

REPORT ON

PHASE II ENVIRONMENTAL SUBSURFACE INVESTIGATION
PROSPECTIVE YMCA NORTH BUFFALO FACILITY DEVELOPMENT
UNILAND SITE
BUFFALO, NEW YORK

by
Haley & Aldrich of New York
Rochester, New York

for YMCA Buffalo Niagara Buffalo, New York

File No. 134479-005 September 2020

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

16 September 2020 File No. 134479-005

YMCA Buffalo Niagara 301 Cayuga Road, Suite 100 Buffalo, New York 14225

Attention: Matthew J. Shriver, CFO

Subject: Environmental Phase II Evaluation

Prospective YMCA North Buffalo Facility Development - Uniland Site

Buffalo, New York

Ladies and Gentlemen:

This report documents Environmental Phase II subsurface investigation activities (Phase II Investigation) conducted at the Prospective YMCA North Buffalo Facility Development – Uniland Site (subject site) in Buffalo, New York. The purpose of the Phase II Investigation was to evaluate subject site soil quality to inform both the potential subject site acquisition decision making/business environmental risk, and possible future subject site earthwork planning and development. Haley & Aldrich of New York (Haley & Aldrich) conducted the Phase II Investigation in August 2020 in accordance with our proposal dated 13 March 2020, as authorized by YMCA Buffalo Niagara on 1 July 2020 (Appendix A). A summary of subject site subsurface geotechnical conditions/is presented under separate cover.

Background

The subject site is approximately 7 acres consisting of four adjoining land parcels located between Norris and Elmwood Avenues in Buffalo, New York. Please see Figure 1 – Site Locus for the location of the subject site in North Buffalo, and see Figure 2 for general configuration of the subject site and explorations completed for the Phase II.

Historically, the subject site was used as a steel foundry (southern portion), for general warehousing, and was also traversed by a railroad spur. Following the demolition of the steel foundry in the 1980s, the subject site has been predominantly vacant and forested, except for a single 3,121-SF warehouse located in the northwest corner along Norris Avenue.

Previous environmental due diligence investigation reports prepared by LCS, Inc. (LCS, 2017a, LCS, 2017b) and provided to Haley & Aldrich indicated urban fill materials underly much of the subject site, generally consisting of unconsolidated debris (piping, brick, asphalt, concrete, wood, metal, etc.) as well as gravel, clay, and sand. Subsurface observations summarized by LCS in test boring and test pit logs included in their November 2017 subsurface investigation report (LCS, 2017b) suggested fill materials

extended to depths of up to approximately 12 ft below ground surface (ft bgs). Analytical testing of fill soil samples collected from soil borings previously advanced within the boundaries of the current subject site (Figure 2) did not identify concentrations of metals, polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), or semi-volatile organic compounds (SVOCs) exceeding applicable New York State Department of Environmental Conservation (NYSDEC) Part 375 Commercial or Protection of Groundwater Soil Cleanup Objectives (SCOs). However, nickel and acetone were observed in selected soil samples exceeding Unrestricted Use SCOs. Based on the locations of the former soil borings (see Figure 2), the soil characteristics and analytical results did not necessarily reflect soil quality where excavation would be necessary for the intended YMCA building footprint.

Haley & Aldrich completed a Phase I Environmental Site Assessment (Phase I ESA) at the subject site in January 2020 (Haley & Aldrich, 2020) as part of initial environmental due diligence activities conducted on behalf of the YMCA. The 2020 Phase I ESA identified one Recognized Environmental Condition (REC) in connection with the subject site related to the apparent presence of historical urban fill associated with past operation and demolition of the metal foundry previously located on and adjacent to the subject site. Historical information reviewed as part of Haley & Aldrich's 2020 Phase I ESA, as well as site reconnaissance observations, suggested that demolition debris from former foundry structures previously occupying the southern portion of the subject site and southerly adjacent property appeared to have been graded into site fill, creating an elevated area occupying the central and northern portions of the subject site (Figure 2); the filled area has a rough arcuate outline along its eastern and northern sides, approximately corresponding to an historical rail siding that traversed the site along a southeast to northwest path.

Based on the findings of the 2020 Phase I ESA, Haley & Aldrich designed a Phase II environmental subsurface investigation program to evaluate the identified REC, including roughly delineating the horizontal and vertical extents of urban fill across the subject site, and to evaluate the chemical characteristics of site soils to inform future earthwork activities associated with potential development of the subject site as a YMCA facility.

Please note that the exploration program completed was also used to collect geotechnical data and samples to allow Haley & Aldrich to evaluate conditions for the proposed YMCA building and related infrastructure (driveways and parking features); geotechnical engineering data, interpretations and recommendations are being reported under separate cover.

Subsurface Investigations

Between 3 August and 11 August 2020, Haley & Aldrich oversaw environmental subsurface investigations conducted at the subject site. During the investigation period, Earth Dimensions, Inc. (EDI) excavated 10 test pits and advanced 8 exploratory soil borings (Figure 2), using a Kubota KX080-4 Excavator and truck-mounted Diedrich D120 Hollow Stem Auger drill rig, respectively.

On 3 August 2020, EDI excavated 10 test pits (TP-01 to TP-10; Figure 2) to depths ranging between 3 and 10 ft bgs (below ground surface), generally stopping once native soils were observed underlying the fill materials, or upon encountering an obstruction that could not reasonably be moved by the excavator. A

Haley & Aldrich geologist monitored all test pits completed, screened recovered soils visually/olfactorily for observable evidence of contamination, and screened soils exposed with a photoionization detector (PID) for the potential presence of volatile organic compounds (VOCs). The geologist also characterized observed soils using the Unified Soil Classification System (USCS) characterization method. Refer to Appendix B for test pit logs. Select test pit photographs showing representative images of the fill soils encountered are presented in Appendix D. Environmental samples were not collected from test pit soils however observations made were used to guide sample collection from subsequently completed test borings within the proposed YMCA building footprint and paved areas. EDI backfilled the test pits with the excavated soils at each location explored and completed test pit surface locations to reasonably match pre-existing surface grades.

Between 4 August and 11 August 2020, EDI advanced 8 soil borings (SB-01 to SB-08; see Figure 2 for locations) to depths ranging between 10 and 86.5 ft bgs. EDI employed continuous split-spoon soil sampling throughout encountered subsurface fill (generally within the first 16 feet or less), and standard sampling (5 ft) intervals thereafter. A Haley & Aldrich geologist screened recovered soils visually/olfactorily for observable evidence of contamination, and also screened soils with a photoionization detector (PID) for the potential presence of VOCs. The Haley & Aldrich geologist also characterized recovered soils using the USCS characterization method. Please refer to Appendix C for the soil boring logs. Soil borings SB-01 through SB-05 were located within the proposed YMCA building footprint and advanced to the top of bedrock (approximately 75 ft bgs). Bedrock observed at SB-01 was cored for 10 feet. Soil borings SB-06 through SB-08 were located in potential future pavement areas throughout the subject site. Representative photographs of fill and native soil observed in SB-01 are presented in Appendix D. EDI backfilled the boreholes with drill cuttings at each location following the completion of drilling activities.

Haley & Aldrich collected ten soil samples from materials recovered during soil boring advancement for laboratory environmental analyses (please see Table I for all chemical sample identifications and results). Relatively few samples were selected on the basis of field observations of PID readings or other observed fill contents. In the absence of elevated PID readings and visual/olfactory evidence of contamination, Haley & Aldrich collected soil samples to generally represent the range of fill and native soils observed beneath the subject site, and generally within the depth range of fill that may require excavation and management during site development.

Soil samples were submitted to Eurofins Test America in Amherst, New York, for analysis of constituents listed in the NYSDEC Part 375 Soil Cleanup Objectives (SCOs), including: metals/inorganics, PCBs, herbicides/pesticides, VOCs, and SVOCs. Based on initial analytical results showing elevated concentrations in some samples for the metals lead and chromium, four soil samples were also analyzed for Toxicity Characteristic Leaching Procedure (TCLP) lead and chromium. Refer to Table I for soil analytical results and Appendix E for the applicable laboratory analytical data reports.

GEOLOGIC CONDITIONS

Observations from test pit excavations and soil boring advancement generally confirmed the presence of urban fill throughout the subject site, with fill thickness ranging from 2.5 to 10 ft bgs; please see

Figure 2 for exploration locations, each annotated with the thickness (in feet) of fill encountered. Exploration logs completed for the test pit and boring programs are contained in Appendix A and Appendix B, respectively.

Consistent with observations made during the conduct of Haley & Aldrich's January 2020 Phase I ESA due diligence activities, observed fill thickness was generally greatest within an elevated arcuate area occupying the central and northern portions of the subject site, and generally thickest within and adjacent to the footprint of the proposed YMCA building. Observed fill materials generally consisted of silts, sands and gravels containing miscellaneous debris, including concrete, brick, slag, ash, cinders, metal, plastic, rubber, asphalt and wood. Subject site fill materials were underlain by relatively thick deposits (>60 ft thick) of glaciolacustrine (lake-laid) clays, below which were <10 ft of apparent glaciofluvial (glacial stream-derived) sands, a laterally-discontinuous layer of glacial till, and below that weathered bedrock was encountered grading into competent dolostone bedrock at depths generally >75 ft bgs (Figure 3).

Visual and olfactory field observations and PID screening of soils recovered during test pitting generally identified similar conditions to those observed during soil boring activities, with the exception of slightly elevated PID readings in test pits TP-02 (2.5 ppm; 1 to 2 ft bgs) and TP-03 (0.6 ppm; 0 to 1 ft bgs), both located in the northwest portion of the subject site. Observations from TP-02 identified a light odor within fill materials containing miscellaneous debris including metal parts (apparent remnants of steel drums), aluminum cans and polyethylene sheeting. Observations from test pit TP-03 identified approximately 2.5 ft of urban fill materials exhibiting a stronger odor and black staining of an apparent creosote-like material on the north side of the excavation at a depth of approximately 1.5 ft bgs. A lighter odor was still observed in native clays (2.5 to 3.0 ft bgs) at the bottom of test pit TP-03. Photographs of soils excavated from TP-02 and TP-03 are presented in Appendix D.

Visual and olfactory observations of soils recovered during soil boring activities did not identify evidence of gross contamination in either fill materials or underlying native glaciolacustrine sediments. Additionally, PID readings did not identify concentrations of apparent VOCs in vapor emanating from soil exceeding 0.6 parts per million (ppm) (see the boring log for SB-02; sample depth 2 to 4 ft bgs, in Appendix C).

SOIL ANALYTICAL RESULTS

Due to our understanding of the future potential use of the subject site as a commercially-zoned recreational facility, soil chemical analytical results were compared to NYSDEC Part 375 Commercial and Protection of Groundwater (POGW) Restricted Use Soil Cleanup Objectives (SCOs). As noted above, analyses were completed for metals/inorganics, SVOCs, and VOCs. Out of the sampling and analyses completed there were generally detectable concentrations of a limited number of metals, VOCs and SVOCs, with few exceeding Commercial and/or POGW SCOs, as discussed herein.

Please see Table I for all sample analytical results. Note that bolded values indicate compound concentrations that were detected above the laboratory detection limit; results in black bolded font and

shaded gray exceed the NYSDEC Commercial SCO and results in blue bolded font and shaded gray exceed the Protection of Groundwater (POGW) SCO.

Inorganic compounds/metals were detected in each native or fill soil sample collected, with concentrations in fill soil samples exceeding Commercial and/or POGW SCOs for arsenic (SB-08), copper (SB-08), manganese (SB-02, SB-05), nickel (SB-08), and selenium (SB-05, SB-08). Lead and/or total chromium concentrations in *total metal* analyses of fill soils collected from borings SB-02, SB-03, SB-05 (4-8 ft bgs), and SB-08 were a factor of 20 times greater than the applicable criteria that would otherwise apply for hazardous waste characterization (5 mg/L or parts per million) if a toxicity characteristic leaching procedure (TCLP) analysis had been performed. Please note that the >20X criterion is often used as a rule-of-thumb to approximate characteristic hazardousness, i.e. the potential for the material to require treatment as a hazardous waste. These total metal analytical results prompted us to have the lab complete specific TCLP lead and chromium analytical testing. TCLP analytical results *did not* identify lead or chromium concentrations exceeding the applicable 5 mg/L maximum concentration for characteristic hazardousness by these criteria.

SVOCs were detected in each sample collected from fill soils, and within native soils sampled from SB-04 (9-11 ft bgs). Concentrations exceeded two Commercial SCO compound values and/or three POGW SCOs in the fill soil collected from one boring, SB-04 (4-6 ft). Field observations from SB-04 identified trace ash and cinders in the sampled soil interval and these SVOC results are consistent with these observations.

Low concentrations of a limited number of VOCs were detected in selected fill and native soil samples, none above the applicable SCOs with one exception. Only acetone was identified exceeding POGW SCOs. Acetone is a common VOC, often inadvertently introduced during laboratory analysis. It was detected in each native and fill soil sample collected and at a very consistent concentration in each sample, indicating laboratory contamination as the likely source of these detected concentrations.

Trace concentrations of pesticides/herbicides were detected in fill soils from SB-05 and SB-07 only, while PCBs were not detected in subject site soils sampled as part of this investigation. These detections did not exceed any of the applicable SCOs.

CONCLUSIONS AND RECOMMENDATIONS

This Phase II Investigation was conducted to evaluate the Recognized Environmental Condition identified during previous Phase I ESA activities, the presence of historical urban fill associated with past operation and demolition of a foundry previously located on and adjacent to the subject site, and more specifically that the fill may contain sufficient concentrations of contaminants that may render it as hazardous if site development required management of the fill and possible disposal offsite.

