium		12200	mg/Kg		1/3/2017 13:53		
Manganese		144	mg/Kg		1/3/2017 13:53		
Nickel		11.9	mg/Kg		1/3/2017 13:53		
Potassium		1010	mg/Kg		1/3/2017 13:53		
Selenium		1.41	mg/Kg		1/4/2017 21:13		
Silver		< 0.517	mg/Kg		1/3/2017 13:53		
Sodium		108	mg/Kg	J	1/3/2017 13:53		
Thallium		2.55	mg/Kg		1/3/2017 13:53		
Vanadium		11.3	mg/Kg		1/3/2017 13:53		
Zinc		40.1	mg/Kg		1/3/2017 13:53		
Method Referer Preparation Da	te: 12/30/2	0C 0B 2016					

Client:	<u>C&S Com</u>	<u>panies</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	TP-5						
Lab Sample ID:	165582-0	08		Date	e Sampled:	12/27/2016	
Matrix:	Soil			Date	e Received:	12/29/2016)
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1221		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1232		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1242		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1248		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1254		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1260		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1262		< 0.0322	mg/Kg			1/4/2017	03:02
PCB-1268		< 0.0322	mg/Kg			1/4/2017	03:02
<u>Surrogate</u>		<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			69.9	10 - 144		1/4/2017	03:02
Tetrachloro-m-xylene		X	58.0	10 - 140		1/4/2017	03:02
Method Referen	a ce(s): EP. EP.	A 8082A A 3550C					
Preparation Dat	te: 1/3	3/2017					

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-5				
Lab Sample ID:	165582-08			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Semi-Volatile Organic	s (Acid/Base Net	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 315	ug/Kg		12/31/2016 00:51
1,2,4,5-Tetrachlorobe	enzene	< 315	ug/Kg		12/31/2016 00:51
1,2,4-Trichlorobenze	ne	< 315	ug/Kg		12/31/2016 00:51
1,2-Dichlorobenzene		< 315	ug/Kg		12/31/2016 00:51
1,3-Dichlorobenzene		< 315	ug/Kg		12/31/2016 00:51
1,4-Dichlorobenzene		< 315	ug/Kg		12/31/2016 00:51
2,2-Oxybis (1-chlorop	propane)	< 315	ug/Kg		12/31/2016 00:51
2,3,4,6-Tetrachloroph	nenol	< 315	ug/Kg		12/31/2016 00:51
2,4,5-Trichloropheno	1	< 630	ug/Kg		12/31/2016 00:51
2,4,6-Trichloropheno	1	< 315	ug/Kg		12/31/2016 00:51
2,4-Dichlorophenol		< 315	ug/Kg		12/31/2016 00:51
2,4-Dimethylphenol		< 315	ug/Kg		12/31/2016 00:51
2,4-Dinitrophenol		< 630	ug/Kg		12/31/2016 00:51
2,4-Dinitrotoluene		< 315	ug/Kg		12/31/2016 00:51
2,6-Dinitrotoluene		< 315	ug/Kg		12/31/2016 00:51
2-Chloronaphthalene		< 315	ug/Kg		12/31/2016 00:51
2-Chlorophenol		< 315	ug/Kg		12/31/2016 00:51
2-Methylnapthalene		< 315	ug/Kg		12/31/2016 00:51
2-Methylphenol		< 315	ug/Kg		12/31/2016 00:51
2-Nitroaniline		< 630	ug/Kg		12/31/2016 00:51
2-Nitrophenol		< 315	ug/Kg		12/31/2016 00:51
3&4-Methylphenol		< 315	ug/Kg		12/31/2016 00:51
3,3'-Dichlorobenzidir	ie	< 315	ug/Kg		12/31/2016 00:51
3-Nitroaniline		< 630	ug/Kg		12/31/2016 00:51
4,6-Dinitro-2-methyl	phenol	< 630	ug/Kg		12/31/2016 00:51
4-Bromophenyl phen	yl ether	< 315	ug/Kg		12/31/2016 00:51
4-Chloro-3-methylph	enol	< 315	ug/Kg		12/31/2016 00:51

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	TP-5				
Lab Sample ID:	165582-08			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
4-Chloroaniline		< 315	ug/Kg		12/31/2016 00:51
4-Chlorophenyl pheny	/l ether	< 315	ug/Kg		12/31/2016 00:51
4-Nitroaniline		< 630	ug/Kg		12/31/2016 00:51
4-Nitrophenol		< 630	ug/Kg		12/31/2016 00:51
Acenaphthene		< 315	ug/Kg		12/31/2016 00:51
Acenaphthylene		< 315	ug/Kg		12/31/2016 00:51
Acetophenone		< 315	ug/Kg		12/31/2016 00:51
Anthracene		< 315	ug/Kg		12/31/2016 00:51
Atrazine		< 315	ug/Kg		12/31/2016 00:51
Benzaldehyde		< 315	ug/Kg		12/31/2016 00:51
Benzo (a) anthracene		< 315	ug/Kg		12/31/2016 00:51
Benzo (a) pyrene		< 315	ug/Kg		12/31/2016 00:51
Benzo (b) fluoranthen	e	< 315	ug/Kg		12/31/2016 00:51
Benzo (g,h,i) perylene		< 315	ug/Kg		12/31/2016 00:51
Benzo (k) fluoranthen	e	< 315	ug/Kg		12/31/2016 00:51
Bis (2-chloroethoxy) 1	nethane	< 315	ug/Kg		12/31/2016 00:51
Bis (2-chloroethyl) et	her	< 315	ug/Kg		12/31/2016 00:51
Bis (2-ethylhexyl) pht	halate	< 315	ug/Kg		12/31/2016 00:51
Butylbenzylphthalate		< 315	ug/Kg		12/31/2016 00:51
Caprolactam		< 315	ug/Kg		12/31/2016 00:51
Carbazole		< 315	ug/Kg		12/31/2016 00:51
Chrysene		< 315	ug/Kg		12/31/2016 00:51
Dibenz (a,h) anthrace	ne	< 315	ug/Kg		12/31/2016 00:51
Dibenzofuran		< 315	ug/Kg		12/31/2016 00:51
Diethyl phthalate		< 315	ug/Kg		12/31/2016 00:51
Dimethyl phthalate		< 630	ug/Kg		12/31/2016 00:51
Di-n-butyl phthalate		< 315	ug/Kg		12/31/2016 00:51
Di-n-octylphthalate		< 315	ug/Kg		12/31/2016 00:51
Fluoranthene		< 315	ug/Kg		12/31/2016 00:51
Fluorene		< 315	ug/Kg		12/31/2016 00:51

Client:	<u>C&S Compa</u>	<u>inies</u>					
Project Reference:	100 Dona St	reet					
Sample Identifier:	TP-5						
Lab Sample ID:	165582-08	}		Date	e Sampled:	12/27/2016	1
Matrix:	Soil			Date	e Received:	12/29/2016	1
Hexachlorobenzene		< 315	ug/Kg			12/31/2016	00:51
Hexachlorobutadiene		< 315	ug/Kg			12/31/2016	00:51
Hexachlorocyclopenta	adiene	< 315	ug/Kg			12/31/2016	00:51
Hexachloroethane		< 315	ug/Kg			12/31/2016	00:51
Indeno (1,2,3-cd) pyre	ene	< 315	ug/Kg			12/31/2016	00:51
Isophorone		< 315	ug/Kg			12/31/2016	00:51
Naphthalene		< 315	ug/Kg			12/31/2016	00:51
Nitrobenzene		< 315	ug/Kg			12/31/2016	00:51
N-Nitroso-di-n-propy	lamine	< 315	ug/Kg			12/31/2016	00:51
N-Nitrosodiphenylam	ine	< 315	ug/Kg	1		12/31/2016	00:51
Pentachlorophenol		< 630	ug/Kg			12/31/2016	00:51
Phenanthrene		< 315	ug/Kg			12/31/2016	00:51
Phenol		< 315	ug/Kg			12/31/2016	00:51
Pyrene		< 315	ug/Kg			12/31/2016	00:51
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromophenol	l		61.3	38 - 114		12/31/2016	00:51
2-Fluorobiphenyl			54.1	25 - 105		12/31/2016	00:51
2-Fluorophenol			48.1	30.8 - 84		12/31/2016	00:51
Nitrobenzene-d5			49.0	28.5 - 84.9		12/31/2016	00:51
Phenol-d5			50.4	32.5 - 89.6		12/31/2016	00:51
Terphenyl-d14			70.9	55.5 - 117		12/31/2016	00:51
Method Referen	nce(s): EPA 8	3270D					
Preparation Da Data File:	EPA 3 te: 12/3 B162	96.D					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-5				
Lab Sample ID:	165582-08			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 4.34	ug/Kg		1/3/2017 18:26
1,1,2,2-Tetrachloroet	hane	< 4.34	ug/Kg		1/3/2017 18:26
1,1,2-Trichloroethane	2	< 4.34	ug/Kg		1/3/2017 18:26
1,1-Dichloroethane		< 4.34	ug/Kg		1/3/2017 18:26
1,1-Dichloroethene		< 4.34	ug/Kg		1/3/2017 18:26
1,2,3-Trichlorobenzer	ne	< 10.8	ug/Kg		1/3/2017 18:26
1,2,4-Trichlorobenzer	ne	< 10.8	ug/Kg		1/3/2017 18:26
1,2-Dibromo-3-Chloro	opropane	< 21.7	ug/Kg		1/3/2017 18:26
1,2-Dibromoethane		< 4.34	ug/Kg		1/3/2017 18:26
1,2-Dichlorobenzene		< 4.34	ug/Kg		1/3/2017 18:26
1,2-Dichloroethane		< 4.34	ug/Kg		1/3/2017 18:26
1,2-Dichloropropane		< 4.34	ug/Kg		1/3/2017 18:26
1,3-Dichlorobenzene		< 4.34	ug/Kg		1/3/2017 18:26
1,4-Dichlorobenzene		< 4.34	ug/Kg		1/3/2017 18:26
1,4-dioxane		< 43.4	ug/Kg		1/3/2017 18:26
2-Butanone		< 21.7	ug/Kg		1/3/2017 18:26
2-Hexanone		< 10.8	ug/Kg		1/3/2017 18:26
4-Methyl-2-pentanon	e	< 10.8	ug/Kg		1/3/2017 18:26
Acetone		< 21.7	ug/Kg		1/3/2017 18:26
Benzene		< 4.34	ug/Kg		1/3/2017 18:26
Bromochloromethane	2	< 10.8	ug/Kg		1/3/2017 18:26
Bromodichlorometha	ne	< 4.34	ug/Kg		1/3/2017 18:26
Bromoform		< 10.8	ug/Kg		1/3/2017 18:26
Bromomethane		< 4.34	ug/Kg		1/3/2017 18:26
Carbon disulfide		< 4.34	ug/Kg		1/3/2017 18:26
Carbon Tetrachloride		< 4.34	ug/Kg		1/3/2017 18:26
Chlorobenzene		< 4.34	ug/Kg		1/3/2017 18:26

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	TP-5				
Lab Sample ID:	165582-08			Date Sampled:	12/27/2016
Matrix:	Soil			Date Received:	12/29/2016
Chloroethane		< 4.34	ug/Kg		1/3/2017 18:26
Chloroform		< 4.34	ug/Kg		1/3/2017 18:26
Chloromethane		< 4.34	ug/Kg		1/3/2017 18:26
cis-1,2-Dichloroethen	e	< 4.34	ug/Kg		1/3/2017 18:26
cis-1,3-Dichloroprope	ene	< 4.34	ug/Kg		1/3/2017 18:26
Cyclohexane		< 21.7	ug/Kg		1/3/2017 18:26
Dibromochlorometha	ne	< 4.34	ug/Kg		1/3/2017 18:26
Dichlorodifluorometh	ane	< 4.34	ug/Kg		1/3/2017 18:26
Ethylbenzene		< 4.34	ug/Kg		1/3/2017 18:26
Freon 113		< 4.34	ug/Kg		1/3/2017 18:26
Isopropylbenzene		< 4.34	ug/Kg		1/3/2017 18:26
m,p-Xylene		< 4.34	ug/Kg		1/3/2017 18:26
Methyl acetate		< 4.34	ug/Kg		1/3/2017 18:26
Methyl tert-butyl Ethe	er	< 4.34	ug/Kg		1/3/2017 18:26
Methylcyclohexane		< 4.34	ug/Kg		1/3/2017 18:26
Methylene chloride		< 10.8	ug/Kg		1/3/2017 18:26
o-Xylene		< 4.34	ug/Kg		1/3/2017 18:26
Styrene		< 10.8	ug/Kg		1/3/2017 18:26
Tetrachloroethene		< 4.34	ug/Kg		1/3/2017 18:26
Toluene		< 4.34	ug/Kg		1/3/2017 18:26
trans-1,2-Dichloroeth	ene	< 4.34	ug/Kg		1/3/2017 18:26
trans-1,3-Dichloropro	opene	< 4.34	ug/Kg		1/3/2017 18:26
Trichloroethene		< 4.34	ug/Kg		1/3/2017 18:26
Trichlorofluorometha	ine	< 4.34	ug/Kg		1/3/2017 18:26
Vinyl chloride		< 4.34	ug/Kg		1/3/2017 18:26

Client:	<u>C&S Companies</u>					
Project Reference:	100 Dona Street					
Sample Identifier:	TP-5					
Lab Sample ID:	165582-08		Dat	e Sampled:	12/27/201	6
Matrix:	Soil		Dat	e Received:	12/29/201	6
<u>Surrogate</u>		Percent Recovery	Limits	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d	4	104	82 - 124		1/3/2017	18:26
4-Bromofluorobenzer	ne	91.8	80.5 - 116		1/3/2017	18:26
Pentafluorobenzene		93.9	88.7 - 112		1/3/2017	18:26
Toluene-D8		98.9	79.1 - 120		1/3/2017	18:26
Method Referen	nce(s): EPA 8260C					

Data File:

EPA 5035A - L x38249.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this areement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Chain of Custody Supplement

2 of)

Client:	C+S Engineers	Completed by:	Glan Pezzulo
Lab Project ID:	165582	Date:	12/29/14
2	Sample Condition Per NELAC/ELAP 21	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements upo No	n receipt N/A
Container Type	$\square \not \square$	X 5035	
Comments	3		
Transferred to method- compliant container			ŢX
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	6°Ciced		metals
Sufficient Sample Quantity Comments			
4			

