

DECISION DOCUMENT

3200 Clinton Street
Brownfield Cleanup Program
West Seneca, Erie County
Site No. C915404
December 2025

**Department of
Environmental
Conservation**

Prepared by
Division of Environmental Remediation
New York State Department of Environmental Conservation

DECLARATION STATEMENT - DECISION DOCUMENT

3200 Clinton Street
Brownfield Cleanup Program
West Seneca, Erie County
Site No. C915404
December 2025

Statement of Purpose and Basis

This document presents the remedy for the 3200 Clinton Street site, a brownfield cleanup site. The remedial program was chosen in accordance with the New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR) Part 375.

This decision is based on the Administrative Record of the New York State Department of Environmental Conservation (the Department) for the 3200 Clinton Street site and the public's input to the proposed remedy presented by the Department.

Description of Selected Remedy

During the course of the investigation certain actions, known as interim remedial measures (IRMs), were undertaken at the above referenced site. An IRM is conducted at a site when a source of contamination or exposure pathway can be effectively addressed before completion of the remedial investigation (RI) alternatives analysis (AA). The IRM undertaken at this site are discussed in Section 6.2.

Based on the results of the investigations at the site, the IRM that has been performed, and the evaluation presented here, the Department has selected No Further Action as the remedy for the site. The Department believes that this remedy is protective of human health and the environment and satisfies the remediation objectives described in Section 6.5.

The elements of the IRM already completed are listed below:

1. Remedial Design

A remedial design program was implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques were implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;

- Increasing energy efficiency and minimizing use of non-renewable energy;
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals;
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development; and
- Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings shall be constructed, at a minimum, to meet the 2020 Energy Conservation Construction Code of New York (or most recent edition) to improve energy efficiency as an element of construction.

As part of the remedial design program, to evaluate the remedy with respect to green and sustainable remediation principles, an environmental footprint analysis was completed. The environmental footprint analysis was completed using an accepted environmental footprint analysis calculator such as SEFA (Spreadsheets for Environmental Footprint Analysis, USEPA), SiteWiseTM (available in the Sustainable Remediation Forum [SURF] library) or similar NYSDEC accepted tool. Water consumption, greenhouse gas emissions, renewable and non-renewable energy use, waste reduction and material use was estimated, and goals for the project related to these green and sustainable remediation metrics, as well as for minimizing community impacts, protecting habitats and natural and cultural resources, and promoting environmental justice, was incorporated into the remedial design program, as appropriate. The project design specifications included detailed requirements to achieve the green and sustainable remediation goals. Further, progress with respect to green and sustainable remediation metrics were tracked during implementation of the remedial action and reported in the Final Engineering Report (FER), including a comparison to the goals established during the remedial design program.

Additionally, the remedial design program included a climate change vulnerability assessment, to evaluate the impact of climate change on the project site and the proposed remedy. Potential vulnerabilities associated with extreme weather events (e.g., hurricanes, lightning, heat stress and drought), flooding, and sea level rise were identified, and the remedial design program incorporated measures0 to minimize the impact of climate change on potential identified vulnerabilities.

2. Excavation

Excavation and off-site disposal of all on-site soils which exceeded unrestricted SCOs, as defined by 6 NYCRR Part 375-6.8. Approximately 60,617 tons of contaminated soil was excavated and disposed of at an off-site landfill. The excavation depths ranged from 2 to 8.5 fbs. Collection and analysis of confirmation samples at remedial excavation depths and sidewall sampling was performed to verify SCOs for the site have been achieved.

To ensure proper handling and disposal of excavated material, waste characterization sampling was completed for all identified contaminated site material. Waste characterization sampling was performed exclusively for the purposes of off-site disposal in a manner suitable to the receiving

facilities and in conformance with applicable federal, state, and local laws, rules, and regulations, and facility-specific permits.

Clean fill meeting requirements of 6 NYCRR Part 375-6.7(d) was brought in to replace the excavated soil and establish design grades at the site. A total of 61,098.1 tons of Department-approved virgin stone was imported to the facility to fill the excavated areas. Additionally, an approximate 2,000 cubic yards of Department-approved topsoil was imported to complete the final surface restoration at the site.

Declaration

The remedy conforms with promulgated standards and criteria that are directly applicable, or that are relevant and appropriate and takes into consideration Department guidance, as appropriate. The remedy is protective of public health and the environment.