Based on the results of the Phase II investigation we make the following conclusions:

- Urban fill soils were generally confirmed to exist across the subject site, with observed fill
 thicknesses ranging between 2.5 to 10± ft. Observed fill materials generally consist of sand with
 gravel, and variably contain ash, brick, metal, plastic, concrete, and other miscellaneous debris.
- A subset of subject site fill soil samples contained metals/inorganics concentrations exceeding applicable NYSDEC Part 375 Commercial and/or POGW SCOs.
 - Metals concentrations exceeding Commercial SCOs (particularly manganese and nickel) suggest possible legacy contamination associated with former subject site use as a steel foundry.
 - O Metals concentrations exceeding POGW SCOs were identified in shallow fill soils (<8 ft bgs) located above the apparent local water table. In addition, site clay deposits below the fill and at thicknesses of 60± ft. limit the transmission of compounds to the saturated zone and groundwater beneath and adjacent to the site, suggesting limited potential introduction of the observed metals into the area groundwater. Subject site groundwater sampling conducted during previous subsurface investigations by others (LCS) in 2017 did not identify metals concentrations exceeding applicable NYSDEC Class GA groundwater criteria.
 - Specific TCLP analyses of the two metals, lead and chromium, and in samples that exhibited total concentrations >20X than the TCLP rule-of-thumb did not identify concentrations of leachable lead or chromium exceeding the applicable 5 mg/L maximum concentration for characteristic hazardousness. Therefore subject site fill soils are not expected to need treatment as characteristically hazardous waste associated with these leachable metals.
- SVOC concentrations in fill soils sampled from a single soil boring (SB-04) exceeded Commercial SCOs for benzo (a) pyrene. The presence of ash and cinders in the sampled soil interval are the likely source of the elevated SVOC concentration.
- Minor visual/olfactory evidence of contamination (dark and apparent creosote staining) was
 observed in fill soils excavated from test pits TP-02 and TP-03 in the northwest corner of the
 subject site. Similar observations were not noted in other test pits or nearby soil borings (SB-04,
 SB-05), suggesting the extent of observed contamination is limited.

The relatively minor and spatially discontinuous exceedances of NYSDEC Part 375 SCOs Commercial and POWG SCOs in soils across the subject site are consistent with historical subject site use as a foundry, and do not suggest the previous occurrence of identifiable releases of petroleum or hazardous materials at the subject site that would render site fill as hazardous waste in the course of site development. Based on the observed SCO exceedances and visual observations of site fill in the test pits and borings completed during our Phase II, as well as from our review of data provided in previous site investigations, we conclude the subject site's fill soils will require management as a solid waste during

future site redevelopment activities. Recommended management considerations for the subject site fill materials include the following:

- Leaving or re-using fill on site beneath engineered features is acceptable with the placement of
 conventional asphalt (e.g. driveways, parking), concrete (e.g. sidewalks, building), or other
 engineered material barrier to restrict access to and contact with the underlying fill materials
 where such surface improvements are intended, and assuming that leaving fill beneath such
 surface completions is consistent with geotechnical or other site engineering considerations.
- Where landscaping is intended, the placement of a 1-foot thick vegetated clean soil cover is also
 acceptable (this thickness is consistent with the development of commercial sites under the
 applicable SCO values referenced in this report). Areas excavated to accommodate stormwater
 ponding/drainage will also require a 1-foot thick soil cover over remaining fill materials; specific
 attention should be afforded to avoid erosion of the 1-foot cover where flow will occur.
- If fill material needs to be transported off site for disposition, from the analytical data collected and observations reported herein, we anticipate that the subject site fill materials will satisfy acceptance criteria for off-site transport and disposal as solid (not hazardous) waste and likely require disposal at an appropriately-permitted solid waste management facility.

Again, please note that geotechnical evaluation of the site will be reported to the Buffalo Niagara YMCA under separate cover and should be considered together with the conclusions and recommendations provided in this report for decision-making by the YMCA as well as to inform development design support by others working with the YMCA for this project.

We appreciate the opportunity to provide environmental consulting services on this project. Please do not hesitate to contact us if you have any questions or comments.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Andrew L. Nichols
Technical Specialist

Vincent B. Dick Principal

Enclosures:

Table I – Summary of Soil Analytical Results

Figure 1 - Project Locus

Figure 2 – Soil Boring and Test Pit Plan

Figure 3 – Geologic Subsurface Profile

Appendix A: Test Pit Logs
Appendix B: Soil Boring Logs

Appendix C: Select soil boring and test pit photographs

Appendix D: Laboratory Analytical Data Reports

Appendix E: Previous LCS Subsurface Soil and Groundwater Investigation Report

References

- LCS, 2017a. Phase I Environmental Site Assessment, 1984 Elmwood Avenue, 15, 19, 33, 35, 107, and 125 Norris Street, and 742 Hertel Avenue, Buffalo, New York, prepared by LCS, Inc., dated 16 November 2017, prepared by LCS, Inc., dated 9 June 2017.
- LCS, 2017b. Limited and Focused Geophysical Survey and Limited and Focused Subsurface Soil & Groundwater Investigation Report for the Property Identified as: Mixed-use Property, 1984 Elmwood Avenue, 15, 19, 33, 35, 107, and 125 Norris Street, and 742 Hertel Avenue, Buffalo, New York, prepared by LCS, Inc., dated 16 November 2017.
- 3. Haley & Aldrich, 2020. ASTM Phase I Environmental Site Assessment, The Uniland Property, Norris and Elmwood Avenues, Buffalo, New York, prepared by Haley & Aldrich of New York, dated 31 January 2020.
- 4. New York State Department of Environmental Conservation, Division of Environmental Remediation, 6 NYCRR Part 375 Environmental Remediation Programs, Subparts 375-1 to 375-4 and 375-6, effective 14 December 2006.

\\haleyaldrich.com\share\CF\Projects\134479\005 - Phase II and Geotech\Phase II Report\2020_0916_PhaseII_LetterReport_YMCA Uniland_ISSUE DRAFT2.docx

YMCA BUFFALO NIAGARA - UNILAND SITE

BUFFALO, NEW YORK

	Location	Commercial	Protection	Eastern USA	SB-01	SB-02	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-07	SB-08
	Sample Date		of	Background	08/04/2020	08/06/2020	08/06/2020	08/07/2020	08/07/2020	08/10/2020	08/10/2020	08/11/2020	08/11/2020	08/11/2020
	Sample Type		Groundwater		N	N	N	N	N	N	N	N	N	N
	Sample Depth (bgs)				68 - 70 (ft)	2 - 4 (ft)	2 - 4 (ft)	4 - 6 (ft)	9 - 11 (ft)	4 - 8 (ft)	8 - 12 (ft)	4 - 6 (ft)	4 - 6 (ft)	4 - 6 (ft)
	Sampled Strata				Native	Fill	Fill	Fill	Native	Fill	Native	Fill	Fill	Fill
	Sample Name				SB-01-68-70	SB-02-2.0-4.0	SB-03-2.0-4.0	SB-04-4.0-6.0	SB-04-9.0-11.0	SB-05-4.0-8.0	SB-05-8.0-12.0	SB-06-4.0-6.0	SB-07-4.0-6.0	SB-08-4.0-6.0
Herbicides (mg/kg)														
2,4,5-TP (Silvex)		500	3.8		ND (0.019)	ND (0.02)	ND (0.018)	ND (0.018)	ND (0.018)	ND (0.018)	ND (0.018)	ND (0.019)	ND (0.017)	ND (0.017)
Inorganic Compounds (mg/kg	g)													
Arsenic		16	16	3-12	2.3 J	5.4	6.1	2.9 J	2.6 J	ND (25.2)	8	3	0.75 J	24.2 [AB]
Barium		400	820	15-600	69.8	57.8	58.1	25.2 J	109	97.2	208	73.2	11.2 J	28.6 J
Beryllium		590	47	0-1.75	0.35 J	0.36 J	0.36 J	0.19 J	0.58	0.17 J	0.94	0.69	0.093 J	0.15 J
Cadmium		9.3	7.5	0.1-1.1	0.12 J	0.61 J	1.8	ND (0.85)	ND (0.88)	1.5	ND (0.71)	0.23 J	0.36 J	ND (1.7)
Chromium		-	-	1.5-40	12.1	123	49.6	23.6	21.2	318	27.3	19.2	33.7	494
Chromium III (Trivalent)		1500	-		12.1	123	49.6	23.6	20.6	318	27.3	19.2	33.7	494
Chromium VI (Hexavalent)		400	19		ND (2.3)	ND (2.5)	ND (2.2)	ND (2.2)	0.55 J	ND (2.2)	ND (2.2)	ND (2.4)	ND (2)	ND (2.1)
Copper		270	1720	1-50	22	23	42.8	41.9	22.2	46	26.1	21.8	29.1	328 ^[A]
Cyanide		27	40	N/A	ND (1.1)	ND (1.2) F1	ND (1.1)	ND (1)	ND (0.96)	ND (0.92)	ND (0.99)	1.3	ND (0.94)	ND (1)
Lead		1000	450		8.7	43.6	121	47.1	12.9	65.7	14.5	91.7	81.4	45.5
Manganese		10000	2000	50-50,000	351	2160 ^[B]	1340	642	502	12200 ^[AB]	607	474	1340	1190
Mercury		2.8	0.73	0.001-0.2	0.0092 J	0.025	0.044	0.0082 J	0.005 J	0.024	0.009 J	0.0099 J	0.013 J	0.015 J
Nickel		310	130	0.5-25	12.8	12.2	14.4	27.9	23.3	53.8	29.4	12.7	40.1	483 ^[AB]
Selenium		1500	4	0.1-3.9	ND (3.6)	ND (4.6)	ND (4.1)	ND (4.3)	ND (4.4)	10.4 ^[B]	ND (3.5)	ND (3.5)	1.3 J	8.5 J ^[B]
Silver		1500	8.3	N/A	ND (1.8)	ND (2.3)	ND (2.1)	ND (2.1)	ND (2.2)	ND (1.7)	ND (1.8)	ND (1.7)	ND (1.6)	ND (4.3)
Zinc		10000	2480	9-50	45.8	113	346	54.3	70.7	203	67.5	48.5	93.8	60.8
TCLP Metals (mg/L)														
Chromium		-	-	-	-	ND (0.020)	ND (0.020)	-	-	ND (0.020)	-	-	-	ND (0.020)
Lead		-	-	-	-	0.0077 J	0.034	-	-	0.057	-	-	-	0.0055 J
PCBs (mg/kg)														
Aroclor-1016 (PCB-1016)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1221 (PCB-1221)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1232 (PCB-1232)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1242 (PCB-1242)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1248 (PCB-1248)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1254 (PCB-1254)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Aroclor-1260 (PCB-1260)		-	-	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)
Polychlorinated biphenyls (PCE	Bs)	1	3.2	-	ND (0.27)	ND (0.28)	ND (0.25)	ND (0.5)	ND (0.25)	ND (0.2)	ND (0.25)	ND (0.21)	ND (0.21)	ND (0.21)

Notes:

- 1. Results in **bold** are detected.
- 2. ND (#): Not detected above indicated reporting limit.
- 3. Lab qualifiers are shown:
- *: LCS or LCSD is outside acceptance limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- F1: MS and/or MSD recovery exceeds control limits.
- F2: MS/MSD RPD exceeds control limits.
- 4. Detected results were screened against NYSDEC Part 375 Soil Cleanup Objectives.

Exceedances are shaded gray and flagged in []:

- [A]: Result is greater than Restricted Use Commercial
 [B]: Result is greater than Restricted Use Protection of Groundwater

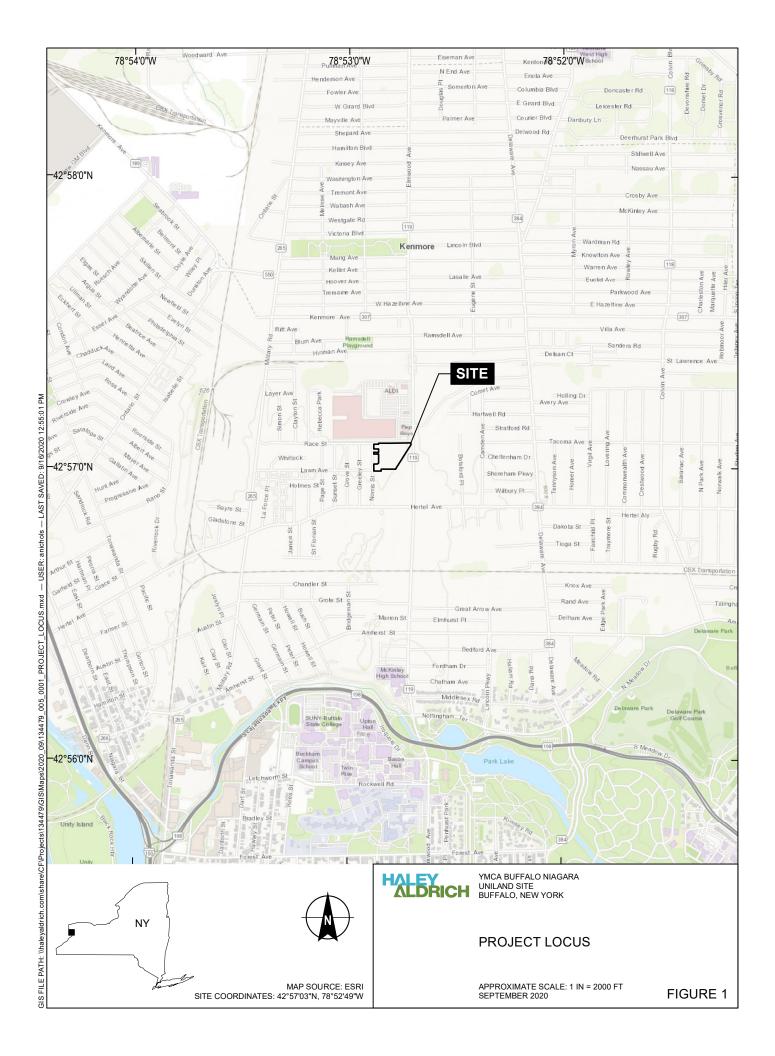
TABLE I - DRAFT SUMMARY OF SOIL ANALYTICAL RESULTS YMCA BUFFALO NIAGARA - UNILAND SITE BUFFALO, NEW YORK