APPENDIX F

Laboratory Analysis Report – Groundwater

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	t			
Sample Identifier:	GW-1				
Lab Sample ID:	170188-01			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Part 375 Metals (ICP)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		0.0110	mg/L		1/20/2017 14:57
Barium		0.102	mg/L		1/20/2017 14:57
Beryllium		< 0.00500	mg/L		1/20/2017 14:57
Cadmium		< 0.00500	mg/L		1/20/2017 14:57
Chromium		0.0269	mg/L		1/20/2017 14:57
Copper		0.0139	mg/L	J	1/20/2017 14:57
Lead		< 0.0100	mg/L		1/20/2017 14:57
Manganese		0.333	mg/L		1/20/2017 14:57
Nickel		0.0219	mg/L	J	1/20/2017 14:57
Selenium		0.0102	mg/L		1/23/2017 14:30
Silver		< 0.0100	mg/L		1/20/2017 14:57
Zinc		< 0.0600	mg/L		1/20/2017 14:57
Method Refere	nce(s): EPA 60100	C			
Preparation Da Data File:	ate: 1/19/201 012017a	7			

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	GW-1		
Lab Sample ID:	170188-01	Date Sampled:	1/16/2017
Matrix:	Water	Date Received:	1/17/2017

<u>Mercury</u>

<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	1
Mercury		< 0.000200	mg/L		1/18/2017 17	7:06
Method Referenc	e(s): EPA 7470A					
Preparation Date	: 1/18/2017					
Data File:	Hg170118A	A				

FINAL

Client:	<u>C&S Companies</u>	5					
Project Reference:	100 Dona Street						
Sample Identifier:	GW-1						
Lab Sample ID:	170188-01			Date	e Sampled:	1/16/2017	
Matrix:	Water			Date	e Received:	1/17/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.200	ug/L			1/23/2017	13:01
PCB-1221		< 0.200	ug/L			1/23/2017	13:01
PCB-1232		< 0.200	ug/L			1/23/2017	13:01
PCB-1242		< 0.200	ug/L			1/23/2017	13:01
PCB-1248		< 0.200	ug/L			1/23/2017	13:01
PCB-1254		< 0.200	ug/L			1/23/2017	13:01
PCB-1260		< 0.200	ug/L			1/23/2017	13:01
PCB-1262		< 0.200	ug/L			1/23/2017	13:01
PCB-1268		< 0.200	ug/L			1/23/2017	13:01
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			58.7	10 - 105		1/23/2017	13:01
Tetrachloro-m-xylene		X	43.3	15.7 - 95.8		1/23/2017	13:01
Reporting limit ele Method Reference	wated due to sample matri ce(s): EPA 8082A EPA 3510C	x					
Preparation Date	e: 1/19/2017						

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-1				
Lab Sample ID:	170188-01			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Semi-Volatile Organic	<u>:s (Acid/Base Ne</u>	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		1/18/2017 20:21
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		1/18/2017 20:21
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		1/18/2017 20:21
1,2-Dichlorobenzene		< 10.0	ug/L		1/18/2017 20:21
1,3-Dichlorobenzene		< 10.0	ug/L		1/18/2017 20:21
1,4-Dichlorobenzene		< 10.0	ug/L		1/18/2017 20:21
2,2-Oxybis (1-chloro	propane)	< 10.0	ug/L		1/18/2017 20:21
2,3,4,6-Tetrachloropl	henol	< 10.0	ug/L		1/18/2017 20:21
2,4,5-Trichlorophend	ol	< 20.0	ug/L		1/18/2017 20:21
2,4,6-Trichlorophend	ol	< 10.0	ug/L		1/18/2017 20:21
2,4-Dichlorophenol		< 10.0	ug/L		1/18/2017 20:21
2,4-Dimethylphenol		< 10.0	ug/L		1/18/2017 20:21
2,4-Dinitrophenol		< 20.0	ug/L		1/18/2017 20:21
2,4-Dinitrotoluene		< 10.0	ug/L		1/18/2017 20:21
2,6-Dinitrotoluene		< 10.0	ug/L		1/18/2017 20:21
2-Chloronaphthalene	2	< 10.0	ug/L		1/18/2017 20:21
2-Chlorophenol		< 10.0	ug/L		1/18/2017 20:21
2-Methylnapthalene		< 10.0	ug/L		1/18/2017 20:21
2-Methylphenol		< 10.0	ug/L		1/18/2017 20:21
2-Nitroaniline		< 20.0	ug/L		1/18/2017 20:21
2-Nitrophenol		< 10.0	ug/L		1/18/2017 20:21
3&4-Methylphenol		< 10.0	ug/L		1/18/2017 20:21
3,3'-Dichlorobenzidii	ne	< 10.0	ug/L		1/18/2017 20:21
3-Nitroaniline		< 20.0	ug/L		1/18/2017 20:21
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		1/18/2017 20:21
4-Bromophenyl phen	yl ether	< 10.0	ug/L		1/18/2017 20:21
4-Chloro-3-methylph	enol	< 10.0	ug/L		1/18/2017 20:21

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stre	et				
Sample Identifier:	GW-1					
Lab Sample ID:	170188-01			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
4-Chloroaniline		< 10.0	ug/L		1/18/2017 2	0:21
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		1/18/2017 2	0:21
4-Nitroaniline		< 20.0	ug/L		1/18/2017 2	0:21
4-Nitrophenol		< 20.0	ug/L		1/18/2017 2	0:21
Acenaphthene		< 10.0	ug/L		1/18/2017 2	0:21
Acenaphthylene		< 10.0	ug/L		1/18/2017 2	0:21
Acetophenone		< 10.0	ug/L		1/18/2017 2	0:21
Anthracene		< 10.0	ug/L		1/18/2017 2	0:21
Atrazine		< 10.0	ug/L		1/18/2017 2	0:21
Benzaldehyde		< 10.0	ug/L		1/18/2017 2	0:21
Benzo (a) anthracene		< 10.0	ug/L		1/18/2017 2	0:21
Benzo (a) pyrene		< 10.0	ug/L		1/18/2017 2	0:21
Benzo (b) fluoranther	ie	< 10.0	ug/L		1/18/2017 2	0:21
Benzo (g,h,i) perylene	<u>)</u>	< 10.0	ug/L		1/18/2017 2	0:21
Benzo (k) fluoranther	ie	< 10.0	ug/L		1/18/2017 2	0:21
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		1/18/2017 2	0:21
Bis (2-chloroethyl) et	her	< 10.0	ug/L		1/18/2017 2	0:21
Bis (2-ethylhexyl) pht	thalate	< 10.0	ug/L		1/18/2017 2	0:21
Butylbenzylphthalate		< 10.0	ug/L		1/18/2017 2	0:21
Caprolactam		< 10.0	ug/L		1/18/2017 2	0:21
Carbazole		< 10.0	ug/L		1/18/2017 2	0:21
Chrysene		< 10.0	ug/L		1/18/2017 2	0:21
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		1/18/2017 2	0:21
Dibenzofuran		< 10.0	ug/L		1/18/2017 2	0:21
Diethyl phthalate		< 10.0	ug/L		1/18/2017 2	0:21
Dimethyl phthalate		< 20.0	ug/L		1/18/2017 2	0:21
Di-n-butyl phthalate		< 10.0	ug/L		1/18/2017 2	0:21
Di-n-octylphthalate		< 10.0	ug/L		1/18/2017 2	0:21
Fluoranthene		< 10.0	ug/L		1/18/2017 2	0:21
Fluorene		< 10.0	ug/L		1/18/2017 2	0:21

Client:	<u>C&S Compa</u>	<u>inies</u>					
Project Reference:	100 Dona St	reet					
Sample Identifier:	GW-1						
Lab Sample ID:	170188-01	L		Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Hexachlorobenzene		< 10.0	ug/L			1/18/2017	20:21
Hexachlorobutadiene		< 10.0	ug/L			1/18/2017	20:21
Hexachlorocyclopenta	diene	< 10.0	ug/L			1/18/2017	20:21
Hexachloroethane		< 10.0	ug/L			1/18/2017	20:21
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			1/18/2017	20:21
Isophorone		< 10.0	ug/L			1/18/2017	20:21
Naphthalene		< 10.0	ug/L			1/18/2017	20:21
Nitrobenzene		< 10.0	ug/L			1/18/2017	20:21
N-Nitroso-di-n-propyl	amine	< 10.0	ug/L			1/18/2017	20:21
N-Nitrosodiphenylam	ine	< 10.0	ug/L			1/18/2017	20:21
Pentachlorophenol		< 20.0	ug/L			1/18/2017	20:21
Phenanthrene		< 10.0	ug/L			1/18/2017	20:21
Phenol		< 10.0	ug/L			1/18/2017	20:21
Pyrene		< 10.0	ug/L			1/18/2017	20:21
Surrogate		Perce	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromophenol			77.2	32.4 - 137		1/18/2017	20:21
2-Fluorobiphenyl			60.5	44.7 - 111		1/18/2017	20:21
2-Fluorophenol			40.2	12 - 101		1/18/2017	20:21
Nitrobenzene-d5			71.1	52 - 99.4		1/18/2017	20:21
Phenol-d5			25.9	10 - 103		1/18/2017	20:21
Terphenyl-d14			67.5	57.9 - 113		1/18/2017	20:21
Method Referen	ce(s): EPA 8	3270D					
Preparation Da Data File:	EPA 3 te: 1/18, B165	8510C /2017 32.D					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-1				
Lab Sample ID:	170188-01			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
<u>Volatile Organics</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	9	< 2.00	ug/L		1/18/2017 19:43
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 19:43
1,1,2-Trichloroethane	2	< 2.00	ug/L		1/18/2017 19:43
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 19:43
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 19:43
1,2,3-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 19:43
1,2,4-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 19:43
1,2,4-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 19:43
1,2-Dibromo-3-Chlore	opropane	< 10.0	ug/L		1/18/2017 19:43
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 19:43
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:43
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 19:43
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 19:43
1,3,5-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 19:43
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:43
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:43
1,4-dioxane		< 20.0	ug/L		1/18/2017 19:43
2-Butanone		< 10.0	ug/L		1/18/2017 19:43
2-Hexanone		< 5.00	ug/L		1/18/2017 19:43
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 19:43
Acetone		18.7	ug/L		1/18/2017 19:43
Benzene		< 1.00	ug/L		1/18/2017 19:43
Bromochloromethane	9	< 5.00	ug/L		1/18/2017 19:43
Bromodichlorometha	ne	< 2.00	ug/L		1/18/2017 19:43
Bromoform		< 5.00	ug/L		1/18/2017 19:43
Bromomethane		< 2.00	ug/L		1/18/2017 19:43
Carbon disulfide		1.49	ug/L	J	1/18/2017 19:43

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stre	et				
Sample Identifier:	GW-1					
Lab Sample ID:	170188-01			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
Carbon Tetrachloride		< 2.00	ug/L		1/18/2017 19:	:43
Chlorobenzene		< 2.00	ug/L		1/18/2017 19:	:43
Chloroethane		< 2.00	ug/L		1/18/2017 19:	:43
Chloroform		< 2.00	ug/L		1/18/2017 19:	:43
Chloromethane		< 2.00	ug/L		1/18/2017 19:	:43
cis-1,2-Dichloroethen	e	< 2.00	ug/L		1/18/2017 19:	:43
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		1/18/2017 19:	:43
Cyclohexane		< 10.0	ug/L		1/18/2017 19:	:43
Dibromochlorometha	ne	< 2.00	ug/L		1/18/2017 19:	:43
Dichlorodifluorometh	ane	< 2.00	ug/L		1/18/2017 19:	:43
Ethylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
Freon 113		< 2.00	ug/L		1/18/2017 19:	:43
Isopropylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
m,p-Xylene		< 2.00	ug/L		1/18/2017 19:	:43
Methyl acetate		< 2.00	ug/L		1/18/2017 19:	:43
Methyl tert-butyl Ethe	er	< 2.00	ug/L		1/18/2017 19:	:43
Methylcyclohexane		< 2.00	ug/L		1/18/2017 19:	:43
Methylene chloride		< 5.00	ug/L		1/18/2017 19:	:43
Naphthalene		< 5.00	ug/L		1/18/2017 19:	:43
n-Butylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
n-Propylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
o-Xylene		< 2.00	ug/L		1/18/2017 19:	:43
p-Isopropyltoluene		< 2.00	ug/L		1/18/2017 19:	:43
sec-Butylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
Styrene		< 5.00	ug/L		1/18/2017 19:	:43
tert-Butylbenzene		< 2.00	ug/L		1/18/2017 19:	:43
Tetrachloroethene		< 2.00	ug/L		1/18/2017 19:	:43
Toluene		< 2.00	ug/L		1/18/2017 19:	:43
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		1/18/2017 19:	:43
trans-1,3-Dichloropro	pene	< 2.00	ug/L		1/18/2017 19:	:43

Client:	<u>C&S Companie</u>	<u>S</u>					
Project Reference:	100 Dona Stree	t					
Sample Identifier:	GW-1						
Lab Sample ID:	170188-01			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Trichloroethene		< 2.00	ug/L			1/18/2017	19:43
Trichlorofluoromethar	ie	< 2.00	ug/L			1/18/2017	19:43
Vinyl chloride		< 2.00	ug/L			1/18/2017	19:43
<u>Surrogate</u>		Per	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
1,2-Dichloroethane-d4			101	81.2 - 120		1/18/2017	19:43
4-Bromofluorobenzen	e		91.8	82.4 - 112		1/18/2017	19:43
Pentafluorobenzene			87.9	90.2 - 112	*	1/18/2017	19:43
Toluene-D8			100	89.9 - 109		1/18/2017	19:43
Method Referen	ce(s): EPA 82600 EPA 50300						
Data File:	x38552.D		JP.				

