REMEDIAL INVESTIGATION/ ALTERNATIVE ANALYSIS REPORT

AMHERST COMMONS BCP SITE NO. C915397

47 EAST AMHERST STREET BUFFALO, ERIE COUNTY, NEW YORK

Prepared for:

Amherst Commons LLC 1055 Saw Mill River Road #204 Ardsley, New York 10502

960 Busti Ave Suite B-150 Buffalo, New York, 14213

June 2025

TABLE OF CONTENTS

1.0 INTRO		1
1.1 SITE	E BACKGROUND	1
1.2 Iden	tification of Standards, Criteria, and Guidance	2
2.0 REME	DIAL INVESTIGATION approach	3
2.1 RI D	EVIATIONS	3
2.1.1	Soil Investigation Deviations	3
2.1.2	Groundwater Investigation Deviations	4
2.1.3	Soil Vapor Investigation Deviations	4
2.1.4	Radiological Survey	4
2.2 GPF	R Survey	5
2.3 SOI	L INVESTIGATION	5
2.3.1	Soil Boring Sampling	5
2.3.2	Test Trench Sampling	5
2.3.3	Monitoring Well Sampling	6
2.4 GR0	DUNDWATER INVESTIGATION	6
2.4.1	Bedrock Well Construction	6
2.4.2	Well Development	7
2.4.3	Groundwater Sampling	7
2.5 VAF	POR INVESTIGATION	7
2.5.1	Vapor Point Installation	7
2.5.2	Soil Vapor Sampling	7
2.6 Qua	lity Assurance/Quality Control Sampling	8
3.0 PHYSI	CAL CHARACTERISTICS OF THE AREA	9
3.1 Surf	ace Features	9
3.2 Sub	surface Features	9
3.2.1	Site Geology	9
3.2.2	Site Hydrogeology	
3.3 Dem	nography and Land Use	
	RĂTORÝ ANALYSIS	
4.1 Soil		. 11
4.2 Grou	undwater	. 11
4.3 Soil	Vapor	. 11
5.0 DISCL	ISSION OF RESULTS	. 12
	Sampling Analytical Results	
5.1.1	Metals	
5.1.2	SVOCs	. 14
5.1.3	VOCs	. 15
5.1.4	Organochlorine Pesticides	. 15
5.1.5	PCBs	. 15
5.1.6	PFAS	. 15
5.2 Grou	undwater Sample Analytical Results	. 15
5.2.1	Metals	. 15
5.2.2	SVOCs	. 16
5.2.3	VOCs	. 16
5.2.4	Organochlorine Pesticides	. 16
5.2.5	PCBs	. 16
5.2.6	PFAS	. 16

5.3	Vapor Sample Analytical Results	16
5.4	Contaminants of Concern	16
5.4	.1 Soil	16
5.4	.2 Groundwater	16
5.4	.3 Soil Vapor	16
6.0 F	ATE AND TRANSPORT OF CONTAMINANTS OF CONCERN	17
6.1	Fugitive Dust	17
6.2	Surface Water	17
6.3	Volatilization	17
6.4	Leaching	17
6.5	Groundwater Transport	
6.6	Exposure Pathway Summary	
7.0 0	QUALITATIVE EXPOSURE ASSESSMENT	19
7.1	Human Exposure	
7.1		
7.1	-	
7.1		
7.1	· · · · · · · · · · · · · · · · · · ·	
7.1	· · · · · · · · · · · · · · · · · · ·	
7.2	Ecological Exposure Risks	
8.0 F	REMEDIAL ALTERNATIVES ANALYSIS	
8.1	Remedial Action Objectives	
8.2	Alternatives Selection Factors	
8.3	Land Use Evaluation	
8.4	Selection of Alternatives for Evaluation	
8.4		
8.4		
8.5	Recommended Remedial Alternative	
9.0 0	CONCLUSIONS AND RECOMMENDATIONS	26

TABLES

- 1. Summary of Soil Analytical Results (April 2025)
- 2. Summary of Groundwater Analytical Results (April 2025)
- 3. Summary of Vapor Analytical Results (April 2025)
- 4. Phase II Soil Sampling Results (February 2023)
- 5. Boring, Monitoring Well and Test Trench GPS Coordinates
- 6. Monitoring Well and Groundwater Elevation Data

FIGURES

- 1. Site Location Map
- 2. Site Boundary Survey
- 3. Historical and RI Sampling Locations
- 4. RI Unrestricted Soil Exceedances
- 5. RI Restricted Residential Soil Exceedances
- 6. RI Groundwater Exceedances
- 7. Alternative 1 Track 4 Restricted Residential SCOs

- 8. Alternative 2 Track 1 Unrestricted Residential SCOs
- 9. Bedrock Contour Map
- 10. Project Schedule

APPENDICES

- A. Daily Field Reports
- B. Site Photographs
- C. Boring and Test Trench Logs
- D. Monitoring Well Construction/Bedrock Logs
- E. Well Development Logs
- F. Purge Logs
- G. Vapor Point Construction Logs
- H. DER-10 Appendix 3C Decision Key
- I. RI Deviation Information
- J. GPR Survey Results
- K. Alternative Cost Estimates
- L. Laboratory Analytical Data
- M. Data Usability Summary Reports

ACRONYMS

AARAlternative Analysis ReportACMAsbestos Containing MaterialADAAmericans with Disabilities ActBCABrownfield Cleanup AgreementBCPBrownfield Cleanup ProgramBE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
ADAAmericans with Disabilities ActBCABrownfield Cleanup AgreementBCPBrownfield Cleanup ProgramBE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
BCABrownfield Cleanup AgreementBCPBrownfield Cleanup ProgramBE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
BCPBrownfield Cleanup ProgramBE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
BCPBrownfield Cleanup ProgramBE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
BE3Brydges Engineering in Energy and EnvironmentbgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
bgsBelow Ground SurfaceC&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
Č&DConstruction and DemolitionCAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
CAMPCommunity Air Monitoring ProgramCOCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
COCContaminants of ConcernCPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
CPCommissioner PolicyDERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
DERDivision of Environmental RemediationDNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
DNAPLDense Nonaqueous Phase LiquidDODissolved Oxygen
DO Dissolved Oxygen
50
DUSR Data Usability Summary Report
EC Engineering Control
EE Environmental Easement
EIFS Exterior Insulation and Finish System
ELAP Environmental Laboratory Approval Program
EPA Environmental Protection Agency
ESA Environmental Site Assessment
EWP Excavation Work Plan
FEAF Full Environmental Assessment Form
GPR Ground Penetrating Radar
GPS Global Positioning System
GSF Gross Square Feet
HASP Health and Safety Plan
HSA Hollow Stem Auger
IC Institutional Control
ID Inside Diameter
μg/m ³ Micrograms per Cubic Meter
LNAPL Light Nonaqueous Phase Liquid
NTU Nephelometric Turbidity Units
NYCRR New York Codes, Rules and Regulations
•
NYSDOH New York State Department of Health
NYSDOT New York State Department of Transportation
NYSHCR New York State Homes and Community Renewal
ORP Oxidation-Reduction Potential
PAH Polycyclic Aromatic Hydrocarbon
PCB Polychlorinated Biphenyl
PDI Pre-Remedial Design Investigation
PFAS Per- and Polyfluoroalkyl Substances
PID Photoionization Detector
ppm Parts Per Million
PVC Polyvinyl Chloride
QA/QC Quality Assurance/Quality Control

QEP	Qualified Environmental Professional
QHHEA	Qualitative Human Health Exposure Assessment
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
SCG	Standards, Criteria, and Guidance
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SVOC	Semi-Volatile Organic Compound
SWPPP	Stormwater Pollution Prevention Plan
TAL	Target Analyte List
TCL	Target Compound List
TENORM	Technologically Enhanced Naturally Occurring Radioactive Material
TIC	Tentatively Identified Compound
TOGS	Technical and Operational Guidance Series
UST	Underground Storage Tank
VOC	Volatile Organic Compound
100	

CERTIFICATION

I, Jason Brydges, certify that I am currently a New York State registered professional engineer as defined in 6 New York Codes, Rules and Regulations (NYCRR) Part 375 and that this Remedial Investigation/Alternative Analysis Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Department of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Jason M. Brydges, PE

1.0 INTRODUCTION

Amherst Commons LLC has obtained an executed Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) as a volunteer for 47 East Amherst Street, Buffalo, Erie County, New York (i.e., the Site). The Site is associated with Brownfield Cleanup Program (BCP) Index No. C915397-07-23 and BCP Site No. C915397. Amherst Commons LLC has contracted Brydges Engineering in Environment and Energy (BE3) to conduct a Remedial Investigation (RI) and prepare an Alternatives Analysis Report (AAR) as required by the BCA. The total BCP Site area is approximately 3.330 acres. A site location map is provided as **Figure 1** and the site survey as **Figure 2**.

The RI/AAR was completed in accordance with BCP requirements as defined in Section 375-3.8 of the NYSDEC 6 NYCRR Part 375 Environmental Remediation Program Regulations. It is anticipated that the remedial measure selected will lead to a site remedy as defined in Part 375-1.8(g)(2)(ii), achieve soil cleanup objectives (SCOs) as defined in Part 375-6.8(b) and mitigate environmental impacted media issues at the Site.

1.1 SITE BACKGROUND

The 3.33-acre Site is composed of a single parcel located at 47 East Amherst Street (SBL No. 90.21-8-1) in the City of Buffalo, Erie County, New York. The Site is located on the southwest corner of the intersection of East Amherst Street and Holden Street approximately 0.75 miles east-northeast of the Buffalo Zoo, less than one mile north-northwest of Erie County Medical Center (ECMC) and 1.25 miles southwest of the University at Buffalo South Campus.

The Site currently contains one vacant building surrounded by an asphalt parking lot. The building is two stories in addition to a partial basement with limited current access to the second floor due to structural issues. The interior and exterior of the building have significant deterioration.

The topography of the Site is uneven and slopes north towards city streets and Lake Erie. In general, groundwater flows northwest towards Niagara River.

A Phase I Environmental Site Assessment (ESA) was conducted in January 2023. A review of historical records was conducted, including street directories and Sanborn Maps, which suggest the Site was occupied as follows:

- From at least 1916-1935: Buffalo Cement Co.
- 1950-1986: Bowling alley (no owner specified)
- 1994: Amherst Bowling Center and Family Pro Shop (joint occupancy)
- 1999-2004: Amherst Bowling Center

Three gasoline tanks, two grouped near the central western border and one near the southwest corner, were noted on the Site in the 1935 Sanborn Map. These tanks did not appear on any prior or subsequent maps.

A subsequent Phase II ESA was conducted in February 2023 which concluded that there are impacted soils across the Site due to the presence of urban fill. Impacted soils primarily consisted of metals and polycyclic aromatic hydrocarbon (PAH) related compounds. A summary of the associated Phase II soil analytical results is provided in **Table 4**. Historical use and previous environmental investigations suggest petroleum, solvents and polychlorinated biphenyl (PCB) impacts may also exist at the Site.

1.2 IDENTIFICATION OF STANDARDS, CRITERIA, AND GUIDANCE

Standards, criteria, and guidance (SCGs) are promulgated requirements ("standards" and "criteria") and non-promulgated guidance ("guidance") that govern activities that may affect the environment and are used by the NYSDEC at various stages in the investigation and remediation of a site. The following are the primary SCGs for this project:

- NYSDEC 6 NYCRR Part 375 Environmental Remediation Programs, December 2006.
- NYSDEC DER-10 Technical Guidance for Site Investigations and Remediation, May 2010.
- NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- NYSDEC Commissioner Policy (CP)-51 Soil Cleanup Guidance, October 2010.
- NYSDEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), April 2023.
- NYSDEC 6 NYCRR 360 Solid Waste Management Facilities General Requirements, August 2020.
- New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion, May 2017.

2.0 REMEDIAL INVESTIGATION APPROACH

The RI was conducted in general accordance with the March 2025 *Remedial Investigation Work Plan (Revised March 2025 [RIWP]), Amherst Commons LLC, 47 East Amherst Street, City of Buffalo, New York, Site No. C915397, Supplemental RIWP* (dated April 1, 2025), *Additional Supplemental RIWP* (dated April 14, 2025) and additional approved deviations. The Department issued an approval letter for the RIWP on March 12, 2025, and the subsequent supplemental investigations were informally approved by the Department before completion.

RI activities generally included the following:

- Test trenches
- Soil boring
- Bedrock groundwater monitoring well installation
- Vapor point installation
- Soil, groundwater and soil vapor sampling
- Ground penetrating radar (GPR) assessment

A qualified environmental professional (QEP) was present during all intrusive field activities. For prior field work, the utility locate center was contacted to mark buried utilities on the Site. The approximate locations of historic Phase II and current RI sampling locations are shown on **Figure 3**. Precise global positioning coordinates (GPS) for RI sampling locations are provided in **Table 5**. Daily field reports (DFRs) which detail site conditions/activities and contain an associated photolog and work location map are contained in **Appendix A**. Additional Site photographs are included in **Appendix B**.

A Community Air Monitoring Program (CAMP) was conducted during ground intrusive activities using dust monitors which provide real-time readings of particulate and volatile organic compound (VOC) concentrations. Downwind particulate levels did not exceed 100 micrograms per cubic meter (μ g/m³) greater than background concentrations (upwind particulate levels) for any 15-minute period. Concentrations of total organic vapors did not exceed 5 parts per million (ppm) above background levels at the work area for any 15-minute period. The particulate monitoring data is included as an attachment to the DFRs provided in **Appendix A**.

2.1 <u>RI DEVIATIONS</u>

During the RI, field conditions were encountered which required deviation from the initially approved RIWP. The proposed deviations and associated Department approvals are contained in **Appendix I**.

It is important to note that the RI deviations create a data gap in the central portion of the Site. In order to remedy this data gap, a Pre-Remedial Design Investigation (PDI) Work Plan will be submitted after the RI to outline the collection of additional samples, as applicable (i.e., if soil is encountered beneath the building post-demolition). If the PDI Work Plan is deemed acceptable by both NYSDEC and DOH the Remedial Investigation Report (RIR) approval can be issued without sampling under this section of the building. This sampling would be performed after demolition of the onsite building and prior to site remediation. See **Figure 10** for a Project Schedule.

2.1.1 Soil Investigation Deviations

The initially approved RIWP included the collection of seven native soil samples across the Site. Based on field conditions including shallow bedrock and poor recovery, no native samples were obtainable. As such,

two soil borings, RI-BH-8 and RI-BH-10, were removed from the investigation and supplemented with three test trenches, RI-TT-3, RI-TT-4, and RI-TT-5. These locations were selected to maintain uniform coverage of the Site. It was agreed that native samples would be collected from test trenches. If native soils are not encountered, two samples will be pulled from each trench, either from two distinct layers or from the top and bottom interval of the excavation. Additionally, as poor recovery was noted, some sample locations utilized multiple recoveries for single boring locations, as noted in the boring logs provided in **Appendix C**.

Two soil borings were initially proposed in the central portion of the onsite building and two proposed in the building wings. Upon field investigation, it was noted that the building had a centrally located partial basement which was deemed unsafe and potentially hazardous to human health. As such, two soil borings, RI-BH-13 and RI-BH-14, were approved and conducted on the eastern and western slab on grade portions of the building (i.e., on the first floor).

These deviations were both noted in the letter dated April 1, 2025, *Supplemental RIWP* and subsequently approved via email on April 3, 2025.

2.1.2 Groundwater Investigation Deviations

Three permanent monitoring wells installed to a depth of 20 feet below ground surface (bgs) and associated sampling was included in the RIWP. During well installation, the casing in RI-MW-3 was at risk of becoming dislodged around 18 feet bgs due to vibrational force from the drill rig. As the well demonstrated a significant volume of water and notable fractures in the first few feet of bedrock, the well was left at this depth.

This deviation was noted in the letter dated April 14, 2025, *Supplemental RIWP* and subsequently approved via email on April 15, 2025.

During field work it was determined that RI-MW-1 did not produce groundwater. After discussion with NYSDEC and in attempt to reach the water table, RI-MW-1 was extended an additional 9.4 feet. Since additional efforts did not produce groundwater and the other two wells were clean/unimpacted, it was determined, in conjunction with NYSDEC, that sampling of RI-MW-1 could be excluded from the investigation.

2.1.3 Soil Vapor Investigation Deviations

Eight exterior vapor points were initially proposed across the Site with the intent of sampling 1-2 feet above the water table. Upon investigation, no groundwater was encountered in the overburden and bedrock was relatively shallow across the Site. As such, three vapor points were eliminated from the investigation with an agreement that sub-slab soil vapor sampling would be performed as part of the PDI Work Plan, as noted in the April 14, 2025, *Supplemental RIWP*, approved April 15, 2025.

2.1.4 Radiological Survey

Based on Site history and previous investigation, a gamma walkover/radiological survey was not included in the scope of the RI. During the RI, material was encountered that may potentially contain technologically enhanced naturally occurring radioactive materials (TENORM). As this material was discovered in a localized area and at significant depth, it was deemed infeasible to conduct the survey as a part of the RI. As noted in the email provided by NYSDEC on May 13, 2025, a survey plan will be submitted prior to implementation as a component of the Remedial Action Work Plan (RAWP).

2.2 GPR SURVEY

Based on the potential presence of underground storage tanks (USTs), a GPR survey was conducted across the Site, specifically focused on these two historic areas. No indication of USTs was noted at the Site. The GPR survey results and an associated findings map are located in **Appendix J**.

2.3 SOIL INVESTIGATION

The soil investigation was composed of both soil borings and test trenches at select locations across the Site. A summary of soil analytical results is provided in **Table 1**. Soil boring and test trench logs are included in **Appendix C**.

2.3.1 Soil Boring Sampling

On March 27 and 28, 2025, ten exterior soil borings denoted RI-BH-1 through RI-BH-12 (excluding RI-BH-8 and RI-BH-10) were completed across the Site.

A track-mounted Geoprobe® 7720DT direct-push drilling rig was utilized to complete the exterior borings. The borings were positioned around the Site to provide representative coverage of the fill material. The precise locations of the borings were based on field observations and targeted potential contaminant features to gain representative samples across the Site. Soil samples were recovered on a continuous basis using 4-foot sampling sleeves. Each boring was advanced to refusal and ranged from approximately 2.5 to 8 feet bgs.

On April 9, 2025, two interior soil borings, denoted RI-BH-13 and RI-BH-14, were conducted on the first floor east and west wing of the building (i.e., portion of the building that is slab on grade).

It was determined that the building was inaccessible to large equipment (i.e., Geoprobe, drill rig, etc.). A concrete corer was first utilized to penetrate the concrete slab and a hand auger subsequently used to complete the boring. The borings were completed to refusal and depths ranged from approximately 2 to 3 feet bgs.

One soil sample was collected from each boring location. No native soils were confidently identified. All soil samples were visually evaluated for soil type and field screened for VOCs immediately following retrieval and opening of the sampling sleeves using a photoionization detector (PID). Screening was accomplished by holding the PID over the sample/core and recording the highest reading.

All soil samples were placed in appropriate containers, packaged in coolers with ice, and transferred to Eurofins Environment Testing – Buffalo, a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory, using standard chain-of-custody procedures.

2.3.2 Test Trench Sampling

On April 18 and 21, 2025, five test trenches, denoted RI-TT-1 through RI-TT-5, were completed across the Site. Two locations were selected in the areas of potential USTs. Based on the poor recovery noted in soil borings and lack of native soils, three additional test trenches were completed to provide a more accurate assessment of Site soils. Test trenching activities were conducted using a mini excavator and were completed to bedrock at all locations.

The excavated material was temporarily stockpiled on the ground surface adjacent to the trenches and field screened for VOCs using a PID as it was removed from each trench. No PID readings above background were noted.

Two soil samples were collected from each test trench, for a total of ten samples, and submitted for analysis. The samples were selected either from visually differing layers or from top and bottom intervals in areas where soils appeared homogenous.

Samples were placed in appropriate containers, packaged in coolers with ice, and transferred to Eurofins Environment Testing – Buffalo, a NYSDOH ELAP certified laboratory, using standard chain-of-custody procedures. Descriptions of soils encountered are presented on test trench logs in **Appendix C**.

Following screening and sampling, all test trenches were backfilled with the same material that was removed from the trench. The material was placed in the same order and at the approximate depth from which it was excavated. The soil was compacted with the excavator bucket during backfilling.

An associated bedrock contour map will be provided and amended to the report once final elevations are established.

2.3.3 Monitoring Well Sampling

Three soil samples were collected during monitoring well installation. These samples were completed to assess potential contaminant correlations/pathways between the overburden and underlying groundwater.

2.4 GROUNDWATER INVESTIGATION

2.4.1 Bedrock Well Construction

As groundwater was not encountered in the overburden, three bedrock wells were installed at select locations across the Site. Well construction/installation was conducted on April 4, 7, 8, 9, 10 and 23, 2025.

A 10-inch diameter hollow stem auger (HSA) was advanced to top of bedrock at all locations. A roller bit attachment was then utilized to complete a 5 7/8-inch diameter rock socket 3 feet into bedrock. A 4-inch diameter steel casing was then positioned three feet into bedrock and set with grout. All casings were undisturbed for a minimum of 24 hours to allow the grout to set per manufacturer specifications. Once set, an HQ-size core drill bit (3 7/8-inch diameter) was used to obtain bedrock cores and the steel casings cut to approximately 1-foot bgs. The wells were completed to the following depths bgs: 29.4 feet (RI-MW-1), 20.8 feet (RI-MW-2) and 18.2 feet (RI-MW-3).

The wells consist of a 2-inch inside diameter (ID), schedule 40 polyvinyl chloride (PVC) casing equipped with a 10-foot 0.010-inch slot size well screen.

All wells were completed at ground surface, covered with a curb box, fitted with a lockable J-plug and labeled with permanent markings for identification. Excess drill cuttings and spoils were containerized in sealed New York State Department of Transportation (NYSDOT) approved drums and labeled for subsequent characterization and disposal, which will be conducted in accordance with all Resource Conservation and Recovery Act (RCRA) standards. Well construction logs are provided in **Appendix D**.

2.4.2 Well Development

Well development occurred on April 17 and 18, 2025, for RI-MW-2 and RI-MW-3, respectively. Although well development can be conducted 24 hours after construction, development occurred seven days after construction to ensure drilling water utilized during bedrock drilling had significantly discharged into the surrounding formation. The wells were surged to ensure all incidental debris/drill cuttings were removed from the wells. Development water was containerized in NYSDOT approved drums and labeled per monitoring well location. No light nonaqueous phase liquid (LNAPL), dense nonaqueous phase liquid (DNAPL), odors, or sheen were encountered during well development. Based on the RI groundwater analytical results, it will be determined, in consultation with NYSDEC, if the containerized development water is acceptable for surface discharge in the vicinity of the monitoring well being developed or requires subsequent on-site treatment and/or off-site disposal. Field measurements for pH, temperature, turbidity, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance, flow rate and water level, as well as PID, visual and olfactory field observations were periodically recorded and monitored for stabilization and health and safety purposes. Well development logs are contained in **Appendix E**.

2.4.3 Groundwater Sampling

Groundwater sampling was completed on April 21 and 23, 2025, for RI-MW-2 and RI-MW-3, respectively. The wells were purged and sampled utilizing a low flow peristaltic pump with dedicated pump tubing following low flow/minimal drawdown purge and sample collection procedures. Field measurements were monitored and recorded using the same parameters outlined above in Section 2.4.2: Well Development. Purging was considered complete when the field measurements stabilized, and turbidity fell below 50 Nephelometric Turbidity Units (NTU).

Collected groundwater samples were placed in appropriate containers, packaged in coolers with ice, and transferred to Eurofins Environment Testing – Buffalo, a NYSDOH ELAP certified laboratory, using standard chain-of-custody procedures.

A summary of groundwater analytical results is provided in **Table 2** and purge logs are located in **Appendix F**.

2.5 VAPOR INVESTIGATION

2.5.1 Vapor Point Installation

On March 27 and 28, 2025, vapor points were installed simultaneously inside the following applicable predetermined soil borings: RI-BH-3, RI-BH-4, RI-BH-7, RI-BH-9 and RI-BH-11. Although it was initially intended that vapor points be completed 1 to 2 feet above the water table, no water was encountered in any borings. As such, all vapor probes were positioned directly above bedrock. A ¹/₄ inch PVC tube with a 3/8-inch stainless steel screen was installed at the bottom of each probe hole. Porous sand was backfilled around the screen to a two-foot depth and a bentonite seal placed above the sand layer to seal off the hole around the tubing. Vapor point construction logs are contained in **Appendix G**.

2.5.2 Soil Vapor Sampling

Soil vapor sampling was conducted after reaching consensus with NYSDEC and NYSDOH regarding appropriate sampling locations. Locations were selected to provide uniform coverage across the Site and biased toward the deepest borings. The following borings were selected along with the associated vapor point pair: RI-BH-3/RI-VP-1, RI-BH-4/RI-VP-2, RI-BH-7/RI-VP-3, RI-BH-9/RI-VP-4 and RI-BH-11/RI-VP-5. Sampling equipment consisting of a 6-liter summa canister and 24-hour regulator was deployed on April 17,

2025, and collected on April 18, 2025 (i.e., collected over a 24-hour period).

Sampling was conducted in accordance with the current NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York and its amendments. Canisters were shipped to Eurofins Environment Testing – Burlington, a NYSDOH ELAP certified laboratory, using standard chain-of-custody procedures. A summary of soil vapor analytical results is provided in **Table 3**.

2.6 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

Project-specific quality assurance/quality control (QA/QC) samples were collected during the soil and groundwater investigations as outlined in the approved RIWP. The purpose of these samples is to achieve the data quality indicators of precision, accuracy, representativeness, comparability and completeness. Additionally, this data is necessary to assist the third-party data usability assessment necessary to complete the Data Usability Summary Reports (DUSRs). A matrix spike/matrix spike duplicate (MS/MSD) pairing was collected from the RI-BH-2 soil boring and a duplicate sample was collected with the RI-BH-3 soil sample (RI-BH-3-DUP). The duplicate soil sample results are provided in **Table 1**. An MS/MSD pairing was collected from RI-MW-3 during the groundwater sample collection and transported to the laboratory with a trip blank. A duplicate groundwater sample was not collected as it was anticipated to be collected from RI-MW-1 which was not sampled. Laboratory analytical reports and DUSRs are located in **Appendix L** and **Appendix M**, respectively, and are provided as separate attachments.

3.0 PHYSICAL CHARACTERISTICS OF THE AREA

3.1 SURFACE FEATURES

The 3.33-acre Site is composed of a single parcel addressed at 47 East Amherst Street (SBL No. 90.21-8-1) located in the City of Buffalo, Erie County, New York. The Site is predominantly occupied by a dilapidated two-story vacant building surrounded by an asphalt parking lot and a small strip of greenspace. The central portion of the building is underlain by a partial basement and the remainder of the structure is slab on grade. A breakdown of the Site area is provided below.

Description	Location	Acreage	% of total Site area
Building	Center of Site	1.18	35
Greenspace	North of building	0.03	1
Hardscape	Remaining area	2.09	64

The entirety of the Site is surrounded by a chain link fence with the exception of an approximately 0.15 acre strip along the eastern border. The asphalt in this area is of notably better condition than the remainder of the Site and appears to be used for parking. Topography is notably uneven with a significant increase in elevation noted when moving from north to south across the Site. This elevation is by no means natural and is the result of the significant historic importation of fill.

3.2 SUBSURFACE FEATURES

3.2.1 Site Geology

In general, no native soil was positively identified at the Site. Based on the RI, it appears that the overburden (i.e., all materials above bedrock) is completely composed of urban backfill. The fill varied significantly in both color and consistency, including light/dark gray/brown sandy/silty/clayey fine/coarse rounded/angular gravel, light/dark yellow/brown/back silty clay and medium brown silty/sandy fines. The fill was often intermingled with construction and demolition (C&D) debris including bricks and piping and incidental debris such as coal rock fragments, coal ash, shells, glass bottles and grinded woodchips. Weathered bedrock was commonly observed at the interface between the overburden and underlying bedrock. Test pitting confirmed the presence of significant subsurface voids and cobbles/boulders and blasted/shot rock, which became more prevalent and increased in size at greater depths.

Bedrock cores obtained at each monitoring well location generally indicate the Site is underlain by finely crystalline Dolostone with a subtle gradient transition from light to medium gray/brown at increasing depths. Banding ranged in size from 1/10 inch to 1 inch and black wavy laminate was observed at various depths. Weathered zones were encountered in RI-MW-2 at depths of 13.6 feet and 23.5 feet bgs. A distinct 45° presumed natural fracture was observed at a depth of 10.5 feet in RI-MW-3.

The bedrock logs contained in **Appendix D** provide a more detailed description of each core.

3.2.2 Site Hydrogeology

Based on the RI, the water table is completely encapsulated within bedrock. Topographic/elevation data indicates that groundwater is at an elevation of 52.8 and 58.23 feet in RI-MW-2 and RI-MW-3, respectively. Groundwater was not encountered in RI-MW-1, therefore it exists at a maximum elevation of 48.76 feet. Based on these observations, groundwater appears to flow northwest.

3.3 DEMOGRAPHY AND LAND USE

The Site is zoned N-2E (Mixed-Use Edge) and is currently unoccupied. The proposed New York State Homes and Community Renewal (NYSHCR) affordable housing project will involve the construction of a 134 residential unit apartment building that forms a "U" as a singular building. The building will front on 3streets consisting of Pannell, East Amherst and Holden Streets. This building is proposed as a 3-story Stacked Unit Type, with 134 affordable residential dwelling units of 1-, 2- and 3-bedroom unit types. Additional features are Americans with Disabilities Act (ADA) dwelling units, two ADA sized elevators, a tenant community space with kitchenette, tenant storage spaces within each unit, and ancillary building operation areas. This building is approximately 139,281 total gross square feet (GSF) with 46,626 GSF on the ground floor. Exterior finish systems include cultured stone with cement mortar joints, new brick with cement mortar joints, cement board panels, and exterior insulation and finish system (EIFS).

4.0 LABORATORY ANALYSIS

4.1 <u>Soil</u>

All soil samples were analyzed for the full Part 375 Brownfields constituent list which includes the following:

- Target Compound List (TCL) VOCs + Tentatively Identified Compounds (TICs) Environmental Protection Agency (EPA) Method 8260
- TCL semi-volatile organic compounds (SVOCs) + TICs EPA Method 8270
- Target Analyte List (TAL) Metals (Including mercury and total cyanide) EPA Method 6010/7470/7471
- PCBs EPA Method 8280
- TCL Pesticides EPA Method 8081
- 1,4-dioxane EPA Method 8270SIM
- (PFAS EPA Method 1633

4.2 **GROUNDWATER**

All groundwater samples were analyzed for the full Part 375 Brownfields constituent list which includes the following:

- TCL VOCs and TICs)-EPA Method 8260
- TCL SVOCs- EPA Method 8270
- TAL Metals + cyanide-EPA Method 6010/7470/7471
- PCBs– EPA Method 8280;
- Pesticides- EPA Method 8081;
- 1,4-dioxane- EPA Method 8270SIM
- PFAS EPA Method 1633

4.3 SOIL VAPOR

Soil vapor samples were analyzed for TCL VOCs by EPA Method TO-15.

5.0 DISCUSSION OF RESULTS

5.1 SOIL SAMPLING ANALYTICAL RESULTS

All RI soil sampling results exceeding unrestricted and restricted residential SCOs are listed on **Figure 4** and **Figure 5**, respectively.

5.1.1 Metals

A multitude of soil samples exceeded various metal SCOs as specified in the tables below.

	Unrestricted Exceedances				
Analyte	Sample ID	Result	Standard		
Arsenic	RI-BH-6	13.7	13		
	RI-TT-1 (4-5')	14.0			
Chromium	RI-BH-1	11.3	1		
	RI-BH-3	19.5			
	RI-BH-4	13.5			
	RI-BH-5	20.9			
	RI-BH-6	19.5			
	RI-BH-9	16.8			
	RI-BH-12	18.4			
	RI-BH-13	17.1			
	RI-BH-14	17			
	RI-MW-1	17.4			
	RI-MW-2	10.9			
	RI-MW-3	14.3			
	RI-TT-2 (4-10.3')	13.3			
	RI-TT-4 (4-7.5')	17.5			
	RI-TT-5 (1-4.5')	13.9			
Copper	RI-BH-5	85.6	50		
	RI-BH-6	60.5			
	RI-BH-9	149			
	RI-BH-12	52.3			
	RI-BH-13	198			
	RI-MW-1	97.1			
	RI-MW-2	108			
Lead	RI-BH-1	74.4	63		
	RI-BH-3	131			
	RI-BH-3-DUP	139			
	RI-BH-4	64.8			
	RI-BH-5	187			
	RI-BH-6	215			
	RI-BH-7	80.7			
	RI-BH-9	366			
	RI-BH-12	195	7		
	RI-BH-13	281	1		
	RI-MW-1	64.3			
	RI-TT-1 (4-5')	116			

	RI-TT-2 (4-10.3')	85.2	
	RI-TT-5 (1-4.5')	64.1	
Nickel	RI-BH-11	31.2	30
	RI-TT-3 (4-5')	41.9	
Zinc	RI-BH-6	124	109
	RI-BH-9	323	
	RI-BH-12	171	
	RI-BH-13	179	
Mercury	RI-BH-1	0.19	0.18
	RI-BH-3	0.66	
	RI-BH-6	0.25	
	RI-BH-13	0.27	
	RI-TT-2 (1-4')	0.36	
	RI-TT-2 (4-10.3')	0.19	
	RI-TT-3 (1.5-2.5')	0.2	
	RI-TT-3 (4-5')	0.32	
	RI-TT-4 (1-4')	0.19	

	Residential Exceedances					
Analyte	Sample ID	Result	Standard			
Barium	RI-BH-4	359	350			
Chromium	RI-BH-2	32.9	22			
	RI-BH-3-DUP	40.9				
	RI-BH-7	23.3				
	RI-BH-11	33.2				
	RI-TT-1 (2-4')	41.2				
	RI-TT-1 (4-5')	25.9				
	RI-TT-2 (1-4')	23.6				
	RI-TT-3 (1.5-2.5')	22.9				
	RI-TT-3 (4-5')	62.7				
	RI-TT-4 (1-4')	23.9				
	RI-TT-5 (4.5-5.5')	24.6				

Restricted Residential Exceedances				
Analyte Sample ID Result Standard				
Mercury	RI-BH-3-DUP	1.7	0.81	

Commercial Exceedances				
Analyte Sample ID Result Standard				
Barium	RI-BH-2	1,120	400	

Industrial Exceedances				
Analyte	Sample ID	Result	Standard	
Arsenic	RI-BH-2	20.4	16	
	RI-BH-12	17.4		
	RI-TT-3 (4-5')	19.8		

5.1.2 SVOCs

A multitude of soil samples exceeded various SVOC SCOs as specified in the tables below.

Unrestricted Exceedances				
Analyte Sample ID Result Standard				
Benzo[k]fluoranthene	RI-BH-13	890	800	

	Residential Ex	ceedances	
Analyte	Sample ID	Result	Standard
Benzo[k]fluoranthene	RI-BH-11	1,800	1,000
	RI-MW-1	3,500	
Chrysene	RI-BH-2	1,300	1,000
	RI-BH-11	2,500	
	RI-BH-12	1,400	
	RI-BH-13	1,600	

	Restricted Residen	tial Exceedances	
Analyte	Sample ID	Result	Standard
Benzo[a]anthracene	RI-BH-2	1,000	1,000
	RI-BH-11	2,400	
Γ	RI-BH-12	1,400	
Γ	RI-BH-13	1,500	
Benzo[b]fluoranthene	RI-BH-1	1,000	1,000
Γ	RI-BH-2	1,400	
Γ	RI-BH-11	3,600	
Γ	RI-BH-12	1,600	
Γ	RI-BH-13	1,800	
Γ	RI-TT-3 (1.5-2.5')	1,100	
Benzo[k]fluoranthene	RI-TT-2 (1-4')	4,600	3,900
	RI-TT-2 (4-10.3')	13,000	
Chrysene	RI-MW-1	8,600	3,900
	RI-TT-2 (1-4')	8,800	
	RI-TT-2 (4-10.3')	22,000	
Indeno[1,2,3-cd]pyrene	RI-BH-11	2,000	500
	RI-BH-12	810	
	RI-BH-13	730	
[7	RI-MW-1	4,400	
[RI-TT-2 (1-4')	4,600	
	RI-TT-3 (1.5-2.5')	560	

	Commercial Exceedances												
Analyte	Analyte Sample ID Result Standard												
Benzo[a]anthracene	RI-MW-1	9,100	5,600										
	RI-TT-2 (1-4')	9,300											
Benzo[b]fluoranthene	RI-MW-1	10,000	5,600										
Dibenz(a,h)anthracene	RI-BH-11	720	560										

	Industrial Ex	ceedances	
Analyte	Sample ID	Result	Standard
Benzo[a]anthracene	RI-TT-2 (4-10.3')	23,000	11,000
Benzo[a]pyrene	RI-BH-13	1,500	1,100
	RI-MW-1	8,100	
	RI-TT-2 (1-4')	8,500	
	RI-TT-2 (4-10.3')	20,000	
Benzo[b]fluoranthene	RI-TT-2 (1-4')	11,000	11,000
	RI-TT-2 (4-10.3')	22,000	
Dibenz(a,h)anthracene	RI-MW-1	1,600	1,100
	RI-TT-2 (1-4')	1,600	
	RI-TT-2 (4-10.3')	4,000	
Indeno[1,2,3-cd]pyrene	RI-TT-2 (4-10.3')	11,000	11,000

5.1.3 VOCs

Low levels of the following VOCs were noted in specified samples: toluene in RI-BH-6 and RI-BH-13, acetone in RI-BH-11 and RI-MW-3, methylene chloride in RI-MW-3, and tetrachloroethene (PCE) in RI-BH-13 and RI-BH-14.

5.1.4 Organochlorine Pesticides

4,4'-DDT was noted above the unrestricted standard of 3.3 ppb in the following samples: RI-BH-4 (8.6 ppb), RI-BH-11 (5.9 ppb), RI-BH-13 (10 ppb), RI-BH-14 (15 ppb), RI-MW-1 (16 ppb) and RI-TT-2 (4-10.3' [9.7 ppb]). **4,4'-DDD was noted above the unrestricted standard** of 43.3 ppb in RI-BH-13 (4.2 ppb).

