

October 22, 2020

Mr. Eric Ekman Vice President, Development & Acquisitions McGuire Development Company 560 Delaware Avenue, Suite 300 Buffalo, NY 14202

# Re: Interior Assessment of Floors and Walls for PCB Former Buerk Tool 315 Grote Street, Buffalo, NY (Site)

Dear Mr. Ekman:

Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this letter to summarize the results of the Interior Assessment of the floors and walls of the former Buerk Tool building at the above referenced Site for polychlorinated biphenyls (PCBs).

Buerk Tool was a former machine shop that had been in operation since 1919 and utilized various lathes, grinders, bore mill, etc. that used cutting oils in their operations. Evidence of the oil use can be seen throughout the building. Oil dispensers, 55-gallon drums, 5-gallon buckets, along with heavy staining were observed within the building during our August 19<sup>th</sup> site visit.

In addition to oil use, compressed air hoses and lines were observed throughout the building. PCB-containing lubricants have historically been used in air compressors and can be present on surface in the vicinity of compressed air connections from air releases when hoses or tooling are disconnected from the air lines Although recent oils used in the shop may not contain PCBs, historically PCBs were used in cutting oil and may have impacted the floors and walls.

The 1<sup>st</sup> floor of the former machine shop area is concrete and the 2<sup>nd</sup> floor of the building is primarily wood. The walls of the building are primarily painted brick, concrete block and clay tile and the interior column supports of the building are wood beams, of which the majority are painted. Office areas, restrooms, and storage areas (2<sup>nd</sup> floor) were not included as part of the assessment.

#### Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkturnkey.com

2558 Hamburg Turnpike, Suite 300 | Buffalo, NY 14218 phone: (716) 856-0599 | fax: (716) 856-0583

# **INTERIOR PCB ASSESSMENT**

The interior PCB assessment consisted of the collection of eleven (11) concrete floor samples, nine (9) wood floor samples, and ten (10) wipe samples from the walls and columns. Figures 1 and 2 show the approximately locations of the samples collected. Benchmark personnel made visual observations of the floor and wall areas prior to collecting the samples, with bias towards oil stained areas.

The concrete floor samples were collected using an electric hammer drill and 1-inch diameter drill bit to drill approximately 3-inches into the concrete slab. The concrete fines generated from the drilling where placed in laboratory-provided jars. Ten (10) concrete floor sample were collected from the 1<sup>st</sup> floor and one (1) concrete sample was collected from the 2<sup>nd</sup> floor. The drill bit was decontaminated after each use with a wire brush, alconox and potable water wash, and potable water rinse.

The wood floor samples from the 2<sup>nd</sup> floor were collected using an electric drill and 1-inch diameter core barrel to core into the wood floor. The wood cores collected from each location were further processed to approximately <sup>1</sup>/<sub>4</sub>-inch or less in the field and placed in the laboratory-provided jars. The core barrel and utensils were decontaminated after each use with a wire brush, alconox and potable water wash, and potable water rinse.

The walls and columns in the vicinity of select air compressor connections for air hoses and tooling were assessed using wipe samples from these painted surfaces. Seven (7) wipe samples were collected from the 1<sup>st</sup> floor and three (3) were collected form the 2<sup>nd</sup> floor. The wipe samples were collected from 10-centimeter by 10-centimeter areas (100-centimeter square (cm sq)) using templates provided by the laboratory. Laboratory provided gauze pads saturated with hexane were used to wipe/collect the samples from the 100-cm sq. area.

The samples collected were placed in pre-cleaned laboratory provided sample jars, cooled to 4°C in the field, and transported under chain-of-custody to the laboratory for PCB analysis via EPA Method 8082.

Photographs of some sample locations are included as Attachment 1.

### SOIL/FILL ANALYTICAL RESULTS

The results of the analytical samples collected and analyzed as part of the interior assessment are summarized on Figure 1 (1<sup>st</sup> floor samples) and Figure 2 (2<sup>nd</sup> floor samples), and the laboratory report is included as Attachment 2.

The concrete, wood, and wipe sample results were compared to the United State Environmental Protection Agency's thresholds for high occupancy (as the proposed reuse of the building is mixed residential and commercial which fall under high occupancy category.



The wood and concrete sample results were compared to the United State Environmental Protection Agency's threshold for high occupancy of 1 milligram per kilogram (mg/kg) per 40 CFR § 761.61 (a)(4)(i)(A).

The analytical results of the wipe samples were reported by the laboratory as microgramabsolute (ug/Abs), with results being representative of a 100 centimeters square (cm-sq.) wipe sampling area; therefore, samples results are ug/100 cm-sq. The wall and column sample results were compared to the United State Environmental Protection Agency's threshold for high occupancy of  $\leq 10$  ug/100 cm-sq per 40 CFR § 761.61 (a)(4)(ii).

# Concrete Floor Samples

PCBs were detected in ten (10) of the eleven (11) concrete samples above method detection limits. One (1) sample location, CON-4, had concentration of 1.87 mg/kg which is above the high occupancy threshold of 1 mg/kg (see Figure 1). The concentrations of the other concrete sample results were either non-detect or less than 1 mg/kg.

# Wood Floor Samples

PCBs were detected in the nine (9) wood samples above method detection limits. Three (3) sample locations, WOOD-5, WOOD-6, and WOOD-7 had concentration of 1.15 mg/kg, 6.58 mg/kg, and 5.14 mg/kg, respectively, above the high occupancy threshold of 1 mg/kg (see Figure 2). The PCB concentrations of the other six (6) samples were less the 1 mg/kg.

# Wall and Column Wipe Samples

PCBs were detected in nine (9) of the ten (10) wipe samples above method detection limits collect from the walls and columns on the  $1^{st}$  and  $2^{nd}$  floors. The concentrations of the wipe samples were below the 10 ug/cm<sup>2</sup> threshold for high occupancy areas for non-porous surfaces.

# **CONCLUSIONS**

The results of the Interior Assessment of the floors and walls/columns of the Site has identified the presence of PCBs. It appears that historic Site use as a machine shop, specifically the use of oils containing PCBs, have impacted the floors in the building. The areas identified at concentrations above the USEPA high-occupancy threshold of 1 mg/kg for PCBs should be address prior to building reuse. Additionally, a Phase II Environmental Investigation should be completed to determine if the soil/fill and groundwater present beneath the building has been impacted due to the presence of PCBs in 1<sup>st</sup> floor concrete slab of building.



We appreciate this opportunity to work with MDG on this project. Please contact us if you have any questions or require additional information.

Sincerely, Benchmark Environmental Engineering & Science, PLLC

Christopher Boron, P.G. Sr. Project Manager

m

Thomas H. Forbes, P.E. Principal Engineer

Attachments:Figure 1 – Site Plan with 1st Floor Sample Locations & Results<br/>Figure 2 – Site Plan with 2nd Floor Sample Locations & Results<br/>Attachment 1 – Photographs<br/>Attachment 2 – Analytical Report



# FIGURES



F:/CAD/Benchmark/McGuire Development/Figure 1; First Floor Sample Locations and Results dwg. 9/17/2020 12:52:00



**GROTE STREET** 

ATE: SEPTEMBER 2020 RAFTED BY: CNK

| IPE-4    | UG/100 CM <sup>2</sup> |   |
|----------|------------------------|---|
| AL PCBs  | 0.393 J                |   |
|          |                        |   |
| ON-1     | MG/KG                  |   |
| AL PCBs  | 0.276 J                |   |
|          |                        |   |
| IPE-3    | UG/100 CM <sup>2</sup> | 9 |
| AL PCBs  | 0.690                  |   |
|          |                        |   |
| ON-4     | MG/KG                  | i |
| AL PCBs  | 1.87 J                 |   |
|          |                        |   |
|          |                        | • |
| IPE-1    | UG/100 CM <sup>2</sup> |   |
| AL PUDS  | 1.410                  |   |
|          |                        | i |
| ON-2     | MG/KG                  |   |
| AL PCBs  | 0.233 J                |   |
|          |                        |   |
|          | MG/KG                  |   |
| AL PCBs  | 0.377 J                |   |
|          |                        |   |
| D:       |                        |   |
|          |                        |   |
| DING OU  | TLINE                  |   |
| CRETE S  | AMPLE LOCATION         |   |
| E SAMPLE | LOCATION               | 2 |
| EEDS HIG |                        |   |
| THRESH   | OLD (1 MG/KG)          | ' |
|          |                        |   |
| ECTED S  | EPTEMBER 10, 2020      |   |
| E        |                        |   |





DATE: SEPTEMBER 2020 DRAFTED BY: CNK

|               |                           |          | SULT  |
|---------------|---------------------------|----------|-------|
| -9            | MG/KG                     |          | Ιü    |
| CBs           | 0.151                     |          |       |
|               |                           |          |       |
| -7            | MG/KG                     |          |       |
| CBs           | 5.140                     |          | ĺž    |
| 10<br>CBs     | UG/100 CM                 | 2        | CATIO |
|               | 0.004 0                   |          | E LO  |
| -8            | MG/KG                     |          |       |
| CBs           | 0.737                     |          | ₩     |
|               |                           |          | DR SA |
| G OUT         | ΓLINE                     |          | Ŏ     |
| TE S          | AMPLE LOCA                | TION     |       |
| MPLE          | LOCATION                  |          |       |
| AMPL          |                           | J        | 6     |
| S HIG<br>ESHO | H OCCUPAN<br>DLD (1 MG/K0 | CY<br>G) | SEC   |
| ED S          | EPTEMBER 1                | 0, 2020  | FI    |
|               |                           |          |       |



# **ATTACHMENT 1**

**Photographs** 



# SITE PHOTOGRAPHS

Photo 1:



Photo 3:



Photo 2:



Photo 4:



#### **Concrete Floor Sampling**

- Photo 1: View of concrete drilling inside garage addition at CON-3 (looking south).
- Photo 2: View of paper template used to collect concrete power.
- Photo 3: View of concrete sample location CON-9 (looking west)
- Photo 4: View of concrete sample CON-10 (looking north).





# SITE PHOTOGRAPHS

Photo 5:



Photo 7:



Photo 6:



Photo 8:



#### Wood Floor Sampling

- Photo 5: View of wood floor sample WOOD-1 (looking west).
- Photo 6: View of wood floor sample WOOD-5 (looking southeast).
- Photo 7: View of wood floor sample WOOD-6 (looking south).
- Photo 8: View of wood cores collected from WOOD-8.

#### 315 Grote Street – Interior Assessment for PCBs Photo Date: September 14, 2020



# SITE PHOTOGRAPHS

Photo 9:



Photo 11:



Photo 10:



Photo 12:



#### Wall and Column Wipe Sampling

- Photo 9: View of column wipe sample WIPE-2 (looking north).
- Photo 10: View of column wipe sample WIPE 4 (looking east).
- Photo 11: View of wall wipe sample WIPE-5 (looking south).
- Photo 12: View of staining in the WIPE-7 (looking south).





# ATTACHMENT 2

ANALYTICAL REPORT





#### ANALYTICAL REPORT

| Lab Number:                     | L2037678                                                            |
|---------------------------------|---------------------------------------------------------------------|
| Client:                         | Benchmark & Turnkey Companies<br>2558 Hamburg Turnpike<br>Suite 300 |
| ATTN:<br>Phone:                 | Chris Boron<br>(716) 856-0599                                       |
| Project Name:                   | 315 GROTE ST                                                        |
| Project Number:<br>Report Date: | B0549-020-001-001<br>09/17/20                                       |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



## Serial\_No:09172009:54

 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

| Lab Number:  | L2037678 |
|--------------|----------|
| Report Date: | 09/17/20 |

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|-------------------------|--------------|
| L2037678-01        | CON-1     | SOLID  | BUFFALO, NY        | 09/10/20 09:00          | 09/10/20     |
| L2037678-02        | CON-2     | SOLID  | BUFFALO, NY        | 09/10/20 09:30          | 09/10/20     |
| L2037678-03        | CON-3     | SOLID  | BUFFALO, NY        | 09/10/20 09:15          | 09/10/20     |
| L2037678-04        | CON-4     | SOLID  | BUFFALO, NY        | 09/10/20 10:00          | 09/10/20     |
| L2037678-05        | CON-5     | SOLID  | BUFFALO, NY        | 09/10/20 10:30          | 09/10/20     |
| L2037678-06        | CON-6     | SOLID  | BUFFALO, NY        | 09/10/20 10:45          | 09/10/20     |
| L2037678-07        | CON-7     | SOLID  | BUFFALO, NY        | 09/10/20 11:15          | 09/10/20     |
| L2037678-08        | CON-8     | SOLID  | BUFFALO, NY        | 09/10/20 11:30          | 09/10/20     |
| L2037678-09        | CON-9     | SOLID  | BUFFALO, NY        | 09/10/20 11:45          | 09/10/20     |
| L2037678-10        | CON-10    | SOLID  | BUFFALO, NY        | 09/10/20 12:00          | 09/10/20     |
| L2037678-11        | CON-11    | SOLID  | BUFFALO, NY        | 09/10/20 12:15          | 09/10/20     |
| L2037678-12        | WOOD-1    | SOLID  | BUFFALO, NY        | 09/10/20 13:00          | 09/10/20     |
| L2037678-13        | WOOD-2    | SOLID  | BUFFALO, NY        | 09/10/20 13:15          | 09/10/20     |
| L2037678-14        | WOOD-3    | SOLID  | BUFFALO, NY        | 09/10/20 13:30          | 09/10/20     |
| L2037678-15        | WOOD-4    | SOLID  | BUFFALO, NY        | 09/10/20 13:45          | 09/10/20     |
| L2037678-16        | WOOD-5    | SOLID  | BUFFALO, NY        | 09/10/20 14:00          | 09/10/20     |
| L2037678-17        | WOOD-6    | SOLID  | BUFFALO, NY        | 09/10/20 14:15          | 09/10/20     |
| L2037678-18        | WOOD-7    | SOLID  | BUFFALO, NY        | 09/10/20 14:30          | 09/10/20     |
| L2037678-19        | WOOD-8    | SOLID  | BUFFALO, NY        | 09/10/20 14:45          | 09/10/20     |
| L2037678-20        | WOOD-9    | SOLID  | BUFFALO, NY        | 09/10/20 15:00          | 09/10/20     |
| L2037678-21        | WIPE-1    | WIPE   | BUFFALO, NY        | 09/10/20 15:05          | 09/10/20     |
| L2037678-22        | WIPE-2    | WIPE   | BUFFALO, NY        | 09/10/20 15:10          | 09/10/20     |
| L2037678-23        | WIPE-3    | WIPE   | BUFFALO, NY        | 09/10/20 15:15          | 09/10/20     |
| P2097698624        | WIPE-4    | WIPE   | BUFFALO, NY        | 09/10/20 15:20          | 09/10/20     |



| Alnha       |           |        | Sample      | Serial_No:09172009:54 |              |
|-------------|-----------|--------|-------------|-----------------------|--------------|
| Sample ID   | Client ID | Matrix | Location    | Date/Time             | Receive Date |
| L2037678-25 | WIPE-5    | WIPE   | BUFFALO, NY | 09/10/20 15:25        | 09/10/20     |
| L2037678-26 | WIPE-6    | WIPE   | BUFFALO, NY | 09/10/20 15:30        | 09/10/20     |
| L2037678-27 | WIPE-7    | WIPE   | BUFFALO, NY | 09/10/20 15:35        | 09/10/20     |
| L2037678-28 | WIPE-8    | WIPE   | BUFFALO, NY | 09/10/20 15:40        | 09/10/20     |
| L2037678-29 | WIPE-9    | WIPE   | BUFFALO, NY | 09/10/20 15:45        | 09/10/20     |
| L2037678-30 | WIPE-10   | WIPE   | BUFFALO, NY | 09/10/20 15:50        | 09/10/20     |



 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

Lab Number: L2037678 Report Date: 09/17/20

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

 Lab Number:
 L2037678

 Report Date:
 09/17/20

#### **Case Narrative (continued)**

**Report Submission** 

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

PCBs

L2037678-01, -02, -03, -04, -05, -06, -09, and -10: The sample has elevated detection limits due to the dilution required by the sample matrix.