12/23/2025

Michael J Cruden

Date

Michael Cruden, Director
Remedial Bureau E

DECISION DOCUMENT

3200 Clinton Street
West Seneca, Erie County
Site No. C915404
December 2025

SECTION 1: SUMMARY AND PURPOSE

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has selected a remedy for the above referenced site. The disposal of contaminants at the site resulted in threats to public health and the environment that were addressed by actions known as interim remedial measures (IRM), which were undertaken at the site. An IRM is conducted at a site when a source of contamination or exposure pathway can be effectively addressed before completion of the remedial investigation (RI) alternative analysis (AA). The IRM undertaken at this site is discussed in Section 6.2.

Based on the implementation of the IRM, the findings of the investigation of this site indicate that the site no longer poses a threat to human health or the environment. The IRM conducted at the site attained the remediation objectives identified for this site, which are presented in Section 6.5, for the protection of public health and the environment. No Further Action is the selected remedy. A No Further Action remedy may include continued operation of any remedial system installed during the IRM and the implementation of any prescribed controls that have been identified as being part of the remedy for the site. This DD identifies the IRM conducted and discusses the basis for No Further Action.

The New York State Brownfield Cleanup Program (BCP) is a voluntary program. The goal of the BCP is to enhance private-sector cleanups of brownfields and to reduce development pressure on "greenfields." A brownfield site is real property, where a contaminant is present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria or guidance, based on the reasonably anticipated use of the property.

The Department has issued this document in accordance with the requirements of New York State Environmental Conservation Law and 6 NYCRR Part 375. This document is a summary of the information that can be found in the site-related reports and documents.

SECTION 2: CITIZEN PARTICIPATION

The Department seeks input from the community on all remedies. A public comment period was held, during which the public was encouraged to submit comment on the proposed remedy. All comments on the remedy received during the comment period were considered by the Department in selecting a remedy for the site. Site-related reports and documents were made

available for review by the public at the following document repository:

Buffalo & Erie County Public Library
Attn: April Tompkins
1 Lafayette Square
Buffalo, NY 14203
Phone:

Receive Site Citizen Participation Information By Email

Please note that the Department's Division of Environmental Remediation (DER) is "going paperless" relative to citizen participation information. The ultimate goal is to distribute citizen participation information about contaminated sites electronically by way of county email listservs. Information will be distributed for all sites that are being investigated and cleaned up in a particular county under the State Superfund Program, Environmental Restoration Program, Brownfield Cleanup Program, Voluntary Cleanup Program, and Resource Conservation and Recovery Act Program. We encourage the public to sign up for one or more county listservs at <http://www.dec.ny.gov/chemical/61092.html>

SECTION 3: SITE DESCRIPTION AND HISTORY

Location: The 3200 Clinton Street site is an approximately 6.73-acre site located at 160 Empire Drive in the Town of West Seneca, Erie County. The site is bordered by Clinton Street to the south, a processed food production facility to the west (Rosina Foods), Empire Drive and two warehouses to the north, and a parking lot, motor vehicle service facility, and warehouse to the east.

Site Features: The site is currently under construction and will consist of a cold storage facility with a process space, shipping and receiving areas, offices, and parking areas.

Current Zoning and Land Use: The Town of West Seneca zoning for the site is Manufacturing District (M1). The planned redevelopment of a cold storage facility is consistent with this zoning.

Past Use of the Site: The site was historically occupied by railroad tracks containing fill material, ballast stone and numerous railroad ties from the 1880s to the 1950s. The site has been vacant, and brush covered since the 1950s with no occupied structures.

Site Geology and Hydrogeology: The site is located within the Lake Erie-Niagara River major drainage basin, which is typified by little topographic relief that gently slopes westward towards Lake Erie and the Niagara River, except in the immediate vicinity of major drainage ways. According to the United States Department of Agriculture (USDA) Web soil survey, the site consists of Galen very fine sandy loam, 3 to 8 percent slopes, and Getzville silt loam, Teel silt loam, and Wayland soils complex, 0 to 3 percent slopes. Additionally, based on historical information reviewed and the results of the investigations conducted, fill material is located across the site from depths ranging from ground surface to approximately 8.5 feet below ground

surface (fbgs). The fill material consisted of coal, piping, brick, steel, concrete, slag, cinders, and wire. Groundwater was found from 7-15 fbgs with regional groundwater flowing west/southwest across Clinton Street toward Buffalo Creek. Local groundwater flows are also likely influenced by storm water infiltration and topographical features due to a shallow groundwater table and low-lying areas across the site.