5.1.5 PCBs

No PCBs were detected in any samples with the exception of PCB-1260 in RI-BH-7 at a concentration of 0.096 parts per billion (ppb), over three orders of magnitude below the unrestricted standard of 100 ppb.

5.1.6 PFAS

The only regulated PFAS constituents are perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). No exceedances were noted in any soil samples. Some detections below guidance values were noted in the internal samples (RI-BH-13 and RI-BH-14), the composite well samples (RI-MW-1 through RI-MW-3), and test trench samples (RI-TT-1 through RI-TT-5).

5.2 GROUNDWATER SAMPLE ANALYTICAL RESULTS

All RI groundwater sampling results exceeding TOGS 1.1.1 guidelines are listed on Figure 6.

5.2.1 Metals

Iron was noted above the TOGS 1.1.1 standard of 300 ppb in RI-MW-2 (340 ppb). Sodium was noted above the TOGS 1.1.1 standard of 20,000 ppb in RI-MW-2 (94,800 ppb) and RI-MW-3 (82,500 ppb).

5.2.2 SVOCs

No listed SVOCs were identified, however, TICs were noted in both wells below guidance values.

5.2.3 VOCs

No VOC exceedances were noted. Low levels of methylcyclohexane were identified in RI-MW-3.

5.2.4 Organochlorine Pesticides

No organochlorine pesticides were noted with the exception of low levels of gamma-BHC (Lindane) in both wells.

5.2.5 PCBs

No PCBs were noted in either well.

5.2.6 PFAS

The only regulated PFAS constituents are PFOS and PFOA. No exceedances were noted in any groundwater samples. Some detections below guidance values were noted in both wells.

5.3 VAPOR SAMPLE ANALYTICAL RESULTS

The only applicable air guideline values derived by NYSDOH are TCE, PCE and methylene chloride. All sampling results were well below guidance values. No results warrant mitigation.

5.4 CONTAMINANTS OF CONCERN

Based on the RI and previous environmental investigation results, the primary contaminants of concern (COC) in Site media are noted below.

5.4.1 Soil

The primary COC in Site soils are metals and PAHs.

5.4.2 Groundwater

There are no contaminants of concern in groundwater. Although sodium and iron were detected above guidance values, both constituents can be naturally occurring. Natural sources of sodium include weathered rocks and minerals and the presence of salt-bearing geological formations. Similarly, iron in groundwater can arise from iron-bearing rocks and minerals. These conditions were consistently noted throughout the Site, particularly in bedrock cores and in soil borings and test trenched at the interface of the overburden and underlying bedrock.

5.4.3 Soil Vapor

There are no contaminants of concern in soil vapor. Soil vapor intrusion (SVI) is not a concern at the Site.

6.0 FATE AND TRANSPORT OF CONTAMINANTS OF CONCERN

The soil, groundwater and soil vapor sample analytical results were incorporated with the physical Site conditions to evaluate the fate and transport of COC in Site media. The mechanisms through which the COC can migrate to other areas or media are briefly outlined below. The potential pathways are evaluated in the context of pre-remedial conditions including the proposed PDI and radiological survey. The planned remediation, as discussed in Section 8.0, includes placing a 2-foot clean soil cap or hardscape over the Site to meet Part 375 Track 4 Restricted Residential SCOs.

6.1 FUGITIVE DUST

Contaminants present in soil can be released into ambient air due to fugitive dust generation from disturbance of dry friable soils. The Site currently contains one dilapidated building surrounded by asphalt parking and minimal greenspace which limits any fugitive dust generation.

During demolition, redevelopment construction and remedial work, fugitive dust may be generated. A Health and Safety Plan (HASP) along with a CAMP will be prepared, as required, by the RAWP, which will minimize fugitive dust concerns during this time. The fugitive dust migration pathway is not presently a relevant pathway, however, during remediation activities, fugitive dust migration will be more relevant and not be relevant thereafter due to the proposed soil cover system and new development. During construction activities, the contractor will institute dust control measures per the Stormwater Pollution Prevention Plan (SWPPP) that will be generated prior to mobilization.

6.2 SURFACE WATER

The potential for impacted soil particle transport with surface water runoff is considered low due to the hardscape and minimal vegetative cover over the Site. Although heavy rainfall can cause erosion in greenspace areas, no sensitive receptors are present within close proximity to the Site.

The proposed remediation is a clean soil cover and hardscape. Redevelopment will include new structures, paved areas, and landscaping. A SWPPP will be prepared for the Site and included in the RAWP. The SWPPP will control storm water during construction and remediation activities. The redevelopment design includes substantial bioretention planters to handle surface water upon completion of redevelopment. Therefore, the movement of impacted soil by surface water runoff is not considered a relevant migration pathway.

6.3 VOLATILIZATION

No VOCs were detected above their SCOs in soil samples from the RI or previous investigations. Groundwater samples collected from on-site wells during the RI indicated that VOCs are not present in groundwater above TOGS 1.1.1 guidance values. The volatilization pathway is therefore not considered a relevant pathway.

6.4 LEACHING

Leaching refers to contaminants in soil/fill migrating into groundwater due to infiltration of stormwater.

VOCs, SVOCs, PCBs, and pesticides were not detected above TOGS 1.1.1 guidance values in the groundwater samples collected from the two monitoring wells during the RI. Although the metals sodium and iron were detected above TOGS 1.1.1 guidance values, both constituents are likely naturally occurring as a result of bedrock constituents.

VOCs were not detected in the soil samples above any SCOs, however, both SVOCs (primarily PAHs) and metals were detected in the site soils above restricted residential SCOs. PAHs and metals are not very mobile in soils in that they have low solubility with water and tend to adsorb to the soil grains.

6.5 GROUNDWATER TRANSPORT

Based on groundwater elevation data, groundwater on the Site appears to flow northwest. As previously noted in Section 5.4.2 (Contaminants of Concern – Groundwater), there are no contaminants of concern in groundwater. No exceedances of TOGS 1.1.1 guidance values were noted that could not be attributed to natural conditions.

Although sodium and iron were detected above guidance values, both constituents can be naturally occurring. Natural sources of sodium include weathered rocks and minerals and the presence of saltbearing geological formations. Similarly, iron in groundwater can arise from iron-bearing rocks and minerals. These conditions were consistently noted throughout the Site, particularly in bedrock cores, soil borings and test trenches at the interface of the overburden and underlying bedrock.

In addition, the Site and surrounding area are serviced by municipal water. The Site Management Plan (SMP) will also prohibit the use of groundwater for drinking or process use. Therefore, significant potential exposure of local receptors to contaminants in the groundwater is minimal.

6.6 EXPOSURE PATHWAY SUMMARY

Based on the above assessment, the pathways through which COC could reach receptors at significant exposure concentrations are minimal. The more probable pathways of stormwater and fugitive dust will be mitigated using pollution prevention and dust suppression control measures during remedial and construction activities.

7.0 QUALITATIVE EXPOSURE ASSESSMENT

7.1 HUMAN EXPOSURE

A Qualitative Human Health Exposure Assessment (QHHEA) was completed in general accordance with Appendix 3B of DER-10 to identify potential exposure pathways associated with the COC at the Site. The exposure pathway elements are summarized as follows:

Qualitative Exposure	Assessment Summary						
Environmental Media & Exposure Route	Human Exposure Assessment						
Direct contact with surface soils (and incidental ingestion)	(Current) People should not come into contact with contaminated surface soils as they are primarily covered by asphalt and vegetative cover. Additionally, the Site is restricted by fencing, however, there is still potential for trespassers to come into contact with surface soils.						
Direct contact with subsurface soils (and incidental ingestion)	(Future) People may come into contact with subsurface soils during ground-intrusive work.						
Ingestion of groundwater	Groundwater at the Site does not appear impacted. The Site is currently served by municipal water as will the new development.						
Direct contact with groundwater	Groundwater at the Site does not appear impacted. The Site is currently served by municipal water as will the new development.						
Inhalation of air (exposures related to SVI)	Soil vapor at the Site does not appear impacted.						

7.1.1 Contaminant Sources

Metals and PAHs exceeding regulatory standards were consistently observed throughout Site soils. Based on previous investigations, the overburden is almost entirely composed of impacted fill, ranging in depth from 1 to 11 feet bgs. No point contaminant sources have been identified, and no groundwater or soil vapor concerns are noted.

7.1.2 Contaminant Release and Transport Mechanisms

The only release/transport of impacted soils to an exposed population would be through fugitive dust and rain that may result in soil erosion. However, as previously noted, the Site currently contains a large building surrounded by asphalt parking and minimal greenspace which limits any fugitive dust generation along with erodible soils.

7.1.3 Potential Exposure Points

Currently, direct contact exposure to impacted soil is low due to the predominantly hardscape and minimal soil cover over the Site. Additionally, the Site is secured with fencing which extremely reduces accessibility to the general public, with the exception of a small asphalt strip along the eastern Site border. Future contact may occur during soil excavation activities.

7.1.4 Routes of Exposure

The only viable current or future routes of exposure would be direct contact or inhalation/ingestion of impacted soils.

7.1.5 Receptor Populations

The receptor population is currently limited to trespassers. Future construction workers may encounter impacted soils during Site work.

7.2 ECOLOGICAL EXPOSURE RISKS

The Fish and Wildlife Resources Impact Analysis (FWRIA) Decision Key provided in Appendix 3C of DER-10 was completed during development of the RIWP and is included in **Appendix H**. No FWRIA is required based on the completed decision key process. This determination is based on the following:

- The Site is a commercial property in a mixed-use zone (N-2E).
- The contamination at the Site has very low potential to migrate into or impact any off-site habitat of endangered, threatened, or special concern species or other fish and wildlife resources. There are no critical habitats onsite, and the closest offsite habitat is more than 0.75 miles away with the Niagara River and Lake Erie more than 3 miles away. The Full Environmental Assessment Form (FEAF) and Environmental Resource Mapper were consulted to make this determination.

8.0 REMEDIAL ALTERNATIVES ANALYSIS

8.1 REMEDIAL ACTION OBJECTIVES

The final remedial measures for the Site must satisfy Remedial Action Objectives (RAOs), which are sitespecific statements that convey the goals for minimizing or eliminating substantial risks to human health and the environment. No RAOs were identified in relation to groundwater or soil vapor. The primary RAOs identified in relation to Site soils are the following:

Human Health Protection. Prevent ingestion or direct contact with contaminated soil exceeding cleanup objectives for the Site.

Environmental Protection. Prevent migration of contaminants exceeding cleanup objectives for the Site that would result in groundwater or surface water contamination.

8.2 ALTERNATIVES SELECTION FACTORS

In addition to achieving RAOs, NYSDEC's BCP requires an evaluation of remedial alternatives in accordance with 6 NYCRR Part 375-3 and DER-10. This alternative analysis evaluates the remedial options developed for the Site against the following selection factors:

- **Overall Protection of Public Health and the Environment**. This criterion evaluates a remedy's ability to achieve the public health and environmental RAOs through the assessment of existing and potential exposure pathways to be eliminated, reduced, or mitigated through removal, treatment, or ECs/ICs.
- **Compliance with SCGs**. This criterion addresses whether a remedy will meet applicable environmental regulations, standards, and guidance. The SCGs applicable to this site are listed in Section 1.2.
- **Long-Term Effectiveness and Permanence**. This criterion evaluates the long-term effectiveness and permanence of an alternative or remedy after implementation.
- **Reduction of Toxicity, Mobility or Volume with Treatment**. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination through treatment. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the contamination at the Site.
- Short-Term Effectiveness. This criterion evaluates the potential short-term impacts to human health and the environment during remediation, including control measures of adverse conditions and their effectiveness (e.g., stormwater controls, dust controls, etc.). The length of time needed to achieve the RAOs and sustainability is also evaluated.
- **Implementability**. This criterion evaluates the technical and administrative feasibility of implementing the remedy including the difficulties associated with construction and monitoring the effectiveness of the remedy. The availability of labor, equipment, and material is evaluated in addition to operational approvals, logistics, permitting, etc.
- **Cost**. This criterion evaluates the overall cost of an alternative.
- **Community Acceptance**. This criterion evaluates the public's comments, concerns, and overall perception of the alternative.

8.3 LAND USE EVALUATION

In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land use be factored into the evaluation. The future land use of the

Site is practical as it will be similar in nature to the surrounding areas existing use and will meet restricted residential SCOs after the remediation is complete. The proposed development will be dedicated to affordable housing.

8.4 SELECTION OF ALTERNATIVES FOR EVALUATION

The results of the RI and historical Phase II ESA indicate the following:

- The Site is underlain by urban backfill containing elevated levels of metals and PAHs in soils above unrestricted, residential, restricted residential, commercial and industrial SCOs.
- A few organochlorine pesticide exceedances above unrestricted SCOs were identified in soils.
- No VOC, PCB or PFAS exceedances of SCOs were noted in any soil samples.
- No COCs were noted in groundwater. Iron and sodium were detected above TOGS 1.1.1 standards however these constituents are assumed to be naturally occurring.
- No VOC impacts exceeding NYSDOH Vapor Intrusion Guidance values were noted in soil vapor.

Based on the results of the RI program, the following remedial alternatives have been selected for evaluation:

- 1. **Alternative 1** Track 4: Restricted Residential Remediation
- 2. Alternative 2 Track 1: Unrestricted Use Remediation

It is important to note that building demolition will occur before Site remediation. In order to properly assess the area of the data gap (i.e., the subsurface beneath the building basement), the building slab will be left in place, to the extent possible. Prior to demolition, the building will be assessed for asbestos containing materials (ACM) and abated accordingly. All demolition debris will be properly sorted, characterized, and disposed of at an approved landfill or recycling facility.

During analysis of the alternatives, it was assumed that the central portion of the building overlaying the partial basement is built on bedrock. Should drastically different conditions be encountered during demolition or the PDI, the alternatives will be reevaluated, as they are contingent upon no additional contaminates of concern being encountered.

8.4.1 Alternative 1 – Track 4: Restricted Residential Remediation

A Track 4 cleanup generally involves removing all Site soils exceeding restricted residential criteria to specified depth and the creation of a cover system to meet Part 375 3.8 and 6.8(b) restricted residential use SCOs. Removal includes all soils above final grade requirements and an additional 2 feet of removal in non-hardscaped areas. The hardscaped areas (i.e., building footprint, parking lot and sidewalks) would be composed of approximately one foot of material which would function as a component of the cover system. All non-hardscaped/greenspace areas would be covered with 2 feet of clean imported fill meeting the provisions of NYSDEC DER-10 Subdivision 5.4(e) Appendix 5 (see **Figure 7**). Details of this alternative include the following:

- 1. All soils across the Site above final grade requirements and an additional 2 feet of material in nonhardscape/greenspace areas will be removed and disposed of at an approved landfill. The estimated total volume of soil requiring removal is 8,500 tons.
- 2. Approximately 4,500 tons of clean fill will be imported to the Site to bring the area of the partial basement of the former existing building up to the design grade.
- 3. Approximately 2,000 tons of clean fill will be imported to the Site to provide a 2-foot cover system in

greenspace areas.

- 4. Upon completion of remediation, provisions for managing the Site will be provided through an Environmental Easement (EE) which outlines Institutional Controls (ICs) and Engineering Controls (ECs).
- 5. Imposition of an IC in the form of an EE for the controlled party includes the following:
 - a. The remedial part or site owner must complete and submit a periodic certification of IC/EC in accordance with NYSDEC Part 375-1.8(h)(3).
 - b. Allows the use and development of the controlled property for restricted residential, commercial, and industrial uses as defined by Part 375-1.8(g)., although land use is subject to local zoning laws.
 - c. Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH.
 - d. Requires monitoring of sub-slab vapor extraction for a set period of time.
 - e. Requires compliance with the approved Site Management Plan.
- 6. An SMP is required that includes the following:
 - a. An IC/EC plan that identifies all use restrictions and ECs for the Site and details the steps and media specific requirements necessary to ensure the IC and/or ECs remain in place and effective. The ICs are as discussed above, and the only EC is a soil cover system.
 - b. An Excavation Plan which details provisions for management of future excavations in areas of remaining contamination.
 - c. Descriptions of the provisions of the EE including any land use or groundwater use restrictions.
 - d. Provisions for the management and inspection of the identified ECs.
 - e. Maintaining site access controls and NYSDEC notifications.
 - f. The steps necessary for the periodic reviews and certifications of the IC/ECs.

Overall Protection of Public Health and the Environment – Alternative 1 is protective of human health and the environment with the removal of two feet of impacted soil from open areas external to the building and backfilling with two feet of clean soil or hardscape. The clean soil and hardscape covered areas will be incorporated into the SMP as an EC for the Site and IC/ECs will be implemented to prevent more restrictive forms of future site use (e.g., unrestricted and residential) and restrict any use of the groundwater at the Site. Under ICs/ECs, the cover system will be inspected, monitored and maintained. The SMP Excavation Work Plan (EWP) will apply to any future disturbance of soils beneath the cover system. The SMP also requires the implementation of an approved HASP for all future work.

Compliance with SCGs – Alternative 1 is a Part 375 Track 4 remedy with some soils exceeding the restricted residential SCOs remaining below an approved cover system.

Long-Term Effectiveness and Permanence – The removal of the open area impacted fill soils to meet restricted residential SCOs and backfilling with clean fill and hardscape meets the RAOs for soil in this area. Although groundwater contamination is not a concern, there will be a restriction on the use of groundwater at the Site. The SMP requires periodic inspection and monitoring of the cover system for the Site to assure its integrity and the SMP EWP will apply to any future disturbance of the remaining impacted soils including the requirement to prepare an approved HASP for all work.

Reduction of Toxicity, Mobility, or Volume with Treatment – The remedial measure will either permanently or significantly reduce the mobility of contamination in the soils at the Site through the cover system. The volume of impacted soil will be reduced at the Site by excavation and offsite disposal of the top two feet of impacted soil across open areas and one foot in areas to be hardscaped.

The SMP will include an EWP to address any impacted soil/fill encountered during future development

and/or maintenance activities and include a site-wide Inspection program to assure that the ICs/ECs placed on the Site have not been altered and remain effective. This alternative will not, however, reduce the toxicity of the soil contaminants left in place upon completion of the remedial measure. Therefore, this alternative partially satisfies this criterion.

Short-Term Effectiveness – Although minimal, potential short-term adverse impacts and human exposures may occur during construction (remediation and new development). A RAWP will be implemented prior to remediation which will require the contractor to prepare and implement a site-specific HASP to cover all workers. Periodic inspections of the cover system per the SMP requirements will prevent ingestion/direct contact with contaminated soil and prevent inhalation of contaminants in soil that may remain below the cover system. This alternative is sustainable through the EE and implementation of the SMP.

Implementability – There are no implementation issues related to the proposed remediation or related to the ICs/ECs placed on the Site under this alternative.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to fact sheets, public comment periods, and other planned citizen participation activities. Currently, no public comments have been received regarding the Site.

Cost – The values used in estimating alternatives are order-of-magnitude estimates for comparing alternatives and are not meant to be a specific remedial criterion. The estimated cost for Alternative 1 – Track 4 Restricted Residential Use Alternative is approximately \$1.5 million. The associated cost summary is provided in **Appendix K**.

Green Remediation – This alternative will follow a shorter remedial timeline as there will be less excavation and disposal of impacted materials. A shorter remedial timeline implies less total energy use and less emissions. Less excavation and disposal implies reduced waste/landfilling, use of heavy equipment, truck travel, localized noise, vibration and wear and tear on roads. Some additional efforts will be required to import clean fill to compose the required cover system.

8.4.2 Alternative 2 – Track 1: Unrestricted Use Remediation

A Track 1 cleanup involves removal of all Site soils exceeding unrestricted criteria to meet Part 375 3.8 and 6.8(a) unrestricted use SCOs. Based on the RI, all Site soils exceed unrestricted criteria and therefore excavation to bedrock across the entire Site would be required (see **Figure 8**). Details of this alternative include the following:

- 1. All soils across the entire Site will be removed. The approximate volume of soil amounts to 40,000 tons.
- 2. Clean fill meeting the provisions of NYSDEC DER-10 Subdivision 5.4(e) Appendix 5 will be imported to the Site to meet final grade requirements. The approximate volume of soil/stone amounts to 34,500 tons.

Overall Protection of Public Health and the Environment – This alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under any reuse scenario.

Compliance with SCGs – This alternative would comply with SCOs, as all non-compliant material would be removed from the Site.

Long-Term Effectiveness and Permanence – This alternative would achieve removal of all contaminant sources and residual impacted soil. No soil exceeding the unrestricted SCOs would remain on the Site. As such, this alternative would provide long-term effectiveness and permanence. Post-remedial monitoring and controls would not be required.

Reduction of Toxicity, Mobility, or Volume with Treatment – This alternative would permanently reduce the toxicity and mobility of Site contamination through the removal of impacted Site soils. Although this is not considered a treatment technology and the volume of contamination would remain the same, removal is very effective in eliminating toxicity and mobility.

Short-Term Effectiveness – The short-term effectiveness of this alternative to the community, workers, and environment during implementation of the unrestricted use alternative would be marginal. The exposure time to community, workers, and the environment from possible fugitive dust or other migration pathways would increase during the excavation, packaging, and offsite disposal of significant quantities of soil and debris. However, within approximately 6 months, the site would be remediated of all soil contamination.

Implementability – Technical implementability of the unrestricted use alternative is high. Demolition, remediation, excavation, and removal activities are associated with standard construction techniques, but impacted soil removal may require excavation below the groundwater table.

Community Acceptance – There have been some community comments with respect to the project in general, and although the short-term impacts will be noticeable during remediation, a Track 1 Unrestricted Use scenario would be a preferred alternative to leaving residual contamination on-site underneath a cover system.

Cost – The cost of implementing a Track 1 Unrestricted Use alternative is estimated at approximately \$3.9 million. (Refer to **Appendix K**).

Green Remediation – This alternative will follow a longer remedial timeline as there will be more excavation and disposal of impacted materials. A longer remedial timeline implies more total energy use and more emissions. More excavation and disposal implies additional waste/landfilling, use of heavy equipment, truck travel, localized noise, vibration and wear and tear on roads. This alternative will address the source of contamination more aggressively (i.e., complete removal of impacted materials), which will reduce long-term operation and maintenance of treatment or containment systems (i.e., a cover system).

8.5 RECOMMENDED REMEDIAL ALTERNATIVE

Based on the alternative's evaluation and the conceptual site model for existing contamination, Alternative 1 – Track 4 Restricted Residential Use Alternative is recommended for the Site. It is protective of human health and the environment, meets the requisite SCGs, and is the more cost-effective remedy. Given the current and future use of the Site and neighboring sites, Alternative 1 is more practical and significantly more implementable given the type and quantity of soil contamination at the Site.

9.0 CONCLUSIONS AND RECOMMENDATIONS

The RI was completed in accordance with a defined scope of work, approved RIWP and approved deviations. The following provides a summary of the investigation activities:

- The assessment of soil conditions via:
 - Twelve soil borings and twelve associated samples.
 - Five test trenches and ten associated samples.
 - Three samples above bedrock wells.
- The assessment of groundwater conditions by installing three bedrock groundwater wells and collecting/analyzing two groundwater samples.
- The assessment of soil vapor conditions by installing five vapor probes and five associated samples.

The results of the investigation indicate that metals and PAHs are present in all Site soils above NYSDEC restricted residential SCOs. Site groundwater contains sodium and iron exceeding TOGS values; however, these analytes are naturally occurring and not a result of contamination. Based on the results of the PDI, which will be performed prior to beginning any site remedial work, additional remedial actions will be discussed with NYSDEC, if necessary. The PDI data must be analyzed to ensure the planned remedy is sufficient to address all on-site contamination.

Based on these results, Alternative 1 – Track 4 Restricted Residential Use Alternative is recommended at the Site.

TABLE 1 - SOIL SAMPLING RESULTS

<table-container> Number 19.3 19.4 <th19.4< th=""> 19.4 19.4 <</th19.4<></table-container>				Sample Iden	tification. Sample D	NYSDEC Part 375 Soil Cleanup Objectives (SCOs)								
NormNo	Analyte	RI-BH-1	RI-BH-2	-	-			RI-BH-6	RI-BH-7					
IPAC PACE AND					5.5-7'	10-11'				Unrestricted	Residential	Restricted Residential	Commercial	Industrial
and and b and					3/27		<u>\</u>							
DampDescriptionSet<	Aluminum	7760	13800	9580	20100			9590	9730	NS	NS	NS	NS	NS
Dr. hereit Dr. hereit </td <td></td> <td>ND</td> <td>ND</td> <td>1.1</td> <td>1.6</td> <td>ND</td> <td></td> <td>3.8</td> <td>1.2</td> <td>NS</td> <td></td> <td></td> <td></td> <td>NS</td>		ND	ND	1.1	1.6	ND		3.8	1.2	NS				NS
Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Description Part Part<							_				1			
Partner														
NorN														
matrixMatr														
minm														
cholonomjma														
LinkL														
bandpartBa <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
bit bit </td <td></td>														
Main CaleMin CaleMin CaleMin CaleMin 														
ConsignationIntNo.1No.1No.1No.1No.1No. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></th<>											1			
mmm <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Name Cardy and and a set of the se														
IntervalInterva	Mercury	0.19	0.064	0.66	1.7	0.036	0.16	0.25	0.096	0.18	0.81	0.81	2.8	5.7
SchengerichNNN <th< td=""><td>Cyanide, Total</td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>27</td><td>27</td><td>27</td><td>27</td><td>10000</td></th<>	Cyanide, Total	ND	ND	ND				ND	ND	27	27	27	27	10000
accord or s' and a star and	2-Methylnaphthalene	ND	ND	ND				ND	ND	NS	NS	NS	NS	NS
memorymemorymax <td>Acenaphthene</td> <td>130</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>20000</td> <td>100000</td> <td>100000</td> <td>500000</td> <td>1000000</td>	Acenaphthene	130	ND	ND	ND	ND	ND	ND	ND	20000	100000	100000	500000	1000000
min12min13 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
ScoreADDADDADDNoADDNoADDA														
AnalysingAndsAndAndNo <td></td>														
bachmath														
ophelogic physicup														110000
ChangeNoN														
ChyperChyperNot <td></td>														
Discal grantenessDifferNO<														110000
Decompany productionN <bb></bb> N<														
Income/memHighModeNo </td <td></td> <td>1000000</td>														1000000
niceniceNoN		1800	3600	530	670	1200	2200	2000	ND	100000	100000	100000	500000	1000000
Impring Impring ParallareNo														1000000
mymmmymmmym <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100000</td></th<>														100000
<table-container>main inc.main</table-container>	Phenanthrene												500000	1000000
Action ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Cacher schedure Chorder Administer Chorder Administer <br< td=""><td></td><td>5740</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>113</td><td>113</td><td>113</td><td>113</td><td>113</td></br<>		5740	ND						ND	113	113	113	113	113
ChindopminND<														100000
Mathyle Mathyle (PG2)ND														
ToluencyNO <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1000000</td></th<>														1000000
Ac-007 ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>300000</td></th<>														300000
Á4 b0DND	Toluene	ND	ND	ND				0.46	ND	700	100000	100000	500000	1000000
alpha-Bric delts.HrCND <td></td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>3.3</td> <td></td> <td></td> <td></td> <td>180000</td>			ND	ND				ND	ND	3.3				180000
delashifa chashifa thosashi														94000
SideAdding walfaidNDNDNDNDNDNDNDNDADD <td>· ·</td> <td></td> <td>1000000</td>	· ·													1000000
IndivisionND <t< td=""><td>Endosulfan sulfate</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>200000</td><td>920000</td></t<>	Endosulfan sulfate			ND	ND	ND			ND				200000	920000
nume here<														
PCB-1260 ND <	gamma-BHC (Lindane)	ND	ND	ND	ND	ND	ND	ND	ND	100	280	1300	9200	23000
PcB-1260NDNDNDNDNDNDND0.096NSNSNSNSNSNSNethylperfluorooctane sulfonamidoethanol (NEFOSE)ND	Methoxychlor	ND	ND	ND				ND	ND	NS	NS	NS	NS	NS
PER-AND POLYFLUOROALKYL SUBSTANCES (PFAS) (ppb)vertigener span=10 (practice span=10 (prac	PCB-1260	ND	ND	ND				ND	0.096	NS	NS	NS	NS	NS
N-eth/perfluorooctanesulfonamidoacetic acid (NEtFOSA)ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
N-methylperfluorooctanesulfonamidoethanol (NMeFOSE)NDN											1			
N-methylperfluorodcanoisadi (PEDA)ND														
PerfluorND														
Perfluoroheptanoic acid (PFHpA)ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>NS</td><td></td><td></td><td></td><td></td></th<>									ND	NS				
Perfluorohexanesulfonic acid (PFHxS)ND <td></td>														
Perfluorohexanoia caid (PFNA)NDN														
Perfluorononanoic acid (PFNA)NDN														
Perfluorooctanesulfonic acid (PFOS)NDNDNDNDNDNDNDND440440440Perfluorooctanoic acid (PFOA)NDNDNDNDNDND0.6633500600Perfluoropentanoic acid (PFPA)NDNDNDNDNDNDNDNDNDNDNDPerfluorotetradecanoic acid (PFPA)NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDPerfluorotetradecanoic acid (PFTeDA)NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDPerfluorotetradecanoic acid (PFTeDA)NDNDNDNDNDNDNDNDNDNDNDNDNDPerfluorotetradecanoic acid (PFTeDA)NDNDNDNDNDNDNDNDNDNDNDNDNDNDPerfluorotetradecanoic acid (PFTeDA)ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>											1			
Perfluorooctanoic acid (PFOA)NDNDNDNDNDNDNDS006.60Perfluoropentanoic acid (PFPA)ND <td></td>														
Perfluoropentanoic acid (PFPeA) ND														
remuoroundecanoic acid (PFUNA) ND NS NS NS NS NS NS														
		ND	ND		ND	ND	ND	ND	ND	INS INS	NS	NS	NS	NS

Notes:

(1) PFAS limits are guidance values only; there is still no official SCOs in New York State. ND Not Detected

NS No Standard

NYSDEC New York State Department of Environmental Conservation ppb parts per billion ppm parts per million

' feet below ground surface

R result is rejected/unusable

TABLE 1 - SOIL SAMPLING RESULTS

Analyte			Sample Ider	ntification, Sample I		NYSDEC Part 375 Soil Cleanup Objectives (SCOs)							
	RI-BH-9	RI-BH-11	RI-BH-12	RI-BH-13	RI-BH-14	RI-MW-1	RI-MW-2	RI-MW-3					
	0-7'	0-8' 3/28/2025	0.5-4'	0.5-3'	0.5-2' /2025	0-5' 4/4/	0-4.5' 2025	0-5' 4/8/2025	Unrestricted	Residential	Restricted Residential	Commercial	Industri
					METALS (ppm								
uminum	7450	18600	10100	8040	7750	8910	6450	6230	NS	NS	NS	NS	NS
ntimony	7.2	ND 8.3	ND 17.4	4.4	ND 7.9	1.3 8.7	ND 6.2	ND 10.0	NS 12	NS 16	NS 16	NS 16	NS 16
rsenic arium	12.5	50.3	17.4	91.8	51.5	78.2	32.8	51.2	13 350	16 350	400	16 400	10000
eryllium	0.46	1.3	0.92	0.8	0.52	0.69	0.55	0.50	7.2	14	72	590	2700
admium	0.94	0.32	0.43	0.46	0.22	0.30	0.25	0.28	2.5	2.5	4.3	9.3	60
alcium	58600	65900	12300	79800	137000	164000	132000	60600	NS	NS	NS	NS	NS
hromium obalt	<u>16.8</u> 11.2	33.2 12.3	18.4 13.0	<u> </u>	17 8.7	17.4 6.6	10.9 3.9	14.3 4.7	1 NS	22 NS	110 NS	400 NS	800 NS
opper	149	28.7	52.3	198	23.4	97.1	108	20.8	50	270	270	270	1000
on	42600	18700	18100	20900	13800	12000	12100	14200	NS	NS	NS	NS	NS
ad	366	27.5	195	281	52.8	64.3	61.7	33.5	63	400	400	1000	3900
agnesium	10300	42500	2570	15800	30900	42900	33400	11200	NS	NS	NS	NS	NS
langanese ickel	<u> </u>	222 31.2	195 24.6	1100 18.6	313 17.4	336 14.8	236 10.2	280 13.0	1600 30	2000 140	2000 310	10000 310	1000 1000
itassium	1820	7950	1410	1590	2780	2470	1900	1550	NS	NS	NS	NS	NS
lenium	ND	ND	ND	1.1	0.96	ND	ND	ND	3.9	36	180	1500	6800
ver	ND	ND	0.27	0.28	ND	ND	ND	ND	2	36	180	1500	6800
dium	146	251	463	163	205	198	171	121	NS	NS	NS	NS	NS
allium	ND	1.9	1.4	ND	ND	ND	ND	ND 22.0	NS	NS	NS	NS	NS
nadium nc	18.7 323	30.8 51.4	35.8 171	27	31.1 70.4	37.7 47.4	14.9 51.3	22.8 53.3	NS 109	NS 2200	NS 10000	NS 10000	NS 1000
ercury	0.15	0.11	0.13	0.27	0.15	0.14	0.094	0.16	0.18	0.81	0.81	2.8	5.7
vanide, Total	ND	ND	ND	ND	ND	ND	ND	ND	27	27	27	27	1000
				SEMI-VOLAT	TILE ORGANIC COMPO	UNDS (SVOCS) (ppb)							
Methylnaphthalene	ND	ND	140	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
enaphthene	29	ND	410	320	ND	ND 1200	ND	ND	20000	100000	100000	500000	10000
enaphthylene Ithracene	<u>45</u> 110	840 ND	170 770	ND 640	ND	1200 3200	ND ND	ND ND	100000 100000	100000 100000	100000 100000	500000 500000	10000
thracene nzo[a]anthracene	380	2400	1400	1500	ND 260	9100	ND ND	130	100000	100000	100000	5600	1100
nzo[a]pyrene	310	2800	1300	1500	250	8100	ND	ND	1000	1000	1000	1000	1100
nzo[b]fluoranthene	410	3600	1600	1800	320	10000	ND	160	1000	1000	1000	5600	1100
nzo[g,h,i]perylene	220	2300	950	920	170	5000	ND	ND	100000	100000	100000	500000	10000
nzo[k]fluoranthene	220	1800	660	890	160	3500	ND	ND	800	1000	3900	56000	11000
ohenyl	ND	ND	35	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
ityl benzyl phthalate rbazole	ND 41	ND ND	ND 350	ND 210	ND ND	ND 780	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
irysene	390	2500	1400	1600	250	8600	ND	ND	1000	1000	3900	56000	11000
-n-butyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
benz(a,h)anthracene	67	720	230	290	ND	1600	ND	ND	330	330	330	560	1100
benzofuran	27	ND	280	220	ND	700	ND	ND	7000	14000	59000	350000	10000
uoranthene	830	2800	3200	3700	430	19000	210	280	100000	100000	100000	50000	100000
uorene	<u> </u>	ND 2000	380 810	220 730	ND 140	1300 4400	ND ND	ND ND	30000	100000 500	100000 500	500000 5600	10000
deno[1,2,3-cd]pyrene aphthalene	190	ND	ND	ND	ND	370	ND	ND	500 12000	100000	100000	500000	10000
henanthrene	660	220	3100	3000	250	12000	150	210	100000	100000	100000	500000	100000
/rene	600	2500	2600	2900	400	17000	150	220	100000	100000	100000	500000	100000
otal TICs	870	6500	6530	1000	ND	42000	3550	ND	NS	NS	NS	NS	NS
			-		E ORGANIC COMPOUN	IDS (VOCS) (ppb)					-		
cetone	ND	7.5	ND	ND	ND	ND	ND	5.4	50	100000	100000	50000	10000
arbon disulfide nloroform	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	NS 270	NS 10000	NS 49000	NS 350000	NS 70000
ethylene chloride	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	370 50	51000	100000	50000	10000
etrachloroethene (PCE)	ND	ND	ND	18	1.5	ND	ND	ND	1300	5500	19000	150000	30000
bluene	ND	ND	ND	0.67	ND	ND	ND	ND	700	100000	100000	500000	10000
				OR	GANOCHLORINE PESTI	CIDES (ppb)							
4'-DDD	ND	ND	ND	4.2	ND	ND	ND	ND	3.3	2600	13000	92000	18000
4'-DDT	0.66	5.9	ND	10	15	16	ND	ND	3.3	1700	7900	47000	9400
bha-BHC Ita-BHC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 40	97 100000	480	3400 500000	6800 10000
dosulfan sulfate	ND	ND	ND	ND	ND	ND	ND	ND	2400	4800	24000	200000	92000
drin	0.42	ND	ND	ND	ND	18	ND	ND	14	2200	11000	89000	41000
drin ketone	ND	ND	ND	ND	ND	ND	ND	7.5	NS	NS	NS	NS	NS
mma-BHC (Lindane)	ND	ND	ND	ND	ND	ND	ND	ND	100	280	1300	9200	2300
ethoxychlor	ND	ND	ND	5.8	ND	8.3	ND	ND	NS	NS	NS	NS	NS
2.4250	ND	ND					ND	ND	NG	NG	NG	NC	
B-1260	ND	ND	ND		ND ND ND	ND	ND	ND	NS	NS	NS	NS	NS
ethylperfluorooctane sulfonamidoethanol (NEtFOSE)	ND	ND	ND	ND	ND	ND	ND	0.78	NS	NS	NS	NS	NS
ethylperfluorooctane suffonamidoethanol (NEtFOSE)	ND ND	ND	ND	0.075	0.052	ND	ND	0.78	NS	NS	NS	NS NS	NS
nethylperfluorooctane sulfonamidoethanol (NMeFOSE)	ND	ND	ND	0.96	0.73	ND	ND	1.4	NS	NS	NS	NS	NS
nethylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	ND	ND	0.37	0.20	ND	ND	0.44	NS	NS	NS	NS	NS
fluorodecanoic acid (PFDA)	ND	ND	ND	0.082	0.65	ND	ND	0.056	NS	NS	NS	NS	NS
fluorododecanoic acid (PFDA)	ND	ND	ND	ND	0.36	ND	ND	ND	NS	NS	NS	NS	NS
fluoroheptanoic acid (PFHpA)	ND	ND	ND	ND	0.037	ND	ND	0.049	NS	NS	NS	NS	NS
fluorohexanesulfonic acid (PFHxS)	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
fluorohexanoic acid (PFHxA)	ND	ND	ND	ND	0.055	ND	ND	0.063	NS	NS	NS	NS	NS
fluorononanoic acid (PFNA)	ND	ND	ND	0.044	0.13	ND	ND	0.051	NS	NS	NS	NS	NS
fluorooctanesulfonamide (PFOSA)	ND	ND	ND	0.13	0.12	ND	ND	0.28	NS	NS	NS	NS	NS
fluorooctanesulfonic acid (PFOS)	ND	ND	ND	0.36	0.32	0.046	0.039	0.47	0.88	8.8	44	440	440
fluorooctanoic acid (PFOA)	ND	ND	ND	0.10	0.14	0.05	0.038	0.22	0.66	6.6	33	500	600
fluoropentanoic acid (PFPeA)	ND	ND	ND	ND	0.055	ND	ND	ND	NS	NS	NS	NS	NS
fluorotetradecanoic acid (PFTeDA)	ND ND	ND ND	ND ND	ND ND	0.055	ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
rfluoroundecanoic acid (PFUnA)					N 4 4	ND	NU N	8113				N 11	

ND Not Detected NS No Standard

NYSDEC New York State Department of Environmental Conservation

ppb parts per billion

ppm parts per million ' feet below ground surface

R result is rejected/unusable

(1) PFAS limits are guidance values only; there is still no official SCOs in New York State.

