

May 10, 2024

Elizabeth Colvin Wendel WD Architecture, Engineering, Surveying & Landscape Architecture, P.C. 237 Main Street, Suite 500 Buffalo, NY 14203

Re: Limited Phase II Environmental Site Assessment Report

631 Northland Avenue Buffalo, New York

Dear Ms. Colvin:

Ravi Engineering & Land Surveying, P .C. (RE&LS) conducted a Limited Phase II Environmental Site Assessment (ESA) of 631 Northland Avenue, Erie County, Buffalo, New York (the "Site") (Figure 1). This report has been prepared to summarize field activities and observations, and analytical data of soil and groundwater samples.

BACKGROUND

The subject site is an approximately 2.63-acre parcel on the south side of Northland Avenue in the City of Buffalo, New York (the "Site"). It was reportedly developed in 1953 in association with the Niagara Machine & Tool metal fabricating plant historically located on the eastern adjacent property at 683 Northland Avenue. It operated as a metal fabricating plant under the name Clearing Niagara, and has been vacant since operations ceased in 1992.

RE&LS performed a Phase I ESA in February 2024, and identified the use of the Site and adjacent properties for manufacturing of machinery and sheet metal, household and automotive polish, liquid and cement, electric control panels, and printed circuit boards as a Recognized Environmental Conditions (RECs). Additional investigation was recommended to determine if existing conditions at the Site meet the criteria necessary to enter into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program.

Prior to conducting the Limited Phase II ESA, RE&LS reviewed a 2015 Phase II ESA report prepared by Fisher Associates. Fisher's Phase II was conducted at 631, 683, 741, and 777 Northland Avenue. Soil borings were installed within the subject building and around the eastern and western perimeter of the building as well as on the referenced adjacent properties. One soil sample exhibited exceedances of Benzo(a)pyrene and arsenic above the Industrial Use Soil Cleanup Objective (SCO) at the southeastern portion of the Site. No groundwater samples were collected at the Site.

METHODOLOGY

Soil Borings

RE&LS conducted a subsurface investigation on April 9-12, 2024. Four sub-slab borings (BH1, BH2, BH3, and BH5) and three bedrock wells (MW1, MW2, and MW3) were installed by NW Contracting, Inc. around the southern, southeastern, and western exterior of the building (Figure 2). Soil samples were screened for volatile organic compounds (VOCs) with a photoionization detector (PID) for evidence of petroleum impacts. Field observations were recorded on boring logs (Attachment A).

Four (4) soil samples were collected and analyzed by Paradigm Environmental Services, Inc. (Paradigm) for New York State Department of Environmental Conservation (NYSDEC) Target Compound List (TCL) and Commissioner's Policy 51 (CP-51) VOCs by USEPA Method 8260, TCL semivolatile organic compounds (SVOCs) by Method 8270, RCRA metals by Methods 7471B and 6010C, and polychlorinated biphenyls (PCB) by Method 8082A. Paradigm's Laboratory Analytical reports are provided as Attachment B.

One additional soil sample (SB7) was collected on April 25, 2024 during a geotechnical investigation, which was conducted concurrently with the RE&LS Phase II ESA. The sample was collected due to observations of petroleum impacts, and was analyzed by Paradigm for TCL and CP-51 VOCs and CP-51 SVOCs.

Based on the current zoning of the Site for light industrial use, soil analytical results were compared to 6 NYCRR Part 375 Restricted Use Soil Cleanup Objectives for Industrial Use.

Bedrock Wells

Three bedrock wells were installed using a drill rig equipped with 4½ inch hollow stem augers. The augers were advanced to the top of bedrock, and then a HQ-size bedrock core was advanced 10 feet into bedrock, to an approximate total depth of 20 feet. The wells were constructed of 10-feet of 2-inch diameter polyvinyl chloride (PVC) screen with a riser pipe extending to the surface. The annular space was backfilled with US Silica quartz sand to approximately 1 foot above the top of the screened interval, and then finished with bentonite clay to the surface. The well was then completed with a flush-mounted road box grouted in place with Quikrete.

The bedrock wells were developed and purged of five (5) well volumes using hand bailers on April 25, 2024. Three groundwater samples were collected and submitted to Paradigm for TCL and CP51 VOC and CP51 SVOC analysis.

RESULTS

Soil Screening Results

Soil borings general consisted of sand and clay fill, with ash, cinders, and slag found in varying amounts. Saturated conditions were encountered in one location (BH5), near the southeast corner of the Site. Bedrock refusal was encountered between 8.7 and 11.4 feet below ground surface (BGS).

With the exception of the observed fill material in the soil borings, no other evidence of impacts were noted; there were no odors, staining, or PID readings that would indicate petroleum contamination (Attachment A).

SOIL Analytical Results

Metals

Metals were detected in three of the four soil samples at concentrations below 6 NYCRR Part 375 Unrestricted Use SCO (Table 1).

- The concentration of arsenic, chromium, lead, and selenium in one sample (BH3) is above Unrestricted Use SCOs.
- With the exception of arsenic, all concentrations were below the Commercial Use SCO.
- The arsenic concentration exceeds all Part 375 Restricted Use SCOs.

VOCs

Two petroleum-related VOCs (m,p-Xylene and methylcyclohexane) were detected in one soil sample (SB7), and one solvent-related VOC (trichloroethene) was detected in one soil sample (BH3). None of the detections exceeds Unrestricted Use SCOs.

SVOCs

One SVOC was detected in one soil sample (BH3). The concentration is above the Unrestricted Use SCO, but is below the Commercial Use SCO.

PCBs

PCB-1254 was detected in two soil samples (BH3 and BH5) near the southeastern corner of the building above. The concentrations are above the Unrestricted Use SCO, but below the Commercial Use SCO.

GROUNDWATER ANALYTICAL RESULTS

There were no analytes detected in any of the groundwater samples (Table 2).

Paradigm's Laboratory Analytical Reports are included as Attachment B.

CONCLUSIONS AND RECOMMENDATION

Based on our Limited Phase II ESA, soil at the southern portion of the Site is impacted with arsenic above Industrial Use SCOs. With the exception of arsenic in soil, all other detected analytes were found at concentrations below Commercial Use SCOs. No groundwater contaminants were identified.

While none of the RE&LS Phase II ESA samples exhibited SVOC concentrations above the Part 375 Industrial Use SCO, Fisher reported one soil boring (SB006) at the southeastern end of the Site with arsenic and Benzo(a)pyrene concentrations exceeding Industrial Use SCOs.

We recommend consulting with an environmental attorney to determine if these data are sufficient to support a potential Brownfield Cleanup Program (BCP) application. At a minimum, a Soil Management Plan should be prepared to manage soil that will be excavated during future renovation of the Site.

Please feel free to contact me if you have any questions or comments.

Sincerely,

Lynn Zicari

Environmental Project Manager

Lym Zini

ATTACHMENTS

Figure 1 Site Location Map

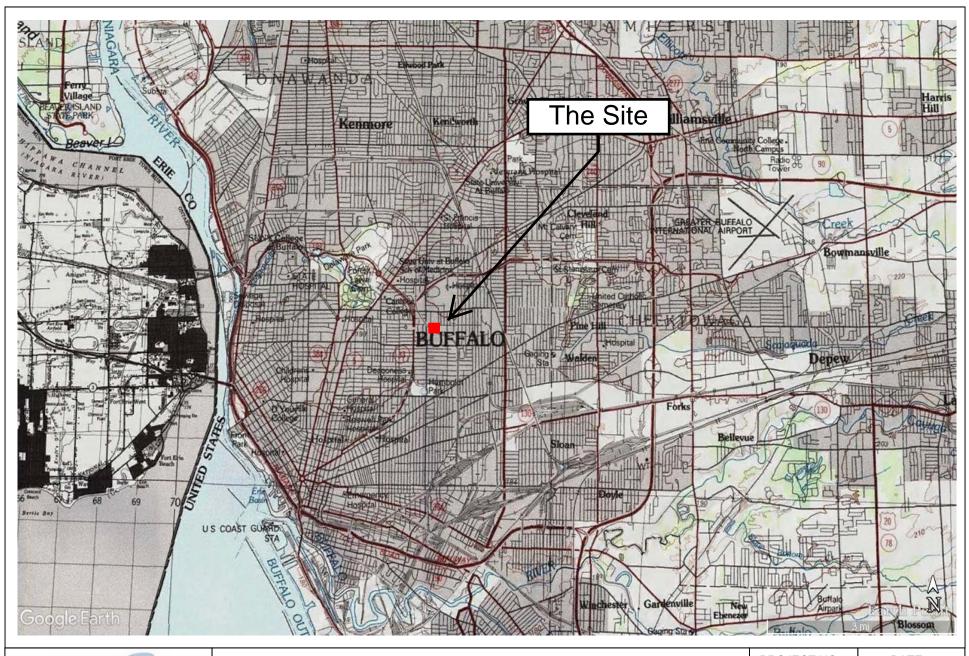

Figure 2 Boring Location Map

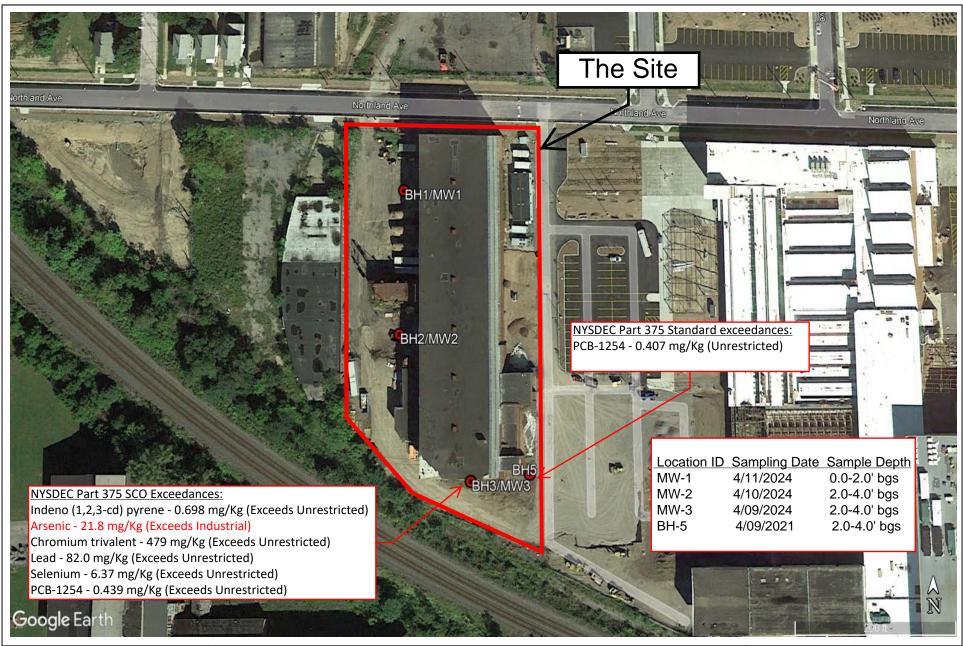
Table 1 Soil Sample Results

Table 2 Groundwater Sample Results

Attachment A Boring Logs and Monitor Well Purge Logs

Attachment B Laboratory Analytical Reports

ROCHESTER, NEW YORK 14618


TL: (585) 223-3660

FX (585) 697-1764

Site Location Map 631 Northland Avenue Buffalo, New York PROJECT NO. 43-24-029 DATE: May 2024

Scale: Figure No:

Scale: Figure NTS 1

ROCHESTER, NEW YORK 14618

FX (585) 697-1764

TL: (585) 223-3660

Boring Location Map 631 Northland Avenue Buffalo, New York PROJECT NO. day 2024

Scale: Figure No: NTS 2

Table 1 Soil Analytical Results 631 Northland Avenue Buffalo, New York

				Sample Date Sample Depth Sample ID	4/11/2024 0.0'-2.0' bgs BH-1/MW-1	4/10/2024 2.0-4.0'bgs BH-2/MW-2	4/9/2024 2.0-4.0'bgs BH-3/MW-3	4/9/2024 2.0-4.0'bgs BH-5	4/25/2024 4.0-6.0' bgs SB-7
Analyte	Unrestricted Use SCOs	Commercial Use SCOs	Industrial Use SCOs	Protection of Groundwater					
1,1,1-Trichloroethane	0.68	500	1000	0.68	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.6	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
1,1,2-Trichloroethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,1-Dichloroethane	0.27	240	480	0.27	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,1-Dichloroethene	0.33	500	1000	0.33	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,2,3-Trichlorobenzene	NS	NS	NS	NS	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
1,2,4-Trichlorobenzene	NS	NS	NS	3.4	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
1,2-Dibromo-3-Chloropropane	NS	NS	NS	NS	<0.0424	<0.0455	<0.0394	<0.0485	<0.0489
1,2-Dibromoethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,2-Dichlorobenzene	1.1	500	1000	1.1	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,2-Dichloroethane	0.02	30	60	0.02	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,2-Dichloropropane	NS 8.4	NS 100	NS 200	NS 0.4	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,3,5-Trimethylbenzene	8.4	190	380	8.4	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.4 1.8	280 130	560 250	2.4 1.8	<0.00848 <0.00848	<0.0091	<0.00788 <0.00788	<0.0097 <0.0097	<0.00979 <0.00979
1,4-Dichlorobenzene 1,4-Dioxane	0.1	130	250	0.1	<0.00848	<0.0091 <0.0455	<0.00788	<0.0097	<0.00979
2-Butanone	0.12	500	1000	0.3	<0.0424	<0.0455	<0.0394	<0.0485	<0.0489
2-Hexanone	NS	NS NS	NS	NS	<0.0424	<0.0228	<0.0394	<0.0483	<0.0469
4-Methyl-2-pentanone	NS	NS	NS	1	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
Acetone	0.05	500	1000	0.05	<0.0424	<0.0455	<0.0394	<0.0485	<0.0489
Benzene	0.06	44	89	0.06	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Benzene	0.06	44	89	0.06	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Bromochloromethane	NS	NS	NS	NS	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
Bromodichloromethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Bromoform	NS	NS	NS	NS	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
Bromomethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Carbon disulfide	NS	NS	NS	2.7	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
Carbon Tetrachloride	0.76	22	44	0.76	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
Chlorobenzene	1.1	500	1000	1.1	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
Chloroethane	NS	NS	NS	1.9	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
Chloroform	0.37	350	700	0.37	<0.00848	<0.0091	<0.00788	< 0.0097	< 0.00979
Chloromethane	NS	NS	NS	NS	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
cis-1,2-Dichloroethene	0.25	500	1000	0.25	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
cis-1,3-Dichloropropene	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Cyclohexane	NS	NS	NS	NS	< 0.0424	<0.0455	< 0.0394	<0.0485	<0.0489
Dibromochloromethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Dichlorodifluoromethane	NS	NS	NS	NS	<0.00848	< 0.0091	<0.00788	< 0.0097	< 0.00979
Ethylbenzene	1	390	780	1	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Freon 113	NS	NS	NS	6	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Isopropylbenzene	NS	NS	NS	2.3	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Isopropylbenzene	2.3				<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
m,p-Xylene	0.26	500	1000	1.6	<0.00848	<0.0091	<0.00788	<0.0097	0.0108
Methyl acetate	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Methyl tert-butyl Ether	0.93	500	1000	0.93	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Methylcyclohexane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	0.0661
Methylene chloride	0.05	500	1000	0.05	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
Naphthalene	12	500	100	12	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
n-Butylbenzene	12	500	1000	2.0	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
n-Propylbenzene o-Xylene	3.9 0.26	500 500	1000 1000	3.9	<0.00848 <0.00848	<0.0091 <0.0091	<0.00788 <0.00788	<0.0097 <0.0097	<0.00979 <0.00979
p-Isopropyltoluene		300	1000	1.6	<0.00848	<0.0091	<0.00788	<0.0097	
sec-Butylbenzene	10 11	500	1000	11	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979 <0.00979
Styrene	NS	NS NS	NS NS	NS	<0.0048	<0.0091	<0.00788	<0.0243	<0.00979
tert-Butylbenzene	5.9	500	1000	5.9	<0.0212	<0.0228	<0.0197	<0.0243	<0.0245
Tetrachloroethene	1.3	150	300	1.3	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Toluene	0.7	500	1000	0.7	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
trans-1,2-Dichloroethene	0.19	500	1000	0.19	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
trans-1,3-Dichloropropene	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979
Trichloroethene	0.47	200	400	0.47	<0.00848	<0.0091	0.011	<0.0097	< 0.00979
Trichlorofluoromethane	NS	NS	NS	NS	<0.00848	<0.0091	<0.00788	<0.0097	< 0.00979
Vinyl chloride	0.02	13	27	0.02	<0.00848	<0.0091	<0.00788	<0.0097	<0.00979