A site location map is attached as Figure 1.

SECTION 4: LAND USE AND PHYSICAL SETTING

The Department may consider the current, intended, and reasonably anticipated future land use of the site and its surroundings when evaluating a remedy for soil remediation. For this site, a no action alternative that requires the site remain in its pre-remedial condition was evaluated in addition to an alternative which would allow for unrestricted use of the site.

A comparison of the results of the investigation to the appropriate standards, criteria and guidance values (SCGs) for the identified land use and the unrestricted use SCGs for the site contaminants is available in the Remedial Investigation (RI) Report.

SECTION 5: ENFORCEMENT STATUS

One or more of the Applicants under the Brownfield Cleanup Agreement is a Participant. The Participants have an obligation to address on-site and off-site contamination. Accordingly, no enforcement actions are necessary.

SECTION 6: SITE CONTAMINATION

6.1: Summary of the Remedial Investigation

A remedial investigation (RI) serves as the mechanism for collecting data to:

- characterize site conditions;
- determine the nature of the contamination; and
- assess risk to human health and the environment.

The RI is intended to identify the nature (or type) of contamination which may be present at a site and the extent of that contamination in the environment on the site, or leaving the site. The RI reports on data gathered to determine if the soil, groundwater, soil vapor, indoor air, surface water or sediments may have been contaminated. Monitoring wells are installed to assess groundwater and soil borings or test pits are installed to sample soil and/or waste(s) identified. If other natural resources are present, such as surface water bodies or wetlands, the water and sediment may be sampled as well. Based on the presence of contaminants in soil and groundwater, soil vapor will also be sampled for the presence of contamination. Data collected in the RI influence the development of remedial alternatives. The RI report is available for review in the site document repository and the results are summarized in section 6.3.

The analytical data collected on this site includes data for:

- soil
- groundwater
- soil vapor

6.1.1: Standards, Criteria, and Guidance (SCGs)

The remedy must conform to promulgated standards and criteria that are directly applicable or that are relevant and appropriate. The selection of a remedy must also take into consideration guidance, as appropriate. Standards, Criteria and Guidance are hereafter called SCGs.

To determine whether the contaminants identified in various media are present at levels of concern, the data from the RI were compared to media-specific SCGs. The Department has developed SCGs for groundwater, surface water, sediments, and soil. The NYSDOH has developed SCGs for drinking water and soil vapor intrusion. For a full listing of all SCGs see: <http://www.dec.ny.gov/regulations/61794.html>

6.1.2: RI Results

The data have identified contaminants of concern. A "contaminant of concern" is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are contaminants of concern. The nature and extent of contamination and environmental media requiring action are summarized below. Additionally, the RI Report contains a full discussion of the data. The contaminants of concern identified at this site are:

Benzo(a)anthracene	Arsenic	4,4'-DDT
Benzo(a)pyrene	Barium	4,4'-DDE
Benzo(b)fluoranthene	Cadmium	4,4'-DDD
Benzo(k)fluoranthene	Chromium	
Chrysene	Copper	
Dibenz(a,h)anthracene	Lead	
Indeno(1,2,3-cd)pyrene	Mercury	
	Nickel	
	Zinc	

Based on the investigation results, comparison to the SCGs, and the potential public health and environmental exposure routes, certain media and areas of the site required remediation. These media were addressed by the IRM described in Section 6.2. More complete information can be found in the RI Report and the Final Engineering Report (FER).

6.2: Interim Remedial Measures

An interim remedial measure (IRM) is conducted at a site when a source of contamination or exposure pathway can be effectively addressed before issuance of the Decision Document.

An IRM was completed at this site in accordance with the approved RI/IRM Work Plan. Based on the findings of the RI, areas with impacted soil/fill materials were excavated to native soils with final excavation contours shown on Figure 3. The IRM was used as the final remedy for this site, and is detailed in Section 7 below.

6.3: Summary of Environmental Assessment

This section summarizes the assessment of existing and potential future environmental impacts presented by the site. Environmental impacts may include existing and potential future exposure pathways to fish and wildlife receptors, wetlands, groundwater resources, and surface water. The RI report presents a detailed discussion of any existing and potential impacts from the site to fish and wildlife receptors.

Nature and Extent of Contamination

During the Remedial Investigation, samples for analysis were collected from subsurface soil/fill, groundwater, and soil vapor. Surface water and sediment were not found at this site.