TABLE 1 - SOIL SAMPLING RESULTS

				Sample Iden	tification, Sample [Pepth and Sample C	collection Date					NYSDEC Part	: 375 Soil Cleanup Obj	ectives (SCOs)	
Analyte		TT-1		T-2		T-3	π			π-5					
	2-4'	4-5' 4/18/2025	1-4' 4/21	4-10.3' ./2025	1.5-2.5'	4-5'	1-4' 4/18/	4-7.5' /2025	1-4.5'	4.5-5.5'	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
						METALS (ppm	ı) <u> </u>								
Aluminum Antimony	9940	13000 3.2	12700 ND	8400 ND	8800 ND	14400 ND	11900 ND	10700 ND	8020	20700 ND	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic	4.9	14.0	9.8	9.7	9.7	19.8	8.2	5.5	7.1	3.5	13	16	16	16	16
Barium	163	109	116	R	27.6	50.3	43.5	41.3	103	144	350	350	400	400	10000
Beryllium Cadmium	1.0 0.36	0.90	0.87	0.57	0.53	1.4 0.39	0.71 0.24	0.59 0.29	0.45	0.88	7.2	14 2.5	72 4.3	590 9.3	2700 60
Calcium	14300	62300	97200	117000	60800	37400	61500	119000	127000	46400	NS	NS	NS	NS	NS
Chromium Cobalt	<u>41.2</u> 5.4	<u>25.9</u> 6.7	23.6 9.6	13.3 5.3	22.9 5.4	62.7 14.5	23.9 8.0	17.5 5.8	13.9 5.4	24.6 10.2	1 NS	22 NS	110 NS	400 NS	800 NS
Copper	29.6	34.2	39.9	38.5	12.9	16.5	11.7	14.6	20.3	18.0	50	270	270	270	10000
Iron	16700	22700	16200	12500	11800	24100	14300	12000	13200	21700	NS	NS	NS	NS	NS
Lead Magnesium	79.9	116 19300	51.7 26900	85.2 31100	13.7 4880	43.1 6490	21.9 7030	36.7 7470	64.1 8750	17.1 18400	63 NS	400 NS	400 NS	1000 NS	3900 NS
Manganese	73.6	327	457	270	174	296	418	401	321	473	1600	2000	2000	10000	10000
Nickel Potassium	<u> </u>	15.9 2490	24.2 3450	14.6 1630	19.7 3660	41.9 7620	19.3 3100	13.1 2470	14.3 2640	21.1 6850	30 NS	140 NS	310 NS	310 NS	10000 NS
Selenium	1.4	1.2	ND	ND	ND	1.0	ND	ND	ND	ND	3.9	36	180	1500	6800
Silver	ND	ND	ND	ND	ND	0.25	ND	ND	ND	ND	2	36	180	1500	6800
Sodium Thallium	381 ND	288 ND	180 ND	172 ND	87.6 ND	105 ND	127 ND	127 ND	201 ND	445 ND	NS NS	NS NS	NS NS	NS NS	NS NS
Vanadium	22.9	27.6	60.9	31.4	26.7	143	47.8	33.0	23.0	39.5	NS	NS	NS	NS	NS
Zinc	<u> </u>	77.3	71.5	56.3 0.19	61.8 0.20	44.6 0.32	36.3 0.19	56.8 0 11	74.8	67.7 0.028	109 0.18	2200	10000	10000	10000 5.7
Mercury Cyanide, Total	0.067 ND	0.058 ND	0.36 ND	0.19 ND	ND	0.32 ND	0.19 ND	0.11 ND	0.12 ND	0.028 ND	27	0.81 27	0.81	2.8 27	10000
					SEMI-VOLAT	ILE ORGANIC COMPC	OUNDS (SVOCS) (ppb)								
2-Methylnaphthalene Acenaphthene	ND ND	ND ND	ND 640	930 3500	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS 20000	NS 100000	NS 100000	NS 500000	NS 1000000
Acenaphthylene	ND	ND	550	1300	ND	ND	ND	ND	ND	ND	100000	100000	100000	500000	1000000
Anthracene	ND	ND 150	2100	9000	ND	ND 27	ND	ND 40	47	ND	100000	100000	100000	500000	1000000
Benzo[a]anthracene Benzo[a]pyrene	<u> </u>	150 210	9300 8500	23000 20000	590 750	27 ND	ND ND	49 47	180 180	ND ND	1000 1000	1000 1000	1000 1000	5600 1000	11000 1100
Benzo[b]fluoranthene	420	300	11000	22000	1100	35	ND	62	230	ND	1000	1000	1000	5600	11000
Benzo[g,h,i]perylene Benzo[k]fluoranthene	250 170	220 100	5200 4600	12000 13000	700 390	25 ND	19 ND	39 ND	150 90	ND ND	100000 800	100000 1000	100000 3900	500000 56000	1000000 110000
Biphenyl	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Butyl benzyl phthalate	ND	ND	ND	ND	150	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Carbazole Chrysene	ND 340	ND 180	450 8800	2300 22000	ND 690	ND ND	ND ND	ND 49	ND 190	ND ND	NS 1000	NS 1000	NS 3900	NS 56000	NS 110000
Di-n-butyl phthalate	ND	ND	ND	ND	320	37	ND	ND	ND	ND	NS	NS	NS	NS	NS
Dibenz(a,h)anthracene	ND	62	1600	4000	210	ND	ND	ND	43	ND	330	330	330	560	1100
Dibenzofuran Fluoranthene	ND 600	ND 240	ND 20000	1900 53000	ND 1000	ND 51	ND 32	ND 100	ND 370	ND 37	7000 100000	14000 100000	59000 100000	350000 500000	1000000 1000000
Fluorene	ND	ND	400	3100	ND	ND	ND	ND	ND	ND	30000	100000	100000	500000	1000000
Indeno[1,2,3-cd]pyrene Naphthalene	210 ND	170 ND	4600 ND	<u>11000</u> 930	560 ND	ND ND	ND ND	30 ND	120 ND	ND ND	500 12000	500 100000	500 100000	5600 500000	11000 1000000
Phenanthrene	220	74	9000	37000	290	ND	ND	47	220	ND	100000	100000	100000	500000	1000000
Pyrene Total TICs	430 ND	200 ND	16000 22200	43000 172400	820 ND	42 ND	25 ND	77 ND	330 ND	33 4480	100000 NS	100000 NS	100000 NS	500000 NS	1000000
	ND	ND	22200	172400		ORGANIC COMPOU		ND	ND	4480	INS	INS	INS INS	NS NS	NS
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	100000	100000	500000	1000000
Carbon disulfide Chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS 370	NS 10000	NS 49000	NS 350000	NS 700000
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	51000	100000	50000	100000
Tetrachloroethene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1300	5500	19000	150000	300000
Toluene	ND	ND	ND	ND	ND	ND GANOCHLORINE PEST	ND ICIDES (ppb)	ND	ND	ND	700	100000	100000	500000	1000000
4,4'-DDD	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	2600	13000	92000	180000
4,4'-DDT	3.2	0.65	1.6	9.7	ND	ND	ND	ND	0.89	ND	3.3	1700	7900	47000	94000
alpha-BHC delta-BHC	ND ND	ND ND	ND ND	ND ND	ND ND	0.55 ND	ND ND	ND ND	ND ND	ND ND	20 40	97 100000	480 100000	3400 500000	6800 1000000
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND	0.49	ND	ND	2400	4800	24000	200000	920000
Endrin Endrin ketone	ND ND	0.97 ND	1.1 ND	ND ND	ND ND	0.60 ND	ND ND	0.56 ND	0.99 ND	ND ND	14 NS	2200 NS	11000 NS	89000 NS	410000 NS
gamma-BHC (Lindane)	ND	ND	0.73	ND	ND	ND	ND	ND	ND	ND	100	280	1300	9200	23000
Methoxychlor	ND	ND	0.82	9.6	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
PCB-1260	ND	ND	ND	ND	POLYCI ND	ILORINATED BIPHEN	/LS (PCBS) (ppb) ND	ND	ND	ND	NS	NS	NS	NS	NS
							STANCES (PFAS) (ppb)								
N-ethylperfluorooctane sulfonamidoethanol (NEtFOSE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
N-methylperfluorooctane sulfonamidoethanol (NMeFOSE) N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
Perfluorodecanoic acid (PFDA)	ND	ND	ND	ND	0.069	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluorododecanoic acid (PFDoA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluoroheptanoic acid (PFHpA)	ND	0.045	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.19 ND	0.056 0.17	0.037 ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
Perfluorononanoic acid (PFNA)	ND	ND	ND	ND	ND	0.041	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluorooctanesulfonamide (PFOSA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)	0.069	0.10	0.071	0.049 ND	0.12 ND	0.15	0.094	0.060 0.15	0.21	ND ND	0.88	8.8 6.6	44 33	440 500	440 600
Perfluoropentanoic acid (PFOA) Perfluoropentanoic acid (PFPeA)	0.15 ND	0.24 ND	0.083 ND	0.14	ND ND	0.094 ND	ND	0.15 ND	0.11 ND	ND ND	NS	NS	NS	NS	NS
Perfluorotetradecanoic acid (PFTeDA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluoroundecanoic acid (PFUnA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
	Notes:														

Notes:

(1) PFAS limits are guidance values only; there is still no official SCOs in New York State. ND Not Detected

NS No Standard

NYSDEC New York State Department of Environmental Conservation ppb parts per billion

ppm parts per million

' feet below ground surface

R result is rejected/unusable

TABLE 2 - GROUNDWATER SAMPLING RESULTS

		tification and le Date	NYSDEC Division of Water	
Parameter Tested	MW-2	MW-3	Technical and Operational Guidance Series (1.1.1)	
	4/21/2025	4/23/2025	/	
	METALS (pp			
Aluminum	350	ND	NS	
Barium	24	17	1000	
Calcium	79300	66300	NS	
Cobalt	0.63	ND	5	
Copper	ND	ND	200	
Iron	340	ND	300	
Magnesium	22100	19900	35,000	
Manganese	18	3.5	300	
Nickel	2.5	1.6	100	
Potassium	2500	3100	NS	
Sodium	94800	82500	20,000	
Zinc	10	ND	2000	
Mercury	ND	ND	0.7	
Cyanide, total	4.8	7	200.0	
	SVOCS (pp	b)		
Total TICs	1.9	25.7	50	
	VOCS (ppb)		
Chloroform	ND	2	7	
Methylcyclohexane	ND	0.37	NS	
	PFAS (ppt)		
Perfluorobutanesulfonic acid (PFBS)	1.0	1.3	NS	
Perfluorobutanoic acid (PFBA)	5.8	6.7	NS	
Perfluorodecanoic acid (PFDA)	ND	0.79	NS	
Perfluoroheptanoic acid (PFHpA)	0.94	2.5	NS	
Perfluorohexanesulfonic acid (PFHxS)	ND	0.85	NS	
Perfluorohexanoic acid (PFHxA)	2.9	5.5	NS	
Perfluorononanoic acid (PFNA)	ND	1.4	NS	
Perfluorooctanoic acid (PFOA)	1.9	5.2	6.7	
Perfluorooctanesulfonic acid (PFOS)	1.2	1.3	2.7	
Perfluoropentanoic acid (PFPeA)	3.6	9.2	NS	
	PCBS (ppb)		
Total PCBs	ND	ND	0.09	
ORG	GANOCHLORINE PES	TICIDES (ppb)		
gamma-BHC (Lindane)	0.0088	0.009	NS	

Notes:

ND Not Detected

NS No Standard

NYSDEC New York State Department of Environmental Conservation

ppb parts per billion

ppt parts per trillion

TICs Tentatively Identified Compounds

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

TABLE 3 - VAPOR SAMPLING RESULTS

		Sample Identification	on, Type of Sample,	and Date Analyzed		Table 3.1 NYSDOH
Contaminants	RI-VP-1	RI-VP-2	RI-VP-3	RI-VP-4	RI-VP-5	Indoor Air Guideline
			4/17/2025			Values
		Volatile Orga	anic Compounds (M	ethod TO-15)		
1,1-Dichloroethene	0.32	0.47	ND	0.41	0.43	-
1,2,4-Trimethylbenzene	0.99	3.3	ND	0.95	ND	-
1,3-Butadiene	ND	ND	2.2	ND	ND	-
1,3,5-Trimethylbenzene	ND	0.78	ND	ND	ND	-
2,2,4-Trimethylpentane	0.61	0.60	ND	0.50	ND	-
3-Chloropropene	0.59	0.92	ND	0.84	ND	-
4-Ethyltoluene	ND	1.2	ND	ND	ND	-
Acetone	81	180	3000	160	160	-
Benzene	1.1	0.95	ND	0.85	0.30	-
Carbon disulfide	190	500	19	370	420	-
Carbon tetrachloride	0.44	0.26	ND	0.41	0.32	-
Chloroethane	0.60	1.1	ND	0.93	0.99	-
Chloroform	ND	ND	ND	ND	0.69	-
Chloromethane	10	15	ND	14	13	-
cis-1.2-Dichloroethene	ND	0.16	ND	0.15	ND	-
cis-1,3-Dichloropropene	0.28	0.51	ND	0.31	ND	-
Cumene	ND	0.50	ND	ND	ND	-
Cyclohexane	ND	ND	ND	0.19	0.79	-
Dichlorodifluoromethane	2.2	2.1	ND	2.1	2.2	_
Ethylbenzene	0.64	1.2	ND	0.59	ND	_
m,p-Xylene	2.0	3.9	2.9	1.8	ND	-
Methyl Butyl Ketone (2-Hexanone)	0.93	1.7	68	0.91	ND	
Methyl Ethyl Ketone (2-Butanone)	7.1	13	3600	20	8.1	
Methylene Chloride	ND	ND	ND	ND	0.86	60
n-Butane	3.0	2.1	26	2.6	ND	00
n-Butylbenzene	ND	0.40	ND	ND	ND	
n-Heptane	560	1500	44	1100	16	
n-Hexane	0.56	0.58	7.0	0.65	ND	
n-Propylbenzene	0.30	1.1	ND	0.65 ND	ND	-
	0.30					-
o-Xylene	0.70 ND	ND	ND ND	0.72	ND	-
sec-Butylbenzene		0.48	ND ND	ND	ND	-
tert-Butyl alcohol	100 ND	270		200	100	-
Tetrachloroethene	ND	2.2	4.4	0.29	ND	30
Toluene	1.9	2.0	2.5	1.5	ND	-
trans-1,2-Dichloroethene	0.14	0.24	ND	0.21	0.23	-
trans-1,3-Dichloropropene	0.42	0.72	ND	0.41	ND	
Trichloroethene	ND	ND	ND	ND	0.16	2
Trichlorofluoromethane	1.2	1.2	ND	1.2	1.2	-
Vinyl chloride	2.6	4.4	ND	3.8	ND	-

Notes:

(1) All values are in micrograms per cubic meter (ug/m³)

ND Not Detected

NYSDOH New York State Department of Health

- Not applicable/no guidance value

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

TABLE 4 PHASE II SOIL SAMPLING RESULTS (all values in parts per million (PPM)

	BE3 Pha	se II Report Febru	ary 2023 - Sample	e Identification, S	ample Depth in fe	eet below ground	surface (bgs), and	Sample Date		NYSDEC So	il Cleanup Object	ives (SCOs)	
Parameter Tested	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8					
r arameter resteu	2-4	1-2	1-2	1-2	1-2	1	0.5-1	1-3			Restricted		
				1/:	17/2023				Unrestricted	Residential	Residential	Commerical	Industrial
						METALS/INOR						_	-
Arsenic	20	18.5	8.4	2.8	9.0	5.4	13.6	15.4	13	16	16	16	16
Barium	40	400	78.8	29.4	397	74.1	391	101	410	410	410	410	10,000
Beryllium	0.63	1.30	0.5	0.24	3.4	0.78	1.90	1.30	4.4	8.8	43	670	750
Cadmium	0.35	0.5	0.6	0.26	0.4	0.55	0.31	0.30	2.5	2.5	2.5	3.7	4.4
Chromium	21.2	23.2	12.4	7.5	204	17.3	59.7	12.0	30	30	110	1,700	2,000
Copper	18.3	229 F2	42.9	15.2	31.8	9.7	25.4	24.0	50	280	280	280	10,000
Lead	46	293 F2	139.0	27.9	107	21.6	71	39	63	400	400	1,000	3,900
Manganese	386 B	359 B	349 B	142 B	213 B	1920 B	203	234 B	1,600	2,000	2,000	10,000	10,000
Mercury	0.30 B	0.44	0.14 B	0.19 B	.054 B	.065 B	0.085	0.034 B	0.18	0.26	0.26	1.1	1.1
Nickel	24.2	18.1	18.3	7.5	64.7	29.9	30.9	20.3	30	44	210	320	3,400
Silver	ND	ND	ND	ND	0.36 J	ND	0.28	ND	2	22	110	1,700	2,000
Zinc	43	160 F1	95.7	36.3	36.7	46.3	39.3	23.7	109	1,300	6,600	10,000	10,000
	-				-		OMPOUNDS (SVC						
Acenaphthene	ND	ND	0.31 J	ND	ND	ND	2.5	0.031 J	20	100	100	500	1,000
Acenaphthylene	ND	ND	ND	ND	ND	ND	1.4 J	ND	100	100	100	500	1,000
Anthracene	ND	ND	ND	ND	ND	ND	9.6	0.89 J	100	100	100	500	1,000
Benzo(a)anthracene	0.17 J	0.99 J	1.6 J	0.35 J	ND	ND	18	0.3	1	1	1.4	37	37
Benzo(a)pyrene	0.17 J	1.0 J	1.5 J	0.34 J	ND	ND	16	0.33	1	1	1	3.7	3.7
Benzo(b)fluoranthene	0.2	1.4 J	2.00	0.51 J	ND	ND	16	0.38	1	1	1.4	37	37
Benzo(g,h,i)perylene	0.1 J	0.68 J	.98 J	0.34 J	ND	ND	10	0.27	0.64	1.2	4.9	47	78
Benzo(k)fluoranthene	0.079 J	0.46 J	.71 J	0.19 J	ND	ND	8.90	0.19 J	0.8	1.2	4.9	47	78
Chrysene	0.18 J	1.2 J	1.7 J	0.38 J	ND	ND	16.0	0.34	1	1.2	4.9	47	78
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	2.70	0.07 J	0.33	0.33	0.33	3.7	3.7
Dibenzofuran	ND	ND	ND	ND	ND	ND	1.9	0.029 J	2.1	4.2	18	180	290
Fluoranthene	0.4	3.0	4	0.78 J	ND	ND	37	1	85	100	100	500	1,000
Fluorene	ND	ND	0.32 J	ND	ND	ND	3.8	.025 J	30	100	100	500	1,000
ndeno(1,2,3-cd)pyrene	0.096 J	0.58 J	0.92 J	0.27 J	ND	ND	9.1	0.23	0.5	0.5	1.4	37	37
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	12	84	100	500	1,000
Phenanthrene	0.17 J	2.9	3.7	0.43 J	ND	ND	30	0.45	1.1	1.2	4.9	47	78
Pyrene	0.31		3.1	0.6 J	ND	ND	29	0.48	64	100	100	500	1,000

i hh - Not Applicable or sample not tested for this

analyte

J Estimated Concentration

B Anaalyte detected in method blank

K Result is reported as Benzo(b)fluoranthene

E Results exceeded calibration range

T Result is Tentatively Identifies Compound and an estimated

value

Reported concentration greater than or equal to the NYSDEC Unrestricted SCO Reported concentration greater than or equal to the NYSDEC Residential SCO Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO Reported concentration greater than or equal to the NYSDEC Commercial SCO Reported concentration greater than or equal to the NYSDEC Industrial SCO

TABLE 4 PHASE II SOIL SAMPLING RESULTS

	BE3 Pha	se II Report Febru	ary 2023 - Sample	e Identification, S	ample Depth in fe	et below ground	surface (bgs), and	l Sample Date		NYSDEC So	oil Cleanup Object	ives (SCOs)	
Parameter Tested	BH9 1-2	BH10 1-2	BH11 No Sample	BH12 1-2	BH13 <u>1-2</u> 17/2023	BH14 2-3	BH15 1-2	BH16 1-3	Unrestricted	Residential	Restricted Residential	Commerical	Industrial
	4			1/.		METALS/INOR			Unrestricted	Residential	Residential	Commerical	industrial
Arsenic	3.0	1.2 J		1.2 J	10.1	4.8	52.5	11.3	13	16	16	16	16
Barium	20.4	5.3		5.3	69	171	89.4	54.3	410	410	410	410	10,000
Beryllium	0.19 J	0.098 J		0.73	0.86	1/1	1.70	0.53	4.4	8.8	43	670	750
Cadmium	0.87	0.24		0.55	1.10	0.87 J	0.63	0.15 J	2.5	2.5	2.5	3.7	4.4
Chromium	16.9	3.7		23.8	16.6	7.2	20.5	6.9	30	30	110	1.700	2,000
Copper	18.1	4.9 J		42.0	39.1	17.0	102.0	31.8	50	280	280	280	10,000
_ead	175.0	18.3		109.0	125	29	141.0	12.6	63	400	400	1,000	3,900
Vanganese	140 B	63 B		271 B	270 B	394 B	152 B	85.1 B	1,600	2,000	2,000	10,000	10,000
Vercury	0.042 B	0.014 JB		0.10	0.27	0.069	0.067	0.064	0.18	0.26	0.26	1.1	1.1
Vickel	11.4	4.2 J		28.6	24.4	9.3	37.4	14.5	30	44	210	320	3,400
Silver	ND	ND		ND	ND	ND	0.50 J	ND	2	22	110	1,700	2,000
Zinc	99.6	18.6		92	187	21.5	103	17.7	109	1,300	6,600	10,000	10,000
			•	-	SEMI-VOLATI		MPOUNDS (SVO			/	-/	-/	
Benzo(a)anthracene	16 J	9.7 J		0.46 J	1.4 J	1.1	0.26 J	0.16 J	1	1	1.4	37	37
Benzo(a)pyrene	22	12 J		0.77 J	1.4 J	1.2	0.29 J	0.19	1	1	1	3.7	3.7
Benzo(b)fluoranthene	26	15 J		1 J	1.4 J	1.6	0.34 J	0.24	1	1	1.4	37	37
Benzo(g,h,i)perylene	17 J	11 J		0.79 J	1 J	1	0.20 J	0.13 J	0.64	1.2	4.9	47	78
Benzo(k)fluoranthene	14 J	7.6 J		0.4 J	0.84 J	0.54 J	ND	0.067 J	0.8	1.2	4.9	47	78
Chrysene	19	12 J		ND	1.7 J	1.4	0.27 J	0.17 J	1	1.2	4.9	47	78
Dibenz(a,h)anthracene	5 J	ND		ND	ND	0.31 J	ND	0.041 J	0.33	0.33	0.33	3.7	3.7
Dibenzofuran	ND	ND		ND	ND	ND	ND	ND	2.1	4.2	18	180	290
luoranthene	21	19		1 J	2.8	1.9	0.51 J	0.25	85	100	100	500	1,000
luorene	ND	ND		ND	ND	ND	ND	ND	30	100	100	500	1,000
ndeno(1,2,3-cd)pyrene	16 J	8.8 J		0.7 J	0.86 J	0.88 J	0.20 J	0.12 J	0.5	0.5	1.4	37	37
laphthalene	ND	ND		ND	ND	ND	ND	ND	12	84	100	500	1,000
henanthrene	ND	5.3 J		0.37 J	2.7	0.75 J	0.33 J	0.15 J	1.1	1.2	4.9	47	78
Pyrene	17 J	15 J		0.81 J	3.1	1.5	0.41 J	0.25	64	100	100	500	1,000
Note	s: All units in parts	per million (ppm)											

(ppm)

ND Analyte not detected

- Not Applicable or sample not tested for this analyte

J Estimated Concentration

B Anaalyte detected in method blank K Result is reported as Benzo(b)fluoranthene

E Results exceeded calibration range

T Result is Tentatively Identifies Compound and an estimated value

Analyte detected

Reported concentration greater than or equal to the NYSDEC Unrestricted SCO Reported concentration greater than or equal to the NYSDEC Residential SCO Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO Reported concentration greater than or equal to the NYSDEC Commercial SCO Reported concentration greater than or equal to the NYSDEC Industrial SCO

TABLE 4 PHASE II SOIL SAMPLNG RESULTS

		• •	23 - Sample Identifi urface (bgs), and S	· ·		NYSDEC	Soil Cleanup Obje	ectives (SCOs)	
Parameter Tested	BH-17	BH-18							
	1-2	1-3					Restricted		
		1/17	/2023		Unrestricted	Residential	Residential	Commerical	Industrial
				METALS/INORG	ANICS				
Arsenic	11.8	7.5			13	16	16	16	16
Barium	62.4	77			410	410	410	410	10,000
Beryllium	0.56	0.56			4.4	8.8	43	670	750
Cadmium	0.47	0.34			2.5	2.5	2.5	3.7	4.4
Chromium	10.7	12.2			30	30	110	1,700	2,000
Copper	35.7	26.2			50	280	280	280	10,000
Lead	88	77.2			63	400	400	1,000	3,900
Manganese	120 B	198 B			1,600	2,000	2,000	10,000	10,000
Mercury	0.15	0.097			0.18	0.26	0.26	1.1	1.1
Nickel	15.5	15.9			30	44	210	320	3,400
Zinc	75	92.4			109	1,300	6,600	10,000	10,000
	-		SEMI-VOLATI	LE ORGANIC CO	MPOUNDS (SV	DCs)			
Acenaphthene	ND	0.079 J			20	100	100	500	1,000
Acenaphthylene	ND	0.041 J			100	100	100	500	1,000
Anthracene	ND	0.19 J			100	100	100	500	1,000
Benzo(a)anthracene	0.84 J	0.55			1	1	1.4	37	37
Benzo(a)pyrene	1.3	0.55			1	1	1	3.7	3.7
Benzo(b)fluoranthene	1.7	0.57			1	1	1.4	37	37
Benzo(g,h,i)perylene	1.4	0.4			0.64	1.2	4.9	47	78
Benzo(k)fluoranthene	0.76 J	0.33			0.8	1.2	4.9	47	78
Chrysene	1.1	0.56			1	1.2	4.9	47	78
Dibenz(a,h)anthracene	0.29 J	0.099 J			0.33	0.33	0.33	3.7	3.7
Dibenzofuran	ND	0.056			2.1	4.2	18	180	290
Fluoranthene	1.7	1.4			85	100	100	500	1,000
Fluorene	ND	0.063 J			30	100	100	500	1,000
Indeno(1,2,3-cd)pyrene	1.1	0.36			0.5	0.5	1.4	37	37
Naphthalene	ND	0.043 J			12	84	100	500	1,000
Phenanthrene	0.53 J	1.0			1.1	1.2	4.9	47	78
Pyrene	1.3	1.1			64	100	100	500	1,000

Notes: All units in parts per million (ppm)

ND Analyte not detected

- Not Applicable or sample not tested for this analyte

J Estimated Concentration

B Analyte detected in method blank

K Result is reported as Benzo(b)fluoranthene

E Results exceeded calibration range

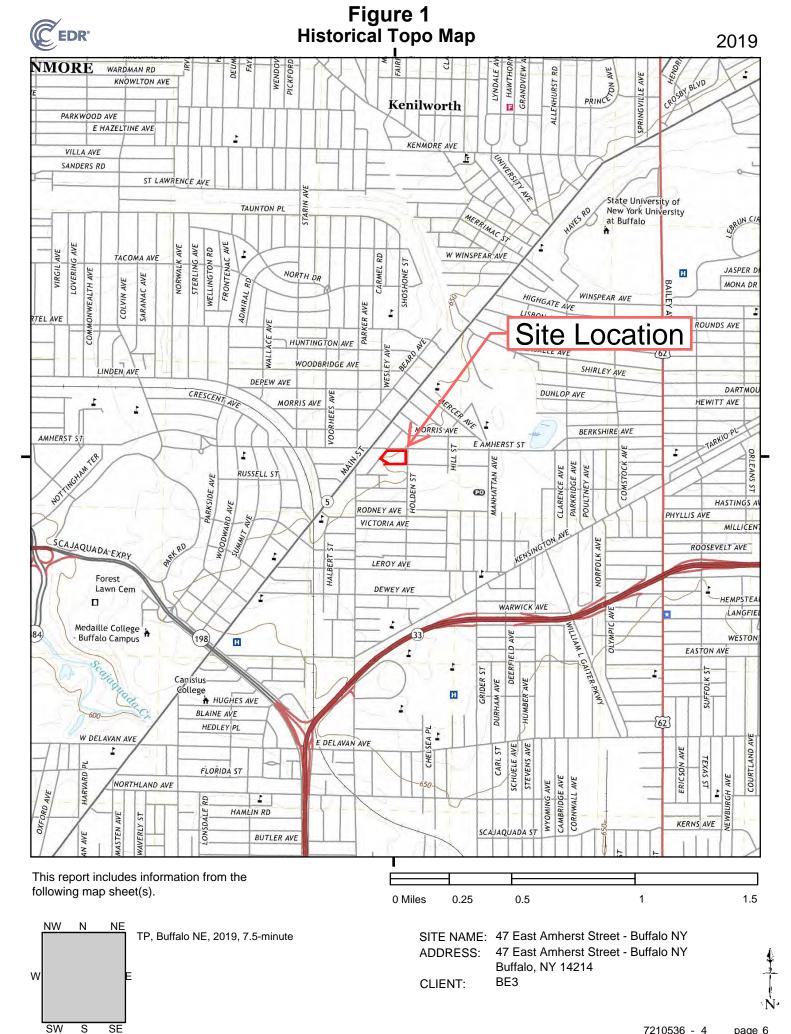
Analyte detected

Reported concentration greater than or equal to the NYSDEC Unrestricted SCO Reported concentration greater than or equal to the NYSDEC Residential SCO Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO Reported concentration greater than or equal to the NYSDEC Commercial SCO Reported concentration greater than or equal to the NYSDEC Industrial SCO

TABLE 5

Boring, Monitoring Well and Test Trench GPS Coordinates

Hole ID	Easting	Northing
RI-BH-1	-78.89701	42.95156
RI-BH-2	-78.83653	42.93990
RI-BH-3	-78.83680	42.93975
RI-BH-4	-78.83642	42.93937
RI-BH-5	-78.83625	42.93953
RI-BH-6	-78.83592	42.93944
RI-BH-7	-78.83571	42.93941
RI-BH-9	-78.93588	42.93943
RI-BH-11	-78.83508	42.94007
RI-BH-12	-78.83568	42.94013
RI-BH-13	78.83632	42.93963
RI-BH-14	78.83537	42.93970
RI-TT-1	78.83683	42.93985
RI-TT-2	78.83662	42.93950
RI-TT-3	78.83557	42.93951
RI-TT-4	78.83508	42.93973
RI-TT-5	78.83535	42.94011
RI-MW-1	-78.83667	42.93952
RI-MW-2	-78.83679	42.93988
RI-MW-3	-78.83499	42.93964


Table 6Monitoring Well and Groundwater Elevation Data

Well ID	Top of Riser	Depth to Water	GW Elevation
RI-MW-1	78.16	>29.4	<48.76
RI-MW-2	72.2	19.4	52.8
RI-MW-3	75.08	16.85	58.23

NOTE: Groundwater was not encountered in RI-MW-1, therefore only inequalities were provided.

UTILITIES

RESPONDED	\boxtimes	NATURAL GAS C	OMPANY:
		NAME/TITLE COMPANY/DEPT. ADDRESS	ERIC SCHULTZ NATIONAL FUEL DISTRIBUTION CORPORATION 6363 MAIN STREET
		TELEPHONE	WILLIAMSVILLE, NEW YORK 14221 PHONE: 716/857-7076
RESPONDED	[]	ELECTRIC COMP	ANY:
		NAME/TITLE COMPANY/DEPT. ADDRESS	DIANE KEICHER NATIONAL GRID 144 KENSINGTON AVENUE
		TELEPHONE	BUFFALO, NEW YORK 14214 PHONE: 716/831-7108
RESPONDED	\boxtimes	BUFFALO SEWER	R AUTHORITY:
		NAME/TITLE COMPANY/DEPT. ADDRESS	ANTHONY HAZZAN BUFFALO SEWER AUTHORITY 1038 BUFFALO CITY HALL
		TELEPHONE	BUFFALO, NEW YORK 14202 PHONE: 716/851-4664
RESPONDED	\boxtimes	DIVISION OF WAT	TER:
		NAME/TITLE COMPANY/DEPT. ADDRESS	JAMES CAMPOLONG CITY OF BUFFALO, DIVISION OF WATER 2 PORTER AVENUE
		TELEPHONE	BUFFALO, NEW YORK 14201 PHONE: 716/851-4766
RESPONDED	\boxtimes	CABLE TELEVISIO	ON COMPANY:
		NAME/TITLE COMPANY/DEPT. ADDRESS	PAM GRACI TIME WARNER CABLE 355 CHICAGO STREET
		TELEPHONE	BUFFALO, NEW YORK 14204 PHONE: 716/558-8551
RESPONDED	\boxtimes	TELEPHONE CON	MPANY:
		NAME/TITLE COMPANY/DEPT. ADDRESS	JIM MURPHY VERIZON 65 FRANKLIN STREET
		TELEPHONE	BUFFALO, NEW YORK 14202 PHONE: 716/840-8698
			7, NOT ALL INFORMATION REGARDING Y LOCATIONS WAS AVAILABLE FOR REVIEW N OF SURVEY.

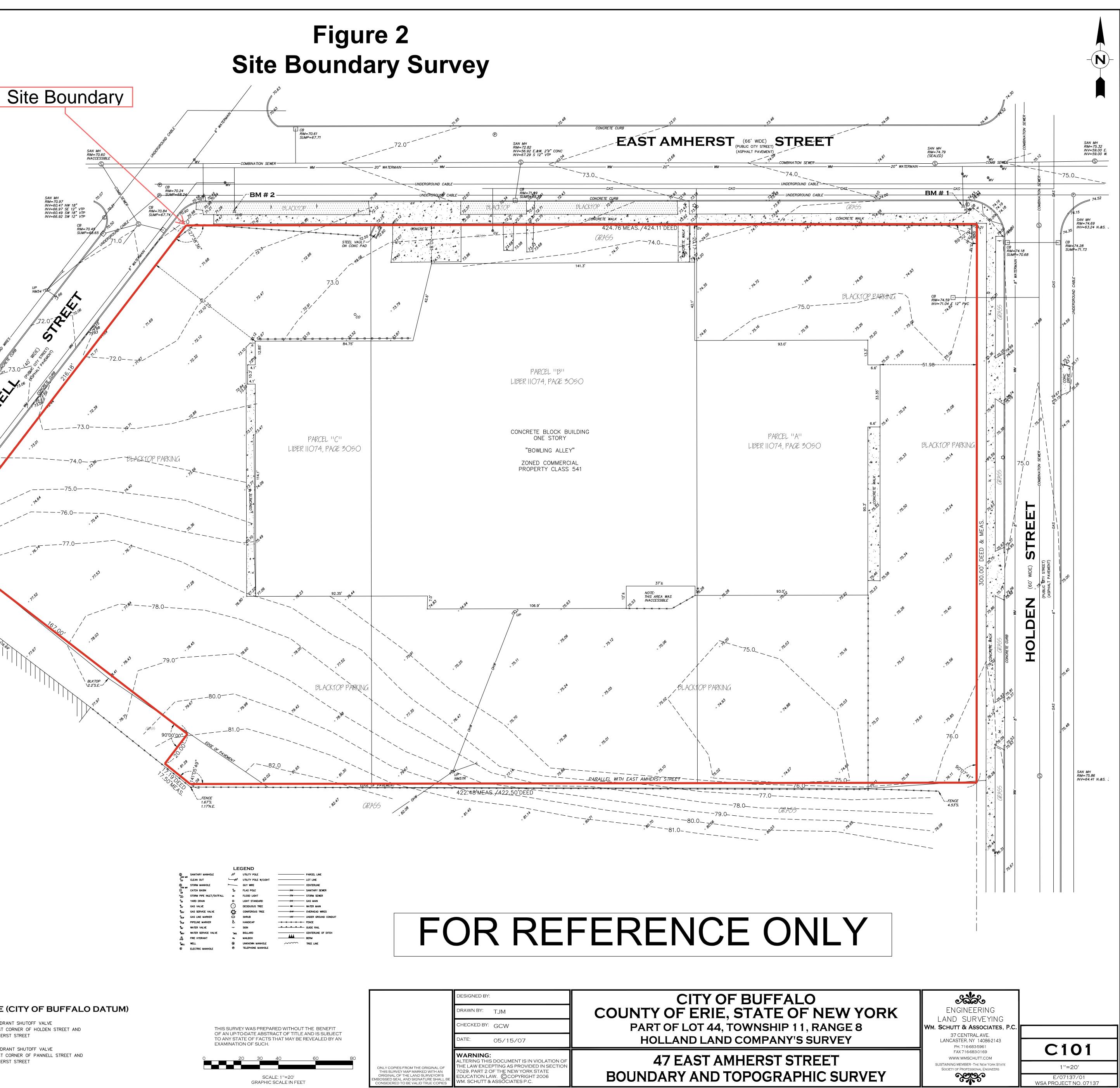
UTILITY NOTE

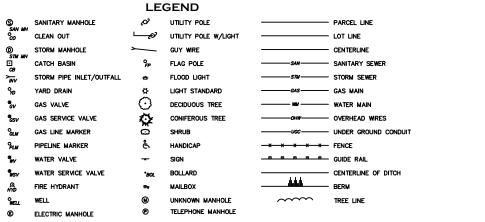
THE UNDERGROUND UTILITIES SHOWN HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND EXISTING RECORD DRAWINGS PROVIDED TO THE SURVEYOR. THE SURVEYOR MAKES NO GUARANTEE THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. ADDITIONAL BURIED UTILITIES/STRUCTURES MAY BE ENCOUNTERED. NO EXCAVATIONS WERE MADE DURING THE PROGRESS OF THIS SURVEY TO SUBSTANTIATE BURIED UTILITIES AND STRUCTURES. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED, ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE. BEFORE EXCAVATIONS ARE BEGUN, THE APPROPRIATE AGENCIES SHOULD BE CONTACTED FOR VERIFICATION OF UTILITY TYPE AND FOR FIELD LOCATIONS.

