PHASE II ENVIRONMENTAL INVESTIGATION REPORT

PARCELS LOCATED AT 160-168 BEST STREET, 1145 MICHIGAN AVENUE, AND 81 EDNA PLACE BUFFALO, NEW YORK

February 2021 T0371-021-001

Cedarland Development Group 50 Lakefront Boulevard, Suite 103 Buffalo, New York 14202

Prepared by:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, New York 14218

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

SEVEN PARCELS LOCATED AT 160-168 BEST STREET, 1145 MICHIGAN AVENUE, AND 81 EDNA PLACE BUFFALO, NEW YORK

TABLE OF CONTENTS

INT	RODUCTION	
1.1	Background and Site Description	
1.2	Previous Study	
	·	
SITE	E INVESTIGATION ACTIVITIES	2
2.1	Test Pit Investigation	
	1 es 1 1 a 11 a 11 garagan a 11	-
INV	ESTIGATION FINDINGS	3
3.2	Field Observations	
3.3		
	·	
Con	NCLUSIONS AND RECOMMENDATIONS	(
Lim	ITATIONS	۶
	1.1 1.2 SITI 2.1 INV 3.1 3.2 3.3	1.2 Previous Study

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

SEVEN PARCELS LOCATED AT 160-168 BEST STREET, 1145 MICHIGAN AVENUE, AND 81 EDNA PLACE BUFFALO, NEW YORK

LIST OF TABLES

Table 2 Analytical Sampling Program Summary Table 3 Summary of Soil / Fill Sample Analytical Popults	Table 1	Summary of Subsurface Field Observations	
Table 2 Symmoury of Soil/Eill Samuels Amalystical Decysles	Table 2	Analytical Sampling Program Summary	
Table 5 Summary of Son/ Fin Sample Analytical Results	Table 3	Summary of Soil/Fill Sample Analytical Results	

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan (Aerial) with Parcel Addresses
Figure 3	Site Plan with 1929 Sanborn Map and Investigation Locations
Figure 4	Investigation Locations and SCO Exceedances

APPENDICES

Photo Lo	g
	Photo Lo

Appendix B Laboratory Analytical Data Report

1.0 Introduction

1.1 Background and Site Description

TurnKey Environmental Restoration, LLC (TurnKey) performed a Phase II Environmental Investigation on behalf of Cedarland Development Group (CDG) at seven (7) parcels addressed as 160, 162, 164, 168 Best Street, 1145 Michigan Avenue and 81 Edna Place, in the City of Buffalo, New York (Site). The properties addressed as 166 and 168 Best, and 81 Edna Street are owned by CDG, or a related entity. The other four (4) properties are owned by the City of Buffalo.

The Site is in a highly developed commercial and residential area in the City of Buffalo in the vicinity of the Buffalo-Niagara Medical Campus (see Figure 1) and the parcels are currently vacant (see Figure 2).

1.2 Previous Study

TurnKey completed a Phase I Environmental Site Assessment for the Site in February 2016. We note that the Phase I ESA also included a parcel located at 1157 Michigan Avenue, which was not a part of the Phase II ESA.

TurnKey's investigation revealed the following RECs in connection with the Site:

- The historic on-Site automotive repair operations, which were located at 1139 Michigan Avenue (now addressed as the northern portion of 160 Best Street and the southern portion of 1145 Michigan Avenue) with the reasonably anticipated use of petroleum and/or solvents, is considered a REC as subsurface conditions are unknown.
- The potential for miscellaneous fill materials exists on-Site as fill materials may have been brought to the Site to bring former building areas to grade. The presence of fill material from unknown sources is considered a REC due to the potential for impacts.
- The historic adjacent automotive repair and gasoline station operations with gasoline underground storage tanks (USTs) along with the dry cleaner are considered RECs due to the potential for environmental impacts from these operations.

Due to the RECs identified for the Site, TurnKey recommended completion of a Phase II Environmental Investigation to assess subsurface soil/fill conditions.

2.0 SITE INVESTIGATION ACTIVITIES

2.1 Test Pit Investigation

TurnKey completed test pit investigations with a mini track-mounted excavator to assess subsurface conditions at the Site. Eighteen (18) test pits designated as TP-1 through TP-18 were completed at the Site (see Figure 3). The test pits were advanced to depths varying from approximately 5 to 8 feet below ground surface (fbgs) into the native soil underlying at the Site.

The soil/fill samples were retrieved from the test pit locations to allow for field characterization of the subsurface lithology and collection of soil/fill samples by TurnKey's geologist. The physical characteristics of the subsurface soil/fill at the test pit locations were classified using the ASTM D2488 Visual-Manual Procedure Description. Soil/fill from each test pit was field screened using a MiniRae 3000 Photoionization Detector (PID). Visual and/or olfactory observations were also noted, if observed. Field observations, including lithology, depths, PID field screen results, etc., at the test pit locations are summarized in the Summary of Subsurface Field Observations provided in Table 1. Photographs taken during the work are included in Appendix A.

At least one (1) test pit was completed at each of the seven (7) parcels that make up the Site. Twelve (12) soil/fill samples were selected for laboratory analysis and were transported under chain-of custody command to Alpha Analytical (Alpha) in Westborough, Massachusetts (see Table 2). Sample analysis included USEPA Target Compound List (TCL) volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) using the TCL base-neutral list or CP-51 list, and Resource Conservation and Recovery Act (RCRA) 8 metals. Samples were collected in laboratory provided sample bottles, cooled to 4°C in the field, and transported to the laboratory for analysis.

3.0 INVESTIGATION FINDINGS

3.1 Site Geology

The surface of the Site generally consisted of a mixed vegetative cover (grass, brush, and small trees). The parcels along Best Street (160, 162, 164, 166 and 168) had recently been used as a construction-material storage area (i.e., piping, stone backfill, topsoil, dumpsters) by the contractor performing sewer work along Michigan Avenue and Best Street. Portions of these parcels appear to have been recently regraded and hydro seeded.

The subsurface conditions of the Site consisted of varying types of fill materials ranging in depth from 0 to 7 fbgs. Fill materials were found at the test pit locations with the exception of TP-6 and TP-14, which are adjacent test pits at the southern end of 81 Edna Place and easter portion of 1145 Michigan Avenue, respectively (see Figure 3). Native soil was encountered at the test pit locations and consisted of reddish brown sandy lean clay, typical of this area, at depths ranging from 2 to 7 fbgs. Native soils were encountered at shallower depths in the north and western portion of 1145 Michigan Avenue parcel compared to other areas of the Site which averaged 4 to 5 fbgs.

Field observations, including lithology, depths, PID scan results, etc., at the test pit locations are summarized in the Summary of Subsurface Field Observations Table provided in Table 1.

Groundwater was not encountered during Phase II activities. Perched water was only observed in one (1) test pit (TP-3) at about 2 to 4 fbgs. However, groundwater flow is likely northerly, consistent with topography in the vicinity of the Site. Local groundwater flow, however, may be influenced by subsurface features, such as excavations, utilities, and localized fill-conditions.

3.2 Field Observations

Soil/fill samples from the test pit investigation were observed and field screened for total volatile organics using a PID. No visual or olfactory evidence of impacts were observed, nor were elevated PID readings identified at the test pit locations.

Fill materials were identified at 17 of the 18 test pit locations which contained various amounts of black fines, brick, concrete debris, cinders, ash, metal, glass, and plastic debris.

3.3 Soil Analytical Results

Table 2 is summary of the analytical samples collected for analysis and the analytical testing assigned. Table 3 presents a summary of the analytical results from the twelve (12) soil/fill samples that were analyzed. For comparative purposes, Table 3 includes the Part 375 Soil Cleanup Objectives (SCOs).

Part 375 SCOs are specific to the intended reuse of a site and are typically employed for comparison at other investigation or remediation sites with NYSDEC oversight, such as Brownfield sites. Based upon current zoning and the anticipated future use of the Site in a multi-story, multi-unit residential capacity, the Restricted Residential SCOs are considered applicable comparative criteria.

A copy of the laboratory analytical data report is included in Appendix B.

Volatile Organic Compounds

VOCs were not detected above method detection limits (MDLs) in the two (2) samples analyzed for VOCs during the Phase II.

Semi-Volatile Organic Compounds

SVOCs were detected above MDLs in the twelve (12) samples analyzed for SVOCs. SVOCs, specifically, polycyclic aromatic hydrocarbons (PAHs) were detected above their respective Part 375 RRSCOs, Commercial SCOs (CSCOs), and/or Industrial SCOs (ISCOs) at four (4) investigation locations, TP-5, TP-9, TP-11, and TP-17. These sample locations are shown in on Figure 3 and Figure 4 (which also contains the analytical results). PAHs were detected above their respective SCOs on the 160 Best Street, 1145 Michigan Avenue, and 81 Edna Place parcels.

- Benzo(a)anthracene and benzo(b)fluoranthene exceeded their RRSCOs at three (3) locations: TP-5, 1 to 4.5 ft, TP-11, 2 to 3 ft, and TP-17, 2 to 3 ft; and their CSCOs at one (1) location, TP-9, 0 to 0.5 ft.
- Benzo(a)pyrene exceeded its ISCO at three (3) locations: TP-9, 0 to 0.5 ft, TP-11, 2 to 3 ft, and TP-17, 2 to 3 ft.
- Chrysene exceeded its RRSCO at one (1) location: TP-9, 0 to 0.5 ft.
- Dibenzo(a,h)anthracene exceeded its CSCO at one (1) location: TP-9, 0 to 0.5 ft.
- Indeno(1,2,3-cd)pyrene exceeded its RRSCO at four (4) locations: TP-5, 1 to 4.5 ft, TP-9, 0 to 0.5 ft, TP-11, 2 to 3 ft, and TP-17, 2 to 3 ft.

PHASE II ENVIRONMENTAL INVESTIGATION REPORT 160-168 BEST STREET, 1145 MICHIGAN AVENUE, AND 81 EDNA PLACE BUFFALO, NEW YORK

Metal Analytes

Metal analytes were detected above MDLs in the twelve (12) samples analyzed for metals. Metal analytes were detected above their respective Part 375 RRSCOs, CSCOs, and/or ISCOs at seven (7) investigation locations, TP-2, TP-3. TP-5, TP-7, TP-11, and TP-18. These sample locations are shown in on Figure 3 and Figure 4 (which also contains the analytical results). Metals above their respective SCOs were detected on the 162, 164, 166, and 168 Best Street, 1145 Michigan Avenue, and 81 Edna Place parcels.

- Arsenic exceeded it ISCO at TP-18, 2 to 3 ft.
- Barium exceeded it CSCO at TP-18, 2 to 3 ft.
- Lead exceeded is RRSCO at TP-3, 1 to 4 on the 166 Best Street property; CSCOs at TP-5, 1 to 4.5 ft, TP-7, 0.5 to 2.5 ft, TP-11, 2 to 3 ft, TP-18, 2 to 3 ft; and its ISCO at TP-3, 2 to 4 ft.
- Mercury exceeded its RRSCO at TP-2, 2 to 5 ft, TP-3, 1 to 4 ft and TP-51 to 4.5 ft.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the Phase II Environmental Investigation at the Site, TurnKey offers the following conclusions and recommendations:

- No visual/olfactory evidence of impacts or PID readings exceeding background (0 ppm) were observed during the investigation.
- Subsurface conditions of the Site consisted of varying types of fill materials ranging in depth from 0 to 7 fbgs which contained various amounts of black fines, brick, concrete debris, cinders, ash, metal, glass, and plastic debris.
- VOCs were not detected above MDLs in the two (2) samples analyzed for VOCs.
- SVOCs, specifically PAHs were detected above MDLs in the twelve (12) samples analyzed. PAHs were detected above their respective RRSCOs, CSCOs, and/or or ISCOs at four (4) locations (TP-5, TP-9, TP-11, and TP-17) on three (3) different parcels (160 Best Street, 1145 Michigan Avenue, and 81 Edna Place).
- Metals were detected above MDLs in the twelve (12) samples analyzed with detections above their respective RRSCOs, CSCOs, and/or or ISCOs at seven (7) investigation locations (TP-2, TP-3. TP-5, TP-7, TP-11, and TP-18) on six (6) parcels (162, 164, 166, and 168 Best Street, 1145 Michigan Avenue, and 81 Edna Place).

Environmental impacts have been identified at each of the seven (7) parcels that make up the Site and may be attributed historic Site usage and/or filling activities. SVOCs and metals were detected at concentrations above their respective RRSCOs, which are applicable for the intended reuse of the Site, with some samples exceeding the CSCOs and ISCOs. The detected concentrations exceeding the applicable RRSCOs were detected in the fill material present at the Site. Fill material is present across most of the Site and varies in depth up to 7 fbgs. The contaminated fill material and any other solid waste material generated during the redevelopment project will require proper management and landfill disposal.

Based on the existing data the Site is a candidate for the BCP. The Site meets the definition of a BCP site per the current BCP law which states a "brownfield site or site shall mean any real property where a contaminant is present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria, or guidance adopted by

PHASE II ENVIRONMENTAL INVESTIGATION REPORT 160-168 BEST STREET, 1145 MICHIGAN AVENUE, AND 81 EDNA PLACE BUFFALO, NEW YORK

the department that are applicable based on the reasonably anticipated use of the property, in accordance with applicable regulations."

5.0 LIMITATIONS

This report has been prepared for the exclusive use of CDG. The contents of this report are limited to information available at the time of the Phase II Environmental Investigation activities and to data referenced herein; and assume all referenced historic information sources to be true and accurate. The findings herein may be relied upon only at the discretion of CDG. Use of or reliance on this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS PHASE II ENVIRONMENTAL INVESTIGATION REPORT MICHIGAN & BEST STREETS BUFFALO, NEW YORK

Location	Date	Parcel	Fill Present	Odors	Water Present	Depth of Test Pit (fbgs)	Thickness of Fill (ft)	Length of Test Pits (ft)	Test Pit Width (ft)	PID Measurement s	Sample Depth (ft)	Depth (fbgs) and Soil Description
										0	1 - 3 ft	0 to 3 ft: FILL - Dark brown/Black, mostly fines, with some fine sand, some fine sand, mixed with concrete, brick, metal debris, ash and partial burnt material.
TP-1	01/15/21	168 Best	Yes	No	No	5	3.0	35	2.5	0		3 to 4 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
										0		4 to 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootletts.
TP-2	01/15/21	168 Best	Yes	No	No	6	5.0	30	3.5	0		0 to 5 ft: FILL - Brown Reddish/brown, mostly reworked clay, some fine sand, with orange brick, concrete and asphalt, overlying a concrete floor, larger concrete rubble debris towards the center of the test pit and ash pockets at the north end of test pit.
	0 1, 1 0, 2 1	.00 2001							0.0	0		5 to 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootletts.
										0		0 - 1 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, with little clay, trace fine gravel, roots with trace brick and concrete.
TP-3	01/15/21	166 Best (west end) 168 Best	Yes	No	Yes	7	4.0	31	2.5	0	1 - 4 ft	1 to 4 ft: FILL - Dark brown/black, mostly fines, with some fine sand, mixed with concrete and brick debris, overlying a concrete floor (west end), larger concrete rubble debris towards the center of the test pit with small amount of perched water and ash lens from 2.0 to 4.0 fbgs at the east end of the test pit.
		(east end)								0		4 to 5 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
										0		5 to 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootlets.
										0		0 to 3 ft: FILL - Brown Reddish/brown, mostly reworked clay, some fine sand, with orange brick, concrete and asphalt and crushed stone, overlying concrete floor at 3.0 fbgs at the south end of test pit.
TP-4	1/15/2021	166 Best	Yes	No	No	6	4	20	2.5	0		3 to 4 ft. FILL - Black, mostly silt fines with some fine sand, orange brick, cinders and concrete. At north end of test pit.
										0		4 to 5 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
										0		5 to 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootlets.
										0		0 - 1 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, with little clay, trace fine gravel.
TP-5	1/15/2021	81 Edna	Yes	No	No	5	4.5	15	4	0	1 - 4.5 ft	3 to 4.5 ft. FILL - Black, mostly silt fines with some fine sand, ornge brick, large concrete debris, metal dedris and plastic debris.
										0		4.5 to 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootletts.