Soil and groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, polychlorinated biphenyls (PCBs), pesticides, and per- and polyfluoroalkyl substances (PFAS). Based on the submitted RI-AA Report, the primary contaminants of concern were SVOCs, metals, and pesticides in the soil.

Surface Soil:

As the remedy was a full removal of all contaminated soil/fill, no surface soil samples were collected during the RI.

Subsurface Soil:

31 samples were collected from 14 test pit locations at depths ranging from 0 to 15 fbs and analyzed at a variable frequency for VOCs, SVOCs, PCBs, pesticides, and PFAS. No PFAS were detected at levels exceeding current guidance values for unrestricted use in soil. Acetone, a VOC, was detected in one location at .06ppm (Unrestricted Soil Cleanup Objective (USCO), .05ppm). The surface/subsurface data does not indicate a potential for off-site migration.

Several SVOCs, specifically polycyclic aromatic hydrocarbons (PAHs), were detected in on-site subsurface soils/fill above the Departments Part 375 USCOs. The SVOCs that exceeded USCOs (with the number of exceedances and highest concentration) include:

- Benzo(a)anthracene (2 samples exceeded the 1 ppm USCO; maximum detection 42 ppm)
- Benzo(a)pyrene (2 samples exceeded the 1 ppm USCO; maximum detection 51 ppm)
- Benzo(b)fluoranthene (3 samples exceeded the 1 ppm USCO; maximum detection 54

ppm)

- Benzo(k)fluoranthene (2 samples exceeded the .8 ppm USCO; maximum detection 30 ppm)
- Chrysene (2 samples exceeded the 1 ppm USCO; maximum detection 38 ppm)
- Dibenz(a,h)anthracene (2 samples exceeded the .33 ppm USCO; maximum detection 9.1 ppm)
- Indeno(1,2,3-cd)pyrene (3 samples exceeded the .5 ppm USCO; maximum detection 27 ppm)

Several metals were detected in on-site subsurface soils/fill above the Department's Part 375 USCOs. The metals that exceeded USCOs (with the number of exceedances and highest concentration) include:

- Arsenic (5 samples exceeded the 13 ppm USCO; maximum detection 34.5 ppm)
- Barium (1 sample exceeded the 350 ppm USCO; maximum detection 450 ppm)
- Cadmium (2 samples exceeded the 2.5 ppm USCO; maximum detection 20.1 ppm)
- Chromium (2 samples exceeded the 30 ppm USCO; maximum detection 68.5 ppm)
- Copper (2 samples exceeded the 50 ppm USCO; maximum detection 681 ppm)
- Lead (4 samples exceeded the 63 ppm USCO; maximum detection 786 ppm)
- Mercury (2 samples exceeded the .18 ppm USCO; maximum detection 1.1 ppm)
- Nickel (2 samples exceeded the 30 ppm USCO; maximum detection 34.5 ppm)
- Zinc (3 samples exceeded the 109 ppm USCO; maximum detection 1,230 ppm)

Several pesticides were detected in on-site subsurface soils/fill above the Department's Part 375 USCOs. The metals that exceeded USCOs (with the number of exceedances and highest concentration) included:

- 4,4'-DDT (4 samples exceeded the .0033 ppm USCO; maximum detection .15 ppm)
- 4-4'-DDE (3 samples exceeded the .0033 ppm USCO; maximum detection .077 ppm)
- 4,4'-DDD (2 samples exceeded the .0033 ppm USCO; maximum detection .037 ppm)
- Delta-BHC (1 sample exceeded the .04 ppm USCO; maximum detection .087 ppm)

Groundwater:

Eight groundwater samples were collected from eight on-site wells and analyzed for VOCs, SVOCs, metals, PCBs, pesticides/herbicides, PFAS, and 1,4-dioxane. No VOCs, SVOCs, PCBs, or PFAS were detected above GWQS. The groundwater data does not indicate a potential for off-site migration.