DRA	DRAWING REVISIONS									
ITEM	DATE	DESCRIPTION								

BENCHMARK TABLE (CITY OF BUFFALO DATUM) DESIGNATION <u>ELEVATION</u> <u>DESCRIPTION</u> 77.43 TOP OF HYDRANT SHUTOFF VALVE 1

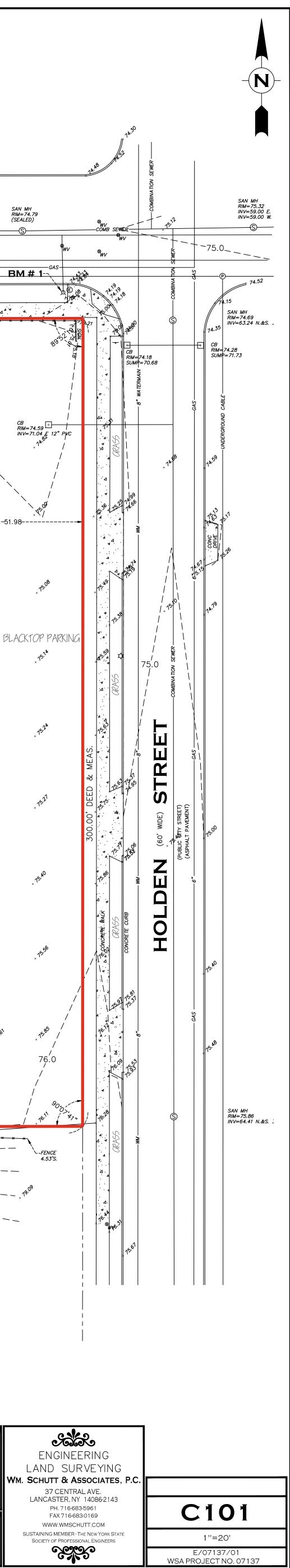
SOUTHWEST CORNER OF HOLDEN STREET AND EAST AMHERST STREET

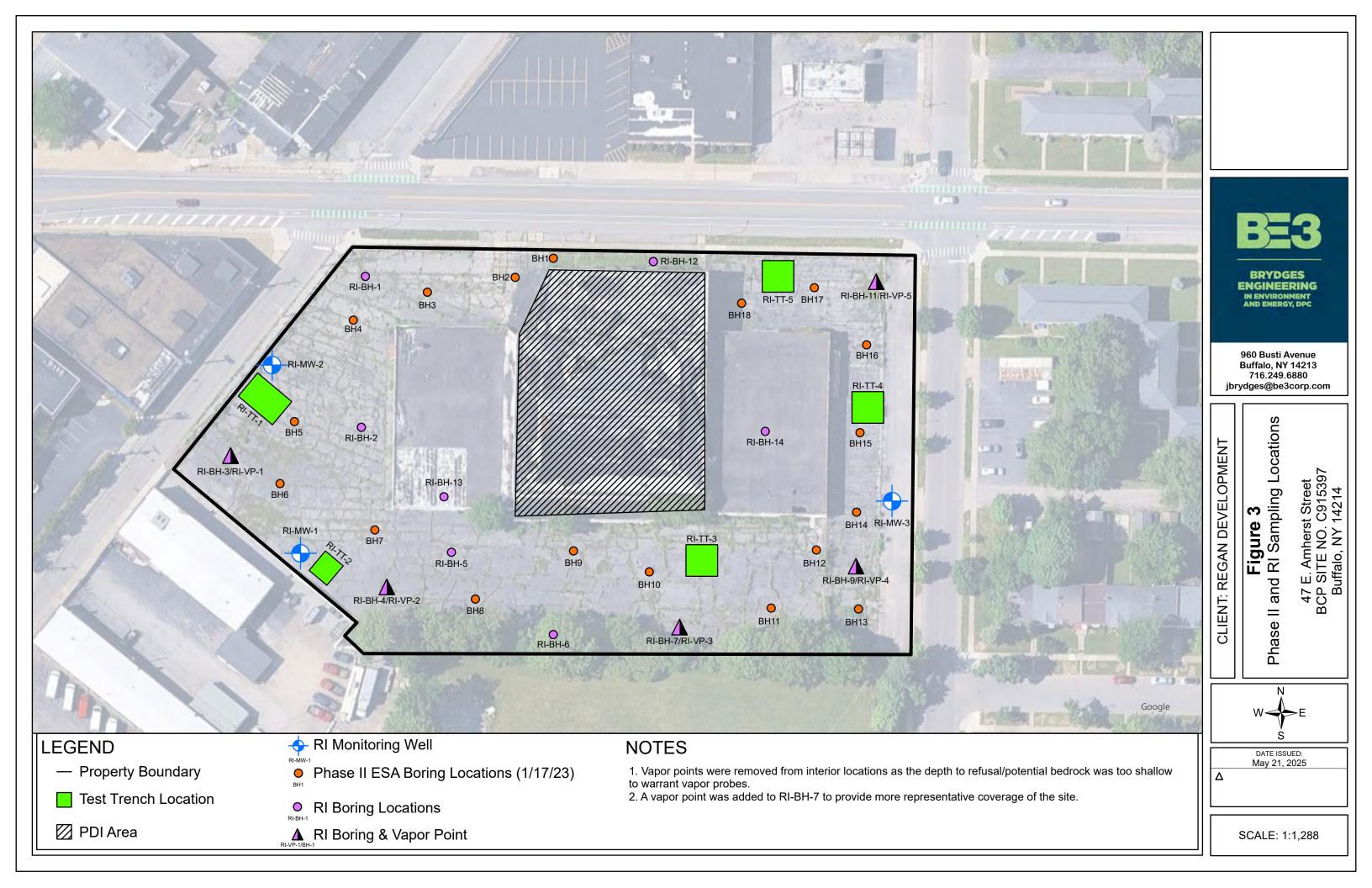

OANNEW

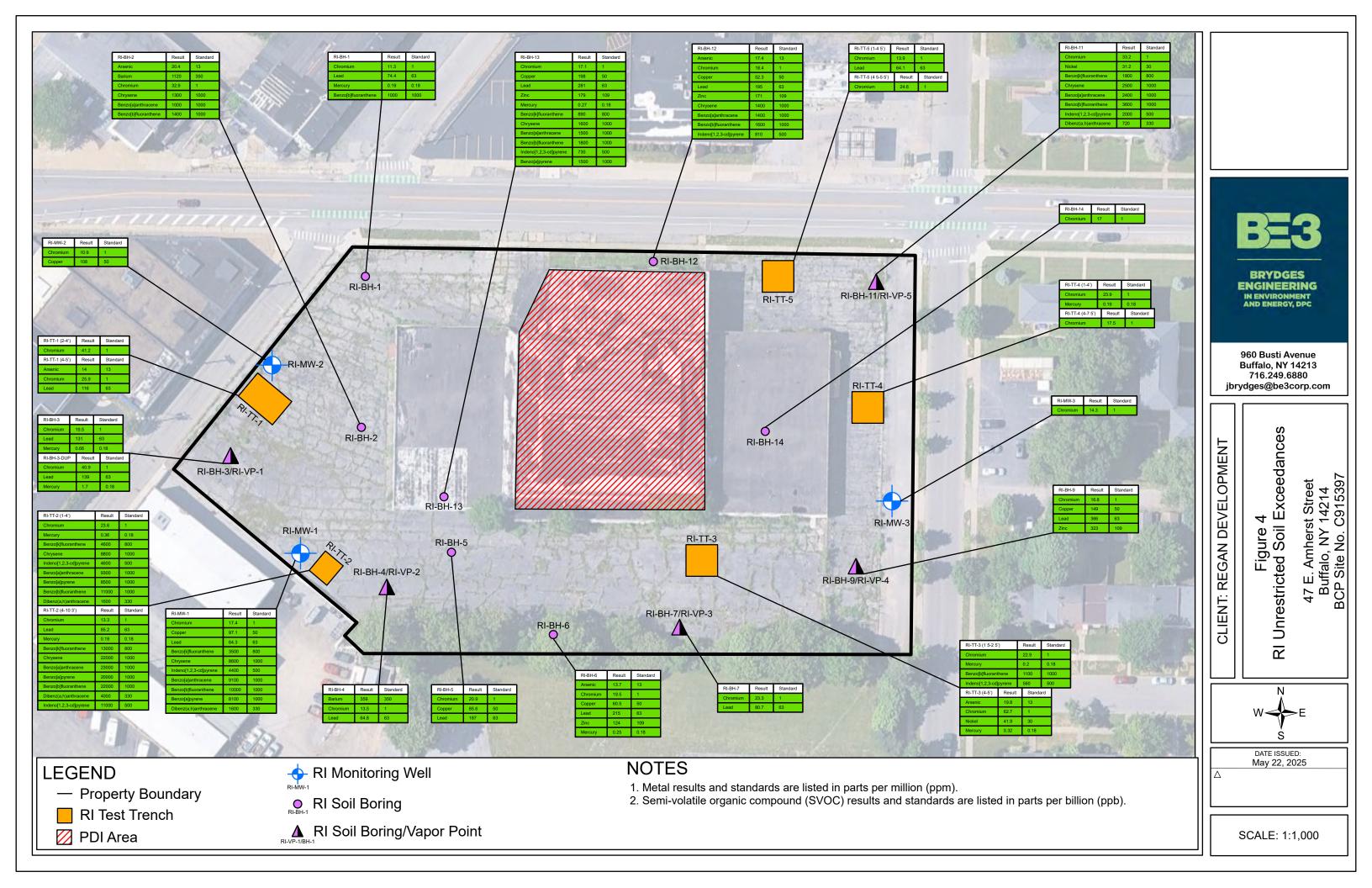

BRICK I BUILDING

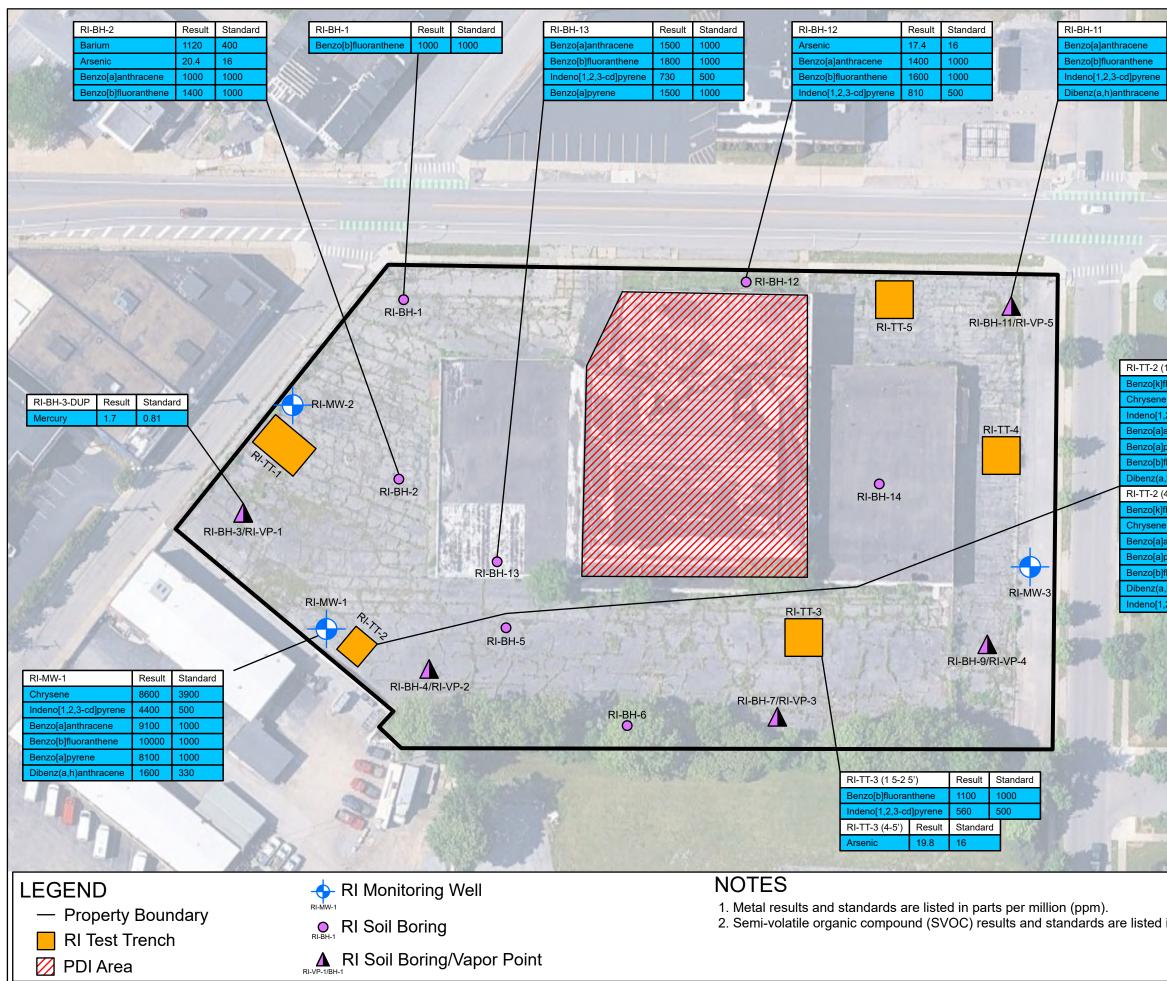
_74.0--

74.07 TOP OF HYDRANT SHUTOFF VALVE SOUTHEAST CORNER OF PANNELL STREET AND EAST AMHERST STREET

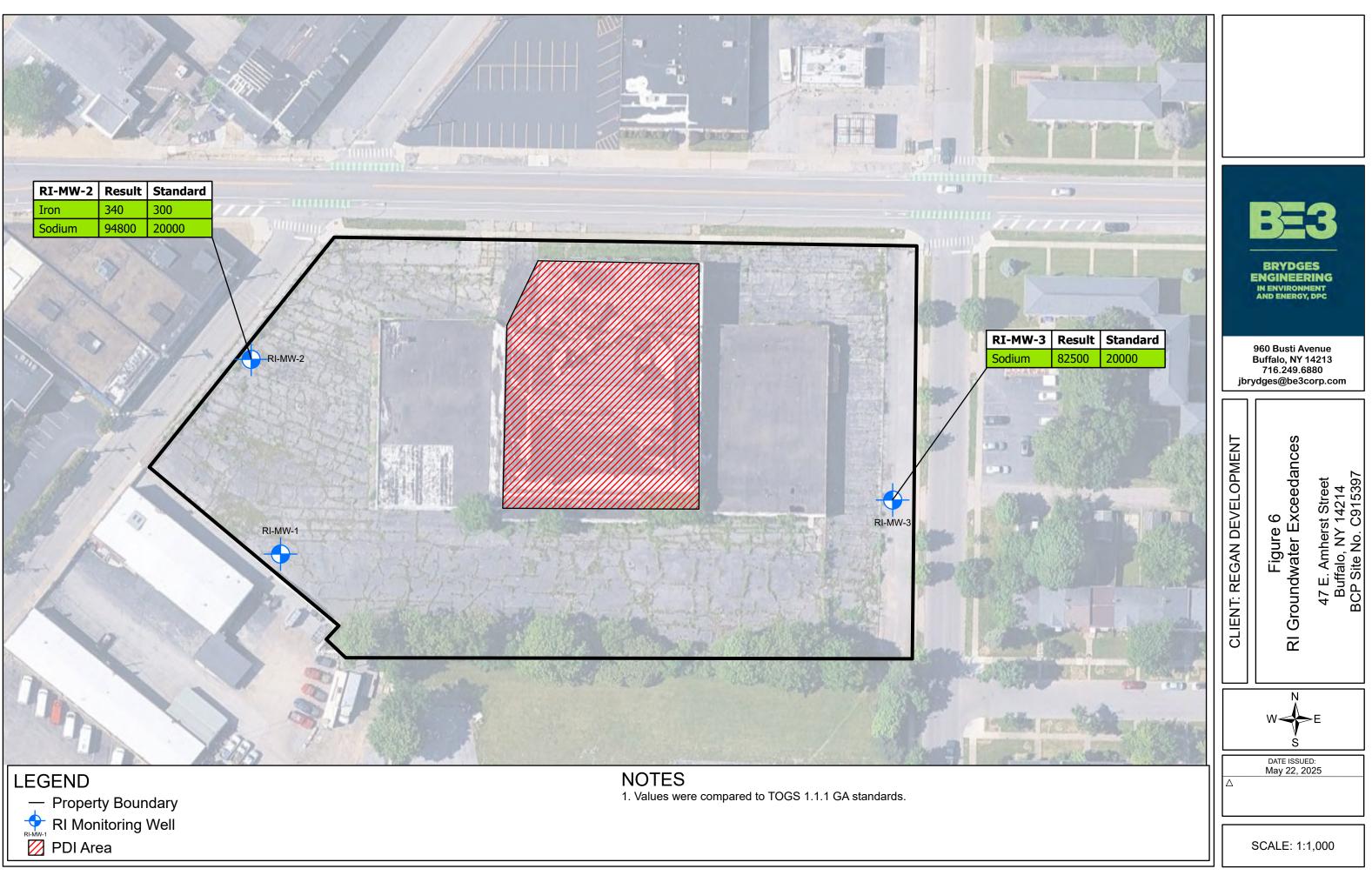

Drawing File: GCenterstoneDevelopment/LBJ Mid Rise-47 EAmherst/060302/8-DRAWINGS/Civil/60302-C102-SURVEY.dwg

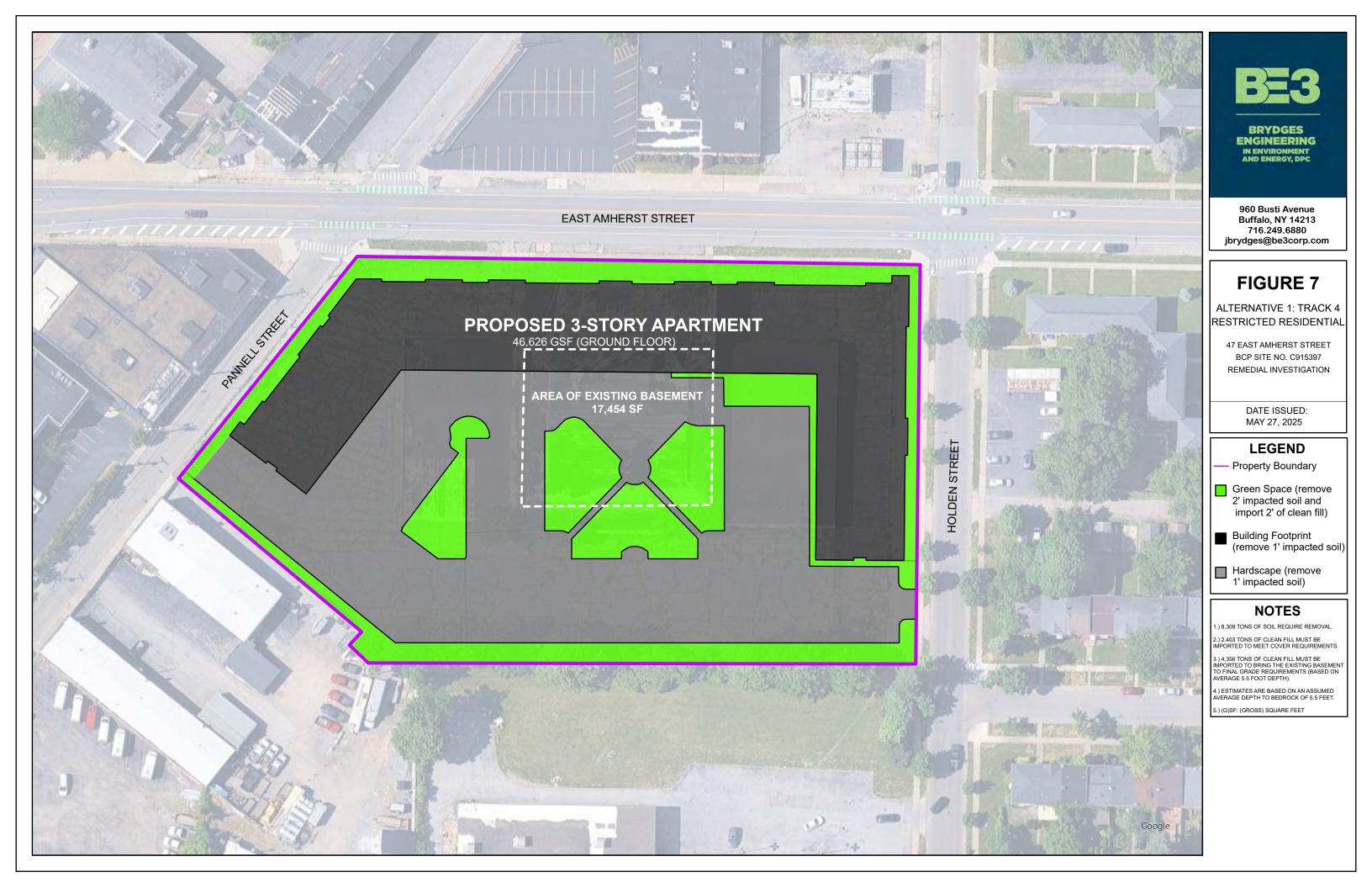


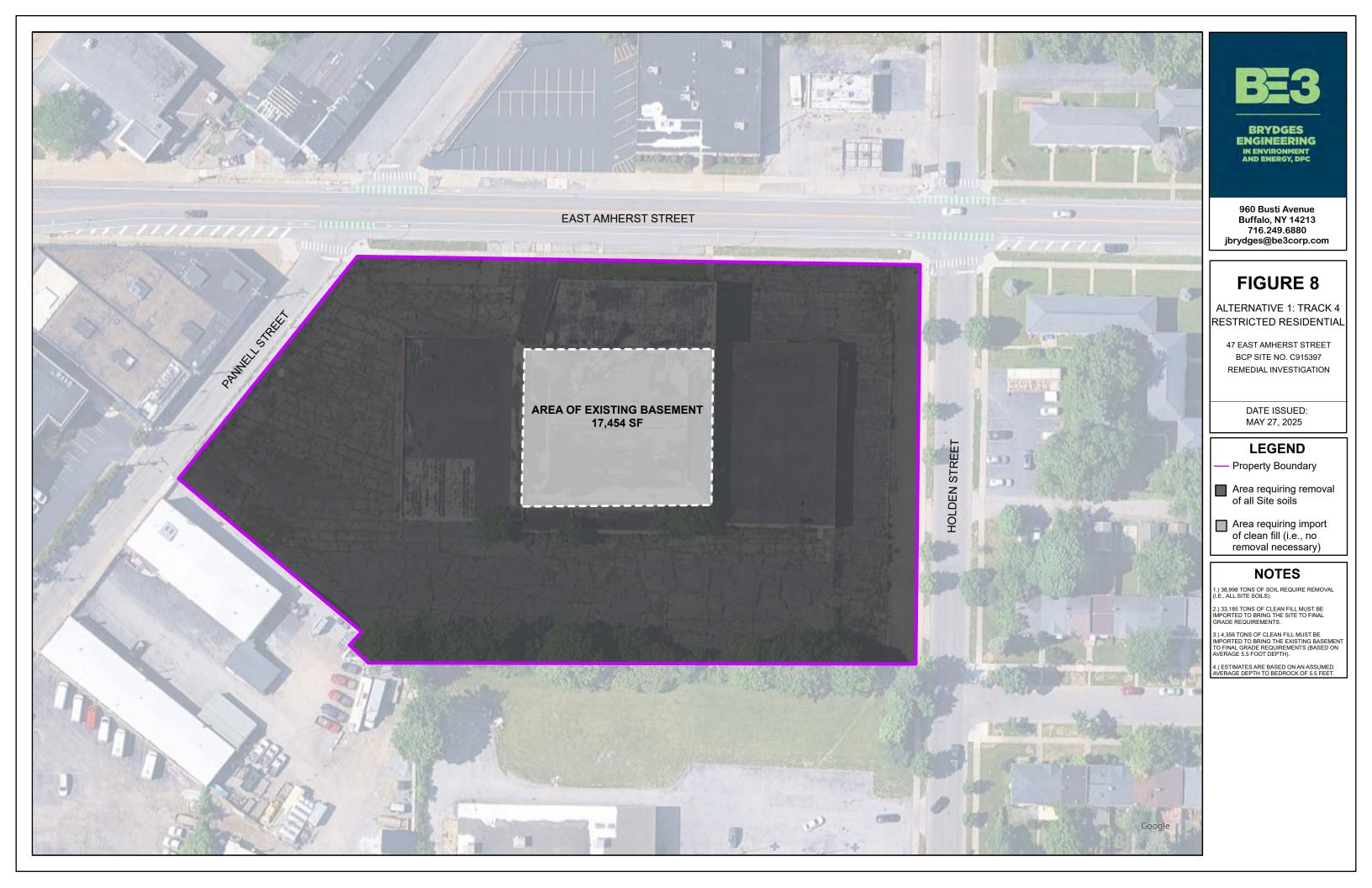


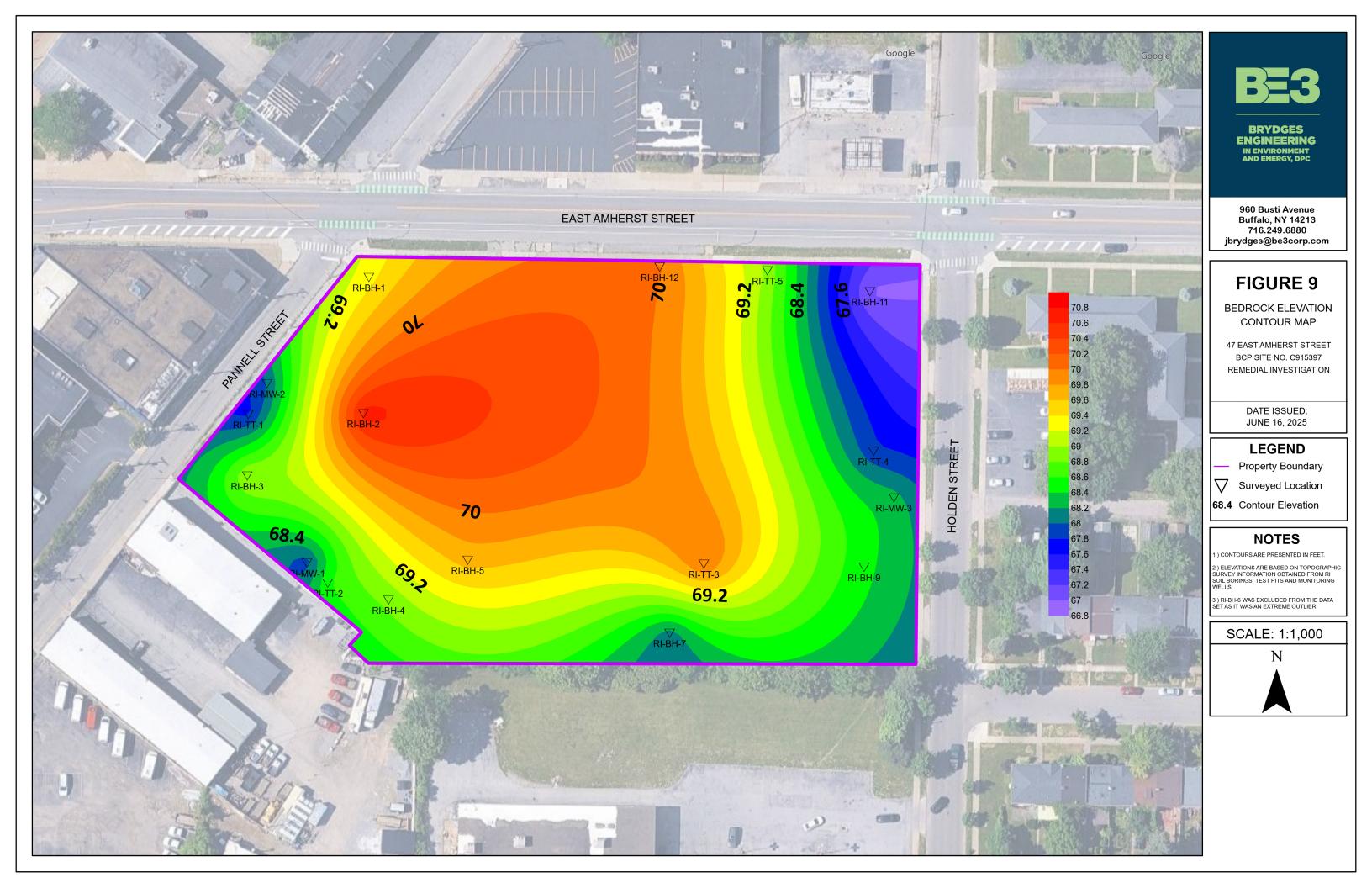


JMENT IS IN VIOLATION OF AS PROVIDED IN SECTION NEW YORK STATE COPYRIGHT 2006 CIATES P.C.









W RATES	1.1.1.1	Reverse			
	ndard	an Pass	10.10151115		
2400 100	-	1000	2/3/200		
3600 100			Contra Decent		
2000 500					
720 330			1-11		
			No. Ver		
THEY GO	Conto-1	Sectore 1			
			713 C		
			and the second second		
		in the local division of	and the second		
			and transport		
100	7				
		Comp)			BE3
100					
	COLUMN D	Contraction in		-	
			- Come		BRYDGES
			- 0		
					IN ENVIRONMENT AND ENERGY, DPC
		. with the	Contraction of the local division of the loc		
1-4')	Result	Standard	S. / 1		
fluoranthene	4600	3900	20-		
e	8800	3900	8		960 Busti Avenue Buffalo, NY 14213
,2,3-cd]pyrene	4600	500			716.249.6880
anthracene	9300	1000	811	jbr	ydges@be3corp.com
pyrene	8500	1000			
fluoranthene	11000	1000			
,h)anthracene	1600	330	1000		
4-10 3')	Result	Standard	ALCONT O	–	
fluoranthene	13000	3900	23543	ELOPMENT	
9	22000	3900	S. C. S.	<u>₹</u>	tia
anthracene	23000	1000	The state		USU ⊳
pyrene	20000	1000	Simple	121	a ⁴ tet d€
fluoranthene	22000	1000	A TY		Figure 5 Restricted Residential Soil Exceedances 47 E. Amherst Street Buffalo, NY 14214 BCP Site No. C915397
,h)anthracene	4000	330	Streen his	🔟	
,2,3-cd]pyrene	11000	500			
Sector 1				7	
and the				0	
			11 C - 10	L L L	
1920 Marine		1			
de l	8-1-1			151	
the same	a la	and had	S Martin	🖂	Figure 5 RI Restricted Res Soil Exceedan 47 E. Amherst Str Buffalo, NY 142 BCP Site No. C915
		1000	1	CLIENT: REGAN DEV	
	- resta		1		
21. 1	EC-U R	Sec. 1	ALL PROPERTY		
kin -	ALC: NO		4.13		
		-			Ņ
S.R.	MEN	1000	A	1	W
1115	P. C.		Mar Here	1	
TAL PROPERTY	RUTE E	3115	N.	L	Ś
at the head	1388	13.9.1	1211		DATE ISSUED:
				L	May 27, 2025
		(m. 1.)			
in parts pe	roiiiid	ı (ppp).			
			11		
					SCALE: 1:1,000
					SCALE: 1:1,000

Figure 10 Project Schedule Amherst Commons 47 East Amherst Street, Buffalo, NY BCP Site No. 915397

												2	2026	5																			
TASK		JUN		J	UL		Α	UG		SE	ΞP		00	T		VOV		D	EC		JA	N		FE	В	N	MAR		AP	R	N	MAY	
	1	2 3	4	1 2	2 3	4 [·]	1 2	3	4 1	1 2	3	4 1	2	3 4	1	2 3	4	1 2	3	4 1	2	3 4	1 1	2	3 4	1	2 3	4 1	2	3 4	1 2	23	4
III. Remedial Investigation/Alternative Analysis Report (RI/AAR)																																	
45-Day Public Comment Period/DEC Review																																	
Final Submittal/Report Approval																																	
IV. Remedial Action Work Plan (RAWP)																																	
Initial Submittal																																	
DEC Review																																	
Final Submittal/Report Approval					П																П								П				
V. Building Demolition																																	
VI. Pre-Remedial Design Investigation (PDI) Work Plan																					П								П				
Initial Submittal					Π																												
DEC Review																																	
Final Submittal/Plan Approval					П																												
PDI Fieldwork					П																												
VII. Remediation																																	
VIII. Site Management Plan (if needed)																																	
Initial Submittal																																	
DEC Review																					\square												_
Final Submittal/Report Approval																			П														
IX. Final Engineering Report			Ī																														
Initial Submittal			П												\square											П							
DEC Review			П												\square											П							
Final Submittal/Report Approval																																	

Appendix A

Daily Field Reports

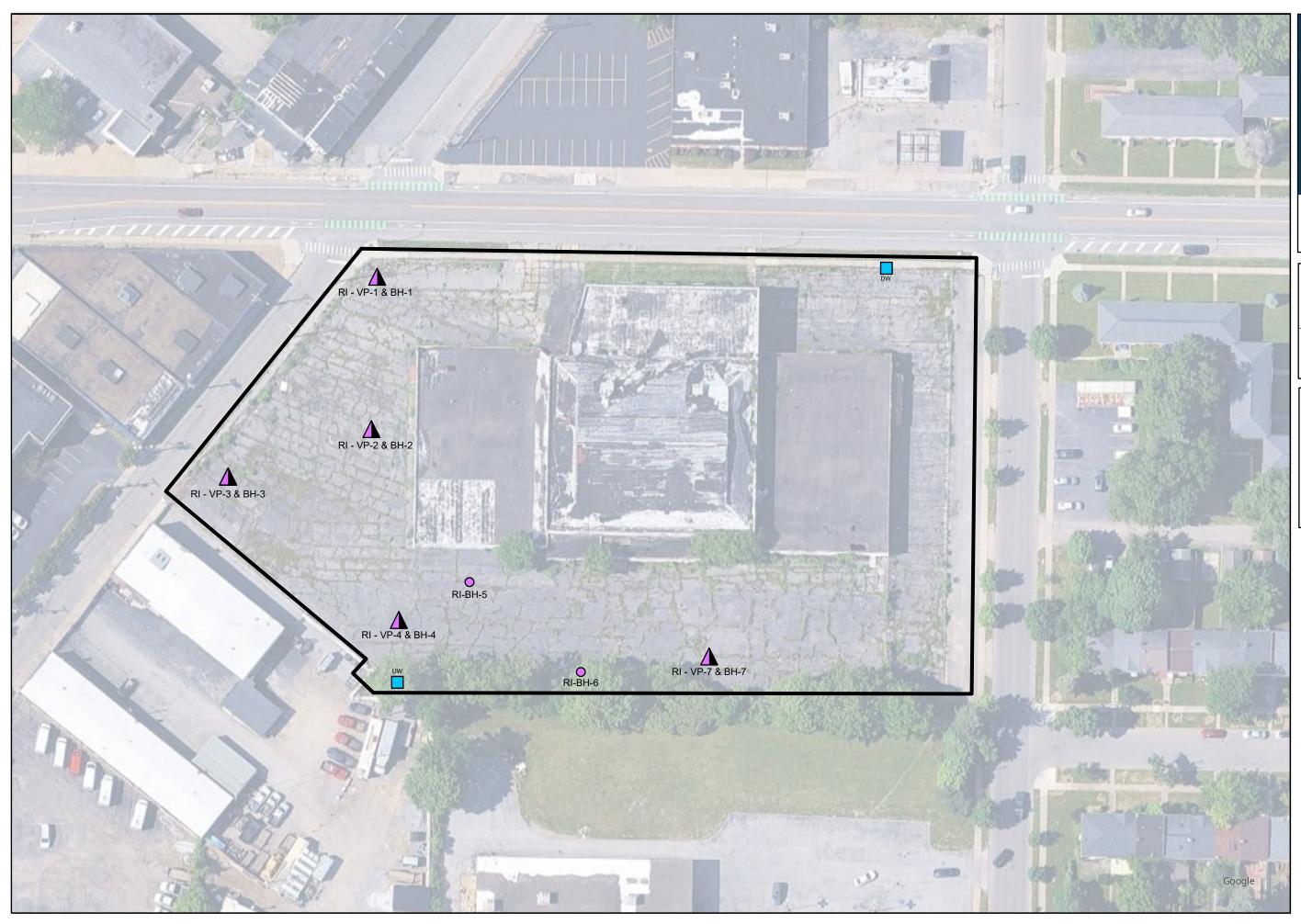

D	DAILY FIELD REPORT							
Date:	Thursday, Ma	rch 27, 2025						
Site Name:	47 East Amhe	rst Street, Buffalo, NY	14214					
Location:	47 East Amhe	rst Street, Buffalo, NY	14214					
Contractor/Sub-Contractor:	Empire Geo E	xploration (Empire)						
Weather Conditions:	Sunny	40 °F	SW 12 MPH					
Description of Work Performed:								
8:00 Arrived on site and met with Tim Burm Empire Geo Exploration). Deployed up			Guzzetta (driller with					
8:30 Began completing borings at BH-1/VF	P-1 location and tr	aversed in counter-clo	ockwise direction					
10:50 Veronica Kreutzer (DEC PM) and Tayl	or Monnin (DEC)	arrived on-site.						
Completed RI-BH-1 through RI-BH-7 a	d vapor points.							
No native soils were identified in any of the borings.								
16:00 Broke down equipment and demobilize	ed site.							
16:30 Samples delivered to laboratory.								
Problems/Observations:	RI DEVIATIOI	N: No native soil samp	les were collected.					
Health and Safety Concerns:	None.							
Contractor Work Force:	1 driller, 1 hel	1 driller, 1 helper						
Contractor Equipment	Geoprobe (Mo	odel 7720DT)						
Attachments : Photolog, Work Location Map								
Allachments . Fhololog, work Location Map								

	PHOTO LOG
Date:	Thursday, March 27, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
1. RI-BH-1 location, facing SE.	2. RI-BH-2 location, facing E.
<image/> S. R-BH-3 location, facing SE.	<image/> k. R-BH-4 location, facing E.