Table 1 Soil Analytical Results 631 Northland Avenue Buffalo, New York

	. Unanatriata d	Communicat	la di catacia l	Sample Date Sample Depth Sample ID	4/11/2024 0.0'-2.0' bgs BH-1/MW-1	4/10/2024 2.0-4.0'bgs BH-2/MW-2	4/9/2024 2.0-4.0'bgs BH-3/MW-3	4/9/2024 2.0-4.0'bgs BH-5	4/25/2024 4.0-6.0' bgs SB-7
Analyte	Unrestricted Use SCOs	Commercial Use SCOs	Industrial Use SCOs	Protection of Groundwater					
SVOC				,					
Acenaphthene	20	500	1000	98	<0.323	<0.347	<0.318	<0.342	<0.296
Acenaphthylene	100	500	1000	107	<0.323	<0.347	<0.318	<0.342	<0.296
Anthracene	100	500	1000	1000	<0.323	<0.347	<0.318	<0.342	<0.296
Benzo (a) anthracene	1	5.6	11	1	<0.323	<0.347	<0.318	<0.342	<0.296
Benzo (a) pyrene	1	1	1.1	22	<0.323	<0.347	<0.318	<0.342	<0.296
Benzo (b) fluoranthene	0.8	5.6	11	1.7	<0.323	<0.347	<0.318	<0.342	<0.296
Benzo (g,h,i) perylene	100	500	1000	1000	<0.323	<0.347	<0.318	<0.342	<0.296
Benzo (k) fluoranthene	0.8	56	110	1.7	<0.323	<0.347	<0.318	<0.342	<0.296
Chrysene	1	56	110	1	<0.323	<0.347	<0.318	<0.342	<0.296
Dibenz (a,h) anthracene	0.33	0.56	1.1	1000	<0.323	<0.347	<0.318	<0.342	<0.296
Dibenzofuran	0.7	350	1000		<0.323	< 0.347	<0.318	< 0.342	<0.296
Fluoranthene	100	500	1000	1000	<0.323	< 0.347	0.325	< 0.342	<0.296
Fluorene	30	500	1000	386	< 0.323	< 0.347	<0.318	< 0.342	<0.296
Indeno (1,2,3-cd) pyrene	0.5	5.6	11	8.2	< 0.323	< 0.347	0.698	< 0.342	<0.296
Naphthalene	12	500	1000	12	< 0.323	< 0.347	<0.318	< 0.342	<0.296
Phenanthrene	100	500	1000	1000	< 0.323	< 0.347	<0.318	< 0.342	<0.296
Pyrene	100	500	1000	1000	<0.323	<0.347	0.347	<0.342	<0.296
<u>Metals</u>									
Arsenic	13	16	16	16	4.32	8.07	21.8	5.37	NA
Barium	350	400	10000	820	111	160	91.6	94.9	NA
Cadmium	2.5	9.3	60	7.5	1.05	1.06	1.74	0.856	NA
Chromium trivalent	30	1500	6800	NS	17.9	29.3	479	20.7	NA
Lead	63	1000	3900	450	27.5	15.5	82.0	19.7	NA
Mercury	0.18	2.8	5.7	0.73	0.0752	0.0382	0.0318	0.106 M	NA
Selenium	3.9	1500	6800	4	2.52 M	<1.26	6.37	<1.27	NA
Silver	2	1500	6800	2480	<0.570	<0.628	0.625	< 0.634	NA
<u>PCBs</u>									
PCB-1016	0.1	1	25		<0.155	<0.169	<0.156	<0.180	NA
PCB-1221	0.1	1	25		< 0.155	< 0.169	< 0.156	<0.180	NA
PCB-1232	0.1	1	25		<0.155	< 0.169	<0.156	<0.180	NA
PCB-1242	0.1	1	25		< 0.155	< 0.169	< 0.156	<0.180	NA
PCB-1248	0.1	1	25		<0.155	< 0.169	<0.156	<0.180	NA
PCB-1254	0.1	1	25		<0.155	<0.169	0.439	0.407	NA
PCB-1260	0.1	1	25		<0.155	<0.169	<0.156	<0.180	NA
PCB-1262	0.1	1	25		<0.155	<0.169	<0.156	<0.180	NA
PCB-1268	0.1	1	25		<0.155	<0.169	<0.156	<0.180	NA

LEGEND

Units are in mg/Kg

NS = No standard listed in NYSDEC Part 375 for the associated analyte

Bold font denotes analyte detection

Highlighted cell denotes analyte exceeds NYSDEC Part 375 Standard

NA - the sample was not analyzed for the associated compounds

⁻⁻ The analyte was not detected at or above the reporting limit

J = Result estimated between the quantitation limit and half the quantitation limit

Table 2 Groundwater Analytical Results

631 Northland Avenue Buffalo, New York

	Sample ID	MW-1	MW-2	MW-3
TCL and CP51 VOCs	TOGS 1.1.1	Sample date 4/25/2024	Sample date 4/25/2024	Sample date 4/25/2024
1,1,1 Trichlorethane	NS	<2.00	<2.00	<2.00
1,1,2,2-Tetrachloroethane	5	<2.00	<2.00	<2.00
1,1,2-Trichloroethane	1	<2.00	<2.00	<2.00
1,1-Dichloroethane	5	<2.00	<2.00	<2.00
1,1-Dichloroethene	5	<2.00	<2.00	<2.00
1,2,3-Trichlorobenzene	5	<5.00	<5.00	<5.00
1,2,4-Trichlorobenzene	5	<5.00	<5.00	<5.00
1,2,4-Trimethylbenzene	5	<2.00	<2.00	<2.00
1,2-Dibromo-3-Chloropropane	0.04	<10.0	<10.0	<10.0
1,2-Dibromoethane	NS	<2.00	<2.00	<2.00
1,2-Dichlorobenzene	3	<2.00	<2.00	<2.00
1,2-Dichloroethane	0.6	<2.00	<2.00	<2.00
1,2-Dichloropropane	1	<2.00	<2.00	<2.00
1,3,5-Trimethylbenzene	5	<2.00	<2.00	<2.00
1,3-Dichlorobenzene	3	<2.00	<2.00	<2.00
1,4-Dichlorobenzene	3	<2.00	<2.00	<2.00
1,4-dioxane	0.35	<20.0	<20.0	<20.0
2-Butanone	NS	<10.0	<10.0	<10.0
2-Hexanone	50	<5.00	<5.00	<5.00
4-Methyl-2-pentanone	NS	<5.00	<5.00	<5.00
Acetone	50	<10.0	<10.0	<10.0
Benzene	1	<1.00	<1.00	<1.00
Bromochloromethane	5	<5.00	<5.00	<5.00
Bromodichloromethane	50	<2.00	<2.00	<2.00
Bromoform	50	<5.00	<5.00	<5.00
Bromomethane	5	<2.00	<2.00	<2.00
Carbon disulfide	60	<2.00	<2.00	<2.00
Carbon Tetrachloride	5	<2.00	<2.00	<2.00

Table 2 Groundwater Analytical Results

631 Northland Avenue Buffalo, New York

Chlorobenzene	5	<2.00	<2.00	<2.00
Chloroethane	5	<2.00	<2.00	<2.00
Chloroform	7	<2.00	<2.00	<2.00
Chloromethane	5	<2.00	<2.00	<2.00
cis-1,2-Dichloroethene	5	<2.00	<2.00	<2.00
cis-1,3-Dichloropropene	0.4	<2.00	<2.00	<2.00
Cyclohexane	NS	<10.0	<10.0	<10.0
Dibromochloromethane	50	<2.00	<2.00	<2.00
Dichlorodifluoromethane	5	<2.00	<2.00	<2.00
Ethylbenzene	5	<2.00	<2.00	<2.00
Freon 113	5	<2.00	<2.00	<2.00
Isopropylbenzene	5	<2.00	<2.00	<2.00
m,p-Xylene	5	<2.00	<2.00	<2.00
Methyl acetate	NS	<2.00	<2.00	<2.00
Methyl tert-butyl Ether	10	<2.00	<2.00	<2.00
Methylcyclohexane	NS	<2.00	<2.00	<2.00
Methylene chloride	5	<5.00	<5.00	<5.00
n-Butylbenzene	5	<2.00	<2.00	<2.00
n-Propylbenzene	5	<2.00	<2.00	<2.00
Naphthalene	10	<5.00	<5.00	<5.00
o-Xylene	5	<2.00	<2.00	<2.00
p-Isopropyltoluene	5	<2.00	<2.00	<2.00
sec-Butylbenzene	5	<2.00	<2.00	<2.00
Styrene	5	<5.00	<5.00	<5.00
tert-Butylbenzene	5	<2.00	<2.00	<2.00
Tetrachloroethene	5	<2.00	<2.00	<2.00
Toluene	5	<2.00	<2.00	<2.00
trans-1,2-Dichloroethene	5	<2.00	<2.00	<2.00
trans-1,3-Dichloropropene	0.4	<2.00	<2.00	<2.00
Trichloroethene	5	<2.00	<2.00	<2.00
Trichlorofluoromethane	5	<2.00	<2.00	<2.00
Vinyl chloride	2	<2.00	<2.00	<2.00

Table 2 Groundwater Analytical Results

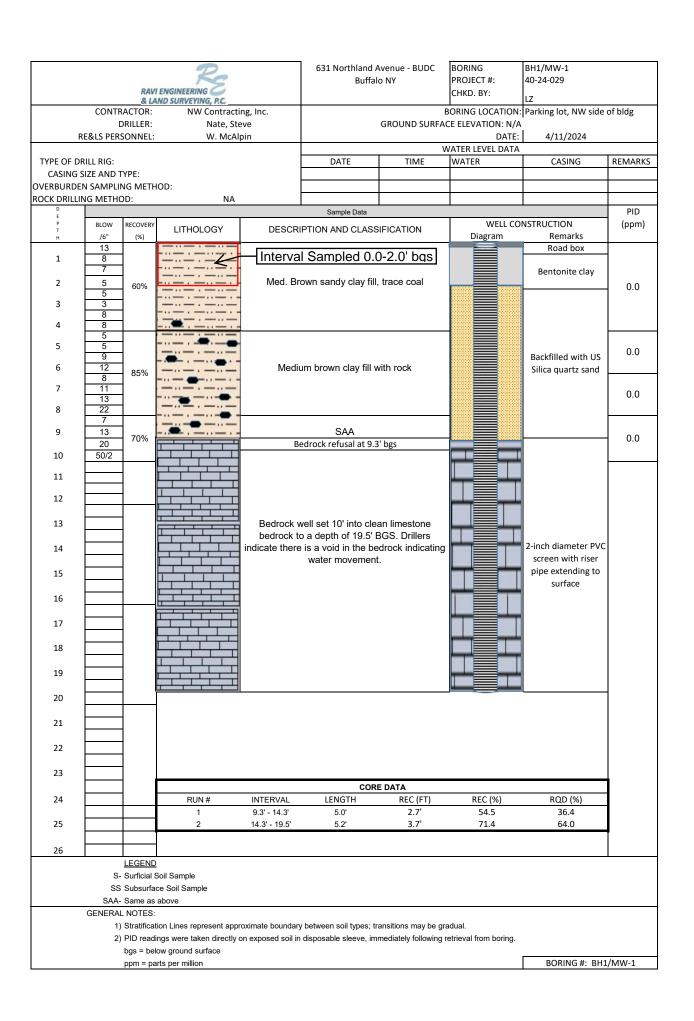
631 Northland Avenue Buffalo, New York

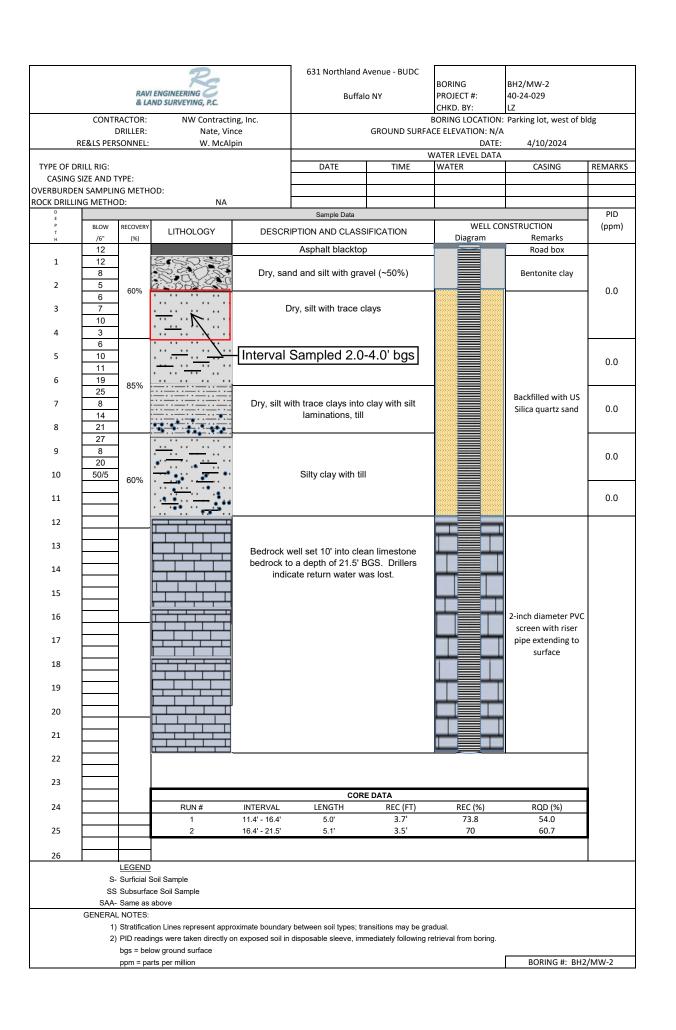
CP51 SVOCs

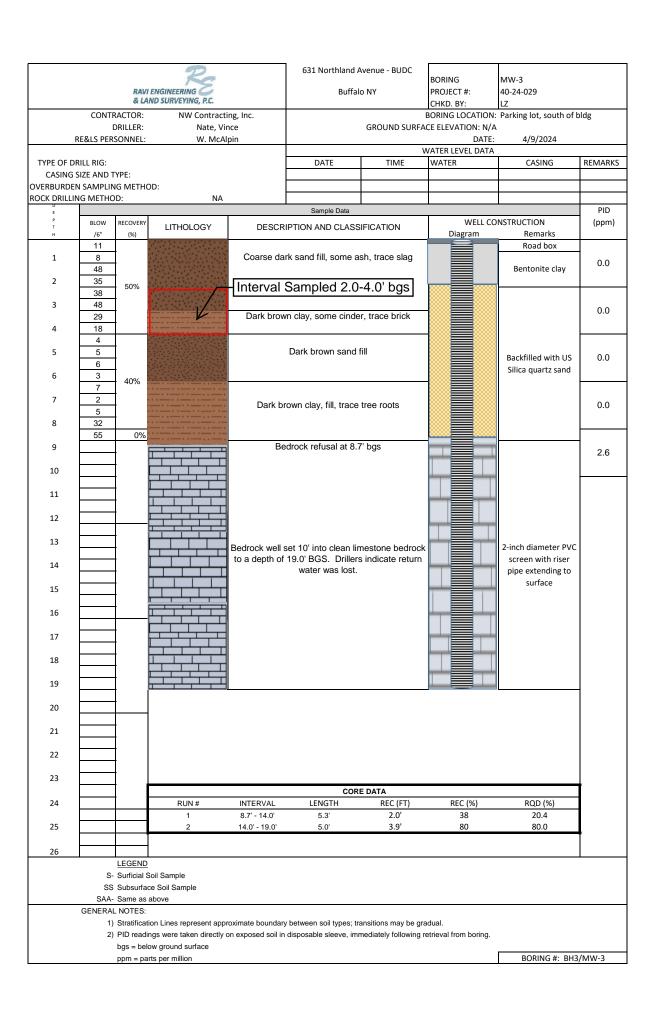
20	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
50	<10.5	<10.5	<10.5
0.002	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
0.002	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
0.002	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
0.002	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
NS	<10.5	<10.5	<10.5
50	<10.5	<10.5	<10.5
50	<10.5	<10.5	<10.5
0.002	<10.5	<10.5	<10.5
50	<10.5	<10.5	<10.5
50	<10.5	<10.5	<10.5
	NS 50 0.002 NS 0.002 NS 0.002 NS 0.002 NS 50 50 0.002 50	NS <10.5 50 <10.5 0.002 <10.5 NS <10.5 0.002 <10.5 NS <10.5 0.002 <10.5 NS <10.5 0.002 <10.5 NS <10.5 0.002 <10.5 Solution <10	NS <10.5 <10.5 50 <10.5 <10.5 0.002 <10.5 <10.5 NS <10.5 <10.5 0.002 <10.5 <10.5 NS <10.5 <10.5 O.002 <10.5 <10.5 NS <10.5 <10.5 O.002 <10.5 <10.5 So <10.5 <10.5 NS <10.5 <10.5 NS <10.5 <10.5 NS <10.5 <10.5 NS <10.5 <10.5 So <10.5 <10.5 So <10.5 <10.5 So <10.5 <10.5 So <10.5 <10.5 O.002 <10.5 <10.5 So <10.5 <10.5 O.002 <10.5 <10.5 So <10.5 <10.5 O.002 <10.5 <10.5 So <10.5 <10.5

Legend

Units are in µg/L


NS: No standard for analyte listed in NYSDEC TOGS 1.1.1


Bold font denotes analyte detection


ATTACHMENT A

Boring & Monitor Well Construction Logs Monitor Well Development & Sampling Purge Logs

> 631 Northland Avenue Buffalo, Erie County, New York RE&LS PN 43-24-029

631 Northland Avenue - BUDC Boring # BH-5 PROJECT #: 40-24-029 Buffalo NY RAVI ENGINEERING & LAND SURVEYING, P.C. CHKD. BY: LZ CONTRACTOR: NW BORING LOCATION: Parking lot, SE side of bldg GROUND SURFACE ELEVATION: DRILLER: Nate. Steve RE&LS PERSONNEL: W. McAlpin DATE: 4/9/2024 WATER LEVEL DATA REMARKS TYPE OF DRILL RIG: DATE TIME WATER CASING CASING SIZE AND TYPE: OVERBURDEN SAMPLING METHOD: ROCK DRILLING METHOD: NA PID Sample Data BLOW NO. DEPTH N-VALUE RECOVERY (ppm) (FT.) 1 40% 0.0 Brown, CLAY LOAM, fill, trace asphalt 40% 0.0 9 Interval Sampled 2.0-4.0' bgs 4 7 16 17 5 40% SANDY CLAY, fill, some ash, trace asphalt 0.0 7 6 6 2 40% Wet 'CLAY +SILT with mucky substance (potentially wet ash) 0.0 8 1 Dark grey SILT, saturated @ 8.5, over SILT +Gravel at 9.2' 9 40% 0.0 1 50/2 10 Refusal at 9.2 feet 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 LEGEND S- Surficial Soil Sample SS Subsurface Soil Sample GENERAL NOTES: 1) Stratification Lines represent approximate boundary between soil types; transitions may be gradual. 2) PID readings were taken directly on exposed soil in disposable sleeve, immediately following retrieval from boring. bgs = below ground surface ppm = parts per million BORING #