Several metals were detected above GWQS (with the number of exceedances and highest concentration) included:

- Arsenic (1 sample exceeded the 25 ug/L NY-AWQS; highest concentration 34 ug/L)
- Iron (7 samples exceeded the 300 ug/L NY-AWQS; highest concentration 62,000 ug/L)

- Magnesium (5 samples exceeded the 35,000 ug/L NY-AWQS; highest concentration 68,300 ug/L)
- Manganese (7 samples exceeded the 300 ug/L NY-AWQS; highest concentration 12,900 ug/L)
- Sodium (6 samples exceeded the 20,000 ug/L NY-AWQS; highest concentration 429,000 ug/L)

Several pesticides were detected above GWQS (with the number of exceedances and highest concentration) included:

- Alpha-BHC (1 sample exceeded the .01 ug/L NY-AWQS; highest concentration .014 ug/L)
- Beta-BHC (1 sample exceeded the .01 ug/L NY-AWQS; highest concentration .08 ug/L)

Remediation at the site is complete. Prior to remediation, the primary contaminants of concern were semi-volatile organic compounds (SVOCs), metals, and pesticides in soil and groundwater. The use of groundwater as a source of potable or process water, without necessary water quality treatment is restricted. The Town of West Seneca has public water available at this location and will not accept any permits for drilling of private wells where there is public water available. Remedial actions have successfully achieved soil cleanup objectives for unrestricted use.

6.4: Summary of Human Exposure Pathways

This human exposure assessment identifies ways in which people may be exposed to site-related contaminants. Chemicals can enter the body through three major pathways (breathing, touching or swallowing). This is referred to as *exposure*.

Remedial actions completed have eliminated all potential contact with contaminants.

6.5: Summary of the Remediation Objectives

The objectives for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for the remedial program is to restore the site to pre-disposal conditions to the extent feasible. At a minimum, the remedy shall eliminate or mitigate all significant threats to public health and the environment presented by the contamination identified at the site through the proper application of scientific and engineering principles.

The remedial objectives for this site are:

Soil/Fill

RAOs for Public Health Protection

- Prevent ingestion or direct contact with contaminated soil exceeding cleanup objectives for the Site

RAOs for Environmental Protection

- Prevent migration of contaminants exceeding cleanup objectives for the Site that would result in groundwater or surface water contamination

SECTION 7: ELEMENTS OF THE SELECTED REMEDY

Based on the results of the investigations at the site, the IRM that has been performed, and the evaluation presented here, the Department has selected No Further Action as the remedy for the site. The Department believes that this remedy is protective of human health and the environment and satisfies the remediation objectives described in Section 6.5.

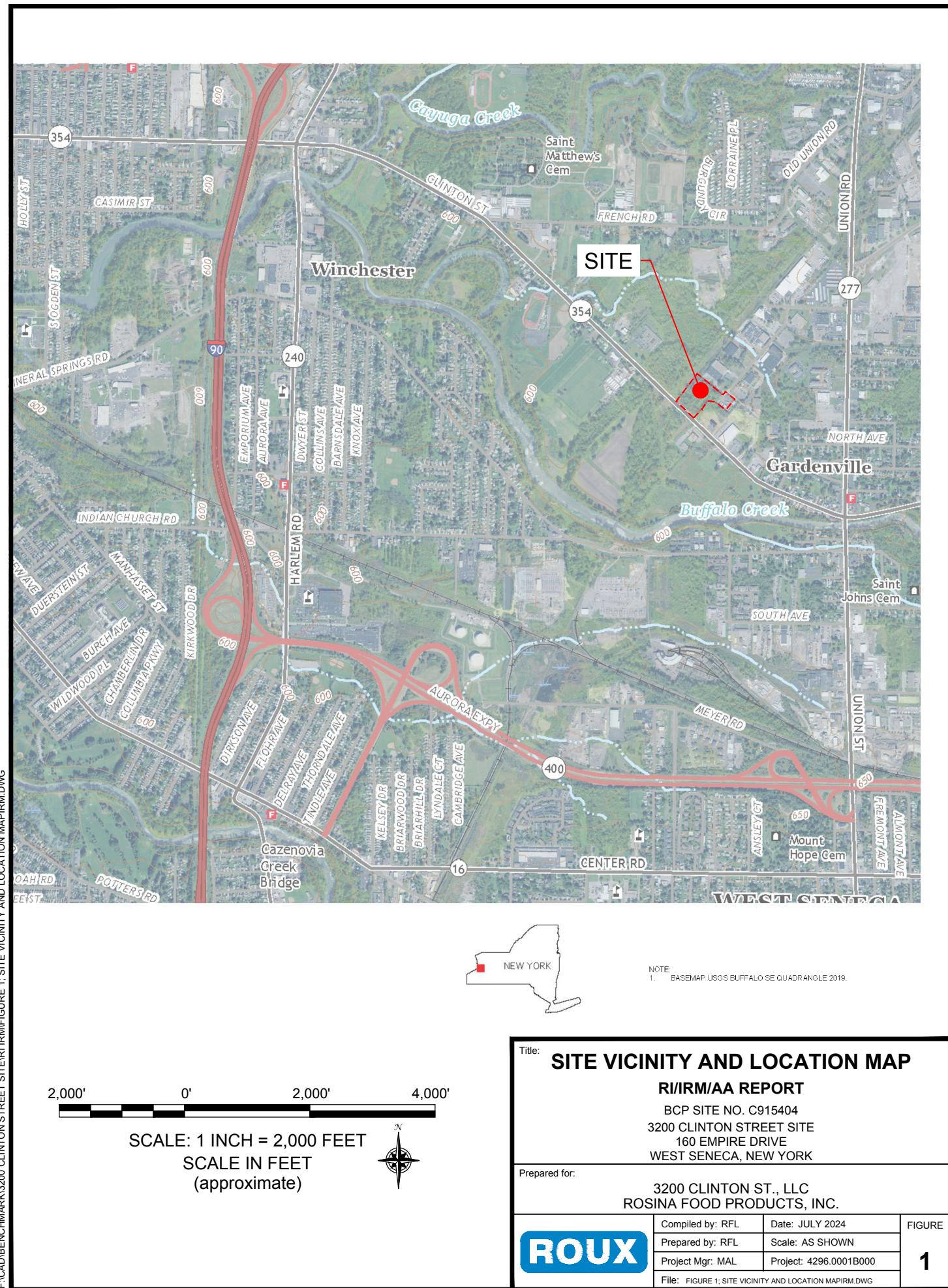
The elements of the IRM already completed are listed below:

1. Remedial Design

A remedial design program was implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques were implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;
- Increasing energy efficiency and minimizing use of non-renewable energy;
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals;
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development; and
- Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings shall be constructed, at a minimum, to meet the 2020 Energy Conservation Construction Code of New York (or most recent edition) to improve energy efficiency as an element of construction.

As part of the remedial design program, to evaluate the remedy with respect to green and sustainable remediation principles, an environmental footprint analysis was completed. The environmental footprint analysis was completed using an accepted environmental footprint analysis calculator such as SEFA (Spreadsheets for Environmental Footprint Analysis, USEPA), SiteWiseTM (available in the Sustainable Remediation Forum [SURF] library) or similar NYSDEC accepted tool. Water consumption, greenhouse gas emissions, renewable and non-renewable energy use, waste reduction and material use was estimated, and goals for the project related to these green and sustainable remediation metrics, as well as for minimizing community impacts, protecting habitats and natural and cultural resources, and promoting environmental justice, was incorporated into the remedial design program, as appropriate. The project design specifications included detailed requirements to achieve the green and sustainable remediation


goals. Further, progress with respect to green and sustainable remediation metrics were tracked during implementation of the remedial action and reported in the Final Engineering Report (FER), including a comparison to the goals established during the remedial design program. Additionally, the remedial design program included a climate change vulnerability assessment, to evaluate the impact of climate change on the project site and the proposed remedy. Potential vulnerabilities associated with extreme weather events (e.g., hurricanes, lightning, heat stress and drought), flooding, and sea level rise were identified, and the remedial design program incorporated measures⁰ to minimize the impact of climate change on potential identified vulnerabilities.

2. Excavation

Excavation and off-site disposal of all on-site soils which exceeded unrestricted SCOs, as defined by 6 NYCRR Part 375-6.8. Approximately 60,617 tons of contaminated soil was excavated disposed of at an off-site landfill. The excavation depths ranged from 2 to 8.5fbgs. Collection and analysis of confirmation samples at remedial excavation depths and sidewall sampling was performed to verify SCOs for the site have been achieved.