L2037678-03, -04, -05, -06, and -10: The surrogate recoveries are below the acceptance criteria for 2,4,5,6tetrachloro-m-xylene (0%) and decachlorobiphenyl (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 09/17/20



# ORGANICS



# PCBS



|                    |                   |   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|---|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |   |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |   |                | Report Date:       | 09/17/20       |
|                    |                   |   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-01       | D |                | Date Collected:    | 09/10/20 09:00 |
| Client ID:         | CON-1             |   |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |   |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |   |                |                    |                |
| Matrix:            | Solid             |   |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1.8082A           |   |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 22:36    |   |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |   |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 98%               |   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |   |                | Cleanup Date:      | 09/15/20       |

| Parameter                                  | Result   | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |
|--------------------------------------------|----------|-----------|-------|-----|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbord | ough Lab |           |       |     |      |                        |        |
| Aroclor 1016                               | ND       |           | ug/kg | 452 | 40.1 | 5                      | A      |
| Aroclor 1221                               | ND       |           | ug/kg | 452 | 45.3 | 5                      | А      |
| Aroclor 1232                               | ND       |           | ug/kg | 452 | 95.8 | 5                      | А      |
| Aroclor 1242                               | ND       |           | ug/kg | 452 | 60.9 | 5                      | А      |
| Aroclor 1248                               | ND       |           | ug/kg | 452 | 67.8 | 5                      | А      |
| Aroclor 1254                               | 276      | J         | ug/kg | 452 | 49.4 | 5                      | В      |
| Aroclor 1260                               | ND       |           | ug/kg | 452 | 83.5 | 5                      | А      |
| Aroclor 1262                               | ND       |           | ug/kg | 452 | 57.4 | 5                      | А      |
| Aroclor 1268                               | ND       |           | ug/kg | 452 | 46.8 | 5                      | А      |
| PCBs, Total                                | 276      | J         | ug/kg | 452 | 40.1 | 5                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 38         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 42         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 61         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 62         |           | 30-150                 | В      |



|                                                                                                   |                                                 |   |                | Serial_No:                                                                                                     | 09172009:54                                                                   |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|---|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Project Name:                                                                                     | 315 GROTE ST                                    |   |                | Lab Number:                                                                                                    | L2037678                                                                      |
| Project Number:                                                                                   | B0549-020-001-001                               |   |                | Report Date:                                                                                                   | 09/17/20                                                                      |
|                                                                                                   |                                                 |   | SAMPLE RESULTS |                                                                                                                |                                                                               |
| Lab ID:<br>Client ID:<br>Sample Location:                                                         | L2037678-02<br>CON-2<br>BUFFALO, NY             | D |                | Date Collected:<br>Date Received:<br>Field Prep:                                                               | 09/10/20 09:30<br>09/10/20<br>Not Specified                                   |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | Solid<br>1,8082A<br>09/15/20 22:43<br>JM<br>99% |   |                | Extraction Method:<br>Extraction Date:<br>Cleanup Method:<br>Cleanup Date:<br>Cleanup Method:<br>Cleanup Date: | EPA 3540C<br>09/14/20 02:43<br>EPA 3665A<br>09/15/20<br>EPA 3660B<br>09/15/20 |

| Parameter                             | Result        | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |
|---------------------------------------|---------------|-----------|-------|-----|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Wes | stborough Lab |           |       |     |      |                        |        |
| Aroclor 1016                          | ND            |           | ug/kg | 438 | 38.9 | 5                      | А      |
| Aroclor 1221                          | ND            |           | ug/kg | 438 | 43.9 | 5                      | А      |
| Aroclor 1232                          | ND            |           | ug/kg | 438 | 92.8 | 5                      | А      |
| Aroclor 1242                          | ND            |           | ug/kg | 438 | 59.0 | 5                      | А      |
| Aroclor 1248                          | ND            |           | ug/kg | 438 | 65.7 | 5                      | А      |
| Aroclor 1254                          | 233           | J         | ug/kg | 438 | 47.9 | 5                      | В      |
| Aroclor 1260                          | ND            |           | ug/kg | 438 | 80.9 | 5                      | А      |
| Aroclor 1262                          | ND            |           | ug/kg | 438 | 55.6 | 5                      | А      |
| Aroclor 1268                          | ND            |           | ug/kg | 438 | 45.4 | 5                      | А      |
| PCBs, Total                           | 233           | J         | ug/kg | 438 | 38.9 | 5                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 52         |           | 30-150                 | A      |
| Decachlorobiphenyl           | 62         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 76         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 82         |           | 30-150                 | В      |



|                                                                                                   |                                                 |   |                | Serial_No:                                                                                                     | 09172009:54                                                                   |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|---|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Project Name:                                                                                     | 315 GROTE ST                                    |   |                | Lab Number:                                                                                                    | L2037678                                                                      |
| Project Number:                                                                                   | B0549-020-001-001                               |   |                | Report Date:                                                                                                   | 09/17/20                                                                      |
|                                                                                                   |                                                 |   | SAMPLE RESULTS |                                                                                                                |                                                                               |
| Lab ID:<br>Client ID:<br>Sample Lecation:                                                         | L2037678-03<br>CON-3                            | D |                | Date Collected:<br>Date Received:                                                                              | 09/10/20 09:15<br>09/10/20<br>Not Specified                                   |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | Solid<br>1,8082A<br>09/15/20 22:57<br>JM<br>96% |   |                | Extraction Method:<br>Extraction Date:<br>Cleanup Method:<br>Cleanup Date:<br>Cleanup Method:<br>Cleanup Date: | EPA 3540C<br>09/14/20 02:43<br>EPA 3665A<br>09/15/20<br>EPA 3660B<br>09/15/20 |

| Parameter                               | Result      | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-----------------------------------------|-------------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westl | oorough Lab |           |       |      |      |                        |        |
| Aroclor 1016                            | ND          |           | ug/kg | 2020 | 179. | 20                     | А      |
| Aroclor 1221                            | ND          |           | ug/kg | 2020 | 202. | 20                     | А      |
| Aroclor 1232                            | ND          |           | ug/kg | 2020 | 427. | 20                     | А      |
| Aroclor 1242                            | ND          |           | ug/kg | 2020 | 272. | 20                     | А      |
| Aroclor 1248                            | ND          |           | ug/kg | 2020 | 302. | 20                     | А      |
| Aroclor 1254                            | 377         | J         | ug/kg | 2020 | 220. | 20                     | В      |
| Aroclor 1260                            | ND          |           | ug/kg | 2020 | 373. | 20                     | А      |
| Aroclor 1262                            | ND          |           | ug/kg | 2020 | 256. | 20                     | А      |
| Aroclor 1268                            | ND          |           | ug/kg | 2020 | 209. | 20                     | А      |
| PCBs, Total                             | 377         | J         | ug/kg | 2020 | 179. | 20                     | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | А      |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | В      |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | В      |



|                    |                   |   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|---|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |   |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |   |                | Report Date:       | 09/17/20       |
|                    |                   |   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-04       | D |                | Date Collected:    | 09/10/20 10:00 |
| Client ID:         | CON-4             |   |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |   |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |   |                |                    |                |
| Matrix:            | Solid             |   |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |   |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 23:04    |   |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |   |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 97%               |   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |   |                | Cleanup Date:      | 09/15/20       |

| Parameter                            | Result         | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|--------------------------------------|----------------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - We | estborough Lab |           |       |      |      |                        |        |
| Aroclor 1016                         | ND             |           | ug/kg | 6100 | 541. | 60                     | А      |
| Aroclor 1221                         | ND             |           | ug/kg | 6100 | 611. | 60                     | А      |
| Aroclor 1232                         | ND             |           | ug/kg | 6100 | 1290 | 60                     | А      |
| Aroclor 1242                         | ND             |           | ug/kg | 6100 | 822. | 60                     | А      |
| Aroclor 1248                         | ND             |           | ug/kg | 6100 | 914. | 60                     | А      |
| Aroclor 1254                         | 1870           | J         | ug/kg | 6100 | 667. | 60                     | В      |
| Aroclor 1260                         | ND             |           | ug/kg | 6100 | 1130 | 60                     | А      |
| Aroclor 1262                         | ND             |           | ug/kg | 6100 | 774. | 60                     | А      |
| Aroclor 1268                         | ND             |           | ug/kg | 6100 | 631. | 60                     | А      |
| PCBs, Total                          | 1870           | J         | ug/kg | 6100 | 541. | 60                     | В      |
|                                      |                |           |       |      |      |                        |        |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |  |
|------------------------------|------------|-----------|------------------------|--------|--|
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | А      |  |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | В      |  |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | В      |  |



|                    |                   |   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|---|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |   |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |   |                | Report Date:       | 09/17/20       |
|                    |                   |   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-05       | D |                | Date Collected:    | 09/10/20 10:30 |
| Client ID:         | CON-5             |   |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |   |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |   |                |                    |                |
| Matrix:            | Solid             |   |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |   |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 23:11    |   |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |   |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 97%               |   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |   |                | Cleanup Date:      | 09/15/20       |

| Result   | Qualifier                                                                              | Units                   | RL                                                                                                                                                                     | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Dilution Factor</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Column                                                                                                                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ough Lab |                                                                                        |                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 173.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 196.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 414.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 263.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 293.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| 380      | J                                                                                      | ug/kg                   | 1950                                                                                                                                                                   | 214.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 361.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 248.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| ND       |                                                                                        | ug/kg                   | 1950                                                                                                                                                                   | 202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А                                                                                                                                                                                                                                                                                 |
| 380      | J                                                                                      | ug/kg                   | 1950                                                                                                                                                                   | 173.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                 |
|          | Result<br>Dugh Lab<br>ND<br>ND<br>ND<br>ND<br>380<br>ND<br>ND<br>ND<br>ND<br>ND<br>380 | ResultQualifierDugh Lab | ResultQualifierUnitsDugh Labug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg | Result         Qualifier         Units         RL           Dugh Lab         ug/kg         1950           ND         ug/kg         1950 | Result         Qualifier         Units         RL         MDL           Dugh Lab         ug/kg         1950         173.           ND         ug/kg         1950         196.           ND         ug/kg         1950         196.           ND         ug/kg         1950         263.           ND         ug/kg         1950         263.           ND         ug/kg         1950         293.           380         J         ug/kg         1950         214.           ND         ug/kg         1950         214.           ND         ug/kg         1950         263.           ND         ug/kg         1950         214.           ND         ug/kg         1950         214.           ND         ug/kg         1950         248.           ND         ug/kg         1950         202.           380         J         ug/kg         1950         202.           380         J         ug/kg         1950         173. | ResultQualifierUnitsRLMDLDilution FactorDugh LabNDug/kg1950173.20NDug/kg1950196.20NDug/kg1950414.20NDug/kg1950263.20NDug/kg1950263.20NDug/kg1950214.20NDug/kg1950361.20NDug/kg1950248.20NDug/kg1950248.20NDug/kg1950202.20NDug/kg1950202.20380Jug/kg1950202.20380Jug/kg1950173.20 |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |  |
|------------------------------|------------|-----------|------------------------|--------|--|
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | А      |  |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150                 | В      |  |
| Decachlorobiphenyl           | 0          | Q         | 30-150                 | В      |  |



|                    |                   |   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|---|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |   |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |   |                | Report Date:       | 09/17/20       |
|                    |                   |   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-06       | D | [              | Date Collected:    | 09/10/20 10:45 |
| Client ID:         | CON-6             |   | [              | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |   | F              | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |   |                |                    |                |
| Matrix:            | Solid             |   | E              | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |   | E              | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 23:18    |   | (              | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |   | (              | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 97%               |   | (              | Cleanup Method:    | EPA 3660B      |
|                    |                   |   | (              | Cleanup Date:      | 09/15/20       |

| Parameter                                 | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbor | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                              | ND       |           | ug/kg | 1880 | 167. | 20                     | A      |
| Aroclor 1221                              | ND       |           | ug/kg | 1880 | 188. | 20                     | А      |
| Aroclor 1232                              | ND       |           | ug/kg | 1880 | 399. | 20                     | А      |
| Aroclor 1242                              | ND       |           | ug/kg | 1880 | 254. | 20                     | А      |
| Aroclor 1248                              | ND       |           | ug/kg | 1880 | 282. | 20                     | А      |
| Aroclor 1254                              | 363      | J         | ug/kg | 1880 | 206. | 20                     | В      |
| Aroclor 1260                              | ND       |           | ug/kg | 1880 | 348. | 20                     | А      |
| Aroclor 1262                              | ND       |           | ug/kg | 1880 | 239. | 20                     | А      |
| Aroclor 1268                              | ND       |           | ug/kg | 1880 | 195. | 20                     | А      |
| PCBs, Total                               | 363      | J         | ug/kg | 1880 | 167. | 20                     | В      |

| Surrogate                    | % Recovery | Qualifier | Column |   |
|------------------------------|------------|-----------|--------|---|
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150 | А |
| Decachlorobiphenyl           | 0          | Q         | 30-150 | А |
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q         | 30-150 | В |
| Decachlorobiphenyl           | 0          | Q         | 30-150 | В |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-07       |                | Date Collected:    | 09/10/20 11:15 |
|                    |                   |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Solid             |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1.8082A           |                | Extraction Date:   | 09/15/20 23:40 |
| Analytical Date:   | 09/16/20 19:12    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JAW               |                | Cleanup Date:      | 09/16/20       |
| Percent Solids:    | 98%               |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/16/20       |
|                    |                   |                |                    |                |

| Parameter                                 | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbor | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                              | ND       |           | ug/kg | 87.2 | 7.75 | 1                      | А      |
| Aroclor 1221                              | ND       |           | ug/kg | 87.2 | 8.74 | 1                      | А      |
| Aroclor 1232                              | ND       |           | ug/kg | 87.2 | 18.5 | 1                      | А      |
| Aroclor 1242                              | ND       |           | ug/kg | 87.2 | 11.8 | 1                      | А      |
| Aroclor 1248                              | ND       |           | ug/kg | 87.2 | 13.1 | 1                      | А      |
| Aroclor 1254                              | 198      |           | ug/kg | 87.2 | 9.54 | 1                      | В      |
| Aroclor 1260                              | ND       |           | ug/kg | 87.2 | 16.1 | 1                      | А      |
| Aroclor 1262                              | ND       |           | ug/kg | 87.2 | 11.1 | 1                      | А      |
| Aroclor 1268                              | ND       |           | ug/kg | 87.2 | 9.04 | 1                      | А      |
| PCBs, Total                               | 198      |           | ug/kg | 87.2 | 7.75 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 39         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 34         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 43         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 38         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-08       |                | Date Collected:    | 09/10/20 11:30 |
| Client ID:         | CON-8             |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Solid             |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1.8082A           |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 22:29    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 97%               |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/15/20       |

| Parameter                              | Result     | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |
|----------------------------------------|------------|-----------|-------|-----|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - West | orough Lab |           |       |     |      |                        |        |
| Aroclor 1016                           | ND         |           | ug/kg | 103 | 9.12 | 1                      | A      |
| Aroclor 1221                           | ND         |           | ug/kg | 103 | 10.3 | 1                      | А      |
| Aroclor 1232                           | ND         |           | ug/kg | 103 | 21.8 | 1                      | А      |
| Aroclor 1242                           | ND         |           | ug/kg | 103 | 13.8 | 1                      | А      |
| Aroclor 1248                           | ND         |           | ug/kg | 103 | 15.4 | 1                      | А      |
| Aroclor 1254                           | 176        |           | ug/kg | 103 | 11.2 | 1                      | В      |
| Aroclor 1260                           | ND         |           | ug/kg | 103 | 19.0 | 1                      | А      |
| Aroclor 1262                           | ND         |           | ug/kg | 103 | 13.0 | 1                      | А      |
| Aroclor 1268                           | ND         |           | ug/kg | 103 | 10.6 | 1                      | А      |
| PCBs, Total                            | 176        |           | ug/kg | 103 | 9.12 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 40         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 50         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 50         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | В      |



|                    |                   |   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|---|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |   |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |   |                | Report Date:       | 09/17/20       |
|                    |                   |   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-09       | D |                | Date Collected:    | 09/10/20 11:45 |
| Client ID:         | CON-9             |   |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |   |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |   |                |                    |                |
| Matrix:            | Solid             |   |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |   |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 22:50    |   |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |   |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 97%               |   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |   |                | Cleanup Date:      | 09/15/20       |
|                    |                   |   |                |                    |                |

| Parameter                               | Result      | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |
|-----------------------------------------|-------------|-----------|-------|-----|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westl | borough Lab |           |       |     |      |                        |        |
| Aroclor 1016                            | ND          |           | ug/kg | 505 | 44.8 | 5                      | А      |
| Aroclor 1221                            | ND          |           | ug/kg | 505 | 50.6 | 5                      | А      |
| Aroclor 1232                            | ND          |           | ug/kg | 505 | 107. | 5                      | А      |
| Aroclor 1242                            | ND          |           | ug/kg | 505 | 68.1 | 5                      | А      |
| Aroclor 1248                            | ND          |           | ug/kg | 505 | 75.8 | 5                      | А      |
| Aroclor 1254                            | 394         | J         | ug/kg | 505 | 55.2 | 5                      | В      |
| Aroclor 1260                            | ND          |           | ug/kg | 505 | 93.3 | 5                      | А      |
| Aroclor 1262                            | ND          |           | ug/kg | 505 | 64.1 | 5                      | А      |
| Aroclor 1268                            | ND          |           | ug/kg | 505 | 52.3 | 5                      | А      |
| PCBs, Total                             | 394         | J         | ug/kg | 505 | 44.8 | 5                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 42         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 46         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 56         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 58         |           | 30-150                 | В      |