Well Sampling Field Record

Project Name: 601 Worthland Well ID: Logged by: Weather: Initial Depth to Water: 52 Final Depth to Water: 1814 Screen Length: gals (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.163 gallons per foot of depth = 0.163 gallons per foot of depth				Installation Air temper Measureme Well Depth Well Depth Sediment I ter = 0.653 gallo	Date: 04 - de la Date:	Star End Wei Wei	Well Diameter: 2" Well Integrity: Cap Casing Locked Collar		
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments	
-	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	77.19	The state of the s		4			
		July V	-1,60	1		1-			
1,91,9	10 5	27	37.					18	
7 1								7 🕏	
1								2	
Type of Water Quality Meter: Heron Instruments - Skinny Dipper Purge Observations: Water Nas Settled out I clessist Purge Water Containerized: Plastic bucket w lid ANALYTICAL PARAMETERS									
EQUIPMENT DOCUMENTATION Submersible Pump Approximate Recharge Rate: PVC Bailer Surge Block Total Gallons Removed: Other Notes: Signature:									
Спеске	Checked By:								

Well Sampling Field Record

Project Name: 131 Normany Well ID: Logged by: Weather:				Sampling I Installation Air temper	Date: 4/3 Date:ature:	5/04	Job Sta End	Job # Start Time: End Time:	
Initial Depth to Water: 7/0" Final Depth to Water: 20 6 Screen Length: Well Volume: 2.205 gals (2" diameter = 0.163 gallons per foot of depth, 4" diam Protective casing stick-up: WATER QUALITY PARAMETERS				Measurement Point: Well Depth before: Well Depth after: Sediment Depth Removed: seter = 0.653 gallons per foot of depth) Casing/Well difference:			We	Well Integrity: Cap Casing Locked Collar	
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments	
	(gais)								
	Type of Water Quality Meter: Purge Observations: Water was Settled out I clearist Purge Water Containerized: Plastic bucket will lid ANALYTICAL PARAMETERS								
EQUIPMENT DOCUMENTATION Submersible Pump PVC Bailer Surge Block Other Notes: 11-2025 GAL TO Pugge									
Notes: M-002 GAL TO Pango Signature: Checked By:									

Well Sampling Field Record

Well ID Logged): P	1 NOVA NW-3 WM		Installation	Date: 04 Date:ature:		Star End	# rt Time: I Time:
Screen Well V (2" dian	Length: olume: neter = 0.163 ga	ter:	gals epth, 4" diamete	Well Depth Well Depth Sediment I er = 0.653 gallo	ent Point: n before: n after: Depth Removers per foot of depth difference:	red:	We	Il Diameter: A Il Integrity: Cap Casing Locked Collar
WATE	R QUALITY	PARAMETI	ERS					
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments
	Type of Wa	nter Quality M	leter:	has s	etted	out la	ewin	
ANAL	Purge Wate	er Containeriz	ed: P\	astic V	OUCKet	with 1	vd	7
Sul PV Sur Otl	omersible Proceedings of Communication Commu			Total Gall	ate Recharge	d: 9.7		
Notes: Signat Check	-	Your	o - D	VIE CI	\$ 65	981100		S 40.

ATTACHMENT B
Laboratory Analytical Reports
631 Northland Avenu Buffalo, Erie County, New Yorl
RE&LS PN 43-24-029

Analytical Report For

Ravi Engineering & Land Surveying, P.C.

For Lab Project ID

241564

Referencing

631 Northland

Prepared

Wednesday, April 17, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	<u>Date Analyzed</u>
Mercury	0.106	mg/Kg	M	4/16/2024 09:06

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Data File:Hg240416A

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	5.37	mg/Kg		4/15/2024 07:39
Barium	94.9	mg/Kg		4/15/2024 07:39
Cadmium	0.856	mg/Kg		4/15/2024 07:39
Chromium	20.7	mg/Kg		4/15/2024 07:39
Lead	19.7	mg/Kg		4/15/2024 07:39
Selenium	< 1.27	mg/Kg		4/15/2024 07:39
Silver	< 0.634	mg/Kg		4/15/2024 07:39

Method Reference(s): EPA 6010C EPA 3050B
Preparation Date: 4/11/2024
Data File: 240415A

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	<u>Date Analyzed</u>
PCB-1016	< 0.180	mg/Kg		4/12/2024 00:34
PCB-1221	< 0.180	mg/Kg		4/12/2024 00:34
PCB-1232	< 0.180	mg/Kg		4/12/2024 00:34
PCB-1242	< 0.180	mg/Kg		4/12/2024 00:34

PCB-1248	< 0.180	mg/Kg	4/12/2024	00:34
PCB-1254	0.407	mg/Kg	4/12/2024	00:34
PCB-1260	< 0.180	mg/Kg	4/12/2024	00:34
PCB-1262	< 0.180	mg/Kg	4/12/2024	00:34
PCB-1268	< 0.180	mg/Kg	4/12/2024	00:34

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

SurrogatePercent RecoveryLimitsOutliersDate AnalyzedTetrachloro-m-xylene54.310 - 1104/12/202400:34

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 4/11/2024

<u>Semi-Volatile Organics (Acid/Base Neutrals)</u>

1,1-Biphenyl < 342 ug/Kg 4/12/	024 15:25
1,1-Biphenyl < 342 ug/Kg 4/12/	124 15.25
1,2,4,5-Tetrachlorobenzene < 342 ug/Kg 4/12/	124 13.23
1,2,4-Trichlorobenzene < 342 ug/Kg 4/12/	024 15:25
1,2-Dichlorobenzene < 342 ug/Kg 4/12/	024 15:25
1,3-Dichlorobenzene < 342 ug/Kg 4/12/	024 15:25
1,4-Dichlorobenzene < 342 ug/Kg 4/12/	024 15:25
2,2-Oxybis (1-chloropropane) < 342 ug/Kg 4/12/	024 15:25
2,3,4,6-Tetrachlorophenol < 342 ug/Kg 4/12/	024 15:25
2,4,5-Trichlorophenol < 342 ug/Kg 4/12/	024 15:25
2,4,6-Trichlorophenol < 342 ug/Kg 4/12/	024 15:25
2,4-Dichlorophenol < 342 ug/Kg 4/12/	024 15:25
2,4-Dimethylphenol < 342 ug/Kg 4/12/	024 15:25
2,4-Dinitrophenol < 1370 ug/Kg 4/12/	024 15:25
2,4-Dinitrotoluene < 342 ug/Kg 4/12/	024 15:25
2,6-Dinitrotoluene < 342 ug/Kg 4/12/	024 15:25
2-Chloronaphthalene < 342 ug/Kg 4/12/	024 15:25
2-Chlorophenol < 342 ug/Kg 4/12/	024 15:25
2-Methylnapthalene < 342 ug/Kg 4/12/	024 15:25
2-Methylphenol < 342 ug/Kg 4/12/	024 15:25
2-Nitroaniline < 342 ug/Kg 4/12/	024 15:25

2-Nitrophenol	< 342	ug/Kg	4/12/2024	15:25
3&4-Methylphenol	< 342	ug/Kg	4/12/2024	15:25
3,3'-Dichlorobenzidine	< 342	ug/Kg	4/12/2024	15:25

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

3-Nitroaniline	< 342	ug/Kg	4/12/2024	15:25
4,6-Dinitro-2-methylphenol	< 684	ug/Kg	4/12/2024	15:25
4-Bromophenyl phenyl ether	< 342	ug/Kg	4/12/2024	15:25
4-Chloro-3-methylphenol	< 342	ug/Kg	4/12/2024	15:25
4-Chloroaniline	< 342	ug/Kg	4/12/2024	15:25
4-Chlorophenyl phenyl ether	< 342	ug/Kg	4/12/2024	15:25
4-Nitroaniline	< 342	ug/Kg	4/12/2024	15:25
4-Nitrophenol	< 342	ug/Kg	4/12/2024	15:25
Acenaphthene	< 342	ug/Kg	4/12/2024	15:25
Acenaphthylene	< 342	ug/Kg	4/12/2024	15:25
Acetophenone	< 342	ug/Kg	4/12/2024	15:25
Anthracene	< 342	ug/Kg	4/12/2024	15:25
Atrazine	< 342	ug/Kg	4/12/2024	15:25
Benzaldehyde	< 342	ug/Kg	4/12/2024	15:25
Benzo (a) anthracene	< 342	ug/Kg	4/12/2024	15:25
Benzo (a) pyrene	< 342	ug/Kg	4/12/2024	15:25
Benzo (b) fluoranthene	< 342	ug/Kg	4/12/2024	15:25
Benzo (g,h,i) perylene	< 342	ug/Kg	4/12/2024	15:25
Benzo (k) fluoranthene	< 342	ug/Kg	4/12/2024	15:25
Bis (2-chloroethoxy) methane	< 342	ug/Kg	4/12/2024	15:25
Bis (2-chloroethyl) ether	< 342	ug/Kg	4/12/2024	15:25
Bis (2-ethylhexyl) phthalate	< 342	ug/Kg	4/12/2024	15:25
Butylbenzylphthalate	< 342	ug/Kg	4/12/2024	15:25
Caprolactam	< 342	ug/Kg	4/12/2024	15:25
Carbazole	< 342	ug/Kg	4/12/2024	15:25
Chrysene	< 342	ug/Kg	4/12/2024	15:25
Dibenz (a,h) anthracene	< 342	ug/Kg	4/12/2024	15:25
Dibenzofuran	< 342	ug/Kg	4/12/2024	15:25
Diethyl phthalate	< 342	ug/Kg	4/12/2024	15:25

Dimethyl phthalate < 342 ug/Kg 4/12/2024 15:25

Lab Project ID: 241564

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

c	mogata	Dorgont D	OCOTIONII	Limite	Outlions	Data Analy	zod
]	Pyrene	< 342	ug/Kg			4/12/2024	15:25
]	Phenol	< 342	ug/Kg			4/12/2024	15:25
]	Phenanthrene	< 342	ug/Kg			4/12/2024	15:25
]	Pentachlorophenol	< 684	ug/Kg			4/12/2024	15:25
]	N-Nitrosodiphenylamine	< 342	ug/Kg			4/12/2024	15:25
]	N-Nitroso-di-n-propylamine	< 342	ug/Kg			4/12/2024	15:25
]	Nitrobenzene	< 342	ug/Kg			4/12/2024	15:25
]	Naphthalene	< 342	ug/Kg			4/12/2024	15:25
]	Isophorone	< 342	ug/Kg			4/12/2024	15:25
]	Indeno (1,2,3-cd) pyrene	< 342	ug/Kg			4/12/2024	15:25
]	Hexachloroethane	< 342	ug/Kg			4/12/2024	15:25
]	Hexachlorocyclopentadiene	< 1370	ug/Kg			4/12/2024	15:25
]	Hexachlorobutadiene	< 342	ug/Kg			4/12/2024	15:25
]	Hexachlorobenzene	< 342	ug/Kg			4/12/2024	15:25
]	Fluorene	< 342	ug/Kg			4/12/2024	15:25
]	Fluoranthene	< 342	ug/Kg			4/12/2024	15:25
]	Di-n-octylphthalate	< 342	ug/Kg			4/12/2024	15:25
]	Di-n-butyl phthalate	< 342	ug/Kg			4/12/2024	15:25

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	<u>Date An</u>	<u>alyzed</u>
2,4,6-Tribromophenol	35.4	35.1 - 95.9		4/12/2024	15:25
2-Fluorobiphenyl	36.0	10 - 156		4/12/2024	15:25
2-Fluorophenol	37.6	36 - 81.3		4/12/2024	15:25
Nitrobenzene-d5	18.4	31.5 - 83.8	*	4/12/2024	15:25
Phenol-d5	36.5	37.7 - 84	*	4/12/2024	15:25
Terphenyl-d14	40.2	40.5 - 99.5	*	4/12/2024	15:25

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 4/12/2024

 Data File:
 B70815.D

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 9.70	ug/Kg		4/15/2024 13:41
1,1,2,2-Tetrachloroethane	< 9.70	ug/Kg		4/15/2024 13:41
1,1,2-Trichloroethane	< 9.70	ug/Kg		4/15/2024 13:41
1,1-Dichloroethane	< 9.70	ug/Kg		4/15/2024 13:41
1,1-Dichloroethene	< 9.70	ug/Kg		4/15/2024 13:41
1,2,3-Trichlorobenzene	< 24.3	ug/Kg		4/15/2024 13:41
1,2,4-Trichlorobenzene	< 24.3	ug/Kg		4/15/2024 13:41
1,2,4-Trimethylbenzene	< 9.70	ug/Kg		4/15/2024 13:41
1,2-Dibromo-3-Chloropropane	< 48.5	ug/Kg		4/15/2024 13:41
1,2-Dibromoethane	< 9.70	ug/Kg		4/15/2024 13:41
1,2-Dichlorobenzene	< 9.70	ug/Kg		4/15/2024 13:41
1,2-Dichloroethane	< 9.70	ug/Kg		4/15/2024 13:41
1,2-Dichloropropane	< 9.70	ug/Kg		4/15/2024 13:41
1,3,5-Trimethylbenzene	< 9.70	ug/Kg		4/15/2024 13:41
1,3-Dichlorobenzene	< 9.70	ug/Kg		4/15/2024 13:41
1,4-Dichlorobenzene	< 9.70	ug/Kg		4/15/2024 13:41
1,4-Dioxane	< 48.5	ug/Kg		4/15/2024 13:41
2-Butanone	< 48.5	ug/Kg		4/15/2024 13:41
2-Hexanone	< 24.3	ug/Kg		4/15/2024 13:41
4-Methyl-2-pentanone	< 24.3	ug/Kg		4/15/2024 13:41
Acetone	< 48.5	ug/Kg		4/15/2024 13:41
Benzene	< 9.70	ug/Kg		4/15/2024 13:41
Bromochloromethane	< 24.3	ug/Kg		4/15/2024 13:41
Bromodichloromethane	< 9.70	ug/Kg		4/15/2024 13:41
Bromoform	< 24.3	ug/Kg		4/15/2024 13:41
Bromomethane	< 9.70	ug/Kg		4/15/2024 13:41

 Carbon disulfide
 < 9.70</td>
 ug/Kg
 4/15/2024
 13:41

 Carbon Tetrachloride
 < 9.70</td>
 ug/Kg
 4/15/2024
 13:41

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

Chlorobenzene	< 9.70	ug/Kg	4/15/2024	13:41
Chloroethane	< 9.70	ug/Kg	4/15/2024	13:41
Chloroform	< 9.70	ug/Kg	4/15/2024	13:41
Chloromethane	< 9.70	ug/Kg	4/15/2024	13:41
cis-1,2-Dichloroethene	< 9.70	ug/Kg	4/15/2024	13:41
cis-1,3-Dichloropropene	< 9.70	ug/Kg	4/15/2024	13:41
Cyclohexane	< 48.5	ug/Kg	4/15/2024	13:41
Dibromochloromethane	< 9.70	ug/Kg	4/15/2024	13:41
Dichlorodifluoromethane	< 9.70	ug/Kg	4/15/2024	13:41
Ethylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
Freon 113	< 9.70	ug/Kg	4/15/2024	13:41
Isopropylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
m,p-Xylene	< 9.70	ug/Kg	4/15/2024	13:41
Methyl acetate	< 9.70	ug/Kg	4/15/2024	13:41
Methyl tert-butyl Ether	< 9.70	ug/Kg	4/15/2024	13:41
Methylcyclohexane	< 9.70	ug/Kg	4/15/2024	13:41
Methylene chloride	< 24.3	ug/Kg	4/15/2024	13:41
Naphthalene	< 24.3	ug/Kg	4/15/2024	13:41
n-Butylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
n-Propylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
o-Xylene	< 9.70	ug/Kg	4/15/2024	13:41
p-Isopropyltoluene	< 9.70	ug/Kg	4/15/2024	13:41
sec-Butylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
Styrene	< 24.3	ug/Kg	4/15/2024	13:41
tert-Butylbenzene	< 9.70	ug/Kg	4/15/2024	13:41
Tetrachloroethene	< 9.70	ug/Kg	4/15/2024	13:41
Toluene	< 9.70	ug/Kg	4/15/2024	13:41
trans-1,2-Dichloroethene	< 9.70	ug/Kg	4/15/2024	13:41
trans-1,3-Dichloropropene	< 9.70	ug/Kg	4/15/2024	13:41

 Lab Project ID:
 241564

 Trichloroethene
 < 9.70</td>
 ug/Kg
 4/15/2024
 13:41

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: BH-5

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024 9:40

Matrix: Soil Date Received 4/10/2024

Trichlorofluoromethane	< 9.70	ug/Kg	4/15/2024 13:41
Vinyl chloride	< 9.70	ug/Kg	4/15/2024 13:41

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4	104	72.3 - 128		4/15/2024	13:41
4-Bromofluorobenzene	95.7	70 - 123		4/15/2024	13:41
Pentafluorobenzene	99.5	80.7 - 124		4/15/2024	13:41
Toluene-D8	98.8	82.1 - 121		4/15/2024	13:41

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z23575.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

<u>Mercury</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury	0.0318	mg/Kg		4/16/2024 09:12
Method Reference(s):	EPA 7471B			
Prenaration Date:	4/15/2024			

RCRA Metals (ICP)

Data File:

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	21.8	mg/Kg		4/15/2024 07:43
Barium	91.6	mg/Kg		4/15/2024 07:43
Cadmium	1.74	mg/Kg		4/15/2024 07:43
Chromium	479	mg/Kg		4/15/2024 07:43
Lead	82.0	mg/Kg		4/15/2024 07:43
Selenium	6.37	mg/Kg		4/15/2024 07:43
Silver	0.625	mg/Kg		4/15/2024 07:43