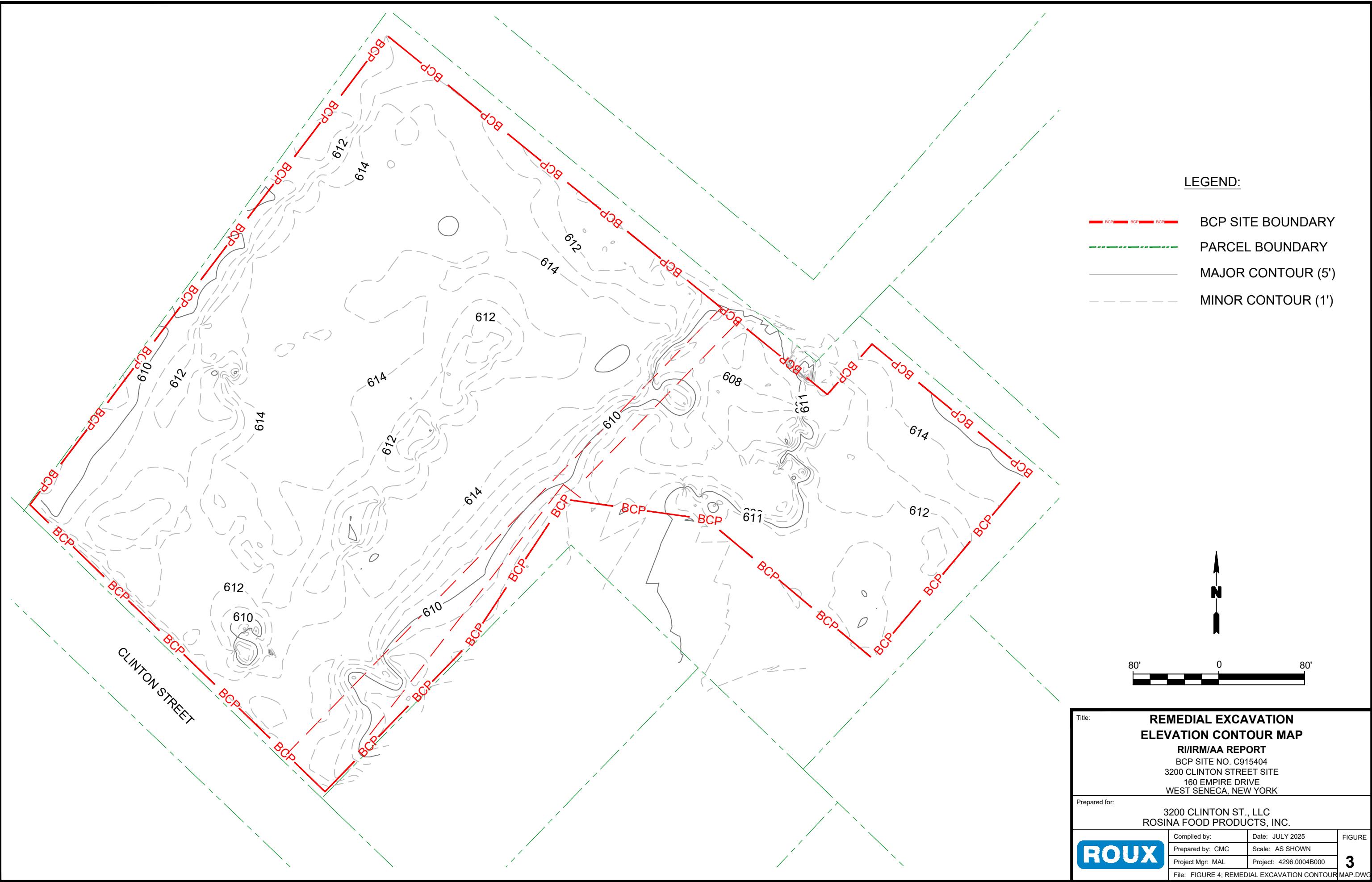
To ensure proper handling and disposal of excavated material, waste characterization sampling was completed for all identified contaminated site material. Waste characterization sampling was performed exclusively for the purposes of off-site disposal in a manner suitable to the receiving facilities and in conformance with applicable federal, state, and local laws, rules, and regulations, and facility-specific permits.