PHOTO LOG							
Date:	Thursday, March 27, 2025						
Site Name:	47 East Amherst Street, Buffalo, NY 14214						
5. RI-BH-5 location, facing NE.	6. RI-BH-6 location, facing E.						
<image/>							

BRYDGES ENGINEERING IN ENVIRONMENT AND ENERGY, DPC

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: MARCH 27, 2025 WEATHER: SUNNY, 40 °F WIND: SW 12 MPH

LEGEND

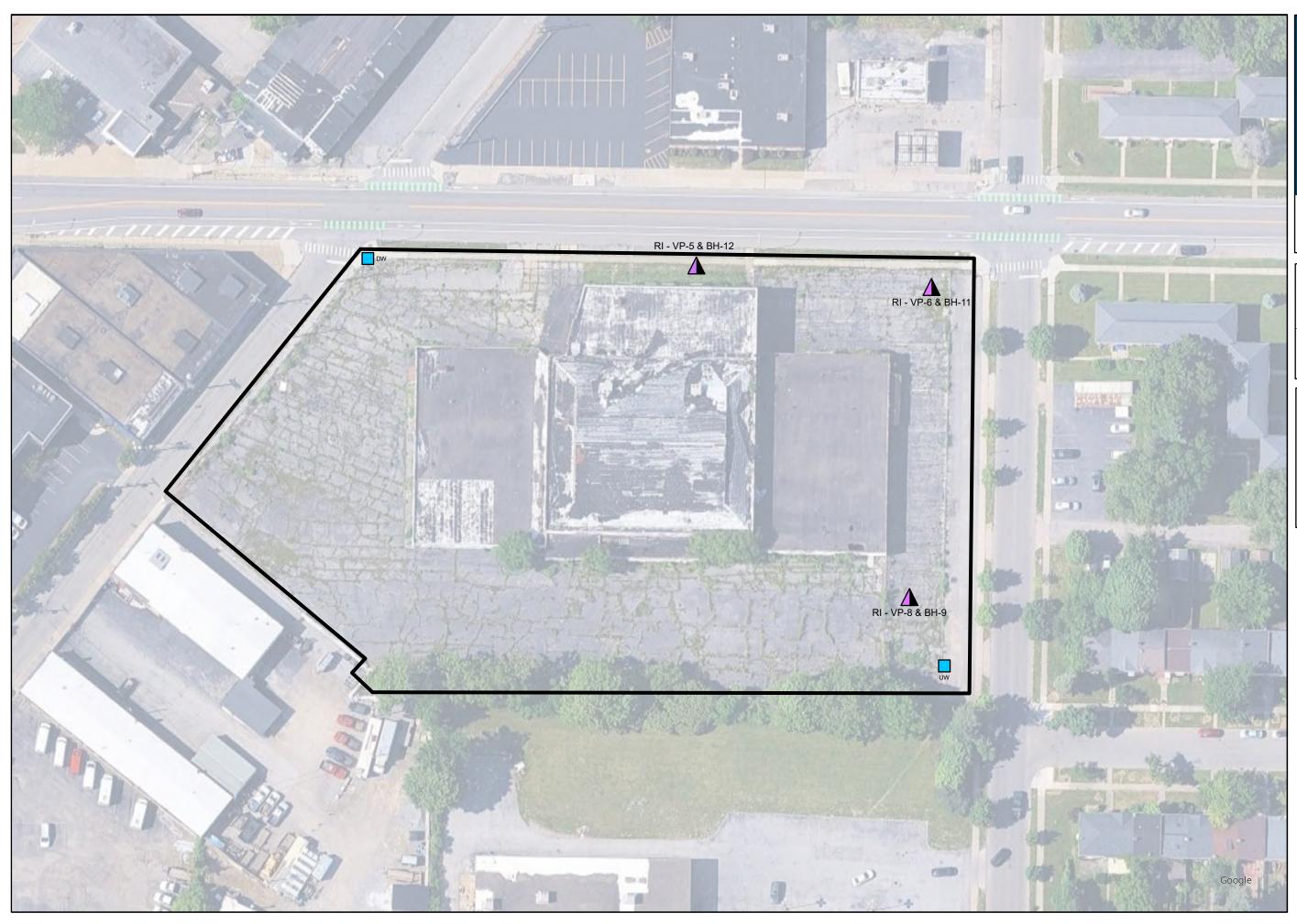
— Property Boundary

O Soil Boring

Boring/Vapor Point

CAMP Station

960 Busti Ave. Buffalo, New York 14213


	Community Air Monitoring Program Data								
Date:		Thursday, March							
Site Name: 47 East Amherst Street									
	Upwind Data	Downwind Data Delta							
					20110				
Time	PM 10 - 15 min AVG (μg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)				
3/27/2025 8:45	-	3/27/2025 8:45	-	0	0				
3/27/2025 9:00	5	3/27/2025 9:00	6.6	0	1.6				
3/27/2025 9:15	3.6	3/27/2025 9:15	4.4	0	0.8				
3/27/2025 9:30	2.2	3/27/2025 9:30	4.1	0	1.9				
3/27/2025 9:45	2.9	3/27/2025 9:45	3.6	0	0.7				
3/27/2025 10:00	2.8	3/27/2025 10:00	4.1	0	1.3				
3/27/2025 10:15	2.3	3/27/2025 10:15	3	0	0.7				
3/27/2025 10:30	2.9	3/27/2025 10:30	3.5	0	0.6				
3/27/2025 10:45	2.4	3/27/2025 10:45	3.4	0	1				
3/27/2025 11:00	1.8	3/27/2025 11:00	3.1	0	1.3				
3/27/2025 11:15	2.6	3/27/2025 11:15	2.8	0	0.2				
3/27/2025 11:30	2.3	3/27/2025 11:30	2.4	0	0.1				
3/27/2025 11:45	2.5	3/27/2025 11:45	2.7	0	0.2				
3/27/2025 12:00	2.2	3/27/2025 12:00	3.4	0	1.2				
3/27/2025 12:15	1.6	3/27/2025 12:15	3	0	1.4				
3/27/2025 12:30	1.8	3/27/2025 12:30	2.9	0	1.1				
3/27/2025 12:45	3.5	3/27/2025 12:45	3	0	-0.5				
3/27/2025 13:00	2.9	3/27/2025 13:00	2.6	0	-0.3				
3/27/2025 13:15	4.9	3/27/2025 13:15	4	0	-0.9				
3/27/2025 13:30	3.1	3/27/2025 13:30	3.5	0	0.4				
3/27/2025 13:45	2.2	3/27/2025 13:45	2.7	0	0.5				
3/27/2025 14:00	2.9	3/27/2025 14:00	3.4	0	0.5				
3/27/2025 14:15	2.7	3/27/2025 14:15	3.1	0	0.4				
3/27/2025 14:30	2.5	3/27/2025 14:30	3.6	0	1.1				
3/27/2025 14:45	2.8	3/27/2025 14:45	4.5	0	1.7				
3/27/2025 15:00	2.7	3/27/2025 15:00	3.4	0	0.7				
3/27/2025 15:15	4.7	3/27/2025 15:15	4.5	0	-0.2				
3/27/2025 15:30	2.9	3/27/2025 15:30	4.5	0	1.6				
3/27/2025 15:45	3.2	3/27/2025 15:45		0	-3.2				
	**Particulate Threshold	PM 10 15minute	average = 100µg/m³ above b	ackgr	ound				

	D/	AILY FIELD REP	ORT				
Date:		Friday, March	28, 2025				
Site Na	me:	47 East Amhe	rst Street, Buffalo, NY	14214			
Locatio	on:	47 East Amhe	rst Street, Buffalo, NY	14214			
Contra	ctor/Sub-Contractor:	Empire Geo E	xploration (Empire)				
Weathe	er Conditions:	Cloudy	44 °F	SE 6 MPH			
Descrip	otion of Work Performed:						
8:00	Arrived on site and met with Tim Burme (driller with Empire Geo Exploration). D						
9:00	Set up on RI-BH-9.						
10:50	Veronica Kreutzer (DEC PM) and Taylo	or Monnin (DEC) a	arrived on-site.				
1	Completed RI-BH-9, -11 and -12 and t	he associated va	por points.				
	No native soils were identified in any of	f the borings.					
12:00	Broke down equipment and demobilize	d site.					
12:30	Samples delivered to laboratory.						
Problen	ns/Observations:	Plan and prop		nd RI-BH-10 from Work ith test trenches to get a surface.			
Health a	and Safety Concerns:	unsafe for equ throughout the	ipment transport and s	eted. The basement was suspect ACM was observed proditions will be assessed to pompleted on this floor.			
Contrac	otor Work Force:	1 driller, I helper					
Contrac	otor Equipment	Geoprobe (Mo	del 7720DT)				
Attachm	nents: Photolog, Work Location Map	<u> I </u>					
Inspect	ors Name	Alexis Palumb	o-Compton				

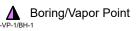
	PHOTO LOG
Date:	Friday, March 28, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
1. RI-BH-9 location, facing NW.	2. RI-BH-11 location, facing SE.
S. R-BH-12 location, facing E.	

BRYDGES ENGINEERING IN ENVIRONMENT AND ENERGY, DPC

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION


DATE: MARCH 28, 2025 WEATHER: CLOUDY, 44 °F WIND: SE 6 MPH

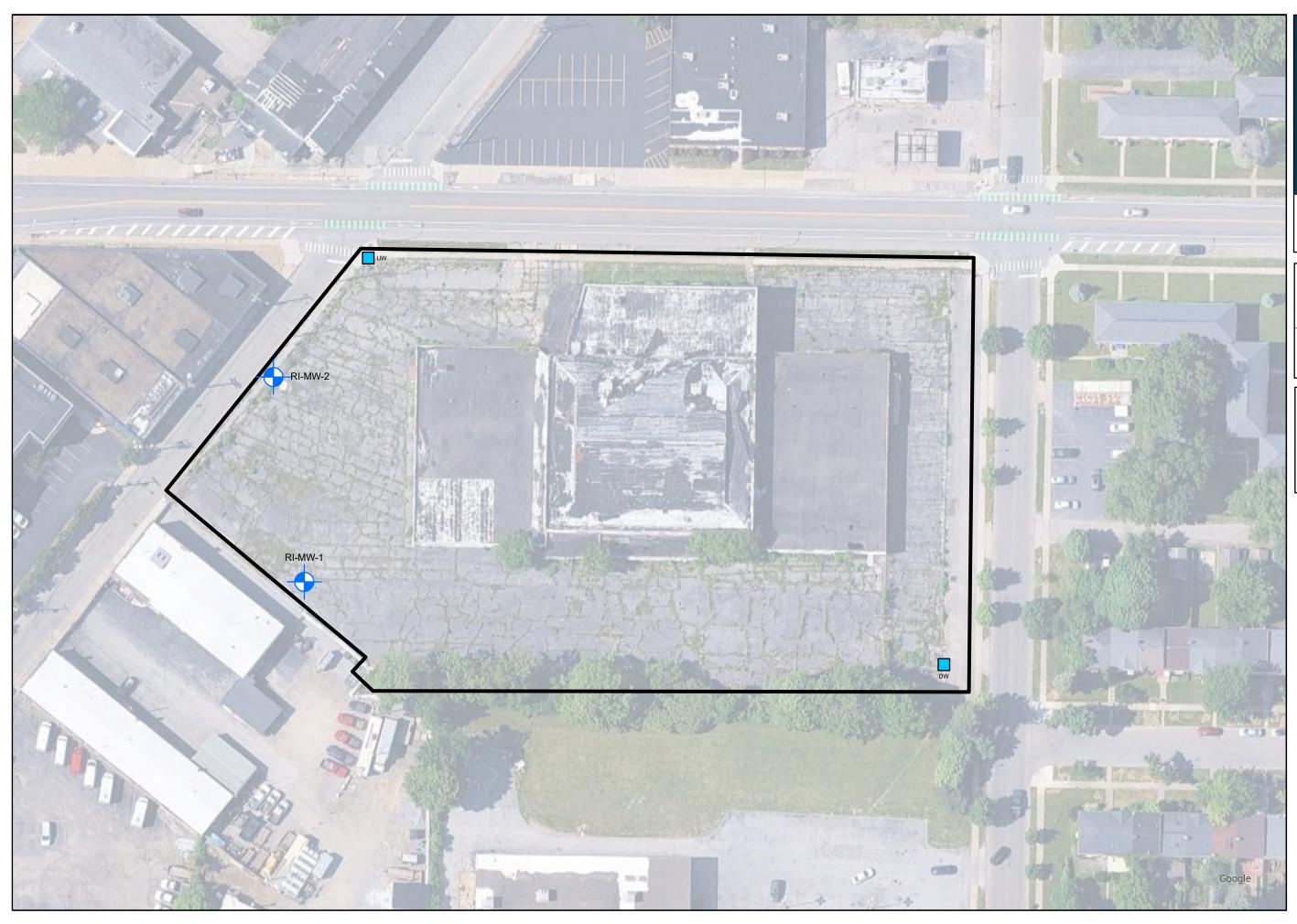
LEGEND

— Property Boundary

O Soil Boring

CAMP Station

960 Busti Ave. Buffalo, New York 14213


	Community Air Monitoring Program Data								
Date:	Date: Friday, March 28, 2025								
Site Name:		47 East Amherst	Street						
	Upwind Data		Downwind Data		Delta				
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)				
3/28/2025 9:15	-	3/28/2025 9:15	-	0	0				
3/28/2025 9:30	3.6	3/28/2025 9:30	9.1	0	5.5				
3/28/2025 9:45	5	3/28/2025 9:45	19.7	0	14.7				
3/28/2025 10:00	4.2	3/28/2025 10:00	9.8	0	5.6				
3/28/2025 10:15	5.5	3/28/2025 10:15	9	0	3.5				
3/28/2025 10:30	3.8	3/28/2025 10:30	11.7	0	7.9				
3/28/2025 10:45	4.9	3/28/2025 10:45	8.7	0	3.8				
3/28/2025 11:00	1.4	3/28/2025 11:00	1	0	-0.4				
3/28/2025 11:15	0.7	3/28/2025 11:15	1.2	0	0.5				
3/28/2025 11:30	2.1	3/28/2025 11:30	1.8	0	-0.3				
	**Particulate Threshold	PM 10 15minute	<mark>average = 100µg/m³ above b</mark>	ackgr	ound				

DAILY FIELD REPORT								
Date:	Friday, April 4, 2025							
Site Name:	47 East Amherst Street, Buffalo, NY 14214							
Location:	47 East Amherst Street, Buffalo, NY 14214							
Contractor/Sub-Contractor:	Empire Geo Exploration (Empire)							
Weather Conditions:	Partly Cloudy 46 °F NNW 9 MPH							
Description of Work Performed:								
8:00 Arrived on site and met with Tim Burmei upwind and downwind air monitors.	eier, P.G., Jason Tadarski (driller) and Jason (DEC). Deployed							
9:00 Set up on RI-MW-2 to begin drilling 3' ro	ock socket.							
10:30 Encountered top of bedrock at 4.5', colle	lected composite soil sample and began coring bedrock.							
11:30 Drilled 2.7' into bedrock. Drillers left site	e to obtain more water.							
12:30 Drillers returned to site and continued dr	drilling RI-MW-2.							
13:45 Hole was terminated at 7.5' (i.e., 3 feet in	into bedrock) and the steel casing was set with grout.							
14:50 Driller decontaminated lead auger and s	set up at RI-MW-1.							
15:30 Encountered top of bedrock at 10.5' and	collected composite soil sample.							
16:00 Broke down equipment and demobilized	d site.							
16:30 Samples delivered to laboratory.								
Problems/Observations:	Drillers had some surface water loss. No water left the site.							
Health and Safety Concerns:	None.							
Contractor Work Force:	1 driller, 1 helper							
Contractor Equipment Geoprobe (Model 7720DT)								
Attachments: Photolog, Work Location Map								
Inspectors Name	Alexis Palumbo-Compton							

	PHOTO LOG
Date:	Friday, April 4, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
I. brilling to bedrock at RI-MW-2	Installing casing in RI-MW-2
A casing set in RI-MW-2.	Image: A contract of the sector of the sec

BRYDGES ENGINEERING IN ENVIRONMENT AND ENERGY, DPC

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: APRIL 4, 2025 WEATHER: PARTLY CLOUDY, 46 °F WIND: NNW 9 MPH

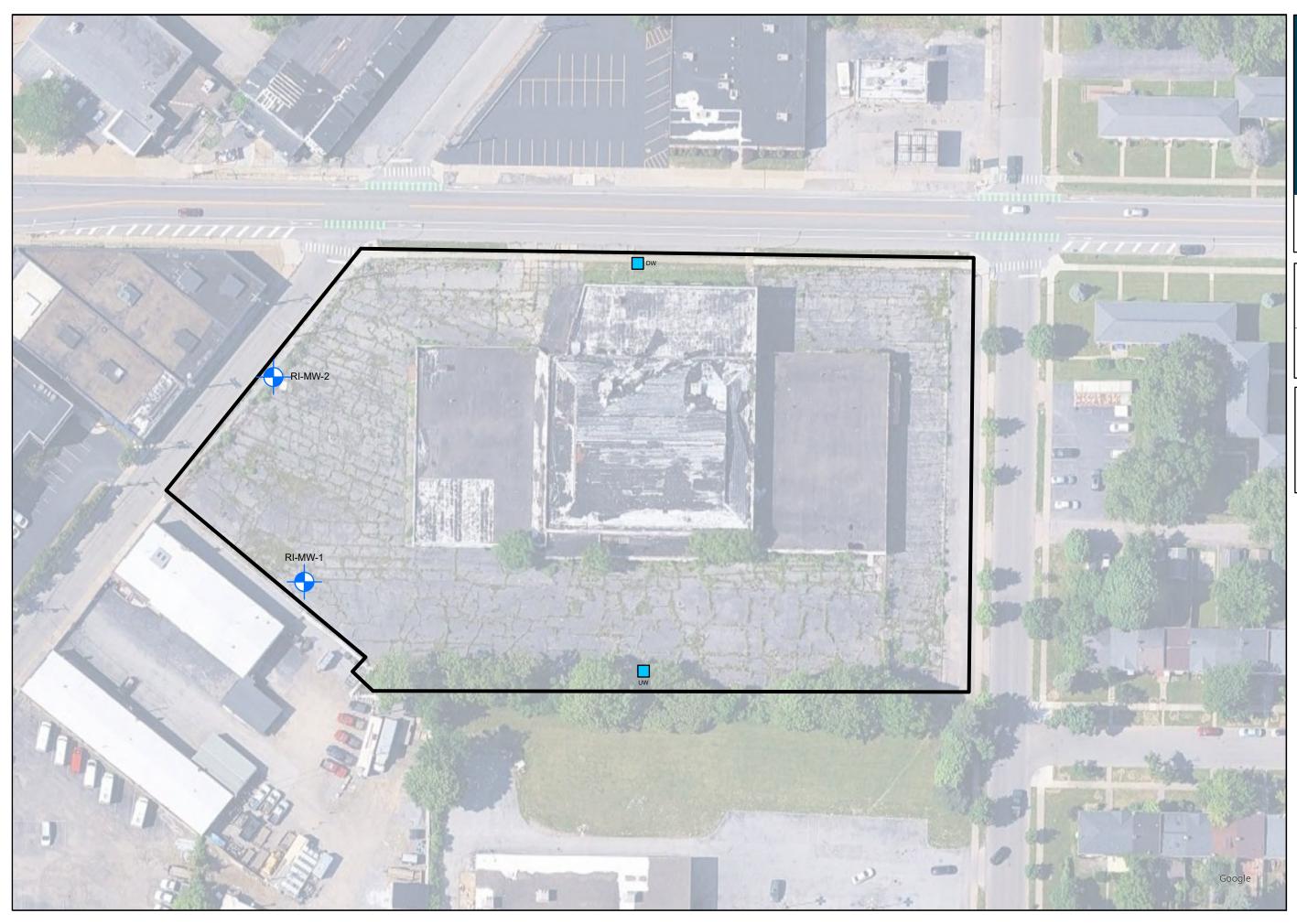
LEGEND

— Property Boundary

Monitoring Well

CAMP Station

960 Busti Ave. Buffalo, New York 14213


Community Air Monitoring Program Data								
Date:		Friday, April 4, 20	<u> </u>					
Site Name:								
	Upwind Data	Downwind Data Delta						
					2 5114			
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)			
4/4/2025 8:30	-	4/4/2025 8:30	-	0				
4/4/2025 8:45	9.3	4/4/2025 8:45	1.6	0	-7.7			
4/4/2025 9:00	2.5	4/4/2025 9:00	1.4	0	-1.1			
4/4/2025 9:15	8	4/4/2025 9:15	1.5	0	-6.5			
4/4/2025 9:30	2.4	4/4/2025 9:30	0.9	0	-1.5			
4/4/2025 9:45	5	4/4/2025 9:45	1.3	0	-3.7			
4/4/2025 10:00	8.8	4/4/2025 10:00	1.2	0	-7.6			
4/4/2025 10:15	6.1	4/4/2025 10:15	1.5	0	-4.6			
4/4/2025 10:30	1.7	4/4/2025 10:30	1.3	0	-0.4			
4/4/2025 10:45	4.7	4/4/2025 10:45	1.1	0	-3.6			
4/4/2025 11:00	2.9	4/4/2025 11:00	1.2	0	-1.7			
4/4/2025 11:15	11	4/4/2025 11:15	1.3	0	-9.7			
4/4/2025 11:30	9.8	4/4/2025 11:30	1.8	0	-8			
4/4/2025 11:45	7.6	4/4/2025 11:45	0.9	0	-6.7			
4/4/2025 12:00	3.3	4/4/2025 12:00	1.5	0	-1.8			
4/4/2025 12:15	6.9	4/4/2025 12:15	1.6	0	-5.3			
4/4/2025 12:30	4	4/4/2025 12:30	1	0	-3			
4/4/2025 12:45	2.4	4/4/2025 12:45	1.6	0	-0.8			
4/4/2025 13:00	8.2	4/4/2025 13:00	1.3	0	-6.9			
4/4/2025 13:15	9	4/4/2025 13:15	1.6	0	-7.4			
4/4/2025 13:30	2	4/4/2025 13:30	1.3	0	-0.7			
4/4/2025 13:45	7.1	4/4/2025 13:45	2.1	0	-5			
4/4/2025 14:00	6.5	4/4/2025 14:00	1.4	0	-5.1			
4/4/2025 14:15	3.8	4/4/2025 14:15	1.4	0	-2.4			
4/4/2025 14:30	5.4	4/4/2025 14:30	1.6	0	-3.8			
4/4/2025 14:45	1.2	4/4/2025 14:45	1.9	0	0.7			
4/4/2025 15:00	2.1	4/4/2025 15:00	1.6	0	-0.5			
4/4/2025 15:15	4.9	4/4/2025 15:15	1.9	0	-3			
4/4/2025 15:30	9	4/4/2025 15:30	1.8	0	-7.2			
4/4/2025 15:45	9.7	4/4/2025 15:45	1.6	0	-8.1			
4/4/2025 16:00	6.4	4/4/2025 16:00	1.5	0	-4.9			
4/4/2025 16:15	3.1	4/4/2025 16:15	1.2	0	-1.9			
	**Particulate Threshold	PM 10 15minute	average = 100µg/m³ above b	ackgr	ound			

	DAII	Y FIELD REPOR	хт						
Date:		Monday, April 7,	2025						
Site Na	me:	47 East Amherst Street, Buffalo, NY 14214							
Locatio	n:	47 East Amherst	Street, Buffalo, NY	14214					
Contrac	ctor/Sub-Contractor:	Empire Geo Exp	loration (Empire)						
Weathe	r Conditions:	Partly Cloudy	38 °F	S 7 MPH					
Descrip	tion of Work Performed:								
8:00	Arrived on site and met with Tim Burmeie downwind air monitors.	r, P.G. and Jasor	n Tadarski (driller). D	Deployed upwind and					
9:30	Set up on RI-MW-1 to begin drilling into b	edrock (noted ye	sterday at 10.5').						
12:00	Hole was terminated at 13.5' (i.e., 3 feet i	nto bedrock). Aw	aiting steel casing a	rrival.					
12:30	Returned to RI-MW-2 to begin coring bec	Irock. Used roller	bit to break up hard	ened cement/grout.					
13:30	Veronica and Jason (DEC) arrive on-site	e to observe rock coring.							
14:30	Completed coring RI-MW-2.								
15:30	Casing dropped off to site. Flushed RI-M	IW-1 and began grouting casing into place.							
16:00	Broke down equipment and demobilized	site.							
Problem	ns/Observations:	None.							
Health a	and Safety Concerns:	None.							
Contrac	tor Work Force:	1 driller, 1 helpei	,						
Contrac	tor Equipment	Geoprobe (Mode	el 7720DT)						
Attachm	ents: Photolog, Work Location Map	l							
Inspecto	ors Name	Alexis Palumbo-	Compton						

PHOTO LOG	
Date:	Monday, April 7, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
<image/> <image/> <image/>	<image/>
ArrowsonAr	<image/> A set casing at RI-MW-1

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

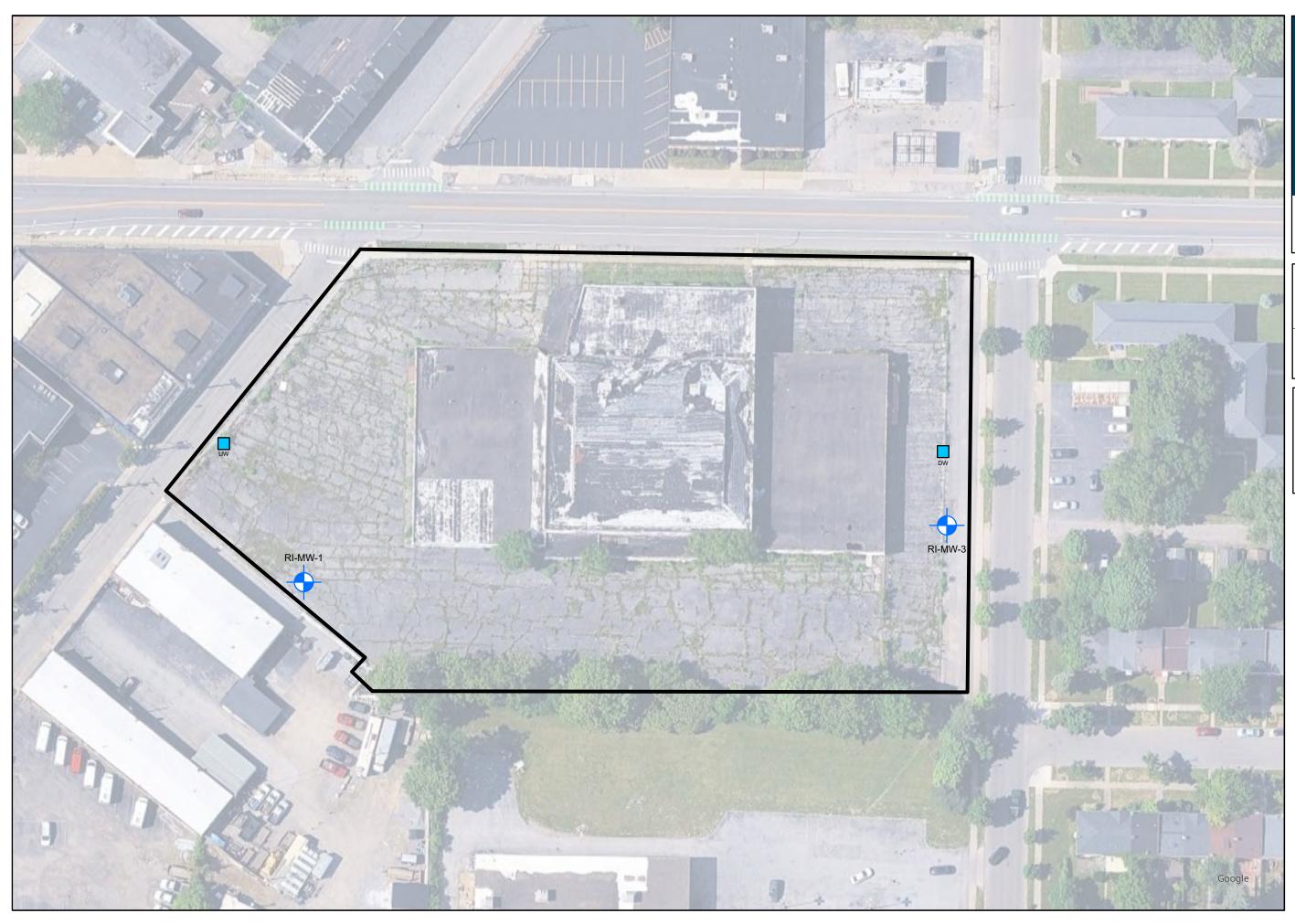
47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: APRIL 7, 2025 WEATHER: PARTLY CLOUDY, 38 'F WIND: S 7 MPH

LEGEND

— Property Boundary

Monitoring Well


Ocumenti (co Ain Manifesium Decement Defe					
Community Air Monitoring Program Data Date: Monday, April 7, 2025					
Date:					
Site Name:		47 East Amnerst	47 East Amherst Street		
	Upwind Data		Downwind Data	1	Delta
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)
4/7/2025 8:45	-	4/7/2025 8:45	4.4	0	4.4
4/7/2025 9:00	1.5	4/7/2025 9:00	3.5	0	2
4/7/2025 9:15	2	4/7/2025 9:15	3.5	0	1.5
4/7/2025 9:30	1.7	4/7/2025 9:30	2.8	0	1.1
4/7/2025 9:45	1.2	4/7/2025 9:45	4.8	0	3.6
4/7/2025 10:00	1.3	4/7/2025 10:00	1.8	0	0.5
4/7/2025 10:15	1.1	4/7/2025 10:15	2.8	0	1.7
4/7/2025 10:30	1.3	4/7/2025 10:30	6.1	0	4.8
4/7/2025 10:45	1	4/7/2025 10:45	2.7	0	1.7
4/7/2025 11:00	1.3	4/7/2025 11:00	5.1	0	3.8
4/7/2025 11:15	1.2	4/7/2025 11:15	2	0	0.8
4/7/2025 11:30	1.3	4/7/2025 11:30	2.1	0	0.8
4/7/2025 11:45	1	4/7/2025 11:45	2.3	0	1.3
4/7/2025 12:00	1.4	4/7/2025 12:00	3.8	0	2.4
4/7/2025 12:15	1.3	4/7/2025 12:15	2	0	0.7
4/7/2025 12:30	1.3	4/7/2025 12:30	2.9	0	1.6
4/7/2025 12:45	0.9	4/7/2025 12:45	2	0	1.1
4/7/2025 13:00	1	4/7/2025 13:00	59.8	0	58.8
4/7/2025 13:15	1	4/7/2025 13:15	5.4	0	4.4
4/7/2025 13:30	1.1	4/7/2025 13:30	3.8	0	2.7
4/7/2025 13:45	0.7	4/7/2025 13:45	2	0	1.3
4/7/2025 14:00	1.1	4/7/2025 14:00	3.1	0	2
4/7/2025 14:15	1.5	4/7/2025 14:15	3.2	0	1.7
4/7/2025 14:30	2.2	4/7/2025 14:30	2.6	0	0.4
4/7/2025 14:45	1.3	4/7/2025 14:45	3.2	0	1.9
4/7/2025 15:00	1.3	4/7/2025 15:00	3.3	0	2
4/7/2025 15:15	1.6	4/7/2025 15:15	2.5	0	0.9
4/7/2025 15:30	1.5	4/7/2025 15:30	2.3	0	0.8
4/7/2025 15:45	1.5	4/7/2025 15:45	2.8	0	1.3
4/7/2025 16:00	1.1	4/7/2025 16:00	2	0	0.9
**Particulate Threshold PM 10 15minute average = 100µg/m³ above background					

	DAILY FIELD REPORT				
Date:		Tuesday, April 8,	2025		
Site Nan	ne:	47 East Amherst	Street, Buffalo, NY	14214	
Location	1:	47 East Amherst	Street, Buffalo, NY	14214	
Contractor/Sub-Contractor:		Empire Geo Expl	oration (Empire)		
Weather	Conditions:	Light snow	25 °F	W 18 MPH	
Descript	tion of Work Performed:	•			
8:00	Arrive on site and meet with Tim Burmeie downwind air monitors.	r, P.G. and Jason	Tadarski (driller). [Deployed upwind and	
8:30	Set up on RI-MW-1 and finished grouting	casing.			
9:00	Move to RI-MW-3 to begin drilling overbu	rden. Jim Hull (fie	Id technician) arrive	e on site.	
9:30	Reached top of rock at 7' and collected R	RI-MW-3 soil samp	ole.		
10:30	10:30 Began drilling 3' rock socket.				
12:00 Finished drilling rock socket.					
14:00 Finished grouting casing at RI-MW-3.					
14:30	Broke down equipment and demobilized	site.			
Problem	s/Observations:	None.			
		Nee			
Health a	nd Safety Concerns:	None.			
Contractor Work Force:		1 driller, 1 helper			
Contractor Equipment		Geoprobe (Mode	l 7720DT)		
Attachme	ents: Photolog, Work Location Map	<u> </u>			
Inspectors Name		Alexis Palumbo-0	Compton		

	PHOTO LOG
Date:	Tuesday, April 8, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
	Image: Constraint of the second sec

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

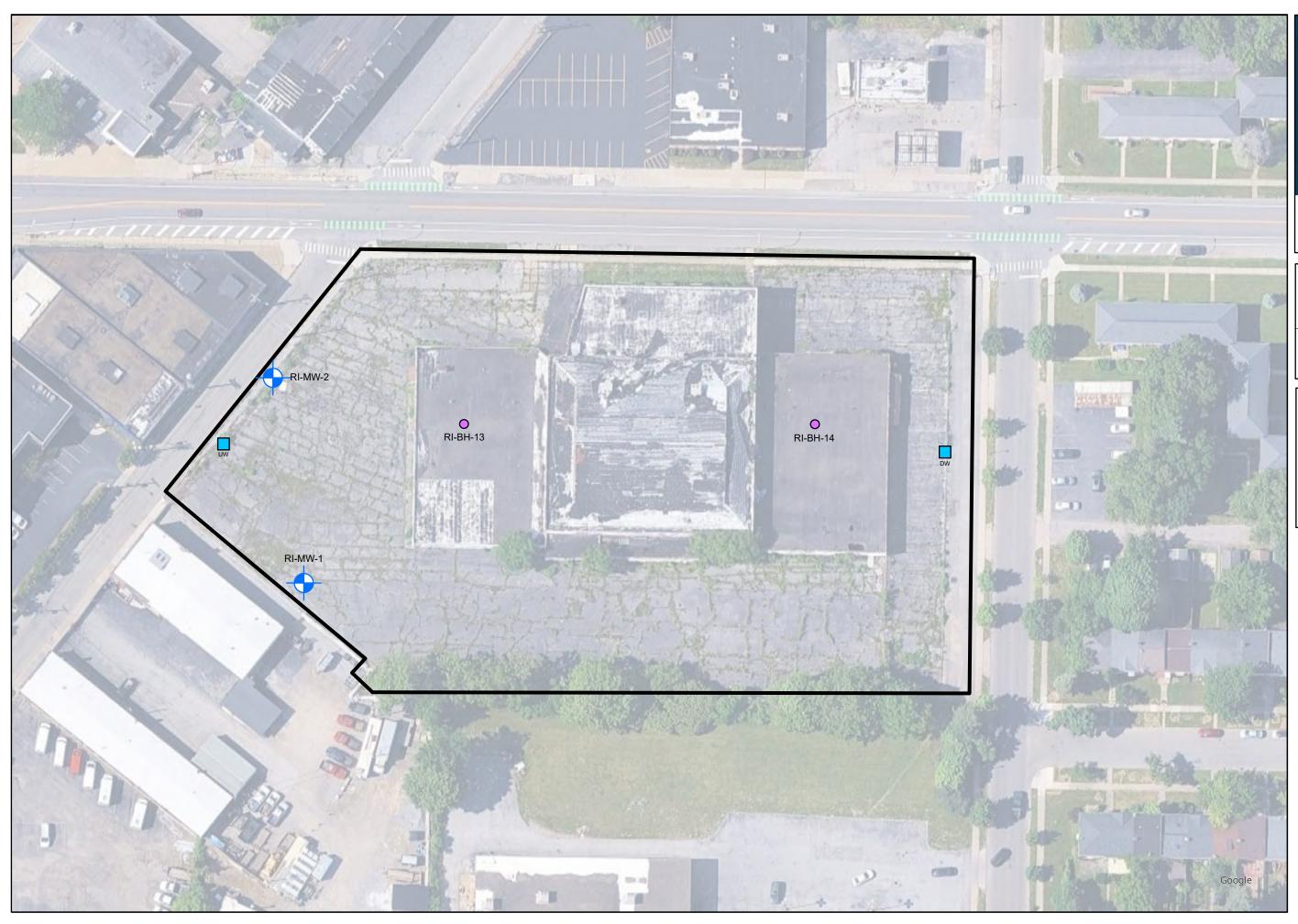
47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: APRIL 8, 2025 WEATHER: LIGHT SNOW, 25 °F WIND: W 18 MPH

LEGEND

— Property Boundary

Monitoring Well


Community Air Monitoring Program Data					
Date: Tuesday, April 8, 2025					
Site Name: 47 East Amherst Street					
	Upwind Data		Downwind Data	1	Delta
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)
4/8/2025 8:30	53.4	4/8/2025 8:30	3.4	0	-50
4/8/2025 8:45	10.6	4/8/2025 8:45	4.3	0	-6.3
4/8/2025 9:00	7.9	4/8/2025 9:00	2.4	0	-5.5
4/8/2025 9:15	11.5	4/8/2025 9:15	2.6	0	-8.9
4/8/2025 9:30	3.7	4/8/2025 9:30	2.2	0	-1.5
4/8/2025 9:45	7.1	4/8/2025 9:45	1.8	0	-5.3
4/8/2025 10:00	8.2	4/8/2025 10:00	2.1	0	-6.1
4/8/2025 10:15	10.3	4/8/2025 10:15	2.6	0	-7.7
4/8/2025 10:30	15.8	4/8/2025 10:30	2.3	0	-13.5
4/8/2025 10:45	12	4/8/2025 10:45	2.3	0	-9.7
4/8/2025 11:00	4.4	4/8/2025 11:00	2.7	0	-1.7
4/8/2025 11:15	4.7	4/8/2025 11:15	2.5	0	-2.2
4/8/2025 11:30	6.4	4/8/2025 11:30	2.3	0	-4.1
4/8/2025 11:45	10	4/8/2025 11:45	2.5	0	-7.5
4/8/2025 12:00	21.7	4/8/2025 12:00	2	0	-19.7
4/8/2025 12:15	15.1	4/8/2025 12:15	1.5	0	-13.6
4/8/2025 12:30	4.8	4/8/2025 12:30	2	0	-2.8
4/8/2025 12:45	3.6	4/8/2025 12:45	2.1	0	-1.5
4/8/2025 13:00	3.3	4/8/2025 13:00	2.1	0	-1.2
4/8/2025 13:15	5.2	4/8/2025 13:15	2.2	0	-3
4/8/2025 13:30	3.7	4/8/2025 13:30	2.4	0	-1.3
4/8/2025 13:45	4.2	4/8/2025 13:45	3.2	0	-1
4/8/2025 14:00	5.1	4/8/2025 14:00	2.6	0	-2.5
4/8/2025 14:15	7.4	4/8/2025 14:15	2.6	0	-4.8
4/8/2025 14:30	7.4	4/8/2025 14:30	2.4	0	-5
**Particulate Threshold PM 10 15minute average = 100µg/m³ above background					

DAILY FIELD REPORT			
Date:	Wednesday, April 9, 2025		
Site Name:	47 East Amherst Street, Buffalo, NY 14214		
Location:	47 East Amherst Street, Buffalo, NY 14214		
Contractor/Sub-Contractor:	Empire Geo Exploration (Empire)		
Weather Conditions:	Sunny 25 °F W 7 MPH		
 8:00 downwind air monitors. 8:30 Set up on RI-MW-1 and began coring be 10:00 Finished coring bedrock at RI-MW-1. 			
 11:30 Cut down steel casing and finished installing PVC risers at RI-MW-2. 13:00 Completed RI-BH-14 inside building and collected sample. 14:00 Completed RI-BH-13 inside building and collected sample. 15:00 Broke down equipment and demobilized site. 			
Problems/Observations:	RI DEVIATION: RI-BH-13 location was moved south of the initially intended location as the concrete was too thick to core. This was discussed with DEC as an alternative location.		
Health and Safety Concerns:	None.		
Contractor Work Force:	1 driller, 1 helper		
Contractor Equipment	Geoprobe (Model 7720DT)		
Attachments: Photolog, Work Location Map			
Inspectors Name	Alexis Palumbo-Compton		

	PHOTO LOG
Date:	Wednesday, April 9, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
1. Coring RI-MW-1.	2. Cutting steel casing at RI-MW-2.
3. Coring concrete at RI-BH-14.	4. Coring concrete at RI-BH-13.