Method Reference(s): EPA 6010C

EPA 3050B

Hg240416A

Preparation Date: 4/11/2024 **Data File:** 240415A

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
PCB-1016	< 0.156	mg/Kg		4/12/2024 00:48
PCB-1221	< 0.156	mg/Kg		4/12/2024 00:48
PCB-1232	< 0.156	mg/Kg		4/12/2024 00:48
PCB-1242	< 0.156	mg/Kg		4/12/2024 00:48

PCB-1248	< 0.156	mg/Kg	4/12/2024	00:48
PCB-1254	0.439	mg/Kg	4/12/2024	00:48
PCB-1260	< 0.156	mg/Kg	4/12/2024	00:48
PCB-1262	< 0.156	mg/Kg	4/12/2024	00:48
PCB-1268	< 0.156	mg/Kg	4/12/2024	00:48

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

SurrogatePercent RecoveryLimitsOutliersDate AnalyzedTetrachloro-m-xylene62.210 - 1104/12/202400:48

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 4/11/2024

<u>Semi-Volatile Organics (Acid/Base Neutrals)</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1-Biphenyl	< 318	ug/Kg		4/12/2024 15:55
1,2,4,5-Tetrachlorobenzene	< 318	ug/Kg		4/12/2024 15:55
1,2,4-Trichlorobenzene	< 318	ug/Kg		4/12/2024 15:55
1,2-Dichlorobenzene	< 318	ug/Kg		4/12/2024 15:55
1,3-Dichlorobenzene	< 318	ug/Kg		4/12/2024 15:55
1,4-Dichlorobenzene	< 318	ug/Kg		4/12/2024 15:55
2,2-Oxybis (1-chloropropane)	< 318	ug/Kg		4/12/2024 15:55
2,3,4,6-Tetrachlorophenol	< 318	ug/Kg		4/12/2024 15:55
2,4,5-Trichlorophenol	< 318	ug/Kg		4/12/2024 15:55
2,4,6-Trichlorophenol	< 318	ug/Kg		4/12/2024 15:55
2,4-Dichlorophenol	< 318	ug/Kg		4/12/2024 15:55
2,4-Dimethylphenol	< 318	ug/Kg		4/12/2024 15:55
2,4-Dinitrophenol	< 1270	ug/Kg		4/12/2024 15:55
2,4-Dinitrotoluene	< 318	ug/Kg		4/12/2024 15:55
2,6-Dinitrotoluene	< 318	ug/Kg		4/12/2024 15:55
2-Chloronaphthalene	< 318	ug/Kg		4/12/2024 15:55
2-Chlorophenol	< 318	ug/Kg		4/12/2024 15:55
2-Methylnapthalene	< 318	ug/Kg		4/12/2024 15:55
2-Methylphenol	< 318	ug/Kg		4/12/2024 15:55
2-Nitroaniline	< 318	ug/Kg		4/12/2024 15:55

2-Nitrophenol	< 318	ug/Kg	4/12/2024 15:55
3&4-Methylphenol	< 318	ug/Kg	4/12/2024 15:55
3,3'-Dichlorobenzidine	< 318	ug/Kg	4/12/2024 15:55

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

3-Nitroaniline	< 318	ug/Kg	4/12/2024	15:55
4,6-Dinitro-2-methylphenol	< 636	ug/Kg	4/12/2024	15:55
4-Bromophenyl phenyl ether	< 318	ug/Kg	4/12/2024	15:55
4-Chloro-3-methylphenol	< 318	ug/Kg	4/12/2024	15:55
4-Chloroaniline	< 318	ug/Kg	4/12/2024	15:55
4-Chlorophenyl phenyl ether	< 318	ug/Kg	4/12/2024	15:55
4-Nitroaniline	< 318	ug/Kg	4/12/2024	15:55
4-Nitrophenol	< 318	ug/Kg	4/12/2024	15:55
Acenaphthene	< 318	ug/Kg	4/12/2024	15:55
Acenaphthylene	< 318	ug/Kg	4/12/2024	15:55
Acetophenone	< 318	ug/Kg	4/12/2024	15:55
Anthracene	< 318	ug/Kg	4/12/2024	15:55
Atrazine	< 318	ug/Kg	4/12/2024	15:55
Benzaldehyde	< 318	ug/Kg	4/12/2024	15:55
Benzo (a) anthracene	< 318	ug/Kg	4/12/2024	15:55
Benzo (a) pyrene	< 318	ug/Kg	4/12/2024	15:55
Benzo (b) fluoranthene	< 318	ug/Kg	4/12/2024	15:55
Benzo (g,h,i) perylene	< 318	ug/Kg	4/12/2024	15:55
Benzo (k) fluoranthene	< 318	ug/Kg	4/12/2024	15:55
Bis (2-chloroethoxy) methane	< 318	ug/Kg	4/12/2024	15:55
Bis (2-chloroethyl) ether	< 318	ug/Kg	4/12/2024	15:55
Bis (2-ethylhexyl) phthalate	< 318	ug/Kg	4/12/2024	15:55
Butylbenzylphthalate	< 318	ug/Kg	4/12/2024	15:55
Caprolactam	< 318	ug/Kg	4/12/2024	15:55
Carbazole	< 318	ug/Kg	4/12/2024	15:55
Chrysene	< 318	ug/Kg	4/12/2024	15:55
Dibenz (a,h) anthracene	< 318	ug/Kg	4/12/2024	15:55
Dibenzofuran	< 318	ug/Kg	4/12/2024	15:55
Diethyl phthalate	< 318	ug/Kg	4/12/2024	15:55

Lab Project ID: 241564

Dimethyl phthalate < 318 ug/Kg 4/12/2024 15:55

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

_				· · · ·	0.41		
	Pyrene	347	ug/Kg			4/12/2024	15:55
	Phenol	< 318	ug/Kg			4/12/2024	15:55
	Phenanthrene	< 318	ug/Kg			4/12/2024	15:55
	Pentachlorophenol	< 636	ug/Kg			4/12/2024	15:55
	N-Nitrosodiphenylamine	< 318	ug/Kg			4/12/2024	15:55
	N-Nitroso-di-n-propylamine	< 318	ug/Kg			4/12/2024	15:55
	Nitrobenzene	< 318	ug/Kg			4/12/2024	15:55
	Naphthalene	< 318	ug/Kg			4/12/2024	15:55
	Isophorone	< 318	ug/Kg			4/12/2024	15:55
	Indeno (1,2,3-cd) pyrene	698	ug/Kg			4/12/2024	15:55
	Hexachloroethane	< 318	ug/Kg			4/12/2024	15:55
	Hexachlorocyclopentadiene	< 1270	ug/Kg			4/12/2024	15:55
	Hexachlorobutadiene	< 318	ug/Kg			4/12/2024	15:55
	Hexachlorobenzene	< 318	ug/Kg			4/12/2024	15:55
	Fluorene	< 318	ug/Kg			4/12/2024	15:55
	Fluoranthene	325	ug/Kg			4/12/2024	15:55
	Di-n-octylphthalate	< 318	ug/Kg			4/12/2024	15:55
	Di-n-butyl phthalate	< 318	ug/Kg			4/12/2024	15:55

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
2,4,6-Tribromophenol	7.20	35.1 - 95.9	*	4/12/2024	15:55	
2-Fluorobiphenyl	37.1	10 - 156		4/12/2024	15:55	
2-Fluorophenol	19.9	36 - 81.3	*	4/12/2024	15:55	
Nitrobenzene-d5	27.1	31.5 - 83.8	*	4/12/2024	15:55	
Phenol-d5	28.0	37.7 - 84	*	4/12/2024	15:55	
Terphenyl-d14	53.3	40.5 - 99.5		4/12/2024	15:55	

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 4/12/2024

 Data File:
 B70816.D

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 7.88	ug/Kg		4/15/2024 14:01
1,1,2,2-Tetrachloroethane	< 7.88	ug/Kg		4/15/2024 14:01
1,1,2-Trichloroethane	< 7.88	ug/Kg		4/15/2024 14:01
1,1-Dichloroethane	< 7.88	ug/Kg		4/15/2024 14:01
1,1-Dichloroethene	< 7.88	ug/Kg		4/15/2024 14:01
1,2,3-Trichlorobenzene	< 19.7	ug/Kg		4/15/2024 14:01
1,2,4-Trichlorobenzene	< 19.7	ug/Kg		4/15/2024 14:01
1,2,4-Trimethylbenzene	< 7.88	ug/Kg		4/15/2024 14:01
1,2-Dibromo-3-Chloropropane	< 39.4	ug/Kg		4/15/2024 14:01
1,2-Dibromoethane	< 7.88	ug/Kg		4/15/2024 14:01
1,2-Dichlorobenzene	< 7.88	ug/Kg		4/15/2024 14:01
1,2-Dichloroethane	< 7.88	ug/Kg		4/15/2024 14:01
1,2-Dichloropropane	< 7.88	ug/Kg		4/15/2024 14:01
1,3,5-Trimethylbenzene	< 7.88	ug/Kg		4/15/2024 14:01
1,3-Dichlorobenzene	< 7.88	ug/Kg		4/15/2024 14:01
1,4-Dichlorobenzene	< 7.88	ug/Kg		4/15/2024 14:01
1,4-Dioxane	< 39.4	ug/Kg		4/15/2024 14:01
2-Butanone	< 39.4	ug/Kg		4/15/2024 14:01
2-Hexanone	< 19.7	ug/Kg		4/15/2024 14:01
4-Methyl-2-pentanone	< 19.7	ug/Kg		4/15/2024 14:01
Acetone	< 39.4	ug/Kg		4/15/2024 14:01
Benzene	< 7.88	ug/Kg		4/15/2024 14:01
Bromochloromethane	< 19.7	ug/Kg		4/15/2024 14:01
Bromodichloromethane	< 7.88	ug/Kg		4/15/2024 14:01
Bromoform	< 19.7	ug/Kg		4/15/2024 14:01
Bromomethane	< 7.88	ug/Kg		4/15/2024 14:01

 Carbon disulfide
 < 7.88</td>
 ug/Kg
 4/15/2024
 14:01

 Carbon Tetrachloride
 < 7.88</td>
 ug/Kg
 4/15/2024
 14:01

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

Chlorobenzene	< 7.88	ug/Kg	4/15/2024	14:01
Chloroethane	< 7.88	ug/Kg	4/15/2024	14:01
Chloroform	< 7.88	ug/Kg	4/15/2024	14:01
Chloromethane	< 7.88	ug/Kg	4/15/2024	14:01
cis-1,2-Dichloroethene	< 7.88	ug/Kg	4/15/2024	14:01
cis-1,3-Dichloropropene	< 7.88	ug/Kg	4/15/2024	14:01
Cyclohexane	< 39.4	ug/Kg	4/15/2024	14:01
Dibromochloromethane	< 7.88	ug/Kg	4/15/2024	14:01
Dichlorodifluoromethane	< 7.88	ug/Kg	4/15/2024	14:01
Ethylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
Freon 113	< 7.88	ug/Kg	4/15/2024	14:01
Isopropylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
m,p-Xylene	< 7.88	ug/Kg	4/15/2024	14:01
Methyl acetate	< 7.88	ug/Kg	4/15/2024	14:01
Methyl tert-butyl Ether	< 7.88	ug/Kg	4/15/2024	14:01
Methylcyclohexane	< 7.88	ug/Kg	4/15/2024	14:01
Methylene chloride	< 19.7	ug/Kg	4/15/2024	14:01
Naphthalene	< 19.7	ug/Kg	4/15/2024	14:01
n-Butylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
n-Propylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
o-Xylene	< 7.88	ug/Kg	4/15/2024	14:01
p-Isopropyltoluene	< 7.88	ug/Kg	4/15/2024	14:01
sec-Butylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
Styrene	< 19.7	ug/Kg	4/15/2024	14:01
tert-Butylbenzene	< 7.88	ug/Kg	4/15/2024	14:01
Tetrachloroethene	< 7.88	ug/Kg	4/15/2024	14:01
Toluene	< 7.88	ug/Kg	4/15/2024	14:01
trans-1,2-Dichloroethene	< 7.88	ug/Kg	4/15/2024	14:01
trans-1,3-Dichloropropene	< 7.88	ug/Kg	4/15/2024	14:01

Trichloroethene **11.0** ug/Kg 4/15/2024 14:01

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241564-02 **Date Sampled:** 4/9/2024 11:05

Matrix: Soil Date Received 4/10/2024

Trichlorofluoromethane	< 7.88	ug/Kg	4/15/2024 14:01
Vinyl chloride	< 7.88	ug/Kg	4/15/2024 14:01

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
1,2-Dichloroethane-d4	102	72.3 - 128		4/15/2024	14:01	
4-Bromofluorobenzene	83.6	70 - 123		4/15/2024	14:01	
Pentafluorobenzene	101	80.7 - 124		4/15/2024	14:01	
Toluene-D8	97.1	82.1 - 121		4/15/2024	14:01	

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z23576.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Method Blank Report

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Lab Project ID: 241564

Matrix: Soil

Mercury

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Mercury <0.00723 mg/Kg 4/16/2024 08:57

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Data File:Hg240416AQC Batch ID:QC240415Hgsoil

QC Number: Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Lab Project ID: 241564

Matrix: Soil

Mercury

	<u>LCS</u>	<u>LCSD</u>	<u>Spike</u>	<u>LCS</u>	<u>LCSD</u>	LCS %	LCSD %	% Rec	<u>LCS</u>	<u>LCSD</u>	Relative %	<u>RPD</u>	<u>RPD</u>	<u>Date</u>
<u>Analyte</u>	<u>Added</u>	<u>Added</u>	<u>Units</u>	Result	<u>Result</u>	Recovery	Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Outliers</u>	<u>Difference</u>	<u>Limit</u>	<u>Outliers</u>	<u>Analyzed</u>
Mercury	0.0742	0.0791	mg/Kg	0.0720	0.0766	97.1	96.9	80 - 120			0.234	20		4/16/2024

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Data File:Hg240416A

QC Number:

QC Batch ID: QC240415Hgsoil

compliance with the sample condition requirements upon receip	pt.	

QC Report for Sample Spike and Sample Duplicate

Client: Ravi Engineering & Land Surveying, P.C. Lab Project ID: 241564

Project Reference: 631 Northland

Lab Sample ID: 241564-01 **Date Sampled:** 4/9/2024

Sample Identifier: BH-5
Matrix: Soil

Date Received: 4/10/2024

Mercury

<u>Analyte</u>	<u>Sample</u> <u>Results</u>	<u>Result</u> <u>Units</u>	<u>Spike</u> <u>Added</u>	<u>Spike</u> <u>Result</u>	Spike % Recovery	% Rec Limits	<u>Spike</u> Outliers		Relative % Difference	<u>RPD</u> <u>Limit</u>	RPD Outliers	<u>Date</u> <u>Analyzed</u>
Mercury	0.106	mg/Kg	0.105	0.162	53.3	75 - 125	*	0.121	13.4	20		4/16/2024

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Hg240416AQC240415Hgsoil

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resultin from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides

additional sample information, including compliance with the sample condition requirements upon receipt.

CHAIN OF CUSTODY

_ REPORT TO: INVOICE TO:

DA DADI CM			
PA-RADI GM	COMPAN'II:	COMPANY: SAME	21rra(i)
	address:	ADDRESS:	<u> </u>
ENVIRONMENTAL SERVICES	CITY: STATE: ZIP:	CITY: STATE: ZIP:	Quotation#: M _<:. v \ I
	PHONC: FAA:	PHONE: FAX:	Email:
PROJECT REFERENCE	An traff o	ATTN:	PMi;;i<-\-o-0@ (\U\ et
(0 \	Matrix Codes:		
<i>of t'r\\;/</i> nd	AQ - Aqueous Liquid WA-Water NQ - Non-Aqueous Liquid WG - Goundwat	OW - Dlinking Water SC-Soll ter WY - Wastewater SL- Studge REQUESTEDNAL YS S	SD -Solid WP-Wipe OL-Oil PT- Paint CK-Caulk AR-Air
C 0	MC	N C I 2 I.J 1	
M G P R	AO	BT J-AU O A	PARADIGM LAB
COLLECTED S A B	SAMPLE IDENTIFIER R E	R I J	NUMBER
T		OE P P P	
c\-9 4 = 1\(\(\Y\\\\)	XAL-1-5 <;0	al, J 11,1 'h. t h	'D -\V-\ .
-9;)4 \\:bh	MV\.1-6 7,0	3 J J J J J - r.o.	Z.i.,+ -rei Vbr's C i'n,,c)
-3,)- (()	1010 (. 1 0		1 c:::;_ÿ(:Cc (&?-"\1::>")
			, D. ,N"\ e{;(5
	·	- CJr	<i>C:;</i> "

Turnaround	Time	Re	port Supp	olements		4.11	
Availabilit	y continge	nt upon lab approva	al; additional f	fees may apply.	,	<u>\.)')V\\-t,["\:(</u>	
Standard 5 day	est'	None Required	d	None Required	5Zf'	1 4 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D
10 day	D	Batch QC	D	Basic EDD	D	ReUnited Shold Fly 1 Data: Jr[D 11 L 91.E.	
Rush 3 day	D	Category A	D	NYSDEC EDD	D	1911	
Rush 2 day	D	Category B	D			Contrade 1 HIMADA 4 1 10 174 11	
Rush 1 day						Received @ Lab By	
Other 1 please indicate dale needed:	D	Other please Indicate package ne	eeded:	Other EDD !Please indicale EDD r	D needed :	1 C LUCA TILOT BL " TV	
		Ī		Ī			

Chain o,.f Custody Supplement

Client:		Ran	Completed by:	the long
Lab Project I	D:	<u>14\</u>	Date:	10/104
			dition Requirements AP 210/241/242/243/244	
Condition		NELAC compliance with the same Yes	ple condition requirements upon rece No	ipt NIA
Container Type			5035	
	Comments	_		
Transferred to m				
Headspace (<1 mL)	Comments		<u> </u>	
Preservation	Comments		<u> </u>	<u>z Vr</u>
Chlorine Absent (<0.10 ppm per			<u></u>	
Holding Time	Comments	:::b		
Temperature	Comments	<u> J2:?</u> ((:){ -Jr J		Defals (except,
Compliant Sam	ple Quantity/Ty	$\sqrt{2}\mathcal{V}$		

Analytical Report For

Ravi Engineering & Land Surveying, P.C.