|                                                                                                   |                                                 |   |                | Serial_No:                                                                                                     | 09172009:54                                                                   |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|---|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Project Name:                                                                                     | 315 GROTE ST                                    |   |                | Lab Number:                                                                                                    | L2037678                                                                      |
| Project Number:                                                                                   | B0549-020-001-001                               |   |                | Report Date:                                                                                                   | 09/17/20                                                                      |
|                                                                                                   |                                                 |   | SAMPLE RESULTS |                                                                                                                |                                                                               |
| Lab ID:<br>Client ID:<br>Sample Location:                                                         | L2037678-10<br>CON-10<br>BUFFALO, NY            | D |                | Date Collected:<br>Date Received:<br>Field Prep:                                                               | 09/10/20 12:00<br>09/10/20<br>Not Specified                                   |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | Solid<br>1,8082A<br>09/15/20 23:25<br>JM<br>97% |   |                | Extraction Method:<br>Extraction Date:<br>Cleanup Method:<br>Cleanup Date:<br>Cleanup Method:<br>Cleanup Date: | EPA 3540C<br>09/14/20 02:43<br>EPA 3665A<br>09/15/20<br>EPA 3660B<br>09/15/20 |

| Parameter                                 | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbor | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                              | ND       |           | ug/kg | 1850 | 164. | 20                     | А      |
| Aroclor 1221                              | ND       |           | ug/kg | 1850 | 185. | 20                     | А      |
| Aroclor 1232                              | ND       |           | ug/kg | 1850 | 392. | 20                     | А      |
| Aroclor 1242                              | ND       |           | ug/kg | 1850 | 249. | 20                     | А      |
| Aroclor 1248                              | ND       |           | ug/kg | 1850 | 277. | 20                     | А      |
| Aroclor 1254                              | ND       |           | ug/kg | 1850 | 202. | 20                     | А      |
| Aroclor 1260                              | ND       |           | ug/kg | 1850 | 342. | 20                     | А      |
| Aroclor 1262                              | ND       |           | ug/kg | 1850 | 235. | 20                     | А      |
| Aroclor 1268                              | ND       |           | ug/kg | 1850 | 192. | 20                     | А      |
| PCBs, Total                               | ND       |           | ug/kg | 1850 | 164. | 20                     | А      |

| Surrogate                    | % Recovery | Acceptance<br>Qualifier Criteria Column |        |   |  |  |
|------------------------------|------------|-----------------------------------------|--------|---|--|--|
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q                                       | 30-150 | А |  |  |
| Decachlorobiphenyl           | 0          | Q                                       | 30-150 | А |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 0          | Q                                       | 30-150 | В |  |  |
| Decachlorobiphenyl           | 0          | Q                                       | 30-150 | В |  |  |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-11       |                | Date Collected:    | 09/10/20 12:15 |
| Client ID:         | CON-11            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Solid             |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/14/20 02:43 |
| Analytical Date:   | 09/15/20 22:22    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | JM                |                | Cleanup Date:      | 09/15/20       |
| Percent Solids:    | 99%               |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/15/20       |
|                    |                   |                |                    |                |

| Result     | Qualifier                                                                                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                                                                                                                                                                | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Dilution Factor</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orough Lab |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 8.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 9.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 276        |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 9.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 276        |                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.5                                                                                                                                                              | 8.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Result<br>prough Lab<br>ND<br>ND<br>ND<br>ND<br>276<br>ND<br>ND<br>ND<br>ND<br>276<br>ND<br>276 | ResultQualifierorough LabImage: Comparison of the second of th | ResultQualifierUnitsDrough Labug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg | Result         Qualifier         Units         RL           prough Lab         ug/kg         91.5           ND         ug/kg         91.5 | Result         Qualifier         Units         RL         MDL           prough Lab         ug/kg         91.5         8.13           ND         ug/kg         91.5         9.17           ND         ug/kg         91.5         9.17           ND         ug/kg         91.5         19.4           ND         ug/kg         91.5         19.4           ND         ug/kg         91.5         12.3           ND         ug/kg         91.5         13.7           276         ug/kg         91.5         10.0           ND         ug/kg         91.5         16.9           ND         ug/kg         91.5         11.6           ND         ug/kg         91.5         9.48           276         ug/kg         91.5         8.13 | Result         Qualifier         Units         RL         MDL         Dilution Factor           prough Lab         ug/kg         91.5         8.13         1           ND         ug/kg         91.5         8.13         1           ND         ug/kg         91.5         9.17         1           ND         ug/kg         91.5         19.4         1           ND         ug/kg         91.5         19.4         1           ND         ug/kg         91.5         12.3         1           ND         ug/kg         91.5         13.7         1           ND         ug/kg         91.5         10.0         1           ND         ug/kg         91.5         10.0         1           ND         ug/kg         91.5         16.9         1           ND         ug/kg         91.5         11.6         1           ND         ug/kg         91.5         9.48         1           ND         ug/kg         91.5         8.13         1 |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 46         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 45         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 54         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 47         |           | 30-150                 | В      |



|                    |                                             | Serial_No:         | 09172009:54    |
|--------------------|---------------------------------------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST                                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001                           | Report Date:       | 09/17/20       |
|                    | SAMPLE RESULTS                              |                    |                |
| Lab ID:            | L2037678-12                                 | Date Collected:    | 09/10/20 13:00 |
| Client ID:         | WOOD-1                                      | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:        | Not Specified  |
| Sample Depth:      |                                             |                    |                |
| Matrix:            | Solid                                       | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A                                     | Extraction Date:   | 09/13/20 11:40 |
| Analytical Date:   | 09/15/20 11:41                              | Cleanup Method:    | EPA 3665A      |
| Analyst:           | CW                                          | Cleanup Date:      | 09/14/20       |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:    | EPA 3660B      |
|                    |                                             | Cleanup Date:      | 09/14/20       |

| Parameter                                | Result    | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|------------------------------------------|-----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbo | rough Lab |           |       |      |      |                        |        |
| Aroclor 1016                             | ND        |           | ug/kg | 85.8 | 7.62 | 1                      | А      |
| Aroclor 1221                             | ND        |           | ug/kg | 85.8 | 8.59 | 1                      | А      |
| Aroclor 1232                             | ND        |           | ug/kg | 85.8 | 18.2 | 1                      | А      |
| Aroclor 1242                             | ND        |           | ug/kg | 85.8 | 11.6 | 1                      | А      |
| Aroclor 1248                             | ND        |           | ug/kg | 85.8 | 12.9 | 1                      | А      |
| Aroclor 1254                             | 243       |           | ug/kg | 85.8 | 9.38 | 1                      | В      |
| Aroclor 1260                             | ND        |           | ug/kg | 85.8 | 15.8 | 1                      | А      |
| Aroclor 1262                             | ND        |           | ug/kg | 85.8 | 10.9 | 1                      | А      |
| Aroclor 1268                             | ND        |           | ug/kg | 85.8 | 8.88 | 1                      | А      |
| PCBs, Total                              | 243       |           | ug/kg | 85.8 | 7.62 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 48         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 32         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 41         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 30         |           | 30-150                 | В      |



|                    |                                             | Serial_No:         | 09172009:54    |
|--------------------|---------------------------------------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST                                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001                           | Report Date:       | 09/17/20       |
|                    | SAMPLE RESULTS                              |                    |                |
| Lab ID:            | L2037678-13                                 | Date Collected:    | 09/10/20 13:15 |
| Client ID:         | WOOD-2                                      | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:        | Not Specified  |
| Sample Depth:      |                                             |                    |                |
| Matrix:            | Solid                                       | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A                                     | Extraction Date:   | 09/13/20 11:40 |
| Analytical Date:   | 09/15/20 11:48                              | Cleanup Method:    | EPA 3665A      |
| Analyst:           | CW                                          | Cleanup Date:      | 09/14/20       |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:    | EPA 3660B      |
|                    |                                             | Cleanup Date:      | 09/14/20       |

| Parameter                                 | Result    | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-------------------------------------------|-----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbor | rough Lab |           |       |      |      |                        |        |
| Aroclor 1016                              | ND        |           | ug/kg | 92.9 | 8.25 | 1                      | А      |
| Aroclor 1221                              | ND        |           | ug/kg | 92.9 | 9.31 | 1                      | А      |
| Aroclor 1232                              | ND        |           | ug/kg | 92.9 | 19.7 | 1                      | А      |
| Aroclor 1242                              | ND        |           | ug/kg | 92.9 | 12.5 | 1                      | А      |
| Aroclor 1248                              | ND        |           | ug/kg | 92.9 | 13.9 | 1                      | А      |
| Aroclor 1254                              | 659       |           | ug/kg | 92.9 | 10.2 | 1                      | В      |
| Aroclor 1260                              | ND        |           | ug/kg | 92.9 | 17.2 | 1                      | А      |
| Aroclor 1262                              | ND        |           | ug/kg | 92.9 | 11.8 | 1                      | А      |
| Aroclor 1268                              | ND        |           | ug/kg | 92.9 | 9.63 | 1                      | А      |
| PCBs, Total                               | 659       |           | ug/kg | 92.9 | 8.25 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 50         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 41         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 52         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 45         |           | 30-150                 | В      |



|                    |                                             | Serial_No:09172009:54 |                |  |  |
|--------------------|---------------------------------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST                                | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001                           | Report Date:          | 09/17/20       |  |  |
|                    | SAMPLE RESULTS                              |                       |                |  |  |
| Lab ID:            | L2037678-14                                 | Date Collected:       | 09/10/20 13:30 |  |  |
| Client ID:         | WOOD-3                                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                                             |                       |                |  |  |
| Matrix:            | Solid                                       | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A                                     | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 11:54                              | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | CW                                          | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                                             | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                                  | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|--------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbord | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                               | ND       |           | ug/kg | 91.6 | 8.13 | 1                      | А      |
| Aroclor 1221                               | ND       |           | ug/kg | 91.6 | 9.18 | 1                      | А      |
| Aroclor 1232                               | ND       |           | ug/kg | 91.6 | 19.4 | 1                      | А      |
| Aroclor 1242                               | ND       |           | ug/kg | 91.6 | 12.3 | 1                      | А      |
| Aroclor 1248                               | ND       |           | ug/kg | 91.6 | 13.7 | 1                      | А      |
| Aroclor 1254                               | 13.7     | J         | ug/kg | 91.6 | 10.0 | 1                      | В      |
| Aroclor 1260                               | ND       |           | ug/kg | 91.6 | 16.9 | 1                      | А      |
| Aroclor 1262                               | ND       |           | ug/kg | 91.6 | 11.6 | 1                      | А      |
| Aroclor 1268                               | ND       |           | ug/kg | 91.6 | 9.49 | 1                      | А      |
| PCBs, Total                                | 13.7     | J         | ug/kg | 91.6 | 8.13 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 51         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 41         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 50         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 45         |           | 30-150                 | В      |



|                    |                                             | Serial_No:         | Serial_No:09172009:54 |  |  |  |
|--------------------|---------------------------------------------|--------------------|-----------------------|--|--|--|
| Project Name:      | 315 GROTE ST                                | Lab Number:        | L2037678              |  |  |  |
| Project Number:    | B0549-020-001-001                           | Report Date:       | 09/17/20              |  |  |  |
|                    | SAMPLE RESULTS                              |                    |                       |  |  |  |
| Lab ID:            | L2037678-15                                 | Date Collected:    | 09/10/20 13:45        |  |  |  |
| Client ID:         | WOOD-4                                      | Date Received:     | 09/10/20              |  |  |  |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:        | Not Specified         |  |  |  |
| Sample Depth:      |                                             |                    |                       |  |  |  |
| Matrix:            | Solid                                       | Extraction Method: | EPA 3540C             |  |  |  |
| Analytical Method: | 1,8082A                                     | Extraction Date:   | 09/13/20 11:40        |  |  |  |
| Analytical Date:   | 09/15/20 12:01                              | Cleanup Method:    | EPA 3665A             |  |  |  |
| Analyst:           | CW                                          | Cleanup Date:      | 09/14/20              |  |  |  |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:    | EPA 3660B             |  |  |  |
|                    |                                             | Cleanup Date:      | 09/14/20              |  |  |  |

| Parameter                                | Result     | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|------------------------------------------|------------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbo | orough Lab |           |       |      |      |                        |        |
| Aroclor 1016                             | ND         |           | ug/kg | 91.7 | 8.15 | 1                      | А      |
| Aroclor 1221                             | ND         |           | ug/kg | 91.7 | 9.19 | 1                      | А      |
| Aroclor 1232                             | ND         |           | ug/kg | 91.7 | 19.4 | 1                      | А      |
| Aroclor 1242                             | ND         |           | ug/kg | 91.7 | 12.4 | 1                      | А      |
| Aroclor 1248                             | ND         |           | ug/kg | 91.7 | 13.8 | 1                      | А      |
| Aroclor 1254                             | 187        |           | ug/kg | 91.7 | 10.0 | 1                      | А      |
| Aroclor 1260                             | ND         |           | ug/kg | 91.7 | 17.0 | 1                      | А      |
| Aroclor 1262                             | ND         |           | ug/kg | 91.7 | 11.6 | 1                      | А      |
| Aroclor 1268                             | ND         |           | ug/kg | 91.7 | 9.50 | 1                      | А      |
| PCBs, Total                              | 187        |           | ug/kg | 91.7 | 8.15 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 55         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 40         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 53         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 43         |           | 30-150                 | В      |



|                    |                                             | Serial_No:09172009:54 |                |  |  |
|--------------------|---------------------------------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST                                | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001                           | Report Date:          | 09/17/20       |  |  |
|                    | SAMPLE RESULTS                              |                       |                |  |  |
| Lab ID:            | L2037678-16                                 | Date Collected:       | 09/10/20 14:00 |  |  |
| Client ID:         | WOOD-5                                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                                             |                       |                |  |  |
| Matrix:            | Solid                                       | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A                                     | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 12:08                              | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | CW                                          | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                                             | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                             | Result        | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|---------------------------------------|---------------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Wes | stborough Lab |           |       |      |      |                        |        |
| Aroclor 1016                          | ND            |           | ug/kg | 88.6 | 7.87 | 1                      | A      |
| Aroclor 1221                          | ND            |           | ug/kg | 88.6 | 8.88 | 1                      | А      |
| Aroclor 1232                          | ND            |           | ug/kg | 88.6 | 18.8 | 1                      | А      |
| Aroclor 1242                          | ND            |           | ug/kg | 88.6 | 12.0 | 1                      | А      |
| Aroclor 1248                          | ND            |           | ug/kg | 88.6 | 13.3 | 1                      | А      |
| Aroclor 1254                          | 1150          |           | ug/kg | 88.6 | 9.70 | 1                      | А      |
| Aroclor 1260                          | ND            |           | ug/kg | 88.6 | 16.4 | 1                      | А      |
| Aroclor 1262                          | ND            |           | ug/kg | 88.6 | 11.2 | 1                      | А      |
| Aroclor 1268                          | ND            |           | ug/kg | 88.6 | 9.18 | 1                      | А      |
| PCBs, Total                           | 1150          |           | ug/kg | 88.6 | 7.87 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 48         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 43         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 46         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 41         |           | 30-150                 | В      |



|                    |                   |         |                      | Serial_No:09172009:54 |                |  |  |
|--------------------|-------------------|---------|----------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST      |         |                      | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001 |         |                      | Report Date:          | 09/17/20       |  |  |
|                    |                   |         | SAMPLE RESULTS       |                       |                |  |  |
| Lab ID:            | L2037678-17       | D       |                      | Date Collected:       | 09/10/20 14:15 |  |  |
| Client ID:         | WOOD-6            |         |                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY       |         |                      | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                   |         |                      |                       |                |  |  |
| Matrix:            | Solid             |         |                      | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A           |         |                      | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 17:42    |         |                      | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | JAW               |         |                      | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported  | d on ar | 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    | -                 |         |                      | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                                         | Result | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |  |
|---------------------------------------------------|--------|-----------|-------|-----|------|------------------------|--------|--|
| Polychlorinated Biphenyls by GC - Westborough Lab |        |           |       |     |      |                        |        |  |
| Aroclor 1016                                      | ND     |           | ua/ka | 477 | 42.4 | 5                      | A      |  |
| Aroclor 1221                                      | ND     |           | ug/kg | 477 | 47.8 | 5                      | A      |  |
| Aroclor 1232                                      | ND     |           | ug/kg | 477 | 101. | 5                      | А      |  |
| Aroclor 1242                                      | ND     |           | ug/kg | 477 | 64.3 | 5                      | А      |  |
| Aroclor 1248                                      | ND     |           | ug/kg | 477 | 71.6 | 5                      | А      |  |
| Aroclor 1254                                      | 6580   |           | ug/kg | 477 | 52.2 | 5                      | А      |  |
| Aroclor 1260                                      | ND     |           | ug/kg | 477 | 88.2 | 5                      | А      |  |
| Aroclor 1262                                      | ND     |           | ug/kg | 477 | 60.6 | 5                      | А      |  |
| Aroclor 1268                                      | ND     |           | ug/kg | 477 | 49.4 | 5                      | А      |  |
| PCBs, Total                                       | 6580   |           | ug/kg | 477 | 42.4 | 5                      | А      |  |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 55         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 66         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 58         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 76         |           | 30-150                 | В      |