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

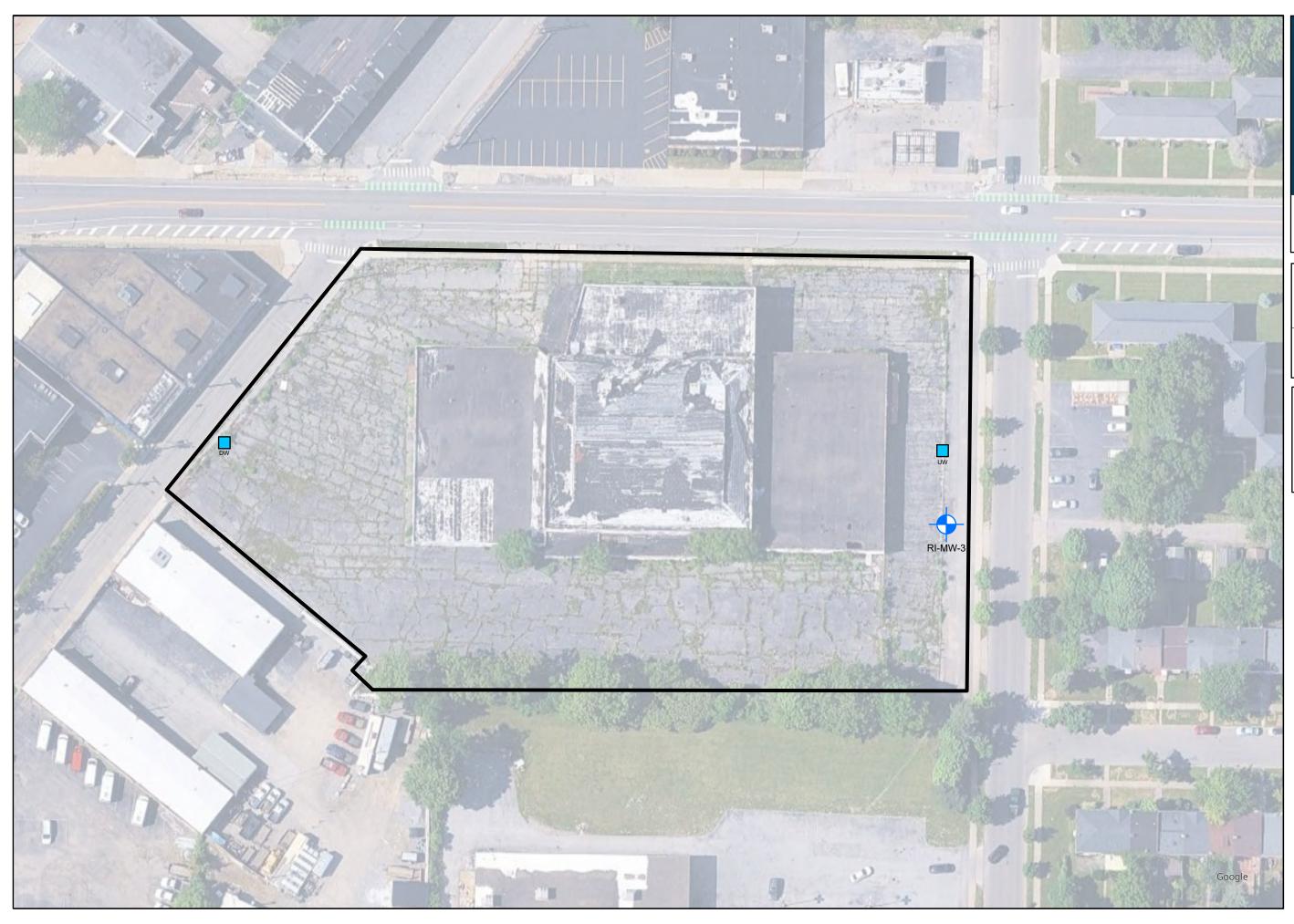
DATE: APRIL 9, 2025 WEATHER: SUNNY, 25 °F WIND: W 7 MPH

LEGEND

— Property Boundary

Soil Boring

Monitoring Well


Community Air Monitoring Program Data						
Date:		Wednesday, Apri	19, 2025			
Site Name: 47 East Amherst Street						
	Upwind Data		Downwind Data		Delta	
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)	
4/9/2025 8:30	-	4/9/2025 8:30	-	0	0	
4/9/2025 8:45	9.4	4/9/2025 8:45	11.5	0	2.1	
4/9/2025 9:00	6.5	4/9/2025 9:00	5.4	0	-1.1	
4/9/2025 9:15	4.7	4/9/2025 9:15	7.2	0	2.5	
4/9/2025 9:30	6.1	4/9/2025 9:30	6.6	0	0.5	
4/9/2025 9:45	5.4	4/9/2025 9:45	9.6	0	4.2	
4/9/2025 10:00	13.5	4/9/2025 10:00	10.4	0	-3.1	
4/9/2025 10:15	3.1	4/9/2025 10:15	3.7	0	0.6	
4/9/2025 10:30	3.7	4/9/2025 10:30	34.2	0	30.5	
4/9/2025 10:45	7.3	4/9/2025 10:45	9.8	0	2.5	
4/9/2025 11:00	2.5	4/9/2025 11:00	7.4	0	4.9	
4/9/2025 11:15	5.1	4/9/2025 11:15	8.1	0	3	
4/9/2025 11:30	4	4/9/2025 11:30	10.2	0	6.2	
4/9/2025 11:45	17.8	4/9/2025 11:45	21	0	3.2	
4/9/2025 12:00	10.4	4/9/2025 12:00	5.9	0	-4.5	
4/9/2025 12:15	6.7	4/9/2025 12:15	4.2	0	-2.5	
4/9/2025 12:30	8.8	4/9/2025 12:30	5.2	0	-3.6	
4/9/2025 13:15	-	4/9/2025 13:15	-	0	0	
4/9/2025 13:30	2.8	4/9/2025 13:30	4.8	0	2	
4/9/2025 13:45	1.1	4/9/2025 13:45	2.7	0	1.6	
4/9/2025 14:00	1.4	4/9/2025 14:00	2.3	0	0.9	
4/9/2025 14:15	1.4	4/9/2025 14:15	2.6	0	1.2	
4/9/2025 14:30	0.8	4/9/2025 14:30	1.2	0	0.4	
4/9/2025 14:45	0.7	4/9/2025 14:45	2.1	0	1.4	
4/9/2025 15:00	0.4	4/9/2025 15:00	1.8	0	1.4	
	**Particulate Threshold PM 10 15minute average = 100µg/m³ above background					

DAILY FIELD REPORT				
Date:	Thursday, April 10, 2025			
Site Name:	47 East Amherst Street, Buffalo, NY 14214			
Location:	47 East Amherst Street, Buffalo, NY 14214			
Contractor/Sub-Contractor:	Empire Geo Exploration (Empire)			
Weather Conditions:	Cloudy 37 °F E 7 MPH			
8:00 downwind air monitors.8:30 Set up on RI-MW-3 and began coring bed				
10:00 Casing cement potentially dislodged at 18.2' and water encountered. Ceased coring.				
11:00 Broke down equipment and demobilized site.				
Problems/Observations:	RI DEVIATION: RI-MW-3 was completed to a depth of 18.2' instead of the proposed 20'. Water was encountered and levels will be reassessed the following day. DEC aware of deviation and will confirm with DOH this depth is sufficient.			
Health and Safety Concerns:	None.			
Contractor Work Force:	1 driller, 1 helper			
Contractor Equipment	Geoprobe (Model 7720DT)			
Attachments: Photolog, Work Location Map				
Inspectors Name	Alexis Palumbo-Compton			

	PHOTO LOG
Date:	Thursday, April 10, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
Site Name:	

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: APRIL 10, 2025 WEATHER: CLOUDY, 37 °F WIND: E 7 MPH

LEGEND

— Property Boundary

Monitoring Well

	Community Air Monitoring Program Data					
Date:		Thursday, April 10, 2025				
Site Name:		47 East Amherst	Street			
	Upwind Data		Downwind Data		Delta	
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)	
4/10/2025 8:30	7.9	4/10/2025 8:30	7.3	0	0	
4/10/2025 8:45	5.3	4/10/2025 8:45	2.2	0	-3.1	
4/10/2025 9:00	1.9	4/10/2025 9:00	9.4	0	7.5	
4/10/2025 9:15	2.6	4/10/2025 9:15	4.5	0	1.9	
4/10/2025 9:30	9.6	4/10/2025 9:30	3.5	0	-6.1	
4/10/2025 9:45	4.3	4/10/2025 9:45	8	0	3.7	
4/10/2025 10:00	8.6	4/10/2025 10:00	6	0	-2.6	
4/10/2025 10:15	3.7	4/10/2025 10:15	1.4	0	-2.3	
4/10/2025 10:30	6.7	4/10/2025 10:30	2.4	0	-4.3	
4/10/2025 10:45	1.5	4/10/2025 10:45	2.4	0	0.9	
4/10/2025 11:00	5.9	4/10/2025 11:00	2.6	0	-3.3	
	**Particulate Threshold PM 10 15minute average = 100µg/m³ above background					

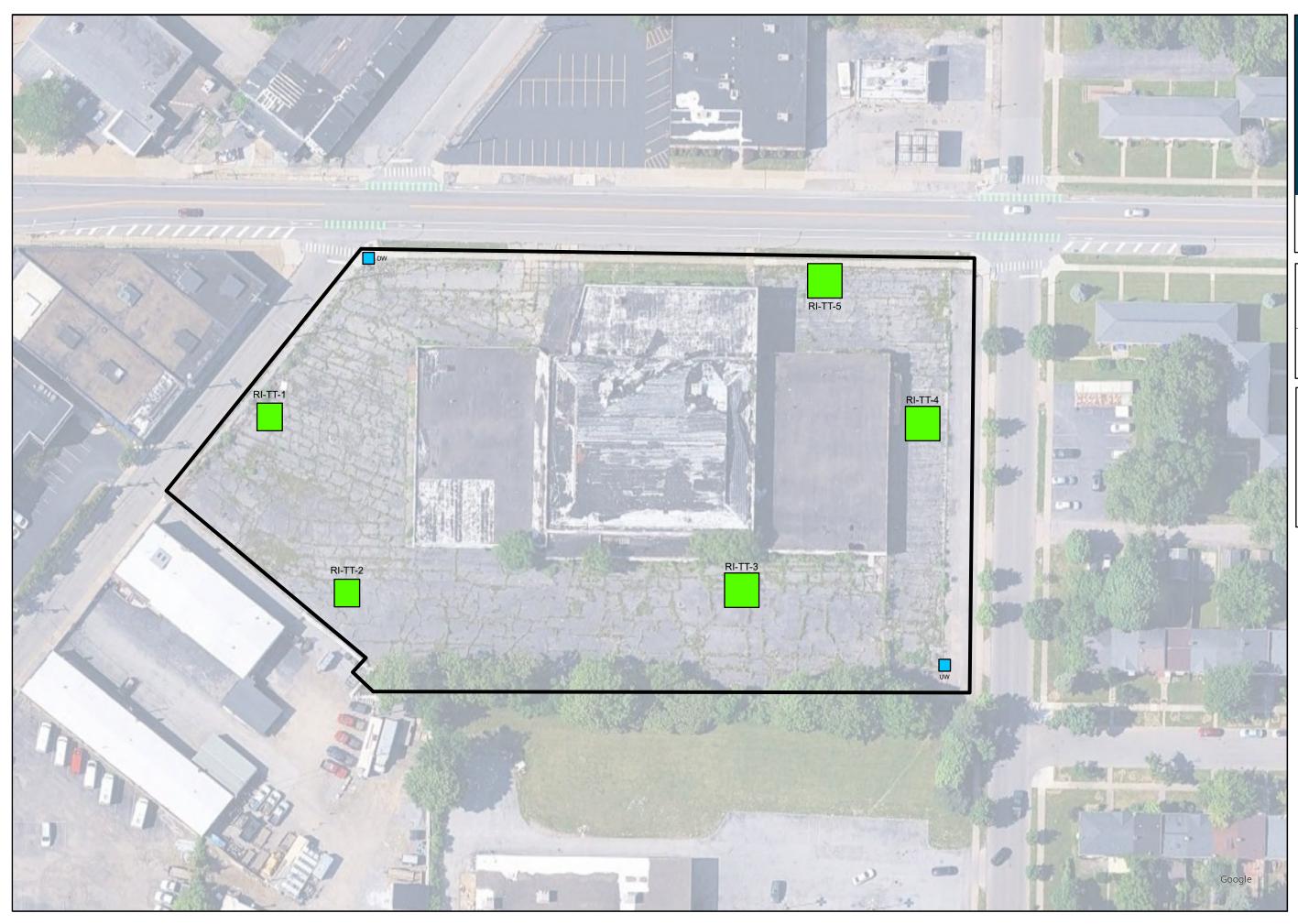

	DAILY FIELD REPORT				
Date:		Friday, April 18, 2025			
Site Na	me:	47 East Amherst Street, Buffalo, NY 14214			
Locatio	on:	47 East Amherst Street, Buffalo, NY 14214			
Contractor/Sub-Contractor:		Empire Building Diagnotics (EBD)			
Weathe	er Conditions:	Mostly cloudy 51 °F SE 10 MPH			
Descrip	otion of Work Performed:				
8:00	Arrived on site and met with Paul Staub (Deployed upwind and downwind air moni	BE3 Engineer), Jim Hull (field technician) and operator (EBD). tors.			
8:30	Set up on RI-TT-1 to begin test trenching	l.			
	Traversed counter-clockwise and completed all trenches with the exception of RI-TT-2 (noted below).				
12:00	12:00 Broke down equipment and demobilized site.				
Problems/Observations:		The contractor did not bring the approprite equipment to reach bedrock in TT-2. This equipment will be brought to site Monday to complete this test pit.			
Health and Safety Concerns:		None.			
Contractor Work Force:		1 operator			
Contractor Equipment		Mini-excavator			
Attachm	nents: Photolog, Work Location Map				
Inspect	ors Name	Jim Hull and Paul Staub			

	PHOTO LOG
Date:	Friday, April 18, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
1. RI-TT-1 location.	2. RI-TT-2 location.
A R-Tr-3 location	A. R-TT-4 location.

	PHOTO LOG
Date:	Friday, April 18, 2025
	47 East Amherst Street, Buffalo, NY 14214
<image/>	

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

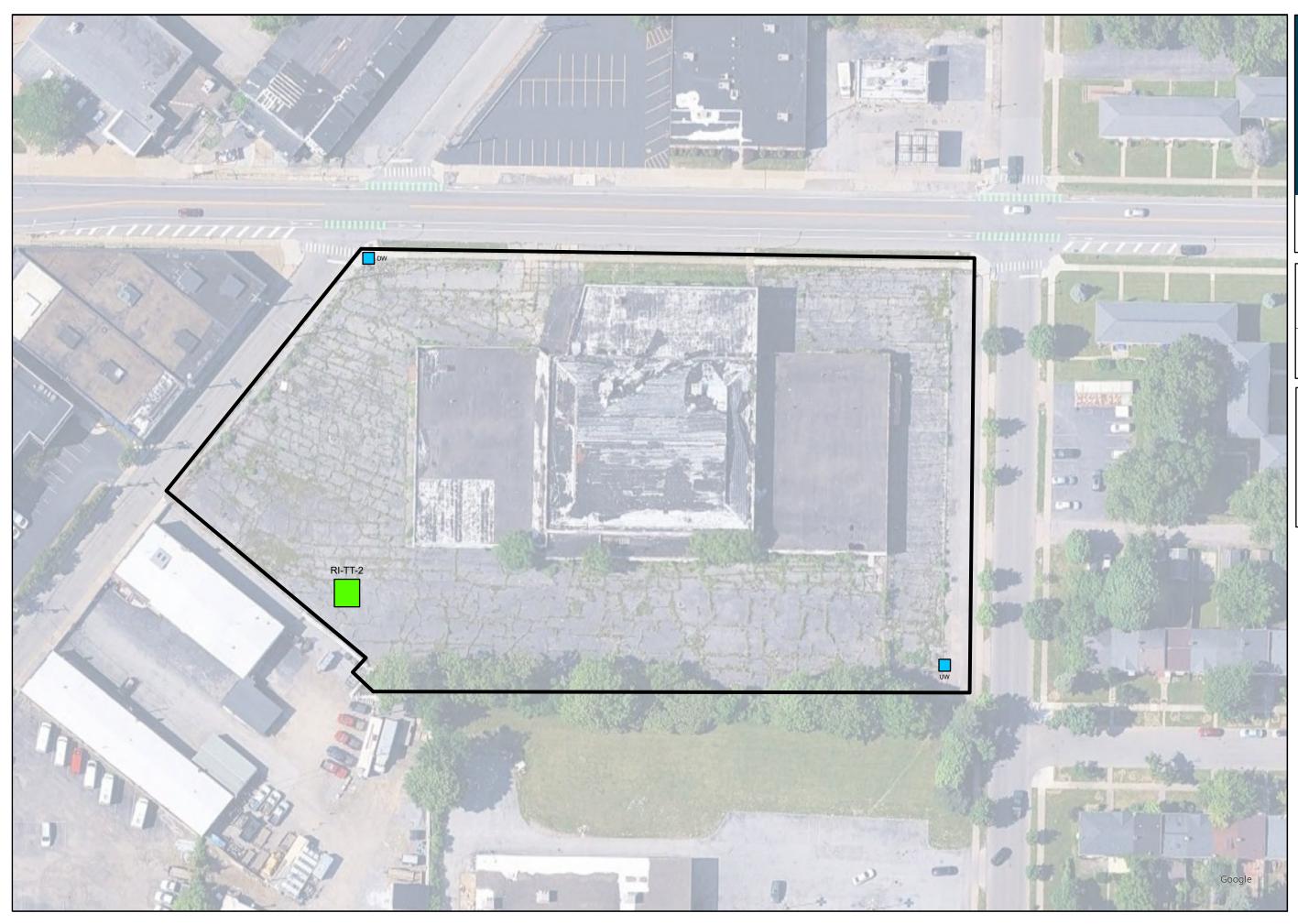
DATE: APRIL 18, 2025 WEATHER: MOSTLY CLOUDY, 51 °F WIND: SE 10 MPH

LEGEND

— Property Boundary

O Soil Boring

-VP-1/BH-1 Boring/Vapor Point


	Com	-	oring Program Data				
Date:		Friday, April 18, 2	2025				
Site Name:	Name: 47 East Amherst Street						
	Upwind Data		Downwind Data		Delta		
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)		
4/21/2025 8:30	2.1	4/21/2025 8:30	3.6	0	1.5		
4/21/2025 8:45	2.5	4/21/2025 8:45	4.2	0	1.7		
4/21/2025 9:00	2.8	4/21/2025 9:00	4.3	0	1.5		
4/21/2025 9:15	2.8	4/21/2025 9:15	3.3	0	0.5		
4/21/2025 9:30	3.3	4/21/2025 9:30	2.9	0	-0.4		
4/21/2025 9:45	3.6	4/21/2025 9:45	4.3	0	0.7		
4/21/2025 10:00	3.6	4/21/2025 10:00	6.7	0	3.1		
4/21/2025 10:15	2.5	4/21/2025 10:15	4.2	0	1.7		
4/21/2025 10:30	3.8	4/21/2025 10:30	6.2	0	2.4		
4/21/2025 10:45	2.1	4/21/2025 10:45	8.9	0	6.8		
4/21/2025 11:00	3.5	4/21/2025 11:00	8	0	4.5		
4/21/2025 11:15	3.1	4/21/2025 11:15	10.4	0	7.3		
4/21/2025 11:30	3.7	4/21/2025 11:30	7.9	0	4.2		
4/21/2025 11:45	4.2	4/21/2025 11:45	8.4	0	4.2		
4/21/2025 12:00	4.4	4/21/2025 12:00	15	0	10.6		
	**Particulate Threshold	PM 10 15minute	<mark>average = 100µg/m³ above b</mark>	ackgr	ound		

DAII	ILY FIELD REPORT				
Date:	Monday, April 21, 2025				
Site Name:	47 East Amherst Street, Buffalo, NY 14214				
Location:	47 East Amherst Street, Buffalo, NY 14214				
Contractor/Sub-Contractor:	Empire Building Diagnotics (EBD)				
Weather Conditions:	Cloudy 50 °F SE 14 MPH				
Description of Work Performed:					
8:00 Arrive on site and meet with operator (EE	EBD). No monitors deployed (actively raining).				
8:30 Set up on RI-TT-2 to complete to bedroc	ck.				
10:00 Broke down equipment and demobilized	d site.				
Problems/Observations:	Suspect materials were encountered at the bottom of the excavation that may require further discussion with DEC and DOH.				
Health and Safety Concerns:	None.				
Contractor Work Force:	1 operator				
Contractor Equipment	Mini-excavator				
Attachments : Photolog, Work Location Map					
Inspectors Name	Jim Hull				

	PHOTO LOG
Date:	Monday, April 21, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
filterative fil	Image: Additional suspect material
Additional suspect material.	

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

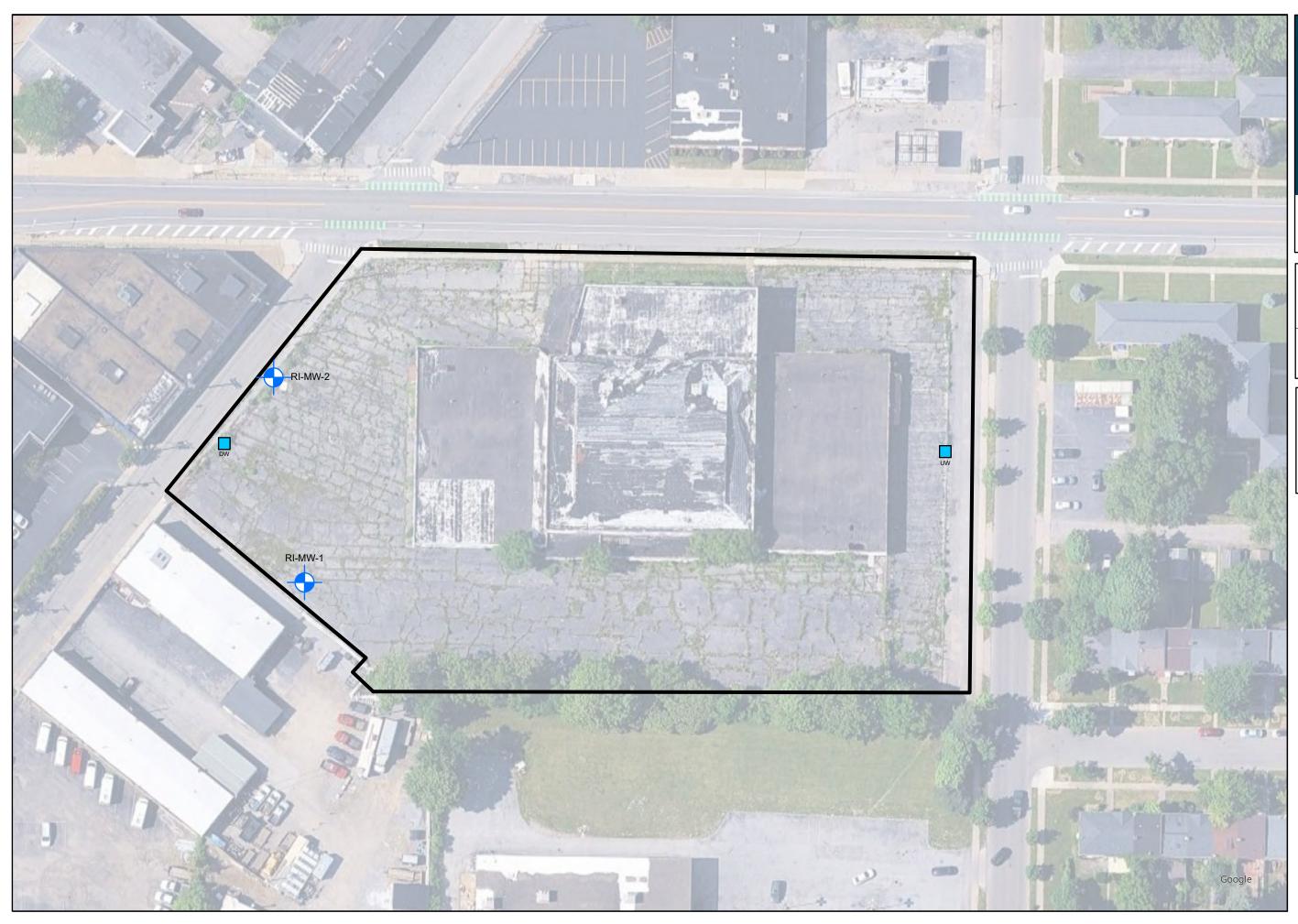
DATE: APRIL 21, 2025 WEATHER: CLOUDY, 50 °F WIND: SE 14 MPH

LEGEND

— Property Boundary

O Soil Boring

Boring/Vapor Point



Date: Wednesday, April 23, 2025 Site Name: 47 East Amherst Street, Buffalo, NY 14214 Location: 47 East Amherst Street, Buffalo, NY 14214 Contractor/Sub-Contractor: Empire Geo Exploration (Empire) Weather Conditions: Cloudy 43 'F E 7 MPH Description of Work Performed: 8:00 Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:00 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None. Contractor Work Force: 1 driller, 1 helper		DAILY FIELD REPORT									
Location: 47 East Amherst Street, Buffalo, NY 14214 Contractor/Sub-Contractor: Empire Geo Exploration (Empire) Weather Conditions: Cloudy 43 °F E 7 MPH Description of Work Performed: Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None. Health and Safety Concerns: None. None. None.	Date:		Wednesday, April 23, 2025								
Contractor/Sub-Contractor: Empire Geo Exploration (Empire) Weather Conditions: Cloudy 43 'F E 7 MPH Description of Work Performed: Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	Site Nar	me:	47 East Amhers	st Street, Buffalo, NY	14214						
Weather Conditions: Cloudy 43 °F E 7 MPH Description of Work Performed: Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	Locatio	n:	47 East Amhers	st Street, Buffalo, NY	14214						
Description of Work Performed: 8:00 Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	Contrac	tor/Sub-Contractor:	Empire Geo Ex	ploration (Empire)							
Arrived on site and met with Tim Burmeier, P.G., Jason Tadarski (driller) and Jim Hull (field technicia Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	Weathe	r Conditions:	Cloudy	43 °F	E 7 MPH						
8:00 Deployed upwind and downwind air monitors. 8:30 Set up to core additional bedrock at RI-MW-1 as well is dry. Driller leave site to get PVC. 9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	Descrip	tion of Work Performed:	-								
9:30 Began coring additional bedrock at RI-MW-1. 10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: None.	8:00			Fadarski (driller) and J	lim Hull (field technician).						
10:00 Finished coring additional bedrock. Moved to RI-MW-2 to begin installing curb box. 13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations: Health and Safety Concerns:	8:30	Set up to core additional bedrock at RI-M	IW-1 as well is d	ry. Driller leave site to	get PVC.						
13:00 Finished curb box installation at RI-MW-2 and moved to RI-MW-1. 13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations:	9:30	Began coring additional bedrock at RI-M	W-1.								
13:45 Finished curb box installation at RI-MW-1. 14:30 Broke down equipment and demobilized site. Problems/Observations:	10:00	Finished coring additional bedrock. Move	ed to RI-MW-2 to	begin installing curb	box.						
14:30 Broke down equipment and demobilized site. Problems/Observations:	13:00	Finished curb box installation at RI-MW-2	2 and moved to I	RI-MW-1.							
Problems/Observations: Health and Safety Concerns: None.	13:45	Finished curb box installation at RI-MW-	1.								
Health and Safety Concerns: None.	14:30	Broke down equipment and demobilized	site.								
	Problem	ns/Observations:									
Contractor Work Force: 1 driller, 1 helper	Health a	and Safety Concerns:	None.								
	Contract	tor Work Force:	1 driller, 1 helpe	er							
Contractor Equipment Geoprobe (Model 7720DT)	Contract	tor Equipment	Geoprobe (Moo	lel 7720DT)							
Attachments : Photolog, Work Location Map	Attachm	ents : Photolog, Work Location Map	•								
Inspectors Name Alexis Palumbo-Compton	Inspecto	ors Name	Alexis Palumbo	-Compton							

	PHOTO LOG
Date:	Wednesday, April 23, 2025
Site Name:	47 East Amherst Street, Buffalo, NY 14214
1. Coring additional bedrock at RI-MW-1.	2. Curb box installed at RI-MW-2
3. Curb box installed at RI-MW-1	

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

WORK LOCATION MAP

47 EAST AMHERST STREET BCP SITE NO. C915397 REMEDIAL INVESTIGATION

DATE: APRIL 23, 2025 WEATHER: CLOUDY, 43 °F WIND: E 7 MPH

LEGEND

— Property Boundary

Monitoring Well

	Com		oring Program Data						
Date:		Wednesday, Apri							
Site Name:		47 East Amherst	Street						
	Upwind Data		Downwind Data		Delta				
Time	PM 10 - 15 min AVG (µg/m³)	Time	PM 10 - 15 min AVG (µg/m³)	voc	PM 10 - 15m AVG (µg/m³)				
4/23/2025 8:30	23.5	4/23/2025 8:30	5.6	0	-17.9				
4/23/2025 8:45	11.6	4/23/2025 8:45	1.3	0	-10.3				
4/23/2025 9:00	15.4	4/23/2025 9:00	9.1	0	-6.3				
4/23/2025 9:15	13.2	4/23/2025 9:15	3.9	0	-9.3				
4/23/2025 9:30	5.5	4/23/2025 9:30	6.2	0	0.7				
4/23/2025 9:45	6.5	4/23/2025 9:45	8.7	0	2.2				
4/23/2025 10:00	9.8	4/23/2025 10:00	4.4	0	-5.4				
4/23/2025 10:15	21.3	4/23/2025 10:15	2.7	0	-18.6				
4/23/2025 10:30	16.1	4/23/2025 10:30	1.6	0	-14.5				
4/23/2025 10:45	10	4/23/2025 10:45	9.5	0	-0.5				
4/23/2025 11:00	3.6	4/23/2025 11:00	3.2	0	-0.4				
4/23/2025 11:15	4	4/23/2025 11:15	7	0	3				
4/23/2025 11:30	7.1	4/23/2025 11:30	6.8	0	-0.3				
4/23/2025 11:45	4.7	4/23/2025 11:45	5.1	0	0.4				
4/23/2025 12:00	8.8	4/23/2025 12:00	8.3	0	-0.5				
4/23/2025 12:15	4.7	4/23/2025 12:15	2.3	0	-2.4				
4/23/2025 12:30	7	4/23/2025 12:30	4.6	0	-2.4				
4/23/2025 13:15	7.5	4/23/2025 13:15	1	0	-6.5				
4/23/2025 13:30	7.4	4/23/2025 13:30	7.8	0	0.4				
4/23/2025 13:45	2.8	4/23/2025 13:45	5.3	0	2.5				
	**Particulate Threshold	PM 10 15minute	<mark>average = 100µg/m³ above b</mark>	ackgr	ound				

Appendix B

Site Photographs

1. RI-BH-1 (COMPLETED 3/27/2025).

2. RI-BH-2 (COMPLETED 3/27/2025).

3. RI-BH-3 (COMPLETED 3/27/2025).

4. RI-BH-4 (COMPLETED 3/27/2025).

5. RI-BH-5 (COMPLETED 3/27/2025).

6. RI-BH-6 (COMPLETED 3/27/2025).

7. RI-BH-7 (COMPLETED 3/27/2025).

8. RI-BH-9 (COMPLETED 3/28/2025).

9. RI-BH-11 (COMPLETED 3/28/2025).

10. RI-BH-12 (COMPLETED 3/28/2025).

11. RI-BH-13 (COMPLETED 4/9/2025).

12. RI-BH-14 (COMPLETED 4/9/2025).

13. RI-TT-1 (COMPLETED 4/18/2025).

14. RI-TT-2 (COMPLETED 4/21/2025).

15. RI-TT-3 (COMPLETED 4/18/2025).

16. RI-TT-4 (COMPLETED 4/18/2025).

17. RI-TT-5 (COMPLETED 4/18/2025).

Appendix C

Boring and Test Trench Logs

PROJE		act	Λn	nha	arst Damad	lial Investigation		BORING L	OG
BORIN									
						oloration			R
	DRILLING CONTRACTOR: Empire Geo Exploration DRILLING METHOD: Direct Push								
					Geoprobe Model	7720DT			
LOGG								BRYDGES	
DATE				7/20	25			IN ENVIRONMEN	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMAI	RKS
0				0		Asphalt			
1— 2—	RI-BH-1			0		FILL; brown sandy fine gravel an brown silty clay	d medium		
3-		2.7'	100	0	66. Million 1997	weathered shale		refusal @ 2.7'	
-									
4-									
5-									
6-									
7-									
8-									
9—									
10-									
11-									
12-									
13-									
14-									
Bryd	lges I	Engir	neerir	ng in	Environment and Er	nergy, DPC	Proje	ect No. 8159	Page 1 of 1

PROJE		act	Δr	nha	orst Romod	lial Investigation		BORING L	OG
H /									
	DRILLING CONTRACTOR: Empire Geo Exploration							R	
	DRILLING METHOD: Direct Push								
EXCA	EXCAVATION EQUIPMENT: Geoprobe Model 7720DT								
LOGG								BRYDGES	NG
DATE	STAR	TED:	3/2	7/20	25			IN ENVIRONME AND ENERGY, D	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMA	RKS
0				0		Asphalt		-	
1	RI-BH-2	2.2'	81	0		FILL; dark gray-brown silty fine-c	coarse gravel		
3-								refusal @ 2.5', colle samples	cted MS/MSD
4-									
5-									
6-									
7-									
8-									
9-									
10-									
11-									
12-									
13-									
14-									
Bryd	lges l	Engir	neerir	ng in	Environment and Er	nergy, DPC	Proj	ject No. 8159	Page 1 of 1