For Lab Project ID

241584

Referencing

631 Northland Ave Buffalo NY

Prepared

Wednesday, April 17, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland Ave Buffalo NY

Sample Identifier: BH2-2'-3'

Lab Sample ID: 241584-01 **Date Sampled:** 4/10/2024 10:00

Matrix: Soil Date Received 4/10/2024

<u>Mercurv</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Mercury	0.0382	mg/Kg		4/16/2024 09:16

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Data File:Hg240416A

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	8.07	mg/Kg		4/15/2024 07:49
Barium	160	mg/Kg		4/15/2024 07:49
Cadmium	1.06	mg/Kg		4/15/2024 07:49
Chromium	29.3	mg/Kg		4/15/2024 07:49
Lead	15.5	mg/Kg		4/15/2024 07:49
Selenium	< 1.26	mg/Kg		4/15/2024 07:49
Silver	< 0.628	mg/Kg		4/15/2024 07:49

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 4/11/2024 Data File: 240415A

PCBs

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
PCB-1016	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1221	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1232	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1242	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1248	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1254	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1260	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1262	< 0.169	mg/Kg		4/12/2024 01:01
PCB-1268	< 0.169	mg/Kg		4/12/2024 01:01

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland Ave Buffalo NY

Sample Identifier: BH2-2'-3'

Lab Sample ID: 241584-01 **Date Sampled:** 4/10/2024 10:00

Matrix: Soil Date Received 4/10/2024

SurrogatePercent RecoveryLimitsOutliersDate AnalyzedTetrachloro-m-xylene40.910 - 1104/12/202401:01

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 4/11/2024

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1-Biphenyl	< 347	ug/Kg		4/12/2024 16:25
1,2,4,5-Tetrachlorobenzene	< 347	ug/Kg		4/12/2024 16:25
1,2,4-Trichlorobenzene	< 347	ug/Kg		4/12/2024 16:25
1,2-Dichlorobenzene	< 347	ug/Kg		4/12/2024 16:25
1,3-Dichlorobenzene	< 347	ug/Kg		4/12/2024 16:25
1,4-Dichlorobenzene	< 347	ug/Kg		4/12/2024 16:25
2,2-Oxybis (1-chloropropane)	< 347	ug/Kg		4/12/2024 16:25
2,3,4,6-Tetrachlorophenol	< 347	ug/Kg		4/12/2024 16:25
2,4,5-Trichlorophenol	< 347	ug/Kg		4/12/2024 16:25
2,4,6-Trichlorophenol	< 347	ug/Kg		4/12/2024 16:25
2,4-Dichlorophenol	< 347	ug/Kg		4/12/2024 16:25
2,4-Dimethylphenol	< 347	ug/Kg		4/12/2024 16:25
2,4-Dinitrophenol	< 1390	ug/Kg		4/12/2024 16:25
2,4-Dinitrotoluene	< 347	ug/Kg		4/12/2024 16:25
2,6-Dinitrotoluene	< 347	ug/Kg		4/12/2024 16:25
2-Chloronaphthalene	< 347	ug/Kg		4/12/2024 16:25
2-Chlorophenol	< 347	ug/Kg		4/12/2024 16:25
2-Methylnapthalene	< 347	ug/Kg		4/12/2024 16:25
2-Methylphenol	< 347	ug/Kg		4/12/2024 16:25
2-Nitroaniline	< 347	ug/Kg		4/12/2024 16:25
2-Nitrophenol	< 347	ug/Kg		4/12/2024 16:25
3&4-Methylphenol	< 347	ug/Kg		4/12/2024 16:25
3,3'-Dichlorobenzidine	< 347	ug/Kg		4/12/2024 16:25

Date Sampled: 4/10/2024

10:00

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland Ave Buffalo NY

Sample Identifier: BH2-2'-3' **Lab Sample ID:** 241584-01

Matrix: Soil Date Received 4/10/2024

3-Nitroaniline	< 347	ug/Kg	4/12/2024 16:25
4,6-Dinitro-2-methylphenol	< 694	ug/Kg	4/12/2024 16:25
4-Bromophenyl phenyl ether	< 347	ug/Kg	4/12/2024 16:25
4-Chloro-3-methylphenol	< 347	ug/Kg	4/12/2024 16:25
4-Chloroaniline	< 347	ug/Kg	4/12/2024 16:25
4-Chlorophenyl phenyl ether	< 347	ug/Kg	4/12/2024 16:25
4-Nitroaniline	< 347	ug/Kg	4/12/2024 16:25
4-Nitrophenol	< 347	ug/Kg	4/12/2024 16:25
Acenaphthene	< 347	ug/Kg	4/12/2024 16:25
Acenaphthylene	< 347	ug/Kg	4/12/2024 16:25
Acetophenone	< 347	ug/Kg	4/12/2024 16:25
Anthracene	< 347	ug/Kg	4/12/2024 16:25
Atrazine	< 347	ug/Kg	4/12/2024 16:25
Benzaldehyde	< 347	ug/Kg	4/12/2024 16:25
Benzo (a) anthracene	< 347	ug/Kg	4/12/2024 16:25
Benzo (a) pyrene	< 347	ug/Kg	4/12/2024 16:25
Benzo (b) fluoranthene	< 347	ug/Kg	4/12/2024 16:25
Benzo (g,h,i) perylene	< 347	ug/Kg	4/12/2024 16:25
Benzo (k) fluoranthene	< 347	ug/Kg	4/12/2024 16:25
Bis (2-chloroethoxy) methane	< 347	ug/Kg	4/12/2024 16:25
Bis (2-chloroethyl) ether	< 347	ug/Kg	4/12/2024 16:25
Bis (2-ethylhexyl) phthalate	< 347	ug/Kg	4/12/2024 16:25
Butylbenzylphthalate	< 347	ug/Kg	4/12/2024 16:25
Caprolactam	< 347	ug/Kg	4/12/2024 16:25
Carbazole	< 347	ug/Kg	4/12/2024 16:25
Chrysene	< 347	ug/Kg	4/12/2024 16:25
Dibenz (a,h) anthracene	< 347	ug/Kg	4/12/2024 16:25
Dibenzofuran	< 347	ug/Kg	4/12/2024 16:25
Diethyl phthalate	< 347	ug/Kg	4/12/2024 16:25
Dimethyl phthalate	< 347	ug/Kg	4/12/2024 16:25

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland Ave Buffalo NY

 Sample Identifier:
 BH2-2'-3'

 Lab Sample ID:
 241584-01

 Date Sampled: 4/10/2024
 10:00

Matrix: Soil Date Received 4/10/2024

Di-n-butyl phthalate	< 347	ug/Kg	4/12/2024 16:25
Di-n-octylphthalate	< 347	ug/Kg	4/12/2024 16:25
Fluoranthene	< 347	ug/Kg	4/12/2024 16:25
Fluorene	< 347	ug/Kg	4/12/2024 16:25
Hexachlorobenzene	< 347	ug/Kg	4/12/2024 16:25
Hexachlorobutadiene	< 347	ug/Kg	4/12/2024 16:25
Hexachlorocyclopentadiene	< 1390	ug/Kg	4/12/2024 16:25
Hexachloroethane	< 347	ug/Kg	4/12/2024 16:25
Indeno (1,2,3-cd) pyrene	< 347	ug/Kg	4/12/2024 16:25
Isophorone	< 347	ug/Kg	4/12/2024 16:25
Naphthalene	< 347	ug/Kg	4/12/2024 16:25
Nitrobenzene	< 347	ug/Kg	4/12/2024 16:25
N-Nitroso-di-n-propylamine	< 347	ug/Kg	4/12/2024 16:25
N-Nitrosodiphenylamine	< 347	ug/Kg	4/12/2024 16:25
Pentachlorophenol	< 694	ug/Kg	4/12/2024 16:25
Phenanthrene	< 347	ug/Kg	4/12/2024 16:25
Phenol	< 347	ug/Kg	4/12/2024 16:25
Pyrene	< 347	ug/Kg	4/12/2024 16:25

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	23.1	35.1 - 95.9	*	4/12/2024	16:25
2-Fluorobiphenyl	31.6	10 - 156		4/12/2024	16:25
2-Fluorophenol	34.0	36 - 81.3	*	4/12/2024	16:25
Nitrobenzene-d5	10.9	31.5 - 83.8	*	4/12/2024	16:25
Phenol-d5	29.9	37.7 - 84	*	4/12/2024	16:25
Terphenyl-d14	25.5	40.5 - 99.5	*	4/12/2024	16:25

Method Reference(s): EPA 8270D

EPA 3546 **Preparation Date:** 4/12/2024 **Data File:** B70817.D

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland Ave Buffalo NY

Sample Identifier: BH2-2'-3'

Lab Sample ID: 241584-01 **Date Sampled:** 4/10/2024 10:00

Matrix: Soil Date Received 4/10/2024

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 9.10	ug/Kg		4/15/2024 14:20
1,1,2,2-Tetrachloroethane	< 9.10	ug/Kg		4/15/2024 14:20
1,1,2-Trichloroethane	< 9.10	ug/Kg		4/15/2024 14:20
1,1-Dichloroethane	< 9.10	ug/Kg		4/15/2024 14:20
1,1-Dichloroethene	< 9.10	ug/Kg		4/15/2024 14:20
1,2,3-Trichlorobenzene	< 22.8	ug/Kg		4/15/2024 14:20
1,2,4-Trichlorobenzene	< 22.8	ug/Kg		4/15/2024 14:20
1,2,4-Trimethylbenzene	< 9.10	ug/Kg		4/15/2024 14:20
1,2-Dibromo-3-Chloropropane	< 45.5	ug/Kg		4/15/2024 14:20
1,2-Dibromoethane	< 9.10	ug/Kg		4/15/2024 14:20
1,2-Dichlorobenzene	< 9.10	ug/Kg		4/15/2024 14:20
1,2-Dichloroethane	< 9.10	ug/Kg		4/15/2024 14:20
1,2-Dichloropropane	< 9.10	ug/Kg		4/15/2024 14:20
1,3,5-Trimethylbenzene	< 9.10	ug/Kg		4/15/2024 14:20
1,3-Dichlorobenzene	< 9.10	ug/Kg		4/15/2024 14:20
1,4-Dichlorobenzene	< 9.10	ug/Kg		4/15/2024 14:20
1,4-Dioxane	< 45.5	ug/Kg		4/15/2024 14:20
2-Butanone	< 45.5	ug/Kg		4/15/2024 14:20
2-Hexanone	< 22.8	ug/Kg		4/15/2024 14:20
4-Methyl-2-pentanone	< 22.8	ug/Kg		4/15/2024 14:20
Acetone	< 45.5	ug/Kg		4/15/2024 14:20
Benzene	< 9.10	ug/Kg		4/15/2024 14:20
Bromochloromethane	< 22.8	ug/Kg		4/15/2024 14:20
Bromodichloromethane	< 9.10	ug/Kg		4/15/2024 14:20
Bromoform	< 22.8	ug/Kg		4/15/2024 14:20
Bromomethane	< 9.10	ug/Kg		4/15/2024 14:20
Carbon disulfide	< 9.10	ug/Kg		4/15/2024 14:20
Carbon Tetrachloride	< 9.10	ug/Kg		4/15/2024 14:20

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland Ave Buffalo NY

 Sample Identifier:
 BH2-2'-3'

 Lab Sample ID:
 241584-01

 Date Sampled: 4/10/2024
 10:00

Matrix: Soil Date Received 4/10/2024

viau ix: 5011			Date Received 4/10/2024
			
Chlorobenzene	< 9.10	ug/Kg	4/15/2024 14:20
Chloroethane	< 9.10	ug/Kg	4/15/2024 14:20
Chloroform	< 9.10	ug/Kg	4/15/2024 14:20
Chloromethane	< 9.10	ug/Kg	4/15/2024 14:20
cis-1,2-Dichloroethene	< 9.10	ug/Kg	4/15/2024 14:20
cis-1,3-Dichloropropene	< 9.10	ug/Kg	4/15/2024 14:20
Cyclohexane	< 45.5	ug/Kg	4/15/2024 14:20
Dibromochloromethane	< 9.10	ug/Kg	4/15/2024 14:20
Dichlorodifluoromethane	< 9.10	ug/Kg	4/15/2024 14:20
Ethylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
Freon 113	< 9.10	ug/Kg	4/15/2024 14:20
Isopropylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
m,p-Xylene	< 9.10	ug/Kg	4/15/2024 14:20
Methyl acetate	< 9.10	ug/Kg	4/15/2024 14:20
Methyl tert-butyl Ether	< 9.10	ug/Kg	4/15/2024 14:20
Methylcyclohexane	< 9.10	ug/Kg	4/15/2024 14:20
Methylene chloride	< 22.8	ug/Kg	4/15/2024 14:20
Naphthalene	< 22.8	ug/Kg	4/15/2024 14:20
n-Butylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
n-Propylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
o-Xylene	< 9.10	ug/Kg	4/15/2024 14:20
p-Isopropyltoluene	< 9.10	ug/Kg	4/15/2024 14:20
sec-Butylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
Styrene	< 22.8	ug/Kg	4/15/2024 14:20
tert-Butylbenzene	< 9.10	ug/Kg	4/15/2024 14:20
Tetrachloroethene	< 9.10	ug/Kg	4/15/2024 14:20
Toluene	< 9.10	ug/Kg	4/15/2024 14:20
trans-1,2-Dichloroethene	< 9.10	ug/Kg	4/15/2024 14:20
trans-1,3-Dichloropropene	< 9.10	ug/Kg	4/15/2024 14:20
Trichloroethene	< 9.10	ug/Kg	4/15/2024 14:20

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland Ave Buffalo NY

Sample Identifier: BH2-2'-3'

Lab Sample ID: 241584-01 **Date Sampled:** 4/10/2024 10:00

Matrix: Soil Date Received 4/10/2024

Trichlorofluoromethane	< 9.10	ug/Kg	4/15/2024 14:20
Vinyl chloride	< 9.10	ug/Kg	4/15/2024 14:20

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
1,2-Dichloroethane-d4	96.2	72.3 - 128		4/15/2024	14:20
4-Bromofluorobenzene	91.6	70 - 123		4/15/2024	14:20
Pentafluorobenzene	94.8	80.7 - 124		4/15/2024	14:20
Toluene-D8	95.7	82.1 - 121		4/15/2024	14:20

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z23577.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resultin from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

			REPOffTTO:					INVI!>	ICET0:					
PAR-A,D-	-1G-M	• 11 h	TETTAMIZEMIT	į, v į _S-1::l. I	ADDRES	'	SAME						4 1 5t4	
ENVIRONMENTAL			c:_}.p_	<i>tl l</i>	CITY:				STAT	E:	ZIP:	Quotation #:I	IV_a_r:-,!A	l(
		C TY IJ O,,,,- PHONE: S'{j	' - ' q / FAX:		PHONE:			F	4X:			Email: /- <i>e</i> , <i>q</i>	o/i €?	')
PROJECT REFI		ATTN: LYn	tl 2-,-rAr- I		ATTN:							ra.v TQ.:,		
b3r <i>North</i> I		, Matnx 1.:o	oes:									•	f/	
B-1A. #'1>-1 D	Ny		Aqueous Liquid Non-Aqueous Liquid	WA-Water WG - Groundw	ater		- Drinkir - Waste		er		-Soil Sludge		WP-Wipe CK-Caulk	OL-Oil AR-Air
						REQ	UE T	ED J	;NAL	iYSIS				
DATE COLLECTED TIME COLLECTE	C 0 M P G G R A A B I E		SAMPLE IDENTIFIER	MC AO TD RE S	NC U 0 MN BT EA R I N 0 E F R9	· q. Ü	V	, , q	4 ;	i., <::(REMARKS		PARADIGM LAB SAMPLE NUMBER
'-1-/0-21./ /0 /V	V	/_),.H- 2,	. "2.,' - 1	Sc	: >-	j <j< td=""><td></td><td>)</td><td>("</td><td>У</td><td></td><td></td><td></td><td>0/</td></j<>)	("	У				0/
			-											
														
				-			<u> </u>							
				1						. 🔻				•
Turnaround Time		Report Sup	•	f < y	\wedge		lf	- 0-	-v	- t.L.	I O(f7)			
Availability conting	ent upon Jab ap	oroval; additional	tees may apply.	Sampled By	1			, ,	Date	JTrmo	1 0(11)		_	
Standard 5 day	None Require	d D	None Required	PA	1	1	'1- i	/\ _	1	11	{t	<i>I</i> ()		
10 day	Batch QC	D	Basic EDD	Relinquished I	Ву					fTilfio	_ (*	1()		
Rush 3 day	Category A	D	NYSDEC EDD	\sim		\cap								
Rush 2 day		_		Received By	9	01	11	1/	Date	Time		Allalad		1
Tradit 2 day	Category 8	D		1 11/0/90	all	0	ds	1911	IL	h	~	410/24 11	1	J
Rush 1 day				Redived Q L	a b	B			Date	/Time	1.	11014		
Other $\overline{\mathbf{D}}$	Other	D	Other EDD D	Juni	h				7/	1012	۴ 🏲	1014 F, evers e).		
please indicate date needed:	please Indicate pad		please Indicate EDD needed :	Bust ai	Jo.	(m_{\cdot})	c1i	re'	7 P	liar	Te	(everye)		
				i can	,	, , , ,		1	. , .			_, _ , _ , _ , .	-	

Chain of Custody Supplement

Client:	-	ROWI	Completed by:	auth Mild
Lab Project ID	: <u>-</u>	141584	Date:	110/2024
		Sample Con Per NELAC/I	dition Requirements ELAP 210/241/242/243/244	
Condition		NELAC compliance with the sa Yes	mple condition requirements upon recei No	pt N/A
Container Type			\$ 5035	
	Comments			
Transferred to meth				
Headspace (<1 mL)	Comments			
Preservation	-			
	Comments			
Chlorine Absent (<0.10 ppm per to	est strip) Comments			1;?1
Holding Time	Comments	<u>;.±51</u>		
Temperature	Comments	16.2°C		I Notals (Propt Hg
Compliant Sample	e Quantity/Ty			
	Comments			

Analytical Report For

Ravi Engineering & Land Surveying, P.C.