 $\langle \cdot \rangle$

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-2				
Lab Sample ID:	170188-02			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
<u>Part 375 Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		< 0.0100	mg/L		1/20/2017 15:19
Barium		0.0766	mg/L	J	1/20/2017 15:19
Beryllium		< 0.00500	mg/L		1/20/2017 15:19
Cadmium		< 0.00500	mg/L		1/20/2017 15:19
Chromium		0.0285	mg/L		1/20/2017 15:19
Copper		0.0125	mg/L	J	1/20/2017 15:19
Lead		< 0.0100	mg/L		1/20/2017 15:19
Manganese		0.323	mg/L		1/20/2017 15:19
Nickel		0.0240	mg/L	J	1/20/2017 15:19
Selenium		0.0119	mg/L		1/23/2017 14:43
Silver		< 0.0100	mg/L		1/20/2017 15:19
Zinc		0.0382	mg/L	J	1/20/2017 15:19
Method Refere	nce(s): EPA 6010 EPA 3005)C 5A			
Preparation Da	ite: 1/19/202	17			
Data File:	012017a				

Client:	<u>C&S Companies</u>	
Project Reference:	100 Dona Street	
Sample Identifier:	GW-2	
Lab Sample ID:	170188-02	Date Sampled: 1/16/2017
Matrix:	Water	Date Received: 1/17/2017
Matrix:	Water	Date Received: 1/17/20

<u>Mercury</u>

<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercur	У	< 0.000200	mg/L		1/18/2017 17:18
	Method Reference(s):	EPA 7470A			
	Preparation Date:	1/18/2017			
	Data File:	Hg170118A			

FINAL

Client:	C&S Companies	<u>s</u>					
Project Reference:	100 Dona Street	-					
Sample Identifier:	GW-2						
Lab Sample ID:	170188-02			Date	e Sampled:	1/16/2017	
Matrix:	Water			Date	e Received:	1/17/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy:	zed
PCB-1016		< 0.200	ug/L			1/23/2017	13:23
PCB-1221		< 0.200	ug/L			1/23/2017	13:23
PCB-1232		< 0.200	ug/L			1/23/2017	13:23
PCB-1242		< 0.200	ug/L			1/23/2017	13:23
PCB-1248		< 0.200	ug/L			1/23/2017	13:23
PCB-1254		< 0.200	ug/L			1/23/2017	13:23
PCB-1260		< 0.200	ug/L			1/23/2017	13:23
PCB-1262		< 0.200	ug/L			1/23/2017	13:23
PCB-1268		< 0.200	ug/L			1/23/2017	13:23
<u>Surrogate</u>		<u>Perce</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy:	<u>zed</u>
Decachlorobiphenyl			39.7	10 - 105		1/23/2017	13:23
Tetrachloro-m-xylene			53.6	15.7 - 95.8		1/23/2017	13:23
Reporting limit ele Method Reference	wated due to sample matri ce(s): EPA 8082A EPA 3510C	ix					
Preparation Date	e: 1/19/2017						

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-2				
Lab Sample ID:	170188-02			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Semi-Volatile Organic	<u>s (Acid/Base Ne</u>	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		1/19/2017 21:09
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		1/19/2017 21:09
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		1/19/2017 21:09
1,2-Dichlorobenzene		< 10.0	ug/L		1/19/2017 21:09
1,3-Dichlorobenzene		< 10.0	ug/L		1/19/2017 21:09
1,4-Dichlorobenzene		< 10.0	ug/L		1/19/2017 21:09
2,2-Oxybis (1-chlorop	propane)	< 10.0	ug/L		1/19/2017 21:09
2,3,4,6-Tetrachloroph	nenol	< 10.0	ug/L		1/19/2017 21:09
2,4,5-Trichloropheno	1	< 20.0	ug/L		1/19/2017 21:09
2,4,6-Trichloropheno	1	< 10.0	ug/L		1/19/2017 21:09
2,4-Dichlorophenol		< 10.0	ug/L		1/19/2017 21:09
2,4-Dimethylphenol		< 10.0	ug/L		1/19/2017 21:09
2,4-Dinitrophenol		< 20.0	ug/L		1/19/2017 21:09
2,4-Dinitrotoluene		< 10.0	ug/L		1/19/2017 21:09
2,6-Dinitrotoluene		< 10.0	ug/L		1/19/2017 21:09
2-Chloronaphthalene		< 10.0	ug/L		1/19/2017 21:09
2-Chlorophenol		< 10.0	ug/L		1/19/2017 21:09
2-Methylnapthalene		< 10.0	ug/L		1/19/2017 21:09
2-Methylphenol		< 10.0	ug/L		1/19/2017 21:09
2-Nitroaniline		< 20.0	ug/L		1/19/2017 21:09
2-Nitrophenol		< 10.0	ug/L		1/19/2017 21:09
3&4-Methylphenol		< 10.0	ug/L		1/19/2017 21:09
3,3'-Dichlorobenzidir	ne	< 10.0	ug/L		1/19/2017 21:09
3-Nitroaniline		< 20.0	ug/L		1/19/2017 21:09
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		1/19/2017 21:09
4-Bromophenyl phen	yl ether	< 10.0	ug/L		1/19/2017 21:09
4-Chloro-3-methylph	enol	< 10.0	ug/L		1/19/2017 21:09

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	GW-2				
Lab Sample ID:	170188-02			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
4-Chloroaniline		< 10.0	ug/L		1/19/2017 21:09
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		1/19/2017 21:09
4-Nitroaniline		< 20.0	ug/L		1/19/2017 21:09
4-Nitrophenol		< 20.0	ug/L		1/19/2017 21:09
Acenaphthene		< 10.0	ug/L		1/19/2017 21:09
Acenaphthylene		< 10.0	ug/L		1/19/2017 21:09
Acetophenone		< 10.0	ug/L		1/19/2017 21:09
Anthracene		< 10.0	ug/L		1/19/2017 21:09
Atrazine		< 10.0	ug/L		1/19/2017 21:09
Benzaldehyde		< 10.0	ug/L		1/19/2017 21:09
Benzo (a) anthracene		< 10.0	ug/L		1/19/2017 21:09
Benzo (a) pyrene		< 10.0	ug/L		1/19/2017 21:09
Benzo (b) fluoranther	ie	< 10.0	ug/L		1/19/2017 21:09
Benzo (g,h,i) perylene	2	< 10.0	ug/L		1/19/2017 21:09
Benzo (k) fluoranthen	ie	< 10.0	ug/L		1/19/2017 21:09
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		1/19/2017 21:09
Bis (2-chloroethyl) et	her	< 10.0	ug/L		1/19/2017 21:09
Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		1/19/2017 21:09
Butylbenzylphthalate		< 10.0	ug/L		1/19/2017 21:09
Caprolactam		< 10.0	ug/L		1/19/2017 21:09
Carbazole		< 10.0	ug/L		1/19/2017 21:09
Chrysene		< 10.0	ug/L		1/19/2017 21:09
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		1/19/2017 21:09
Dibenzofuran		< 10.0	ug/L		1/19/2017 21:09
Diethyl phthalate		< 10.0	ug/L		1/19/2017 21:09
Dimethyl phthalate		< 20.0	ug/L		1/19/2017 21:09
Di-n-butyl phthalate		< 10.0	ug/L		1/19/2017 21:09
Di-n-octylphthalate		< 10.0	ug/L		1/19/2017 21:09
Fluoranthene		< 10.0	ug/L		1/19/2017 21:09
Fluorene		< 10.0	ug/L		1/19/2017 21:09

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Stre	eet					
Sample Identifier:	GW-2						
Lab Sample ID:	170188-02			Date	e Sampled:	1/16/2017	
Matrix:	Water			Date	e Received:	1/17/2017	
Hexachlorobenzene		< 10.0	ug/L			1/19/2017	21:09
Hexachlorobutadiene		< 10.0	ug/L			1/19/2017	21:09
Hexachlorocyclopenta	diene	< 10.0	ug/L			1/19/2017	21:09
Hexachloroethane		< 10.0	ug/L			1/19/2017	21:09
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			1/19/2017	21:09
Isophorone		< 10.0	ug/L			1/19/2017	21:09
Naphthalene		< 10.0	ug/L			1/19/2017	21:09
Nitrobenzene		< 10.0	ug/L			1/19/2017	21:09
N-Nitroso-di-n-propyl	amine	< 10.0	ug/L			1/19/2017	21:09
N-Nitrosodiphenylam	ine	< 10.0	ug/L	1		1/19/2017	21:09
Pentachlorophenol		< 20.0	ug/L			1/19/2017	21:09
Phenanthrene		< 10.0	ug/L			1/19/2017	21:09
Phenol		< 10.0	ug/L			1/19/2017	21:09
Pyrene		< 10.0	ug/L			1/19/2017	21:09
Surrogate		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol	l		87.0	32.4 - 137		1/19/2017	21:09
2-Fluorobiphenyl			64.9	44.7 - 111		1/19/2017	21:09
2-Fluorophenol			39.3	12 - 101		1/19/2017	21:09
Nitrobenzene-d5			70.5	52 - 99.4		1/19/2017	21:09
Phenol-d5			24.8	10 - 103		1/19/2017	21:09
Terphenyl-d14			83.7	57.9 - 113		1/19/2017	21:09
Method Referen	nce(s): EPA 827	70D					
Preparation Da Data File:	EPA 351 te: 1/18/20 B16553	10C 017 .D					

Client:	<u>C&S Compani</u>	es						
Project Reference:	100 Dona Street							
Sample Identifier:	GW-2							
Lab Sample ID:	170188-02			Date Sampled:	1/16/2017			
Matrix:	Water			Date Received:	1/17/2017			
<u>Volatile Organics</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	9	< 2.00	ug/L		1/18/2017 19:19			
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 19:19			
1,1,2-Trichloroethane	9	< 2.00	ug/L		1/18/2017 19:19			
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 19:19			
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 19:19			
1,2,3-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 19:19			
1,2,4-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 19:19			
1,2,4-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 19:19			
1,2-Dibromo-3-Chlore	opropane	< 10.0	ug/L		1/18/2017 19:19			
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 19:19			
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:19			
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 19:19			
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 19:19			
1,3,5-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 19:19			
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:19			
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 19:19			
1,4-dioxane		< 20.0	ug/L		1/18/2017 19:19			
2-Butanone		< 10.0	ug/L		1/18/2017 19:19			
2-Hexanone		< 5.00	ug/L		1/18/2017 19:19			
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 19:19			
Acetone		5.75	ug/L	J	1/18/2017 19:19			
Benzene		< 1.00	ug/L		1/18/2017 19:19			
Bromochloromethane	2	< 5.00	ug/L		1/18/2017 19:19			
Bromodichlorometha	ne	< 2.00	ug/L		1/18/2017 19:19			
Bromoform		< 5.00	ug/L		1/18/2017 19:19			
Bromomethane		< 2.00	ug/L		1/18/2017 19:19			
Carbon disulfide		< 2.00	ug/L		1/18/2017 19:19			

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	GW-2				
Lab Sample ID:	170188-02			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Carbon Tetrachloride		< 2.00	ug/L		1/18/2017 19:19
Chlorobenzene		< 2.00	ug/L		1/18/2017 19:19
Chloroethane		< 2.00	ug/L		1/18/2017 19:19
Chloroform		< 2.00	ug/L		1/18/2017 19:19
Chloromethane		< 2.00	ug/L		1/18/2017 19:19
cis-1,2-Dichloroethen	e	< 2.00	ug/L		1/18/2017 19:19
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		1/18/2017 19:19
Cyclohexane		< 10.0	ug/L		1/18/2017 19:19
Dibromochlorometha	ne	< 2.00	ug/L		1/18/2017 19:19
Dichlorodifluorometh	ane	< 2.00	ug/L		1/18/2017 19:19
Ethylbenzene		< 2.00	ug/L		1/18/2017 19:19
Freon 113		< 2.00	ug/L		1/18/2017 19:19
Isopropylbenzene		< 2.00	ug/L		1/18/2017 19:19
m,p-Xylene		< 2.00	ug/L		1/18/2017 19:19
Methyl acetate		< 2.00	ug/L		1/18/2017 19:19
Methyl tert-butyl Ethe	er	< 2.00	ug/L		1/18/2017 19:19
Methylcyclohexane		6.05	ug/L		1/18/2017 19:19
Methylene chloride		< 5.00	ug/L		1/18/2017 19:19
Naphthalene		< 5.00	ug/L		1/18/2017 19:19
n-Butylbenzene		< 2.00	ug/L		1/18/2017 19:19
n-Propylbenzene		< 2.00	ug/L		1/18/2017 19:19
o-Xylene		< 2.00	ug/L		1/18/2017 19:19
p-Isopropyltoluene		< 2.00	ug/L		1/18/2017 19:19
sec-Butylbenzene		< 2.00	ug/L		1/18/2017 19:19
Styrene		< 5.00	ug/L		1/18/2017 19:19
tert-Butylbenzene		< 2.00	ug/L		1/18/2017 19:19
Tetrachloroethene		< 2.00	ug/L		1/18/2017 19:19
Toluene		< 2.00	ug/L		1/18/2017 19:19
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		1/18/2017 19:19
trans-1,3-Dichloropro	pene	< 2.00	ug/L		1/18/2017 19:19

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	GW-2						
Lab Sample ID:	170188-02			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Trichloroethene		< 2.00	ug/L			1/18/2017	19:19
Trichlorofluoromethar	ie	< 2.00	ug/L			1/18/2017	19:19
Vinyl chloride		< 2.00	ug/L			1/18/2017	19:19
<u>Surrogate</u>		Per	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			91.9	81.2 - 120		1/18/2017	19:19
4-Bromofluorobenzene	e		90.8	82.4 - 112		1/18/2017	19:19
Pentafluorobenzene			88.4	90.2 - 112	*	1/18/2017	19:19
Toluene-D8			104	89.9 - 109		1/18/2017	19:19
Method Reference	ce(s): EPA 8260 EPA 5030	C C					
Data File:	x38551.D		SP				

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	GW-3		
Lab Sample ID:	170188-03	Date Sampled: 1	/16/2017
Matrix:	Water	Date Received: 1	/17/2017

<u>Mercury</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	0.000116	mg/L	J	1/18/2017 17:21
Method Reference(s):	EPA 7470A			
Preparation Date:	1/18/2017			
Data File:	Hg170118A			