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS PHASE II ENVIRONMENTAL INVESTIGATION REPORT MICHIGAN & BEST STREETS BUFFALO, NEW YORK

Location	Date	Parcel	Fill Present	Odors	Water Present	Depth of Test Pit (fbgs)	Thickness of Fill (ft)	Length of Test Pits (ft)	Test Pit Width (ft)	PID Measurement s	Sample Depth (ft)	Depth (fbgs) and Soil Description
										0		0.0 - 1 ft: TOPSOIL - Dark brown/black, moist, mostly silt, some fine sand, with little clay, trace fine gravel and roots
TP-6	01/15/21	81 Edna	No	No	No	5	0.0	15	2.5	0		4 to 4.5 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
										0		4.5 to 5.0 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, with some fine sand, very stiff, rootletts.
		164 Best east end								0		0 to 2.5 ft: FILL - Brown, mostly silt and clay, some fine sand, with orange brick, concrete and asphalt and crushed stone.
TP-7	01/15/21	162 Best	Yes	No	No	6	2.5	35	2.5	0		2.5 to 4.5 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
		west end								0		4.5 to 6 ft: SANDY LEAN CLAY - Reddish Brown, moist, mostly clay, Some fine sand, stiff.
										0		0 - 1 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, with little clay, trace fine gravel, roots, with surface dedris (trace concrete and brick).
TP-8	01/15/21	160 Best South end 1145	Yes	No	No	6	4	35	2.5	0	3 to 4	1 to 4 ft: FILL - Brown/dark brown, mostly fines with some fine sand, with concrete, orange brick, carpeting and limestone block.
17-0	01/15/21	Michigan north end	162	NO	NO	0	4	35	2.5	0		4 to 5 ft: RE-WORKED SAND - Brown, moist, mostly fine sand, with little silt, loose.
										0		5 to 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
										0	0 to 0.5	0 - 1 ft: TOPSOIL - Black, moist, mostly silt, some fine sand, cinders and brick, root, three 1 and a 1/2 inch steel pipes from from one to two feet at south end of test pit.
TP-9	01/15/21	1145 Michigan	Yes	No	No	5	4	25	2.5	0		1 to 4 ft FILL - Brown/dark brown, mostly silt and clay, with orange brick and concrete.
										0		4 - 5 ft: SANDY LEAN CLAY - reddish brown, moist, mostly clay, some fine sand, stiff.
										0		0 - 1.5 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, cinders and brick, roots.
TP-10	01/15/21	1145 Michigan	Yes	No	No	5	3.5	16	2.5	0		1.5 to 3.5 ft: FILL- Brown/dark brown, mostly silt and clay, with orange brick and concrete.
										0		3.5- 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
										0	2 to 3	1.5 to 6 ft: FILL - Black/ brown, moist, mostly silty sand, some fill limestone, metal piping, brick, concrete, cinders, subangular gravel, plastic, glass, wood
TP-11	02/08/21	1145 Michigan	Yes	No	Yes	8	7.0	10	2.5	0	6 to 7	6- 7 ft: Ash Fill - Black/ white, wet, mostly ash, some cinders, coal, black fines
										0		7- 8 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS PHASE II ENVIRONMENTAL INVESTIGATION REPORT MICHIGAN & BEST STREETS BUFFALO, NEW YORK

Location	Date	Parcel	Fill Present	Odors	Water Present	Depth of Test Pit (fbgs)	Thickness of Fill (ft)	Length of Test Pits (ft)	Test Pit Width (ft)	PID Measurement s	Sample Depth (ft)	Depth (fbgs) and Soil Description
										0		0 - 0.5 ft: TOPSOIL - Black, moist, mostly silt, some fine sand, cinders and brick, root.
TP-12	02/08/21	1145 Michigan	Yes	No	No	5	2	15	2.5	0	1 to 2	0.5 to 2 ft FILL - Brown/dark brown, mostly silt and clay, little fill brick, glass, wood
										0		2 - 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
TP-13	02/08/21	1145	Yes	No	No	E	2/0	15	2.5	0		0 to 0.5 ft: FILL- Black/ grey, moist, mostly silty sand, few fill brick, concrete, glass, wood
1P-13	02/08/21	Michigan	res	No	No	5	n/a	15	2.5	0		0.5- 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
TP-14	02/08/21	1145	Yes	Ma	No	5	n/a	15	2.5	0		0 - 0.5 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, cinders and brick, roots.
1P-14	02/08/21	Michigan	res	No	INO	5	n/a	15	2.5	0		0.5- 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
										0		0 - 0.5 ft: TOPSOIL - Dark brown, moist, mostly silt, some fine sand, cinders and brick, roots.
TP-15	02/08/21	1145 Michigan	Yes	No	No	5	1.5	20	2.5	0	0.5 to 1.5	0.5 to 1.5 ft: FILL- White, moist, mostly ash, some cinders, brick, coal
										0		1.5- 5 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
TD 16	02/08/21	160 Best	Vaa	No	No	6	1	15	2.5	0	0 to 1	0 to 1 ft FILL - Black, moist, mostly silty sand, little fill brick, glass, limestone, rubber hose
TP-16	02/08/21	100 Best	Yes	No	No	6	'	15	2.5	0		1 - 6 ft: REWORKED SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
										0		0 - 2 ft: REWORKED SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
TP-17	02/08/21	160 Best	Yes	No	No	6	4.0	15	2.5	0	2 to 3	2 to 4 ft: FILL- White, mostly ash, some glass, brick, coal, cinders
										0		4- 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.
TD 40	00/00/04	400 D : : 1	V	M	NI:		5.0	45	0.5	0	2 to 3	0 to 5 ft: FILL- Dark brown/ black, moist, mostly silty sand, some fill brick, glass, ash, cinders, wood, fire brick, metal, wiring
TP-18	02/08/21	162 Best	Yes	No	No	6	5.0	15	2.5	0		5- 6 ft: SANDY LEAN CLAY - Reddish brown, moist, mostly clay, some fine sand, stiff.

Definitions:

fbgs = feet below ground surface

SUMMARY OF SAMPLING AND ANALYSIS PROGRAM PHASE II ENVIRONMENTAL INVESTGATION REPORT MICHIGAN & BEST, BUFFALO, NEW YORK

					Ana	lysis					
Sample Location	I Depth I Soll Lype I		Parcel Address	TCL VOCs	TCL list SVOCs base-neutrals only	CP-51 List SVOCs	RCRA 8 Metals				
Subsurface Soil/Fill Samples											
TP-1	1 to 3 ft	Fill	168 Best	х	х		Х				
TP-2	2 to 5 ft	Fill	168 Best			Х	Х				
TP-3	1 to 4 ft	Fill	166 Best		х		Х				
TP-3	2 to 4	Fill	168 Best			Х	Х				
TP-5	1 to 4.5 ft	Fill	81 Edna	х	х		Х				
TP-7	0.5 to 2.5 ft	Fill	162 Best			Х	Х				
TP-7	0.5 to 2.5 ft	Fill	164 Best			Х	Х				
TP-8	3 to 4 ft	Fill	160 Best		х		Х				
TP-9	0 to 0.5 ft	Fill	1145 Michigan		Х		Х				
TP-11	2 to 3 ft	Fill	1145 Michigan			х	Х				
TP-17	2 to 3 ft	Fill	160 Best			х	Х				
TP-18	2 to 3	Fill	162 Best			Х	Х				

Notes:

fbgs - feet below ground surface.

TCL VOC - Total Compound List, Volatile Organic Compounds

TCL SVOCs - Target Compound List, Semivolatile Organic Compounds.

CP-51 - Commissioner's Policy 51 List.

RCRA - Resource Conservation & Recovery Act.

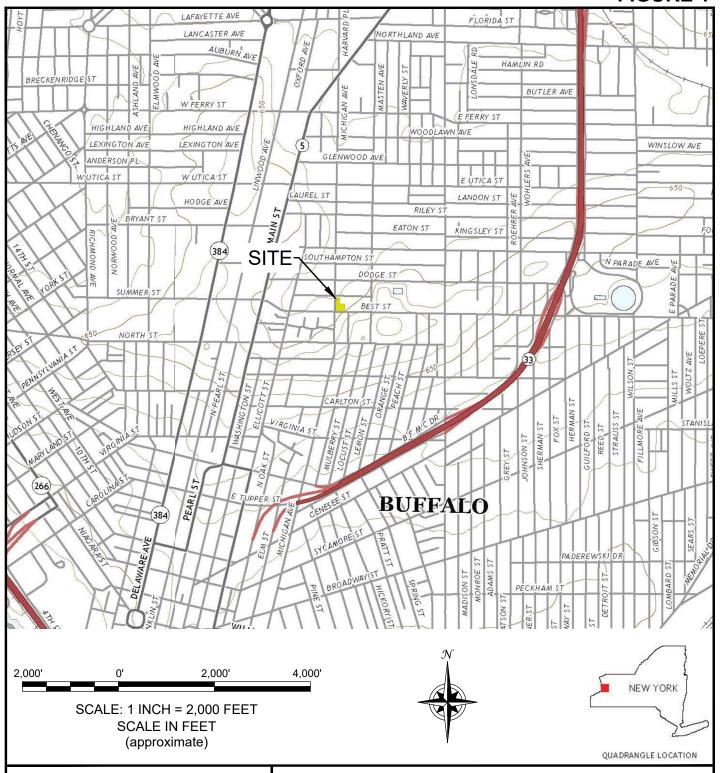
TABLE 3 SUMMARY OF SOIL/FILL SAMPLE ANALYTICAL RESULTS PHASE II ENVIRONMENTAL INVESTIGATION MICHIGAN & BEST (7 PARCELS) **BUFFALO, NEW YORK**

PARAMETER ¹	Unrestricted Use SCOs ²	Restricted Residential Use SCOs ³	Commercial Use SCOs ³	Industrial Use SCOs³	TP-1 1-3 FT 168 Best	TP-2 2-5 FT 168 Best	TP-3 1-4 FT 166 Best	TP-3 2-4 FT 168 Best	TP-5 1-4.5 FT 81 Edna	TP-7 0.5-2.5 FT 162 Best	TP-7 0.5-2.5 FT 164 Best	TP-8 3-4 FT 160 Best	TP-9 0.0-0.5 FT 1145 Michigan	TP-11 2-3 FT 1145 Michigan	TP-17 2-3 FT 160 Best	TP-18 2-3 FT 162 Best
Volatile Organic Compounds (S)	latile Organic Compounds (SVOCs) - mg/Kg ⁴															
Total VOCs					ND				ND							
Semi-Volatile Organic Compounds (SVOCs) - mg/Kg ⁴																
2-Methylnaphthalene		-			0.12 J		0.11 J		0.092 J			0.051 J	0.6 J			
Acenaphthene	20	100	500	1000	0.023 J	ND	0.051 J	ND	0.16 J	ND	ND	0.13 J	0.6 J	0.21	0.25	0.063 J
Acenaphthylene	100	100	500	1000	ND	ND	0.08 J	ND	0.15 J	ND	ND	ND	1.3	0.32	0.23	0.073 J
Anthracene	100	100	500	1000	0.064 J	0.038 J	0.22	ND	0.56	ND	0.04 J	0.28	2	0.73	0.92	0.2
Benzo(a)anthracene	1	1	5.6	11	0.26	0.18	0.61	0.09 J	1.1	0.14	0.17	0.38	7.4	1.9	2.8	0.64
Benzo(a)pyrene	1	1	1	1.1	0.31	0.17	0.65	0.082 J	0.9	0.11 J	0.14 J	0.33	7.4	1.8	2.6	0.52
Benzo(b)fluoranthene	1	1	5.6	11	0.38	0.24	0.77	0.12	1.2	0.17	0.19	0.37	9	2.2	3.3	0.73
Benzo(ghi)perylene	100	100	500	1000	0.23	0.11 J	0.44	0.066 J	0.5	0.075 J	0.091 J	0.17	4.4	1	1.6	0.3
Benzo(k)fluoranthene	0.8	3.9	56	110	0.11 J	0.058 J	0.31	ND	0.44	0.038 J	0.059 J	0.16	3.1	0.8	1.1	0.27
Bis(2-ethylhexyl) phthalate	-	ı			ND		0.42		ND	-		ND	ND		-	-
Carbazole		ı			0.028 J		0.11 J		0.31	-		0.096 J	1.4		-	
Chrysene	1	3.9	56	110	0.27	0.15	0.62	0.088 J	1	0.11	0.14	0.31	7.1	2	2.8	0.56
Dibenzofuran	7	59	350	1000	0.046 J		0.085 J		0.19 J			0.12 J	1 J			
Dibenzo (a,h)anthracene	0.33	0.33	0.56	1.1	0.052 J	0.028 J	0.097 J	ND	0.15	ND	0.024 J	0.046 J	0.99	0.26	0.43	0.071 J
Di-n-butyl phthalate		ı			0.055 J		ND		ND	-		ND	ND		-	
Fluoranthene	100	100	500	1000	0.37	0.32	1.2	0.16	2.4	0.24	0.3	0.84	17	4.2	6.2	1.2
Fluorene	30	100	500	1000	0.032 J	ND	0.066 J	ND	0.28	ND	0.023 J	0.14 J	1.2	0.31	0.28	0.068 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.21	0.12 J	0.45	0.079 J	0.55	0.088 J	0.1 J	0.16 J	4.6	1.2	1.7	0.34
Naphthalene	12	100	500	1000	0.075 J	0.024 J	0.11 J	0.025 J	0.12 J	ND	ND	0.078 J	1.2	0.29	0.16 J	0.095 J
Phenanthrene	100	100	500	1000	0.38	0.18	0.99	0.1 J	2.2	0.12	0.18	1	14	3.4	4.1	0.79
Pyrene	100	100	500	1000	0.36	0.28	1	0.13	1.8	0.19	0.24	0.7	15	3.6	5.1	0.97
Total Metals - mg/Kg																
Arsenic	13	16	16	16	8.1	6.04	13.6	6.14	7.92	2.84	3.35	2.93	9.58	12.9	5.58	21.6
Barium	350	400	400	10000	179	127	281	166	188	63.4	186	53.7	132	185	144	433
Cadmium	2.5	4.3	9.3	60	0.704	0.755	1.31	1.26	1.48	0.506	0.992	0.447 J	1.17	ND	0.055 J	2.41
Chromium	30	180	1500	6800	7.83	15.2	11	9.43	10.8	6.2	16.1	5.67	16	21	8.13	22.8
Lead	63	400	1000	3900	323	384	847	53200	1040	264	2470	37.7	324	1210	182	3580
Mercury	0.18	0.81	2.8	5.7	0.435	0.813	1.48	0.255	1.17	0.347	0.402	ND	0.442	0.531	0.42	0.586
Selenium	30	180	1500	10000	0.426 J	0.298 J	0.835 J	1.3	0.514 J	0.35 J	0.3 J	0.383 J	0.756 J	1.13	0.169 J	0.89 J
Silver	2	180	1500	6800	0.369 J	ND	0.343 J	0.896	0.168 J	ND	ND	ND	ND	0.39	0.239 J	0.918

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per 6NYCRR Part 375 Unrestricted Soil Cleanup Objectives (SCOs), Table 375-6(a).
 3. Values per 6NYCRR Part 375 Restricted Use Soil Cleanup Objectives (SCOs), Commercial SCOs (CSCOs), and Industrial SCOs (ISCOs), Table 375-6.8(b).
 4. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs

- Definitions:

 ND = Parameter not detected above laboratory detection limit.


 "--" = No value available for the parameter, or the parameter was not analyzed for.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD	= Exceeds Unrestricted SCOs
BOLD	= Exceeds Restricted Residential SCOs
BOLD	= Exceeds Commercial SCOs
BOLD	= Exceeds Industrial SCOs

FIGURES

FIGURE 1

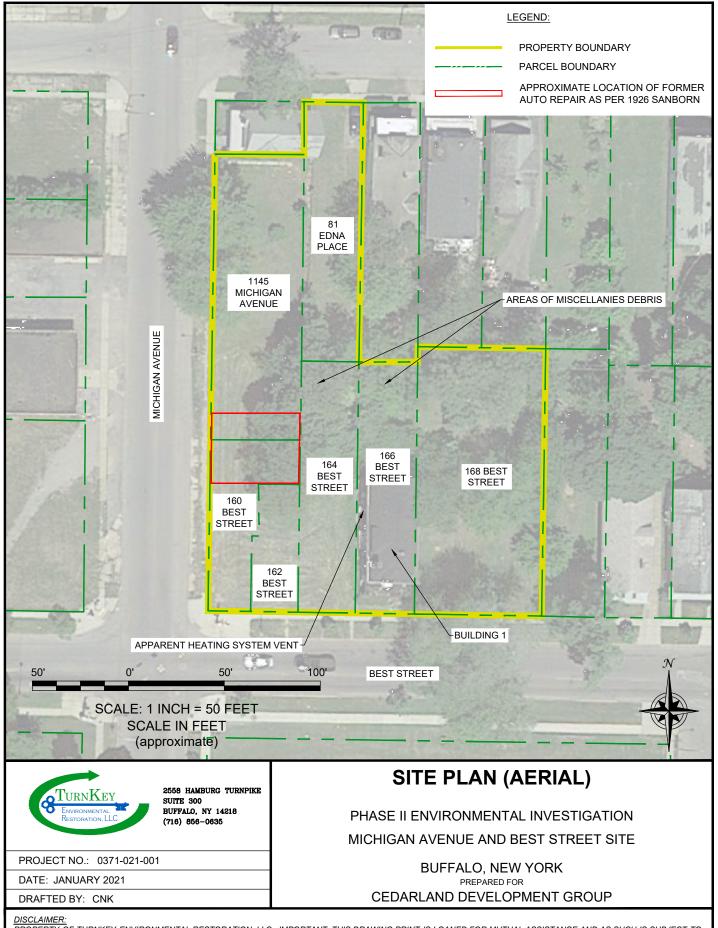
2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0371-021-001

DATE: JANUARY 2021

DRAFTED BY: CNK

SITE LOCATION AND VICINITY MAP


PHASE II ENVIRONMENTAL INVESTIGATION MICHIGAN AVENUE AND BEST STREET SITE

> **BUFFALO, NEW YORK** PREPARED FOR

CEDARLAND DEVELOPMENT GROUP

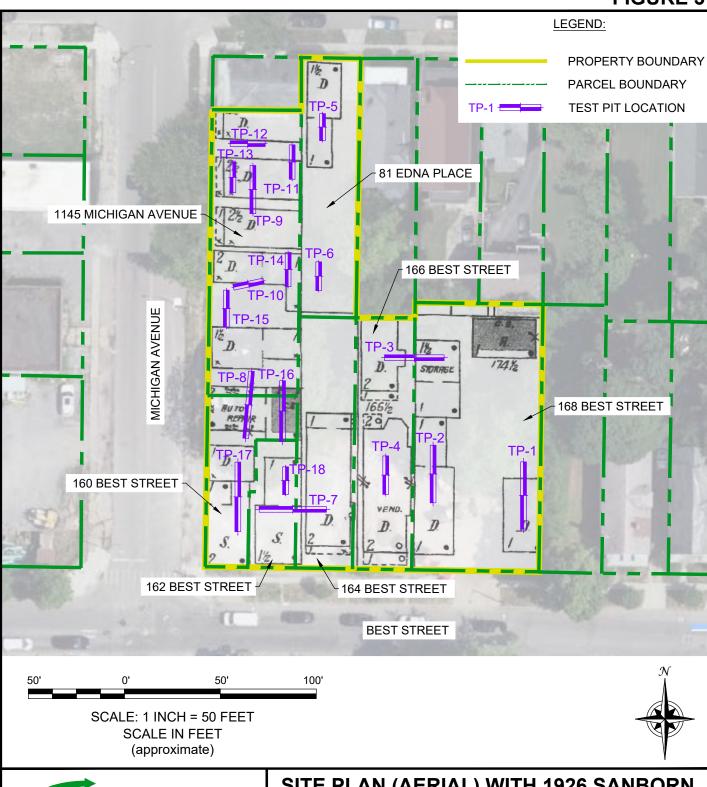

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

FIGURE 2

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

FIGURE 3

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0371-021-001

DATE: JANUARY 2021

DRAFTED BY: CNK

SITE PLAN (AERIAL) WITH 1926 SANBORN MAP AND INVESTIGATION LOCATIONS

PHASE II ENVIRONMENTAL INVESTIGATION
MICHIGAN AVENUE AND BEST STREET SITE

BUFFALO, NEW YORK PREPARED FOR

CEDARLAND DEVELOPMENT GROUP

DISCLAIMER:

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

JOB NO.: 0371-021-001

GROUP

DEVELOPMENT

EDANCES Ш EXC PHASE II ENVIRONMENTAL INVESTIGATION SCO AND LOCATIONS MICHIGAN AVENUE INVESTIGATION

FIGURE 4

APPENDIX A

PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: View of TP-1 located on 168 Best Parcel (looking east).