For Lab Project ID

241607

Referencing

631 Northland

Prepared

Thursday, April 18, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	<u>Date Analyzed</u>
Mercury	0.0752	mg/Kg		4/16/2024 09:22

Method Reference(s):EPA 7471BPreparation Date:4/15/2024Data File:Hg240416A

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	4.32	mg/Kg		4/16/2024 07:12
Barium	111	mg/Kg		4/16/2024 07:12
Cadmium	1.05	mg/Kg		4/16/2024 07:12
Chromium	17.9	mg/Kg		4/16/2024 07:12
Lead	27.5	mg/Kg		4/16/2024 07:12
Selenium	2.52	mg/Kg	M	4/16/2024 07:12
Silver	< 0.570	mg/Kg		4/16/2024 07:12

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 4/12/2024 Data File: 240416A

PCBs

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
PCB-1016	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1221	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1232	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1242	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1248	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1254	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1260	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1262	< 0.155	mg/Kg		4/16/2024	05:06
PCB-1268	< 0.155	mg/Kg		4/16/2024	05:06

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

SurrogatePercent RecoveryLimitsOutliersDate AnalyzedTetrachloro-m-xylene62.910 - 1104/16/202405:06

Method Reference(s): EPA 8082A

EPA 3546

Preparation Date: 4/15/2024

Semi-Volatile Organics (Acid/Base Neutrals)

	4/12/2024 1 4/12/2024 1 4/12/2024 1	
		16:56
1,2,4,5-Tetrachlorobenzene < 323 ug/Kg	1./12/2021 1	20.00
1,2,4-Trichlorobenzene < 323 ug/Kg	7/12/2027 1	16:56
1,2-Dichlorobenzene < 323 ug/Kg	4/12/2024 1	16:56
1,3-Dichlorobenzene < 323 ug/Kg	4/12/2024 1	16:56
1,4-Dichlorobenzene < 323 ug/Kg	4/12/2024 1	16:56
2,2-Oxybis (1-chloropropane) < 323 ug/Kg	4/12/2024 1	16:56
2,3,4,6-Tetrachlorophenol < 323 ug/Kg	4/12/2024 1	16:56
2,4,5-Trichlorophenol < 323 ug/Kg	4/12/2024 1	16:56
2,4,6-Trichlorophenol < 323 ug/Kg	4/12/2024 1	16:56
2,4-Dichlorophenol < 323 ug/Kg	4/12/2024 1	16:56
2,4-Dimethylphenol < 323 ug/Kg	4/12/2024 1	16:56
2,4-Dinitrophenol < 1290 ug/Kg	4/12/2024 1	16:56
2,4-Dinitrotoluene < 323 ug/Kg	4/12/2024 1	16:56
2,6-Dinitrotoluene < 323 ug/Kg	4/12/2024 1	16:56
2-Chloronaphthalene < 323 ug/Kg	4/12/2024 1	16:56
2-Chlorophenol < 323 ug/Kg	4/12/2024 1	16:56
2-Methylnapthalene < 323 ug/Kg	4/12/2024 1	16:56
2-Methylphenol < 323 ug/Kg	4/12/2024 1	16:56
2-Nitroaniline < 323 ug/Kg	4/12/2024 1	16:56
2-Nitrophenol < 323 ug/Kg	4/12/2024 1	16:56
3&4-Methylphenol < 323 ug/Kg	4/12/2024 1	16:56
3,3'-Dichlorobenzidine < 323 ug/Kg	4/12/2024 1	16:56

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

3-Nitroaniline	< 323	ug/Kg	4/12/2024 16:56
4,6-Dinitro-2-methylphenol	< 647	ug/Kg	4/12/2024 16:56
4-Bromophenyl phenyl ether	< 323	ug/Kg	4/12/2024 16:56
4-Chloro-3-methylphenol	< 323	ug/Kg	4/12/2024 16:56
4-Chloroaniline	< 323	ug/Kg	4/12/2024 16:56
4-Chlorophenyl phenyl ether	< 323	ug/Kg	4/12/2024 16:56
4-Nitroaniline	< 323	-, -	, ,
	< 323	ug/Kg	4/12/2024 16:56
4-Nitrophenol		ug/Kg	4/12/2024 16:56
Acenaphthene	< 323	ug/Kg	4/12/2024 16:56
Acenaphthylene	< 323	ug/Kg	4/12/2024 16:56
Acetophenone	< 323	ug/Kg	4/12/2024 16:56
Anthracene	< 323	ug/Kg	4/12/2024 16:56
Atrazine	< 323	ug/Kg	4/12/2024 16:56
Benzaldehyde	< 323	ug/Kg	4/12/2024 16:56
Benzo (a) anthracene	< 323	ug/Kg	4/12/2024 16:56
Benzo (a) pyrene	< 323	ug/Kg	4/12/2024 16:56
Benzo (b) fluoranthene	< 323	ug/Kg	4/12/2024 16:56
Benzo (g,h,i) perylene	< 323	ug/Kg	4/12/2024 16:56
Benzo (k) fluoranthene	< 323	ug/Kg	4/12/2024 16:56
Bis (2-chloroethoxy) methane	< 323	ug/Kg	4/12/2024 16:56
Bis (2-chloroethyl) ether	< 323	ug/Kg	4/12/2024 16:56
Bis (2-ethylhexyl) phthalate	< 323	ug/Kg	4/12/2024 16:56
Butylbenzylphthalate	< 323	ug/Kg	4/12/2024 16:56
Caprolactam	< 323	ug/Kg	4/12/2024 16:56
Carbazole	< 323	ug/Kg	4/12/2024 16:56
Chrysene	< 323	ug/Kg	4/12/2024 16:56
Dibenz (a,h) anthracene	< 323	ug/Kg	4/12/2024 16:56
Dibenzofuran	< 323	ug/Kg	4/12/2024 16:56
Diethyl phthalate	< 323	ug/Kg	4/12/2024 16:56
Dimethyl phthalate	< 323	ug/Kg	4/12/2024 16:56

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

Di-n-butyl phthalate	< 323	ug/Kg	4/12/2024 16:56
Di-n-octylphthalate	< 323	ug/Kg	4/12/2024 16:56
Fluoranthene	< 323	ug/Kg	4/12/2024 16:56
Fluorene	< 323	ug/Kg	4/12/2024 16:56
Hexachlorobenzene	< 323	ug/Kg	4/12/2024 16:56
Hexachlorobutadiene	< 323	ug/Kg	4/12/2024 16:56
Hexachlorocyclopentadiene	< 1290	ug/Kg	4/12/2024 16:56
Hexachloroethane	< 323	ug/Kg	4/12/2024 16:56
Indeno (1,2,3-cd) pyrene	< 323	ug/Kg	4/12/2024 16:56
Isophorone	< 323	ug/Kg	4/12/2024 16:56
Naphthalene	< 323	ug/Kg	4/12/2024 16:56
Nitrobenzene	< 323	ug/Kg	4/12/2024 16:56
N-Nitroso-di-n-propylamine	< 323	ug/Kg	4/12/2024 16:56
N-Nitrosodiphenylamine	< 323	ug/Kg	4/12/2024 16:56
Pentachlorophenol	< 647	ug/Kg	4/12/2024 16:56
Phenanthrene	< 323	ug/Kg	4/12/2024 16:56
Phenol	< 323	ug/Kg	4/12/2024 16:56
Pyrene	< 323	ug/Kg	4/12/2024 16:56

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	34.5	35.1 - 95.9	*	4/12/2024	16:56
2-Fluorobiphenyl	39.7	10 - 156		4/12/2024	16:56
2-Fluorophenol	39.4	36 - 81.3		4/12/2024	16:56
Nitrobenzene-d5	38.5	31.5 - 83.8		4/12/2024	16:56
Phenol-d5	38.0	37.7 - 84		4/12/2024	16:56
Terphenyl-d14	41.6	40.5 - 99.5		4/12/2024	16:56

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 4/12/2024

 Data File:
 B70818.D

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	<u>Date Analyzed</u>
1,1,1-Trichloroethane	< 8.48	ug/Kg		4/15/2024 14:40
1,1,2,2-Tetrachloroethane	< 8.48	ug/Kg		4/15/2024 14:40
1,1,2-Trichloroethane	< 8.48	ug/Kg		4/15/2024 14:40
1,1-Dichloroethane	< 8.48	ug/Kg		4/15/2024 14:40
1,1-Dichloroethene	< 8.48	ug/Kg		4/15/2024 14:40
1,2,3-Trichlorobenzene	< 21.2	ug/Kg		4/15/2024 14:40
1,2,4-Trichlorobenzene	< 21.2	ug/Kg		4/15/2024 14:40
1,2,4-Trimethylbenzene	< 8.48	ug/Kg		4/15/2024 14:40
1,2-Dibromo-3-Chloropropane	< 42.4	ug/Kg		4/15/2024 14:40
1,2-Dibromoethane	< 8.48	ug/Kg		4/15/2024 14:40
1,2-Dichlorobenzene	< 8.48	ug/Kg		4/15/2024 14:40
1,2-Dichloroethane	< 8.48	ug/Kg		4/15/2024 14:40
1,2-Dichloropropane	< 8.48	ug/Kg		4/15/2024 14:40
1,3,5-Trimethylbenzene	< 8.48	ug/Kg		4/15/2024 14:40
1,3-Dichlorobenzene	< 8.48	ug/Kg		4/15/2024 14:40
1,4-Dichlorobenzene	< 8.48	ug/Kg		4/15/2024 14:40
1,4-Dioxane	< 42.4	ug/Kg		4/15/2024 14:40
2-Butanone	< 42.4	ug/Kg		4/15/2024 14:40
2-Hexanone	< 21.2	ug/Kg		4/15/2024 14:40
4-Methyl-2-pentanone	< 21.2	ug/Kg		4/15/2024 14:40
Acetone	< 42.4	ug/Kg		4/15/2024 14:40
Benzene	< 8.48	ug/Kg		4/15/2024 14:40
Bromochloromethane	< 21.2	ug/Kg		4/15/2024 14:40
Bromodichloromethane	< 8.48	ug/Kg		4/15/2024 14:40
Bromoform	< 21.2	ug/Kg		4/15/2024 14:40
Bromomethane	< 8.48	ug/Kg		4/15/2024 14:40
Carbon disulfide	< 8.48	ug/Kg		4/15/2024 14:40
Carbon Tetrachloride	< 8.48	ug/Kg		4/15/2024 14:40

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

Chlorobenzene	< 8.48	ug/Kg	4/15/2024 14:40
Chloroethane	< 8.48	ug/Kg	4/15/2024 14:40
Chloroform	< 8.48	ug/Kg	4/15/2024 14:40
Chloromethane	< 8.48	ug/Kg	4/15/2024 14:40
cis-1,2-Dichloroethene	< 8.48	ug/Kg	4/15/2024 14:40
cis-1,3-Dichloropropene	< 8.48	ug/Kg	4/15/2024 14:40
Cyclohexane	< 42.4	ug/Kg	4/15/2024 14:40
Dibromochloromethane	< 8.48	ug/Kg	4/15/2024 14:40
Dichlorodifluoromethane	< 8.48	ug/Kg	4/15/2024 14:40
Ethylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
Freon 113	< 8.48	ug/Kg	4/15/2024 14:40
Isopropylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
m,p-Xylene	< 8.48	ug/Kg	4/15/2024 14:40
Methyl acetate	< 8.48	ug/Kg	4/15/2024 14:40
Methyl tert-butyl Ether	< 8.48	ug/Kg	4/15/2024 14:40
Methylcyclohexane	< 8.48	ug/Kg	4/15/2024 14:40
Methylene chloride	< 21.2	ug/Kg	4/15/2024 14:40
Naphthalene	< 21.2	ug/Kg	4/15/2024 14:40
n-Butylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
n-Propylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
o-Xylene	< 8.48	ug/Kg	4/15/2024 14:40
p-Isopropyltoluene	< 8.48	ug/Kg	4/15/2024 14:40
sec-Butylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
Styrene	< 21.2	ug/Kg	4/15/2024 14:40
tert-Butylbenzene	< 8.48	ug/Kg	4/15/2024 14:40
Tetrachloroethene	< 8.48	ug/Kg	4/15/2024 14:40
Toluene	< 8.48	ug/Kg	4/15/2024 14:40
trans-1,2-Dichloroethene	< 8.48	ug/Kg	4/15/2024 14:40
trans-1,3-Dichloropropene	< 8.48	ug/Kg	4/15/2024 14:40
Trichloroethene	< 8.48	ug/Kg	4/15/2024 14:40

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241607-01 **Date Sampled:** 4/11/2024 9:30

Matrix: Soil Date Received 4/11/2024

Trichlorofluoromethane	< 8.48	ug/Kg	4/15/2024 14:40
Vinyl chloride	< 8.48	ug/Kg	4/15/2024 14:40

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>	
1,2-Dichloroethane-d4	102	72.3 - 128		4/15/2024	14:40	
4-Bromofluorobenzene	91.8	70 - 123		4/15/2024	14:40	
Pentafluorobenzene	98.4	80.7 - 124		4/15/2024	14:40	
Toluene-D8	100	82.1 - 121		4/15/2024	14:40	

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z23578.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Method Blank Report

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Lab Project ID: 241607

Matrix: Soil

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
Arsenic	< 0.459	mg/Kg		4/15/2024	10:23
Barium	<4.59	mg/Kg		4/15/2024	10:23
Cadmium	< 0.229	mg/Kg		4/15/2024	10:23
Chromium	< 0.459	mg/Kg		4/15/2024	10:23
Lead	< 0.459	mg/Kg		4/15/2024	10:23
Selenium	< 0.917	mg/Kg		4/15/2024	10:23
Silver	< 0.459	mg/Kg		4/15/2024	10:23

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date:4/12/2024Data File:240415AQC Batch ID:QC240412soil

QC Number: Blk 1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Client: <u>Ravi Engineering & Land Surveying, P.C.</u>

Project Reference: 631 Northland

Lab Project ID: 241607

Matrix: Soil

RCRA Metals (ICP)

	<u>LCS</u>	<u>LCSD</u>	<u>Spike</u>	<u>LCS</u>	<u>LCSD</u>	LCS %	LCSD %	% Rec	<u>LCS</u>	<u>LCSD</u>	Relative %	<u>RPD</u>	<u>RPD</u>	<u>Date</u>
<u>Analyte</u>	<u>Added</u>	<u>Added</u>	<u>Units</u>	<u>Result</u>	<u>Result</u>	Recovery	Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Outliers</u>	<u>Difference</u>	<u>Limit</u>	<u>Outliers</u>	Analyzed
Arsenic	124	120	mg/Kg	125	125	101	104	80 - 120			2.92	20		4/15/2024
Barium	124	120	mg/Kg	131	130	106	108	80 - 120			1.83	20		4/15/2024
Cadmium	49.5	48.1	mg/Kg	53.1	52.6	107	109	80 - 120			1.94	20		4/15/2024
Chromium	124	120	mg/Kg	124	123	100	102	80 - 120			1.82	20		4/15/2024
Lead	124	120	mg/Kg	132	131	107	109	80 - 120			1.86	20		4/15/2024
Selenium	124	120	mg/Kg	116	117	94.0	97.6	80 - 120			3.72	20		4/15/2024
Silver	12.4	12.0	mg/Kg	12.6	12.5	102	104	80 - 120			1.79	20		4/15/2024

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 4/12/2024 Data File: 240415A

QC Number:

QC Batch ID: QC240412soil

OC Report for Sample Spike and Sample Duplicate

Client: Ravi Engineering & Land Surveying, P.C. Lab Project ID: 241607

631 Northland **Project Reference:**

Date Sampled: 4/11/2024 Lab Sample ID: 241607-01

Sample Identifier: MW-1 **Date Received:** 4/11/2024 Soil

Matrix:

RCRA Metals (ICP)

	Sample	<u>Result</u>	<u>Spike</u>	<u>Spike</u>	Spike %	% Rec	<u>Spike</u>	<u>Duplicate</u>	Relative %	<u>RPD</u>	<u>RPD</u>	<u>Date</u>
<u>Analyte</u>	<u>Results</u>	<u>Units</u>	<u>Added</u>	<u>Result</u>	<u>Recovery</u>	<u>Limits</u>	<u>Outliers</u>	<u>Result</u>	<u>Difference</u>	<u>Limit</u>	<u>Outliers</u>	<u>Analyzed</u>
Α .	4.00	/17	140	125	01.0	7F 40F		2.00	0.24	20		4 /4 6 /2024
Arsenic	4.32	mg/Kg	148	125	81.8	75 - 125		3.98	8.21	20		4/16/2024
Barium	111	mg/Kg	148	245	90.8	75 - 125		108	3.03	20		4/16/2024
Cadmium	1.05	mg/Kg	59.2	47.1	77.8	75 - 125		0.999	5.36	20		4/16/2024
Chromium	17.9	mg/Kg	148	137	80.4	75 - 125		17.4	2.97	20		4/16/2024
Lead	27.5	mg/Kg	148	169	95.5	75 - 125		25.5	7.59	20		4/16/2024
Selenium	2.52	mg/Kg	148	113	74.9	75 - 125	*	2.18	14.5	20		4/16/2024
Silver	< 0.570	mg/Kg	14.8	14.1	95.2	75 - 125		< 0.598	NC	20		4/16/2024