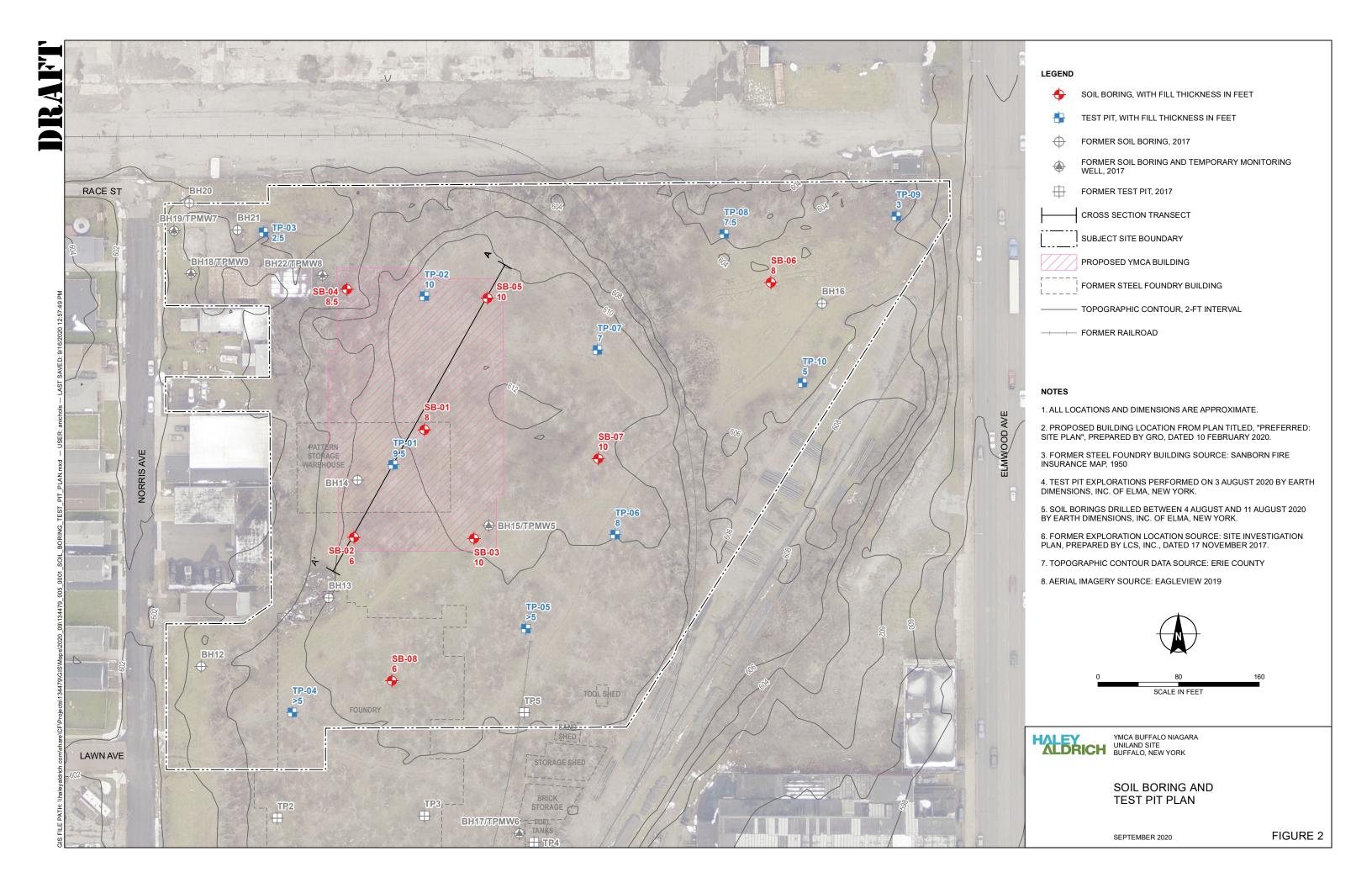
	Location	Commercial	Protection	Eastern USA	SB-01	SB-02	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-07	SB-08
	Sample Date		of	Background	08/04/2020	08/06/2020	08/06/2020	08/07/2020	08/07/2020	08/10/2020	08/10/2020	08/11/2020	08/11/2020	08/11/2020
	Sample Type		Groundwater		N	N	N	N	N	N	N	N	N	N
	Sample Depth (bgs)				68 - 70 (ft)	2 - 4 (ft)	2 - 4 (ft)	4 - 6 (ft)	9 - 11 (ft)	4 - 8 (ft)	8 - 12 (ft)	4 - 6 (ft)	4 - 6 (ft)	4 - 6 (ft)
	Sampled Strata				Native	Fill	Fill	Fill	Native	Fill	Native	Fill	Fill	Fill
	Sample Name				SB-01-68-70	SB-02-2.0-4.0	SB-03-2.0-4.0	SB-04-4.0-6.0	SB-04-9.0-11.0	SB-05-4.0-8.0	SB-05-8.0-12.0	SB-06-4.0-6.0	SB-07-4.0-6.0	SB-08-4.0-6.0
Pesticides (mg/kg)														
4,4'-DDD		92	14	_	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	0.0093 J	ND (0.035)
4,4'-DDE		62	17	_	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
4,4'-DDT		47	136	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	0.0028	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Aldrin		0.68	0.19	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
alpha-BHC		3.4	0.02	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
alpha-Chlordane		24	2.9	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
beta-BHC		3	0.09	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
delta-BHC		500	0.25	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Dieldrin		1.4	0.1	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Endosulfan I		200	102	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Endosulfan II		200	102	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Endosulfan sulfate		200	1000	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Endrin		89	0.06	-	ND (0.0019)	ND (0.2)	ND (0.092) F1	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
gamma-BHC (Lindane)		9.2	0.1	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Heptachlor		15	0.38	-	ND (0.0019)	ND (0.2)	ND (0.092)	ND (0.18)	ND (0.0018)	ND (0.0018)	ND (0.0018)	ND (0.038)	ND (0.034)	ND (0.035)
Semi-Volatile Organic Com	moundo (ma/ka)													
2-Methylphenol (o-Cresol)	ipoulius (ilig/kg)	500	0.33	_	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
3&4-Methylphenol		-	-	-	ND (0.19)	ND (0.21)	ND (3.7)	ND (36)	ND (0.19)	ND (0.92)	ND (0.19)	ND (1.9)	ND (0.00)	ND (1.7)
4-Methylphenol		500	0.33	-	ND (0.38)	ND (0.4)	ND (3.7)	ND (36)	ND (0.36)	ND (1.8)	ND (0.37)	ND (1.9) ND (1.9)	ND (1.7) ND (1.7)	ND (1.7) ND (1.7)
Acenaphthene		500	98	-	ND (0.38) ND (0.19)	ND (0.4)	ND (3.7)	ND (18)	ND (0.30)	ND (1.8) ND (0.92)	ND (0.37) ND (0.19)	ND (1.9)	ND (1.7)	ND (1.7) ND (0.89)
Acenaphthylene		500	107	-	ND (0.19)	ND (0.21) ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92) ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Anthracene		500	1000	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Benzo(a)anthracene		5.6	1	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18) F1	ND (0.19)	ND (0.92)	ND (0.19)	0.27 J	0.14 J	0.18 J
` '		3.0 1	22	-	ND (0.19)	0.061 J	ND (1.9)	4.8 JF1 [A]	ND (0.19)	0.14 J	ND (0.19)	0.27 J	0.14 J	0.18 J
Benzo(a)pyrene		•			` '		` '	5.6 JF1 ^[B]	` ,		` '			
Benzo(b)fluoranthene		5.6	1.7 1000	-	ND (0.19)	0.12 J	0.3 J		ND (0.19)	0.19 J	ND (0.19)	0.31 J	0.18 J 0.15 J	0.24 J 0.22 J
Benzo(g,h,i)perylene		500		-	ND (0.19)	0.079 J	ND (1.9)	3 JF1	ND (0.19)	0.11 J	ND (0.19)	0.22 J		
Benzo(k)fluoranthene		56	1.7	-	ND (0.19)	0.033 J	ND (1.9)	2.8 JF1 ^[B]	ND (0.19)	0.12 J	ND (0.19)	0.13 J	ND (0.86)	0.16 J
Chrysene		56	1	-	ND (0.19)	0.081 J	ND (1.9)	5.3 JF1 ^[B]	ND (0.19)	ND (0.92)	ND (0.19)	0.29 J	0.2 J	0.22 J
Dibenz(a,h)anthracene		0.56	1000	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Dibenzofuran		350	6.2	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Fluoranthene		500	1000	-	ND (0.19)	0.078 J	ND (1.9)	8.2 JF2	0.033 J	0.21 J	ND (0.19)	0.6 J	0.31 J	0.36 J
Fluorene		500	386	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Hexachlorobenzene		6	1.4	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Indeno(1,2,3-cd)pyrene		5.6	8.2	-	ND (0.19)	0.053 J	ND (1.9)	2.8 JF1	ND (0.19)	ND (0.92)	ND (0.19)	0.17 J	ND (0.86)	0.17 J
Naphthalene		500	12	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Pentachlorophenol		6.7	8.0	-	ND (0.38)	ND (0.4)	ND (3.7)	ND (36)	ND (0.36)	ND (1.8)	ND (0.37)	ND (1.9)	ND (1.7)	ND (1.7)
Phenanthrene		500	1000	-	ND (0.19)	0.048 J	ND (1.9)	2.8 JF1	ND (0.19)	ND (0.92)	ND (0.19)	0.48 J	0.33 J	0.15 J
Phenol		500	0.33	-	ND (0.19)	ND (0.21)	ND (1.9)	ND (18)	ND (0.19)	ND (0.92)	ND (0.19)	ND (0.96)	ND (0.86)	ND (0.89)
Pyrene		500	1000	-	ND (0.19)	0.075 J	ND (1.9)	7.2 J	0.023 J	0.19 J	ND (0.19)	0.45 J	0.28 J	0.32 J

Notes:

- 1. Results in **bold** are detected.
- 2. ND (#): Not detected above indicated reporting limit.
- 3. Lab qualifiers are shown:
- *: LCS or LCSD is outside acceptance limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- F1: MS and/or MSD recovery exceeds control limits.
- F2: MS/MSD RPD exceeds control limits.
- 4. Detected results were screened against NYSDEC Part 375 Soil Cleanup Objectives. Exceedances are shaded gray and flagged in []:
- [A]: Result is greater than Restricted Use Commercial
- [B]: Result is greater than Restricted Use Protection of Groundwater

Haley & Aldrich, Inc.


BUFFALO, NEW YORK


Location	Commercial	Protection	Eastern USA	SB-01	SB-02	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-07	SB-08
Sample Date		of	Background	08/04/2020	08/06/2020	08/06/2020	08/07/2020	08/07/2020	08/10/2020	08/10/2020	08/11/2020	08/11/2020	08/11/2020
Sample Type		Groundwater		N 68 - 70 (ft)	N 2 - 4 (ft)	N 2 - 4 (ft)	N 4 - 6 (ft)	N 9 - 11 (ft)	N 4 - 8 (ft)	N 9 12 (#)	N 4 - 6 (ft)	N 4 - 6 (ft)	N 4 - 6 (ft)
Sample Depth (bgs) Sampled Strata				Native	2 - 4 (IL) Fill	2 - 4 (II) Fill	4 - 6 (II) Fill	9 - TT (II) Native	4 - 6 (II) Fill	8 - 12 (ft) Native	4 - 6 (II) Fill	4 - 6 (II) Fill	4 - 6 (II) Fill
Sample Name				SB-01-68-70	SB-02-2.0-4.0	SB-03-2.0-4.0	SB-04-4.0-6.0	SB-04-9.0-11.0	SB-05-4.0-8.0	SB-05-8.0-12.0	SB-06-4.0-6.0	SB-07-4.0-6.0	SB-08-4.0-6.0
- Сатри Мате				OB-01-00-70	OB-02-2.0-4.0	OB-00-2.0-4.0	OB-04-4.0-0.0	OB-04-3.0-11.0	OD-03-4.0-0.0	OB-00-0.0-12.0	OD-00-4.0-0.0	OD-07-4.0-0.0	OB-00-4.0-0.0
Volatile Organic Compounds (mg/kg)													
1,1,1-Trichloroethane	500	0.68	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,1-Dichloroethane	240	0.27	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,1-Dichloroethene	500	0.33	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,2,4-Trimethylbenzene	190	3.6	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.0043 J	ND (0.005)	ND (0.0035)
1,2-Dichlorobenzene	500	1.1	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,2-Dichloroethane	30	0.02	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,3,5-Trimethylbenzene	190	8.4	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.0017 J	0.00038 J	ND (0.0035)
1,3-Dichlorobenzene	280	2.4	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,4-Dichlorobenzene	130	1.8	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
1,4-Dioxane	130	0.1	-	ND (0.078)	ND (0.12)	ND (0.11)	ND (0.1)	ND (0.075)	ND (0.1)	ND (0.092)	ND (0.1)	ND (0.099)	ND (0.071)
2-Butanone (Methyl Ethyl Ketone)	500	0.3	-	ND (0.02)	0.018 J	0.011 J	0.0062 J*	ND (0.019) *	ND (0.025) *	ND (0.023) *	0.0051 J	0.0061 J	ND (0.018)
2-Phenylbutane (sec-Butylbenzene)	500	11	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Acetone	500	0.05	-	0.004 J	0.13 ^[B]	0.061 ^[B]	0.069 ^[B]	0.026	0.01 J	0.012 J	0.044	0.013 J	0.026
Benzene	44	0.06	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.0006 J	ND (0.005)	ND (0.0035)
Carbon tetrachloride	22	0.76	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Chlorobenzene	500	1.1	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Chloroform (Trichloromethane)	350	0.37	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
cis-1,2-Dichloroethene	500	0.25	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Ethylbenzene	390	1	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.00047 J	ND (0.005)	ND (0.0035)
Methyl Tert Butyl Ether	500	0.93	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Methylene chloride	500	0.05	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
n-Butylbenzene	500	12	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
n-Propylbenzene	500	3.9	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.00043 J	ND (0.005)	ND (0.0035)
tert-Butylbenzene	500	5.9	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Tetrachloroethene	150	1.3	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Toluene	500	0.7	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	0.0011 J	ND (0.005)	ND (0.0035)
trans-1,2-Dichloroethene	500	0.19	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Trichloroethene	200	0.47	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Vinyl chloride	13	0.02	-	ND (0.0039)	ND (0.0061)	ND (0.0055)	ND (0.005)	ND (0.0038)	ND (0.0051)	ND (0.0046)	ND (0.005)	ND (0.005)	ND (0.0035)
Xylene (total)	500	1.6	-	ND (0.0078)	ND (0.012)	ND (0.011)	ND (0.01)	ND (0.0075)	ND (0.01)	ND (0.0092)	0.0034 J	ND (0.0099)	ND (0.0071)

Notes:

- 1. Results in **bold** are detected.
- 2. ND (#): Not detected above indicated reporting limit.
- 3. Lab qualifiers are shown:
- *: LCS or LCSD is outside acceptance limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- F1: MS and/or MSD recovery exceeds control limits.
- F2: MS/MSD RPD exceeds control limits.
- 4. Detected results were screened against NYSDEC Part 375 Soil Cleanup Objectives. Exceedances are shaded gray and flagged in []:
- [A]: Result is greater than Restricted Use Commercial
- [B]: Result is greater than Restricted Use Protection of Groundwater

APPENDIX A

Test Pit Logs

ALDRICH

TEST PIT LOG

DRAFT

Test Pit No.