|                    |                   |         |                      | Serial_No:09172009:54 |                |  |  |
|--------------------|-------------------|---------|----------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST      |         |                      | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001 |         |                      | Report Date:          | 09/17/20       |  |  |
|                    |                   |         | SAMPLE RESULTS       |                       |                |  |  |
| Lab ID:            | L2037678-18       | D       |                      | Date Collected:       | 09/10/20 14:30 |  |  |
| Client ID:         | WOOD-7            |         |                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY       |         |                      | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                   |         |                      |                       |                |  |  |
| Matrix:            | Solid             |         |                      | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A           |         |                      | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 17:50    |         |                      | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | JAW               |         |                      | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported  | d on ai | 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                   |         |                      | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                            | Result         | Qualifier | Units | RL  | MDL  | <b>Dilution Factor</b> | Column |
|--------------------------------------|----------------|-----------|-------|-----|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - We | estborough Lab |           |       |     |      |                        |        |
| Aroclor 1016                         | ND             |           | ua/ka | 475 | 42.2 | 5                      | A      |
| Aroclor 1221                         | ND             |           | ug/kg | 475 | 47.6 | 5                      | A      |
| Aroclor 1232                         | ND             |           | ug/kg | 475 | 101. | 5                      | А      |
| Aroclor 1242                         | ND             |           | ug/kg | 475 | 64.1 | 5                      | А      |
| Aroclor 1248                         | ND             |           | ug/kg | 475 | 71.3 | 5                      | А      |
| Aroclor 1254                         | 5140           |           | ug/kg | 475 | 52.0 | 5                      | В      |
| Aroclor 1260                         | ND             |           | ug/kg | 475 | 87.8 | 5                      | А      |
| Aroclor 1262                         | ND             |           | ug/kg | 475 | 60.4 | 5                      | А      |
| Aroclor 1268                         | ND             |           | ug/kg | 475 | 49.2 | 5                      | А      |
| PCBs, Total                          | 5140           |           | ug/kg | 475 | 42.2 | 5                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 61         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 66         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 58         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 72         |           | 30-150                 | В      |



|                    |                                             | Serial_No:09172009:54 |                |  |  |
|--------------------|---------------------------------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST                                | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001                           | Report Date:          | 09/17/20       |  |  |
|                    | SAMPLE RESULTS                              |                       |                |  |  |
| Lab ID:            | L2037678-19                                 | Date Collected:       | 09/10/20 14:45 |  |  |
| Client ID:         | WOOD-8                                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                                             |                       |                |  |  |
| Matrix:            | Solid                                       | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A                                     | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 12:29                              | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | CW                                          | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                                             | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                                  | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|--------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbord | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                               | ND       |           | ug/kg | 94.7 | 8.41 | 1                      | А      |
| Aroclor 1221                               | ND       |           | ug/kg | 94.7 | 9.49 | 1                      | А      |
| Aroclor 1232                               | ND       |           | ug/kg | 94.7 | 20.1 | 1                      | А      |
| Aroclor 1242                               | ND       |           | ug/kg | 94.7 | 12.8 | 1                      | А      |
| Aroclor 1248                               | ND       |           | ug/kg | 94.7 | 14.2 | 1                      | А      |
| Aroclor 1254                               | 737      |           | ug/kg | 94.7 | 10.4 | 1                      | В      |
| Aroclor 1260                               | ND       |           | ug/kg | 94.7 | 17.5 | 1                      | А      |
| Aroclor 1262                               | ND       |           | ug/kg | 94.7 | 12.0 | 1                      | А      |
| Aroclor 1268                               | ND       |           | ug/kg | 94.7 | 9.81 | 1                      | А      |
| PCBs, Total                                | 737      |           | ug/kg | 94.7 | 8.41 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 45         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 39         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 49         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 49         |           | 30-150                 | В      |



|                    |                                             | Serial_No:09172009:54 |                |  |  |
|--------------------|---------------------------------------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST                                | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001                           | Report Date:          | 09/17/20       |  |  |
|                    | SAMPLE RESULTS                              |                       |                |  |  |
| Lab ID:            | L2037678-20                                 | Date Collected:       | 09/10/20 15:00 |  |  |
| Client ID:         | WOOD-9                                      | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY                                 | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                                             |                       |                |  |  |
| Matrix:            | Solid                                       | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A                                     | Extraction Date:      | 09/13/20 11:40 |  |  |
| Analytical Date:   | 09/15/20 12:36                              | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | CW                                          | Cleanup Date:         | 09/14/20       |  |  |
| Percent Solids:    | Results reported on an 'AS RECEIVED' basis. | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                                             | Cleanup Date:         | 09/14/20       |  |  |

| Parameter                                 | Result   | Qualifier | Units | RL   | MDL  | <b>Dilution Factor</b> | Column |
|-------------------------------------------|----------|-----------|-------|------|------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westbor | ough Lab |           |       |      |      |                        |        |
| Aroclor 1016                              | ND       |           | ug/kg | 91.4 | 8.12 | 1                      | А      |
| Aroclor 1221                              | ND       |           | ug/kg | 91.4 | 9.16 | 1                      | А      |
| Aroclor 1232                              | ND       |           | ug/kg | 91.4 | 19.4 | 1                      | А      |
| Aroclor 1242                              | ND       |           | ug/kg | 91.4 | 12.3 | 1                      | А      |
| Aroclor 1248                              | ND       |           | ug/kg | 91.4 | 13.7 | 1                      | А      |
| Aroclor 1254                              | 151      |           | ug/kg | 91.4 | 10.0 | 1                      | А      |
| Aroclor 1260                              | ND       |           | ug/kg | 91.4 | 16.9 | 1                      | А      |
| Aroclor 1262                              | ND       |           | ug/kg | 91.4 | 11.6 | 1                      | А      |
| Aroclor 1268                              | ND       |           | ug/kg | 91.4 | 9.47 | 1                      | А      |
| PCBs, Total                               | 151      |           | ug/kg | 91.4 | 8.12 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 43         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 36         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 36         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 29         | Q         | 30-150                 | В      |



|                    |                   |                | Serial_No:09172009:54 |                |  |  |
|--------------------|-------------------|----------------|-----------------------|----------------|--|--|
| Project Name:      | 315 GROTE ST      |                | Lab Number:           | L2037678       |  |  |
| Project Number:    | B0549-020-001-001 |                | Report Date:          | 09/17/20       |  |  |
|                    |                   | SAMPLE RESULTS |                       |                |  |  |
| Lab ID:            | L2037678-21       |                | Date Collected:       | 09/10/20 15:05 |  |  |
| Client ID:         | WIPE-1            |                | Date Received:        | 09/10/20       |  |  |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                   |                |                       |                |  |  |
| Matrix:            | Wipe              |                | Extraction Method:    | EPA 3540C      |  |  |
| Analytical Method: | 1,8082A           |                | Extraction Date:      | 09/13/20 09:20 |  |  |
| Analytical Date:   | 09/14/20 10:55    |                | Cleanup Method:       | EPA 3665A      |  |  |
| Analyst:           | HT                |                | Cleanup Date:         | 09/14/20       |  |  |
| -                  |                   |                | Cleanup Method:       | EPA 3660B      |  |  |
|                    |                   |                | Cleanup Date:         | 09/14/20       |  |  |
|                    |                   |                |                       |                |  |  |

| Parameter                                | Result    | Qualifier U | Jnits | RL    | MDL   | Dilution Factor | Column |
|------------------------------------------|-----------|-------------|-------|-------|-------|-----------------|--------|
| Polychlorinated Biphenyls by GC - Westbo | rough Lab |             |       |       |       |                 |        |
| Aroclor 1016                             | ND        | ug/1        | 00cm2 | 0.500 | 0.044 | 1               | A      |
| Aroclor 1221                             | ND        | ug/1        | 00cm2 | 0.500 | 0.050 | 1               | А      |
| Aroclor 1232                             | ND        | ug/1        | 00cm2 | 0.500 | 0.106 | 1               | А      |
| Aroclor 1242                             | ND        | ug/1        | 00cm2 | 0.500 | 0.067 | 1               | А      |
| Aroclor 1248                             | ND        | ug/1        | 00cm2 | 0.500 | 0.075 | 1               | А      |
| Aroclor 1254                             | 1.41      | ug/1        | 00cm2 | 0.500 | 0.055 | 1               | А      |
| Aroclor 1260                             | ND        | ug/1        | 00cm2 | 0.500 | 0.092 | 1               | А      |
| Aroclor 1262                             | ND        | ug/1        | 00cm2 | 0.500 | 0.064 | 1               | А      |
| Aroclor 1268                             | ND        | ug/1        | 00cm2 | 0.500 | 0.052 | 1               | А      |
| PCBs, Total                              | 1.41      | ug/1        | 00cm2 | 0.500 | 0.044 | 1               | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 66         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 57         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 61         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 51         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-22       |                | Date Collected:    | 09/10/20 15:10 |
| Client ID:         | WIPE-2            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:02    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                             | Result       | Qualifier Units | s RL     | MDL   | <b>Dilution Factor</b> | Column |
|---------------------------------------|--------------|-----------------|----------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Wes | tborough Lab |                 |          |       |                        |        |
| Aroclor 1016                          | ND           | ug/100c         | m2 0.500 | 0.044 | 1                      | A      |
| Aroclor 1221                          | ND           | ug/100c         | m2 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                          | ND           | ug/100c         | m2 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                          | ND           | ug/100c         | m2 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                          | ND           | ug/100c         | m2 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                          | 0.529        | ug/100c         | m2 0.500 | 0.055 | 1                      | А      |
| Aroclor 1260                          | ND           | ug/100c         | m2 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                          | ND           | ug/100c         | m2 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                          | ND           | ug/100c         | m2 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                           | 0.529        | ug/100c         | m2 0.500 | 0.044 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 59         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 49         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 56         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 47         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-23       |                | Date Collected:    | 09/10/20 15:15 |
| Client ID:         | WIPE-3            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:09    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                            | Result        | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|--------------------------------------|---------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - We | stborough Lab |           |           |       |       |                        |        |
| Aroclor 1016                         | ND            |           | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                         | ND            |           | ug/100cm2 | 0.500 | 0.050 | 1                      | A      |
| Aroclor 1232                         | ND            |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                         | ND            |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                         | ND            |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                         | 0.690         |           | ug/100cm2 | 0.500 | 0.055 | 1                      | В      |
| Aroclor 1260                         | ND            |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                         | ND            |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                         | ND            |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                          | 0.690         |           | ug/100cm2 | 0.500 | 0.044 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 59         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 55         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 47         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-24       |                | Date Collected:    | 09/10/20 15:20 |
| Client ID:         | WIPE-4            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:16    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                              | Result      | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|----------------------------------------|-------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - West | borough Lab |           |           |       |       |                        |        |
| Aroclor 1016                           | ND          |           | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                           | ND          |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                           | ND          |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                           | ND          |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                           | ND          |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                           | 0.393       | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | В      |
| Aroclor 1260                           | ND          |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                           | ND          |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                           | ND          |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                            | 0.393       | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 55         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 49         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 52         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 46         |           | 30-150                 | В      |



|                    |                   | Serial_No:09172009:54 |                    |                |  |
|--------------------|-------------------|-----------------------|--------------------|----------------|--|
| Project Name:      | 315 GROTE ST      |                       | Lab Number:        | L2037678       |  |
| Project Number:    | B0549-020-001-001 |                       | Report Date:       | 09/17/20       |  |
|                    |                   | SAMPLE RESULTS        |                    |                |  |
| Lab ID:            | L2037678-25       |                       | Date Collected:    | 09/10/20 15:25 |  |
| Client ID:         | WIPE-5            |                       | Date Received:     | 09/10/20       |  |
| Sample Location:   | BUFFALO, NY       |                       | Field Prep:        | Not Specified  |  |
| Sample Depth:      |                   |                       |                    |                |  |
| Matrix:            | Wipe              |                       | Extraction Method: | EPA 3540C      |  |
| Analytical Method: | 1,8082A           |                       | Extraction Date:   | 09/13/20 09:20 |  |
| Analytical Date:   | 09/14/20 11:23    |                       | Cleanup Method:    | EPA 3665A      |  |
| Analyst:           | HT                |                       | Cleanup Date:      | 09/14/20       |  |
|                    |                   |                       | Cleanup Method:    | EPA 3660B      |  |
|                    |                   |                       | Cleanup Date:      | 09/14/20       |  |
|                    |                   |                       |                    |                |  |

| Parameter                              | Result     | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|----------------------------------------|------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - West | orough Lab |           |           |       |       |                        |        |
| Aroclor 1016                           | ND         |           | ug/100cm2 | 0.500 | 0.044 | 1                      | A      |
| Aroclor 1221                           | ND         |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                           | ND         |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                           | ND         |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                           | ND         |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                           | 0.398      | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | А      |
| Aroclor 1260                           | ND         |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                           | ND         |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                           | ND         |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                            | 0.398      | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 56         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 50         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 54         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 48         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-26       |                | Date Collected:    | 09/10/20 15:30 |
| Client ID:         | WIPE-6            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:30    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                               | Result     | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|-----------------------------------------|------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westl | orough Lab |           |           |       |       |                        |        |
| Aroclor 1016                            | ND         |           | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                            | ND         |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                            | ND         |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                            | ND         |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                            | ND         |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                            | 0.261      | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | А      |
| Aroclor 1260                            | ND         |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                            | ND         |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                            | ND         |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                             | 0.261      | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 60         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 56         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 59         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-27       |                | Date Collected:    | 09/10/20 15:35 |
| Client ID:         | WIPE-7            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:36    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                               | Result     | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|-----------------------------------------|------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westb | orough Lab |           |           |       |       |                        |        |
| Aroclor 1016                            | ND         |           | ug/100cm2 | 0.500 | 0.044 | 1                      | A      |
| Aroclor 1221                            | ND         |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                            | ND         |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                            | ND         |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                            | ND         |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                            | 0.408      | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | А      |
| Aroclor 1260                            | ND         |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                            | ND         |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                            | ND         |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                             | 0.408      | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 58         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 54         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 57         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-28       |                | Date Collected:    | 09/10/20 15:40 |
| Client ID:         | WIPE-8            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:43    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                             | Result       | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|---------------------------------------|--------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Wes | tborough Lab |           |           |       |       |                        |        |
| Aroclor 1016                          | ND           |           | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                          | ND           |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                          | ND           |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                          | ND           |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                          | ND           |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                          | 0.122        | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | В      |
| Aroclor 1260                          | ND           |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                          | ND           |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                          | ND           |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                           | 0.122        | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2.4.5.6-Tetrachloro-m-xvlene | 62         |           | 30-150                 | Α      |
| Decachlorobiphenyl           | 55         |           | 30-150                 | A      |
| 2,4,5,6-Tetrachloro-m-xylene | 61         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-29       |                | Date Collected:    | 09/10/20 15:45 |
| Client ID:         | WIPE-9            |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:50    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                               | Result     | Qualifier Units | RL    | MDL   | <b>Dilution Factor</b> | Column |
|-----------------------------------------|------------|-----------------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westb | orough Lab |                 |       |       |                        |        |
| Aroclor 1016                            | ND         | ug/100cm2       | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                            | ND         | ug/100cm2       | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                            | ND         | ug/100cm2       | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                            | ND         | ug/100cm2       | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                            | ND         | ug/100cm2       | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                            | ND         | ug/100cm2       | 0.500 | 0.055 | 1                      | А      |
| Aroclor 1260                            | ND         | ug/100cm2       | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                            | ND         | ug/100cm2       | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                            | ND         | ug/100cm2       | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                             | ND         | ug/100cm2       | 0.500 | 0.044 | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 58         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 52         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 55         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 47         |           | 30-150                 | В      |



|                    |                   |                | Serial_No:         | 09172009:54    |
|--------------------|-------------------|----------------|--------------------|----------------|
| Project Name:      | 315 GROTE ST      |                | Lab Number:        | L2037678       |
| Project Number:    | B0549-020-001-001 |                | Report Date:       | 09/17/20       |
|                    |                   | SAMPLE RESULTS |                    |                |
| Lab ID:            | L2037678-30       |                | Date Collected:    | 09/10/20 15:50 |
| Client ID:         | WIPE-10           |                | Date Received:     | 09/10/20       |
| Sample Location:   | BUFFALO, NY       |                | Field Prep:        | Not Specified  |
| Sample Depth:      |                   |                |                    |                |
| Matrix:            | Wipe              |                | Extraction Method: | EPA 3540C      |
| Analytical Method: | 1,8082A           |                | Extraction Date:   | 09/13/20 09:20 |
| Analytical Date:   | 09/14/20 11:57    |                | Cleanup Method:    | EPA 3665A      |
| Analyst:           | HT                |                | Cleanup Date:      | 09/14/20       |
| -                  |                   |                | Cleanup Method:    | EPA 3660B      |
|                    |                   |                | Cleanup Date:      | 09/14/20       |
|                    |                   |                |                    |                |

| Parameter                             | Result       | Qualifier | Units     | RL    | MDL   | <b>Dilution Factor</b> | Column |
|---------------------------------------|--------------|-----------|-----------|-------|-------|------------------------|--------|
| Polychlorinated Biphenyls by GC - Wes | tborough Lab |           |           |       |       |                        |        |
| Aroclor 1016                          | ND           |           | ug/100cm2 | 0.500 | 0.044 | 1                      | А      |
| Aroclor 1221                          | ND           |           | ug/100cm2 | 0.500 | 0.050 | 1                      | А      |
| Aroclor 1232                          | ND           |           | ug/100cm2 | 0.500 | 0.106 | 1                      | А      |
| Aroclor 1242                          | ND           |           | ug/100cm2 | 0.500 | 0.067 | 1                      | А      |
| Aroclor 1248                          | ND           |           | ug/100cm2 | 0.500 | 0.075 | 1                      | А      |
| Aroclor 1254                          | 0.064        | J         | ug/100cm2 | 0.500 | 0.055 | 1                      | В      |
| Aroclor 1260                          | ND           |           | ug/100cm2 | 0.500 | 0.092 | 1                      | А      |
| Aroclor 1262                          | ND           |           | ug/100cm2 | 0.500 | 0.064 | 1                      | А      |
| Aroclor 1268                          | ND           |           | ug/100cm2 | 0.500 | 0.052 | 1                      | А      |
| PCBs, Total                           | 0.064        | J         | ug/100cm2 | 0.500 | 0.044 | 1                      | В      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 63         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 54         |           | 30-150                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 62         |           | 30-150                 | В      |
| Decachlorobiphenyl           | 53         |           | 30-150                 | В      |