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 4/12/2024

240416A

QC Batch ID: QC240412soil

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resultin from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

$\textit{CHAIN OF} \, \underline{\textit{CUSTODY}}$

			-REPC:!_R"rTO·			INVOICEtS	; •			
D 4 D 4 D		COMPANY:	11 -:i; ;		COMPANY:	SAME		MICTrI	61	
PA:RA-D-,	1.GM	,address:			.ADDRESS:					
ENVIRONMENTAL		CITY:	sTATE:	ZiP:	CITY:	STAT	TE: ZIP:	Quotation #: \1\ { 5	s V1.? f	
		PHONE:	AX:		PHONE:	FAX:		Email:	ľ	
PROJECT REFER	Matrix Codes:		\Dh::.A_L		1ATTN:			f'M o -t-o.n@; -Z\c.; v,JfVI	;; lJ\ , - r" ::,,.J _' , ta «	<i>Cc.</i> . 1-i,
too\ \lovt1r\	::::i .ne\	AQ - Aqueous Liquid NQ - Non-Aqueous Liquid		WA-Water WG - Groundwa	iter	OW - Drinking Water WW - Wastewate REGIUES11 2 i □ ALY	SO- Soil SL- Sludge	SD-Solid WP-Wipe PT-Paint CK-Caulk	OL-Oil AR-Air	
DATE COLLECTED COLLECTED 4-L\-J. <'.JI:?.\	S B	""" i	SAMPLE IDENTIFIER	MC AO TD R E s	NC O MN BA - N E R R O F R O	t J; 0 j	-/* c=> 5\	'S oCs ::;;i.,c-, -A '1\\-\S	PARADIGMLAB SAMPLE NUMBER	
Turnaround Time	1	Report Sup	nlements							
Availability conting	ent upon lab app			\J,.,,)y::\\	·1:Y:)e	J, cA	4-1\-cl. <	<,:3 <i>o</i>		
Standard 5 day	None Required	est{	None Required 21'	Sampled By	•	Date	/Time	Total Cost:		
10 day D	Batch QC	D	Basic EDD	Relinquished E	By I.	Date	-11-24 L	<u> </u>		
Rush 3 day	Categoiy A	D	NYSDEC EDD	Ju	Mi	Hydle 4		[LJ?V		
Rush 2 day	Categoiy B	D		Repelved By	b By	The Grate	14/1/24	Ju 3, PLF, military	1	
Rush 1 day	Other please indicate pack	age needed:	Other EDD ulcaac indicale EDD needed :	1y :gt » - abJ 4	, ,	ntai:e!s hJat	1 1 1 1 1 1 1 1 1 1	11103310:012.	J	
				// = UDJ 4	<i>i</i> I I					

Chain of Custody Supplement

Client: Lab Project II	D:	Ra VI 241607	Completed by:	4/11/201
			on Requirements 210/241/242/243/244	
Condition		NELAC compliance with the sample Yes	condition requirements upor	n receipt N/A
Container Type		VI	65035	
	Comments			
Transferred to me				- <u>k:21</u>
Headspace (<1 mL)	Comments			12??1
Preservation	Comments			<u>;,>62</u>
Chlorine Absent (<0.10 ppm per				
Holding Time	Comments			
Temperature	Comments	For Judin Fo	u (d	Motals (except)

<u>;u</u>]

Compliant Sample Quantity/Type

Comments

Analytical Report For

Ravi Engineering & Land Surveying, P.C.

For Lab Project ID

241825

Referencing

631 Northland

Prepared

Thursday, May 2, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Emilyfarmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: SB-7

Lab Sample ID: 241825-01 **Date Sampled:** 4/25/2024 11:30

Matrix: Soil Date Received 4/25/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Anal	<u>yzed</u>
Acenaphthene	< 296	ug/Kg			4/29/2024	17:53
Acenaphthylene	< 296	ug/Kg			4/29/2024	17:53
Anthracene	< 296	ug/Kg			4/29/2024	17:53
Benzo (a) anthracene	< 296	ug/Kg			4/29/2024	17:53
Benzo (a) pyrene	< 296	ug/Kg			4/29/2024	17:53
Benzo (b) fluoranthene	< 296	ug/Kg			4/29/2024	17:53
Benzo (g,h,i) perylene	< 296	ug/Kg			4/29/2024	17:53
Benzo (k) fluoranthene	< 296	ug/Kg			4/29/2024	17:53
Chrysene	< 296	ug/Kg			4/29/2024	17:53
Dibenz (a,h) anthracene	< 296	ug/Kg			4/29/2024	17:53
Fluoranthene	< 296	ug/Kg			4/29/2024	17:53
Fluorene	< 296	ug/Kg			4/29/2024	17:53
Indeno (1,2,3-cd) pyrene	< 296	ug/Kg			4/29/2024	17:53
Naphthalene	< 296	ug/Kg			4/29/2024	17:53
Phenanthrene	< 296	ug/Kg			4/29/2024	17:53
Pyrene	< 296	ug/Kg			4/29/2024	17:53
C	-	. D	.	0 .11	D . A 1	

<u>Surrogate</u>	Percent Recovery	Limits	<u>Outliers</u>	Date An	alyzed
2-Fluorobiphenyl	74.9	37.9 - 87.2		4/29/2024	17:53
Nitrobenzene-d5	64.9	33.2 - 82.1		4/29/2024	17:53
Terphenyl-d14	83.0	45.9 - 96		4/29/2024	17:53

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 4/26/2024 **Data File:** B71051.D

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 9.79	ug/Kg		4/29/2024 13:31
1,1,2,2-Tetrachloroethane	< 9.79	ug/Kg		4/29/2024 13:31

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: SB-7

Lab Sample ID: 241825-01 **Date Sampled:** 4/25/2024 11:30

Matrix: Soil Date Received 4/25/2024

- 10101 1111	5011			2 ate Received 1/20/2021
1,1,2-	Trichloroethane	< 9.79	ug/Kg	4/29/2024 13:31
1,1-D	ichloroethane	< 9.79	ug/Kg	4/29/2024 13:31
1,1-D	ichloroethene	< 9.79	ug/Kg	4/29/2024 13:31
1,2,3-	Trichlorobenzene	< 24.5	ug/Kg	4/29/2024 13:31
1,2,4-	Trichlorobenzene	< 24.5	ug/Kg	4/29/2024 13:31
1,2,4-	Trimethylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
1,2-D	ibromo-3-Chloropropane	< 48.9	ug/Kg	4/29/2024 13:31
1,2-D	ibromoethane	< 9.79	ug/Kg	4/29/2024 13:31
1,2-D	ichlorobenzene	< 9.79	ug/Kg	4/29/2024 13:31
1,2-D	ichloroethane	< 9.79	ug/Kg	4/29/2024 13:31
1,2-D	ichloropropane	< 9.79	ug/Kg	4/29/2024 13:31
1,3,5-	Trimethylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
1,3-D	ichlorobenzene	< 9.79	ug/Kg	4/29/2024 13:31
1,4-D	ichlorobenzene	< 9.79	ug/Kg	4/29/2024 13:31
1,4-D	ioxane	< 48.9	ug/Kg	4/29/2024 13:31
2-But	anone	< 48.9	ug/Kg	4/29/2024 13:31
2-Hex	kanone	< 24.5	ug/Kg	4/29/2024 13:31
4-Met	thyl-2-pentanone	< 24.5	ug/Kg	4/29/2024 13:31
Aceto	ne	< 48.9	ug/Kg	4/29/2024 13:31
Benze	ene	< 9.79	ug/Kg	4/29/2024 13:31
Brom	ochloromethane	< 24.5	ug/Kg	4/29/2024 13:31
Brom	odichloromethane	< 9.79	ug/Kg	4/29/2024 13:31
Brom	oform	< 24.5	ug/Kg	4/29/2024 13:31
Brom	omethane	< 9.79	ug/Kg	4/29/2024 13:31
Carbo	on disulfide	< 9.79	ug/Kg	4/29/2024 13:31
Carbo	on Tetrachloride	< 9.79	ug/Kg	4/29/2024 13:31
Chlor	obenzene	< 9.79	ug/Kg	4/29/2024 13:31
Chlor	oethane	< 9.79	ug/Kg	4/29/2024 13:31
Chlor	oform	< 9.79	ug/Kg	4/29/2024 13:31
Chlor	omethane	< 9.79	ug/Kg	4/29/2024 13:31

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: SB-7

Lab Sample ID: 241825-01 **Date Sampled:** 4/25/2024 11:30

Matrix: Soil Date Received 4/25/2024

cis-1,2-Dichloroethene	< 9.79	ug/Kg	4/29/2024 13:31
cis-1,3-Dichloropropene	< 9.79	ug/Kg	4/29/2024 13:31
Cyclohexane	< 48.9	ug/Kg	4/29/2024 13:31
Dibromochloromethane	< 9.79	ug/Kg	4/29/2024 13:31
Dichlorodifluoromethane	< 9.79	ug/Kg	4/29/2024 13:31
Ethylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
Freon 113	< 9.79	ug/Kg	4/29/2024 13:31
Isopropylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
m,p-Xylene	10.8	ug/Kg	4/29/2024 13:31
Methyl acetate	< 9.79	ug/Kg	4/29/2024 13:31
Methyl tert-butyl Ether	< 9.79	ug/Kg	4/29/2024 13:31
Methylcyclohexane	66.1	ug/Kg	4/29/2024 13:31
Methylene chloride	< 24.5	ug/Kg	4/29/2024 13:31
Naphthalene	< 24.5	ug/Kg	4/29/2024 13:31
n-Butylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
n-Propylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
o-Xylene	< 9.79	ug/Kg	4/29/2024 13:31
p-Isopropyltoluene	< 9.79	ug/Kg	4/29/2024 13:31
sec-Butylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
Styrene	< 24.5	ug/Kg	4/29/2024 13:31
tert-Butylbenzene	< 9.79	ug/Kg	4/29/2024 13:31
Tetrachloroethene	< 9.79	ug/Kg	4/29/2024 13:31
Toluene	< 9.79	ug/Kg	4/29/2024 13:31
trans-1,2-Dichloroethene	< 9.79	ug/Kg	4/29/2024 13:31
trans-1,3-Dichloropropene	< 9.79	ug/Kg	4/29/2024 13:31
Trichloroethene	< 9.79	ug/Kg	4/29/2024 13:31
Trichlorofluoromethane	< 9.79	ug/Kg	4/29/2024 13:31
Vinyl chloride	< 9.79	ug/Kg	4/29/2024 13:31

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: SB-7

Lab Sample ID: 241825-01 **Date Sampled:** 4/25/2024 11:30

Matrix: Soil Date Received 4/25/2024

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	alyzed
1,2-Dichloroethane-d4	104	80.9 - 124		4/29/2024	13:31
4-Bromofluorobenzene	101	75.8 - 116		4/29/2024	13:31
Pentafluorobenzene	97.0	90.7 - 109		4/29/2024	13:31
Toluene-D8	102	90.1 - 109		4/29/2024	13:31

Method Reference(s): EPA 8260C EPA 5035A - L

Data File: z23818.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241825-02 **Date Sampled:** 4/25/2024 12:00

Matrix: Groundwater Date Received 4/25/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene	< 10.5	ug/L		5/1/2024	14:40
Acenaphthylene	< 10.5	ug/L		5/1/2024	14:40
Anthracene	< 10.5	ug/L		5/1/2024	14:40
Benzo (a) anthracene	< 10.5	ug/L		5/1/2024	14:40
Benzo (a) pyrene	< 10.5	ug/L		5/1/2024	14:40
Benzo (b) fluoranthene	< 10.5	ug/L		5/1/2024	14:40
Benzo (g,h,i) perylene	< 10.5	ug/L		5/1/2024	14:40
Benzo (k) fluoranthene	< 10.5	ug/L		5/1/2024	14:40
Chrysene	< 10.5	ug/L		5/1/2024	14:40
Dibenz (a,h) anthracene	< 10.5	ug/L		5/1/2024	14:40
Fluoranthene	< 10.5	ug/L		5/1/2024	14:40
Fluorene	< 10.5	ug/L		5/1/2024	14:40
Indeno (1,2,3-cd) pyrene	< 10.5	ug/L		5/1/2024	14:40
Naphthalene	< 10.5	ug/L		5/1/2024	14:40
Phenanthrene	< 10.5	ug/L		5/1/2024	14:40
Pyrene	< 10.5	ug/L		5/1/2024	14:40

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2-Fluorobiphenyl	51.2	15.2 - 100		5/1/2024	14:40
Nitrobenzene-d5	67.5	47.4 - 98.9		5/1/2024	14:40
Terphenyl-d14	83.3	56 - 111		5/1/2024	14:40

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 4/30/2024 **Data File:** B71123.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		4/26/2024 14:38
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		4/26/2024 14:38

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241825-02 **Date Sampled:** 4/25/2024 12:00

Matrix: Groundwater Date Received 4/25/2024

Matrix.	dibullaw	atei		Date Received 4/23/2024	
1,1,2-Trichloroe	thane	< 2.00	ug/L	4/26/2024 14	:38
1,1-Dichloroetha	ane	< 2.00	ug/L	4/26/2024 14	:38
1,1-Dichloroethe	ene	< 2.00	ug/L	4/26/2024 14	:38
1,2,3-Trichlorob	enzene	< 5.00	ug/L	4/26/2024 14	:38
1,2,4-Trichlorob	enzene	< 5.00	ug/L	4/26/2024 14	:38
1,2,4-Trimethyll	oenzene	< 2.00	ug/L	4/26/2024 14	:38
1,2-Dibromo-3-0	Chloropropane	< 10.0	ug/L	4/26/2024 14	:38
1,2-Dibromoeth	ane	< 2.00	ug/L	4/26/2024 14	:38
1,2-Dichloroben	zene	< 2.00	ug/L	4/26/2024 14	:38
1,2-Dichloroetha	ane	< 2.00	ug/L	4/26/2024 14	:38
1,2-Dichloropro	pane	< 2.00	ug/L	4/26/2024 14	:38
1,3,5-Trimethyll	oenzene	< 2.00	ug/L	4/26/2024 14	:38
1,3-Dichloroben	zene	< 2.00	ug/L	4/26/2024 14	:38
1,4-Dichloroben	zene	< 2.00	ug/L	4/26/2024 14	:38
1,4-Dioxane		< 20.0	ug/L	4/26/2024 14	:38
2-Butanone		< 10.0	ug/L	4/26/2024 14	:38
2-Hexanone		< 5.00	ug/L	4/26/2024 14	:38
4-Methyl-2-pent	anone	< 5.00	ug/L	4/26/2024 14	:38
Acetone		< 10.0	ug/L	4/26/2024 14	:38
Benzene		< 1.00	ug/L	4/26/2024 14	:38
Bromochlorome	thane	< 5.00	ug/L	4/26/2024 14	:38
Bromodichloron	nethane	< 2.00	ug/L	4/26/2024 14	:38
Bromoform		< 5.00	ug/L	4/26/2024 14	:38
Bromomethane		< 2.00	ug/L	4/26/2024 14	:38
Carbon disulfide		< 2.00	ug/L	4/26/2024 14	:38
Carbon Tetrachl	oride	< 2.00	ug/L	4/26/2024 14	:38
Chlorobenzene		< 2.00	ug/L	4/26/2024 14	:38
Chloroethane		< 2.00	ug/L	4/26/2024 14	:38
Chloroform		< 2.00	ug/L	4/26/2024 14	:38
Chloromethane		< 2.00	ug/L	4/26/2024 14	:38

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241825-02 **Date Sampled:** 4/25/2024 12:00

Matrix: Groundwater Date Received 4/25/2024

				_
cis-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024	14:38
cis-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024	14:38
Cyclohexane	< 10.0	ug/L	4/26/2024	14:38
Dibromochloromethane	< 2.00	ug/L	4/26/2024	14:38
Dichlorodifluoromethane	< 2.00	ug/L	4/26/2024	14:38
Ethylbenzene	< 2.00	ug/L	4/26/2024	14:38
Freon 113	< 2.00	ug/L	4/26/2024	14:38
Isopropylbenzene	< 2.00	ug/L	4/26/2024	14:38
m,p-Xylene	< 2.00	ug/L	4/26/2024	14:38
Methyl acetate	< 2.00	ug/L	4/26/2024	14:38
Methyl tert-butyl Ether	< 2.00	ug/L	4/26/2024	14:38
Methylcyclohexane	< 2.00	ug/L	4/26/2024	14:38
Methylene chloride	< 5.00	ug/L	4/26/2024	14:38
Naphthalene	< 5.00	ug/L	4/26/2024	14:38
n-Butylbenzene	< 2.00	ug/L	4/26/2024	14:38
n-Propylbenzene	< 2.00	ug/L	4/26/2024	14:38
o-Xylene	< 2.00	ug/L	4/26/2024	14:38
p-Isopropyltoluene	< 2.00	ug/L	4/26/2024	14:38
sec-Butylbenzene	< 2.00	ug/L	4/26/2024	14:38
Styrene	< 5.00	ug/L	4/26/2024	14:38
tert-Butylbenzene	< 2.00	ug/L	4/26/2024	14:38
Tetrachloroethene	< 2.00	ug/L	4/26/2024	14:38
Toluene	< 2.00	ug/L	4/26/2024	14:38
trans-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024	14:38
trans-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024	14:38
Trichloroethene	< 2.00	ug/L	4/26/2024	14:38
Trichlorofluoromethane	< 2.00	ug/L	4/26/2024	14:38
Vinyl chloride	< 2.00	ug/L	4/26/2024	14:38