Photo 2: View of TP-1 excavated soil fill. (looking north)

Photo 3: View of TP-3 excavated between 166 and 168 Best. (looking west)

Photo 4: View of TP-3 Excavated Ash fill located on the 168 Best Parcel. (looking west)

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: View of TP-5 located on 81 Edna (looking south).

Photo 6: View of TP-5 Excavated fill materials. (looking south).

Photo 7: View of TP-8 Excavated between 160 Best and 1145 Michigan. (looking South).

Photo 8: View of TP-8. Excavated Fill materials on 160 Best (looking east).

Photo Date: January 15, 2021

SITE PHOTOGRAPHS

Photo 9:

Photo 10:

Photo 9: View of TP-9 located on 1145 Michigan (looking north).

Photo 10: View of TP-9 Black cindery topsoil. (looking south).

Michigan and Best Buffalo, NY

Photo Date: January 15, 2021

APPENDIX B

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2102689

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Report Date: 01/25/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

 Lab Number:
 L2102689

 Report Date:
 01/25/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2102689-01	TP-1 1-3FT 168 BEST	SOIL	BUFFALO, NY	01/15/21 08:20	01/18/21
L2102689-02	TP-3 1-4FT 166 BEST	SOIL	BUFFALO, NY	01/15/21 09:25	01/18/21
L2102689-03	TP-5 1-4.5FT 81 EDNA	SOIL	BUFFALO, NY	01/15/21 10:50	01/18/21
L2102689-04	TP-8 3-4FT 160 BEST	SOIL	BUFFALO, NY	01/15/21 14:15	01/18/21
L2102689-05	TP-9 0.0-0.5FT 1145 MICHIGAN	SOIL	BUFFALO, NY	01/15/21 15:00	01/18/21

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Semivolatile Organics

L2102689-05: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Metals

The WG1456451-3 MS recoveries, performed on L2102689-01, are outside the acceptance criteria for arsenic (174%) and barium (65%). A post digestion spike was performed and was within acceptance criteria.

The WG1456451-3 MS recovery for lead (378%), performed on L2102689-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1456452-3 MS recovery, performed on L2102689-01, is outside the acceptance criteria for mercury (74%). A post digestion spike was performed and was within acceptance criteria.

The WG1456451-4 Laboratory Duplicate RPDs for barium (24%) and chromium (31%), performed on L2102689-01, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

The WG1456452-4 Laboratory Duplicate RPD for mercury (29%), performed on L2102689-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/25/21

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

Serial_No:01252116:36

01/15/21 08:20

Not Specified

Dilution Factor

01/18/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Lab Number: L2102689

Report Date: 01/25/21

Date Collected:

Date Received:

Field Prep:

RL

MDL

Result

Lab ID: L2102689-01

Client ID: TP-1 1-3FT 168 BEST

Sample Location: BUFFALO, NY

Sample Depth:

Parameter

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 01/21/21 09:53

Analyst: MKS 80% Percent Solids:

Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND	ug/kg	6.0	2.7	1	
1,1-Dichloroethane	ND	ug/kg	1.2	0.17	1	
Chloroform	ND	ug/kg	1.8	0.17	1	
Carbon tetrachloride	ND	ug/kg	1.2	0.27	1	
1,2-Dichloropropane	ND	ug/kg	1.2	0.15	1	
Dibromochloromethane	ND	ug/kg	1.2	0.17	1	
1,1,2-Trichloroethane	ND	ug/kg	1.2	0.32	1	
Tetrachloroethene	ND	ug/kg	0.60	0.23	1	
Chlorobenzene	ND	ug/kg	0.60	0.15	1	
Trichlorofluoromethane	ND	ug/kg	4.8	0.83	1	
1,2-Dichloroethane	ND	ug/kg	1.2	0.31	1	
1,1,1-Trichloroethane	ND	ug/kg	0.60	0.20	1	
Bromodichloromethane	ND	ug/kg	0.60	0.13	1	
trans-1,3-Dichloropropene	ND	ug/kg	1.2	0.33	1	
cis-1,3-Dichloropropene	ND	ug/kg	0.60	0.19	1	
Bromoform	ND	ug/kg	4.8	0.29	1	
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.60	0.20	1	
Benzene	ND	ug/kg	0.60	0.20	1	
Toluene	ND	ug/kg	1.2	0.65	1	
Ethylbenzene	ND	ug/kg	1.2	0.17	1	
Chloromethane	ND	ug/kg	4.8	1.1	1	
Bromomethane	ND	ug/kg	2.4	0.69	1	
Vinyl chloride	ND	ug/kg	1.2	0.40	1	
Chloroethane	ND	ug/kg	2.4	0.54	1	
1,1-Dichloroethene	ND	ug/kg	1.2	0.28	1	
trans-1,2-Dichloroethene	ND	ug/kg	1.8	0.16	1	
Trichloroethene	ND	ug/kg	0.60	0.16	1	
1,2-Dichlorobenzene	ND	ug/kg	2.4	0.17	1	

Qualifier

Units

Serial_No:01252116:36

MDL

Dilution Factor

Project Name: MICHIGAN & BEST Lab Number: L2102689

Project Number: T0371-021-001 **Report Date:** 01/25/21

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2102689-01 Date Collected: 01/15/21 08:20

Client ID: TP-1 1-3FT 168 BEST Date Received: 01/18/21

Sample Location: BUFFALO, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

i didilicitoi					2	
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND	ug/kg	2.4	0.18	1	
1,4-Dichlorobenzene	ND	ug/kg	2.4	0.20	1	
Methyl tert butyl ether	ND	ug/kg	2.4	0.24	1	
p/m-Xylene	ND	ug/kg	2.4	0.67	1	
o-Xylene	ND	ug/kg	1.2	0.35	1	
cis-1,2-Dichloroethene	ND	ug/kg	1.2	0.21	1	
Styrene	ND	ug/kg	1.2	0.23	1	
Dichlorodifluoromethane	ND	ug/kg	12	1.1	1	
Acetone	ND	ug/kg	12	5.7	1	
Carbon disulfide	ND	ug/kg	12	5.4	1	
2-Butanone	ND	ug/kg	12	2.6	1	
4-Methyl-2-pentanone	ND	ug/kg	12	1.5	1	
2-Hexanone	ND	ug/kg	12	1.4	1	
Bromochloromethane	ND	ug/kg	2.4	0.24	1	
1,2-Dibromoethane	ND	ug/kg	1.2	0.33	1	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.6	1.2	1	
Isopropylbenzene	ND	ug/kg	1.2	0.13	1	
1,2,3-Trichlorobenzene	ND	ug/kg	2.4	0.38	1	
1,2,4-Trichlorobenzene	ND	ug/kg	2.4	0.32	1	
Methyl Acetate	ND	ug/kg	4.8	1.1	1	
Cyclohexane	ND	ug/kg	12	0.65	1	
1,4-Dioxane	ND	ug/kg	96	42.	1	
Freon-113	ND	ug/kg	4.8	0.83	1	
Methyl cyclohexane	ND	ug/kg	4.8	0.72	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	107		70-130	

Serial_No:01252116:36

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

Report Date: 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-03 Date Collected: 01/15/21 10:50

Client ID: Date Received: 01/18/21 TP-5 1-4.5FT 81 EDNA Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 01/21/21 10:18

Analyst: MKS 78% Percent Solids:

1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.8 1.2 1.7 1.2	2.6 0.17 0.16 0.26	1 1 1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	1.2 1.7 1.2	0.17 0.16	1
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND ND	ug/kg ug/kg ug/kg	1.7 1.2	0.16	
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND ND	ug/kg ug/kg	1.2		1
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND	ug/kg		0.26	ı
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND			0.20	1
1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane		ug/ka	1.2	0.14	1
Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	و٠٠٠ق	1.2	0.16	1
Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane		ug/kg	1.2	0.31	1
Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/kg	0.58	0.23	1
1,2-Dichloroethane	ND	ug/kg	0.58	0.15	1
·	ND	ug/kg	4.6	0.80	1
1 1 1-Trichloroethane	ND	ug/kg	1.2	0.30	1
1,1,1 Themerodulane	ND	ug/kg	0.58	0.19	1
Bromodichloromethane	ND	ug/kg	0.58	0.12	1
trans-1,3-Dichloropropene	ND	ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND	ug/kg	0.58	0.18	1
Bromoform	ND	ug/kg	4.6	0.28	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.58	0.19	1
Benzene	ND	ug/kg	0.58	0.19	1
Toluene	ND	ug/kg	1.2	0.63	1
Ethylbenzene	ND	ug/kg	1.2	0.16	1
Chloromethane	ND	ug/kg	4.6	1.1	1
Bromomethane	ND	ug/kg	2.3	0.67	1
Vinyl chloride	ND	ug/kg	1.2	0.39	1
Chloroethane	ND	ug/kg	2.3	0.52	1
1,1-Dichloroethene	ND	ug/kg	1.2	0.27	1
trans-1,2-Dichloroethene	ND	ug/kg	1.7	0.16	1
Trichloroethene	ND	#			
1,2-Dichlorobenzene	ND	ug/kg	0.58	0.16	1

L2102689

Project Name: Lab Number: MICHIGAN & BEST

Project Number: Report Date: T0371-021-001 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-03 Date Collected: 01/15/21 10:50

Client ID: Date Received: TP-5 1-4.5FT 81 EDNA 01/18/21 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.65	1
o-Xylene	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.20	1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND		ug/kg	12	1.0	1
Acetone	ND		ug/kg	12	5.6	1
Carbon disulfide	ND		ug/kg	12	5.2	1
2-Butanone	ND		ug/kg	12	2.6	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.32	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
Isopropylbenzene	ND		ug/kg	1.2	0.12	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.31	1
Methyl Acetate	ND		ug/kg	4.6	1.1	1
Cyclohexane	ND		ug/kg	12	0.63	1
1,4-Dioxane	ND		ug/kg	92	40.	1
Freon-113	ND		ug/kg	4.6	0.80	1
Methyl cyclohexane	ND		ug/kg	4.6	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	105	70-130	

L2102689

Project Name: MICHIGAN & BEST Lab Number:

Project Number: T0371-021-001 **Report Date:** 01/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/21/21 06:31

Analyst: MV

arameter	Result	Qualifier	Units	1	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample	e(s):	01,03	Batch:	WG1457485-5
Methylene chloride	ND		ug/ko	9	5.0	2.3
1,1-Dichloroethane	ND		ug/ko	3	1.0	0.14
Chloroform	ND		ug/ko	9	1.5	0.14
Carbon tetrachloride	ND		ug/ko	9	1.0	0.23
1,2-Dichloropropane	ND		ug/ko	9	1.0	0.12
Dibromochloromethane	ND		ug/ko	9	1.0	0.14
1,1,2-Trichloroethane	ND		ug/kg	9	1.0	0.27
Tetrachloroethene	ND		ug/kg	9	0.50	0.20
Chlorobenzene	ND		ug/kg	9	0.50	0.13
Trichlorofluoromethane	ND		ug/ko	9	4.0	0.70
1,2-Dichloroethane	ND		ug/ko	9	1.0	0.26
1,1,1-Trichloroethane	ND		ug/ko	9	0.50	0.17
Bromodichloromethane	ND		ug/ko	9	0.50	0.11
trans-1,3-Dichloropropene	ND		ug/ko	9	1.0	0.27
cis-1,3-Dichloropropene	ND		ug/ko	9	0.50	0.16
Bromoform	ND		ug/ko	9	4.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/ko	9	0.50	0.17
Benzene	ND		ug/ko	9	0.50	0.17
Toluene	ND		ug/ko	9	1.0	0.54
Ethylbenzene	ND		ug/ko	9	1.0	0.14
Chloromethane	ND		ug/ko	9	4.0	0.93
Bromomethane	1.0	J	ug/ko	9	2.0	0.58
Vinyl chloride	ND		ug/ko	9	1.0	0.34
Chloroethane	ND		ug/ko	9	2.0	0.45
1,1-Dichloroethene	ND		ug/ko	9	1.0	0.24
trans-1,2-Dichloroethene	ND		ug/ko	9	1.5	0.14
Trichloroethene	ND		ug/ko	3	0.50	0.14
1,2-Dichlorobenzene	ND		ug/ko	9	2.0	0.14
1,3-Dichlorobenzene	ND		ug/ko	3	2.0	0.15

Project Name: MICHIGAN & BEST Lab Number: L2102689

Project Number: T0371-021-001 **Report Date:** 01/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/21/21 06:31

Analyst: MV

Parameter	Result	Qualifier	Units	5	RL	MDL	
Volatile Organics by GC/MS - West	tborough Lab	for sample	e(s):	01,03	Batch:	WG1457485-5	
1,4-Dichlorobenzene	ND		ug/k	g	2.0	0.17	
Methyl tert butyl ether	ND		ug/k	g	2.0	0.20	_
p/m-Xylene	ND		ug/k	g	2.0	0.56	
o-Xylene	ND		ug/k	g	1.0	0.29	_
cis-1,2-Dichloroethene	ND		ug/k	g	1.0	0.18	
Styrene	ND		ug/k	g	1.0	0.20	
Dichlorodifluoromethane	ND		ug/k	g	10	0.92	
Acetone	ND		ug/k	g	10	4.8	
Carbon disulfide	ND		ug/k	g	10	4.6	
2-Butanone	ND		ug/k	g	10	2.2	
4-Methyl-2-pentanone	ND		ug/k	g	10	1.3	
2-Hexanone	ND		ug/k	g	10	1.2	
Bromochloromethane	ND		ug/k	g	2.0	0.20	
1,2-Dibromoethane	ND		ug/k	g	1.0	0.28	
1,2-Dibromo-3-chloropropane	ND		ug/k	g	3.0	1.0	
Isopropylbenzene	ND		ug/k	g	1.0	0.11	
1,2,3-Trichlorobenzene	ND		ug/k	g	2.0	0.32	
1,2,4-Trichlorobenzene	ND		ug/k	g	2.0	0.27	
Methyl Acetate	ND		ug/k	g	4.0	0.95	
Cyclohexane	ND		ug/k	g	10	0.54	
1,4-Dioxane	ND		ug/k	g	80	35.	
Freon-113	ND		ug/k	g	4.0	0.69	
Methyl cyclohexane	ND		ug/k	g	4.0	0.60	

Project Name: MICHIGAN & BEST Lab Number: L2102689

Project Number: T0371-021-001 **Report Date:** 01/25/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/21/21 06:31

Analyst: MV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01,03 Batch: WG1457485-5