FINAL

Client:	<u>C&S Con</u>	npanies	6			
Project Reference:	100 Don	a Street				
Sample Identifier:	GW-3					
Lab Sample ID:	170188	8-03			Date Sampled:	1/16/2017
Matrix:	Water				Date Received:	1/17/2017
<u>TAL Metals (ICP)</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum			37.3	mg/L		1/20/2017 15:23
Antimony			< 0.0600	mg/L		1/20/2017 15:23
Arsenic			0.0199	mg/L		1/23/2017 14:47
Barium			0.372	mg/L		1/20/2017 15:23
Beryllium			< 0.00500	mg/L		1/20/2017 15:23
Cadmium			< 0.00500	mg/L		1/20/2017 15:23
Calcium			431	mg/L		1/20/2017 15:23
Chromium			0.0551	mg/L		1/20/2017 15:23
Cobalt			< 0.0500	mg/L		1/20/2017 15:23
Copper			0.0688	mg/L		1/20/2017 15:23
Iron			44.6	mg/L		1/20/2017 15:23
Lead			0.0295	mg/L		1/20/2017 15:23
Magnesium			62.3	mg/L		1/20/2017 15:23
Manganese			1.00	mg/L		1/20/2017 15:23
Nickel			0.0677	mg/L		1/20/2017 15:23
Potassium			15.4	mg/L		1/20/2017 15:23
Selenium			< 0.0100	mg/L		1/23/2017 14:47
Silver			< 0.0100	mg/L		1/20/2017 15:23
Sodium			40.4	mg/L		1/20/2017 15:23
Thallium			< 0.0250	mg/L		1/20/2017 15:23
Vanadium			0.0553	mg/L		1/20/2017 15:23
Zinc			0.211	mg/L		1/20/2017 15:23
Method Refere Preparation Da	ence(s):	EPA 6010C EPA 3005A 1/19/2017				
Data File:		012017a				

Client:	C&S Companies	<u>i</u>					
Project Reference:	100 Dona Street						
Sample Identifier:	GW-3						
Lab Sample ID:	170188-03			Dat	te Sampled:	1/16/2017	
Matrix:	Water			Dat	te Received:	1/17/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		<u>Qualifier</u>	Date Analy	<u>zed</u>
PCB-1016		< 0.100	ug/L			1/21/2017	08:17
PCB-1221		< 0.100	ug/L			1/21/2017	08:17
PCB-1232		< 0.100	ug/L			1/21/2017	08:17
PCB-1242		< 0.100	ug/L			1/21/2017	08:17
PCB-1248		< 0.100	ug/L			1/21/2017	08:17
PCB-1254		< 0.100	ug/L			1/21/2017	08:17
PCB-1260		< 0.100	ug/L			1/21/2017	08:17
PCB-1262		< 0.100	ug/L			1/21/2017	08:17
PCB-1268		< 0.100	ug/L			1/21/2017	08:17
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			22.0	10 - 105		1/21/2017	08:17
Tetrachloro-m-xylene		X	53.7	15.7 - 95.8		1/21/2017	08:17
Method Reference	e(s): EPA 8082A EPA 3510C	•					
Preparation Date	: 1/19/2017						

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-3				
Lab Sample ID:	170188-03			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Semi-Volatile Organic	<u>:s (Acid/Base Ne</u>	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		1/18/2017 22:19
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		1/18/2017 22:19
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		1/18/2017 22:19
1,2-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:19
1,3-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:19
1,4-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:19
2,2-Oxybis (1-chloro)	propane)	< 10.0	ug/L		1/18/2017 22:19
2,3,4,6-Tetrachloropl	henol	< 10.0	ug/L		1/18/2017 22:19
2,4,5-Trichloropheno	bl	< 20.0	ug/L		1/18/2017 22:19
2,4,6-Trichloropheno	bl	< 10.0	ug/L		1/18/2017 22:19
2,4-Dichlorophenol		< 10.0	ug/L		1/18/2017 22:19
2,4-Dimethylphenol		< 10.0	ug/L		1/18/2017 22:19
2,4-Dinitrophenol		< 20.0	ug/L		1/18/2017 22:19
2,4-Dinitrotoluene		< 10.0	ug/L		1/18/2017 22:19
2,6-Dinitrotoluene		< 10.0	ug/L		1/18/2017 22:19
2-Chloronaphthalene		< 10.0	ug/L		1/18/2017 22:19
2-Chlorophenol		< 10.0	ug/L		1/18/2017 22:19
2-Methylnapthalene		< 10.0	ug/L		1/18/2017 22:19
2-Methylphenol		< 10.0	ug/L		1/18/2017 22:19
2-Nitroaniline		< 20.0	ug/L		1/18/2017 22:19
2-Nitrophenol		< 10.0	ug/L		1/18/2017 22:19
3&4-Methylphenol		< 10.0	ug/L		1/18/2017 22:19
3,3'-Dichlorobenzidir	ne	< 10.0	ug/L		1/18/2017 22:19
3-Nitroaniline		< 20.0	ug/L		1/18/2017 22:19
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		1/18/2017 22:19
4-Bromophenyl phen	yl ether	< 10.0	ug/L		1/18/2017 22:19
4-Chloro-3-methylph	enol	< 10.0	ug/L		1/18/2017 22:19

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	GW-3				
Lab Sample ID:	170188-03			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
4-Chloroaniline		< 10.0	ug/L		1/18/2017 22:19
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		1/18/2017 22:19
4-Nitroaniline		< 20.0	ug/L		1/18/2017 22:19
4-Nitrophenol		< 20.0	ug/L		1/18/2017 22:19
Acenaphthene		< 10.0	ug/L		1/18/2017 22:19
Acenaphthylene		< 10.0	ug/L		1/18/2017 22:19
Acetophenone		< 10.0	ug/L		1/18/2017 22:19
Anthracene		< 10.0	ug/L		1/18/2017 22:19
Atrazine		< 10.0	ug/L		1/18/2017 22:19
Benzaldehyde		< 10.0	ug/L		1/18/2017 22:19
Benzo (a) anthracene		< 10.0	ug/L		1/18/2017 22:19
Benzo (a) pyrene		< 10.0	ug/L		1/18/2017 22:19
Benzo (b) fluoranther	ie	< 10.0	ug/L		1/18/2017 22:19
Benzo (g,h,i) perylene	2	< 10.0	ug/L		1/18/2017 22:19
Benzo (k) fluoranthen	ie	< 10.0	ug/L		1/18/2017 22:19
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		1/18/2017 22:19
Bis (2-chloroethyl) et	her	< 10.0	ug/L		1/18/2017 22:19
Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		1/18/2017 22:19
Butylbenzylphthalate		< 10.0	ug/L		1/18/2017 22:19
Caprolactam		< 10.0	ug/L		1/18/2017 22:19
Carbazole		< 10.0	ug/L		1/18/2017 22:19
Chrysene		< 10.0	ug/L		1/18/2017 22:19
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		1/18/2017 22:19
Dibenzofuran		< 10.0	ug/L		1/18/2017 22:19
Diethyl phthalate		< 10.0	ug/L		1/18/2017 22:19
Dimethyl phthalate		< 20.0	ug/L		1/18/2017 22:19
Di-n-butyl phthalate		< 10.0	ug/L		1/18/2017 22:19
Di-n-octylphthalate		< 10.0	ug/L		1/18/2017 22:19
Fluoranthene		< 10.0	ug/L		1/18/2017 22:19
Fluorene		< 10.0	ug/L		1/18/2017 22:19

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Stre	eet					
Sample Identifier:	GW-3						
Lab Sample ID:	170188-03			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Date	e Received:	1/17/2017	
Hexachlorobenzene		< 10.0	ug/L			1/18/2017	22:19
Hexachlorobutadiene		< 10.0	ug/L			1/18/2017	22:19
Hexachlorocyclopenta	diene	< 10.0	ug/L			1/18/2017	22:19
Hexachloroethane		< 10.0	ug/L			1/18/2017	22:19
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			1/18/2017	22:19
Isophorone		< 10.0	ug/L			1/18/2017	22:19
Naphthalene		< 10.0	ug/L			1/18/2017	22:19
Nitrobenzene		< 10.0	ug/L			1/18/2017	22:19
N-Nitroso-di-n-propy	amine	< 10.0	ug/L			1/18/2017	22:19
N-Nitrosodiphenylam	ine	< 10.0	ug/L			1/18/2017	22:19
Pentachlorophenol		< 20.0	ug/L			1/18/2017	22:19
Phenanthrene		< 10.0	ug/L			1/18/2017	22:19
Phenol		< 10.0	ug/L			1/18/2017	22:19
Pyrene		< 10.0	ug/L			1/18/2017	22:19
Surrogate		Perce	ent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		90.5	32.4 - 137		1/18/2017	22:19
2-Fluorobiphenyl			70.3	44.7 - 111		1/18/2017	22:19
2-Fluorophenol			45.5	12 - 101		1/18/2017	22:19
Nitrobenzene-d5			79.7	52 - 99.4		1/18/2017	22:19
Phenol-d5			29.1	10 - 103		1/18/2017	22:19
Terphenyl-d14			91.5	57.9 - 113		1/18/2017	22:19
Method Referen	nce(s): EPA 827	0D					
Preparation Da Data File:	te: 1/18/20 B16536.	00 17 D					

Client:	<u>C&S Compani</u>	es						
Project Reference:	100 Dona Street							
Sample Identifier:	GW-3							
Lab Sample ID:	170188-03			Date Sampled:	1/16/2017			
Matrix:	Water			Date Received:	1/17/2017			
<u>Volatile Organics</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
1,1,1-Trichloroethane	2	< 2.00	ug/L		1/18/2017 18:50			
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 18:50			
1,1,2-Trichloroethane	2	< 2.00	ug/L		1/18/2017 18:50			
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 18:50			
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 18:50			
1,2,3-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 18:50			
1,2,4-Trichlorobenzei	ne	< 5.00	ug/L		1/18/2017 18:50			
1,2-Dibromo-3-Chlor	opropane	< 10.0	ug/L		1/18/2017 18:50			
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 18:50			
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:50			
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 18:50			
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 18:50			
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:50			
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:50			
1,4-dioxane		< 20.0	ug/L		1/18/2017 18:50			
2-Butanone		< 10.0	ug/L		1/18/2017 18:50			
2-Hexanone		< 5.00	ug/L		1/18/2017 18:50			
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 18:50			
Acetone		19.9	ug/L		1/18/2017 18:50			
Benzene		< 1.00	ug/L		1/18/2017 18:50			
Bromochloromethane	e	< 5.00	ug/L		1/18/2017 18:50			
Bromodichlorometha	ne	< 2.00	ug/L		1/18/2017 18:50			
Bromoform		< 5.00	ug/L		1/18/2017 18:50			
Bromomethane		< 2.00	ug/L		1/18/2017 18:50			
Carbon disulfide		< 2.00	ug/L		1/18/2017 18:50			
Carbon Tetrachloride	!	< 2.00	ug/L		1/18/2017 18:50			
Chlorobenzene		< 2.00	ug/L		1/18/2017 18:50			

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stre	et				
Sample Identifier:	GW-3					
Lab Sample ID:	170188-03			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
Chloroethane		< 2.00	ug/L		1/18/2017	18:50
Chloroform		< 2.00	ug/L		1/18/2017	18:50
Chloromethane		< 2.00	ug/L		1/18/2017	18:50
cis-1,2-Dichloroethen	e	< 2.00	ug/L		1/18/2017	18:50
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		1/18/2017	18:50
Cyclohexane		< 10.0	ug/L		1/18/2017	18:50
Dibromochlorometha	ne	< 2.00	ug/L		1/18/2017	18:50
Dichlorodifluorometh	ane	< 2.00	ug/L		1/18/2017	18:50
Ethylbenzene		< 2.00	ug/L		1/18/2017	18:50
Freon 113		< 2.00	ug/L		1/18/2017	18:50
Isopropylbenzene		< 2.00	ug/L		1/18/2017	18:50
m,p-Xylene		< 2.00	ug/L		1/18/2017	18:50
Methyl acetate		< 2.00	ug/L		1/18/2017	18:50
Methyl tert-butyl Ethe	er	< 2.00	ug/L		1/18/2017	18:50
Methylcyclohexane		< 2.00	ug/L		1/18/2017	18:50
Methylene chloride		< 5.00	ug/L		1/18/2017	18:50
o-Xylene		< 2.00	ug/L		1/18/2017	18:50
Styrene		< 5.00	ug/L		1/18/2017	18:50
Tetrachloroethene		< 2.00	ug/L		1/18/2017	18:50
Toluene		< 2.00	ug/L		1/18/2017	18:50
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		1/18/2017	18:50
trans-1,3-Dichloropro	opene	< 2.00	ug/L		1/18/2017	18:50
Trichloroethene		< 2.00	ug/L		1/18/2017	18:50
Trichlorofluorometha	ne	< 2.00	ug/L		1/18/2017	18:50
Vinyl chloride		< 2.00	ug/L		1/18/2017	18:50

Client:	<u>C&S (</u>	<u>Companies</u>					
Project Reference:	100 D	ona Street					
Sample Identifier:	GW-	3					
Lab Sample ID:	1701	88-03		Dat	1/16/2017	1/16/2017	
Matrix:	Wate	er		Dat	e Received:	1/17/2017	
<u>Surrogate</u>			Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	4		104	81.2 - 120		1/18/2017	18:50
4-Bromofluorobenzen	ie		91.8	82.4 - 112		1/18/2017	18:50
Pentafluorobenzene			88.8	90.2 - 112	*	1/18/2017	18:50
Toluene-D8			101	89.9 - 109		1/18/2017	18:50
Method Referer	ice(s):	EPA 8260C EPA 5030C					

Data File:

x38550.D

FINAL

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	DUP		
Lab Sample ID:	170188-04	Date Sampled:	1/16/2017
Matrix:	Water	Date Received:	1/17/2017

<u>Mercury</u>

<u>Analyte</u>	2	Result	<u>Units</u>	Qualific	er Date Analyzed
Mercu	ıry	< 0.000200	mg/L		1/18/2017 17:25
	Method Reference(s):	EPA 7470A			
	Preparation Date:	1/18/2017			
	Data File:	Hg170118A			

FINAL

Client:	<u>C&S Con</u>	<u>npanies</u>	i			
Project Reference:	100 Don	a Street				
Sample Identifier:	DUP					
Lab Sample ID:	170188	-04			Date Sampled:	1/16/2017
Matrix:	Water				Date Received:	1/17/2017
<u>TAL Metals (ICP)</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum			34.7	mg/L		1/20/2017 15:27
Antimony			< 0.0600	mg/L		1/20/2017 15:27
Arsenic			0.0156	mg/L		1/23/2017 14:51
Barium			0.358	mg/L		1/20/2017 15:27
Beryllium			< 0.00500	mg/L		1/20/2017 15:27
Cadmium			< 0.00500	mg/L		1/20/2017 15:27
Calcium			436	mg/L		1/20/2017 15:27
Chromium			0.0502	mg/L		1/20/2017 15:27
Cobalt			< 0.0500	mg/L		1/20/2017 15:27
Copper			0.0667	mg/L		1/20/2017 15:27
Iron			42.7	mg/L		1/20/2017 15:27
Lead			0.0286	mg/L		1/20/2017 15:27
Magnesium			62.1	mg/L		1/20/2017 15:27
Manganese			1.00	mg/L		1/20/2017 15:27
Nickel			0.0638	mg/L		1/20/2017 15:27
Potassium			15.0	mg/L		1/20/2017 15:27
Selenium			< 0.0100	mg/L		1/23/2017 14:51
Silver			< 0.0100	mg/L		1/20/2017 15:27
Sodium			41.8	mg/L		1/20/2017 15:27
Thallium			< 0.0250	mg/L		1/20/2017 15:27
Vanadium			0.0524	mg/L		1/20/2017 15:27
Zinc			0.205	mg/L		1/20/2017 15:27
Method Refere	ence(s):	EPA 6010C EPA 3005A				
Data File:	ate: ()12017a				