TP-01

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor

Equipment Used

Earth Dimensions, Inc.

Kubota KX080-4 Excavator

File No. 134479-005

H&A Rep D. Mukherjee

Aug 3, 20 **Date**

Mostly Cloudy 60-70°F Weather

					vvcati	101				,		
Ground El.:			Location: See Plan	Groundwater depths/entry	/ rates (ii	n./m	in.):	No	t en	coun	tere	ed
El. Datum:												
(ft)	Stratum Change Elev./	USCS Symb	S (color, natural grain size and artificial c	FICATION AND DESCRIPTION component percentage estimates, max perties, structure, odors, moisture,		avel	Sa	<u> </u>	es		Toughness	
Depth (ft)	Depth (ft)	SM	other description GEOLOGIC If	ons and observations NTERPRETATION)	mum %	% Fine	% Coarse	% Fine	% Fines	Dilatancy	Tough	Plasticity Strength
		Sivi	dry to moist, contains wood, cond various refuse debris	crete, asphalt, steel pieces, and PID=0.0								
- 2 -					ррш							
2 -			-	FILL-								
- 4 -	4.5	CL	Gray-brown sandy lean CLAY (CI	L), mps <2.0 in., no structure, no								
			odor, moist	PID=0.0	ppm							
- 6 -			-GLACIOLACUS	STRINE DEPOSITS-								
- 8 -												
- 10 -	10.0		-BOTTOM OF TEST F Note: Test pit backfilled with exca	PIT APPROXIMATELY 10 ft avated soil upon completion.								
Obstructions	:	Re	emarks:		Field	Tests	3					
				Dilatancy Toughness	R - Ra	М	- Med	ium	Н-	High	⊔ :.	ah.

PIT WITHOUT SAMPLE ID COLUMN 134479-LIB09-REV.GLB TEST

Sep 16, 20

NHALEYALDRICH.COM/SHARE/CF/PROJECTS/13479/005 - PHASE II AND GEOTECH/GINT/13479_TP.GPJ

HA-TP07-1.GDT

Boulders Standing Water in Completed Pit Diameter (in.) Number Approx. Vol. (cu.ft) at depth Not Encountered 12 to 24 measured after hours elapsed over 24

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Test Pit Dimensions (ft) Pit Length x Width (ft) 8x3 10 Pit Depth (ft)

N - Nonplastic L - Low M - Medium H - High

Dry Strength N - None L - Low M - Medium H - High V - Very High

Plasticity

TEST PIT LOG

DRAFT

Test Pit No.

TP-02

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator File No. 134479-005

H&A Rep D. Mukherjee

Aug 3, 20 **Date**

Weather Mostly Cloudy 60-70°F

L	Equipment	Oseu N	ubola NA	UOU-4 EXCA	vatoi			Weatl	ner		IVIOS	stly C	lou	ау ы)-70°F	
	Ground El.:			Location:	See Plan	Grou	ndwater depths/entry	rates (i	n./m	in.)): 1	Not e	nco	unte	red	
	El. Datum:															
r		Stratum			VISUAL-MANUAL I	DENTIFICATION A	ND DESCRIPTION	Gr	avel	5	Sand	i	ı	Field	Tests	_
	Depth (ft)	Change Elev./ Depth (ft)	USCS		particle size, manual t other de			mun Coarse	% Fine	% Coarse	% Medium	% Fine	% FINES	Dilatancy Toughness	Plasticity	Strettytti
	6		SM	chemical		s wood, concrete	structure, light , brick, asphalt, metal arious other refuse deb PID=0.1-2.5	ris opm								-
_	2 -					-FILL-										
_	4 -															
	6 -															
_	8 -															
-	10 -	10.0	CL	Clay enc	• • • • • • • • • • • • • • • • • • • •	kimately 10 ft, pos	ssible change in strata. PP=0.0 _I XIMATELY 10 ft	opm								
				Note: Tes	st pit backfilled with											
	Obstructions	:	Re	marks:				Field	Tests	<u>'</u>						7
							Dilatancy	R - Ra	pid	s-	Slov	v N	- No	ne		_

PIT WITHOUT SAMPLE ID COLUMN 134479-LIB09-REV.GLB HA-TP07-1.GDT TEST

Sep 16, 20

WHALEYALDRICH.COM/SHARE/CF/PROJECTS/13479/005 - PHASE II AND GEOTECH/GINT/134479_TP.GPJ

Boulders Standing Water in Completed Pit **Test Pit Dimensions (ft)** Diameter (in.) Number Approx. Vol. (cu.ft) Pit Length x Width (ft) 10x2.5 at depth Not Encountered 12 to 24 measured after 10 hours elapsed Pit Depth (ft) over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Toughness

Plasticity

L - Low M - Medium H - High N - Nonplastic L - Low M - Medium H - High

Dry Strength N - None L - Low M - Medium H - High V - Very High

Sep 16,

TEST PIT LOG

Test Pit No.

TP-03

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator File No. 134479-005

H&A Rep D. Mukherjee

Date Aug 3, 20

Mostly Cloudy 60-70°F Weather

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum: VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Field Tests Gravel Sand Stratum Change % Medium Toughness epth (ft) **USCS** % Coarse % Coarse Dilatancy Strength (color, natural grain size and artificial component percentage estimates, maximum % Fines Elev./ % Fine % Fine Symbol particle size, manual test properties, structure, odors, moisture, Depth other descriptions and observations (ft) GEOLOGIC INTERPRETATION) SM Light brown silty SAND (SM), mps 1.5 ft, no structure, strong odor, possible creosote-like material observed PID=0.0-0.6 ppm -FILL-\\HALEYALDRICH.COM\SHARE\CF\PROJECTS\134479\005 - PHASE II AND GEOTECH\GINT\134479_TP.GPJ 2 -2.5 Gray-brown sandy lean CLAY (CL), mps <0.2 in., no structure, light CL chemical-like odor, moist 3 3.0 PP=0.0 ppm -GLACIOLACUSTRINE DEPOSITS-BOTTOM OF TEST PIT APPROXIMATELY 3 FT Note: Test pit backfilled with excavated soil upon completion.

Field Tests Remarks: **Obstructions:** Dilatancy R - Rapid S - Slow N - None Toughness L - Low M - Medium H - High Plasticity N - Nonplastic L - Low M - Medium H - High Dry Strength N - None L - Low M - Medium H - High V - Very High

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Boulders **Standing Water in Completed Pit** Diameter (in.) Number Approx. Vol. (cu.ft) at depth Not Encountered 12 to 24 measured after hours elapsed over 24

Test Pit Dimensions (ft) Pit Length x Width (ft) 6x2.5 Pit Depth (ft) 3

WITHOUT SAMPLE ID COLUMN F **FST**

134479-LIB09-REV.GLB HA-TP07-1.GDT

Sep 16, 20

TEST PIT WITHOUT SAMPLE ID COLUMN 13479-LIB09-REV.GLB HA-TP07-1.GDT (IHALEYALDRICH-COM/SHARE)CF/PROJECTS/13479/005 - PHASE II AND GEOTECHIGINT/134479_TP.GPJ

TEST PIT LOG

DRAFT

Test Pit No.

TP-04

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara
Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator

File No. 1

134479-005

H&A Rep

D. Mukherjee

Date

Aug 3, 20

Weather Mostly Cloudy 60-70°F

Ground El.:

Location: See Plan

Groundwater depths/entry rates (in./min.): Not encountered

El. Datum:

Change Elev / Depth Chinge Elev / Depth Chinge Color, natural grain size and artificial component percentage estinates, maximum pertice is size, siz		Stratum		VISUAL-MANUAL IDENTIFICATION A	ND DESCRIPTION		vel	 	San	d		Fi€	eld T	ests	;
SM dry to moist, contains brick, concrete, metal and wood pieces and various other refuse debris PID=0.0 ppm -FILL- Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. BOTTOM OF TEST PIT APPROXIMATELY 5 FT Note: Test pit backfilled with excavated soil upon completion.	Depth (ft)	Elev./ Depth	USCS Symbol	particle size, manual test properties, struc other descriptions and obse GEOLOGIC INTERPRETA	cture, odors, moisture, rvations ATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. BOTTOM OF TEST PIT APPROXIMATELY 5 FT Note: Test pit backfilled with excavated soil upon completion.	0		SM	dry to moist, contains brick, concrete, metal	and wood pieces and										
Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. BOTTOM OF TEST PIT APPROXIMATELY 5 FT Note: Test pit backfilled with excavated soil upon completion.	- 1 -			-FILL-											
Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. BOTTOM OF TEST PIT APPROXIMATELY 5 FT Note: Test pit backfilled with excavated soil upon completion.	- 2 -														ļ
Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. BOTTOM OF TEST PIT APPROXIMATELY 5 FT Note: Test pit backfilled with excavated soil upon completion.	- 3 -														
Note: Test pit backfilled with excavated soil upon completion.	- 4 -				mately 5 ft below ground										
Obstructions: Remarks: Field Tests	- 5 -	5.0													
	Obstruction	ns:	Rem	arks:	Fi	eld T	ests	; ;	<u> </u>						\exists

Obstructions:	Remarks:		Field Tests
		Dilatancy	R - Rapid S - Slow N - None
		Toughness	L - Low M - Medium H - High
		Plasticity	N - Nonplastic L - Low M - Medium H - High
		Dry Strength	N - None L - Low M - Medium H - High V - Very High

				Dry Gaerigar 14-140	ic L-Low ivi-ivicalani 11-1 light v- very riigh
Standing Water in Comp	leted Pit	D:(:)	Boulders	-	Test Pit Dimensions (ft)
at depth Not Encountered	ft	Diameter (in.) 12 to 24	<u>Number</u>	Approx. Vol. (cu.ft)	Pit Length x Width (ft) 8x3
measured after	hours elapsed	over 24	:	=	Pit Depth (ft) 5
NOTE: Soil identif	ication based on visu	ual-manual methods	of the USCS	system as practiced	by Haley & Aldrich, Inc.

TEST PIT LOG

DRAFT

Test Pit No. TP-05

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara
Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator

File No. 134479-005

....

-

H&A Rep

Date Aug 3, 20

Weather Mostly Cloudy 60-70°F

D. Mukherjee

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum: VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Field Tests Gravel Sand Stratum Change % Medium Toughness epth (ft) **USCS** % Coarse % Coarse Strength (color, natural grain size and artificial component percentage estimates, maximum Dilatancy % Fines Elev./ % Fine % Fine Symbol particle size, manual test properties, structure, odors, moisture, Depth other descriptions and observations (ft) GEOLOGIC INTERPRETATION) Brown silty SAND with gravel (SM), mps 4.0 ft, no structure, no odor, SM moist, contains concrete, brick, and asphalt pieces, possible historic steel drum remnants, and various other refuse debris PID=0.0 ppm -FILL-2 3 Note: Concrete slab encountered at approximately 5 ft below ground surface. Abandoned test pit excavation. 5 5.0 **BOTTOM OF TEST PIT APPROXIMATELY 5 FT** Note: Test pit backfilled with excavated soil upon completion. **Field Tests** Remarks: **Obstructions:** Dilatancy R - Rapid S - Slow N - None

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Toughness

Plasticity

TEST PIT WITHOUT SAMPLE ID COLUMN

134479-LIB09-REV.GLB HA-TP07-1.GDT

Sep 16, 3

NHALEYALDRICH.COM/SHARE/CFIPROJECTS/134479/005 - PHASE II AND GEOTECH/GINT/134479_TP.GPJ

Test Pit Dimensions (ft)
Pit Length x Width (ft) 10x2.5
Pit Depth (ft) 5

L - Low M - Medium H - High

N - Nonplastic L - Low M - Medium H - High

Dry Strength N - None L - Low M - Medium H - High V - Very High

TEST PIT LOG

Test Pit No. **TP-06**

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator File No.

134479-005

H&A Rep D. Mukherjee

Date Aug 3, 20

Mostly Cloudy 60-70°F Weather

Test Pit Dimensions (ft)

9

Pit Length x Width (ft) 10x2.5

Pit Depth (ft)

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum: VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Field Tests Stratum Change % Medium Toughness Depth (ft) **USCS** % Coarse % Coarse Dilatancy Strength (color, natural grain size and artificial component percentage estimates, maximum % Fines Elev./ % Fine % Fine Symbol particle size, manual test properties, structure, odors, moisture, Depth other descriptions and observations (ft) GEOLOGIC INTERPRETATION) SM Brown silty SAND with gravel (SM), mps 3.0 ft, no structure, no odor, moist, contains brick, concrete, granite blocks, and wood pieces and various other refuse debris PID=0.0 ppm -FILL-2 -6 -8 -8.0 Gray-brown sandy lean CLAY with gravel (CL), mps <3.0 in., no CL structure, no odor, moist 8.5 PP=0.0 ppm -GLACIOLACUSTRINE DEPOSITS-BOTTOM OF TEST PIT APPROXIMATELY 8.5 FT Note: Test pit backfilled with excavated soil upon completion. **Field Tests** Remarks: **Obstructions:** Dilatancy R - Rapid S - Slow N - None L - Low M - Medium H - High Toughness Plasticity N - Nonplastic L - Low M - Medium H - High Dry Strength N - None L - Low M - Medium H - High V - Very High

Boulders

Approx. Vol. (cu.ft)

Diameter (in.) Number

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

12 to 24

over 24

hours elapsed

WITHOUT SAMPLE ID COLUMN F **FST**

at depth

measured after

Standing Water in Completed Pit

Not Encountered

134479-LIB09-REV.GLB HA-TP07-1.GDT

Sep 16, 20

\|\HALEYALDRICH.COM\SHARE\CF\PROJECTS\13479\005 - PHASE II AND GEOTECH\GINT\13479_TP.GPJ

TEST PIT LOG

Test Pit No. **TP-07**

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator File No.