47 E	Ea	st	An	nhe	erst Remed	ial Investigation		BORING L	OG				
BORING LOCATION: RI-BH-3						DCATION: RI-BH-3							
DRILLING CONTRACTOR: Empire Geo Exploration					RILLING CONTRACTOR: Empire Geo Exploration								
DRILLING METHOD: Direct Push													
				ENT: (Geoprobe Model	7720DT		BRYDGES					
OGGED								IN ENVIRONMEN					
DATE ST								AND ENERGY, D	PC				
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMAI	RKS				
$ \begin{array}{c} 0 \\ - \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	RI-BH-3	1.5'	20	0		Asphalt FILL; dark gray clayey coarse gravel slabby weathered		collected duplicate s refusal @ 7'	sample				
Brydge	es E	ngin	eerir	ng in	Environment and Er	hergy, DPC	Proje	ect No. 8159	Page 1 of 1				

				RI-BH	1-4	lial Investigation			
RILL	NG C	ONTR	ACTC	R:	Empire Geo Ex	ploration			54
RILL	NG M	ETHC	D: Di	rect	Push				
EXCA	VATIC	N EQ	UIPM	ENT: (Geoprobe Model	7720DT		BRYDGES	
OGG	ED BY	: TE	3					ENGINEERI	NG
DATE	STAR	TED:	3/27	7/202	25		-	IN ENVIRONME AND ENERGY, D	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMA	RKS
0				0		Asphalt		1	
-		1'	100	0		Dark brown silty organic soil			
' -									
2—									
_									
3—									
-									
4									
5—									
_						Ell L. light vollow brown cilty cla	with coarse		
6—		2'	20	0		FILL; light yellow-brown silty cla angular gravel	with coarse		
7—									
8—									
_									
9—									
- 0-									
-	RI-BH-4								
1–	Ē							3 refusals @ 1'; slig	htly offset boring;
-								refusal @ 11'	-
2-									
- 13—									
-									

PROJECT: 47 East Am	herst Remed	lial Investigation		BORING L	OG
BORING LOCATION: RI					
DRILLING CONTRACTOR	Empire Geo Ex	ploration			5
DRILLING METHOD: Dire	ect Push				
EXCAVATION EQUIPMEN	NT: Geoprobe Model	7720DT		BRYDGES	
LOGGED BY: TB				ENGINEERII	
DATE STARTED: 3/27/			AND ENERGY, D		
DEPTH (feet) Sample Recovery % Rec.	Reading	DESCRIPTION		REMA	RKS
0	0	Asphalt			
4	0	FILL; medium brown silty clay wi gray gravel	th coarse light	refusal @ 7'	
8- 9- 10- 11- 12- 13- 14-					
Brydges Engineering	g in Environment and Er	nergy, DPC	Proje	ect No. 8159	Page 1 of 1

PROJE		nst	Δn	nhe	erst Remed	lial Investigation		BORING LO	OG
BORIN									
DRILLI					Empire Geo Ex	ploration			2
DRILLI	NG M	ETHO	D: Di	irect	Push	·			
EXCA	VATIC	N EQ	UIPM	ENT: (Geoprobe Model	7720DT		BRYDGES	
LOGGI	ED BY	: TE	3					ENGINEERIN	IG
DATE	STAR	TED:	3/27	7/20	25			IN ENVIRONMEN AND ENERGY, DF	
DEPTH (feet)	(feet) CEPTH Recovery Sample DESCLIAL Recovery DESCLIAL Recovery DESCLIAL Reading CERTION							REMAR	:KS
0	9-H			0		Asphalt	d light brown	-	
1-	RI-BH-6	1'	100	0		FILL; medium gray brown mottle silty clay with fractured angular g	ravel		t ottomat-
-								conducted 2 adjacen	t attempts
2—									
3-									
-									
4—									
5-									
- 5									
6-									
-									
7-									
8—									
_									
9									
10-									
-									
11-									
12-									
13—									
14—									
Bryd	ges E	Engir	neerir	ng in	Environment and Ei	nergy, DPC	Proj	ect No. 8159	Page 1 of 1

						ial Investigation		BORING L	UG
				RI-BI					
	NG C				Empire Geo Exp	oloration			
					Push	770007			
				ENT: (Geoprobe Model		BRYDGES	NG	
LOGGED BY: TB DATE STARTED: 3/27/2025								IN ENVIRONMEN	er i
DEPTH (feet) (feet) Recovery PID Reading PID PID							<u> </u>	REMAR	
0		Ľ		0					
1				0		FILL; silty gravel			
6—	I-BH-7			0		crushed gray Dolostone			
- 7—	RI	2'	29	0		SUSPECT FILL; medium brown coarse light gray gravel	silty clay with		
8								refusal @ 7'	
 3ryd	ges E	Engir	ieerir	ng in	Environment and Er	nergy, DPC	Proj	ect No. 8159	Page 1 of 1

PROJECT		Ar	nhe	erst Remedial Investigation	BORING LOG
				-	
DRILLING	CONTI	RACTO	DR:	Empire Geo Exploration	
DRILLING	METH	DD: D	irect		
EXCAVAT	FION EC	QUIPM	ENT:	Geoprobe Model 7720DT	BRYDGES
LOGGED	вү: Т	В			ENGINEERING IN ENVIRONMENT
DATE STA		3/2			AND ENERGY, DPC
DEPTH (feet) Sample	Recovery	% Rec.	PID Reading	DESCRIPTION	REMARKS
0			0	Asphalt	
1- 2- 3- 6- 5- 6- 7	2.4'	32	0	FILL; medium brown silty fine sar trace brick and Dolostone fragme	ndy clay with ents refusal @ 7.5'
8- - 9- -					
10—					
11-					
12—					
13—					
14-					
Brydges	s Engi	neeri	ng in	Environment and Energy, DPC	Project No. 8159 Page 1 of 1

PROJECT: 47 East Amherst Remed	lial Investigation	BORING LOG
BORING LOCATION: RI-BH-11	ilai inveetigation	
DRILLING CONTRACTOR: Empire Geo Ex	ploration	
DRILLING METHOD: Direct Push		
EXCAVATION EQUIPMENT: Geoprobe Model	7720DT	BRYDGES
LOGGED BY: TB		ENGINEERING IN ENVIRONMENT
DATE STARTED: 3/28/2025		AND ENERGY, DPC
DEPTH (feet) Sample Recovery % Rec. PID Reading	DESCRIPTION	REMARKS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	al ash, coal refusal @ 8', 2" wet above suspect bedrock/refusal	
Brydges Engineering in Environment and E	nergy, DPC	Project No. 8159 Page 1 of 1

proje		ast	An	nhe	erst Remedial Investigati	on	E	BORING L	OG
BORIN	IG LO	CATIC	DN: R	I-BH	-12				
DRILL	ING C	ONTR	RACTC	R:	Empire Geo Exploration				5
DRILL	ING M	ETHC	D: Di	rect	Push				
EXCA	VATIC	ON EQ	UIPM	ENT: (Geoprobe Model 7720DT			BRYDGES	
LOGG								ENGINEERII IN ENVIRONMEN	
	ATE STARTED: 3/28/2025							AND ENERGY, D	PC
DEPTH (feet)								REMA	RKS
0				0 0	Asphalt top soil				
1-									
-	2								
2-	RI-BH-12	4'	100	0	FILL; brown-gray silty cla trace brick, trace coal as	y with fine and trace	gravel, coal		
3-	Я								
- 4								refusal @ 4'	
5-									
6—									
 7-									
-									
8									
9—									
10—									
- 11–									
- 12—									
- 13—									
- 13									
14—									
Bryd	ges I	Engir	neerir	ng in	Environment and Energy, DPC		Proje	ct No. 8159	Page 1 of 1

proje		ast	An	nhe	erst Remed	lial Investigation		BORING L	OG
BORIN	IG LO	CATIC)N: R	I-BH	-13				
DRILLI	ING C	ONTR	АСТС	R:	Empire Geo Exp	ploration			5
DRILLI	ING M	ETHO	D: N	/A					
EXCA	VATIC	DN EQ	UIPM	ENT:	Hand Auger		-	BRYDGES	
LOGG	ED BY	∕∶AP	С				-	ENGINEERII	
DATE	STAR				5			AND ENERGY, DI	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMAR	RKS
0				0		Concrete		utilized concrete cor	er
1-									
2-	RI-BH-13			0		FILL; dark brown-black silty clay angular gravel	with coarse		
3-								refusal @ 3', wet (wa during concrete cori	ater introduced ng)
4-									
5—									
6-									
7-									
8-									
9-									
10-									
11-									
12-									
13—									
14—									
Bryd	ges l	Engin	ieerir	ng in	Environment and Er	nergy, DPC	Proj	ect No. 8159	Page 1 of 1

PROJE		ast	An	nhe	erst Remed	ial Investigation		BORING L	OG
BORIN									
DRILL	ING C	ONTR	АСТС	R:	Empire Geo Exp	oloration			5
DRILL	ING M	ETHO	D: N	/A					
EXCA	VATIC	ON EQ	UIPMI	ENT:	Hand Auger			BRYDGES	
LOGG	ED BY	′: AP	С					ENGINEERII	
DATE					25			AND ENERGY, DI	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMAR	RKS
0				0		Concrete		utilized concrete cor	er
1- - 2-	RI-BH-14			0		FILL; dark brown-black silty clay angular gravel	with coarse		
3-								refusal @ 2', wet (wa during concrete cori	ater introduced ng)
4-									
5-									
6-									
7-									
8-									
9									
10-									
11-									
12-									
13-									
14- 								inst No. 0150	
вгуа	yes i	ngir	ieerir	iy in	Environment and Er	ieiyy, DPC	Pro	ject No. 8159	Page 1 of 1

RILLING CONTRACTOR: Empire Building Diagnostics RILLING METHOD: N/A EXCAVATION FOURPHENT: Mini Excavator OGECD BY: PS TATE STARTED: 4/18/2025						ial Investigation			
RILLING METHOD N/A EXCAVATION EQUIPMENT: Mini Excavator OCCED BY: PS WIE STARLED: 4/18/2025 TO						iagnostics			K
Description How by the start EXAMPLE: DESCRIPTION REMARKS How by the start EXAMPLE:									
Decision REMARKS ATLE STARTED: 4/18/2025 ASPhall Image: Starter of the s	EXCAVATIC	N EQ	UIPM	ENT:	Mini Excavator			REVOCES	
ATT 5 TARTE 0: 4/18/2025 AND ENERGY, DPC	LOGGED BY	: PS	5					ENGINEERI	IG
0 - - Asphalt 1 - - - - 2 - - - - - 3 - - - - - - 4 - - - - - - - 5 - - - - - - - - 5 -	DATE STAR	TED:	4/18	3/202	25				
1 0 Image: spinal indication of the spinal indinditindicatio	DEPTH (feet) Sample	Recovery	% Rec.	PID Reading			REMAR	RKS	
2 FILL: loss black sandy stone with some incidental debris (sea shells, pipes, bottles and grinded woodchips) 3 FILL: loss black sandy stone with some incidental debris (sea shells, pipes, bottles and grinded woodchips) 4 FILL: loss black sandy stone with some incidental debris (sea shells, pipes, bottles and grinded woodchips) 5 0 5 0 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 13 1	0			0					
- -	2 			0		incidental debris (sea shells, pip	ith some es, bottles and		
	$3 - \frac{1}{2}$ $4 - \frac{1}{2}$ $5 - \frac{1}{2}$ $6 - \frac{1}{2}$ $7 - \frac{1}{2}$ $8 - \frac{1}{2}$ $9 - \frac{1}{2}$ $10 - \frac{1}{2}$ $11 - \frac{1}{2}$ $13 - \frac{1}{2$						se trace wet	bedrock at 5'	

ORIN	G LO	CATI	on: F	RI-TI	Г-2				
RILLI	NG C	ONT	RACTO	DR: E	mpire Building D	iagnostics			5
RILLI	NG M	IETHO	DD: [N/A					
EXCA	VATIC	ON EC	DUIPM	ENT:	Mini Excavator			BRYDGES	
OGGE	ED BY	(: P	S					ENGINEERI	NG
DATE S	STAR		4/2	1/20	25			AND ENERGY, D	
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading		DESCRIPTION		REMA	RKS
	RI-TT-2 RI-TT-2			0		Asphalt top soil, brown loose trace organ FILL; loose brown sand with blac brick , debris, extensive voids an FILL; continuation of loose brown larger flat boulders and extensive	k zones, trace d boulders	incinerator waste/subottom foot of excav bedrock at 10.3'	ispect slag noted in vation
13— - 14—									

proje		ast	An	nhe	erst Remed	ial Investigation	TES	T TRENCH	I LOG
BORIN						5			
DRILLI	ING C	ONTR	ACTC	R: E	mpire Building D	iagnostics			
DRILLI	ING M	ETHC)D: 	J/A					
EXCA	VATIC	ON EQ	UIPM	ENT:	Mini Excavator			BRYDGES	
LOGG	ED BY	: P\$	5						IG
DATE	STAR						AND ENERGY, DP		
DEPTH (feet)	Sample	Recovery	% Rec.	PID Reading			REMAR	RKS	
0				0 0		Asphalt mostly boulders with trace organ	ics/roots		
1-									
2-	RI-TT-3			0		FILL; light brown-gray fine sand	with trace clay		
3—									
-									
4-	TT-3			0		large blasted rock, extensive void intermingled shale	ds, some		
5—	RI-TT				S	interningicu shate		bedrock at 5.3'	
_									
6-									
7—									
_									
8-									
9									
10-									
11-									
12-									
13—									
14—									
Bryd	ges I	Engir	neerir	ng in	Environment and Er	nergy, DPC	Projec	ct No. 8159	Page 1 of 1

ORING L					ial Investigation			
RILLING	CONT	RACTO	DR: E	mpire Building D	iagnostics			4
RILLING	METH	DD:	N/A					
EXCAVAT	TON EC	2UIPN	IENT:	Mini Excavator			BRYDGES	
OGGED	BY: J	-					ENGINEERIN	
ATE STA		4/1	8/202	25			IN ENVIRONMEN AND ENERGY, DP	
DEPTH (feet) (feet) (feet) DESCRIPTION							REMAR	KS
0			0		Asphalt			
			0		FILL; crushed stone base with sr rock, brown-black fines and trace	nall-large e organics		
			0		FILL; boulders and cobbles, som some debris and extensive voids	e gravel,		
8- 9- 10- 11- 12-							bedrock at 7.5'	
13— 14—								

PROJECT: 47 East Amherst Remedial I	estigation TEST TRENCH LOG
BORING LOCATION: RI-TT-5	
DRILLING CONTRACTOR: Empire Building Diagno	is Example
DRILLING METHOD: N/A	
EXCAVATION EQUIPMENT: Mini Excavator	BRYDGES
LOGGED BY: JH	ENGINEERING IN ENVIRONMENT
DATE STARTED: 4/18/2025	AND ENERGY, DPC
In the second se	RIPTION REMARKS
	brown-black fines, cobbles and nics e shot rock, extensive voids, some construction/demolition debris bedrock at 5.5'
Brydges Engineering in Environment and Energy, I	C Project No. 8159 Page 1 of 1

Appendix D

Monitoring Well Construction/Bedrock Logs

	DRILLING SUMMARY										
Geologist: Tim Burmeie							Depth bgs	Flush Mou	Int		Diameter
Contractor: Empire Expl Operator: Jason Tadar	oration	and Geology				Ground Level/Asphalt	0 ft.	Initial Auger Ho	ble	Curb Box Cover	10 inch
Model: CME 550 X		illing Rig				Top of PVC Riser Top of Steel Casing	0.5 ft. 1 ft.				
Date: 4/9/2025 and	1 4/23/2									Steel Casing	4 inch
		BORIN	G/BEDR	OCK LO	G					Sch. 40 PVC Casing	2 inch
Depth	Run	Rec. (%)	RQD (%)		Description	Top of Bedrock/Rock Socket	10.5 ft.				
0-10.5'	-	-	-	Overburden		Bottom of Steel casing/Rock Socket & Top of Corehole	13.5 ft.			Rock Socket	5 7/8 inch
10.5-13.5'	-	•	-	Rock socket							
13.5-17'	1	100	70	Dolostone; 1/ shaly parting @ 15.4'; bec	finely crystalline /4" banding or 1/10" s; weathered hard zone omes light brown finely stone @ 13.6'; hard	Top of Screen/ Bottom of Riser	19.4 ft.			HQ-size Corehole	3 7/8 inch
17-19'	2	100	16	Same litholog wavy laminat	gy with very thick black te; hard						
19-21'	3	100	70		own; some hackly ely crystalline; hard						
21-26'	4	96	48	banding; very	Dolostone; hard, slight y thin black shaly athered zone @ 23.5'						
26-29.4'	5	79	71	Medium gray 1" darker gra	brown Dolostone; 1/4" - y banding						
			COMMEN								
PVC riser an 2. The steel 3. All depths	d scree casing are me	en represents was positione easured from	void space. d 3 feet into l ground surfac	bedrock. ce.	, on either side of the table on 4/23/25.					Sch. 40 PVC Screen	2 inch
	WELL DESIGN					Bottom of Screen/Corehole	29.4 ft.				
	C	ASING MA	TERIAL			CREEN MATERIAL		SEAL MATERIA	AL	FILTER N	IATERIAL
0-13.5' bç Monitor:		4" Steel c 2" Schedule		n Mount)	Type: Slot Size: Setting:	2" Schedule 40 PVC 0.010" 19.4' - 29.4' bgs		Type 1: Grout Setting: Surrounding stee Type 2: Concrete Setting: Surrounding curl		Type: N/A Setting N/A	
LEGEND		Cement Gro	out		Overburden	Concrete		Steel Casing P	VC Riser F	Pipe	PVC Screen
		Bedrock			Curb Box	Void Space					
Client: Regan Development					Location:	47 East Amherst Str	eet, Buffalo, NY	Project N	o.: N/A		
				B K	MONIT	ORING WELL DETA	CONSTRUCTION		Well Identifier:	RI-MW-1	

		DRIL	LING SU	MMARY							
Geologist: Tim Burmeie Contractor: Empire Exp Operator: Jason Tadai	loration	and Geology				Ground Level/Asphalt Top of PVC Riser	Depth bgs 0 ft. 0.5 ft.	Flush Moun		Curb Box Cover	Diameter 10 inch
Model: CME 550 X Date: 4/4/2025		illing Rig				Top of Steel Casing	1 ft.			Steel Casing	4 inch
		BORIN	G/BEDR	OCK LO	G					Sch. 40 PVC Casing	2 inch
Depth	Run	Rec. (%)	RQD (%)		Description	Top of Bedrock/Rock Socket	4.5 ft.				
0-4.5'	-	-	-	Overburden		Bottom of Steel casing/Rock Socket & Top of Corehole	7.5 ft.			Rock Socket	5 7/8 inch
4.5-7.5' 7.5-8.3'	-	-	-	Rock socket Light brown t Dolostone; h	inely crystalline ard	Top of Screen/ Bottom of Riser	10.8 ft.			HQ-size Corehole	3 7/8 inch
8.3-12.5'	1	100	15	Dolostone; h	r fine crystalline ard; horizontal - slightly y 1"- 4" partings						
12.5-16.7'	2	100	7		own Dolostone; finely ace wavy black thin hard						
16.7-20.8'	3	100	54		own shaly Dolostone; line; wavy breaks in						
PVC riser ar 2. The steel	nd scree casing	sand packed in represents was positione asured from (void space. d 3 feet into l	white spacing	g on either side of the					Sch. 40 PVC Screen	2 inch
		w	ELL DE	SIGN		Bottom of Screen/Corehole	20.8 ft.				
	C	SING MA	TERIAL			SCREEN MATERIAL		SEAL MATERIAL		FILTER N	IATERIAL
0-7.5' bg: Monitor:		4" Steel c 2" Schedule		Mount)	Type: Slot Size: Setting:	2" Schedule 40 PVC 0.010" 10.8' - 20.8' bgs		Type 1: Grout Setting: Surrounding steel Type 2: Concrete Setting: Surrounding curb I	-	Type: N/A Setting N/A	
LEGEND		Cement Gro Bedrock	out		Overburden Curb Box	Concrete Void Space		Steel Casing PV	C Riser F	Pipe	PVC Screen
		Deurock		-							
Client: Regan Development				a.		7 East Amherst St DRING WELI DETA		Project N	well Identifier:	RI-MW-2	

		DRIL	LING SU	IMMARY							
Geologist: Tim Burmeid Contractor: Empire Expl Operator: Jason Tadar Model:	oration	and Geology				Ground Level/Asphalt Top of PVC Riser Top of Steel Casing	Depth bgs 0 ft. 0.5 ft. 1 ft.	Flush Mount		Curb Box Cover	Diameter 10 inch
CME 550 X Date: 4/10/2025	ATV Dri		0/0500				T K.			Steel Casing	4 inch 2 inch
Depth	Run	BORIN Rec. (%)	G/BEDR		G	Top of Bedrock/Rock Socket	7 ft.			Scii. 40 PVC Casing	2 IIICH
0-7' 7-10'	-	-	-	Overburden Rock socket		Top of Screen/ Bottom of Riser	8.2 ft.			Rock Socket	5 7/8 inch
10-10.8'	1	80	35	~1/4" bandin	brown Dolostone; hard g; 45° fracture @ 10.5' al to sub-horizontal	Bottom of Steel casing/Rock Socket & Top of Corehole	10 ft.				
10.8-11.6' 11.6-16.2'	2	90	63		nsition zone own Dolostone; filled '; very thin wavy black	-				HQ-size Corehole	3 7/8 inch
16.2-18.2'	3	100	70		own Dolostone; fine ck wavy laminate						
PVC riser ar 2. The steel	nd scree casing v	sand packed in represents was positione easured from	void space. d 3 feet into l	white spacing	on either side of the					Sch. 40 PVC Screen	2 inch
		W	ELL DE	SIGN		Bottom of Screen/Corehole	18.2 ft.				
0-10' bgs Monitor:	:	ASING MA 4" Steel c 2" Schedule	asing (Flusł	n Mount)	Type: Slot Size: Setting:	2" Schedule 40 PVC 0.010" 8.2-18.2' bgs		SEAL MATERIAL Type 1: Grout Setting: Surrounding steel cr Type 2: Concrete Setting: Surrounding curb bo	asing Se	FILTER I Ype: N/A atting N/A	MATERIAL
LEGEND		Cement Gro Bedrock	put		Overburden Curb Box	Concrete Void Space			Riser Pipe	e	PVC Screen
Client: Regan Development						47 East Amherst Str DRING WELI DETA		roject No.: V	N/A Vell Identifier:	RI-MW-3	

Appendix E

Well Development Logs

WELL DEVELOPMENT LOG

PROJECT TITLE: 47 East Amherst Remedial Investigation WELL NO RI-MW-2											
PROJECT NO.: N/A											
STAFF: <u>Alexis Palumbo-Com</u>	pton										
DATE(S): <u>4/17/2025</u>											
DEVELOPMENT METHOD:	Manual su	urging with	surge bloc	k, foot valv	e and 1" di	ameter tub	oing				
1. DEPTH TO WELL BOTTO	M (FT. BT	OR)		=	20	0.0'		LL ID. 1"	VO	0L. (GAL/F1 0.04	Г)
2. WATER LEVEL BELOW T	OP OF RIS	SER (FT. B	TOR)	=	16	5.1'		2"		0.17	
3. NUMBER OF FEET STAN	DING WAT	ΓER (#1 - #	2)	=	2	1'		3"		0.38	
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	LONS)	=	0.	17	-	4"		0.66	
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	4)	=	0.	68	-	5"		1.04	
6. VOLUME OF WATER TO I	REMOVE	(GAL.)(#5 x	()	=	2.	04	-	6"		1.50	
7. VOLUME OF WATER ACT	UALLY R	EMOVED (GAL.)	=	1	8		8"		2.60	
							V=0.040	08 x (CASII	OR NG DIAME	TER) ²	
			ACCI	JMULAT		LUME P	URGE	D (GAL	LONS)		
PARAMETERS	3	4	4.5	5	6	7	8	16	18		
рН	7.70	7.38	7.71	7.62	7.70	7.75	7.78	7.87	7.92		
TEMPERATURE (°C)	9.6	11.2	10.6	11.3	11.1	10.3	11.1	9.9	9.9		
SPEC. COND. (mS/cm)	0.69	0.699	0.715	0.714	0.723	0.668	0.714	0.692	0.671		
ORP (mV)	29.7	68	60.2	126.2	96	90	102	158.2	222.5		
DISSOLVED OXYGEN (mg/l)	4.92	6.13	5.76	5.96	5.72	5.4	5.6	5.62	5.71		
TURBIDITY (NTU)	-3.3	8.63	25.2	8.32	1.72	45.1	10.8	7.39	7.69		
, <i>,</i> ,											
DEPTH TO WATER (btor)	19.5'	19.5'	19.5'	19.5'	19.5'	19.75'	19.75'	19.75'	19.75'		
TIME	1420	1445	1455	1520	1535	1605	1620	1800	1830		

COMMENTS:

WELL DEVELOPMENT LOG

PROJECT TITLE: 47 East Amherst Remedial Investigation WELL NO RI-MW-3										
PROJECT NO.: N/A										
STAFF: Alexis Palumbo-Com	pton									
DATE(S): <u>4/18/2025</u>										
DEVELOPMENT METHOD:	Manual su	urging with	surge bloc	k, foot valv	e and 1" di	ameter tubi	ng			
1. DEPTH TO WELL BOTTO	M (FT. BT	OR)		=	20	0.0'	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF RIS	SER (FT. B	TOR)	=	18	8.5'	2"	0.17		
3. NUMBER OF FEET STAN	DING WAT	「ER (#1 - #	2)	=	1	.5'	3"	0.38		
4. VOLUME OF WATER/FOO	OT OF CAS	SING (GAL	LONS)	=	0.	17	4"	0.66		
5. VOLUME OF WATER IN C	ASING (G	AL.)(#3 x #	4)	=	0.2	255	5"	1.04		
6. VOLUME OF WATER TO I	REMOVE	(GAL.)(#5 >	()	=	0.7	765	6"	1.50		
7. VOLUME OF WATER ACT	UALLY RE	EMOVED (GAL.)	=	15	5.5	8"	2.60		
						,	√=0.0408 x (CASIN	OR NG DIAMETER) ²		
			ACCU	JMULA			JRGED (GALI	LONS)		
PARAMETERS	3	6	10	13	14.5	15.5				
рН	-	8.77	8.68	8.69	8.62	8.63				
TEMPERATURE (°C)	-	15.2	13.7	14.5	13.8	12.6				
SPEC. COND. (mS/cm)	-	0.592	0.575	0.589	0.569	0.557				
ORP (mV)	-	165.3	250.2	195.2	235	245.7				
DISSOLVED OXYGEN (mg/l)	-	5.01	4.72	4.56	4.81	4.91				
TURBIDITY (NTU)	-	159.1	104.21	1.07	49.01	8.83				
DEPTH TO WATER (btor)	18.6'	18.6'	18.6'	18.7'	18.6'	18.6'				
TIME	1220	1315	1410	1500	1515	1540				
COMMENTS:										

*DEPTH TO WELL BOTTOM AND DEPTH TO WATER WERE MEASURED IN RESPECT TO THE STICK-UP POSITION. WELL WILL BE FLUSH MOUNT ONCE COMPLETED WHICH WILL DECREASE DEPTHS BY APPROXIMATELY 2 FEET. *SHORT RAIN BETWEEN 1500 AND 1515. Appendix F Purge Logs

LOW FLOW GROUNDWATER PURGING/SAMPLING LC)G
--	----

Project:	47 E	ast Amherst Stre	et RI	Site:	47 East A	mherst Street	Well I.D.:	RI-MW	-2
Date:	4/21/2025	Samplir	ig Personnel:		Jim Hull		Company:	BE3	
Purging/ Sampling Device: Measuring Point:	Low f	flow perastaltic Initial Depth to Water:	pump 19.7'	Tubing Type: Depth to Well Bottom:	HDP 20'	E/Silicon Well Diameter:	Pump/Tubing Inlet Location: 2 in	Well bot Screen Length:	ttom 10'
Casing Type:	PV	<u>'C</u>		Volume in 1 Well Casing (gallons):	0.51	_	Estimated Purge Volume (gallons): _	9.0	
Sample ID:		RI-MW-2		Sample Time:	1	320	QA/QC:	N/A	
Sample	e Parameters: _ -	TCL VC	Cs and TICs,⊺	TCL SVOCs, TAL	<u>. Metals + c</u>	yanide, PCBs, F	Pesticides, 1,4-di	oxane and PF	AS

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (gal/min)	DEPTH TO WATER (feet)
1035	7.68	11.8	0.761	5.72	8.53	63.8	0.05	19.6
1100	7.59	13.1	0.855	6.07	50.83	157.9	0.05	19.6
1130	7.68	13.4	0.854	6.88	141.22	197.6	0.05	19.5
1150	7.71	15.0	0.908	7.32	94.37	185.7	0.05	19.5
1205	7.68	15.4	0.929	7.68	81.66	216.7	0.05	19.5
1215	7.90	16.5	0.951	7.80	58.5	217	0.05	19.5
1235	7.66	16.2	0.914	7.66	56.7	205	0.05	19.4
1255	8.01	16.3	0.943	7.84	47.7	218	0.05	19.4
1305	7.91	16.2	0.891	7.51	45.1	205	0.05	19.4
1315	8.07	16.30	0.919	7.73	41.68	199	0.05	19.4
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft $(vol_{cyl} = pr^2h)$

Remarks:

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Project:	47 E	ast Amherst Str	eet RI	Site:	47 East Ar	mherst Street	Well I.D.:	RI-MW	/-3
Date:	4/23/2025	Sampli	ng Personnel:		Jim Hull		_ Company: _	BE3	3
Purging/ Sampling Device:	Low	flow perastaltic	: pump	Tubing Type:	HDPE	E/Silicon	Pump/Tubing Inlet Location:	Well bo	ttom
Measuring Point:	ground level	Initial Depth to Water:	16.9'	Depth to Well Bottom:	20'	Well Diameter:	2 in	Screen Length:	10'
Casing Type:	PV	′C		Volume in 1 Well Casing (gallons):	0.3	_	Estimated Purge Volume (gallons):	3	
Sample ID:	RI-MW-3, RI-I	MW-3 MS and	RI-MW-3 MSD	Sample Time:	1	130	QA/QC:	MS and	MSD
Sample	e Parameters: _ -	TCL V	DCs and TICs, 1	TCL SVOCs, TAL	. Metals + cy	vanide, PCBs, F	Pesticides, 1,4-di	oxane and PF	AS

PURGE PARAMETERS

ТІМЕ	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (gal/min)	DEPTH TO WATER (btor)
1030	8.69	13.2	0.638	6.06	6.74	203.6	0.05	18.6
1040	8.71	13.0	0.688	5.76	10.05	186.3	0.05	18.4
1055	8.21	13.0	0.720	5.81	12.50	207.3	0.05	18.4
1110	9.05	13.2	0.676	6.14	18.61	191.9	0.05	18.2
1125	8.40	13.3	0.648	5.93	15.40	188.7	0.05	18.2
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft $(vol_{cyl} = pr^2h)$

Remarks:

Appendix G

Vapor Point Construction Logs

VAPOR POINT STANDARD DETAIL Staff:	Vapor Probe	
Alexis Palumbo-Compton	Sampling Connection	
Contractor:		
Empire Exploration & Geology	Ground Level	
Operator:		
Chuck Guzzetta, P.G.		
Equipment:		
7720 DT Geoprobe Rig		
Date:		
March 27, 2025	Hydrated Bentonite	
Location:		
47 East Amherst Street, Buffalo, NY		
SEAL MATERIAL		
		In and Tables a
Type: Bentonite Chips Setting: 0-5 ft bgs		Inert Tubing 1/4 inch
		1/ 4 mon
FILTER MATERIAL		
Type: No. 0 Sand		
Setting: 5-7 ft bgs		
LEGEND		Borehole
Bentonite Chip Seal		2 inch
Sand Pack	Top of Sand Pack 5'	
COMMENTS		
Vapor point installed in RI-BH-3 Vapor probe is stainless steel		
		Vapor Probe
		0.8 foot length
	Bottom of	
	borehole 7'	1
BE3 BRYDGES ENGINEERING IN EVVIRONMENT AND BELERAV, OPC	Client: Regan Development	Probe No.: RI-VP-1

VAPOR POINT STANDARD DETAIL Staff: Alexis Palumbo-Compton Contractor: Empire Exploration & Geology Operator: Chuck Guzzetta, P.G. Equipment: 7720 DT Geoprobe Rig Date: March 27, 2025 Location: 47 East Amherst Street, Buffalo, NY	Vapor Probe Sampling Connection Ground Level Hydrated Bentonite	
SEAL MATERIAL Type: Bentonite Chips Setting: 0-9 ft bgs FILTER MATERIAL Type: No. 0 Sand Setting: 9-11 ft bgs LEGEND Bentonite Chip Seal Sand Pack	Top of Sand Pack 9'	Inert Tubing 1/4 inch Borehole 2 inch
Vapor point installed in RI-BH-4 Vapor probe is stainless steel	Bottom of borehole 11'	Vapor Probe 0.8 foot length
BE3 BRYDGES ENGINEERING If HEVIRONNERT AND BRESSLOPC	Client: Regan Development	Probe No.: RI-VP-2

VAPOR POINT STANDARD DETAIL		
Staff:	Vapor Probe	
Alexis Palumbo-Compton	Sampling Connection	
Contractor:		
Empire Exploration & Geology	Ground Level	
Operator:		
Chuck Guzzetta, P.G.		
Equipment:		
7720 DT Geoprobe Rig		
Date:		
March 27, 2025	Hydrated Bentonite	
Location:		
47 East Amherst Street, Buffalo, NY		
SEAL MATERIAL		
Type: Bentonite Chips		Inert Tubing
Setting: 0-5 ft bgs		1/4 inch
FILTER MATERIAL		
Type: No. 0 Sand		
Setting: 5-7 ft bgs		
LEGEND		Borehole
Bentonite Chip Seal		2 inch
Sand Pack	Top of Sand Pack 5'	
COMMENTS		
Vapor point installed in RI-BH-7 Vapor probe is stainless steel		
		Vapor Probe
		0.8 foot length
		, i i i i i i i i i i i i i i i i i i i
	Bottom of	
	borehole 7'	
	Client: Regan Development	Probe No.: RI-VP-3

VAPOR POINT STANDARD DETAIL		
Staff:	Vapor Probe	
Alexis Palumbo-Compton	Sampling Connection	
Contractor:		
Empire Exploration & Geology	Ground Level	
Operator:		
Chuck Guzzetta, P.G.		
Equipment:		
7720 DT Geoprobe Rig		
Date:		
March 28, 2025	Hydrated Bentonite	
Location:		
47 East Amherst Street, Buffalo, NY		
SEAL MATERIAL		
Type: Bentonite Chips		Inert Tubing
Setting: 0-5 ft bgs		1/4 inch
FILTER MATERIAL		
Type: No. 0 Sand		
Setting: 5-7 ft bgs		
		Borehole
		2 inch
Bentonite Chip Seal		2 1101
Sand Pack	Top of Sand Pack 5'	
COMMENTS		
Vapor point installed in RI-BH-9		
Vapor probe is stainless steel		
		Vapor Probe
		0.8 foot length
	Bottom of borehole 7'	
	Client: Regan Development	Probe No.: RI-VP-4

VAPOR POINT STANDARD DETAIL		
Staff:	Vapor Probe	
Alexis Palumbo-Compton	Sampling Connection	
Contractor:		
Empire Exploration & Geology	Ground Level	
Operator:		
Chuck Guzzetta, P.G.		
Equipment:		
7720 DT Geoprobe Rig		
Date:		
March 28, 2025	Hydrated Bentonite	
Location:		
47 East Amherst Street, Buffalo, NY		
SEAL MATERIAL		
Type: Bentonite Chips		Inert Tubing
Setting: 0-6 ft bgs		1/4 inch
FILTER MATERIAL		
Type: No. 0 Sand		
Setting: 6-8 ft bgs		
LEGEND		Borehole
Bentonite Chip Seal		2 inch
Sand Pack	Top of Sand Pack <u>6'</u>	
COMMENTS		
Vapor point installed in RI-BH-11 Vapor probe is stainless steel		
		Vapor Probe
		0.8 foot length
	Bottom of	
	borehole 8'	
	Client: Regan Development	Probe No.: RI-VP-5

Appendix H

DER-10 – Appendix 3C Decision Key

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources?i.Any endangered, threatened or special concern species or rare plants or their habitatii.Any DEC designated significant habitats or rare NYS Ecological Communitiesiii.Tidal or freshwater wetlandsiv.Stream, creek or riverv.Pond, lake, lagoonvi.Drainage ditch or channelvii.Other surface water featureviii.Other marine or freshwater habitatix.Forestx.Grassland or grassy fieldxi.Parkland or woodlandxii.Shrubby areaxiii.Urban wildlife habitatxiv.Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		

Appendix I

RI Deviation Information

April 1, 2025

Veronica Kreutzer Assistant Engineer (Environmental) Division of Environmental Remediation New York State Department of Environmental Conservation 700 Delaware Ave., Buffalo, NY 14209 P: (716) 851-7232 veronica.kreutzer@dec.ny.gov

Re: Proposal – Supplemental RIWP – 47 East Amherst Street (BCP Site No. C915397)

Veronica:

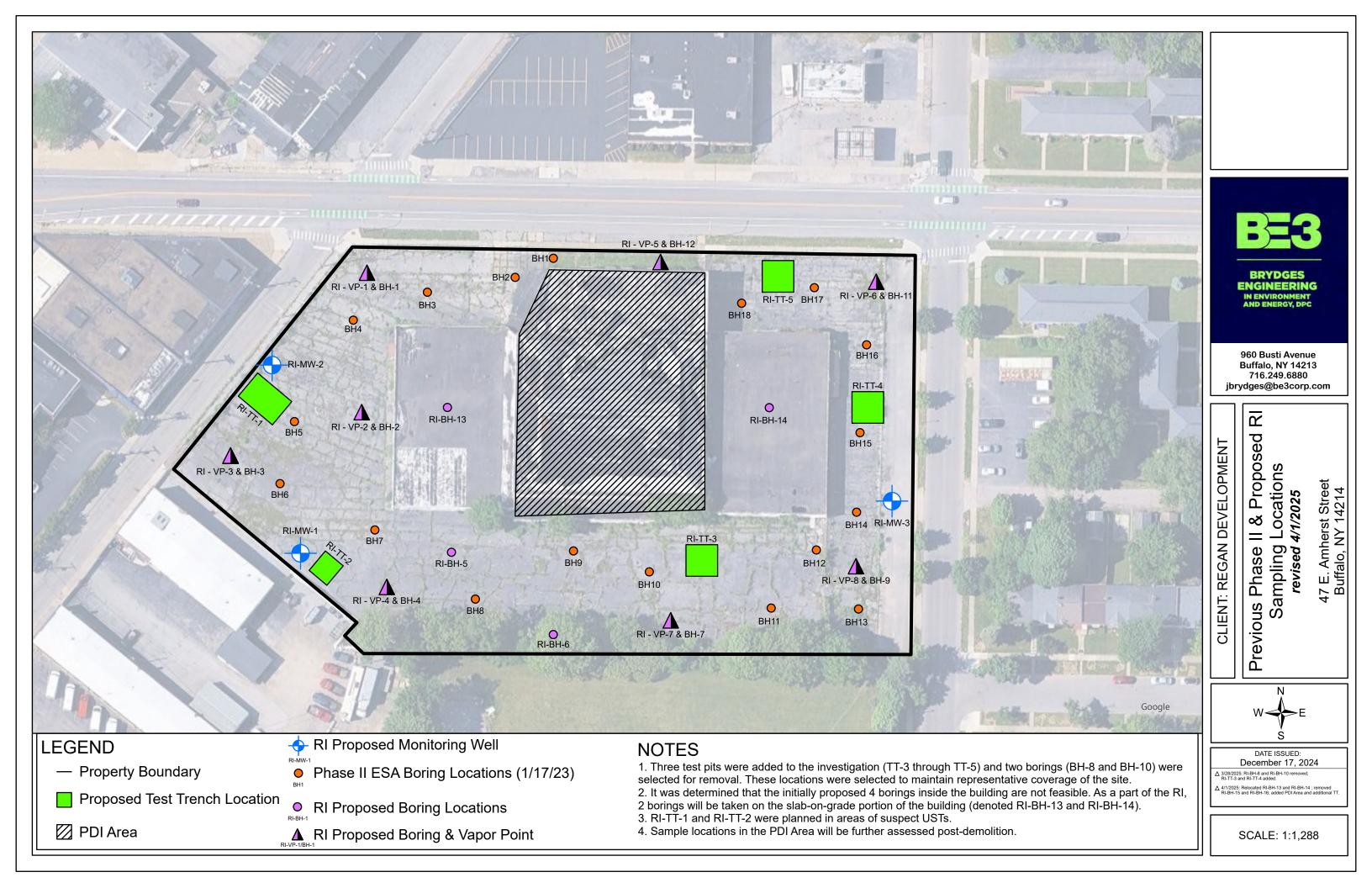
This proposal is to address deviations encountered during the Remedial Investigation (RI) at 47 East Amherst Street (BCP Site No. C915397) located in the City of Buffalo, Erie County, New York. The proposed deviations are based upon input from both the New York State Department of Environmental Conservation (NYSDEC) and Department of Health (DOH). Below is a summary of proposed deviations from the Remedial Investigation Work Plan (RIWP) and an updated **Proposed RI Sampling Locations Map** is provided as an attachment.