Client:	<u>C&S Compani</u>	es					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	DUP						
Lab Sample ID:	170188-04			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.100	ug/L			1/21/2017	08:39
PCB-1221		< 0.100	ug/L			1/21/2017	08:39
PCB-1232		< 0.100	ug/L			1/21/2017	08:39
PCB-1242		< 0.100	ug/L			1/21/2017	08:39
PCB-1248		< 0.100	ug/L			1/21/2017	08:39
PCB-1254		< 0.100	ug/L			1/21/2017	08:39
PCB-1260		< 0.100	ug/L			1/21/2017	08:39
PCB-1262		< 0.100	ug/L			1/21/2017	08:39
PCB-1268		< 0.100	ug/L			1/21/2017	08:39
<u>Surrogate</u>		<u>Perce</u>	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			53.8	10 - 105		1/21/2017	08:39
Tetrachloro-m-xylene			50.9	15.7 - 95.8		1/21/2017	08:39
Method Reference	e(s): EPA 808 EPA 351	2A 0C					
Preparation Date	e: 1/19/20	17					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	DUP				
Lab Sample ID:	170188-04			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Semi-Volatile Organic	s (Acid/Base Ne	<u>utrals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		1/18/2017 22:48
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		1/18/2017 22:48
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		1/18/2017 22:48
1,2-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:48
1,3-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:48
1,4-Dichlorobenzene		< 10.0	ug/L		1/18/2017 22:48
2,2-Oxybis (1-chlorop	propane)	< 10.0	ug/L		1/18/2017 22:48
2,3,4,6-Tetrachloropl	nenol	< 10.0	ug/L		1/18/2017 22:48
2,4,5-Trichloropheno	l	< 20.0	ug/L		1/18/2017 22:48
2,4,6-Trichloropheno	l	< 10.0	ug/L		1/18/2017 22:48
2,4-Dichlorophenol		< 10.0	ug/L		1/18/2017 22:48
2,4-Dimethylphenol		< 10.0	ug/L		1/18/2017 22:48
2,4-Dinitrophenol		< 20.0	ug/L		1/18/2017 22:48
2,4-Dinitrotoluene		< 10.0	ug/L		1/18/2017 22:48
2,6-Dinitrotoluene		< 10.0	ug/L		1/18/2017 22:48
2-Chloronaphthalene	9	< 10.0	ug/L		1/18/2017 22:48
2-Chlorophenol		< 10.0	ug/L		1/18/2017 22:48
2-Methylnapthalene		< 10.0	ug/L		1/18/2017 22:48
2-Methylphenol		< 10.0	ug/L		1/18/2017 22:48
2-Nitroaniline		< 20.0	ug/L		1/18/2017 22:48
2-Nitrophenol		< 10.0	ug/L		1/18/2017 22:48
3&4-Methylphenol		< 10.0	ug/L		1/18/2017 22:48
3,3'-Dichlorobenzidir	ne	< 10.0	ug/L		1/18/2017 22:48
3-Nitroaniline		< 20.0	ug/L		1/18/2017 22:48
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		1/18/2017 22:48
4-Bromophenyl phen	yl ether	< 10.0	ug/L		1/18/2017 22:48
4-Chloro-3-methylph	enol	< 10.0	ug/L		1/18/2017 22:48

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	DUP				
Lab Sample ID:	170188-04			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
4-Chloroaniline		< 10.0	ug/L		1/18/2017 22:48
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		1/18/2017 22:48
4-Nitroaniline		< 20.0	ug/L		1/18/2017 22:48
4-Nitrophenol		< 20.0	ug/L		1/18/2017 22:48
Acenaphthene		< 10.0	ug/L		1/18/2017 22:48
Acenaphthylene		< 10.0	ug/L		1/18/2017 22:48
Acetophenone		< 10.0	ug/L		1/18/2017 22:48
Anthracene		< 10.0	ug/L		1/18/2017 22:48
Atrazine		< 10.0	ug/L		1/18/2017 22:48
Benzaldehyde		< 10.0	ug/L		1/18/2017 22:48
Benzo (a) anthracene		< 10.0	ug/L		1/18/2017 22:48
Benzo (a) pyrene		< 10.0	ug/L		1/18/2017 22:48
Benzo (b) fluoranther	ie	< 10.0	ug/L		1/18/2017 22:48
Benzo (g,h,i) perylene	2	< 10.0	ug/L		1/18/2017 22:48
Benzo (k) fluoranthen	ie	< 10.0	ug/L		1/18/2017 22:48
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		1/18/2017 22:48
Bis (2-chloroethyl) et	her	< 10.0	ug/L		1/18/2017 22:48
Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		1/18/2017 22:48
Butylbenzylphthalate		< 10.0	ug/L		1/18/2017 22:48
Caprolactam		< 10.0	ug/L		1/18/2017 22:48
Carbazole		< 10.0	ug/L		1/18/2017 22:48
Chrysene		< 10.0	ug/L		1/18/2017 22:48
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		1/18/2017 22:48
Dibenzofuran		< 10.0	ug/L		1/18/2017 22:48
Diethyl phthalate		< 10.0	ug/L		1/18/2017 22:48
Dimethyl phthalate		< 20.0	ug/L		1/18/2017 22:48
Di-n-butyl phthalate		< 10.0	ug/L		1/18/2017 22:48
Di-n-octylphthalate		< 10.0	ug/L		1/18/2017 22:48
Fluoranthene		< 10.0	ug/L		1/18/2017 22:48
Fluorene		< 10.0	ug/L		1/18/2017 22:48

Client:	<u>C&S Compani</u>	<u>es</u>					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	DUP						
Lab Sample ID:	170188-04			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Hexachlorobenzene		< 10.0	ug/L			1/18/2017	22:48
Hexachlorobutadiene		< 10.0	ug/L			1/18/2017	22:48
Hexachlorocyclopenta	adiene	< 10.0	ug/L			1/18/2017	22:48
Hexachloroethane		< 10.0	ug/L			1/18/2017	22:48
Indeno (1,2,3-cd) pyro	ene	< 10.0	ug/L			1/18/2017	22:48
Isophorone		< 10.0	ug/L			1/18/2017	22:48
Naphthalene		< 10.0	ug/L			1/18/2017	22:48
Nitrobenzene		< 10.0	ug/L			1/18/2017	22:48
N-Nitroso-di-n-propy	lamine	< 10.0	ug/L			1/18/2017	22:48
N-Nitrosodiphenylam	ine	< 10.0	ug/L	1		1/18/2017	22:48
Pentachlorophenol		< 20.0	ug/L			1/18/2017	22:48
Phenanthrene		< 10.0	ug/L			1/18/2017	22:48
Phenol		< 10.0	ug/L			1/18/2017	22:48
Pyrene		< 10.0	ug/L			1/18/2017	22:48
Surrogate		Perc	ent Recovery	Limits	<u>Outliers</u>	Date Analyz	zed
2,4,6-Tribromopheno	1		89.6	32.4 - 137		1/18/2017	22:48
2-Fluorobiphenyl			71.2	44.7 - 111		1/18/2017	22:48
2-Fluorophenol			43.7	12 - 101		1/18/2017	22:48
Nitrobenzene-d5			79.4	52 - 99.4		1/18/2017	22:48
Phenol-d5			27.1	10 - 103		1/18/2017	22:48
Terphenyl-d14			85.0	57.9 - 113		1/18/2017	22:48
Method Referen	nce(s): EPA 8270	D					
Preparation Da Data File:	te: 1/18/201 B16537.E	1.7)					

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	DUP				
Lab Sample ID:	170188-04			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 2.00	ug/L		1/18/2017 18:27
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 18:27
1,1,2-Trichloroethane	9	< 2.00	ug/L		1/18/2017 18:27
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 18:27
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 18:27
1,2,3-Trichlorobenze	ne	< 5.00	ug/L		1/18/2017 18:27
1,2,4-Trichlorobenze	ne	< 5.00	ug/L		1/18/2017 18:27
1,2-Dibromo-3-Chlor	opropane	< 10.0	ug/L		1/18/2017 18:27
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 18:27
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:27
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 18:27
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 18:27
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:27
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:27
1,4-dioxane		< 20.0	ug/L		1/18/2017 18:27
2-Butanone		< 10.0	ug/L		1/18/2017 18:27
2-Hexanone		< 5.00	ug/L		1/18/2017 18:27
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 18:27
Acetone		8.45	ug/L	J	1/18/2017 18:27
Benzene		< 1.00	ug/L		1/18/2017 18:27
Bromochloromethane	9	< 5.00	ug/L		1/18/2017 18:27
Bromodichlorometha	ne	< 2.00	ug/L		1/18/2017 18:27
Bromoform		< 5.00	ug/L		1/18/2017 18:27
Bromomethane		< 2.00	ug/L		1/18/2017 18:27
Carbon disulfide		< 2.00	ug/L		1/18/2017 18:27
Carbon Tetrachloride		< 2.00	ug/L		1/18/2017 18:27
Chlorobenzene		< 2.00	ug/L		1/18/2017 18:27

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stre	et				
Sample Identifier:	DUP					
Lab Sample ID:	170188-04			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
Chloroethane		< 2.00	ug/L		1/18/2017	18:27
Chloroform		< 2.00	ug/L		1/18/2017	18:27
Chloromethane		< 2.00	ug/L		1/18/2017	18:27
cis-1,2-Dichloroethen	e	< 2.00	ug/L		1/18/2017	18:27
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		1/18/2017	18:27
Cyclohexane		< 10.0	ug/L		1/18/2017	18:27
Dibromochlorometha	ne	< 2.00	ug/L		1/18/2017	18:27
Dichlorodifluorometh	ane	< 2.00	ug/L		1/18/2017	18:27
Ethylbenzene		< 2.00	ug/L		1/18/2017	18:27
Freon 113		< 2.00	ug/L		1/18/2017	18:27
Isopropylbenzene		< 2.00	ug/L		1/18/2017	18:27
m,p-Xylene		< 2.00	ug/L		1/18/2017	18:27
Methyl acetate		< 2.00	ug/L		1/18/2017	18:27
Methyl tert-butyl Ethe	er	< 2.00	ug/L		1/18/2017	18:27
Methylcyclohexane		< 2.00	ug/L		1/18/2017	18:27
Methylene chloride		< 5.00	ug/L		1/18/2017	18:27
o-Xylene		< 2.00	ug/L		1/18/2017	18:27
Styrene		< 5.00	ug/L		1/18/2017	18:27
Tetrachloroethene		< 2.00	ug/L		1/18/2017	18:27
Toluene		< 2.00	ug/L		1/18/2017	18:27
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		1/18/2017	18:27
trans-1,3-Dichloropro	opene	< 2.00	ug/L		1/18/2017	18:27
Trichloroethene		< 2.00	ug/L		1/18/2017	18:27
Trichlorofluorometha	ine	< 2.00	ug/L		1/18/2017	18:27
Vinyl chloride		< 2.00	ug/L		1/18/2017	18:27

Client:	<u>C&S (</u>	<u>Companies</u>					
Project Reference:	100 D	ona Street					
Sample Identifier:	DUP						
Lab Sample ID: 170188-04			Dat	e Sampled:	1/16/2017		
Matrix:	Wate	er		Date Received:		1/17/2017	
Surrogate		Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed	
1,2-Dichloroethane-d4			102	81.2 - 120		1/18/2017	18:27
4-Bromofluorobenzene	9		90.6	82.4 - 112		1/18/2017	18:27
Pentafluorobenzene			90.0	90.2 - 112	*	1/18/2017	18:27
Toluene-D8			100	89.9 - 109		1/18/2017	18:27
Method Reference	ce(s):	EPA 8260C EPA 5030C					
Data File:		x38549.D					

FINAL

Client:	<u>C&S Companies</u>		
Project Reference:	100 Dona Street		
Sample Identifier:	GW-4		
Lab Sample ID:	170188-05	Date Sampled:	1/16/2017
Matrix:	Water	Date Received:	1/17/2017

<u>Mercury</u>

<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury			0.00231	mg/L		1/18/2017 17:29
Method Re	eference(s):	EPA 7470A				
Preparatio	on Date:	1/18/2017				
Data File:		Hg170118A				

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	t			
Sample Identifier:	GW-4				
Lab Sample ID:	170188-05			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
TAL Metals (ICP)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		206	mg/L		1/20/2017 15:32
Antimony		< 0.300	mg/L		1/23/2017 15:00
Arsenic		0.132	mg/L		1/20/2017 15:32
Barium		1.44	mg/L		1/20/2017 15:32
Beryllium		0.00922	mg/L		1/20/2017 15:32
Cadmium		0.0206	mg/L		1/20/2017 15:32
Calcium		6390	mg/L		1/23/2017 15:27
Chromium		0.410	mg/L		1/20/2017 15:32
Cobalt		0.165	mg/L		1/20/2017 15:32
Copper		0.601	mg/L		1/20/2017 15:32
Iron		364	mg/L		1/20/2017 15:32
Lead		0.228	mg/L		1/20/2017 15:32
Magnesium		978	mg/L		1/24/2017 10:30
Manganese		27.6	mg/L		1/23/2017 14:56
Nickel		0.486	mg/L		1/20/2017 15:32
Potassium		50.9	mg/L		1/20/2017 15:32
Selenium		0.0829	mg/L		1/20/2017 15:32
Silver		< 0.100	mg/L		1/23/2017 14:56
Sodium		12.1	mg/L		1/20/2017 15:32
Thallium		0.173	mg/L		1/20/2017 15:32
Vanadium		0.413	mg/L		1/20/2017 15:32
Zinc		0.856	mg/L		1/20/2017 15:32
Method Referen Preparation Da Data File:	te: 1/19/2017	2 A 7			