Lab Number:

Lab Number: L2037678 Report Date: 09/17/20

 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

#### Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 09/14/20 10:35 HT Extraction Method:EPA 3540CExtraction Date:09/13/20 09:20Cleanup Method:EPA 3665ACleanup Date:09/14/20Cleanup Method:EPA 3660BCleanup Date:09/14/20

| Parameter                         | Result      | Qualifier Units    | RL       | MDL          | Column |
|-----------------------------------|-------------|--------------------|----------|--------------|--------|
| Polychlorinated Biphenyls by GC - | Westborough | Lab for sample(s): | 21-30 Ba | atch: WG1409 | 324-1  |
| Aroclor 1016                      | ND          | ug/100cm2          | 0.500    | 0.044        | А      |
| Aroclor 1221                      | ND          | ug/100cm2          | 0.500    | 0.050        | А      |
| Aroclor 1232                      | ND          | ug/100cm2          | 0.500    | 0.106        | А      |
| Aroclor 1242                      | ND          | ug/100cm2          | 0.500    | 0.067        | А      |
| Aroclor 1248                      | ND          | ug/100cm2          | 0.500    | 0.075        | А      |
| Aroclor 1254                      | ND          | ug/100cm2          | 0.500    | 0.055        | А      |
| Aroclor 1260                      | ND          | ug/100cm2          | 0.500    | 0.092        | А      |
| Aroclor 1262                      | ND          | ug/100cm2          | 0.500    | 0.064        | А      |
| Aroclor 1268                      | ND          | ug/100cm2          | 0.500    | 0.052        | А      |
| PCBs, Total                       | ND          | ug/100cm2          | 0.500    | 0.044        | А      |

|                              |           | Acceptance |          |        |  |  |
|------------------------------|-----------|------------|----------|--------|--|--|
| Surrogate                    | %Recovery | Qualifier  | Criteria | Column |  |  |
| 2456 Tetrashlara muulana     | 60        |            | 20.450   | •      |  |  |
| 2,4,5,6-Tetrachioro-m-xylene | 68        |            | 30-150   | A      |  |  |
| Decachlorobiphenyl           | 55        |            | 30-150   | А      |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 63        |            | 30-150   | В      |  |  |
| Decachlorobiphenyl           | 55        |            | 30-150   | В      |  |  |



Lab Number: L2037678 **Report Date:** 09/17/20

315 GROTE ST Project Number: B0549-020-001-001

> Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

**Project Name:** 

1,8082A 09/15/20 11:20 CW

Extraction Method: EPA 3540C 09/13/20 11:40 Extraction Date: Cleanup Method: EPA 3665A Cleanup Date: 09/14/20 Cleanup Method: EPA 3660B Cleanup Date: 09/14/20

| Parameter                         | Result      | Qualifier   | Units     | RL    |        | MDL  | Column  |
|-----------------------------------|-------------|-------------|-----------|-------|--------|------|---------|
| Polychlorinated Biphenyls by GC - | Westborough | h Lab for s | ample(s): | 12-20 | Batch: | WG14 | 09342-1 |
| Aroclor 1016                      | ND          |             | ug/kg     | 89.6  |        | 7.96 | А       |
| Aroclor 1221                      | ND          |             | ug/kg     | 89.6  |        | 8.98 | А       |
| Aroclor 1232                      | ND          |             | ug/kg     | 89.6  |        | 19.0 | А       |
| Aroclor 1242                      | ND          |             | ug/kg     | 89.6  |        | 12.1 | А       |
| Aroclor 1248                      | ND          |             | ug/kg     | 89.6  |        | 13.4 | А       |
| Aroclor 1254                      | ND          |             | ug/kg     | 89.6  |        | 9.80 | А       |
| Aroclor 1260                      | ND          |             | ug/kg     | 89.6  |        | 16.6 | А       |
| Aroclor 1262                      | ND          |             | ug/kg     | 89.6  |        | 11.4 | А       |
| Aroclor 1268                      | ND          |             | ug/kg     | 89.6  |        | 9.28 | А       |
| PCBs, Total                       | ND          |             | ug/kg     | 89.6  |        | 7.96 | А       |

|                              |           | Acceptance |          |        |  |
|------------------------------|-----------|------------|----------|--------|--|
| Surrogate                    | %Recovery | Qualifier  | Criteria | Column |  |
|                              |           |            |          |        |  |
| 2,4,5,6-Tetrachloro-m-xylene | 66        |            | 30-150   | A      |  |
| Decachlorobiphenyl           | 63        |            | 30-150   | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 64        |            | 30-150   | В      |  |
| Decachlorobiphenyl           | 60        |            | 30-150   | В      |  |



 Lab Number:
 L2037678

 Report Date:
 09/17/20

315 GROTE ST

Project Number: B0549-020-001-001

### Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

**Project Name:** 

1,8082A 09/15/20 23:32 JM Extraction Method:EPA 3540CExtraction Date:09/14/20 02:43Cleanup Method:EPA 3665ACleanup Date:09/15/20Cleanup Method:EPA 3660BCleanup Date:09/15/20

| Parameter                         | Result     | Qualifier   | Units     | RL          | MDL    | Column      |
|-----------------------------------|------------|-------------|-----------|-------------|--------|-------------|
| Polychlorinated Biphenyls by GC - | Westboroug | h Lab for s | ample(s): | 01-06,08-11 | Batch: | WG1409435-1 |
| Aroclor 1016                      | ND         |             | ug/kg     | 87.9        | 7.80   | А           |
| Aroclor 1221                      | ND         |             | ug/kg     | 87.9        | 8.80   | А           |
| Aroclor 1232                      | ND         |             | ug/kg     | 87.9        | 18.6   | А           |
| Aroclor 1242                      | ND         |             | ug/kg     | 87.9        | 11.8   | А           |
| Aroclor 1248                      | ND         |             | ug/kg     | 87.9        | 13.2   | А           |
| Aroclor 1254                      | ND         |             | ug/kg     | 87.9        | 9.61   | А           |
| Aroclor 1260                      | ND         |             | ug/kg     | 87.9        | 16.2   | А           |
| Aroclor 1262                      | ND         |             | ug/kg     | 87.9        | 11.2   | А           |
| Aroclor 1268                      | ND         |             | ug/kg     | 87.9        | 9.10   | А           |
| PCBs, Total                       | ND         |             | ug/kg     | 87.9        | 7.80   | А           |

|                              |           | Acceptance |          |        |  |
|------------------------------|-----------|------------|----------|--------|--|
| Surrogate                    | %Recovery | Qualifier  | Criteria | Column |  |
|                              |           |            |          |        |  |
| 2,4,5,6-Tetrachloro-m-xylene | 50        |            | 30-150   | A      |  |
| Decachlorobiphenyl           | 47        |            | 30-150   | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 58        |            | 30-150   | В      |  |
| Decachlorobiphenyl           | 53        |            | 30-150   | В      |  |



Lab Number: L2037678 **Report Date:** 09/17/20

315 GROTE ST Project Number: B0549-020-001-001

> Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

**Project Name:** 

1,8082A 09/16/20 19:19 JAW

Extraction Method: EPA 3540C 09/15/20 23:40 Extraction Date: Cleanup Method: EPA 3665A Cleanup Date: 09/16/20 Cleanup Method: EPA 3660B Cleanup Date: 09/16/20

| Parameter                         | Result      | Qualifier Uni  | ts       | RL     | MDL       | Column |
|-----------------------------------|-------------|----------------|----------|--------|-----------|--------|
| Polychlorinated Biphenyls by GC - | Westborough | h Lab for samp | e(s): 07 | Batch: | WG1410316 | -1     |
| Aroclor 1016                      | ND          | ug/            | kg       | 95.6   | 8.49      | А      |
| Aroclor 1221                      | ND          | ug/            | kg       | 95.6   | 9.58      | А      |
| Aroclor 1232                      | ND          | ug/            | kg       | 95.6   | 20.3      | А      |
| Aroclor 1242                      | ND          | ug/            | kg       | 95.6   | 12.9      | А      |
| Aroclor 1248                      | ND          | ug/            | kg       | 95.6   | 14.3      | А      |
| Aroclor 1254                      | ND          | ug/            | kg       | 95.6   | 10.4      | А      |
| Aroclor 1260                      | ND          | ug/            | kg       | 95.6   | 17.7      | А      |
| Aroclor 1262                      | ND          | ug/            | kg       | 95.6   | 12.1      | А      |
| Aroclor 1268                      | ND          | ug/            | kg       | 95.6   | 9.90      | А      |
| PCBs, Total                       | ND          | ug/            | kg       | 95.6   | 8.49      | А      |

|                              |           | Acceptance |          |        |  |
|------------------------------|-----------|------------|----------|--------|--|
| Surrogate                    | %Recovery | Qualifier  | Criteria | Column |  |
|                              |           |            |          |        |  |
| 2,4,5,6-Tetrachloro-m-xylene | 59        |            | 30-150   | A      |  |
| Decachlorobiphenyl           | 46        |            | 30-150   | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 59        |            | 30-150   | В      |  |
| Decachlorobiphenyl           | 48        |            | 30-150   | В      |  |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** 315 GROTE ST Project Number: B0549-020-001-001 Lab Number: L2037678 Report Date: 09/17/20

|                                             | LCS             |                | LCSD          |           | %Recovery      |              |      | RPD    |        |
|---------------------------------------------|-----------------|----------------|---------------|-----------|----------------|--------------|------|--------|--------|
| Parameter                                   | %Recovery       | Qual           | %Recovery     | Qual      | Limits         | RPD          | Qual | Limits | Column |
|                                             |                 |                |               |           |                |              |      |        |        |
| Polychlorinated Biphenyls by GC - Westborou | igh Lab Associa | ated sample(s) | : 21-30 Batch | : WG14093 | 324-2 WG140932 | <u>2</u> 4-3 |      |        |        |
|                                             |                 |                |               |           |                |              | _    |        |        |
| Aroclor 1016                                | 59              |                | 68            |           | 40-140         | 14           |      | 50     | A      |
| Aroclor 1260                                | 49              |                | 57            |           | 40-140         | 15           |      | 50     | А      |

|                              | LCS       | LCSD           |      | Acceptance |        |  |
|------------------------------|-----------|----------------|------|------------|--------|--|
| Surrogate                    | %Recovery | Qual %Recovery | Qual | Criteria   | Column |  |
| 2,4,5,6-Tetrachloro-m-xylene | 65        | 74             |      | 30-150     | А      |  |
| Decachlorobiphenyl           | 51        | 59             |      | 30-150     | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 59        | 69             |      | 30-150     | В      |  |
| Decachlorobiphenyl           | 48        | 56             |      | 30-150     | В      |  |



### Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2037678

 Report Date:
 09/17/20

 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 12-20 Batch: WG1409342-2 WG1409342-3 65 Aroclor 1016 63 40-140 3 50 А 60 58 40-140 50 Aroclor 1260 3 А

|                              | LCS       | LCSD           |      | Acceptance |        |
|------------------------------|-----------|----------------|------|------------|--------|
| Surrogate                    | %Recovery | Qual %Recovery | Qual | Criteria   | Column |
| 2,4,5,6-Tetrachloro-m-xylene | 68        | 65             |      | 30-150     | А      |
| Decachlorobiphenyl           | 66        | 63             |      | 30-150     | A      |
| 2,4,5,6-Tetrachloro-m-xylene | 64        | 62             |      | 30-150     | В      |
| Decachlorobiphenyl           | 62        | 58             |      | 30-150     | В      |



### Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2037678 Report Date: 09/17/20

 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-06,08-11 Batch: WG1409435-2 WG1409435-3 Aroclor 1016 53 58 40-140 9 50 А 47 50 40-140 50 Aroclor 1260 6 А

|                              | LCS       | LCSD           |      | Acceptance |        |  |
|------------------------------|-----------|----------------|------|------------|--------|--|
| Surrogate                    | %Recovery | Qual %Recovery | Qual | Criteria   | Column |  |
| 2,4,5,6-Tetrachloro-m-xylene | 51        | 56             |      | 30-150     | А      |  |
| Decachlorobiphenyl           | 46        | 48             |      | 30-150     | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 57        | 63             |      | 30-150     | В      |  |
| Decachlorobiphenyl           | 51        | 54             |      | 30-150     | В      |  |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** 315 GROTE ST **Project Number:** B0549-020-001-001 Lab Number: L2037678 Report Date: 09/17/20

|                                             | LCS             |                 |     | CSD    | %           | 6Recovery   |     | RPD  |        |        |  |
|---------------------------------------------|-----------------|-----------------|-----|--------|-------------|-------------|-----|------|--------|--------|--|
| Parameter                                   | %Recovery       | Qual            | %Re | covery | Qual        | Limits      | RPD | Qual | Limits | Column |  |
|                                             |                 |                 |     |        |             |             |     |      |        |        |  |
| Polychlorinated Biphenyls by GC - Westborou | igh Lab Associa | ated sample(s): | 07  | Batch: | WG1410316-2 | WG1410316-3 |     |      |        |        |  |
|                                             |                 |                 |     |        |             |             |     |      |        |        |  |
| Aroclor 1016                                | 62              |                 |     | 63     |             | 40-140      | 2   |      | 50     | A      |  |
| Aroclor 1260                                | 52              |                 |     | 55     |             | 40-140      | 6   |      | 50     | А      |  |

|                              | LCS         | LCSD             | Acceptance           |
|------------------------------|-------------|------------------|----------------------|
| Surrogate                    | %Recovery 0 | Qual %Recovery Q | lual Criteria Column |
| 2,4,5,6-Tetrachloro-m-xylene | 65          | 66               | 30-150 A             |
| Decachlorobiphenyl           | 52          | 56               | 30-150 A             |
| 2,4,5,6-Tetrachloro-m-xylene | 61          | 62               | 30-150 B             |
| Decachlorobiphenyl           | 49          | 56               | 30-150 B             |