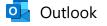
- <u>Initial proposal</u>: 7 native samples will be collected at specified location.
 - <u>Conditions encountered</u>: bedrock is shallow across the site, ranging from 2.5-7.5 feet below ground surface (bgs), no native soil was encountered, and recovery was poor.
 - <u>Proposed deviation</u>: Two borings, RI-BH-8 and RI-BH-10, will be eliminated from the sampling plan and supplemented with two test trenches which will be sampled accordingly. As eliminating these borings creates a data gap in the southern area of the site surrounding RI-BH-5, RI-BH-6, and RI-BH9, an additional test trench is proposed in this area. If native soil is encountered during test trenching activities, a sample will be collected and analyzed as outlined in the Remedial Investigation Work Plan (RIWP).
- <u>Initial proposal:</u> 4 borings will be taken in the basement of the building.
 - <u>Conditions encountered:</u> the building has a centrally located partial basement; both the east and west wing are slab-on-grade. Additionally, potential friable TSI was noted throughout the building and the stairways to the basement were not safe/integral enough for equipment transportation.
 - <u>Proposed deviation:</u> 2 borings will be taken on the first floor, denoted RI-BH-13 (west wing) and RI-BH-14 (east wing). The borings will not be performed until the areas of the borings are deemed safe and human health is protected.

As discussed with NYSDEC personnel, without sampling below the center portion of the building, there is a data gap. In order to remedy this data gap, a Pre-Remedial Design Investigation (PDI) Work Plan will be submitted after the RI to outline the collection of additional samples, as applicable (i.e., if soil is encountered beneath the building post-demolition). If the PDI Work Plan is deemed acceptable by both NYSDEC and DOH the Remedial Investigation Report (RIR) approval can be issued without sampling under this section of the building. This sampling would be performed prior to site remediation.

Your acceptance of this proposal may be indicated by signing this proposal or providing a Notice to Proceed (NTP) via email.

Thank you,


alleris P-C


Alexis Palumbo-Compton Project Engineer

Name

Signature

Date

RE: C915397 Amherst Commons LLC RI Work

From Kreutzer, Veronica M (DEC) <veronica.kreutzer@dec.ny.gov>

Date Thu 4/3/2025 8:45 AM

- To Alexis Palumbo <apalumbo@be3corp.com>
- Cc Jason Brydges <jbrydges@be3corp.com>; Paul Staub <pstaub@be3corp.com>

CAUTION: This email originated from outside of the organization.

Regarding the submitted supplemental RIWP, please note the following:

 The proposed deviation from the Initial Proposal regarding the PDI area states "a Pre-Remedial Design Investigation (PDI) Work Plan will be submitted after the RI to outline the collection of additional samples, as applicable (i.e., if soil is encountered beneath the building post-demolition)." Even if no soil is encountered beneath this area, sampling must be performed to fill this data gap. Sampling can also include soil vapor and/or groundwater sampling.

Additionally, after discussion regarding the bedrock wells, it is preferred that core collection is performed on two of the three proposed bedrock wells, one on the west side of the site, and MW-3. This would give us a better understanding of the bedrock beneath and any potential pathways.

I will be out today and tomorrow, but we can discuss more on Monday on-site when you start coring the first monitoring well.

Please let me know if anything changes with the schedule.

Sincerely,

Veronica

April 14, 2025

Veronica Kreutzer Assistant Engineer (Environmental) Division of Environmental Remediation New York State Department of Environmental Conservation 700 Delaware Ave., Buffalo, NY 14209 P: (716) 851-7232 veronica.kreutzer@dec.ny.gov

Re: Additional Proposal – Supplemental RIWP – 47 East Amherst Street (BCP Site No. C915397)

Veronica:

This proposal is to address **additional** deviations encountered during the Remedial Investigation (RI) at 47 East Amherst Street (BCP Site No. C915397) located in the City of Buffalo, Erie County, New York. The proposed deviations are based upon input from both the New York State Department of Environmental Conservation (NYSDEC) and Department of Health (DOH). Below is a summary of proposed deviations from the Remedial Investigation Work Plan (RIWP) and an updated **Proposed RI Sampling Locations Map (revised 4/14/2025)** is attached.

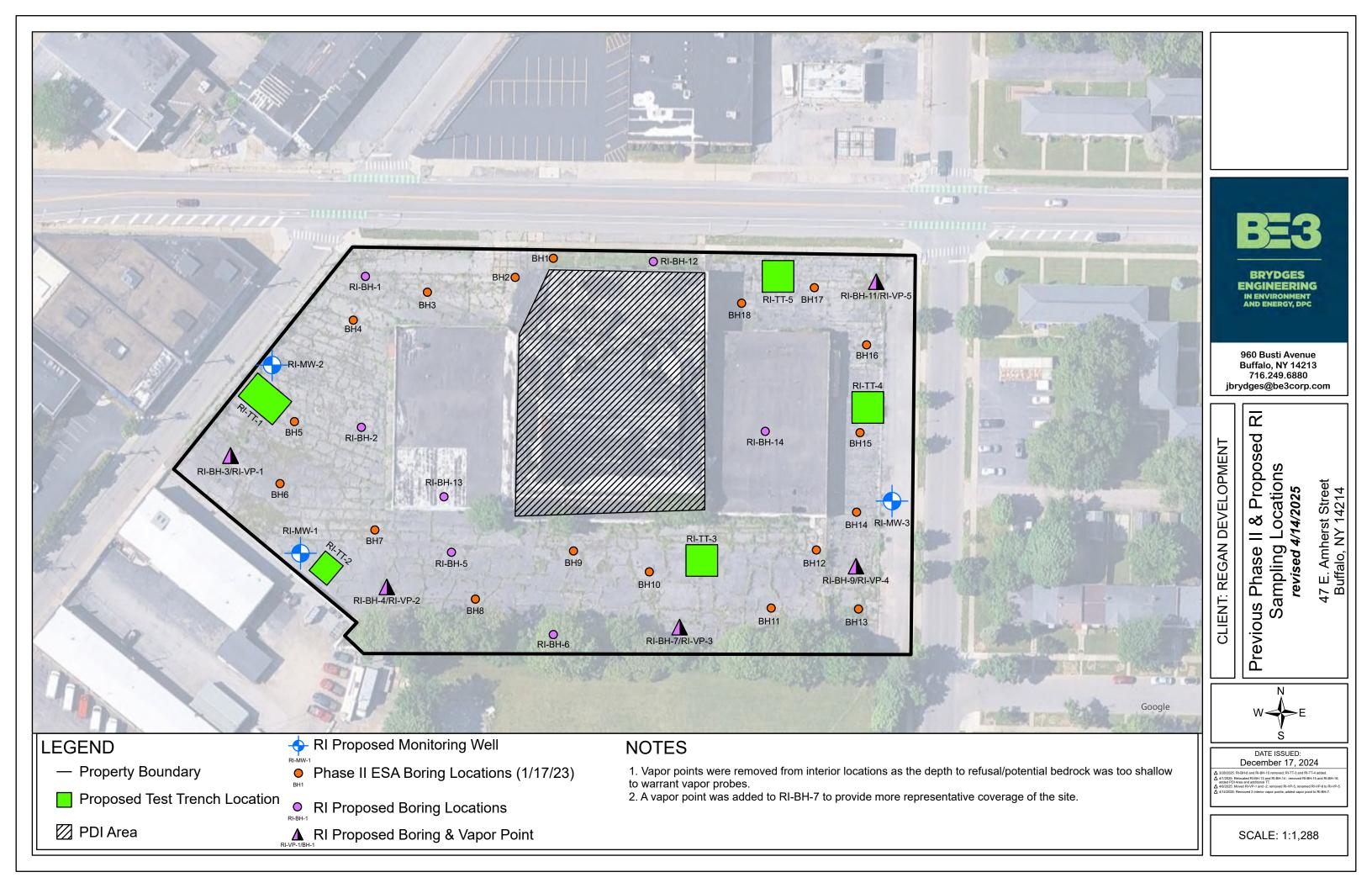
- Vapor points were removed from interior locations as the depth to refusal/potential bedrock was too shallow to warrant vapor probes. The interior locations will be addressed post-demolition in a Pre-Remedial Design Investigation (PDI) Work Plan.
- A vapor point was added to RI-BH-7 to provide more representative coverage of the site.
- RI-MW-3 is currently set to a depth of 18 deet below ground surface (bgs) and demonstrated a significant volume of water and notable fractures in the first few feet of bedrock. It is proposed that the well remain at this depth (instead of the originally proposed 20-foot depth).

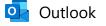
Based on these deviations, the following text (noted in red) should be removed from the scope of work described in Section 4.0/4.1 of the approved RIWP:

"Collection and analyses of soil vapor and sub-slab vapor, samples to evaluate the potential for inhalation exposure via soil vapor intrusion.

Your acceptance of this proposal may be indicated by signing this proposal or providing a Notice to Proceed (NTP) via email.

Thank you,


alicis P-C


Alexis Palumbo-Compton Project Engineer

Name

Signature

Date

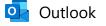
RE: C915397 Amherst Commons LLC RI Work

From Kreutzer, Veronica M (DEC) <veronica.kreutzer@dec.ny.gov>

Date Tue 4/15/2025 2:56 PM

- To Alexis Palumbo <apalumbo@be3corp.com>
- Cc Jason Brydges <jbrydges@be3corp.com>; Paul Staub <pstaub@be3corp.com>; Budd, Christopher (HEALTH) <Christopher.Budd@health.ny.gov>

CAUTION: This email originated from outside of the organization.


Alexis,

The RIWP revisions submitted on April 14, 2025 are approved with the understanding that all sub-slab vapor samples as well as possible additional under-building soil samples will be collected under a PDIWP following building demolition.

Please keep in touch with a schedule for the test trench sampling.

Thanks,

Veronica

RE: C915397- Amherst Commons RI TT2

From Kreutzer, Veronica M (DEC) <veronica.kreutzer@dec.ny.gov>

Date Tue 5/13/2025 8:43 AM

To Alexis Palumbo <apalumbo@be3corp.com>

CAUTION: This email originated from outside of the organization.

Alexis,

That works on our end, we will just want the survey plan submitted prior to implementation. We can discuss this as part of the RAWP.

Veronica

From: Alexis Palumbo <apalumbo@be3corp.com>
Sent: Monday, May 12, 2025 10:05 AM
To: Kreutzer, Veronica M (DEC) <veronica.kreutzer@dec.ny.gov>
Subject: Re: C915397- Amherst Commons RI TT2

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Veronica,

Yes, we were hoping to perform the survey during the remedial phase.

Best, Alexis

Alexis Palumbo-Compton

Project Engineer

960 Busti Avenue, Suite B-150

Office: 716.249.6880

Cell: 585.944.6793

<mark>∕Øbe3corp.com</mark>

f in 🖸 🕅

From: Kreutzer, Veronica M (DEC) <<u>veronica.kreutzer@dec.ny.gov</u>> Sent: Monday, May 12, 2025 8:48 AM To: Alexis Palumbo <<u>apalumbo@be3corp.com</u>> Subject: RE: C915397- Amherst Commons RI TT2

CAUTION: This email originated from outside of the organization.

Hi Alexis,

Just to clarify, you're requesting to perform a survey of the material during excavation, which I am assuming will be during the remedial phase of the project?

Veronica

From: Alexis Palumbo <<u>apalumbo@be3corp.com</u>>
Sent: Friday, May 9, 2025 4:51 PM
To: Kreutzer, Veronica M (DEC) <<u>veronica.kreutzer@dec.ny.gov</u>>
Subject: Re: C915397- Amherst Commons RI TT2

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hi Veronica,

I apologize for the delayed response. After speaking with Jason and our specialist, TerranearPMC (TPMC), who possesses a United States Nuclear Regulatory Commission (USNRC) nationwide Decontamination and Decommissioning (D&D) license, BE3/TPMC is prepared to obtain reciprocity at any time, as this can occur relatively quickly. Obviously, we can also generate a survey plan, as required. However, performing a rad survey of the material in question at this time is logistically difficult due to its depth and localized nature (i.e., only identified in TT-2 and at a depth of 10 feet bgs). We suggest that we provide a trained radiation technician at the site throughout the excavation of this material in question. Please let me know your thoughts. We can certainly set up a meeting sometime next week or the following if a greater discussion is needed.

Have a great weekend! Alexis **Alexis Palumbo-Compton**

Project Engineer

960 Busti Avenue, Suite B-150

Buffalo, New York, 14213

Office: 716.249.6880

Cell: 585.944.6793

be3corp.com

f in 🖸 🕥

From: Kreutzer, Veronica M (DEC) <<u>veronica.kreutzer@dec.ny.gov</u>>
Sent: Monday, May 5, 2025 11:42 AM
To: Alexis Palumbo <<u>apalumbo@be3corp.com</u>>
Cc: Jason Brydges <<u>jbrydges@be3corp.com</u>>; Concannon, Patrick W (DEC) <<u>patrick.concannon@dec.ny.gov</u>>;
Dietrich, Derick R (DEC) <<u>Derick.Dietrich@dec.ny.gov</u>>; Papura, Thomas R (DEC) <<u>thomas.papura@dec.ny.gov</u>>;
Caprio, Andrea (DEC) <<u>Andrea.Caprio@dec.ny.gov</u>>;
Subject: C915397- Amherst Commons RI TT2

CAUTION: This email originated from outside of the organization.

Good morning Alexis,

Regarding the material found in TT2 during RI work, please see below:

Based on the visual observations and photos collected from the material, the Department believes that the material in question may potentially contain technologically enhanced naturally occurring radioactive materials (TENORM).

BE3 personnel claimed that the material is not slag but rather "incinerator waste" and therefore should not be considered TENORM. This claim is incorrect. Any material that contained naturally occurring radioactive materials (NORM) prior to being processed has the potential for the NORM to be concentrated in the resulting waste products.

Regardless of whether the material is slag or incinerator waste, there exists the potential for either of these materials to contain TENORM. The Department strongly recommends that BE3/TPMC obtain reciprocity from the NYS Department of Health (DOH) to perform a radiological survey of the material at this site to determine if the material is TENORM. Please note, a survey plan must be submitted to the

Department and approved prior to any official surveying of potential TENORM. The Departments guidance document, DMM-5, outlines the process to evaluate suspected TENORM to guide handling and/or disposal pathways. Currently, TENORM, at any concentration, cannot be disposed of at a NYS landfill per 6 NYCRR Part 363-7.1(o)(7).

If you would like to set up a time on Friday to discuss the above response, please let me know.

Sincerely,

Veronica Kreutzer

Assistant Engineer (Environmental), Division of Environmental Remediation

New York State Department of Environmental Conservation

700 Delaware Avenue, Buffalo, NY 14209

P: (716) 851-7232 | F: (716) 851-7275 | veronica.kreutzer@dec.ny.gov

www.dec.ny.gov

YORK STATE Conservation **Appendix J**

GPR Survey Results

Order Number: Customer: Work Order #766362 151666 BE3 Job Date: Billing Address: Apr 4, 2025 6:43:00 AM BRYDGES ENGINEERING 960 Busti Ave. Suite B-150 Buffalo NY 14213 United States

JOB DETAILS

Jobsite Location Work Order Number Job Number PO Number 47 East Amherst St. Buffalo, New York 14214 Work Order #766362

GPRS Project Manager:

Jeff Aurand

Thank you for using GPRS on your project. We appreciate the opportunity to work with you. If you have questions regarding the results of this scanning, please contact the lead GPRS project manager on this project.

EQUIPMENT USED

The following equipment was used on this project:

- Underground GPR Antenna: This GPR Antenna uses frequencies ranging from 250 MHz to 450 MHz and is mounted in a stroller frame that rolls over the surface. Data is displayed on a screen and marked in the field in real time. The surface needs to be reasonably smooth and unobstructed to obtain readable scans. Obstructions such as curbs, landscaping, and vegetation will limit the efficacy of GPR. The total effective scan depth can be as much as 8' or more with this antenna but can vary widely depending on the soil conditions and composition. Some soil types, such as clay, may limit maximum depths to 3' or less. As depth increases, targets must be larger to be detected, and non-metallic targets can be challenging to locate. The depths provided should always be treated as estimates as their accuracy can be affected by multiple factors. For more information, please visit: Link
- **EM Pipe Locator:** Electromagnetic Pipe and Cable Locator. Detects electromagnetic fields. Used to actively trace conductive pipes and tracer wires, or passively detect power and radio signals traveling along conductive pipes and utilities. For more information, please visit: Link
- **Magnetometer:** The Magnetometer detects the magnetic field of a ferromagnetic object by responding to the difference in the magnetic field between two sensors. Data is interpreted in the field by listening to changes in frequency emitted by a speaker on the device. Larger metallic objects can be located at depths of up to 10' or more, depending on the size, type, shape, and orientation of targets and the amount of interference from other objects. For more information, please visit: Link Link
- **GPS:** This handheld unit offers accuracy down to 4 inches; however, the accuracy achieved will depend on the satellite environment at the time of collection and is not considered survey-grade. Features can be collected as points, lines, or areas and then exported as a KML/KMZ or overlaid on a CAD drawing. For more information, please visit: Link
- **Traceable Rodder:** The rodder has a copper wire encased in fiberglass. The device is pushed through accessible pipes before placing a current on the wire, and the signal is then traced from the surface. The maximum traceable depth is 10' depending on the soil conditions, and the maximum distance is 200'. The line can be pushed through a pipe with direct access, such as a sewer line at a cleanout or a storm drain catch basin. It may not be able to be pushed through deeper pipes within manholes. GPRS will not access electrical conduits. The signal cannot be located through metallic pipes.

WORK PERFORMED	
UNDERGROUND STORAGE TANKS	
Client Provided Drawings	Yes
Scope of Work	Underground Utility/UST locate
Small Area Scan (sq ft)	110,400
Approximate GPR Effective Depth (ft)	3
Potential UST Located	No
Potential UST Description	No UST's Detected
Potential Area of Concern Located	No
Limitations Encountered	 Surface obstructions Surface too rough Overgrown vegetation Utilities too deep to locate Soil conditions not suitable for GPR at time of scanning RF interference
Limitations Encountered - Other	See Notes
Obstructions Encountered	See Notes
Marking Medium	- Spray Paint
Results Notes	The Scope of Work involved an Underground Utility/UST locate. The Electric and Communication lines enter from a utility pole in the rear of the property. The Electric is approximately 1'- 2' deep and the Communication lines are aerial. There appears to be a Sanitary Sewer clean out adjacent to the Electric, unfortunately I was unable to push a traceable rodder into the clean out; so no trace was obtained. The Gas line was connected to on East Amherst Street and traveled parallel with the street at around 2'- 3' in depth but could not be followed onto the Property a Sanitary Storm line is around 2'- 3' on the Holden Street side of the locate with an Unknown Duct traveling the
	Entire Scan Area parallel with Holden Street at an Unknown Depth. A steel road plate was detected using GPR and a Magnetometer along the Rear fence and Holden Street, it is possible of a an underground vault or void below the plate and should be examined. All of the potential soil boring locations appear to be clear and ok to drill. BH13 thru 16 are inside of the building and could not be located. No UST's were Detected inside of The Suspected Areas. With GPR only retrieving reliable data of 3' in depth and RF Interference, overgrown vegetation in areas and uneven terrain there is a chance of undetected utilities such as Water, Gas, Sewer and Others. All Utilities and Unknown lines Should Be Field Verified. ********* Please Use Extreme Caution **********

JOBSITE IMAGES

Jobsite Photo #1

Jobsite Photo #3

Jobsite Photo #5

Jobsite Photo #7

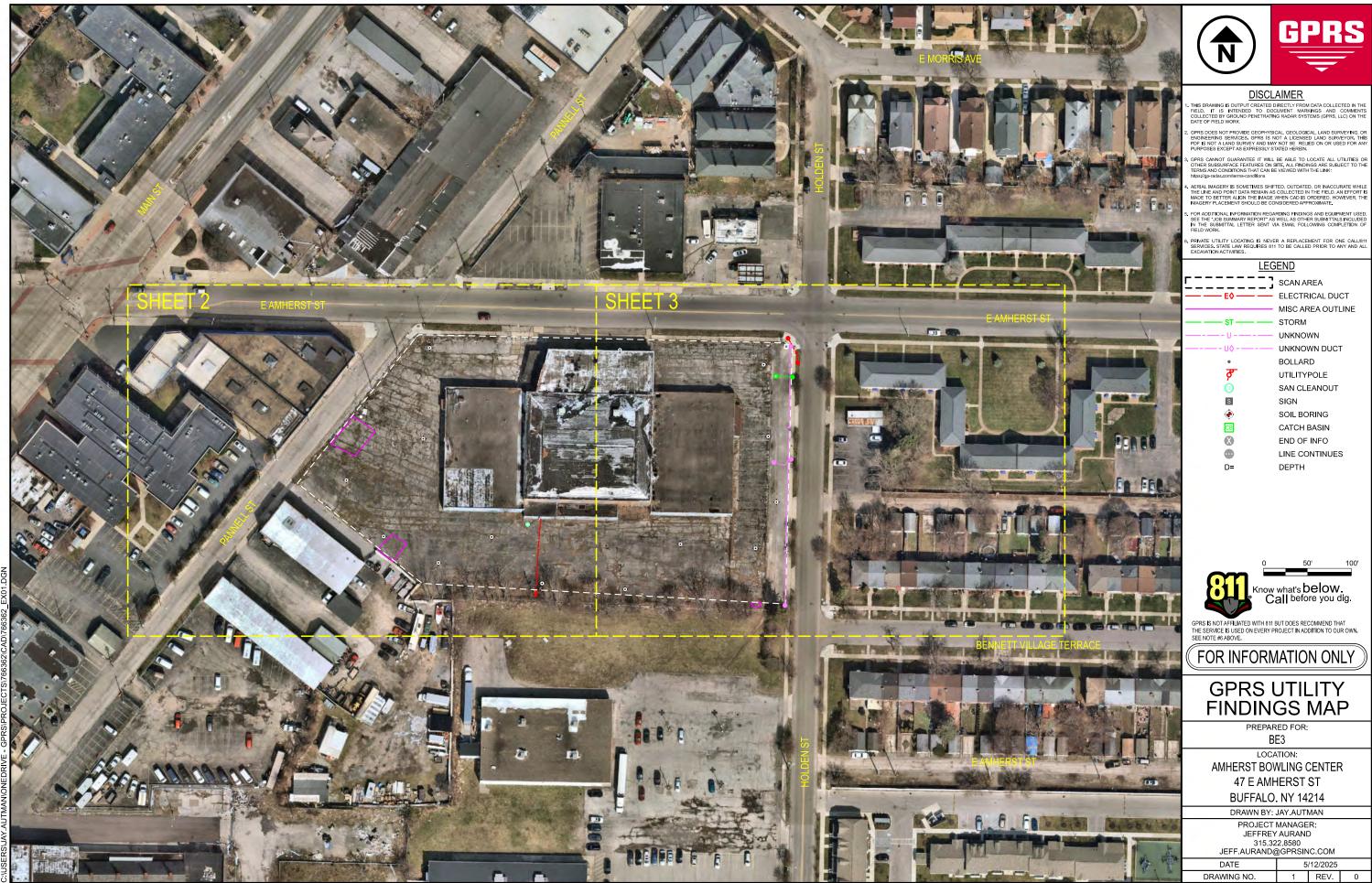
Jobsite Photo #9

Jobsite Photo #11

Jobsite Photo #13

CONTACT / SIGNATURE INFORMATION

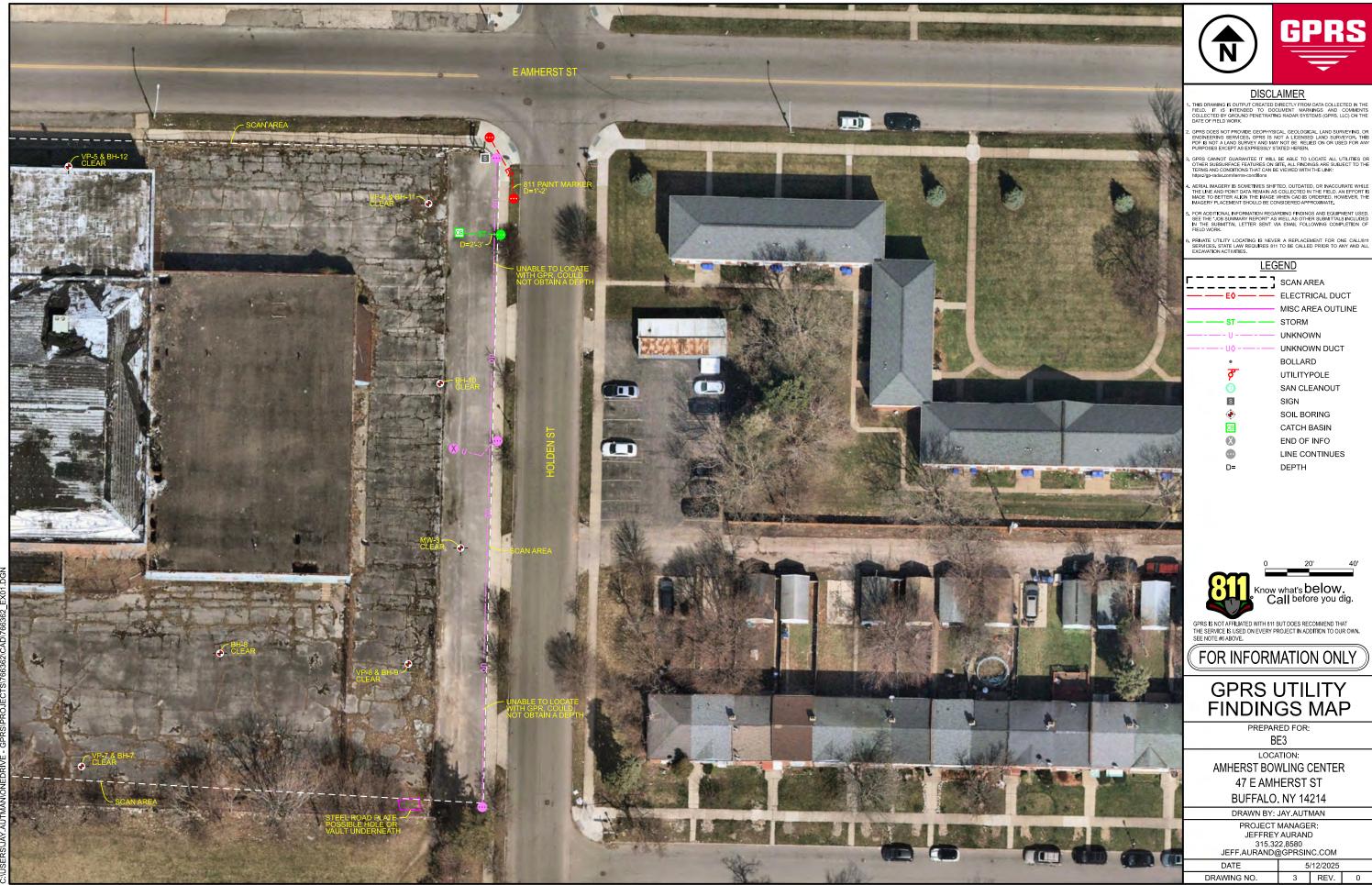
Contact Information


Contact Name Paul Staub

Email

pstaub@be3corp.com

TERMS & CONDITIONS


http://www.gprsinc.com/termsandconditions.html

 PRIVATE UTILITY LOCATING IS NEVER A REPLACEMENT FOR ONE CALL/811 SERVICES. STATE LAW REQUIRES 811 TO BE CALLED PRIOR TO ANY AND ALL EXCAVATION ACTIVITIES. 					
	LEGEND				
<u></u>	SCAN AREA				
—E◊	ELECTRICAL DUCT				
	MISC AREA OUTLINE				
ST	STORM				
U	UNKNOWN				
	UNKNOWN DUCT				
٠	BOLLARD				
<i>ढ</i> ू	UTILITYPOLE				
\odot	SAN CLEANOUT				
S	SIGN				
۲	SOIL BORING				
CB	CATCH BASIN				
\bigotimes	END OF INFO				
•	LINE CONTINUES				
D=	DEPTH				
	50' 100'				
Know what's below.					
GPRS IS NOT AFFILIATED WITH 811 E					
THE SERVICE IS USED ON EVERY PI SEE NOTE #6 ABOVE.	ROJECT IN ADDITION TO OUR OWN.				
	IATION ONLY				
GPRS l					
FINDIN	GS MAP				
PREPARED FOR:					
BE3					
LOCATION:					
AMHERST BOWLING CENTER					
47 E AMHERST ST					
BUFFALO. NY 14214					
DRAWN BY: JAY.AUTMAN					
PROJECT MANAGER: JEFFREY AURAND					
315.322.8580 JEFF.AURAND@GPRSINC.COM					
DATE 5/12/2025					
DAIL	5/12/2025				

SERVICES. STATE LAW REQUIRES 811 TO BE CALLED PRIOR TO ANY AND ALL EXCAVATION ACTIVITIES.				
LEG	END			
<u></u>	SCAN AREA			
— — E◊ — — —	ELECTRICAL DUCT			
	MISC AREA OUTLINE			
ST	STORM			
U	UNKNOWN			
U	UNKNOWN DUCT			
•	BOLLARD			
ह	UTILITYPOLE			
0	SAN CLEANOUT			
S	SIGN			
۲	SOIL BORING			
CB	CATCH BASIN			
×	END OF INFO			
•	LINE CONTINUES			
D=	DEPTH			
0	20' 40'			
\mathbf{O}	, halaw			
Know	what's below . all before you dig.			
	all before you dig.			
GPRS IS NOT AFFILIATED WITH 811 E				
THE SERVICE IS USED ON EVERY PE SEE NOTE #6 ABOVE.	ROJECT IN ADDITION TO OUR OWN.			
(FOR INFORM				
GPRS l	JTILITY			
FINDING				
FINDINGS MAP				
	ED FOR:			
BE3				
AMHERST BOWLING CENTER				
47 E AMHERST ST				
BUFFALO. NY 14214				
DRAWN BY:	JAY.AUTMAN			
PROJECT MANAGER:				
JEFFREY AURAND 315.322.8580				
JEFF AURAND@GPRSINC.COM				
DATE	5/12/2025			
DRAWING NO	2 REV 0			

SERVICES, STATE LAW REQUIRES 811 EXCAVATION ACTIVITIES.	SERVICES. STATE LAW REQUIRES 811 TO BE CALLED PRIOR TO ANY AND ALL EXCAVATION ACTIVITIES.				
	END				
r <u>-</u> ,	SCAN A	REA			
— — E◊ — — —		ICAL DU	ст		
	MISC AF	REA OUTI	INE		
ST	STORM				
U	UNKNO	ΝN			
	UNKNO	WN DUC	Г		
٠	BOLLAR	D			
ह	UTILITY	POLE			
\odot	SAN CLI	EANOUT			
S	SIGN				
•	SOIL BC				
СВ	CATCH				
\otimes	END OF				
•••		NTINUE	>		
D=	DEPTH				
0	2	n	40'		
	_	J	40		
Know	what's b	elow	_		
Know what's below.					
GPRS IS NOT AFFILIATED WITH 811 E THE SERVICE IS USED ON EVERY P	BUT DOES REG	Commend th D iti on to ou	AT R OWN.		
SEE NOTE #6 ABOVE.					
(FOR INFORMATION ONLY)					
			<u> </u>		
GPRS I	ITI		/ 7		
•••••			_		
FINDIN	3S	MAI	ا ر		
PREPARED FOR:					
BE3					
LOCATION:					
AMHERST BOWLING CENTER					
47 E AMHERST ST					
BUFFALO. NY 14214					
DRAWN BY: JAY.AUTMAN PROJECT MANAGER:					
JEFFREY AURAND					
315.322.8580 JEFF.AURAND@GPRSINC.COM					
DATE	-	/12/2025			
		REV.			

Appendix K

Alternative Cost Estimates

47 EAST AMHERST STREET REMEDIAL ALTERNATIVE COST ESTIMATES

Assumptions:

Conversion factor of cubic yards of soil/stone to tons is 1.5.
 Quantity of 1 implies the cost is a lump sum.

ALTERNATIVE 1 - REMEDIATE TO TRACK 4 - RESTRICTED RESIDENTIAL			
Item	Unit Cost	Quantity	Total
Mobilization/Demobilization	\$10,000.00	1	\$10,000.00
Building Demolition and Abatement	\$300,000.00	1	\$300,000.00
Excavate/transport/dipose impacted soil (tons)	\$45.00	8500	\$382,500.00
Delinieation fabric (SY)	\$1.35	2500	\$3,375.00
Import/placement of clean backfill (tons)			
i.) Fill historic basement area	\$25.00	4500	\$112,500.00
ii.) Cover materials (2 feet in greenspace areas)	\$25.00	2000	\$50,000.00
Asphalt Paving (SF)	\$4.00	80000	\$320,000.00
Building Foundation (SF)	\$100,000.00	1	\$100,000.00
Laboratory sampling and analyses			
i.) Disposal sampling	\$10,000.00	1	\$10,000.00
ii.) Imported fill sampling	\$5,000.00	1	\$5,000.00
Engineering Oversight	\$100,000.00	1	\$100,000.00
Total			\$1,393,375.00
Contingency (10%)			\$139,337.50
Estimated Capital Total Cost	\$1,532,712.50		

ALTERNATIVE 2 - REMEDIATE TO TRACK 1 - UNRESTRICTED			
Item	Unit Cost	Quantity	Total
Mobilization/Demobilization	\$11,000.00	1	\$11,000.00
Building Demolition and Abatement	\$300,000.00	1	\$300,000.00
Excavate/transport/dipose impacted soil (tons)	\$45.00	40000	\$1,800,000.00
Import/placement of clean backfill (tons)			
i.) Fill historic basement area	\$25.00	4500	\$112,500.00
ii.) Remainder of Site	\$25.00	30000	\$750,000.00
Asphalt Paving (SF)	\$4.00	80000	\$320,000.00
Building Foundation (SF)	\$100,000.00	1	\$100,000.00
Laboratory sampling and analyses			
i.) Disposal sampling	\$20,000.00	1	\$20,000.00
ii.) Imported fill sampling	\$10,000.00	1	\$10,000.00
Engineering Oversight	\$110,000.00	1	<u>\$110,000.00</u>
Total			\$3,533,500.00
Contingency (10%)			\$353,350.00
Estimated Capital Total Cost			\$3,886,850.00