Client:	<u>C&S Companie</u>	<u>:S</u>					
Project Reference:	100 Dona Stree	t					
Sample Identifier:	GW-4						
Lab Sample ID:	170188-05			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
PCB-1016		< 0.100	ug/L			1/21/2017	09:01
PCB-1221		< 0.100	ug/L			1/21/2017	09:01
PCB-1232		< 0.100	ug/L			1/21/2017	09:01
PCB-1242		< 0.100	ug/L			1/21/2017	09:01
PCB-1248		< 0.100	ug/L			1/21/2017	09:01
PCB-1254		< 0.100	ug/L			1/21/2017	09:01
PCB-1260		< 0.100	ug/L			1/21/2017	09:01
PCB-1262		< 0.100	ug/L			1/21/2017	09:01
PCB-1268		< 0.100	ug/L			1/21/2017	09:01
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			94.4	10 - 105		1/21/2017	09:01
Tetrachloro-m-xylene		X	51.0	15.7 - 95.8		1/21/2017	09:01
Method Reference	e(s): EPA 8082A	A					
Preparation Date	e: 1/19/2017	7					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-4				
Lab Sample ID:	170188-05			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Semi-Volatile Organic	<u>:s (Acid/Base Ne</u>	utrals)			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		1/18/2017 23:17
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		1/18/2017 23:17
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		1/18/2017 23:17
1,2-Dichlorobenzene		< 10.0	ug/L		1/18/2017 23:17
1,3-Dichlorobenzene		< 10.0	ug/L		1/18/2017 23:17
1,4-Dichlorobenzene		< 10.0	ug/L		1/18/2017 23:17
2,2-Oxybis (1-chloro)	propane)	< 10.0	ug/L		1/18/2017 23:17
2,3,4,6-Tetrachloropl	henol	< 10.0	ug/L		1/18/2017 23:17
2,4,5-Trichloropheno	bl	< 20.0	ug/L		1/18/2017 23:17
2,4,6-Trichloropheno	bl	< 10.0	ug/L		1/18/2017 23:17
2,4-Dichlorophenol		< 10.0	ug/L		1/18/2017 23:17
2,4-Dimethylphenol		< 10.0	ug/L		1/18/2017 23:17
2,4-Dinitrophenol		< 20.0	ug/L		1/18/2017 23:17
2,4-Dinitrotoluene		< 10.0	ug/L		1/18/2017 23:17
2,6-Dinitrotoluene		< 10.0	ug/L		1/18/2017 23:17
2-Chloronaphthalene		< 10.0	ug/L		1/18/2017 23:17
2-Chlorophenol		< 10.0	ug/L		1/18/2017 23:17
2-Methylnapthalene		< 10.0	ug/L		1/18/2017 23:17
2-Methylphenol		< 10.0	ug/L		1/18/2017 23:17
2-Nitroaniline		< 20.0	ug/L		1/18/2017 23:17
2-Nitrophenol		< 10.0	ug/L		1/18/2017 23:17
3&4-Methylphenol		< 10.0	ug/L		1/18/2017 23:17
3,3'-Dichlorobenzidir	ne	< 10.0	ug/L		1/18/2017 23:17
3-Nitroaniline		< 20.0	ug/L		1/18/2017 23:17
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		1/18/2017 23:17
4-Bromophenyl phen	yl ether	< 10.0	ug/L		1/18/2017 23:17
4-Chloro-3-methylph	enol	< 10.0	ug/L		1/18/2017 23:17

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	100 Dona Stree	et			
Sample Identifier:	GW-4				
Lab Sample ID:	170188-05			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
4-Chloroaniline		< 10.0	ug/L		1/18/2017 23:17
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		1/18/2017 23:17
4-Nitroaniline		< 20.0	ug/L		1/18/2017 23:17
4-Nitrophenol		< 20.0	ug/L		1/18/2017 23:17
Acenaphthene		< 10.0	ug/L		1/18/2017 23:17
Acenaphthylene		< 10.0	ug/L		1/18/2017 23:17
Acetophenone		< 10.0	ug/L		1/18/2017 23:17
Anthracene		< 10.0	ug/L		1/18/2017 23:17
Atrazine		< 10.0	ug/L		1/18/2017 23:17
Benzaldehyde		< 10.0	ug/L		1/18/2017 23:17
Benzo (a) anthracene		< 10.0	ug/L		1/18/2017 23:17
Benzo (a) pyrene		< 10.0	ug/L		1/18/2017 23:17
Benzo (b) fluoranther	ie	< 10.0	ug/L		1/18/2017 23:17
Benzo (g,h,i) perylene	2	< 10.0	ug/L		1/18/2017 23:17
Benzo (k) fluoranther	ie	< 10.0	ug/L		1/18/2017 23:17
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		1/18/2017 23:17
Bis (2-chloroethyl) et	her	< 10.0	ug/L		1/18/2017 23:17
Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		1/18/2017 23:17
Butylbenzylphthalate		< 10.0	ug/L		1/18/2017 23:17
Caprolactam		< 10.0	ug/L		1/18/2017 23:17
Carbazole		< 10.0	ug/L		1/18/2017 23:17
Chrysene		< 10.0	ug/L		1/18/2017 23:17
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		1/18/2017 23:17
Dibenzofuran		< 10.0	ug/L		1/18/2017 23:17
Diethyl phthalate		< 10.0	ug/L		1/18/2017 23:17
Dimethyl phthalate		< 20.0	ug/L		1/18/2017 23:17
Di-n-butyl phthalate		< 10.0	ug/L		1/18/2017 23:17
Di-n-octylphthalate		< 10.0	ug/L		1/18/2017 23:17
Fluoranthene		< 10.0	ug/L		1/18/2017 23:17
Fluorene		< 10.0	ug/L		1/18/2017 23:17

Client:	<u>C&S Companie</u>	<u>es</u>					
Project Reference:	100 Dona Stree	et					
Sample Identifier:	GW-4						
Lab Sample ID:	170188-05			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Hexachlorobenzene		< 10.0	ug/L			1/18/2017	23:17
Hexachlorobutadiene		< 10.0	ug/L			1/18/2017	23:17
Hexachlorocyclopenta	diene	< 10.0	ug/L			1/18/2017	23:17
Hexachloroethane		< 10.0	ug/L			1/18/2017	23:17
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			1/18/2017	23:17
Isophorone		< 10.0	ug/L			1/18/2017	23:17
Naphthalene		< 10.0	ug/L			1/18/2017	23:17
Nitrobenzene		< 10.0	ug/L			1/18/2017	23:17
N-Nitroso-di-n-propy	amine	< 10.0	ug/L			1/18/2017	23:17
N-Nitrosodiphenylam	ine	< 10.0	ug/L			1/18/2017	23:17
Pentachlorophenol		< 20.0	ug/L			1/18/2017	23:17
Phenanthrene		< 10.0	ug/L			1/18/2017	23:17
Phenol		< 10.0	ug/L			1/18/2017	23:17
Pyrene		< 10.0	ug/L			1/18/2017	23:17
<u>Surrogate</u>		Perc	cent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromopheno	l		88.4	32.4 - 137		1/18/2017	23:17
2-Fluorobiphenyl			67.6	44.7 - 111		1/18/2017	23:17
2-Fluorophenol			43.3	12 - 101		1/18/2017	23:17
Nitrobenzene-d5			80.4	52 - 99.4		1/18/2017	23:17
Phenol-d5			27.3	10 - 103		1/18/2017	23:17
Terphenyl-d14			78.2	57.9 - 113		1/18/2017	23:17
Method Referen	nce(s): EPA 8270	D					
Preparation Da Data File:	te: 1/18/201 B16538.D	7					

Client:	<u>C&S Compani</u>	<u>es</u>			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	GW-4				
Lab Sample ID:	170188-05			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 2.00	ug/L		1/18/2017 18:03
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 18:03
1,1,2-Trichloroethane	2	< 2.00	ug/L		1/18/2017 18:03
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 18:03
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 18:03
1,2,3-Trichlorobenzer	ne	< 5.00	ug/L		1/18/2017 18:03
1,2,4-Trichlorobenzer	ne	< 5.00	ug/L		1/18/2017 18:03
1,2-Dibromo-3-Chloro	opropane	< 10.0	ug/L		1/18/2017 18:03
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 18:03
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:03
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 18:03
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 18:03
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:03
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 18:03
1,4-dioxane		< 20.0	ug/L		1/18/2017 18:03
2-Butanone		< 10.0	ug/L		1/18/2017 18:03
2-Hexanone		< 5.00	ug/L		1/18/2017 18:03
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 18:03
Acetone		59.3	ug/L		1/18/2017 18:03
Benzene		< 1.00	ug/L		1/18/2017 18:03
Bromochloromethane	<u>)</u>	< 5.00	ug/L		1/18/2017 18:03
Bromodichlorometha	ne	< 2.00	ug/L		1/18/2017 18:03
Bromoform		< 5.00	ug/L		1/18/2017 18:03
Bromomethane		< 2.00	ug/L		1/18/2017 18:03
Carbon disulfide		< 2.00	ug/L		1/18/2017 18:03
Carbon Tetrachloride		< 2.00	ug/L		1/18/2017 18:03
Chlorobenzene		< 2.00	ug/L		1/18/2017 18:03

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stre	et				
Sample Identifier:	GW-4					
Lab Sample ID:	170188-05			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
Chloroethane		< 2.00	ug/L		1/18/2017	18:03
Chloroform		< 2.00	ug/L		1/18/2017	18:03
Chloromethane		< 2.00	ug/L		1/18/2017	18:03
cis-1,2-Dichloroethen	e	< 2.00	ug/L		1/18/2017	18:03
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		1/18/2017	18:03
Cyclohexane		< 10.0	ug/L		1/18/2017	18:03
Dibromochlorometha	ne	< 2.00	ug/L		1/18/2017	18:03
Dichlorodifluorometh	ane	< 2.00	ug/L		1/18/2017	18:03
Ethylbenzene		< 2.00	ug/L		1/18/2017	18:03
Freon 113		< 2.00	ug/L		1/18/2017	18:03
Isopropylbenzene		< 2.00	ug/L		1/18/2017	18:03
m,p-Xylene		< 2.00	ug/L		1/18/2017	18:03
Methyl acetate		< 2.00	ug/L		1/18/2017	18:03
Methyl tert-butyl Ethe	er	< 2.00	ug/L		1/18/2017	18:03
Methylcyclohexane		< 2.00	ug/L		1/18/2017	18:03
Methylene chloride		< 5.00	ug/L		1/18/2017	18:03
o-Xylene		< 2.00	ug/L		1/18/2017	18:03
Styrene		< 5.00	ug/L		1/18/2017	18:03
Tetrachloroethene		< 2.00	ug/L		1/18/2017	18:03
Toluene		< 2.00	ug/L		1/18/2017	18:03
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		1/18/2017	18:03
trans-1,3-Dichloropro	opene	< 2.00	ug/L		1/18/2017	18:03
Trichloroethene		< 2.00	ug/L		1/18/2017	18:03
Trichlorofluorometha	ine	< 2.00	ug/L		1/18/2017	18:03
Vinyl chloride		< 2.00	ug/L		1/18/2017	18:03

Client: <u>C&S Companies</u>							
Project Reference:	100 E)ona Street					
Sample Identifier:	GW-	4					
Lab Sample ID: 170188-05			Dat	e Sampled:	1/16/2017		
Matrix:	Wat	er		Dat	e Received:	1/17/2017	
Surrogate		Percent Recovery	<u>Limits</u>	Outliers	Date Analy	zed	
1,2-Dichloroethane-d4	•		103	81.2 - 120		1/18/2017	18:03
4-Bromofluorobenzen	e		91.8	82.4 - 112		1/18/2017	18:03
Pentafluorobenzene			90.6	90.2 - 112		1/18/2017	18:03
Toluene-D8			100	89.9 - 109		1/18/2017	18:03
Method Referen	ce(s):	EPA 8260C EPA 5030C					
Data File:		x38548.D					

FINAL

Client:	<u>C&S Compani</u>	es			
Project Reference:	100 Dona Stre	et			
Sample Identifier:	Trip Blank				
Lab Sample ID:	170188-06			Date Sampled:	1/16/2017
Matrix:	Water			Date Received:	1/17/2017
Volatile Organics					
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	9	< 2.00	ug/L		1/18/2017 17:39
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		1/18/2017 17:39
1,1,2-Trichloroethane	9	< 2.00	ug/L		1/18/2017 17:39
1,1-Dichloroethane		< 2.00	ug/L		1/18/2017 17:39
1,1-Dichloroethene		< 2.00	ug/L		1/18/2017 17:39
1,2,3-Trichlorobenze	ne	< 5.00	ug/L		1/18/2017 17:39
1,2,4-Trichlorobenze	ne	< 5.00	ug/L		1/18/2017 17:39
1,2,4-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 17:39
1,2-Dibromo-3-Chlor	opropane	< 10.0	ug/L		1/18/2017 17:39
1,2-Dibromoethane		< 2.00	ug/L		1/18/2017 17:39
1,2-Dichlorobenzene		< 2.00	ug/L		1/18/2017 17:39
1,2-Dichloroethane		< 2.00	ug/L		1/18/2017 17:39
1,2-Dichloropropane		< 2.00	ug/L		1/18/2017 17:39
1,3,5-Trimethylbenze	ene	< 2.00	ug/L		1/18/2017 17:39
1,3-Dichlorobenzene		< 2.00	ug/L		1/18/2017 17:39
1,4-Dichlorobenzene		< 2.00	ug/L		1/18/2017 17:39
1,4-dioxane		< 20.0	ug/L		1/18/2017 17:39
2-Butanone		< 10.0	ug/L		1/18/2017 17:39
2-Hexanone		< 5.00	ug/L		1/18/2017 17:39
4-Methyl-2-pentanon	e	< 5.00	ug/L		1/18/2017 17:39
Acetone		9.43	ug/L	J	1/18/2017 17:39
Benzene		< 1.00	ug/L		1/18/2017 17:39
Bromochloromethan	9	< 5.00	ug/L		1/18/2017 17:39
Bromodichlorometha	ine	< 2.00	ug/L		1/18/2017 17:39
Bromoform		< 5.00	ug/L		1/18/2017 17:39
Bromomethane		< 2.00	ug/L		1/18/2017 17:39
Carbon disulfide		< 2.00	ug/L		1/18/2017 17:39