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s):	01,03 Batch:	WG1457485-3	WG1457485-4		
Methylene chloride	92		90		70-130	2	30
1,1-Dichloroethane	94		92		70-130	2	30
Chloroform	95		92		70-130	3	30
Carbon tetrachloride	95		94		70-130	1	30
1,2-Dichloropropane	92		92		70-130	0	30
Dibromochloromethane	96		93		70-130	3	30
1,1,2-Trichloroethane	95		91		70-130	4	30
Tetrachloroethene	84		84		70-130	0	30
Chlorobenzene	86		83		70-130	4	30
Trichlorofluoromethane	95		98		70-139	3	30
1,2-Dichloroethane	99		97		70-130	2	30
1,1,1-Trichloroethane	89		91		70-130	2	30
Bromodichloromethane	93		94		70-130	1	30
trans-1,3-Dichloropropene	93		95		70-130	2	30
cis-1,3-Dichloropropene	87		90		70-130	3	30
Bromoform	100		98		70-130	2	30
1,1,2,2-Tetrachloroethane	82		87		70-130	6	30
Benzene	86		85		70-130	1	30
Toluene	88		86		70-130	2	30
Ethylbenzene	93		89		70-130	4	30
Chloromethane	91		88		52-130	3	30
Bromomethane	101		100		57-147	1	30
Vinyl chloride	94		95		67-130	1	30

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

Parameter	LCS %Recovery	Qual 9	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS -	Westborough Lab Associated	sample(s): 01,0	3 Batch: V	VG1457485-3	WG1457485-4		
Chloroethane	102		102		50-151	0	30
1,1-Dichloroethene	91		90		65-135	1	30
trans-1,2-Dichloroethene	92		92		70-130	0	30
Trichloroethene	91		87		70-130	4	30
1,2-Dichlorobenzene	88		87		70-130	1	30
1,3-Dichlorobenzene	84		86		70-130	2	30
1,4-Dichlorobenzene	83		86		70-130	4	30
Methyl tert butyl ether	102		99		66-130	3	30
p/m-Xylene	85		83		70-130	2	30
o-Xylene	86		83		70-130	4	30
cis-1,2-Dichloroethene	93		90		70-130	3	30
Styrene	92		89		70-130	3	30
Dichlorodifluoromethane	86		87		30-146	1	30
Acetone	100		94		54-140	6	30
Carbon disulfide	83		82		59-130	1	30
2-Butanone	87		83		70-130	5	30
4-Methyl-2-pentanone	92		89		70-130	3	30
2-Hexanone	93		90		70-130	3	30
Bromochloromethane	93		91		70-130	2	30
1,2-Dibromoethane	91		86		70-130	6	30
1,2-Dibromo-3-chloropropane	97		96		68-130	1	30
Isopropylbenzene	87		88		70-130	1	30
1,2,3-Trichlorobenzene	87		88		70-130	1	30

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	-		01,03 Batch:	WG1457485-4				
1,2,4-Trichlorobenzene	83		88	70-130	6		30	
Methyl Acetate	94		92	51-146	2		30	
Cyclohexane	88		89	59-142	1		30	
1,4-Dioxane	79		96	65-136	19		30	
Freon-113	91		94	50-139	3		30	
Methyl cyclohexane	86		89	70-130	3		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	103	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	98	100	70-130
Dibromofluoromethane	101	102	70-130

SEMIVOLATILES

L2102689

01/15/21 08:20

01/18/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Report Date: 01/25/21

Lab ID: L2102689-01

Client ID: TP-1 1-3FT 168 BEST

Sample Location: BUFFALO, NY

Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 01/20/21 12:06

Analyst: IM 80% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 01/19/21 11:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	23	J	ug/kg	160	21.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	200	24.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	28.	1	
2-Chloronaphthalene	ND		ug/kg	200	20.	1	
1,2-Dichlorobenzene	ND		ug/kg	200	37.	1	
1,3-Dichlorobenzene	ND		ug/kg	200	35.	1	
1,4-Dichlorobenzene	ND		ug/kg	200	36.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	200	55.	1	
2,4-Dinitrotoluene	ND		ug/kg	200	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	200	35.	1	
Fluoranthene	370		ug/kg	120	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	200	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	200	31.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1	
Hexachlorobutadiene	ND		ug/kg	200	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	590	190	1	
Hexachloroethane	ND		ug/kg	160	33.	1	
Isophorone	ND		ug/kg	180	27.	1	
Naphthalene	75	J	ug/kg	200	25.	1	
Nitrobenzene	ND		ug/kg	180	30.	1	
NDPA/DPA	ND		ug/kg	160	23.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	200	32.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	71.	1	
Butyl benzyl phthalate	ND		ug/kg	200	52.	1	
Di-n-butylphthalate	55	J	ug/kg	200	39.	1	
Di-n-octylphthalate	ND		ug/kg	200	70.	1	

L2102689

01/25/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Date Collected: 01/15/21 08:20

Lab ID: L2102689-01

Client ID: TP-1 1-3FT 168 BEST

Sample Location: BUFFALO, NY Date Received: 01/18/21

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Diethyl phthalate	ND		ug/kg	200	19.	1
Dimethyl phthalate	ND		ug/kg	200	43.	1
Benzo(a)anthracene	260		ug/kg	120	23.	1
Benzo(a)pyrene	310		ug/kg	160	50.	1
Benzo(b)fluoranthene	380		ug/kg	120	35.	1
Benzo(k)fluoranthene	110	J	ug/kg	120	33.	1
Chrysene	270		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	32.	1
Anthracene	64	J	ug/kg	120	40.	1
Benzo(ghi)perylene	230		ug/kg	160	24.	1
Fluorene	32	J	ug/kg	200	20.	1
Phenanthrene	380		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	52	J	ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	210		ug/kg	160	29.	1
Pyrene	360		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	470	48.	1
4-Chloroaniline	ND		ug/kg	200	37.	1
2-Nitroaniline	ND		ug/kg	200	40.	1
3-Nitroaniline	ND		ug/kg	200	39.	1
4-Nitroaniline	ND		ug/kg	200	85.	1
Dibenzofuran	46	J	ug/kg	200	19.	1
2-Methylnaphthalene	120	J	ug/kg	250	25.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
Benzyl Alcohol	ND		ug/kg	200	63.	1
Carbazole	28	J	ug/kg	200	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	25-120
Phenol-d6	55	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	82	10-136
4-Terphenyl-d14	61	18-120

L2102689

01/15/21 09:25

Not Specified

01/18/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 01/25/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

L2102689-02

Client ID: TP-3 1-4FT 166 BEST

Sample Location: BUFFALO, NY

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 01/20/21 12:29

Analyst: IM 84% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 01/19/21 11:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	oorough Lab					
Acenaphthene	51	J	ug/kg	160	20.	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	26.	1
2-Chloronaphthalene	ND		ug/kg	190	19.	1
1,2-Dichlorobenzene	ND		ug/kg	190	35.	1
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1
1,4-Dichlorobenzene	ND		ug/kg	190	34.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	52.	1
2,4-Dinitrotoluene	ND		ug/kg	190	39.	1
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1
Fluoranthene	1200		ug/kg	120	22.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1
Hexachlorobutadiene	ND		ug/kg	190	28.	1
Hexachlorocyclopentadiene	ND		ug/kg	560	180	1
Hexachloroethane	ND		ug/kg	160	31.	1
Isophorone	ND		ug/kg	180	25.	1
Naphthalene	110	J	ug/kg	190	24.	1
Nitrobenzene	ND		ug/kg	180	29.	1
NDPA/DPA	ND		ug/kg	160	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1
Bis(2-ethylhexyl)phthalate	420		ug/kg	190	67.	1
Butyl benzyl phthalate	ND		ug/kg	190	49.	1
Di-n-butylphthalate	ND		ug/kg	190	37.	1
Di-n-octylphthalate	ND		ug/kg	190	66.	1

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 01/25/21

. topo

Lab ID: L2102689-02

Client ID: TP-3 1-4FT 166 BEST

Sample Location: BUFFALO, NY

Date Collected:

Lab Number:

01/15/21 09:25

L2102689

Date Received:

01/18/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	41.	1
Benzo(a)anthracene	610		ug/kg	120	22.	1
Benzo(a)pyrene	650		ug/kg	160	47.	1
Benzo(b)fluoranthene	770		ug/kg	120	33.	1
Benzo(k)fluoranthene	310		ug/kg	120	31.	1
Chrysene	620		ug/kg	120	20.	1
Acenaphthylene	80	J	ug/kg	160	30.	1
Anthracene	220		ug/kg	120	38.	1
Benzo(ghi)perylene	440		ug/kg	160	23.	1
Fluorene	66	J	ug/kg	190	19.	1
Phenanthrene	990		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	97	J	ug/kg	120	22.	1
Indeno(1,2,3-cd)pyrene	450		ug/kg	160	27.	1
Pyrene	1000		ug/kg	120	19.	1
Biphenyl	ND		ug/kg	440	45.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	38.	1
3-Nitroaniline	ND		ug/kg	190	37.	1
4-Nitroaniline	ND		ug/kg	190	80.	1
Dibenzofuran	85	J	ug/kg	190	18.	1
2-Methylnaphthalene	110	J	ug/kg	230	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
Benzyl Alcohol	ND		ug/kg	190	60.	1
Carbazole	110	J	ug/kg	190	19.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	25-120
Phenol-d6	63	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	72	30-120
2,4,6-Tribromophenol	88	10-136
4-Terphenyl-d14	63	18-120

L2102689

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Lab Number:

Report Date: 01/25/21

Lab ID: L2102689-03

Client ID: TP-5 1-4.5FT 81 EDNA

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 01/20/21 13:13

Analyst: IM 78% Percent Solids:

Date Collected: 01/15/21 10:50

Date Received: 01/18/21

Field Prep: Not Specified

Extraction Method: EPA 3546 **Extraction Date:** 01/19/21 11:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	160	J	ug/kg	170	22.	1
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1
Hexachlorobenzene	ND		ug/kg	130	24.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1
2-Chloronaphthalene	ND		ug/kg	210	21.	1
1,2-Dichlorobenzene	ND		ug/kg	210	38.	1
1,3-Dichlorobenzene	ND		ug/kg	210	37.	1
1,4-Dichlorobenzene	ND		ug/kg	210	37.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	57.	1
2,4-Dinitrotoluene	ND		ug/kg	210	43.	1
2,6-Dinitrotoluene	ND		ug/kg	210	37.	1
Fluoranthene	2400		ug/kg	130	24.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	23.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	36.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	21.	1
Hexachlorobutadiene	ND		ug/kg	210	31.	1
Hexachlorocyclopentadiene	ND		ug/kg	610	190	1
Hexachloroethane	ND		ug/kg	170	34.	1
Isophorone	ND		ug/kg	190	28.	1
Naphthalene	120	J	ug/kg	210	26.	1
Nitrobenzene	ND		ug/kg	190	32.	1
NDPA/DPA	ND		ug/kg	170	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	33.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	74.	1
Butyl benzyl phthalate	ND		ug/kg	210	54.	1
Di-n-butylphthalate	ND		ug/kg	210	40.	1
Di-n-octylphthalate	ND		ug/kg	210	72.	1

L2102689

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

01/15/21 10:50

Report Date: 01/25/21

Lab ID: L2102689-03

Client ID: TP-5 1-4.5FT 81 EDNA

Sample Location: BUFFALO, NY Date Collected: Date Received: 01/18/21

Lab Number:

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	210	20.	1
Dimethyl phthalate	ND		ug/kg	210	45.	1
Benzo(a)anthracene	1100		ug/kg	130	24.	1
Benzo(a)pyrene	900		ug/kg	170	52.	1
Benzo(b)fluoranthene	1200		ug/kg	130	36.	1
Benzo(k)fluoranthene	440		ug/kg	130	34.	1
Chrysene	1000		ug/kg	130	22.	1
Acenaphthylene	150	J	ug/kg	170	33.	1
Anthracene	560		ug/kg	130	42.	1
Benzo(ghi)perylene	500		ug/kg	170	25.	1
Fluorene	280		ug/kg	210	21.	1
Phenanthrene	2200		ug/kg	130	26.	1
Dibenzo(a,h)anthracene	150		ug/kg	130	25.	1
Indeno(1,2,3-cd)pyrene	550		ug/kg	170	30.	1
Pyrene	1800		ug/kg	130	21.	1
Biphenyl	ND		ug/kg	490	49.	1
4-Chloroaniline	ND		ug/kg	210	39.	1
2-Nitroaniline	ND		ug/kg	210	41.	1
3-Nitroaniline	ND		ug/kg	210	40.	1
4-Nitroaniline	ND		ug/kg	210	88.	1
Dibenzofuran	190	J	ug/kg	210	20.	1
2-Methylnaphthalene	92	J	ug/kg	260	26.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
Acetophenone	ND		ug/kg	210	26.	1
Benzyl Alcohol	ND		ug/kg	210	65.	1
Carbazole	310		ug/kg	210	21.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	95	10-136
4-Terphenyl-d14	64	18-120

L2102689

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 01/25/21

Lab Number:

Lab ID: L2102689-04

Client ID: TP-8 3-4FT 160 BEST

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 01/20/21 11:44

Analyst: IM 78% Percent Solids:

Date Collected: 01/15/21 14:15

Date Received: 01/18/21

Field Prep: Not Specified

Extraction Method: EPA 3546 **Extraction Date:** 01/19/21 11:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	130	J	ug/kg	170	22.	1
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1
Hexachlorobenzene	ND		ug/kg	120	23.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1
2-Chloronaphthalene	ND		ug/kg	210	21.	1
1,2-Dichlorobenzene	ND		ug/kg	210	38.	1
1,3-Dichlorobenzene	ND		ug/kg	210	36.	1
1,4-Dichlorobenzene	ND		ug/kg	210	37.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	56.	1
2,4-Dinitrotoluene	ND		ug/kg	210	42.	1
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1
Fluoranthene	840		ug/kg	120	24.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	36.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	21.	1
Hexachlorobutadiene	ND		ug/kg	210	31.	1
Hexachlorocyclopentadiene	ND		ug/kg	600	190	1
Hexachloroethane	ND		ug/kg	170	34.	1
Isophorone	ND		ug/kg	190	27.	1
Naphthalene	78	J	ug/kg	210	26.	1
Nitrobenzene	ND		ug/kg	190	31.	1
NDPA/DPA	ND		ug/kg	170	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	72.	1
Butyl benzyl phthalate	ND		ug/kg	210	53.	1
Di-n-butylphthalate	ND		ug/kg	210	40.	1
Di-n-octylphthalate	ND		ug/kg	210	71.	1

L2102689

01/25/21

Dilution Factor

Project Name: MICHIGAN & BEST

L2102689-04

BUFFALO, NY

TP-8 3-4FT 160 BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Qualifier

Units

Result

Date Collected: 01/15/21 14:15

RL

Lab Number:

Report Date:

Date Received: 01/18/21

Field Prep: Not Specified

MDL

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter

raiaillelei	Result	Qualifici	Office	11.	IIIDL	Dilution ractor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Diethyl phthalate	ND		ug/kg	210	19.	1	
Dimethyl phthalate	ND		ug/kg	210	44.	1	
Benzo(a)anthracene	380		ug/kg	120	24.	1	
Benzo(a)pyrene	330		ug/kg	170	51.	1	
Benzo(b)fluoranthene	370		ug/kg	120	35.	1	
Benzo(k)fluoranthene	160		ug/kg	120	34.	1	
Chrysene	310		ug/kg	120	22.	1	
Acenaphthylene	ND		ug/kg	170	32.	1	
Anthracene	280		ug/kg	120	41.	1	
Benzo(ghi)perylene	170		ug/kg	170	25.	1	
Fluorene	140	J	ug/kg	210	20.	1	
Phenanthrene	1000		ug/kg	120	26.	1	
Dibenzo(a,h)anthracene	46	J	ug/kg	120	24.	1	
Indeno(1,2,3-cd)pyrene	160	J	ug/kg	170	29.	1	
Pyrene	700		ug/kg	120	21.	1	
Biphenyl	ND		ug/kg	480	49.	1	
4-Chloroaniline	ND		ug/kg	210	38.	1	
2-Nitroaniline	ND		ug/kg	210	40.	1	
3-Nitroaniline	ND		ug/kg	210	40.	1	
4-Nitroaniline	ND		ug/kg	210	87.	1	
Dibenzofuran	120	J	ug/kg	210	20.	1	
2-Methylnaphthalene	51	J	ug/kg	250	25.	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1	
Acetophenone	ND		ug/kg	210	26.	1	
Benzyl Alcohol	ND		ug/kg	210	64.	1	
Carbazole	96	J	ug/kg	210	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-120
Phenol-d6	59	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	66	30-120
2,4,6-Tribromophenol	81	10-136
4-Terphenyl-d14	61	18-120

L2102689

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 01/25/21

Lab Number:

Lab ID: D L2102689-05

TP-9 0.0-0.5FT 1145 MICHIGAN Client ID:

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 01/22/21 21:23

Analyst: SZ 77% Percent Solids:

Date Collected: 01/15/21 15:00

Date Received: 01/18/21

Field Prep: Not Specified

Extraction Method: EPA 3546 **Extraction Date:** 01/19/21 11:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	600	J	ug/kg	860	110	5	
1,2,4-Trichlorobenzene	ND		ug/kg	1100	120	5	
Hexachlorobenzene	ND		ug/kg	650	120	5	
Bis(2-chloroethyl)ether	ND		ug/kg	970	150	5	
2-Chloronaphthalene	ND		ug/kg	1100	110	5	
1,2-Dichlorobenzene	ND		ug/kg	1100	190	5	
1,3-Dichlorobenzene	ND		ug/kg	1100	180	5	
1,4-Dichlorobenzene	ND		ug/kg	1100	190	5	
3,3'-Dichlorobenzidine	ND		ug/kg	1100	290	5	
2,4-Dinitrotoluene	ND		ug/kg	1100	220	5	
2,6-Dinitrotoluene	ND		ug/kg	1100	180	5	
Fluoranthene	17000		ug/kg	650	120	5	
4-Chlorophenyl phenyl ether	ND		ug/kg	1100	120	5	
4-Bromophenyl phenyl ether	ND		ug/kg	1100	160	5	
Bis(2-chloroisopropyl)ether	ND		ug/kg	1300	180	5	
Bis(2-chloroethoxy)methane	ND		ug/kg	1200	110	5	
Hexachlorobutadiene	ND		ug/kg	1100	160	5	
Hexachlorocyclopentadiene	ND		ug/kg	3100	980	5	
Hexachloroethane	ND		ug/kg	860	170	5	
Isophorone	ND		ug/kg	970	140	5	
Naphthalene	1200		ug/kg	1100	130	5	
Nitrobenzene	ND		ug/kg	970	160	5	
NDPA/DPA	ND		ug/kg	860	120	5	
n-Nitrosodi-n-propylamine	ND		ug/kg	1100	170	5	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	1100	370	5	
Butyl benzyl phthalate	ND		ug/kg	1100	270	5	
Di-n-butylphthalate	ND		ug/kg	1100	200	5	
Di-n-octylphthalate	ND		ug/kg	1100	370	5	

L2102689

01/25/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Date Collected: 01/15/21 15:00

Lab Number:

Report Date:

Lab ID: L2102689-05 D Date Coll

Client ID: TP-9 0.0-0.5FT 1145 MICHIGAN Date Received: 01/18/21

Sample Location: BUFFALO, NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	1100	100	5
Dimethyl phthalate	ND		ug/kg	1100	230	5
Benzo(a)anthracene	7400		ug/kg	650	120	5
Benzo(a)pyrene	7400		ug/kg	860	260	5
Benzo(b)fluoranthene	9000		ug/kg	650	180	5
Benzo(k)fluoranthene	3100		ug/kg	650	170	5
Chrysene	7100		ug/kg	650	110	5
Acenaphthylene	1300		ug/kg	860	170	5
Anthracene	2000		ug/kg	650	210	5
Benzo(ghi)perylene	4400		ug/kg	860	130	5
Fluorene	1200		ug/kg	1100	100	5
Phenanthrene	14000		ug/kg	650	130	5
Dibenzo(a,h)anthracene	990		ug/kg	650	120	5
Indeno(1,2,3-cd)pyrene	4600		ug/kg	860	150	5
Pyrene	15000		ug/kg	650	110	5
Biphenyl	ND		ug/kg	2400	250	5
4-Chloroaniline	ND		ug/kg	1100	200	5
2-Nitroaniline	ND		ug/kg	1100	210	5
3-Nitroaniline	ND		ug/kg	1100	200	5
4-Nitroaniline	ND		ug/kg	1100	440	5
Dibenzofuran	1000	J	ug/kg	1100	100	5
2-Methylnaphthalene	600	J	ug/kg	1300	130	5
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	1100	110	5
Acetophenone	ND		ug/kg	1100	130	5
Benzyl Alcohol	ND		ug/kg	1100	330	5
Carbazole	1400		ug/kg	1100	100	5

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	25-120
Phenol-d6	65	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	75	30-120
2,4,6-Tribromophenol	79	10-136
4-Terphenyl-d14	63	18-120

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date: 01/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/20/21 07:40

Analyst: IM

Extraction Method: EPA 3546

Extraction Date: 01/19/21 05:04

arameter	Result	Qualifier U	nits	RL		MDL
emivolatile Organics by GC/M	1S - Westborough	Lab for sam	ple(s):	01-05	Batch:	WG1456224-1
Acenaphthene	ND	u	ıg/kg	130		17.
1,2,4-Trichlorobenzene	ND	u	ıg/kg	160		19.
Hexachlorobenzene	ND	u	ıg/kg	99		18.
Bis(2-chloroethyl)ether	ND	u	ıg/kg	150		22.
2-Chloronaphthalene	ND	u	ıg/kg	160		16.
1,2-Dichlorobenzene	ND	u	ıg/kg	160		30.
1,3-Dichlorobenzene	ND	u	ıg/kg	160		28.
1,4-Dichlorobenzene	ND	u	ıg/kg	160		29.
3,3'-Dichlorobenzidine	ND	u	ıg/kg	160		44.
2,4-Dinitrotoluene	ND	u	ıg/kg	160		33.
2,6-Dinitrotoluene	ND	u	ıg/kg	160		28.
Fluoranthene	ND	u	ıg/kg	99		19.
4-Chlorophenyl phenyl ether	ND	u	ıg/kg	160		18.
4-Bromophenyl phenyl ether	ND	u	ıg/kg	160		25.
Bis(2-chloroisopropyl)ether	ND	u	ıg/kg	200		28.
Bis(2-chloroethoxy)methane	ND	u	ıg/kg	180		16.
Hexachlorobutadiene	ND	u	ıg/kg	160		24.
Hexachlorocyclopentadiene	ND	u	ıg/kg	470		150
Hexachloroethane	ND	u	ıg/kg	130		27.
Isophorone	ND	u	ıg/kg	150		21.
Naphthalene	ND	u	ıg/kg	160		20.
Nitrobenzene	ND	u	ıg/kg	150		24.
NDPA/DPA	ND	u	ıg/kg	130		19.
n-Nitrosodi-n-propylamine	ND	u	ıg/kg	160		26.

ND

ND

ND

ND

ND

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

160

160

160

160

160

57.

42.

31.

56.

15.

Bis(2-ethylhexyl)phthalate

Butyl benzyl phthalate

Di-n-butylphthalate

Di-n-octylphthalate

Diethyl phthalate

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

L2102689

Report Date: 01/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 01/20/21 07:40

Analyst:

IM

Extraction Method: EPA 3546

01/19/21 05:04 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - \	Vestborough	Lab for s	ample(s):	01-05	Batch:	WG1456224-1
Dimethyl phthalate	ND		ug/kg	160		35.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		26.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
Benzyl Alcohol	ND		ug/kg	160		51.
Carbazole	ND		ug/kg	160		16.

Project Name: MICHIGAN & BEST Lab Number: L2102689

Project Number: T0371-021-001 **Report Date:** 01/25/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546

Analytical Date: 01/20/21 07:40 Extraction Date: 01/19/21 05:04

Analyst: IM

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG1456224-1

Surrogate	%Recovery (Acceptance Qualifier Criteria
	,	
2-Fluorophenol	89	25-120
Phenol-d6	85	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	97	30-120
2,4,6-Tribromophenol	110	10-136
4-Terphenyl-d14	108	18-120

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbore	ough Lab Assoc	iated sample(s):	01-05 Ba	tch: WG1456224-2 WG14562	224-3	
Acenaphthene	76		80	31-137	5	50
1,2,4-Trichlorobenzene	72		76	38-107	5	50
Hexachlorobenzene	99		103	40-140	4	50
Bis(2-chloroethyl)ether	69		72	40-140	4	50
2-Chloronaphthalene	75		78	40-140	4	50
1,2-Dichlorobenzene	69		75	40-140	8	50
1,3-Dichlorobenzene	71		77	40-140	8	50
1,4-Dichlorobenzene	69		74	28-104	7	50
3,3'-Dichlorobenzidine	68		71	40-140	4	50
2,4-Dinitrotoluene	79		84	40-132	6	50
2,6-Dinitrotoluene	81		83	40-140	2	50
Fluoranthene	80		82	40-140	2	50
4-Chlorophenyl phenyl ether	80		85	40-140	6	50
4-Bromophenyl phenyl ether	91		91	40-140	0	50
Bis(2-chloroisopropyl)ether	53		58	40-140	9	50
Bis(2-chloroethoxy)methane	70		75	40-117	7	50
Hexachlorobutadiene	81		88	40-140	8	50
Hexachlorocyclopentadiene	56		59	40-140	5	50
Hexachloroethane	66		72	40-140	9	50
Isophorone	66		71	40-140	7	50
Naphthalene	74		79	40-140	7	50
Nitrobenzene	64		70	40-140	9	50
NDPA/DPA	78		81	36-157	4	50

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS -	Westborough Lab Assoc	iated sample(s):	01-05 Bat	ch: WG1456224-2 WG1456	6224-3	
n-Nitrosodi-n-propylamine	69		72	32-121	4	50
Bis(2-ethylhexyl)phthalate	82		82	40-140	0	50
Butyl benzyl phthalate	80		80	40-140	0	50
Di-n-butylphthalate	84		83	40-140	1	50
Di-n-octylphthalate	78		78	40-140	0	50
Diethyl phthalate	79		79	40-140	0	50
Dimethyl phthalate	78		78	40-140	0	50
Benzo(a)anthracene	79		81	40-140	3	50
Benzo(a)pyrene	82		86	40-140	5	50
Benzo(b)fluoranthene	86		88	40-140	2	50
Benzo(k)fluoranthene	76		83	40-140	9	50
Chrysene	78		81	40-140	4	50
Acenaphthylene	82		84	40-140	2	50
Anthracene	82		86	40-140	5	50
Benzo(ghi)perylene	82		90	40-140	9	50
Fluorene	77		81	40-140	5	50
Phenanthrene	77		79	40-140	3	50
Dibenzo(a,h)anthracene	84		90	40-140	7	50
Indeno(1,2,3-cd)pyrene	81		87	40-140	7	50
Pyrene	81		84	35-142	4	50
Biphenyl	81		85	37-127	5	50
4-Chloroaniline	56		63	40-140	12	50
2-Nitroaniline	78		79	47-134	1	50

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102689

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS -	Westborough Lab Associa	ated sample(s):	01-05 Bato	h: WG1456	6224-2 WG14562	24-3			
3-Nitroaniline	56		63		26-129	12		50	
4-Nitroaniline	70		71		41-125	1		50	
Dibenzofuran	78		81		40-140	4		50	
2-Methylnaphthalene	73		78		40-140	7		50	
1,2,4,5-Tetrachlorobenzene	92		97		40-117	5		50	
Acetophenone	70		75		14-144	7		50	
Benzyl Alcohol	70		73		40-140	4		50	
Carbazole	80		82		54-128	2		50	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	ual %Recovery Qua	Criteria
2-Fluorophenol	79	81	25-120
Phenol-d6	75	80	10-120
Nitrobenzene-d5	68	74	23-120
2-Fluorobiphenyl	84	88	30-120
2,4,6-Tribromophenol	110	111	10-136
4-Terphenyl-d14	96	98	18-120

METALS

01/15/21 08:20

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

SAMPLE RESULTS

Lab ID: L2102689-01

Client ID: TP-1 1-3FT 168 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Percent Solids:	80%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	8.10		mg/kg	0.479	0.100	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Barium, Total	179		mg/kg	0.479	0.083	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Cadmium, Total	0.704		mg/kg	0.479	0.047	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Chromium, Total	7.83		mg/kg	0.479	0.046	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Lead, Total	323		mg/kg	2.40	0.128	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Mercury, Total	0.435		mg/kg	0.101	0.066	1	01/20/21 02:52	2 01/22/21 19:52	EPA 7471B	1,7471B	BV
Selenium, Total	0.426	J	mg/kg	0.958	0.124	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD
Silver, Total	0.369	J	mg/kg	0.479	0.136	1	01/20/21 02:47	7 01/25/21 12:41	EPA 3050B	1,6010D	GD

01/15/21 09:25

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

SAMPLE RESULTS

Lab ID: L2102689-02

Client ID: TP-3 1-4FT 166 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	13.6		mg/kg	0.464	0.097	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Barium, Total	281		mg/kg	0.464	0.081	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Cadmium, Total	1.31		mg/kg	0.464	0.046	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Chromium, Total	11.0		mg/kg	0.464	0.045	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Lead, Total	847		mg/kg	2.32	0.124	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Mercury, Total	1.48		mg/kg	0.079	0.052	1	01/20/21 02:52	2 01/22/21 20:32	EPA 7471B	1,7471B	BV
Selenium, Total	0.835	J	mg/kg	0.928	0.120	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD
Silver, Total	0.343	J	mg/kg	0.464	0.131	1	01/20/21 02:47	7 01/25/21 13:14	EPA 3050B	1,6010D	GD

01/15/21 10:50

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

SAMPLE RESULTS

Lab ID: L2102689-03

Client ID: TP-5 1-4.5FT 81 EDNA Date Received: 01/18/21
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Prep Dilution Date Date Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 7.92 mg/kg 0.494 0.103 1 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD Barium, Total 188 mg/kg 0.494 0.086 1 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD 1 Cadmium, Total 1.48 mg/kg 0.494 0.048 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD 1 Chromium, Total 10.8 mg/kg 0.494 0.047 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD 1040 2.47 0.132 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD Lead, Total mg/kg 1 1,7471B Mercury, Total 1.17 0.097 0.063 1 01/20/21 02:52 01/22/21 20:35 EPA 7471B BV mg/kg J Selenium, Total 0.514 mg/kg 0.988 0.128 1 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD Silver, Total 0.168 J 0.494 0.140 1 01/20/21 02:47 01/25/21 13:19 EPA 3050B 1,6010D GD mg/kg

01/15/21 14:15

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

SAMPLE RESULTS

Lab ID: L2102689-04

Client ID: TP-8 3-4FT 160 BEST Date Received: 01/18/21
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Prep Dilution Date Date Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 2.93 mg/kg 0.497 0.103 1 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD Barium, Total 53.7 mg/kg 0.497 0.087 1 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD J 1 Cadmium, Total 0.447 mg/kg 0.497 0.049 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD 1 Chromium, Total 5.67 mg/kg 0.497 0.048 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD 37.7 0.133 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD Lead, Total mg/kg 2.48 1 1,7471B Mercury, Total ND 0.085 0.056 1 01/20/21 02:52 01/22/21 21:22 EPA 7471B BV mg/kg J Selenium, Total 0.383 mg/kg 0.994 0.128 1 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD Silver, Total ND 0.497 0.141 1 01/20/21 02:47 01/25/21 13:24 EPA 3050B 1,6010D GD mg/kg

01/15/21 15:00

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

SAMPLE RESULTS

Lab ID: L2102689-05

Client ID: TP-9 0.0-0.5FT 1145 MICHIGAN Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 77%

Percent Solids:	1170					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	9.58		mg/kg	0.504	0.105	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD
Barium, Total	132		mg/kg	0.504	0.088	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD
Cadmium, Total	1.17		mg/kg	0.504	0.049	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD
Chromium, Total	16.0		mg/kg	0.504	0.048	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD
Lead, Total	324		mg/kg	2.52	0.135	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD
Mercury, Total	0.442		mg/kg	0.095	0.062	1	01/20/21 02:52	01/22/21 21:25	EPA 7471B	1,7471B	BV
Selenium, Total	0.756	J	mg/kg	1.01	0.130	1	01/20/21 02:47	01/25/21 13:29	EPA 3050B	1,6010D	GD
Silver, Total	ND		mg/kg	0.504	0.143	1	01/20/21 02:47	7 01/25/21 13:29	EPA 3050B	1,6010D	GD

Project Name: MICHIGAN & BEST
Project Number: T0371-021-001

 Lab Number:
 L2102689

 Report Date:
 01/25/21

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for s	ample(s):	01-05 B	atch: Wo	G14564	51-1				
Arsenic, Total	0.092	J	mg/kg	0.400	0.083	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Barium, Total	ND		mg/kg	0.400	0.070	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Cadmium, Total	ND		mg/kg	0.400	0.039	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Chromium, Total	0.124	J	mg/kg	0.400	0.038	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Lead, Total	ND		mg/kg	2.00	0.107	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Selenium, Total	ND		mg/kg	0.800	0.103	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD
Silver, Total	ND		mg/kg	0.400	0.113	1	01/20/21 02:47	01/25/21 11:20	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-05 B	atch: Wo	G14564	52-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	01/20/21 02:52	01/22/21 19:45	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01-05 Ba	atch: WG145	6451-2 SRM L	ot Number:	D109-540			
Arsenic, Total	106		-		70-130	-		
Barium, Total	98		-		75-125	-		
Cadmium, Total	98		-		75-125	-		
Chromium, Total	103		-		70-130	-		
Lead, Total	97		-		72-128	-		
Selenium, Total	100		-		68-132	-		
Silver, Total	99		-		68-131	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-05 Ba	atch: WG145	6452-2 SRM L	ot Number:	D109-540			
Mercury, Total	98		-		60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD (RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-05	QC Ba	tch ID: WG145	6451-3	QC San	nple: L2102689-01	Client ID: TF	P-1 1-3FT	168 BEST
Arsenic, Total	8.10	11.6	28.4	174	Q	-	-	75-125	-	20
Barium, Total	179	194	306	65	Q	-	-	75-125	-	20
Cadmium, Total	0.704	4.95	4.99	86		-	-	75-125	-	20
Chromium, Total	7.83	19.4	24.5	86		-	-	75-125	-	20
Lead, Total	323	49.5	510	378	Q	-	-	75-125	-	20
Selenium, Total	0.426J	11.6	9.28	80		-	-	75-125	-	20
Silver, Total	0.369J	29.1	31.4	108		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated san	nple(s): 01-05	QC Ba	tch ID: WG145	6452-3	QC San	nple: L2102689-01	Client ID: TF	P-1 1-3FT	168 BEST
Mercury, Total	0.435	0.157	0.551	74	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MICHIGAN & BEST **Project Number:** T0371-021-001

Lab Number:

L2102689

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual I	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	95 QC Batch ID:	WG1456451-4 QC Sample:	L2102689-01	Client ID:	TP-1 1-3FT	168 BEST
Arsenic, Total	8.10	8.01	mg/kg	1		20
Barium, Total	179	140	mg/kg	24	Q	20
Cadmium, Total	0.704	0.810	mg/kg	14		20
Chromium, Total	7.83	10.7	mg/kg	31	Q	20
Lead, Total	323	313	mg/kg	3		20
Selenium, Total	0.426J	0.467J	mg/kg	NC		20
Silver, Total	0.369J	0.236J	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	95 QC Batch ID:	WG1456452-4 QC Sample:	L2102689-01	Client ID:	TP-1 1-3FT	168 BEST
Mercury, Total	0.435	0.583	mg/kg	29	Q	20

INORGANICS & MISCELLANEOUS

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date: 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-01

Client ID: TP-1 1-3FT 168 BEST

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 08:20

LO, NY Field Prep:

Date Received:

01/18/21 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	80.0		%	0.100	NA	1	-	01/19/21 10:28	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

L2102689

Report Date: 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-02

Client ID: TP-3 1-4FT 166 BEST

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 09:25

Date Received:

01/18/21

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	84.1		%	0.100	NA	1	-	01/19/21 10:28	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date: 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-03

Client ID: TP-5 1-4.5FT 81 EDNA

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 10:50

Date Received: Field Prep: 01/18/21

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	77.7		%	0.100	NA	1	-	01/19/21 10:28	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102689

Report Date: 01/25/21

SAMPLE RESULTS

Lab ID: L2102689-04

Client ID: TP-8 3-4FT 160 BEST

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 14:15

Date Received:

01/18/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	78.2		%	0.100	NA	1	-	01/19/21 10:28	121,2540G	RI

Project Name: MICHIGAN & BEST Lab Number:

L2102689

Project Number: T0371-021-001 Report Date:

01/25/21

SAMPLE RESULTS

Lab ID: L2102689-05 Date Collected:

01/15/21 15:00

Client ID:

TP-9 0.0-0.5FT 1145 MICHIGAN

Date Received:

01/18/21

Sample Location: BUFFALO, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	77.0		%	0.100	NA	1	-	01/19/21 10:28	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2102689

Report Date:

01/25/21

Parameter	Native Samp	ole D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated s	sample(s): 01-05	QC Batch ID:	WG1456283-1	QC Sample:	L2102687-01	Client ID:	DUP Sample
Solids, Total	87.5		88.2	%	1		20

Project Name:

Project Number:

MICHIGAN & BEST

T0371-021-001

Serial_No:01252116:36 **Lab Number:** L2102689

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Report Date: 01/25/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2102689-01A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2102689-01B	Vial Large Septa unpreserved (4oz)	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2102689-01C	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYTCL-8270(14),TS(7)
L2102689-01X	Vial MeOH preserved split	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2102689-01Y	Vial Water preserved split	Α	NA		2.2	Υ	Absent	20-JAN-21 06:02	NYTCL-8260-R2(14)
L2102689-01Z	Vial Water preserved split	Α	NA		2.2	Υ	Absent	20-JAN-21 06:02	NYTCL-8260-R2(14)
L2102689-02A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2102689-02B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYTCL-8270(14),TS(7)
L2102689-03A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.2	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2102689-03B	Vial Large Septa unpreserved (4oz)	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2102689-03C	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYTCL-8270(14),TS(7)
L2102689-03X	Vial MeOH preserved split	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2102689-03Y	Vial Water preserved split	Α	NA		2.2	Υ	Absent	20-JAN-21 06:02	NYTCL-8260-R2(14)
L2102689-03Z	Vial Water preserved split	Α	NA		2.2	Υ	Absent	20-JAN-21 06:02	NYTCL-8260-R2(14)
L2102689-04A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2102689-04B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYTCL-8270(14),TS(7)
L2102689-05A	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.2	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2102689-05B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYTCL-8270(14),TS(7)

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:MICHIGAN & BESTLab Number:L2102689Project Number:T0371-021-001Report Date:01/25/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 17 Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: Mich	Jay oper Ave, Suite 1	BEST	Pag	e of 1	Deliv	in erable ASP		1/1	ASP	-B IS (4 File)	ALPHA Job # L 2 10 2(Billing Information Same as Client Info	
Client Information		Project # 16371-	021-00				15	Othe				- 411 177	1.5.0	
Client: Turnkey (Environmental	(Use Project name as Project name)					Regu	latory	Requirer	nent	1	THE SALE	Disposal Site Information	n
Address: 2558 High	My Kunpike	Project Manager: (A	ris Bor	20			R	NY TO	OGS Standards		NY Pa	art 375 P-51	Please identify below location	
Phone: (7-16) 818-	The second secon	Turn-Around Time		1000	TENN VERS	- 520 - 63	lΠ	0	estricted U	te 🗆	Other		Disposal Facility:	
	0583	Standard	N-	Due Date	·		۱ñ		restricted		3,070		□ NJ □ NY	
Email: The wend to	inker 11c.com	Rush (only if pre approved)		# of Days			lΠ	and the	Sewer Disc				Other:	
These samples have b		ed by Alpha					ANA	LYSIS					Sample Filtration	T
Other project specific Please specify Metals		ents:					VOC 8260	1000	00 %				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	72	75	ACC. A					t
(Lab Use Only)			Date	Time	Matrix	Initials	E	35	07.2's				Sample Specific Comment	ts e
62689- 01		68 BEST	1/15/21	820	Soil	TAS	X	X	X					13
702	TP-3 1-4ft	166 BEST		925	1	1		1	X					2
703	TP-5 1-4.51			1050			X	x	\times					В
704	TP-8 3-4F			1915				X	X					2
705	TP-9 6.0-0.	5ft 1145 Michigan	1	1500	4	1		X	X					2
Name of Street									`					
					-			_		_	-			_
The state of the s					-				-	-				_
									-	_				+
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No				tainer Type	A	4 4	4				Please print clearly, legand completely. Samp not be logged in and turnaround time clock	oles can will not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished B	gge.	Date/	730 1615	Á	Réceiv	ved By	9096	1/2	121	Times . 40 19440 0040	estart until any ambiguit pesolved. BY EXECUT THIS COC, THE CLIE HAS READ AND AGR TO BE BOUND BY AL TERMS & CONDITION (See reverse side.)	ING NT REES PHA'S
Form No: 01-25 HC (rev. 30)-Sept-2013)												(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2102692

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Report Date: 02/02/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MICHIGAN & BEST **Project Number:** T0371-021-001

Lab Number: L2
Report Date: 02

L2102692 02/02/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2102692-01	TP-2 2-5FT 168 BEST	SOIL	BUFFALO, NY	01/15/21 09:50	01/18/21
L2102692-02	TP-3 2-4FT 168 BEST	SOIL	BUFFALO, NY	01/15/21 09:30	01/18/21
L2102692-03	TP-4 3-4FT 166 BEST	SOIL	BUFFALO, NY	01/15/21 10:15	01/18/21
L2102692-04	TP-6 0.0-0.5FT 81 EDNA	SOIL	BUFFALO, NY	01/15/21 11:50	01/18/21
L2102692-05	TP-7 0.5-2.5FT 162 BEST	SOIL	BUFFALO, NY	01/15/21 13:20	01/18/21
L2102692-06	TP-7 0.5-2.5FT 164 BEST	SOIL	BUFFALO, NY	01/15/21 13:40	01/18/21
L2102692-07	TP-8 0.0-0.5FT 160 BEST	SOIL	BUFFALO, NY	01/15/21 14:20	01/18/21
L2102692-08	TP-10 0.0-0.5FT 1145 MICHIGAN	SOIL	BUFFALO, NY	01/15/21 15:20	01/18/21

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The Client IDs and analyses performed were specified by the client.

L2102692-08: The collection date and time on the chain of custody was 15-JAN-21 15:20; however, the collection date/time on the container label was 15-JAN-21 15:10. At the client's request, the collection date/time is reported as 15-JAN-21 15:20.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Nachelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Alaka

Date: 02/02/21

ORGANICS

SEMIVOLATILES

L2102692

01/15/21 09:50

Not Specified

01/18/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 02/02/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2102692-01

Client ID: TP-2 2-5FT 168 BEST

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8270D

Analytical Date: 01/31/21 04:46

Analyst: Percent Solids: SLR 85%

Extraction Method: EPA 3546

Extraction Date: 01/27/21 18:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	ND		ug/kg	150	20.	1	
Fluoranthene	320		ug/kg	120	22.	1	
Naphthalene	24	J	ug/kg	190	23.	1	
Benzo(a)anthracene	180		ug/kg	120	22.	1	
Benzo(a)pyrene	170		ug/kg	150	47.	1	
Benzo(b)fluoranthene	240		ug/kg	120	32.	1	
Benzo(k)fluoranthene	58	J	ug/kg	120	31.	1	
Chrysene	150		ug/kg	120	20.	1	
Acenaphthylene	ND		ug/kg	150	30.	1	
Anthracene	38	J	ug/kg	120	38.	1	
Benzo(ghi)perylene	110	J	ug/kg	150	23.	1	
Fluorene	ND		ug/kg	190	19.	1	
Phenanthrene	180		ug/kg	120	23.	1	
Dibenzo(a,h)anthracene	28	J	ug/kg	120	22.	1	
Indeno(1,2,3-cd)pyrene	120	J	ug/kg	150	27.	1	
Pyrene	280		ug/kg	120	19.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	67	30-120	
4-Terphenyl-d14	50	18-120	

L2102692

Project Name: Lab Number: MICHIGAN & BEST

Project Number: Report Date: T0371-021-001 02/02/21

SAMPLE RESULTS

Lab ID: L2102692-02 Date Collected: 01/15/21 09:30

Date Received: Client ID: TP-3 2-4FT 168 BEST 01/18/21 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 01/27/21 18:00 Analytical Method: 1,8270D Analytical Date: 01/31/21 05:12

Analyst: SLR 81% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	stborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
Fluoranthene	160		ug/kg	120	23.	1	
Naphthalene	25	J	ug/kg	200	25.	1	
Benzo(a)anthracene	90	J	ug/kg	120	23.	1	
Benzo(a)pyrene	82	J	ug/kg	160	50.	1	
Benzo(b)fluoranthene	120		ug/kg	120	34.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1	
Chrysene	88	J	ug/kg	120	21.	1	
Acenaphthylene	ND		ug/kg	160	31.	1	
Anthracene	ND		ug/kg	120	40.	1	
Benzo(ghi)perylene	66	J	ug/kg	160	24.	1	
Fluorene	ND		ug/kg	200	20.	1	
Phenanthrene	100	J	ug/kg	120	25.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1	
Indeno(1,2,3-cd)pyrene	79	J	ug/kg	160	28.	1	
Pyrene	130		ug/kg	120	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	67	30-120	
4-Terphenyl-d14	56	18-120	

L2102692

02/02/21

Project Name: MICHIGAN & BEST

01/31/21 05:37

Project Number: T0371-021-001

SAMPLE RESULTS

01/15/21 13:20

Lab Number:

Report Date:

Lab ID: Date Collected: L2102692-05

Date Received: Client ID: TP-7 0.5-2.5FT 162 BEST 01/18/21 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/27/21 18:00 Analytical Method: 1,8270D

Analyst: SLR 86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	ND		a/lsa	150	20.	1
·			ug/kg			<u> </u>
Fluoranthene	240		ug/kg	110	22.	1
Naphthalene	ND		ug/kg	190	23.	1
Benzo(a)anthracene	140		ug/kg	110	21.	1
Benzo(a)pyrene	110	J	ug/kg	150	46.	1
Benzo(b)fluoranthene	170		ug/kg	110	32.	1
Benzo(k)fluoranthene	38	J	ug/kg	110	30.	1
Chrysene	110		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	75	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	120		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	88	J	ug/kg	150	26.	1
Pyrene	190		ug/kg	110	19.	1

Surrogate	% Recovery		otance teria
Nitrobenzene-d5	83	23	3-120
2-Fluorobiphenyl	74	30)-120
4-Terphenyl-d14	57	18	3-120

L2102692

01/15/21 13:40

Not Specified

01/18/21

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 02/02/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2102692-06

Client ID: TP-7 0.5-2.5FT 164 BEST

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 01/31/21 06:03

Analyst: SLR 84% Percent Solids:

Extraction Method: EPA 3546

Extraction Date: 01/27/21 18:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Semivolatile Organics by GC/MS - We	Semivolatile Organics by GC/MS - Westborough Lab										
Acenaphthene	ND		ug/kg	160	20.	1					
Fluoranthene	300		ug/kg	120	23.	1					
Naphthalene	ND		ug/kg	200	24.	1					
Benzo(a)anthracene	170		ug/kg	120	22.	1					
Benzo(a)pyrene	140	J	ug/kg	160	48.	1					
Benzo(b)fluoranthene	190		ug/kg	120	33.	1					
Benzo(k)fluoranthene	59	J	ug/kg	120	32.	1					
Chrysene	140		ug/kg	120	20.	1					
Acenaphthylene	ND		ug/kg	160	30.	1					
Anthracene	40	J	ug/kg	120	38.	1					
Benzo(ghi)perylene	91	J	ug/kg	160	23.	1					
Fluorene	23	J	ug/kg	200	19.	1					
Phenanthrene	180		ug/kg	120	24.	1					
Dibenzo(a,h)anthracene	24	J	ug/kg	120	23.	1					
Indeno(1,2,3-cd)pyrene	100	J	ug/kg	160	27.	1					
Pyrene	240		ug/kg	120	20.	1					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	60		18-120	

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

Report Date:

L2102692 02/02/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date:

Analyst:

01/27/21 16:55

WR

Extraction Method: EPA 3546 01/27/21 12:34 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	- Westborougl	n Lab for s	ample(s):	01-02,05-06	Batch:	WG1459221-1
Acenaphthene	ND		ug/kg	130	17.	
Fluoranthene	ND		ug/kg	99	19.	
Naphthalene	ND		ug/kg	160	20.	
Benzo(a)anthracene	ND		ug/kg	99	19.	
Benzo(a)pyrene	ND		ug/kg	130	40.	
Benzo(b)fluoranthene	ND		ug/kg	99	28.	
Benzo(k)fluoranthene	ND		ug/kg	99	26.	
Chrysene	ND		ug/kg	99	17.	
Acenaphthylene	ND		ug/kg	130	26.	
Anthracene	ND		ug/kg	99	32.	
Benzo(ghi)perylene	ND		ug/kg	130	19.	
Fluorene	ND		ug/kg	160	16.	
Phenanthrene	ND		ug/kg	99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg	99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	
Pyrene	ND		ug/kg	99	16.	

%Recovery Qua	Acceptance Ilifier Criteria
71	25-120
79	10-120
77	23-120
72	30-120
83	10-136
70	18-120
	77 72 83

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2102692

Report Date: 02/02/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s):	01-02,05-06	Batch:	WG1459221-2	WG1459221-3			
Acenaphthene	75		55		31-137	31		50	
Fluoranthene	81		60		40-140	30		50	
Naphthalene	69		54		40-140	24		50	
Benzo(a)anthracene	84		61		40-140	32		50	
Benzo(a)pyrene	81		61		40-140	28		50	
Benzo(b)fluoranthene	88		63		40-140	33		50	
Benzo(k)fluoranthene	64		54		40-140	17		50	
Chrysene	74		53		40-140	33		50	
Acenaphthylene	78		59		40-140	28		50	
Anthracene	76		55		40-140	32		50	
Benzo(ghi)perylene	73		53		40-140	32		50	
Fluorene	80		60		40-140	29		50	
Phenanthrene	78		57		40-140	31		50	
Dibenzo(a,h)anthracene	74		54		40-140	31		50	
Indeno(1,2,3-cd)pyrene	83		59		40-140	34		50	
Pyrene	79		60		35-142	27		50	

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Lab Number:

L2102692

Project Number: T0371-021-001

Report Date:

02/02/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02,05-06 Batch: WG1459221-2 WG1459221-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	71	57	25-120
Phenol-d6	78	63	10-120
Nitrobenzene-d5	78	62	23-120
2-Fluorobiphenyl	73	56	30-120
2,4,6-Tribromophenol	91	68	10-136
4-Terphenyl-d14	76	57	18-120

METALS

01/15/21 09:50

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

SAMPLE RESULTS

Lab ID: L2102692-01

Client ID: TP-2 2-5FT 168 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Percent Solids:	85%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
T	C 111 1										
Total Metals - Man	stield Lab										
Arsenic, Total	6.04		mg/kg	0.444	0.092	1	01/27/21 06:55	01/28/21 14:15	EPA 3050B	1,6010D	GD
Barium, Total	127		mg/kg	0.444	0.077	1	01/27/21 06:55	01/28/21 14:15	EPA 3050B	1,6010D	GD
Cadmium, Total	0.755		mg/kg	0.444	0.044	1	01/27/21 06:55	5 01/28/21 14:15	EPA 3050B	1,6010D	GD
Chromium, Total	15.2		mg/kg	0.444	0.043	1	01/27/21 06:55	01/28/21 14:15	EPA 3050B	1,6010D	GD
Lead, Total	384		mg/kg	2.22	0.119	1	01/27/21 06:55	5 01/28/21 14:15	EPA 3050B	1,6010D	GD
Mercury, Total	0.813		mg/kg	0.073	0.048	1	01/27/21 08:05	5 01/27/21 18:27	EPA 7471B	1,7471B	VW
Selenium, Total	0.298	J	mg/kg	0.888	0.115	1	01/27/21 06:55	5 01/28/21 14:15	EPA 3050B	1,6010D	GD
Silver, Total	ND		mg/kg	0.444	0.126	1	01/27/21 06:55	5 01/28/21 14:15	EPA 3050B	1,6010D	GD