134479-005

H&A Rep D. Mukherjee

Date Aug 3, 20

Dry Strength N - None L - Low M - Medium H - High V - Very High

Test Pit Dimensions (ft)

8

Pit Length x Width (ft) 10x2.5

Mostly Cloudy 60-70°F Weather

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum: VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Field Tests Gravel Sand Stratum Change % Medium Toughness Depth (ft) **USCS** % Coarse % Coarse Dilatancy Strength (color, natural grain size and artificial component percentage estimates, maximum % Fines Elev./ % Fine % Fine Symbol particle size, manual test properties, structure, odors, moisture, Depth other descriptions and observations (ft) GEOLOGIC INTERPRETATION) SM Brown silty SAND with gravel (SM), mps 3.5 ft, no structure, no odor, dry to moist, contains brick, concrete and wood pieces and various other refuse debris PID=0.0 ppm -FILL-2 -4 6 -7.0 Brown soft sandy lean CLAY with gravel (CL), mps <2.0 in., no CL structure, no odor, moist 7.5 PP=0.0 ppm -GLACIOLACUSTRINE DEPOSITS-BOTTOM OF TEST PIT APPROXIMATELY 7.5 FT Note: Test pit backfilled with excavated soil upon completion. **Field Tests** Remarks: **Obstructions:** Dilatancy R - Rapid S - Slow N - None L - Low M - Medium H - High Toughness Plasticity N - Nonplastic L - Low M - Medium H - High

WITHOUT SAMPLE ID COLUMN F **FST**

at depth

measured after

Standing Water in Completed Pit

Not Encountered

134479-LIB09-REV.GLB HA-TP07-1.GDT

Sep 16, 20

NHALEYALDRICH.COM/SHARE/CFIPROJECTS/134479/005 - PHASE II AND GEOTECH/GINT/134479_TP.GPJ

hours elapsed Pit Depth (ft) over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

12 to 24

Diameter (in.) Number

Boulders

Approx. Vol. (cu.ft)

TEST PIT LOG

DRAFT

Test Pit No.

TP-08

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara
Contractor Earth Dimensions, Inc.

Equipment Used Kubota KX080-4 Excavator

File No.

134479-005

H&A Rep

D. Mukherjee

Date

Aug 3, 20

Weather Mostly Cloudy 60-70°F

Test Pit Dimensions (ft)

Pit Length x Width (ft) 9x2.5

	Equipmen	it Usea Ri	ibota NA	R080-4 Excavator			Weath	ner	ľ	Mostl	y Clo	oudy	60-	70°F	
	Ground El	:		Location: See Plan	Grou	ndwater depths/entry	rates (ir	n./m	in.)	: No	t en	cour	nter	ed	
	El. Datum:														
		Stratum		VISUAL-MANUAL IDEN	TIFICATION A	AND DESCRIPTION	Gra	avel	s	and	Т	Fie	eld T	ests	1
	Depth (ft)	Change Elev./ Depth (ft)	USCS Symbo	(color, natural grain size and artificial particle size, manual test pother descrip	ıl component p	ercentage estimates, maxin cture, odors, moisture, ervations	0	T	l ge	% Medium % Fine	% Fines	Dilatancy	Toughness	Plasticity Strength	
	- 6'		SM	Brown silty SAND with gravel (s dry to moist, contains brick, cor various other refuse debris		coal, and wood pieces a	ind								
,						PID=0.0 p	pm								ı
ordeo cho					-FILL-										
	- 2 -														
	- 4 -														
200															
NOSEO LO	C														
	- 6 -														
0.00															
		7.5	CL	Brown sandy lean CLAY with g	ravel (CL). m	nps <2.0 in no structure			H						1
	- 8 -			no odor, moist		PP=0.0 p									
		0.5		-GLACIOLAC		EPOSITS-	P.11								
5		8.5		BOTTOM OF TEST I Note: Test pit backfilled with ex											
TILLY: OLD															
2	Obstruction	n:	 _B	emarks:		T	Field 1	L Coeta	<u> </u>						╡
	Obstruction	.	Ke	emarks:		Dilatancy	R - Ra			Slow	NI	None			$\frac{1}{2}$
						Toughness	L - Low	М	- Me	edium	Н-	High			
						Plasticity N - N Dry Strength N - None	lonplastic L - Low <i>I</i>								

TEST PIT WITHOUT SAMPLE ID COLUMN 13479-LIB09-REV.GLB HA-TP07-1.GDT (IHALEYALDRICH-COM/SHARE)CF/PROJECTS/13479/005 - PHASE II AND GEOTECHIGINT/134479_TP.GPJ

at depth

Standing Water in Completed Pit

Not Encountered

Sep 16, 20

measured after hours elapsed over 24 = Pit Depth (ft)

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Diameter (in.) Number

12 to 24

Boulders

Approx. Vol. (cu.ft)

TEST PIT LOG

DRAFT

Test Pit No.

TP-09

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Kubota KX080-4 Excavator **Equipment Used**

134479-005 File No.

H&A Rep D. Mukherjee

Date Aug 3, 20

Mostly Cloudy 60-70°F Weather

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum: Field Tests VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Stratum Sand

	Depth (ft)		Change Elev./ Depth (ft)	USCS Symbol	(color, natural grain size and artificial component percentage estimates, maximum particle size, manual test properties, structure, odors, moisture, other descriptions and observations GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
20	- 0-	_		SM	Brown silty SAND with gravel (SM), mps 1.0 ft, no structure, no odor, dry to moist, contains concrete pieces PID=0.0 ppm										
J Sep 16, 20	- 1	-			-FILL-										
F\134479_TP.GP\	- 2	-													
) GEOTECHAGIN	- 3	-	3.0	CL	Brown CLAY with gravel (CL), mps <2.0 in., no structure, no odor, moist PP=0.0 ppm										
13479-LIB09-REV.GLB HA-TP07-1.GDT \ HALEYALDRICH.COM\SHARE\CFIPROJECTS\13479\1005 - PHASE II AND GEOTECH\GINT\13479_TP.GPJ	- 4	_	4.0		BOTTOM OF TEST PIT APPROXIMATELY 4 FT Note: Test pit backfilled with excavated soil upon completion.										

Obstructions:	Remarks:			Field Tests
			•	R - Rapid S - Slow N - None L - Low M - Medium H - High I - Nonplastic L - Low M - Medium H - High ne L - Low M - Medium H - High V - Very High
Otanalina Nalatan in Oana	alatad Dit	Boulders		T

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Standing Water in Completed Pit at depth Not Encountered measured after hours elapsed

Diameter (in.) Number Approx. Vol. (cu.ft) 12 to 24 over 24

Test Pit Dimensions (ft) Pit Length x Width (ft) 8x2.5 Pit Depth (ft)

TEST PIT WITHOUT SAMPLE ID COLUMN

ALDRICH

Sep 16, 20

PIT WITHOUT SAMPLE ID COLUMN 134479-LIB09-REV.GLB HA-TP07-1.GDT \WHALEYALDRICH.COM\SHARE\CF\PROJECTS\13447\3\0005-PHASE II AND GEOTECH\GINT\134479_TP\CPJ

rest

TEST PIT LOG

Test Pit No. **TP-10**

Project YMCA Buffalo

Location Buffalo, NY

Client YMCA Buffalo Niagara Contractor Earth Dimensions, Inc.

Kubota KX080-4 Excavator **Equipment Used**

File No. 134479-005

H&A Rep D. Mukherjee

Aug 3, 20 **Date**

Mostly Cloudy 60-70°F Weather

Groundwater depths/entry rates (in./min.): Not encountered Ground El.: Location: See Plan El. Datum:

		Stratum		VISUAL-MANUAL IDENTIFICATION A	ND DESCRIPTION	Gra	vel	S	and	t		Fie	eld T	ests	;
	Depth (ft)	Change Elev./ Depth (ft)	USCS Symbol	(color, natural grain size and artificial component per particle size, manual test properties, structure other descriptions and obset GEOLOGIC INTERPRETA	cture, odors, moisture, rvations ATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
	0		SM	Brown silty SAND with gravel (SM), mps 2.5 dry to moist, contains concrete and wood pie											
	- 1 -			-FILL-											
ı	- 2 -														
	- 3 -	3.0	SP-SM	Orange-brown poorly-graded SAND with silt	7SD SMI mps 2 ft po			_	_						
			5P- 5M	structure, no odor, moist	(3F-3W), HIPS 2 II, HO										
	- 4 -														
	- 5 -	5.0 5.5	CL	Gray-brown sandy lean CLAY (CL), mps <2. odor, moist	0 in., no structure, no										
				-GLACIOLACUSTRINE DE BOTTOM OF TEST PIT APPROX Note: Test pit backfilled with excavated soil t	IMATELY 5.5 FT										
	Obstruction	s:	Rem	arks:		eld T			Clas		N	NI			\exists

Dilatancy Toughness Plasticity

R - Rapid S - Slow N - None L - Low M - Medium H - High

N - Nonplastic L - Low M - Medium H - High Dry Strength N - None L - Low M - Medium H - High V - Very High

Standing Water in Completed Pit at depth Not Encountered measured after

hours elapsed

Boulders Diameter (in.) Number Approx. Vol. (cu.ft) 12 to 24

Test Pit Dimensions (ft) Pit Length x Width (ft) 8x2.5 Pit Depth (ft)

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

over 24

APPENDIX B

Soil Boring Logs

1	'ALE	RICH	4			T	EST	BORING REPOR	ARAF	T	ı	Воі	rin	g N	lo.		SI	3- 0	1	
Clie	oject ent ntracto	ΥN	ICA B	uffalo, E uffalo N mensioi	liagara				DIV.		Sh Sta	art	No	. 1	of Au	gus	05 t 20 t 20			
				Casing	Samp	ler	Barrel	Drilling Equipment	and Procedures			nish iller				ence		20		
Тур	е			HSA	S		-	Rig Make & Model: Truck	k: Diedrich D120		Н8	&A F	₹ер	. Г). N	⁄luk	herj	ee		
Insi	de Diar	neter (in.)	3.25	1 3/	8	-	Bit Type: Cutting Head Drill Mud: None				evat atum				1.0 /D 3	(es	st.)		
Har	nmer V	Veight	(lb)	NA	140)	-	Casing: HSA Spun Hoist/Hammer: Safety I	II amama an			cati	on	Se	ee F	Plan				-
Har		all (in.)	NA	30		-	PID Make & Model: Mini	Hammer iRAE 3000					107. 1068						
£)	lows	No. in.)		ings	n e n (ft)	Symbol	\	/ISUAL-MANUAL IDENTIFICAT	TION AND DESCRIPTION			avel		Sand	t				Tes	it
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Syr	(De	ensity/consistency, color, GROU structure, odor, moisture, c GEOLOGIC INTERF	optional descriptions	⊻e*,	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	7 11 16 15	S1 13	0.0 2.0	0.0		SM		n dense gray silty SAND with gre, no odor, dry, concrete and a -FILL-	asphalt fragments and par		10	10	10	20	35	15				
. - -	50/4" _/	\S2 4	2.0 2.3	0.0		SM	Brown odor, n	silty SAND with gravel (SM), noist	mps 1.3 in., no structure	, no	15	10	10	20	25	20				
- 5 -	49 \50/2"/	S3 \7	4.0 _4.7	0.0		SM	Black s odor, n	ilty SAND with gravel (SM), noist	nps 1.2 in., no structure,	no	5	10	15	20	30	20				
-	30 12 9 7	S4 14	6.0 8.0	0.0		SM		m dense dark brown silty SAND re, no odor, moist	O (SM), mps 0.75 in., no		5	5	15	25	30	20				
- - - -	21 4 2 5	S5 11	8.0 10.0	0.0	603.0	CL		n stiff gray-brown lean CLAY (re, no odor, moist -GLACIOLACUSTRI				5				95	N	L	М	Н
- 10 - -	3 4 7 14	S6 17	10.0 12.0	0.0		CL		d-brown lean CLAY with sand re, no odor, moist	(CL), mps 0.3 in., no			5			10	85	N	L	М	Н
-	15 20 26 21	S7 22	12.0 14.0	0.0		CL		rown lean CLAY with gravel (C r, moist, contains trace intermix		cture,		10		5		85	N	L	М	Н
- - 15 - -	21	S8 24	14.0 16.0	0.0		CL	Similar	to S7				10				90	N	L	M	Н
- - - 20 -	13 22 31 37	S9 24	18.0 20.0	0.0		CL	Hard b	rown lean CLAY (CL), mps 0.2	25 in., no structure, no o	dor,		5				95	N	L	М	Н
- - -	5 11 16	S10 22	23.0 25.0	0.0		CL	Very st odor, n	iiff brown lean CLAY (CL), mpnoist	ps 0.25 in., no structure,	no		5				95	Ν	L	М	Н
- 25 - 	25	W	ater L	_ evel Dat	a			Sample ID	Well Diagram				Sum	ıma	ry				<u></u>	=
	ate	Time	Ela	psed	Depth	(ft) to		O - Open End Rod	Riser Pipe Screen	Overb	ourc					76.5	5			
1 -			Time		Casing o		Water	T - Thin Wall Tube	Filter Sand	Rock	Co	red	(ft)	١		10				

me (nr.) of Casing of Hole vvater Rock Cored (ft) Filter Sand 10 U - Undisturbed Sample Cuttings Samples 20S, 1C, 2U S - Split Spoon Sample Grout SB-01 Concrete Boring No. Bentonite Seal

Field Tests:

Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High

Plasticity: N - Nonplastic L - Low M - Medium H - High

Dry Strength: N - None L - Low M - Medium H - High V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

H&A-TEST BORING-073 134479-LIB09-REV.GLB HA-TB+CORE+WELL-07-1.GDT NHALEYALDRICH.COMSHARE;CFIPROJECTS1134479005-PHASE II AND GEOTECHGINT134479-006_TB.GPJ

		RICI	1	<u> </u>			EST BORING REPORT RAFT	s	She	No. et N	0.	2	79-0 of	4		_	_
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	avel %	Coarse	Sand Wedinm %	% Fine	% Fines	Dilatancy	Toughness a	Plasticity	
- 25 - - - - - 30 -	8 12 17 19	S11 24	28.0 30.0	0.0		CL	Very stiff brown lean CLAY with sand (CL), mps 1.3 in., no structure, no odor, moist -GLACIOLACUSTRINE DEPOSITS-	5	5			5	85	Z	L	М	1
- - - 35	9 10 11 12	S12 24 U1 18	33.0 35.0 35.0 37.0	0.0		CL	Very stiff brown lean CLAY (CL), mps 1.2 mm, no structure, no odor, moist Note: Shelby tube sample collected from approximately 35 to 37 ft.	5				5	90	Ζ	М	М	
- - - - 40 -	2 5 5 7	S13 24	38.0 40.0	0.0		CL	Stiff brown lean CLAY with sand (CL), mps 0.8 in., no structure, no odor, moist		5			10	85	N	М	М	
- - - 45 -	2 5 7 9	S14 24 U2	43.0 45.0 45.0 47.0	0.0		CL	Stiff brown lean CLAY (CL), mps <2 mm, no structure, no odor, moist Note: Shelby tube sample collected from approximately 45 to 47 ft.					10	90	N	М	М	
- - - 50 —	WOR WOR WOR WOR	S15 24	48.0 50.0	0.0		CL	Very soft brown lean CLAY (CL), mps <2 mm, no structure, no odor, moist					10	90	N	М	М	
55 -	WOR WOR WOR WOR	S16 24	53.0 55.0	0.0		CL	Similar to S15										
	WOR WOR WOR WOR	S17 24	58.0 60.0	0.0		CL	Very soft brown lean CLAY with sand (CL), mps 0.2 in., no structure, no odor, moist	5	5			10	80	Z	М	М	
. [NOTE:	Soil ic	lentifica	tion bas	sed on vis	sual-ma	anual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No.			SI	3-01	_]

Boring No.