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-1

Lab Sample ID: 241825-02 **Date Sampled:** 4/25/2024 12:00

Matrix: Groundwater Date Received 4/25/2024

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	101	80.5 - 124		4/26/2024	14:38
4-Bromofluorobenzene	93.9	78.2 - 114		4/26/2024	14:38
Pentafluorobenzene	97.1	90.8 - 109		4/26/2024	14:38
Toluene-D8	99.1	90.3 - 110		4/26/2024	14:38

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z23799.D

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-2

Lab Sample ID: 241825-03 **Date Sampled:** 4/25/2024 12:15

Matrix: Groundwater Date Received 4/25/2024

Semi-Volatile Organics (PAHs)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Acenaphthene	< 10.5	ug/L		5/1/2024 15:10
Acenaphthylene	< 10.5	ug/L		5/1/2024 15:10
Anthracene	< 10.5	ug/L		5/1/2024 15:10
Benzo (a) anthracene	< 10.5	ug/L		5/1/2024 15:10
Benzo (a) pyrene	< 10.5	ug/L		5/1/2024 15:10
Benzo (b) fluoranthene	< 10.5	ug/L		5/1/2024 15:10
Benzo (g,h,i) perylene	< 10.5	ug/L		5/1/2024 15:10
Benzo (k) fluoranthene	< 10.5	ug/L		5/1/2024 15:10
Chrysene	< 10.5	ug/L		5/1/2024 15:10
Dibenz (a,h) anthracene	< 10.5	ug/L		5/1/2024 15:10
Fluoranthene	< 10.5	ug/L		5/1/2024 15:10
Fluorene	< 10.5	ug/L		5/1/2024 15:10
Indeno (1,2,3-cd) pyrene	< 10.5	ug/L		5/1/2024 15:10
Naphthalene	< 10.5	ug/L		5/1/2024 15:10
Phenanthrene	< 10.5	ug/L		5/1/2024 15:10
Pyrene	< 10.5	ug/L		5/1/2024 15:10
	_			

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2-Fluorobiphenyl	59.8	15.2 - 100		5/1/2024	15:10
Nitrobenzene-d5	69.9	47.4 - 98.9		5/1/2024	15:10
Terphenyl-d14	84.4	56 - 111		5/1/2024	15:10

Method Reference(s): EPA 8270D

EPA 3510C 4/30/2024

Preparation Date: 4/30/202 Data File: 871124.D

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		4/26/2024 14:57
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		4/26/2024 14:57

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-2

Lab Sample ID: 241825-03 **Date Sampled:** 4/25/2024 12:15

Matrix: Groundwater Date Received 4/25/2024

Mati IX.	dibuliuw	ater		Date Neccived 4/25/2024	
1,1,2-Trichloroe	ethane	< 2.00	ug/L	4/26/2024 14:5	57
1,1-Dichloroeth	ane	< 2.00	ug/L	4/26/2024 14:5	57
1,1-Dichloroeth	ene	< 2.00	ug/L	4/26/2024 14:5	57
1,2,3-Trichlorol	oenzene	< 5.00	ug/L	4/26/2024 14:5	57
1,2,4-Trichlorol	oenzene	< 5.00	ug/L	4/26/2024 14:5	57
1,2,4-Trimethyl	benzene	< 2.00	ug/L	4/26/2024 14:5	57
1,2-Dibromo-3-	Chloropropane	< 10.0	ug/L	4/26/2024 14:5	57
1,2-Dibromoeth	iane	< 2.00	ug/L	4/26/2024 14:5	57
1,2-Dichlorober	nzene	< 2.00	ug/L	4/26/2024 14:5	57
1,2-Dichloroeth	ane	< 2.00	ug/L	4/26/2024 14:5	57
1,2-Dichloropro	pane	< 2.00	ug/L	4/26/2024 14:5	57
1,3,5-Trimethyl	benzene	< 2.00	ug/L	4/26/2024 14:5	57
1,3-Dichlorober	nzene	< 2.00	ug/L	4/26/2024 14:5	57
1,4-Dichlorober	nzene	< 2.00	ug/L	4/26/2024 14:5	57
1,4-Dioxane		< 20.0	ug/L	4/26/2024 14:5	57
2-Butanone		< 10.0	ug/L	4/26/2024 14:5	57
2-Hexanone		< 5.00	ug/L	4/26/2024 14:5	57
4-Methyl-2-pen	tanone	< 5.00	ug/L	4/26/2024 14:5	57
Acetone		< 10.0	ug/L	4/26/2024 14:5	57
Benzene		< 1.00	ug/L	4/26/2024 14:5	57
Bromochlorome	ethane	< 5.00	ug/L	4/26/2024 14:5	57
Bromodichloro	methane	< 2.00	ug/L	4/26/2024 14:5	57
Bromoform		< 5.00	ug/L	4/26/2024 14:5	57
Bromomethane		< 2.00	ug/L	4/26/2024 14:5	57
Carbon disulfide	e	< 2.00	ug/L	4/26/2024 14:5	57
Carbon Tetrach	loride	< 2.00	ug/L	4/26/2024 14:5	57
Chlorobenzene		< 2.00	ug/L	4/26/2024 14:5	57
Chloroethane		< 2.00	ug/L	4/26/2024 14:5	57
Chloroform		< 2.00	ug/L	4/26/2024 14:5	57
Chloromethane		< 2.00	ug/L	4/26/2024 14:5	57

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-2

Lab Sample ID: 241825-03 **Date Sampled:** 4/25/2024 12:15

Matrix: Groundwater Date Received 4/25/2024

cis-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024 14:57
cis-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024 14:57
Cyclohexane	< 10.0	ug/L	4/26/2024 14:57
Dibromochloromethane	< 2.00	ug/L	4/26/2024 14:57
Dichlorodifluoromethane	< 2.00	ug/L	4/26/2024 14:57
Ethylbenzene	< 2.00	ug/L	4/26/2024 14:57
Freon 113	< 2.00	ug/L	4/26/2024 14:57
Isopropylbenzene	< 2.00	ug/L	4/26/2024 14:57
m,p-Xylene	< 2.00	ug/L	4/26/2024 14:57
Methyl acetate	< 2.00	ug/L	4/26/2024 14:57
Methyl tert-butyl Ether	< 2.00	ug/L	4/26/2024 14:57
Methylcyclohexane	< 2.00	ug/L	4/26/2024 14:57
Methylene chloride	< 5.00	ug/L	4/26/2024 14:57
Naphthalene	< 5.00	ug/L	4/26/2024 14:57
n-Butylbenzene	< 2.00	ug/L	4/26/2024 14:57
n-Propylbenzene	< 2.00	ug/L	4/26/2024 14:57
o-Xylene	< 2.00	ug/L	4/26/2024 14:57
p-Isopropyltoluene	< 2.00	ug/L	4/26/2024 14:57
sec-Butylbenzene	< 2.00	ug/L	4/26/2024 14:57
Styrene	< 5.00	ug/L	4/26/2024 14:57
tert-Butylbenzene	< 2.00	ug/L	4/26/2024 14:57
Tetrachloroethene	< 2.00	ug/L	4/26/2024 14:57
Toluene	< 2.00	ug/L	4/26/2024 14:57
trans-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024 14:57
trans-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024 14:57
Trichloroethene	< 2.00	ug/L	4/26/2024 14:57
Trichlorofluoromethane	< 2.00	ug/L	4/26/2024 14:57
Vinyl chloride	< 2.00	ug/L	4/26/2024 14:57

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-2

Lab Sample ID: 241825-03 **Date Sampled:** 4/25/2024 12:15

Matrix: Groundwater Date Received 4/25/2024

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
1,2-Dichloroethane-d4	103	80.5 - 124		4/26/2024	14:57
4-Bromofluorobenzene	95.3	78.2 - 114		4/26/2024	14:57
Pentafluorobenzene	99.5	90.8 - 109		4/26/2024	14:57
Toluene-D8	101	90.3 - 110		4/26/2024	14:57

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z23800.D

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241825-04 **Date Sampled:** 4/25/2024 13:00

Matrix: Groundwater Date Received 4/25/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Acenaphthene	< 10.5	ug/L		5/1/2024 15:40
Acenaphthylene	< 10.5	ug/L		5/1/2024 15:40
Anthracene	< 10.5	ug/L		5/1/2024 15:40
Benzo (a) anthracene	< 10.5	ug/L		5/1/2024 15:40
Benzo (a) pyrene	< 10.5	ug/L		5/1/2024 15:40
Benzo (b) fluoranthene	< 10.5	ug/L		5/1/2024 15:40
Benzo (g,h,i) perylene	< 10.5	ug/L		5/1/2024 15:40
Benzo (k) fluoranthene	< 10.5	ug/L		5/1/2024 15:40
Chrysene	< 10.5	ug/L		5/1/2024 15:40
Dibenz (a,h) anthracene	< 10.5	ug/L		5/1/2024 15:40
Fluoranthene	< 10.5	ug/L		5/1/2024 15:40
Fluorene	< 10.5	ug/L		5/1/2024 15:40
Indeno (1,2,3-cd) pyrene	< 10.5	ug/L		5/1/2024 15:40
Naphthalene	< 10.5	ug/L		5/1/2024 15:40
Phenanthrene	< 10.5	ug/L		5/1/2024 15:40
Pyrene	< 10.5	ug/L		5/1/2024 15:40
	ъ.	D 71 1	0 .11	D . A 1 1

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2-Fluorobiphenyl	68.9	15.2 - 100		5/1/2024	15:40
Nitrobenzene-d5	78.7	47.4 - 98.9		5/1/2024	15:40
Terphenyl-d14	91.1	56 - 111		5/1/2024	15:40

Method Reference(s): EPA 8270D

EPA 3510C 4/30/2024

Preparation Date: 4/30/2020 **Data File:** B71125.D

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		4/26/2024 15:17
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		4/26/2024 15:17

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241825-04 **Date Sampled:** 4/25/2024 13:00

Matrix: Groundwater Date Received 4/25/2024

Mati IX.	dibulluv	vater		Date Necesveu 4/25/2024	
1,1,2-Trichloro	ethane	< 2.00	ug/L	4/26/2024	15:17
1,1-Dichloroet	hane	< 2.00	ug/L	4/26/2024	15:17
1,1-Dichloroet	hene	< 2.00	ug/L	4/26/2024	15:17
1,2,3-Trichloro	benzene	< 5.00	ug/L	4/26/2024	15:17
1,2,4-Trichloro	benzene	< 5.00	ug/L	4/26/2024	15:17
1,2,4-Trimethy	lbenzene	< 2.00	ug/L	4/26/2024	15:17
1,2-Dibromo-3	-Chloropropane	< 10.0	ug/L	4/26/2024	15:17
1,2-Dibromoet	hane	< 2.00	ug/L	4/26/2024	15:17
1,2-Dichlorobe	enzene	< 2.00	ug/L	4/26/2024	15:17
1,2-Dichloroet	hane	< 2.00	ug/L	4/26/2024	15:17
1,2-Dichloropr	opane	< 2.00	ug/L	4/26/2024	15:17
1,3,5-Trimethy	lbenzene	< 2.00	ug/L	4/26/2024	15:17
1,3-Dichlorobe	enzene	< 2.00	ug/L	4/26/2024	15:17
1,4-Dichlorobe	enzene	< 2.00	ug/L	4/26/2024	15:17
1,4-Dioxane		< 20.0	ug/L	4/26/2024	15:17
2-Butanone		< 10.0	ug/L	4/26/2024	15:17
2-Hexanone		< 5.00	ug/L	4/26/2024	15:17
4-Methyl-2-pe	ntanone	< 5.00	ug/L	4/26/2024	15:17
Acetone		< 10.0	ug/L	4/26/2024	15:17
Benzene		< 1.00	ug/L	4/26/2024	15:17
Bromochloron	nethane	< 5.00	ug/L	4/26/2024	15:17
Bromodichloro	omethane	< 2.00	ug/L	4/26/2024	15:17
Bromoform		< 5.00	ug/L	4/26/2024	15:17
Bromomethan	e	< 2.00	ug/L	4/26/2024	15:17
Carbon disulfic	le	< 2.00	ug/L	4/26/2024	15:17
Carbon Tetracl	nloride	< 2.00	ug/L	4/26/2024	15:17
Chlorobenzene	?	< 2.00	ug/L	4/26/2024	15:17
Chloroethane		< 2.00	ug/L	4/26/2024	15:17
Chloroform		< 2.00	ug/L	4/26/2024	15:17
Chloromethan	e	< 2.00	ug/L	4/26/2024	15:17

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241825-04 **Date Sampled:** 4/25/2024 13:00

Matrix: Groundwater Date Received 4/25/2024

			- · · · · · · · · · · · · · · · · · · ·
cis-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024 15:17
cis-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024 15:17
Cyclohexane	< 10.0	ug/L	4/26/2024 15:17
Dibromochloromethane	< 2.00	ug/L	4/26/2024 15:17
Dichlorodifluoromethane	< 2.00	ug/L	4/26/2024 15:17
Ethylbenzene	< 2.00	ug/L	4/26/2024 15:17
Freon 113	< 2.00	ug/L	4/26/2024 15:17
Isopropylbenzene	< 2.00	ug/L	4/26/2024 15:17
m,p-Xylene	< 2.00	ug/L	4/26/2024 15:17
Methyl acetate	< 2.00	ug/L	4/26/2024 15:17
Methyl tert-butyl Ether	< 2.00	ug/L	4/26/2024 15:17
Methylcyclohexane	< 2.00	ug/L	4/26/2024 15:17
Methylene chloride	< 5.00	ug/L	4/26/2024 15:17
Naphthalene	< 5.00	ug/L	4/26/2024 15:17
n-Butylbenzene	< 2.00	ug/L	4/26/2024 15:17
n-Propylbenzene	< 2.00	ug/L	4/26/2024 15:17
o-Xylene	< 2.00	ug/L	4/26/2024 15:17
p-Isopropyltoluene	< 2.00	ug/L	4/26/2024 15:17
sec-Butylbenzene	< 2.00	ug/L	4/26/2024 15:17
Styrene	< 5.00	ug/L	4/26/2024 15:17
tert-Butylbenzene	< 2.00	ug/L	4/26/2024 15:17
Tetrachloroethene	< 2.00	ug/L	4/26/2024 15:17
Toluene	< 2.00	ug/L	4/26/2024 15:17
trans-1,2-Dichloroethene	< 2.00	ug/L	4/26/2024 15:17
trans-1,3-Dichloropropene	< 2.00	ug/L	4/26/2024 15:17
Trichloroethene	< 2.00	ug/L	4/26/2024 15:17
Trichlorofluoromethane	< 2.00	ug/L	4/26/2024 15:17
Vinyl chloride	< 2.00	ug/L	4/26/2024 15:17

Client: Ravi Engineering & Land Surveying, P.C.

Project Reference: 631 Northland

Sample Identifier: MW-3

Lab Sample ID: 241825-04 **Date Sampled:** 4/25/2024 13:00

Matrix: Groundwater Date Received 4/25/2024

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
1,2-Dichloroethane-d4	97.3	80.5 - 124		4/26/2024	15:17
4-Bromofluorobenzene	91.1	78.2 - 114		4/26/2024	15:17
Pentafluorobenzene	96.1	90.8 - 109		4/26/2024	15:17
Toluene-D8	97.9	90.3 - 110		4/26/2024	15:17

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z23801.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

Standard 5 day None Required 10 day Batch QC Rush 3 day Category A Rush 2 day Cher please indicate date needed: please indicate package needed:	Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply.		V 15:00 V	19:15	-	7-28-28-1	DATE COLLECTED TIME COLLECTED COLLECTED T T T E		631 Natholand	PROJECT REFERENCE		ENVIRONMENTAL SERVICES	TARAUIGM	
None Required Basic EDD NYSDEC EDD Other EDD please indicate EDD needed :	Report Supplements roval; additional fees may apply.		C-MM	G-NW	, MM-1	1 - 95 1	SAMPLE IDENTIFIER	STATE OF THE PERSON NAMED IN STREET	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	1.50,50V	PHONE: FAX:	CITY: STATE:	address:	COMPANY: REPORT TO:
Received By Received By Received By Received @Lab By Date Time Date Time Date Time Date Time P.I.F. Received @Lab By Date Time Date Time Date Time Date Time Received @Lab By Conditions (reverse).	Whitney Makon 40	1 3 per in qual On 4/25/	CW32 ///	EN3 & UVV	U)	SO 2 1/1/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X-Z-> Z WMTOO TO ZMEEZZ WZMZ-> HZOO CPSI VUCS TCL VUCS CP-SI SVOCS	REQUESTED ANALYSIS	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater SL - Sludge	ATTN:	PHONE: FAX:	ZIP: OTTY: STATE: ZIP:	ADDRESS:	COMPANY: SAME
Total Cost:	15.24 BOO	2at	2	93	02	0	PARADIGM LAB REMARKS SAMPLE NUMBER		SD - Solid WP - Wipe OL - Oil PT - Paint CK - Caulk AR - Air	Chora @ Vavios	Email:	Quotation #: Na/SN21	141875	LAB PROJECTIO
	_		•			•				Ç 3	ge 2	О о	f 21	

Chain of Custody Supplement

Client:	Ravi	Completed by:	water lich
Lab Project ID:	241825	Date:	125/2024
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244			
Condition	NELAC compliance with the san Yes	nple condition requirements upon rec No	eipt N/A
Container Type		5035	
Comments	-		——————————————————————————————————————
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments	Vo 41	Aa)	
Chlorine Absent (<0.10 ppm per test strip) Comments			
- Holding Time Comments			
'emperature Comments	13°E Lud 1	n Freld	
ompliant Sample Quantity/Ty	тре		
Comments			