01/15/21 09:30

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

SAMPLE RESULTS

Lab ID: L2102692-02

Client ID: TP-3 2-4FT 168 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 81%

Percent Solids:	81%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	6.14		mg/kg	0.462	0.096	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD
Barium, Total	166		mg/kg	0.462	0.080	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD
Cadmium, Total	1.26		mg/kg	0.462	0.045	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD
Chromium, Total	9.43		mg/kg	0.462	0.044	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD
Lead, Total	53200		mg/kg	46.2	2.48	20	01/27/21 06:55	5 01/28/21 23:44	EPA 3050B	1,6010D	BV
Mercury, Total	0.255		mg/kg	0.077	0.050	1	01/27/21 08:05	5 01/27/21 18:30	EPA 7471B	1,7471B	VW
Selenium, Total	1.30		mg/kg	0.924	0.119	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD
Silver, Total	0.896		mg/kg	0.462	0.131	1	01/27/21 06:55	5 01/28/21 14:20	EPA 3050B	1,6010D	GD

01/15/21 13:20

Date Collected:

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

SAMPLE RESULTS

Lab ID: L2102692-05

Client ID: TP-7 0.5-2.5FT 162 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Percent Solids: 86%

Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.84		mg/kg	0.448	0.093	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Barium, Total	63.4		mg/kg	0.448	0.078	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Cadmium, Total	0.506		mg/kg	0.448	0.044	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Chromium, Total	6.20		mg/kg	0.448	0.043	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Lead, Total	264		mg/kg	2.24	0.120	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Mercury, Total	0.347		mg/kg	0.074	0.049	1	01/27/21 08:05	5 01/27/21 18:33	EPA 7471B	1,7471B	VW
Selenium, Total	0.350	J	mg/kg	0.896	0.116	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV
Silver, Total	ND		mg/kg	0.448	0.127	1	01/27/21 06:55	5 01/29/21 01:08	EPA 3050B	1,6010D	BV

01/15/21 13:40

Date Collected:

 Project Name:
 MICHIGAN & BEST
 Lab Number:
 L2102692

 Project Number:
 T0371-021-001
 Report Date:
 02/02/21

SAMPLE RESULTS

Lab ID: L2102692-06

Client ID: TP-7 0.5-2.5FT 164 BEST Date Received: 01/18/21
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 84%

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Factor **Prepared** Analyzed Method Result Units RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 3.35 mg/kg 0.455 0.095 1 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D BV Barium, Total 186 mg/kg 0.455 0.079 1 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D ΒV 1 Cadmium, Total 0.992 mg/kg 0.455 0.045 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D BV 1 Chromium, Total 16.1 mg/kg 0.455 0.044 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D ΒV 2470 2.28 0.122 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D в۷ Lead, Total mg/kg 1 1,7471B Mercury, Total 0.402 0.075 0.049 1 01/27/21 08:05 01/27/21 18:37 EPA 7471B VW mg/kg J Selenium, Total 0.300 mg/kg 0.910 0.117 1 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D ΒV Silver, Total ND 0.455 0.129 1 01/27/21 06:55 01/29/21 01:13 EPA 3050B 1,6010D ΒV mg/kg

Project Name: MICHIGAN & BEST
Project Number: T0371-021-001

 Lab Number:
 L2102692

 Report Date:
 02/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-02,05-	06 Bate	ch: WG	1458809-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Barium, Total	ND	mg/kg	0.400	0.070	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Cadmium, Total	ND	mg/kg	0.400	0.039	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Chromium, Total	ND	mg/kg	0.400	0.038	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Lead, Total	ND	mg/kg	2.00	0.107	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Selenium, Total	ND	mg/kg	0.800	0.103	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD
Silver, Total	ND	mg/kg	0.400	0.113	1	01/27/21 06:55	01/28/21 13:24	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	01-02,05-	-06 Bat	ch: WG	1458810-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	01/27/21 08:05	01/27/21 18:00	1,7471B	VW

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102692

Report Date:

02/02/21

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02,05-06	Batch: WG1458809-2	SRM Lot Number: D109-540			
Arsenic, Total	110	-	70-130	-		
Barium, Total	103	-	75-125	-		
Cadmium, Total	96	-	75-125	-		
Chromium, Total	99	-	70-130	-		
Lead, Total	103	-	72-128	-		
Selenium, Total	111	-	68-132	-		
Silver, Total	105	-	68-131	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02,05-06	Batch: WG1458810-2	SRM Lot Number: D109-540			
Mercury, Total	89	-	60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102692

02/02/21

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Four		Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-0	02,05-06	QC Batch ID: W	/G1458809-3	QC Sample: L21	04084-01 Client	ID: MS Samp	ole
Arsenic, Total	1.65	11.4	12.4	94			75-125	-	20
Barium, Total	94.7	190	273	94			75-125	-	20
Cadmium, Total	0.295J	4.84	4.46	92			75-125	-	20
Chromium, Total	8.27	19	24.3	84			75-125	-	20
Lead, Total	4.40J	48.4	44.6	92			75-125	-	20
Selenium, Total	ND	11.4	10.9	96			75-125	-	20
Silver, Total	ND	28.5	25.7	90			75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-0	02,05-06	QC Batch ID: W	/G1458810-3	QC Sample: L21	03814-01 Client	ID: MS Samp	ole
Mercury, Total	4.43	0.255	3.98	0	Q		80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MICHIGAN & BEST **Project Number:** T0371-021-001

Lab Number:

L2102692

Report Date: 02/02/21

Parameter	Native	Sample	Duplicate Sam	nple Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associ	iated sample(s): 01-02,05-06	QC Batch ID:	WG1458809-4	QC Sample: L21040	84-01 CI	ient ID: DL	IP Sample
Arsenic, Total	1.	65	1.30	mg/kg	24	Q	20
Barium, Total	94	4.7	64.8	mg/kg	37	Q	20
Cadmium, Total	0.2	95J	0.209J	mg/kg	NC		20
Chromium, Total	8.	27	6.70	mg/kg	21	Q	20
Lead, Total	4.	40J	4.46J	mg/kg	NC		20
Selenium, Total	N	ID	ND	mg/kg	NC		20
Silver, Total	N	ID	ND	mg/kg	NC		20
otal Metals - Mansfield Lab Associ	iated sample(s): 01-02,05-06	QC Batch ID:	WG1458810-4	QC Sample: L21038	14-01 CI	ient ID: DL	JP Sample
Mercury, Total	4.	.43	5.38	mg/kg	19		20

INORGANICS & MISCELLANEOUS

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

L2102692

Report Date: 02/02/21

SAMPLE RESULTS

Lab ID: L2102692-01

Client ID: TP-2 2-5FT 168 BEST

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 09:50

Date Received:

01/18/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	85.4		%	0.100	NA	1	-	01/27/21 10:04	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2102692

Report Date: 02/02/21

SAMPLE RESULTS

Lab ID: L2102692-02

Client ID: TP-3 2-4FT 168 BEST

Sample Location: BUFFALO, NY

Date Collected:

01/15/21 09:30

Date Received:

01/18/21

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	ס								
Solids, Total	81.4		%	0.100	NA	1	-	01/27/21 10:04	121,2540G	RI

Project Name: MICHIGAN & BEST Lab Number: L2102692

Project Number: T0371-021-001 **Report Date:** 02/02/21

SAMPLE RESULTS

Lab ID: L2102692-05 Date Collected: 01/15/21 13:20

Client ID: TP-7 0.5-2.5FT 162 BEST Date Received: 01/18/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	85.8		%	0.100	NA	1	-	01/27/21 10:04	121,2540G	RI

Project Name: MICHIGAN & BEST

Lab Number:

L2102692

Project Number: T0371-021-001 Report Date:

Date Collected:

02/02/21

01/15/21 13:40

SAMPLE RESULTS

Lab ID: L2102692-06

TP-7 0.5-2.5FT 164 BEST

Date Received:

Sample Location: BUFFALO, NY

01/18/21 Not Specified Field Prep:

Sample Depth:

Matrix:

Client ID:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	84.0		%	0.100	NA	1	-	01/27/21 10:04	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2102692

Report Date:

02/02/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-02,05-06	QC Batch ID: WG1459036-1	QC Sample	: L21026	92-01 (Client ID: TP-2 2-
Solids, Total	85.4	84.6	%	1		20

Project Name:

Project Number:

MICHIGAN & BEST

T0371-021-001

Project Name: MICHIGAN & BEST *Lab Number:* L2102692 **Project Number:** T0371-021-001

Report Date: 02/02/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial		Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	· · ·	Pres	Seal	Date/Time	Analysis(*)
L2102692-01A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2102692-01B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYCP51-PAH(14),TS(7)
L2102692-02A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2102692-02B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYCP51-PAH(14),TS(7)
L2102692-03A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-METAL(180)
L2102692-03B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L2102692-04A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-METAL(180)
L2102692-04B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L2102692-05A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2102692-05B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYCP51-PAH(14),TS(7)
L2102692-06A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2102692-06B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		NYCP51-PAH(14),TS(7)
L2102692-07A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-METAL(180)
L2102692-07B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L2102692-08A	Glass 60mL/2oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-METAL(180)
L2102692-08B	Glass 120ml/4oz unpreserved	Α	NA		2.2	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)

Project Name: Lab Number: MICHIGAN & BEST L2102692 **Project Number:** T0371-021-001 **Report Date:** 02/02/21

GLOSSARY

Acronyms

EDL

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Laboratory Control Sample Duplicate: Refer to LCS.

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

> adjustments from dilutions, concentrations or moisture content, where applicable. - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:MICHIGAN & BESTLab Number:L2102692Project Number:T0371-021-001Report Date:02/02/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 17

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 4/28/2020 9:42:21 AM Department: Quality Assurance Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con Project Information Project Name: W	Vay		Page	-	Deliv	Date Rec in Lab		1/19	121 ASP-E		Billing I	A Job# 2 10 269 Information Ime as Client Info	12
FAX: 508-898-9193 Client Information	FAX: 508-822-3288	Project Location:	in Delo	Ny				EQuIS (1 Other	File)	Second		6 (4 File)	PO#		
Client: Turn Key Er	witement	(Use Project name as Pr	oject#)				Reg	ulatory Req	uireme	nt		150	Disposa	al Site Information	
Address: 2558 Ho	What Korpila	Project Manager: Ch	iris I	Soton			-	NY TOGS AWQ Stand	dards		NY Par NY CP-		1-2-0 mm 2-15-0 mm	dentify below location le disposal facilities.	of
Phone: (741) 818	-8358	Turn-Around Time				Continue.		NY Restrict	ed Use		Other		Disposal	Facility:	
Fax: (76) - 856 Email: TBerrent	Chule, He con	Standard Rush (only if pre approved		Due Date # of Days	75		1 =	NY Unrestri					☐ NJ	NY Ner:	
These samples have b	een previously analyze	ed by Alpha					ANA	LYSIS			_		Sample	Filtration	T
Other project specific	Hole	A11 1 1	ຣ໌ເອ				Vec NLY	S METALS					Dor Lab Present Lab	to do vation to do	o t a l B o
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		ection	Sample	Sampler's	100	4						Specify below)	t 1
02692 - 61	TP-2 2-561	110 2 -	Date	Time	Matrix	Initials	1	_	+-	\vdash	_	_		Specific Comments	e
The second secon	TP-3 2-461	168 Best 168 Best	1/15/20	950	50.	7413	X	×	+	\vdash	\rightarrow		H	6/2	2
702	TP-4 3-4 A		-	930	-	\vdash	X	X	+	\vdash	-	_	-		2
704	TP-6 0.0-0,5	166 BEST F SI EDNA	-	1015			X	X	+	\vdash	\rightarrow	_			2
75	TP-7 0.5-2.			1150		-4-	2		+	\vdash	\rightarrow	_			2
-a	TP-7 0.5-2.5			1320	 	\vdash		×	+	+	-	_	-		2
707	TP-8 6.0-05			1340		\vdash	X	×	+		-	-			2
708	TP-10 000	5 1145 michigan		1420	+-		X	X	+	\vdash	-	-			_
	10 0.000.	3 11.13 Michigan	-	1520	1	4			+				1	Ť.	2
Preservative Code:	Container Code	ELIVOREN SERVICIONES													
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No				reservative	4	A A	-				and c not be turna	e print clearly, legi completely. Sample e logged in and round time clock w	es can
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished E	By:	Date:	Time 955	Jan.	-	ved By:	JL.	1/14	12	134 0040	THIS HAS TO B TERM	until any ambiguitie ved. BY EXECUTII COC, THE CLIEN READ AND AGRE E BOUND BY ALP MS & CONDITIONS reverse side.)	NG IT ES PHA'S

ANALYTICAL REPORT

Lab Number: L2106250

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Report Date: 02/12/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number: L2106250 Report Date: 02/12/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2106250-01	TP-11 2-3FT	SOIL	T0371-021-001	02/09/21 08:30	02/09/21
L2106250-02	TP-17 2-3FT	SOIL	T0371-021-001	02/09/21 11:00	02/09/21
L2106250-03	TP-18 2-3FT	SOIL	T0371-021-001	02/09/21 12:00	02/09/21
L2106250-04	TP-11 6-7FT	SOIL	T0371-021-001	02/09/21 09:00	02/09/21
L2106250-05	TP-12 1-2FT	SOIL	T0371-021-001	02/09/21 09:30	02/09/21
L2106250-06	TP-16 0-1FT	SOIL	T0371-021-001	02/09/21 10:30	02/09/21
L2106250-07	TP-15 0.5-1.5FT	SOIL	T0371-021-001	02/09/21 10:00	02/09/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MICHIGAN & BESTLab Number:L2106250Project Number:T0371-021-001Report Date:02/12/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/12/21

Melissa Sturgis Melissa Sturgis

ANALYTICAL

ORGANICS

SEMIVOLATILES

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 02/12/21

Lab ID: L2106250-01 Client ID: TP-11 2-3FT

Date Received:

Date Collected:

Lab Number:

02/09/21 08:30 02/09/21

L2106250

Sample Location: T0371-021-001 Field Prep:

Not Specified

Sample Depth:

Percent Solids:

Matrix: Soil

1,8270D Analytical Method:

Analytical Date: 02/11/21 09:25

Analyst: JG 79% Extraction Method: EPA 3546

Extraction Date: 02/10/21 17:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	210		ug/kg	160	21.	1		
Fluoranthene	4200		ug/kg	120	24.	1		
Naphthalene	290		ug/kg	210	25.	1		
Benzo(a)anthracene	1900		ug/kg	120	23.	1		
Benzo(a)pyrene	1800		ug/kg	160	50.	1		
Benzo(b)fluoranthene	2200		ug/kg	120	35.	1		
Benzo(k)fluoranthene	800		ug/kg	120	33.	1		
Chrysene	2000		ug/kg	120	22.	1		
Acenaphthylene	320		ug/kg	160	32.	1		
Anthracene	730		ug/kg	120	40.	1		
Benzo(ghi)perylene	1000		ug/kg	160	24.	1		
Fluorene	310		ug/kg	210	20.	1		
Phenanthrene	3400		ug/kg	120	25.	1		
Dibenzo(a,h)anthracene	260		ug/kg	120	24.	1		
Indeno(1,2,3-cd)pyrene	1200		ug/kg	160	29.	1		
Pyrene	3600		ug/kg	120	20.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	51	23-120	
2-Fluorobiphenyl	46	30-120	
4-Terphenyl-d14	38	18-120	

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Lab Number: L2106250

Report Date: 02/12/21

Lab ID: L2106250-02

Client ID: TP-17 2-3FT Sample Location: T0371-021-001 Date Collected: 02/09/21 11:00 Date Received: 02/09/21

Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 02/11/21 08:12

Analyst: JG 80% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 02/10/21 17:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Acenaphthene	250		ug/kg	160	21.	1	
Fluoranthene	6200		ug/kg	120	24.	1	
Naphthalene	160	J	ug/kg	200	25.	1	
Benzo(a)anthracene	2800		ug/kg	120	23.	1	
Benzo(a)pyrene	2600		ug/kg	160	50.	1	
Benzo(b)fluoranthene	3300		ug/kg	120	34.	1	
Benzo(k)fluoranthene	1100		ug/kg	120	33.	1	
Chrysene	2800		ug/kg	120	21.	1	
Acenaphthylene	230		ug/kg	160	32.	1	
Anthracene	920		ug/kg	120	40.	1	
Benzo(ghi)perylene	1600		ug/kg	160	24.	1	
Fluorene	280		ug/kg	200	20.	1	
Phenanthrene	4100		ug/kg	120	25.	1	
Dibenzo(a,h)anthracene	430		ug/kg	120	24.	1	
Indeno(1,2,3-cd)pyrene	1700		ug/kg	160	28.	1	
Pyrene	5100		ug/kg	120	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	64	23-120	
2-Fluorobiphenyl	58	30-120	
4-Terphenyl-d14	55	18-120	

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

SAMPLE RESULTS

Report Date: 02/12/21

Lab ID: L2106250-03

1,8270D

Client ID: TP-18 2-3FT Sample Location: T0371-021-001 Date Collected: Date Received: 02/09/21 Field Prep: Not Specified

Lab Number:

02/09/21 12:00

L2106250

Analytical Method:

Sample Depth: Matrix: Soil

Extraction Method: EPA 3546 **Extraction Date:** 02/10/21 17:38

Analytical Date: 02/11/21 16:36

Analyst: SZ 81% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	63	J	ug/kg	160	21.	1
Fluoranthene	1200		ug/kg	120	23.	1
Naphthalene	95	J	ug/kg	200	25.	1
Benzo(a)anthracene	640		ug/kg	120	23.	1
Benzo(a)pyrene	520		ug/kg	160	50.	1
Benzo(b)fluoranthene	730		ug/kg	120	34.	1
Benzo(k)fluoranthene	270		ug/kg	120	32.	1
Chrysene	560		ug/kg	120	21.	1
Acenaphthylene	73	J	ug/kg	160	31.	1
Anthracene	200		ug/kg	120	40.	1
Benzo(ghi)perylene	300		ug/kg	160	24.	1
Fluorene	68	J	ug/kg	200	20.	1
Phenanthrene	790		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	71	J	ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	340		ug/kg	160	28.	1
Pyrene	970		ug/kg	120	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	64	30-120	
4-Terphenyl-d14	58	18-120	

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

L2106250

Report Date: 02/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 02/10/21 08:52

Analyst: IM Extraction Method: EPA 3546

02/10/21 02:24 **Extraction Date:**

arameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-03	Batch:	WG1463259-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	97		18.
Naphthalene	ND		ug/kg	160		20.
Benzo(a)anthracene	ND		ug/kg	97		18.
Benzo(a)pyrene	ND		ug/kg	130		39.
Benzo(b)fluoranthene	ND		ug/kg	97		27.
Benzo(k)fluoranthene	ND		ug/kg	97		26.
Chrysene	ND		ug/kg	97		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	97		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	97		20.
Dibenzo(a,h)anthracene	ND		ug/kg	97		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		22.
Pyrene	ND		ug/kg	97		16.