SB-01

H	ALE	RICH	4			T	EST BORING REPORT DAFT	F	ile	No.	Nc	344	79-0	005	-01	
	Ø			· σ			DKA! .	_		_	o. San	3	of	_	ield	-
(ft)	Blow in.	S S E	(ff)	ding (د	#ge ⊒ Hge ⊒	ogw/	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel	1	_	_			SS	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
	WOR WOR WOR	S18 24	63.0 65.0	0.0		CL	Similar to S17									
65 –	WOR						-GLACIOLACUSTRINE DEPOSITS-									
	WOR WOR WOR	S19 24	68.0 70.0	0.0		CL	Very soft brown lean CLAY with sand (CL), mps 1.0 in., no structure, no odor, moist	5	5			5	85	N	М	N
70 -	WOR				541.0 70.0		Note: Drill action suggests a possible change in strata while drilling from approximately 70 to 73 ft.									
							-GLACIOFLUVIAL DEPOSITS-									
	19 32 \$0/2"ʃ	S20 19	73.0 74.2	0.0		SP- SM	Very dense dark gray poorly graded SAND with silt (SP-SM), mps 0.25 in., no structure, no odor, wet		5	35	20	30	10			
75 –							Auger refusal at approximately 76.5 ft.									
							SEE CORE BORING REPORT FOR ROCK DETAILS									
																l
																l
80 –																l
																l
																l
																l
																l
85 –																l
																l
																l
																l
																l
																l
																l
																l
																l
																l
																l
																l
																l
																l
					l				1		1	<u> </u>				—

CORE BORING REPORT RAFT Boring No. SB-01 File No. 134479-005 Sheet No. 4 of 4

	LUI	IIC						Sheet No. 4 of 4
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Description and Remarks
-	3 4 4	C1	76.5 81.5	59 38	98 63	Slight		SEE TEST BORING REPORT FOR OVERBURDEN DETAILS Moderately hard to hard to moderately hard, slightly weathered, gray, fine-grained to medium-grained DOLOSTONE. Bedding very thin to medium. Primary joint; horizontal to low angle and extremely close to moderate, rough, undulating, fresh to discolored, open, slight reaction with HCL, contains frequent pits, frequent inclusion, occasional horizontal calcite veins.
- 80	3							-CAMILLUS, SYRACUSE, AND VERNON FORMATIONS-
-	6 6 5	C2	81.5 86.5	60 47	100 78	Slight		Approximately 81.5 to 82 ft: Similar to C1 above Approximately 82 to 84 ft: Moderately hard to hard, fresh, dark gray, aphanitic SHALE. Bedding: very thin and horizontal to low angle. Horizontal to low angle joint set; planar to undulating, fresh, tight to partly open, no reaction to HCL, no inclusions.
- 85 -	4							Approximately 84 to 86.5 ft: Moderately hard, fresh to discolored, dark gray to white, medium to coarse-grained DOLOSTONE. Bedding: thin to moderate and horizontal to low angle. Horizontal to low angle joint set; rough undulating to planar, tight to open, very slight reaction to HCL, no inclusions.
-							86.5	BOTTOM OF EXPLORATION 86.5 FT Note: Borehole backfilled with soil cuttings upon completion.
- 90 — - 95 — - 100 —								
- - 95 - -								
- 100 -								
- - 105 -								

ŀ	*	Y PRICI	1			1	EST	BORING REPORT RAFT	I	Во	rin	g N	No.		S	B-()2	
Clie	ject ent ntracto	ΥN	1CA E	Buffalo, E Buffalo N imensio	liagara	New	York	DIX	Sh Sta	art	No). 1 5	6447 of Au	3 igus	t 20			
				Casing	Samp	ler	Barrel	Drilling Equipment and Procedures	1	nish iller			Au P. B	-		120		
Тур	е			HSA	S		-	Rig Make & Model: Truck: Diedrich D120	Н8	&A F	Rep).]	D. N	Лuk	her	jee		
Insid	de Diar	neter (in.)	3.25	1 3/8	8	-	Bit Type: Cutting Head Drill Mud: None	1	eva atum			60 NAN	8.5 /D		st.)		
Han	nmer V	Veight	(lb)	NA	140)	-	Casing: HSA Spun Hoist/Hammer: Safety Hammer	_	cati	ion	S	ee I	Plan	l			
Han		all (in.	.)	NA	30		-	Hoist/Hammer: Safety Hammer PID Make & Model: MiniRAE 3000					7515 869					
(£)	lows I.	No. in.)		ings	را) ر (ft)	Symbol	,	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel		San				ield တ	Te	st
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Denth (ff)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Syn	(De	ensity/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 - -	9 9 26	S1 8	0.0 2.0	0.0		SM		brown to black silty SAND with gravel (SM), mps 1.3 in., no re, no odor, dry	10	10	10	20	30	20				
- -	15 16 9	S2 19	2.0 4.0	1		SM		-FILL- m dense black silty SAND with gravel (SM), mps 1.3 in., no re, no odor, brick particles and fragments	5	15	5	20	35	20				
- - 5 -	21 \50/2"/	S3	4.0			SM		silty SAND (SM), mps 1.3 in., no structure, no odor, moist, of gravel lodged in tip of split spoon sampler	5	5	10	15	40	25				
- -	11 6 9	S4 19	6.0	I	602.5 6.0	CL	Stiff ol odor, r	live-gray lean CLAY (CL), mps < 1 mm, no structure, organic moist					10	90	N	M	М	Н
-	9 10 15	S5 17	8.0	I		CL	Very so	-GLACIOLACUSTRINE DEPOSITS- tiff brown lean CLAY (CL), mps 0.5 in., no structure, no noist		5			5	90	N	М	М	Н
- 10 - -	18 16 19 23	S6 24	10.0 12.0	I		CL	Hard b moist	orown lean CLAY (CL), mps < 1 mm, no structure, no odor,					5	95	N	М	М	Н
-	26 25 27 27	S7 3	12.0 14.0	1		CL	Hard b moist	rown lean CLAY (CL), mps 0.5 in., no structure, no odor,		5			5	90	N	М	М	Н
- - 15 - -	16 18 21 30	S8 23	14.0 16.0	1		CL	Hard r	ed CLAY (CL), mps 0.5 in., laminae, no odor, moist										
- - - 20 -	9 13 17 20	S9 24	18.0 20.0	1		CL	1 -	tiff brown lean CLAY with sand (CL), mps 0.5 in., no re, no odor, moist		5			5	90	N	М	М	н
- - -	8 11	S10 24	23.0			CL	1 -	tiff brown lean CLAY with sand (CL), mps 0.8 in., no re, no odor, moist	5	5			10	80	N	М	м	М

Water Level Data Summary Well Diagram Sample ID Depth (ft) to: Riser Pipe Elapsed O - Open End Rod Overburden (ft) 75.5 Date Bottom Bottom
of Casing of Hole Screen Time (hr.) Water T - Thin Wall Tube Rock Cored (ft) Filter Sand U - Undisturbed Sample DRY Cuttings Samples 20S 8/6/20 0715 65 65 S - Split Spoon Sample Grout 8/6/20 0830 75 75.5 35 **SB-02** Concrete **Boring No.** Bentonite Seal

Dilatancy: R - Rapid S - Slow N - None Field Tests: Toughness: L - Low M - Medium H - High
 Plasticity:
 N - Nonplastic
 L - Low
 M - Medium
 H - High

 Dry Strength:
 N - None
 L - Low
 M - Medium
 H - High
 V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

2 Sep 20

		RICI	1	. <i>(</i> 0		Т	EST BORING REPORT RAFT	F	ile l	No. et N	Ο.	344′ 2	79-0 of	3		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	ত Coarse	wel well well were	Coarse	Sand Wedium %	% Fine	% Fines	Dilatancy T	Toughness a	Plasticity e
25 - 30 -	7 13 15 17	S11 12	28.0	0.0		CL	Very stiff brown lean CLAY with sand (CL), mps 1.3 in., no structure, no odor, moist, piece of gravel lodged in tip of split spoon sampler -GLACIOLACUSTRINE DEPOSITS-	5	5			5	85	N	М	М
35 –	1 2 4 5	S12 24	33.0 35.0	0.0		CL	Medium stiff brown lean CLAY (CL), mps <1 mm, no structure, no odor, moist					10	90	N	М	М
	WOR WOR WOH 5	S13 24	38.0 40.0	0.0		CL	Very soft brown lean CLAY (CL), mps <1 mm, no structure, no odor, moist					5	95	N	М	М
	WOR WOR WOH WOH	S14 24	43.0 45.0	0.0		CL	Very soft brown lean CLAY (CL), mps 0.5 in., no structure, no odor, moist		5			5	90	N	М	М
50 —	WOR WOR WOR WOR	S15 24	48.0 50.0	0.0		CL	Similar to S14									
55 —	WOR WOR WOH 3	S16 24	53.0 55.0	0.0		CL	Very soft brown lean CLAY with sand (CL), mps <1 mm, no structure, no odor, moist					15	85	N	М	М
60 -	WOR WOR WOR 6	S17 24	58.0 60.0	0.0		CL	Similar to S16									

Boring No.

SB-02

H	WE	Y	4			Т	EST BORING REPORT - A ET			_	No 1). 344	79-0	SB	-02		
			_	<u>σ</u>			DKALL	S	he	et N	0.	3	of	3			_
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	wel %	ě	San Wedium %	% Fine	% Fines		Longhness	Plasticity 3	
65 -	WOR WOR WOR 5	S18 24	63.0 65.0	0.0		CL	Very soft brown lean CLAY with sand (CL), mps 0.9 in., no structure, no odor, moist -GLACIOLACUSTRINE DEPOSITS-	5	5			10	80	N	М	М	
70 -	WOR WOR 10 21	S19 16	68.0 70.0	0.0	539.5 69.0 537.0 71.5	CL SM	Similar to S18 Dense brown silty SAND (SM), mps 1.3 in., no structure, no odor, moist -GLACIAL TILL-	5	5	10	25	35	20				
75 -	27 11 12 15	S20 19	73.0 75.0	0.0	533.0 75.5	SM	Medium dense brown silty SAND (SM), mps 1.3 in., no structure, no odor, wet -GLACIOFLUVIAL DEPOSITS- Auger refusal at approximately 75.5 ft. BOTTOM OF EXPLORATION 75.5 FT	5	5	15	25	35	15				
		_		_	_		anual methods of the USCS as practiced by Haley & Aldrich, Inc.		<u> </u>		No			SB	-02]

F		RICH	4				TE	ST	BORING REPOR	RPAF	T	ı	Во	rin	g N	lo.		S	B- 0	3	
Clie	ject ent ntracto	ΥN	1CA E	Buffalo	, Buffa Niagai	lo, Ne a				DIV.		Sh St	art	No	. 1	of Au	gus	t 20			
				Casin	g Sai	mpler	В	arrel	Drilling Equipment	and Procedures			nish iller				gus ence)20		
Тур	е			HSA		S		-	Rig Make & Model: Truc	k: Diedrich D120		Н	&A F	⋜ер	. <u>D</u>				jee		
Insid	de Diar	neter (in.)	3.25	1	3/8		-	Bit Type: Cutting Head Drill Mud: None				evat atum				0.0 D 3		st.)		
Han	nmer V	Veight	(lb)	NA	1	140		-	Casing: HSA Spun Hoist/Hammer: Safety	II		-	cati	ion	Se	ee F	lan				
Han		all (in.)	NA		30		-		Hammer iRAE 3000					107. 1068						
Œ	Blows in.	No. in.)) ⊕	dings	_ E 0	Symbol	2	٧	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	N	-	avel		Sand	ł			ield ගූ	_	it
Depth (ft)	Sampler B per 6 ir	Sample No. & Rec. (in.)	Sample	PID Readings	Stratum Change	Elev/Dept	6000	(De	structure, odor, moisture,	optional descriptions	ze*,	% Coarse	% Fine	% Coarse		% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	11 10	S1 11	0.0)	SN	1 1		•	h gravel (SM), mps 1.3 i	n., no	5	10	10	25	30	20				
-	9	11	2.0				'	structur	•												
-	18 12 9	S2 15	2.0			SM	:			10	10	10	20	30	20						
- - 5 -	\$0/2"/	\S3 \\2	4.0	//)	SM	- 1		•	e, no	5	10	10	20	40	15					
-	- <u>5</u> 0/4",	\S4	6.0)	SM	м :	Similar	to S3												
-	13 6 4 5	S5 0	8.0 10.0)]	No reco	overy, piece of gravel lodged in	n tip of spit spoon sample	er tip.										
- 10 - -	2 6 10 17	S6 19	10.0 12.0	- 1	600				FILL- Medium dense brown silty SAND with gravel (SM), mps 1.3 in tructure, no odor, dry, contains brick and concrete fragments a arious other construction debris Brown silty SAND with gravel (SM), mps 1.2 in., no structure, dor, dry Similar to S3 No recovery, piece of gravel lodged in tip of spit spoon sampler Very stiff brown lean CLAY with sand (CL), mps 0.5 in., no tructure, no odor, moist -GLACIOLACUSTRINE DEPOSITS- Hard brown lean CLAY with sand (CL), mps 1.0 in., no structure odor, moist Gimilar to S7, except contains a lens of yellow fine to medium-						5	5	80	N	M	M	Н
-	10 17 21 29	S7 24	12.0 14.0	- 1)	C				L), mps 1.0 in., no struct	ture,	5	5			10	80	N	М	М	Н
- - 15 -	10 12 21 32	S8 24	14.0 16.0	- 1		C				f yellow fine to medium-											
- - - - 20 -	7 12 18 26	S9 24	18.0 20.0			CI			iff brown lean CLAY with gra re, no odor, moist, angular gra)	10	10			5	75	Z	М	М	Н
	<u> </u>	W	ater l	 _evel [)ata				Sample ID	Well Diagram		<u> </u>		<u>Su</u> m	ıma	ry					_
	ate	Time	Ela	apsed ne (hr.)		of Ho	m le V	Water 40	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand Cuttings	Over Rock Samp	Co	den red	(ft))	7	77.5	5			
	6/20 7/20	0745			11.3	77.5		31	S - Split Spoon Sample	Grout A A Concrete	Bori).	20		SE	3-0	3		