# INORGANICS & MISCELLANEOUS



|                          |               |                   | Serial_No:09172009:54 |        |       |                    |                  |                         |                      |         |
|--------------------------|---------------|-------------------|-----------------------|--------|-------|--------------------|------------------|-------------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                |                       |        |       |                    | Lab N            | lumber:                 | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001           |                       |        |       |                    | Repo             | rt Date:                | 09/17/20             |         |
|                          |               |                   |                       | SAMPLE | RESUL | TS                 |                  |                         |                      |         |
| Lab ID:                  | L2037678-0    | 1                 |                       |        |       |                    | Date (           | Collected:              | 09/10/20 09:00       |         |
| Client ID:               | CON-1         | 037678-01<br>0N-1 |                       |        |       |                    |                  | Date Received: 09/10/20 |                      |         |
| Sample Location:         | BUFFALO, I    | NY                |                       |        |       |                    | Field            | Prep:                   | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                   |                       |        |       |                    |                  |                         |                      |         |
| Parameter                | Result        | Qualifier         | Units                 | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed        | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )                 |                       |        |       |                    |                  |                         |                      |         |
| Solids, Total            | 98.1          |                   | %                     | 0.100  | NA    | 1                  | -                | 09/11/20 23:1           | 4 121,2540G          | TR      |



| Serial_No:09172009:54    |               |           |       |        |       |                    |                  |                  | 172009:54            |         |
|--------------------------|---------------|-----------|-------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST        |       |        |       |                    | Lab N            | lumber:          | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001   |       |        |       |                    | Repo             | rt Date:         | 09/17/20             |         |
|                          |               |           |       | SAMPLE | RESUL | ГS                 |                  |                  |                      |         |
| Lab ID:                  | L2037678-0    | 2         |       |        |       |                    | Date (           | Collected:       | 09/10/20 09:30       |         |
| Client ID:               | CON-2         |           |       |        |       |                    | Date I           | Received:        | 09/10/20             |         |
| Sample Location:         | BUFFALO, I    | NY        |       |        |       |                    | Field            | Prep:            | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |           |       |        |       |                    |                  |                  |                      |         |
| Parameter                | Result        | Qualifier | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | C         |       |        |       |                    |                  |                  |                      |         |
| Solids, Total            | 98.8          |           | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14   | 4 121,2540G          | TR      |



| Serial_No:09172009:54    |               |                   |       |        |       |                    |                  | 172009:54               |                      |         |
|--------------------------|---------------|-------------------|-------|--------|-------|--------------------|------------------|-------------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                |       |        |       |                    | Lab N            | lumber:                 | 2037678              |         |
| Project Number:          | B0549-020-    | 001-001           |       |        |       |                    | Repo             | rt Date:                | 09/17/20             |         |
|                          |               |                   |       | SAMPLE | RESUL | TS                 |                  |                         |                      |         |
| Lab ID:                  | L2037678-0    | 3                 |       |        |       |                    | Date (           | Collected:              | 09/10/20 09:15       |         |
| Client ID:               | CON-3         | 037678-03<br>DN-3 |       |        |       |                    |                  | Date Received: 09/10/20 |                      |         |
| Sample Location:         | BUFFALO, I    | NY                |       |        |       |                    | Field            | Prep: I                 | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                   |       |        |       |                    |                  |                         |                      |         |
| Parameter                | Result        | Qualifier         | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed        | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )                 |       |        |       |                    |                  |                         |                      |         |
| Solids, Total            | 96.3          |                   | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14          | 121,2540G            | TR      |



|                          |               |           |       |        |       |                    | Serial_No:09172009:54 |                  |                      |         |  |  |
|--------------------------|---------------|-----------|-------|--------|-------|--------------------|-----------------------|------------------|----------------------|---------|--|--|
| Project Name:            | 315 GROTE     | ST        |       |        |       |                    | Lab N                 | umber: l         | _2037678             |         |  |  |
| Project Number:          | B0549-020-    | 001-001   |       |        |       |                    | Repo                  | rt Date: (       | 09/17/20             |         |  |  |
|                          |               |           |       | SAMPLE | RESUL | TS                 |                       |                  |                      |         |  |  |
| Lab ID:                  | L2037678-0    | 4         |       |        |       |                    | Date (                | Collected: (     | 09/10/20 10:00       | )       |  |  |
| Client ID:               | CON-4         |           |       |        |       |                    | Date F                | Received: (      | 09/10/20             |         |  |  |
| Sample Location:         | BUFFALO, I    | NY        |       |        |       |                    | Field I               | Prep: 1          | Not Specified        |         |  |  |
| Sample Depth:<br>Matrix: | Solid         |           |       |        |       |                    |                       |                  |                      |         |  |  |
| Parameter                | Result        | Qualifier | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared      | Date<br>Analyzed | Analytical<br>Method | Analyst |  |  |
| General Chemistry - We   | stborough Lat | C         |       |        |       |                    |                       |                  |                      |         |  |  |
| Solids, Total            | 96.7          |           | %     | 0.100  | NA    | 1                  | -                     | 09/11/20 23:14   | 121,2540G            | TR      |  |  |



| Serial_No:09172009:54    |               |                   |       |        |       |                    |                  | 172009:54               |                      |         |
|--------------------------|---------------|-------------------|-------|--------|-------|--------------------|------------------|-------------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                |       |        |       |                    | Lab N            | lumber:                 | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001           |       |        |       |                    | Repo             | rt Date:                | 09/17/20             |         |
|                          |               |                   |       | SAMPLE | RESUL | TS                 |                  |                         |                      |         |
| Lab ID:                  | L2037678-0    | 5                 |       |        |       |                    | Date (           | Collected:              | 09/10/20 10:30       |         |
| Client ID:               | CON-5         | 037678-05<br>DN-5 |       |        |       |                    |                  | Date Received: 09/10/20 |                      |         |
| Sample Location:         | BUFFALO, I    | NY                |       |        |       |                    | Field            | Prep: I                 | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                   |       |        |       |                    |                  |                         |                      |         |
| Parameter                | Result        | Qualifier         | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed        | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | C                 |       |        |       |                    |                  |                         |                      |         |
| Solids, Total            | 97.0          |                   | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14          | 121,2540G            | TR      |



| Serial_No:09172009:54    |               |                   |       |        |       |                    |                  |                         | 172009:54            |         |
|--------------------------|---------------|-------------------|-------|--------|-------|--------------------|------------------|-------------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                |       |        |       |                    | Lab N            | lumber:                 | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001           |       |        |       |                    | Repo             | rt Date:                | 09/17/20             |         |
|                          |               |                   |       | SAMPLE | RESUL | TS                 |                  |                         |                      |         |
| Lab ID:                  | L2037678-0    | 6                 |       |        |       |                    | Date (           | Collected:              | 09/10/20 10:45       |         |
| Client ID:               | CON-6         | 037678-06<br>DN-6 |       |        |       |                    |                  | Date Received: 09/10/20 |                      |         |
| Sample Location:         | BUFFALO, I    | NY                |       |        |       |                    | Field            | Prep: I                 | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                   |       |        |       |                    |                  |                         |                      |         |
| Parameter                | Result        | Qualifier         | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed        | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )                 |       |        |       |                    |                  |                         |                      |         |
| Solids, Total            | 96.6          |                   | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14          | 121,2540G            | TR      |



|                          |               |                                |       |        |       |                    | :                | 172009:54        |                      |         |
|--------------------------|---------------|--------------------------------|-------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                             |       |        |       |                    | Lab N            | lumber: l        | _2037678             |         |
| Project Number:          | B0549-020-    | 001-001                        |       |        |       |                    | Repo             | rt Date:         | 09/17/20             |         |
|                          |               |                                |       | SAMPLE | RESUL | TS                 |                  |                  |                      |         |
| Lab ID:                  | L2037678-0    | 7                              |       |        |       |                    | Date (           | Collected: (     | 09/10/20 11:15       |         |
| Client ID:               | CON-7         | 037678-07<br>DN-7<br>IFFALO NY |       |        |       |                    |                  | Received: (      | 09/10/20             |         |
| Sample Location:         | BUFFALO, I    | NY                             |       |        |       |                    | Field I          | Prep: 1          | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                                |       |        |       |                    |                  |                  |                      |         |
| Parameter                | Result        | Qualifier                      | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )                              |       |        |       |                    |                  |                  |                      |         |
| Solids, Total            | 97.8          |                                | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14   | 121,2540G            | TR      |



|                          |               |           |       |        | Serial_No:09172009:54 |                    |                  |                  |                      |         |
|--------------------------|---------------|-----------|-------|--------|-----------------------|--------------------|------------------|------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST        |       |        |                       |                    | Lab N            | lumber:          | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001   |       |        |                       |                    | Repo             | rt Date:         | 09/17/20             |         |
|                          |               |           |       | SAMPLE | RESUL                 | TS                 |                  |                  |                      |         |
| Lab ID:                  | L2037678-0    | 8         |       |        |                       |                    | Date (           | Collected:       | 09/10/20 11:30       |         |
| Client ID:               | CON-8         | CON-8     |       |        |                       |                    |                  | Received: (      | 09/10/20             |         |
| Sample Location:         | BUFFALO,      | NY        |       |        |                       |                    | Field            | Prep: I          | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |           |       |        |                       |                    |                  |                  |                      |         |
| Parameter                | Result        | Qualifier | Units | RL     | MDL                   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )         |       |        |                       |                    |                  |                  |                      |         |
| Solids, Total            | 96.8          |           | %     | 0.100  | NA                    | 1                  | -                | 09/11/20 23:14   | 121,2540G            | TR      |



|                          |               |           |       | Serial_No:09172009:54 |       |                    |                  |                         |                      |         |
|--------------------------|---------------|-----------|-------|-----------------------|-------|--------------------|------------------|-------------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST        |       |                       |       |                    | Lab N            | lumber:                 | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001   |       |                       |       |                    | Repo             | rt Date:                | 09/17/20             |         |
|                          |               |           |       | SAMPLE                | RESUL | TS                 |                  |                         |                      |         |
| Lab ID:                  | L2037678-0    | 9         |       |                       |       |                    | Date (           | Collected:              | 09/10/20 11:45       |         |
| Client ID:               | CON-9         | CON-9     |       |                       |       |                    |                  | Date Received: 09/10/20 |                      |         |
| Sample Location:         | BUFFALO, I    | NY        |       |                       |       |                    | Field            | Prep: I                 | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |           |       |                       |       |                    |                  |                         |                      |         |
| Parameter                | Result        | Qualifier | Units | RL                    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed        | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | C         |       |                       |       |                    |                  |                         |                      |         |
| Solids, Total            | 96.5          |           | %     | 0.100                 | NA    | 1                  | -                | 09/11/20 23:14          | 121,2540G            | TR      |



|                          |               | Serial_No:09172009 |       |        |       |                    |                  |                      | 172009:54            |         |
|--------------------------|---------------|--------------------|-------|--------|-------|--------------------|------------------|----------------------|----------------------|---------|
| Project Name:            | 315 GROTE     | ST                 |       |        |       |                    | Lab N            | lumber: <sub>I</sub> | L2037678             |         |
| Project Number:          | B0549-020-    | 001-001            |       |        |       |                    | Repo             | rt Date:             | 09/17/20             |         |
|                          |               |                    |       | SAMPLE | RESUL | TS                 |                  |                      |                      |         |
| Lab ID:                  | L2037678-1    | 0                  |       |        |       |                    | Date (           | Collected: (         | 09/10/20 12:00       |         |
| Client ID:               | CON-10        |                    |       |        |       |                    | Date I           | 09/10/20             |                      |         |
| Sample Location:         | BUFFALO, I    | NY                 |       |        |       |                    | Field            | Prep: I              | Not Specified        |         |
| Sample Depth:<br>Matrix: | Solid         |                    |       |        |       |                    |                  |                      |                      |         |
| Parameter                | Result        | Qualifier          | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed     | Analytical<br>Method | Analyst |
| General Chemistry - We   | stborough Lat | )                  |       |        |       |                    |                  |                      |                      |         |
| Solids, Total            | 97.1          |                    | %     | 0.100  | NA    | 1                  | -                | 09/11/20 23:14       | 121,2540G            | TR      |



|                          |               |           |       |        |       |                    | Serial_No:09172009:54 |                  |                      |         |  |
|--------------------------|---------------|-----------|-------|--------|-------|--------------------|-----------------------|------------------|----------------------|---------|--|
| Project Name:            | 315 GROTE     | ST        |       |        |       |                    | Lab N                 | lumber: l        | _2037678             |         |  |
| Project Number:          | B0549-020-    | 001-001   |       |        |       |                    | Repor                 | rt Date:         | 09/17/20             |         |  |
|                          |               |           |       | SAMPLE | RESUL | TS                 |                       |                  |                      |         |  |
| Lab ID:                  | L2037678-1    | 1         |       |        |       |                    | Date (                | Collected: (     | 09/10/20 12:15       | ;       |  |
| Client ID:               | CON-11        | CON-11    |       |        |       |                    |                       | Received: (      | 09/10/20             |         |  |
| Sample Location:         | BUFFALO, I    | NY        |       |        |       |                    | Field F               | Prep: 1          | Not Specified        |         |  |
| Sample Depth:<br>Matrix: | Solid         |           |       |        |       |                    |                       |                  |                      |         |  |
| Parameter                | Result        | Qualifier | Units | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared      | Date<br>Analyzed | Analytical<br>Method | Analyst |  |
| General Chemistry - We   | stborough Lat | C         |       |        |       |                    |                       |                  |                      |         |  |
| Solids, Total            | 99.3          |           | %     | 0.100  | NA    | 1                  | -                     | 09/11/20 23:14   | 121,2540G            | TR      |  |



| Project Name:   | 315 GROTE ST      | L             | ab Duplicate Analy<br>Batch Quality Control | La    | ab Number | r: L2037678 |            |
|-----------------|-------------------|---------------|---------------------------------------------|-------|-----------|-------------|------------|
| Project Number: | B0549-020-001-001 |               |                                             |       | R         | eport Date  | : 09/17/20 |
| ameter          |                   | Native Sample | Dunlicate Sample                            | Unite | PPD       | Qual        | RPD Limits |

| Parameter                                         | Native Samp     | ole Dup        | licate Sample | Units      | RPD         | Qual       | RPD Limits |
|---------------------------------------------------|-----------------|----------------|---------------|------------|-------------|------------|------------|
| General Chemistry - Westborough Lab Associated sa | ample(s): 01-11 | QC Batch ID: W | /G1409096-1   | QC Sample: | L2037678-01 | Client ID: | CON-1      |
| Solids, Total                                     | 98.1            |                | 98.0          | %          | 0           |            | 20         |



Project Name: 315 GROTE ST Project Number: B0549-020-001-001

Were project specific reporting limits specified?

YES

#### **Cooler Information**

**Container Information** 

| Cooler | Custody Seal |
|--------|--------------|
| A      | Absent       |

#### Sample Receipt and Container Information

| Container Info | ormation                             |        | Initial | Final | Temp  |      |        | Frozen    |                            |
|----------------|--------------------------------------|--------|---------|-------|-------|------|--------|-----------|----------------------------|
| Container ID   | Container Type                       | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                |
| L2037678-01A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-02A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-03A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-04A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-05A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-06A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-07A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-08A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-09A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-10A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-11A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | TS(7),NYTCL-8082-CNCRT(14) |
| L2037678-12A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-13A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-14A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-15A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-16A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-17A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-18A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-19A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-20A   | Glass 60mL/2oz unpreserved           | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C(14)       |
| L2037678-21A   | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C_CM2(14)   |
| L2037678-22A   | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C_CM2(14)   |
| L2037678-23A   | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4   | Y    | Absent |           | NYTCL-8082-3540C_CM2(14)   |
|                |                                      |        |         |       |       |      |        |           |                            |



## Project Name: 315 GROTE ST Project Number: B0549-020-001-001

Serial\_No:09172009:54 *Lab Number:* L2037678 *Report Date:* 09/17/20

| Container Information |                                      |        | Initial | Final | Temp |      |        | Frozen    |                          |
|-----------------------|--------------------------------------|--------|---------|-------|------|------|--------|-----------|--------------------------|
| Container ID          | Container Type                       | Cooler | pН      | ң рН  |      | Pres | Seal   | Date/Time | Analysis(*)              |
| L2037678-24A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-25A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-26A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-27A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-28A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-29A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |
| L2037678-30A          | Glass 120ml/4oz w/1:4 Acetone:Hexane | А      | NA      |       | 5.4  | Y    | Absent |           | NYTCL-8082-3540C_CM2(14) |


# Project Name: 315 GROTE ST

## Project Number: B0549-020-001-001

# Lab Number: L2037678

## **Report Date:** 09/17/20

## GLOSSARY

## Acronyms

| Footnotes    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIC          | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | and then summing the resulting values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TEO          | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TEF          | - Toxic Equivalency Eactors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2.3.7.8 TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STLP         | associated field samples.<br>- Semi-dynamic Tank Leaching Procedure per EPA Method 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SRM          | values; although the RPD value will be provided in the report.<br>- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RPD          | <ul> <li>Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual narameter are evaluated by utilizing the absolute difference between the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RL           | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions concentrations or moisture content, where applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NP           | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NI           | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NDPA/DPA     | reporting unit.<br>- N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NC           | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NA           | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MSD          | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MS           | <ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MDL          | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOQ          | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LOD          | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LſD          | analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LCSD<br>I FR | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LCSD         | analytes of a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LCS          | - Environmental Frotection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FDΔ          | analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EMPC         | <ul><li>adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).</li><li>Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EDL          | <ul> <li>Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DL           | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions concentrations are provided as the provided of the p |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Report Format: DU Report with 'J' Qualifiers