Client:	<u>C&S Compani</u>	<u>es</u>				
Project Reference:	100 Dona Stree	et				
Sample Identifier:	Trip Blank					
Lab Sample ID:	170188-06			Date Sampled:	1/16/2017	
Matrix:	Water			Date Received:	1/17/2017	
Carbon Tetrachloride		< 2.00	ug/L		1/18/2017 17:3	39
Chlorobenzene		< 2.00	ug/L		1/18/2017 17:3	39
Chloroethane		< 2.00	ug/L		1/18/2017 17:3	39
Chloroform		< 2.00	ug/L		1/18/2017 17:3	39
Chloromethane		< 2.00	ug/L		1/18/2017 17:3	39
cis-1,2-Dichloroethene	2	< 2.00	ug/L		1/18/2017 17:3	39
cis-1,3-Dichloroproper	ne	< 2.00	ug/L		1/18/2017 17:3	39
Cyclohexane		< 10.0	ug/L		1/18/2017 17:3	39
Dibromochloromethan	ie	< 2.00	ug/L		1/18/2017 17:3	39
Dichlorodifluorometha	ane	< 2.00	ug/L		1/18/2017 17:3	39
Ethylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
Freon 113		< 2.00	ug/L		1/18/2017 17:3	39
Isopropylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
m,p-Xylene		< 2.00	ug/L		1/18/2017 17:3	39
Methyl acetate		< 2.00	ug/L		1/18/2017 17:3	39
Methyl tert-butyl Ether	r	< 2.00	ug/L		1/18/2017 17:3	39
Methylcyclohexane		< 2.00	ug/L		1/18/2017 17:3	39
Methylene chloride		< 5.00	ug/L		1/18/2017 17:3	39
Naphthalene		< 5.00	ug/L		1/18/2017 17:3	39
n-Butylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
n-Propylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
o-Xylene		< 2.00	ug/L		1/18/2017 17:3	39
p-Isopropyltoluene		< 2.00	ug/L		1/18/2017 17:3	39
sec-Butylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
Styrene		< 5.00	ug/L		1/18/2017 17:3	39
tert-Butylbenzene		< 2.00	ug/L		1/18/2017 17:3	39
Tetrachloroethene		< 2.00	ug/L		1/18/2017 17:3	39
Toluene		< 2.00	ug/L		1/18/2017 17:3	39
trans-1,2-Dichloroethe	ene	< 2.00	ug/L		1/18/2017 17:3	39
trans-1,3-Dichloropror	oene	< 2.00	ug/L		1/18/2017 17:3	39

Client:	<u>C&S Compan</u>	<u>ies</u>					
Project Reference:	100 Dona Stre	et					
Sample Identifier:	Trip Blank						
Lab Sample ID:	170188-06			Dat	e Sampled:	1/16/2017	
Matrix:	Water			Dat	e Received:	1/17/2017	
Trichloroethene		< 2.00	ug/L			1/18/2017	17:39
Trichlorofluorometha	ne	< 2.00	ug/L			1/18/2017	17:39
Vinyl chloride		< 2.00	ug/L			1/18/2017	17:39
<u>Surrogate</u>	<u>P</u> (<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analyz	<u>zed</u>
1,2-Dichloroethane-d4	1		102	81.2 - 120		1/18/2017	17:39
4-Bromofluorobenzen	e		90.2	82.4 - 112		1/18/2017	17:39
Pentafluorobenzene			91.1	90.2 - 112		1/18/2017	17:39
Toluene-D8			100	89.9 - 109		1/18/2017	17:39
Method Referen	ace(s): EPA 826 EPA 503	0C 0C					
Data File:	x38547.1	D	JP.				

 $\langle \cdot \rangle$

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this areement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

			2.72
PARADIGM	<u>Chain</u>	<u>of Custody Supp</u>	<u>lement</u>
Client:	C+S Engineers	Completed by:	Glenn Pezzulo
Lab Project ID:	170188	Date:	1/17/17
	Sample Condition Per NELAC/ELAP 21	on Requirements 10/241/242/243/244	
<i>I</i> Condition	VELAC compliance with the sample Yes	condition requirements upo No	on receipt N/A
Container Type			
Comments	·		
Transferred to method- compliant container			× 1
Headspace (<1 mL) Comments	Vo A		
Preservation	Merals		
Commente			

Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature	4° Ciced 1/17/17	(3/20	Metals
Sufficient Sample Quantity			
Comments			

1

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	Dona Street				
Sample Identifier:	GW-5				
Lab Sample ID:	170709-01			Date Sampled:	2/23/2017
Matrix:	Groundwater			Date Received:	2/27/2017
<u>TAL Metals (ICP)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum		11.3	mg/L		3/1/2017 17:49
Antimony		< 0.0600	mg/L		3/1/2017 17:49
Arsenic		< 0.0100	mg/L		3/4/2017 15:47
Barium		0.199	mg/L		3/1/2017 17:49
Beryllium		< 0.00500	mg/L		3/1/2017 17:49
Cadmium		< 0.00500	mg/L		3/1/2017 17:49
Calcium		284	mg/L		3/1/2017 17:49
Chromium		0.0185	mg/L		3/1/2017 17:49
Cobalt		< 0.0500	mg/L		3/1/2017 17:49
Copper		0.0243	mg/L	J	3/1/2017 17:49
Iron		16.3	mg/L		3/1/2017 17:49
Lead		0.0171	mg/L		3/1/2017 17:49
Magnesium		34.3	mg/L		3/1/2017 17:49
Manganese		0.997	mg/L		3/1/2017 17:49
Nickel		0.0215	mg/L	J	3/1/2017 17:49
Potassium		4.46	mg/L		3/1/2017 17:49
Selenium		< 0.0200	mg/L		3/1/2017 17:49
Silver		< 0.0100	mg/L		3/1/2017 17:49
Sodium		24.6	mg/L		3/1/2017 17:49
Thallium		< 0.0250	mg/L		3/1/2017 17:49
Vanadium		0.0169	mg/L	J	3/1/2017 17:49
Zinc		0.258	mg/L		3/1/2017 17:49
Method Refere	nce(s): EPA 6010 EPA 3005	C A			
Preparation Da	ate: 2/28/201	7			

Data File: 030117C

Client:	C&S Companie	<u>s</u>					
Project Reference:	Dona Street						
Sample Identifier:	GW-5						
Lab Sample ID:	170709-01			Dat	e Sampled:	2/23/2017	
Matrix:	Groundwater			Dat	e Received:	2/27/2017	
<u>PCBs</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0526	ug/L			3/2/2017	17:17
PCB-1221		< 0.0526	ug/L			3/2/2017	17:17
PCB-1232		< 0.0526	ug/L			3/2/2017	17:17
PCB-1242		< 0.0526	ug/L			3/2/2017	17:17
PCB-1248		< 0.0526	ug/L			3/2/2017	17:17
PCB-1254		< 0.0526	ug/L			3/2/2017	17:17
PCB-1260		< 0.0526	ug/L			3/2/2017	17:17
PCB-1262		< 0.0526	ug/L			3/2/2017	17:17
PCB-1268		< 0.0526	ug/L			3/2/2017	17:17
<u>Surrogate</u>		<u>Percer</u>	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
Decachlorobiphenyl			34.0	10 - 105		3/2/2017	17:17
Tetrachloro-m-xylene			12.3	15.7 - 95.8	*	3/2/2017	17:17
Method Reference Preparation Date	EPA 8082A EPA 3510C e: 3/2/2017						

Client:	<u>C&S Companie</u>	<u>es</u>			
Project Reference:	Dona Street				
Sample Identifier:	GW-5				
Lab Sample ID:	170709-01			Date Sampled:	2/23/2017
Matrix:	Groundwater			Date Received:	2/27/2017
Semi-Volatile Organic	<u>:s (Acid/Base Neu</u>	<u>trals)</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 10.0	ug/L		3/3/2017 17:21
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		3/3/2017 17:21
1,2,4-Trichlorobenze	ne	< 10.0	ug/L		3/3/2017 17:21
1,2-Dichlorobenzene		< 10.0	ug/L		3/3/2017 17:21
1,3-Dichlorobenzene		< 10.0	ug/L		3/3/2017 17:21
1,4-Dichlorobenzene		< 10.0	ug/L		3/3/2017 17:21
2,2-Oxybis (1-chloro	propane)	< 10.0	ug/L		3/3/2017 17:21
2,3,4,6-Tetrachloropl	henol	< 10.0	ug/L		3/3/2017 17:21
2,4,5-Trichlorophend	ol	< 20.0	ug/L		3/3/2017 17:21
2,4,6-Trichlorophenc	bl	< 10.0	ug/L		3/3/2017 17:21
2,4-Dichlorophenol		< 10.0	ug/L		3/3/2017 17:21
2,4-Dimethylphenol		< 10.0	ug/L		3/3/2017 17:21
2,4-Dinitrophenol		< 20.0	ug/L		3/3/2017 17:21
2,4-Dinitrotoluene		< 10.0	ug/L		3/3/2017 17:21
2,6-Dinitrotoluene		< 10.0	ug/L		3/3/2017 17:21
2-Chloronaphthalene		< 10.0	ug/L		3/3/2017 17:21
2-Chlorophenol		< 10.0	ug/L		3/3/2017 17:21
2-Methylnapthalene		< 10.0	ug/L		3/3/2017 17:21
2-Methylphenol		< 10.0	ug/L		3/3/2017 17:21
2-Nitroaniline		< 20.0	ug/L		3/3/2017 17:21
2-Nitrophenol		< 10.0	ug/L		3/3/2017 17:21
3&4-Methylphenol		< 10.0	ug/L		3/3/2017 17:21
3,3'-Dichlorobenzidir	ne	< 10.0	ug/L		3/3/2017 17:21
3-Nitroaniline		< 20.0	ug/L		3/3/2017 17:21
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		3/3/2017 17:21
4-Bromophenyl phen	yl ether	< 10.0	ug/L		3/3/2017 17:21
4-Chloro-3-methylph	ienol	< 10.0	ug/L		3/3/2017 17:21

Lab Project ID: 170709

Client:	<u>C&S Companie</u>	<u>S</u>			
Project Reference:	Dona Street				
Sample Identifier:	GW-5				
Lab Sample ID:	170709-01			Date Sampled:	2/23/2017
Matrix:	Groundwater			Date Received:	2/27/2017
4-Chloroaniline		< 10.0	ug/L		3/3/2017 17:21
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		3/3/2017 17:21
4-Nitroaniline		< 20.0	ug/L		3/3/2017 17:21
4-Nitrophenol		< 20.0	ug/L		3/3/2017 17:21
Acenaphthene		6.58	ug/L	J	3/3/2017 17:21
Acenaphthylene		< 10.0	ug/L		3/3/2017 17:21
Acetophenone		< 10.0	ug/L		3/3/2017 17:21
Anthracene		< 10.0	ug/L		3/3/2017 17:21
Atrazine		< 10.0	ug/L		3/3/2017 17:21
Benzaldehyde		< 10.0	ug/L		3/3/2017 17:21
Benzo (a) anthracene		< 10.0	ug/L		3/3/2017 17:21
Benzo (a) pyrene		< 10.0	ug/L		3/3/2017 17:21
Benzo (b) fluoranther	ie	< 10.0	ug/L		3/3/2017 17:21
Benzo (g,h,i) perylene	2	< 10.0	ug/L		3/3/2017 17:21
Benzo (k) fluoranther	ie	< 10.0	ug/L		3/3/2017 17:21
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		3/3/2017 17:21
Bis (2-chloroethyl) et	her	< 10.0	ug/L		3/3/2017 17:21
Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		3/3/2017 17:21
Butylbenzylphthalate		< 10.0	ug/L		3/3/2017 17:21
Caprolactam		< 10.0	ug/L		3/3/2017 17:21
Carbazole		< 10.0	ug/L		3/3/2017 17:21
Chrysene		< 10.0	ug/L		3/3/2017 17:21
Dibenz (a,h) anthrace	ne	< 10.0	ug/L		3/3/2017 17:21
Dibenzofuran		5.24	ug/L	J	3/3/2017 17:21
Diethyl phthalate		< 10.0	ug/L		3/3/2017 17:21
Dimethyl phthalate		< 20.0	ug/L		3/3/2017 17:21
Di-n-butyl phthalate		< 10.0	ug/L		3/3/2017 17:21
Di-n-octylphthalate		< 10.0	ug/L		3/3/2017 17:21
Fluoranthene		< 10.0	ug/L		3/3/2017 17:21
Fluorene		9.37	ug/L	J	3/3/2017 17:21

Client:	<u>C&S Companie</u>	<u>25</u>					
Project Reference:	Dona Street						
Sample Identifier:	GW-5						
Lab Sample ID:	170709-01			Dat	e Sampled:	2/23/2017	
Matrix:	Groundwater			Dat	e Received:	2/27/2017	
Hexachlorobenzene		< 10.0	ug/L			3/3/2017	17:21
Hexachlorobutadiene		< 10.0	ug/L			3/3/2017	17:21
Hexachlorocyclopenta	diene	< 10.0	ug/L			3/3/2017	17:21
Hexachloroethane		< 10.0	ug/L			3/3/2017	17:21
Indeno (1,2,3-cd) pyre	ne	< 10.0	ug/L			3/3/2017	17:21
Isophorone		< 10.0	ug/L			3/3/2017	17:21
Naphthalene		< 10.0	ug/L			3/3/2017	17:21
Nitrobenzene		< 10.0	ug/L			3/3/2017	17:21
N-Nitroso-di-n-propyl	amine	< 10.0	ug/L			3/3/2017	17:21
N-Nitrosodiphenylami	ne	< 10.0	ug/L			3/3/2017	17:21
Pentachlorophenol		< 20.0	ug/L			3/3/2017	17:21
Phenanthrene		5.15	ug/L		J	3/3/2017	17:21
Phenol		< 10.0	ug/L			3/3/2017	17:21
Pyrene		< 10.0	ug/L			3/3/2017	17:21
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol			89.0	32.4 - 137		3/3/2017	17:21
2-Fluorobiphenyl			61.9	44.7 - 111		3/3/2017	17:21
2-Fluorophenol			34.1	12 - 101		3/3/2017	17:21
Nitrobenzene-d5			69.1	52 - 99.4		3/3/2017	17:21
Phenol-d5			22.0	10 - 103		3/3/2017	17:21
Terphenyl-d14			87.6	57.9 - 113		3/3/2017	17:21
Method Referen	ce(s): EPA 82701)					
Preparation Dat Data File:	EPA 35100 e: 3/1/2017 B17675.D	2					