Field Tests:

H&A-TEST BORING-073 134479-LIB09-REV.GLB HA-TB+CORE+WELL-07-1.GDT NHALEYALDRICH.COMSHARE;CFIPROJECTS1134479005-PHASE II AND GEOTECHGINT134479-006_TB.GPJ

Bentonite Seal

Field Tests:

Dilatancy: R - Rapid S - Slow N - None Plasticity: N - Nonplastic L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

		RICH	1			Т	EST BORING REPORT RAFT	F	ile l Shee	No. et N	0.	344′ 2	79-0 of	3		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	ও Coarse	avel % Line	% Coarse	% Medium	Fine	% Fines	Dilatancy	Toughness a	Plasticity 3
	9 9 11 15	S10 24	23.0 25.0	0.0		CL	Very stiff brown lean CLAY with sand (CL), mps 0.5 in., no structure, no odor, moist -GLACIOLACUSTRINE DEPOSITS-		10			10	80	Ζ	М	М
30 —	3 4 6 9	S11 24	28.0 30.0	0.0		CL	Stiff brown lean CLAY (CL), mps 0.3 in., no structure, no odor, moist		5			5	90	Z	М	М
35 —	3 5 6 7	S12 22	33.0 35.0	0.0		CL	Stiff brown lean CLAY (CL), mps 0.3 in., no structure, no odor, moist		5			5	90	Z	М	М
V	WOR WOR WOR WOR	S13 23	38.0 40.0	0.0		CL	Very soft brown lean CLAY with sand (CL), mps 0.3 in., no structure, no odor, moist		5			10	85	Z	М	М
V	WOR WOR WOR 3	S14 24	43.0 45.0	0.0		CL	Similar to S13							Ζ	М	M
V	WOR WOR WOR WOR	S15 24	48.0 50.0	0.0		CL	Very soft brown lean CLAY (CL), mps <1 mm, no structure, no odor, moist					10	90	Ν	М	М

_	swa	o (-		sbu	(ft)	<u></u>	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San			3 F	ield	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Dlootioit,
	WOR WOR WOR	S16 24	53.0 55.0	0.0		CL	Similar to S15									
55 -	WOK						-GLACIOLACUSTRINE DEPOSITS-									
	WOR WOR WOR 6	S17 24	58.0 60.0	0.0		CL	Very soft brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist					10	90	N	М	N
60 -																
	WOR WOR WOR WOR	S18 24	63.0 65.0	0.0		CL	Similar to S17									
				0.0	543.5 66.5	ML	Very dense gray-brown sandy SILT with gravel (ML), mps 1.0 in., no structure, no odor, moist, piece of gravel lodged in tip of split	5	15	10	15	10	75			
70 -	2 15 40 49	S19 14	68.0 70.0				spoon sampler									
70					520.5		-GLACIAL TILL-									
				0.0	538.5 71.5	SW- SP	Medium dense gray well graded SAND with silt and gravel (SW-SP), mps 1.0 in., no structure, no odor, wet	5	15	20	20	30	10			
	3 6 21 34	S20 13	73.0 75.0													
75 –							-GLACIOFLUVIAL DEPOSITS-									
					532.5 77.5		Auger refusal at approximately 77.5 ft. BOTTOM OF EXPLORATION 77.5 FT Note: Borehole backfilled with soil cuttings upon completion.									

H	ALE	RICI	н			Т	EST	BORING REPOR	APAFT		Во	rin	g N	lo.		S	B-()4	
Pro Clie		ΥN	1CA E	Buffalo, Buffalo N imensio	liagara				DKY.	Sh Sta	art	No	· 1	of Au	igus	t 20			
				Casing	Samp	ler	Barrel	Drilling Equipment	and Procedures		nish iller				ugu: enc	st 2	020	,	
Тур	е			HSA	S		_	Rig Make & Model: Truc	k: Diedrich D120	Н8	&A F	Rep). D				jee		
Insid	de Diar	neter (in.)	3.25	1 3/3	3	_	Bit Type: Cutting Head Drill Mud: None			eva atun				5.0 /D	(e	st.)		
Ham	nmer V	Veight	(lb)	NA	140		-	Casing: HSA Spun		-	cati				ע Plan				
Han	nmer F	Fall (in.) NA 30 - Hoist/Hammer: Safety Hammer PID Make & Model: MiniRAE 3000 VISUAL-MANUAL IDENTIFICATION AND DESTRUCTION OF COURSE OF										107. 1068							
	Swc	ō, (-َ	(In.) NA 30 - PID Make & Model: MiniRAE 3000 VISUAL-MANUAL IDENTIFICATION AND D (Density/consistency, color, GROUP NAME, ma structure, odor, moisture, optional description.					Gra	avel		Sand		0.7		ield	Те	st		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample	PID Readii (ppm)	Stratum Change Elev/Depth	USCS Sym		ensity/consistency, color, GROU structure, odor, moisture,	IP NAME, max. particle size*, optional descriptions	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
0 -	6 5 5	S1 4	0.0 2.0	- 1		SM		dark gray silty SAND (SM), m dry, contains roots and plastic/r	ubber debris		5	5	30	40	20				
:	5 6	S2 13	2.0			SM SP-		-FILL Similar to S1				5	25	60	10				
	17 19			0.0		SM	no stru	cture, no odor, dry	O with silt (SP-SM), mps 3 mm,			3	25	60	10				
5 -	10 12 31 25	S3 20	4.0 6.0			SP- SM SM	4.5-6 f	it: Similar to S2 it: Very dense gray silty SAND re, no odor, moist, trace ash an			5		25						
	15 17 23 27	S4 24	6.0 8.0	- 1		SM	Dense odor, r	dark brown silty SAND (SM), noist	mps 0.5 in., no structure, no	5	5	10	20	40	20				
	12	S5	8.0	1 ()()	596.5 8.5	SM		t:Similar to S4						20	80	N	N/I	N 4	
	6	24	10.0)	6.3	CL		ft: Stiff dark gray lean CLAY cture, no odor, moist	with sand (CL), mps < 1 mm,					20	80	IN	IVI	IVI	Į iv
10 -	5 9 16	S6 18	10.0 12.0	- 1		CL		-GLACIOLACUSTRI tiff red-brown lean CLAY with re, no odor, moist			5			10	85	N	М	М	Н
	19 9	S7	12.0	0.0		CL		orown lean CLAY with sand (C	L), mps 0.8 in., no structure,	5	5			10	80	N	м	М	Н
	16 20 27	24	14.0			CL		r, moist, angular gravel brown lean CLAY with gravel (CL) man 1.2 in the estimation	5	5			_	85	N	М	N4	
- 15 -	18 19 25 33	\$8 24	14.0 16.0	- 1		CL		r, moist, angular gravel	CL), hips 1.5 iii., no structure,					,	83	IN.	IVI	IVI	''
	15	S9	18.0	- 1		CL	Simila	r to S8											
· 20 –	15 20 28	24	20.0																
	5 9 11	S10 24	23.0 25.0			CL	Very s	tiff brown lean CLAY (CL), m noist	ps 1.3 in., no structure, no	5	5			5	85	N	М	М	N

Depth (ft) to: Riser Pipe Elapsed O - Open End Rod Overburden (ft) 78 Date Time Bottom Bottom Screen Time (hr.) T - Thin Wall Tube Water Rock Cored (ft) of Casing of Hole Filter Sand U - Undisturbed Sample 8/10/20 0710 Cuttings Samples 20S 78 78 36 S - Split Spoon Sample Grout **SB-04** Concrete **Boring No.** Bentonite Seal

Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Field Tests:

 Plasticity:
 N - Nonplastic
 L - Low
 M - Medium
 H - High

 Dry Strength:
 N - None
 L - Low
 M - Medium
 H - High
 V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

25 Sili 28.0 0.0 CL Stiff brown lean CLAY (CL), mps 0.3 in., no structure, no odor, moist Sili Sili	Н	ME	Υ				т	EST BODING DEDORT	1		_	No				3-04	ł
CL Silif brown lean CLAY (CL), mps 0.3 in., no structure, no odor, moist S S S S S S S S S			RICI	1				LOT BORING REPORTED TO	S	hee	NO. et N	o.	344	79-0 of	05 3		
S S S S S S S S S S	Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions	-	_	ge .	Medium		% Fines			
A S12 33.0	30 -	6 7			0.0		CL	moist		5			5	90	N	М	М
S S S S S S S S S S	35 –	6 7			0.0		CL						10	90	N	М	М
WOR S15 48.0 WOR 24 50.0 S15 S10 S10 S15 S10	40 -	7 8			0.0		CL						10	90	N	М	М
WOR S16 53.0 WOR S16 53.0 WOR S24 55.0 S5 S5 S6 S6 S6 S6 S6 S6	45 –	5 6			0.0		CL	Similar to S13									
WOR S16 S3.0 WOR WOR WOR WOR S17 58.0 Odor, moist WOR S17 58.0 Odor, moist S17 S8.0 Odor, moist S18.0 Odor, moist S18		WOR 2			0.0		CL						5	95	N	М	М
60 60 60 60 60 60 60 60 60 60 60 60 60 6		WOR WOR	S16 24		0.0		CL						5	95	N	М	М
0.0 543.5	60 -	3 8			0.0		CL		5	5		5	10	75	N	М	М
0.0 61.5 10 10 30 50					0.0	543.5 61.5			10	10			30	50			

Н	ALE	RICI	н			T	EST BORING REPORT RAFT	F	Bor i ile l Shee	No.	1	344	79-0 of	05	B-04		
(ff.	Blows in.	No. (in.)	æ (±)	dings رر	im ge ith (ft)	loqw/	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gr	avel	;	San	d		F	ield		T
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
	18	S18	63.0			ML	Dense gray-brown sandy SILT with gravel (ML), mps 1.3 in., no structure, no odor, moist, subrounded gravel										
65 -	19 22 26	24	65.0				-GLACIAL TILL-										
	8 15 18	S19 24	68.0 70.0	0.0	536.5 68.5	ML SP-	68-68.5 ft: Similar to S18 68.5-70 ft: Dense gray-brown poorly graded SAND with silt (SP-			15	35	40	10				
70 -	29					SM	SM), mps 0.1 in., no structure, no odor, wet Note: Difficult drilling.										
							-GLACIOFLUVIAL DEPOSITS-										
75 -	26 23 17	S20 10	73.0 74.5	0.0		SP- SM	Medium dense brown poorly-graded SAND with silt (SP-SM), mps 4 mm, no structure, no odor, wet Note: Drove spoon 1.5 ft.			25	35	30	10				
					527.0 78.0		Auger refusal at approximately 78 ft, possible top of bedrock BOTTOM OF EXPLORATION 78 FT Note: Test boring sampling completed on 8/7/20. The augers were										_
							left in the borehole over the weekend. After the depth to groundwater was measured on the morning of 8/10/20, the augers were removed and the borehole was backfilled with soil cuttings.										
							anual methods of the USCS as practiced by Haley & Aldrich, Inc.	 -	ori					SI	3-04		

H	XLE	RICI	н			Т	EST	BORING REPOR	ARAF ⁷		Е	301	rin	g N	lo.		Sl	B- 0	15	
Clie	ject ent ntracto	ΥN	1CA B	uffalo, I uffalo N imensio	liagara				DIV.	F				. 1	of Aı	ıgu	st 20			
				Casing	Samp	ler	Barrel	Drilling Equipment	and Procedures			ish Ier				agu: ence	st 20	020		
Тур	е			HSA	S		-	Rig Make & Model: Truck	k: Diedrich D120	F	1&.	A F	Rep	. <u>D</u>				jee		
Insid	de Diar	neter (in.)	3.25	1 3/	8	-	Bit Type: Cutting Head Drill Mud: None				vat	ion 1			1.0 /D	(e: 88	st.)		
		Veight	` ′	NA	1)	-		Hammer	_		cati	on		ee F	Plan	1			_
Han		all (in	.)				-			10			E	1068	882		9		- -	_
Œ	Blows in.	S (iii)	e €	ding (n	um ge oth (ft)	ymbo	'	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	_	\neg	vel		Sano E				ield		
Oepth (ft)	Sampler E	Sample No. & Rec. (in.)	3.25 1 3/8 -				optional descriptions	*, {	% Coalse	% Fine	% Coarse	%	%	% Fines	Dilatancy	Toughness	Plasticity	Ctronogth		
0 -	8 8 9 5	S1 13		0.0		SM		cture, no odor, dry, contains co	oncrete and brick fragments	,	5	10	5	20	35	25				
	16 9	S2 22				SM	2-3 ft:	Similar to S1												
	3 10		1.0											15						
5 -	11 19 17 18	S3 12		0.0		SM	Dense	dark brown silty SAND (SM),	mps 1.0 in., no structure,	10	5	5	5	20	40	25				
	15 22 26 31	S4 24		0.0		SM	structu			0	10	10	20	30	20					
	50/3"/	S5 2	11	fl .					odged in tip of split spoon											
10 –	8 4 5	\$6 24)	601.0	CL		noist				5		5	10	80	N	M	М	F
	10 13 14 16	S7 22	12.0 14.0)		CL		iff brown lean CLAY (CL), minoist, contains some thin sandy				5		5	5	85	N	М	М	F
15 –	21 16 25 31 27	S8 24	14.0 16.0	1		CL	Hard b moist	rown lean CLAY (CL), mps 1.	2 in., no structure, no odo	.,	5	5	5	5	10	70	N	М	М	F
20 –	23 24 19 21	S9 24	18.0 20.0	- 1		CL	Hard b moist	rown lean CLAY (CL), mps 0.	8 in., no structure, no odo	., !	5	5			10	80	N	М	м	Н
	8 9 12	S10 24	23.0 25.0	1		CL	Very st	iiff brown lean CLAY (CL), m	ps 1.3 in., no structure, no	į	5	5			10	80	N	М	М	N
25 -	15	W	ater I	evel Da	ta			Sample ID	Well Diagram				Sum	ıma	rv					1
				psed	Depth	(ft) to).	O - Open End Rod	Riser Pipe	Overbu	1					76				-