# Project Name: 315 GROTE ST Project Number: B0549-020-001-001

Lab Number: L2037678 Report Date: 09/17/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. ND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers



# Project Name: 315 GROTE ST Project Number: B0549-020-001-001

Lab Number: L2037678 Report Date: 09/17/20

### Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 315 GROTE ST

 Project Number:
 B0549-020-001-001

 Lab Number:
 L2037678

 Report Date:
 09/17/20

## REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

#### Mansfield Facility:

#### Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

## Serial\_No:09172009:54

| Versition of the stands, MA 08181         Decket Information         Decket Information         Decket Information         Decket Information         Decket Information           11, 10 = 5848         The stands, MA 0818         The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                                                                                    | Service Centers<br>Mahwah, NJ 07430: 35 Whitney<br>Albany, NY 12205: 14 Walker W<br>Tonawanda, NY 14150: 275 Cod | Whitney Rd, Suite 5<br>Valker Way<br>275 Cooper Ave, Suite 105 |           |                |                                    | Da    | ate Rec'd<br>in Lab | 9/11/2    | ALPHA JOB #<br>62037678                                       |                                                                                                                        |                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|----------------|------------------------------------|-------|---------------------|-----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| Tit::         Construction         Carl Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Westborough, MA 01581<br>8 Walkup Dr.                                    | 381 Mansfield, MA 02048 Project Information<br>320 Forbes Blvd Project Information                                                                                                                                                                 |                                                                                                                  |                                                                |           |                |                                    |       | ables               |           |                                                               | Billing Information                                                                                                    |                            |  |
| Procession         Project Location         Boyert Location         Boyert Location         Boyert Location         Boyert Location         Boyert Location         Disposition         Disposition <thdisposition< th=""> <thdisposition< th=""> <thd< td=""><td>TEL: 508-898-9220</td><td>TEL: 508-622-9300</td><td>Project Name: 3/5</td><td colspan="5">Project Name: 315 Grote St</td><td>SP-A</td><td>ASI</td><td>P-B</td><td>Same as Client Info</td><td></td></thd<></thdisposition<></thdisposition<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEL: 508-898-9220                                                        | TEL: 508-622-9300                                                                                                                                                                                                                                  | Project Name: 3/5                                                                                                | Project Name: 315 Grote St                                     |           |                |                                    |       | SP-A                | ASI       | P-B                                                           | Same as Client Info                                                                                                    |                            |  |
| Client Information         Project #         BC544 - A20 - OCI - Oci I         Other           Client: BQU/LMX E_ES         (Use Project and an a Project #)         Regulatory Roductment         Piezas Stati formation           Address: Z_S: S. H. MD(x_7, 7M, ALPHAD.oute #)         Project # Manager: Culver C. PK / CAT/S EVG A_         INY TOS         INY Part 375           Prome: 7(4 - 7) 3 - 3 - 3 - 3 - 7 Torn-Acoust #         Project # Work Stati formation         INY Cos         INY Cos         INY Cos           Fax:         Standard X         Due Date:         INY Cos         INY Cos         INY Cos           Fax:         Rush (writ formation)         Rush (writ formation)         Rush (writ formation)         INY Cos         INY Cos         INY Cos           Fax:         Rush (writ formation)         Rush (writ formation)         Rush (writ formation)         INY Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FAX: 508-698-9193                                                        | FAX: 508-822-3288                                                                                                                                                                                                                                  | Project Location: BUR                                                                                            | FALD N                                                         | 4         |                |                                    | ΠE    | QuIS (1 File)       | EQ        | uIS (4 File)                                                  | PO#                                                                                                                    |                            |  |
| Clien: BDN/AffAlk EES (Lee Project name as Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client Information                                                       |                                                                                                                                                                                                                                                    | Project # BOS44                                                                                                  | - 120-                                                         | 001-0     | 01             |                                    |       | ther                | 140-0-0-0 |                                                               |                                                                                                                        |                            |  |
| Address 2.5.2.6. Ha Mby 7 flix       Project Manager: Called PX / Chills Bara       NY CPs1       Please identify below ibcation of opplicable disposal facilities.         Pronce: 7 La - 7 La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Client: BDD(LDA                                                          | Client: BOD/LOAN/ FEC (Ise Project name as Project #)                                                                                                                                                                                              |                                                                                                                  |                                                                |           |                |                                    |       | tory Requiren       | ient      | Disposal Site Information                                     |                                                                                                                        |                            |  |
| But Parts         NY         PA         ALPHAQuote #         Image: Control of the product of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Address: 7.556 -                                                         | Homburs The                                                                                                                                                                                                                                        | Project Manager /                                                                                                | love FO                                                        | xIn       | SIS Par        | da                                 |       | Y TOGS              | NY.       | Part 375                                                      | Please identify below location                                                                                         | los                        |  |
| Phone:         Plan:         Plan: <t< td=""><td>BURGOLD, NS</td><td>14-12</td><td>AI PHAQuote #</td><td></td><td>400</td><td>1000</td><td>-1</td><td></td><td>WO Standards</td><td></td><td>CP-51</td><td>applicable disposal facilities.</td><td>101</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BURGOLD, NS                                                              | 14-12                                                                                                                                                                                                                                              | AI PHAQuote #                                                                                                    |                                                                | 400       | 1000           | -1                                 |       | WO Standards        |           | CP-51                                                         | applicable disposal facilities.                                                                                        | 101                        |  |
| Table Control       The control of the contrel of the control of the control of the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phone: 7// - 2/                                                          | 2-3622                                                                                                                                                                                                                                             | Turn-Around Time                                                                                                 | States of the local division of the                            | COLUMN T  | CALCULAR STATE | State of the local division of the |       | V Restricted Lis    | e Doth    | er                                                            | Disposal Facility                                                                                                      |                            |  |
| June Data Data Data Data Data Data Data Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eavi                                                                     | 200                                                                                                                                                                                                                                                | Standard                                                                                                         | X                                                              | Due Det   |                | 7.000.000                          |       | V Unreetricted      | lea       | 5                                                             |                                                                                                                        |                            |  |
| Lindar: Capital Viri Spring Processing       Lindar (Supple Spring Processing)       Lindar (Supple Spring Processing)       Data         These samples have been providely analyzed by Apha       ANALYSIS       Sample Filtration         Other project specific requirements/comments:       ANALYSIS       Data         Please specify Metals or TAL.       ANALYSIS       Data         ALPHA Lab ID       Sample ID       Data       Sampler Stration         (Lab to do       Preservation       Lab to do         (Lab Use Only)       Sample ID       Data       Time         31V/15       1       COIn-1       9/10/20 (S. iso       Cordered         31V/15       1       COIn-2       9/15/20 (S. iso       Cordered         31V/15       1       COIn-4       1/16/20 (S. iso       Cordered         31V/15       1       COIn-2       9/15/20 (S. iso       Cordered         31V/15       1       COIn-4       1/16/20 (S. iso       Cordered         31V/15       1       COIn-4       1/16/20 (S. iso       Cordered         31V/16       1       1/16/20 (S. iso       Cordered       Nint         31V/16       1       1/16/20 (S. iso       Cordered       Nint         31V/16       1 <td< td=""><td>Email: (Retans)</td><td>OM THE</td><td>Rush (only if ore approved)</td><td>8</td><td>Due Date</td><td>8:</td><td></td><td></td><td>VO Comesticueur</td><td>736</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Email: (Retans)                                                          | OM THE                                                                                                                                                                                                                                             | Rush (only if ore approved)                                                                                      | 8                                                              | Due Date  | 8:             |                                    |       | VO Comesticueur     | 736       |                                                               |                                                                                                                        |                            |  |
| Interest samples have been previously analyzed by Apha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          | BIT-TIC, LOM                                                                                                                                                                                                                                       |                                                                                                                  |                                                                | # of Days |                |                                    |       | TC Sewer Disc       | narge     |                                                               | Comple Filtration                                                                                                      | Τ                          |  |
| Other project specific requirements/comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other project specific                                                   | een previously analyz                                                                                                                                                                                                                              | ed by Alpha                                                                                                      |                                                                |           |                |                                    | ANALY | 515                 |           |                                                               | Sample Filtration                                                                                                      | o                          |  |
| ALPHA Lab ID<br>(Lab Use Only)       Sample ID       Collection       Sample Matrix       Initials       Sample Specific Comments         37/078       1       Connect       9/10/20       9/10/20       9/10       Sample Specific Comments         37/078       1       Connect       9/10/20       9/10       Sample Specific Comments         37/078       1       Connect       9/10/20       9/10       Sample Specific Comments         37/078       1       1       9/10/20       9/10       Sample Specific Comments         37/078       1       9/10/20       9/10       Sample Specific Comments         37/078       Connect       9/10/20       Sample Specific Comments         37/078       Connect       9/10       Sample Specific Comments         37/078       Connect       9/10/20       Sample Specific Comments         37/078       Connect       1/12/15       Sample Specific Comments         37/078       Connect       1/12/15       Sample Specific Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Please specify Metals                                                    | s or TAL.                                                                                                                                                                                                                                          | ients:                                                                                                           |                                                                |           |                |                                    | PLBS  | PCBS<br>PLBS        |           |                                                               | Done<br>Lab to do<br>Preservation<br>Lab to do<br>(Please Specify below)                                               | t<br>a<br>I<br>B<br>o<br>t |  |
| Lab Use Only)         Sample ID         Date         Time         Matrix         Initials         P         Sample Specific Comments           31V178         11         C01-1         91/0/20         9:30         Concrea         M4S         X         Initials         Sample Specific Comments           10         C01-2         9:30         X         Initials         X         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHA Lab ID                                                             |                                                                                                                                                                                                                                                    | mula ID                                                                                                          | Colle                                                          | ection    | Sample         | Sampler's                          | 12    |                     |           |                                                               |                                                                                                                        | 1                          |  |
| 371/778       1)       Con-1       9/10/20       9:00       Contrate       NHS       X       Image: Contrate       NHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Lab Use Only)                                                           | 58                                                                                                                                                                                                                                                 | imple ID                                                                                                         | Date                                                           | Time      | Matrix         | Initials                           | 12    | 22                  |           |                                                               | Sample Specific Comments                                                                                               | 5 0                        |  |
| The         CON-2         Indication         Container         The         Container         Type         Container         Type         Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37678 71                                                                 | CON-1                                                                                                                                                                                                                                              |                                                                                                                  | 9/10/20                                                        | 9:00      | Toning         | NAC                                | X     |                     |           |                                                               |                                                                                                                        | 1                          |  |
| TB       C67-2       4:15       N         TV       C07-4       10:00       N         TV       C07-4       11:15       N         TV       C07-4       11:30       N         TV       C07-4       11:30       N         TV       C07-4       11:30       N         TV0       C07-4       11:30       N         TV0       C07-4       11:30       N         TV0       C07-4       11:30       N         TV0       C07-4       11:45       N         TV0       C07-4       11:30       N         TV0       C07-4       11:20       N         TV0       C07-4       11:20       N         TV0       C07-4       11:20       N         TV0       Container Type       A       A         E = NaOH       B = Bacteria Cup       B = Bacteria Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TA                                                                       | 100-7                                                                                                                                                                                                                                              |                                                                                                                  | 1101-0                                                         | 9:30      | 1              | 1                                  | X     | _                   |           |                                                               |                                                                                                                        | 17                         |  |
| TW       CON-2       10:00       X       10:00       10:00       X       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 713                                                                      | 160-3                                                                                                                                                                                                                                              |                                                                                                                  |                                                                | 9:15      |                | +                                  | 1V    |                     |           |                                                               |                                                                                                                        | 1                          |  |
| 10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00       10:00 <td< td=""><td>TTU</td><td>100-4</td><td></td><td></td><td>10:00</td><td></td><td>+1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTU                                                                      | 100-4                                                                                                                                                                                                                                              |                                                                                                                  |                                                                | 10:00     |                | +1                                 |       |                     |           |                                                               |                                                                                                                        |                            |  |
| US       CO/-G       [0:45]       F         US       CO/-G       [0:45]       F         US       CO/-7       [1:15]       F         US       CO/-7       [1:3]       F         US       Co/-7       [1:4]       F         US       Container Type       A       Please print clearly, legibly<br>and completely. Samples ca<br>not be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rational any ambiguities ar<br>rational any ambiguities ar<br>rational any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambiguities ar<br>rot be logged in and<br>turnaround time clock will no<br>start unit any ambigu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -710                                                                     | 100-5-                                                                                                                                                                                                                                             |                                                                                                                  |                                                                | 10:20     |                | +                                  | 2     |                     |           |                                                               |                                                                                                                        | +                          |  |
| Image: Contract Contended Contract Contract Contract Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | 100 6                                                                                                                                                                                                                                              |                                                                                                                  |                                                                | INUS      |                | +                                  | 12    |                     |           |                                                               |                                                                                                                        |                            |  |
| Image: Contract of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                                                                       | Conz                                                                                                                                                                                                                                               |                                                                                                                  |                                                                | 11:10     | +              | +-                                 | F     | _                   |           |                                                               |                                                                                                                        | -                          |  |
| Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S         Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S         Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       Image: Contract S       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -01                                                                      | con- 1                                                                                                                                                                                                                                             |                                                                                                                  |                                                                | 11:3      |                |                                    | 12    |                     |           |                                                               |                                                                                                                        |                            |  |
| -04       Co/1-9       11.43       12.00       12.00       12.00       12.00       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00                                                                       | Con a                                                                                                                                                                                                                                              |                                                                                                                  |                                                                | 11:00     | 17             |                                    | 1×    |                     |           |                                                               |                                                                                                                        | 1                          |  |
| Preservative Code:<br>A = None       Container Code<br>P = Plastic       Container Code<br>P = Plastic       Westboro: Certification No: MA935         B = HCl       A = Amber Glass       Mansfield: Certification No: MA015       Container Type       A       Image: Container Type       A       Image: Container Type       A       Image: Container Type       Please print clearly, legibly<br>and completely. Samples ca<br>not be logged in and<br>turnaround time clock will no<br>start until any ambiguities ar<br>resolved. By:         F = MoOH       C = Cube<br>G = NaHSO4,<br>G = Other       Cother       Relinquished by:       Date/Time       Received By:       Date/Time       resolved. By:       TH SCOC, THE CLIENT         H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore<br>D = Other       D = BOD Bottle       D = BOD Bottle       TH SCOC, THE CLIENT       TH SCOC, THE CLIENT       HAS READ AND AGREES<br>TO BE BOUND BY ALPHANS         Form No: 01:25 HC (rev. 30-Sect-2013)       Form No: 01:25 HC (rev. 30-Sect-2013)       TH SCOC       TH SCOC       TH SCOC       Sect-2013)       Sect-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -09                                                                      | (01)-9                                                                                                                                                                                                                                             |                                                                                                                  | M/                                                             | 11.45     | W              | W_                                 | 1×    |                     |           |                                                               |                                                                                                                        | -11                        |  |
| Preservative Code       Container Type       A       Image: Container Type       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dressouthus Code:                                                        | Container Code                                                                                                                                                                                                                                     |                                                                                                                  | ¥                                                              | 12.00     | N              |                                    | 14    |                     |           |                                                               |                                                                                                                        | 1                          |  |
| F = MeOH       C = Cube       Relinquished by:       Date/Time       Received By:       Date/Time         G = NaHSO,4       O = Other       Relinquished by:       Date/Time       Received By:       Date/Time         H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore       0 = BOD Bottle       0 = BOD Bottle       0 = BOD Bottle       0 = Other - / 10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       (Social control of the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A = None<br>B = HCI<br>C = HNO <sub>3</sub><br>D = $H_2SO_4$<br>E = NaOH | Container Code     Westboro: Certification No: MA935     Containe       P = Plastic     Mansfield: Certification No: MA015     Containe       A = Amber Glass     Mansfield: Certification No: MA015     Prese       G = Glass     Prese     Prese |                                                                                                                  |                                                                |           |                |                                    | A     |                     |           |                                                               | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and<br>turnaround time clock will not |                            |  |
| G = NaHSO4 0 = Other<br>H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore<br>D = BOD Bottle<br>D = Other / 10<br>D = Other / 10<br>D = Other / 10<br>D = BOD Bottle<br>D = Other / 10<br>D | F = MeOH                                                                 | C = Cube                                                                                                                                                                                                                                           | Relinquished Ar: Date/Time                                                                                       |                                                                |           |                |                                    |       |                     | Da        | te/Time                                                       | resolved, BY EXECUT                                                                                                    | ING                        |  |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>WE = Zn Ac/NaOH<br>O = Other - //C<br>Form No: 01-25 HC (rev. 30-Sept-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G = NaHSO4                                                               | O = Other<br>E = Encore<br>$Q = 0/0120 I(C_1)D$                                                                                                                                                                                                    |                                                                                                                  |                                                                |           |                |                                    | 1     | · · · ·             | 2/10      | 161                                                           | 7 THIS COC, THE CLIER                                                                                                  | NT                         |  |
| 0 = Other - 110 1800 MILMING 91140 22:30 TO BE BOUND BY ALPHA'.<br>TERMS & CONDITIONS.<br>(See reverse side.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H = Na_2S_2O_3$<br>K/F = 7n Ac/NaOH                                     | 203 E = Encore 9/10/00 / 4.10 / 1/2                                                                                                                                                                                                                |                                                                                                                  |                                                                |           |                |                                    | 5     |                     | 110       | 110                                                           | HAS READ AND AGR                                                                                                       | EES                        |  |
| Form No: 01-25 HC (rev. 30-Sept-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O = Other - //C                                                          |                                                                                                                                                                                                                                                    | 9143                                                                                                             |                                                                | 1/10      | 1902           | Mil                                | 111   | me                  | 9/16      | TO BE BOUND BY AL<br>TERMS & CONDITION<br>(See reverse side.) | PHA'S<br>NS.                                                                                                           |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Form No: 01-25 HC (rev. 30                                               | 0-Sept-2013)                                                                                                                                                                                                                                       |                                                                                                                  |                                                                |           |                | <u>y</u> .                         | £0    | X                   | 8         |                                                               | (000 1010(00 000.)                                                                                                     |                            |  |