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	83	25-120
Phenol-d6	88	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	96	30-120
2,4,6-Tribromophenol	98	10-136
4-Terphenyl-d14	105	18-120

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2106250

arameter	LCS %Recovery	Qual	LCSD %Recover	ry	%Recovery Qual Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01-03 E	Batch:	WG1463259-2 WG146	3259-3		
Acenaphthene	106		94		31-137	12	ı	50
Fluoranthene	109		99		40-140	10		50
Naphthalene	95		87		40-140	9		50
Benzo(a)anthracene	113		103		40-140	9		50
Benzo(a)pyrene	115		102		40-140	12		50
Benzo(b)fluoranthene	119		102		40-140	15		50
Benzo(k)fluoranthene	111		100		40-140	10		50
Chrysene	113		102		40-140	10		50
Acenaphthylene	105		95		40-140	10		50
Anthracene	112		101		40-140	10		50
Benzo(ghi)perylene	113		101		40-140	11		50
Fluorene	105		94		40-140	11		50
Phenanthrene	109		98		40-140	11		50
Dibenzo(a,h)anthracene	116		104		40-140	11		50
Indeno(1,2,3-cd)pyrene	113		103		40-140	9		50
Pyrene	106		96		35-142	10		50

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Lab Number:

L2106250

Project Number: T0371-021-001

Report Date:

02/12/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1463259-2 WG1463259-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	89	81	25-120
Phenol-d6	94	85	10-120
Nitrobenzene-d5	92	86	23-120
2-Fluorobiphenyl	107	98	30-120
2,4,6-Tribromophenol	121	109	10-136
4-Terphenyl-d14	116	104	18-120

METALS

SAMPLE RESULTS

 Lab ID:
 L2106250-01
 Date Collected:
 02/09/21 08:30

 Client ID:
 TP-11 2-3FT
 Date Received:
 02/09/21

 Sample Location:
 T0371-021-001
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 79%

Percent Solids:	1970					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Tatal Matala Mass	- C - L - L - L										
Total Metals - Man	stield Lab										
Arsenic, Total	12.9		mg/kg	0.500	0.104	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Barium, Total	185		mg/kg	0.500	0.087	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Cadmium, Total	ND		mg/kg	0.500	0.049	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Chromium, Total	21.0		mg/kg	0.500	0.048	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Lead, Total	1210		mg/kg	2.50	0.134	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Mercury, Total	0.531		mg/kg	0.087	0.057	1	02/11/21 01:47	7 02/11/21 12:54	EPA 7471B	1,7471B	EW
Selenium, Total	1.13		mg/kg	1.00	0.129	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD
Silver, Total	0.390	J	mg/kg	0.500	0.142	1	02/11/21 01:55	5 02/11/21 11:17	EPA 3050B	1,6010D	GD

SAMPLE RESULTS

 Lab ID:
 L2106250-02
 Date Collected:
 02/09/21 11:00

 Client ID:
 TP-17 2-3FT
 Date Received:
 02/09/21

 Sample Location:
 T0371-021-001
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 80%

reiterit Solius.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Total Motalo Man	onora zab										
Arsenic, Total	5.58		mg/kg	0.498	0.104	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Barium, Total	144		mg/kg	0.498	0.087	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Cadmium, Total	0.055	J	mg/kg	0.498	0.049	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Chromium, Total	8.13		mg/kg	0.498	0.048	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Lead, Total	182		mg/kg	2.49	0.134	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Mercury, Total	0.420		mg/kg	0.091	0.060	1	02/11/21 01:47	7 02/11/21 12:57	EPA 7471B	1,7471B	EW
Selenium, Total	0.169	J	mg/kg	0.997	0.128	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD
Silver, Total	0.239	J	mg/kg	0.498	0.141	1	02/11/21 01:55	5 02/11/21 11:22	EPA 3050B	1,6010D	GD

SAMPLE RESULTS

 Lab ID:
 L2106250-03
 Date Collected:
 02/09/21 12:00

 Client ID:
 TP-18 2-3FT
 Date Received:
 02/09/21

 Sample Location:
 T0371-021-001
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 81%

reident Solids.	0170					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	21.6		mg/kg	0.471	0.098	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Barium, Total	433		mg/kg	0.471	0.082	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Cadmium, Total	2.41		mg/kg	0.471	0.046	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Chromium, Total	22.8		mg/kg	0.471	0.045	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Lead, Total	3580		mg/kg	2.35	0.126	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Mercury, Total	0.586		mg/kg	0.084	0.055	1	02/11/21 01:47	7 02/11/21 13:00	EPA 7471B	1,7471B	EW
Selenium, Total	0.890	J	mg/kg	0.942	0.121	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD
Silver, Total	0.918		mg/kg	0.471	0.133	1	02/11/21 01:55	5 02/11/21 11:26	EPA 3050B	1,6010D	GD

Project Name: MICHIGAN & BEST
Project Number: T0371-021-001

 Lab Number:
 L2106250

 Report Date:
 02/12/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-03 B	atch: Wo	G14634	94-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Barium, Total	ND	mg/kg	0.400	0.070	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Cadmium, Total	ND	mg/kg	0.400	0.039	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Chromium, Total	ND	mg/kg	0.400	0.038	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Lead, Total	ND	mg/kg	2.00	0.107	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Selenium, Total	ND	mg/kg	0.800	0.103	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD
Silver, Total	ND	mg/kg	0.400	0.113	1	02/11/21 01:55	02/11/21 08:32	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	01-03 B	atch: W	G14634	95-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	02/11/21 01:47	02/11/21 11:51	1 1,7471B	EW

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2106250

Parameter	LCS %Recover	y Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 E	Batch: WG14	63494-2 SRM	Lot Number:	D109-540			
Arsenic, Total	117		-		70-130	-		
Barium, Total	106		-		75-125	-		
Cadmium, Total	111		-		75-125	-		
Chromium, Total	110		-		70-130	-		
Lead, Total	113		-		72-128	-		
Selenium, Total	115		-		68-132	-		
Silver, Total	112		-		68-131	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01-03 E	Batch: WG14	63495-2 SRM	Lot Number:	D109-540			
Mercury, Total	100		-		60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number: L2106250

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	y RPD Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Ba	tch ID: WG146	3494-3	QC Sam	ple: L2106227-01	Client ID: N	/IS Sample	
Arsenic, Total	467	14.3	703	1650	Q	-	-	75-125	-	20
Barium, Total	167	238	411	102		-	-	75-125	-	20
Cadmium, Total	ND	6.08	5.95	98		-	-	75-125	-	20
Chromium, Total	76.6	23.8	102	106		-	-	75-125	-	20
Lead, Total	278	60.8	407	212	Q	-	-	75-125	-	20
Selenium, Total	0.911J	14.3	15.6	109		-	-	75-125	-	20
Silver, Total	0.364J	35.8	36.2	101		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Ba	tch ID: WG146	3495-3	QC Sam	ple: L2106227-01	Client ID: N	//S Sample	
Mercury, Total	0.863	0.197	1.43	288	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MICHIGAN & BEST **Project Number:** T0371-021-001

Lab Number:

L2106250

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-03	3 QC Batch ID:	WG1463494-4 QC Sample:	L2106227-01	Client ID:	DUP Sam	ple
Arsenic, Total	467	242	mg/kg	63	Q	20
Barium, Total	167	130	mg/kg	25	Q	20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	76.6	35.1	mg/kg	74	Q	20
Lead, Total	278	183	mg/kg	41	Q	20
Selenium, Total	0.911J	0.380J	mg/kg	NC		20
Silver, Total	0.364J	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01-03	3 QC Batch ID:	WG1463495-4 QC Sample:	L2106227-01	Client ID:	DUP Sam	ple
Mercury, Total	0.863	1.60	mg/kg	60	Q	20

INORGANICS & MISCELLANEOUS

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001 Lab Number:

L2106250

Report Date: 02/12/21

SAMPLE RESULTS

Lab ID: L2106250-01

Client ID: TP-11 2-3FT Sample Location: T0371-021-001 Date Collected:

02/09/21 08:30

Date Received:

02/09/21

Not Specified Field Prep:

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	79.0		%	0.100	NA	1	-	02/11/21 06:52	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2106250

Report Date: 02/12/21

SAMPLE RESULTS

Lab ID: L2106250-02

Client ID: TP-17 2-3FT Sample Location: T0371-021-001

Date Collected:

02/09/21 11:00

Date Received:

02/09/21

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	80.3		%	0.100	NA	1	-	02/11/21 06:52	121,2540G	RI

Project Name: MICHIGAN & BEST

Project Number: T0371-021-001

Lab Number:

L2106250

Report Date: 02/12/21

SAMPLE RESULTS

Lab ID: L2106250-03

Client ID: TP-18 2-3FT Sample Location: T0371-021-001

Date Collected:

02/09/21 12:00

Date Received:

02/09/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	81.4		%	0.100	NA	1	-	02/11/21 06:52	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2106250

Report Date:

02/12/21

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG1463684-1	QC Sample:	L2106234-01	Client ID:	DUP Sample
Solids, Total	85.9		84.8	%	1		20

Project Name:

Project Number:

MICHIGAN & BEST

T0371-021-001

Lab Number: L2106250

Report Date: 02/12/21

Project Name: MICHIGAN & BEST **Project Number:** T0371-021-001

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2106250-01A	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2106250-01B	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		NYCP51-PAH(14),TS(7)
L2106250-02A	Vial Large Septa unpreserved (4oz)	A	NA		2.9	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2106250-02B	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		NYCP51-PAH(14),TS(7)
L2106250-03A	Vial Large Septa unpreserved (4oz)	A	NA		2.9	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2106250-03B	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		NYCP51-PAH(14),TS(7)
L2106250-04A	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2106250-04B	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		HOLD-8270(14)
L2106250-05A	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2106250-05B	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		HOLD-8270(14)
L2106250-06A	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2106250-06B	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		HOLD-8270(14)
L2106250-07A	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2106250-07B	Vial Large Septa unpreserved (4oz)	Α	NA		2.9	Υ	Absent		HOLD-8270(14)

Project Name: Lab Number: MICHIGAN & BEST L2106250 **Project Number:** T0371-021-001 **Report Date:** 02/12/21

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

SRM

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:MICHIGAN & BESTLab Number:L2106250Project Number:T0371-021-001Report Date:02/12/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 4/28/2020 9:42:21 AM Department: Quality Assurance Title: Certificate/Approval Program Summary Page 1 of 1

ID No.:17873

Revision 17

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Location: Project # 7037	JICh/ja	n + Bes		e f Z		erables ASP-A	ec'd ab O'		ASP-B EQuIS	2 (4 File)	ALPHA Job# L	
Client: TOTAKES E	TIU RESTORATION	(Use Project name as I					Regu	ilatory F	equireme	ent			Disposal Site Information	
Address: 2558 BUFFAID, NV	the Mary Trice	Project Manager:	115 Bur	in/ Cin	14 Fox	7		NY TOO			NY Part		Please identify below location of	
Dhana: -711 - 71	2 307	ALPHAQuote #:		No. of Lot	-			AWQ S		=	NY CP-5	51	applicable disposal facilities.	
Phone: 7/6 - 2/3 - 3437 Turn-Around Time Fax: Standard Due Date: Email: C Boron Open - 7k, torn Rush (only if pre approved) # of Days: NY Restricted Use NY Unrestricted Use NYC Sewer Discharge									Disposal Facility: NJ NY Other:					
These samples have b							ANA	LYSIS					Sample Filtration	
Other project specific		nents:					51 50063	843 101115					Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Coll	lection Time	Sample Matrix	Sampler's Initials	3	Rie					Sample Specific Comments	
06250-01	TP-11	2-3++	2/9/2/	830		NAS	X	X	_		\rightarrow	_	Sample Specific Comments	
-02	TF-17	2-37	19/01	11:00	SOI	1	X	2	_		\rightarrow	_		
-03	TP-13	2-3Pt 2-3Pt	1	12:00	1/	1	X	×						
				_	-		_	\vdash	-	\vdash	-		100	
							-	-		\vdash	-	_		
+,.														
Preservative Code:	Container Code	wit												
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification	<u> </u>	reservative	A	A 0			-		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not			
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished By: Date/T FIECURE STURIE AAL F. Many on AAL 2/9/21			16:00	Received By: Secure Stunege FMONGINE FMONGI				2/	9/21	15,00	LING IVEND HIND HOIVEES	
20.100						//							NW-8175-1000-1009-1115-1008-10	

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	Pag 2	e of 2		Date Rec in Lab	'd ОЭ	-110	121		ALPHA Job #6250	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300	Project Name:	16hin to	COST			ASP-A		\Box	SP-B		Same as Client Info	
PAA: 506-696-9183	FAX: 508-822-3288	Project Location: 72	371-621-	Qui		17	EQuIS (1	File)		QuIS (4 File	e) P	0#	
Client Information	The state of the s	Project # 70371 -	12/-02/			-	Other		-		1	5.00	
Client: TOTAKES &	NV Estances	(Use Project name as I		F		- Income	latory Requ	uireme	nt		0	Disposal Site Information	
Address: ZLTG /	Hansley, HAL	Project Manager: Ch				1	NY TOGS			IY Part 375		Please identify below location of	
BUFFALO NO	4	ALPHAQuote #:				-	AWQ Stand	ards	_	Y CP-51	100	pplicable disposal facilities.	
Phone: 710-71	3-3437	Turn-Around Time	RIST STATE	NAME OF TAXABLE PARTY.	HARRIS HALV		NY Restricte			Other	 D	Disposal Facility:	
Fax:		Standa	nd Di	ue Date:			NY Unrestri				F	¬ NJ □ NY	
Email: C BOYON	BA.TL. WA	Rush (only if pre approve	.—	of Days:		-	NYC Sewer				F	Other:	
These samples have b				or Days.		ANAL		Discrip	ge		-	Sample Filtration	
Other project specific						ANAL	.1313	_			- 1	Sample Filtration 0	
Please specify Metals	D HOUL					5/ 5000)	1 S Parting				Ē	Done t Lab to do Preservation Lab to do Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Collection	Sample	Sampler's	0	4.17				L	1	
	30.11			ime Matrix	Initials	0	Ru				s	ample Specific Comments	
06250 -04	18-11	6-774	2/4/21 9:		1195							Hold	
-05		1-2FL	9:		1							HOLL	
-06		0-184	10:		. /							HOW	
-07	79-15	0.5-1.5Ft	100	2	~							HOW	
THE HAND THE PARTY													
										\rightarrow			
								\vdash		\neg			
						\vdash				\neg			
SAME SERVICE AND ADDRESS OF THE PARTY OF THE						\vdash		\vdash		_	_		
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification	Container Ty			X O	~				-	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not	
	C = Cube O = Other	/ Relinquished	By:	Date/Time		Receive	ed By:	_	Г	Date/Time	_	start until any ambiguities are resolved. BY EXECUTING	
G = NaHSO ₄ H = Na ₂ S ₂ O ₃		THE RESERVE AND ADDRESS OF THE PERSON.						THIS COC, THE CLIENT					
K/E = Zn Ac/NaOH	D = BOD Bottle	Stune STON	ACTAL	121 15:00	1170					HAS READ AND AGREES			
0 = Other - Icl	= Other - 160 7/12, 16:4					47 Pullanus 2/9/21 16:47					TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		
Form No: 01-25 HC (rev. 30-	-Sept-2013)	1 company	71	121 16,41	11/11	200	The	>	ONTO	XI 00.4C	-	(See reverse side.)	
00 (00								e.,			100	AND THE PROPERTY OF THE PROPER	