Depth (ft) to: Elapsed O - Open End Rod Overburden (ft) 76 Date Time Bottom Bottom Screen Time (hr.) T - Thin Wall Tube Water Rock Cored (ft) of Casing of Hole Filter Sand U - Undisturbed Sample 8/10/20 Cuttings Samples 20S 1345 76 50 76 S - Split Spoon Sample Grout **SB-05** Concrete **Boring No.** Bentonite Seal

Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Field Tests:

 Plasticity:
 N - Nonplastic
 L - Low
 M - Medium
 H - High

 Dry Strength:
 N - None
 L - Low
 M - Medium
 H - High
 V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

		RICI	Н			Т	EST BORING REPORT RAFT			No. et N			79-0 of			
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions	Coarse D	avel % Line	Coarse	Sand Wedium %	% Fine	Fines	Dilatancy	Loughness Bi	
25 -	2 3	S11 24	28.0	0.0	Ele	Sh	Stiff brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist to wet	%	%	%	%		90		≥ To	
30 -	6 6	24	30.0				-GLACIOLACUSTRINE DEPOSITS-									
35 -	2 3 4 7	S12 24	33.0 35.0	0.0		CL	Medium stiff brown lean CLAY (CL), mps 0.3 in., no structure, no odor, moist to wet		5			5	90	N	М	М
40 –	5 6 7 8	S13 23	38.0 40.0	0.0		CL	Stiff brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist					10	90	N	М	М
15 -	WOR 3 4 5	S14 24	43.0 45.0	0.0		CL	Medium stiff brown lean CLAY (CL), mps 1.2 in., no structure, no odor, moist to wet, angular gravel	5	5			10	80	N	М	М
50 –	WOR WOR WOR WOR	S15 24	48.0 50.0	0.0		CL	Very soft brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist					5	95	N	М	М
55 -	WOR WOR WOR 6	S16 22	53.0 55.0	0.0		CL	Similar to S15									
60 -	WOR WOR 2 2	S17 24	58.0 60.0	0.0		CL	Very soft brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist					10	90	N	М	М

F	I	RICI				т	EST BORING REPORT			ing				SB-	-05	
		KICI	1				DRAFI	S	She	et N	0.	3	79-0 of	3		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	ত Coarse	avel % Fine	% Coarse	% Medium		% Fines		Loughness F	Plasticity a
65 –	WOR WOR 2 4	S18 24	63.0 65.0	0.0		CL	Very soft brown lean CLAY (CL), mps < 1 mm, no structure, no odor, moist to wet					10	90	N	М	М
							-GLACIOLACUSTRINE DEPOSITS-									
70 -	7 12 15 9	S19 11	68.0 70.0	0.0	543.0 68.0	SP- SM	Medium dense gray-brown poorly graded SAND with silt and gravel (SP-SM), mps 1.3 in., no structure, no odor, wet	5	10	20	25	30	10			
							-GLACIOFLUVIAL DEPOSITS-									
75 -	32 50/3" ₇	\$20 \9/	73.0 _73.8 /	0.0		SP- SM	Very dense gray poorly graded SAND with silt (SP-SM), mps 0.4 in., no structure, no odor, wet		5		65	20	10			
					535.0 76.0		Auger refusal at approximately 76 ft, possible top of bedrock BOTTOM OF EXPLORATION 76 FT Note: Borehole backfilled with soil cuttings upon completion.									
							anual methods of the USCS as practiced by Haley & Aldrich, Inc.	_ 		ng	N/~	_		SB-	 -05	_

F		Y	4			•	ΓEST	BORING REPORT RAFT		Во	rin	ıg N	No.		S	B-0	6	
Clie	ject ent ntracto	ΥN	1CA E	Buffalo, Buffalo I imensic	Niagara	, Nev		DIV	Sh	art	t Nc). 1 1	447 of 1 Au	1 ugu:	st 2			
				Casing	Sam	pler	Barrel	Drilling Equipment and Procedures		nish iller			P. B	_		020		
Тур	е			HSA		S	-	Rig Make & Model: Truck: Diedrich D120	Н	ξΑ I	Rep). I). N	Лuk	her	jee		
Insid	de Diar	neter (in.)	3.25	1.3	3/8	-	Bit Type: Cutting Head Drill Mud: None		eva atun	ition n		60 NAV)4.5 /D		st.)		
Han	nmer V	Veight	(lb)	NA	14	40	-	Casing: HSA Spun	_		ion	S	ee I	Plan	1			
Han		all (in.	.)	NA			-	PID Make & Model: MiniRAE 3000				107 106						
(ft)	Blows in.	S (i.	<u></u> ⊕	dings (€ 9.00 3	mbol		VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel		San	_			ield ഗ്ഗ		
Depth (ft)	Sampler E per 6 ir	Sample & Rec. (Samp	PID Read	Stratur	USCS Syl	(D	ensity/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	5 7	S1				SM			5	10	10	15	40	20				
-	10 11	10	2.0					ents/particles										
_	15 7 50/3"	S1 0.0 0.0 15 0.0 17 6.0 0.0 17 6.0 0.0 18 8.0 9 10.0 0.0 596.5	SM	structi	dense brown silty SAND with gravel (SM), mps 1.3 in., no are, no odor, moist, contains concrete and asphalt	5	10	5	20	35	25							
- - 5 -	21 25 18		NA 30 - PID Make & Model: MiniRAE 3000		5	5	10	20	40	20								
-	16 34 12 10				10	15	10	10	45	10								
-	2 5 6	Figure F	ne, no odor, moist	10	10			10	70	N	M	M	Н					
- 10 -	6			VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) 3.3 3.3 4.0 0.0 0.0 0.0 SM Medium dense dark brown silty SAND with gravel (SM), mps 1.3 in., no structure, no odor, moist, contains roots and concrete fragments/particles -FILL- Very dense brown silty SAND with gravel (SM), mps 1.3 in., no structure, no odor, moist, contains concrete and asphalt fragments/particles -FILL- Very dense brown silty SAND with gravel (SM), mps 1.3 in., no structure, no odor, moist, contains concrete and asphalt fragments/particles -FILL- Very dense brown silty SAND with gravel (SM), mps 1.3 in., no structure, no odor moist, contains concrete, slag, bricks, and wood, fragments/particles SM Dense gray silty SAND (SM), mps 1.3 in., no structure, no odor, wet SM, mps 1.35 in., no structure, no odor, wet SM), mps 1.35 in., no structure, no odor, wet SM), mps 1.35 in., no structure, no odor, wet SM), mps 1.35 in., no structure, no odor, wet SM) BOTTOM OF EXPLORATION 10 FT Note: Borehole backfilled with soil cuttings upon completion. Well Diagram Note: Borehole backfilled with soil cuttings upon completion. Thin Wall Tube U - Undisturbed Sample S-Split Spoon Sample Grout Filer Sand Cuttings Grout														
		W				th /#\	to:	Diagraphy -				nma	iry	_				=
D	ate	Time		e (hr) E	Bottom	Botton	1 Meter	T - Thin Wall Tube U - Undisturbed Sample Screen Filter Sand Roc San Cuttings San	k Cc	red)	S	10				
								S - Split Spoon Sample Grout			D.		J	SE	3-0	6		

H&A-TEST BORING-073 134479-LIB09-REV.GLB HA-TB+CORE+WELL-07-1.GDT NHALEYALDRICH.COMSHARE;CFIPROJECTS1134479005-PHASE II AND GEOTECHGINT134479-006_TB.GPJ

Concrete Bentonite Seal Field Tests:

Dilatancy: R - Rapid S - Slow N - None Plasticity: N - Nonplastic L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York Field Tests:

H	***	Y RICH	4			7	EST	BORING REPOR	BRAF	1	J	Воі	rin	g N	lo.		SE	3-0	7	
Clie	ject ent ntracto	ΥN	1CA B	uffalo N	liagara	, New					Sh Sta	art	No	· 1	of l Aı	ugus	05 st 20 st 20			
				Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures		l .	nish iller				agus ence		120		
Тур	е			HSA	S		_		k: Diedrich D120		Н8	kA F	Rер				herj	ee		
Insid	de Diar	neter (in.)	3.25	1 3	/8	_	3.				evat itum				0.5 /D 8	(es	t.)		
Han	nmer V	Veight	(lb)	NA	14	0	-	Casing: HSA Spun	••		-	cati	on	S	ee I	Plan				_
Har	nmer F	all (in.	.)	NA			-									1.3 7.70				
Œ	ows	.) G	e (1	ings	£	loqu	,	VISUAL-MANUAL IDENTIFICAT	TION AND DESCRIPTION	N	_	avel	,	San			Fi		Test	_
Depth (ft)	Sampler B per 6 in	YMCA Buffalo Niagara Earth Dimensions Inc. Casing Sampler Barrel Drilling Equipment and Procedures									% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	34 19 15 17										5	10	10	20	35	20				
-	14										5	5	20	20	30	20				
- - 5 -		Casing Sampler Barrel Drilling Equipment and Procedures								ire, no	5	5	15	25	35	15				
	5 21	The control of the co																		
- - 10 -	3 12																			
D	eate		S1 10.0 2.0 5.0 1.0			Well Diagram ☐☐ Riser Pipe ☐☐ Screen ☐☐ Filter Sand	Overt Rock Samp	Со	len	(ft)		-	10				=-			
								2 Sp.it Speet Sumple		Bori	ng	No).			SE	3-07	7		
	d Tests			Tough	ness: L	- Low	M - Mediur	n H - High Dry Str e	ength: N - None L - Low	M - Med					/ - V	ery F	ligh			_
_*No	te: Ma							rect observation within the lin sual-manual methods of th			y &	Ald	lric	h of	Ne	w Y	ork			_

H&A-TEST BORING-07-3 134479-LIB09-REV.GLB HA-TB+CORE+WELL-07-1,GDT ||HALEYALDRICH.COMISHARE/GFIPROJECTS\134479\005_FB GPJ |

Project	HALEY TEST BORING REPORT RAFT								Boring No. SB-08									
Casing Sampler Barrel Drilling Equipment and Procedures Drilling Equipment and Procedures Drilling Equipment Drilling E	Project YMCA Buffalo, Buffalo, New York Client YMCA Buffalo Niagara									Sheet No. 1 of 1 Start 11 August 2020								
Inside Diameter (in.) 3.25 1.3/8 - Dill Mulk None Casing: IISA Spun Hammer Weight (b) NA 140 - Dill Mulk None Casing: IISA Spun Hammer Hammer Fall (in.) NA 30 - Dill Mulk None Hole Mulmarmer: Safety Hammer Hole Mulmarmer: Safety Hammer: Safety		Casing	Sampler	ampler Barrel Drilling Equipment and Procedures														
Section Sect	Inside Diameter (in.) 3.25 Hammer Weight (lb) NA		1 3/8 140		Bit Type: Cutting Head Drill Mud: None Casing: HSA Spun Hoist/Hammer: Safety Hammer			H&A Rep. D. Mukherjee Elevation 609.0 (est.) Datum NAVD 88 Location See Plan N 1075011.392										
12 St 0.0	Sampler per 6 Sample & Rec.	,		nscs	VISUAL-MANUAL IDENTIFICA (Density/consistency, color, GROU structure, odor, moisture, GEOLOGIC INTER	ATION AND DESCRIPTION JP NAME, max. particle size*, optional descriptions RPRETATION)	% Coarse	% Fine	% Coarse	Sand Wedinm %	% Fine	% Fines	S					
Note: Borrhole backfilled with soil cuttings upon completion. Summary	12 S1 12 10 17 18	2.0		,														
Time	8 37 42 S3 50/4" 13	4.0		structure, no odor, dry to moist, contains brick and concrete fragments/particles SM Very dense dark brown silty SAND (SM), mps 1.0 in., no structure,								15						
Time Elapsed Depth (fit) to: Depth (fit) to: District (first) for Casing of Holes Date Time Time (first) for Casing of Holes Date Time (first) for Casing of Holes Date U - Undisturbed Sample Date Catting Sample Date Date	12 S4 7 16	6.0	603.0	CL S	ragments/particles Very stiff brown lean CLAY with sar tructure, no odor, moist, contains br		5			10 8	35							
Water Level Data Sample D Well Diagram Summary	17 14 S5 18 24 23	8.0		CL 1	nd	5			10 8	35								
Date Time Elapsed Depth (ft) to: Bottom of Casing Of Hole To Depth (ft) to: To Depth (ft) to: O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample U - Undisturbed Sample Screen Filter Sand Rock Cored (ft) Samples Samples Samples Samples Samples	10		10.0	1														
S - Split Spoon Sample Grout Concrete Boring No. SB-08	าล																	

H&A-TEST BORING-073 134479-LIB09-REV.GLB HA-TB+CORE+WELL-07-1,GDT NHALEYALDRICH, COMISHARE/CFIPROJECTS/134479/005 - PHASE II AND GEOTECH/GINT/134479-005_TB.GPJ

Field Tests:

Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High

*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich of New York

APPENDIX C

Select soil boring and test pit photographs

Photo 1: SB-01 (0 to 2 ft bgs)

Photo 2: SB-01 (2 to 4 ft bgs)

Photo 3: SB-01 (4 to 6 ft bgs)

Photo 4: SB-01 (6 to 8 ft bgs)

Photo 5: SB-01 (8 to 10 ft bgs)

Photo 6: SB-01 (12 to 14 ft bgs)

Photo 7: SB-01 (14 to 16 ft bgs)

Photo 8: TP-02

Photo 9: TP-03

Photo 10: TP-03; black creosote-like material

APPENDIX D

Laboratory Analytical Data Reports

APPENDIX E

Previous LCS Subsurface Soil and Groundwater Investigation Report