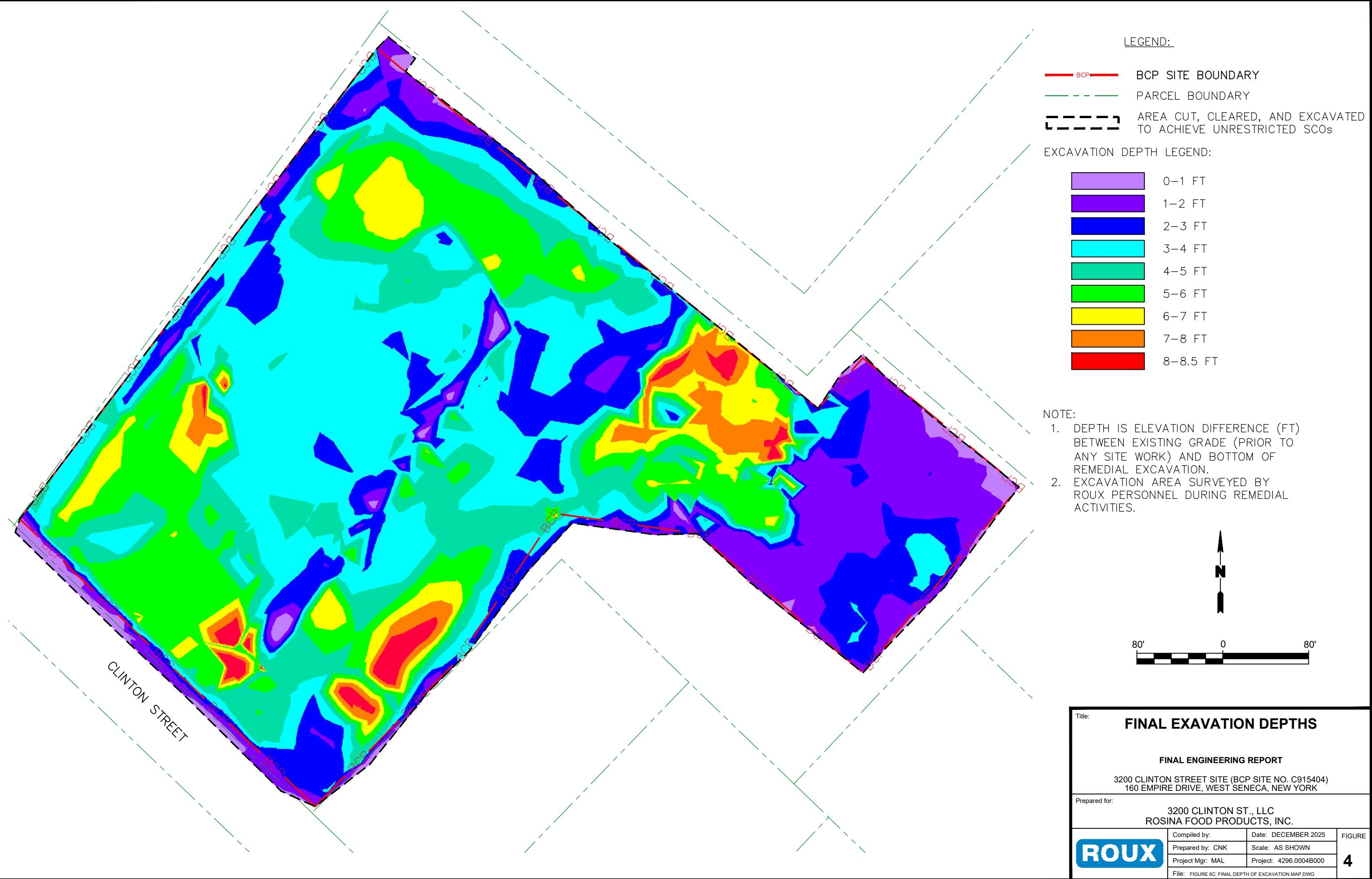
Clean fill meeting requirements of 6 NYCRR Part 375-6.7(d) was brought in to replace the excavated soil and establish design grades at the site. A total of 61,098.1 tons of Department-approved virgin stone was imported to the facility to fill the excavated areas. Additionally, an approximate 2,000 cubic yards of Department-approved topsoil was imported to complete the final surface restoration at the site.

250' 0' 250' 500'

SCALE: 1 INCH = 250 FEET
SCALE IN FEET
(approximate)

LEGEND:


- BCP SITE BOUNDARY
- PARCEL BOUNDARY


NOTE: 1 AERIAL IMAGE FROM GOOGLE EARTH PRO MAY 2022

Title:	
SITE PLAN	
RI/IRM/AA REPORT	
BCP SITE NO. C915404	
3200 CLINTON STREET SITE	
160 EMPIRE DRIVE	
WEST SENECA, NEW YORK	
Prepared for:	
3200 CLINTON ST., LLC	
ROSINA FOOD PRODUCTS, INC.	
Compiled by: RFL	Date: JULY 2024
Prepared by: RFL	Scale: AS SHOWN
Project Mgr: MAL	Project: 4296.0001B000
File: FIGURE 2; SITE PLAN_RFLIRM.DWG	

ROUX

FIGURE 2