# Serial\_No:09172009:54

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEW YORK<br>CHAIN OF<br>CUSTODY | Service Centers<br>Mahwah, NJ 07430: 35 Whitne<br>Albany, NY 12205: 14 Walker V<br>Tonawanda, NY 14150: 275 Co | Page<br>Z o    | 13        |         | Date Rec<br>in Lab         | 'd                    | 9/11                   | 20       | LDO.     | ALPHA JOD #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                   |                                 |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|-----------|---------|----------------------------|-----------------------|------------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|--------------------|
| Westborough, MA 01581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mansfield, MA 02048             | Project Information                                                                                            |                |           |         |                            |                       | erables                | 12       |          | ALC: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Billing Information             |                    |
| 8 Walkup Dr. 320 Forbes Blvd<br>TEL: 508-898-9220 TEL: 508-822-9300 Project Name: 3/5 6/0 to C+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                |                |           |         |                            |                       |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Same as Client Info |                                 |                    |
| FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FAX: 508-822-3288               | Project Location:                                                                                              | TEDIA          | NI        |         |                            | 1 8                   | FOulS (1               | File)    |          | OulS (4 Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le)                 | PO#                             |                    |
| Client Information Project # Rocula 020 and 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                                                |                |           |         |                            |                       | Other                  | 1 1107   |          | duio (411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                   |                                 |                    |
| Project # $DOS 99 - 020 - 001 - 001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                                                                                                |                |           |         |                            |                       | Other                  |          | 1        | and the second se |                     |                                 | And in case of the |
| Client: Client |                                 |                                                                                                                |                |           |         |                            |                       | latory Req             | uireme   | nt       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | Disposal Site Information       |                    |
| Address: 25.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Mombury Pic                   | Project Manager: C. D.                                                                                         | 105 601        | 01/10     | space t | 04                         |                       | NY TOGS                |          | L N      | Y Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Please identify below location  | of                 |
| Burralo, NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14215                           | ALPHAQuote #:                                                                                                  |                | No.       |         |                            |                       | AWQ Stan               | dards    |          | Y CP-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | applicable disposal facilities. |                    |
| Phone: 716 - 71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-3937                          | Turn-Around Time                                                                                               | and the second |           |         |                            |                       | NY Restrict            | ted Use  | 0        | ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                 | Disposal Facility:              |                    |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ ~ ~                           | Standar                                                                                                        |                | Due Date  | c.      |                            | 1 🗆                   | NY Unrestr             | icted Us | e        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | NJ NY                           |                    |
| Email: C Bolon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIBM-TE.W                       | Rush (only if pre approved                                                                                     | a) []          | # of Davs | 8       |                            | ΙĒ                    | NYC Sewe               | r Discha | rge      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Other:                          |                    |
| These samples have b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | een previously analyz           | ed by Alpha                                                                                                    |                |           |         |                            | ANA                   | YSIS                   | _        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Sample Filtration               | T                  |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | requirements/comp               | nents:                                                                                                         |                |           |         |                            |                       |                        | 1        |          | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                   |                                 | - 0                |
| other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | requirementarcomm               | ienta.                                                                                                         |                |           |         |                            | 5                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Done                            | t                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | *                                                                                                              |                |           |         |                            | 0                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Lab to do                       | 1                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                |                |           |         |                            | 2                     | Ø                      |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                 | Preservation                    |                    |
| Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s or TAL.                       |                                                                                                                |                |           |         |                            | B                     | 3                      |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | В                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                |                |           |         |                            |                       | 6                      |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | (Please Specify below)          | o<br>t             |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | Collection Sample Sampler                                                                                      |                |           |         |                            | 2                     | 1                      |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                 |                                 | 1                  |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sa                              | imple ID                                                                                                       | Date Time      |           | Matrix  | Initials                   | K                     | 1                      |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Sample Specific Comments        |                    |
| 271070 -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 11                          |                                                                                                                | 1110/20        | 12:15     | Carlak  | AULC                       | V                     |                        | -        | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                   |                                 | - 11               |
| 51010 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Luic A I                        |                                                                                                                | 910100         | 16.10     | Lincon  | 1015                       | X                     |                        | +        | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | +                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W000-1                          |                                                                                                                | + -            | 13.00     | Ward    | NOS                        | X                     |                        | -        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                   |                                 | 1                  |
| -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wood-2                          |                                                                                                                |                | 13:15     |         |                            | X                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | 1                  |
| -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wood - 3                        |                                                                                                                |                | 13:30     |         |                            | 1×                    |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | 1                  |
| -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wood-4                          |                                                                                                                |                | 13:45     |         |                            | Y                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | i                  |
| -110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W002-5                          |                                                                                                                |                | 14:00     |         | 11                         | 1×                    |                        | 1        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | 1                  |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 6                          |                                                                                                                |                | 14.15     | +t      |                            | 5                     |                        | +        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   |                                 | $\pm i$            |
| -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6.9 7                         |                                                                                                                |                | 111:20    |         |                            | 12                    |                        | +        | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   |                                 | ++                 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000-1                          |                                                                                                                |                | 17.50     | +       |                            | 14                    |                        |          | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | -1                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W003-0                          |                                                                                                                |                | 14.45     | NIC     | $H \sim$                   | ¥                     |                        | -        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | 1                  |
| -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000-9                          |                                                                                                                | NY_            | 15:00     | V       | V                          | X                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 | 1                  |
| Preservative Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Container Code *                | Westboro: Certification N                                                                                      | No: MA935      |           | Con     | tainer Tuna                | Δ                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Please print clearly, leg       | ibly               |
| B = HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A = Amber Glass                 | Mansfield: Certification N                                                                                     | lo: MA015      |           | Con     | itamer Type                | A                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | and completely. Sample          | es can             |
| C = HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V = Vial                        |                                                                                                                |                |           |         | en an an an an an an an an | 4                     |                        | -        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | not be logged in and            |                    |
| $D = H_2SO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G = Glass                       |                                                                                                                |                |           | F       | reservative                | 0                     |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | turnaround time clock w         | vill not           |
| E = NaOH<br>E = MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C = Cube                        |                                                                                                                |                |           |         |                            |                       |                        | _        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                   | start until any ambiguitie      | es are             |
| G = NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O = Other                       | Relinquished By: Date/Time                                                                                     |                |           |         |                            |                       | Received By: Date/Time |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | THIS COC THE CLIEN              | NG                 |
| $H = Na_2S_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E = Encore                      | 9                                                                                                              | 9/6/20 /6:10 + |           |         |                            |                       |                        |          | 91       | 10 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500                 | HAS READ AND AGRE               | EES                |
| K/E = Zn Ac/NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n = BOD Bottle                  | in a                                                                                                           |                |           |         | 0.                         | 2                     |                        | 1        | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | TO BE BOUND BY ALF              | PHA'S              |
| 0 = Other~[[L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | T KAST                                                                                                         |                | 9110      | 180     | All                        | MUNIPERET QUILA DO'SI |                        |          |          | :30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TERMS & CONDITION   | IS.                             |                    |
| Form No: 01-25 HC (rev. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-Sept-2013)                    | 1 10                                                                                                           |                |           |         |                            |                       | 1                      | 5        | 1 11     | 1. 1. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | (See reverse side.)             |                    |
| Page 67 of 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                                                                                |                |           |         | 1                          |                       |                        | /        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 |                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                                                                                |                |           |         | /                          |                       |                        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                 |                    |

# Serial\_No:09172009:54

| NEW YORK         Service Centers           CHAIN OF         Mahwah, NJ 07430: 35 Whitney Rd, Suite 5           Albany, NY 12205: 14 Walker Way         Tonawanda, NY 14150: 275 Cooper Ave, Suite 10: |                                        |                            | 5              | Page<br>3 o      | 3              | Date        | Rec'd<br>Lab | 9/11/2          | D     | ALPHA JOD #<br>62037678 |                                 |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|----------------|------------------|----------------|-------------|--------------|-----------------|-------|-------------------------|---------------------------------|----------|
| Westborough, MA 01581<br>8 Walkup Dr.                                                                                                                                                                 | Mansfield, MA 02048<br>320 Forbes Blvd | Project Information        | Sec. Sec. Sec. |                  | a Annual State | Deliverab   | es           | The second      |       | Billing Information     |                                 |          |
| TEL: 508-898-9220<br>EAX: 508-898-9193                                                                                                                                                                | TEL: 508-822-9300                      | Project Name: 3/           | 5 610:         | te st            |                |             | ASF          | P-A             | ASP   | -В                      | Same as Client Info             |          |
| FAX: 000-030-9153                                                                                                                                                                                     | 1700. 300-022-3200                     | Project Location: 130      | FFalo,         | NS               |                |             | EQ           | ulS (1 File)    | EQu   | IS (4 File)             | PO#                             |          |
| Client Information                                                                                                                                                                                    |                                        | Project # BOSY             | 9-020-         | 001-             | 001            |             | Oth Oth      | er              |       |                         |                                 |          |
| Client: BehchM                                                                                                                                                                                        | NEES                                   | (Use Project name as Pr    | oject #)       |                  |                |             | Regulator    | y Requireme     | nt    |                         | Disposal Site Information       |          |
| Address: 2558                                                                                                                                                                                         | Hamburg TRice                          | Project Manager: Ch        | ris Bor        | on 110           | male 1         | W           | NY NY        | TOGS            | NY P  | art 375                 | Please identify below location  | of       |
| BUFFalo, N                                                                                                                                                                                            | 19, 14218                              | ALPHAQuote #:              |                |                  |                | ~           | AW0          | Standards       | NY C  | P-51                    | applicable disposal facilities. |          |
| Phone: 716 - 7/3                                                                                                                                                                                      | -3937                                  | Turn-Around Time           | Part of Party  | and the second   | 1 12 - 10      |             | NY I         | Restricted Use  | Other |                         | Disposal Facility:              |          |
| Fax:                                                                                                                                                                                                  |                                        | Standard                   | X              | Due Date         | 2              |             |              | Inrestricted Us | 8     |                         | NJ NY                           |          |
| Email: CBOTONO                                                                                                                                                                                        | BM-TK.16M                              | Rush (only if pre approved | iΠ             | # of Davs        | c              |             |              | Sewer Discha    | rge   |                         | Other:                          |          |
| These samples have be                                                                                                                                                                                 | en previously analyz                   | ed by Alpha                |                |                  |                |             | ANALYS       | S               |       |                         | Sample Filtration               |          |
| Other project specific                                                                                                                                                                                | requirements/comm                      | nents:                     |                |                  |                |             |              |                 |       |                         | Dene                            | - °,     |
|                                                                                                                                                                                                       |                                        |                            |                |                  |                |             | -            |                 |       |                         | Lab to do                       | a        |
|                                                                                                                                                                                                       |                                        |                            |                |                  |                |             | õ            |                 |       |                         | Preservation                    | 1        |
| Please specify Metals                                                                                                                                                                                 | or TAI                                 |                            |                |                  |                |             | S            |                 |       |                         | Lab to do                       | в        |
| ricuse specify metals                                                                                                                                                                                 | SI ITIL.                               |                            |                |                  |                |             | æ            |                 |       |                         | (Diseas Enseity below)          | 0        |
| Constantion of the states                                                                                                                                                                             |                                        |                            | 1              |                  | 1              | Ê.          | $\sim$       |                 |       |                         | (Please Specify below)          | 1        |
| ALPHA Lab ID                                                                                                                                                                                          | Sa                                     | imple ID                   |                | ction Sample Sar |                | Sampler's   | 2            |                 |       |                         | a                               | - 1      |
| (Lab Ose Only)                                                                                                                                                                                        | 54110 1                                |                            | Date           | Time             |                | initials    | 1 -          |                 |       |                         | Sample Specific Comments        | 0        |
| 37678 -21                                                                                                                                                                                             | Wire-1                                 |                            | 916/20         | 15:05            | WIPE           | NAS         | X            |                 |       |                         |                                 | 1        |
| -25                                                                                                                                                                                                   | WIPE-2                                 |                            |                | 15:10            |                |             | X            |                 |       |                         |                                 | 1        |
| -23                                                                                                                                                                                                   | WIPE-3                                 |                            |                | 15:15            |                |             | X            |                 |       |                         |                                 | 1        |
| -24                                                                                                                                                                                                   | Wille-4                                |                            |                | 15:20            |                |             | X            |                 |       |                         |                                 | 1        |
| -25                                                                                                                                                                                                   | WIPe-5                                 |                            |                | 15:25            |                |             | ¥            |                 |       |                         |                                 | 1        |
| -26                                                                                                                                                                                                   | Wife-6                                 |                            |                | 15:30            |                |             | 4            |                 |       |                         |                                 | 11       |
| -27                                                                                                                                                                                                   | Wille-7                                |                            |                | 15:35            |                |             | 4            |                 |       |                         |                                 | 11       |
| -28                                                                                                                                                                                                   | WIPe-A                                 |                            |                | 15:40            |                |             | X            |                 |       |                         |                                 | 11       |
| -29                                                                                                                                                                                                   | WIP2-9                                 |                            |                | 15:45            | 11             | 11/         | ×            |                 |       |                         |                                 | 1        |
| - 20                                                                                                                                                                                                  | Wille la                               |                            | 1V             | 15:50            | V              | V           | ×            |                 |       |                         |                                 | 1        |
| Preservative Code:                                                                                                                                                                                    | Container Code                         | Westboro: Certification N  | lo: MA935      | 10.00            |                | L           |              |                 |       |                         | Diagon print clearly, los       | ribby    |
| A = None                                                                                                                                                                                              | P = Plastic                            | Manefield: Certification N | Io: MA015      |                  | Cor            | tainer Type | A            |                 |       |                         | and completely. Sampl           | es can   |
| C = HNO <sub>3</sub>                                                                                                                                                                                  | V = Vial                               | Wansheid, Gerundaborri     | NO. MIMOTO     |                  |                |             | A            |                 |       | +                       | not be logged in and            |          |
| $D = H_2SO_4$                                                                                                                                                                                         | G = Glass                              |                            |                |                  | 1              | reservative | 0            |                 |       |                         | turnaround time clock v         | vill not |
| E = NaOH                                                                                                                                                                                              | B = Bacteria Cup<br>C = Cube           |                            |                |                  |                |             |              |                 |       |                         | start until any ambiguiti       | les are  |
| G = NaHSO4                                                                                                                                                                                            | O = Other                              | Relinquished By: Date/Time |                |                  |                |             |              | By:             | Dat   | e/Time                  | THIS COC. THE CLIEF             | NT       |
| $H = Na_2S_2O_3$                                                                                                                                                                                      | E = Encore                             | 40                         |                | 1/10/20          | 16:00          | -11         | USV.         |                 | 911   | 0 110                   | HAS READ AND AGR                | EES      |
| K/E = Zn Ac/NaOH                                                                                                                                                                                      | D - DOD DOUIO                          | and                        |                | aba              | (nfi)          | Ma          | the          | the state       | plut. | 1.1.1                   | TO BE BOUND BY AL               | PHA'S    |
| Here Th                                                                                                                                                                                               | exere                                  | TID                        |                | 110              | 1800           | IMAL        | 11/41        | illey           | TILbo | 0230                    | I ERMS & CONDITION              | 15.      |
| Form No: 01-25 HC (rev. 30                                                                                                                                                                            | )-Sept-2013)                           |                            |                |                  |                | 11.         | 8.           |                 |       | c 68 889                | (966 1646196 Side.)             |          |
| ge 68 of 68                                                                                                                                                                                           |                                        |                            |                |                  |                | /           |              | D               |       |                         |                                 |          |