Client:	<u>C&S Companie</u>	<u>s</u>			
Project Reference:	Dona Street				
Sample Identifier:	GW-5				
Lab Sample ID:	170709-01			Date Sampled:	2/23/2017
Matrix:	Groundwater			Date Received:	2/27/2017
Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	2	< 2.00	ug/L		3/4/2017 01:37
1,1,2,2-Tetrachloroet	hane	< 2.00	ug/L		3/4/2017 01:37
1,1,2-Trichloroethane	9	< 2.00	ug/L		3/4/2017 01:37
1,1-Dichloroethane		< 2.00	ug/L		3/4/2017 01:37
1,1-Dichloroethene		< 2.00	ug/L		3/4/2017 01:37
1,2,3-Trichlorobenzei	ne	< 5.00	ug/L		3/4/2017 01:37
1,2,4-Trichlorobenzei	ne	< 5.00	ug/L		3/4/2017 01:37
1,2-Dibromo-3-Chlore	opropane	< 10.0	ug/L		3/4/2017 01:37
1,2-Dibromoethane		< 2.00	ug/L		3/4/2017 01:37
1,2-Dichlorobenzene		< 2.00	ug/L		3/4/2017 01:37
1,2-Dichloroethane		< 2.00	ug/L		3/4/2017 01:37
1,2-Dichloropropane		< 2.00	ug/L		3/4/2017 01:37
1,3-Dichlorobenzene		< 2.00	ug/L		3/4/2017 01:37
1,4-Dichlorobenzene		< 2.00	ug/L		3/4/2017 01:37
1,4-dioxane		< 20.0	ug/L		3/4/2017 01:37
2-Butanone		< 10.0	ug/L		3/4/2017 01:37
2-Hexanone		< 5.00	ug/L		3/4/2017 01:37
4-Methyl-2-pentanon	e	< 5.00	ug/L		3/4/2017 01:37
Acetone		< 10.0	ug/L		3/4/2017 01:37
Benzene		< 1.00	ug/L		3/4/2017 01:37
Bromochloromethane	e	< 5.00	ug/L		3/4/2017 01:37
Bromodichlorometha	ne	< 2.00	ug/L		3/4/2017 01:37
Bromoform		< 5.00	ug/L		3/4/2017 01:37
Bromomethane		< 2.00	ug/L		3/4/2017 01:37
Carbon disulfide		< 2.00	ug/L		3/4/2017 01:37
Carbon Tetrachloride		< 2.00	ug/L		3/4/2017 01:37
Chlorobenzene		< 2.00	ug/L		3/4/2017 01:37

Client:	<u>C&S Companie</u>	<u>s</u>			
Project Reference:	Dona Street				
Sample Identifier:	GW-5				
Lab Sample ID:	170709-01			Date Sampled:	2/23/2017
Matrix:	Groundwater			Date Received:	2/27/2017
Chloroethane		< 2.00	ug/L		3/4/2017 01:37
Chloroform		< 2.00	ug/L		3/4/2017 01:37
Chloromethane		< 2.00	ug/L		3/4/2017 01:37
cis-1,2-Dichloroethen	e	< 2.00	ug/L		3/4/2017 01:37
cis-1,3-Dichloroprope	ne	< 2.00	ug/L		3/4/2017 01:37
Cyclohexane		< 10.0	ug/L		3/4/2017 01:37
Dibromochlorometha	ne	< 2.00	ug/L		3/4/2017 01:37
Dichlorodifluorometh	ane	< 2.00	ug/L		3/4/2017 01:37
Ethylbenzene		< 2.00	ug/L		3/4/2017 01:37
Freon 113		< 2.00	ug/L		3/4/2017 01:37
Isopropylbenzene		< 2.00	ug/L		3/4/2017 01:37
m,p-Xylene		< 2.00	ug/L		3/4/2017 01:37
Methyl acetate		< 2.00	ug/L		3/4/2017 01:37
Methyl tert-butyl Ethe	er	< 2.00	ug/L		3/4/2017 01:37
Methylcyclohexane		< 2.00	ug/L		3/4/2017 01:37
Methylene chloride		< 5.00	ug/L		3/4/2017 01:37
o-Xylene		< 2.00	ug/L		3/4/2017 01:37
Styrene		< 5.00	ug/L		3/4/2017 01:37
Tetrachloroethene		< 2.00	ug/L		3/4/2017 01:37
Toluene		< 2.00	ug/L		3/4/2017 01:37
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		3/4/2017 01:37
trans-1,3-Dichloropro	pene	< 2.00	ug/L		3/4/2017 01:37
Trichloroethene		< 2.00	ug/L		3/4/2017 01:37
Trichlorofluorometha	ne	< 2.00	ug/L		3/4/2017 01:37
Vinyl chloride		< 2.00	ug/L		3/4/2017 01:37

Client:	<u>C&S</u>	<u>Companies</u>					
Project Reference:	Dona	Street					
Sample Identifier:	GW	·5					
Lab Sample ID: 170709-01			Dat	e Sampled:	2/23/2017		
Matrix:	Gro	undwater		Dat	e Received:	2/27/2017	
<u>Surrogate</u>			Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-de	4		98.2	81.2 - 120		3/4/2017	01:37
4-Bromofluorobenzer	ie		97.2	82.4 - 112		3/4/2017	01:37
Pentafluorobenzene			93.9	90.2 - 112		3/4/2017	01:37
Toluene-D8			96.1	89.9 - 109		3/4/2017	01:37
Method Referer	ice(s):	EPA 8260C EPA 5030C					
Data File:		x39744.D					

FINAL

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.
GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this areement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

	Other Other Other please indicate date needed: please indicate date needed:	Rush 1 day	Rush 3 day	10 day Batch QC	Standard 5 day None Requir	Turnaround Time Availability contingent upon lab ap					X 403:171 1224	0000	DATE COLLECTED TIME O COLLECTED O D M M O C		PROJECT REFERENCE	(DADADIGM		
	ackage needed: Deter EDD Deeded :			Basic EDD	ed None Required	Report Supplements pproval; additional fees may apply.					GW-2)	SAMPLE IDENTIFIER	AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Matrix codes:	CE0114801	PITT STATE	ADDERED IN THE THE ADDRESS	REPORT TO:		179 Lake Ave
	Cisted Scal w/A Simples preved y By signing this form, client agrees to Para	Received @ Lab By Da	Received By Do	Reinquished By	Champled By Da	Xmodenter 21:					XXXX C DW		x-z+zz wmoon mo zmwzcz zmz-z+zon TOLVOC TOLVOC TOLSVOC POB FALMERAUS	WA - Water DW - Drinking Water WG - Groundwater WW - Wastewater	Alle	PHONE:		THE ICY) ADDRESS: SAME X CUT I	INVOICE T	CHAIN OF CUSTODY	nue, Rochester, NY 14608 Office (585) 647-2530 Fax (5
See additional page for sample conditio	p T de livited by faradism. Se alark; idigm Terms and Conditions (reverse).	7/17 12:29	24/17 2,007 P.I.F.	ate/Time	I Total Cost	23/17 12:000	1 3ºciced 2/24/171658				2		REMARKS SA	SO - Soil SD - Solid WP - Wipe OL - SL - Sludge PT - Paint CK - Caulk AR -	School on which was warded	Email: environmental nati	ZIP: Quotation #:	MCSINIGHT DONA STREE	ro:	170709	365) 647-3311 / c
ns.	V			1	(F)						0/	-	MPLE MBER	Air		vasmulenv.		t		9	アレ

Chain of Custody Supplement

2.f)

Client:	C+S Engineers	Completed by:	Glem Pezzalo
Lab Project ID:	170709	Date:	2/27/17
	Sample Conditi Per NELAC/ELAP 2	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements upo No	n receipt N/A
Container Type			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	\$\$		
Preservation Comments	× voA mux(s		
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	3° (iced 2/24/17	16:58	inetals
Sufficient Sample Quantity Comments			

ANALYTICAL REPORT

Lab Number:	L1707059
Client:	Paradigm Environmental Services
	179 Lake Avenue
	Rochester, NY 14608
ATTN:	Jane Daloia
Phone:	(585) 647-2530
Project Name:	170709
Project Number:	170709
Report Date:	03/08/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L1707059

 Report Date:
 03/08/17

Project Name:	170709
Project Number:	170709

Alpha Sample ID	Client ID
L1707059-01	170709-0

9-01 GW-5

Matrix WATER Sample Location Not Specified
 Collection
 Re

 Date/Time
 Re

 02/23/17 09:50
 03

Receive Date 03/07/17

 Project Name:
 170709

 Project Number:
 170709

 Lab Number:
 L1707059

 Report Date:
 03/08/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 170709

 Project Number:
 170709

 Lab Number:
 L1707059

 Report Date:
 03/08/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

FINAL

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Marine Michelle M. Morris

Title: Technical Director/Representative

Date: 03/08/17

METALS

Project Name:	17070	9					Lab Nu	mber:	L17070	59	
Project Number:	17070	9					Report	Date:	03/08/1	7	
				SAMPL	E RESI	JLTS					
Lab ID:	L1707(059-01					Date Co	llected:	02/23/1	7 09:50	
Client ID:	170709	9-01 GW-5					Date Re	ceived:	03/07/1	7	
Sample Location:	Not Sp	ecified					Field Pre	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Mercury, Total	ND		mg/l	0.00020	0.00006	1	03/08/17 07:55	5 03/08/17 11:40	EPA 7470A	1,7470A	BV

FINAL

 Project Name:
 170709

 Project Number:
 170709

 Lab Number:
 L1707059

 Report Date:
 03/08/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	1 Batch	n: WG98	3732-1					
Mercury, Total	ND	mg/l	0.00020	0.00006	6 1	03/08/17 07:55	03/08/17 11:15	1,7470A	BV

Prep Information

Digestion Method: EPA 7470A

FIMAL

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 170709

 Project Number:
 170709

 Lab Number:
 L1707059

 Report Date:
 03/08/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG983732-2	2					
Mercury, Total	111		-		80-120	-		

	Matrix Spike Analysis		
170709	Batch Quality Control	Lab Number:	L1707059
170709		Report Date:	03/08/17
	170709 170709	Matrix Spike Analysis Batch Quality Control 170709 170709	Matrix Spike Analysis Batch Quality Control 170709 170709 170709 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPI RPD Qual ^{Limi}	D its
Total Metals - Mansfield La	b Associated sam	ple(s): 01	QC Batch	ID: WG983732	2-3 WG983732-4	QC Sample: L	.1707046-02 Client	ID: MS Sample	
Mercury, Total	0.00010J	0.005	0.00517	104	0.00514	103	75-125	1 2	20
Total Metals - Mansfield La	b Associated sam	ple(s): 01	QC Batch	ID: WG983732	2-5 WG983732-6	QC Sample: L	.1707046-03 Client	ID: MS Sample	
Mercury, Total	0.00007J	0.005	0.00492	98	0.00501	100	75-125	2 2	20

							Serial_No:03081714:31
Project Name:	170709						Lab Number: L1707059
Project Numb	er: 170709						Report Date: 03/08/17
	Sa	mple Rece	ipt ar	nd Conta	iner In	formatior	ı
Were project s	pecific reporting limits specifi	ed?	Y	ΈS			
Cooler Inform Cooler	ation Custody Seal						
A	Absent						
Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1707059-01A	Plastic 250ml HNO3 preserved	А	<2	3.5	Y	Absent	HG-T(28)

FINAL

L1707059

03/08/17

Lab Number:

Report Date:

Project Name: 170709

Project Number: 170709

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to explore the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: 170709 Project Number: 170709

Lab Number: L1707059

Report Date: 03/08/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Project Name:
 170709

 Project Number:
 170709

 Lab Number:
 L1707059

 Report Date:
 03/08/17

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

FINAL

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Dimethylnaphthalene, 1, 4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1, 4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B The following analytes are included in our Massachusetts DEP Scope of Accreditation Westborough Facility: Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D. Non-Potable Water SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	and the second s			179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311										Serial_No:03081714:31				
				C		1 17		\sim i	11110									
		- 1.1		REPORT TO	A LANDSELS	120512407	1997.20	e e e e e e e e e e e e e e e e e e e	n lasten Ja	IVEL	an a change ann an a	No. 19 Tan Jan Bara	L/16	1/09	29	11140		
PROJECT NAME/SITE NAME: ATTN			COMPAN	Paradigm Enviro	СОМ	INVOICE TO:						0.1507.4						
			ADDRESS	ADDRESS: 179 Lake Avenue				ADDRESS:						LIENT PROJE	CT #:			
			CITY:	Rochester STATE	NY ZIP: 146	508 CITY:				STATE:	ZIP:	TURNAF	ROUND TIME: (WORK	ING DAVEL				
			PHONE:	IE: FAX:			PHONE: FAX:						(10.0	and BA(3)				
			ATTN:	TN: Reporting				ATTN: Accounts Payable								OTHER		
			COMMENT	rs: Please email resul	Its to reporting	@parad	igmenv	.com					7/0	5 5				
	T		1	and the second second	1. 		RI	QUES	TED A	NALYSIS		Date	Due: 5/8/	11-		The second second		
DATE	ТІМЕ	C O M P O S I T E	G R A B	SAMPLE LOCATION/FIEL	ע ד סו ס. ד א	MATRIK R L R R	CONTAINER NUMBER				Repo ASP	rt J Flags. Cat B. REMARKS PARADIGM LAB SAM			PLE NUMBER			
1 2/23/17	0950			170709-01				+-+-	+									
2									+		1 GW	- 5						
3				······································					+	·	+							
4								++-	+-+-	+	+			+ + + +				
5		•							++	++++-	+							
6	•							++	+-+-	+-+-+-								
7								++	++	+								
8								╉╼╋╸	++	+	+	·······						
9				,		_	++-	+-+-	╉╼╬╸	┽╌┼╌								
10							++-		++	┽╾┼╌	+							
Sample Conditio	nLY BELC	C/FLAP 210/2	NE**	1044	College		21 1 1 1 1	la l		V HAD HE ST	1010-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1						
	Receipt Para	ameter	+1/242/240	NELAC Compliance	1						the strange	An <u> </u>		de title and	244 	1 () () () () () () () () () (
Comments:	Container T	уре:		Y N	Clie Sampled By	ent				Data			1	[
Preservation:				Y N	$\frac{3/2}{\text{Reliving uished By}} = \frac{3/2}{100}$							Total Cost:						
Holding Time:				Y N	Recalled By AAL 3/07/17 17:50									L				
. Temperature:				Y N	MALAAC 3/07/17 17:50							P.I.F.			÷			
					Received @1	Lab By	ph-	<u> </u>		Date/Time	2 · M	30		L <u>.</u>		2000 2000		

Page 15 of 15